Sample records for active andean volcanism

  1. Volcanism and associated hazards: the Andean perspective (United States)

    Tilling, R. I.


    Andean volcanism occurs within the Andean Volcanic Arc (AVA), which is the product of subduction of the Nazca Plate and Antarctica Plates beneath the South America Plate. The AVA is Earth's longest but discontinuous continental-margin volcanic arc, which consists of four distinct segments: Northern Volcanic Zone, Central Volcanic Zone, Southern Volcanic Zone, and Austral Volcanic Zone. These segments are separated by volcanically inactive gaps that are inferred to indicate regions where the dips of the subducting plates are too shallow to favor the magma generation needed to sustain volcanism. The Andes host more volcanoes that have been active during the Holocene (past 10 000 years) than any other volcanic region in the world, as well as giant caldera systems that have produced 6 of the 47 largest explosive eruptions (so-called "super eruptions") recognized worldwide that have occurred from the Ordovician to the Pleistocene. The Andean region's most powerful historical explosive eruption occurred in 1600 at Huaynaputina Volcano (Peru). The impacts of this event, whose eruptive volume exceeded 11 km3, were widespread, with distal ashfall reported at distances >1000 km away. Despite the huge size of the Huaynaputina eruption, human fatalities from hazardous processes (pyroclastic flows, ashfalls, volcanogenic earthquakes, and lahars) were comparatively small owing to the low population density at the time. In contrast, lahars generated by a much smaller eruption (indecisiveness by government officials, rather than any major deficiencies in scientific data. Ruiz's disastrous outcome, however, together with responses to subsequent hazardous eruptions in Chile, Colombia, Ecuador, and Peru has spurred significant improvements in reducing volcano risk in the Andean region. But much remains to be done.

  2. Volcanism and associated hazards: The Andean perspective (United States)

    Tilling, R.I.


    Andean volcanism occurs within the Andean Volcanic Arc (AVA), which is the product of subduction of the Nazca Plate and Antarctica Plates beneath the South America Plate. The AVA is Earth's longest but discontinuous continental-margin volcanic arc, which consists of four distinct segments: Northern Volcanic Zone, Central Volcanic Zone, Southern Volcanic Zone, and Austral Volcanic Zone. These segments are separated by volcanically inactive gaps that are inferred to indicate regions where the dips of the subducting plates are too shallow to favor the magma generation needed to sustain volcanism. The Andes host more volcanoes that have been active during the Holocene (past 10 000 years) than any other volcanic region in the world, as well as giant caldera systems that have produced 6 of the 47 largest explosive eruptions (so-called "super eruptions") recognized worldwide that have occurred from the Ordovician to the Pleistocene. The Andean region's most powerful historical explosive eruption occurred in 1600 at Huaynaputina Volcano (Peru). The impacts of this event, whose eruptive volume exceeded 11 km3, were widespread, with distal ashfall reported at distances >1000 km away. Despite the huge size of the Huaynaputina eruption, human fatalities from hazardous processes (pyroclastic flows, ashfalls, volcanogenic earthquakes, and lahars) were comparatively small owing to the low population density at the time. In contrast, lahars generated by a much smaller eruption (indecisiveness by government officials, rather than any major deficiencies in scientific data. Ruiz's disastrous outcome, however, together with responses to subsequent hazardous eruptions in Chile, Colombia, Ecuador, and Peru has spurred significant improvements in reducing volcano risk in the Andean region. But much remains to be done.

  3. Volcanism and associated hazards: the Andean perspective

    Directory of Open Access Journals (Sweden)

    R. I. Tilling


    Full Text Available Andean volcanism occurs within the Andean Volcanic Arc (AVA, which is the product of subduction of the Nazca Plate and Antarctica Plates beneath the South America Plate. The AVA is Earth's longest but discontinuous continental-margin volcanic arc, which consists of four distinct segments: Northern Volcanic Zone, Central Volcanic Zone, Southern Volcanic Zone, and Austral Volcanic Zone. These segments are separated by volcanically inactive gaps that are inferred to indicate regions where the dips of the subducting plates are too shallow to favor the magma generation needed to sustain volcanism. The Andes host more volcanoes that have been active during the Holocene (past 10 000 years than any other volcanic region in the world, as well as giant caldera systems that have produced 6 of the 47 largest explosive eruptions (so-called "super eruptions" recognized worldwide that have occurred from the Ordovician to the Pleistocene.

    The Andean region's most powerful historical explosive eruption occurred in 1600 at Huaynaputina Volcano (Peru. The impacts of this event, whose eruptive volume exceeded 11 km3, were widespread, with distal ashfall reported at distances >1000 km away. Despite the huge size of the Huaynaputina eruption, human fatalities from hazardous processes (pyroclastic flows, ashfalls, volcanogenic earthquakes, and lahars were comparatively small owing to the low population density at the time. In contrast, lahars generated by a much smaller eruption (<0.05 km3 in 1985 of Nevado del Ruiz (Colombia killed about 25 000 people – the worst volcanic disaster in the Andean region as well as the second worst in the world in the 20th century. The Ruiz tragedy has been attributed largely to ineffective communications of hazards information and indecisiveness by government officials, rather than any major deficiencies in scientific data. Ruiz's disastrous outcome, however, together with responses to subsequent

  4. Geochemical variations in the Quaternary Andean back-arc volcanism, southern Mendoza, Argentina (United States)

    Espanon, Venera R.; Chivas, Allan R.; Kinsley, Leslie P. J.; Dosseto, Anthony


    The Payenia Basaltic Province (PBP) is located 450 km east of the Chile-Peru trench in central west Argentina, behind the Andean arc front, constituting the back-arc. In order to evaluate the influence of the subducting slab as well as the magmatic source of this region, two volcanic fields located at comparable distance to the trench, having abundant basaltic products and similar eruptive timeframes were chosen. The Llancanelo (LLVF) and the Payún Matrú (PMVF) volcanic fields are part of the PBP and exhibit abundant basaltic activity during the Pleistocene. The geochemical data suggest that the LLVF has some arc signatures which have been described as weak as they are not as pronounced as in the Andean arc. The weak arc signature is not derived from slab dehydration as high Th enrichment relative to U cannot be explained by this process. We relate the Th enrichment as well as the lack of large residual garnet signatures, to slab sediments in the source. In the case of the PMVF, no arc signature has been inferred despite being only 30 km south of the LLVF. However the PMVF has a composition similar to that of the local intraplate end member, represented by the Rio Colorado volcanic field. The two volcanic fields, LLVF and PMVF, show indications of lower crustal assimilation as they trend towards the lower continental crust end member in Nb/U vs Ce/Pb and Nb/Yb vs Th/Yb diagrams. The geochemical differences between the LLVF and the PMVF as well as between several volcanic fields are illustrated using spatial distribution maps of geochemical ratios. Using this new approach, the decrease in arc signature can be traced in the back-arc and the higher enrichment in high field strength elements (HFSE) relative to large ion lithophile elements (LILE) in the PMVF compared to the LLVF is explicitly shown. These geospatial maps provide a graphical manner to illustrate the presence of two distinct types of volcanism (OIB-like and arc-like) occurring in the same Quaternary

  5. Constraints on the origin and evolution of magmas in the Payún Matrú Volcanic Field, Quaternary Andean Back-arc of Western Argentina

    NARCIS (Netherlands)

    Hernando, I.R.; Aragón, E.; Frei, R.; González, P.D.; Spakman, W.


    The Payún Matrú Volcanic Field (Pleistocene–Holocene) is located in the Andean back-arc of the Southern Volcanic Zone, western Argentina, and is contemporaneous with the Andean volcanic arc at the same latitude. It includes two polygenetic, mostly trachytic volcanoes: Payún Matrú (with a summit cald

  6. The Early Andean Magmatic Province (EAMP): 40Ar/ 39Ar dating on Mesozoic volcanic and plutonic rocks from the Coastal Cordillera, northern Chile (United States)

    Oliveros, Verónica; Féraud, Gilbert; Aguirre, Luis; Fornari, Michel; Morata, Diego


    The Early Andean Magmatic Province (EAMP), consists of about 150 000 km 3 of volcanic and plutonic units in the Coastal Cordillera of northern Chile and southern Peru and represents a major magmatic Mesozoic event in the world, for which the precise age of the thick volcanic series was unknown. Thirty 40Ar/ 39Ar analyses were carried out on primary mineral phases of volcanic and plutonic rocks from northern Chile (18°30'-24°S). Reliable plateau and "mini plateau" ages were obtained on plagioclase, amphibole and biotite from volcanic and plutonic rocks, despite widespread strong alteration degree. In the Arica, Tocopilla and Antofagasta (700 km apart) regions, the ages obtained on lava flows constrain the volcanic activity between 164 and 150 Ma and no N-S migration of volcanism is observed. The uppermost lava flows of the volcanic sequence at the type locality of the La Negra Formation extruded at ca. 153-150 Ma, suggesting the end of the volcanic activity of the arc at that time. The oldest volcanic activity occurred probably at ca. 175-170 Ma in the Iquique area, although no plateau age could be obtained. The plutonic bodies of the same regions were dated between ca. 160 and 142 Ma, indicating that they were partly contemporaneous with the volcanic activity. At least one volcanic pulse around 160 Ma is evidenced over the entire investigated reach of the EAMP, according to the ages found in Arica, Tocopilla, Michilla and Mantos Blancos regions. The episodic emplacement of huge amounts of subduction related volcanism is observed throughout the whole Andean history and particularly during the Jurassic (southern Peru, northern Chile and southern Argentina). These events probably correspond to periodic extensional geodynamic episodes, as a consequence of particular subduction conditions, such as change of obliquity of the convergence, change in the subduction angle, slab roll back effect or lower convergence rate, that remain to be precisely defined.

  7. The interplay between tectonics and volcanism: a key to unravel the nature of Andean geothermal systems (United States)

    Cembrano, J. M.


    subvertical pathways for magma ascent and shorter residence times. This in turn prevents advanced magma differentiation. However, in the SVZ, transtensional and transpressional domains coexist in space and time. On one end of the spectrum, a plumbing system dominated by NNE-striking subvertical strike-slip faults and ENE-striking tension cracks will favor rapid ascent of magmas from the asthenospheric wedge with little crustal contamination. On the other end, a system of long-lived NW-striking faults and subhorizontal cracks will favor longer residence times and episodic magma fractionation, which in turn allow eruption of evolved magmas, similar to those of the CVZ. Whereas the transtensional fault-fracture network does not require fluid overpressures to operate, the compressional/transpressional does. This is consistent with the higher presence of volatiles accompanying magma differentiation in the more felsic magmas of the CVZ and the NW-trending volcanic chains of the SVZ. The same fundamental processes that drive the interplay between volcanism and tectonics may also control the nature, geometry and composition of geothermal reservoirs in the Andean volcanic arc.

  8. System of Volcanic activity

    Directory of Open Access Journals (Sweden)



    Full Text Available A comparison is made among the systems of B. G.
    Escher (3, of R. W. van Bemmelen (1 and that of the author (4. In this
    connection, on the basis of Esclier's classification, the terms of "constructiv
    e " and "destructive" eruptions are introduced into the author's system and
    at the same time Escher's concept on the possible relation between the depth
    of magma-chamber and the measure of the gas-pressure is discussed briefly.
    Three complementary remarks to the first paper (4 011 the subject of system
    of volcanic activity are added.

  9. Io. [theories concerning volcanic activity (United States)

    Johnson, T. V.; Soderblom, L. A.


    A report on the continuing investigation of Io is presented. Gravitational resonance is discussed as the cause of Io's volcanism, and the volcanic activity is explained in terms of sulfur chemistry. Theories concerning the reasons for the two main types of volcanic eruptions on Io are advanced and correlated with geographical features of the satellite. The sulfur and silicate models of the calderas are presented, citing the strengths and weaknesses of each. Problems of the gravitational resonance theory of Io's heat source are then described. Finally, observations of Io planned for the Galileo mission are summarized.

  10. Relative Roles of Source Composition, Fractional Crystallization and Crustal Contamination in the Petrogenesis of Andean Volcanic Rocks (United States)

    Thorpe, R. S.; Francis, P. W.; O'Callaghan, L.


    There are well established differences in the chemical and isotopic characteristics of the calc-alkaline basalt--andesite--decite--rhyolite association of the northern (n.v.z.), central (c.v.z.) and southern volcanic zones (s.v.z.) of the South American Andes. Volcanic rocks of the alkaline basalt--trachyte association occur within and to the east of these active volcanic zones. The chemical and isotopic characteristics of the n.v.z. basaltic andesites and andesites and the s.v.z. basalts, basaltic andesites and andesites are consistent with derivation by fractional crystallization of basaltic parent magmas formed by partial melting of the asthenospheric mantle wedge containing components from subducted oceanic lithosphere. Conversely, the alkaline lavas are derived from basaltic parent magmas formed from mantle of `within-plate' character. Recent basaltic andesites from the Cerro Galan volcanic centre to the SE of the c.v.z. are derived from mantle containing both subduction zone and within-plate components, and have experienced assimilation and fractional crystallization (a.f.c.) during uprise through the continental crust. The c.v.z. basaltic andesites are derived from mantle containing subduction-zone components, probably accompanied by a.f.c. within the continental crust. Some c.v.z. lavas and pyroclastic rocks show petrological and geochemical evidence for magma mixing. The petrogenesis of the c.v.z. lavas is therefore a complex process in which magmas derived from heterogeneous mantle experience assimilation, fractional crystallization, and magma mixing during uprise through the continental crust. Active Andean volcanoes of the calc-alkaline basalt--andesite--dacite rhyolite association occur within a northern (n.v.z.), central (c.v.z.) and southern volcanic zone (s.v.z.) (figure 9). Alkaline volcanic rocks occur within and to the east of these zones. The n.v.z. and s.v.z. lavas have chemical and isotope characteristics consistent with an origin by

  11. Rapid uplift in Laguna del Maule volcanic field of the Andean Southern Volcanic zone (Chile) 2007-2012 (United States)

    Feigl, Kurt L.; Le Mével, Hélène; Tabrez Ali, S.; Córdova, Loreto; Andersen, Nathan L.; DeMets, Charles; Singer, Bradley S.


    The Laguna del Maule (LdM) volcanic field in Chile is an exceptional example of postglacial rhyolitic volcanism in the Southern Volcanic Zone of the Andes. By interferometric analysis of synthetic aperture radar (SAR) images acquired between 2007 and 2012, we measure exceptionally rapid deformation. The maximum vertical velocity exceeds 280 mm yr-1. Although the rate of deformation was negligible from 2003 January to 2004 February, it accelerated some time before 2007 January. Statistical testing rejects, with 95 per cent confidence, four hypotheses of artefacts caused by tropospheric gradients, ionospheric effects, orbital errors or topographic relief, respectively. The high rate of deformation is confirmed by daily estimates of position during several months in 2012, as measured by analysis of signals transmitted by the Global Positioning System (GPS) and received on the ground at three stations around the reservoir forming the LdM. The fastest-moving GPS station (MAU2) has a velocity vector of [-180 ± 4, 46 ± 2, 280 ± 4] mm yr-1 for the northward, eastward and upward components, respectively, with respect to the stable interior of the South America Plate. The observed deformation cannot be explained by changes in the gravitational load caused by variations in the water level in the reservoir. For the most recent observation time interval, spanning 44 d in early 2012, the model that best fits the InSAR observations involves an inflating sill at a depth of 5.2 ± 0.3 km, with length 9.0 ± 0.3 km, width 5.3 ± 0.4 km, dip 20 ± 3° from horizontal and strike 14 ± 5° clockwise from north, assuming a rectangular dislocation in a half-space with uniform elastic properties. During this time interval, the estimated rate of tensile opening is 1.1 ± 0.04 m yr-1, such that the rate of volume increase in the modelled sill is 51 ± 5 million m3 yr-1 or 1.6 ± 0.2 m3 s-1. From 2004 January to 2012 April the total increase in volume was at least 0.15 km3 over the 5.2-yr

  12. Assessing the effects of climate and volcanism on diatom and chironomid assemblages in an Andean lake near Quito, Ecuador

    Directory of Open Access Journals (Sweden)

    Neal Michelutti


    Full Text Available The tropical Andes are undergoing climate changes that rival those occurring anywhere else on the planet, and are likely to have profound consequences for ecosystems. Paleolimnological investigations of remote mountain lakes can provide details of past environmental change, especially where monitoring data are absent. Here, we reconstruct fossil diatom and chironomid communities spanning the last several hundred years from an Andean lake located in an ecological reserve near Quito, Ecuador. Both diatoms and chironomids recorded assemblage shifts reflective of changing climate conditions. The diatoms are likely responding primarily to temperature-related limnological changes, recording an increase in the number of planktonic taxa in the most recent sediments. This change is consistent with warmer conditions that result in enhanced periods of thermal stratification, allowing planktonic species to proliferate. The chironomids appear to respond mainly to a change in precipitation regime, recording a greater number of terrestrial and semi-terrestrial taxa that have been transported to the lake. A thick tephra deposit at the base of the sediment core affected both diatom and chironomid assemblages. The diatoms registered a change in species composition highlighting the ability of certain taxa to rapidly colonize new environments. In contrast, the chironomids showed a marked drop in abundance immediately following the tephra, but no change in species composition. In both cases the ecological response was short-lived, illustrating the resiliency of the lake to return to baseline conditions following volcanic inputs.

  13. The feedback between active tectonics, fluid flow and mineralization in an Andean geotermal reservoir (United States)

    Reich, M.; Arancibia, G.; Perez, P.; Sanchez, P.; Cembrano, J. M.; Stimac, J. A.; Lohmar, S.


    In the Andean Cordillera of Central-Southern Chile, geothermal resources occur in close spatial relationship with active volcanism. The nature of the relationship between tectonics and volcanism in this region is the result of interaction between the crustal structures of the basement and the ongoing regional stress field, which is primarily controlled by the oblique convergence of the Nazca and South America Plates. Between 39° and 46°S, the volcanic and geothermal activity is controlled by the NNE-trending, 1,000 km long Liquiñe-Ofqui Fault Zone (LOFZ), an intra-arc dextral strike-slip fault system. Although there is consensus that volcanism (and hence geothermal activity) in southern Chile is largely controlled by the regional-scale tectonic stress field and architecture of the volcanic arc, there is limited scientific information about the role of local kinematic conditions on fluid flow and mineralization during the development and evolution of geothermal reservoirs. In this report, we present the preliminary results of an undergoing structural, mineralogical and geochemical study of the Tolhuaca geothermal system in southern Chile. The Tolhuaca geothermal reservoir formed as a liquid-dominated hydrothermal system, where shallow upflow resulted in near-boiling temperatures in a roughly horizontal liquid reservoir at 100-200 m depth (Melosh et al., 2010, 2012). In an early stage of evolution, hydrothermal brecciation and phase-separation (boiling) episodes penetrated at least 950 m depth into the deeper reservoir, and boiling was followed by steam-heated water invasion that cooled the reservoir. In a later stage, the preliminary conceptual model involves boiling and reheating of the reservoir, forming a system with deep hot brines that is connected to the shallow steam zone by an upflow conduit that is characterized by high-temperature mineralogy. The structural analysis of veins, fault-veins and faults of the Tol-1 drillcore (~1080 m depth) provide insights

  14. Thermal and geotectonic setting of Cretaceous volcanic rocks near Ica, Peru, in relation to Andean crustal thinning (United States)

    Atherton, M. P.; Aguirre, L.


    The Cretaceous volcanic rocks of the Ica region, Peru, were deposited in the Cañete marginal basin developed on the Precambrian Arequipa Massif, which was split and thinned along southwardpropagating faults. They are compositionally bimodal, calc-alkaline, high-Al 2O 3 rocks with shoshonitic affinities and a pronounced enriched within-plate character. This contrasts markedly with the equivalent rocks of the Huarmey Basin to the north, which lie directly on mantle-derived material and are chiefly low-K, thleiitic basalts and basaltic andesites, with trace-element abundances related to subduction and/or asthenospheric components. The Ica rocks also show a characteristic very low-grade, nondeformational prehnite-pumpellyite to zeolite facies metamorphism formed under moderate thermal gradients. This contrasts strongly with the high thermal gradient of the rocks to the north, which relates to the more extensive crustal splitting and/or thinning in that direction. These metamorphic patterns, together with the lava chemistry, are important elements in modeling the thermal and geotectonic setting, which has close affinities to a model of the Icelandic rifting system. The source of the Ica rocks is thought to be old enriched mantle beneath the Precambrian Arequipa Massif, in contrast to the mantle beneath the basin to the north, which is much younger and less enriched. This change along the axis of the basin is similar to the K-h relationships suggested at subduction zones. However, the direction of subduction along this sector has been approximately E-W, and the enrichment, which is a right angles to this, relates to the history of the subcontinental mantle along the Andean margin. It is also associated with an abrupt compositional change in the Peruvian Coastal Batholith rocks of slightly younger age, marking a major segmental difference in Mesozoic magma composition along the axis of the Andes. Crustal contributions are not considered to be important, certainly not

  15. Recent crustal foundering in the Northern Volcanic Zone of the Andean arc: Petrological insights from the roots of a modern subduction zone (United States)

    Bloch, Elias; Ibañez-Mejia, Mauricio; Murray, Kendra; Vervoort, Jeffrey; Müntener, Othmar


    Periodic loss of the lower lithosphere into the convecting mantle due to gravitational instability is postulated to be a major mechanism for lithosphere recycling in orogenic zones, but unequivocal petrologic evidence of this process is elusive. The Granatifera Tuff, located in the Mercaderes-Rio Mayo area of the southern Colombian Andes, contains a wide variety of crustal and mantle xenoliths. Here we focus on the thermobarometry and Lu-Hf isotope systematics of crustal garnet clinopyroxenite xenoliths, the results of which offer the first evidence of recent, and likely active, crustal foundering in the Northern Volcanic Zone of the Andean arc. We find that most of these xenoliths equilibrated between 60-80 km depths, ∼7-27 km below the seismically determined Moho in this region, and that at least one crustal garnet clinopyroxenite re-equilibrated at depths exceeding 95 km. A second garnet clinopyroxenite equilibrated at ∼150 km depths, and is either foundered lithospheric material or the product of reaction between peridotite and a mobile component (either silicic melt or fluids) at >4 GPa. All of the investigated garnet clinopyroxenites are negatively buoyant relative to the upper mantle asthenosphere. The presence of minor amounts of secondary amphibole and orthopyroxene, coupled with the lack of major-element retrograde zonation in primary phases within these xenoliths, indicates that these rocks were rapidly transported to, and briefly resided at, shallow depths before eruption. Lu-Hf ages from two garnet clinopyroxenites and one garnet-clinopyroxene hornblendite are material, which the Mercaderes xenoliths document, without catastrophic removal of the crustal root.

  16. 10Be surface exposure dating reveals strong active deformation in the central Andean backarc interior (United States)

    García Morabito, Ezequiel; Terrizzano, Carla; Zech, Roland; Willett, Sean; Yamin, Marcela; Haghipour, Negar; Wuethrich, Lorenz; Christl, Marcus; María Cortes, José; Ramos, Victor


    Understanding the deformation associated with active thrust wedges is essential to evaluate seismic hazard. How is active faulting distributed throughout the wedge, and how much deformation is taken up by individual structures? We address these questions for our study region, the central Andean backarc of Argentina. We combined a structural and geomorphological approach with surface exposure dating (10Be) of alluvial fans and strath terraces in two key localities at ~32° S: the Cerro Salinas, located in the active orogenic front of the Precordillera, and the Barreal block in the interior of the Andean mountain range. We analysed 22 surface samples and 6 depth profiles. At the thrust front, the oldest terrace (T1) yields an age of 100-130 ka, the intermediate terrace (T2) between 40-95 ka, and the youngest terrace (T3) an age of ~20 ka. In the Andean interior, T1´ dates to 117-146 ka, T2´ to ~70 ka, and T3´ to ~20 ka, all calculations assuming negligible erosion and using the scaling scheme for spallation based on Lal 1991, Stone 2000. Vertical slip rates of fault offsets are 0.3-0.5 mm/yr and of 0.6-1.2 mm/yr at the thrust front and in the Andean interior, respectively. Our results highlight: i) fault activity related to the growth of the Andean orogenic wedge is not only limited to a narrow thrust front zone. Internal structures have been active during the last 150 ka, ii) deformation rates in the Andean interior are comparable or even higher that those estimated and reported along the emerging thrust front, iii) distribution of active faulting seems to account for unsteady state conditions, and iv) seismic hazards may be more relevant in the internal parts of the Andean orogen than assumed so far. References Lal, D., 1991: Cosmic ray labeling of erosion surfaces: In situ nuclide production rates and erosion models. Earth and Planetary Science Letters 104: 424-439. Stone, J.O., 2000: Air pressure and cosmogenic isotope production. Journal of Geophysical

  17. Volcanic eruptions and solar activity (United States)

    Stothers, Richard B.


    The historical record of large volcanic eruptions from 1500 to 1980 is subjected to detailed time series analysis. In two weak but probably statistically significant periodicities of about 11 and 80 yr, the frequency of volcanic eruptions increases (decreases) slightly around the times of solar minimum (maximum). Time series analysis of the volcanogenic acidities in a deep ice core from Greenland reveals several very long periods ranging from about 80 to about 350 yr which are similar to the very slow solar cycles previously detected in auroral and C-14 records. Solar flares may cause changes in atmospheric circulation patterns that abruptly alter the earth's spin. The resulting jolt probably triggers small earthquakes which affect volcanism.

  18. Temporal and geochemical evolution of Miocene volcanism in the Andean back-arc between 36°S and 38°S and U-series analyses of young volcanic centers in the arc and back-arc, Argentina

    DEFF Research Database (Denmark)

    Dyhr, Charlotte Thorup

    New 40Ar/39Ar, major and trace element, and Sr, Nd and Pb isotopic data for the c. 24-7 Ma volcanic rocks from the Andean back-arc (35°S – 38°S) in the Mendoza and Neuquén (Argentina) regions shed light on the Miocene evolution of the back-arc of the Southern Volcanic Zone. Incipient shallowing...... lasting from ~17 to ~9 Ma. The reoccurrence of extensive magmatism in the Sierra de Palaoco provides evidence for a retreat of the shallow subduction zone towards the west during the Late Miocene. Evidence for the ending of the time of flat subduction comes from major- and trace element chemistry and Nd...

  19. Antihypertensive and antioxidant activity of atomized andean purple corn (Zea mayz L) hydroalcoholic extract in rats


    Arroyo, Jorge; Facultad de Medicina, Universidad Nacional Mayor de San Marcos. Lima, Perú. Químico farmaceútico.; Raez, Ernesto; Facultad de Medicina, Universidad Nacional Mayor de San Marcos. Lima, Perú. Médico patólogo.; Rodríguez, Miguel; Facultad de Odontología, Universidad Nacional Mayor de San Marcos. Lima, Perú. Odontólogo.; Chumpitaz, Víctor; Facultad Odontología, Universidad Nacional Mayor de San Marcos. Lima, Perú. Odontólogo.; Burga, Jonny; Facultad de Odontología, Universidad Nacional Mayor de San Marcos. Lima, Perú. Odontólogo.; De la Cruz, Walter; Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos. Lima, Perú. Médico.; Valencia, José; Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos. Lima, Perú. Químico Farmacéutico.


    Objectives. To determine the antihypertensive and antioxidant activity of the atomized hydroalcoholic extract of Zea mays L. (Andean purple corn) in rats with induced hypertension. Material and methods. We used five groups of six Holtzmann rats each, one without hypertension (negative control) and four with hypertension induced by L-NAME: positive control and three groups for the doses of 250, 500 and 1000 mg/kg, respectively. The treatment was carried out orally once a day for 25 days. Th...

  20. Volcanic activity: a review for health professionals. (United States)

    Newhall, C G; Fruchter, J S


    Volcanoes erupt magma (molten rock containing variable amounts of solid crystals, dissolved volatiles, and gas bubbles) along with pulverized pre-existing rock (ripped from the walls of the vent and conduit). The resulting volcanic rocks vary in their physical and chemical characteristics, e.g., degree of fragmentation, sizes and shapes of fragments, minerals present, ratio of crystals to glass, and major and trace elements composition. Variability in the properties of magma, and in the relative roles of magmatic volatiles and groundwater in driving an eruption, determine to a great extent the type of an eruption; variability in the type of an eruption in turn influences the physical characteristics and distribution of the eruption products. The principal volcanic hazards are: ash and larger fragments that rain down from an explosion cloud (airfall tephra and ballistic fragments); flows of hot ash, blocks, and gases down the slopes of a volcano (pyroclastic flows); "mudflows" (debris flows); lava flows; and concentrations of volcanic gases in topographic depressions. Progress in volcanology is bringing improved long- and short-range forecasts of volcanic activity, and thus more options for mitigation of hazards. Collaboration between health professionals and volcanologists helps to mitigate health hazards of volcanic activity.

  1. Tellurium in active volcanic environments: Preliminary results (United States)

    Milazzo, Silvia; Calabrese, Sergio; D'Alessandro, Walter; Brusca, Lorenzo; Bellomo, Sergio; Parello, Francesco


    Tellurium is a toxic metalloid and, according to the Goldschmidt classification, a chalcophile element. In the last years its commercial importance has considerably increased because of its wide use in solar cells, thermoelectric and electronic devices of the last generation. Despite such large use, scientific knowledge about volcanogenic tellurium is very poor. Few previous authors report result of tellurium concentrations in volcanic plume, among with other trace metals. They recognize this element as volatile, concluding that volcanic gases and sulfur deposits are usually enriched with tellurium. Here, we present some results on tellurium concentrations in volcanic emissions (plume, fumaroles, ash leachates) and in environmental matrices (soils and plants) affected by volcanic emissions and/or deposition. Samples were collected at Etna and Vulcano (Italy), Turrialba (Costa Rica), Miyakejima, Aso, Asama (Japan), Mutnovsky (Kamchatka) at the crater rims by using common filtration techniques for aerosols (polytetrafluoroethylene filters). Filters were both eluted with Millipore water and acid microwave digested, and analyzed by inductively coupled plasma mass spectrometry (ICP-MS). Volcanic ashes emitted during explosive events on Etna and Copahue (Argentina) were analyzed for tellurium bulk composition and after leaching experiments to evaluate the soluble fraction of tellurium. Soils and leaves of vegetation were also sampled close to active volcanic vents (Etna, Vulcano, Nisyros, Nyiragongo, Turrialba, Gorely and Masaya) and investigated for tellurium contents. Preliminary results showed very high enrichments of tellurium in volcanic emissions comparing with other volatile elements like mercury, arsenic, thallium and bismuth. This suggests a primary transport in the volatile phase, probably in gaseous form (as also suggested by recent studies) and/or as soluble salts (halides and/or sulfates) adsorbed on the surface of particulate particles and ashes. First

  2. Influence of volcanic activity and anthropic impact in the trace element contents of fishes from the North Patagonia in a global context. (United States)

    Bubach, D F; Macchi, P J; Pérez Catán, S


    The elemental contents in salmonid muscle and liver tissues from different lakes around the world were investigated. Fish from pristine areas were compared with those fishes from impacted environments, both by volcanic and anthropogenic activities. Within the data, special attention was given to fishes from the Andean Patagonian lakes in two contexts: local and global. The local evaluation includes geological and limnological parameters and diet composition which were obtained through a data search from published works. The volcanic influence in Andean Patagonian lakes was mainly observed by an increase of cesium (Cs) and rubidium (Rb) concentrations in fishes, influenced by calcium (Ca) and potassium (K) water contents. Zinc (Zn), selenium (Se), iron (Fe), silver (Ag), and mercury (Hg) contents in fishes showed the effect of the geological substratum, and some limnological parameters. The diet composition was another factor which affects the elemental concentration in fishes. The analyzed data showed that the fishes from Andean Patagonian lakes had elemental content patterns corresponding to those of pristine regions with volcanic influence. Selenium and Ag contents from Andean Patagonian fishes were the highest reported.

  3. Time interval between volcanism and burial metamorphism and rate of basin subsidence in a Cretaceous Andean extensional setting (United States)

    Aguirre, L.; Féraud, G.; Morata, D.; Vergara, M.; Robinson, D.


    40Ar/ 39Ar ages were obtained from basaltic flows belonging to a 9-km-thick sequence generated in an extensional ensialic setting of an arc/back-arc basin type during the Early Cretaceous and presently exposed along the Coastal Range of central Chile. The basalts have been affected by very low- to low-grade burial metamorphism, mostly under prehnite-pumpellyite facies. Age values obtained from primary (volcanic) and secondary (metamorphic) minerals permit to quantify the time interval between volcanism and burial metamorphism. A plateau age of 119±1.2 Ma from primary plagioclase represents the best estimation of the age of the volcanism, whereas adularia, in low-variance assemblages contained in amygdules, gave a plateau age of 93.1±0.3 Ma which is interpreted as the age of the metamorphism. Considering the P- T conditions estimated for this metamorphic event, the c. 25 Ma time interval between volcanic emplacement and prehnite-pumpellyite facies metamorphism, the rate of basin subsidence in this extensional geodynamic setting would be comprised in the interval 150-180 m/Ma.

  4. Impact of Volcanic Activity on AMC Channel Operations (United States)



  5. Isotopically (δ13C and δ18O) heavy volcanic plumes from Central Andean volcanoes: a field study (United States)

    Schipper, C. Ian; Moussallam, Yves; Curtis, Aaron; Peters, Nial; Barnie, Talfan; Bani, Philipson; Jost, H. J.; Hamilton, Doug; Aiuppa, Alessandro; Tamburello, Giancarlo; Giudice, Gaetano


    Stable isotopes of carbon and oxygen in volcanic gases are key tracers of volatile transfer between Earth's interior and atmosphere. Although important, these data are available for few volcanoes because they have traditionally been difficult to obtain and are usually measured on gas samples collected from fumaroles. We present new field measurements of bulk plume composition and stable isotopes (δ13CCO2 and δ18OH2O+CO2) carried out at three northern Chilean volcanoes using MultiGAS and isotope ratio infrared spectroscopy. Carbon and oxygen in magmatic gas plumes of Lastarria and Isluga volcanoes have δ13C in CO2 of +0.76‰ to +0.77‰ (VPDB), similar to slab carbonate; and δ18O in the H2O + CO2 system ranging from +12.2‰ to +20.7‰ (VSMOW), suggesting significant contributions from altered slab pore water and carbonate. The hydrothermal plume at Tacora has lower δ13CCO2 of -3.2‰ and δ18OH2O+CO2 of +7.0‰, reflecting various scrubbing, kinetic fractionation, and contamination processes. We show the isotopic characterization of volcanic gases in the field to be a practical complement to traditional sampling methods, with the potential to remove sampling bias that is a risk when only a few samples from accessible fumaroles are used to characterize a given volcano's volatile output. Our results indicate that there is a previously unrecognized, relatively heavy isotopic signature to bulk volcanic gas plumes in the Central Andes, which can be attributed to a strong influence from components of the subducting slab, but may also reflect some local crustal contamination. The techniques we describe open new avenues for quantifying the roles that subduction zones and arc volcanoes play in the global carbon cycle.

  6. Phenolic compound contents and antioxidant activity in plants with nutritional and/or medicinal properties form the Peruvian Andean region

    NARCIS (Netherlands)

    Chirinos, R.; Pedreschi Plasencia, R.P.; Rogez, H.


    Total phenolic compounds (TPC) and antioxidant activities using different assays (DPPH, ABTS and ORAC) in fruits, grains, leaves, seeds, roots and tubers from 27 different Peruvian Andean plants used in folk medicine or/and as food by the native population were evaluated in order to use these as nat

  7. Gravimetric control of active volcanic processes (United States)

    Saltogianni, Vasso; Stiros, Stathis


    Volcanic activity includes phases of magma chamber inflation and deflation, produced by movement of magma and/or hydrothermal processes. Such effects usually leave their imprint as deformation of the ground surfaces which can be recorded by GNSS and other methods, on one hand, and on the other hand they can be modeled as elastic deformation processes, with deformation produced by volcanic masses of finite dimensions such as spheres, ellipsoids and parallelograms. Such volumes are modeled on the basis of inversion (non-linear, numerical solution) of systems of equations relating the unknown dimensions and location of magma sources with observations, currently mostly GNSS and INSAR data. Inversion techniques depend on the misfit between model predictions and observations, but because systems of equations are highly non-linear, and because adopted models for the geometry of magma sources is simple, non-unique solutions can be derived, constrained by local extrema. Assessment of derived magma models can be provided by independent observations and models, such as micro-seismicity distribution and changes in geophysical parameters. In the simplest case magmatic intrusions can be modeled as spheres with diameters of at least a few tens of meters at a depth of a few kilometers; hence they are expected to have a gravimetric signature in permanent recording stations on the ground surface, while larger intrusions may also have an imprint in sensors in orbit around the earth or along precisely defined air paths. Identification of such gravimetric signals and separation of the "true" signal from the measurement and ambient noise requires fine forward modeling of the wider areas based on realistic simulation of the ambient gravimetric field, and then modeling of its possible distortion because of magmatic anomalies. Such results are useful to remove ambiguities in inverse modeling of ground deformation, and also to detect magmatic anomalies offshore.

  8. The Online GVP/USGS Weekly Volcanic Activity Report: Providing Timely Information About Worldwide Volcanism (United States)

    Mayberry, G. C.; Guffanti, M. C.; Luhr, J. F.; Venzke, E. A.; Wunderman, R. L.


    The awesome power and intricate inner workings of volcanoes have made them a popular subject with scientists and the general public alike. About 1500 known volcanoes have been active on Earth during the Holocene, approximately 50 of which erupt per year. With so much activity occurring around the world, often in remote locations, it can be difficult to find up-to-date information about current volcanism from a reliable source. To satisfy the desire for timely volcano-related information the Smithsonian Institution and US Geological Survey combined their strengths to create the Weekly Volcanic Activity Report. The Smithsonian's Global Volcanism Program (GVP) has developed a network of correspondents while reporting worldwide volcanism for over 30 years in their monthly Bulletin of the Global Volcanism Network. The US Geological Survey's Volcano Hazards Program studies and monitors volcanoes in the United States and responds (upon invitation) to selected volcanic crises in other countries. The Weekly Volcanic Activity Report is one of the most popular sites on both organization's websites. The core of the Weekly Volcanic Activity Report is the brief summaries of current volcanic activity around the world. In addition to discussing various types of volcanism, the summaries also describe precursory activity (e.g. volcanic seismicity, deformation, and gas emissions), secondary activity (e.g. debris flows, mass wasting, and rockfalls), volcanic ash hazards to aviation, and preventative measures. The summaries are supplemented by links to definitions of technical terms found in the USGS photoglossary of volcano terms, links to information sources, and background information about reported volcanoes. The site also includes maps that highlight the location of reported volcanoes, an archive of weekly reports sorted by volcano and date, and links to commonly used acronyms. Since the Weekly Volcanic Activity Report's inception in November 2000, activity has been reported at

  9. Google Mapplets for Earthquakes and Volcanic Activity (United States)

    Haefner, S. A.; Venezky, D. Y.


    The USGS Earthquake and Volcano Hazards Programs monitor, assess, and issue warnings of natural hazards. Users can access our hazards information through our web pages, RSS feeds, and now through USGS Mapplets. Mapplets allow third party data layers to be added on top of Google Maps ( - My Maps tab). Mapplets are created by parsing a GeoRSS feed, which involves searching through an XML file for location data and plotting the associated information on a map. The new Mapplets allow users to view both real-time earthquakes and current volcanic activity on the same map for the first time. In addition, the USGS Mapplets have been added to Google's extensive collection of Mapplets, allowing users to add the types of information they want to see on their own customized maps. The Earthquake Mapplet plots the past week of earthquakes around the world, showing the location, time and magnitude. The Volcano Mapplet displays the latest U.S. volcano updates, including the current level of both ground-based and aviation hazards. Join us to discuss how Mapplets are made and how they can be used to create your own customized map.

  10. Modification of the Continental Crust by Subduction Zone Magmatism and Vice-Versa: Across-Strike Geochemical Variations of Silicic Lavas from Individual Eruptive Centers in the Andean Central Volcanic Zone

    Directory of Open Access Journals (Sweden)

    Gary S. Michelfelder


    Full Text Available To better understand the origin of across-strike K2O enrichments in silicic volcanic rocks from the Andean Central Volcanic Zone, we compare geochemical data for Quaternary volcanic rocks erupted from three well-characterized composite volcanoes situated along a southeast striking transect between 21° and 22° S latitude (Aucanquilcha, Ollagüe, and Uturuncu. At a given SiO2 content, lavas erupted with increasing distance from the arc front display systematically higher K2O, Rb, Th, Y, REE and HFSE contents; Rb/Sr ratios; and Sr isotopic ratios. In contrast, the lavas display systematically lower Al2O3, Na2O, Sr, and Ba contents; Ba/La, Ba/Zr, K/Rb, and Sr/Y ratios; Nd isotopic ratios; and more negative Eu anomalies toward the east. We suggest that silicic magmas along the arc front reflect melting of relatively young, mafic composition amphibolitic source rocks and that the mid- to deep-crust becomes increasingly older with a more felsic bulk composition in which residual mineralogies are progressively more feldspar-rich toward the east. Collectively, these data suggest the continental crust becomes strongly hybridized beneath frontal arc localities due to protracted intrusion of primary, mantle-derived basaltic magmas with a diminishing effect behind the arc front because of smaller degrees of mantle partial melting and primary melt generation.

  11. The Role of Volcanic Activity in Climate and Global Change

    KAUST Repository

    Stenchikov, Georgiy L.


    Explosive volcanic eruptions are magnificent events that in many ways affect the Earth\\'s natural processes and climate. They cause sporadic perturbations of the planet\\'s energy balance, activating complex climate feedbacks and providing unique opportunities to better quantify those processes. We know that explosive eruptions cause cooling in the atmosphere for a few years, but we have just recently realized that volcanic signals can be seen in the subsurface ocean for decades. The volcanic forcing of the previous two centuries offsets the ocean heat uptake and diminishes global warming by about 30%. The explosive volcanism of the twenty-first century is unlikely to either cause any significant climate signal or to delay the pace of global warming. The recent interest in dynamic, microphysical, chemical, and climate impacts of volcanic eruptions is also excited by the fact that these impacts provide a natural analogue for climate geoengineering schemes involving deliberate development of an artificial aerosol layer in the lower stratosphere to counteract global warming. In this chapter we aim to discuss these recently discovered volcanic effects and specifically pay attention to how we can learn about the hidden Earth-system mechanisms activated by explosive volcanic eruptions. To demonstrate these effects we use our own model results when possible along with available observations, as well as review closely related recent publications.

  12. A novel cold active esterase derived from Colombian high Andean forest soil metagenome

    NARCIS (Netherlands)

    Jiménez, Diego Javier; Montaña, José Salvador; Alvarez, Diana; Baena, Sandra


    In order to search new lipolytic enzymes and conduct bioprospecting of microbial communities from high Andean forest soil, a metagenomic library of approximately 20,000 clones was constructed in Escherichia coli using plasmid p-Bluescript II SK+. The library covered 80 Mb of the metagenomic DNA main

  13. Andean waterways

    DEFF Research Database (Denmark)

    Rasmussen, Mattias Borg

    , social, and cultural concerns. Set in the highland town of Recuay in Ancash, the book traces the ways in which water affects political and ecological relations as glaciers recede. By looking at the shared waterways of four villages located in the foothills of Cordillera Blanca, it addresses pertinent......Andean Waterways explores the politics of natural resource use in the Peruvian Andes in the context of climate change and neoliberal expansion. It does so through careful ethnographic analysis of the constitution of waterways, illustrating how water becomes entangled in a variety of political...

  14. The Extremes of Volcanic Activity: Earth and Jupiter's Moon Io (United States)

    Lowes, L. L.; Lopes, R.


    Jupiter's moon Io is the solar system's most volcanically active body, and the only place that magmatic volcanic eruptions have been observed beyond Earth. One of the first images of Io obtained by NASA's Voyager 1 spacecraft in 1979 shows a plume above one of its volcanoes. The NASA Voyager and Galileo spacecraft imaged many explosive eruptions of plumes and deposits - which travel hundreds of kilometers (farther than on the Earth or the Moon). Very hot lavas that are erupting from volcanic vents on Io may be similar to lavas that erupted on Earth billions of years ago. Understanding the physical processes driving volcanic eruptions is important for the understanding of terrestrial volcanoes, not only because of their potential hazards, but also as geologic resources, biologic environments, and for their role in shaping the surface of Earth and other planets. Volcanic eruptions are perhaps the most dramatic events on Earth, and are of intrinsic interest to students, youth, and adults. Topics involving volcanoes are a part of the national science education benchmarks for understanding the Earth's composition and structure for grades 6-8 (the process of creating landforms) and grades 9-12 (the effects of movement of crustal plates). Natural events on Earth coupled with exciting discoveries in space can serve to heighten the awareness of these phenomena and provide learning opportunities for real world applications of science. Educational applications for youth to compare volcanic activity on Io and Earth have been done through NASA-sponsored field trip workshops to places such as Yellowstone National Park (allowing educators to experience environments similar to those on other worlds), targeted classroom and hands-on activities, special interest books, and other resources. A sampling of such activities will be presented, and discussion invited on other related developmentally appropriate resources and activities.

  15. Explosive Volcanic Activity at Extreme Depths: Evidence from the Charles Darwin Volcanic Field, Cape Verdes (United States)

    Kwasnitschka, T.; Devey, C. W.; Hansteen, T. H.; Freundt, A.; Kutterolf, S.


    Volcanic eruptions on the deep sea floor have traditionally been assumed to be non-explosive as the high-pressure environment should greatly inhibit steam-driven explosions. Nevertheless, occasional evidence both from (generally slow-) spreading axes and intraplate seamounts has hinted at explosive activity at large water depths. Here we present evidence from a submarine field of volcanic cones and pit craters called Charles Darwin Volcanic Field located at about 3600 m depth on the lower southwestern slope of the Cape Verdean Island of Santo Antão. We examined two of these submarine volcanic edifices (Tambor and Kolá), each featuring a pit crater of 1 km diameter, using photogrammetric reconstructions derived from ROV-based imaging followed by 3D quantification using a novel remote sensing workflow, aided by sampling. The measured and calculated parameters of physical volcanology derived from the 3D model allow us, for the first time, to make quantitative statements about volcanic processes on the deep seafloor similar to those generated from land-based field observations. Tambor cone, which is 2500 m wide and 250 m high, consists of dense, probably monogenetic medium to coarse-grained volcaniclastic and pyroclastic rocks that are highly fragmented, probably as a result of thermal and viscous granulation upon contact with seawater during several consecutive cycles of activity. Tangential joints in the outcrops indicate subsidence of the crater floor after primary emplacement. Kolá crater, which is 1000 m wide and 160 m deep, appears to have been excavated in the surrounding seafloor and shows stepwise sagging features interpreted as ring fractures on the inner flanks. Lithologically, it is made up of a complicated succession of highly fragmented deposits, including spheroidal juvenile lapilli, likely formed by spray granulation. It resembles a maar-type deposit found on land. The eruption apparently entrained blocks of MORB-type gabbroic country rocks with

  16. Multidimensional analysis and probabilistic model of volcanic and seismic activities (United States)

    Fedorov, V.


    A search for space and time regularities in volcanic and seismic events for the purpose of forecast method development seems to be of current concern, both scientifically and practically. The seismic and volcanic processes take place in the Earth's field of gravity which in turn is closely related to gravitational fields of the Moon, the Sun, and the planets of the Solar System. It is mostly gravity and tidal forces that exercise control over the Earth's configuration and relief. Dynamic gravitational interaction between the Earth and other celestial bodies makes itself evident in tidal phenomena and other effects in the geospheres (including the Earth's crust). Dynamics of the tidal and attractive forces is responsible for periodical changes in gravity force, both in value and direction [Darwin, 1965], in the rate of rotation and orbital speed; that implies related changes in the endogenic activity of the Earth. The Earth's rotation in the alternating gravitational field accounts to a considerable extent for regular pattern of crustal deformations and dislocations; it is among principal factors that control the Earth's form and structure, distribution of oceans and continents and, probably, continental drift [Peive, 1969; Khain, 1973; Kosygin, 1983]. The energy of gravitational interaction is transmitted through the tidal energy to planetary spheres and feeds various processes there, including volcanic and seismic ones. To determine degree, character and special features of tidal force contribution to the volcanic and seismic processes is of primary importance for understanding of genetic and dynamic aspects of volcanism and seismicity. Both volcanic and seismic processes are involved in evolution of celestial bodies; they are operative on the planets of the Earth group and many satellites [Essays…, 1981; Lukashov, 1996]. From this standpoint, studies of those processes are essential with a view to development of scenarios of the Earth's evolution as a celestial

  17. Glass shards, pumice fragments and volcanic aerosol particles - diagenesis a recorder of volcanic activity? (United States)

    Obenholzner, J. H.; Schroettner, H.; Poelt, P.; Delgado, H.


    Detailed SEM/EDS studies of Triassic (Southern Alps, A, I, Sl) and Miocene (Mixteca Alta, Mexico) tuffs revealed that volcanic glass shards can be replaced by zeolites (analcite), chlorites and smectites preserving the shape of primary shards (1). The Triassic pyroclastic deposits have been incorporated in the pre-Alpine burial diagenesis, the Miocene pyroclastic deposits are bentonites. The volcanologist is impressed by the circumstances that million years old pyroclast relict textures can be sized. Shape parameters obtained by image analysis can be compared with much younger pyroclastic deposits (2). Both deposits have not been effected by shearing. The alteration of pumice fragments of Triassic age is not a simple replacement process. Intergrowth of different illites and chlorites and probably vesicle filling by SiO2 and subsequent overgrowth make a reconstruction sometimes difficult. These processes are accompanied by the formation of REE-, Y- and Zr-bearing minerals as well as with the alteration of zircons. Studies of recently erupted ash from Popocatepetl volcano reveal the presence of a variety of µm-sized contact-metamorphosed clasts being a part of the volcanic ash (3). Such clasts should be present in many older pyroclastic deposits, especially where volcanoes had been situated on massive sedimentary units providing contact metamorphism in the realm of a magma chamber or during magma ascent. Volcanic aerosol particles collected in 1997 from the passively degassing plume of Popocatepetl volcano revealed in FESEM/EDS analysis (H. Schroettner and P. Poelt) a wide spectrum of fluffy, spherical and coagulated spherical particles (µm-sized). Under pre-vacuum conditions they remained stable for ca. 3 years (3). In nature the fate of these particles in the atmosphere is unknown. Are there relicts in marine, lacustrine sediments and ice cores, which could be used as proxies of volcanic activity? (1) Obenholzner &Heiken,1999. Ann.Naturhist.Mus.Wien, 100 A, 13

  18. Active Volcanism on Io as Seen by Galileo SSI (United States)

    McEwen, A.S.; Keszthelyi, L.; Geissler, P.; Simonelli, D.P.; Carr, M.H.; Johnson, T.V.; Klaasen, K.P.; Breneman, H.H.; Jones, T.J.; Kaufman, J.M.; Magee, K.P.; Senske, D.A.; Belton, M.J.S.; Schubert, G.


    Active volcanism on Io has been monitored during the nominal Galileo satellite tour from mid 1996 through late 1997. The Solid State Imaging (SSI) experiment was able to observe many manifestations of this active volcanism, including (1) changes in the color and albedo of the surface, (2) active airborne plumes, and (3) glowing vents seen in eclipse. About 30 large-scale (tens of kilometers) surface changes are obvious from comparison of the SSI images to those acquired by Voyager in 1979. These include new pyroclastic deposits of several colors, bright and dark flows, and caldera-floor materials. There have also been significant surface changes on Io during the Galileo mission itself, such as a new 400-km-diameter dark pyroclastic deposit around Pillan Patera. While these surface changes are impressive, the number of large-scale changes observed in the four months between the Voyager 1 and Voyager 2 flybys in 1979 suggested that over 17 years the cumulative changes would have been much more impressive. There are two reasons why this was not actually the case. First, it appears that the most widespread plume deposits are ephemeral and seem to disappear within a few years. Second, it appears that a large fraction of the volcanic activity is confined to repeated resurfacing of dark calderas and flow fields that cover only a few percent of Io's surface. The plume monitoring has revealed 10 active plumes, comparable to the 9 plumes observed by Voyager. One of these plumes was visible only in the first orbit and three became active in the later orbits. Only the Prometheus plume has been consistently active and easy to detect. Observations of the Pele plume have been particularly intriguing since it was detected only once by SSI, despite repeated attempts, but has been detected several times by the Hubble Space Telescope at 255 nm. Pele's plume is much taller (460 km) than during Voyager 1 (300 km) and much fainter at visible wavelengths. Prometheus-type plumes (50

  19. Volcanic Activities of Hakkoda Volcano after the 2011 Tohoku Earthquake (United States)

    Yamamoto, M.; Miura, S.


    The 2011 Tohoku Earthquake of 11 March 2011 generated large deformation in and around the Japanese islands, and the large crustal deformation raises fear of further disasters including triggered volcanic activities. In this presentation, as an example of such potential triggered volcanic activities, we report the recent seismic activities of Hakkoda volcano, and discuss the relation to the movement of volcanic fluids. Hakkoda volcano is a group of stratovolcanoes at the northern end of Honshu Island, Japan. There are fumaroles and hot springs around the volcano, and phreatic eruptions from Jigoku-numa on the southwestern flank of Odake volcano, which is the highest peak of the volcanic group, were documented in its history. Since just after the occurrence of the Tohokui Earthquake, the seismicity around the volcano became higher, and the migration of hypocenters of volcano-tectonic (VT) earthquakes was observed.In addition to these VT earthquakes, long-period (LP) events started occurring beneath Odake at a depth of about 2-3 km since February, 2013, and subtle crustal deformation caused by deep inflation source was also detected by the GEONET GNSS network around the same time. The spectra of LP events are common between events irrespective of the magnitude of events, and they have several spectral peaks at 6-7 sec, 2-3 sec, 1 sec, and so on. These LP events sometimes occur like a swarm with an interval of several minutes. The characteristics of observed LP events at Hakkoda volcano are similar to those of LP events at other active volcanoes and hydrothermal area in the world, where abundant fluids exist. Our further analysis using far-field Rayleigh radiation pattern observed by NIED Hi-net stations reveals that the source of LP events is most likely to be a nearly vertical tensile crack whose strike is NE-SW direction. The strike is almost perpendicular to the direction of maximum extensional strain estimated from the geodetic analysis, and is almost parallel to

  20. The 42-kDa coat protein of Andean potato mottle virus acts as a transcriptional activator in yeast

    Directory of Open Access Journals (Sweden)

    Vidal M.S.


    Full Text Available Interactions of viral proteins play an important role in the virus life cycle, especially in capsid assembly. Andean potato mottle comovirus (APMoV is a plant RNA virus with a virion formed by two coat proteins (CP42 and CP22. Both APMoV coat protein open reading frames were cloned into pGBT9 and pGAD10, two-hybrid system vectors. HF7c yeast cells transformed with the p9CP42 construct grew on yeast dropout selection media lacking tryptophan and histidine. Clones also exhibited ß-galactosidase activity in both qualitative and quantitative assays. These results suggest that CP42 protein contains an amino acid motif able to activate transcription of His3 and lacZ reporter genes in Saccharomyces cerevisiae. Several deletions of the CP42 gene were cloned into the pGBT9 vector to locate the region involved in this activation. CP42 constructions lacking 12 residues from the C-terminal region and another one with 267 residues deleted from the N-terminus are still able to activate transcription of reporter genes. However, transcription activation was not observed with construction p9CP42deltaC57, which does not contain the last 57 amino acid residues. These results demonstrate that a transcription activation domain is present at the C-terminus of CP42 between residues 267 and 374.

  1. Sedimentary response to volcanic activity in the Okinawa Trough since the last deglaciation

    Institute of Scientific and Technical Information of China (English)

    蒋富清; 李安春; 李铁刚


    To investigate the relationship between volcanic activity and sediment record on regional and temporal scales,158 surface sediment samples were collected from the East China Sea Shelf to the northern Okinawa Trough (OT),and two cores recovered in the northern and southern OT,respectively.Mineralogy,grain-size,and geochemical analyses of those samples show that:1) volcanic glass,volcanic-type pyroxene,hypersthenes,and magnetite increase in sediment influenced by volcanic activity;2) sediment grain sizes (and...

  2. Evidence of persistent seismo-volcanic activity at Marsili seamount

    Directory of Open Access Journals (Sweden)

    Antonino D'Alessandro


    Full Text Available The Marsili submarine volcano is the largest European volcano, and it can be considered as the key to our understanding of the dynamics of the spreading and back-arc lithosphere formation in the Tyrrhenian sector [Marani et al. 2004, and references therein]. Despite its size, it is very difficult to monitor due to its geographical position [D'Alessandro et al. 2011], and it still remains little known. In 2006, the Centro Nazionale Terremoti (National Earthquake Centre of the Istituto Nazionale di Geofisica e Vulcanologia (INGV deployed a broadband ocean-bottom seismometer with hydrophone (OBS/H [Mangano et al. 2011] on the flat top of Marsili volcano, at a depth of ca. 790 m. In only nine days, the instrument recorded ca. 800 seismo-volcanic events [D'Alessandro et al. 2009]. This revealed the intense seismo-volcanic activity of Marsili volcano for the first time. […] 

  3. Temporal and geochemical evolution of Miocene volcanism in the Andean back-arc between 36°S and 38°S and U-series analyses of young volcanic centers in the arc and back-arc, Argentina

    DEFF Research Database (Denmark)

    Dyhr, Charlotte Thorup

    of the subducting slab at ca. 20 Ma is inferred. The eruption of 24-20 Ma alkali olivine basalt up to 500 km east of the trench marks the beginning of a long-lasting magmatic episode with widespread volcanism north of the Cortaderas lineament following a regional magmatic hiatus lasting from 39 Ma to 26 Ma...

  4. Jovian Dust Streams: A monitor of Io's volcanic plume activity

    CERN Document Server

    Krüger, H; Horányi, M; Graps, A L; Kempf, S; Srama, R; Moragas-Klostermeyer, G; Moissl, R; Johnson, T V; Grün, E; Krueger, Harald; Geissler, Paul; Horanyi, Mihaly; Graps, Amara L.; Kempf, Sascha; Srama, Ralf; Moragas-Klostermeyer, Georg; Moissl, Richard; Johnson, Torrence V.; Gruen, Eberhard


    Streams of high speed dust particles originate from Jupiter's innermost Galilean moon Io. After release from Io, the particles collect electric charges in the Io plasma torus, gain energy from the co-rotating electric field of Jupiter's magnetosphere, and leave the Jovian system into interplanetary space with escape speeds over $\\rm 200 km s^{-1}$. Galileo, which was the first orbiter spacecraft of Jupiter, has continuously monitored the dust streams during 34 revolutions about the planet between 1996 and 2002. The observed dust fluxes exhibit large orbit-to-orbit variability due to systematic and stochastic changes. After removal of the systematic variations, the total dust emission rate of Io has been calculated. It varies between $10^{-3}$ and $\\mathrm{10} \\rm kg s^{-1}$, and is typically in the range of 0.1 to $\\rm 1 kg s^{-1}$. We compare the dust emission rate with other markers of volcanic activity on Io like large-area surface changes caused by volcanic deposits and sightings of volcanic plumes.

  5. Phytosynthesis and photocatalytic activity of magnetite (Fe{sub 3}O{sub 4}) nanoparticles using the Andean blackberry leaf

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Brajesh, E-mail: [Centro de Nanociencia y Nanotecnologia, Universidad de las Fuerzas Armadas ESPE, Av. Gral. Rumiñahui s/n, Sangolqui, P.O. BOX 171-5-231B (Ecuador); Department of Chemistry, TATA College, Kolhan University, Chaibasa, 833202, Jharkhand (India); Smita, Kumari; Cumbal, Luis; Debut, Alexis [Centro de Nanociencia y Nanotecnologia, Universidad de las Fuerzas Armadas ESPE, Av. Gral. Rumiñahui s/n, Sangolqui, P.O. BOX 171-5-231B (Ecuador); Galeas, Salome; Guerrero, Victor H. [Laboratorio de Nuevos Materiales, Departamento de Materiales, Escuela Politécnica Nacional, Quito (Ecuador)


    In the present study, a simple, low cost, and ecofriendly synthesis of magnetite nanoparticles (Fe{sub 3}O{sub 4} NPs) has been developed using Andean blackberry leaf extract. UV–vis spectroscopy technique were used to study the initial formation of Fe{sub 3}O{sub 4} NPs. Morphology, crystallinity and surface properties of nanoparticles were studied using transmission electron microscopy (TEM), Dynamic light scattering (DLS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Thermal gravimetric (TG) techniques. TEM and DLS characterization indicated the formation of spherical Fe{sub 3}O{sub 4} NPs of average size 54.5 ± 24.6 nm. XRD and FTIR studies confirmed the existence of the cubic spinel phase of Fe{sub 3}O{sub 4} NPs and Fe−O peak at 570 cm{sup −1}, whereas TG analysis indicated that the nanoparticles contain 94% metal and 6% capping ligand. It has been observed that, as-synthesized Fe{sub 3}O{sub 4} NPs exhibited photocatalytic activity for degradation of organic dyes such as methylene blue (k = 0.0105475 min{sup −1}), congo red (k = 0.0043240 min{sup −1}), and methyl orange (k = 0.0028930 min{sup −1}), efficiently. The antioxidant activity of Fe{sub 3}O{sub 4} NPs against 1, 1-diphenyl-2-picrylhydrazyl were also evaluated. - Highlights: • We report extracellular phytosynthesis of Fe{sub 3}O{sub 4} nanoparticles using the Andean blackberry leaf. • The synthesized Fe{sub 3}O{sub 4} nanoparticles are spherical and average size is 54.5 ± 24.6 nm. • It showed enhanced photocatalytic activity and weak antioxidant efficacy. • Environmentally benign, non-toxic and cost-effective method is suggested.

  6. The search for active release of volcanic gases on Mars (United States)

    Khayat, Alain; Villanueva, Geronimo; Mumma, Michael; Tokunaga, Alan


    The study of planetary atmospheres by means of spectroscopy is important for understanding their origin and evolution. The presence of short-lived trace gases in the martian atmosphere would imply recent production, for example, by ongoing geologic activity. On Earth, sulfur dioxide (SO2), sulfur monoxide (SO) and hydrogen sulfide (H2S) are the main sulfur-bearing gases released during volcanic outgassing. Carbonyl sulfide (OCS), also released from some volcanoes on Earth (e.g., Erebus and Nyiragongo), could be formed by reactions involving SO2 or H2S inside magma chambers. We carried out the first ground-based, semi-simultaneous, multi-band and multi-species search for such gases above the Tharsis and Syrtis volcanic regions on Mars. The submillimeter search extended between 23 November 2011 and 13 May 2012 which corresponded to Mars’ mid Northern Spring and early Northern Summer seasons (Ls = 34-110°). The strong submillimeter rotational transitions of SO2, SO and H2S were targeted using the high-resolution heterodyne receiver (aka Barney) on the Caltech Submillimeter Observatory. We reached sensitivities sufficient to detect a volcanic release on Mars that is 4% of the SO2 released continuously from Kilauea volcano in Hawaii, or 5% that of the Masaya volcano in Nicaragua. The infrared search covered OCS in its combination band (ν2+ν3) at 3.42 μm at two successive Mars years, during Mars’ late Northern Spring and mid Northern Summer seasons, spanning Ls= 43º and Ls= 147º. The targeted volcanic districts were observed during the two intervals, 14 Dec. 2011 to 6 Jan. 2012 in the first year, and 30 May 2014 to 16 June 2014 in the second year, using the high resolution infrared spectrometer (CSHELL) on NASA’s Infrared Telescope Facility (NASA/IRTF). We will present our results and discuss their implications for current volcanic outgassing activity on the red planet. We gratefully acknowledge support from the NASA Planetary Astronomy Program under NASA

  7. Data on polyphenols and biological activity analyses of an Andean tomato collection and their relationships with tomato traits and geographical origin

    Directory of Open Access Journals (Sweden)

    Romina D. Di Paola Naranjo


    Full Text Available Data provide information about a tomato collection composed of accessions from the Andean Valley, commercial accessions and wild species. Antioxidant metabolites were measured in mature fruits of this collection, and their biological activities were assessed by both in vitro and in vivo methods. In this work, the parameters used to identify and quantify polyphenols compounds in tomato fruit by liquid chromatography coupled to diode array detector and quadrupole time of flight mass spectrometer are described. Moreover, data supporting a procedure to characterize the properties of tomato fruits to revert death by thermal stress in Caenorhabditis elegans are explained in detail. Lastly, principal component analysis and hierarchical cluster analysis of metabolites composition, antioxidant activities (in vivo and in vitro, tomato traits and geographical origin of the tomatoes collection are shown. The data presented here are related to the research article entitled “Hydrophilic antioxidants from Andean Tomato Landraces assessed by their bioactivities in vitro and in vivo” [1].

  8. Constraints on the origin and evolution of magmas in the Payún Matrú Volcanic Field, Quaternary Andean back-arc of western Argentina

    DEFF Research Database (Denmark)

    Hernadno, I R; Aragón, E; Frei, Robert


    and Sr–Nd isotopic compositions of the basaltic lavas and Payún Matrú rocks indicate that the trachytes of Payún Matrú are the result of fractional crystallization of basaltic parent magmas without significant upper crustal contamination, and that the basalts have a geochemical similarity to ocean island...... basalt (La/Nb = 0·8–1·5, La/Ba = 0·05–0·08). The Sr–Nd isotopic compositions of the basaltic to trachytic rocks range between 0·703813 and 0·703841 (87Sr/86Sr) and 0·512743 and 0·512834 (143Nd/144Nd). Mass-balance and Rayleigh fractionation models support the proposed origin of the trachytes...... that the basaltic lavas originated in the asthenospheric mantle, probably within the spinel stability field and beneath an attenuated continental lithosphere in the back-arc area. The lack of a slab-fluid signature in the Payún Matrú Volcanic Field rocks, along with unpublished and published geophysical results...

  9. The origin of an unusual tuff ring of perlitic rhyolite pyroclasts: The last explosive phase of the Ramadas Volcanic Centre, Andean Puna, Salta, NW Argentina (United States)

    Tait, M. A.; Cas, R. A. F.; Viramonte, J. G.


    A thick sequence of bedded pyroclastic deposits, comprised largely of crystal poor, partially flow-banded perlite fragments defines the remains of a tuff ring around the eastern margin of the Miocene Ramadas Volcanic Centre (RVC), Central Andes, NW Argentina. In numerous quarry exposures, planar bed-forms dominate, but low-angle cross-stratification, lensoidal truncations and lateral pinching and swelling of cm-dm scale bed-forms occur, consistent with pyroclastic surge as the dominant transport and depositional mechanism. Intercalated are mantling, very fine grained, well-sorted, mm-cm scale planar ash layers that represent deposition from pyroclastic fall out and are most likely the products of co-surge ash clouds. Also observed are thick m-scale, laterally continuous, poorly-sorted horizons that are interpreted as pyroclastic flow deposits. Grainsize variations within the > 70 m thick succession range from fine ash to coarse lapilli, with occasional large blocks reaching 20 cm. Clast vesicularities are typically very low. The sequence constitutes a rhyolitic tuff ring around the proximal margins of the RVC. Stratigraphic relationships indicate that the tuff ring was developed following cessation of the major plinian eruption phase of the RVC. A series of pyroclastic density currents and associated ash clouds is inferred to have resulted in the construction of the rhyolitic tuff ring, with deposition focussed on the eastern and southern margins of the central vent. The fine-grained nature of the deposits and low clast vesicularity are consistent with some degree of magma:water interaction during fragmentation. Pervasive perlitic fracturing of clasts found within the tuff deposits also indicates hydration and an extended, post-depositional hydration of the pyroclastic sequence, due to the influence of meteoric water, is likely to have occurred, with deposit permeability, clast specific surface and climate influential in facilitating additional textural

  10. Impact of tephra falls on Andean communities: The influences of eruption size and weather conditions during the 1999-2001 activity of Tungurahua volcano, Ecuador (United States)

    Le Pennec, Jean-Luc; Ruiz, Gorki A.; Ramón, Patricio; Palacios, Enrique; Mothes, Patricia; Yepes, Hugo


    conditions on the impact of volcanic activity in a tropical setting and puts emphasis on the necessity to merge volcanological and meteorological monitoring duties for hazard assessment and alert level definition, in order to mitigate the effect of ash falls in the Andes and elsewhere.

  11. Galileo SSI Observations of Volcanic Activity at Tvashtar Catena, Io (United States)

    Milazzo, M. P.; Keszthely, L. P.; Radebaugh, J.; Davies, A. G.; Turtle, E. P.; Geissler, P.; Klaasen, K. P.; McEwen, A. S.


    Introduction: We report on the analysis of the Galileo SSI's observations of the volcanic activity at Tvashtar Catena, Io as discussed by Milazzo et al. Galileo's Solid State Imager (SSI) observed Tvashtar Catena (63 deg N, 120 deg W) four times between November 1999 and October 2001, providing a unique look at the distinctive high latitude volcanism on Io. The November 1999 observation spatially resolved, for the first time, an active extraterrestrial fissure eruption. The brightness temperature of the lavas at the November 1999 fissure eruption was 1300 K. The second observation (orbit I27, February 2000) showed a large (approx. 500 sq km) region with many, small spots of hot, active lava. The third observation was taken in conjunction with a Cassini observation in December 2000 and showed a Pele-like plume deposition ring, while the Cassini images revealed a 400 km high Pele-type plume above the Catena. The final Galileo SSI observation of Tvashtar was acquired in October 2001, and all obvious (to SSI) activity had ceased, although data from Galileo's Near Infrared Mapping Spectrometer (NIMS) indicated that there was still significant thermal emission from the Tvashtar region. We have concentrated on analyzing the style of eruption during orbit I27 (February 2000). Comparison with a lava flow cooling model indicates that the behavior of the Tvashtar eruption during I27 does not match that of "simple" advancing lava flows. Instead, it may be an active lava lake or a complex set of lava flows with episodic, overlapping (in time and space) eruptions.

  12. A Preliminary Study of the Types of Volcanic Earthquakes and Volcanic Activity at the Changbaishan Tianchi Volcano

    Institute of Scientific and Technical Information of China (English)

    Ming Yuehong; Su Wei; Fang Lihua


    Since 2002, a significant increase in seismicity, obvious ground deformation and geochemical anomalies have been observed in the Changbaishan Tianchi volcanic area. A series felt earthquakes occur near the caldera, causing great influence to society. In this paper, the types of volcanic earthquakes recorded by the temporal seismic network since 2002 have been classified by analyzing the spectrum, time-frequency characteristics and seismic waveforms at different stations. The risk of volcano eruptions was also estimated. Our results show that almost all earthquakes occurring in Tianchi volcano are volcanic-tectonic earthquakes. The low frequency seismic waveforms observed at a few stations may be caused by local mediums, and have no relation with long-period events. Although the level of seismicity increased obviously and earthquake swarms occurred more frequently than before, we considered that the magma activity is still in its early stage and the eruption risk of Changbaishan Tianchi volcano is still iow in the near future.

  13. GRID based Thermal Images Processing for volcanic activity monitoring (United States)

    Mangiagli, S.; Coco, S.; Drago, L.; Laudani, A.,; Lodato, L.; Pollicino, G.; Torrisi, O.


    Since 2001, the Catania Section of the National Institute of Geophysics and Volcanology (INGV) has been running the video stations recording the volcanic activity of Mount Etna, Stromboli and the Fossa Crater of Vulcano island. The video signals of 11 video cameras (seven operating in the visible band and four in infrared) are sent in real time to INGV Control Centre where they are visualized on monitors and archived on a dedicated NAS storage. The video surveillance of the Sicilian volcanoes, situated near to densely populated areas, helps the volcanologists providing the Civil Protection authorities with updates in real time on the on-going volcanic activity. In particular, five video cameras are operating on Mt. Etna and they record the volcano from the south and east sides 24 hours a day. During emergencies, mobile video stations may also be used to better film the most important phases of the activity. Single shots are published on the Catania Section intranet and internet websites. On June 2006 a A 40 thermal camera was installed in Vulcano La Fossa Crater. The location was in the internal and opposite crater flank (S1), 400 m distant from the fumarole field. The first two-year of data on temperature distribution frequency were recorded with this new methodology of acquisition, and automatically elaborated by software at INGV Catania Section. In fact a dedicated software developed in IDL, denominated Volcano Thermo Analysis (VTA), was appositely developed in order to extract a set of important features, able to characterize with a good approssimation the volcanic activity. In particular the program first load and opportunely convert the thermal images, then according to the Region Of Interest (ROI) and the temperature ranges defined by the user provide to automatic spatial and statistic analysis. In addition the VTA is able to analysis all the temporal series of images available in order to achieve the time-event analysis and the dynamic of the volcanic

  14. The volcanism of the western part of the Los Frailes Meseta (Bolivia): a representative example of the Andean volcanism since the Upper Oligocene; Le volcanisme de la bordure occidentale de la Meseta de Los Frailes (Bolivie): un jalon representatif du volcanisme andin depuis l`Oligocene superieur

    Energy Technology Data Exchange (ETDEWEB)

    Leroy, L. [Nancy-1 Univ., 54 (France); Jimenez, N.


    The Los Frailes Meseta (Bolivia) is one of the large tertiary ignimbritic fields of the inner volcanic arc from Central Andes (Central Volcanic Zone. CVZ), in contact zone between the Altiplano to the west and the Eastern Cordillera to the east. Field observations and mineralogical and geochemical studies (major and trace elements) lead to distinguish two types of volcanism in the western border to the Meseta. During the Middle Miocene and Pliocene, the volcanic activity can be subdivided into three pyroclastic emission cycles, the Larco, Coroma and Pliocene ignimbrites, the first two being separated by the Quechua 2 orogeny. All these ignimbrites are very similar and correspond to peraluminous rhyolites to rhyodacites. In the studies area, the Coroma cycle is the only one where an ignimbrite-less evolved resurgent dome association can be observed. Beside these ignimbrites, isolated small lava flows and domes overlay and/or intrude all the other formations. They are meta-aluminous lavas with a shoshonitic affinity. A quaternary age can be attributed to his second volcanism. These two volcanic types are well-known in the CVZ and are related to the different deformation stages, either compressional or extensional, which occur alternately in the Cordillera since 26 Ma. (authors). 61 refs., 12 figs., 3 tabs.

  15. Application of Geographical Information Systems to Lahar Hazard Assessment on an Active Volcanic System



    Lahars (highly dynamic mixtures of volcanic debris and water) have been responsible for some of the most serious volcanic disasters and have killed tens of thousands of people in recent decades. Despite considerable lahar model development in the sciences, many research tools have proved wholly unsuitable for practical application on an active volcanic system where it is difficult to obtain field measurements. In addition, geographic information systems are tools that offer a great potenti...

  16. Color, ellagitannins, anthocyanins, and antioxidant activity of Andean blackberry (Rubus glaucus Benth.) wines. (United States)

    Arozarena, Íñigo; Ortiz, Jacqueline; Hermosín-Gutiérrez, Isidro; Urretavizcaya, Inés; Salvatierra, Sara; Córdova, Inés; Marín-Arroyo, María Remedios; Noriega, María José; Navarro, Montserrat


    Twenty-eight blackberry ( Rubus glaucus Benth.) wines elaborated under different processing conditions were analyzed for total phenolics, ellagitannins, anthocyanins, color, and antioxidant activity. Ellagitannins were the main phenolic compounds and the most determinant factor in the antioxidant capacity of wines (r = 0.980). The major anthocyanins were cyanidin 3-rutinoside (64 ± 6%) and cyanidin 3-glucoside (19 ± 4%), followed by several minor compounds (17 ± 4%). Two of them were native blackberry anthocyanins, namely, cyanidin 3-rutinoside-5-glucoside and cyanidin 3-xylorutinoside. The remaining seven compounds were anthocyanin-related pigments generated during and after the alcoholic fermentation, identified as A-type and B-type vitisins and hydroxyphenylpyranoanthocyanins. The presence of fruit solids in contact with the liquid fraction during fermentation and the ratio of water to fruit employed in the preparation of the musts had a great impact on the content of ellagitannins, total phenolics, and the antioxidant activity of wines and a minor impact on their color and anthocyanin composition.

  17. Hydrothermal reservoir beneath Taal Volcano (Philippines): Implications to volcanic activity (United States)

    Nagao, T.; Alanis, P. B.; Yamaya, Y.; Takeuchi, A.; Bornas, M. V.; Cordon, J. M.; Puertollano, J.; Clarito, C. J.; Hashimoto, T.; Mogi, T.; Sasai, Y.


    Taal Volcano is one of the most active volcanoes in the Philippines. The first recorded eruption was in 1573. Since then it has erupted 33 times resulting in thousands of casualties and large damages to property. In 1995, it was declared as one of the 15 Decade Volcanoes. Beginning in the early 1990s it has experienced several phases of abnormal activity, including seismic swarms, episodes of ground deformation, ground fissuring and hydrothermal activities, which continues up to the present. However, it has been noted that past historical eruptions of Taal Volcano may be divided into 2 distinct cycles, depending on the location of the eruption center, either at Main Crater or at the flanks. Between 1572-1645, eruptions occurred at the Main Crater, in 1707 to 1731, they occurred at the flanks. In 1749, eruptions moved back to the Main Crater until 1911. During the 1965 and until the end of the 1977 eruptions, eruptive activity once again shifted to the flanks. As part of the PHIVOLCS-JICA-SATREPS Project magnetotelluric and audio-magnetotelluric surveys were conducted on Volcano Island in March 2011 and March 2012. Two-dimensional (2-D) inversion and 3-D forward modeling reveals a prominent and large zone of relatively high resistivity between 1 to 4 kilometers beneath the volcano almost directly beneath the Main Crater, surrounded by zones of relatively low resistivity. This anomalous zone of high resistivity is hypothesized to be a large hydrothermal reservoir filled with volcanic fluids. The presence of this large hydrothermal reservoir could be related to past activities of Taal Volcano. In particular we believe that the catastrophic explosion described during the 1911 eruption was the result of the hydrothermal reservoir collapsing. During the cycle of Main Crater eruptions, this hydrothermal reservoir is depleted, while during a cycle of flank eruptions this reservoir is replenished with hydrothermal fluids.

  18. Catastrophic volcanism (United States)

    Lipman, Peter W.


    Since primitive times, catastrophes due to volcanic activity have been vivid in the mind of man, who knew that his activities in many parts of the world were threatened by lava flows, mudflows, and ash falls. Within the present century, increasingly complex interactions between volcanism and the environment, on scales not previously experienced historically, have been detected or suspected from geologic observations. These include enormous hot pyroclastic flows associated with collapse at source calderas and fed by eruption columns that reached the stratosphere, relations between huge flood basalt eruptions at hotspots and the rifting of continents, devastating laterally-directed volcanic blasts and pyroclastic surges, great volcanic-generated tsunamis, climate modification from volcanic release of ash and sulfur aerosols into the upper atmosphere, modification of ocean circulation by volcanic constructs and attendent climatic implications, global pulsations in intensity of volcanic activity, and perhaps triggering of some intense terrestrial volcanism by planetary impacts. Complex feedback between volcanic activity and additional seemingly unrelated terrestrial processes likely remains unrecognized. Only recently has it become possible to begin to evaluate the degree to which such large-scale volcanic processes may have been important in triggering or modulating the tempo of faunal extinctions and other evolutionary events. In this overview, such processes are examined from the viewpoint of a field volcanologist, rather than as a previous participant in controversies concerning the interrelations between extinctions, impacts, and volcanism.

  19. Argentinean Andean propolis associated with the medicinal plant Larrea nitida Cav. (Zygophyllaceae). HPLC-MS and GC-MS characterization and antifungal activity. (United States)

    Agüero, María Belén; Svetaz, Laura; Sánchez, Marianela; Luna, Lorena; Lima, Beatriz; López, María Liza; Zacchino, Susana; Palermo, Jorge; Wunderlin, Daniel; Feresin, Gabriela Egly; Tapia, Alejandro


    The chemical profile and botanical origin of Andean Argentinian propolis were studied by HPLC-ESI-MS/MS and GC-MS techniques as well as the antifungal activity according to CLSI protocols. Dermatophytes and yeasts tested were strongly inhibited by propolis extracts (MICs between 31.25 and 125 μg/mL). The main antifungal compounds were: 3'methyl-nordihydroguaiaretic acid (MNDGA) 1, nordihydroguaiaretic acid (NDGA) 2 and a NDGA derivative 3, showing strong activity against Trichophyton mentagrophytes, T. rubrum and Microsporum gypseum (MICs between 15.6 and 31.25 μg/mL). The lignans 1 and 2 showed activities against clinical isolates of Candidas spp., Cryptococcus spp., T. rubrum and T. mentagrophytes (MICs and MFCs between 31.25 and 62.5 μg/mL). The lignan and volatile organic compounds (VOCs) profiles from propolis matched with those of exudates of Larrea nitida providing strong evidences on its botanical origin. These results support that Argentinian Andean propolis are a valuable natural product with potential to improve human health. Six compounds (1-6) were isolated from propolis for the first time, while compounds 1 and 3-6 were reported for first time as constituents of L. nitida Cav. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Io's Diverse Styles of Volcanic Activity: Results from Galileo NIMS (United States)

    Lopes, R. M. C.; Smythe, W. D.; Kamp, L. W.; Doute, S.; Carlson, R.; McEwen, A.; Geissler, P.


    Observations by Galileo's Near-Infrared Mapping Spectrometer were used to map the thermal structure of several of Io's hot spots, revealing different styles of volcanism Additional information is contained in the original extended abstract..

  1. Evidences of active and ancient Volcanism on Mars. A review

    Directory of Open Access Journals (Sweden)



    Full Text Available Since t h e end of t h e last Century some observations concerning
    flare-phenomena on Mars were reported by different explorers. According
    to the opinion of Heuseler ( u . 1 2 . 1 3 , Katterfeld (", Saheki (16,
    Sato (16 and other authors, t h e respective light-phenomena might have been
    t h e signs of active volcanoes on t h e planet. Grey clouds, observed b y Japanese
    explorers as well as by Capen (3, may be also a t t r i b u t e d to volcanic
    o u t b u r s t s . There are some observations, carried out by Dollfus (10, which
    revealed the existence of relatively small, white, persistent clouds over cert
    a i n Martian regions which can be i n t e r p r e t e d as w h i t e vapour-clouds emitted
    by Martian volcanoes.
    The author of the present s t u d y has investigated the distribution of
    t h e s e phenomena over t h e Martian surface and found t h a t t h e distribution
    is not random. The events occurred — in t h e overwhelming m a j o r i t y of the
    cases — 011 a r e a s which are lying along t h e t r a n s i t i o n a l region between dark
    and bright territories. It is i m p o r t a n t to note t h a t many of t h e lunar transient
    events (probably postvolcanic phenomena have a similar position 011
    t h e lunar surface, t h a t is t h e y can be found mostly at t h e border of lunar
    c o n t i n e n t s or basins respectively. On the other hand the most important
    volcanic zones of t h e E a r t h are also t o be found along t h e edges of t h e Pacific

  2. Complex explosive volcanic activity on the Moon within Oppenheimer crater (United States)

    Bennett, Kristen A.; Horgan, Briony H. N.; Gaddis, Lisa R.; Greenhagen, Benjamin T.; Allen, Carlton C.; Hayne, Paul O.; Bell, James F.; Paige, David A.


    Oppenheimer crater is a floor-fractured crater located within the South Pole-Aitken basin on the Moon, and exhibits more than a dozen localized pyroclastic deposits associated with the fractures. Localized pyroclastic volcanism on the Moon is thought to form as a result of intermittently explosive Vulcanian eruptions under low effusion rates, in contrast to the higher-effusion rate, Hawaiian-style fire fountaining inferred to form larger regional deposits. We use Lunar Reconnaissance Orbiter Camera images and Diviner Radiometer mid-infrared data, Chandrayaan-1 orbiter Moon Mineralogy Mapper near-infrared spectra, and Clementine orbiter Ultraviolet/visible camera images to test the hypothesis that the pyroclastic deposits in Oppenheimer crater were emplaced via Vulcanian activity by constraining their composition and mineralogy. Mineralogically, we find that the deposits are variable mixtures of orthopyroxene and minor clinopyroxene sourced from the crater floor, juvenile clinopyroxene, and juvenile iron-rich glass, and that the mineralogy of the pyroclastics varies both across the Oppenheimer deposits as a whole and within individual deposits. We observe similar variability in the inferred iron content of pyroclastic glasses, and note in particular that the northwest deposit, associated with Oppenheimer U crater, contains the most iron-rich volcanic glass thus far identified on the Moon, which could be a useful future resource. We propose that this variability in mineralogy indicates variability in eruption style, and that it cannot be explained by a simple Vulcanian eruption. A Vulcanian eruption should cause significant country rock to be incorporated into the pyroclastic deposit; however, large areas within many of the deposits exhibit spectra consistent with high abundances of juvenile phases and very little floor material. Thus, we propose that at least the most recent portion of these deposits must have erupted via a Strombolian or more continuous fire

  3. [Chemical characterization and quantification of fructooligosaccharides, phenolic compounds and antiradical activity of Andean roots and tubers grown in Northwest of Argentina]. (United States)

    Jiménez, María Eugenia; Sammán, Norma


    There is great interest in consuming foods that can provide the nutrients for a good nutrition and other health beneficial compounds. The aim of this work was to determine the chemical composition of native foods of the Andean region and to quantify some functional com-ponents. Proximal composition, vitamin C, total phenolic compounds, antiradical activity (DPPH) in peel and pulp, dietary fiber soluble and insoluble, fructooligosaccharides (FOS), total and resistant starch (in tubers and raw roots, boiled and boiled and stored) of 6 varieties of Oca (Oxalis tuberosa), 4 clones of manioc (Manihot esculenta Crantz) and yacon (Smallanthus sonchifolius were determined. The results showed greater amount of bioactive compounds and antiradical activity in the skin of these products. The highest content was found in the oca peel. In all cases, the content of insoluble fiber was greater than the soluble. The manioc had higher total starch than Andean roots and tubers. The boiling process decreased the resistant starch content of ocas and maniocs, but when these are stored for 48 h at 5 ° C, the resistant starch content increased. The FOS content of the ocas was similar for all varieties (7%). The main component of yacon carbohydrates were FOS (8.89%). The maniocs did not contain FOS. It can be concluded that the roots and tubers studied, in addition to provide nutrients, contain functional compounds that confer additional helpful value for preventing no communicable diseases.

  4. Experimental study on the effect of calcination on the volcanic ash activity of diatomite (United States)

    Xiao, Liguang; Pang, Bo


    The volcanic ash activity of diatomite was studied under the conditions of aerobic calcination and vacuum calcination by the combined water rate method, it was characterized by XRD, BET and SEM. The results showed that the volcanic ash activity of diatomite under vacuum conditions was higher than that of aerobic calcination, 600°C vacuum calcination 2h, the combined water rate of diatomite-Ca(OH)2-H2O system was increased from 6.24% to 71.43%, the volcanic ash activity reached the maximum value, the specific surface

  5. Effect of volatiles erupted from Mesozoic and Cenozoic volcanic activities on paleo-environmental changes in China

    Institute of Scientific and Technical Information of China (English)


    Based on the determination of composition of volcanic volatiles and petrologic estimation of the total mass of volatiles erupted,we showed important advances in the study of the impact of Mesozoic and Cenozoic volcanic activities on paleo-environmental changes in China.The volcanic activities include western Liaoning and Zhangjiakou Mesozoic intermediate-acidic explosive eruptions,southern Tibet and Shanwang Cenozoic volcanism,and Mt.Changbai volcanic eruption around one thousand years ago.The paper predominantly discusses the earth's surface temperature changes,ozone depletion,acidic rain formation and mass mortalities of vertebrate induced by the Mesozoic and Cenozoic volcanism in China.

  6. 2014 volcanic activity in Alaska: Summary of events and response of the Alaska Volcano Observatory (United States)

    Cameron, Cheryl E.; Dixon, James P.; Neal, Christina A.; Waythomas, Christopher F.; Schaefer, Janet R.; McGimsey, Robert G.


    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, volcanic unrest or suspected unrest, and seismic events at 18 volcanic centers in Alaska during 2014. The most notable volcanic activity consisted of intermittent ash eruptions from long-active Cleveland and Shishaldin Volcanoes in the Aleutian Islands, and two eruptive episodes at Pavlof Volcano on the Alaska Peninsula. Semisopochnoi and Akutan volcanoes had seismic swarms, both likely the result of magmatic intrusion. The AVO also installed seismometers and infrasound instruments at Mount Cleveland during 2014.

  7. 2010 Volcanic activity in Alaska, Kamchatka, and the Kurile Islands: summary of events and response of the Alaska Volcano Observatory (United States)

    Neal, Christina A.; Herrick, Julie; Girina, O.A.; Chibisova, Marina; Rybin, Alexander; McGimsey, Robert G.; Dixon, Jim


    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, volcanic unrest or suspected unrest at 12 volcanic centers in Alaska during 2010. The most notable volcanic activity consisted of intermittent ash emissions from long-active Cleveland volcano in the Aleutian Islands. AVO staff also participated in hazard communication regarding eruptions or unrest at seven volcanoes in Russia as part of an ongoing collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.

  8. Learning about hydrothermal volcanic activity by modeling induced geophysical changes (United States)

    Currenti, Gilda M.; Napoli, Rosalba


    Motivated by ongoing efforts to understand the nature and the energy potential of geothermal resources, we devise a coupled numerical model (hydrological, thermal, mechanical), which may help in the characterization and monitoring of hydrothermal systems through computational experiments. Hydrothermal areas in volcanic regions arise from a unique combination of geological and hydrological features which regulate the movement of fluids in the vicinity of magmatic sources capable of generating large quantities of steam and hot water. Numerical simulations help in understanding and characterizing rock-fluid interaction processes and the geophysical observations associated with them. Our aim is the quantification of the response of different geophysical observables (i.e. deformation, gravity and magnetic field) to hydrothermal activity on the basis of a sound geological framework (e.g. distribution and pathways of the flows, the presence of fractured zones, caprock). A detailed comprehension and quantification of the evolution and dynamics of the geothermal systems and the definition of their internal state through a geophysical modeling approach are essential to identify the key parameters for which the geothermal system may fulfill the requirements to be exploited as a source of energy. For the sake of illustration only, the numerical computations are focused on a conceptual model of the hydrothermal system of Vulcano Island by simulating a generic 1-year unrest and estimating different geophysical changes. We solved (i) the mass and energy balance equations of flow in porous media for temperature, pressure and density changes, (ii) the elastostatic equation for the deformation field and (iii) the Poisson’s equations for gravity and magnetic potential fields. Under the model assumptions, a generic unrest of 1-year engenders on the ground surface low amplitude changes in the investigated geophysical observables, that are, however, above the accuracies of the modern

  9. Forests of the tropical eastern Andean flank during the middle Pleistocene

    NARCIS (Netherlands)

    Cárdenas, M.L.; Gosling, W.D.; Pennington, R.T.; Poole, I.; Sherlock, S.C.; Mothes, P.


    Inter-bedded volcanic and organic sediments from Erazo (Ecuador) indicate the presence of four different forest assemblages on the eastern Andean flank during the middle Pleistocene. Radiometric dates (40Ar-39Ar) obtained from the volcanic ash indicate that deposition occurred between 620,000 and 19

  10. G-EVER Activities and the Next-generation Volcanic Hazard Assessment System (United States)

    Takarada, S.


    The Asia-Pacific Region Global Earthquake and Volcanic Eruption Risk Management (G-EVER) is a consortium of Asia-Pacific geohazard research institutes that was established in 2012. G-EVER aims to formulate strategies to reduce the risks of disasters worldwide caused by the occurrence of earthquakes, tsunamis and volcanic eruptions. G-EVER is working on enhancing collaboration, sharing of resources, and making information on the risks of earthquakes and volcanic eruptions freely available and understandable. The 1st G-EVER International Symposium was held in Tsukuba, Japan in March 11, 2013. The 2nd Symposium is scheduled in Sendai, Tohoku Japan, in Oct. 19-20, 2013. Currently, 4 working groups were proposed in the G-EVER Consortium. The next-generation volcano hazard assessment WG is developing a useful system for volcanic eruption prediction, risk assessment, and evacuation at various eruption stages. The assessment system is based on volcanic eruption history datasets, volcanic eruption database, and numerical simulations. Volcanic eruption histories including precursor phenomena leading to major eruptions of active volcanoes are very important for future prediction of volcanic eruptions. A high quality volcanic eruption database, which contains compilations of eruption dates, volumes, and types, is important for the next-generation volcano hazard assessment system. Proposing international standards on how to estimate the volume of volcanic products is important to make a high quality volcanic eruption database. Spatial distribution database of volcanic products (e.g. tephra and pyroclastic flow distributions), encoded into a GIS based database is necessary for more precise area and volume estimation and risk assessments. The volcanic eruption database is developed based on past eruption results, which only represents a subset of possible future scenarios. Therefore, numerical simulations with controlled parameters are needed for more precise volcanic eruption

  11. Martian volcanism - Additional observations and evidence for pyroclastic activity (United States)

    West, M.


    Inspection of the Mariner 9 B-camera (resolution 100-200 m) and A-camera (resolution 1-2 km) photographs of Mars reveals numerous analogs of terrestrial and lunar volcanic features. In addition to the exceptionally large constructional features in the Tharsis region, many other large and small landforms present probably are related to endogenic processes.

  12. 2015 Volcanic activity in Alaska—Summary of events and response of the Alaska Volcano Observatory (United States)

    Dixon, James P.; Cameron, Cheryl E.; Iezzi, Alexandra M.; Wallace, Kristi


    The Alaska Volcano Observatory (AVO) responded to eruptions, volcanic unrest or suspected unrest, and seismic events at 14 volcanic centers in Alaska during 2015. The most notable volcanic activity consisted of continuing intermittent ash eruptions from Cleveland and Shishaldin volcanoes in the Aleutian Islands. Two eruptive episodes, at Veniaminof and Pavlof, on the Alaska Peninsula ended in 2015. During 2015, AVO re-established the seismograph network at Aniakchak, installed six new broadband seismometers throughout the Aleutian Islands, and added a Multiple component Gas Analyzer System (MultiGAS) station on Augustine.

  13. Chagas disease in Andean countries

    Directory of Open Access Journals (Sweden)

    Felipe Guhl


    Full Text Available The Andean Countries' Initiative (ACI for controlling Chagas disease was officially created in 1997 within the framework of the Hipolito Unanue Agreement (UNANUE between the Ministries of Health of Colombia, Ecuador, Peru, and Venezuela. Its objective was to interrupt transmission via vector and transfusion in the region, taking into account that there are 12.5 million people at risk in the four Andean countries forming the initiative in the area and around 3 million people are infected by Trypanosoma cruzi. The progress of control activities for the vector species present in the Andean sub-region, for different reasons, has been slow and control interventions have still not been installed in all geographical areas occupied by the target species. This has been partly due to lack of knowledge about these vector populations' biological characteristics, and consequent uncertainty about which are the appropriate control measures and strategies to be implemented in the region. The main vector species present important similarities in Venezuela and Colombia and in Ecuador and Northern Peru and they can be approached in a similar way throughout the whole regions, basing approaches on and adapting them to the current strategies being developed in Venezuela during the 1960s which have been progressively adopted in the Southern Cone and Central-American region. Additional measures are needed for keeping endemic areas free from Rhodnius prolixus silvatic populations, widely spread in the Orinoco region in Colombia and Venezuela. Regarding aetiological treatment, it is worth mentioning that (with the exception of Colombia none of the other countries forming the ACI have registered medicaments available for treating infected young people. There are no suitable follow-up programmes in the sub-region or for treating cases of congenital Chagas disease. An integral and integrated programme encompassing all the aspects including transmission by transfusion which


    Institute of Scientific and Technical Information of China (English)

    BO Li-qun; ZHAO Yun-ping; HUA Ren-kui


    Volcanic eruption is one of the most serious geological disasters, however, a host of facts have proven that the Changbai Mountains volcano is a modem dormant one and has ever erupted disastrously. With the rapid development of remote sensing technology, space monitoring of volcanic activities has already become possible, particularly in the application of thermal infrared remote sensing. The paper, through the detailed analysis of geothermal anomaly factors such as heat radiation, heat conduction and convection, depicts the monitoring principles by which volcano activities would be monitored efficiently and effectively. Reasons for abrupt geothermal anomaly are mainly analyzed, and transmission mechanism of geothermal anomaly in the volcanic regions is explained. Also, a variety of noises disturbing the transmission of normal geothermal anomaly are presented. Finally, some clues are given based on discussing thermal infrared remote sensing monitoring mechanism toward the volcanic areas.

  15. Short-term spasmodic switching of volcanic tremor source activation in a conduit of the 2011 Kirishima eruption (United States)

    Matsumoto, S.; Shimizu, H.; Matsushima, T.; Uehira, K.; Yamashita, Y.; Nakamoto, M.; Miyazaki, M.; Chikura, H.


    Volcanic tremors are seismic indicators providing clues for magma behavior, which is related to volcanic eruptions and activity. Detection of spatial and temporal variations of volcanic tremors is important for understanding the mechanism of volcanic eruptions. However, temporal variations of tremor activity in short-term than a minute have not been previously detected by seismological observations around volcanoes. Here, we show that volcanic tremor sources were activated at the top of the conduit (i.e. the crater) and at its lower end by analyzing seismograms from a dense seismic array during the 2011 Kirishima eruption. We observed spasmodic switching in the seismic ray direction during a volcanic tremor sequence. Such fine volcanic tremor structure suggests an interaction between tremor sources located in both deep and shallow depths. Our result suggests that seismic array observations can monitor the magma behavior and contribute to the evaluation of the activity's transition.

  16. Volcanic eruption source parameters from active and passive microwave sensors (United States)

    Montopoli, Mario; Marzano, Frank S.; Cimini, Domenico; Mereu, Luigi


    It is well known, in the volcanology community, that precise information of the source parameters characterising an eruption are of predominant interest for the initialization of the Volcanic Transport and Dispersion Models (VTDM). Source parameters of main interest would be the top altitude of the volcanic plume, the flux of the mass ejected at the emission source, which is strictly related to the cloud top altitude, the distribution of volcanic mass concentration along the vertical column as well as the duration of the eruption and the erupted volume. Usually, the combination of a-posteriori field and numerical studies allow constraining the eruption source parameters for a given volcanic event thus making possible the forecast of ash dispersion and deposition from future volcanic eruptions. So far, remote sensors working at visible and infrared channels (cameras and radiometers) have been mainly used to detect, track and provide estimates of the concentration content and the prevailing size of the particles propagating within the ash clouds up to several thousand of kilometres far from the source as well as track back, a-posteriori, the accuracy of the VATDM outputs thus testing the initial choice made for the source parameters. Acoustic wave (infrasound) and microwave fixed scan radar (voldorad) were also used to infer source parameters. In this work we want to put our attention on the role of sensors operating at microwave wavelengths as complementary tools for the real time estimations of source parameters. Microwaves can benefit of the operability during night and day and a relatively negligible sensitivity to the presence of clouds (non precipitating weather clouds) at the cost of a limited coverage and larger spatial resolution when compared with infrared sensors. Thanks to the aforementioned advantages, the products from microwaves sensors are expected to be sensible mostly to the whole path traversed along the tephra cloud making microwaves particularly

  17. Quaternary Volcanic Activities in Shandong Peninsula and Northern Parts of Jiangsu and Anhui Provinces

    Institute of Scientific and Technical Information of China (English)

    郑洪汉; 高维明; 等


    Quaternary volcanic rocks often coexist with loess,as observed in the same geologic sections in the Shandong Peninsula and northern parts of Jiangsu and Anhui provinces.The development age of Shandong loess in close to that in the middle reaches of the Yellow River.Loess strata are of synchronous implication in the loess belt of North China.So the ages of volcanic activities can be es-timated approximately from the stratigraphic relations between loess layers and volcanic rocks.The re-sults of dating of the Quaternary volcanic rocks,baked layers and the TL dates of loess samples sug-gest that the Quaternary volcanic activity can be divided into 4 stages in the region studied,with the ages being 1.15-1.03,0.86-0.72,0.55-0.33 and 0.02 Ma B.P.respectively .The occurrence of tephra in the Shandong loess sections is possible due to multiple episodes of volcanism during the Quaternary time.

  18. Geologic evolution of the Jemez Mountains and their potential for future volcanic activity

    Energy Technology Data Exchange (ETDEWEB)

    Burton, B.W.


    Geophysical and geochemical data and the geologic history of the Rio Grande rift and the vicinity of the Jemez Mountains are summarized to determine the probability of future volcanic activity in the Los Alamos, New Mexico area. The apparent cyclic nature of volcanism in the Jemez Mountains may be related to intermittent thermal inputs into the volcanic system beneath the region. The Jemez lineament, an alignment of late Cenozoic volcanic centers that crosses the rift near Los Alamos, has played an important role in the volcanic evolution of the Jemez Mountains. Geophysical data suggest that there is no active shallow magma body beneath the Valles caldera, though magma probably exists at about 15 km beneath this portion of the rift. The rate of volcanism in the Jemez Mountains during the last 10 million years has been 5 x 10/sup -9//km/sup 2//y. Lava or ash flows overriding Laboratory radioactive waste disposal sites would have little potential to release radionuclides to the environment. The probability of a new volcano intruding close enough to a radioactive waste disposal site to effect radionuclide release is 2 x 10/sup -7//y.

  19. Seismic Activity at tres Virgenes Volcanic and Geothermal Field (United States)

    Antayhua, Y. T.; Lermo, J.; Quintanar, L.; Campos-Enriquez, J. O.


    The volcanic and geothermal field Tres Virgenes is in the NE portion of Baja California Sur State, Mexico, between -112°20'and -112°40' longitudes, and 27°25' to 27°36' latitudes. Since 2003 Power Federal Commission and the Engineering Institute of the National Autonomous University of Mexico (UNAM) initiated a seismic monitoring program. The seismograph network installed inside and around the geothermal field consisted, at the beginning, of Kinemetrics K2 accelerometers; since 2009 the network is composed by Guralp CMG-6TD broadband seismometers. The seismic data used in this study covered the period from September 2003 - November 2011. We relocated 118 earthquakes with epicenter in the zone of study recorded in most of the seismic stations. The events analysed have shallow depths (≤10 km), coda Magnitude Mc≤2.4, with epicentral and hypocentral location errors geothermal explotation zone where there is a system NW-SE, N-S and W-E of extensional faults. Also we obtained focal mechanisms for 38 events using the Focmec, Hash, and FPFIT methods. The results show normal mechanisms which correlate with La Virgen, El Azufre, El Cimarron and Bonfil fault systems, whereas inverse and strike-slip solutions correlate with Las Viboras fault. Additionally, the Qc value was obtained for 118 events. This value was calculated using the Single Back Scattering model, taking the coda-waves train with window lengths of 5 sec. Seismograms were filtered at 4 frequency bands centered at 2, 4, 8 and 16 Hz respectively. The estimates of Qc vary from 62 at 2 Hz, up to 220 at 16 Hz. The frequency-Qc relationship obtained is Qc=40±2f(0.62±0.02), representing the average attenuation characteristics of seismic waves at Tres Virgenes volcanic and geothermal field. This value correlated with those observed at other geothermal and volcanic fields.

  20. Qochas on Andean highlands

    CERN Document Server

    Sparavigna, Amelia Carolina


    On the Andean highlands, the "qochas" are lakes or ponds of natural or artificial origin. An ancient agricultural technique is based on their use. Linked together by a network of canals, qochas form a system of water and soil management, alternately used for crops or pasture. The concave structure of qochas controls the strong evaporation produced by solar radiation and wind blowing. Qochas can be observed in the satellite imagery of Google Maps.

  1. Volcanic tremor associated with eruptive activity at Bromo volcano

    Directory of Open Access Journals (Sweden)

    E. Gottschämmer


    Full Text Available Three broadband stations were deployed on Bromo volcano, Indonesia, from September to December 1995. The analysis of the seismograms shows that the signals produced by the volcanic sources cover the frequency range from at least 25 Hz down to periods of several minutes and underlines, therefore, the importance of broadband recordings. Frequency analysis reveals that the signal can be divided into four domains. In the traditional frequency range of volcanic tremor (1-10 Hz sharp transitions between two distinct values of the tremor amplitude can be observed. Additional tremor signal including frequencies from 10 to 20 Hz could be found during late November and early December. Throughout the whole experiment signals with periods of some hundred seconds were observed which are interpreted as ground tilts. For these long-period signals a particle motion analysis was performed in order to estimate the source location. Depth and radius can be estimated when the source is modeled as a sudden pressure change in a sphere. The fourth frequency range lies between 0.1 and 1 Hz and is dominated by two spectral peaks which are due to marine microseism. The phase velocity and the direction of wave propagation of these signals could be determined using the tripartite-method.

  2. Central Andean crustal structure from receiver function analysis (United States)

    Ryan, Jamie; Beck, Susan; Zandt, George; Wagner, Lara; Minaya, Estela; Tavera, Hernado


    The Central Andean Plateau (15°-27°S) is a high plateau in excess of 3 km elevation, associated with thickened crust along the western edge of the South America plate, in the convergent margin between the subducting Nazca plate and the Brazilian craton. We have calculated receiver functions using seismic data from a recent portable deployment of broadband seismometers in the Bolivian orocline (12°-21°S) region and combined them with waveforms from 38 other stations in the region to investigate crustal thickness and crust and mantle structures. Results from the receiver functions provide a more detailed map of crustal thickness than previously existed, and highlight mid-crustal features that match well with prior studies. The active volcanic arc and Altiplano have thick crust with Moho depths increasing from the central Altiplano (65 km) to the northern Altiplano (75 km). The Eastern Cordillera shows large along strike variations in crustal thickness. Along a densely sampled SW-NE profile through the Bolivian orocline there is a small region of thin crust beneath the high peaks of the Cordillera Real where the average elevations are near 4 km, and the Moho depth varies from 55 to 60 km, implying the crust is undercompensated by 5 km. In comparison, a broader region of high elevations in the Eastern Cordillera to the southeast near 20°S has a deeper Moho at 65-70 km and appears close to isostatic equilibrium at the Moho. Assuming the modern-day pattern of high precipitation on the flanks of the Andean plateau has existed since the late Miocene, we suggest that climate induced exhumation can explain some of the variations in present day crustal structure across the Bolivian orocline. We also suggest that south of the orocline at 20°S, the thicker and isostatically compensated crust is due to the absence of erosional exhumation and the occurrence of lithospheric delamination.

  3. The Albano multiple-maar center (Rome, Italy): an active volcanic area since 70 ka (United States)

    Freda, C.; Gaeta, M.; Karner, D. B.; Marra, F.; Renne, P. R.; Scarlato, P.; Taddeucci, J.


    The Albano multiple-maar center hosted the most recent activity of the Alban Hills Volcanic District. The determination of its petrochemical characteristics and its geochronology is therefore of great importance in order to evaluate the status of this volcanic area and to assess the possible volcanic hazard for Rome. Despite the detailed 40Ar/39Ar geochronologic history of the products of its activity, relatively poor information on the stratigraphy and the petrology of this volcanic center exists. In order to develop a detailed chronostratigraphy, petrology, and a more thorough knowledge of the eruptive mechanisms that characterized the recent activity of the Albano center, a joint research project is being conducted by scientists from the Istituto Nazionale di Geofisica e Vulcanologia, the University of California at Berkeley, and the Berkeley Geochronology Center. Here we have studied the most complete stratigraphic section located within the northern crater rim of Albano, where most of the products are exposed. We have investigated proximal and distal outcrops, in order to correlate them to the units identified in the northern crater rim section. We will present our recently acquired geochronologic and petrochemical data, which indicates magma chamber recharge associated with this <70 ka volcanism.

  4. Using 10Be cosmogenic surface exposure dating to determine the evolution of the Purgatorio active fault in the Andean forearc, southern Peru (United States)

    Carlos, Benavente; Swann, Zerathe; Laurence, Audin; Fabrizio, Delgado; Marianne, Saillard; Sarah, Hall R.; Aster Team


    Active transpressive deformation has been occurring along the Andean hyperarid forearc for the last 3 Myrs but many of these faults are still not described even if able to produce large damaging earthquakes. Active faulting along the northern part of the Arica Bend can be recognized due to the presence of well-preserved and sharp fault scarps indicating recent surface slip. During the Mio-Pliocene, deposition within the forearc continental basins resulted in the formation of vast fan deposits and conglomerates of the Moquegua Formation, which can be considered as bedrock in this exposure study (~45-4 Ma; Tosdal et al., 1984; Sebrier et al., 1988a; Roperch et al., 2006). The typical vertical Purgatorio fault scarps offset both the Moquegua bedrock and several younger geomorphic features associated with Moquegua formation outcroping vertically along the fault scarp. These samples are well-suited to the application of in situ produced cosmogenic radionuclides for surface exposure dating, as the hyperarid region has extremely low erosion rates. We sampled the scarp away from any significant drainage so as to avoid possibly disturbed areas. The sampling did involve extracting quarzite conglomeratic material along the bedrock scarp and on the upper surrounding crests. The aim has been to measure Berylium-20 TCN (Terrestrial in situ Cosmogenic Nuclides) concentrations to determine exposure age as a function of height on the scarp. This has been successfully employed on one scarp in Italy based on Chlorine-36 TCN (Palumbo et al., 2004). However, slow faults behaviour remains unclear and more contributions are needed. Quaternary activity of the Purgatorio fault system was evidenced by Hall et al. (2008). They highlighted a vertical offset of about ~100 m for a pediment surface intercepted by the fault, and dated at ~280 ka. Considering that the pediment surface is horizontal, this would gave a maximum of ~0.3 mm/yr of vertical deformation since 280 ka. Our new data provide

  5. 2013 volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory (United States)

    Dixon, James P.; Cameron, Cheryl; McGimsey, Robert G.; Neal, Christina A.; Waythomas, Chris


    The Alaska Volcano Observatory (AVO) responded to eruptions, volcanic unrest or suspected unrest, and seismic events at 18 volcanic centers in Alaska during 2013. Beginning with the 2013 AVO Summary of Events, the annual description of the AVO seismograph network and activity, once a stand-alone publication, is now part of this report. Because of this change, the annual summary now contains an expanded description of seismic activity at Alaskan volcanoes. Eruptions occurred at three volcanic centers in 2013: Pavlof Volcano in May and June, Mount Veniaminof Volcano in June through December, and Cleveland Volcano throughout the year. None of these three eruptive events resulted in 24-hour staffing at AVO facilities in Anchorage or Fairbanks.

  6. Andean region: measles on the way out. (United States)


    In August 1996, health officials, program managers, epidemiologists, laboratory representatives, UNICEF, Rotary International, and Pan American Health Organization staff attended the VII Andean EPI Meeting in Quito, Ecuador, to review the progress of the Expanded Program on Immunization (EPI). All Andean countries have conducted catch-up measles vaccination campaigns targeting children 9 months to 15 years old. These campaigns achieved 90% vaccine coverage and a strong reduction in measles incidence (only 7 confirmed cases in 1996). Follow-up campaigns were conducted during 1995-1996 in Colombia, Peru, and Chile. They were expected in Bolivia, Ecuador, Peru, and Venezuela during 1997-1999. The Andean countries implemented a national surveillance system for measles in 1995. Meeting representatives made eight recommendations regarding measles. For example, health officials should reach and maintain routine vaccination coverage greater than 95% for children 12-23 months old in each municipality. Laboratory representatives proposed recommendations on uniform criteria for measles diagnosis. The last indigenous wild poliovirus in the Americas was isolated in 1991. Imported wild poliovirus remains a concern. The Andean countries are expanding surveillance of neonatal tetanus activities. Since 1989 the frequency of neonatal tetanus has been falling in the Andean region, especially in Bolivia and Peru. The impact of migration on the control of neonatal tetanus should be a higher priority. Participants repeated the need for systematic use and continuous monitoring of EPI indicators (e.g., vaccination coverage). Three countries plan on analyzing surveys on missed opportunities for vaccination in 1996. Three countries presented progress reports on hepatitis B vaccination and surveillance. Participants issued recommendations on quality control of vaccines. The responsibility for quality control lies with the manufacturers and the government. Vaccines for invasive diseases (e

  7. Elemental characterization of Mt. Sinabung volcanic ash, Indonesia by Neutron Activation Analysis (United States)

    Kusmartini, I.; Syahfitri, W. Y. N.; Kurniawati, S.; Lestiani, D. D.; Santoso, M.


    Mount Sinabung is a volcano located in North Sumatera, Indonesia which has been recorded not erupted since 1600. However in 2013 it has been erupted and cause of black thick smog, rain sand and volcanic ash. Volcanic ash containing trace elements material that can be utilized in various applications but still has potential danger of heavy metals. In order to obtain an elemental composition data of volcanic ash, the characterization of volcanic ash were carried out using Neutron Activation Analysis. The volcanic ash was taken from Mt. Sinabung eruption. Samples were irradiated at the rabbit system in the reactor G.A Siwabessy facilities with neutron flux ˜ 1013 and then counted using HPGe detector. Method validation was carried out by SRM NIST Coal Fly Ash 1633b and NIST 2711a Montana II Soil with recovery values were in the range of 96-108% and 95-106% respectively. The results showed that major elements; Al, Na, Ca and Fe, concentrations were 8.7, 1.05, 2.98 and 7.44 %, respectively, minor elements K, Mg, Mn, Ti, V and Zn were 0.87%, 0.78%, 0.18%, 0.62%, 197.13 ppm and 109.35 ppm, respectively, heavy metals; As, Cr, Co and Sb, contents were 4.48, 11.75, 17.13 and 0.35 ppm, respectively while rare earth elements such as Ce, Eu, La, Nd, Sm, Yb were 45.33, 1.22, 19.63, 20.34, 3.86, and 2.57 ppm respectively. The results of the elemental contents of volcanic ash that has been obtained can be used as the scientific based data for volcanic material utilization by considering the economic potential of elements contained and also the danger of the heavy metals content.

  8. Link of volcanic activity and climate change in Altai studied in the ice core from Belukha Mountain


    N. S. Malygina; T. V. Barlyaeva; T. S. Papina


    In the present research we discuss a role of volcanic activity in Altai thermal regime. Here we analyses the sulfate and temperature data reconstructed from the natural paleoarchive – ice core from the Belukha Mountain saddle. Sulfate ice-core reconstructions can serve as volcanic markers. The both – sulfate and temperature reconstructions – are for the last 750 years. As the characteristic of volcanic activity we consider Volcanic Explosivity Index (VEI), Dust Veil Index (DVI) and Ice core v...

  9. The influence of volcanic activity on suspended sediment yield of rivers (Kamchatka, Russia) (United States)

    Kuksina, Ludmila


    Kamchatka is specific region of suspended sediment yield formation. This fact is particularly connected with active volcanism in the territory. The influence of volcanism on suspended sediment yield characteristics was studied in various time scales - into-diurnal, seasonal and long-term ones. The study of spatial variability of these characteristics reveals the maximum values characterize river basins in zones of strong impact of volcanic eruptions, especially, rivers draining slopes and flanks of active volcanoes. Into-diurnal fluctuations were studied for rivers in volcanic areas. They are characterized by synchronous changes of water flow and turbidity. It's determined by weak erosion-preventive capacity of friable volcanic deposits and big slopes of channels (2.5 - 6.0 %). The maximum of water flow and turbidity is observed at the period between 12 and 6 pm. The air temperature reaches its maximum by that time, and consequently, the intensity of snow melting is also maximum one. The maximum of turbidity advances diurnal maximum of water flow a little, and it's connected with the features of flood wave moving and consecutive maximums of slopes, turbidity, velocity, water flow, and capacity of stream during flush. Into-diurnal fluctuations are determined by complicated and little-studied processes of mass transfer between stream and channel deposits. These processes are connected with into-diurnal changes of stream capacity and water transfer between channel and underflow. As the result water regime is pulsating. Rivers under the influence of volcanic eruptions transport the main amount of sediments during floods which usually occur in summer-autumn period (in the absence of extreme floods in winter-spring period during volcanic eruptions). Combination of maximum snow supply, significant precipitation in warm part of the year and weak erosion-preventive capacity of friable volcanic deposits on volcanoes slopes is the reason of the most intense erosion in this

  10. The new Andean Regional Office of Astronomy for Development (ROAD) (United States)

    Char, Farid; Forero-Romero, Jaime


    The Andean Regional Office of Astronomy for Development (ROAD) is a new effort in South America to serve several goals in astronomical development. Six countries (Bolivia, Colombia, Chile, Ecuador, Perú and Venezuela) will work together, representing a common language block in the Andean region and focusing on develop strategies to strengthen the professional research, education and popularization of astronomy. Our current Working Structure comprises a ROAD Coordinator and Coordinators per Task Force, as well as Organizing Committees, Collaborators and Volunteers.The participating institutions of this new ROAD have been involved in many projects involving each of the current OAD’s Task Forces: research, schools and children and public, exploring educational activities/material to be shared among the Andean countries, standardizing the knowledge and creating inspirational experiences. We expect to generate many efforts in order to bring a more homogeneous activity in each Andean country, taking into account the special role of Chile in global astronomy, due to its great conditions for astronomy and the involvement of many professional observatories, universities and astronomy institutions.Our current (and upcoming) most relevant activities includes: Andean Schools on Astronomy, Andean Graduate Program and Massive Open Online Courses (TF1); Virtual Training Sessions and Teaching material for the visually impaired students; Annual TF2 meeting to gather all the collaborators (TF2); Development for planetariums and Communicating Astronomy with the Public (TF3). The Andean region, in the other hand, will also be involved in at least two important events: the CAP Meeting in May 2016 and the XV LARIM in October 2016 (both in Colombia); and Chile will bid to host the XXXI IAU GA in 2021, with the aim of show the great advances in astronomical development from the Andean region and South America.

  11. Search for possible relationship between volcanic ash particles and thunderstorm lightning activity (United States)

    Várai, A.; Vincze, M.; Lichtenberger, J.; Jánosi, I. M.


    Explosive volcanic eruptions that eject columns of ash from the crater often generate lightning discharges strong enough to be remotely located by very low frequency radio waves. A fraction of volcanic ash particles can stay and disperse long enough to have an effect on weather phenomena days later such as thunderstorms and lightnings. In this work we report on lightning activity analysis over Europe following two recent series of volcanic eruptions in order to identify possible correlations between ash release and subsequent thunderstorm flash frequency. Our attempts gave negative results which can be related to the fact that we have limited information on local atmospheric variables of high enough resolution, however lightning frequency is apparently determined by very local circumstances.

  12. Multiple episodes of hydrothermal activity and epithermal mineralization in the southwestern Nevada volcanic field and their relations to magmatic activity, volcanism and regional extension

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, S.I.; Noble, D.C.; Jackson, M.C. [Univ. of Nevada, Reno, NV (United States)] [and others


    Volcanic rocks of middle Miocene age and underlying pre-Mesozoic sedimentary rocks host widely distributed zones of hydrothermal alteration and epithermal precious metal, fluorite and mercury deposits within and peripheral to major volcanic and intrusive centers of the southwestern Nevada volcanic field (SWNVF) in southern Nevada, near the southwestern margin of the Great Basin of the western United States. Radiometric ages indicate that episodes of hydrothermal activity mainly coincided with and closely followed major magmatic pulses during the development of the field and together spanned more than 4.5 m.y. Rocks of the SWNVF consist largely of rhyolitic ash-flow sheets and intercalated silicic lava domes, flows and near-vent pyroclastic deposits erupted between 15.2 and 10 Ma from vent areas in the vicinity of the Timber Mountain calderas, and between about 9.5 and 7 Ma from the outlying Black Mountain and Stonewall Mountain centers. Three magmatic stages can be recognized: the main magmatic stage, Mountain magmatic stage (11.7 to 10.0 Ma), and the late magmatic stage (9.4 to 7.5 Ma).

  13. Soil radon measurements as a potential tracer of tectonic and volcanic activity (United States)

    Neri, Marco; Ferrera, Elisabetta; Giammanco, Salvatore; Currenti, Gilda; Cirrincione, Rosolino; Patanè, Giuseppe; Zanon, Vittorio


    In Earth Sciences there is a growing interest in studies concerning soil-radon activity, due to its potential as a tracer of numerous natural phenomena. Our work marks an advance in the comprehension of the interplay between tectonic activity, volcanic eruptions and gas release through faults. Soil-radon measurements, acquired on Mt. Etna volcano in 2009–2011, were analyzed. Our radon probe is sensitive to changes in both volcanic and seismic activity. Radon data were reviewed in light of the meteorological parameters. Soil samples were analyzed to characterize their uranium content. All data have been summarized in a physical model which identifies the radon sources, highlights the mechanism of radon transport and envisages how such a mechanism may change as a consequence of seismicity and volcanic events. In the NE of Etna, radon is released mainly from a depth of 50 m/day. Three periods of anomalous gas release were found (February 2010, January and February 2011). The trigger of the first anomaly was tectonic, while the second and third had a volcanic origin. These results mark a significant step towards a better understanding of the endogenous mechanisms that cause changes in soil-radon emission at active volcanoes.

  14. Soil radon measurements as a potential tracer of tectonic and volcanic activity. (United States)

    Neri, Marco; Ferrera, Elisabetta; Giammanco, Salvatore; Currenti, Gilda; Cirrincione, Rosolino; Patanè, Giuseppe; Zanon, Vittorio


    In Earth Sciences there is a growing interest in studies concerning soil-radon activity, due to its potential as a tracer of numerous natural phenomena. Our work marks an advance in the comprehension of the interplay between tectonic activity, volcanic eruptions and gas release through faults. Soil-radon measurements, acquired on Mt. Etna volcano in 2009-2011, were analyzed. Our radon probe is sensitive to changes in both volcanic and seismic activity. Radon data were reviewed in light of the meteorological parameters. Soil samples were analyzed to characterize their uranium content. All data have been summarized in a physical model which identifies the radon sources, highlights the mechanism of radon transport and envisages how such a mechanism may change as a consequence of seismicity and volcanic events. In the NE of Etna, radon is released mainly from a depth of 50 m/day. Three periods of anomalous gas release were found (February 2010, January and February 2011). The trigger of the first anomaly was tectonic, while the second and third had a volcanic origin. These results mark a significant step towards a better understanding of the endogenous mechanisms that cause changes in soil-radon emission at active volcanoes.

  15. Mount Kenya volcanic activity and the Late Cenozoic landscape reorganisation in the upper Tana fluvial system

    NARCIS (Netherlands)

    Veldkamp, A.; Schoorl, J.M.; Wijbrans, J.R.; Claessens, L.F.G.


    Volcanic–fluvial landscape interaction of the late Cenozoic Mt Kenya region in the upper Tana catchment has been reconstructed. The oldest newly dated phonolite flow is 5.78 Ma (40Ar/39Ar), placing the initiation of Mt Kenya volcanic activity within the Late Miocene, much earlier than reported befor

  16. Late Pleistocene and Holocene activity of the Atacazo-Ninahuilca Volcanic Complex (Ecuador)

    NARCIS (Netherlands)

    Hidalgo, Silvana; Monzier, Michel; Almeida, Eduardo; Chazot, Gilles; Eissen, Jean-Philippe; van der Plicht, Johannes; Hall, Minard L.


    The Atacazo-Ninahuilca Volcanic Complex (ANVC) is located in the Western Cordillera of Ecuador, 10 km southwest of Quito. At least six periods of Pleistocene to Holocene activity (N1 to N6) have been preserved in the geologic record as tephra fallouts and pyroclastic flow deposits. New field data,

  17. Significance of an Active Volcanic Front in the Far Western Aleutian Arc (United States)

    Yogodzinski, G. M.; Kelemen, P. B.; Hoernle, K.


    Discovery of a volcanic front west of Buldir Volcano, the western-most emergent Aleutian volcano, demonstrates that the surface expression of Aleutian volcanism falls below sea level just west of 175.9° E longitude, but is otherwise continuous from mainland Alaska to Kamchatka. The newly discovered sites of western Aleutian seafloor volcanism are the Ingenstrem Depression, a 60 km-long structural depression just west of Buldir, and an unnamed area 300 km further west, referred to as the Western Cones. These locations fall along a volcanic front that stretches from Buldir to Piip Seamount near the Komandorsky Islands. Western Aleutian seafloor volcanic rocks include large quantities of high-silica andesite and dacite, which define a highly calc-alkaline igneous series and carry trace element signatures that are unmistakably subduction-related. This indicates that subducting oceanic lithosphere is present beneath the westernmost Aleutian arc. The rarity of earthquakes below depths of 200 km indicates that the subducting plate is unusually hot. Some seafloor volcanoes are 6-8 km wide at the base, and so are as large as many emergent Aleutian volcanoes. The seafloor volcanoes are submerged in water depths >3000 m because they sit on oceanic lithosphere of the Bering Sea. The volcanic front is thus displaced to the north of the ridge of arc crust that underlies the western Aleutian Islands. This displacement, which developed since approximately 6 Ma when volcanism was last active on the islands, must be a consequence of oblique convergence in a system where the subducting plate and large blocks of arc crust are both moving primarily in an arc-parallel sense. The result is a hot-slab system where low subduction rates probably limit advection of hot mantle to the subarc, and produce a relatively cool and perhaps stagnant mantle wedge. The oceanic setting and highly oblique subduction geometry also severely limit rates of sediment subduction, so the volcanic rocks, which

  18. Andean region study

    Energy Technology Data Exchange (ETDEWEB)



    New opportunities for climate change mitigation arising from a higher energy integration among Andean Pact nations were analysed within the framework of the UNEP/GEF Project. Apart from the search for regional mitigation actions, the study was mainly aimed at detecting methodological problems which arise when passing from a strictly national view to the co-ordination of regional actions to deal with climate change. In accordance with the available resources and data, and in view of the mainly methodological nature of the project, it was decided to analyse the opportunities to delve into the energy integration of the Region as regards electricity and natural gas industries and their eventual impact on the emission of greenhouse gases. Although possibilities of setting up electricity and natural gas markets are real, their impacts on GHG emission from the energy system would not prove substantially higher than those which the nations could achieve through the use of their own energy resources, in view that the Andean systems are competitive rather than complementary. More in-depth studies and detail information will be required - unavailable for the present study - to be able to properly evaluate all benefits associated with higher energy integration. Nevertheless, the supply of natural gas to Ecuador seems to be the alternative with the highest impact on GHG emission. If we were to analyse the supply and final consumption of energy jointly, we would most certainly detect additional mitigation options resulting from higher co-operation and co-ordination in the energy field. (EHS)

  19. Characterization of the Etna volcanic emissions through an active biomonitoring technique (moss-bags): part 2--morphological and mineralogical features. (United States)

    Calabrese, S; D'Alessandro, W


    Volcanic emissions were studied at Mount Etna (Italy) by using moss-bags technique. Mosses were exposed around the volcano at different distances from the active vents to evaluate the impact of volcanic emissions in the atmosphere. Morphology and mineralogy of volcanic particulate intercepted by mosses were investigated using scanning electron microscopy (SEM) equipped with energy dispersive spectrometer (EDS). Particles emitted during passive degassing activity from the two active vents, Bocca Nuova and North East Crater (BNC and NEC), were identified as silicates, sulfates and halide compounds. In addition to volcanic particles, we found evidences also of geogenic, anthropogenic and marine spray input. The study has shown the robustness of this active biomonitoring technique to collect particles, very useful in active volcanic areas characterized by continuous degassing and often not easily accessible to apply conventional sampling techniques.

  20. Poás volcano: Relationships between diffuse vs active CO degassing and long term volcanic activity. (United States)

    Epiard, Matthieu; Avard, Geoffroy; de Moor, Marteen; Martinez Cruz, Maria; Bakkar, Henriette


    Active volcanoes exhibit diffuse gas emanations through the ground. Carbon dioxide is one of the most abundant species, in addition to the gases actively released through channelized vents. CO₂ diffuse degassing is not always correlated to volcanic activity but CO₂ diffuse vs active degassing ratios appears to show interesting behavior regarding fluctuations in volcanic activity. CO₂ diffuse degassing data were obtained at Poás volcano (Costa Rica) in 2011 using the accumulation chamber method with the aim of estimating the total diffuse CO₂ budget. This result was compared to active degassing data, as well as to previous CO₂ diffuse degassing data measured between 2000 and 2004, when Poás entered in a stage of enhanced volcanic activity. Results show a dramatic decrease in CO₂ diffuse degassing rate between 2000 and 2011 of more than 500t/d, following an increasing trend in total gas emission and power output between September 1995 and the end of 2001. Thus, the ratio of diffuse to active degassing has dramatically decreased with the increase of volcanic activity and occurrence of phreatic eruption. Two main hypothesis could explain those results: 1) Either the rising of magma to shallower levels allows the gas to be better channelized due to enhanced permeability and conduit opening, or 2) Poás volcano might experience a periodic pattern of hydrothermal sealing/overpressure/eruption that allows the system to shift from a regimen of passive degassing to active degassing.

  1. The influence of volcanic activity in the Campi Flegrei coastal depositional system (United States)

    Violante, Crescenzo; Esposito, Eliana; Molisso, Flavia; Porfido, Sabina; Sacchi, Marco


    The Campi Flegrei coastal area includes the bay of Pozzuoli, Procida and Ischia islands, characterized by active tectonics and volcanism since the Pleistocene. Numerous monogenic volcanoes occur close to the shoreline and volcanic debris interpreted as submarine counterpart of subaerial flows and surges, have been detected offshore. In the Pozzuoli area the most recent eruptive volcanic activity occurred from 10.0 to 8.0 ky B.P and 4.5 to 3.7 ky B.P. followed by the September 1538 Monte Nuovo eruption. Here magma-related activity is testified by extensive hydrothermalism, and recent episodes (1970-71 and 1982-84 on Pozzuoli coast) of shallow seismicity and ground deformation, exceeding rates of 100 cm/year in the years 1983-1984. The most recent volcanic activity on Ischia island starts around 10.0 ky B.P. to which associates several eruptive centres mostly located in the western sector. The last eruption dates back to Arso flow in 1302. Nevertheless the landscape of Ischia is dominated by Mount Epomeo in the central part of the island, which is the highest peak (788 m). It is a volcano-tectonic structure that raised above sea level between 33 and 28 ka BP, due to the intrusion of magma at shallow depth. Procida island is composed of five monogenic Volcanoes (Vivara, Terra Murata, Pozzo Vecchio, Fiumicello and Solchiaro) that have been active over the last 80 ky producing pyroclastic deposits and a lava dome. A sixth volcanic structure has been reported recently off P.ta Serra by marine investigations and confirmed by airborne magnetic surveys. The emplacement of large amount of volcanoclastic material from volcanic and volcano-tectonic activity in the Campi Flegrei coastal area produced extensive avalanche deposits off Ischia island, seafloor instabilities in the form of creep/slump, channelled sediment flow and deep sedimentary fans, and is largely responsible for aggradation/progradation of the coastal area during the Quaternary. Moreover, numerous volcanic bank

  2. Assessing the Altitude and Dispersion of Volcanic Plumes Using MISR Multi-angle Imaging from Space: Sixteen Years of Volcanic Activity in the Kamchatka Peninsula, Russia (United States)

    Flower, Verity J. B.; Kahn, Ralph A.


    Volcanic eruptions represent a significant source of atmospheric aerosols and can display local, regional and global effects, impacting earth systems and human populations. In order to assess the relative impacts of these events, accurate plume injection altitude measurements are needed. In this work, volcanic plumes generated from seven Kamchatka Peninsula volcanoes (Shiveluch, Kliuchevskoi, Bezymianny, Tolbachik, Kizimen, Karymsky and Zhupanovsky), were identified using over 16 years of Multi-angle Imaging SpectroRadimeter (MISR) measurements. Eighty-eight volcanic plumes were observed by MISR, capturing 3-25% of reported events at individual volcanoes. Retrievals were most successful where high intensity events persisted over a period of weeks to months. Compared with existing ground and airborne observations, and alternative satellite-based reports compiled by the Global Volcanism Program (GVP), MISR plume height retrievals showed general consistency; the comparison reports appear to be skewed towards the region of highest concentration observed in MISR-constrained vertical plume extent. The report observations display less discrepancy with MISR toward the end of the analysis period, with improvements in the suborbital data likely the result of the deployment of new instrumentation. Conversely, the general consistency of MISR plume heights with conventionally reported observations supports the use of MISR in the ongoing assessment of volcanic activity globally, especially where other types of volcanic plume observations are unavailable. Differences between the northern (Shiveluch, Kliuchevskoi, Bezymianny and Tolbachik) and southern (Kizimen, Karymsky and Zhupanovsky) volcanoes broadly correspond to the Central Kamchatka Depression (CKD) and Eastern Volcanic Front (EVF), respectively, geological sub-regions of Kamchatka distinguished by varying magma composition. For example, by comparison with reanalysis-model simulations of local meteorological conditions

  3. Exploratory Data Analysis Using a Dedicated Visualization App: Looking for Patterns in Volcanic Activity (United States)

    van Manen, S. M.; Chen, S.


    Here we present an App designed to visualize and identify patterns in volcanic activity during the last ten years. It visualizes VEI (volcanic explosivity index) levels, population size, frequency of activity, and geographic region, and is designed to address the issue of oversampling of data. Often times, it is difficult to access a large set of data that can be scattered at first glance and hard to digest without visual aid. This App serves as a model that solves this issue and can be applied to other data. To enable users to quickly assess the large data set it breaks down the apparently chaotic abundance of information into categories and graphic indicators: color is used to indicate the VEI level, size for population size within 5 km of a volcano, line thickness for frequency of activity, and a grid to pinpoint a volcano's latitude. The categories and layers within them can be turned on and off by the user, enabling them to scroll through and compare different layers of data. By visualising the data this way, patterns began to emerge. For example, certain geographic regions had more explosive eruptions than others. Another good example was that low frequency larger impact volcanic eruptions occurred more irregularly than smaller impact volcanic eruptions, which had a more stable frequencies. Although these findings are not unexpected, the easy to navigate App does showcase the potential of data visualization for the rapid appraisal of complex and abundant multi-dimensional geoscience data.

  4. Link of volcanic activity and climate change in Altai studied in the ice core from Belukha Mountain

    Directory of Open Access Journals (Sweden)

    N. S. Malygina


    Full Text Available In the present research we discuss a role of volcanic activity in Altai thermal regime. Here we analyses the sulfate and temperature data reconstructed from the natural paleoarchive – ice core from the Belukha Mountain saddle. Sulfate ice-core reconstructions can serve as volcanic markers. The both – sulfate and temperature reconstructions – are for the last 750 years. As the characteristic of volcanic activity we consider Volcanic Explosivity Index (VEI, Dust Veil Index (DVI and Ice core volcanic index (IVI. The analysis was done using wavelet analysis and analysis of wavelet cross coherence and phase. As the result, we conclude that observed increases in the values of the indexes VEI, DVI, IVI basically correspond to decreases of temperature and increases of sulfate concentrations. This confirms the dependence of changes in the thermal regime of the Altai from volcanic activity. But in the 1750–1850 years period there is a delay of the changes in temperature with respect to the changes in volcanic activity. We suggest that it can be due to the superposition of the influence of solar and volcanic activity on changes in the thermal regime of Altai.

  5. Evidence of recent deep magmatic activity at Cerro Bravo-Cerro Machín volcanic complex, central Colombia. Implications for future volcanic activity at Nevado del Ruiz, Cerro Machín and other volcanoes (United States)

    Londono, John Makario


    In the last nine years (2007-2015), the Cerro Bravo-Cerro Machín volcanic complex (CBCMVC), located in central Colombia, has experienced many changes in volcanic activity. In particular at Nevado del Ruiz volcano (NRV), Cerro Machin volcano (CMV) and Cerro Bravo (CBV) volcano. The recent activity of NRV, as well as increasing seismic activity at other volcanic centers of the CBCMVC, were preceded by notable changes in various geophysical and geochemical parameters, that suggests renewed magmatic activity is occurring at the volcanic complex. The onset of this activity started with seismicity located west of the volcanic complex, followed by seismicity at CBV and CMV. Later in 2010, strong seismicity was observed at NRV, with two small eruptions in 2012. After that, seismicity has been observed intermittently at other volcanic centers such as Santa Isabel, Cerro España, Paramillo de Santa Rosa, Quindío and Tolima volcanoes, which persists until today. Local deformation was observed from 2007 at NRV, followed by possible regional deformation at various volcanic centers between 2011 and 2013. In 2008, an increase in CO2 and Radon in soil was observed at CBV, followed by a change in helium isotopes at CMV between 2009 and 2011. Moreover, SO2 showed an increase from 2010 at NRV, with values remaining high until the present. These observations suggest that renewed magmatic activity is currently occurring at CBCMVC. NRV shows changes in its activity that may be related to this new magmatic activity. NRV is currently exhibiting the most activity of any volcano in the CBCMVC, which may be due to it being the only open volcanic system at this time. This suggests that over the coming years, there is a high probability of new unrest or an increase in volcanic activity of other volcanoes of the CBCMVC.

  6. PCDD/PCDF and dl-PCB in the ambient air of a tropical Andean city: passive and active sampling measurements near industrial and vehicular pollution sources. (United States)

    Cortés, J; González, C M; Morales, L; Abalos, M; Abad, E; Aristizábal, B H


    Concentration gradients were observed in gas and particulate phases of PCDD/F originating from industrial and vehicular sources in the densely populated tropical Andean city of Manizales, using passive and active air samplers. Preliminary results suggest greater concentrations of dl-PCB in the mostly gaseous fraction (using quarterly passive samplers) and greater concentrations of PCDD/F in the mostly particle fraction (using daily active samplers). Dioxin-like PCB predominance was associated with the semi-volatility property, which depends on ambient temperature. Slight variations of ambient temperature in Manizales during the sampling period (15°C-27°C) may have triggered higher concentrations in all passive samples. This was the first passive air sampling monitoring of PCDD/F conducted in an urban area of Colombia. Passive sampling revealed that PCDD/F in combination with dioxin-like PCB ranged from 16 WHO-TEQ2005/m(3) near industrial sources to 7 WHO-TEQ2005/m(3) in an intermediate zone-a reduction of 56% over 2.8 km. Active sampling of particulate phase PCDD/F and dl-PCB were analyzed in PM10 samples. PCDD/F combined with dl-PCB ranged from 46 WHO-TEQ2005/m(3) near vehicular sources to 8 WHO-TEQ2005/m(3) in the same intermediate zone, a reduction of 83% over 2.6 km. Toxic equivalent quantities in both PCDD/F and dl-PCB decreased toward an intermediate zone of the city. Variations in congener profiles were consistent with variations expected from nearby sources, such as a secondary metallurgy plant, areas of concentrated vehicular emissions and a municipal solid waste incinerator (MSWI). These variations in congener profile measurements of dioxins and dl-PCBs in passive and active samples can be partly explained by congener variations expected from the various sources.

  7. International Collaboration on Building Local Technical Capacities for Monitoring Volcanic Activity at Pacaya Volcano, Guatemala. (United States)

    Escobar-Wolf, R. P.; Chigna, G.; Morales, H.; Waite, G. P.; Oommen, T.; Lechner, H. N.


    Pacaya volcano is a frequently active and potentially dangerous volcano situated in the Guatemalan volcanic arc. It is also a National Park and a major touristic attraction, constituting an important economic resource for local municipality and the nearby communities. Recent eruptions have caused fatalities and extensive damage to nearby communities, highlighting the need for risk management and loss reduction from the volcanic activity. Volcanic monitoring at Pacaya is done by the Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hidrologia (INSIVUMEH), instrumentally through one short period seismic station, and visually by the Parque Nacional Volcan de Pacaya y Laguna de Calderas (PNVPLC) personnel. We carry out a project to increase the local technical capacities for monitoring volcanic activity at Pacaya. Funding for the project comes from the Society of Exploration Geophysicists through the Geoscientists Without Borders program. Three seismic and continuous GPS stations will be installed at locations within 5 km from the main vent at Pacaya, and one webcam will aid in the visual monitoring tasks. Local educational and outreach components of the project include technical workshops on data monitoring use, and short thesis projects with the San Carlos University in Guatemala. A small permanent exhibit at the PNVPLC museum or visitor center, focusing on the volcano's history, hazards and resources, will also be established as part of the project. The strategy to involve a diverse group of local collaborators in Guatemala aims to increase the chances for long term sustainability of the project, and relies not only on transferring technology but also the "know-how" to make that technology useful. Although not a primary research project, it builds on a relationship of years of joint research projects at Pacaya between the participants, and could be a model of how to increase the broader impacts of such long term collaboration partnerships.

  8. Compilation of Disruptions to Airports by Volcanic Activity (Version 1.0, 1944-2006) (United States)

    Guffanti, Marianne; Mayberry, Gari C.; Casadevall, Thomas J.; Wunderman, Richard


    Volcanic activity has caused significant hazards to numerous airports worldwide, with local to far-ranging effects on travelers and commerce. To more fully characterize the nature and scope of volcanic hazards to airports, we collected data on incidents of airports throughout the world that have been affected by volcanic activity, beginning in 1944 with the first documented instance of damage to modern aircraft and facilities in Naples, Italy, and extending through 2006. Information was gleaned from various sources, including news outlets, volcanological reports (particularly the Smithsonian Institution's Bulletin of the Global Volcanism Network), and previous publications on the topic. This report presents the full compilation of the data collected. For each incident, information about the affected airport and the volcanic source has been compiled as a record in a Microsoft Access database. The database is incomplete in so far as incidents may not have not been reported or documented, but it does present a good sample from diverse parts of the world. Not included are en-route diversions to avoid airborne ash clouds at cruise altitudes. The database has been converted to a Microsoft Excel spreadsheet. To make the PDF version of table 1 in this open-file report resemble the spreadsheet, order the PDF pages as 12, 17, 22; 13, 18, 23; 14, 19, 24; 15, 20, 25; and 16, 21, 26. Analysis of the database reveals that, at a minimum, 101 airports in 28 countries were impacted on 171 occasions from 1944 through 2006 by eruptions at 46 volcanoes. The number of affected airports (101) probably is better constrained than the number of incidents (171) because recurring disruptions at a given airport may have been lumped together or not reported by news agencies, whereas the initial disruption likely is noticed and reported and thus the airport correctly counted.

  9. Tectonic, volcanic and human activity ground deformation signals detected by multitemporal InSAR techniques in the Colima Volcanic Complex (Mexico) rift (United States)

    Brunori, C.; Norini, G.; Bignami, C.; Groppelli, G.; Zucca, F.; Stramondo, S.; Capra, L.; Cabral-Cano, E.


    The evolution of volcanoes is strictly related with their substratum and the regional tectonics. The link among morphology, geology and structure of volcanic edifices and the geological-structural characteristics of the basement is important to understand hazardous phenomena as flank eruptions and lateral collapses of volcanoes. The Colima Rift is an active regional structure, N-S oriented and more than 100 km long and 10 wide. This rift is filled by a ~1 km-thick sequence of quaternary lacustrine sediments, alluvium, and colluvium, mostly underling the about 3000 m thick volcanic pile of the Colima Volcanic Complex (CVC). In addition to the regional structures curved faults, roughly E-W oriented, are observed on the CVC edifice due to the spreading of the volcano moving southward on the weak basement. So in the CVC edifice and surrounding area we can observe the interaction of regional structures and volcanic ones due to the gravitational loading of the volcanic edifice on the weak substratum of the graben. To measure displacements due to magma movement at depth and interaction of regional structures and volcanic ones, SAR interferometry has proven to be a reliable method; however, andesitic stratovolcanoes like the CVC indeed,remain difficult to survey using this technique. The main causes are their specific geometry (steep topography), which induces strong tropospheric artefacts, environmental conditions (e.g., mainly vegetation, ash and/or snow cover), leading to a loss of coherency. In this work we try to detect deformations phenomena for the wide CVC using a robust multitemporal InSAR approach Differential Synthetic Aperture Radar Interferometry (DInSAR). We apply the Hooper (2008) DInSAR algorithm (StamPS/MTI) both to ENVISAT ASARr images acquired from 1993 to 2007 and to ALOS PALSAR (datasets from 2006 to 2010) in order to determine the deformation patterns in the CVC.

  10. Soil organic matter dynamics at the paramo and puna highlands in the Andean mountains (United States)

    Ángeles Muñoz, M.; Faz, Ángel; Mermut, Ahmet R.; Zornoza, Raúl


    Mountains and uplands represent the most diverse and fragile ecosystems in the world, cover about 20% of the terrestrial surface and are distributed across all continents and major ecoregions. The Andean Plateau is the main mountain range of the American continent and one of the largest in the world with more than 7,500 km. The soil organic matter is a corner stone in the fertility management of the Andean agriculture as well as in the erosion control. However, its role is still much unknown in these ecosystems. Moreover, the influence of current global climatic change on soil organic C reservoirs and dynamics is still not clearly understood. The aim of this work was to review the soil C dynamics and the implication of the soil organic matter in the fertility management, erosion control, conservation of biodiversity and global climate change to improve the knowledge on the mountain Andean highlands. Climate, landscape, soil C pools, biomass and management were studied. In general, the Andean climate is affected by three main factors: ocean currents, winds and orography characterized by an abrupt topography. The entire Andean belt is segmented into the Northern, Central and Southern Andes. Northern Andes are called paramo and are characterized by humid climate while Central and Southern Andes dryer zones are called puna. Most of the region is tectonically and volcanically active. Sedimentary rocks predominated in the paramo while sedimentary, igneous and metamorphic ones prevailed in the puna. The most common soils were Andosols, Regosols, Umbrisols and Histosols. The cold and wet climate and the low atmospheric pressure favored organic matter accumulation in the soil. The accumulation of organic matter is further enhanced by the formation of organomineral complexes strongly resistant to the microbial breakdown mainly in the paramo. High organic C contents were observed in the paramo (10%) oppositely to the low contents found in the dryer puna (1%). The C/N ratio

  11. Electrical activity during the 2006 Mount St. Augustine volcanic eruptions (United States)

    Thomas, Ronald J.; Krehbiel, Paul R.; Rison, William; Edens, H. E.; Aulich, G. D.; McNutt, S.R.; Tytgat, Guy; Clark, E.


    By using a combination of radio frequency time-of-arrival and interferometer measurements, we observed a sequence of lightning and electrical activity during one of Mount St. Augustine's eruptions. The observations indicate that the electrical activity had two modes or phases. First, there was an explosive phase in which the ejecta from the explosion appeared to be highly charged upon exiting the volcano, resulting in numerous apparently disorganized discharges and some simple lightning. The net charge exiting the volcano appears to have been positive. The second phase, which followed the most energetic explosion, produced conventional-type discharges that occurred within plume. Although the plume cloud was undoubtedly charged as a result of the explosion itself, the fact that the lightning onset was delayed and continued after and well downwind of the eruption indicates that in situ charging of some kind was occurring, presumably similar in some respects to that which occurs in normal thunderstorms.

  12. Hawaiian oral tradition describes 400 years of volcanic activity at Kīlauea (United States)

    Swanson, Donald A.


    Culturally significant oral tradition involving Pele, the Hawaiian volcano deity, and her youngest sister Hi'iaka may involve the two largest volcanic events to have taken place in Hawai'i since human settlement: the roughly 60-year-long ‘Ailā’au eruption during the 15th century and the following development of Kīlauea's caldera. In 1823, Rev. William Ellis and three others became the first Europeans to visit Kīlauea's summit and were told stories about Kīlauea's activity that are consistent with the Pele–Hi'iaka account and extend the oral tradition through the 18th century. Recent geologic studies confirm the essence of the oral traditions and illustrate the potential value of examining other Hawaiian chants and stories for more information about past volcanic activity in Hawai‘i.

  13. Evidence of volcanic and glacial activity in Chryse and Acidalia Planitiae, Mars (United States)

    Martinez-Alonso, Sara; Mellon, Michael T.; Banks, Maria E.; Keszthelyi, Laszlo P.; McEwen, Alfred S.


    Chryse and Acidalia Planitiae show numerous examples of enigmatic landforms previously interpreted to have been influenced by a water/ice-rich geologic history. These landforms include giant polygons bounded by kilometer-scale arcuate troughs, bright pitted mounds, and mesa-like features. To investigate the significance of the last we have analyzed in detail the region between 60°N, 290°E and 10°N, 360°E utilizing HiRISE (High Resolution Imaging Science Experiment) images as well as regional-scale data for context. The mesas may be analogous to terrestrial tuyas (emergent sub-ice volcanoes), although definitive proof has not been identified. We also report on a blocky unit and associated landforms (drumlins, eskers, inverted valleys, kettle holes) consistent with ice-emplaced volcanic or volcano-sedimentary flows. The spatial association between tuya-like mesas, ice-emplaced flows, and further possible evidence of volcanism (deflated flow fronts, volcanic vents, columnar jointing, rootless cones), and an extensive fluid-rich substratum (giant polygons, bright mounds, rampart craters), allows for the possibility of glaciovolcanic activity in the region.Landforms indicative of glacial activity on Chryse/Acidalia suggest a paleoclimatic environment remarkably different from today's. Climate changes on Mars (driven by orbital/obliquity changes) or giant outflow channel activity could have resulted in ice-sheet-related landforms far from the current polar caps.

  14. 2009 Volcanic activity in Alaska, Kamchatka, and the Kurile Islands: summary of events and response of the Alaska Volcano Observatory (United States)

    McGimsey, Robert G.; Neal, Christina A.; Girina, Olga A.; Chibisova, Marina; Rybin, Alexander


    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, volcanic unrest, and reports of unusual activity at or near eight separate volcanic centers in Alaska during 2009. The year was highlighted by the eruption of Redoubt Volcano, one of three active volcanoes on the western side of Cook Inlet and near south-central Alaska's population and commerce centers, which comprise about 62 percent of the State's population of 710,213 (2010 census). AVO staff also participated in hazard communication and monitoring of multiple eruptions at ten volcanoes in Russia as part of its collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.


    Directory of Open Access Journals (Sweden)

    Alexander V. Vikulin


    Full Text Available Publications about the earthquake foci migration have been reviewed. An important result of such studies is establishment of wave nature of seismic activity migration that is manifested by two types of rotational waves; such waves are responsible for interaction between earthquakes foci and propagate with different velocities. Waves determining long-range interaction of earthquake foci are classified as Type 1; their limiting velocities range from 1 to 10 cm/s. Waves determining short-range interaction of foreshocks and aftershocks of individual earthquakes are classified as Type 2; their velocities range from 1 to 10 km/s. According to the classification described in [Bykov, 2005], these two types of migration waves correspond to slow and fast tectonic waves. The most complete data on earthquakes (for a period over 4.1 million of years and volcanic eruptions (for 12 thousand years of the planet are consolidated in a unified systematic format and analyzed by methods developed by the authors. For the Pacific margin, Alpine-Himalayan belt and the Mid-Atlantic Ridge, which are the three most active zones of the Earth, new patterns of spatial and temporal distribution of seismic and volcanic activity are revealed; they correspond to Type 1 of rotational waves. The wave nature of the migration of seismic and volcanic activity is confirmed. A new approach to solving problems of geodynamics is proposed with application of the data on migration of seismic and volcanic activity, which are consolidated in this study, in combination with data on velocities of movement of tectonic plate boundaries. This approach is based on the concept of integration of seismic, volcanic and tectonic processes that develop in the block geomedium and interact with each other through rotating waves with a symmetric stress tensor. The data obtained in this study give grounds to suggest that a geodynamic value, that is mechanically analogous to an impulse

  16. Lithospheric evolution of the Andean fold thrust belt, Bolivia, and the origin of the central Andean plateau (United States)

    McQuarrie, Nadine; Horton, Brian K.; Zandt, George; Beck, Susan; DeCelles, Peter G.


    We combine geological and geophysical data to develop a generalized model for the lithospheric evolution of the central Andean plateau between 18° and 20° S from Late Cretaceous to present. By integrating geophysical results of upper mantle structure, crustal thickness, and composition with recently published structural, stratigraphic, and thermochronologic data, we emphasize the importance of both the crust and upper mantle in the evolution of the central Andean plateau. Four key steps in the evolution of the Andean plateau are as follows. 1) Initiation of mountain building by ˜70 Ma suggested by the associated foreland basin depositional history. 2) Eastward jump of a narrow, early fold-thrust belt at 40 Ma through the eastward propagation of a 200-400-km-long basement thrust sheet. 3) Continued shortening within the Eastern Cordillera from 40 to 15 Ma, which thickened the crust and mantle and established the eastern boundary of the modern central Andean plateau. Removal of excess mantle through lithospheric delamination at the Eastern Cordillera-Altiplano boundary during the early Miocene appears necessary to accommodate underthrusting of the Brazilian shield. Replacement of mantle lithosphere by hot asthenosphere may have provided the heat source for a pulse of mafic volcanism in the Eastern Cordillera and Altiplano at 24-23 Ma, and further volcanism recorded by 12-7 Ma crustal ignimbrites. 4) After ˜20 Ma, deformation waned in the Eastern Cordillera and Interandean zone and began to be transferred into the Subandean zone. Long-term rates of shortening in the fold-thrust belt indicate that the average shortening rate has remained fairly constant (˜8-10 mm/year) through time with possible slowing (˜5-7 mm/year) in the last 15-20 myr. We suggest that Cenozoic deformation within the mantle lithosphere has been focused at the Eastern Cordillera-Altiplano boundary where the mantle most likely continues to be removed through piecemeal delamination.

  17. Acoustic waves in the atmosphere and ground generated by volcanic activity

    Energy Technology Data Exchange (ETDEWEB)

    Ichihara, Mie; Lyons, John; Oikawa, Jun; Takeo, Minoru [Earthquake Research Institute, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Instituto Geofisico, Escuela Politecnica Nacional, Ladron de Guevara E11-253, Aptdo 2759, Quito (Ecuador); Earthquake Research Institute, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan)


    This paper reports an interesting sequence of harmonic tremor observed in the 2011 eruption of Shinmoe-dake volcano, southern Japan. The main eruptive activity started with ashcloud forming explosive eruptions, followed by lava effusion. Harmonic tremor was transmitted into the ground and observed as seismic waves at the last stage of the effusive eruption. The tremor observed at this stage had unclear and fluctuating harmonic modes. In the atmosphere, on the other hand, many impulsive acoustic waves indicating small surface explosions were observed. When the effusion stopped and the erupted lava began explosive degassing, harmonic tremor started to be transmitted also to the atmosphere and observed as acoustic waves. Then the harmonic modes became clearer and more stable. This sequence of harmonic tremor is interpreted as a process in which volcanic degassing generates an open connection between the volcanic conduit and the atmosphere. In order to test this hypothesis, a laboratory experiment was performed and the essential features were successfully reproduced.

  18. The roar of Yasur: Handheld audio recorder monitoring of Vanuatu volcanic vent activity (United States)

    Lorenz, Ralph D.; Turtle, Elizabeth P.; Howell, Robert; Radebaugh, Jani; Lopes, Rosaly M. C.


    We describe how near-field audio recording using a pocket digital sound recorder can usefully document volcanic activity, demonstrating the approach at Yasur, Vanuatu in May 2014. Prominent emissions peak at 263 Hz, interpreted as an organ-pipe mode. High-pass filtering was found to usefully discriminate volcano vent noise from wind noise, and autocorrelation of the high pass acoustic power reveals a prominent peak in exhalation intervals of 2.5, 4 and 8 s, with a number of larger explosive events at 200 s intervals. We suggest that this compact and inexpensive audio instrumentation can usefully supplement other field monitoring such as seismic or infrasound. A simple estimate of acoustic power interpreted with a dipole jet noise model yielded vent velocities too low to be compatible with pyroclast emission, suggesting difficulties with this approach at audio frequencies (perhaps due to acoustic absorption by volcanic gases).

  19. Yanshan, Gaoshan-Two Active Volcanoes of the Volcanic Cluster in Arshan, Inner Mongolia

    Institute of Scientific and Technical Information of China (English)

    Bai Zhida; Tian Mingzhong; Wu Fadong; Xu Debing; Li Tuanjie


    The volcanic cluster in Arshan, Inner Mongolia, is located in the west of the middle section of the Da Hinggan Mountains. There are more than forty Cenozoic volcanoes among which the Yanshan Volcano and Gaoshan Volcano are the active ones in broad sense and basaltic central vents. Arshan is a newly found volcanic active region in the Chinese continent. The volcanoes are perfectly preserved and composed of cinder cones, pyroclastic sheets and lava flows. Their cones are grand and the Gaoshan cone is about 362m high, and the depth of the Yanshan crater is about 140m. The pyroclastic sheet is mainly made up of scoria, and the distribution area of scoria with thickness more than 1m is about 27km2. There are two Carbonized-wood sites in the pyroclastic sheet and the 14C datings indicate ages of 1990 ± 100a B. P and 1900 ±70a B. P, which are rectified by dendrodating. Basaltic lava flows are uncovered, and they change from pahoehoe in the early stage to aa in the later stage. There are lots of perfect fumarolic cones, fumarolic dishes and lava tumulus in the front zones. The spread of lava flow is controlled by the local topography and its main body flowed northwestwards covering the Holocene rivers and swamp deposits and blocked up the Halahahe river and its branches to create six lava-dam lakes. For these distinguishing features, Arshan volcanic cluster could be called another natural "Volcano Museum".

  20. Early Analysis of Landsat-8 Thermal Infrared Sensor Imagery of Volcanic Activity

    Directory of Open Access Journals (Sweden)

    Matthew Blackett


    Full Text Available The Landsat-8 satellite of the Landsat Data Continuity Mission was launched by the National Aeronautics and Space Administration (NASA in April 2013. Just weeks after it entered active service, its sensors observed activity at Paluweh Volcano, Indonesia. Given that the image acquired was in the daytime, its shortwave infrared observations were contaminated with reflected solar radiation; however, those of the satellite’s Thermal Infrared Sensor (TIRS show thermal emission from the volcano’s summit and flanks. These emissions detected in sensor’s band 10 (10.60–11.19 µm have here been quantified in terms of radiant power, to confirm reports of the actual volcanic processes operating at the time of image acquisition, and to form an initial assessment of the TIRS in its volcanic observation capabilities. Data from band 11 have been neglected as its data have been shown to be unreliable at the time of writing. At the instant of image acquisition, the thermal emission of the volcano was found to be 345 MW. This value is shown to be on the same order of magnitude as similarly timed NASA Earth Observing System (EOS Moderate Resolution Imaging Spectroradiometer thermal observations. Given its unique characteristics, the TIRS shows much potential for providing useful, detailed and accurate volcanic observations in the future.

  1. Overview of electromagnetic methods applied in active volcanic areas of western United States (United States)

    Skokan, Catherine K.


    A better understanding of active volcanic areas in the United States through electromagnetic geophysical studies received foundation from the many surveys done for geothermal exploration in the 1970's. Investigations by governmental, industrial, and academic agencies include (but are not limited to) mapping of the Cascades. Long Valley/Mono area, the Jemez volcanic field, Yellowstone Park, and an area in Colorado. For one example — Mt. Konocti in the Mayacamas Mountains, California — gravity, magnetic, and seismic, as well as electromagnetic methods have all been used in an attempt to gain a better understanding of the subsurface structure. In each of these volcanic regions, anomalous zones were mapped. When conductive, these anomalies were interpreted to be correlated with hydrothermal activity and not to represent a magma chamber. Electrical and electromagnetic geophysical methods can offer valuable information in the understanding of volcanoes by being the method which is most sensitive to change in temperature and, therefore, can best map heat budget and hydrological character to aid in prediction of eruptions.

  2. Chemistry of ash-leachates to monitor volcanic activity: An application to Popocatepetl volcano, central Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Armienta, M.A., E-mail: [Universidad Nacional Autonoma de Mexico, Instituto de Geofisica, Circuito Exterior, C.U., Mexico 04510 D.F. (Mexico); De la Cruz-Reyna, S. [Universidad Nacional Autonoma de Mexico, Instituto de Geofisica, Circuito Exterior, C.U., Mexico 04510 D.F. (Mexico); Soler, A. [Grup de Mineralogia Aplicada i Medi Ambient, Dep. Cristal.lografia, Mineralogia i Diposits Minerals, Fac. Geologia, Universidad de Barcelona (Spain); Cruz, O.; Ceniceros, N.; Aguayo, A. [Universidad Nacional Autonoma de Mexico, Instituto de Geofisica, Circuito Exterior, C.U., Mexico 04510 D.F. (Mexico)


    Monitoring volcanic activity and assessing volcanic risk in an on-going eruption is a problem that requires the maximum possible independent data to reduce uncertainty. A quick, relatively simple and inexpensive method to follow the development of an eruption and to complement other monitoring parameters is the chemical analysis of ash leachates, particularly in the case of eruptions related to dome emplacement. Here, the systematic analysis of SO{sub 4}{sup 2-}, Cl{sup -} and F{sup -} concentrations in ash leachates is proposed as a valuable tool for volcanic activity monitoring. However, some results must be carefully assessed, as is the case for S/Cl ratios, since eruption of hydrothermally altered material may be confused with degassing of incoming magma. Sulfur isotopes help to identify SO{sub 4} produced by hydrothermal processes from magmatic SO{sub 2}. Lower S isotopic values correlated with higher F{sup -} percentages represent a better indicator of fresh magmatic influence that may lead to stronger eruptions and emplacement of new lava domes. Additionally, multivariate statistical analysis helps to identify different eruption characteristics, provided that the analyses are made over a long enough time to sample different stages of an eruption.

  3. Lake-floor sediment texture and composition of a hydrothermally-active, volcanic lake, Lake Rotomahana (United States)

    Pittari, A.; Muir, S. L.; Hendy, C. H.


    Young volcanic lakes undergo a transition from rapid, post-eruptive accumulation of volcaniclastic sediment to slower pelagic settling under stable lake conditions, and may also be influenced by sublacustrine hydrothermal systems. Lake Rotomahana is a young (129 year-old), hydrothermally-active, volcanic lake formed after the 1886 Tarawera eruption, and provides a unique insight into the early evolution of volcanic lake systems. Lake-bottom sediment cores, 20-46 cm in length, were taken along a transect across the lake and characterised with respect to stratigraphy, facies characteristics (i.e., grain size, componentry) and pore water silica concentrations. The sediments generally comprise two widespread facies: (i) a lower facies of light grey to grey, very fine lacustrine silt derived from the unconsolidated pyroclastic deposits that mantled the catchment area immediately after the eruption, which were rapidly reworked and redeposited into the lake basin; and (ii) an upper facies of dark, fine-sandy diatomaceous silt, that settled from the pelagic zone of the physically stable lake. Adjacent to sublacustrine hydrothermal vents, the upper dark facies is absent, and the upper part of the light grey to grey silt is replaced by a third localised facies comprised of hydrothermally altered pale yellow to yellowish brown, laminated silt with surface iron-rich encrustations. Microspheres, which are thought to be composed of amorphous silica, although some may be halloysite, have precipitated from pore water onto sediment grains, and are associated with a decrease in pore water silicon concentration. Lake Rotomahana is an example of a recently-stabilised volcanic lake, with respect to sedimentation, that shows signs of early sediment silicification in the presence of hydrothermal activity.

  4. Antimicrobial and antioxidant activities of Gentianella multicaulis collected on the Andean Slopes of San Juan Province, Argentina. (United States)

    Lima, Beatriz; Sánchez, Marianela; Luna, Lorena; Agüero, María B; Zacchino, Susana; Filippa, Eva; Palermo, Jorge A; Tapia, Alejandro; Feresin, Gabriela E


    The infusion of the aerial parts of Gentianella multicaulis (Gillies ex Griseb.) Fabris (Gentianaceae), locally known as 'nencia', is used in San Juan Province, Argentina, as stomachic and as a bitter tonic against digestive and liver problems. The bioassay-guided isolation of G. multicaulis extracts and structural elucidation of the main compounds responsible for the antifungal and free radical scavenging activities were performed. The extracts had strong free radical scavenging effects in the 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay (45-93% at 10 microg/mL) and ferric-reducing antioxidant power (FRAP) assay at 200 microg/mL. Demethylbellidifolin (4) had high antioxidant activity in the DPPH and FRAP assay. The dermatophytes Microsporum gypseum, Trichophyton mentagrophytes, and T. rubrum were moderately inhibited by the different extracts (MIC values of 125-250 microg/mL). Demethylbellidifolin (4), bellidifolin (5), and isobellidifolin (6) showed an antifungal effect (MIC values of 50 microg/mL), while swerchirin (3) was less active with a MIC value of 100 microg/mL. In addition, oleanolic acid (1) and ursolic acid (2) were also isolated. These findings demonstrate that Gentianella multicaulis collected in the mountains of the Province of San Juan, Argentina, is an important source of compounds with antifungal and antioxidant activities.

  5. Tectonomagmatic Associations on the Central Andean Plateau (United States)

    de Silva, S. L.; Viramonte, J. G.


    The Neogene evolution of the Central Andes is characterized by a strong association between plate convergence, mountain building and plateau formation, and magmatism. Plateau uplift by crustal shortening and thickening in the lower crust is broadly coincident with large scale silicic magmatism defined by the Neogene Central Andean ignimbrite province. Of particular interest here are the spatiotemporal correlations between silicic magmatism and tectonic evolution of the Altiplano-Puna plateau. Although magmatism is driven by the subduction-related flux from mantle to crust, the shift to "crustal" magmatism as indicated by elevated crustal isotopic indices after ~10Ma suggests a link between crustal thickening, plateau formation and silicic magmatism. In particular, elevated geotherms associated with crustal thickening and enhanced mantle flux associated with lithospheric delamination may have played a role in thermally preparing the Central Andean crust for enhanced silicic magma production during the extensive Neogene ignimbrite flare-up. Emplacement of these magmas in the upper crust throughout the Neogene may have fuelled a period of significant interaction between magmatism and tectonism on the plateau. With particular reference to the 21° to 24°S segment of the Central Andes, spatial and structural coincidence of calderas of the Altiplano Puna Volcanic Complex with the NW-SE striking Calama-Olacapata-El Toro fault zone suggests significant tectonomagmatic interaction. Location of calderas suggest that these regional faults focused magma intrusion and storage, while spatially and temporally correlated eruption pulses connote a tectonic control. Indeed, current thermomechanical models of magma chamber development and eruption triggering promote a role for external triggering of "perched" upper crustal magma chambers. This might have been achieved by melt-enhanced deformation, or alternatively, significant uplift (~1km) associated with the development of large

  6. Temporal and geochemical constraints on active volcanism in southeastern Papua New Guinea (United States)

    Catalano, J. P.; Baldwin, S.; Fitzgerald, P. G.; Webb, L. E.; Hollocher, K.


    Active volcanism in southeastern Papua New Guinea occurs on the Papuan Peninsula (Mt. Lamington and Mt. Victory), in the Woodlark Rift (Dobu Island, SE Goodenough Island, and Western Fergusson Island), and in the Woodlark Basin. In the Woodlark Basin seafloor spreading is active and decompression melting of the mantle produces basalts. However, the cause of volcanism on the Papuan Peninsula and immediately west of active seafloor spreading rift tip in the Woodlark Basin is controversial. Previous studies have suggested active volcanism there results from 1) southward subduction of Solomon Sea lithosphere at the Trobriand Trough or 2) decompression melting as the lithosphere is extended and eventually ruptures. To evaluate these possibilities 20 samples were collected from a bimodal basalt-rhyolite suite in the D’Entrecasteaux Islands approximately 80 km west of the sea floor spreading rift tip. Siliceous ash flow tuffs on Dobu Island, Sanaroa Island, and Eastern Fergusson Island consist of sanidine/anorthoclase + Fe/Ti oxides (illmenite/ magnetite) ± quartz ± nepheline ± clinopyroxene ± xenocrystic olivine. Sanidine and K-feldspar from these ash flow tuffs yielded flat age spectra with 40Ar/39Ar isochron ages of 0.008 ± 0.002 Ma and 0.553 ± 0.001 Ma. ICP-MS trace and REE geochemistry on felsic rocks from Dobu Island and Eastern Fergusson Island yielded multi-element diagrams with enriched incompatible elements, and corresponding negative Nb, Sr, Eu, and Ti anomalies. In contrast, mafic volcanics from SE Goodenough Island are comprised of plagioclase + olivine + Fe/Ti oxides ± orthopyroxene ± clinopyroxene ± hornblende ± biotite. Biotite yielded a 40Ar/39Ar isochron age of 0.376 ± 0.05 Ma. MORB-normalized multi-element diagrams of mafic rocks from SE Goodenough Island are LREE-enriched patterns with negative Nb and positive Sr anomalies. In comparison, multi-element diagrams from previous work on mafic rocks from the New Britain arc to the north also

  7. Infrasound Monitoring of the Volcanic Activities of Japanese Volcanoes in Korea (United States)

    Lee, H. I.; Che, I. Y.; Shin, J. S.


    Since 1999 when our first infrasound array station(CHNAR) has been installed at Cheolwon, Korea Institute of Geoscience and Mineral Resources(KIGAM) is continuously observing infrasound signals with an infrasound array network, named KIN(Korean Infrasound Network). This network is comprised of eight seismo-acoustic array stations(BRDAR, YPDAR, KMPAR, CHNAR, YAGAR, KSGAR, ULDAR, TJIAR). The aperture size of the smallest array is 300m and the largest is about 1.4km. The number of infrasound sensors are between 4(TJIAR) and 18(YAGAR), and 1~5 seismometers are collocated with infrasound sensors. Many interesting infrasound signals associated with different type of sources, such as blasting, large earthquake, bolide, volcanic explosion are detected by KIN in the past 15 years. We have analyzed the infrasound signals possibly associated with the japanese volcanic explosions with reference to volcanic activity report published by Japanese Meteorological Agency. Analysis results of many events, for example, Asama volcano explosion in 2004 and Shinmoe volcano in 2011, are well matched with the official report. In some cases, however, corresponding infrasound signals are not identified. By comparison of the infrasound signals from different volcanoes, we also found that the characteristics of signals are distinguishing. It may imply that the specific volcano has its own unique fingerprint in terms of infrasound signal. It might be investigated by long-term infrasound monitoring for a specific volcano as a ground truth generating repetitive infrasound signal.

  8. The ELSA tephra stack: Volcanic activity in the Eifel during the last 500,000 years (United States)

    Förster, Michael W.; Sirocko, Frank


    Tephra layers of individual volcanic eruptions are traced in several cores from Eifel maar lakes, drilled between 1998 and 2014 by the Eifel Laminated Sediment Archive (ELSA). All sediment cores are dated by 14C and tuned to the Greenland interstadial succession. Tephra layers were characterized by the petrographic composition of basement rock fragments, glass shards and characteristic volcanic minerals. 10 marker tephra, including the well-established Laacher See Tephra and Dümpelmaar Tephra can be identified in the cores spanning the last glacial cycle. Older cores down to the beginning of the Elsterian, show numerous tephra sourced from Strombolian and phreatomagmatic eruptions, including the 40Ar/39Ar dated differentiated tephra from Glees and Hüttenberg. In total, at least 91 individual tephra can be identified since the onset of the Eifel volcanic activity at about 500,000 b2k, which marks the end of the ELSA tephra stack with 35 Strombolian, 48 phreatomagmatic and 8 tephra layers of evolved magma composition. Many eruptions cluster near timings of the global climate transitions at 140,000, 110,000 and 60,000 b2k. In total, the eruptions show a pattern, which resembles timing of phases of global sea level and continental ice sheet changes, indicating a relation between endogenic and exogenic processes.

  9. [Health in Andean regional integration]. (United States)

    Agudelo, Carlos A


    Despite their shared history, the Andean countries are socially and politically diverse, with heterogeneous health realities and complex integration processes. General developments such as the Latin American Free Trade Association and Latin American Integration Association have existed for decades, along with others of a regional scope, like the Andean Community of Nations, Caribbean Community, and Central American Common Market. The health field has a specific instrument in the Andean Region called the Hipólito Unánue Agreement, created in 1971. Integration processes have concentrated on economic aspects, based on preferential customs agreements that have led to an important long-term increase in trade. Less progress has been made in the field of health in terms of sharing national experiences, knowledge, and capabilities. Analysis of experiences in health has shown that integration depends on the countries' respective strengths and to a major extent on national political processes.

  10. Trace elements in scalp hair of children chronically exposed to volcanic activity (Mt. Etna, Italy). (United States)

    Varrica, D; Tamburo, E; Dongarrà, G; Sposito, F


    The aim of this survey was to use scalp hair as a biomonitor to evaluate the environmental exposure to metals and metalloids of schoolchildren living around the Mt. Etna area, and to verify whether the degree of human exposure to trace elements is subject to changes in local environmental factors. Twenty trace elements were determined in 376 samples of scalp hair from schoolboys (11-13 years old) of both genders, living in ten towns located around the volcanic area of Mt. Etna (Sicily). The results were compared with those (215 samples) from children living in areas of Sicily characterized by a different geological setting (reference site). As, U and V showed much higher concentrations at the volcanic site whereas Sr was particularly more abundant at the reference site. Linear Discriminant Analysis (LDA) indicated an Etna factor, made up of V, U and Mn, and a second factor, concerning the reference site, characterized by Ni and Sr, and to a lesser extent by Mo and Cd. Significant differences in element concentrations were also observed among three different sectors of Mt. Etna area. Young people living in the Mt. Etna area are naturally exposed to enhanced intakes of some metals (V, U, Mn) and non-metals (e.g., As) than individuals of the same age residing in other areas of Sicily, characterized by different lithologies and not influenced by volcanic activity. The petrographic nature of local rocks and the dispersion of the volcanic plume explain the differences, with ingestion of water and local food as the most probable exposure pathways.

  11. Assessing microbial activities in metal contaminated agricultural volcanic soils--An integrative approach. (United States)

    Parelho, C; Rodrigues, A S; Barreto, M C; Ferreira, N G C; Garcia, P


    Volcanic soils are unique naturally fertile resources, extensively used for agricultural purposes and with particular physicochemical properties that may result in accumulation of toxic substances, such as trace metals. Trace metal contaminated soils have significant effects on soil microbial activities and hence on soil quality. The aim of this study is to determine the soil microbial responses to metal contamination in volcanic soils under different agricultural land use practices (conventional, traditional and organic), based on a three-tier approach: Tier 1 - assess soil microbial activities, Tier 2 - link the microbial activity to soil trace metal contamination and, Tier 3 - integrate the microbial activity in an effect-based soil index (Integrative Biological Response) to score soil health status in metal contaminated agricultural soils. Our results showed that microbial biomass C levels and soil enzymes activities were decreased in all agricultural soils. Dehydrogenase and β-glucosidase activities, soil basal respiration and microbial biomass C were the most sensitive responses to trace metal soil contamination. The Integrative Biological Response value indicated that soil health was ranked as: organic>traditional>conventional, highlighting the importance of integrative biomarker-based strategies for the development of the trace metal "footprint" in Andosols.

  12. The effect of high altitude on the glycolytic activity of erythrocytes in natives of the Andean Altiplano. (United States)

    Arnaud, J; Gutiérrez, N; Vergnes, H


    Glucose consumption by anaerobic glycolysis and the pentose pathway were studied in two Aymara populations living at different altitudes (3 600 m and 450 m). The measurements were made both with and without methylene blue. We observed a Pasteur effect for both pathways which may explain the increase in 2-3 DPG and ATP levels found in blood samples from people living at high altitudes. The results in the presence of methylene blue showed a reduced activity of the methaemoglobin reductase system in the high altitude group which may be partly responsible for their increased levels of methaemoglobin.

  13. Volcanic activity in the Acambay Graben: a < 25 Ka subplinian eruption from the Temascalcingo volcano and implications for volcanic hazard. (United States)

    Pedrazzi, Dario; Aguirre Díaz, Gerardo; Sunyé Puchol, Ivan; Bartolini, Stefania; Geyer, Adelina


    The Trans-Mexican Volcanic Belt (TMVB) contains a large number of stratovolcanoes, some well-known, as Popocatepetl, Iztaccihuatl, Nevado de Toluca, or Colima and many others of more modest dimensions that are not well known but constitute the majority in the TMVB. Such volcanoes are, for example, Tequila, San Juan, Sangangüey, Cerro Culiacán, Cerro Grande, El Zamorano, La Joya, Palo Huerfano, Jocotitlán, Altamirano and Temascalcingo, among many others. The Temascalcingo volcano (TV) is an andesitic-dacitic stratovolcano located in the Trans-Mexican Volcanic Belt (TMVB) at the eastern part of the Acambay Graben (northwest portion of Estado de México). The TV is composed mainly by dacitic, porphyritic lavas, block and ash deposits and subordinate pumice fall deposits and ignimbrites (Roldán-Quintana et al., 2011). The volcanic structure includes a summit caldera that has a rectangular shape, 2.5×3.5 km, with the largest side oriented E-W, parallel to major normal faults affecting the edifice. The San Mateo Pumice eruption is one of the greatest paroxysmal episodes of this volcano with pumice deposits mainly exposed at the scarp of the Acambay-Tixmadeje fault and at the northern and northeastern flanks of TV. It overlies a paleosol dated at 25 Ka. A NE-trending dispersion was obtained from field data covering an area of at least 80 km2. These deposits overlie older lava flows and mud flows and are discontinuously covered and eroded by younger reworked deposits of Temascalcingo volcano. This event represents a highly explosive phase that generated a relatively thick and widespread pumice fallout deposit that may occur again in future eruptions. A similar eruption today would have a significantly impact in the region, overall due to the fact that there has been no systematic assessment of the volcanic hazard in any of the studies that have been conducted so far in the area. So, this is a pending and urgent subject that must be tackled without delay. Financed by

  14. Scaling and extended scaling in sediment registers of a paleolake perturbed by volcanic activity (United States)

    Ugalde, Edgardo; Martínez-Mekler, Gustavo; Vilaclara, Gloria


    We analyze a sequence of density variations of sedimentary material from an extinct paleolake of the state of Tlaxcala, Mexico, which we previously obtained by means of computer-aided tomography [J. Miranda, A. Oliver, G. Vilaclara, R. Rico-Montiel, V.M. Macias, J.L. Ruvalcava, M.A. Zenteno, Nucl. Instrum. Methods Phys. Res. B 85 (1994) 886]. In the stratified blocks chiselled out of mines at the lake bed, low-density sediments have a high concentration of diatomite, while high-density strata show a considerable amount of material external to the lake, mostly of volcanic origin. Two regions can be distinguished by visual inspection: a darker and older one which we attribute to a strongly externally perturbed regime, and a whiter more recent one which appears to have been subjected to less frequent volcanic perturbations. By means of a scaling analysis of the distribution function of density fluctuations, we show that for the most recent region there is a range of scales where these fluctuations present a self-similar behavior. We attribute this observation to a rare event response, namely, the onset of correlations in the lake relaxation processes to steady-state conditions following intense volcanic disturbances. Based on scaling properties of the structure function, we also show that the complete data series presents extended self-similarity as encountered in turbulence studies [R. Benzi, S. Ciliberto, R. Tripiccione, C. Baudet, F. Massoli, S. Succi, Phys. Rev. E 48 (1993) R29]. Our characterization of the statistical behavior of the density fluctuations contributes to our knowledge of the volcanic activity over a period of thousands of years, as well as aspects of ecological interest of the lake's response to these disturbances [G. Vilaclara, E. Ugalde, E. Cuna, G. Martinez-Mekler, Complex dynamics of the evolution of a Paleolake subjected to volcanic activity: geology meets ecology, submitted for publication]. Our approach can be implemented in general to other

  15. A late Holocene metal record of Andean climate and anthropogenic activity in lake sediments near Quelccaya Ice Cap, Peru (United States)

    Beal, S. A.; Kelly, M. A.; Jackson, B. P.; Stroup, J. S.; Osterberg, E. C.


    The tropical hypothesis maintains that major changes in global climate are motivated by phenomena based at tropical latitudes. Evidence for this hypothesis lies in: modern-day observations of El Niño Southern Oscillation (ENSO); East African lake sediment records of Intertropical Convergence Zone (ITCZ) position that precede high-latitude changes; and the potential for ITCZ shifts to cause major CO2 degassing from the Southern Ocean. In order to improve the understanding of these phenomena we present an ~1800 year record of atmospheric metal deposition in a lake sediment core near Quelccaya Ice Cap, Peru (13.9 °S). In June, 2010 we collected a 1.45 meter-long core from Yanacocha - a small, closed-basin tarn that has been isolated from glacial input since ~11,200 BP. The chronology for the core is based on 4 of 6 AMS 14C dates on aquatic macrofossils and one sharp Zr/Ti anomaly at 36 cm, likely derived from the 350 BP eruption of Huaynaputina. We completely digested organic-rich core samples at 1 cm resolution using HNO3, HCl, and HF in a closed-vessel microwave system, and then analyzed the digestates for 67 metals by inductively coupled plasma mass spectrometry. Here we show fluxes of lithogenic metals (Fe, Nb, Ti, and Zr) that reflect changes in wind strength and aridity, fluxes of lithogenic metal isotopes (REEs and Pb) that reflect wind direction, and enrichment factors (EFs) of metals (Ag, As, Cd, Cu, Hg, and Pb) that reflect anthropogenic activity. Five episodic peaks in lithogenic metal fluxes, centered around 1800, 1300, 900, 600, and 100 yrs BP, are thought to result from either drier or windier conditions, potentially caused by a northern ITCZ position or a more persistent El Niño state. The provenance of atmospheric deposition, evidenced by REE ratios (light REEs / heavy REEs), suggest that high lithogenic fluxes are associated with a change in wind direction, possibly caused by a change in the ENSO state, which will be explored with forthcoming Pb

  16. The Cenozoic volcanism in the Kivu rift: Assessment of the tectonic setting, geochemistry, and geochronology of the volcanic activity in the South-Kivu and Virunga regions (United States)

    Pouclet, A.; Bellon, H.; Bram, K.


    The Kivu rift is part of the western branch of the East African Rift system. From Lake Tanganyika to Lake Albert, the Kivu rift is set in a succession of Precambrian zones of weakness trending NW-SE, NNE-SSW and NE-SW. At the NW to NNE turn of the rift direction in the Lake Kivu area, the inherited faults are crosscut by newly born N-S fractures which developed during the late Cenozoic rifting and controlled the volcanic activity. From Lake Kivu to Lake Edward, the N-S faults show a right-lateral en echelon pattern. Development of tension gashes in the Virunga area indicates a clockwise rotation of the constraint linked to dextral oblique motion of crustal blocks. The extensional direction was W-E in the Mio-Pliocene and ENE-WSW in the Pleistocene to present time. The volcanic rocks are assigned to three groups: (1) tholeiites and sodic alkali basalts in the South-Kivu, (2) sodic basalts and nephelinites in the northern Lake Kivu and western Virunga, and (3) potassic basanites and potassic nephelinites in the Virunga area. South-Kivu magmas were generated by melting of spinel + garnet lherzolite from two sources: an enriched lithospheric source and a less enriched mixed lithospheric and asthenospheric source. The latter source was implied in the genesis of the tholeiitic lavas at the beginning of the South-Kivu tectono-volcanic activity, in relationships with asthenosphere upwelling. The ensuing outpouring of alkaline basaltic lavas from the lithospheric source attests for the abortion of the asthenospheric contribution and a change of the rifting process. The sodic nephelinites of the northern Lake Kivu originated from low partial melting of garnet peridotite of the sub-continental mantle due to pressure release during swell initiation. The Virunga potassic magmas resulted from the melting of garnet peridotite with an increasing degree of melting from nephelinite to basanite. They originated from a lithospheric source enriched in both K and Rb, suggesting the

  17. Self-potential, geoelectric and magnetotelluric studies in Italian active volcanic areas

    Directory of Open Access Journals (Sweden)

    A. Siniscalchi


    Full Text Available We present the results of self-potential, geoelectric and magnetotelluric studies in Italian active volcanic areas as essential contributions both to structural modeling and to hazard evaluation. On Mt. Etna and Mt. Somma-Vesuvius complexes structural modeling was emphasized due to a lack of global information involving the whole apparatuses, at least from the electrical point of view. Hazard investigation was, instead, investigated with high resolution techniques on the island of Vulcano, where intense unrest phenomena have long been recorded.

  18. Volcanic hazard management in dispersed volcanism areas (United States)

    Marrero, Jose Manuel; Garcia, Alicia; Ortiz, Ramon


    Traditional volcanic hazard methodologies were developed mainly to deal with the big stratovolcanoes. In such type of volcanoes, the hazard map is an important tool for decision-makers not only during a volcanic crisis but also for territorial planning. According to the past and recent eruptions of a volcano, all possible volcanic hazards are modelled and included in the hazard map. Combining the hazard map with the Event Tree the impact area can be zoned and defining the likely eruptive scenarios that will be used during a real volcanic crisis. But in areas of disperse volcanism is very complex to apply the same volcanic hazard methodologies. The event tree do not take into account unknown vents, because the spatial concepts included in it are only related with the distance reached by volcanic hazards. The volcanic hazard simulation is also difficult because the vent scatter modifies the results. The volcanic susceptibility try to solve this problem, calculating the most likely areas to have an eruption, but the differences between low and large values obtained are often very small. In these conditions the traditional hazard map effectiveness could be questioned, making necessary a change in the concept of hazard map. Instead to delimit the potential impact areas, the hazard map should show the expected behaviour of the volcanic activity and how the differences in the landscape and internal geo-structures could condition such behaviour. This approach has been carried out in La Palma (Canary Islands), combining the concept of long-term hazard map with the short-term volcanic scenario to show the expected volcanic activity behaviour. The objective is the decision-makers understand how a volcanic crisis could be and what kind of mitigation measurement and strategy could be used.

  19. Volcanic hazard assessment in monogenetic volcanic fields


    Bartolini, Stefania


    [eng] One of the most important tasks of modern volcanology, which represents a significant socio-economic implication, is to conduct hazard assessment in active volcanic systems. These volcanological studies are aimed at hazard that allows to constructing hazard maps and simulating different eruptive scenarios, and are mainly addressed to contribute to territorial planning, definition of emergency plans or managing volcanic crisis. The impact of a natural event, as a volcanic eruption, can s...

  20. 2008 Volcanic activity in Alaska, Kamchatka, and the Kurile Islands: Summary of events and response of the Alaska Volcano Observatory (United States)

    Neal, Christina A.; McGimsey, Robert G.; Dixon, James P.; Cameron, Cheryl E.; Nuzhdaev, Anton A.; Chibisova, Marina


    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, and volcanic unrest or suspected unrest at seven separate volcanic centers in Alaska during 2008. Significant explosive eruptions at Okmok and Kasatochi Volcanoes in July and August dominated Observatory operations in the summer and autumn. AVO maintained 24-hour staffing at the Anchorage facility from July 12 through August 28. Minor eruptive activity continued at Veniaminof and Cleveland Volcanoes. Observed volcanic unrest at Cook Inlet's Redoubt Volcano presaged a significant eruption in the spring of 2009. AVO staff also participated in hazard communication regarding eruptions or unrest at nine volcanoes in Russia as part of a collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.

  1. Monitoring volcanic activity with satellite remote sensing to reduce aviation hazard and mitigate the risk: application to the North Pacific (United States)

    Webley, P. W.; Dehn, J.


    Volcanic activity across the North Pacific (NOPAC) occurs on a daily basis and as such monitoring needs to occur on a 24 hour, 365 days a year basis. The risk to the local population and aviation traffic is too high for this not to happen. Given the size and remoteness of the NOPAC region, satellite remote sensing has become an invaluable tool to monitor the ground activity from the regions volcanoes as well as observe, detect and analyze the volcanic ash clouds that transverse across the Pacific. Here, we describe the satellite data collection, data analysis, real-time alert/alarm systems, observational database and nearly 20-year archive of both automated and manual observations of volcanic activity. We provide examples of where satellite remote sensing has detected precursory activity at volcanoes, prior to the volcanic eruption, as well as different types of eruptive behavior that can be inferred from the time series data. Additionally, we illustrate how the remote sensing data be used to detect volcanic ash in the atmosphere, with some of the pro's and con's to the method as applied to the NOPAC, and how the data can be used with other volcano monitoring techniques, such as seismic monitoring and infrasound, to provide a more complete understanding of a volcanoes behavior. We focus on several large volcanic events across the region, since our archive started in 1993, and show how the system can detect both these large scale events as well as the smaller in size but higher in frequency type events. It's all about how to reduce the risk, improve scenario planning and situational awareness and at the same time providing the best and most reliable hazard assessment from any volcanic activity.

  2. Surface deformation of active volcanic areas retrieved with the SBAS-DInSAR technique: an overview

    Directory of Open Access Journals (Sweden)

    G. Zeni


    Full Text Available This paper presents a comprehensive overview of the surface deformation retrieval capability of the Differential Synthetic Aperture Radar Interferometry (DInSAR algorithm, referred to as Small BAseline Subset (SBAS technique, in the context of active volcanic areas. In particular, after a brief description of the algorithm some experiments relevant to three selected case-study areas are presented. First, we concentrate on the application of the SBAS algorithm to a single-orbit scenario, thus considering a set of SAR data composed by images acquired on descending orbits by the European Remote Sensing (ERS radar sensors and relevant to the Long Valley caldera (eastern California area. Subsequently, we address the capability of the SBAS technique in a multipleorbit context by referring to Mt. Etna volcano (southern Italy test site, with respect to which two different ERS data set, composed by images acquired both on ascending and descending orbits, are available. Finally, we take advantage of the capability of the algorithm to work in a multi-platform scenario by jointly exploiting two different sets of SAR images collected by the ERS and the Environment Satellite (ENVISAT radar sensors in the Campi Flegrei caldera (southern Italy area. The presented results demonstrate the effectiveness of the algorithm to investigate the deformation field in active volcanic areas and the potential of the DInSAR methodologies within routine surveillance scenario.

  3. Subsurface combustion in Mali: Refutation of the active volcanism hypothesis in West Africa (United States)

    Svensen, Henrik; Dysthe, Dag Kristian; Bandlien, Einar H.; Sacko, Samba; Coulibaly, Henri; Planke, Sverre


    Surface heat anomalies have been known in the Timbuktu region in northern Mali for more than a century. Since about 1960, several authors have argued that these heat anomalies are caused by incipient volcanic and hydrothermal activity. Surface temperatures as high as 765 °C were measured locally in January 2002, and smoke emanated from holes and fractures in the ground. We demonstrate that subsurface combustion of organic material is the source of the heat and the gases. Several square kilometers are currently active or have been affected by subsurface fires since 2001. Self-ignition during biological degradation of organic-rich layers in the lacustrine deposits is the most likely mechanism that started the subsurface combustion that caused the heat anomalies in the area. An important consequence of this conclusion is that West Africa should still be regarded as volcanologically inactive, and that possible reactivations of the major EW-trending Guinean-Nubian lineament are not associated with volcanism. We suggest that the subsurface combustion in the Timbuktu region today represents a phenomenon with a very long record in the Trans-Saharan region.

  4. Connecting Io's volcanic activity to the Io plasma torus: comparison of Galileo/NIMS volcanic and ground-based torus observations (United States)

    Magalhaes, F. P.; Lopes, R. M. C.; Rathbun, J. A.; Gonzalez, W. D.; Morgenthaler, J. P.; Echer, E.; Echer, M. P. D. S.


    Io, the innermost of the Jupiter's four Galilean moons, is a remarkable object in the Solar System, due to its intense and energetic volcanic activity. The volcanic sulfur and oxygen in Io's tenuous atmosphere escapes forming an extended neutral cloud around Io and Jupiter. Subsequently, by ionization and pickup ions, a ring of charged particles encircling Jupiter is created, forming the Io plasma torus. Considering this scenario, it is reasonable to expect that the Io plasma torus should be affected by changes in Io's volcanism. Interactions between Io and the Jovian environment is unique and yet not very well understood. Here we present two sets of observations. One from the Galileo Near-Infrared Imaging Spectrograph (NIMS) instrument, which obtained spectral image cubes between 0.7 and 5.2 microns. The other dataset is from ground-based observations of the [SII] 6731 Å emission lines from the Io plasma torus, obtained at McMath-Pierce Solar Telescope, at Kitt Peak. Our dataset from the [SII] 6731 Å emission lines cover more years than the one from the NIMS data. The years presented in this work for a comparative study are from 1998 through 2001. Using the NIMS instrument we were able to identify which volcanoes were active and measure their level of activity. From the [SII] 6731 Å emission lines we were able to trace the densest part of the torus and also the brightness of both ansa. By comparing the results from the Galileo instrument and the ground-based observations, we are exploring how the Io plasma torus responds to large eruptions from Io. We aim with this study to help improve our understanding of this complex coupled system, Jupiter-Io.

  5. Soil radon measurements as potential tracer of seismic and volcanic activity at Etna (United States)

    Neri, Marco; Giammanco, Salvatore; Galli, Gianfranco; Ferrera, Elisabetta


    Radon is a radioactive noble gas present in all rocks of the Earth. It's used by the scientific community as a tracer of natural phenomena related to outgassing from the soil along faults, fractures and crustal discontinuity. Recently, radon has also been used on active volcanoes such as Etna, both as a precursor of volcanic phenomena as well as in the study of the dynamics of faults. The Istituto Nazionale di Geofisica e Vulcanologia (INGV) performs discrete and continuous measurements of radon from soil at Etna since 2002. First studies concerned measurements of radon and thoron emissions from soil carried out on the E and SW flanks of Etna, in zones characterized by the presence of numerous seismogenic and aseismic faults. The statistical treatment of the geochemical data allowed recognizing anomaly thresholds, producing distribution maps that highlighted a significant spatial correlation between soil gas anomalies and tectonic lineaments. These studies confirmed that mapping the distribution of radon and thoron in soil gas can reveal hidden faults buried by recent soil cover. INGV permanent radon monitoring network was installed in July 2005. First results were obtained during the July 2006 eruption. The radon signal recorded at Torre del Filosofo (TdF, ~2950 m asl) was compared with volcanic tremor and thermal radiance data. The onset of explosive activity and a lava fountaining episode were preceded by some hours with increases in radon activity and more gradual increases in volcanic tremor. After 2006, Etna produced dozens of paroxysmal episodes from a new vent opened on the eastern flank of the Southeast Crater (summit area), that have built up a new, huge pyroclastic cone. In many cases we observed increase in radon activity some hours before the eruptive events. These observations suggest that radon emissions from the TdF zone are sensitive to the local geodynamic pressure induced by magma dynamics in the conduit systems. Other promising results were

  6. Characteristics of volcanic gas correlated to the eruption activity; Case study in the Merapi Volcano, periods of 1990-1994

    Directory of Open Access Journals (Sweden)

    Priatna Priatna


    Full Text Available gases, collected from Gendol and Woro solfatara fields, the summit of Merapi Volcano during 1990-1994, show an increase in chemical composition of H , CO, CO , SO , and HCl prior to the volcanic events, on the contrary to the drastic decreasing water vapour. The carbon/sulfur ratio of the volcanic gases lies between 1.5 and 5.7 which means that they were derived from the fresh magma. The Apparent Equilibrium Temperature (AET which is calculated from chemical compositions of volcanic gases using reaction of SO +3H = H S+2H O showed an increasing value prior to the volcanic events. The Merapi activities lasted during August 1990 to November 1994 showed a significant increase in ratio SO /H S prior to the November 1994 pyroclastic flow. The isotopic composition of volcanic gas condensates indicates that water vapour in Gendol is directly derived from the fresh magma. On the other hand, the contamination and cooling by the subsurface water occurred around the Woro field at a shallow part. 

  7. Petrología de la secuencia volcánica cenozoica en el área del arroyo Ranquil Huao: Meseta de Somún Curá. Patagonia Extraandina Petrology of volcanic sequence in the Arroyo Ranquil Huao: Meseta de Somún Curá,. extra-andean patagonia

    Directory of Open Access Journals (Sweden)

    M. B. Remesal


    Full Text Available En el norte de la Patagonia extraandina, involucrando parte de las provincias geográficas de Río Negro y Chubut se extiende un amplio derrame basáltico tipo plateau. El valle del arroyo Ranquil Huao, en el sector austral del plateau, en las proximidades de la localidad de Telsen, expone una secuencia interesante y bastante completa de esa asociación volcánica cenozoica. En este corte es posible estudiar no sólo los flujos basálticos correspondientes a la Formación Somún Curá, sino también los derrames denominados Basalto La Mesada, incluidos en la Superunidad Quiñelaf y los depósitos tobáceos del Grupo Sarmiento. Los basaltos de la Formación Somún Curá presentan rasgos petrográficos y geoquímicos similares a los del Basalto La Mesada (Superunidad Quiñelaf. El flujo piroclástico que se intercala en la parte más alta de la Formación Somún Curá complementa la estratigrafía conocida para esta unidad. Las características de las basanitas aflorantes en el tramo medio del valle del arroyo Ranquil Huao permiten diferenciarlas de las rocas que constituyen las otras unidades basálticas en la secuencia.In the northern side of the extra andean Patagonia, in portions of Rio Negro and Chubut provinces, extensive basaltic lava flows plateaux type are exposed. On the southern side of the plateaux, in the Ranquil Huau stream valley, close to Telsen locality, a large succesion of volcanic and vocaniclastic rocks is exposed. The basaltic lava flows of Somuncura Formation and the Basalto La Mesada (Quiñelaf Superunit and the volcanisclastic deposits of the Sarmiento Group are exposed in the area. The different groups of basalts are identified by petrographyc and geochemical distinctive features. In the upper level of Somún Curá Formation a basic pyroclastic flow is interbedded. The basic rocks exposed in the medium level of the valley have distinctive characteristics and they are named as Basanitas Ranquil Huao. The analized units

  8. Use of space, activity patterns, and foraging behavior of red howler monkeys (Alouatta seniculus) in an Andean forest fragment in Colombia. (United States)

    Palma, Ana Cristina; Vélez, Adriana; Gómez-Posada, Carolina; López, Harrison; Zárate, Diego A; Stevenson, Pablo R


    Howler monkeys are among the most studied primates in the Neotropics, however, behavioral studies including estimation of food availability in Andean forests are scarce. During 12 months we studied habitat use, behavior, and feeding ecology of two groups of red howler monkeys (Alouatta seniculus) in an isolated fragment in the Colombian Andes. We used a combination of focal animal and instantaneous sampling. We estimated fruit production (FP) using phenology transects, and calculated young leaf abundance by observing marked trees. The home range area used by each group was 10.5 and 16.7 ha and daily distances traveled were 431 ± 228 and 458 ± 259 m, respectively. We found that both groups spent most of their time resting (62-64%). Resting time did not increase with leaf consumption as expected using a strategy of energy minimization. We did not find a relationship between daily distances traveled and leaf consumption. However, howlers consumed fruits according to their availability, and the production of young leaves did not predict feeding time on this resource. Overall, our results are similar to those found on other forest types. We found that despite limited FP in Andean forests, this did not lead to a higher intake of leaves, longer resting periods, or shorter traveling distances for red howlers.

  9. Geochemical constraints on the relationship between the Miocene-Pliocene volcanism and tectonics in the Palaoco and Fortunoso volcanic fields, Mendoza Region, Argentina

    DEFF Research Database (Denmark)

    Dyhr, Charlotte Thorup; Holm, Paul Martin; Llambias, Eduardo J.


    New 40Ar/39Ar analyses constrain the formation of the volcanic succession of Sierra de Palaoco in the present back-arc of the Andean Southern Volcanic Zone (SVZ), near 36°S, to the Late Miocene and assigns them to the Huincán II Formation. The composition of major and trace elements, Sr, Nd and Pb...

  10. Geochemical monitoring of volcanic lakes. A generalized box model for active crater lakes

    Directory of Open Access Journals (Sweden)

    Franco Tassi


    Full Text Available

    In the past, variations in the chemical contents (SO42−, Cl−, cations of crater lake water have not systematically demonstrated any relationships with eruptive activity. Intensive parameters (i.e., concentrations, temperature, pH, salinity should be converted into extensive parameters (i.e., fluxes, changes with time of mass and solutes, taking into account all the internal and external chemical–physical factors that affect the crater lake system. This study presents a generalized box model approach that can be useful for geochemical monitoring of active crater lakes, as highly dynamic natural systems. The mass budget of a lake is based on observations of physical variations over a certain period of time: lake volume (level, surface area, lake water temperature, meteorological precipitation, air humidity, wind velocity, input of spring water, and overflow of the lake. This first approach leads to quantification of the input and output fluxes that contribute to the actual crater lake volume. Estimating the input flux of the "volcanic" fluid (Qf- kg/s –– an unmeasurable subsurface parameter –– and tracing its variations with time is the major focus during crater lake monitoring. Through expanding the mass budget into an isotope and chemical budget of the lake, the box model helps to qualitatively characterize the fluids involved. The (calculated Cl− content and dD ratio of the rising "volcanic" fluid defines its origin. With reference to continuous monitoring of crater lakes, the present study provides tips that allow better calculation of Qf in the future. At present, this study offers the most comprehensive and up-to-date literature review on active crater lakes.

  11. Subsurface Fires in Mali: Refutation of Active Volcanism Hypothesis in West-Central Africa (United States)

    Bandlien, E. H.; Svensen, H.; Dysthe, D. K.; Planke, S.


    Surface heat anomalies have been known in the Lac Faguibine area in Northern Mali for more than a century. Several authors have the last 40 years argued that that these heat anomalies are caused by incipient volcanic and hydrothermal activity. Fieldwork in the Lac Faguibine area in January 2002 focused on four regions where smoke emanated from holes and fractures in lacustrine sediments. Surface temperatures as high as 730 °C were measured locally. At one locality, the temperature anomalies formed a laterally migrating front defined by fractured and heated sediments. A trench was dug into the temperature front to determine the cause of the heat and smoke emanations. A 0.7 meter thick slowly combusting organic-rich layer (8 wt. % organic carbon) was discovered below a 0.5-meter thick surface layer of diatomitic siltstone. The siltstone was actively metamorphosed by oxidation from gray to red. At another locality, an expanding circular area of subsurface combustion strongly affected the vegetation. Smoke emanated from fractures, combusted root networks and holes with a diameter up to 0.5 meter. Some of the holes were gloving, indicating a shallow combustion of organic material. The combustion released CO2 and H2O vapor, and minerals like salammoniac, ammonium hydrogen sulfate and native sulfur have precipitated at the surface. Several square kilometers large areas are currently combusting, or have been affected by subsurface fires since 2001. In addition, areas with red deformed diatomitic siltstone in the Lac Faguibine region suggest that subsurface combustion within the lacustrine sediments have had an important regional ecological effect. The most likely mechanism for starting the subsurface combustion is self-ignition during biological degradation of organic rich layers in the lacustrine deposits. Shallow lakes, similar to the Lac Faguibine, were abundant in the Trans-Saharan region during the Holocene, but evaporated during global climate changes about 4500 B

  12. Use of Logistic Regression for Forecasting Short-Term Volcanic Activity

    Directory of Open Access Journals (Sweden)

    Mark T. Woods


    Full Text Available An algorithm that forecasts volcanic activity using an event tree decision making framework and logistic regression has been developed, characterized, and validated. The suite of empirical models that drive the system were derived from a sparse and geographically diverse dataset comprised of source modeling results, volcano monitoring data, and historic information from analog volcanoes. Bootstrapping techniques were applied to the training dataset to allow for the estimation of robust logistic model coefficients. Probabilities generated from the logistic models increase with positive modeling results, escalating seismicity, and rising eruption frequency. Cross validation yielded a series of receiver operating characteristic curves with areas ranging between 0.78 and 0.81, indicating that the algorithm has good forecasting capabilities. Our results suggest that the logistic models are highly transportable and can compete with, and in some cases outperform, non-transportable empirical models trained with site specific information.

  13. GEOFIM: A WebGIS application for integrated geophysical modeling in active volcanic regions (United States)

    Currenti, Gilda; Napoli, Rosalba; Sicali, Antonino; Greco, Filippo; Negro, Ciro Del


    We present GEOFIM (GEOphysical Forward/Inverse Modeling), a WebGIS application for integrated interpretation of multiparametric geophysical observations. It has been developed to jointly interpret scalar and vector magnetic data, gravity data, as well as geodetic data, from GPS, tiltmeter, strainmeter and InSAR observations, recorded in active volcanic areas. GEOFIM gathers a library of analytical solutions, which provides an estimate of the geophysical signals due to perturbations in the thermal and stress state of the volcano. The integrated geophysical modeling can be performed by a simple trial and errors forward modeling or by an inversion procedure based on NSGA-II algorithm. The software capability was tested on the multiparametric data set recorded during the 2008-2009 Etna flank eruption onset. The results encourage to exploit this approach to develop a near-real-time warning system for a quantitative model-based assessment of geophysical observations in areas where different parameters are routinely monitored.

  14. Aspects of historical eruptive activity and volcanic unrest at Mt. Tongariro, New Zealand: 1846-2013 (United States)

    Scott, Bradley J.; Potter, Sally H.


    The 6 August and 21 November 2012 eruptions from Upper Te Maari crater have heightened interest in past activity at Mt. Tongariro, New Zealand. Risks caused by volcanic hazards are increasingly being quantified by using probability estimates through expert elicitation, partly based on the frequency of past eruptions. To maximise the accuracy of these risk values at Mt. Tongariro, a historical eruption catalogue is required. This paper presents the findings of a detailed historical chronology of unrest and eruptions at Mt. Tongariro between 1846 AD and 2013 AD. It builds on the findings of previous researchers, highlighting that volcanic eruptions and unrest have occurred frequently from this volcano. Eruptions are now thought to have occurred at Mt. Tongariro in 1869, 1892, 1896-97, 1899, 1926, 1927, 1934 and 2012. Eruptions also potentially occurred in 1846, 1855, 1886, and 1928, in addition to frequent eruptions from neighbouring Mt. Ngauruhoe. The number of recognised eruptions during the 1896-97 episode has increased to 18, and the Red Crater area has been found to be more active than previously appreciated. Multiple episodes of unrest not resulting in eruptions have also been identified. New eruption recurrence rates are derived from this catalogue, with the baseline probability of the onset of an eruption episode calculated to be 0.07 per year (if 1896-97 and 2012 are considered as one episode each, and all others separately), and the maximum eruption rate within an eruption episode is 18 per year. These new data contribute towards risk assessments for future eruptions at Mt. Tongariro.

  15. Foreland sedimentary record of Andean mountain building during advancing and retreating subduction (United States)

    Horton, Brian K.


    As in many ocean-continent (Andean-type) convergent margins, the South American foreland has long-lived (>50-100 Myr) sedimentary records spanning not only protracted crustal shortening, but also periods of neutral to extensional stress conditions. A regional synthesis of Andean basin histories is complemented by new results from the Mesozoic Neuquén basin system and succeeding Cenozoic foreland system of west-central Argentina (34-36°S) showing (1) a Late Cretaceous shift from backarc extension to retroarc contraction and (2) an anomalous mid-Cenozoic (~40-20 Ma) phase of sustained nondeposition. New detrital zircon U-Pb geochronological results from Jurassic through Neogene clastic deposits constrain exhumation of the evolving Andean magmatic arc, retroarc thrust belt, foreland basement uplifts, and distal eastern craton. Abrupt changes in sediment provenance and distal-to-proximal depositional conditions can be reconciled with a complex Mesozoic-Cenozoic history of extension, post-extensional thermal subsidence, punctuated tectonic inversion involving thick- and thin-skinned shortening, alternating phases of erosion and rapid accumulation, and overlapping igneous activity. U-Pb age distributions define the depositional ages of several Cenozoic stratigraphic units and reveal a major late middle Eocene-earliest Miocene (~40-20 Ma) hiatus in the Malargüe foreland basin. This boundary marks an abrupt shift in depositional conditions and sediment sources, from Paleocene-middle Eocene distal fluviolacustrine deposition of sediments from far western volcanic sources (Andean magmatic arc) and subordinate eastern cratonic basement (Permian-Triassic Choiyoi igneous complex) to Miocene-Quaternary proximal fluvial and alluvial-fan deposition of sediments recycled from emerging western sources (Malargüe fold-thrust belt) of Mesozoic basin fill originally derived from basement and magmatic arc sources. Neogene eastward advance of the fold-thrust belt involved thick

  16. Chemical evolution at the coasts of active volcanic islands in a primordial salty ocean (United States)

    Strasdeit, H.; Fox, S.


    The Prebiotic Hot-Volcanic-Coast Scenario It has been suggested that in the Hadean eon (4.5-3.8 Ga before present) no permanent continents but volcanic islands and short-lived protocontinents protruded from the first ocean [1, 2]. As the geothermal heat production was considerably higher than today, it is reasonable to assume that hot volcanic coasts were much more abundant. The salinity of the ocean was probably up to two times higher than the modern value [3]. Under these conditions, the evaporation of seawater at active volcanic coasts must have produced sea salt crusts - a process that can still be observed today [4]. On the hot lava rock, the salt crusts can subsequently experience temperatures up to some hundred degrees Celsius. The seawater probably contained abiotically formed organic molecules such as amino acids, which were inevitably embedded into the sea salt crusts. Different prebiotic sources of amino acids have been discussed: (i) comets and meteorites [5], electrical discharges in the atmosphere [6, 7], and deep-sea hydrothermal vents [8]. We undertook a systematic study of solid salt-amino acid mixtures, especially of their formation and thermal behavior under simulated conditions of the hotvolcanic- coast scenario. Laboratory Experiments Amino acids@salts Artificial Hadean seawater was prepared by dissolving NaCl (705 mmol), MgCl2 (80 mmol), KCl (15 mmol), CaCl2 (15 mmol), and an α-amino acid (5-10 mmol) or a mixture of α-amino acids. In order to model the first step of the hot-volcanic-coast scenario, the solutions were evaporated to dryness. Vibrational spectroscopy (IR, Raman) and X-ray powder diffraction showed that the resulting solid residues were not heterogeneous mixtures of salt and amino acid crystals. Instead the amino acid molecules were coordinated in calcium or magnesium complexes. We have studied the rac-alanine ( + H3NCH(CH3)COO -, Hala) system in more detail and found that the complex that is present in the mixture has the

  17. Activity and population characteristics of Andean Condors in southern Chile Actividad y características poblacionales de los Cóndores Andinos en el sur de Chile

    Directory of Open Access Journals (Sweden)



    Full Text Available Data were collected on general activity patterns and population characteristics of free-ranging Andean Condors Vultur gryphus in Torres del Paine National Park, Chile from July 1992 to June 1994 during 3,680 h of observation. Seasonal differences were evident in relative abundance and activity patterns. The mean number of condors sighted/ observation significantly higher in fall-winter than in spring-summer. There was a significant decrease from spring-summer to fall-winter in the percentage of observations during which we sighted solitary condors and a significant increase in the number of groups of condors. In addition, mean monthly maximum group size was significantly larger in fall-winter than spring-summer. The sex ratio (males:females of juveniles was significantly skewed in favor of females, and that of adults was significantly skewed in favor of males. The significantly different adult:juvenile ratio of condors visiting the park could have resulted from differences in distribution and habitat use and/or low breeding rates. Differential juvenile mortality and dispersal could also have produced skewed age and sex ratios, but more research is needed. Condor activity seemed related to wind speed. The greatest proportion of condors was observed flying in calm and low winds and less frequently in moderate to very strong winds. Temperature seemed to have an important effect on aerial activity because the greatest proportion of condors was sighted flying and soaring on warm days. Temperature and wind speed were weakly correlated.Se recolectaron datos sobre los patrones generales de actividad y caractersticas de la población del Cóndor Andino Vultur gryphus. El estudio se realizó en el Parque Nacional Torres del Paine, Chile, entre julio 1992 y junio de 1994, totalizando 3680 horas de observación. Durante el estudio fueron evidentes diferencias estacionales en los patrones de actividad y abundancia relativa de estas aves. El numero promedio

  18. Recent and episodic volcanic and glacial activity on Mars revealed by the High Resolution Stereo Camera. (United States)

    Neukum, G; Jaumann, R; Hoffmann, H; Hauber, E; Head, J W; Basilevsky, A T; Ivanov, B A; Werner, S C; van Gasselt, S; Murray, J B; McCord, T


    The large-area coverage at a resolution of 10-20 metres per pixel in colour and three dimensions with the High Resolution Stereo Camera Experiment on the European Space Agency Mars Express Mission has made it possible to study the time-stratigraphic relationships of volcanic and glacial structures in unprecedented detail and give insight into the geological evolution of Mars. Here we show that calderas on five major volcanoes on Mars have undergone repeated activation and resurfacing during the last 20 per cent of martian history, with phases of activity as young as two million years, suggesting that the volcanoes are potentially still active today. Glacial deposits at the base of the Olympus Mons escarpment show evidence for repeated phases of activity as recently as about four million years ago. Morphological evidence is found that snow and ice deposition on the Olympus construct at elevations of more than 7,000 metres led to episodes of glacial activity at this height. Even now, water ice protected by an insulating layer of dust may be present at high altitudes on Olympus Mons.

  19. Impact of volcanic fluoride and SO/sub 7/ emissions from moderated activity volcanoes on the surrounding vegetation

    Energy Technology Data Exchange (ETDEWEB)

    Garrec, J.P.; Plebin, R.; Faivre-Pierret, R.X.


    Studies in the regions of the volcanoes Etna (Italy) and Masaya (Nicaragua) show that the continuous emissions of gaseous pollutants (HF and SO/sub 2/) from moderated activity volcanoes causes a chronic pollution in the surrounding vegetation with certain economical and ecological consequences. Reciprocally the measure of the pollutants in the plants growing in volcanic regions may be a simple and fast method to investigate some characteristics of the volcanic plume: for example, intensity of the emissions of gas, direction and extent of the plume. 12 references.

  20. Volcanic gas (United States)

    McGee, Kenneth A.; Gerlach, Terrance M.


    In Roman mythology, Vulcan, the god of fire, was said to have made tools and weapons for the other gods in his workshop at Olympus. Throughout history, volcanoes have frequently been identified with Vulcan and other mythological figures. Scientists now know that the “smoke" from volcanoes, once attributed by poets to be from Vulcan’s forge, is actually volcanic gas naturally released from both active and many inactive volcanoes. The molten rock, or magma, that lies beneath volcanoes and fuels eruptions, contains abundant gases that are released to the surface before, during, and after eruptions. These gases range from relatively benign low-temperature steam to thick hot clouds of choking sulfurous fume jetting from the earth. Water vapor is typically the most abundant volcanic gas, followed by carbon dioxide and sulfur dioxide. Other volcanic gases are hydrogen sulfide, hydrochloric acid, hydrogen, carbon monoxide, hydrofluoric acid, and other trace gases and volatile metals. The concentrations of these gas species can vary considerably from one volcano to the next.

  1. Understanding Hydrological and Climate Conditions on Early Mars Through Sulfate Cycling and Microbial Activity in Terrestrial Volcanic Systems (United States)

    Szynkiewicz, A.; Mikucki, J.; Vaniman, D.


    Our study is a type of Earth-based investigation in a Mars-analog environment that allows for determination of how changing wet and dry conditions in active volcanic/hydrothermal system affect sulfate fluxes into surface water and groundwater.

  2. Impact of the Popocatepetl's volcanic activity on the air quality of Puebla City, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Juarez, A. [Facultad de Ciencias Fisico Matematicas, Universidad Autonoma de Puebla, Puebla (Mexico); Gay, C. [Centro de Ciencias de la Atmosfera, Universidad Nacional Autonoma de Mexico, UNAM, Mexico, D.F. (Mexico); Flores, Y. [Facultad de Ciencias Fisico Matematicas, Universidad Autonoma de Puebla, Puebla (Mexico)


    In this work we report measurements of atmospheric pollutants in Puebla City, including those registered during the period characterized by intense volcanic activity from Popocatepetl volcano between December 2000 and January 2001. We used a gaussian air dispersion model to calculate the impact of sulfur compounds from volcanic emissions on the measurements of these compounds in the stations belonging to Puebla City Atmospheric Monitoring Network. The data show that during the analyzed period, this volcanic emissions affected the air quality, increasing the indexes of PM{sub 1}0, CO and sulfur compounds. Also, the results of applying a Gaussian air dispersion model to these sulfur compounds explains the measurements from Tecnologico station for days with intense volcanic activity and wind coming from the volcano to Puebla City. [Spanish] En este trabajo se reportan mediciones de contaminantes atmosfericos en la ciudad de Puebla, incluyendo las registradas durante el periodo caracterizado por una intensa actividad del volcan Popocatepetl, entre diciembre de 200 y enero de 2001. Aplicamos un modelo de dispersion gaussiano para calcular el impacto de las emisiones volcanicas de compuestos de azufre en las mediciones de estos compuestos en las estaciones de la Red de Monitoreo Atmosferico de la ciudad de Puebla. Los datos muestran que durante el periodo analizado, las emisiones volcanicas afectaron la calidad del aire incrementando los indices de PM{sub 1}0, CO y compuestos de azufre. Ademas, los resultados del modelo gaussiano de dispersion del aire para los compuestos de azufre, explican las mediciones de la estacion Tecnologico para los dias con intensa actividad volcanica y viento viniendo del volcan hacia la ciudad de Puebla.

  3. Unraveling the Lipolytic Activity of Thermophilic Bacteria Isolated from a Volcanic Environment

    Directory of Open Access Journals (Sweden)

    Panagiota M. Stathopoulou


    Full Text Available In a bioprospecting effort towards novel thermostable lipases, we assessed the lipolytic profile of 101 bacterial strains isolated from the volcanic area of Santorini, Aegean Sea, Greece. Screening of lipase activity was performed both in agar plates and liquid cultures using olive oil as carbon source. Significant differences were observed between the two screening methods with no clear correlation between them. While the percentage of lipase producing strains identified in agar plates was only 17%, lipolytic activity in liquid culture supernatants was detected for 74% of them. Nine strains exhibiting elevated extracellular lipase activities were selected for lipase production and biochemical characterization. The majority of lipase producers revealed high phylogenetic similarity with Geobacillus species and related genera, whilst one of them was identified as Aneurinibacillus sp. Lipase biosynthesis strongly depended on the carbon source that supplemented the culture medium. Olive oil induced lipase production in all strains, but maximum enzyme yields for some of the strains were also obtained with Tween-80, mineral oil, and glycerol. Partially purified lipases revealed optimal activity at 70–80°C and pH 8-9. Extensive thermal stability studies revealed marked thermostability for the majority of the lipases as well as a two-step thermal deactivation pattern.

  4. Water-quality effects on Baker Lake of recent volcanic activity at Mount Baker, Washington (United States)

    Bortleson, Gilbert Carl; Wilson, Reed T.; Foxworthy, B.L.


    Increased volcanic activity on Mount Baker, which began in March 1975, represents the greatest known activity of a Cascade Range volcano since eruptions at Lassen Peak, Calif. during 1914-17. Emissions of dust and increased emanations of steam, other gases, and heat from the Sherman Crater area of the mountain focused attention on the possibility of hazardous events, including lava flows, pyroclastic eruptions, avalanches, and mudflows. However, the greatest undesirable natural results that have been observed after one year of the increased activity are an increase in local atmospheric pollution and a decrease in the quality of some local water resources, including Baker Lake. Baker Lake, a hydropower reservoir behind Upper Baker Dam, supports a valuable fishery resource and also is used for recreation. The lake's feedwater is from Baker River and many smaller streams, some of which, like Boulder Creek, drain parts of Mount Baker. Boulder Creek receives water from Sherman Crater, and its channel is a likely route for avalanches or mudflows that might originate in the crater area. Boulder Creek drains only about 5 percent of the total drainage area of Baker Lake, but during 1975 carried sizeable but variable loads of acid and dissolved minerals into the lake. Sulfurous gases and the fumarole dust from Sherman Crater are the main sources for these materials, which are brought into upper Boulder Creek by meltwater from the crater. In September 1973, before the increased volcanic activity, Boulder Creek near the lake had a pH of 6.0-6.6; after the increase the pH ranged as low as about 3.5. Most nearby streams had pH values near 7. On April 29, in Boulder Creek the dissolved sulfate concentration was 6 to 29 times greater than in nearby creeks or in Baker River; total iron was 18-53 times greater than in nearby creeks; and other major dissolved constituents generally 2 to 7 times greater than in the other streams. The short-term effects on Baker Lake of the acidic

  5. Monitoring of low-energy seismic activity in Elbrus volcanic area with the use of underground seismic array (United States)

    Kovalevsky, V.; Sobisevitch, A.


    Results of experiment with underground seismic array for studying low-energy seismic activity in the Elbrus volcanic area are presented. Linear seismic array of 2.5 km aperture is created in the tunnel of Baksan neutrino observatory. Horizontal tunnel of 4.3 km length is drilled in the mount Andyrchi at a distance of 20 km from Elbrus volcano. Array includes 6 three-component seismic sensors with 24-byte recorders installed with 500 m interval one from another along the tunnel. Underground seismic array is the new instrument of geophysical observatory organized for studies of geophysical processes in the Elbrus volcanic area. The observatory equipped with modern geophysical instruments including broadband tri-axial seismometers, quartz tilt-meters, magnetic variometers, geo-acoustic sensors, hi-precision distributed thermal sensors and gravimeters. The initial analysis of seismic signals recorded by seismic array allows us to detect low-energy seismic activity in the Elbrus volcanic area beginning from the distance of 3-5 km (the faults in a vicinity of mount Andyrchi) up to 15-25 km (area of Elbrus volcano). The regional micro-earthquakes with magnitude 1-2 at the distances 50-100 km was also recorded. 2.5 km aperture of the underground linear seismic array make it possible to determine with high accuracy hypocenters of local seismic events associated with geodynamic of volcanic magmatic structures and to realize seismo-emission tomography of the active zones of Elbrus volcano.

  6. Methanotrophic activity and diversity of methanotrophs in volcanic geothermal soils at Pantelleria (Italy) (United States)

    Gagliano, A. L.; D'Alessandro, W.; Tagliavia, M.; Parello, F.; Quatrini, P.


    Volcanic and geothermal systems emit endogenous gases by widespread degassing from soils, including CH4, a greenhouse gas twenty-five times as potent as CO2. Recently, it has been demonstrated that volcanic or geothermal soils are not only a source of methane, but are also sites of methanotrophic activity. Methanotrophs are able to consume 10-40 Tg of CH4 a-1 and to trap more than 50% of the methane degassing through the soils. We report on methane microbial oxidation in the geothermally most active site of Pantelleria (Italy), Favara Grande, whose total methane emission was previously estimated at about 2.5 Mg a-1 (t a-1). Laboratory incubation experiments with three top-soil samples from Favara Grande indicated methane consumption values of up to 59.2 nmol g-1 soil d.w. h-1. One of the three sites, FAV2, where the highest oxidation rate was detected, was further analysed on a vertical soil profile, the maximum methane consumption was measured in the top-soil layer, and values greater than 6.23 nmol g-1 h-1 were still detected up to a depth of 13 cm. The highest consumption rate was measured at 37 °C, but a still detectable consumption at 80 °C (> 1.25 nmol g-1 h-1) was recorded. The soil total DNA extracted from the three samples was probed by Polymerase Chain Reaction (PCR) using standard proteobacterial primers and newly designed verrucomicrobial primers, targeting the unique methane monooxygenase gene pmoA; the presence of methanotrophs was detected at sites FAV2 and FAV3, but not at FAV1, where harsher chemical-physical conditions and negligible methane oxidation were detected. The pmoA gene libraries from the most active site (FAV2) pointed to a high diversity of gammaproteobacterial methanotrophs, distantly related to Methylocaldum-Metylococcus genera, and the presence of the newly discovered acido-thermophilic Verrucomicrobia methanotrophs. Alphaproteobacteria of the genus Methylocystis were isolated from enrichment cultures under a methane

  7. Methanotrophic activity and bacterial diversity in volcanic-geothermal soils at Pantelleria island (Italy) (United States)

    Gagliano, A. L.; D'Alessandro, W.; Tagliavia, M.; Parello, F.; Quatrini, P.


    Volcanic and geothermal systems emit endogenous gases by widespread degassing from soils, including CH4, a greenhouse gas twenty-five times as potent as CO2. Recently, it has been demonstrated that volcanic/geothermal soils are source of methane, but also sites of methanotrophic activity. Methanotrophs are able to consume 10-40 Tg of CH4 a-1 and to trap more than 50% of the methane degassing through the soils. We report on methane microbial oxidation in the geothermally most active site of Pantelleria island (Italy), Favara Grande, whose total methane emission was previously estimated in about 2.5 t a-1. Laboratory incubation experiments with three top-soil samples from Favara Grande indicated methane consumption values up to 950 ng g-1 dry soil h-1. One of the three sites, FAV2, where the highest oxidation rate was detected, was further analysed on a vertical soil profile and the maximum methane consumption was measured in the top-soil layer but values > 100 ng g-1 h-1 were maintained up to a depth of 15 cm. The highest consumption rate was measured at 37 °C, but a still recognizable consumption at 80 °C (> 20 ng g-1 h-1) was recorded. In order to estimate the bacterial diversity, total soil DNA was extracted from Favara Grande and analysed using a Temporal Temperature Gradient gel Electrophoresis (TTGE) analysis of the amplified bacterial 16S rRNA gene. The three soil samples were probed by PCR using standard proteobacterial primers and newly designed verrucomicrobial primers targeting the unique methane monooxygenase gene pmoA; the presence of methanotrophs was detected in sites FAV2 and FAV3, but not in FAV1, where harsher chemical-physical conditions and negligible methane oxidation were detected. The pmoA gene libraries from the most active site FAV2 pointed out a high diversity of gammaproteobacterial methanotrophs distantly related to Methylococcus/Methylothermus genera and the presence of the newly discovered acido-thermophilic methanotrophs

  8. Influence of explosive volcanic events on the activation versus de-activation of a modern turbidite system: the example of the Dohrn canyon-fan in the continental slope of the Campania volcanic district (Naples Bay, Italy - Western Mediterranean) (United States)

    Roca, M.; Budillon, F.; Pappone, G.; Insinga, D.


    The interplay between volcanic activity, volcano-clastic yield and activation/deactivation of a turbidite system can be evaluated along the continental margin of Campania region (Tyrrhenian Sea - Italy), an active volcanic area, where three wide canyon-fans occur at short distances one to another. Actually, the Dohrn, Magnaghi and Cuma canyons cut the continental slope and shelf off Ischia and Procida volcanic islands and off the Campania Plain where Phlegraean Field and Mt. Vesuvius active vents are located. This research, partly supported by the Italian Flagship Project Ritmare, is based on single-channel, high-resolution seismic profiles (Sparker-One 16 kJ, 0.5 s twtt), swath-bathymetry and litho- and tephra-stratigraphy of gravity cores. We focused on the stratigraphic constraint of paleo-thalweg features and channel/levees deposits in seismics, debris flow, turbidites and hemipelagites in cores, to learn more on the activation/deactivation stages of the canyon Dohrn, in the frame of relative eustatic sea level variations over the Middle Pleistocene-Holocene time span.Preliminary outcomes suggest that even major volcanic events occurred in the last 300 ky, such as ignimbrite eruptions or large fallouts, have caused the infilling of the canyon head and the cover of pre-existing seabed morphology. As a consequence, the temporary deactivation of the turbidite system has occurred, despite the volcano-clastic overload in the coastal environment. Phases of renewed activities of the thalweg are observed to be in step with falling stages of sea level, which have driven the re-incision of canyon valleys through continuous volcano-clastic debris and turbidites down-flows. Since Holocene, the quiescence of the Dohrn Canyon has been documented, despite the intense volcano-tectonic activity in the area.

  9. Acute health effects associated with exposure to volcanic air pollution (vog) from increased activity at Kilauea Volcano in 2008. (United States)

    Longo, Bernadette M; Yang, Wei; Green, Joshua B; Crosby, Frederick L; Crosby, Vickie L


    In 2008, the Kilauea Volcano on the island of Hawai'i increased eruption activity and emissions of sulfurous volcanic air pollution called vog. The purpose of this study was to promptly assess for a relative increase in cases of medically diagnosed acute illnesses in an exposed Hawaiian community. Using a within-clinic retrospective cohort design, comparisons were made for visits of acute illnesses during the 14 wk prior to the increased volcanic emissions (low exposure) to 14 wk of high vog exposure when ambient sulfur dioxide was threefold higher and averaged 75 parts per billion volume per day. Logistic regression analysis estimated effect measures between the low- and high-exposure cohorts for age, gender, race, and smoking status. There were statistically significant positive associations between high vog exposure and visits for medically diagnosed cough, headache, acute pharyngitis, and acute airway problems. More than a sixfold increase in odds was estimated for visits with acute airway problems, primarily experienced by young Pacific Islanders. These findings suggest that the elevated volcanic emissions in 2008 were associated with increased morbidity of acute illnesses in age and racial subgroups of the general Hawaiian population. Continued investigation is crucial to fully assess the health impact of this natural source of sulfurous air pollution. Culturally appropriate primary- and secondary-level health prevention initiatives are recommended for populations in Hawai'i and volcanically active areas worldwide.

  10. Stress fields of the overriding plate at convergent margins and beneath active volcanic arcs. (United States)

    Apperson, K D


    Tectonic stress fields in the overriding plate at convergent plate margins are complex and vary on local to regional scales. Volcanic arcs are a common element of overriding plates. Stress fields in the volcanic arc region are related to deformation generated by subduction and to magma generation and ascent processes. Analysis of moment tensors of shallow and intermediate depth earthquakes in volcanic arcs indicates that the seismic strain field in the arc region of many convergent margins is subhorizontal extension oriented nearly perpendicular to the arc. A process capable of generating such a globally consistent strain field is induced asthenospheric corner flow below the arc region.

  11. The 2011-2012 unrest at Santorini rift: Stress interaction between active faulting and volcanism (United States)

    Feuillet, Nathalie


    Santorini, active normal faulting controls the emission of volcanic products. Such geometry has implication on seismic activity around the plumbing system during unrest. Static Coulomb stress changes induced by the 2011-2012 inflation within a preexisting NW-SE extensional regional stress field, compatible with fault geometry, increased by more than 0.5 MPa in an ellipsoid-shaped zone beneath the Minoan caldera where almost all earthquakes (96%) have occurred since beginning of unrest. Magmatic processes perturb the regional stress in the caldera where strike-slip rather than normal faulting along NE-SW striking planes are expected. The inflation may have also promoted more distant moderate earthquakes on neighboring faults as the M > 5 January 2012, south of Christiania. Santorini belongs to a set of en echelon NE-SW striking rifts (Milos, Nysiros) oblique to the Aegean arc that may have initiated in the Quaternary due to propagation of the North Anatolian fault into the Southern Aegean Sea.

  12. Morphological and speleothemic development in Brujas Cave (Southern Andean Range, Argentine): palaeoenvironmental significance (United States)

    Sancho, Carlos; Peña, José Luis; Mikkan, Raúl; Osácar, Cinta; Quinif, Yves


    Brujas Cave, in the Southern Andean Range, is a well-known endokarstic site in Argentina. However, the origin and evolution of this cave system are poorly known. Based on morphological cave features as well as characteristics of cave deposits, we propose a meteogene drawdown cave genesis, including a change from phreatic to vadose conditions related to the high rate of fluvial downcutting in the area. During the vadose period, various cave-related deposits, including authogenic calcite and gypsum speleothems, allogenic volcanic ash and external tufas were deposited. Gypsum crusts are the oldest cave deposits identified (90.2-64.3 ky BP). Their origin, deduced from isotopic characteristics ( ∂34S=9.6‰), is related to the oxidation of pyrite contained in the Jurassic limestone bedrock as well as the dissolution of overlying Jurassic-Triassic evaporite formations. Gypsum crust deposition is associated with evaporation of water flowing and seeping into the cave during arid environmental conditions. Calcite deposits precipitated from flowing water under equilibrium conditions represent the main speleothem growth period (67.6-34 ky BP in age). Their stable isotope values ( ∂13C=-3‰ to -5‰ and ∂18O=-9‰ to -11‰) may indicate slightly humid and warm conditions related to the regional Minchin lacustrine phase and global oxygen isotope stage 3. Following this stage, a seismic event is evidenced by accumulations of broken stalactites. Seepage calcite speleothems covering cave walls were deposited under disequilibrium conditions by evaporation, probably during Holocene time. Finally, another more recent gypsum deposition period represented by gypsum balls has been differentiated. Micromorphological as well as isotopic ( ∂34S=5.6‰) data indicate that these gypsum forms are related to cyclic processes (solution-deposition) from water seeping into the cave under arid conditions. In addition, intense volcanic activity in the area during Holocene time is deduced

  13. Relation of compositions of deep fluids in geothermal activity of Pleistocene-Holocene volcanic fields of Lesser Caucasus (United States)

    Meliksetian, Khachatur; Lavrushin, Vassily; Shahinyan, Hrach; Aidarkozhina, Altin; Navasardyan, Gevorg; Ermakov, Alexander; Zakaryan, Shushan; Prasolov, Edward; Manucharyan, Davit; Gyulnazaryan, Shushan; Grigoryan, Edmond


    It is widely accepted, that geothermal activity in the conductive heat flow processes, such as volcanism and hydrothermal activity, is manifestation of the thermal mass transfer process in the Earth's crust, where geothermal and geochemical processes are closely connected. Therefore, geochemistry and isotope compositions of thermal mineral waters within and on periphery of volcanic clusters may represent key indicators for better understanding of geothermal activity in geodynamically active zones. Geochemical features of heat and mass transport in hydrothermal systems related to active volcanic and fault systems in continental collision related orogenic elevated plateaus such as Anatolian-Armenian-Iranian highlands are still poorly understood. In this contribution we attempt to fill these gaps in our knowledge of relations of geochemical and geothermal processes in collision zones. We present new data on chemical compositions, trace element geochemistry of thermal waters of Lesser Caucasus, (Armenia) as well as isotope analysis of free gases such as {}3He/{}4He, {}40Ar/{}36Ar, δ{}13?(CO{}2), nitrogen δ{}15N(N{}2) and oxygen and hydrogen isotopes in water phases (δD, δ{}18O). To reveal some specific features of formation of fluid systems related to thermal activity in the areas of collision related active volcanism and active geodynamics a complex geochemical (SiO{}2, K-Na, Na-Li, Li-Mg) and isotope geothermometers (δ{}18O(CaCO{}3) - δ{}18O(H{}2O)) were applied. The distribution of δ{}13?(??{}2) values in free gases of mineral waters of Armenia demonstrates that gases related to Quaternary volcanic fields are characterized by relatively light δ{}13?(CO{}2) values close to mantle derived gases, while on periphery of volcanic systems relatively heavy values of δ{}13?(CO{}2) indicate strong influence of metamorphic and sedimentary derived carbon dioxide. Distribution of nitrogen isotopes δ{}15N(N{}2) demonstrate an inverse correlation with δ{}13?(CO{}2

  14. Seismicity and active tectonics at Coloumbo Reef (Aegean Sea, Greece): Monitoring an active volcano at Santorini Volcanic Center using a temporary seismic network (United States)

    Dimitriadis, I.; Karagianni, E.; Panagiotopoulos, D.; Papazachos, C.; Hatzidimitriou, P.; Bohnhoff, M.; Rische, M.; Meier, T.


    The volcanic center of Santorini Island is the most active volcano of the southern Aegean volcanic arc. Α dense seismic array consisting of fourteen portable broadband seismological stations has been deployed in order to monitor and study the seismo-volcanic activity at the broader area of the Santorini volcanic center between March 2003 and September 2003. Additional recordings from a neighbouring larger scale temporary network (CYCNET) were also used for the relocation of more than 240 earthquakes recorded by both arrays. A double-difference relocation technique was used, in order to obtain optimal focal parameters for the best-constrained earthquakes. The results indicate that the seismic activity of the Santorini volcanic center is strongly associated with the tectonic regime of the broader Southern Aegean Sea area as well as with the volcanic processes. The main cluster of the epicenters is located at the Coloumbo Reef, a submarine volcano of the volcanic system of Santorini Islands. A smaller cluster of events is located near the Anydros Islet, aligned in a NE-SW direction, running almost along the main tectonic feature of the area under study, the Santorini-Amorgos Fault Zone. In contrast, the main Santorini Island caldera is characterized by the almost complete absence of seismicity. This contrast is in very good agreement with recent volcanological and marine studies, with the Coloumbo volcanic center showing an intense high-temperature hydrothermal activity, in comparison to the corresponding low-level activity of the Santorini caldera. The high-resolution hypocentral relocations present a clear view of the volcanic submarine structure at the Coloumbo Reef, showing that the main seismic activity is located within a very narrow vertical column, mainly at depths between 6 and 9 km. The focal mechanisms of the best-located events show that the cluster at the Coloumbo Reef is associated with the "Kameni-Coloumbo Fracture Zone", which corresponds to the

  15. Volcanic stratigraphy and evidence of magma mixing in the Quaternary Payún Matrú volcano, andean backarc in western Argentina Estratigrafía volcánica y evidencia de mezcla de magmas en el volcán Payún Matrú del Cuaternario, en el retroarco andino de Argentina occidental

    Directory of Open Access Journals (Sweden)

    Irene R Hernando


    Full Text Available The Payún Matrú Volcanic Field is located in the Payenia Basaltic Province of the recent back-arc of western Argentina (35°S-38°S. This province is younger than 5 Ma, and most of its volcanic activity took place since 2 Ma. The Payún Matrú Volcanic Field contains two composite volcanoes, Payún Matrú and Payún Liso, and two basaltic fields in an E-W oriented zone, located east and west of the Payún Matrú volcano. Payún Matrú is the largest volcano of this volcanic field, and consists of a shield-shaped edifice with a circular summit caldera of 8 km in diameter. The composition of both composite volcanoes is alkaline and predominantly trachytic, having also minor intermediate lavas. The basaltic fields consist of basalts and trachybasalts, with clinopyroxene and abundant olivine as phenocrysts and also in the groundmass. Textures indicating mixing and mingling processes, such as dusty plagioclases along with clear ones, biotite replaced by anhydrous minerals and two groundmasses with a fluid-fluid relationship, are common in the early pre-caldera stage of Payún Matrú and some post-caldera lavas. The latest post-caldera lavas are trachytic, with clean sanidine phenocrysts without disequilibrium textures. A remarkable characteristic of the Payún Matrú Volcanic Field is the fact that the Payún Matrú caldera is surrounded by basaltic fields at its base, while no basalts were erupted in the caldera region. We propose that the absence of basaltic lavas in the Payún Matrú volcano is due to the presence of a magmatic chamber below it, and that the mafic magmas rising from deeper levels were unable to erupt without interaction with more evolved melts. Intermediate hybrid magmas produced as a consequence of magma mixing and mingling between basaltic and trachytic magmas, are present in the early and mid-history of Payún Matrú volcano. We present here new information about the Quaternary Payún Matrú Volcanic Field derived from field

  16. 2012 volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory (United States)

    Herrick, Julie A.; Neal, Christina A.; Cameron, Cheryl E.; Dixon, James P.; McGimsey, Robert G.


    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, volcanic unrest, or suspected unrest at 11 volcanic centers in Alaska during 2012. Of the two verified eruptions, one (Cleveland) was clearly magmatic and the other (Kanaga) was most likely a single phreatic explosion. Two other volcanoes had notable seismic swarms that probably were caused by magmatic intrusions (Iliamna and Little Sitkin). For each period of clear volcanic unrest, AVO staff increased monitoring vigilance as needed, reviewed eruptive histories of the volcanoes in question to help evaluate likely outcomes, and shared observations and interpretations with the public. 2012 also was the 100th anniversary of Alaska’s Katmai-Novarupta eruption of 1912, the largest eruption on Earth in the 20th century and one of the most important volcanic eruptions in modern times. AVO marked this occasion with several public events.

  17. Collateral variations between the concentrations of mercury and other water soluble ions in volcanic ash samples and volcanic activity during the 2014-2016 eruptive episodes at Aso volcano, Japan (United States)

    Marumoto, Kohji; Sudo, Yasuaki; Nagamatsu, Yoshizumi


    During 2014-2016, the Aso volcano, located in the center of the Kyushu Islands, Japan, erupted and emitted large amounts of volcanic gases and ash. Two episodes of the eruption were observed; firstly Strombolian magmatic eruptive episodes from 25 November 2014 to the middle of May 2015, and secondly phreatomagmatic and phreatic eruptive episodes from September 2015 to February 2016. Bulk chemical analyses on total mercury (Hg) and major ions in water soluble fraction in volcanic ash fall samples were conducted. During the Strombolian magmatic eruptive episodes, total Hg concentrations averaged 1.69 ± 0.87 ng g- 1 (N = 33), with a range from 0.47 to 3.8 ng g- 1. In addition, the temporal variation of total Hg concentrations in volcanic ash varied with the amplitude change of seismic signals. In the Aso volcano, the volcanic tremors are always observed during eruptive stages and quiet interludes, and the amplitudes of tremors increase at eruptive stages. So, the temporal variation of total Hg concentrations could provide an indication of the level of volcanic activity. During the phreatomagmatic and phreatic eruptive episodes, on the other hand, total Hg concentrations in the volcanic ash fall samples averaged 220 ± 88 ng g- 1 (N = 5), corresponding to 100 times higher than those during the Strombolian eruptive episode. Therefore, it is possible that total Hg concentrations in volcanic ash samples are largely varied depending on the eruptive type. In addition, the ash fall amounts were also largely different among the two eruptive episodes. This can be also one of the factors controlling Hg concentrations in volcanic ash.

  18. The Andean Geotrail (2): An educational project (United States)

    Galland, O.; Sassier, C.; Vial, M.; Thiberge, P.


    The role of Geosciences in our society is of primary importance. Its implications for humanity relate to major challenges such as climate change, managing energy resources, natural hazard mitigation, and water scarcity. Despite these issues being familiar to specialists, this is in general not the case for the public. In a world, where the impact of human activity is beginning to be seen on the environment, knowledge of the Earth and its history is paramount to make informed decisions that will influence our future. The necessity to educate the global population and raise awareness of Geosciences has led UNESCO to designate 2009 the International Year of the Planet Earth. In the framework of the UNESCO International Year of Planet Earth, we performed an educational project in collaboration with primary, secondary and high schools in France and Norway. Geosciences are not usually studied in schools, but this project allowed more than 600 pupils (from 17 schools) aged 8 to 18 years old to share the geological discoveries of our popular science adventure The Andean Geotrail (see Sassier et al., this session). The main educational goal was to promote Geosciences by illustrating in the field what geology is. Our natural laboratory was the spectacular Andean Cordillera. The secondary goal was to promote careers in geology and highlight their variety by allowing the pupils to meet geologists through portraits of geologists. The teachers of the partner schools used our project as a dynamic complement to their theoretical lessons. To set up this partnership, we obtained the support of the pedagogic supervisors of the French Ministry of National Education. The pedagogical project consisted of three steps: (1) Before the expedition (Oct.-Nov. 2008), we visited the pupils of each partner school to present the project, establish personal contact and engage the pupils in our adventure. (2) During The Andean Geotrail itself (Nov. 2008-Aug. 2009), we continuously documented our

  19. Evidence for sub-lacustrine volcanic activity in Lake Bolsena (central Italy) revealed by high resolution seismic data sets (United States)

    Lindhorst, Katja; Krastel, Sebastian; Wagner, Bernd; Schuerer, Anke


    The Bolsena caldera that formed between 0.6 and 0.2 Ma has a well preserved structural rim, which makes it an ideal site to study the tectonic and volcanic evolution of calderas. However, the main area is covered by a 150 m deep lake which makes it rather difficult to investigate the subsurface structure directly. To overcome this problem new high resolution hydro-acoustic surveys using a multichannel reflection seismic system and a sediment echo-sounder system were conducted in September 2012. As space was limited we used a rowing boat towed by a rubber boat to handle a 36 m long and 24 channel streamer to receive seismic reflections produced using a Mini GI-Gun (0.25 l). The subsurface structure of Lake Bolsena was imaged up to a sediment depth of 190 m, which is estimated to have filled over a period of 333 kyrs. However, massive pyroclastic flow deposits found in the deeper parts of the basin indicate an initial infill of volcanic deposits from two adjacent younger calderas, the Latera (W) and Montefiascone (SE) calderas. Our data suggest that the caldera has a long history of active volcanism, because the lacustrine sediments show post-sedimentary influences of geothermal fluids. We mapped several mound structures at various stratigraphic depths. Two volcanic structures outcrop at the modern lake surface implying recent activity. One of these structures is hardly covered by sediments and has a crater-like feature in its summit. The other structure shows a pockmark-like depression on top. Another observable feature is a partially sediment filled crater located in the western part of the lake which further implies the existence of a magma chamber located beneath the Bolsena caldera. Since the late Pleistocene and Holocene, the sedimentation was mainly hemipelagic evidenced by a sediment drape of up to 10 m thick sediment drape on the uppermost sediments. Beneath the drape we found evidence for a distal tephra layer likely related to an explosive eruption from

  20. Administrative Law in the Andean Community of Nations


    Santos Rodríguez, Jorge Enrique


    One of the contemporary tendencies of Administrative Law is the recognition of its existence beyond the borders of a State. Under such premise, this paper aims to demonstrate that in the Andean Community of Nations sufficient elements to consider the existence of an Andean administrative Law. In the Andean statutes and rules, it is possible to identify an administrative function, as well as an administrative organization inside the Andean Integration System; and a system of Andean administrat...

  1. Complex explosive volcanic activity on the Moon within Oppenheimer crater, Icarus (United States)

    Bennett, Kristen A; Horgan, Briony H N; Gaddis, Lisa R.; Greenhagen, Benjamin T; Allen, Carlton C.; Hayne, Paul O; Bell, James F III; Paige, David A.


    Oppenheimer Crater is a floor-fractured crater located within the South Pole-Aitken basin on the Moon, and exhibits more than a dozen localized pyroclastic deposits associated with the fractures. Localized pyroclastic volcanism on the Moon is thought to form as a result of intermittently explosive Vulcanian eruptions under low effusion rates, in contrast to the higher-effusion rate, Hawaiian-style fire fountaining inferred to form larger regional deposits. We use Lunar Reconnaissance Orbiter Camera images and Diviner Radiometer mid-infrared data, Chandrayaan-1 orbiter Moon Mineralogy Mapper near-infrared spectra, and Clementine orbiter Ultraviolet/Visible camera images to test the hypothesis that the pyroclastic deposits in Oppenheimer crater were emplaced via Vulcanian activity by constraining their composition and mineralogy. Mineralogically, we find that the deposits are variable mixtures of orthopyroxene and minor clinopyroxene sourced from the crater floor, juvenile clinopyroxene, and juvenile iron-rich glass, and that the mineralogy of the pyroclastics varies both across the Oppenheimer deposits as a whole and within individual deposits. We observe similar variability in the inferred iron content of pyroclastic glasses, and note in particular that the northwest deposit, associated with Oppenheimer U crater, contains the most iron-rich volcanic glass thus far identified on the Moon, which could be a useful future resource. We propose that this variability in mineralogy indicates variability in eruption style, and that it cannot be explained by a simple Vulcanian eruption. A Vulcanian eruption should cause significant country rock to be incorporated into the pyroclastic deposit; however, large areas within many of the deposits exhibit spectra consistent with high abundances of juvenile phases and very little floor material. Thus, we propose that at least the most recent portion of these deposits must have erupted via a Strombolian or more continuous fire

  2. Integrating science and education during an international, multi-parametric investigation of volcanic activity at Santiaguito volcano, Guatemala (United States)

    Lavallée, Yan; Johnson, Jeffrey; Andrews, Benjamin; Wolf, Rudiger; Rose, William; Chigna, Gustavo; Pineda, Armand


    In January 2016, we held the first scientific/educational Workshops on Volcanoes (WoV). The workshop took place at Santiaguito volcano - the most active volcano in Guatemala. 69 international scientists of all ages participated in this intensive, multi-parametric investigation of the volcanic activity, which included the deployment of seismometers, tiltmeters, infrasound microphones and mini-DOAS as well as optical, thermographic, UV and FTIR cameras around the active vent. These instruments recorded volcanic activity in concert over a period of 3 to 9 days. Here we review the research activities and present some of the spectacular observations made through this interdisciplinary efforts. Observations range from high-resolution drone and IR footage of explosions, monitoring of rock falls and quantification of the erupted mass of different gases and ash, as well as morphological changes in the dome caused by recurring explosions (amongst many other volcanic processes). We will discuss the success of such integrative ventures in furthering science frontiers and developing the next generation of geoscientists.

  3. Late Quaternary incision and deposition in an active volcanic setting: The Volturno valley fill, southern Italy (United States)

    Amorosi, Alessandro; Pacifico, Annamaria; Rossi, Veronica; Ruberti, Daniela


    Extensive illustration of depositional facies, ostracod and foraminiferal assemblages, and Late Quaternary stratigraphic architecture is offered for the first time from beneath the modern coastal plain of Volturno River, the longest river in southern Italy. Proximity to an active volcanic district, including quiescent Vesuvius Volcano, provides an easily identifiable stratigraphic marker (Campania Grey Tuff or CGT), up to 55 m thick, emplaced 39 ky cal BP by a large-volume explosive pyroclastic eruption. Identification of top CGT to a maximum depth of 30 m allows tracing out the shape of a 15-20 km wide Late Quaternary palaeovalley incised by Volturno River into the thick ignimbritic unit immediately after its deposition. A terraced palaeotopography of the valley flanks is reconstructed on the basis of core data. Above the basal fluvial deposits, the early Holocene transgressive facies consist of a suite of estuarine (freshwater to brackish) deposits. These are separated from overlying transgressive barrier sands by a distinctive wave ravinement surface. Upwards, a distinctive shallowing-upward succession of middle-late Holocene age is interpreted to reflect initiation and subsequent progradation of a wave-dominated delta system, with flanking strandplains, in response to reduced rate of sea-level rise. The turnaround from transgressive to highstand conditions is identified on the basis of subtle changes in the meiofauna. These enable tracking of the maximum flooding surface into its updip (lagoonal/estuarine) counterpart, thus highlighting the role of refined palaeontological criteria as a powerful tool for high-resolution sequence-stratigraphic studies.

  4. Intumescence and pore structure of alkali-activated volcanic glasses upon exposure to high temperatures (United States)

    Erdogan, S. T.


    Structures formed with ground perlite, a natural volcanic glass, activated with NaOH solutions, are shown to possess the ability to expand up to ~225 % of their original volumes upon exposure to temperatures in the 200-600 °C range. Porous solid with 3-7 MPa compressive strength and ˜450 kg/m3 or higher density are obtained. The observed expansion is believed to occur due to a loss of silanol condensation water, as vapor and is accompanied by an up to ~20 % loss in mass. A drop in pH to near-neutral values supports this idea. The size and total amount of pores in the final solid are controlled by concentration of the NaOH solution and thermal processing conditions. The pores formed are observed to be ~1-10 μm to mm-sized. The ability of perlite-based solids to intumesce over specific temperature ranges could be beneficial in applications where absorption of thermal energy is necessary, such as passive fire protection.

  5. Local influences of geothermal anomalies on permafrost distribution in an active volcanic island (Deception Island, Antarctica) (United States)

    Goyanes, G.; Vieira, G.; Caselli, A.; Cardoso, M.; Marmy, A.; Santos, F.; Bernardo, I.; Hauck, C.


    This study aims at understanding the spatial distribution and characteristics of the frozen and unfrozen terrain in an alluvial fan on Deception Island, which is an active strato-volcano located in the Bransfield Strait (South Shetland Islands) with recent eruptions in 1967, 1969 and 1970. The alluvial fan is dominated by debris-flow, run-off and rock fall processes and permafrost occurs in several parts in the vicinity of anomalous geothermal heat flux. The aim is to assess the ways volcanic activity controls permafrost development and associated geomorphic dynamics using shallow subsurface, surface and air temperature measurements as well as thaw depth and electrical resistivity tomography (ERT) surveys. Results show a temperature increase with depth in the lower part of the fan reaching 13 °C at 0.80 m depth, without the presence of permafrost. The shallow borehole located at this site showed a stable thermal stratification all year-round, with only the upper 0.20 m reacting to meteorological forcing. In the upper part of the alluvial fan and debris cones, c. 100 m from the coast, frozen ground is present at c. 0.70 m depth. There, the shallow borehole shows a good coupling with air temperatures and the thermal regime favours the presence of permafrost. ERT shows the lowest resistivity values in the lower part of the alluvial fan and a highly resistivity zone in the upper sector of the fan and in the debris cones. These large variations in resistivity mark the presence of a saline water wedge from the sea into the fan, reaching frozen ground conditions about 100 m inland. It can be shown that the volcano-hydrothermal activity only inhibits frost development very locally, with frozen ground conditions occurring about 100 m away.

  6. Can we detect, monitor, and characterize volcanic activity using 'off the shelf' webcams and low-light cameras? (United States)

    Harrild, M.; Webley, P. W.; Dehn, J.


    The ability to detect and monitor precursory events, thermal signatures, and ongoing volcanic activity in near-realtime is an invaluable tool. Volcanic hazards often range from low level lava effusion to large explosive eruptions, easily capable of ejecting ash to aircraft cruise altitudes. Using ground based remote sensing to detect and monitor this activity is essential, but the required equipment is often expensive and difficult to maintain, which increases the risk to public safety and the likelihood of financial impact. Our investigation explores the use of 'off the shelf' cameras, ranging from computer webcams to low-light security cameras, to monitor volcanic incandescent activity in near-realtime. These cameras are ideal as they operate in the visible and near-infrared (NIR) portions of the electromagnetic spectrum, are relatively cheap to purchase, consume little power, are easily replaced, and can provide telemetered, near-realtime data. We focus on the early detection of volcanic activity, using automated scripts that capture streaming online webcam imagery and evaluate each image according to pixel brightness, in order to automatically detect and identify increases in potentially hazardous activity. The cameras used here range in price from 0 to 1,000 and the script is written in Python, an open source programming language, to reduce the overall cost to potential users and increase the accessibility of these tools, particularly in developing nations. In addition, by performing laboratory tests to determine the spectral response of these cameras, a direct comparison of collocated low-light and thermal infrared cameras has allowed approximate eruption temperatures to be correlated to pixel brightness. Data collected from several volcanoes; (1) Stromboli, Italy (2) Shiveluch, Russia (3) Fuego, Guatemala (4) Popcatépetl, México, along with campaign data from Stromboli (June, 2013), and laboratory tests are presented here.

  7. Volcanic Catastrophes (United States)

    Eichelberger, J. C.


    volcanism on humankind in the North Pacific, where Holocene time saw many caldera-forming eruptions in an area of comparatively intense human activity.

  8. Dynamic paleogeography of the Jurassic Andean Basin: pattern of transgression and localisation of main straits through the magmatic arc

    Directory of Open Access Journals (Sweden)

    J-C. Vicente


    Full Text Available The paleogeographic evolution of the Jurassic Andean retroarc basin is examined at a global scale for the Central Andes. In this paper, it is called for the striking continuity and lasting of the active volcanic arc. Both direct and indirect sedimentologic evidences allow to locate the western border (insular of the basin and opposite it with the eastern border (cratonic. Emphasis is placed on the volcaniclastic deposits and synsedimentary structures associated with this insular border. It is concluded that the arc magmatic activity has contributed considerably in sediment supply to the basin. Extent and continuity of the arc implies to locate the straits connecting with the Paleopacific. Systematic check of the time of transgressions coupled with sequential facies analysis provides a dynamic outlook of the transgressive process. Sectors with early transgression allow to distinguish two main gulfs of passage through the arc from which waters have progressed lengthwise at the same time northward and southward in a narrow retroarc furrow : the first at latitude of Taltal (25°S, the second at latitude of Curepto (35°S. Both initiated in the upper Triassic and extended during the Hettangian. The evolution as separate basins (Tarapacá and Aconcagua-Neuquén ended by fusion in middle Pliensbachian giving rise to a continuous elongated basin from Chubut to northern Peru. The remarkable continuity and narrowness of the Andean Basin leaves no doubt about its tectonic control. This stems to its geotectonic setting as a typical retroarc basin adjacent to a very active magmatic arc and explains the extreme mobility of its insular margin characterized by a huge volcanoclastic apron with associated debris flows and turbidites.

  9. Andean uplift and Neogene climate change in the Atacama Desert (United States)

    Rech, J. A.; Currie, B. S.; Jordan, T. E.


    Today the Andean Cordillera and Altiplano provide a major obstacle to atmospheric circulation over South America. The Altiplano Plateau prevents moist air masses from the Amazon Basin from reaching the Atacama Desert, causing the Atacama to be one of the driest places on Earth. Although Neogene sedimentary records from the western flank of the Andes should record the dramatic shift to hyperaridity that resulted from the growth of the Altiplano Plateau, the climatic implications of many sedimentary sequences have been difficult to decipher. The causes of the difficulties are complex, such as the relative influences of tectonics and active volcanism versus climate, and the roles of local as well as regional precipitation on groundwater and on the deposition of paludal sediments in basin centers. Over the last few years our research group has focused on using paleosols and the isotopic composition of palustrine carbonates in the Calama Basin (22°S) to try to identify a local precipitation signal and determine the onset of extreme hyperaridity as a consequence of the growth of the Altiplano. We have determined the soil morphological characteristics, salt chemistry, and mass independent fractionation anomalies (Δ17O values) in dated paleosols to reconstruct a Middle Miocene climatic transition from semi-aridity to extreme hyperaridity in the Atacama Desert. Paleosols along the southeastern margin of the Calama Basin change from calcic Vertisols with root traces, slickensides, and gleyed horizons to an extremely mature salic Gypsisol with pedogenic nitrate. We interpret this transition, which occurred between 19 and 13 Ma, to represent a change in precipitation from >200 mm/yr to Calama Basin also show a marked change during this time period. δ13C values of palustrine carbonates increase from -7 to +7? VPDB and δ18O values increases from -7 to +1? VPDB over the late to Middle Miocene time. This major trend towards more positive values is likely the result of several

  10. Andean settlers rush for Amazonia. (United States)

    Serra-vega, J


    Governments of Andean countries (Peru, Bolivia, Colombia, Ecuador, and Venezuela) have encouraged migration to the Amazon Basin, which has contributed to its destruction. Population pressure, landlessness, and poverty are the inducements to migrate. Efforts to populate the Amazon forest were begun as early as 1964 in Peru without international notice. By 1980, logging was allowed in Peru, and Brazil considered colonization of the Amazon essential to national sovereignty. By 1986, outside of Lima, Peru, a development project originally funded by the World Bank, the InterAmerican Development Bank, and the US, resulted in conflicts between settlers and Indians, in loggers indiscriminately cutting, and in farmers using slash and burn techniques to clear forests. Elsewhere the Peruvian Amazon, in San Ignacio, the population was growing by 5.5%/year. The jungle road that had been started but never completed, Carretera Marginal, destroyed 5 million hectares of primary forest, and much of the 600,000 hectares of arable land gained by the road suffered from inappropriate farming practices which caused massive erosion and laterization of the soils. Food crop production declined, and production of coca for cocaine increased. Coca crops are controlled by the Shining Path guerrillas, who are trying to overthrow the Peruvian government. Devastation of Ecuador around Lago Agrio continues. In Colombia, east of Bogota, forests have disappeared and hills have eroded and silted up rivers and dams. The Andean piedmont in Bolivia has also been devastated by loggers and by slash and burn farming. Southeastern Bolivian forests have been cleared for soya bean cultivation on poor soils. Social and economic crises propel people into the remaining forests. The solution is to ease foreign debt, transfer appropriate technology at affordable prices, refuse to finance destructive development, and help to educate and train scientific researchers. Family planning services are also urgently needed

  11. New inferences from spectral seismic energy measurement of a link between regional seismicity and volcanic activity at Mt. Etna, Italy (United States)

    Ortiz, R.; Falsaperla, S.; Marrero, J. M.; Messina, A.


    The existence of a relationship between regional seismicity and changes in volcanic activity has been the subject of several studies in the last years. Generally, activity in basaltic volcanoes such as Villarica (Chile) and Tungurahua (Ecuador) shows very little changes after the occurrence of regional earthquakes. In a few cases volcanic activity has changed before the occurrence of regional earthquakes, such as observed at Teide, Tenerife, in 2004 and 2005 (Tárraga et al., 2006). In this paper we explore the possible link between regional seismicity and changes in volcanic activity at Mt. Etna in 2006 and 2007. On 24 November, 2006 at 4:37:40 GMT an earthquake of magnitude 4.7 stroke the eastern coast of Sicily. The epicenter was localized 50 km SE of the south coast of the island, and at about 160 km from the summit craters of Mt. Etna. The SSEM (Spectral Seismic Energy Measurement) of the seismic signal at stations at 1 km and 6 km from the craters highlights that four hours before this earthquake the energy associated with volcanic tremor increased, reached a maximum, and finally became steady when the earthquake occurred. Conversely, neither before nor after the earthquake, the SSEM of stations located between 80 km and 120 km from the epicentre and outside the volcano edifice showed changes. On 5 September, 2007 at 21:24:13 GMT an earthquake of magnitude 3.2 and 7.9 km depth stroke the Lipari Island, at the north of Sicily. About 38 hours before the earthquake occurrence, there was an episode of lava fountain lasting 20 hours at Etna volcano. The SSEM of the seismic signal recorded during the lava fountain at a station located at 6 km from the craters highlights changes heralding this earthquake ten hours before its occurrence using the FFM method (e.g., Voight, 1988; Ortiz et al., 2003). A change in volcanic activity - with the onset of ash emission and Strombolian explosions - was observed a couple of hours before the occurrence of the regional

  12. Temporal changes in thermal waters related to volcanic activity of Tokachidake Volcano, Japan: implications for forecasting future eruptions (United States)

    Takahashi, Ryo; Shibata, Tomo; Murayama, Yasuji; Ogino, Tagiru; Okazaki, Noritoshi


    In order to detect changes in volcanic activity of Tokachidake Volcano, Japan, we have continuously monitored thermal waters discharging at the western to southwestern flank of the volcano since 1986. The steam-heated waters in the Nukkakushi crater discharged with boiling temperature until 2002. Thermal waters at the Tokachidake spa area have similar compositions to fumarolic gas emitted from the summit craters, indicating that the waters formed by absorption of volcanic gas into shallow aquifers. Thermal waters at the Fukiage spa area were derived from the same aquifer as the Tokachidake spa area until early 1986. However, after that time, NaCl-type thermal water entered the Fukiage spa area during the increase in volcanic activity associated with the 1988-1989 eruption, thus leading to a clear increase in Cl concentrations and temperature. After the eruption, the supply of the NaCl-type thermal water was halted, and the Cl concentrations of the thermal waters decreased. In contrast, SO4 concentrations gradually increased in the Fukiage spa area after 1989, and the temperature has been maintained. These observations indicate that SO4-rich thermal water with a relatively high temperature entered the system instead of the NaCl-type thermal water. As was the case for the 1988-1989 eruption, the Cl concentrations at the Fukiage spa area increased in 2012 during an increase in volcanic activity, implying that the supply of the NaCl-type thermal water had resumed. However, the chemical changes in the thermal waters since 2012 are small compared with those before the 1988-1989 eruption, with oxygen and hydrogen isotopic compositions remaining nearly the same as those of meteoric waters.

  13. Phylogenetic insights into Andean plant diversification

    Directory of Open Access Journals (Sweden)

    Federico eLuebert


    Full Text Available Andean orogeny is considered as one of the most important events for the developmentof current plant diversity in South America. We compare available phylogenetic studies anddivergence time estimates for plant lineages that may have diversified in response to Andeanorogeny. The influence of the Andes on plant diversification is separated into four major groups:The Andes as source of new high-elevation habitats, as a vicariant barrier, as a North-Southcorridor and as generator of new environmental conditions outside the Andes. Biogeographicalrelationships between the Andes and other regions are also considered. Divergence timeestimates indicate that high-elevation lineages originated and diversified during or after the majorphases of Andean uplift (Mid-Miocene to Pliocene, although there are some exceptions. Asexpected, Andean mid-elevation lineages tend to be older than high-elevation groups. Mostclades with disjunct distribution on both sides of the Andes diverged during Andean uplift.Inner-Andean clades also tend to have divergence time during or after Andean uplift. This isinterpreted as evidence of vicariance. Dispersal along the Andes has been shown to occur ineither direction, mostly dated after the Andean uplift. Divergence time estimates of plant groupsoutside the Andes encompass a wider range of ages, indicating that the Andes may not benecessarily the cause of these diversifications. The Andes are biogeographically related to allneighbouring areas, especially Central America, with floristic interchanges in both directionssince Early Miocene times. Direct biogeographical relationships between the Andes and otherdisjunct regions have also been shown in phylogenetic studies, especially with the easternBrazilian highlands and North America. The history of the Andean flora is complex and plantdiversification has been driven by a variety of processes, including environmental change,adaptation, and biotic interactions

  14. Time variability of Io's volcanic activity from near-IR adaptive optics observations on 100 nights in 2013-2015 (United States)

    de Kleer, Katherine; de Pater, Imke


    Jupiter's moon Io is a dynamic target, exhibiting extreme and time-variable volcanic activity powered by tidal forcing from Jupiter. We have conducted a campaign of high-cadence observations of Io with the goal of characterizing its volcanic activity. Between Aug 2013 and the end of 2015, we imaged Io on 100 nights in the near-infrared with adaptive optics on the Keck and Gemini N telescopes, which resolve emission from individual volcanic hot spots. During our program, we made over 400 detections of 48 distinct hot spots, some of which were detected 30+ times. We use these observations to derive a timeline of global volcanic activity on Io, which exhibits wide variability from month to month. The timelines of thermal activity at individual volcanic centers have geophysical implications, and will permit future characterization by others. We evaluate hot spot detection limits and give a simple parameterization of the minimum detectable intensity as a function of emission angle, which can be applied to other analyses. We detected three outburst eruptions in August 2013, but no other outburst-scale events were observed in the subsequent ∼90 observations. Either the cluster of events in August 2013 was a rare occurrence, or there is a mechanism causing large events to occur closely-spaced in time. We also detected large eruptions (though not of outburst scale) within days of one another at Kurdalagon Patera and Sethlaus/Gabija Paterae in 2015. As was also seen in the Galileo dataset, the hot spots we detected can be separated into two categories based on their thermal emission: those that are persistently active for 1 year or more at moderate intensity, and those that are only briefly active, are time-variable, and often reach large intensities. A small number of hot spots in the latter category appear and subside in a matter of days, reaching particularly high intensities; although these are not bright enough to qualify as outbursts, their thermal signatures follow

  15. Mesozooplankton distribution near an active volcanic island in the Andaman Sea (Barren Island). (United States)

    Pillai, Honey U K; Jayaraj, K A; Rafeeq, M; Jayalakshmi, K J; Revichandran, C


    The study addresses the distribution and diversity of mesozooplankton near the active volcano-Barren Island (Andaman Sea) in the context of persistent volcanic signature and warm air pool existing for the last few months. Sampling was done from the stations along the west and east side of the volcano up to a depth of 1,000 m during the inter monsoon (April) of 2006. Existence of feeble warm air pool was noticed around the Island (Atm. Temp. 29°C). Sea surface temperature recorded as 29.9°C on the west and 29.6°C on the east side stations. High mesozooplankton biomass was observed in the study area than the earlier reports. High density and biomass observed in the surface layer decreased significantly to the deeper depths. Lack of correlation was observed between mesozooplankton biomass and density with chl. a. Twenty-three mesozooplankton taxa were observed with copepoda as the dominant taxa followed by chaetognatha. The relative abundance of chaetognatha considerably affected the copepod population density in the surface layer. A noticeable feature was the presence of cumaceans, a hyperbenthic fauna in the surface, mixed layer and thermocline layer on the western side station where the volcano discharges in to the sea. The dominant order of copepoda, the calanoida was represented by 52 species belonging to 17 families. The order poecilostomatoida also had a significant contribution. Copepods exhibited a clear difference in their distribution pattern in different depth layers. The families Calanidae and Pontellidae showed a clear dominance in the surface whereas small-sized copepods belonging to the families Clausocalanidae and Paracalanidae were observed as the predominant community in the mixed layer and thermocline layer depth. Families Metridinidae, Augaptilidae and Aetideidae were observed as dominant in deeper layers.

  16. Groundwater flow processes and mixing in active volcanic systems: the case of Guadalajara (Mexico) (United States)

    Hernández-Antonio, A.; Mahlknecht, J.; Tamez-Meléndez, C.; Ramos-Leal, J.; Ramírez-Orozco, A.; Parra, R.; Ornelas-Soto, N.; Eastoe, C. J.


    other active volcanic systems on Earth.

  17. Volcanic and Tectonic Activity in the Red Sea Region (2004-2013): Insights from Satellite Radar Interferometry and Optical Imagery

    KAUST Repository

    Xu, Wenbin


    Studying recent volcanic and tectonic events in the Red Sea region is important for improving our knowledge of the Red Sea plate boundary and for regional geohazard assessments. However, limited information has been available about the past activity due to insufficient in-situ data and remoteness of some of the activity. In this dissertation, I have used satellite remote sensing to derive new information about several recent volcanic and tectonic events in the Red Sea region. I first report on three volcanic eruptions in the southern Red Sea, the 2007-8 Jebel at Tair eruption and the 2011-12 & 2013 Zubair eruptions, which resulted in formation of two new islands. Series of high- resolution optical images were used to map the extent of lava flows and to observe and analyze the growth and destructive processes of the new islands. I used Interferometric Synthetic Aperture Radar (InSAR) data to study the evolution of lava flows, to estimate their volumes, as well as to generate ground displacements maps, which were used to model the dikes that fed the eruptions. I then report on my work of the 2009 Harrat Lunayyir dike intrusion and the 2004 Tabuk earthquake sequence in western Saudi Arabia. I used InSAR observations and stress calculations to study the intruding dike at Harrat Lunayyir, while I combined InSAR data and Bayesian estimation to study the Tabuk earthquake activity. The key findings of the thesis are: 1) The recent volcanic eruptions in the southern Red Sea indicate that the area is magmatically more active than previously acknowledged and that a rifting episode has been taken place in the southern Red Sea; 2) Stress interactions between an ascending dike intrusion and normal faulting on graben-bounding faults above the dike can inhibit vertical propagation of magma towards the surface; 3) InSAR observations can improve locations of shallow earthquakes and fault model uncertainties are useful to associate earthquake activity with mapped faults; 4). The

  18. The Andean Geotrail (1): A scientific adventure (United States)

    Sassier, C.; Galland, O.; Raufaste, C.; Mair, K.


    The role of Geosciences in our society is of primary importance. Its implications for humanity relate to major challenges such as climate change, managing energy resources, natural hazard mitigation, and water scarcity. Despite these issues being familiar to specialists, this is in general not the case for the public. In a world, where the impact of human activity is beginning to be seen on the environment, knowledge of the Earth and its history is paramount to make informed decisions that will influence our future. The necessity to educate the global population and raise awareness of Geosciences has led UNESCO to designate 2009 the International Year of the Planet Earth. In this context and with the label of the UNESCO, we organized and performed a popular science adventure that was followed in real time by both school children and many adults around the world. The Andean Geotrail consisted of a cycling expedition through a spectacular geological environment, the Andean Cordillera. During the nine month expedition, we cycled 8000 km and walked 400 km from Ushuaia in the Southern tip of Argentina to Nazca in Peru to encounter a rich variety of geological environments: active volcanoes, earthquakes, mineral and hydrocarbon deposits, and fantastic geological scenery. All this makes the Andes a great pedagogical natural laboratory. During the expedition, we visited spectacular geological localities that illustrate key Earth Science phenomena (such as mines and hydrocarbon deposits, erupting volcanoes and seismogenically active areas, and national parks) and discovered their implications for the local people. Along the way, we interviewed local geologists and scientists who helped us understand the geology of their areas. We gathered our own observations with those of the local specialists and published essays, articles and photographs on our website and blog (, Seventeen schools in France and Norway

  19. Evidences of active and ancient Volcanism on Mars. A review. Second Part

    Directory of Open Access Journals (Sweden)



    Full Text Available The results of recent research have brought some further evidence of volcanism on the planet Mars. At the same time certain erroneous descriptions and conclusions, which are to be found in the first paper (3, are here corrected.

  20. Mercury as a proxy for volcanic activity during extreme environmental turnover

    DEFF Research Database (Denmark)

    Sial, A.N.; Lacerda, L.D.; Ferreira, V.P.


    The usually low geological background concentrations of Hg makes this trace element suitable for identifying accumulation pulses in sediments that can be tentatively related to weathering processes and thus to climatic changes. Intense volcanism has witnessed the Cretaceous–Paleogene transition (...

  1. United States-Chile binational exchange for volcanic risk reduction, 2015—Activities and benefits (United States)

    Pierson, Thomas C.; Mangan, Margaret T.; Lara Pulgar, Luis E.; Ramos Amigo, Álvaro


    In 2015, representatives from the United States and Chile exchanged visits to discuss and share their expertise and experiences dealing with volcano hazards. Communities in both countries are at risk from various volcano hazards. Risks to lives and property posed by these hazards are a function not only of the type and size of future eruptions but also of distances from volcanoes, structural integrity of volcanic edifices, landscape changes imposed by recent past eruptions, exposure of people and resources to harm, and any mitigative measures taken (or not taken) to reduce risk. Thus, effective risk-reduction efforts require the knowledge and consideration of many factors, and firsthand experience with past volcano crises provides a tremendous advantage for this work. However, most scientists monitoring volcanoes and most officials delegated with the responsibility for emergency response and management in volcanic areas have little or no firsthand experience with eruptions or volcano hazards. The reality is that eruptions are infrequent in most regions, and individual volcanoes may have dormant periods lasting hundreds to thousands of years. Knowledge may be lacking about how to best plan for and manage future volcanic crises, and much can be learned from the sharing of insights and experiences among counterpart specialists who have had direct, recent, or different experiences in dealing with restless volcanoes and threatened populations. The sharing of information and best practices can help all volcano scientists and officials to better prepare for future eruptions or noneruptive volcano hazards, such as large volcanic mudflows (lahars), which could affect their communities.

  2. VEPP Exercise: Volcanic Activity and Monitoring of Pu`u `O`o, Kilauea Volcano, Hawaii (United States)

    Rodriguez, L. A.


    A 10-week project will be tested during the Fall semester 2010, for a Volcanic Hazards elective course, for undergraduate Geology students of the University of Puerto Rico at Mayaguez. This exercise was developed during the Volcanoes Exploration Project: Pu`u `O`o (VEPP) Workshop, held on the Big Island of Hawaii in July 2010. For the exercise the students will form groups (of 2-4 students), and each group will be assigned a monitoring technique or method, among the following: seismic (RSAM data), deformation (GPS and tilt data), observations (webcam and lava flow maps), gas and thermal monitoring. The project is designed for Geology undergraduates who have a background in introductory geology, types of volcanoes and eruptions, magmatic processes, characteristics of lava flows, and other related topics. It is divided in seven tasks, starting with an introduction and demonstration of the VEPP website and the VALVE3 software, which is used to access monitoring data from the current eruption of Pu`u `O`o, Kilauea volcano, Hawaii. The students will also familiarize themselves with the history of Kilauea volcano and its current eruption. At least weekly the groups will acquire data (mostly near-real-time) from the different monitoring techniques, in the form of time series, maps, videos, and images, in order to identify trends in the data. The groups will meet biweekly in the computer laboratory to work together in the analysis and interpretation of the data, with the support of the instructor. They will give reports on the progress of the exercise, and will get feedback from the instructor and from the other expert groups. All groups of experts will relate their findings to the recent and current activity of Kilauea volcano, and the importance of their specific type of monitoring. The activity will culminate with a written report and an oral presentation. The last task of the project consists of a wrap-up volcano monitoring exercise, in which the students will

  3. Volcanic gas composition changes during the gradual decrease of the gigantic degassing activity of Miyakejima volcano, Japan, 2000-2015 (United States)

    Shinohara, Hiroshi; Geshi, Nobuo; Matsushima, Nobuo; Saito, Genji; Kazahaya, Ryunosuke


    The composition of volcanic gases discharged from Miyakejima volcano has been monitored during the intensive degassing activity that began after the eruption in 2000. During the 15 years from 2000 to 2015, Miyakejima volcano discharged 25.5 Mt of SO2, which required degassing of 3 km3 of basaltic magma. The SO2 emission rate peaked at 50 kt/day at the end of 2000 and quickly decreased to 5 kt/day by 2003. During the early degassing period, the volcanic gas composition was constant with the CO2/SO2 = 0.8 (mol ratio), H2O/SO2 = 35, HCl/SO2 = 0.08, and SO2/H2S = 15. The SO2 emission rate decreased gradually to 0.5 kt/day by 2012, and the gas composition also changed gradually to CO2/SO2 = 1.5, H2O/SO2 = 150, HCl/SO2 = 0.15, and SO2/H2S = 6. The compositional changes are not likely caused by changes in degassing pressure or volatile heterogeneity of a magma chamber but are likely attributed to an increase of hydrothermal scrubbing caused by large decrease of the volcanic gas emission rate, suggesting a supply of gases with constant composition during the 15 years. The intensive degassing was modeled based on degassing of a convecting magma conduit. The gradual SO2 emission rate that decrease without changes in volcanic gas composition is attributed to a reduction of diameter of the convecting magma conduit.

  4. K-Ar geochronology of the late cenozoic volcanic rocks of the Cordillera Occidental, southernmost Peru (United States)

    Tosdal, Richard M.; Farrar, Edward; Clark, Alan H.


    Twenty-four K-Ar radiometric ages are presented for late Cenozoic continental volcanic rocks of the Cordillera Occidental of southernmost Perú (lat. 16° 57'-17° 36'S). Rhyodacitic ignimbrite eruptions began in this transect during the Late Oligocene and continued episodically through the Miocene. The development of andesitic-dacitic strato volcanoes was initiated in the Pliocene and continues to the present. The earliest ignimbrite flows (25.3-22.7 Ma) are intercalated in the upper, coarsely-elastic member of the Moquegua Formation and demonstrate that this sedimentary unit accumulated in a trough, parallel to Andean tectonic trends, largely in the Oligocene. More voluminous ash-flow eruptions prevailed in the Early Miocene (22.8-17.6 Ma) and formed the extensively preserved Huaylillas Formation. This episode was coeval with a major phase of Andean uplift, and the pyroclastics overlie an erosional surface of regional extent incised into a Paleogene volcano-plutonic arc terrain. An age span of 14.2-8.9 Ma (mid-Late Miocene) is indicated for the younger Chuntacala Formation, which again comprises felsic ignimbrite flows, largely restricted to valleys incised into the pre-Huaylillas Formation lithologies, and, at lower altitudes, an extensive aggradational elastic facies. The youngest areally extensive ignimbrites, constituting the Sencca Formation, were extruded during the Late Miocene. In the earliest Pliocene, the ignimbrites were succeeded by more voluminous calcalkaline, intermediate flows which generated numerous large and small stratovolcanoes; these range in age from 5.3 to 1.6 Ma. Present-day, or Holocene, volcanism is restricted to several large stratovolcanoes which had begun their development during the Pleistocene (by 0.7 Ma). The late Oligocene/Early Miocene (ca. 22-23 Ma) reactivation of the volcanic arc coincided with a comparable increase in magmatic activity throughout much of the Cordilleras Occidental and Oriental of the Central Andes.

  5. Two new Cystoderma species from high Andean Ecuador

    DEFF Research Database (Denmark)

    Saar, I.; Læssøe, Thomas


    ABSTRACT: Two new agaric species, Cystoderma andinum and C. papallactae are described from high Andean Ecuador.......ABSTRACT: Two new agaric species, Cystoderma andinum and C. papallactae are described from high Andean Ecuador....

  6. Inversion of SAR data in active volcanic areas by optimization techniques

    Directory of Open Access Journals (Sweden)

    G. Nunnari


    Full Text Available The inversion problem concerns the identification of parameters of a volcanic source causing observable changes in ground deformation data recorded in volcanic areas. In particular, this paper deals with the inversion of ground deformation measured by using SAR (Synthetic Aperture Radar interferometry and an inversion approach formulated in terms of an optimization problem is proposed. Based on this inversion scheme, it is shown that the problem of inverting ground deformation data in terms of a single source, of Mogi or Okada type, is numerically well conditioned. In the paper, two case studies of inverting actual SAR data recorded on Mt. Etna during eruptions occurring in 1998 and 2001 are investigated, showing the suitability of the proposed technique.

  7. Andean tectonics: Implications for Satellite Geodesy (United States)

    Allenby, R. J.


    Current knowledge and theories of large scale Andean tectonics as they relate to site planning for the NASA Crustal Dynamics Program's proposed high precision geodetic measurements of relative motions between the Nazca and South American plates are summarized. The Nazca Plate and its eastern margin, the Peru-Chile Trench, is considered a prototype plate marked by rapid motion, strong seismicity and well defined boundaries. Tectonic activity across the Andes results from the Nazca Plate subducting under the South American plate in a series of discrete platelets with different widths and dip angles. This in turn, is reflected in the tectonic complexity of the Andes which are a multitutde of orogenic belts superimposed on each other since the Precambrian. Sites for Crustal Dynamics Program measurements are being located to investigate both interplate and extraplate motions. Observing operations have already been initiated at Arequipa, Peru and Easter Island, Santiago and Cerro Tololo, Chile. Sites under consideration include Iquique, Chile; Oruro and Santa Cruz, Bolivia; Cuzco, Lima, Huancayo and Bayovar, Peru; and Quito and the Galapagos Islands, Ecuador. Based on scientific considerations, Santa Cruz, Huancayo (or Lima), Quito and the Galapagos Islands should be replaced by Isla San Felix, Chile; Brazilia or Petrolina, Brazil; and Guayaquil, Ecuador. If resources permit, additional important sites would be Buenaventura and Villavicencio or Puerto La Concordia, Colombia; and Mendoza and Cordoba, Argentina.

  8. Andean tectonics: Implications for Satellite Geodesy (United States)

    Allenby, R. J.


    Current knowledge and theories of large scale Andean tectonics as they relate to site planning for the NASA Crustal Dynamics Program's proposed high precision geodetic measurements of relative motions between the Nazca and South American plates are summarized. The Nazca Plate and its eastern margin, the Peru-Chile Trench, is considered a prototype plate marked by rapid motion, strong seismicity and well defined boundaries. Tectonic activity across the Andes results from the Nazca Plate subducting under the South American plate in a series of discrete platelets with different widths and dip angles. This in turn, is reflected in the tectonic complexity of the Andes which are a multitutde of orogenic belts superimposed on each other since the Precambrian. Sites for Crustal Dynamics Program measurements are being located to investigate both interplate and extraplate motions. Observing operations have already been initiated at Arequipa, Peru and Easter Island, Santiago and Cerro Tololo, Chile. Sites under consideration include Iquique, Chile; Oruro and Santa Cruz, Bolivia; Cuzco, Lima, Huancayo and Bayovar, Peru; and Quito and the Galapagos Islands, Ecuador. Based on scientific considerations, Santa Cruz, Huancayo (or Lima), Quito and the Galapagos Islands should be replaced by Isla San Felix, Chile; Brazilia or Petrolina, Brazil; and Guayaquil, Ecuador. If resources permit, additional important sites would be Buenaventura and Villavicencio or Puerto La Concordia, Colombia; and Mendoza and Cordoba, Argentina.

  9. Short-lived tectonic switch mechanism for long-term pulses of volcanic activity after mega-thrust earthquakes

    Directory of Open Access Journals (Sweden)

    M. Lupi


    Full Text Available Eruptive rates in volcanic arcs increase significantly after mega-thrust earthquakes in subduction zones. Over short to intermediate time periods the link between mega-thrust earthquakes and arc response can be attributed to dynamic triggering processes or static stress changes, but a fundamental mechanism that controls long-term pulses of volcanic activity after mega-thrust earthquakes has not been proposed yet. Using geomechanical, geological, and geophysical arguments, we propose that increased eruption rates over longer timescales are due to the relaxation of the compressional regime that accompanies mega-thrust subduction zone earthquakes. More specifically, the reduction of the horizontal stress σh promotes the occurrence of short-lived strike-slip kinematics rather than reverse faulting in the volcanic arc. The relaxation of the pre-earthquake compressional regime facilitates magma mobilization by providing a short-circuit pathway to shallow depths by significantly increasing the hydraulic properties of the system. The timescale for the onset of strike-slip faulting depends on the degree of shear stress accumulated in the arc during inter-seismic periods, which in turn is connected to the degree of strain-partitioning at convergent margins. We performed Coulomb stress transfer analysis to determine the order of magnitude of the stress perturbations in present-day volcanic arcs in response to five actual mega-thrust earthquakes; the 2005 M8.6, 2007 M8.5, and 2007 M7.9 Sumatra earthquakes; the 2010 M8.8 Maule, Chile earthquake; and the 2011 M9.0 Tohoku, Japan earthquake. We find that all, but one, the shallow earthquakes that occurred in the arcs of Sumatra, Chile and Japan show a marked lateral component. Our hypothesis suggests that the long-term response of volcanic arcs to subduction zone mega-thrust earthquakes will be manifested as predominantly strike-slip seismic events, and that these future earthquakes will be followed closely by

  10. Eighteen years of geochemical monitoring at the oceanic active volcanic island of El Hierro (Canary Islands, Spain) (United States)

    Asensio-Ramos, María; Alonso, Mar; Sharp, Emerson; Woods, Hannah; Barrancos, José; Pérez, Nemesio M.


    We report herein the latest results of a diffuse CO2 efflux survey at El Hierro volcanic system carried out during the summer period of 2015 to constrain the total CO2 output from the studied area a during post-eruptive period. El Hierro Island (278 km2) is the youngest and the SW-most of the Canary Islands. On July 16, 2011, a seismic-volcanic crisis started with the occurrence of more than 11,900 seismic events and significant deformation along the island. On October 10, 2011, the dominant character of seismicity changed dramatically from discrete earthquakes to continuous tremor, a clear indication that magma was rapidly approaching the surface immediately before the onset of the eruption, October 12. Eruption was declared over on 5 March, 2012. In order to monitor the volcanic activity of El Hierro Island, from 1998 to 2015 diffuse CO2 emission studies have been performed at El Hierro volcanic system in a yearly basis (˜600 observation sites) according to the accumulation chamber method. Spatial distribution maps were constructed following the sequential Gaussian simulation (sGs) procedure. To quantify the total CO2 emission from the studied area, 100 simulations for each survey have been performed. During the eruption period, soil CO2 efflux values range from non-detectable (˜0.5 g m-2 d-1) up to 457 g m-2 d-1, reaching in November 27, 2011, the maximum CO2 output estimated value of all time series, 2,398 t d-1, just before the episodes of maximum degassing observed as vigorous bubbling at the sea surface and an increment in the amplitude of the tremor signal. During the 2015 survey, soil CO2 efflux values ranged from non-detectable up to 41 g m-2 d-1. The spatial distribution of diffuse CO2 emission values seemed to be controlled by the main volcano structural features of the island. The total diffuse CO2 output released to atmosphere was estimated at 575 ± 24 t d-1, value slightly higher that the background CO2 emission estimated at 422 t d-1 (Melián et

  11. Influence of seismic processes and volcanic activity on the formation of disastrous floods (United States)

    Trifonov, Dmitriy


    models of hydraulic systems, but ultimately due to difference of pressures in their respective segments and areas of the transport network. At the exit of the groundwater on the surface such change in pressure is connected both with the state of the actual water flow in underground cavities, or violations of the structure (topology) of 3D-network. As one of the major and sudden reasons of change of pressure in the underground system can serve seismic processes, including volcanic eruptions (as magmatic and ash). During these processes enormous underground space can be freed from the dense rock. This leads to rapid changes in pressure and that, in principle, a new topology of 3D network and water flows in it. It is important that such dynamic processes occur over huge distances in underground basins of thousands of kilometers [3], of course, with a certain time delay. In the result of the analysis of large-scale flooding in Russia in 2001-2002, as well as the catastrophic floods in Western Europe, in the Amur region of Russia and in the state of Colorado USA in 2013, a correlation between seismic and volcanic activities and floods, expressed by specific numerical correlation coefficients, has been revealed. For example, knowing the date, location and magnitude of an earthquake, we can identify potentially dangerous territories in the aspect of the probability of occurrence of floods, because the stresses in the crust, spreading from the hypocenter of earthquakes, and their subsequent relaxation are one of the most important factors of floods. Mechanisms of distribution of these stresses are well-studied today [2] unlike their influence on the groundwater. The defined boundaries of potentially dangerous sites are broad enough; with regard to the direction of distribution of stress, it is about the sectors in 40 degrees (from the line of the movement of the crustal plate) in the direction from the boundaries of lithospheric plates. Distribution of this impact occurs, as a

  12. Toward a pro-active scientific advice on global volcanic activity within the multi-hazard framework of the EU Aristotle project (United States)

    Barsotti, Sara; Duncan, Melanie; Loughlin, Susan; Gísladóttir, Bryndis; Roberts, Matthew; Karlsdóttir, Sigrún; Scollo, Simona; Salerno, Giuseppe; Corsaro, Rosa Anna; Charalampakis, Marinos; Papadopoulos, Gerassimos


    The demand for timely analysis and advice on global volcanic activity from scientists is growing. At the same time, decision-makers require more than an understanding of hazards; they need to know what impacts to expect from ongoing and future events. ARISTOTLE (All Risk Integrated System TOwards Trans-boundary hoListic Early-warning) is a two-year EC funded pilot project designed to do just that. The Emergency Response Coordination Centre (ERCC) works to support and coordinate response to disasters both inside and outside Europe using resources from the countries participating in the European Union Civil Protection Mechanism. Led by INGV and ZAMG, the ARISTOTLE consortium comprises 15 institutions across Europe and aims to deliver multi-hazard advice on natural events, including their potential interactions and impact, both inside and outside of Europe to the ERCC. Where possible, the ERCC would like a pro-active provision of scientific advice by the scientific group. Iceland Met Office leads the volcanic hazards work, with BGS, INGV and NOA comprising the volcano observatory team. At this stage, the volcanology component of the project comprises mainly volcanic ash and gas dispersal and potential impact on population and ground-based critical infrastructures. We approach it by relying upon available and official volcano monitoring institutions' reporting of activity, existing assessments and global databases of past events, modelling tools, remote-sensing observational systems and official VAAC advisories. We also make use of global assessments of volcanic hazards, country profiles, exposure and proxy indicators of threat to livelihoods, infrastructure and economic assets (e.g. Global Volcano Model outputs). Volcanic ash fall remains the only hazard modelled at the global scale. Volcanic risk assessments remain in their infancy, owing to challenges related to the multitude of hazards, data availability and model representation. We therefore face a number of

  13. Seismicity and volcanic activity in Japan based on crustal thermal activity. 1; Chikaku no netsukatsudo ni motozuku Nippon no jishin kazan katsudo. 1

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, M. [Tokai Univ., Tokyo (Japan). School of Marine Science and Technology


    This paper describes the following matters about correlation between seismic and volcanic activities and thermal energy. Investigations on the status of seismic and volcanic activities in the Japanese archipelago during about 400 years in the past reveals the following matters: noticing earthquakes with magnitudes of upper M6 to about M7, flows of energy going outward from deep crust of the earth repeat ups and downs, whereas several prominent rising periods having certain time widths can be seen; volcanic activities are included in the rising period at the same rank as seismic activities; with regard to years 1900 and on, the similar fact can be seen if the Japanese archipelago is divided into a north portion, a south portion, and an extremely south portion southern than the Hiuga area; and the present time is going toward a period of rise in energy flows. In other words, it is thought that the crust and the uppermost portion of the mantle form one body like an organic body, making an action like a geyser releasing the energy outward. 3 refs., 2 figs., 1 tab.

  14. Cenozoic back-arc magmatism of the southern extra-Andean Patagonia (44° 30' - 52° S: A review of geochemical data and geodynamic interpretations

    Directory of Open Access Journals (Sweden)

    M. D'Orazio


    framework of the space-time evolution of the magmatism and in the wider frame of the Cenozoic history of the Pacific margin of southern South America. The slab window openings associated with the collision between oceanic spreading ridges and the Chile Trench are the preferred geodynamic interpretation of the southern Patagonia magmatism. However, the occurrence of many volcanic formations whose age and location are not entirely compatible with the slab window model suggests that other geodynamic processes inducing mantle melting could have been active during Cenozoic time in the extra Andean Patagonia.

  15. Hazards of volcanic lakes: analysis of Lakes Quilotoa and Cuicocha, Ecuador

    Directory of Open Access Journals (Sweden)

    G. Gunkel


    Full Text Available Volcanic lakes within calderas should be viewed as high-risk systems, and an intensive lake monitoring must be carried out to evaluate the hazard of potential limnic or phreatic-magmatic eruptions. In Ecuador, two caldera lakes – Lakes Quilotoa and Cuicocha, located in the high Andean region >3000 a.s.l. – have been the focus of these investigations. Both volcanoes are geologically young or historically active, and have formed large and deep calderas with lakes of 2 to 3 km in diameter, and 248 and 148 m in depth, respectively. In both lakes, visible gas emissions of CO2 occur, and an accumulation of CO2 in the deep water body must be taken into account.

    Investigations were carried out to evaluate the hazards of these volcanic lakes, and in Lake Cuicocha intensive monitoring was carried out for the evaluation of possible renewed volcanic activities. At Lake Quilotoa, a limnic eruption and diffuse CO2 degassing at the lake surface are to be expected, while at Lake Cuicocha, an increased risk of a phreatic-magmatic eruption exists.

  16. Mesozooplankton distribution near an active volcanic island in the Andaman Sea (Barren Island)

    Digital Repository Service at National Institute of Oceanography (India)

    Pillai, H.U.K.; Jayaraj, K.A.; Rafeeq, M.; Jayalakshmi, K.J.; Revichandran, C.

    predation might happened in the surface. Copepods are important food items for chaetognaths (Liang and Vega-Pérez 1995), and they play an extremely important role in energy transfer to higher trophic levels (Terazaki 1998; Fulmer and Bollens 2005). It has... volcanic signature observed around Barren Island, Andaman Sea, India. Marine Geophysical Researches. doi:10.1007/ s11001–006–9008-z. Liang, T. H., & Vega-Pérez, L. A. (1995). Studies on chaetognaths off Ubatuba region, Brazil. II. Feeding habits...

  17. Administrative Law in the Andean Community of Nations

    Directory of Open Access Journals (Sweden)

    Jorge Enrique Santos Rodríguez


    Full Text Available One of the contemporary tendencies of Administrative Law is the recognition of its existence beyond the borders of a State. Under such premise, this paper aims to demonstrate that in the Andean Community of Nations sufficient elements to consider the existence of an Andean administrative Law. In the Andean statutes and rules, it is possible to identify an administrative function, as well as an administrative organization inside the Andean Integration System; and a system of Andean administrative rules and an administrative justice system.

  18. Sediment budget in the Ucayali River basin, an Andean tributary of the Amazon River

    Directory of Open Access Journals (Sweden)

    W. Santini


    Full Text Available Formation of mountain ranges results from complex coupling between lithospheric deformation, mechanisms linked to subduction and surface processes: weathering, erosion, and climate. Today, erosion of the eastern Andean cordillera and sub-Andean foothills supplies over 99% of the sediment load passing through the Amazon Basin. Denudation rates in the upper Ucayali basin are rapid, favoured by a marked seasonality in this region and extreme precipitation cells above sedimentary strata, uplifted during Neogene times by a still active sub-Andean tectonic thrust. Around 40% of those sediments are trapped in the Ucayali retro-foreland basin system. Recent advances in remote sensing for Amazonian large rivers now allow us to complete the ground hydrological data. In this work, we propose a first estimation of the erosion and sedimentation budget of the Ucayali River catchment, based on spatial and conventional HYBAM Observatory network.

  19. Geosphere-biosphere interactions in bio-activity volcanic lakes: evidences from Hule and Rìo Cuarto (Costa Rica). (United States)

    Cabassi, Jacopo; Tassi, Franco; Mapelli, Francesca; Borin, Sara; Calabrese, Sergio; Rouwet, Dmitri; Chiodini, Giovanni; Marasco, Ramona; Chouaia, Bessem; Avino, Rosario; Vaselli, Orlando; Pecoraino, Giovannella; Capecchiacci, Francesco; Bicocchi, Gabriele; Caliro, Stefano; Ramirez, Carlos; Mora-Amador, Raul


    Hule and Río Cuarto are maar lakes located 11 and 18 km N of Poás volcano along a 27 km long fracture zone, in the Central Volcanic Range of Costa Rica. Both lakes are characterized by a stable thermic and chemical stratification and recently they were affected by fish killing events likely related to the uprising of deep anoxic waters to the surface caused by rollover phenomena. The vertical profiles of temperature, pH, redox potential, chemical and isotopic compositions of water and dissolved gases, as well as prokaryotic diversity estimated by DNA fingerprinting and massive 16S rRNA pyrosequencing along the water column of the two lakes, have highlighted that different bio-geochemical processes occur in these meromictic lakes. Although the two lakes host different bacterial and archaeal phylogenetic groups, water and gas chemistry in both lakes is controlled by the same prokaryotic functions, especially regarding the CO2-CH4 cycle. Addition of hydrothermal CO2 through the bottom of the lakes plays a fundamental priming role in developing a stable water stratification and fuelling anoxic bacterial and archaeal populations. Methanogens and methane oxidizers as well as autotrophic and heterotrophic aerobic bacteria responsible of organic carbon recycling resulted to be stratified with depth and strictly related to the chemical-physical conditions and availability of free oxygen, affecting both the CO2 and CH4 chemical concentrations and their isotopic compositions along the water column. Hule and Río Cuarto lakes were demonstrated to contain a CO2 (CH4, N2)-rich gas reservoir mainly controlled by the interactions occurring between geosphere and biosphere. Thus, we introduced the term of bio-activity volcanic lakes to distinguish these lakes, which have analogues worldwide (e.g. Kivu: D.R.C.-Rwanda; Albano, Monticchio and Averno: Italy; Pavin: France) from volcanic lakes only characterized by geogenic CO2 reservoir such as Nyos and Monoun (Cameroon).

  20. Geosphere-Biosphere Interactions in Bio-Activity Volcanic Lakes: Evidences from Hule and Rìo Cuarto (Costa Rica) (United States)

    Cabassi, Jacopo; Tassi, Franco; Mapelli, Francesca; Borin, Sara; Calabrese, Sergio; Rouwet, Dmitri; Chiodini, Giovanni; Marasco, Ramona; Chouaia, Bessem; Avino, Rosario; Vaselli, Orlando; Pecoraino, Giovannella; Capecchiacci, Francesco; Bicocchi, Gabriele; Caliro, Stefano; Ramirez, Carlos; Mora-Amador, Raul


    Hule and Río Cuarto are maar lakes located 11 and 18 km N of Poás volcano along a 27 km long fracture zone, in the Central Volcanic Range of Costa Rica. Both lakes are characterized by a stable thermic and chemical stratification and recently they were affected by fish killing events likely related to the uprising of deep anoxic waters to the surface caused by rollover phenomena. The vertical profiles of temperature, pH, redox potential, chemical and isotopic compositions of water and dissolved gases, as well as prokaryotic diversity estimated by DNA fingerprinting and massive 16S rRNA pyrosequencing along the water column of the two lakes, have highlighted that different bio-geochemical processes occur in these meromictic lakes. Although the two lakes host different bacterial and archaeal phylogenetic groups, water and gas chemistry in both lakes is controlled by the same prokaryotic functions, especially regarding the CO2-CH4 cycle. Addition of hydrothermal CO2 through the bottom of the lakes plays a fundamental priming role in developing a stable water stratification and fuelling anoxic bacterial and archaeal populations. Methanogens and methane oxidizers as well as autotrophic and heterotrophic aerobic bacteria responsible of organic carbon recycling resulted to be stratified with depth and strictly related to the chemical-physical conditions and availability of free oxygen, affecting both the CO2 and CH4 chemical concentrations and their isotopic compositions along the water column. Hule and Río Cuarto lakes were demonstrated to contain a CO2 (CH4, N2)-rich gas reservoir mainly controlled by the interactions occurring between geosphere and biosphere. Thus, we introduced the term of bio-activity volcanic lakes to distinguish these lakes, which have analogues worldwide (e.g. Kivu: D.R.C.-Rwanda; Albano, Monticchio and Averno: Italy; Pavin: France) from volcanic lakes only characterized by geogenic CO2 reservoir such as Nyos and Monoun (Cameroon). PMID

  1. A statistical method linking geological and historical eruption time series for volcanic hazard estimations: Applications to active polygenetic volcanoes (United States)

    Mendoza-Rosas, Ana Teresa; De la Cruz-Reyna, Servando


    The probabilistic analysis of volcanic eruption time series is an essential step for the assessment of volcanic hazard and risk. Such series describe complex processes involving different types of eruptions over different time scales. A statistical method linking geological and historical eruption time series is proposed for calculating the probabilities of future eruptions. The first step of the analysis is to characterize the eruptions by their magnitudes. As is the case in most natural phenomena, lower magnitude events are more frequent, and the behavior of the eruption series may be biased by such events. On the other hand, eruptive series are commonly studied using conventional statistics and treated as homogeneous Poisson processes. However, time-dependent series, or sequences including rare or extreme events, represented by very few data of large eruptions require special methods of analysis, such as the extreme-value theory applied to non-homogeneous Poisson processes. Here we propose a general methodology for analyzing such processes attempting to obtain better estimates of the volcanic hazard. This is done in three steps: Firstly, the historical eruptive series is complemented with the available geological eruption data. The linking of these series is done assuming an inverse relationship between the eruption magnitudes and the occurrence rate of each magnitude class. Secondly, we perform a Weibull analysis of the distribution of repose time between successive eruptions. Thirdly, the linked eruption series are analyzed as a non-homogeneous Poisson process with a generalized Pareto distribution as intensity function. As an application, the method is tested on the eruption series of five active polygenetic Mexican volcanoes: Colima, Citlaltépetl, Nevado de Toluca, Popocatépetl and El Chichón, to obtain hazard estimates.

  2. Geosphere-biosphere interactions in bio-activity volcanic lakes: evidences from Hule and Rio Cuarto (Costa Rica.

    Directory of Open Access Journals (Sweden)

    Jacopo Cabassi

    Full Text Available Hule and Río Cuarto are maar lakes located 11 and 18 km N of Poás volcano along a 27 km long fracture zone, in the Central Volcanic Range of Costa Rica. Both lakes are characterized by a stable thermic and chemical stratification and recently they were affected by fish killing events likely related to the uprising of deep anoxic waters to the surface caused by rollover phenomena. The vertical profiles of temperature, pH, redox potential, chemical and isotopic compositions of water and dissolved gases, as well as prokaryotic diversity estimated by DNA fingerprinting and massive 16S rRNA pyrosequencing along the water column of the two lakes, have highlighted that different bio-geochemical processes occur in these meromictic lakes. Although the two lakes host different bacterial and archaeal phylogenetic groups, water and gas chemistry in both lakes is controlled by the same prokaryotic functions, especially regarding the CO2-CH4 cycle. Addition of hydrothermal CO2 through the bottom of the lakes plays a fundamental priming role in developing a stable water stratification and fuelling anoxic bacterial and archaeal populations. Methanogens and methane oxidizers as well as autotrophic and heterotrophic aerobic bacteria responsible of organic carbon recycling resulted to be stratified with depth and strictly related to the chemical-physical conditions and availability of free oxygen, affecting both the CO2 and CH4 chemical concentrations and their isotopic compositions along the water column. Hule and Río Cuarto lakes were demonstrated to contain a CO2 (CH4, N2-rich gas reservoir mainly controlled by the interactions occurring between geosphere and biosphere. Thus, we introduced the term of bio-activity volcanic lakes to distinguish these lakes, which have analogues worldwide (e.g. Kivu: D.R.C.-Rwanda; Albano, Monticchio and Averno: Italy; Pavin: France from volcanic lakes only characterized by geogenic CO2 reservoir such as Nyos and Monoun

  3. Assessing the volcanic hazard for Rome: 40Ar/39Ar and In-SAR constraints on the most recent eruptive activity and present-day uplift at Colli Albani Volcanic District (United States)

    Marra, F.; Gaeta, M.; Giaccio, B.; Jicha, B. R.; Palladino, D. M.; Polcari, M.; Sottili, G.; Taddeucci, J.; Florindo, F.; Stramondo, S.


    We present new 40Ar/39Ar data which allow us to refine the recurrence time for the most recent eruptive activity occurred at Colli Albani Volcanic District (CAVD) and constrain its geographic area. Time elapsed since the last eruption (36 kyr) overruns the recurrence time (31 kyr) in the last 100 kyr. New interferometric synthetic aperture radar data, covering the years 1993-2010, reveal ongoing inflation with maximum uplift rates (>2 mm/yr) in the area hosting the most recent (<200 ka) vents, suggesting that the observed uplift might be caused by magma injection within the youngest plumbing system. Finally, we frame the present deformation within the structural pattern of the area of Rome, characterized by 50 m of regional uplift since 200 ka and by geologic evidence for a recent (<2000 years) switch of the local stress-field, highlighting that the precursors of a new phase of volcanic activity are likely occurring at the CAVD.

  4. Evolving Regional Security in the Andean Region (United States)


    security forces or judicial systems reduces the effectiveness of regional cooperation. Past efforts to achieve consensus among the Andean states have...Trimestre 2001. Nuñez, Joseph. Una Arquitectura para la Seguridad del Siglo XXI par alas Américas: Cooperación Multilateral, Paz y Poder Flexible

  5. Volcanic and glacial evolution of Chachani-Nocarane complex (Southern Peru) deduced from the geomorphologic map. (United States)

    Alcalá, J.; Zamorano, J. J.; Palacios, D.


    The Chachani-Nocarane (16°11'S; 71°31'W; 6.057 m asl) is a large volcanic complex located in the western Central-Andean Cordillera, South of Peru. The date of the last eruption is not known and there are no registers of recent volcanic activity. The complex is shaped by glacial forms belonging to different phases, and periglacial forms (several generations of rock glaciers) which alternate with volcanic forms. The aim of this research is to establish the glacio-volcanic evolution of the volcanic complex Chachani-Nocarane. In order to do so, a detailed 1:20.000 scale geomorphological map was elaborated by integrating the following techniques: interpretation of the 1:35.000 scale aerial photographs (Instituto Geográfico Nacional de Perú, 1956) and the analysis of satellite images (Mrsid; NASA, 2000). Finally, the cartography was corrected though field work campaigns. Through the geomorphologic analysis of the landforms and their relative position, we have identified twelve phases, seven volcanic and five glacial phases. The most ancient volcanic phase is locate to the north area of the study area and correspond with Nocarane and Chingana volcanoes, alignment NW-SE. Above those ensemble the rest of the large delimited geomorphological units overlap. The most recent is located to the SW and consists of a complex series of domes, lava cones and voluminous lavas. Within the glacial phases, the most ancient one is related to the Last Glacial Maximum during the Pleistocene. Over this period, glaciers formed moraines from 3150 to 3600 m asl. The most recent glacier pulsation corresponds to the Little Ice Age (LIA). The moraines related to that event are the closest to the summits, located between 5.100 and 5.300 m asl, and they represent the last trace of glacial activity on the volcanic complex. Currently, this tropical mountain does not have glaciers. The only solid-state water reserves are found in the form of permafrost, as shown by various generations of rock

  6. Volcanic hazards to airports (United States)

    Guffanti, M.; Mayberry, G.C.; Casadevall, T.J.; Wunderman, R.


    Volcanic activity has caused significant hazards to numerous airports worldwide, with local to far-ranging effects on travelers and commerce. Analysis of a new compilation of incidents of airports impacted by volcanic activity from 1944 through 2006 reveals that, at a minimum, 101 airports in 28 countries were affected on 171 occasions by eruptions at 46 volcanoes. Since 1980, five airports per year on average have been affected by volcanic activity, which indicates that volcanic hazards to airports are not rare on a worldwide basis. The main hazard to airports is ashfall, with accumulations of only a few millimeters sufficient to force temporary closures of some airports. A substantial portion of incidents has been caused by ash in airspace in the vicinity of airports, without accumulation of ash on the ground. On a few occasions, airports have been impacted by hazards other than ash (pyroclastic flow, lava flow, gas emission, and phreatic explosion). Several airports have been affected repeatedly by volcanic hazards. Four airports have been affected the most often and likely will continue to be among the most vulnerable owing to continued nearby volcanic activity: Fontanarossa International Airport in Catania, Italy; Ted Stevens Anchorage International Airport in Alaska, USA; Mariscal Sucre International Airport in Quito, Ecuador; and Tokua Airport in Kokopo, Papua New Guinea. The USA has the most airports affected by volcanic activity (17) on the most occasions (33) and hosts the second highest number of volcanoes that have caused the disruptions (5, after Indonesia with 7). One-fifth of the affected airports are within 30 km of the source volcanoes, approximately half are located within 150 km of the source volcanoes, and about three-quarters are within 300 km; nearly one-fifth are located more than 500 km away from the source volcanoes. The volcanoes that have caused the most impacts are Soufriere Hills on the island of Montserrat in the British West Indies

  7. Volcanism on Mars. Chapter 41 (United States)

    Zimbelman, J. R.; Garry, W. B.; Bleacher, J. E.; Crown, D. A.


    Spacecraft exploration has revealed abundant evidence that Mars possesses some of the most dramatic volcanic landforms found anywhere within the solar system. How did a planet half the size of Earth produce volcanoes like Olympus Mons, which is several times the size of the largest volcanoes on Earth? This question is an example of the kinds of issues currently being investigated as part of the space-age scientific endeavor called "comparative planetology." This chapter summarizes the basic information currently known about volcanism on Mars. The volcanoes on Mars appear to be broadly similar in overall morphology (although, often quite different in scale) to volcanic features on Earth, which suggests that Martian eruptive processes are not significantly different from the volcanic styles and processes on Earth. Martian volcanoes are found on terrains of different age, and Martian volcanic rocks are estimated to comprise more than 50% of the Martian surface. This is in contrast to volcanism on smaller bodies such as Earth's Moon, where volcanic activity was mainly confined to the first half of lunar history (see "Volcanism on the Moon"). Comparative planetology supports the concept that volcanism is the primary mechanism for a planetary body to get rid of its internal heat; smaller bodies tend to lose their internal heat more rapidly than larger bodies (although, Jupiter's moon Io appears to contradict this trend; Io's intense volcanic activity is powered by unique gravitational tidal forces within the Jovian system; see "Volcanism on Io"), so that volcanic activity on Mars would be expected to differ considerably from that found on Earth and the Moon.

  8. 3D-Reconstruction of recent volcanic activity from ROV-video, Charles Darwin Seamounts, Cape Verdes (United States)

    Kwasnitschka, T.; Hansteen, T. H.; Kutterolf, S.; Freundt, A.; Devey, C. W.


    As well as providing well-localized samples, Remotely Operated Vehicles (ROVs) produce huge quantities of visual data whose potential for geological data mining has seldom if ever been fully realized. We present a new workflow to derive essential results of field geology such as quantitative stratigraphy and tectonic surveying from ROV-based photo and video material. We demonstrate the procedure on the Charles Darwin Seamounts, a field of small hot spot volcanoes recently identified at a depth of ca. 3500m southwest of the island of Santo Antao in the Cape Verdes. The Charles Darwin Seamounts feature a wide spectrum of volcanic edifices with forms suggestive of scoria cones, lava domes, tuff rings and maar-type depressions, all of comparable dimensions. These forms, coupled with the highly fragmented volcaniclastic samples recovered by dredging, motivated surveying parts of some edifices down to centimeter scale. ROV-based surveys yielded volcaniclastic samples of key structures linked by extensive coverage of stereoscopic photographs and high-resolution video. Based upon the latter, we present our workflow to derive three-dimensional models of outcrops from a single-camera video sequence, allowing quantitative measurements of fault orientation, bedding structure, grain size distribution and photo mosaicking within a geo-referenced framework. With this information we can identify episodes of repetitive eruptive activity at individual volcanic centers and see changes in eruptive style over time, which, despite their proximity to each other, is highly variable.

  9. Volcanology and volcanic activity with a primary focus on potential hazard impacts for the Hawaii geothermal project

    Energy Technology Data Exchange (ETDEWEB)

    Moore, R.B. [Federal Center, Denver, CO (United States); Delaney, P.T. [2255 North Gemini Drive, Flagstaff, AZ (United States); Kauahikaua, J.P. [Geological Survey, Hawaii National Park, HI (United States). Hawaiian Volcano Observatory


    This annotated bibliography reviews published references about potential volcanic hazards on the Island of Hawaii that are pertinent to drilling and operating geothermal wells. The first two sections of this annotated bibliography list the most important publications that describe eruptions of Kilauea volcano, with special emphasis on activity in and near the designated geothermal subzones. References about historic eruptions from Mauna Loa`s northeast rift zone, as well as the most recent activity on the southern flank of dormant Mauna Kea, adjacent to the Humu`ula Saddle are described. The last section of this annotated bibliography lists the most important publications that describe and analyze deformations of the surface of Kilauea and Mauna Loa volcanoes.

  10. Characterization of the Etna volcanic emissions through an active biomonitoring technique (moss-bags): part 1--major and trace element composition. (United States)

    Calabrese, S; D'Alessandro, W; Bellomo, S; Brusca, L; Martin, R S; Saiano, F; Parello, F


    Active biomonitoring using moss-bags was applied to an active volcanic environment for the first time. Bioaccumulation originating from atmospheric deposition was evaluated by exposing mixtures of washed and air-dried mosses (Sphagnum species) at 24 sites on Mt. Etna volcano (Italy). Concentrations of major and a large suite of trace elements were analysed by inductively coupled mass and optical spectrometry (ICP-MS and ICP-OES) after total acid digestion. Of the 49 elements analysed those which closely reflect summit volcanic emissions were S, Tl, Bi, Se, Cd, As, Cu, B, Na, Fe, Al. Enrichment factors and cluster analysis allowed clear distinction between volcanogenic, geogenic and anthropogenic inputs that affect the local atmospheric deposition. This study demonstrates that active biomonitoring with moss-bags is a suitable and robust technique for implementing inexpensive monitoring in scarcely accessible and harsh volcanic environments, giving time-averaged quantitative results of the local exposure to volcanic emissions. This task is especially important in the study area because the summit area of Mt. Etna is visited by nearly one hundred thousand tourists each year who are exposed to potentially harmful volcanic emissions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Quantitative Flow Morphology, Recent Volcanic Evolution and Future Activity of the Kameni Islands, Santorini, Greece (United States)

    Elliott, J. R.; Pyle, D. M.


    The fundamental importance of careful field investigation, and the long term value of detailed published volcanic eruption reports, means that much can be learned about eruption processes even many decades after an eruption has ceased. We illustrate this with reference to the young dacite lava flows of the Kameni islands, Santorini. We have created a new, high resolution digital elevation model (DEM) for the intra-caldera Kameni islands, Santorini, based on new data from a recent airborne laser-ranging (LiDAR) and aerial photography mission. This DEM reveals a wealth of surface morphological information on the dacite lava flows that comprise the Kameni islands. When combined with a re-analysis of contemporary eruption accounts, these data yield important insights into the physical properties and flow behaviour of dacite magma during slow effusive eruptions. Kameni island lava flows exhibit the classic surface morphologies associated with viscous aa: levees, and compression folds. Levee heights and flow widths are consistent with a Bingham rheology, and lava yield strengths of (3 to 7)× 104 Pa. Analysis of the shapes of flow edges confirms that the blocky aa dacite lava flows show a scale-invariant morphology with a typical fractal dimension that is indistinguishable from Hawaiian aa. Dome-growth rates during eruptions of the Kameni islands in 1866 and 1939 are consistent with a model of slow inflation of a dome with a strong crust. Lava domes on the Kameni islands have a crustal yield strength (4×107 Pa) that is lower by a factor of 2 to 4 than the domes at Pinatubo and Mount St Helens. The dome height model, combined with the apparent time-predictable nature of volcanic eruptions of the Kameni islands, allows us to predict that the next eruption of the Kameni islands will last for > 2.6 years (in 2005) and will involve formation of a dome ca. 115 to 123 m high.

  12. Active spreading processes at ultraslow mid-ocean ridges: The 1999-2001 seismo-volcanic episode at 85°E Gakkel ridge, Arctic Ocean (United States)

    Schlindwein, Vera; Riedel, Carsten; Korger, Edith; Läderach, Christine


    The rate of magma and crustal production at mid-ocean ridges is thought to decrease with decreasing spreading rate. At ultraslow spreading rates below 10-20 mm/y full rate, heat loss by conduction greatly reduces melt production with less melt produced at increasingly greater depths. Gakkel Ridge, the actively spreading mid-ocean ridge in the Arctic Ocean, opens at rates of 14 mm/y in the west decreasing to less than 6 mm/y at its eastern termination and demonstrates that magma production is not only a function of spreading rate. Whereas amagmatic spreading takes place at rates of about 12-10 mm/y, focussed melt production occurs at even lower spreading rates in long-lived discrete volcanic centres. One such centre is the 85°E volcanic complex at eastern Gakkel ridge where in 1999 a teleseismically recorded earthquake swarm consisting of more than 250 earthquakes over 9 months signalled the onset of an active spreading episode. The earthquake swarm is believed to be associated with volcanic activity although no concurrent lava effusion was found. We analysed the teleseismic earthquake swarm together with visual observation and microseismic data recorded at this site in 2001 and 2007 and noted the following characteristics which may be indicative for volcanic spreading events at the still poorly explored ultraslow spreading ridges: - unusual duration: The 1999 earthquake swarm lasted over 9 months rather than a few weeks as observed on faster spreading ridges. In addition, in 2001 seismoacoustic sounds which we interpret as gas discharge in Strombolian eruptions and a giant event plume maintained over more than one year indicate waxing and waning volcanic activity since 1999. - unusual strength: The earthquake swarm was detected at teleseismic distances of more than 1000 km and included 11 events with a magnitude >5. No other confirmed mid-ocean ridge eruption released a comparable seismic moment. Rather than focussing in a narrow area or showing pronounced

  13. Evidence from acoustic imaging for submarine volcanic activity in 2012 off the west coast of El Hierro (Canary Islands, Spain) (United States)

    Pérez, Nemesio M.; Somoza, Luis; Hernández, Pedro A.; de Vallejo, Luis González; León, Ricardo; Sagiya, Takeshi; Biain, Ander; González, Francisco J.; Medialdea, Teresa; Barrancos, José; Ibáñez, Jesús; Sumino, Hirochika; Nogami, Kenji; Romero, Carmen


    We report precursory geophysical, geodetic, and geochemical signatures of a new submarine volcanic activity observed off the western coast of El Hierro, Canary Islands. Submarine manifestation of this activity has been revealed through acoustic imaging of submarine plumes detected on the 20-kHz chirp parasound subbottom profiler (TOPAS PS18) mounted aboard the Spanish RV Hespérides on June 28, 2012. Five distinct "filament-shaped" acoustic plumes emanating from the flanks of mounds have been recognized at water depth between 64 and 88 m on a submarine platform located NW El Hierro. These plumes were well imaged on TOPAS profiles as "flares" of high acoustic contrast of impedance within the water column. Moreover, visible plumes composed of white rafts floating on the sea surface and sourcing from the location of the submarine plumes were reported by aerial photographs on July 3, 2012, 5 days after acoustic plumes were recorded. In addition, several geophysical and geochemical data support the fact that these submarine vents were preceded by several precursory signatures: (i) a sharp increase of the seismic energy release and the number of daily earthquakes of magnitude ≥2.5 on June 25, 2012, (ii) significant vertical and horizontal displacements observed at the Canary Islands GPS network (Nagoya University-ITER-GRAFCAN) with uplifts up to 3 cm from June 25 to 26, 2012, (iii) an anomalous increase of the soil gas radon activity, from the end of April until the beginning of June reaching peak values of 2.7 kBq/m3 on June 3, 2012, and (iv) observed positive peak in the air-corrected value of 3He/4He ratio monitored in ground waters (8.5 atmospheric 3He/4He ratio ( R A)) at the northwestern El Hierro on June 16, 2012. Combining these submarine and subaerial information, we suggest these plumes are the consequence of submarine vents exhaling volcanic gas mixed with fine ash as consequence of an event of rapid rise of volatile-rich magma beneath the NW submarine ridge

  14. Fluid escape structures in the Graham Bank region (Sicily Channel, Central Mediterranean) revealing volcanic and neotectonic activity. (United States)

    Spatola, Daniele; Pennino, Valentina; Basilone, Luca; Interbartolo, Francesco; Micallef, Aaron; Sulli, Attilio; Basilone, Walter


    In the Sicily Channel, (Central Mediterranean), two geodynamic processes overlap each other, the Maghrebides-Apennines accretionary prism and the Sicily Channel rift. Moreover, the northwestern sector (Banks sector) is characterised by an irregular seafloor morphology linked to the recent volcanic and tectonic activity.In order to discriminate the role exerted by both the processes in the morphostructural setting of the area we used a dataset of both high and very high resolution single-channel and multi-channel profiles, acquired in the frame of the RITMARE project respectively with CHIRP and sparker, and airgun sources, and high resolution (5 m cell) morpho-bathymetric data. The data allowed us to identify and characterise two areas where different geological features (sedimentary and volcanic) are prevailing. They present fluid escaping evidence, which often appears to be active and generating different types of morphologies (both positive and negative). In the western sector we recognised pockmarks at water depths of 195 to 317 m, with diameters from 25 to 580 m, depths from 1.3 to 15 m, and slope up to 23°. They show sub-circular shape in plan-view and reflectors with upward concavity in cross section, and are oriented along a NW-SE trend.The CHIRP and multichannel profiles highlight fluids that affect the Plio-Quaternary succession, especially in areas where the top surface of the Messinian succession is shallower. Conversely, wipe-out acoustic facies were recognised in proximity of: i) extensional faults of Mesozoic age with NW-SE trend; ii) dip/strike slip faults of Cenozoic age with NW-SE, N-S and about NNE-SSW trends, and iii) extensional neo-tectonic faults with NW-SE and NNW-SSE trends. We cannot exclude that they could feed the shallower reservoir producing a mixing between the two. In the eastern sector we recognised a cluster of volcanoes composed of seven cone-shaped structures (SCV1-7), pertaining to a wide area known as Graham Bank. A detailed

  15. High-up: a remote reservoir of microbial extremophiles at Central Andean Wetlands

    Directory of Open Access Journals (Sweden)

    Virginia Helena Albarracín


    Full Text Available The Central Andes region displays unexplored ecosystems of shallow lakes and salt flats at mean altitudes of 3,700 m. Being isolated and hostile, these so-called High-Altitude Andean Lakes (HAAL are pristine and have been exposed to little human influence. HAAL proved to be a rich source of microbes showing interesting adaptations to life in extreme settings (poly-extremophiles such as alkalinity, high concentrations of arsenic and dissolved salts, intense dryness, large daily ambient thermal amplitude, and extreme solar radiation levels. This work reviews HAAL microbiodiversity, taking into account different microbial niches, such as plankton, benthos, microbial mats and microbialites. The modern stromatolites and other microbialites discovered recently at HAAL are highlighted, as they provide unique modern -though quite imperfect- analogues of environments proxy for an earlier time in Earth’s history (volcanic setting and profuse hydrothermal activity, low atmospheric O2 pressure, thin ozone layer and high UV exposure. Likewise, we stress the importance of HAAL microbes as model poly-extremophiles in the study of the molecular mechanisms underlying their resistance ability against UV and toxic or deleterious chemicals using genome mining and functional genomics. In future research directions, it will be necessary to exploit the full potential of HAAL poly-extremophiles in terms of their biotechnological applications. Current projects heading this way have yielded detailed molecular information and functional proof on novel extremoenzymes: i.e. DNA repair enzymes and arsenic efflux pumps for which medical and bioremediation applications, respectively, are envisaged. But still, much effort is required to unravel novel functions for this and other molecules that dwell in a unique biological treasure despite its being hidden high up, in the remote Andes.

  16. High-Up: A Remote Reservoir of Microbial Extremophiles in Central Andean Wetlands (United States)

    Albarracín, Virginia H.; Kurth, Daniel; Ordoñez, Omar F.; Belfiore, Carolina; Luccini, Eduardo; Salum, Graciela M.; Piacentini, Ruben D.; Farías, María E.


    The Central Andes region displays unexplored ecosystems of shallow lakes and salt flats at mean altitudes of 3700 m. Being isolated and hostile, these so-called “High-Altitude Andean Lakes” (HAAL) are pristine and have been exposed to little human influence. HAAL proved to be a rich source of microbes showing interesting adaptations to life in extreme settings (poly-extremophiles) such as alkalinity, high concentrations of arsenic and dissolved salts, intense dryness, large daily ambient thermal amplitude, and extreme solar radiation levels. This work reviews HAAL microbiodiversity, taking into account different microbial niches, such as plankton, benthos, microbial mats and microbialites. The modern stromatolites and other microbialites discovered recently at HAAL are highlighted, as they provide unique modern—though quite imperfect—analogs of environments proxy for an earlier time in Earth's history (volcanic setting and profuse hydrothermal activity, low atmospheric O2 pressure, thin ozone layer and high UV exposure). Likewise, we stress the importance of HAAL microbes as model poly-extremophiles in the study of the molecular mechanisms underlying their resistance ability against UV and toxic or deleterious chemicals using genome mining and functional genomics. In future research directions, it will be necessary to exploit the full potential of HAAL poly-extremophiles in terms of their biotechnological applications. Current projects heading this way have yielded detailed molecular information and functional proof on novel extremoenzymes: i.e., DNA repair enzymes and arsenic efflux pumps for which medical and bioremediation applications, respectively, are envisaged. But still, much effort is required to unravel novel functions for this and other molecules that dwell in a unique biological treasure despite its being hidden high up, in the remote Andes. PMID:26733008

  17. High-Up: A Remote Reservoir of Microbial Extremophiles in Central Andean Wetlands. (United States)

    Albarracín, Virginia H; Kurth, Daniel; Ordoñez, Omar F; Belfiore, Carolina; Luccini, Eduardo; Salum, Graciela M; Piacentini, Ruben D; Farías, María E


    The Central Andes region displays unexplored ecosystems of shallow lakes and salt flats at mean altitudes of 3700 m. Being isolated and hostile, these so-called "High-Altitude Andean Lakes" (HAAL) are pristine and have been exposed to little human influence. HAAL proved to be a rich source of microbes showing interesting adaptations to life in extreme settings (poly-extremophiles) such as alkalinity, high concentrations of arsenic and dissolved salts, intense dryness, large daily ambient thermal amplitude, and extreme solar radiation levels. This work reviews HAAL microbiodiversity, taking into account different microbial niches, such as plankton, benthos, microbial mats and microbialites. The modern stromatolites and other microbialites discovered recently at HAAL are highlighted, as they provide unique modern-though quite imperfect-analogs of environments proxy for an earlier time in Earth's history (volcanic setting and profuse hydrothermal activity, low atmospheric O2 pressure, thin ozone layer and high UV exposure). Likewise, we stress the importance of HAAL microbes as model poly-extremophiles in the study of the molecular mechanisms underlying their resistance ability against UV and toxic or deleterious chemicals using genome mining and functional genomics. In future research directions, it will be necessary to exploit the full potential of HAAL poly-extremophiles in terms of their biotechnological applications. Current projects heading this way have yielded detailed molecular information and functional proof on novel extremoenzymes: i.e., DNA repair enzymes and arsenic efflux pumps for which medical and bioremediation applications, respectively, are envisaged. But still, much effort is required to unravel novel functions for this and other molecules that dwell in a unique biological treasure despite its being hidden high up, in the remote Andes.

  18. Characteristics of suspended sediment and river discharge during the beginning of snowmelt in volcanically active mountainous environments (United States)

    Mouri, Goro; Ros, Faizah Che; Chalov, Sergey


    To better understand instream suspended sediment delivery and transformation processes, we conducted field measurements and laboratory experiments to study the natural function of spatial and temporal variation, sediment particles, stable isotopes, particle size, and aspect ratio from tributary to mainstream flows of the Sukhaya Elizovskaya River catchment at the beginning of and during snowmelt. The Sukhaya Elizovskaya River is located in the Kamchatka Peninsula of Russia and is surrounded by active volcanic territory. The study area has a range of hydrological features that determine the extreme amounts of washed sediments. Sediment transported to the river channels in volcanic mountainous terrain is believed to be strongly influenced by climate conditions, particularly when heavy precipitation and warmer climate trigger mudflows in association with the melting snow. The high porosity of the channel bottom material also leads to interactions with the surface water, causing temporal variability in the daily fluctuations in water and sediment flow. Field measurements revealed that suspended sediment behaviour and fluxes decreased along the mainstream Sukhaya Elizovskaya River from inflows from a tributary catchment located in the volcanic mountain range. In laboratory experiments, water samples collected from tributaries were mixed with those from the mainstream flow of the Sukhaya Elizovskaya River to examine the cause of debris flow and characteristics of suspended sediment in the mainstream. These findings and the geological conditions of the tributary catchments studied led us to conclude that halloysite minerals likely comprise the majority of suspended sediments and play a significant role in phosphate adsorption. The experimental results were upscaled and verified using field measurements. Our results indicate that the characteristics of suspended sediment and river discharge in the Sukhaya Elizovskaya River can be attributed primarily to the beginning of

  19. Volcview: A Web-Based Platform for Satellite Monitoring of Volcanic Activity and Eruption Response (United States)

    Schneider, D. J.; Randall, M.; Parker, T.


    The U.S. Geological Survey (USGS), in cooperation with University and State partners, operates five volcano observatories that employ specialized software packages and computer systems to process and display real-time data coming from in-situ geophysical sensors and from near-real-time satellite sources. However, access to these systems both inside and from outside the observatory offices are limited in some cases by factors such as software cost, network security, and bandwidth. Thus, a variety of Internet-based tools have been developed by the USGS Volcano Science Center to: 1) Improve accessibility to data sources for staff scientists across volcano monitoring disciplines; 2) Allow access for observatory partners and for after-hours, on-call duty scientists; 3) Provide situational awareness for emergency managers and the general public. Herein we describe VolcView (, a freely available, web-based platform for display and analysis of near-real-time satellite data. Initial geographic coverage is of the volcanoes in Alaska, the Russian Far East, and the Commonwealth of the Northern Mariana Islands. Coverage of other volcanoes in the United States will be added in the future. Near-real-time satellite data from NOAA, NASA and JMA satellite systems are processed to create image products for detection of elevated surface temperatures and volcanic ash and SO2 clouds. VolcView uses HTML5 and the canvas element to provide image overlays (volcano location and alert status, annotation, and location information) and image products that can be queried to provide data values, location and measurement capabilities. Use over the past year during the eruptions of Pavlof, Veniaminof, and Cleveland volcanoes in Alaska by the Alaska Volcano Observatory, the National Weather Service, and the U.S. Air Force has reinforced the utility of shared situational awareness and has guided further development. These include overlay of volcanic cloud trajectory and

  20. Light-noble-gas isotopic ratios in gases from Mt. Etna (Southern Italy). Implications for mantle contamination and volcanic activity

    Energy Technology Data Exchange (ETDEWEB)

    Italiano, F. [Consiglio Nazionale delle Ricerche, Palermo (Italy). Ist. di Geochimica dei Fluidi; Nuccio, P.M. [Palermo Univ., Palermo (Italy). Ist. di Mineralogia, Petrografia e Geochimica; Nakai, S. [Tokyo Univ., Tokyo (Japan). Lab. for Earthquake Chemistry; Wakita, H. [Tokyo Univ., Tokyo (Japan). Earthquake Research Inst.


    Taking into account the light-noble-isotopic ratios signature of gas samples coming from the Etnean area (Southern Italy), it seems that in this area the crustal contamination played a minor role. Instead, processes that enriched the original MORB-type mantle in incompatible elements, have to be considered. The {sup 3}He/{sup 4}He ratios are, thus, lowered because of {sup 1}He produced by radioactive decay of U and Th. On the other hand, helium isotopic ratios have shown wide temporal variations sometimes reaching values as high as 7.6 Ra, out pf typical Etnean range. As these unusually high ratios have been measured during phases of unrest of the volcanic activity at Mt. Etna, this apparent discrepancy in the helium isotopic ratios is considered, as the effect of fractionation processes occurred during the magma uprising.

  1. Global positioning system survey data for active seismic and volcanic areas of eastern Sicily, 1994 to 2013 (United States)

    Bonforte, Alessandro; Fagone, Sonia; Giardina, Carmelo; Genovese, Simone; Aiesi, Gianpiero; Calvagna, Francesco; Cantarero, Massimo; Consoli, Orazio; Consoli, Salvatore; Guglielmino, Francesco; Puglisi, Biagio; Puglisi, Giuseppe; Saraceno, Benedetto


    This work presents and describes a 20-year long database of GPS data collected by geodetic surveys over the seismically and volcanically active eastern Sicily, for a total of more than 6300 measurements. Raw data were initially collected from the various archives at the Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Catania—Osservatorio Etneo and organized in a single repository. Here, quality and completeness checks were performed, while all necessary supplementary information were searched, collected, validated and organized together with the relevant data. Once all data and information collections were completed, raw binary data were converted into the universal ASCII RINEX format; all data are provided in this format with the necessary information for precise processing. In order to make the data archive readily consultable, we developed software allowing the user to easily search and obtain the needed data by simple alphanumeric and geographic queries.

  2. Modeling crustal deformation near active faults and volcanic centers: a catalog of deformation models and modeling approaches (United States)

    Battaglia, Maurizio; ,; Peter, F.; Murray, Jessica R.


    This manual provides the physical and mathematical concepts for selected models used to interpret deformation measurements near active faults and volcanic centers. The emphasis is on analytical models of deformation that can be compared with data from the Global Positioning System (GPS) receivers, Interferometric synthetic aperture radar (InSAR), leveling surveys, tiltmeters and strainmeters. Source models include pressurized spherical, ellipsoidal, and horizontal penny-shaped geometries in an elastic, homogeneous, flat half-space. Vertical dikes and faults are described following the mathematical notation for rectangular dislocations in an elastic, homogeneous, flat half-space. All the analytical expressions were verified against numerical models developed by use of COMSOL Multyphics, a Finite Element Analysis software ( In this way, typographical errors present were identified and corrected. Matlab scripts are also provided to facilitate the application of these models.

  3. Global positioning system survey data for active seismic and volcanic areas of eastern Sicily, 1994 to 2013. (United States)

    Bonforte, Alessandro; Fagone, Sonia; Giardina, Carmelo; Genovese, Simone; Aiesi, Gianpiero; Calvagna, Francesco; Cantarero, Massimo; Consoli, Orazio; Consoli, Salvatore; Guglielmino, Francesco; Puglisi, Biagio; Puglisi, Giuseppe; Saraceno, Benedetto


    This work presents and describes a 20-year long database of GPS data collected by geodetic surveys over the seismically and volcanically active eastern Sicily, for a total of more than 6300 measurements. Raw data were initially collected from the various archives at the Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Catania-Osservatorio Etneo and organized in a single repository. Here, quality and completeness checks were performed, while all necessary supplementary information were searched, collected, validated and organized together with the relevant data. Once all data and information collections were completed, raw binary data were converted into the universal ASCII RINEX format; all data are provided in this format with the necessary information for precise processing. In order to make the data archive readily consultable, we developed software allowing the user to easily search and obtain the needed data by simple alphanumeric and geographic queries.

  4. Improved techniques in data analysis and interpretation of potential fields: examples of application in volcanic and seismically active areas

    Directory of Open Access Journals (Sweden)

    G. Florio


    Full Text Available Geopotential data may be interpreted by many different techniques, depending on the nature of the mathematical equations correlating specific unknown ground parameters to the measured data set. The investigation based on the study of the gravity and magnetic anomaly fields represents one of the most important geophysical approaches in the earth sciences. It has now evolved aimed both at improving of known methods and testing other new and reliable techniques. This paper outlines a general framework for several applications of recent techniques in the study of the potential methods for the earth sciences. Most of them are here described and significant case histories are shown to illustrate their reliability on active seismic and volcanic areas.

  5. Characterization of the volcanic eruption emissions using neutron activation analysis; Caracterizacion de las emisiones de una erupcion volcanica mediante analisis por activacion neutronica

    Energy Technology Data Exchange (ETDEWEB)

    Pla, Rita R. [Comision Nacional de Energia Atomica, Buenos Aires (Argentina). Radioquimica, Tecnicas Analiticas Nucleares; Tafuri, Victoria V. [Servicio Meteorologico Nacional, Buenos Aires (Argentina). Centro de Contaminacion del Aire


    Characterization of the volcanic particulate material has been performed by analyzing aerosols and ashes with instrumental neutron activation analysis. Crustal enrichment factors were calculated using the elemental concentration and clustering techniques, and multivariate analysis were done. The analytical and data treatment methodologies allowed the sample differentiation from their geographical origin viewpoint, based on their chemical composition patterns, which are related to the deposit formation processes, which consist of direct deposition from the volcanic cloud, and removal by wind action after the end of the eruption, and and finally the deposition. (author). 8 refs., 5 figs.

  6. The volcanic response to deglaciation: Evidence from glaciated arcs and a reassessment of global eruption records (United States)

    Watt, Sebastian F. L.; Pyle, David M.; Mather, Tamsin A.

    Several lines of evidence have previously been used to suggest that ice retreat after the last glacial maximum (LGM) resulted in regionally-increased levels of volcanic activity. It has been proposed that this increase in volcanism was globally significant, forming a substantial component of the post-glacial rise in atmospheric CO2, and thereby contributing to climatic warming. However, as yet there has been no detailed investigation of activity in glaciated volcanic arcs following the LGM. Arc volcanism accounts for 90% of present-day subaerial volcanic eruptions. It is therefore important to constrain the impact of deglaciation on arc volcanoes, to understand fully the nature and magnitude of global-scale relationships between volcanism and glaciation. The first part of this paper examines the post-glacial explosive eruption history of the Andean southern volcanic zone (SVZ), a typical arc system, with additional data from the Kamchatka and Cascade arcs. In all cases, eruption rates in the early post-glacial period do not exceed those at later times at a statistically significant level. In part, the recognition and quantification of what may be small (i.e. less than a factor of two) increases in eruption rate is hindered by the size of our datasets. These datasets are limited to eruptions larger than 0.1 km3, because deviations from power-law magnitude-frequency relationships indicate strong relative under-sampling at smaller eruption volumes. In the southern SVZ, where ice unloading was greatest, eruption frequency in the early post-glacial period is approximately twice that of the mid post-glacial period (although frequency increases again in the late post-glacial). A comparable pattern occurs in Kamchatka, but is not observed in the Cascade arc. The early post-glacial period also coincides with a small number of very large explosive eruptions from the most active volcanoes in the southern and central SVZ, consistent with enhanced ponding of magma during

  7. Precambrian Lunar Volcanic Protolife

    Directory of Open Access Journals (Sweden)

    Jack Green


    Full Text Available Five representative terrestrial analogs of lunar craters are detailed relevant to Precambrian fumarolic activity. Fumarolic fluids contain the ingredients for protolife. Energy sources to derive formaldehyde, amino acids and related compounds could be by flow charging, charge separation and volcanic shock. With no photodecomposition in shadow, most fumarolic fluids at 40 K would persist over geologically long time periods. Relatively abundant tungsten would permit creation of critical enzymes, Fischer-Tropsch reactions could form polycyclic aromatic hydrocarbons and soluble volcanic polyphosphates would enable assembly of nucleic acids. Fumarolic stimuli factors are described. Orbital and lander sensors specific to protolife exploration including combined Raman/laser-induced breakdown spectrocsopy are evaluated.

  8. Ecological Resilience and Resistance in the Hyper Diverse Forests on the Eastern Andean Flank (Mera, Ecuador) (United States)

    Keen, H. F.; Gosling, W. D.; Montoya, E.; Sherlock, S.; Mothes, P. A.


    Today the Neotropics contain some of the world's most biodiverse and threatened ecosystems. Sediments obtained from two radiocarbon infinite (>48,000 years) stratigraphic sections on the eastern Andean flank, provide new insight into the relationship between biodiversity and disturbance during the Pleistocene (~200,000 years). Pollen analysis of modern and fossil material indicates that hyper diverse forest vegetation has been a feature of the Andean flank landscape for 100,000 years (pollen richness: modern = 44, fossil = 48). Correlation of past vegetation with disturbance events (volcanic and fluvial) indicates the response of hyper-diverse forest to past landscape scale change. Pollen records from near Mera (01°27 S, 78°06 W; 1117 m asl) indicate two major changes in the pollen assemblage, with forest communities dominated by: i) Hedyosmum-Alnus-Ilex, and ii) Combretaceae-Melastomataceae-Myrtaceae. These two pollen assemblages most closely resemble modern vegetation cloud forest (2500-3400m asl) and lower montane rain forest (700-2499 m asl) respectively. Sedimentary evidence suggests that at least 21 volcanic events and three changes in the local fluvial regime perturbed the regional landscape during the period of deposition. However, there is no evidence for volcanic or fluvial disturbance events causing a persistent change in vegetation community. Volcanic events (tephra deposits) are associated with increased fire (charcoal particles), and changes in vegetation (pollen grains); however, within ~50cm of sediment accumulation above each tephra, pollen assemblages revert to pre-deposition compositions. Increased fluvial influence (gravel deposits) is associated with elevated input of pollen from taxa today found at higher elevations (Podocarpus-Celtis). The input of high elevation taxa concomitant with fluvial deposits is most likely indicative of an increase in long-distance transport of pollen along water courses originating in the Andes. Our data indicate

  9. Strategies in the processing and analysis of continuous gravity record in active volcanic areas: the case of Mt. Vesuvius

    Directory of Open Access Journals (Sweden)

    J. Hinderer


    Full Text Available This research is intended to describe new strategies in the processing and analysis of continuous gravity records collected in active volcanic areas and to assess how permanent gravity stations can improve the geophysical monitoring of a volcano. The experience of 15 years in continuous gravity monitoring on Mt. Vesuvius is discussed. Several geodynamic phenomena can produce temporal gravity changes. An eruption, for instance, is associated with the ascent of magma producing changes in the density distribution at depth, and leading to ground deformation and gravity changes The amplitude of such gravity variations is often quite small, in the order of 10-102 nms-2, so their detection requires high quality data and a rigorous procedure to isolate from the records those weak gravity signals coming from different sources. Ideally we need gravity signals free of all effects which are not of volcanic origin. Therefore solid Earth tide, ocean and atmospheric loading, instrumental drift or any kind of disturbances other than due to the volcano dynamics have to be removed. The state of the art on the modelling of the solid Earth tide is reviewed. The atmospheric dynamics is one of the main sources precluding the detection of small gravity signals. The most advanced methods to reduce the atmospheric effects on gravity are presented. As the variations of the calibration factors can prevent the repeatability of high-precision measurements, new approaches to model the instrumental response of mechanical gravimeters are proposed too. Moreover, a strategy for an accurate modelling of the instrumental drift and to distinguish it from longterm gravity changes is suggested.

  10. A quantitative model for volcanic hazard assessment


    W. Marzocchi; Sandri, L.; Furlan, C


    Volcanic hazard assessment is a basic ingredient for risk-based decision-making in land-use planning and emergency management. Volcanic hazard is defined as the probability of any particular area being affected by a destructive volcanic event within a given period of time (Fournier d’Albe 1979). The probabilistic nature of such an important issue derives from the fact that volcanic activity is a complex process, characterized by several and usually unknown degrees o...

  11. High-resolution remote sensing data to monitor active volcanic areas: an application to the 2011-2015 eruptive activity of Mount Etna (Italy) (Conference Presentation) (United States)

    Marsella, Maria


    In volcanic areas, where it could be difficult to gain access to the most critical zones for carrying out direct surveys, remote sensing proved to have remarkable potentialities to follow the evolution of lava flow, as well as to detect slope instability processes induced by volcanic activity. By exploiting SAR and optical data a methodology for observing and quantifying eruptive processes was developed. The approach integrates HR optical images and SAR interferometric products and can optimize the observational capability of standard surveillance activities based on in-situ video camera network. A dedicated tool for mapping the evolution of the lava field, using both ground-based and satellite data, was developed and tested to map lava flows during the 2011-2015 eruptive activities. Ground based data were collected using the permanent ground NEtwork of Thermal and VIsible Sensors located on Mt. Etna (Etna_NETVIS) and allowed to downscale the information derived from satellite data and to integrate the satellite datasets in case of incomplete coverage or missing acquisitions. This work was developed in the framework of the EU-FP7 project "MED-SUV" (MEDiterranean SUpersite Volcanoes).

  12. Variability in New Shortening Estimates from Southern Peru (12-14S); Implications for Mass Balance of the Andean Plateau. (United States)

    Gotberg, N.; McQuarrie, N.


    One of the fundamental questions of interest with regards to the Andean Plateau is the mass balance of material needed to create and sustain a 3-4 km high plateau. Is crustal shortening sufficient to support an isostatically compensated crust of 60-70km? We present new estimates of shortening across the northern margin of the Andean Plateau. The cross section extent, from the eastern edge of the volcanic arc to foreland basin, is approximately one half of the physiographic width of the Andean Plateau in Peru. Cross sectional shortening estimates in southern Peru (12-14°S) provide a best estimate of 123 km or 40% shortening with an absolute minimum estimate of 86 km or 30% and absolute maximum estimate of 275 km or 60%. We determined the maximum and minimum shortening estimates using the cross sectional area and possible variations in assumptions made about the amount of erosion, detachment dip, involvement of basement thrusts and displacement along faults. The best estimate of shortening is well short of the required 240-300km of shortening needed in order to account for a 60-70km thick crust under the entire plateau. This suggests that for an isostatically equilibrated crust either 1) there is a significant amount of shortening (~150km) in the western half of the plateau which, is hidden by the volcanic arc or 2) crustal material is being added to the Peruvian section of the Andean Plateau either through lower crustal flow or a process of magmatic underplating followed by differentiation and delamination.

  13. Reconciling Local and Global Agendas in Sustainable Development: Participatory Research with Indigenous Andean Communities

    Institute of Scientific and Technical Information of China (English)

    Robert E. Rhoades; Virginia Nazarea


    This paper discusses participatory research in the Andes and presents a case study in Cotacachi, Ecuador, where sustainability scientists and indigenous people seek common ground in their respective but drastically different research and social agendas. Participatory research based on Andean experiences pre-dated and inspired much of the later international movement in agriculture, health, and conservation. Andean communities have a long history in demanding that outsiders address the needs of the community as a condition for carrying out scientific or applied activities. What an Andean community, however, sees as relevant may or may not practiced throughout much of the world. In fact,overzealous participatory researchers are just as bothersome as their predecessors bearing long questionnaires. More important to Andean people is an equitable relationship with researchers and developers in which exchanges of value are made. A research is drawn. In the case of the SANREM project in Cotacachi, Ecuador, scientists carried out enriching research activities of interest to local people as a way to generate social capital for conducting basic research which does not have an obvious, immediate local benefit. The requested research did not have a conventional participatory methodology but provided valuable products (educational opportunity,germplasm, community visualization tools, and information) to the indigenous community in exchange for time and resources to conduct research on more basic natural resource questions. We argue that in the Andean context the key to reconciling the needs of scientists and of local needs is seeking new forms of equitable collaboration which reach beyond the present and now somewhat tired discourse of ‘participation'.

  14. Exploring a long-lasting volcanic eruption by means of in-soil radon measurements and seismic activity (United States)

    Falsaperla, Susanna; Neri, Marco; Di Grazia, Giuseppe; Langer, Horst; Spampinato, Salvatore


    We analyze in-soil radon (Rn) emission and ambient parameters (barometric pressure and air temperature measurements) along with seismic activity during the longest flank eruption of this century at Mt. Etna, Italy. This eruption occurred between 14 May 2008 and 6 July 2009, from a N120-140°E eruptive fissure extending between 3050 and 2620 m above sea level. It was heralded by a short-lived (~5 hours) episode of lava fountaining three days before a dike-forming intrusion fed a lava emission, which affected the summit area of the volcano over ~15 months. The peculiar position of the station for the Rn measurement, which was at an altitude of 2950 m above sea level and near (~1 km) the summit active craters, offered us the uncommon chance: i) to explore the temporal development of the gas emission close (relationship between in-soil Rn fluxes and seismic signals (in particular, local earthquakes and volcanic tremor) during the uninterrupted lava emission. This approach reveals important details about the recharging phases characterizing the 2008-2009 eruption, which are not visible with other methods of investigation. Our study benefitted from the application of methods of pattern classification developed in the framework of the European MEDiterrranean Supersite Volcanoes (MED­SUV) project.

  15. Constraints for recently discovered ignimbrites in the Altiplano-Puna Volcanic Complex (APVC), northern Chile (United States)

    Layana, S.; Aguilera, F.


    One of most voluminous ignimbrite provinces in the world (>30.000 km3) is located in the Central Andean Volcanic Zone (CAVZ), which has been continuously active since Upper Oligocene. Altiplano-Puna Volcanic Complex (APVC), located between 21 and 24ºS, is a volcano-tectonic province constituted by diverse caldera complexes and ignimbrite deposits (Upper Miocene - Lower Pleistocene) that covers an area ~50.000 km2. In this work, we present data from three new ignimbrites discovered in a portion of APVC (22°-22,4°S), with the objective to establish its origin and provenance. Were identified 3 new ignimbrites: 1) Cabana ignimbrite (>7.5 Ma), constituted by 3 pyroclastic flow and 1 pyroclastic surge units of crystal-glass rich dacitic tuffs, 80 m maximum thick, 0.18 km3 volume and 0.14 km3 DRE; 2) Inacaliri ignimbrite (7.5 Ma) constituted by two members, corresponding to glassy dacitic (basal member) and basaltic andesites (upper member) tuffs, the total thick reach up 20 m, 0.003 km3 volume and 0.002 km3 DRE; 3) Tolar ignimbrite (>1.3 Ma), constituted by a single pyroclastic flow and a basal fall glassy dacitic deposits, 50 m maximum thick, 0.04 km3 volume and 0.03 km3 DRE. Cabana ignimbrite seems to have been originated from a single caldera complex, whose cannot be recognized in the field. Inacaliri ignimbrite could be related to initial phases of building of Inacaliri and Apacheta-Aguilucho volcanic complexes, or originated to a buried caldera located below both volcanic complexes. Finally, Tolar ignimbrite corresponds to initial building stage of Toconce volcano, located 2 km at NE from these deposits.

  16. Shifts in leaf litter breakdown along a forest-pasture-urban gradient in Andean streams. (United States)

    Iñiguez-Armijos, Carlos; Rausche, Sirkka; Cueva, Augusta; Sánchez-Rodríguez, Aminael; Espinosa, Carlos; Breuer, Lutz


    Tropical montane ecosystems of the Andes are critically threatened by a rapid land-use change which can potentially affect stream variables, aquatic communities, and ecosystem processes such as leaf litter breakdown. However, these effects have not been sufficiently investigated in the Andean region and at high altitude locations in general. Here, we studied the influence of land use (forest-pasture-urban) on stream physico-chemical variables (e.g., water temperature, nutrient concentration, and pH), aquatic communities (macroinvertebrates and aquatic fungi) and leaf litter breakdown rates in Andean streams (southern Ecuador), and how variation in those stream physico-chemical variables affect macroinvertebrates and fungi related to leaf litter breakdown. We found that pH, water temperature, and nutrient concentration increased along the land-use gradient. Macroinvertebrate communities were significantly different between land uses. Shredder richness and abundance were lower in pasture than forest sites and totally absent in urban sites, and fungal richness and biomass were higher in forest sites than in pasture and urban sites. Leaf litter breakdown rates became slower as riparian land use changed from natural to anthropogenically disturbed conditions and were largely determined by pH, water temperature, phosphate concentration, fungal activity, and single species of leaf-shredding invertebrates. Our findings provide evidence that leaf litter breakdown in Andean streams is sensitive to riparian land-use change, with urban streams being the most affected. In addition, this study highlights the role of fungal biomass and shredder species (Phylloicus; Trichoptera and Anchytarsus; Coleoptera) on leaf litter breakdown in Andean streams and the contribution of aquatic fungi in supporting this ecosystem process when shredders are absent or present low abundance in streams affected by urbanization. Finally, we summarize important implications in terms of managing of

  17. Seismicity and volcanic activity in Japan based on crustal thermal activity . 2; Chikaku no netsukatsudo ni motozuku Nippon no Jishin kazan katsudo. 2

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, M. [Tokai Univ., Tokyo (Japan). School of Marine Science and Technology


    This paper describes the following matters about seismic and volcanic activities in Japan. The previous paper has reported a view that energy is transported from deep portions of the earth`s crust toward outer portions, and the stored energy thrusts up collectively in a certain time period (a rising period). A fact may be accounted for as one of the endorsements thereof that earthquakes and volcanic eruptions take place successively over a wide area from Okinawa to Hokkaido in a short period of time (included in the rising period). When viewed by limiting the time period and areas, a great earthquake would not occur suddenly, but stored energy is released wholly at a certain time while it has been released little by little. Referring to the Kanto Great Earthquake (1923) and the Tokai and Nankai Earthquakes (1944 and 1946), it is found that earthquakes had been occurring successively in the surrounding areas since about 20 years before the occurrence of these great earthquakes. Similar phenomena may be seen in the great earthquakes of Ansei (1854) and An-ei (1707). 5 figs.

  18. Marking behavior of Andean bears in an Ecuadorian cloud forest

    NARCIS (Netherlands)

    Filipczyková, Eva; Heitkonig, Ignas; Castellanos, Armando; Hantson, Wouter; Steyaert, Sam M.J.G.


    Very little is known about marking behavior of the endangered Andean bear (Tremarctos ornatus). Here, we present a first detailed description of Andean bear marking behavior obtained using camera traps. From November 2012 to April 2013, we inspected 16 bear trails in the Napo province of eastern

  19. Where and When did High Andean Relief Emerge?: Insights From Molecular Phylogenies of Andean Biota (United States)

    Sempere, T.; Picard, D.; Plantard, O.


    Emergence of mountains along the Andean margin created new ecosystems and thus triggered a variety of adaptive biotic radiations, to the point that the Andes are to-day one of the world's major biodiversity hotspots. The rising Andes came to serve as a rain barrier: cloud forests developed along their eastern side due to orographic concentration of the westward-moving Amazonian moisture, and environments became drier in the west, with highland steppes extending above ~2-3 km. Relevant biologic data concerning Andean taxa adapted to these environments might therefore shed some light on the issue of Andean orogeny and surface uplift. Phylogeography (the analysis of phylogenetic trees in terms of biogeographic distributions) and phylochronology (the use of phylogenetic trees as molecular clocks) can be employed to reconstruct syn- orogenic radiations and estimate their timing, respectively. We use published molecular phylogenies that inform on the evolution of a variety of Andean animal and plant taxa, and therefore provide indirect means to assess and approximately date the acquisition of altitude. Phylogeographic analyses of 6 phylogenetic trees concerning unrelated Andean biota coincide in having their basal clades established in areas within the Central Andean Orocline (CAO), 5 of them clearly pointing to southern Peru and/or western Bolivia as the region of origin of the corresponding high-Andean taxa. A histogram of 9 phylochronologic estimates, based on trees concerning unrelated taxa (independently constructed and calibrated), suggests that the 2.0-2.5 km critical altitude was acquired during the 23-17 Ma or 26-16 Ma intervals (depending on the threshold used), confirming some geomorphic and geologic estimates (but conflicting with others). Although more data are needed, these results suggest that it was within the CAO and approximately during the early Miocene that the Andes acquired altitudes sufficient to trigger radiations of cold-adapted taxa, i.e. >~2 km

  20. Mantle enrichment by volatiles as the Nazca plate subducts beneath the Payenia backarc of the Sourthern Volcanic Zone, Argentina

    DEFF Research Database (Denmark)

    Brandt, Frederik Ejvang

    , minerals, fluid and melt inclusions from the Payenia backarc province of the Andean Southern Volcanic Zone. Major emphasis has been on olivine hosted melt inclusions. The study gives evidence for the role of fluids in the metasomatism of the backarc mantle, and outlines the trend of the variation...

  1. Vasodilatador effect mediated by nitric oxide of the Zea mays L (Andean purple corn) hydroalcoholic extract in aortic rings of rat


    Moreno-Loaiza, Oscar; Facultad de Medicina, Universidad Nacional San Agustín, Arequipa, Perú. Sociedad Científica de Estudiantes de Medicina Agustinos, Arequipa, Perú. Estudiante de medicina.; Paz-Aliaga, Azael; Facultad de Medicina, Universidad Nacional San Agustín, Arequipa, Perú. Centro de Investigación y Desarrollo Científico, Universidad Nacional San Agustín, Arequipa, Perú. Biólogo, PhD en Fisiología y Biofísica.


    Objective: To evaluate the vasodilator response of the hydroalcoholic extract of Zea mays L. (Andean purple corn) and to determine if this response is mediated by nitric oxide (NO). Material and methods: We obtained an extract by maceration for eight days of Andean purple corn cobs in 70% ethanol and subsequent concentration of the product. Thoracic aortic rings were evaluated in an isolated organ chamber, bathed with Krebs-Hensleit solution (KH), and vasomotor activity was recorded with ...

  2. Cenozoic stratigraphic development in the north Chilean forearc: Implications for basin development and uplift history of the Central Andean margin (United States)

    Hartley, Adrian J.; Evenstar, Laura


    with volcanic activity limited to the periodic eruption of extensive ignimbrite sheets. Alluvial fan, fluvial and lacustrine sedimentation dominated within the endorheic basins from ˜ 8 to 3 Ma. After development of a regional unconformity at 3 Ma a change to isolated evaporite sub-basins took place in the Central Depression with small lacustrine basins developed along the flank of the Western Cordillera. The scale and grain size recorded in the sedimentary systems indicates that a substantial source area was located in the present day area of the Western Cordillera by 30 Ma and that this has persisted to the present day. This area also shed material eastwards into the Altiplano. The presence of such a topographic feature by 30 Ma suggests that a significant proportion of Andean uplift had occurred prior to the Late Miocene. This important uplift phase should be incorporated into any model of Andean uplift. The evidence from the basin-fill succession suggests that sediments accumulated in a basin developed in front of a broad monocline between 38 and 19 Ma and that a transition to a thrust-bounded foreland style basin took place after the development of the unconformity at 19 Ma.

  3. Diffuse H_{2} emission: a useful geochemical tool to monitor the volcanic activity at El Hierro volcano system (United States)

    Pérez, Nemesio M.; Melián, Gladys; González-Santana, Judit; Barrancos, José; Padilla, Germán; Rodríguez, Fátima; Padrón, Eleazar; Hernández, Pedro A.


    The occurrence of interfering processes affecting reactive gases as CO2 during its ascent from magmatic bodies or hydrothermal systems toward the surface environment hinders the interpretation of their enrichments in the soil atmosphere and fluxes for volcano monitoring purposes (Marini and Gambardella, 2005). These processes include gas scrubbing by ground-waters and interaction with rocks, decarbonatation processes, biogenic production, etc. Within the rest of the soil gases, particularly interest has been addressed to light and highly mobile gases. They offer important advantages for the detection of vertical permeability structures, because their interaction with the surrounding rocks or fluids during the ascent toward the surface is minimum. H2 is one of the most abundant trace species in volcano-hydrothermal systems and is a key participant in many redox reactions occurring in the hydrothermal reservoir gas (Giggenbach, 1987). Although H2 can be produced in soils by N2-fixing and fertilizing bacteria, soils are considered nowadays as sinks of molecular hydrogen (Smith-Downey et al., 2006). Because of its chemical and physical characteristics, H2 generated within the crust moves rapidly and escapes to the atmosphere. These characteristics make H2 one of the best geochemical indicators of magmatic and geothermal activity at depth. El Hierro is the youngest and the SW-most of the Canary Islands and the scenario of the last volcanic eruption of the archipelago, a submarine eruption that took place 2 km off the southern coast of the island from October 2011 to March 2012. Since at El Hierro Island there are not any surface geothermal manifestations (fumaroles, etc), we have focused our studies on soil degassing surveys. Here we show the results of soil H2 emission surveys that have been carried out regularly since mid-2012. Soil gas samples were collected in ˜600 sites selected based on their accessibility and geological criteria. Soil gases were sampled at ˜40

  4. Geochemical constraints on the relationship between the Miocene-Pliocene volcanism and tectonics in the Palaoco and Fortunoso volcanic fields, Mendoza Region, Argentina: New insights from 40Ar/39Ar dating, Sr-Nd-Pb isotopes and trace elements (United States)

    Dyhr, Charlotte T.; Holm, Paul M.; Llambías, Eduardo J.


    New 40Ar/39Ar analyses constrain the formation of the volcanic succession of Sierra de Palaoco in the present back-arc of the Andean Southern Volcanic Zone (SVZ), near 36°S, to the Late Miocene and assigns them to the Huincán II Formation. The composition of major and trace elements, Sr, Nd and Pb isotopes of the Palaoco and nearby Río Grande rocks require a strong arc-like component in the mantle that is absent or weak in both Early Miocene (Fortunoso Group) and Pleistocene alkaline lavas (Llancanelo Group) erupted in the same area. We evaluate the relative roles of varying mantle source compositions and crustal contamination in the generation of geochemically very different lavas from the Palaoco, Fortunoso and Río Grande volcanic fields, north of the Payún Matrú Volcano. The source for the Early Miocene Fortunoso(I) basalts was a OIB-type mantle devoid of subduction zone input. This type of OIB-like volcanic activity terminated due to a change from an extensional to a compressional tectonic regime. Towards the end of the Miocene renewed alkaline volcanism at Fortunoso (II) display a transition to arc-type incompatible element enrichment. Shortly after the calc-alkaline Palaoco volcanism started with a very strong geochemical arc-signature including Ba/La ≈ 60 and La/Nb = 2-3. After a quiesence of 1 Ma the major part of the voluminous Late Palaoco basalts were erupted around 7.5 Ma over a few hundred ka. These are less enriched in Ba and Sr and have compositions like many Holocene rocks of the Southern Volcanic Zone. Isotopically the Fortunoso I and Palaoco rocks are distinct. Regional volcanism of the Charilehue, Huincán I and II mostly has a moderate arc-type enrichment indicating incipient arc developments. However, Palaoco and La Brea at (c. 35°S) show full geochemical arc-signature, and we infer that a frontal arc was established. The subsequent development in the Palaoco-Río Grande area encompasses renewed late Pliocene calc-alkaline low volume

  5. Combination of SAR remote sensing and GIS for monitoring subglacial volcanic activity – recent results from Vatnajökull ice cap (Iceland

    Directory of Open Access Journals (Sweden)

    U. Münzer


    Full Text Available This paper presents latest results from the combined use of SAR (Synthetic Aperture Radar remote sensing and GIS providing detailed insights into recent volcanic activity under Vatnajökull ice cap (Iceland. Glaciers atop active volcanoes pose a constant potential danger to adjacent inhabited regions and infrastructure. Besides the usual volcanic hazards (lava flows, pyroclastic clouds, tephra falls, etc., the volcano-ice interaction leads to enormous meltwater torrents (icelandic: jökulhlaup, devastating large areas in the surroundings of the affected glacier. The presented monitoring strategy addresses the three crucial questions: When will an eruption occur, where is the eruption site and which area is endangered by the accompanying jökulhlaup. Therefore, sufficient early-warning and hazard zonation for future subglacial volcanic eruptions becomes possible, as demonstrated for the Bardárbunga volcano under the northern parts of Vatnajökull. Seismic activity revealed unrest at the northern flanks of Bardárbunga caldera at the end of September 2006. The exact location of the corresponding active vent and therefore a potentially eruptive area could be detected by continuous ENVISAT-ASAR monitoring. With this knowledge a precise prediction of peri-glacial regions prone to a devastating outburst flood accompanying a possible future eruption is possible.

  6. Episodes of volcanic activity and their environmental effects in the Okinawa Trough during the last 150 ka

    Institute of Scientific and Technical Information of China (English)


    A piston core Z14-6 was used in this study. The core, 896 cm long, was collected from eastern slope of the Okinawa Trough (27°07′N, 127°27′E, water depth 739m). The δ18O and δ13C values of the sediment bearing planktonic foraminifera G. sacculifer and N. dutertrei were determined; and the abundance of volcanic glass was analyzed. The volcanic glass content high occurred in early stage of polar ice-sheet growth period, or the beginning of cold climate periods corresponding to Milankovitch cycles (Peak Ⅰ, Ⅱ and Ⅴ are corresponding to the beginnings of oxygen isotopic stages 2, 4 and 6, and Peak Ⅲ and Ⅳ are matching oxygen isotopic stage 5b-5d.). It might be possible that volcanic episodes and climate changes were responding to orbital forcing in the Okinawa Trough in late Quaternary. The δ18O difference between N. dutertrei and G. sacculifer shows no clear correlation to the volcanic glass content high, which suggests that the volcanic eruptions did not influence the structure of upper water column. However, the low δ13C difference between G. sacculifer and N. dutertrei is coeval with the volcanic glass high or sub-high content. This fact suggests that volcanic eruptions might influence the reduction in vertical nutritional gradient and carbon cycle process in upper water column. A possible mechanism is that huge quantity of ash and dust had weakened the light intensity, resulting in photosynthesis reduction, productivity decrease, and biological pumping.

  7. The geochemistry of lithium-bearing geothermal water, Taupo Volcanic Zone, and shallow fluid processes in a very active silicic volcanic arc (United States)

    Dean, A. S.; Hoskin, P. W.; Rudnick, R. L.; Liu, X.; Boseley, C.


    The Li abundances and isotopic systematics of Taupo Volcanic Zone (TVZ) geothermal fluids preserves a record of processes occurring within shallow portions of geothermal reservoirs as well as deeper portions of the arc crust. Understanding Li cycling and isotopic fractionation in TVZ geothermal systems contributes to a more refined understanding of physicochemical processes affecting New Zealand's geothermal resources. A comprehensive dataset of 73 samples was compiled, with samples collected from geothermal surface features (springs, spouters, geysers, etc.) and electric-power industry production wells, collectively representing18 geothermal fields across the breadth and width the TVZ. No comparable dataset of fluid analyses exists. Ion chromatography, AAS, and quadrupole ICP-MS analyses were done for Li, Cl-, SiO2, SO42- K, Na, Ca, Mg, B, Sr and Pb concentrations. Lithium abundance in geothermal fluids from the TVZ have a dataset-wide average of 5.9 mg/L and range 4 μg/L to 29 mg/L. The Li abundance and Li/Cl ratios for geothermal water and steam condensates vary systematically as a result of boiling, mixing, and water/rock reaction. Lithium abundance and Li/Cl ratios are, therefore, indicators of shallow (above 2.5 km) and locally variable reservoir processes. δ7Li analysis of 63 samples was performed at the University of Maryland, College Park. Data quality was controlled by measurement of L-SVEC as a calibration standard and by multiple analysis of selected samples. The average δ7Li value for TVZ geothermal fluids is -0.8%. Most δ7Li values for geothermal water fall within a small range of about -3% to+2% indicating similar processes are causing similar isotopic fractionation throughout the region. Considered together, Li aundances and δ7Li values, in combination with numerical models, indicate possible evolution pathways and water/rock reactions in TVZ geothermal systems. Models based on rocks and surface water analysis indicate that Li cycles and

  8. Volcanic activities in the Southern part of East African rift initiation: Melilitites and nephelinites from the Manyara Basin (North Tanzania rift axis) (United States)

    Baudouin, Celine; Parat, Fleurice; Tiberi, Christel; Gautier, Stéphanie; Peyrat, Sophie


    The East African Rift exposes different stages of plate boundary extension, from the initiation of the rift (North (N) Tanzania) to oceanic accretion (Afar). The N Tanzania rift-axis (north-south (S) trend) is divided into 2 different volcanic and seismic activities: (1) the Natron basin (N) with shallow seismicity and intense volcanism and (2) the Manyara basin (S) with deep crustal earthquakes and sparse volcanism. The Natron basin is characterized by extinct volcanoes (2 Ma-0.75 Ma) and active volcano (Oldoinyo Lengai) and a link between seismicity and volcanism has been observed during the Oldoinyo Lengai crisis in 2007. In the S part of the N Tanzanian rift, volcanoes erupted in the Manyara basin between 0.4 and 0.9 Ma. In this study, we used geochemical signature of magmas and deep fluids that percolate into the lithosphere beneath Manyara basin, to define the compositions of magmas and fluids at depth beneath the S part of the N Tanzania rift, compare to the Natron basin and place constrain on the volcanic and seismic activities. The Manyara basin has distinct volcanic activities with mafic magmas as melilitites (Labait) and Mg-nephelinites (carbonatite, Kwaraha), and more differentiated magmas as Mg-poor nephelinites (Hanang). Melilitites and Mg-nephelinites are primary magmas with olivine, clinopyroxene (cpx), and phlogopite recording high-pressure crystallization environment, (melilitites >4 GPa and Mg-nephelinites>1 GPa) with high volatile contents (whole rock: 0.7-4.6 wt% CO2, 0.1-0.3 wt% F and 0.1 wt% Cl). FTIR analyses of olivine constrained the water content of Labait and Kwaraha magmas at 0.1 and 0.4 wt% H2O, respectively. Geochemical modelling suggests that mafic magmas result from a low degree of partial melting (1-2%) of a peridotitic source with garnet and phlogopite (high Tb/Yb (>0.6) and Rb/Sr (0.03-0.12) ratio). Mg-poor nephelinites from Hanang volcano crystallized cpx, Ti-garnet, and nepheline as phenocrysts. Magmas result from fractional

  9. The Under-side of the Andes: Using Receiver Functions to Map the North Central Andean Subsurface (United States)

    Ryan, J. C.; Beck, S. L.; Zandt, G.; Wagner, L. S.; Minaya, E.; Tavera, H.


    The Central Andean Uplift and Geodynamics of High Topography (CAUGHT) project is an interdisciplinary project to investigate connections between lithospheric removal, crustal shortening and surface uplift in the northern Bolivia and southern Peru region of the South American Andean orogen. The central Andes are defined by six major tectonomorphic provinces; the forearc, the volcanically active Western Cordillera (WC, ~6 km elevation), the internally drained Altiplano (~4 km elevation), an inactive fold and thrust belt in the Eastern Cordillera (EC, ~6 km elevation), a lower elevation active fold and thrust belt in the Subandean (SA) zone and the Beni, a foreland basin. Forty seismic stations installed for the CAUGHT project were deployed between 13° and 18° S latitude, covering the transition zone where the Altiplano region pinches out in southern Peru, in an effort to better constrain the changing character of the crust and mantle lithosphere. Geologic studies across the northern Bolivian portion of the eastern Andean margin (15-17° S) have documented a total of 275 km of upper crustal shortening (McQuarrie et al, Tectonics, v27, 2008), which may be associated with crustal thickening and/or the removal of lithospheric material as a thickened lithosphere root becomes unstable. For this receiver function (converted wave) study, we have little coverage in the forearc and foreland, ~75 km spacing in most of the array, and a relatively dense ~20 km spaced profile along the Charaña-La Paz-Yucumo transect, the eastern portion of which is nearly coincident with the balanced cross-section of McQuarrie et al. (2008). Using the first year of available data, more than 1200 receiver functions have been calculated using an iterative deconvolution method, and stacked using the common conversion point (CCP) method, along profiles parallel to and nearly coincident to those used for the geologic shortening estimates. We identified arrivals for the Moho and generated a 3D map of

  10. The December 2002 volcanic activity at Stromboli: fall and tsunami deposits characterization (United States)

    Andronico, D.; Coltelli, M.; Corsaro, R. A.; Miraglia, L.; Pompilio, M.


    The volcano of Stromboli in the Aeolian Islands (Italy) was known since the Roman age as the "lighthouse" of the Mediterranean Sea, due to its persistent "Strombolian" activity resulting in a summit firelight. During its eruptive history, Stromboli displayed effusive activity and paroxysmal eruptions, too. Lava flows usually flood down the Sciara del Fuoco, a steep depression cutting the NW flank of the cone. Paroxysmals often eject large bombs which can injure the inhabited areas and more rarely form small pyroclastic or debris flows. On the evening of 28 December 2002, effusive activity began after 17 years from the Crater 1; a lava flow reached in about 30 minutes the sea, going down the Sciara del Fuoco. On 30 December, two landslides interested a wide sector of the Sciara del Fuoco, flowing down into the sea. The first one, at about 1.15 p.m., was smaller than the second event which occurred a few minutes later and caused the detachment towards the sea of a more consistent rock volume. This events generated strong tsunami waves which affected the coastline of most of the Aeolian Islands reaching the Milazzo port, about 50 km far. Up to 10 m high waves caused severe damages to the seaside of Stromboli and to the small buildings located at Ficogrande village. We sampled the tsunami sand deposits on the beach and within the houses and the ashes emitted before, and after the tsunami event. The deposits have been studied carrying out grain-size, component analysis, morphometric and compositional characterization. The resulting data allowed to investigate magma fragmentation mechanisms and, for the first time in Stromboli, to characterize the deposit correlated to a tsunami event.

  11. Methane production and consumption in an active volcanic environment of Southern Italy. (United States)

    Castaldi, Simona; Tedesco, Dario


    Methane fluxes were measured, using closed chambers, in the Crater of Solfatara volcano, Campi Flegrei (Southern Italy), along eight transects covering areas of the crater presenting different landscape physiognomies. These included open bare areas, presenting high geothermal fluxes, and areas covered by vegetation, which developed along a gradient from the central open area outwards, in the form of maquis, grassland and woodland. Methane fluxes decreased logarithmically (from 150 to -4.5 mg CH4 m(-2)day(-1)) going from the central part of the crater (fangaia) to the forested edges, similarly to the CO2 fluxes (from 1500 g CO2 m(-2)day(-1) in the centre of the crater to almost zero flux in the woodlands). In areas characterized by high emissions, soil presented elevated temperature (up to 70 degrees C at 0-10 cm depth) and extremely low pH (down to 1.8). Conversely, in woodland areas pH was higher (between 3.7 and 5.1) and soil temperature close to air values. Soil (0-10 cm) was sampled, in two different occasions, along the eight transects, and was tested for methane oxidation capacity in laboratory. Areas covered by vegetation mostly consumed CH4 in the following order woodland>macchia>grassland. Methanotrophic activity was also measured in soil from the open bare area. Oxidation rates were comparable to those measured in the plant covered areas and were significantly correlated with field CH4 emissions. The biological mechanism of uptake was demonstrated by the absence of activity in autoclaved replicates. Thus results suggest the existence of a population of micro-organisms adapted to this extreme environment, which are able to oxidize CH4 and whose activity could be stimulated and supported by elevated concentrations of CH4.

  12. Signs of Recent Volcanism and Hydrothermal Activity Along the Eastern Segment of the Galapagos Spreading Center (United States)

    Raineault, N.; Smart, C.; Mayer, L. A.; Ballard, R. D.; Fisher, C. R.; Marsh, L.; Shank, T. M.


    Since the initial discovery of the Galápagos Spreading Center (GSC) vents in 1977, large-scale disturbances resulting from eruptive and tectonic activity have both destroyed and created vent habitats along the GSC. In 2015, the E/V Nautilus returned to the GSC with remotely operated vehicles (ROVs) to explore 17 kilometers of the rift valley from the Rosebud site in the west, to a previously unexplored temperature anomaly east of the Tempus Fugit vent site. In the years to over a decade since scientists last visited the Rosebud, Rose Garden, and Tempus Fugit sites, there were many changes. Most notably, the Rosebud site, where scientists found a nascent vent community and left site markers in 2002, was apparently covered with glassy basaltic sheet flows. In addition to visual exploration, oceanographic sensor measurements and direct sampling, we used the ROV Hercules imaging suite, comprised of stereo cameras and a structured light laser sensor to map an area of diffuse flow in the Tempus Fugit field (100 m x 150 m). The centimeter-level photographic and bathymetric maps created with this system, along with ROV HD video, samples, and environmental sensors, documented hydrothermal activity and changes in biological community structure (e.g., Riftia tubeworms observed in nascent stages of community development in 2011 were now, in 2015, in greater abundance (with tubes almost 4 m in length). The detection of active venting and associated faunal assemblages will provide insight into the temporal and spatial variability of venting activity at the Tempus Fugit site. On a visual survey of the Rift east of the Tempus Fugit site, extinct sulfide chimney structures were discovered and sampled. There were several chimneys and sulfide deposits in a span of over 8 km that ranged in height from over a half meter to 1.5 m tall. Diffuse flow hosting white and blue bacterial mats was observed near the chimneys complexes. The base of a large chimney structure, venting white fluids

  13. Planning the improvement of a seismic network for monitoring active volcanic areas: the experience on Mt. Etna (United States)

    D'Alessandro, A.; Scarfì, L.; Scaltrito, A.; Di Prima, S.; Rapisarda, S.


    Seismology and geodesy are generally seen as the most reliable diagnostic tools for monitoring highly active or erupting volcanoes, like Mt. Etna. From the early 1980's, seismic activity was monitored at Mt. Etna by a permanent seismic network, progressively improved in the following years. This network has been considerably enhanced since 2005 by 24-bit digital stations equipped with broad-band (40 s) sensors. Today, thanks to a configuration of 33 broad-band and 12 short-period stations, we have a good coverage of the volcanic area as well as a high quality of the collected data. In the framework of the VULCAMED project a workgroup of Istituto Nazionale di Geofisica e Vulcanologia has taken on the task of developing the seismic monitoring system, through the installation of other seismic stations. The choice of optimal sites must be clearly made through a careful analysis of the geometry of the existing seismic network. In this paper, we applied the Seismic Network Evaluation through Simulation in order to evaluate the performance of the Etna Seismic Network before and after the addition of the stations in the candidate sites. The main advantage of the adopted method is that we can evaluate the improvement of the network before the actual installation of the stations. Our analysis has permitted to identify some critical issues of the current permanent seismic network related to the lack of stations in the southern sector of the volcano, which is nevertheless affected by a number of seismogenic structures. We have showed that the addition of stations at the candidate sites would greatly extend the coverage of the network to the south by significantly reducing the errors in the hypocenter parameters estimation.

  14. Volcanic eruptions observed with infrasound (United States)

    Johnson, Jeffrey B.; Aster, Richard C.; Kyle, Philip R.


    Infrasonic airwaves produced by active volcanoes provide valuable insight into the eruption dynamics. Because the infrasonic pressure field may be directly associated with the flux rate of gas released at a volcanic vent, infrasound also enhances the efficacy of volcanic hazard monitoring and continuous studies of conduit processes. Here we present new results from Erebus, Fuego, and Villarrica volcanoes highlighting uses of infrasound for constraining quantitative eruption parameters, such as eruption duration, source mechanism, and explosive gas flux.

  15. Volcanic hazards and aviation safety (United States)

    Casadevall, Thomas J.; Thompson, Theodore B.; Ewert, John W.; ,


    An aeronautical chart was developed to determine the relative proximity of volcanoes or ash clouds to the airports and flight corridors that may be affected by volcanic debris. The map aims to inform and increase awareness about the close spatial relationship between volcanoes and aviation operations. It shows the locations of the active volcanoes together with selected aeronautical navigation aids and great-circle routes. The map mitigates the threat that volcanic hazards pose to aircraft and improves aviation safety.

  16. Seismic activity and thermal regime of low temperature fumaroles at Mt. Vesuvius in 2004-2011: distinguishing among seismic, volcanic and hydrological signals

    Directory of Open Access Journals (Sweden)

    Paola Cusano


    Full Text Available Seismological, soil temperature and hydrological data from Mt. Vesuvius are collected to characterize the present-day activity of the volcanic/hydrothermal system and to detect possible unrest-related phenomena. We present patterns of seismicity and soil temperature in the crater area during the period February 2004-December 2011. The temporal distribution of number and depth of Volcano-Tectonic earthquakes and the energy release are considered. Hourly data of soil temperature have been acquired since January 2004 in different locations along the rim and within the crater. The observed changes of temperature are studied to establish a temporal-based correlation with the volcanic activity and/or with external forcing, as variations of the regional and local stress field acting on the volcano or meteorological phenomena. The comparison between seismic activity and temperature data highlights significant variations possibly related to changes in fluid circulation in the hydrothermal system of the volcano. The common continuous observations start just before a very shallow earthquake occurred in August 2005, which was preceded by a thermal anomaly. This coincidence has been interpreted as related to fluid-driven rock fracturing, as observed in other volcanoes. For the successive temporal patterns, the seismicity rate and energy release are characterized by slight variations accompanied by changes in temperature. This evidence of reactivity of the fumarole thermal field to seismic strain can be used to discriminate between tectonic and volcanic signals at Mt. Vesuvius.

  17. Multistation alarm system for eruptive activity based on the automatic classification of volcanic tremor: specifications and performance (United States)

    Langer, Horst; Falsaperla, Susanna; Messina, Alfio; Spampinato, Salvatore


    With over fifty eruptive episodes (Strombolian activity, lava fountains, and lava flows) between 2006 and 2013, Mt Etna, Italy, underscored its role as the most active volcano in Europe. Seven paroxysmal lava fountains at the South East Crater occurred in 2007-2008 and 46 at the New South East Crater between 2011 and 2013. Month-lasting lava emissions affected the upper eastern flank of the volcano in 2006 and 2008-2009. On this background, effective monitoring and forecast of volcanic phenomena are a first order issue for their potential socio-economic impact in a densely populated region like the town of Catania and its surroundings. For example, explosive activity has often formed thick ash clouds with widespread tephra fall able to disrupt the air traffic, as well as to cause severe problems at infrastructures, such as highways and roads. For timely information on changes in the state of the volcano and possible onset of dangerous eruptive phenomena, the analysis of the continuous background seismic signal, the so-called volcanic tremor, turned out of paramount importance. Changes in the state of the volcano as well as in its eruptive style are usually concurrent with variations of the spectral characteristics (amplitude and frequency content) of tremor. The huge amount of digital data continuously acquired by INGV's broadband seismic stations every day makes a manual analysis difficult, and techniques of automatic classification of the tremor signal are therefore applied. The application of unsupervised classification techniques to the tremor data revealed significant changes well before the onset of the eruptive episodes. This evidence led to the development of specific software packages related to real-time processing of the tremor data. The operational characteristics of these tools - fail-safe, robustness with respect to noise and data outages, as well as computational efficiency - allowed the identification of criteria for automatic alarm flagging. The

  18. Spatial distribution of Io's volcanic activity from near-IR adaptive optics observations on 100 nights in 2013-2015 (United States)

    de Kleer, Katherine; de Pater, Imke


    The extreme and time-variable volcanic activity on Jupiter's moon Io is the result of periodic tidal forcing. The spatial distribution of Io's surface heat flux provides an important constraint on models for tidal heat dissipation, yielding information on interior properties and on the depth at which the tidal heat is primarily dissipated. We analyze the spatial distribution of 48 hot spots based on more than 400 total hot spot detections in adaptive optics images taken on 100 nights in 2013-2015 (data presented in de Kleer and de Pater [2016] Time variability of Io's volcanic activity from near-IR adaptive optics 13 observations on 100 nights in 2013-2015). We present full surface maps of Io at multiple near-infrared wavelengths for three epochs during this time period, and show that the longitudinal distribution of hot spots has not changed significantly since the Galileo mission. We find that hot spots that are persistently active at moderate intensities tend to occur at different latitudes/longitudes than those that exhibit sudden brightening events characterized by high peak intensities and subsequent decay phases. While persistent hot spots are located primarily between ± 30°N, hot spots exhibiting bright eruption events occur primarily between 40° and 65° in both the northern and southern hemispheres. In addition, while persistent hot spots occur preferentially on the leading hemisphere, all bright eruptions were detected on the trailing hemisphere, despite the comparable longitudinal coverage of our observations to both hemispheres. A subset of the bright hot spots which are not intense enough to qualify as outburst eruptions resemble outbursts in terms of temporal evolution and spatial distribution, and may be outbursts whose peak emission went unobserved, or else scaled-down versions of the same phenomenon. A statistical analysis finds that large eruptions are more spatially clustered and occur at higher latitudes than 95% of simulated datasets that

  19. Satellite observations of fumarole activity at Aluto volcano, Ethiopia: Implications for geothermal monitoring and volcanic hazard (United States)

    Braddock, Mathilde; Biggs, Juliet; Watson, Iain M.; Hutchison, William; Pyle, David M.; Mather, Tamsin A.


    Fumaroles are the surface manifestation of hydrothermal circulation and can be influenced by magmatic, hydrothermal, hydrological and tectonic processes. This study investigates the temporal changes in fumarole temperatures and spatial extent on Aluto, a restless volcano in the Main Ethiopian Rift (MER), in order to better understand the controls on fluid circulation and the interaction between the magmatic and hydrothermal systems. Thermal infrared (TIR) satellite images, acquired by the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) over the period of 2004 to 2016, are used to generate time series of the fumarole temperatures and areas. The thermal anomalies identified in the ASTER images coincide with known fumaroles with temperatures > 80 °C and are located on or close to fault structures, which provide a pathway for the rising fluids. Most of the fumaroles, including those along the major zone of hydrothermal upwelling, the Artu Jawe Fault Zone, have pixel-integrated temperature variations of only 2 ± 1.5 °C. The exception are the Bobesa fumaroles located on a hypothesised caldera ring fault which show pixel-integrated temperature changes of up to 9 °C consistent with a delayed response of the hydrothermal system to precipitation. We conclude that fumaroles along major faults are strongly coupled to the magmatic-hydrothermal system and are relatively stable with time, whereas those along shallower structures close to the rift flank are more strongly influenced by seasonal variations in groundwater flow. The use of remote sensing data to monitor the thermal activity of Aluto provides an important contribution towards understanding the behaviour of this actively deforming volcano. This method could be used at other volcanoes around the world for monitoring and geothermal exploration.

  20. Regional Tectonic Framework and Human Activities on the North Central Part of The Mexican Volcanic Belt. (United States)

    Nieto-Obregon, J.


    Faults and fractures northeasterly oriented dipping NW and SE, with slips mainly normal with a slight left lateral component, affect a suite of rocks of Mesozoic to Pleistocene age, in the area of El Bajio, in the states of Queretaro, Guanajuato, Michoacan, and Aguascalientes. The faults and fractures have affected the infrastructure of the cities and surroundings of Queretaro, Celaya, Salamanca, Irapuato, Silao, Leon and Aguascalientes. In the city of Queretaro, the Tlacote-Balvanera active fault has developed a scarp and its motion may potentially affect life lines of great importance. In Celaya City a N-S trending fault traverses the city and has produced a step wise scarp more than 1.80 m high, damaging houses, streets and life lines. In Salamanca, a fault trending N 60oE, dipping to the SE extends from Cerro Gordo to the SW traversing the city and affecting with a varying degree its infrastructure. Displacements observed within the urban area reach as much as 50 cm. Close to Irapuato City, in a quarry near La Valencianita village, a N 45oE trending fault dipping to the NW affects a lacustrine sequence bearing calcareous horizons. The fault exhibits a throw of 10 m and passes north of the urban area. A similarly oriented fault traverses the city of Irapuato, and near the Traffic Circle of Puente de Guadalupe, changes its strike to the SE and continues to the city limits. In the city of Silao, a fault oriented N 60oE, traverses the city and continues to the SW up to the localities of Venta de Ramales and La Aldea. Important displacements in urban and rural areas reach more than 60 cm. Outside the city of Leon in the junction of the highways to Aguascalientes and Guadalajara a normal fault plane NE oriented and dipping SE shows striations compatible with a normal left lateral motion. Faulting is associated with old buried scarps controlled by pre existing faults, and over exploited aquifers. Some of these faults however are considered potentially active based on

  1. Imaging of volcanic activity on Jupiter's moon Io by Galileo during the Galileo Europa Mission and the Galileo Millennium Mission (United States)

    Keszthelyi, L.; McEwen, A.S.; Phillips, C.B.; Milazzo, M.; Geissler, P.; Turtle, E.P.; Radebaugh, J.; Williams, D.A.; Simonelli, D.P.; Breneman, H.H.; Klaasen, K.P.; Levanas, G.; Denk, T.; Alexander, D.D.A.; Capraro, K.; Chang, S.-H.; Chen, A.C.; Clark, J.; Conner, D.L.; Culver, A.; Handley, T.H.; Jensen, D.N.; Knight, D.D.; LaVoie, S.K.; McAuley, M.; Mego, V.; Montoya, O.; Mortensen, H.B.; Noland, S.J.; Patel, R.R.; Pauro, T.M.; Stanley, C.L.; Steinwand, D.J.; Thaller, T.F.; Woncik, P.J.; Yagi, G.M.; Yoshimizu, J.R.; Alvarez, Del; Castillo, E.M.; Belton, M.J.S.; Beyer, R.; Branston, D.; Fishburn, M.B.; Mueller, B.; Ragan, R.; Samarasinha, N.; Anger, C.D.; Cunningham, C.; Little, B.; Arriola, S.; Carr, M.H.; Asphaug, E.; Moore, J.; Morrison, D.; Rages, K.; Banfield, D.; Bell, M.; Burns, J.A.; Carcich, B.; Clark, B.; Currier, N.; Dauber, I.; Gierasch, P.J.; Helfenstein, P.; Mann, M.; Othman, O.; Rossier, L.; Solomon, N.; Sullivan, R.; Thomas, P.C.; Veverka, J.; Becker, T.; Edwards, K.; Gaddis, L.; Kirk, R.; Lee, E.; Rosanova, T.; Sucharski, R.M.; Beebe, R.F.; Simon, A.; Bender, K.; Chuang, F.; Fagents, S.; Figueredo, P.; Greeley, R.; Homan, K.; Kadel, S.; Kerr, J.; Klemaszewski, J.; Lo, E.; Schwarz, W.; Williams, K.; Bierhaus, E.; Brooks, S.; Chapman, C.R.; Merline, B.; Keller, J.; Schenk, P.; Tamblyn, P.; Bouchez, A.; Dyundian, U.; Ingersoll, A.P.; Showman, A.; Spitale, J.; Stewart, S.; Vasavada, A.; Cunningham, W.F.; Johnson, T.V.; Jones, T.J.; Kaufman, J.M.; Magee, K.P.; Meredith, M.K.; Orton, G.S.; Senske, D.A.; West, A.; Winther, D.; Collins, G.; Fripp, W.J.; Head, J. W.; Pappalardo, R.; Pratt, S.; Procter, L.; Spaun, N.; Colvin, T.; Davies, M.; DeJong, E.M.; Hall, J.; Suzuki, S.; Gorjian, Z.; Giese, B.; Koehler, U.; Neukum, G.; Oberst, J.; Roatsch, T.; Tost, W.; Schuster, P.; Wagner, R.; Dieter, N.; Durda, D.; Greenberg, R.J.; Hoppa, G.; Jaeger, W.; Plassman, J.; Tufts, R.; Fanale, F.P.; Gran,


    The Solid-State Imaging (SSI) instrument provided the first high- and medium-resolution views of Io as the Galileo spacecraft closed in on the volcanic body in late 1999 and early 2000. While each volcanic center has many unique features, the majority can be placed into one of two broad categories. The "Promethean" eruptions, typified by the volcanic center Prometheus, are characterized by long-lived steady eruptions producing a compound flow field emplaced in an insulating manner over a period of years to decades. In contrast, "Pillanian" eruptions are characterized by large pyroclastic deposits and short-lived but high effusion rate eruptions from fissures feeding open-channel or open-sheet flows. Both types of eruptions commonly have ???100-km-tall, bright, SO2-rich plumes forming near the flow fronts and smaller deposits of red material that mark the vent for the silicate lavas. Copyright 2001 by the American Geophysical Union.

  2. Survey and assessment of post volcanic activities of a young caldera lake, Lake Cuicocha, Ecuador

    Directory of Open Access Journals (Sweden)

    G. Gunkel


    Full Text Available Cuicocha is a young volcano adjacent to the inactive Pleistocene Cotacachi volcano complex, located in the western cordilleras of the Ecuadorian Andes. A series of eruptions with intensive ash emission and collapse of the caldera occurred around 4500–3000 y BP. A crater 3.2 km in diameter and a maximum depth of 450 m was formed. Further eruptions of the volcano occurred 1300 y BP and formed four smaller domes within the caldera. Over the last few hundred years, a caldera lake has developed, with a maximum depth of 148 m. The lake water is characterized by sodium carbonate with elevated concentrations of manganese, calcium and chloride. Nowadays, an emission of gases, mainly CO2, and an input of warm spring water occur in Lake Cuicocha. The zone of high activity is in the western basin of the lake at a depth of 78 m, and continuous gas emissions with sediment resuspension were observed using sonar. In the hypolimnion of the lake, CO2 accumulation occurs up to 0.2% saturation, but the risk of a limnic eruption can be excluded at present. The lake possesses monomictic stratification behaviour, and during overturn an intensive gas exchange with the atmosphere occurs. Investigations concerning the sedimentation processes of the lake suggest only a thin sediment layer of up to 10–20 cm in the deeper lake basin; in the western bay, in the area of gas emissions, the lake bottom is partly depleted of sediment in the form of holes, and no lake colmation exists. Decreases in the lake water level of about 30 cm y−1 indicate a percolation of water into fractures and fissures of the volcano, triggered by a nearby earthquake in 1987.

  3. The development of miocene extensional and short-lived basin in the Andean broken foreland: The Conglomerado Los Patos, Northwestern Argentina (United States)

    del Papa, Cecilia E.; Petrinovic, Ivan A.


    The Conglomerado Los Patos is a coarse-grained clastic unit that crops out irregularly in the San Antonio de los Cobres Valley in the Puna, Northwestern Argentina. It covers different units of the Cretaceous-Paleogene Salta Group by means of an angular unconformity and, in turn, is overlaid in angular unconformity by the Viscachayoc Ignimbrite (13 ± 0.3 Ma) or by late Miocene tuffs. Three lithofacies have been identified in the Corte Blanco locality; 1) Bouldery matrix-supported conglomerate (Gmm); 2) Clast-supported conglomerate (Gch) and 3) Imbricated clast-supported conglomerate (Gci). The stratigraphic pattern displays a general fining upward trend. The sedimentary facies association suggests gravitational flow processes and sedimentation in alluvial fan settings, from proximal to medial fan positions, together with a slope decrease upsection. Provenance studies reveal sediments sourced from Precambrian to Ordovician units located to the southwest, except for volcanic clasts in the Gmm facies that shows U/Pb age of 14.5 ± 0.5 Ma. This new age represents the maximum depositional age for the Conglomerado Los Patos, and it documents that deposition took place simultaneously during a period of increased tectonic and volcanic activity in the area. The structural analysis of the San Antonio de los Cobres Valley and the available thermochronological ages, indicate active N-S main thrusts and NW-SE transpressive and locally normal faults during the middle Miocene. In this context, we interpret the Conglomerado Los Patos to represent sedimentation in a small, extensional and short-lived basin associated with the compressional Andean setting.

  4. Geomorphic signatures of glacial activity in the Alba Patera volcanic province: Implications for recent frost accumulation on Mars (United States)

    Sinha, Rishitosh K.; Murty, Sripada V. S.


    landforms lying within impact craters on Mars have led to the identification of two mechanisms for their formation: (1) intermittent deposition of atmospherically emplaced snow/ice during past spin-axis/orbital conditions and (2) flow of debris-covered ice-rich deposits. The maximum presence of the young ice/snow-rich features (thermal contraction crack polygons, gullies, arcuate ridges, and lobate debris tongues) was observed on the pole-facing slope, indicating that this slope was the preferred site for ice/snow accumulation (during the last 10 Ma). In this study, we investigated 30 craters lying in the Alba Patera volcanic province in the latitudinal bands between 45°N and 32.4°N. Morphological comparison of the younger ice/snow-rich features in these craters led us to conclude that glacial/periglacial features in Alba Patera are mainly present within pole-facing slopes of craters lying within 45°N-39°N. The craters lying within 40.2°N-40°N did not show any glacial/periglacial features. We suggest that the formation of these young ice/snow-rich features follows the same orientation trends as those of other older (>10 Ma) glacial features (debris-covered ice/snow-rich large deposits at the base of the crater wall) in the region. The present work has revealed that the onset of physical processes that result in the formation of glacial/periglacial landforms is also dependent on the changes in elevation ranges of the investigated craters in Alba Patera. Our results confirm past inferences for accumulation of ice/snow on Mars and suggest that the period of ice/snow accumulation activity in Alba Patera occurred throughout the Amazonian and lasted until the recent past, i.e., 2.1-0.4 Ma.

  5. The geochemistry of volcanic, plutonic and turbiditic rocks from Sumba, Indonesia (United States)

    Lytwyn, J.; Rutherford, E.; Burke, K.; Xia, C.


    Arc, which had been active in this area from at least ˜86 to approximately ˜31 Ma. The Great Indonesian Volcanic Arc was closely affiliated with, but may have occurred offshore Sundaland. Sumba is therefore a fragment of this oceanic (Aleutian-type) island arc and not a piece of the main Sundaland continent. The geochemistry of the igneous rocks on Sumba is inconsistent with what we would expect from an Andean-type Continental Arc. No continental basement is required to explain the composition and origin of the igneous rocks of Sumba.

  6. Exploring Hawaiian Volcanism (United States)

    Poland, Michael P.; Okubo, Paul G.; Hon, Ken


    In 1912 the Hawaiian Volcano Observatory (HVO) was established by Massachusetts Institute of Technology professor Thomas A. Jaggar Jr. on the island of Hawaii. Driven by the devastation he observed while investigating the volcanic disasters of 1902 at Montagne Pelée in the Caribbean, Jaggar conducted a worldwide search and decided that Hawai`i provided an excellent natural laboratory for systematic study of earthquake and volcano processes toward better understanding of seismic and volcanic hazards. In the 100 years since HVO's founding, surveillance and investigation of Hawaiian volcanoes have spurred advances in volcano and seismic monitoring techniques, extended scientists' understanding of eruptive activity and processes, and contributed to development of global theories about hot spots and mantle plumes.

  7. Exploring Hawaiian volcanism (United States)

    Poland, Michael P.; Okubo, Paul G.; Hon, Ken


    In 1912 the Hawaiian Volcano Observatory (HVO) was established by Massachusetts Institute of Technology professor Thomas A. Jaggar Jr. on the island of Hawaii. Driven by the devastation he observed while investigating the volcanic disasters of 1902 at Montagne Pelée in the Caribbean, Jaggar conducted a worldwide search and decided that Hawai‘i provided an excellent natural laboratory for systematic study of earthquake and volcano processes toward better understanding of seismic and volcanic hazards. In the 100 years since HVO’s founding, surveillance and investigation of Hawaiian volcanoes have spurred advances in volcano and seismic monitoring techniques, extended scientists’ understanding of eruptive activity and processes, and contributed to development of global theories about hot spots and mantle plumes.

  8. Slope instability induced by volcano-tectonics as an additional source of hazard in active volcanic areas: the case of Ischia island (Italy) (United States)

    Della Seta, Marta; Marotta, Enrica; Orsi, Giovanni; de Vita, Sandro; Sansivero, Fabio; Fredi, Paola


    Ischia is an active volcanic island in the Gulf of Naples whose history has been dominated by a caldera-forming eruption (ca. 55 ka) and resurgence phenomena that have affected the caldera floor and generated a net uplift of about 900 m since 33 ka. The results of new geomorphological, stratigraphical and textural investigations of the products of gravitational movements triggered by volcano-tectonic events have been combined with the information arising from a reinterpretation of historical chronicles on natural phenomena such as earthquakes, ground deformation, gravitational movements and volcanic eruptions. The combined interpretation of all these data shows that gravitational movements, coeval to volcanic activity and uplift events related to the long-lasting resurgence, have affected the highly fractured marginal portions of the most uplifted Mt. Epomeo blocks. Such movements, mostly occurring since 3 ka, include debris avalanches; large debris flows (lahars); smaller mass movements (rock falls, slumps, debris and rock slides, and small debris flows); and deep-seated gravitational slope deformation. The occurrence of submarine deposits linked with subaerial deposits of the most voluminous mass movements clearly shows that the debris avalanches impacted on the sea. The obtained results corroborate the hypothesis that the behaviour of the Ischia volcano is based on an intimate interplay among magmatism, resurgence dynamics, fault generation, seismicity, slope oversteepening and instability, and eruptions. They also highlight that volcano-tectonically triggered mass movements are a potentially hazardous phenomena that have to be taken into account in any attempt to assess volcanic and related hazards at Ischia. Furthermore, the largest mass movements could also flow into the sea, generating tsunami waves that could impact on the island's coast as well as on the neighbouring and densely inhabited coast of the Neapolitan area.

  9. Submarine volcanoes along the Aegean volcanic arc (United States)

    Nomikou, Paraskevi; Papanikolaou, Dimitrios; Alexandri, Matina; Sakellariou, Dimitris; Rousakis, Grigoris


    The Aegean volcanic arc has been investigated along its offshore areas and several submarine volcanic outcrops have been discovered in the last 25 years of research. The basic data including swath bathymetric maps, air-gun profiles, underwater photos and samples analysis have been presented along the four main volcanic groups of the arc. The description concerns: (i) Paphsanias submarine volcano in the Methana group, (ii) three volcanic domes to the east of Antimilos Volcano and hydrothermal activity in southeast Milos in the Milos group, (iii) three volcanic domes east of Christiana and a chain of about twenty volcanic domes and craters in the Kolumbo zone northeast of Santorini in the Santorini group and (iv) several volcanic domes and a volcanic caldera together with very deep slopes of several volcanic islands in the Nisyros group. The tectonic structure of the volcanic centers is described and related to the geometry of the arc and the neotectonic graben structures that usually host them. The NE-SW direction is dominant in the Santorini and Nisyros volcanic groups, located at the eastern part of the arc, where strike-slip is also present, whereas NW-SE direction dominates in Milos and Methana at the western part, where co-existence of E-W disrupting normal faults is observed. The volcanic relief reaches 1100-1200 m in most cases. This is produced from the outcrops of the volcanic centers emerging usually at 400-600 m depth and ending either below sea level or at high altitudes of 600-700 m on the islands. Hydrothermal activity at relatively high temperatures observed in Kolumbo is remarkable whereas low temperature phenomena have been detected in the Santorini caldera around Kameni islands and in the area southeast of Milos. In Methana and Nisyros, hydrothermal activity seems to be limited in the coastal areas without other offshore manifestations.

  10. Multidisciplinary exploratory study of a geothermal resource in the active volcanic arc of Basse-Terre (Guadeloupe, Lesser Antilles) (United States)

    Navelot, Vivien; Favier, Alexiane; Géraud, Yves; Diraison, Marc; Corsini, Michel; Verati, Chrystèle; Lardeaux, Jean-Marc; Mercier de Lépinay, Jeanne; Munschy, Marc


    The GEOTREF project (high enthalpy geothermal energy in fractured reservoirs), supported by the French government program, "Investissements d'avenir" develops a sustainable geothermal resource in the Vieux Habitants area, 8-km south of the currently exploited Bouillante geothermal field. The Basse Terre Island is a recent volcanic arc (geothermal gradient of 70 ˚ C/km.

  11. Pattern of genetic differentiation of an incipient speciation process: The case of the high Andean killifish Orestias (United States)

    Guerrero-Jiménez, Claudia Jimena; Peña, Fabiola; Morales, Pamela; Méndez, Marco; Sallaberry, Michel; Vila, Irma; Poulin, Elie


    During the Pleistocene and Holocene, the southwest Andean Altiplano (17°-22°S) was affected by repeated fluctuations in water levels, high volcanic activity and major tectonic movements. In the early Holocene the humid Tauca phase shifted to the arid conditions that have lasted until the present, producing endorheic rivers, lakes, lagoons and wetlands. The endemic fish Orestias (Cyprinodontidae) represents a good model to observe the genetic differentiation that characterizes an incipient speciation process in allopatry since the morphospecies described inhabit a restricted geographic area, with present habitat fragmentation. The genetic diversity and population structure of four endemic morphospecies of Orestias (Cyprinodontidae) found in the Lauca National Park (LNP) analyzed with mitochondrial markers (Control Region) and eight microsatellites, revealed the existence of genetic groups that matches the fragmentation of these systems. High values of genetic and phylogeographic differentiation indices were observed between Chungará Lake and Piacota lagoon. The group composed of the Lauca River, Copapujo and Chuviri wetlands sampling sites showed a clear signal of expansion, with a star-like haplotype network. Levels of genetic differentiation were lower than in Chungará and Piacota, suggesting that these localities would have differentiated after the bottlenecks linked to the collapse of Parinacota volcano. The Parinacota sample showed a population signal that differed from the other localities revealing greater genetic diversity and a disperse network, presenting haplotypes shared with other LNP localities. A mixing pattern of the different genetic groups was evident using the microsatellite markers. The chronology of the vicariance events in LNP may indicate that the partition process of the Orestias populations was gradual. Considering this, and in view of the genetic results, we may conclude that the morphospecies from LNP are populations in ongoing

  12. Pattern of genetic differentiation of an incipient speciation process: The case of the high Andean killifish Orestias. (United States)

    Guerrero-Jiménez, Claudia Jimena; Peña, Fabiola; Morales, Pamela; Méndez, Marco; Sallaberry, Michel; Vila, Irma; Poulin, Elie


    During the Pleistocene and Holocene, the southwest Andean Altiplano (17°-22°S) was affected by repeated fluctuations in water levels, high volcanic activity and major tectonic movements. In the early Holocene the humid Tauca phase shifted to the arid conditions that have lasted until the present, producing endorheic rivers, lakes, lagoons and wetlands. The endemic fish Orestias (Cyprinodontidae) represents a good model to observe the genetic differentiation that characterizes an incipient speciation process in allopatry since the morphospecies described inhabit a restricted geographic area, with present habitat fragmentation. The genetic diversity and population structure of four endemic morphospecies of Orestias (Cyprinodontidae) found in the Lauca National Park (LNP) analyzed with mitochondrial markers (Control Region) and eight microsatellites, revealed the existence of genetic groups that matches the fragmentation of these systems. High values of genetic and phylogeographic differentiation indices were observed between Chungará Lake and Piacota lagoon. The group composed of the Lauca River, Copapujo and Chuviri wetlands sampling sites showed a clear signal of expansion, with a star-like haplotype network. Levels of genetic differentiation were lower than in Chungará and Piacota, suggesting that these localities would have differentiated after the bottlenecks linked to the collapse of Parinacota volcano. The Parinacota sample showed a population signal that differed from the other localities revealing greater genetic diversity and a disperse network, presenting haplotypes shared with other LNP localities. A mixing pattern of the different genetic groups was evident using the microsatellite markers. The chronology of the vicariance events in LNP may indicate that the partition process of the Orestias populations was gradual. Considering this, and in view of the genetic results, we may conclude that the morphospecies from LNP are populations in ongoing

  13. Eruption processes and deposit characteristics at the monogenetic Mt. Gambier Volcanic Complex, SE Australia: implications for alternating magmatic and phreatomagmatic activity (United States)

    van Otterloo, Jozua; Cas, Raymond A. F.; Sheard, Malcolm J.


    The ˜5 ka Mt. Gambier Volcanic Complex in the Newer Volcanics Province, Australia is an extremely complex monogenetic, volcanic system that preserves at least 14 eruption points aligned along a fissure system. The complex stratigraphy can be subdivided into six main facies that record alternations between magmatic and phreatomagmatic eruption styles in a random manner. The facies are (1) coherent to vesicular fragmental alkali basalt (effusive/Hawaiian spatter and lava flows); (2) massive scoriaceous fine lapilli with coarse ash (Strombolian fallout); (3) bedded scoriaceous fine lapilli tuff (violent Strombolian fallout); (4) thin-medium bedded, undulating very fine lapilli in coarse ash (dry phreatomagmatic surge-modified fallout); (5) palagonite-altered, cross-bedded, medium lapilli to fine ash (wet phreatomagmatic base surges); and (6) massive, palagonite-altered, very poorly sorted tuff breccia and lapilli tuff (phreato-Vulcanian pyroclastic flows). Since most deposits are lithified, to quantify the grain size distributions (GSDs), image analysis was performed. The facies are distinct based on their GSDs and the fine ash to coarse+fine ash ratios. These provide insights into the fragmentation intensities and water-magma interaction efficiencies for each facies. The eruption chronology indicates a random spatial and temporal sequence of occurrence of eruption styles, except for a "magmatic horizon" of effusive activity occurring at both ends of the volcanic complex simultaneously. The eruption foci are located along NW-SE trending lineaments, indicating that the complex was fed by multiple dykes following the subsurface structures related to the Tartwaup Fault System. Possible factors causing vent migration along these dykes and changes in eruption styles include differences in magma ascent rates, viscosity, crystallinity, degassing and magma discharge rate, as well as hydrological parameters.

  14. Late Eocene to Early Miocene Andean uplift inferred from detrital zircon fission track and U-Pb dating of Cenozoic forearc sediments (15-18°S) (United States)

    Decou, A.; von Eynatten, H.; Dunkl, I.; Frei, D.; Wörner, G.


    Timing, amount, and mechanisms of uplift in the Central Andes have been a matter of debate in the last decade. Our study is based on the Cenozoic Moquegua Group deposited in the forearc basin between the Western Cordillera and the Coastal Cordillera in southern Peru from ˜50 to ˜4 Ma. The Moquegua Group consists mainly of mud-flat to fluvial siliciclastic sediments with upsection increasing grain size and volcanic intercalations. Detrital zircon U-Pb dating and fission track thermochronology allow us to refine previous sediment provenance models and to constrain the timing of Late Eocene to Early Miocene Andean uplift. Uplift-related provenance and facies changes started around 35 Ma and thus predate major voluminous ignimbrite eruptions that started at ˜25 by up to 10 Ma. Therefore magmatic addition to the crust cannot be an important driving factor for crustal thickening and uplift at Late Eocene to Early Oligocene time. Changes in subduction regime and the subducting plate geometry are suggested to control the formation of significant relief in the area of the future Western Cordillera which acts as an efficient large-scale drainage divide between Altiplano and forearc from at least 15.5 to 19°S already at ˜35 Ma. The model integrates the coincidence of (i) onset of provenance change no later than 35 Ma, (ii) drastic decrease in convergence rates at ˜40, (iii) a flat-subduction period at around ˜40 to ˜30 Ma leading to strong interplate coupling, and (iv) strong decrease in volcanic activity between 45 and 30 Ma.

  15. Bioindication of volatile elements emission by the Puyehue-Cordón Caulle (North Patagonia) volcanic event in 2011. (United States)

    Bubach, Débora; Pérez Catán, Soledad; Arribére, María; Guevara, Sergio Ribeiro


    The emission of volatile pollutants from the volcanic eruption of the Puyehue-Cordón Caulle complex (North Patagonia Andean Range) that started in June 4th, 2011, was investigated by bioindication means with the epyphytic fruticose lichen Usnea sp. The elemental composition of pooled samples made up with 10 lichen thalli were analysed by Instrumental Neutron Activation Analysis. Eleven sampling sites were selected within the impacted region at different distance from the volcanic source. Five sites were selected as they were already sampled in a previous study prior to the eruption. Two other new sampling sites were selected from outside the impacted zone to provide non-impacted baseline sites. The elements associated with the lichen incorporation of particulate matter (PM) of geological origin were identified by linear correlation with a geochemical tracer (Sm concentrations). The elements associated with PM uptake were Ce, Eu, Fe, Hf, La, Lu, Na, Nd, Sb, Sc, Se, Ta, Tb, Th, U, and Yb. Arsenic and Cs concentrations showed contributions exceeding the PM fraction in sites near the volcanic centre, also higher than the baseline concentrations, which could be associated with permanent emissions from the geothermal system of the Puyehue-Cordón Caulle complex. The lichen concentrations of Ba, Ca, Co, Hg, K, Rb, Sr, and Zn were not associated with the PM, not showing higher concentrations in the sites nearby the volcanic source or respect to the baseline values either. Therefore, there is no indication of the emission of volatile forms of these elements in the lichen records. The lichen records only identified Br volatile emissions associated with the Puyehue-Cordón Caulle complex eruption in 2011.

  16. Change detection and characterization of volcanic activity using ground based low-light and near infrared cameras to monitor incandescence and thermal signatures (United States)

    Harrild, Martin; Webley, Peter; Dehn, Jonathan


    Knowledge and understanding of precursory events and thermal signatures are vital for monitoring volcanogenic processes, as activity can often range from low level lava effusion to large explosive eruptions, easily capable of ejecting ash up to aircraft cruise altitudes. Using ground based remote sensing techniques to monitor and detect this activity is essential, but often the required equipment and maintenance is expensive. Our investigation explores the use of low-light cameras to image volcanic activity in the visible to near infrared (NIR) portion of the electromagnetic spectrum. These cameras are ideal for monitoring as they are cheap, consume little power, are easily replaced and can provide near real-time data. We focus here on the early detection of volcanic activity, using automated scripts, that capture streaming online webcam imagery and evaluate image pixel brightness values to determine relative changes and flag increases in activity. The script is written in Python, an open source programming language, to reduce the overall cost to potential consumers and increase the application of these tools across the volcanological community. In addition, by performing laboratory tests to determine the spectral response of these cameras, a direct comparison of collocated low-light and thermal infrared cameras has allowed approximate eruption temperatures and effusion rates to be determined from pixel brightness. The results of a field campaign in June, 2013 to Stromboli volcano, Italy, are also presented here. Future field campaigns to Latin America will include collaborations with INSIVUMEH in Guatemala, to apply our techniques to Fuego and Santiaguito volcanoes.

  17. The Timber Mountain magmato-thermal event: An intense widespread culmination of magmatic and hydrothermal activity at the southwestern Nevada volcanic field

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, M.R. Jr.


    Eruption of the Rainier Mesa and Ammonia Tanks Members Timber Mountain Tuff at about 11.5 and 11.3 Ma, respectively, resulted in formation of the timber Mountain (TM) caldera; new K-Ar ages show that volcanism within and around the TM caldera continued for about 1 m.y. after collapse. Some TM age magmatic activity took place west and southeast of the TM caldera in the Beatty -- Bullfrog Hills and Shoshone Mountain areas, suggesting that volcanic activity at the TM caldera was an intense expression of an areally extensive magmatic system active from about 11.5 to 10Ma. Epithermal Au-Ag, Hg and fluorite mineralization and hydrothermal alteration are found in both within and surrounding the Timber Mountain -- Oasis Valley caldera complex. New K-Ar ages date this hydrothermal activity between about 13 and 10 Ma, largely between about 11.5 and 10 Ma, suggesting a genetic relation of hydrothermal activity to the TM magmatic system.

  18. The TF1 Radio Astronomy Working Group in the Andean ROAD: goals and challenges for 2025 (United States)

    Chaparro Molano, G.


    Since the creation of the Andean Regional Office of Astronomy for Development (OAD) of the International Astronomical Union, one of the main goals has been to foster a scientific culture of radio astronomy in countries of the central and northern Andes (Bolivia, Colombia, Ecuador, Perú, and Venezuela). For this reason, Andean ROAD Task Force 1 (Research and Education in Universities) created the Radio Astronomy Working Group to set a path along which collaborative endeavors can grow and yield scientific results. The first official meeting of the Working Group took place in Bogotá, Colombia during the 2nd Astronomá en los Andes Workshop (2015) where scientists actively developing projects in radio astronomy set goals for the near future, such as improving mobility for researchers and students, developing collaborations in related areas such as engineering and data science, and building transnational collaborations aiming at developing VLBI across the countries of the Andean ROAD and beyond. In this poster, I present current projects and associated research groups (ROAS - Perú, SiAMo - Colombia, Alfa-Orion UTP - Colombia, RAIG - Chile) and discuss goalposts and current challenges in the development of transnational radioastronomical projects. As a case study, I present the development and early astronomical results of the privately funded UECCI 4m Radio Telescope for 21 cm line observations in Bogotá, Colombia.

  19. Transplanting the European Court of Justice: The Experience of the Andean Tribunal of Justice

    Directory of Open Access Journals (Sweden)

    Osvaldo Saldías


    Full Text Available Although there is an extensive literature on domestic legal transplants, far less is known about the transplantation of supranational judicial bodies. The Andean Tribunal of Justice (ATJ is one of eleven copies of the European Court of Justice (ECJ, and the third most active international court. This article considers the origins and evolution of the ATJ as a transplanted judicial institution. It first reviews the literatures on legal transplants, neofunctionalist theory, and the spread of European ideas and institutions, explaining how the intersection of these literatures informs the study of supranational judicial transplants. The article next explains why the Andean Pact's member states decided to add a court to their regional integration initiative, why they adapted the European Community model, and how the ECJ's existence has shaped the evolution of Andean legal doctrine and the political space within which the ATJ operates. We conclude by analyzing how the ATJ's experience informs the challenges of supranational transplants and theories of supranational legal integration more generally. DOWNLOAD THIS PAPER FROM SSRN:

  20. A regional perspective on the diversity and conservation of tropical Andean fishes. (United States)

    Anderson, Elizabeth P; Maldonado-Ocampo, Javier A


    The tropical Andes harbor an extraordinarily varied concentration of species in a landscape under increasing pressure from human activities. Conservation of the region's native plants and animals has received considerable international attention, but the focus has been on terrestrial biota. The conservation of freshwater fauna, particularly the conservation of fishes, has not been emphasized. Tropical Andean fishes are among the most understudied vertebrates in the world. We estimate that between 400 and 600 fish species inhabit the diverse aquatic environments in the region. Nearly 40% of these species are endemic. Tropical Andean fishes are vulnerable to ongoing environmental changes related to deforestation, water withdrawals, water pollution, species introductions, and hydropower development. Additionally, their distributions and population dynamics may be affected by hydrologic alterations and warmer water temperatures associated with projected climate change. Presently, at least three species are considered extinct, some populations are endangered, and some species are likely to decline or disappear. The long-term persistence of tropical Andean fishes will depend on greater consideration of freshwater systems in regional conservation initiatives.

  1. Changes of sub-fossil chironomid assemblages associated with volcanic sediment deposition in an Andean lake (38°S, Chile Cambios en las asociaciones sub-fósiles de quironómidos, producto de la depositación de sedimentos volcánicos en un lago andino (38°S, Chile

    Directory of Open Access Journals (Sweden)



    Full Text Available Chironomid assemblages and sedimentological parameters (grain size, organic content, mineralogy of a short sediment core from Lake Galletué (38°41' S, 71°17' W were analysed. The sedimentary record includes one volcanic ash (tephra layer, which has a completely different composition than the host sediment in terms of organic content, grain size, and mineralogy. According to the geochronology (210Pb and 137Cs, this ash layer corresponds to the eruption of Llaima Volcano in 1956-1957. The tephra deposition had an impact on chironomid assemblages producing, among other changes, an increase in Parakiefferiella and a decrease in Ablabesmyia, although no noticeable change was detected in the diversity index. When compared with other studies, our results also show an impact in terms of the presence of chironomid head capsules within the tephra. The presence of these head capsules could result from the effects of percolation, since the coarse grain size of the tephra particles provides large interstitial spaces. The recovery in the abundances of some taxa after the tephra input, suggests the lake is probably restoring the conditions prevailing before the tephra fallSe analizan las asociaciones de restos sub-fósiles de quironómidos y los parámetros sedimentológicos de un núcleo sedimentario del lago Galletué (38°41' S, 71°17' O. Es evidente en este núcleo la presencia de un estrato de sedimentos volcánicos (tefra de una composición distinta en el contenido deµmateria orgánica, en el tamaño de partícula y en la mineralogía, respecto de los sedimentos del lago. De acuerdo a la geocronología isotópica (210Pb y 137Cs, los sedimentos de esta tefra podrían corresponder a la erupción del volcán Llaima de 1956-1957. Por otra parte la depositación de esta tefra también provocó un cambio en las asociaciones de quironómidos, siendo evidente el aumento de Parakiefferiella y la disminución de Ablabesmyia dentro del estrato de tefra. Si

  2. Metamorfismo de muy bajo grado asociado a un sistema geotermal en rocas volcánicas básicas del Jurásico Medio, Formación Lonco Trapial, Paso Berwin, Chubut extra-andino Very low grade metamorphism associated with a geothermal system in basic volcanic rocks of the Middle Jurassic, Lonco Trapial Formation, Paso Berwin, Extra-Andean Chubut

    Directory of Open Access Journals (Sweden)

    P. Montecinos


    Full Text Available Las rocas volcánicas básicas de la Formación Lonco Trapial, poseen una mineralogía primaria compuesta principalmente por olivino, plagioclasa cálcica y piroxeno, presentando además gran cantidad de amígdalas. La mineralogía metamórfica de muy bajo grado en estas rocas está caracterizada por ceolitas, minerales arcillosos y micáceos. La asociación mineral más característica está compuesta por celadonita, montmorillonita, heulandita, analcima, gonnardita y, además, por levyna y minerales de la serie analcima-wairakita en forma subordinada. Esta asociación pertenece a la facies ceolita y tuvo un origen asociado a un sistema geotermal. La analogía establecida con las zonas de ceolitas conocidas para sistemas geotermales equivalentes y el uso de la grilla petrogénetica para paragénesis ceolíticas, en el sistema An-Ab-SiO2-H2O, permiten establecer un rango de temperatura entre 80°-180°C. En este contexto habría ocurrido un único evento metamórfico hidrotermal en presencia de una fase fluida, muy pobre en CO2, cuya composición química habría cambiado desde un carácter neutro con baja a(SiO2 y a(K2O moderada (permitiendo la precipitación de esmectitas y celadonita a un carácter neutro-alcalino con a(SiO2 que posibilita la estabilidad de la heulandita.The basic volcanic rocks of the Lonco Trapial Formation, have a primary mineralogy mainly composed of olivine, calcic plagioclase and pyroxene, and present a large quantity of amygdales. Their metamorphic mineralogy is characterized by zeolites, clay and micaceous minerals. The main mineral association includes celadonite, montmorillonite, heulandite, analcime, gonnardite and subordinate levyne and minerals of the wairakite-analcime series. This association belongs to the zeolite facies and its origin was associated with a geothermal system. The analogy with known zeolite zones in equivalent geothermal systems and the use of the petrogenetic grid for zeolite parageneses, in

  3. Catastrophic volcanic collapse: relation to hydrothermal processes. (United States)

    López, D L; Williams, S N


    Catastrophic volcanic collapse, without precursory magmatic activity, is characteristic of many volcanic disasters. The extent and locations of hydrothermal discharges at Nevado del Ruiz volcano, Colombia, suggest that at many volcanoes collapse may result from the interactions between hydrothermal fluids and the volcanic edifice. Rock dissolution and hydrothermal mineral alteration, combined with physical triggers such as earth-quakes, can produce volcanic collapse. Hot spring water compositions, residence times, and flow paths through faults were used to model potential collapse at Ruiz. Caldera dimensions, deposits, and alteration mineral volumes are consistent with parameters observed at other volcanoes.

  4. Statistical eruption forecast for the Chilean Southern Volcanic Zone: typical probabilities of volcanic eruptions as baseline for possibly enhanced activity following the large 2010 Concepción earthquake

    Directory of Open Access Journals (Sweden)

    Y. Dzierma


    Full Text Available A probabilistic eruption forecast is provided for ten volcanoes of the Chilean Southern Volcanic Zone (SVZ. Since 70% of the Chilean population lives in this area, the estimation of future eruption likelihood is an important part of hazard assessment. After investigating the completeness and stationarity of the historical eruption time series, the exponential, Weibull, and log-logistic distribution functions are fit to the repose time distributions for the individual volcanoes and the models are evaluated. This procedure has been implemented in two different ways to methodologically compare details in the fitting process. With regard to the probability of at least one VEI ≥ 2 eruption in the next decade, Llaima, Villarrica and Nevados de Chillán are most likely to erupt, while Osorno shows the lowest eruption probability among the volcanoes analysed. In addition to giving a compilation of the statistical eruption forecasts along the historically most active volcanoes of the SVZ, this paper aims to give "typical" eruption probabilities, which may in the future permit to distinguish possibly enhanced activity in the aftermath of the large 2010 Concepción earthquake.

  5. Characterization of Two Microbial Isolates from Andean Lakes in Bolivia (United States)

    Demergasso, C.; Blamey, J.; Escudero, L.; Chong, G.; Casamayor, E. O.; Cabrol, N. A.; Grin, E. A.; Hock, A.; Kiss, A.; Borics, G.


    We are currently investigating the biological population present in the highest and least explored perennial lakes on earth in the Bolivian and Chilean Andes, including several volcanic crater lakes of more than 6000 m elevation, in combination of microbiological and molecular biological methods. Our samples were collected in saline lakes of the Laguna Blanca Laguna Verde area in the Bolivian Altiplano and in the Licancabur volcano crater (27 deg. 47 min S/67 deg. 47 min. W) in the ongoing project studying high altitude lakes. The main goal of the project is to look for analogies with Martian paleolakes. These Bolivian lakes can be described as Andean lakes following the classification of Chong. We have attempted to isolate pure cultures and phylogenetically characterize prokaryotes that grew under laboratory conditions. Sediment samples taken from the Licancabur crater lake (LC), Laguna Verde (LV), and Laguna Blanca (LB) were analyzed and cultured using enriched liquid media under both aerobic and anaerobic conditions. All cultures were incubated at room temperature (15 to 20 C) and under light exposure. For the reported isolates, 36 hours incubation were necessary for reaching optimal optical densities to consider them viable cultures. Ten serial dilutions starting from 1% inoculum were required to obtain a suitable enriched cell culture to transfer into solid media. Cultures on solid medium were necessary to verify the formation of colonies in order to isolate pure cultures. Different solid media were prepared using several combinations of both trace minerals and carbohydrates sources in order to fit their nutrient requirements. The microorganisms formed individual colonies on solid media enriched with tryptone, yeast extract and sodium chloride. Cells morphology was studied by optical and electronic microscopy. Rodshape morphologies were observed in most cases. Total bacterial genomic DNA was isolated from 50 ml late-exponential phase culture by using the CTAB

  6. Cenozoic foreland basin evolution during Andean shortening in the Malargüe region of western Argentina (35°S) (United States)

    Ramirez, S. G.; Horton, B. K.; Fuentes, F.


    Cenozoic clastic deposits in western Argentina provide key opportunities to evaluate the timing and duration of Andean deformation and uplift. We studied the Malargüe segment of the Andean foreland basin at 35°S to better understand latest Cretaceous to Pliocene deformation and eastward propagation of Andean retroarc shortening. Our multi-technique approach included logging of a well-exposed ~1500m Paleocene-Miocene stratigraphic succession, paleocurrent measurements, conglomerate clast counts, and detrital zircon U-Pb geochronological analyses of basin fill exposed in the Sosneado region along the Rio Atuel. The Pircala and Coihueco Formations define the lowermost ~180 m of the section and are represented by fine to medium sandstones, siltstones, claystones and marls interpreted as distal fluvial floodplain and localized lacustrine deposits. Pircala paleocurrents show a major reversal from west- to east-directed flow. These finer deposits of the lower succession are separated from the overlying coarser-grained ~800 m thick Agua de la Piedra Formation by a conspicuous unconformity that spans up to roughly 20 Myr. The Agua de la Piedra Formation is composed of upward-coarsening amalgamated beds of massive medium to coarse sandstones and lenticular conglomerates interpreted as a prograding proximal fluvial to alluvial fan system. Conglomerate clast counts show initial dominance by Mesozoic detritus from the pre-Andean Neuquen basin system, with a progressive upsection increase in Cenozoic volcanic detritus from the Andean magmatic arc. Collectively, the paleocurrents, clast compositions, sedimentary facies associations, and emerging U-Pb results suggest a long-term shift, commencing in the Paleocene, from eastern cratonic sources to magmatic-arc and thrust-belt sources during a systematic eastward propagation of deformation, with a pronounced phase of Miocene magmatism and shortening that incorporated the proximal foreland basin into the advancing thrust belt.

  7. A high resolution history of the El Niño - Southern Oscillation and of the solar activity during the Late Glacial - Early Holocene in the subtropical Andean region. (United States)

    Giralt, S.; Schimmel, M.; Hernández, A.; Bao, R.; Valero-Garcés, B. L.; Sáez, A.; Pueyo, J. J.


    High-resolution laminated lacustrine sediments are excellent archives of the past hydrological changes and they provide valuable insights about the climatic processes that trigger these changes. The paleoclimatic records located in the Southern Hemisphere are fundamental for understanding the evolution of the El Niño - Southern Oscillation (ENSO) since this climatic phenomena is the main cause of droughts and floods in many areas of South America and other regions of the world, like Spain and Egypt. Available regional paleoclimate reconstructions show that modern climatic patterns in South America were established during the Late Holocene. The laminated sediments of Lago Chungará (18° 15' S - 69° 10' W, 4520 m a.s.l., Chilean altiplano) have allowed us to characterize the evolution of this climatic phenomena for the transition Late Glacial - Early Holocene (12,300 - 9,500 calendar years BP) as well as its relationship with other climate forcings, namely the solar activity. The studied sediments correspond to the lowermost 2.4 m of 8 m long Kullemberg cores recovered from this lake. These sediments are mainly made up of greenish and whitish laminae and thin layers constituted by diatomaceous oozes with carbonates and organic matter, arranged in rhythms and cycles. X-ray fluorescence (XRF) (Al, Si, S, K, Ca, Ti, Mn, Fe, Rb, Sr, Zn, Sb and Ba) analyses, total organic carbon (TOC), total carbon (TC), x-ray diffraction (XRD), biogenic silica, stable isotopes (delta18O and delta13C) on carbonates and on diatoms (delta18O) and magnetic susceptibility were determined in order to characterize the sediments of Lago Chungará. Previous statistical studies (cluster and Principal Component Analyses (PCA)) were used to disentangle the paleoclimatic signal from the other ones (volcanic and tectonic). The chronological model framework was built using 6 radiocarbon dates, allowing us to establish that laminated couplets were deposited on a pluriannual basis. These couplets are

  8. Global scale concentrations of volcanic activity on Venus: A summary of three 23rd Lunar and Planetary Science Conference abstracts. 1: Venus volcanism: Global distribution and classification from Magellan data. 2: A major global-scale concentration of volcanic activity in the Beta-Atla-Themis region of Venus. 3: Two global concentrations of volcanism on Venus: Geologic associations and implications for global pattern of upwelling and downwelling (United States)

    Crumpler, L. S.; Aubele, Jayne C.; Head, James W.; Guest, J.; Saunders, R. S.


    As part of the analysis of data from the Magellan Mission, we have compiled a global survey of the location, dimensions, and subsidiary notes of all identified volcanic features on Venus. More than 90 percent of the surface area was examined and the final catalog comprehensively identifies 1548 individual volcanic features larger than approximately 20 km in diameter. Volcanic features included are large volcanoes, intermediate volcanoes, fields of small shield volcanoes, calderas, large lava channels, and lava floods as well as unusual features first noted on Venus such as coronae, arachnoids, and novae.

  9. 40Ar/39Ar dating of tuff vents in the Campi Flegrei caldera (southern Italy): Toward a new chronostratigraphic reconstruction of the Holocene volcanic activity (United States)

    Fedele, L.; Insinga, D.D.; Calvert, A.T.; Morra, V.; Perrotta, A.; Scarpati, C.


    The Campi Flegrei hosts numerous monogenetic vents inferred to be younger than the 15 ka Neapolitan Yellow Tuff. Sanidine crystals from the three young Campi Flegrei vents of Fondi di Baia, Bacoli and Nisida were dated using 40Ar/39Ar geochronology. These vents, together with several other young edifices, occur roughly along the inner border of the Campi Flegrei caldera, suggesting that the volcanic conduits are controlled by caldera-bounding faults. Plateau ages of ∼9.6 ka (Fondi di Baia), ∼8.6 ka (Bacoli) and ∼3.9 ka (Nisida) indicate eruptive activity during intervals previously interpreted as quiescent. A critical revision, involving calendar age correction of literature 14C data and available 40Ar/39Ar age data, is presented. A new reference chronostratigraphic framework for Holocene Phlegrean activity, which significantly differs from the previously adopted ones, is proposed. This has important implications for understanding the Campi Flegrei eruptive history and, ultimately, for the evaluation of related volcanic risk and hazard, for which the inferred history of its recent activity is generally taken into account.

  10. Understanding causality and uncertainty in volcanic observations: An example of forecasting eruptive activity on Soufrière Hills Volcano, Montserrat (United States)

    Sheldrake, T. E.; Aspinall, W. P.; Odbert, H. M.; Wadge, G.; Sparks, R. S. J.


    Following a cessation in eruptive activity it is important to understand how a volcano will behave in the future and when it may next erupt. Such an assessment can be based on the volcano's long-term pattern of behaviour and insights into its current state via monitoring observations. We present a Bayesian network that integrates these two strands of evidence to forecast future eruptive scenarios using expert elicitation. The Bayesian approach provides a framework to quantify the magmatic causes in terms of volcanic effects (i.e., eruption and unrest). In October 2013, an expert elicitation was performed to populate a Bayesian network designed to help forecast future eruptive (in-)activity at Soufrière Hills Volcano. The Bayesian network was devised to assess the state of the shallow magmatic system, as a means to forecast the future eruptive activity in the context of the long-term behaviour at similar dome-building volcanoes. The findings highlight coherence amongst experts when interpreting the current behaviour of the volcano, but reveal considerable ambiguity when relating this to longer patterns of volcanism at dome-building volcanoes, as a class. By asking questions in terms of magmatic causes, the Bayesian approach highlights the importance of using short-term unrest indicators from monitoring data as evidence in long-term forecasts at volcanoes. Furthermore, it highlights potential biases in the judgements of volcanologists and identifies sources of uncertainty in terms of magmatic causes rather than scenario-based outcomes.

  11. Evaluation of dispersal volcanic products of recent events in lichens in environmental gradient, Nahuel Huapi National Park, Argentina. (United States)

    Bubach, Débora; Dufou, Leandro; Catán, Soledad Perez


    The atmospheric transport of volcanic products are subject to several variables, mainly the height of the eruption column and wind direction, thus elements associated with the ashes are deposited in major or lesser degree depending on variables as latitude, wind and humidity. The lichens are able to reflect the atmospheric fallout. The present work evaluated the correlation between meteorological parameters, geographic locations, sulphur and other element concentrations in lichens genus Usnea affected by Puyehue-Cordón Caulle complex (North Patagonia Andean Range) eruption of June 4, 2011. Semiquantitative analyses of biological elements by scanning electron microscope methods, sulphur (S) by LECO and other elements by instrumental neutron activation were evaluated by principal component analysis. Elements as antimony, arsenic, barium, bromine, calcium, caesium, potassium, rubidium, selenium, and uranium correlated with distance to volcano, also calcium and potassium with longitude while bromine, rubidium, and potassium with humidity. Those results indicate that Usnea sp. is a good bioindicator of the atmospheric volcanic emissions in relation to environmental gradient.

  12. A geodynamic model of Andean mountain building (United States)

    Schellart, Wouter P.


    The Andes mountain range in South America is the longest in the world and is unique in that it has formed at a subduction zone and not at a continent-continent collision zone. The mountain range has formed due to overriding plate shortening since the Late Cretaceous, and its origin and the driving mechanism(s) responsible for its formation remain a topic of intense debate. Here I present a buoyancy-driven geodynamic model of South American-style subduction, mantle flow and overriding plate deformation, illustrating how subduction-induced mantle flow drives overriding plate deformation. The model reproduces several first-order characteristics of the Andes, including major crustal thickening (up to double the initial crustal thickness) and hundreds of km of east-west shortening in the Central Andes, as well as a slab geometry that is comparable to that of the Nazca slab below the Central Andes. Ultimately, the geodynamic model shows that subduction-induced mantle flow is responsible for Andean-style mountain building.

  13. Postcaldera volcanism and hydrothermal activity revealed by autonomous underwater vehicle surveys in Myojin Knoll caldera, Izu-Ogasawara arc (United States)

    Honsho, Chie; Ura, Tamaki; Kim, Kangsoo; Asada, Akira


    Myojin Knoll caldera, one of the submarine silicic calderas lying on the volcanic front of the northern Izu-Ogasawara arc, has attracted increasing attention since the discovery of a large hydrothermal field called the Sunrise deposit. Although numerous submersible surveys have been conducted in Myojin Knoll caldera, they have not sufficiently explored areas to produce a complete picture of the caldera and understand the origin of the Sunrise deposit. We conducted comprehensive deep-sea surveys using an autonomous underwater vehicle and obtained high-resolution bathymetric and magnetic data and sonar images from ~70% of the caldera. The detailed bathymetric map revealed that faulting and magma eruptions, possibly associated with an inflation-deflation cycle of the magma reservoir during postcaldera volcanism, had generally occurred in the caldera wall. The main dome of the central cone was covered with lava flows and exhibits exogenous growth, which is unusual for rhyolitic domes. The magnetization distribution in the central cone indicates preferential magma intrusion along a NW-SE direction. It is presumed that magma migrated along this direction and formed a rhyolite dome at the foot of the southeastern caldera wall, where the Sunrise deposit occurs. The Sunrise deposit is composed mainly of three ridges extending in slope directions and covers ~400 × ~400 m. Magnetization reduction in the deposit area is small, indicating that the alteration zone beneath the Sunrise deposit is slanting rather than vertical. It is presumed that several slanting and near-vertical volcanic vents serve as pathways of hydrothermal fluid in Myojin Knoll caldera.

  14. Phylogeny and biogeography of exindusiate Andean Polystichum (Dryopteridaceae). (United States)

    McHenry, Monique A; Barrington, David S


    Uplift of the tropical Andes had a significant impact on the diversification of South American flora and fauna. Recent biogeographic inquiries have established patterns of Andean divergence, but investigations on ferns are scant. The fern genus Polystichum Roth (Dryopteridaceae) combines widespread geographic and elevational distribution with a large number of species to form an ideal system for investigation of the origin and diversification patterns of a fern lineage in the tropical Andes. The relationships among 42 Polystichum species, including taxa from all major biogeographic regions, were analyzed with 2591 aligned nucleotides from four plastid markers using maximum parsimony and Bayesian inference. The resulting phylogeny was then used to estimate divergence times and reconstruct both ancestral areas and ancestral elevations. Tropical Andean South American polystichums that lack an indusium (sori exindusiate) were confirmed to form a monophyletic group. This exindusiate Andean Polystichum clade diverged from a middle-elevation forest lineage now rich in species endemic to Mexico during the middle Miocene (13.12 million years ago). The majority of diversification that followed took place in the montane regions of the central Andes with radiations to the northern Andes, southeastern Brazil, and alpine regions. The monophyletic exindusiate Andean Polystichum lineage diverged from a Mexican lineage in the middle Miocene and diversified in the central Andes before dispersing northward. This south-to-north dispersal pattern, documented for many other Andean lineages, corresponds with episodes of uplift in the tropical Andes.

  15. Atmospheric chemistry in volcanic plumes. (United States)

    von Glasow, Roland


    Recent field observations have shown that the atmospheric plumes of quiescently degassing volcanoes are chemically very active, pointing to the role of chemical cycles involving halogen species and heterogeneous reactions on aerosol particles that have previously been unexplored for this type of volcanic plumes. Key features of these measurements can be reproduced by numerical models such as the one employed in this study. The model shows sustained high levels of reactive bromine in the plume, leading to extensive ozone destruction, that, depending on plume dispersal, can be maintained for several days. The very high concentrations of sulfur dioxide in the volcanic plume reduces the lifetime of the OH radical drastically, so that it is virtually absent in the volcanic plume. This would imply an increased lifetime of methane in volcanic plumes, unless reactive chlorine chemistry in the plume is strong enough to offset the lack of OH chemistry. A further effect of bromine chemistry in addition to ozone destruction shown by the model studies presented here, is the oxidation of mercury. This relates to mercury that has been coemitted with bromine from the volcano but also to background atmospheric mercury. The rapid oxidation of mercury implies a drastically reduced atmospheric lifetime of mercury so that the contribution of volcanic mercury to the atmospheric background might be less than previously thought. However, the implications, especially health and environmental effects due to deposition, might be substantial and warrant further studies, especially field measurements to test this hypothesis.

  16. Composition and provenance of Late Pleistocene-Holocene alluvial sediments of the eastern Andean piedmont between 33 and 34° S (Mendoza Province, Argentina) (United States)

    Mehl, A.; Blasi, A.; Zárate, M.


    The Andean cordillera, and its piedmont in the central western Argentina, has been long considered as one of the main source areas of detritus for the Chaco-Pampean plain sand dune fields and loess/loess-like deposits of central Argentina. The main goal of this study is to evaluate the composition of the late Pleistocene-Holocene alluvial deposits of the Andes cordillera piedmont, from 33° to 34° S. The results are interpreted in the context of the regional geology, tectonic setting of the study area and its implications in the continent-wide perspective of modern alluvial sands proposed by Potter (1994). Sampling was conducted at the alluvial stratigraphic sequences of four study sites along three Andean piedmont arroyos; modal mineralogy in the very fine sand fraction (3 phi to 4 phi) was determined using standard petrographic microscope methods. Q:F:LF average compositions indicate that the Late Pleistocene-Holocene very fine-grained alluvial sands of the Cordillera Frontal piedmont reflects the modern lithic arenites of the Argentine Association reported by Potter (1994). The results show two geologically distinct sources in the catchment areas, volcaniclastic and metamorphic rocks. High concentrations of mica and volcanic glass are likely related to particle morphologies and to the deposition sedimentary environment recorded in the alluvial sequences—floodplains. The overabundance of micas over the volcanic glass in the mid-late Holocene alluvial sequence indicates the drainage of a metamorphic area at the expense of other lithological sources. Source areas are located mainly in the Frontal cordillera, and to a lesser extent, in the piedmont Tertiary deposits, another likely source for the analyzed Quaternary alluvial sediments. The mineralogical signature of the late Pleistocene and Holocene alluvial sequences is in agreement with the composition of the southern Pampean sand mantles, loess and loess-like deposits mainly formed by a volcanic mineral

  17. Pore Fluid Evolution Influenced by Volcanic Activities and Related Diagenetic Processes in a Rift Basin: Evidence from the Paleogene Medium-Deep Reservoirs of Huanghekou Sag, Bohai Bay Basin, China

    Directory of Open Access Journals (Sweden)

    Zhongheng Sun


    Full Text Available Volcanic activities exert a significant influence on pore fluid property and related diagenetic processes that substantially controlled reservoirs quality. Analysis of Paleogene medium-deep sandstones on the Huanghekou Sag provides insight into relating the diagenetic processes to pore fluid property evolution influenced by volcanic activities. Three distinct types of pore fluids were identified on the basis of an integrated and systematic analysis including core and thin section observation, XRD, SEM, CL, and trace element. Alkaline aqueous medium environment occurred in E2s1+2 where volcanic activities have insignificant influence on pore fluids, evidenced by typical alkaline diagenetic events such as K-feldspar albitization, quartz dissolution, feldspar dissolution, and carbonate cementation. During the deposition of E3d3, influx of terrestrial freshwater and alteration of ferromagnesian-rich pore water result in the formation of mixing aqueous medium environment through volcanic eruption dormancy causing zeolite dissolution, clay mineral transformation, and K-feldspar albitization. Ferromagnesian-rich aqueous medium environment developed resulting from the intensive hydrolysis of the unstable ferromagnesian minerals formed due to intense volcanic activities during E3d1+2 and corresponding predominant diagenetic processes were characterized by the precipitation and dissolution of low-silica zeolites. Therefore, the differential properties of pore fluids caused various diagenetic processes controlling reservoir quality.

  18. On the Nature of Cross-Linguistic Transfer: A Case Study of Andean Spanish (United States)

    Muntendam, Antje G.


    This paper presents the results of a study on cross-linguistic transfer in Andean Spanish word order. In Andean Spanish the object appears in preverbal position more frequently than in non-Andean Spanish, which has been attributed to an influence from Quechua (a Subject-Object-Verb language). The high frequency of preverbal objects could be…

  19. On the Nature of Cross-Linguistic Transfer: A Case Study of Andean Spanish (United States)

    Muntendam, Antje G.


    This paper presents the results of a study on cross-linguistic transfer in Andean Spanish word order. In Andean Spanish the object appears in preverbal position more frequently than in non-Andean Spanish, which has been attributed to an influence from Quechua (a Subject-Object-Verb language). The high frequency of preverbal objects could be…

  20. Permian plate margin volcanism and tuffs in adjacent basins of west Gondwana: Age constraints and common characteristics (United States)

    López-Gamundí, Oscar


    Increasing evidence of Permian volcanic activity along the South American portion of the Gondwana proto-Pacific margin has directed attention to its potential presence in the stratigraphic record of adjacent basins. In recent years, tuffaceous horizons have been identified in late Early Permian-through Middle Permian (280-260 Ma) sections of the Paraná Basin (Brazil, Paraguay, and Uruguay). Farther south and closer to the magmatic tract developed along the continental margin, in the San Rafael and Sauce Grande basins of Argentina, tuffs are present in the Early to Middle Permian section. This tuff-rich interval can be correlated with the appearance of widespread tuffs in the Karoo Basin. Although magmatic activity along the proto-Pacific plate margin was continuous during the Late Paleozoic, Choiyoi silicic volcanism along the Andean Cordillera and its equivalent in Patagonia peaked between the late Early Permian and Middle Permian, when extensive rhyolitic ignimbrites and consanguineous airborne tuffaceous material erupted in the northern Patagonian region. The San Rafael orogenic phase (SROP) interrupted sedimentation along the southwestern segment of the Gondwana margin (i.e., Frontal Cordillera, San Rafael Basin), induced cratonward thrusting (i.e., Ventana and Cape foldbelts), and triggered accelerated subsidence in the adjacent basins (Sauce Grande and Karoo) located inboard of the deformation front. This accelerated subsidence favored the preservation of tuffaceous horizons in the syntectonic successions. The age constraints and similarities in composition between the volcanics along the continental margin and the tuffaceous horizons in the San Rafael, Sauce Grande, Paraná, and Karoo basins strongly suggest a genetic linkage between the two episodes. Radiometric ages from tuffs in the San Rafael, Paraná, and Karoo basins indicate an intensely tuffaceous interval between 280 and 260 Ma.

  1. Nature, Source and Composition of Volcanic Ash in Surficial Sediments Around the Zhongsha Islands

    Institute of Scientific and Technical Information of China (English)

    YAN Quanshu; SHI Xuefa; WANG Xinyu


    Volcanic detrital sediments are a unique indicator for reconstructing the petrogenetie evolution of submarine volcanic terrains. Volcanic ash in surficial sediments around the Zhongsha Islands includes three kinds of volcanogenic detritus, i.e., brown volcanic glass, colorless volcanic glass and volcanic scoria. The major element characteristics show that bimodal volcanic activity may have taken place in the northern margin of the South China Sea, with brown volcanic glass and colorless volcanic glass repre-senting the maric end-member and felsie end-member, respectively. Fractional crystallization is the main process for magma evolu-tion. The nature of the volcanic activity implies that the origin of volcanic activity was related to extensional tectonic settings, which is corresponding to an extensional geodynamie setting in the Xisha Trench, and supports the notion, which is based on geophysical data and petrology, that there may exist a mantle plume around the Hainan Island.

  2. Tephrochronology of the Mont-Dore volcanic Massif (Massif Central, France): new 40Ar/39Ar constraints on the Late Pliocene and Early Pleistocene activity (United States)

    Nomade, Sébastien; Pastre, Jean-François; Nehlig, Pierre; Guillou, Hervé; Scao, Vincent; Scaillet, Stéphane


    The Mont-Dore Massif (500 km2), the youngest stratovolcano of the French Massif Central, consists of two volcanic edifices: the Guéry and the Sancy. To improve our knowledge of the oldest explosive stages of the Mont-Dore Massif, we studied 40Ar/39Ar-dated (through single-grain laser and step-heating experiments) 11 pyroclastic units from the Guéry stratovolcano. We demonstrate that the explosive history of the Guéry can be divided into four cycles of explosive eruption activity between 3.09 and 1.46 Ma (G.I to G.IV). We have also ascertained that deposits associated with the 3.1-3.0-Ma rhyolitic activity, which includes the 5-km3 "Grande Nappe" ignimbrite, are not recorded in the central part of the Mont-Dore Massif. All the pyroclastites found in the left bank of the Dordogne River belong to a later explosive phase (2.86-2.58 Ma, G.II) and were channelled down into valleys or topographic lows where they are currently nested. This later activity also gave rise to most of the volcanic products in the Perrier Plateau (30 km east of the Mont-Dore Massif); three quarters of the volcano-sedimentary sequence (up to 100 m thick) was emplaced within less than 20 ky, associated with several flank collapses in the northeastern part of the Guéry. The age of the "Fournet flora" (2.69 ± 0.01 Ma) found within an ash bed belonging to G.II suggests that temperate forests already existed in the French Massif Central before the Pliocene/Pleistocene boundary. The Guéry's third explosive eruption activity cycle (G.III) lasted between 2.36 and 1.91 Ma. It encompassed the Guéry Lake and Morangie pumice and ash deposits, as well as seven other important events recorded as centimetric ash beds some 60 to 100 km southeast of the Massif in the Velay region. We propose a general tephrochronology for the Mont-Dore stratovolcano covering the last 3.1 My. This chronology is based on 44 40Ar/39Ar-dated events belonging to eight explosive eruption cycles each lasting between 100 and 200

  3. The Pali Aike Volcanic Field, Patagonia: slab-window magmatism near the tip of South America (United States)

    D'Orazio, Massimo; Agostini, Samuele; Mazzarini, Francesco; Innocenti, Fabrizio; Manetti, Piero; Haller, Miguel J.; Lahsen, Alfredo


    The Pali Aike Volcanic Field (PAVF) represents the southernmost occurrence of the Cenozoic back-arc Patagonian Plateau Lavas. Its activity (Pliocene-Recent) started forming tabular lavas followed by the growth of about 470 essentially monogenetic volcanic centers (tuff-rings, maars, spatter and scoria cones). Azimuths of cone alignment, cone elongation and morphologic lineations show prevailing ENE-WSW and NW-SE trends. Erupted products consist mainly of alkaline basalt and basanite, with minor olivine basalt. PAVF rocks are quite primitive in composition (average Mg#=66, Ni=220 ppm and Cr=313 ppm) with relatively high TiO 2 (average 3.0 wt.%). Ultramafic garnet- and/or spinel-bearing xenoliths are found within PAVF volcanics. Chondrite-normalized REE patterns are significantly LREE-enriched and almost rectilinear [(La/Yb) N=10.9-21.0]. Primordial mantle-normalized distributions of incompatible trace elements, as well as Sr and Nd isotope ratios ( 87Sr/ 86Sr=0.70317-0.70339, 143Nd/ 144Nd=0.51290-0.51294), show values typical of intra-plate basalts, despite the fact that these rocks occur only 200 km east of the Andean Cordillera. Primary magmas were generated from a fertile garnet-bearing asthenospheric source at P=1.9-2.9 GPa and T=1420-1470°C. The data suggest a geodynamic model that implies sub-slab asthenosphere flow through a slab window, which started opening below this sector of South America 14 m.y. ago as a consequence of the collision of the Chile Ridge with the Chile Trench. The trailing edge of the Nazca Plate crossed below the Pali Aike area at 9-10 Ma, that is 6-5 m.y. before the onset of the volcanic activity. We hypothesize that this time delay resulted from changes in the kinematics of the South America-Scotia transform plate boundary which only allowed the Pali Aike magmas to rise after about 4 m.y.

  4. The Late Cretaceous-Paleogene active margin of Northeastern Asia: Geodynamic setting of terrigenous sedimentary basins in the Central Koryak terrane (United States)

    Chekhovich, V. D.; Palandzhyan, S. A.; Sukhov, A. N.; Egorkin, A. V.; Ben'yamovsky, V. N.


    The northeastern segment of the Late Cretaceous suprasubduction Okhotsk-Chukotka volcanic belt is not an analogue of Andean-type continental margin. During its formation, the belt was separated from the Paleopacific by a complexly built assembly that comprised the Central Koryak continental block and the Essoveem volcanic arc at its margin. Various types of independent terrigenous sedimentary basins were formed in the Late Cretaceous and Early Paleogene at the subsided portion of the microcontinent and its slope. The Uchkhichkhil-type basin was characterized by deposition of polymictic clastic sediments produced during erosion of the volcanic arc and pyroclastic material derived from active volcanic centers of this arc that extended along the microcontinent margin that faced the Okhotsk-Chukotka volcanic belt. The deposition of quartz-feldspathic flyschoid sequences as products of scouring of sialic basement of the continental block was inherent to the Ukelayat type of sedimentation. The closure of the minor oceanic basin that separated the Asian margin from microcontinent in the late Campanian resulted in the cessation of subduction-related activity of the Okhotsk-Chukotka volcanic belt and the Essoveem arc and initiated the formation of the Late Cretaceous accretionary margin of Asia. The deep structure of the central Koryak Highland deduced from the results of seismic surveying with the earthquake converted-wave method has corroborated the geotectonic interpretation.

  5. Volcanic Eruptions and Climate (United States)

    LeGrande, Allegra N.; Anchukaitis, Kevin J.


    Volcanic eruptions represent some of the most climatically important and societally disruptive short-term events in human history. Large eruptions inject ash, dust, sulfurous gases (e.g. SO2, H2S), halogens (e.g. Hcl and Hbr), and water vapor into the Earth's atmosphere. Sulfurous emissions principally interact with the climate by converting into sulfate aerosols that reduce incoming solar radiation, warming the stratosphere and altering ozone creation, reducing global mean surface temperature, and suppressing the hydrological cycle. In this issue, we focus on the history, processes, and consequences of these large eruptions that inject enough material into the stratosphere to significantly affect the climate system. In terms of the changes wrought on the energy balance of the Earth System, these transient events can temporarily have a radiative forcing magnitude larger than the range of solar, greenhouse gas, and land use variability over the last millennium. In simulations as well as modern and paleoclimate observations, volcanic eruptions cause large inter-annual to decadal-scale changes in climate. Active debates persist concerning their role in longer-term (multi-decadal to centennial) modification of the Earth System, however.

  6. The new Andean Regional Office of Astronomy for Development (United States)

    Char, Farid; Forero-Romero, Jaime


    The Andean Regional Office of Astronomy for Development (ROAD) is a new effort in South America to serve several goals in astronomical development. The six countries in the Andean ROAD (Bolivia, Colombia, Chile, Ecuador, Peru and Venezuela) represent a common language block in the region. They work together to develop strategies to strengthen the professional research, education and popularization of astronomy. Our current Working Structure comprises a ROAD Coordinator and one Coordinators in each Task Force. Here we describe the main points of the ROAD's current action plan.

  7. Onboard Processing of Multispectral and Hyperspectral Data of Volcanic Activity for Future Earth-Orbiting and Planetary Missions (United States)

    Davies, Ashley Gerard; Chien, Steve; Tran, Daniel Q.; Doubleday, Joshua


    Autonomous onboard processing of data allows rapid response to detections of dynamic, changing processes. Software that can detect volcanic eruptions from thermal emission has been used to retask the Earth Observing 1 spacecraft to obtain additional data of the eruption. Rapid transmission of these data to the ground, and the automatic processing of the data to generated images, estimates of eruption parameters and maps of thermal structure, has allowed these products to be delivered rapidly to volcanologists to aid them in assessing eruption risk and hazard. Such applications will enhance science return from future Earth-orbiting spacecraft and also from spacecraft exploring the Solar System, or beyond, which hope to image dynamic processes. Especially in the latter case, long communication times between the spacecraft and Earth exclude a rapid response to what may be a transient process - only using onboard autonomy can the spacecraft react quickly to such an event.

  8. Evaluation of indigenous grains from the Peruvian Andean region for antidiabetes and antihypertension potential using in vitro methods. (United States)

    Ranilla, Lena Galvez; Apostolidis, Emmanouil; Genovese, Maria Ines; Lajolo, Franco Maria; Shetty, Kalidas


    The health-relevant functionality of 10 thermally processed Peruvian Andean grains (five cereals, three pseudocereals, and two legumes) was evaluated for potential type 2 diabetes-relevant antihyperglycemia and antihypertension activity using in vitro enzyme assays. Inhibition of enzymes relevant for managing early stages of type 2 diabetes such as hyperglycemia-relevant alpha-glucosidase and alpha-amylase and hypertension-relevant angiotensin I-converting enzyme (ACE) were assayed along with the total phenolic content, phenolic profiles, and antioxidant activity based on the 1,1-diphenyl-2-picrylhydrazyl radical assay. Purple corn (Zea mays L.) (cereal) exhibited high free radical scavenging-linked antioxidant activity (77%) and had the highest total phenolic content (8 +/- 1 mg of gallic acid equivalents/g of sample weight) and alpha-glucosidase inhibitory activity (51% at 5 mg of sample weight). The major phenolic compound in this cereal was protocatechuic acid (287 +/- 15 microg/g of sample weight). Pseudocereals such as Quinoa (Chenopodium quinoa Willd) and Kañiwa (Chenopodium pallidicaule Aellen) were rich in quercetin derivatives (1,131 +/- 56 and 943 +/- 35 microg [expressed as quercetin aglycone]/g of sample weight, respectively) and had the highest antioxidant activity (86% and 75%, respectively). Andean legumes (Lupinus mutabilis cultivars SLP-1 and H-6) inhibited significantly the hypertension-relevant ACE (52% at 5 mg of sample weight). No alpha-amylase inhibitory activity was found in any of the evaluated Andean grains. This in vitro study indicates the potential of combination of Andean whole grain cereals, pseudocereals, and legumes to develop effective dietary strategies for managing type 2 diabetes and associated hypertension and provides the rationale for animal and clinical studies.

  9. Chlorine isotope and Cl-Br fractionation in fluids of Poás volcano (Costa Rica): Insight into an active volcanic-hydrothermal system (United States)

    Rodríguez, Alejandro; Eggenkamp, H. G. M.; Martínez-Cruz, María; van Bergen, Manfred J.


    Halogen-rich volcanic fluids issued at the surface carry information on properties and processes operating in shallow hydrothermal systems. This paper reports a long-term record of Cl-Br concentrations and δ37Cl signatures of lake water and fumaroles from the active crater of Poás volcano (Costa Rica), where surface expressions of magmatic-hydrothermal activity have shown substantial periodic changes over the last decades. Both the hyperacid water of its crater lake (Laguna Caliente) and subaerial fumaroles show significant temporal variability in Cl-Br concentrations, Br/Cl ratios and δ37Cl, reflecting variations in the mode and magnitude of volatile transfer. The δ37Cl signatures of the lake, covering the period 1985-2012, show fluctuations between + 0.02 ± 0.06‰ and + 1.15 ± 0.09‰. Condensate samples from adjacent fumaroles on the southern shore, collected during the interval (2010-2012) with strong changes in gas temperature (107-763°C), display a much larger range from - 0.43 ± 0.09‰ to + 14.09 ± 0.08‰. Most of the variations in Cl isotope, Br/Cl and concentration signals can be attributed to interaction between magma-derived gas and liquid water in the volcanic-hydrothermal system below the crater. The δ37Cl were lowest and closest to magmatic values in (1) fumarolic gas that experienced little or no interaction with subsurface water and followed a relatively dry pathway, and (2) water that captured the bulk of magmatic halogen output so that no phase separation could induce fractionation. In contrast, elevated δ37Cl can be explained by partial scavenging and fractionation during subsurface gas-liquid interaction. Hence, strong Cl isotope fractionation leading to very high δ37Cl in Poás' fumaroles indicates that they followed a wet pathway. Highest δ37Cl values in the lake water were found mostly in periods when it received a significant input from subaqueous fumaroles or when high temperatures and low pH caused HCl evaporation. It is

  10. Contribution of ground surface altitude difference to thermal anomaly detection using satellite images: Application to volcanic/geothermal complexes in the Andes of Central Chile (United States)

    Gutiérrez, Francisco J.; Lemus, Martín; Parada, Miguel A.; Benavente, Oscar M.; Aguilera, Felipe A.


    Detection of thermal anomalies in volcanic-geothermal areas using remote sensing methodologies requires the subtraction of temperatures, not provided by geothermal manifestations (e.g. hot springs, fumaroles, active craters), from satellite image kinetic temperature, which is assumed to correspond to the ground surface temperature. Temperatures that have been subtracted in current models include those derived from the atmospheric transmittance, reflectance of the Earth's surface (albedo), topography effect, thermal inertia and geographic position effect. We propose a model that includes a new parameter (K) that accounts for the variation of temperature with ground surface altitude difference in areas where steep relief exists. The proposed model was developed and applied, using ASTER satellite images, in two Andean volcanic/geothermal complexes (Descabezado Grande-Cerro Azul Volcanic Complex and Planchón-Peteroa-Azufre Volcanic Complex) where field data of atmosphere and ground surface temperature as well as radiation for albedo calibration were obtained in 10 selected sites. The study area was divided into three zones (Northern, Central and Southern zones) where the thermal anomalies were obtained independently. K value calculated for night images of the three zones are better constrained and resulted to be very similar to the Environmental Lapse Rate (ELR) determined for a stable atmosphere (ELR > 7 °C/km). Using the proposed model, numerous thermal anomalies in areas of ≥ 90 m × 90 m were identified that were successfully cross-checked in the field. Night images provide more reliable information for thermal anomaly detection than day images because they record higher temperature contrast between geothermal areas and its surroundings and correspond to more stable atmospheric condition at the time of image acquisition.

  11. Postmodern Anthropology: Reflections from Andean Ethnohistory

    Directory of Open Access Journals (Sweden)

    Villarías-Robles, Juan J. R.


    Full Text Available The postmodern perspective, which began its influence on studies of Prehispanic Peru in the 1980s, has resulted —as chief positive effect— in reflection and debate concerning the written sources for apprehending such cultural otherness, the so-called “Chronicles of the West Indies”: a perspective accompanied by new editions of these texts. The author of the present article expresses his own reflection on such change in theory and method. He argues that, with regard to self-reflectivity on its epistemological foundations, the new perspective is not entirely original in the long history of Andean ethnohistory; in effect, this approach is almost as old as the field itself. What is indeed original is the cognitive relativism that surfaced in some extreme forms of the discussion. It was an unfortunate development, however: when not denying, as a matter of principle, the very possibility of understanding that cultural otherness, arguments masked actual interpretations or explanations of its features that were protected, ipso facto, from a rigorous process of validation.

    La perspectiva posmoderna, que empezó a ser influyente en los estudios del Perú prehispánico en la década de 1980, ha tenido como principal efecto positivo la reflexión y el debate sobre las fuentes originales de conocimiento de esa alteridad cultural, las llamadas genéricamente “Crónicas de Indias”: una perspectiva acompañada de nuevas ediciones de tales textos. El autor del presente artículo hace aquí su propia reflexión sobre este cambio teórico y metodológico. Plantea que, en lo que tiene de discusión sobre sus bases epistemológicas, no es del todo original en la larga historia de la etnohistoria peruanista. Es, de hecho, casi tan antiguo como ella. Lo que sí ha sido original es el relativismo cognitivo que ha acompañado a algunas expresiones extremas de la discusión. Pero fue ésta una novedad desafortunada: cuando no negaba por principio la

  12. A quantitative geomorphological approach to constraining the volcanic and tectonic evolution of the active Dabbahu rift segment, Afar, Ethiopia. (United States)

    Medynski, Sarah; Pik, Raphaël; Burnard, Peter; Vye-Brown, Charlotte; Blard, Pierre-Henri; France, Lydéric; Dumont, Stéphanie; Grandin, Raphaël; Schimmelpfennig, Irene; Benedetti, Lucilla; Ayalew, Dereje; Yirgu, Gezahegn


    In the Afar depression (Ethiopia), extension is organised along rift segments that morphologically resemble oceanic rifts. Segmentation results from interactions between dyke injection and volcanism, as observed during the well-documented 2005 rifting event on the Dabbahu rift segment. This tectono-volcanic crisis was observed in detail via remote sensing techniques, providing invaluable information on the present-day tectonic - magmatic interplay during a sequence of dyke intrusions. However, lack of data remains on timescales of 1 to 100 kyr, the period over which the main morphology of the rift is acquired. The Dabbahu rift segment represents an ideal natural laboratory to study the evolution of rift morphology as a response to volcanic and tectonic influences. We use cosmogenic nuclides (3He and 36Cl) to determine the ages of young (<100 kyr) lava flows and to date the initiation and movement of fault scarps, which cut the lavas. Where possible, we analysed vertical profiles along fault scarps, in an attempt to distinguish individual tectonic events that offset the scarp, estimate their amplitudes and date the recurrence intervals. These geochronological constraints, combined with major & trace element compositions, field mapping and digital mapping (Landsat, ASTER and SPOT imagery), provide valuable insights on the magmatic and tectonic history of the segment. The results show that over the last 100 ka, the northern part of the Dabbahu segment was supplied by at least two different magma reservoirs, which can be identified from their distinctive chemistries. The main reservoir is located beneath Dabbahu volcano at the northern tip of the rift segment, and has been supplied with magma for at least 72 ka. The second reservoir is located further south on the rift axis and corresponds to the current mid-segment magma chamber, which was responsible for the 2005 rifting episode. Two magmatic cycles linked to the Dabbahu magma chamber were recorded, lasting 20-30 kyr

  13. Recurrence models of volcanic events: Applications to volcanic risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Crowe, B.M. [Los Alamos National Lab., Las Vegas, NV (United States); Picard, R.; Valentine, G. [Los Alamos National Lab., NM (United States); Perry, F.V. [New Mexico Univ., Albuquerque, NM (United States)


    An assessment of the risk of future volcanism has been conducted for isolation of high-level radioactive waste at the potential Yucca Mountain site in southern Nevada. Risk used in this context refers to a combined assessment of the probability and consequences of future volcanic activity. Past studies established bounds on the probability of magmatic disruption of a repository. These bounds were revised as additional data were gathered from site characterization studies. The probability of direct intersection of a potential repository located in an eight km{sup 2} area of Yucca Mountain by ascending basalt magma was bounded by the range of 10{sup {minus}8} to 10{sup {minus}10} yr{sup {minus}1 2}. The consequences of magmatic disruption of a repository were estimated in previous studies to be limited. The exact releases from such an event are dependent on the strike of an intruding basalt dike relative to the repository geometry, the timing of the basaltic event relative to the age of the radioactive waste and the mechanisms of release and dispersal of the waste radionuclides in the accessible environment. The combined low probability of repository disruption and the limited releases associated with this event established the basis for the judgement that the risk of future volcanism was relatively low. It was reasoned that that risk of future volcanism was not likely to result in disqualification of the potential Yucca Mountain site.

  14. Elastic plate flexure above mantle plumes explains the upstream offset of volcanic activity at la Réunion and Hawaii (United States)

    Gerbault, Muriel; Fontaine, Fabrice; Rabinowicz, Michel; Bystricky, Micha


    Surface volcanism at la Réunion and Hawaii occurs with an offset of 150-180 km upstream to the plume axis with respect to the plate motion. This striking observation raises questions about the forcing of plume-lithosphere thermo-mechanical interactions on melt trajectories beneath these islands. Based on visco-elasto-plastic numerical models handled at kilometric resolution, we propose to explain this offset by the development of compressional stresses at the base of the lithosphere, that result from elastic plate bending above the upward load exerted by the plume head. This horizontal compression adopts a disc shape centered around the plume axis, 20 km thick and 150 km in radius, at 50-70 km depth where the temperature varies from 600°C to 750°C. It lasts for 5 to 10 My in an oceanic plate of age greater than 70 My, a timing that is controlled by the visco-elastic relaxation time at 50-70 km depth. This period of time exceeds the time during which both the Somalian/East-African and Pacific plates drift over the Reunion and Hawaii plumes, respectively, thus rendering this basal compression a persistent feature. It is inferred that the buoyant melts percolating in the plume head pond below this zone of compression and eventually spread laterally until the most compressive principal elastic stresses reverse to the vertical, i.e., 150 km away from the plume head. There, melts propagate through dikes upwards to 35 km depth, where the plate curvature reverses and ambient compression diminishes. This 30-35 km depth may thus host magmatic reservoirs where melts pond, until further differentiation can relaunch ascension up to the surface and form a volcanic edifice. In a second stage, as the volcano grows because of melt accumulation at the top of the plate, the lithosphere is flexed downwards, inducing extra tensile stress at 30-35 km depth and compression at 15 km depth. It implies that now the melts pond at 15 km and form another magmatic reservoir lying just

  15. Volcanic-ash hazard to aviation during the 2003-2004 eruptive activity of Anatahan volcano, Commonwealth of the Northern Mariana Islands (United States)

    Guffanti, M.; Ewert, J.W.; Gallina, G.M.; Bluth, G.J.S.; Swanson, G.L.


    Within the Commonwealth of the Northern Mariana Islands (CNMI), Anatahan is one of nine active subaerial volcanoes that pose hazards to major air-traffic routes from airborne volcanic ash. The 2003-2004 eruptive activity of Anatahan volcano affected the region's aviation operations for 3 days in May 2003. On the first day of the eruption (10 May 2003), two international flights from Saipan to Japan were cancelled, and several flights implemented ash-avoidance procedures. On 13 May 2003, a high-altitude flight through volcanic gas was reported, with no perceptible damage to the aircraft. TOMS and MODIS analysis of satellite data strongly suggests that no significant ash and only minor amounts of SO2 were involved in the incident, consistent with crew observations. On 23 May 2003, airport operations were disrupted when tropical-cyclone winds dispersed ash to the south, dusting Saipan with light ashfall and causing flight cancellations there and at Guam 320 km south of the volcano. Operational (near-real-time) monitoring of ash clouds produced by Anatahan has been conducted since the first day of the eruption on 10 May 2003 by the Washington Volcanic Ash Advisory Center (VAAC). The VAAC was among the first groups outside of the immediate area of the volcano to detect and report on the unexpected eruption of Anatahan. After being contacted about an unusual cloud by National Weather Service forecasters in Guam at 1235 UTC on 10 May 2003, the VAAC analyzed GOES 9 images, confirming Anatahan as the likely source of an ash cloud and estimating that the eruption began at about 0730 UTC. The VAAC issued its first Volcanic Ash Advisory for Anatahan at 1300 UTC on 10 May 2003 more than 5 h after the start of the eruption, the delay reflecting the difficulty of detecting and confirming a surprise eruption at a remote volcano with no in situ real-time geophysical monitoring. The initial eruption plume reached 10.7-13.4 km (35,000-44,000 ft), well into jet cruise altitudes

  16. Cost-effective monitoring of ground motion related to earthquakes, landslides, or volcanic activity by joint use of a single-frequency GPS and a MEMS accelerometer (United States)

    Tu, R.; Wang, R.; Ge, M.; Walter, T. R.; Ramatschi, M.; Milkereit, C.; Bindi, D.; Dahm, T.


    detection and precise estimation of strong ground motion are crucial for rapid assessment and early warning of geohazards such as earthquakes, landslides, and volcanic activity. This challenging task can be accomplished by combining GPS and accelerometer measurements because of their complementary capabilities to resolve broadband ground motion signals. However, for implementing an operational monitoring network of such joint measurement systems, cost-effective techniques need to be developed and rigorously tested. We propose a new approach for joint processing of single-frequency GPS and MEMS (microelectromechanical systems) accelerometer data in real time. To demonstrate the performance of our method, we describe results from outdoor experiments under controlled conditions. For validation, we analyzed dual-frequency GPS data and images recorded by a video camera. The results of the different sensors agree very well, suggesting that real-time broadband information of ground motion can be provided by using single-frequency GPS and MEMS accelerometers.

  17. Structural control on geothermal circulation in the Tocomar geothermal volcanic area (Puna plateau, Argentina) (United States)

    Giordano, Guido


    The reconstruction of the stratigraphical-structural framework and the hydrogeology of geothermal areas is fundamental for understanding the relationships between cap rocks, reservoir and circulation of geothermal fluids and for planning the exploitation of the field. The Tocomar geothermal volcanic area (Puna plateau, Central Andes, NW Argentina) has a high geothermal potential. It is crossed by the active NW-SE trans-Andean tectonic lineament known as the Calama-Olacapato-Toro (COT) fault system, which favours a high secondary permeability testified by the presence of numerous thermal springs. This study presents new stratigraphic, structural, volcanological, geochemical and hydrogeological data on the geothermal field. Our data suggest that the main geothermal reservoir is located within or below the Pre-Palaeozoic-Ordovician basement units, characterised by unevenly distributed secondary permeability. The reservoir is recharged by infiltration in the ridges above 4500 m a.s.l., where basement rocks are in outcrop. Below 4500 m a.s.l., the reservoir is covered by the low permeable Miocene-Quaternary units that allow a poor circulation of shallow groundwater. Geothermal fluids upwell in areas with more intense fracturing, especially where main regional structures, particularly NW-SE COT-parallel lineaments, intersect with secondary structures, such as at the Tocomar field.

  18. Andean grasslands are as productive as tropical cloud forests

    NARCIS (Netherlands)

    Oliveras Menor, I.; Girardin, C.; Doughty, C.E.; Cahuana, N.; Arenas, C.E.; Oliver, V.; Huaraca Huasco, W.; Malhi, Y.


    We aim to assess net primary productivity (NPP) and carbon cycling in Andean tropical alpine grasslands (puna) and compare it with NPP of tropical montane cloud forests. We ask the following questions: (1) how do NPP and soil respiration of grasslands vary over the seasonal cycle? (2) how do burning

  19. The astronomy of Andean myth: The history of a cosmology (United States)

    Sullivan, William F.

    It is shown that Andean myth, on one level, represents a technical language recording astronomical observations of precession and, at the same time, an historical record of simultaneous social and celestial transformations. Topographic and architectural terms of Andean myth are interpreted as a metaphor for the organization of and locations on the celestial sphere. Via ethoastronomical date, mythical animals are identified as stars and placed on the celestial sphere according to their topographical location. Tested in the planetarium, these arrays generate cluster of dates - 200 B.C. and 650 A.D. Analysis of the names of Wiraqocha and Manco Capac indicates they represent Saturn and Jupiter and that their mythical meeting represents their conjunction in 650 A.D. The astronomy of Andean myth is then used as an historical tool to examine how the Andean priest-astronomers recorded the simultaneous creation of the avllu and of this distinctive astronomical system about 200 B.C. The idea that the agricultural avllu, with its double descent system stressing the importance of paternity, represents a transformation of society from an earlier matrilineal/horticultural era is examined in light of the sexual imagery employed in myth. Wiraqocha's androgyny and the division of the celestial sphere into male (ecliptic) and female (celestial equator = earth) are interpreted as cosmological validations of the new social structure.

  20. Andean shrublands of Moquegua, South Peru: Prepuna plant communities

    NARCIS (Netherlands)

    Montesinos, D.B.; Cleef, A.M.; Sykora, K.V.


    A syntaxonomic overview of shrubland vegetation in the southern Andean regions of Peru is presented. For each plant community, information is given on physiognomy, floristic diversity, ecology and geographical distribution. The shrub vegetation on the slopes of the upper Tambo river valley includes

  1. Inflammatory aspects of type 2 diabetes in the Andean region

    NARCIS (Netherlands)

    L.Y. Baldeón Rojas (Lucy)


    markdownabstractAbstract This thesis deals with the immune inflammatory aspects of obesity, the metabolic syndrome (MetS), insulin resistance and type 2 diabetes (T2D) in the Andean region, more precisely in Quito, Ecuador. To understand the research questions a short introduction in the immun

  2. 大兴安岭-太行山重力梯度带以西的第四纪火山活动%Quaternary Volcanic Activities in the West of the Daxing′anling-Taihangshan Gravity Lineament

    Institute of Scientific and Technical Information of China (English)

    樊祺诚; 赵勇伟; 陈生生; 李霓; 隋建立


    Quaternary volcanic activities in the west of the Daxing'anling-Taihangshan gravity lineament stretch,from north to south,across two different geotectonic setting,the Xing'an Mongolian orogenic belt and the North China Craton.The volcanic activities generated three volcanic clusters with various sizes:Nuominhe volcanic cluster and Chaoerhe-Halahahe volcanic cluster in the north,Abaga volcanic cluster and Dalinuoer volcanic cluster in the middle,and Datong volcanic cluster and Wulanhada volcanic cluster in the south.These volcanic clusters consist mainly of monogenetic volcanos with the cone number from dozens to more than 200.For example,the Abaga-Dalinuoer volcanic field in Inner Mongolia ex-tends northwestward into the adjacent Dariganga lava plateau of Mongolia,forming the largest Cenozoic volcanic fields in eastern Asia.Thus,the west of Daxing'anling-Taihangshan gravity lineament is a key place to (1 )discuss origin and tec-tonic setting of intra-continent volcanic activity,and (2)study differential evolutions between the east and west sides of the Daxing'anling-Taihangshan gravity lineament and between the Xing'an Mongolian orogenic belt and the North China Craton.%大兴安岭—太行山重力梯度带以西的第四纪火山活动自北往南贯穿兴蒙造山带和华北克拉通2个大地构造单元,可以分为北、中、南三部分,展现规模不等的火山群:北部诺敏河火山群和绰尔河—哈拉哈河火山群,中部阿巴嘎火山群和达里诺尔火山群,南部大同火山群和乌兰哈达火山群。这些火山群主要由单成因火山组成,少则几十座,多则200余座,如阿巴嘎火山群向北延入蒙古达里干加,构成亚洲东部面积最大的新生代火山区。因此,大兴安岭—太行山重力梯度带以西的第四纪火山成为探讨大陆内部火山活动构造背景与成因机制的重要场所,也是获取大兴安岭—太行山重力梯度带东西两侧和兴

  3. Double, double, (but mostly) toil, and trouble: A multidisciplinary approach to quantify the permeability of an active volcanic hydrothermal system (Whakaari volcano, New Zealand) (United States)

    Heap, Michael; Kennedy, Ben; Farquharson, Jamie; Ashworth, James; Mayer, Klaus; Letham-Brake, Mark; Reuschlé, Thierry; Gilg, Albert; Scheu, Betty; Lavallée, Yan; Siratovich, Paul; Cole, Jim; Jolly, Art; Dingwell, Donald


    Our multidisciplinary approach, which combines field techniques and traditional laboratory methods, aims to better understand the permeability of an active volcanic hydrothermal system, a vital prerequisite for understanding and modelling the behaviour of hydrothermal systems worldwide. Whakaari volcano (an active stratovolcano located 48 km off New Zealand's North Island) hosts an open, highly reactive hydrothermal system (hot springs and mud pools, fumaroles, acid streams and lakes) and represents an ideal natural laboratory to undertake such a study. We first gained an appreciation of the different lithologies at Whakaari and (where possible) their lateral and vertical extent through reconnaissance by land, sea, and air. Due to the variable nature of these altered lithologies (mainly lavas and tuffs), we measured porosity-permeability for in excess of a hundred rock hand samples using field techniques. We also measured the permeability of recent, unconsolidated deposits using a field soil permeameter. Our field measurements were then groundtruthed on a subset of these samples (~40-50) using traditional laboratory techniques: helium pycnometry and measurements of permeability using a benchtop permeameter, including measurements under increasing confining pressure (i.e., depth). In all, our measurements highlight that the porosity of the materials at Whakaari can vary from ~0.01 to ~0.6, and permeability can vary by eight orders of magnitude. However, our data show no discernable trend between porosity and permeability. A combination of macroscopic and microscopic observations, chemistry (XRF), mineralogy (XRD), and mercury porosimetry highlight that the absence of a robust porosity-permeability relationship is the product of an insane variability in alteration and microstructure (pore size, particle size, pore connectivity, presence/absence of microcracks, layering, amongst others). While our systematic study offers the most complete porosity-permeability dataset

  4. Seismic activity and stress tensor inversion at Las Tres Vírgenes Volcanic and Geothermal Field (México) (United States)

    Antayhua-Vera, Yanet; Lermo-Samaniego, Javier; Quintanar-Robles, Luis; Campos-Enríquez, Oscar


    We analyze local earthquakes occurring between 2003 and 2012 at the Las Tres Vírgenes Volcanic and Geothermal Field (TVVGF) to establish their temporal and spatial distribution, and relationships with local and regional fault systems, water injection, acid stimulation and steam production tests. We obtained focal mechanisms and inverted data for the stress tensor to understand the local and regional stress fields. We analyzed 423 local earthquakes with magnitudes between 0.1 and 2.9 Mc and hypocentral depths from 0.2 to 7.4 km b.s.l. The cutoff depth at ~ 7.4 km possibly delineates the brittle-ductile transition zone. We identified seven swarms (from 1 to 7). Swarms 1 (December 2009), 2 (May 2010), 3 (June-July 2010) and 7 (December 2012) are strongly correlated with injection processes; whereas swarms 5 (April 2012) and 6 (September 2012) are correlated with local tectonic faults. Stress inversion showed NW-SE, E-W and NE-SW extensional orientations (Shmin), in agreement with the local tectonic stress field; while NE-SW compressional orientations (SHmax) are correlated with the regional tectonic stress field.

  5. Andean Uplift in the Context of Global Climate Change (United States)

    Jeffery, Louise; Poulsen, Chris; Ehlers, Todd; Insel, Nadja


    The two primary causes of South American climate change over the last 40 million years are global climate change and the uplift of the Andes Mountains. Quantifying spatial and temporal variations in climate over the duration of Andean surface uplift is necessary for interpreting palaeoclimate, erosion and palaeoelevation records from the region. This study utilises an atmospheric general circulation model (GCM) to investigate the magnitude and relative importance of 1) global climate and 2) Andean surface uplift to South American climate during the last 40Ma. Combined with knowledge from the geologic record, the results constrain the controls on, and timing of, landscape development. Three different atmospheric CO2 levels (1, 2 and 4x pre-industrial levels - 280ppm) are used to simulate the range of global climate since the early Cenozoic. Surface uplift of the Andes is examined with simulations at three different Andean elevations (100%, 50% and 5% of modern heights). The importance of feedbacks associated with global climate change is assessed with additional simulations incorporating 1) no Antarctic Ice Sheet and 2) an equilibrium vegetation model coupled to the climate model. Initial results show that the elevation of the Andes exerts a much stronger control on South American precipitation than does the atmospheric CO2 level. The presence of the Andes leads to an increase in annual average precipitation rates of up to 8 mm/day at 20⁰S on the eastern flanks of the mountain range. An increase in CO2 levels from 1x to 4x pre-industrial levels increases the intensity of the global hydrological cycle with annual average precipitation rates increasing by up to 5mm/day. At 50% and 5% Andean elevation, precipitation patterns over South America are independent of atmospheric CO2 concentration. However, at 100% Andean elevation South American precipitation is sensitive to high (4x) CO2 levels. Most large-scale circulation patterns over South America are consistent

  6. Diffuse emissions of Volatile Organic Compounds (VOCs) from soil in volcanic and hydrothermal systems: evidences for the influence of microbial activity on the carbon budget (United States)

    Venturi, Stefania; Tassi, Franco; Fazi, Stefano; Vaselli, Orlando; Crognale, Simona; Rossetti, Simona; Cabassi, Jacopo; Capecchiacci, Francesco


    Soils in volcanic and hydrothermal areas are affected by anomalously high concentrations of gases released from the deep reservoirs, which consists of both inorganic (mainly CO2 and H2S) and organic (volatile organic compounds; VOCs) species. VOCs in volcanic and hydrothermal fluids are mainly composed of saturated and unsaturated hydrocarbons (alkanes, aromatics, alkenes, and cyclics), with variable concentrations of O- and S-bearing compounds and halocarbons, depending on the physicochemical conditions at depth. VOCs in interstitial soil gases and fumarolic emissions from four volcanic and hydrothermal systems in the Mediterranean area (Solfatara Crater, Poggio dell'Olivo and Cava dei Selci, in Italy, and Nisyros Island, in Greece) evidenced clear compositional differences, suggesting that their behavior is strongly affected by secondary processes occurring at shallow depths and likely controlled by microbial activity. Long-chain saturated hydrocarbons were significantly depleted in interstitial soil gases with respect to those from fumarolic discharges, whereas enrichments in O-bearing compounds (e.g. aldehydes, ketones), DMSO2 and cyclics were commonly observed. Benzene was recalcitrant to degradation processes, whereas methylated aromatics were relatively instable. The chemical and isotopic (δ13C in CO2 and CH4) composition of soil gases collected along vertical profiles down to 50 cm depth at both Solfatara Crater and Poggio dell'Olivo (Italy) showed evidences of relevant oxidation processes in the soil, confirming that microbial activity likely plays a major role in modifying the composition of deep-derived VOCs. Despite their harsh conditions, being typically characterized by high temperatures, low pH, and high toxic gases and metal contents, the variety of habitats characterizing volcanic and hydrothermal environments offers ideal biomes to extremophilic microbes, whose metabolic activity can consume and/or produce VOCs. In the Solfatara Crater, microbial

  7. Volcanic evolution of an active magmatic rift segment on a 100 Kyr timescale: exposure dating of lavas from the Manda Hararo/Dabbahu segment of the Afar Rift (United States)

    Medynski, S.; Williams, A.; Pik, R.; Burnard, P.; Vye, C.; France, L.; Ayalew, D.; Yirgu, G.


    activity predominates) - except during extraordinary events when dykes are long enough to reach those parts, as in 2005. The eruption ages of the different lava units correlates with their degrees of differentiation, allowing different magmatic cycles of about a few tens of years each to be distinguished. During the first recorded magmatic cycle (~70 ka to ~55 ka), Dabbahu is built of wide-spreading pāhoehoe flows around localised eruptive centres. The resulting topography of the volcanic edifice remains low, and is only slightly affected by rift-related fault activity, with the development of minor scarps. The second recorded magmatic cycle (~50 ka to ~20 ka) coincides with a strong development of Dabbahu topography - underlined by the change in lava morphology with well channelized 'a'ā flows since 50 ka. Tectonic activity also clearly increases over this period, with the initiation of the major fault scarps of the rift, which have been dated at around 35 ka. Our study underlines the role of the magma supply and availability beneath Dabbahu in the evolution both topographies of Dabbahu volcano and of the rift depression morphology.

  8. Evidence for a deep crustal hot zone beneath the Diamante Caldera-Maipo volcanic complex, Southern Volcanic Zone (United States)

    Drew, D.; Murray, T.; Sruoga, P.; Feineman, M. D.


    Subduction zones at convergent continental margins are dynamic environments that control the long-term evolution and interaction of the crust and residual mantle. The Southern Volcanic Zone (SVZ) of the Andes formed as a result of volcanic activity and uplift due to the eastern subduction of the Nazca Plate beneath the South American Plate. Maipo and neighboring volcanoes in the northern SVZ are unique in that the continental crust is exceptionally thick (~50 km), causing the mantle-derived magma to stall and interact with the crust at multiple levels prior to eruption. Maipo is an andesite/dacite stratovolcano that lies within the Diamante Caldera, which formed approximately 450 Ka during an explosive eruption that produced 350 km3 of rhyolitic ignimbrite. Following post-caldera reactivation Maipo has undergone a complex evolution, first erupting 86 Ka and experiencing seven eruptive events extending to historic times. The Maipo lavas represent a unique geochemical evolution resulting from fractional crystallization, crustal assimilation, and magma mixing in the lower and upper crust. By analyzing trace element compositions, major element compositions, and 87Sr/86Sr ratios in sixteen samples, we have begun to constrain the complex geochemical processes that formed this volcano and contribute to the differentiation of Andean continental crust. The major element analysis of the samples reflects the extent of differentiation resulting in dacite to andesite volcanic rock, and was used to distinguish between the seven eruptive events. The trace elements and Sr isotope ratios reflect the composition of the source rock, the extent of crustal assimilation, and the crystallization of minerals from the resulting mantle derived magma. The SiO2 weight percent (ranging from 54.3 to 68.5%) and 87Sr/86Sr ratios (0.7048 to 0.7057) show a linear correlation nearly identical to that reported by Hildreth and Moorbath (1988, CMP 98, 455-489) for nearby Cerro Marmolejo, suggesting a

  9. Analysis of the drought resilience of Andosols on southern Ecuadorian Andean páramos

    Directory of Open Access Journals (Sweden)

    V. Iñiguez


    Full Text Available The neotropical Andean grasslands above 3500 m a.s.l. known as "páramo" offer remarkable ecological services for the Andean region. Most important is the water supply – of excellent quality – to many cities and villages established in the lowlands of the inter-Andean valleys and to the coast. However, the páramo ecosystem is under constant and increased threat by human activities and climate change. In this paper we study the resilience of its soils for drought periods during the period 2007–2013. In addition, field measurements and hydrological conceptual modelling at the catchment-scale are comparing two contrasting catchments in the southern Ecuadorian Andes. Both were intensively monitored during two and a half years (2010–2012 in order to analyse the temporal variability of the soil moisture storage. A typical catchment on the páramo at 3500 m a.s.l. was compared to a lower grassland one at 2600 m a.s.l. The main aim was to estimate the resilience capacity of the soils during a drought period and the recovery during a subsequent wet period. Local soil water content measurements in the top soil (first 30 cm through TDR were used as a proxy for the catchment's average soil moisture storage. The local measurements were compared to the average soil water storage as estimated by the probabilistic soil moisture (PDM model. This conceptual hydrological model with 5 parameters was calibrated and validated for both catchments. The study reveals the extraordinary resilience capacity of this type of shallow organic soils during the droughts in 2009 and 2010. During these droughts, the soil water content dropped from a normal value of about 0.80 to ~ 0.60 cm3 cm−3, while the recovery time was only two to three months.

  10. Experimental generation of volcanic lightning (United States)

    Cimarelli, Corrado; Alatorre-Ibargüengoitia, Miguel; Kueppers, Ulrich; Scheu, Bettina; Dingwell, Donald B.


    Ash-rich volcanic plumes that are responsible for injecting large quantities of aerosols into the atmosphere are often associated with intense electrical activity. Direct measurement of the electric potential at the crater, where the electric activity in the volcanic plume is first observed, is severely impeded, limiting progress in its investigation. We have achieved volcanic lightning in the laboratory during rapid decompression experiments of gas-particle mixtures under controlled conditions. Upon decompression (from ~100 bar argon pressure to atmospheric pressure), loose particles are vertically accelerated and ejected through a nozzle of 2.8 cm diameter into a large tank filled with air at atmospheric conditions. Because of their impulsive character, our experiments most closely represent the conditions encountered in the gas-thrust region of the plume, when ash is first ejected from the crater. We used sieved natural ash with different grain sizes from Popocatépetl (Mexico), Eyjafjallajökull (Iceland), and Soufrière Hills (Montserrat) volcanoes, as well as micrometric glass beads to constrain the influence of material properties on lightning. We monitored the dynamics of the particle-laden jets with a high-speed camera and the pressure and electric potential at the nozzle using a pressure transducer and two copper ring antennas connected to a high-impedance data acquisition system, respectively. We find that lightning is controlled by the dynamics of the particle-laden jet and by the abundance of fine particles. Two main conditions are required to generate lightning: 1) self-electrification of the particles and 2) clustering of the particles driven by the jet fluid dynamics. The relative movement of clusters of charged particles within the plume generates the gradient in electrical potential, which is necessary for lightning. In this manner it is the gas-particle dynamics together with the evolving particle-density distribution within different regions of

  11. Volcanic Alert System (VAS) developed during the (2011-2013) El Hierro (Canary Islands) volcanic process (United States)

    Ortiz, Ramon; Berrocoso, Manuel; Marrero, Jose Manuel; Fernandez-Ros, Alberto; Prates, Gonçalo; De la Cruz-Reyna, Servando; Garcia, Alicia


    In volcanic areas with long repose periods (as El Hierro), recently installed monitoring networks offer no instrumental record of past eruptions nor experience in handling a volcanic crisis. Both conditions, uncertainty and inexperience, contribute to make the communication of hazard more difficult. In fact, in the initial phases of the unrest at El Hierro, the perception of volcanic risk was somewhat distorted, as even relatively low volcanic hazards caused a high political impact. The need of a Volcanic Alert System became then evident. In general, the Volcanic Alert System is comprised of the monitoring network, the software tools for the analysis of the observables, the management of the Volcanic Activity Level, and the assessment of the threat. The Volcanic Alert System presented here places special emphasis on phenomena associated to moderate eruptions, as well as on volcano-tectonic earthquakes and landslides, which in some cases, as in El Hierro, may be more destructive than an eruption itself. As part of the Volcanic Alert System, we introduce here the Volcanic Activity Level which continuously applies a routine analysis of monitoring data (particularly seismic and deformation data) to detect data trend changes or monitoring network failures. The data trend changes are quantified according to the Failure Forecast Method (FFM). When data changes and/or malfunctions are detected, by an automated watchdog, warnings are automatically issued to the Monitoring Scientific Team. Changes in the data patterns are then translated by the Monitoring Scientific Team into a simple Volcanic Activity Level, that is easy to use and understand by the scientists and technicians in charge for the technical management of the unrest. The main feature of the Volcanic Activity Level is its objectivity, as it does not depend on expert opinions, which are left to the Scientific Committee, and its capabilities for early detection of precursors. As a consequence of the El Hierro

  12. Friction in volcanic environments (United States)

    Kendrick, Jackie E.; Lavallée, Yan


    to eruption behaviour and during ascent magma behaves in an increasingly rock-like manner as it degasses and crystallises. This character aids the development of shear zones in the conduit, producing fault surfaces that host gouge, cataclasite and pseudotachylyte and which control the last hundreds of meters of ascent by frictional slip. Recent work has shown that the occurrence of vesiculation of gas bubbles modifies the rheology of frictional melt and in extreme cases can trigger eruption style to switch from effusive to explosive activity. Hence it is of vital importance to recognise the frictional behaviour of volcanic rocks and magmas to understand the continuation of an eruption and associated hazards.

  13. Episodic Volcanism and Geochemistry in Western Nicaragua (United States)

    Saginor, I.; Carr, M. J.; Gazel, E.; Swisher, C.; Turrin, B.


    The active volcanic arc in western Nicaragua is separated from the Miocene arc by a temporal gap in the volcanic record, during which little volcanic material was erupted. Previous work suggested that this gap lasted from 7 to 1.6 Ma, during which volcanic production in Nicaragua was limited or nonexistent. Because the precise timing and duration of this gap has been poorly constrained, recent fieldwork has focused on locating samples that may have erupted close to or even during this apparent hiatus in activity. Recent 40Ar/39Ar dates reveal pulses of low- level episodic volcanism at 7 Ma and 1 Ma between the active and Miocene arcs with current volcanism beginning ~350 ka. In addition, sampling from an inactive area between Coseguina and San Cristobal yielded two distinct groupings of ages; one of Tamarindo age (13 Ma) and the other around 3.5 Ma-the only samples of that age collected on-strike with the active arc. This raises the possibility the bases of the other active volcanoes contain lavas that are older than expected, but have been covered by subsequent eruptions. The Miocene arc differs from the active arc in Central America in several ways, with the latter having higher Ba/La and U/Th values due to increased slab input and changes in subducted sediment composition. Analysis of sample C-51 and others taken from the same area may shed light on the timing of this shift from high to low Ba/La and U/Th values. More importantly, it may help explain why the arc experienced such a dramatic downturn in volcanic production during this time. We also report 25 new major and trace element analyses that shed some light on the origins of these minor episodes of Nicaraguan volcanism. These samples are currently awaiting Sr and Nd isotopic analyses.

  14. Paired Magmatic-Metallogenic Belts in Myanmar - an Andean Analogue? (United States)

    Gardiner, Nicholas; Robb, Laurence; Searle, Michael; Morley, Christopher


    contrasting minerals endowment. The Mogok-Mandalay-Mergui (MMM) Belt hosts crustal-melt S-type granites with significant tin-tungsten mineralization, and contains the historically major tungsten deposit of Mawchi. The Wuntho-Popa Arc comprises I-type granites and granodiorites with porphyry-type copper-gold and epithermal gold mineralization, and includes the world-class Monywa copper mine. Recent U-Pb radiometric age dating has shown the potential for the two belts to be both active from the Late Cretaceous to Eocene. The spatial juxtaposition of these two sub-parallel belts, the implication of contemporary magmatism, and their distinct but consistent metallogenic endowment bears strong similarities to the metallogenic belts of the South American Cordillera. Here we investigate whether they together represent the magmatic and metallogenic expression of an Andean-type setting in Myanmar during the subduction of Neo-Tethys. In this analogue the Wuntho-Popa Arc represents a proximal I-type magmatic belt sited immediately above the eastwards-verging Neo-Tethys subduction zone. Exhibiting porphyry-type copper-gold and epithermal gold mineralization, this would therefore be the Myanmar equivalent of the Andean coastal copper belts. Conversely, the parallel MMM Belt, comprised of more distal crustal-melt S-type tin granites, would have an analogue in the Bolivian tin belt.

  15. Managing the effects of accelerated glacial melting on volcanic collapse and debris flows: Planchon-Peteroa Volcano, Southern Andes (United States)

    Tormey, Daniel


    Glaciated mountains are among the most sensitive environments to climatic changes, and recent work has shown that large-scale glacial melting, including at the end of the Pleistocene, caused a significant increase in the incidence of large volcanic sector collapse and debris flows on then-active volcanoes. With current accelerated rates of glacial melting, glaciated active volcanoes are at an increasing risk of sector collapse, debris flow and landslide. These catastrophic events are Earth's most damaging erosion phenomenon, causing extensive property damage and loss of life. This paper illustrates these effects in well-studied settings, focusing on the end-Pleistocene to Holocene glaciovolcanic growth and destruction of the cone of the active volcano Planchon-Peteroa in the Andean Southern Volcanic Zone at latitude 35° 15' S, along the border between Chile and Argentina. The development of the volcano over the last 14,000 years illustrates how glacial melting and magmatic activity can trigger landslides and sector collapses. Planchon had a large sector collapse that produced a highly mobile and erosive debris avalanche 11,000 years BP, and other slope instabilities during the end-Pleistocene/early Holocene deglaciation. The summit amphitheater left after the sector collapse was subject to alternating periods of glaciation and melting-induced lake formation. Breaching of the moraine dams then formed lahars and landslides originating at the western edge of the summit amphitheater, and the deposits are preserved along the western flank of the volcano. Deep incision of moraine deposits further down the western slope of the volcano indicates that the lahars and landslides were water-rich and had high erosive power. As illustrated by Planchon-Peteroa, the interplay among glacial growth and melting, magmatic activity, and slope stability is complex, but must be accounted for in volcanic hazard assessment. Planchon-Peteroa currently has the southernmost temperate zone

  16. Seismic tomography model reveals mantle magma sources of recent volcanic activity at El Hierro Island (Canary Islands, Spain) (United States)

    García-Yeguas, Araceli; Ibáñez, Jesús M.; Koulakov, Ivan; Jakovlev, Andrey; Romero-Ruiz, M. Carmen; Prudencio, Janire


    We present a 3-D model of P and S velocities beneath El Hierro Island, constructed using the traveltime data of more than 13 000 local earthquakes recorded by the Instituto Geográfico Nacional (IGN, Spain) in the period from 2011 July to 2012 September. The velocity models were performed using the LOTOS code for iterative passive source tomography. The results of inversion were thoroughly verified using different resolution and robustness tests. The results reveal that the majority of the onshore area of El Hierro is associated with a high-velocity anomaly observed down to 10-12-km depth. This anomaly is interpreted as the accumulation of solid igneous rocks erupted during the last 1 Myr and intrusive magmatic bodies. Below this high-velocity pattern, we observe a low-velocity anomaly, interpreted as a batch of magma coming from the mantle located beneath El Hierro. The boundary between the low- and high-velocity anomalies is marked by a prominent seismicity cluster, thought to represent anomalous stresses due to the interaction of the batch of magma with crust material. The areas of recent eruptions, Orchilla and La Restinga, are associated with low-velocity anomalies surrounding the main high-velocity block. These eruptions took place around the island where the crust is much weaker than the onshore area and where the melted material cannot penetrate. These results put constraints on the geological model that could explain the origin of the volcanism in oceanic islands, such as in the Canaries, which is not yet clearly understood.

  17. Proof-of-principle results for identifying the composition of dust particles and volcanic ash samples through the technique of photon activation analysis at the IAC (United States)

    Mamtimin, Mayir; Cole, Philip L.; Segebade, Christian


    Instrumental analytical methods are preferable in studying sub-milligram quantities of airborne particulates collected in dust filters. The multi-step analytical procedure used in treating samples through chemical separation can be quite complicated. Further, due to the minute masses of the airborne particulates collected on filters, such chemical treatment can easily lead to significant levels of contamination. Radio-analytical techniques, and in particular, activation analysis methods offer a far cleaner alternative. Activation methods require minimal sample preparation and provide sufficient sensitivity for detecting the vast majority of the elements throughout the periodic table. In this paper, we will give a general overview of the technique of photon activation analysis. We will show that by activating dust particles with 10- to 30-MeV bremsstrahlung photons, we can ascertain their elemental composition. The samples are embedded in dust-collection filters and are irradiated "as is" by these photons. The radioactivity of the photonuclear reaction products is measured with appropriate spectrometers and the respective analytes are quantified using multi-component calibration materials. We shall provide specific examples of identifying the elemental components of airborne dust particles and volcanic ash by making use of bremsstrahlung photons from an electron linear accelerator at the Idaho Accelerator Center in Pocatello, Idaho.

  18. Explosive and Phreatomagmatic Activity from San Salvador Volcanic Complex (El Salvador) and Their Effects on El Cambio Archaeological Site: a Review of the Last 3000 yrs. Based on Volcanic Stratigraphy Data (United States)

    Ferrés, D.; Delgado, H.; Pullinger, C.; Castillo, R.; Chávez, H. I.


    El Cambio archeological site (ECAS; Zapotitán Valley), 4 km NW from the San Salvador Volcanic Complex comprises 3000 yrs. of pyroclastic record. Sheets (1983) identified different levels rich in cultural remains intercalated within the volcanic deposits, indicating that different prehistoric settings were affected by San Salvador volcano eruptions, and giving information on the reoccupation frequency in the area. Accordingly, ECAS was occupied since the Late Pre-Classic period until before the last plinian eruption of Ilopango Caldera (425AD) reference, that originated the Tierra Blanca Joven (TBJ), pyroclastic deposits generally used as key-layer in stratigraphic reconstructions. Within the next two centuries, there is no evidence of human occupation at ECAS until the end of Late Classic which was a period of maximum splendor in the valley. During this time the area was affected by at least 3 eruptions from the San Salvador volcanic complex that produced the: Laguna Caldera volcanic fall deposits (which affected Joya de Cerén archeological site in 625AD), "Talpetate" surge deposits or Toba de San Andrés (600-900AD), and fall deposits of El Playón volcano (1658). We report new data on volcanic stratigraphy and archeological history including the following: a) the phreatomagmatic nature of eruptions that affected the area, the new excavations allowed the detailed study of surge deposits indicating magma-water interaction at Laguna Caldera and El Playón, previously considered strombolian eruptions; b)document the occupation of ECAS during Middle Pre-Classic period, new surge deposits below TBJ have been identified (with Middle Pre-Classic artifacts and pottery), that had not been documented before, extending the historic record up to 3000 yrs. BP. and c) detailed study of the "Talpetate" deposits, this sequence consists of fall, pyroclastic flow and surge deposits, present in the rim and slopes of San Salvador Volcano, which can be correlated with surge deposits

  19. Receiver functions and crustal structure of the northwestern Andean region, Colombia (United States)

    Poveda, Esteban; Monsalve, Gaspar; Vargas, Carlos Alberto


    We used the receiver function technique to deduce crustal thickness beneath the northwestern Andean system, using data from the permanent seismic network of Colombia, combined with some of the IRIS and CTBTO stations in Colombia and Ecuador. The estimation of crustal thickness was made using the primary P to s conversion and crustal reverberations. The bulk crustal VP/VS ratio was constrained using a crustal thickness versus VP/VS stacking method, in addition to estimations using a time to depth conversion technique based on results of a modified Wadati diagram analysis. We observed a wide range of crustal thicknesses, including values around 17 km beneath the Malpelo Island on the Pacific Ocean, 20 to 30 km at the coastal Pacific and Caribbean plains of Colombia, 25 to 40 km beneath the eastern plains and foothills, 35 km beneath the Western Cordillera, 45 km at the Magdalena River intermountain valley, 52 to 58 km under the northern Central Cordillera, and reaching almost 60 km beneath some of the volcanoes of the Southern Cordilleran system of Colombia; crustal thickness can be slightly greater than 60 km beneath the plateau of the Eastern Cordillera. The values of VP/VS are particularly high for some of the stations on the volcanic centers, reaching values above 1.79, probably related to the addition of mafic materials to the lower crust, and in the plateau of the Eastern Cordillera near Bogota, where we speculate about the possibility of crustal seismic anisotropy associated with shear zones.

  20. The Lada Terra rise and Quetzalpetlatl Corona: A region of long-lived mantle upwelling and recent volcanic activity on Venus (United States)

    Ivanov, Mikhail A.; Head, James W.


    Quetzalpetlatl Corona (˜850 km in diameter) and Boala Corona (˜350 km×250 km in diameter), are both situated within the Lada Terra rise, a prominent ˜2000-km-wide circular topographic feature rising ˜2.5-3 km above the mean planetary radius in the southern hemisphere of Venus, south of the Lavinia Planitia lowlands. Together these features form a unique configuration that combines the characteristics of corona-dominated rises (e.g., Eistla), rifted volcanic rises (e.g., Beta Regio), and large coronae structures (such as Artemis and Heng-O). Three zones of extension converge on the central part of the rise at Boala Corona, and hundreds of extensive lava flows emerge from the summit region, stream down the sides of the rise, and flood the surrounding topographic annulus and moat. Detailed geological mapping of the region shows that Cocomama Tessera terrain was flexed, uplifted and flooded during the formation of the Lada rise. Stratigraphic relationships show that the rise formed over an extended period of time following tessera formation. Evidence for early uplift includes flexure of the tessera, formation of the Quetzalpetlatl Corona annular ridge, and the radial array of flows originating from the center of the feature (showing the presence of downhill slopes). Early Quetzalpetlatl Corona activity was focused on the formation of the annular ridge, and the outer moat continued to form throughout the extended history of the rise, deforming even after the emplacement of some of the most recent lavas. Central radial flows ponded behind the early-forming annular ridge, concentrating the load inside the ridge, perhaps adding to the evolution of the moat. Late-stage activity includes final radial flows and central shields inside Boala Corona. On the basis of gravity, topography and image data, volcanism has persisted into the most recent geological era. We compare the central Lada rise with other regions of Venus thought to be currently active on the basis of Venus

  1. Provenance of the Miocene Alto Tunuyán Basin (33°40‧S, Argentina) and its implications for the evolution of the Andean Range: Insights from petrography and U-Pb LA-ICPMS zircon ages (United States)

    Porras, Hernán; Pinto, Luisa; Tunik, Maisa; Giambiagi, Laura; Deckart, Katja


    The Alto Tunuyán Foreland Basin in western Argentina is located immediately south of the flat-slab segment of the Central Andes and its evolution is directly related to the propagation of structures to the east. Petrographic and geochronologic studies have been performed to determine the provenance of syntectonic sediments in the basin in order to establish their relationship to the Andean orogenic activity. The analysed detrital and igneous zircons in contrast with previous data, allow us to restrict the basin age between ca. 15 and 6 Ma. Sandstones record two main contributions, one from andesitic volcanic rocks and the other from an acidic igneous source, the first probably corresponding to Miocene volcanic rocks from the Principal Cordillera (Farellones Formation) and the second to Permo-Triassic, acidic, igneous rocks from the Frontal Cordillera (Choiyoi Magmatic Province, CMP). Two secondary sources have been recorded, sedimentary and metamorphic; the first one is represented by Mesozoic rocks in the Principal Cordillera and the second by the Proterozoic/early Carboniferous Guarguaráz Complex (GC) in the Frontal Cordillera, respectively. Sandstones from the lower basin deposits (15-11 Ma) register supply pulses from the Farellones Formation reflecting the unroofing of the Principal Cordillera by uplift pulses during the middle Miocene. Sandstones from the upper basin deposits (ca. 11-9 Ma) record an increase in material derived from the CMP, reflecting important uplift of the Frontal Cordillera. A thick, ca. 9 Ma old ignimbrite within the basin indicates an eruption in the Frontal Cordillera. Detrital zircons from the CMP have been detected also in the lower basin deposits, suggesting either recycling of Mesozoic deposits containing CMP zircons or an early paleorelief of the Frontal Cordillera. The good correlation between the age of the detrital zircons of the CMP and the GC in the lower basin deposits supports recycling of Mesozoic sedimentary deposits.


    Directory of Open Access Journals (Sweden)



    Full Text Available We studied the species richness and two indices of abundance of medium-sizedmammals in areas with Andean forest and Andean alder (Alnus acuminatareforestations in a reserve at the Central Andes of Colombia. Since reforested areashave a less complex habitat structure and lower plant diversity than native forests, wepredicted that they have lower richness of mammals than areas with Andean forest.We obtained the indices of abundance from direct contacts in transects and from theuse of track stations. Our results suggest that, indeed, areas with Andean forest hada higher richness of mammals than reforestations, but this pattern may be modifiedby anthropogenic factors. We found no differences between the indices of abundanceof the squirrel, Sciurus granatensis, in the two forest types. In contrast, the coatiswere recorded more frequently in the reforestations than in areas with Andean forestat the reserve.

  3. Volcanic signals in oceans

    KAUST Repository

    Stenchikov, Georgiy L.


    Sulfate aerosols resulting from strong volcanic explosions last for 2–3 years in the lower stratosphere. Therefore it was traditionally believed that volcanic impacts produce mainly short-term, transient climate perturbations. However, the ocean integrates volcanic radiative cooling and responds over a wide range of time scales. The associated processes, especially ocean heat uptake, play a key role in ongoing climate change. However, they are not well constrained by observations, and attempts to simulate them in current climate models used for climate predictions yield a range of uncertainty. Volcanic impacts on the ocean provide an independent means of assessing these processes. This study focuses on quantification of the seasonal to multidecadal time scale response of the ocean to explosive volcanism. It employs the coupled climate model CM2.1, developed recently at the National Oceanic and Atmospheric Administration\\'s Geophysical Fluid Dynamics Laboratory, to simulate the response to the 1991 Pinatubo and the 1815 Tambora eruptions, which were the largest in the 20th and 19th centuries, respectively. The simulated climate perturbations compare well with available observations for the Pinatubo period. The stronger Tambora forcing produces responses with higher signal-to-noise ratio. Volcanic cooling tends to strengthen the Atlantic meridional overturning circulation. Sea ice extent appears to be sensitive to volcanic forcing, especially during the warm season. Because of the extremely long relaxation time of ocean subsurface temperature and sea level, the perturbations caused by the Tambora eruption could have lasted well into the 20th century.

  4. Humans permanently occupied the Andean highlands by at least 7 ka. (United States)

    Haas, Randall; Stefanescu, Ioana C; Garcia-Putnam, Alexander; Aldenderfer, Mark S; Clementz, Mark T; Murphy, Melissa S; Llave, Carlos Viviano; Watson, James T


    High-elevation environments above 2500 metres above sea level (m.a.s.l.) were among the planet's last frontiers of human colonization. Research on the speed and tempo of this colonization process is active and holds implications for understanding rates of genetic, physiological and cultural adaptation in our species. Permanent occupation of high-elevation environments in the Andes Mountains of South America tentatively began with hunter-gatherers around 9 ka according to current archaeological estimates, though the timing is currently debated. Recent observations on the archaeological site of Soro Mik'aya Patjxa (8.0-6.5 ka), located at 3800 m.a.s.l. in the Andean Altiplano, offer an opportunity to independently test hypotheses for early permanent use of the region. This study observes low oxygen (δ(18)O) and high carbon (δ(13)C) isotope values in human bone, long travel distances to low-elevation zones, variable age and sex structure in the human population and an absence of non-local lithic materials. These independent lines of evidence converge to support a model of permanent occupation of high elevations and refute logistical and seasonal use models. The results constitute the strongest empirical support to date for permanent human occupation of the Andean highlands by hunter-gatherers before 7 ka.

  5. Humans permanently occupied the Andean highlands by at least 7 ka (United States)

    Stefanescu, Ioana C.; Garcia-Putnam, Alexander; Aldenderfer, Mark S.; Clementz, Mark T.; Murphy, Melissa S.; Llave, Carlos Viviano; Watson, James T.


    High-elevation environments above 2500 metres above sea level (m.a.s.l.) were among the planet's last frontiers of human colonization. Research on the speed and tempo of this colonization process is active and holds implications for understanding rates of genetic, physiological and cultural adaptation in our species. Permanent occupation of high-elevation environments in the Andes Mountains of South America tentatively began with hunter–gatherers around 9 ka according to current archaeological estimates, though the timing is currently debated. Recent observations on the archaeological site of Soro Mik'aya Patjxa (8.0–6.5 ka), located at 3800 m.a.s.l. in the Andean Altiplano, offer an opportunity to independently test hypotheses for early permanent use of the region. This study observes low oxygen (δ18O) and high carbon (δ13C) isotope values in human bone, long travel distances to low-elevation zones, variable age and sex structure in the human population and an absence of non-local lithic materials. These independent lines of evidence converge to support a model of permanent occupation of high elevations and refute logistical and seasonal use models. The results constitute the strongest empirical support to date for permanent human occupation of the Andean highlands by hunter–gatherers before 7 ka. PMID:28680685

  6. Composition and diversity of High Andean in the Fauna Production Reserve Chimborazo, Ecuador

    Directory of Open Access Journals (Sweden)

    Jorge Caranqui


    Full Text Available The present study inquire the floristic diversity of 9 sampling in four plots of 1 m² of high andean in several locations in the “Reserva de Producción de Fauna Chimborazo”. For the development of this study, we used an adaptation of the method of plots “Gloria”. With coverage (% in each of the plots, Further the diversity indices and similarity with respective analysis were obtained. The data obtained reflect a diversity that can range from medium to low, believe that this is due to anthropogenic activities that have taken place in these ecosistems. With the presence mostly Calamagrostis intermedia, it could establish that the type of vegetation is herbaceous in high andean is higher percentage; is the species that is almost always present in most types of vegetation of the RPF Chimborazo and high dominance that influences the results of low floristic diversity indices was found in the analysis. As a result the most abundant family Asteraceae is well Poaceae.

  7. Detrital and volcanic zircon U-Pb ages from southern Mendoza (Argentina): An insight on the source regions in the northern part of the Neuquén Basin (United States)

    Naipauer, Maximiliano; Tapia, Felipe; Mescua, José; Farías, Marcelo; Pimentel, Marcio M.; Ramos, Victor A.


    The infill of the Neuquén Basin recorded the Meso-Cenozoic geological and tectonic evolution of the southern Central Andes being an excellent site to investigate how the pattern of detrital zircon ages varies trough time. In this work we analyze the U-Pb (LA-MC-ICP-MS) zircon ages from sedimentary and volcanic rocks related to synrift and retroarc stages of the northern part of the Neuquén Basin. These data define the crystallization age of the synrift volcanism at 223 ± 2 Ma (Cerro Negro Andesite) and the maximum depositional age of the original synrift sediments at ca. 204 Ma (El Freno Formation). Two different pulses of rifting could be recognized according to the absolute ages, the oldest developed during the Norian and the younger during the Rhaetian-Sinemurian. The source regions of the El Freno Formation show that the Choiyoi magmatic province was the main source rock of sediment supply. An important amount of detrital zircons with Triassic ages was identified and interpreted as a source area related to the synrift magmatism. The maximum depositional age calculated for the Tordillo Formation in the Atuel-La Valenciana depocenter is at ca. 149 Ma; as well as in other places of the Neuquén Basin, the U-Pb ages calculated in the Late Jurassic Tordillo Formation do not agree with the absolute age of the Kimmeridgian-Tithonian boundary (ca. 152 Ma). The main source region of sediment in the Tordillo Formation was the Andean magmatic arc. Basement regions were also present with age peaks at the Carboniferous, Neoproterozoic, and Mesoproterozoic; these regions were probably located to the east in the San Rafael Block. The pattern of zircon ages summarized for the Late Jurassic Tordillo and Lagunillas formations were interpreted as a record of the magmatic activity during the Triassic and Jurassic in the southern Central Andes. A waning of the magmatism is inferred to have happened during the Triassic. The evident lack of ages observed around ca. 200 Ma suggests

  8. Volcanic mercury in Pinus canariensis (United States)

    Rodríguez Martín, José Antonio; Nanos, Nikos; Miranda, José Carlos; Carbonell, Gregoria; Gil, Luis


    Mercury (Hg) is a toxic element that is emitted to the atmosphere by both human activities and natural processes. Volcanic emissions are considered a natural source of mercury in the environment. In some cases, tree ring records taken close to volcanoes and their relation to volcanic activity over time are contradictory. In 1949, the Hoyo Negro volcano (La Palma-Canary Islands) produced significant pyroclastic flows that damaged the nearby stand of Pinus canariensis. Recently, 60 years after the eruption, we assessed mercury concentrations in the stem of a pine which survived volcano formation, located at a distance of 50 m from the crater. We show that Hg content in a wound caused by pyroclastic impacts (22.3 μg kg-1) is an order of magnitude higher than the Hg concentrations measured in the xylem before and after the eruption (2.3 μg kg-1). Thus, mercury emissions originating from the eruption remained only as a mark—in pyroclastic wounds—and can be considered a sporadic and very high mercury input that did not affect the overall Hg input in the xylem. In addition, mercury contents recorded in the phloem (9.5 μg kg-1) and bark (6.0 μg kg-1) suggest that mercury shifts towards non-living tissues of the pine, an aspect that can be related to detoxification in volcanism-adapted species.

  9. Technical analysis of four archaeological andean painted textiles



    This project investigates the materials and manufacturing techniques used to create four archaeological Andean painted textiles in the collection of the National Museum of the American Indian, Smithsonian Institution. The textiles are attributed to Peru but have minimal provenience. Building on previous work by other scholars on similar archaeological textiles, the materials and manufacturing techniques are identified and characterized by observation, documentation, and scientific analysis. S...

  10. Predicting Polylepis distribution: vulnerable and increasingly important Andean woodlands

    Directory of Open Access Journals (Sweden)

    Brian R. Zutta


    Full Text Available Polylepis woodlands are a vital resource for preserving biodiversity and hydrological functions, which will be altered by climate change and challenge the sustainability of local human communities. However, these highaltitude Andean ecosystems are becoming increasingly vulnerable due to anthropogenic pressure including fragmentation, deforestation and the increase in livestock. Predicting the distribution of native woodlands has become increasingly important to counteract the negative effects of climate change through reforestation and conservation. The objective of this study was to develop and analyze the distribution models of two species that form extensive woodlands along the Andes, namely Polylepis sericea and P. weberbaueri. This study utilized the program Maxent, climate and remotely sensed environmental layers at 1 km resolution. The predicted distribution model for P. sericea indicated that the species could be located in a variety of habitats along the Andean Cordillera, while P. weberbaueri was restricted to the high elevations of southern Peru and Bolivia. For both species, elevation and temperature metrics were the most significant factors for predicted distribution. Further model refinement of Polylepis and other Andean species using increasingly available satellite data demonstrate the potential to help define areas of diversity and improve conservation strategies for the Andes.

  11. 用作混凝土掺合料的火山岩的组成与火山灰活性%Constitution and Pozzolanic Activity of Volcanic Rocks Used as Mineral Admixture in Concrete

    Institute of Scientific and Technical Information of China (English)

    喻乐华; 周双喜; 欧辉; 邓文武


    采集江西火山岩区代表性硅质火山岩样品,用化学分析、岩相学和X射线衍射(XRD)方法研究其化学组成、矿物类型和结构构造,采取火山岩石粉水泥砂浆强度比测定其火山灰活性指数,通过统计方法讨论并揭示硅质火山岩主要性能与火山灰活性的关系。结果表明:火山岩样品(除个别外)28 d火山灰活性指数≥65%,可作为水泥砂浆和混凝土用天然火山灰质材料;珍珠岩火山灰活性最高,这是其玻璃质比例甚高和富硅铝质高温型矿物所致;角砾状熔结凝灰岩含较多大砾状岩屑和低温型矿物致使火山灰活性较低。火山岩岩相学分析的基质含量与XRD分析的非晶态相含量在岩石性能及对火山灰活性影响方面一致。火山岩活性指数与非晶态含量、化学成分SiO2含量或化学成分SiO2+Al2O3含量的复相关性表现良好,可应用活性指数与这些岩石主要参数的拟合方程预测火山岩的火山灰活性指数,从而判断其是否具备用作混凝土掺合料的潜质。%Representative specimens of siliceous volcanic rocks were firstly collected from main volcanic areas in Jiangxi Province, and then their chemical composition, mineral type, structure, texture and vitreous proportion were analyzed by chemical composition analysis, petrographic analysis and X-ray diffraction. The pozzolanic activity index for these volcanic rocks was determined via com-pression strength ratio analysis of cement mortar and cement mixing mortar with powder of volcanic rock. The relations between rock performance and pozzolanic activity were further discussed based on the statistical significance. The results indicate that the volcanic rocks possess a pozzolanic activity index of ≥65%so to satisfy a demand of natural pozzolanic materials used as cement mortar and concrete according to the relevant standards. Perlite has the highest pozzolanic activity among these volcanic rocks

  12. Slab window-related magmatism from southernmost South America: the Late Miocene mafic volcanics from the Estancia Glencross Area (˜52°S, Argentina Chile) (United States)

    D'Orazio, M.; Agostini, S.; Innocenti, F.; Haller, M. J.; Manetti, P.; Mazzarini, F.


    The Estancia Glencross Area (EGA) volcanic rocks form a series of five isolated buttes located at the southern end (˜52°S) of the discontinuous belt of Cenozoic basaltic lava formations occurring in the extra-Andean Patagonia. EGA volcanics are subalkaline basalts and basaltic andesites erupted at 8.0-8.5 Ma in a region closely behind the Andean Cordillera. EGA volcanism predated by about 4-5 my the onset of the volcanism in the nearby Pali Aike Volcanic Field, which produced highly primitive, alkaline lavas. Incompatible trace-element distributions and Sr-Nd isotope compositions of EGA rocks are those typical of within-plate OIB-type basalts and are indicative of minimal interaction of sub-lithospheric magmas with enriched reservoirs. The geochemical characteristics of EGA volcanics, as well as their age and location are consistent with a model of slab window opening beneath this region. The high silica content and the garnet signature of the estimated EGA primary magma are explained by a two-stage process involving the initial production of melts from a garnet lherzolite source followed by the reaction of these melts with harzburgite country rocks during their ascent through the mantle lithosphere. The melt/harzburgite reaction, favoured by a slow melt ascent rate, as well as the low magma production at EGA, are likely related to the dominantly compressive stress regime operating in this area during Late Miocene.

  13. State dilemmas in applying the Previous Consultation Law in the Andean Region

    Directory of Open Access Journals (Sweden)

    Rafael Barrio de Mendoza


    Full Text Available The Peruvian government enacted a new law granting consultation rights to indigenous peoples as a mechanism to enhance social inclusion in the country. The law generated debates about the criteria to identify indigenous population in the Andean region. Why does this law have problems granting consultation rights to Andean people? This paper aims to answer the question by reviewing historically the different Andean identities and analyzing the current international debate on indigenity. Our main argument is that the government intrying to apply the law is structuring a restrictive model that is hardlyable to grasp the complexity and dynamism of Andean identities.

  14. Crustal and tectonic controls on large-explosive volcanic eruptions (United States)

    Sheldrake, Tom; Caricchi, Luca


    Quantifying the frequency-Magnitude (f-M) relationship for volcanic eruptions is important to estimate volcanic hazard. Furthermore, understanding how this relationship varies between different groups of volcanoes can provide insights into the processes that control the size and rate of volcanic events. Using a Bayesian framework, which allows us to conceptualise the volcanic record as a series of individual and unique time series, associated by a common group behaviour, we identify variations in the size and rate of volcanism in different volcanic arcs. These variations in behaviour are linked to key parameters that include the motion of subduction, rate of subduction, age of the slab and thickness of the crust. The effects of these parameters on volcanism are interpreted in terms of variations in mantle productivity and the thermal efficiency of magma transfer in arc crustal systems. Understanding the link between subduction architecture, heat content of magmatic systems, and volcanic activity will serve to improve our capacity to quantify volcanic hazard in regions with limited geological and historical records of volcanic activity.

  15. Neogene volcanism in Gutai Mts. (Eastern Carpathains: a review

    Directory of Open Access Journals (Sweden)

    Marinel Kovacs


    Full Text Available Two types of volcanism developed in Gutâi Mts. (inner volcanic chain of Eastern Carpathians: a felsic, extensional/“back-arc” type and an intermediate, arc type. The felsic volcanism of explosive origin, consisting of caldera-related rhyolitic ignimbrites and resedimented volcaniclastics, had taken place during Early-Middle Badenian and Early Sarmatian. The intermediate volcanism, consisting of extrusive (effusive and explosive and intrusive activity, had developed during Sarmatian and Pannonian (13.4-7.0 Ma. It is represented by typical calc-alkaline series, from basalts to rhyolites. Lava flows of basaltic andesites and andesites are predominant, often emplaced in subaqueous environment. Extrusive domes, mainly composed of dacites, are associated to the andesitic volcanic structures. The intermediate volcanism, consisting of extrusive (effusive and explosive and intrusive activity, had developed during Sarmatian and Pannonian (13.4-7.0 Ma. It is represented by typical calc-alkaline series, from basalts to rhyolites. Lava flows of basaltic andesites and andesites are predominant, often emplaced in subaqueous environment. Extrusive domes, mainly composed of dacites, are associated to the andesitic volcanic structures. The geochemical study on the volcanic rocks shows the calc-alkaline character of both felsic and intermediate volcanism and typical subduction zones geochemical signatures for the intermediate one. The felsic volcanism shows affinities with subduction-related rocks as well. The main petrogenetic process in Gutâi Mts. was crustal assimilation, strongly constrained by trace element and isotope geochemistry.

  16. Volcanic Rocks and Features (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Volcanoes have contributed significantly to the formation of the surface of our planet. Volcanism produced the crust we live on and most of the air we breathe. The...

  17. Deep Explosive Volcanism on the Gakkel Ridge and Seismological Constraints on Shallow Recharge at TAG Active Mound (United States)


    in the mantle, where rigid tectonic plates move apart and new seafloor material rises to fill the vacant space. The generation of new plate material...focus on shallow seismic activity beneath the hydrothermal mound. The OBS network also detected a large number of local and regional tectonic events...hydrothermal mound with the larger-scale seismicity associated with tectonic extension on the active detachment fault [deMartin et al., 2007]. Thermal

  18. Numerical models for ground deformation and gravity changes during volcanic unrest: simulating the hydrothermal system dynamics of an active caldera


    Coco, A.; Gottsmann, J.; F. Whitaker; Rust, A; G. Currenti; A. Jasim; S. Bunney


    Ground deformation and gravity changes in active calderas during periods of unrest can signal an impending eruption and thus must be correctly interpreted for hazard evaluation. It is critical to differentiate variation of geophysical observables related to volume and pressure changes induced by magma migration from shallow hydrothermal activity associated with hot fluids of magmatic origin rising from depth. In this paper we present a nu...

  19. Volcanic Plume Measurements with UAV (Invited) (United States)

    Shinohara, H.; Kaneko, T.; Ohminato, T.


    Volatiles in magmas are the driving force of volcanic eruptions and quantification of volcanic gas flux and composition is important for the volcano monitoring. Recently we developed a portable gas sensor system (Multi-GAS) to quantify the volcanic gas composition by measuring volcanic plumes and obtained volcanic gas compositions of actively degassing volcanoes. As the Multi-GAS measures variation of volcanic gas component concentrations in the pumped air (volcanic plume), we need to bring the apparatus into the volcanic plume. Commonly the observer brings the apparatus to the summit crater by himself but such measurements are not possible under conditions of high risk of volcanic eruption or difficulty to approach the summit due to topography etc. In order to overcome these difficulties, volcanic plume measurements were performed by using manned and unmanned aerial vehicles. The volcanic plume measurements by manned aerial vehicles, however, are also not possible under high risk of eruption. The strict regulation against the modification of the aircraft, such as installing sampling pipes, also causes difficulty due to the high cost. Application of the UAVs for the volcanic plume measurements has a big advantage to avoid these problems. The Multi-GAS consists of IR-CO2 and H2O gas analyzer, SO2-H2O chemical sensors and H2 semiconductor sensor and the total weight ranges 3-6 kg including batteries. The necessary conditions of the UAV for the volcanic plumes measurements with the Multi-GAS are the payloads larger than 3 kg, maximum altitude larger than the plume height and installation of the sampling pipe without contamination of the exhaust gases, as the exhaust gases contain high concentrations of H2, SO2 and CO2. Up to now, three different types of UAVs were applied for the measurements; Kite-plane (Sky Remote) at Miyakejima operated by JMA, Unmanned airplane (Air Photo Service) at Shinomoedake, Kirishima volcano, and Unmanned helicopter (Yamaha) at Sakurajima

  20. Petrologic imaging of silicic magma chambers: new calibration of Al-in-hornblende barometry and applications to the Long Valley - Mono - Inyo active volcanic system. (United States)

    Medard, E.; Martin, A. M.


    Traditional Al-in-hornblende barometry relies on the hypothesis that the Al content in amphibole only depends on pressure, through the Tschermack substitution. However, Al content in amphibole also varies with temperature through the edenite substitution, resulting in large errors in amphibole barometry. Using literature data, we have recalibrated a temperature-independent barometer based on octahedral Al for amphiboles in rhyolitic and dacitic compositions (Médard et al., Goldschmidt 2013). Experimental pressures are reproduced with an average error of 36 MPa in the 100-400 MPa range. Our new amphibole barometer has been used to investigate the depth of magma storage underneath the recent eruptions of the Mono-Inyo volcanic chain. Preliminary investigation of samples from the Glass Creek and Obsidian flows, associated with the youngest eruptive activity to the South of the chain (the 1350 AD Inyo eruption), contain Al-rich amphiboles ( 10 wt% Al2O3) crystallized at pressures of 260 ± 20 MPa (9.8 ± 0.7 km) and a temperature of 835 °C. Similar amphibole crystals have been analyzed from products of the 1700 AD eruption on Pahoa island to the north of the chain by Bray (2014). Identical crystallization pressures of 260 ± 40 MPa are derived from their compositions, suggesting a constant pressure of magma storage under the entire Mono-Inyo volcanic chain. Highly crystalline mush samples from the Glass Creek dome have been interpreted as remobilized magma from the older Long Valley magma chamber. Low-Al amphiboles ( 7 wt% Al2O3) from a mush sample also crystallized at 260 ± 20 MPa and a temperature of 705 °C. The storage depth has thus been constant in the entire Long Valley - Mono - Inyo system over time. A storage depth of 9.8 ± 0.7 km is in excellent agreement with recent seismic work by Seccia et al. (2011) who used Vs to infer the presence of a highly molten (30-60 % melt) magmatic reservoir 7-11 km beneath the Long Valley caldera. Traditional Al

  1. Andean evolution of the Aluminé fold and thrust belt, Northern Patagonian Andes (38°30‧-40°30‧S) (United States)

    García Morabito, Ezequiel; Ramos, Víctor A.


    The Aluminé fold and thrust belt between 38°30' and 40°30'S is the result of two periods of progression of deformation toward the foreland. The chronology of deformation and its relationship with magmatism through time show spatially and temporally separated magmatic events closely linked to distinct deformational stages. Data presented here confirms a Late Cretaceous mountain-building phase that coexisted in space and time with an eastward arc-migration. During this stage, a belt of deformation expanded through the foreland where it produced the Southern Neuquen Precordillera. This eastern independent mountain grew separately from the main Andean axis through a combination of inversion of the old rift systems and interaction with a pre-Andean belt which acted as a foreland obstacle. On the basis of tectonostratigraphic controls we define the last Andean contractional phase between the Late Miocene and the Pliocene. This event induced the reactivation of both sectors of the fold and thrust belt with minor propagation toward the foreland, leading to the uplift of the Patagonian Andes and reshaping the Southern Neuquén Precordillera. Both intervals of shortening are separated by a period of localized extension that resulted in the development of the Collón Cura basin within this Andean segment. Here, large thicknesses of volcanosedimentary sequences accumulated contemporaneously with the extensional activity between the earliest Oligocene and the Early Miocene.

  2. Long-Term Volcanic Activity at Shiveluch Volcano: Nine Years of ASTER Spaceborne Thermal Infrared Observations  

    Directory of Open Access Journals (Sweden)

    Adam Carter


    Full Text Available Shiveluch (Kamchatka, Russia is the most active andesitic volcano of the Kuril-Kamchatka arc, typically exhibiting near-continual high-temperature fumarolic activity and periods of exogenous lava dome emplacement punctuated by discrete large explosive eruptions. These eruptions can produce large pyroclastic flow (PF deposits, which are common on the southern flank of the volcano. Since 2000, six explosive eruptions have occurred that generated ash fall and PF deposits. Over this same time period, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER instrument has been acquiring image-based visible/near infrared (VNIR, short wave infrared (SWIR and thermal infrared (TIR data globally, with a particular emphasis on active volcanoes. Shiveluch was selected as an ASTER target of interest early in the mission because of its frequent activity and potential impact to northern Pacific air transportation. The north Pacific ASTER archive was queried for Shiveluch data and we present results from 2000 to 2009 that documents three large PF deposits emplaced on 19 May 2001, 9 May 2004, and 28 February 2005. The long-term archive of infrared data provides an excellent record on the changing activity and eruption state of the volcano.

  3. Towards understanding the puzzling lack of acid geothermal springs in Tibet (China): Insight from a comparison with Yellowstone (USA) and some active volcanic hydrothermal systems (United States)

    Guo, Qinghai; Kirk Nordstrom, D.; Blaine McCleskey, R.


    Explanations for the lack of acid geothermal springs in Tibet are inferred from a comprehensive hydrochemical comparison of Tibetan geothermal waters with those discharged from Yellowstone (USA) and two active volcanic areas, Nevado del Ruiz (Colombia) and Miravalles (Costa Rica) where acid springs are widely distributed and diversified in terms of geochemical characteristic and origin. For the hydrothermal areas investigated in this study, there appears to be a relationship between the depths of magma chambers and the occurrence of acid, chloride-rich springs formed via direct magmatic fluid absorption. Nevado del Ruiz and Miravalles with magma at or very close to the surface (less than 1-2 km) exhibit very acidic waters containing HCl and H2SO4. In contrast, the Tibetan hydrothermal systems, represented by Yangbajain, usually have fairly deep-seated magma chambers so that the released acid fluids are much more likely to be fully neutralized during transport to the surface. The absence of steam-heated acid waters in Tibet, however, may be primarily due to the lack of a confining layer (like young impermeable lavas at Yellowstone) to separate geothermal steam from underlying neutral chloride waters and the possible scenario that the deep geothermal fluids below Tibet carry less H2S than those below Yellowstone.

  4. Mapping Activity Variations for Ru2O3 in Lunar Volcanic Green Glass Analogs Using Differential Pulse Voltammetry (United States)

    Malum, K. M.; Colson, R. O.; Sawarynski, M.


    Using differential pulse voltammetry, we are mapping variations in activities for NiO and Ru2O3 as a function of compositional variation for compositions centered around an Apollo 15 green glass analog. Additional information is contained in the original extended abstract.




    Earthquakes, volcanic eruptions, volcanic island flank failures and underwater slides have generated numerous destructive tsunamis in the Caribbean region. Convergent, compressional and collisional tectonic activity caused primarily from the eastward movement of the Caribbean Plate in relation to the North American, Atlantic and South American Plates, is responsible for zones of subduction in the region, the formation of island arcs and the evolution of particular volcanic centers on the over...

  6. The role of phreatomagmatism in a Plio-Pleistocene high-density scoria cone field: Llancanelo Volcanic Field (Mendoza), Argentina (United States)

    Risso, Corina; Németh, Károly; Combina, Ana María; Nullo, Francisco; Drosina, Marina


    The Plio-Pleistocene Llancanelo Volcanic Field, together with the nearby Payun Matru Field, comprises at least 800 scoria cones and voluminous lava fields that cover an extensive area behind the Andean volcanic arc. Beside the scoria cones in the Llancanelo Field, at least six volcanoes show evidence for explosive eruptions involving magma-water interaction. These are unusual in the context of the semi-arid climate of the eastern Andean ranges. The volcanic structures consist of phreatomagmatic-derived tuff rings and tuff cones of olivine basalt composition. Malacara and Jarilloso tuff cones were produced by fallout of a range of dry to wet tephra. The Malacara cone shows more evidence for a predominance of wet-emplaced units, with a steep slump-slope characterized by many soft-sediment deformation structures, such as: undulating bedding planes, truncated beds and water escape features. The Piedras Blancas and Carapacho tuff rings resulted from explosive eruptions with deeper explosion loci. These cones are hence dominated by lapilli tuff and tuff units, emplaced mainly by wet and/or dry pyroclastic surges. Carapacho is the only centre that appears to have started with phreatomagmatic eruptions, with lowermost tephra being rich in non-volcanic country rocks. The presence of deformed beds with impact sags, slumping textures, asymmetrical ripples, dunes, cross- and planar lamination, syn-volcanic faulting and accretionary lapilli beds indicate an eruption scenario dominated by excessive water in the transportational and depositional regime. This subordinate phreatomagmatism in the Llancanelo Volcanic Field suggests presence of ground and/or shallow surface water during some of the eruptions. Each of the tuff rings and cones are underlain by thick, fractured multiple older lava units. These broken basalts are inferred to be the horizons where rising magma interacted with groundwater. The strong palagonitization at each of the phreatomagmatic cones formed hard beds

  7. Petrologic insights into basaltic volcanism at historically active Hawaiian volcanoes: Chapter 6 in Characteristics of Hawaiian volcanoes (United States)

    Helz, Rosalind L.; Clague, David A.; Sisson, Thomas W.; Thornber, Carl R.; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.


    Study of the petrology of Hawaiian volcanoes, in particular the historically active volcanoes on the Island of Hawai‘i, has long been of worldwide scientific interest. When Dr. Thomas A. Jaggar, Jr., established the Hawaiian Volcano Observatory (HVO) in 1912, detailed observations on basaltic activity at Kīlauea and Mauna Loa volcanoes increased dramatically. The period from 1912 to 1958 saw a gradual increase in the collection and analysis of samples from the historical eruptions of Kīlauea and Mauna Loa and development of the concepts needed to evaluate them. In a classic 1955 paper, Howard Powers introduced the concepts of magnesia variation diagrams, to display basaltic compositions, and olivine-control lines, to distinguish between possibly comagmatic and clearly distinct basaltic lineages. In particular, he and others recognized that Kīlauea and Mauna Loa basalts must have different sources.

  8. Volcanic hazards of the Idaho National Engineering Laboratory and adjacent areas

    Energy Technology Data Exchange (ETDEWEB)

    Hackett, W.R. [WRH Associates, Salt Lake City, UT (United States); Smith, R.P. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)


    Potential volcanic hazards are assessed, and hazard zone maps are developed for the Idaho National Engineering Laboratory (INEL) and adjacent areas. The basis of the hazards assessment and mapping is the past volcanic history of the INEL region, and the apparent similarity of INEL volcanism with equivalent, well-studied phenomena in other regions of active volcanism, particularly Hawaii and Iceland. The most significant hazards to INEL facilities are associated with basaltic volcanism, chiefly lava flows, which move slowly and mainly threaten property by inundation or burning. Related hazards are volcanic gases and tephra, and ground disturbance associated with the ascent of magma under the volcanic zones. Several volcanic zones are identified in the INEL area. These zones contain most of the volcanic vents and fissures of the region and are inferred to be the most probable sites of future INEL volcanism. Volcanic-recurrence estimates are given for each of the volcanic zones based on geochronology of the lavas, together with the results of field and petrographic investigations concerning the cogenetic relationships of INEL volcanic deposits and associated magma intrusion. Annual probabilities of basaltic volcanism within the INEL volcanic zones range from 6.2 {times} 10{sup {minus}5} per year (average 16,000-year interval between eruptions) for the axial volcanic zone near the southern INEL boundary and the Arco volcanic-rift zone near the western INEL boundary, to 1 {times} 10{sup {minus}5} per year (average 100,000-year interval between eruptions) for the Howe-East Butte volcanic rift zone, a geologically old and poorly defined feature of the central portion of INEL. Three volcanic hazard zone maps are developed for the INEL area: lava flow hazard zones, a tephra (volcanic ash) and gas hazard zone, and a ground-deformation hazard zone. The maps are useful in land-use planning, site selection, and safety analysis.

  9. Specific activities of natural rocks and soils at quaternary intraplate volcanism north of Sana’a, Yemen (United States)

    Harb, Shaban; El-Kamel, Abd El-Hadi; Abbady, Abd El-Bast; Saleh, Imran Issa; El-Mageed, Abdallah Ibrahim Abd


    The level of natural radioactivity in rocks and soil of 32 samples collected from locations at North Sana′a in Yemen was measured. Concentrations of radionuclides in rocks and soils samples were determined by gamma-ray spectrometer using high purity germanium (HPGe) detector with specially designed shield. The average radioactivity concentrations of 226Ra, 232Th, 40K were determined and expressed in Bq/kg. The results showed that these radionuclides were present in concentrations of 21.79 ± 3.1, 19.5 ± 2.6 and 399.3 ± 16 Bq/kg, respectively, for rocks. For soil, the corresponding values were 48.2 ± 4.4, 41.7 ± 4.5 and 939.1 ± 36 Bq/kg, respectively. Also, the radiological hazard of the natural radionuclide content, radium equivalent activity, total dose rates, external hazard index and gamma activity concentration index of the (rocks/soils) samples in the area under consideration were calculated. The dose rates at 1 m above the ground from terrestrial sources were 38.39 and 86.89 nGy/h for rocks and surface soil, respectively, which present no significant health hazards to humans. PMID:22363113

  10. A large hydrothermal reservoir beneath Taal Volcano (Philippines) revealed by magnetotelluric observations and its implications to the volcanic activity (United States)

    ALANIS, Paul K. B.; YAMAYA, Yusuke; TAKEUCHI, Akihiro; SASAI, Yoichi; OKADA, Yoshihiro; NAGAO, Toshiyasu


    Taal Volcano is one of the most active volcanoes in the Philippines. The magnetotelluric 3D forward analyses indicate the existence of a large high resistivity anomaly (∼100 Ω·m) with a volume of at least 3 km × 3 km × 3 km, which is capped by a conductive layer (∼10 Ω·m), beneath the Main Crater. This high resistivity anomaly is hypothesized to be a large hydrothermal reservoir, consisting of the aggregate of interconnected cracks in rigid and dense host rocks, which are filled with hydrothermal fluids coming from a magma batch below the reservoir. The hydrothermal fluids are considered partly in gas phase and liquid phase. The presence of such a large hydrothermal reservoir and the stagnant magma below may have influences on the volcano’s activity. Two possibilities are presented. First, the 30 January 1911 explosion event was a magmatic hydrothermal eruption rather than a base-surge associated with a phreato-magmatic eruption. Second, the earlier proposed four eruption series may be better interpreted by two cycles, each consisting of series of summit and flank eruptions. PMID:24126286

  11. A large hydrothermal reservoir beneath Taal Volcano (Philippines) revealed by magnetotelluric observations and its implications to the volcanic activity. (United States)

    Alanis, Paul K B; Yamaya, Yusuke; Takeuchi, Akihiro; Sasai, Yoichi; Okada, Yoshihiro; Nagao, Toshiyasu


    Taal Volcano is one of the most active volcanoes in the Philippines. The magnetotelluric 3D forward analyses indicate the existence of a large high resistivity anomaly (∼100 Ω·m) with a volume of at least 3 km×3 km×3 km, which is capped by a conductive layer (∼10 Ω·m), beneath the Main Crater. This high resistivity anomaly is hypothesized to be a large hydrothermal reservoir, consisting of the aggregate of interconnected cracks in rigid and dense host rocks, which are filled with hydrothermal fluids coming from a magma batch below the reservoir. The hydrothermal fluids are considered partly in gas phase and liquid phase. The presence of such a large hydrothermal reservoir and the stagnant magma below may have influences on the volcano's activity. Two possibilities are presented. First, the 30 January 1911 explosion event was a magmatic hydrothermal eruption rather than a base-surge associated with a phreato-magmatic eruption. Second, the earlier proposed four eruption series may be better interpreted by two cycles, each consisting of series of summit and flank eruptions.

  12. Numerical models for ground deformation and gravity changes during volcanic unrest: simulating the hydrothermal system dynamics of an active caldera

    Directory of Open Access Journals (Sweden)

    A. Coco


    Full Text Available Ground deformation and gravity changes in active calderas during periods of unrest can signal an impending eruption and thus must be correctly interpreted for hazard evaluation. It is critical to differentiate variation of geophysical observables related to volume and pressure changes induced by magma migration from shallow hydrothermal activity associated with hot fluids of magmatic origin rising from depth. In this paper we present a numerical model to evaluate the thermo-poroelastic response of the hydrothermal system in a caldera setting by simulating pore pressure and thermal expansion associated with deep injection of hot fluids (water and carbon dioxide. Hydrothermal fluid circulation is simulated using TOUGH2, a multicomponent multiphase simulator of fluid flows in porous media. Changes in pore pressure and temperature are then evaluated and fed into a thermo-poroelastic model (one-way coupling, which is based on a finite-difference numerical method designed for axi-symmetric problems in unbounded domains. Based on data for the Campi Flegrei caldera (Italy, a series of simulations assess the influence of fluid injection rates and mechanical properties on the hydrothermal system, uplift and gravity. Heterogeneities in hydrological and mechanical properties associated with the presence of ring faults are a key determinant of the fluid flow pattern and consequently the geophysical observables. Peaks (in absolute value of uplift and gravity change profiles computed at the ground surface are located close to injection points (namely at the centre of the model and fault areas. Temporal evolution of the ground deformation indicates that the contribution of thermal effects to the total uplift is almost negligible with respect to the pore pressure contribution during the first years of the unrest, but increases in time and becomes dominant after a long period of the simulation. After a transient increase over the first years of unrest, gravity

  13. Evidence for the development of the Andean rain shadow from a Neogene isotopic record in the Atacama Desert, Chile (United States)

    Rech, Jason A.; Currie, Brian S.; Shullenberger, Eric D.; Dunagan, Stan P.; Jordan, Teresa E.; Blanco, Nicolás; Tomlinson, Andrew J.; Rowe, Harry D.; Houston, John


    Varying ages from Triassic to Pliocene have been proposed for the onset of hyperaridity in the Atacama Desert. The exact timing for the initiation of hyperaridity is critical for determining potential causes, which range from regional effects of global cooling to Andean uplift above elevations conducive to extreme rain shadows. Analysis of the stable isotopic composition of lower Miocene-Quaternary (21-0.015 Ma) palustrine and lacustrine carbonates in the Calama Basin reveals extreme changes in their oxygen and carbon isotopic composition during the Miocene. Limestone δ18O values increased by ˜ 5‰ from middle to late Miocene, ranging from - 5.5‰ at 12 Ma to - 1‰ at ˜ 6 Ma. Carbon isotopic values increase by 9‰ over the Neogene, from average values of - 3‰ at 21 Ma to + 3‰ at 12 Ma, and reaching a maximum of + 6‰ at 5 Ma. The increase in oxygen isotopic values occurred over a time span in which the catchment area of the basin experienced significant uplift, causing the δ18O value of precipitation to become more negative. We attribute the shift towards higher δ18O values to enhanced evaporative enrichment both of soil water or snow prior to infiltration, and within shallow lakes or wetlands prior to carbonate precipitation. The large increase in δ13C values was likely caused by a transition from a vegetated landscape influenced primarily by soil-respired CO 2 to a landscape largely devoid of vegetation and influenced by atmospheric and volcanic CO 2. Isotopic values of palustrine carbonates therefore indicate that hyperaridity commenced in the Calama Basin during the middle to late Miocene, in agreement with other paleoclimatic records from the basin. The cause for the onset of this climate change is thought to be due to the development of a strong Andean rain shadow associated with the uplift of the Andes to mean elevations > 2 km.

  14. Metals and altitude drive genetic diversity of chironomids in Andean streams

    NARCIS (Netherlands)

    Loayza-Muro, R.A.; de Baat, M.; Palomino, E.J.; Kuperus, P.; Kraak, M.H.S.; Admiraal, W.; Breeuwer, H.


    1. Andean streams cover steep altitude gradients and locally leach metal-rich bedrock, creating highly selective habitat conditions. Chironomids are among the few dominant insect taxa present under the harshest conditions in Andean high altitude streams, but it remains unclear whether their dominanc

  15. Genetics and mapping of a new anthracnose resistance Locus in Andean common bean Paloma (United States)

    The Andean cultivar Paloma is resistant to Mesoamerican and Andean races of Colletotrichum lindemuthianum, the fungal pathogen that causes the destructive anthracnose disease of common bean. Remarkably, Paloma is resistant to Mesoamerican races 2047 and 3481, which are among the most virulent races ...

  16. Volcanic Supersites as cross-disciplinary laboratories (United States)

    Provenzale, Antonello; Beierkuhnlein, Carl; Giamberini, Mariasilvia; Pennisi, Maddalena; Puglisi, Giuseppe


    Volcanic Supersites, defined in the frame of the GEO-GSNL Initiative, are usually considered mainly for their geohazard and geological characteristics. However, volcanoes are extremely challenging areas from many other points of view, including environmental and climatic properties, ecosystems, hydrology, soil properties and biogeochemical cycling. Possibly, volcanoes are closer to early Earth conditions than most other types of environment. During FP7, EC effectively fostered the implementation of the European volcano Supersites (Mt. Etna, Campi Flegrei/Vesuvius and Iceland) through the MED-SUV and FUTUREVOLC projects. Currently, the large H2020 project ECOPOTENTIAL (2015-2019, 47 partners, contributes to GEO/GEOSS and to the GEO ECO Initiative, and it is devoted to making best use of remote sensing and in situ data to improve future ecosystem benefits, focusing on a network of Protected Areas of international relevance. In ECOPOTENTIAL, remote sensing and in situ data are collected, processed and used for a better understanding of the ecosystem dynamics, analysing and modelling the effects of global changes on ecosystem functions and services, over an array of different ecosystem types, including mountain, marine, coastal, arid and semi-arid ecosystems, and also areas of volcanic origin such as the Canary and La Reunion Islands. Here, we propose to extend the network of the ECOPOTENTIAL project to include active Volcanic Supersites, such as Mount Etna and other volcanic Protected Areas, and we discuss how they can be included in the framework of the ECOPOTENTIAL workflow. A coordinated and cross-disciplinary set of studies at these sites should include geological, biological, ecological, biogeochemical, climatic and biogeographical aspects, as well as their relationship with the antropogenic impact on the environment, and aim at the global analysis of the volcanic Earth Critical Zone - namely, the upper layer of the Earth

  17. The origin and crust/mantle mass balance of Central Andean ignimbrite magmatism constrained by oxygen and strontium isotopes and erupted volumes (United States)

    Freymuth, Heye; Brandmeier, Melanie; Wörner, Gerhard


    Volcanism during the Neogene in the Central Volcanic Zone (CVZ) of the Andes produced (1) stratovolcanoes, (2) rhyodacitic to rhyolitic ignimbrites which reach volumes of generally less than 300 km3 and (3) large-volume monotonous dacitic ignimbrites of up to several thousand cubic kilometres. We present models for the origin of these magma types using O and Sr isotopes to constrain crust/mantle proportions for the large-volume ignimbrites and explore the relationship to the evolution of the Andean crust. Oxygen isotope ratios were measured on phenocrysts in order to avoid the effects of secondary alteration. Our results show a complete overlap in the Sr-O isotope compositions of lavas from stratovolcanoes and low-volume rhyolitic ignimbrites as well as older (>9 Ma) large-volume dacitic ignimbrites. This suggests that the mass balance of crustal and mantle components are largely similar. By contrast, younger (70 km3 Ma-1 km-1 (assuming plutonic/volcanic ratios of 1:5) which are additional to, but within the order of, the arc background magmatic flux. Comparing our results to average shortening rates observed in the Andes, we observe a "lag-time" with large-volume eruptions occurring after accelerated shortening. A similar delay exists between the ignimbrite pulses and the subduction of the Juan Fernandez ridge. This is consistent with the idea that large-volume ignimbrite eruptions occurred in the wake of the N-S passage of the ridge after slab steepening has allowed hot asthenospheric mantle to ascend into and cause the melting of the mantle wedge. In our model, the older large-volume dacitic ignimbrites in the northern part of the CVZ have lower (15-37 %) crustal contributions because they were produced at times when the Central Andean crust was thinner and colder, and large-scale melting in the middle crust could not be achieved. Younger ignimbrite flare-ups further south (22°S) formed with a significantly higher crustal contribution (22-68 %) because at that

  18. How do subduction processes contribute to forearc Andean uplift? Insights from numerical models (United States)

    Martinod, J.; Regard, V.; Letourmy, Y.; Henry, H.; Hassani, R.; Baratchart, S.; Carretier, S.


    We present numerical models to study how changes in the process of subduction may explain the observed Quaternary uplift of the Andean forearc region. Indeed, most segments of the South American Pacific coasts between 16 and 32° S have been uplifting since the Lower Pleistocene, following a period of stability of the forearc region. Models confirm that local uplift is expected to occur above ridges, this phenomenon being predominant in central Peru where the Nazca Ridge is subducting. We investigate the effects of slab pull, interplate friction and convergence velocity on the vertical displacements of the overriding plate. We propose that the global tendency to coastal uplift is accompanying the deceleration of the Nazca-South America convergence that occurred in the Pleistocene. In contrast, forearc subsidence may accompany increasing convergence velocities, as suggested by the subsidence history of the South America active margin.

  19. Subglacial volcanic activity above a lateral dyke path during the 2014-2015 Bárdarbunga-Holuhraun rifting episode, Iceland (United States)

    Reynolds, Hannah I.; Gudmundsson, Magnús T.; Högnadóttir, Thórdís; Magnússon, Eyjólfur; Pálsson, Finnur


    The rifting episode associated with the Bárdarbunga-Holuhraun eruption in 2014-2015 included the first observations of major dyke propagation under ice. Three shallow ice depressions (ice cauldrons) with volumes ranging from 1 to 18 million m3 formed in Dyngjujökull glacier above the 48-km-long lateral path of the magma, at 4, 7 and 12 km from the northern glacier edge. Aircraft-based radar altimetry profiling was used to map the evolution of the cauldrons and construct a time series of the heat transfer rates. Out of the three scenarios explored: (1) onset or increase of hydrothermal activity, (2) convection within vertical fissures filled with water overlying intruded magma and (3) subglacial eruptions, the last option emerges as the only plausible mechanism to explain the rapid heat transfer observed in a location far from known geothermal areas. The thermal signals at two of the cauldrons are consistent with effusive subglacial eruptions. The formation of the northernmost cauldron was more rapid, indicating faster heat transfer rates. Radio-echo sounding data indicate that in contrast to the other two cauldrons, an intrusion of eruptive products occurred into the glacier, reaching 50-60 m above bedrock with the increased magma-ice contact explaining the more rapid heat transfer. We propose that the 2-m widening associated with graben formation increased the groundwater storage capacity of the bedrock, creating space for the meltwater to be stored, explaining the absence of meltwater pulses draining from Dyngjujökull.

  20. Holocene explosive volcanism of the Jan Mayen (island) volcanic province, North-Atlantic (United States)

    Gjerløw, Eirik; Haflidason, H.; Pedersen, R. B.


    The volcanic island Jan Mayen, located in the Norwegian-Greenland Sea, hosts the active stratovolcano of Beerenberg, the northernmost active subaerial volcano in the world. At least five eruptions are known from the island following its discovery in the 17th century, but its eruptive history prior to this is basically unknown. In this paper two sediment cores retrieved close to Jan Mayen have been studied in detail to shed light on the Holocene history of explosive volcanism from the Jan Mayen volcanic province. Horizons with elevated tephra concentrations were identified and tephra from these was analysed to determine major element chemistry of the tephra. The tephra chemistry was used to provide a link between the two cores and the land based tephra records from Jan Mayen Island. We managed to link two well-developed tephra peaks in the cores by their geochemical composition and age to Jan Mayen. One of these peaks represents the 1732 AD eruption of Eggøya while the other peak represents a previously undescribed eruption dated to around 10.3 ka BP. Two less prominent tephra peaks, one in each core, dated to approximately 2.3 and 3.0 ka BP, also have a distinct geochemical character linking them to Jan Mayen volcanism. However, the most prominent tephra layer in the cores located close to Jan Mayen and numerous other cores along the Jan Mayen ridge is the 12.1 ka BP Vedde Ash originating from the Iceland volcanic province. We find that the Holocene volcanism on Jan Mayen is much less explosive than volcanism in Iceland, and propose that either low amounts of explosive volcanic activity from the summit region of Beerenberg or small to absent glacier cover on Beerenberg is responsible for this.

  1. Andean terraced hills (a use of satellite imagery)

    CERN Document Server

    Sparavigna, Amelia Carolina


    The aim of this paper is in stimulating the use of satellite imagery, in particular the free service of Google Maps, to investigate the distribution of the agricultural technique of terraced hills in Andean countries, near Titicaca Lake. In fact, satellite maps can give a clear view of the overall surface modified by human work, being then a precious help for on-site archaeological researches and for historical analysis. Satellite imagery is also able to give the distribution of burial and worship places. The paper discusses some examples near the Titicaca Lake.

  2. The Albano maar lake (Colli Albani Volcano, Italy): recent volcanic activity and evidence of pre-Roman Age catastrophic lahar events (United States)

    Funiciello, R.; Giordano, G.; De Rita, D.


    The evaluation of volcanic hazard in the Roman hinterland related to the quiescent Colli Albani Volcano has recently been the subject of renewed attention and several interpretations by many authors. However, very little was known of the recent history of the volcano, making such interpretations rather speculative. The most recent activity of Colli Albani Volcano originated from the Albano polygenetic maar lake, which erupted several phreatomagmatic units, the most recent of which, the Peperino Albano ignimbrite, has been dated at around 25 ka. An area of several square kilometers centered around Albano Lake is presently the site of shallow and frequent seismic activity and gaseous emission as well as hydrothermal activity and is therefore considered the most prone to geologic hazards. This paper presents new stratigraphic and geomorphologic data as well as age determinations that allow rejuvenation of the most recent activity of the Colli Albani Volcano, and particularly the Albano maar lake, to the Holocene. This study allows for the first time to identify a potential hazard related to the Albano maar lake withdrawal interpreted to be related to endogenous causes, namely CO 2 emission. The main results of the study are: (1) the Peperino Albano is not, as is generally believed, the last phreatomagmatic eruption from the Colli Albani Volcano; a previously unrecognized phreatomagmatic surge deposit has been identified overlying the paleosol at the top of the Peperino Albano and related lahar deposits; (2) two lahar deposits separated by paleosols top the stratigraphic succession and are dispersed only to the NW, corresponding to the lowest point of the maar rim, indicating that catastrophic hydrologic events occurred at the Albano Lake in recent times; rapid and substantial lake-level variations and lake withdrawal are reported by Roman historians and recorded by the stratigraphy of the Albano Lake lacustrine sediments; (3) microfracturing related to seismic energy

  3. Contrasting origin of two clay-rich debris flows at Cayambe Volcanic Complex, Ecuador (United States)

    Detienne, M.; Delmelle, P.; Guevara, A.; Samaniego, P.; Opfergelt, S.; Mothes, P. A.


    We investigate the sedimentological and mineralogical properties of a debris flow deposit west of Cayambe Volcanic Complex, an ice-clad edifice in Ecuador. The deposit exhibits a matrix facies containing up to 16 wt% of clays. However, the stratigraphic relationship of the deposit with respect to the Canguahua Formation, a widespread indurated volcaniclastic material in the Ecuadorian inter-Andean Valley, and the deposit alteration mineralogy differ depending on location. Thus, two different deposits are identified. The Río Granobles debris flow deposit ( 1 km3) is characterised by the alteration mineral assemblage smectite + jarosite, and sulphur isotopic analyses point to a supergene hydrothermal alteration environment. This deposit probably derives from a debris avalanche initiated before 14-21 ka by collapse of a hydrothermally altered rock mass from the volcano summit. In contrast, the alteration mineralogy of the second debris flow deposit, which may itself comprise more than one unit, is dominated by halloysite + smectite and relates to a shallower and more recent (3200 m) volcanic soils. Our study reinforces the significance of hydrothermal alteration in weakening volcano flanks and in favouring rapid transformation of a volcanic debris avalanche into a clay-rich debris flow. It also demonstrates that mineralogical analysis provides crucial information for resolving the origin of a debris flow deposit in volcanic terrains. Finally, we posit that slope instability, promoted by ongoing subglacial hydrothermal alteration, remains a significant hazard at Cayambe Volcanic Complex.

  4. Integration, migration and sustainable development in the Andean group of nations. (United States)

    Leon, R; Kratochwil, H


    This paper, which was presented at the 1993 meeting of the International Organization for Migration, summarizes past and recent progress in Andean integration and migration arrangements. Changes in the strategy of the Andean group of nations (GAN) have occurred in the adjustment to prevailing conditions at the subregional and international level. GAN includes Bolivia, Colombia, Ecuador, Peru, and Venezuela. The Andean Pact originated with the signing of the Cartegena Agreement in 1969. Members approved the Andean Strategic Design in 1989, which loosened up trade integration and the movement of capital, services, and persons across shared borders. The Strategic Design also addressed issues resulting from economic and social integration. A statement of migratory patterns among GAN, Andean integration during 1969-89, and the goals and operation of the Andean Strategic Design and integration are discussed in some detail. The Galapagos Declaration and the La Paz Statement of 1990 are also described. The present situation with Andean integration is based on the following meetings of Andean nations: the First Meeting of Migration Officials of the Andean Group of Nations in March 1991, the Second Meeting of Migration Officials in September 1991, and bilateral agreements between Andean nations. Seven basic conclusions are drawn: 1) the strategy is an institutional, deliberate, programmed process; 2) integration within GAN is the culmination of a joint, coordinated directive of achievement of sustainable development in the subregion which aims to reduce the economic gaps between the North and the South, to lessen the impact of protected markets of the North and their migration barriers, and to improve the possibility of development of technologically sophisticated human capital; 3) subregional policies are more sensitive to short-term change in domestic politics; 4) integration and migration can be sustained better with deliberate planning; 5) implementation is dependent on

  5. Developing International Guidelines on Volcanic Hazard Assessments for Nuclear Facilities (United States)

    Connor, Charles


    Worldwide, tremendous progress has been made in recent decades in forecasting volcanic events, such as episodes of volcanic unrest, eruptions, and the potential impacts of eruptions. Generally these forecasts are divided into two categories. Short-term forecasts are prepared in response to unrest at volcanoes, rely on geophysical monitoring and related observations, and have the goal of forecasting events on timescales of hours to weeks to provide time for evacuation of people, shutdown of facilities, and implementation of related safety measures. Long-term forecasts are prepared to better understand the potential impacts of volcanism in the future and to plan for potential volcanic activity. Long-term forecasts are particularly useful to better understand and communicate the potential consequences of volcanic events for populated areas around volcanoes and for siting critical infrastructure, such as nuclear facilities. Recent work by an international team, through the auspices of the International Atomic Energy Agency, has focused on developing guidelines for long-term volcanic hazard assessments. These guidelines have now been implemented for hazard assessment for nuclear facilities in nations including Indonesia, the Philippines, Armenia, Chile, and the United States. One any time scale, all volcanic hazard assessments rely on a geologically reasonable conceptual model of volcanism. Such conceptual models are usually built upon years or decades of geological studies of specific volcanic systems, analogous systems, and development of a process-level understanding of volcanic activity. Conceptual models are used to bound potential rates of volcanic activity, potential magnitudes of eruptions, and to understand temporal and spatial trends in volcanic activity. It is these conceptual models that provide essential justification for assumptions made in statistical model development and the application of numerical models to generate quantitative forecasts. It is a

  6. The Influence of Volcanic Aerosols on Planetary Habitability (United States)

    Chen, Howard; Horton, Daniel Ethan


    On rocky planetary bodies such as Proxima Centuri b, the detection of sulphate aerosols may indicate volcanism and tectonic activity; ingredients hypothesized to be necessary for planetary habitability. However, due to the effect of atmospheric aerosols on a planet’s energy balance, coupled with eruption constituent and frequency uncertainties, the potential impact of volcanic activity on planetary habitability remains unresolved. Here, we employ multi-column climate models in conjunction with a parameter space approach to test the effect of volcanic aerosols on planetary climate with various climate sensitivities. Preliminary results indicate that volcanic activity could provide a means of extending the inner edge of the habitable zone (IHZ), depending on eruption constituents and frequency. Previous work using transit spectra simulations have demonstrated the possibility of detecting transient aerosols of volcanic origin. Our work investigates the range of habitability implications detection of such aerosols would imply.

  7. Monitoring gas emissions can help forecast volcanic eruptions (United States)

    Kern, Christoph; Maarten de Moor,; Bo Galle,


    As magma ascends in active volcanoes, dissolved volatiles partition from melt into a gas phase, rise, and are released into the atmosphere from volcanic vents. The major components of high-temperature volcanic gas are typically water vapor, carbon dioxide, and sulfur dioxide. 

  8. Lung problems and volcanic smog (United States)

    ... releases gases into the atmosphere. Volcanic smog can irritate the lungs and make existing lung problems worse. ... deep into the lungs. Breathing in volcanic smog irritates the lungs and mucus membranes. It can affect ...

  9. Self-potential changes associated with volcanic activity. Short-term signals associated with March 9, 1998 eruption on La Fournaise volcano (Reunion Island)

    Energy Technology Data Exchange (ETDEWEB)

    Zlotniki, J. [UMR6530, Clermont-Ferrand (France); Institut de Physique du Globe de Paris, Laboratoire de Geomagnetisme, Paris (France); Le Mouel, J. L. [Institut de Physique du Globe de Paris, Laboratoire de Geomagnetisme, Paris (France); Sasai, Y. [Tokyo Univ., Tokyo (Italy). Earthquake Research Institute; Yvetot, P.; Ardisson, M. H. [UMR6524, Laboratoire de Geophysique d' Orleans, Orleans (France)


    After six years of quietness La Fournaise volcano entered into activity on March 9, 1998. Fissures opened gradually downwards on the northern flank of the cone. Two cones, Kapor and Krafft built, from which lava poured until September 1998. Several other vents opened during this eruption. Mappings, surveys, and continuous recordings of the Self-Potential have been performed on the volcano for twenty years. SP mappings disclose the variability of large scale SP anomalies due to the modification of the hydrothermal system over some ten years. Most of the eruptions take place along a Main Fracture Zone (MFZ), in which ground water flows prevail. SP measurements have also regularly been made on the northern flank of the cone, on a west-east profile crossing the MFZ. Between 1981 and 1992 an enlargement and a shift of the MFZ to the east are evidenced. In particular, the eastern fissural axis trending N35{sup 0}E could be related to the possible collapse of the east flank of the volcano. After a decrease between 1992 and 1997, the SP anomaly was enhanced again by the 1998 eruption. Short scale, about 250 m wide, 750 mV amplitude anomalies were superimposed on a large scale one, 2500 m wide, and about 250 mV in amplitude. For several years, continuous stations have been measuring the electric field along two directions, with a 20 s sampling, in order to record the genesis of SP signals associated with the volcanic activity. Oscillations belonging to the ULF band were evidenced several days before the 1988 eruption, some of them at 9 km from the summit. Their amplitude reached several tens mV/km. These oscillations sometimes present a phase lag from summit. Their amplitude reached several tens mV/km. These oscillations sometimes present a phase lag from one station to another; they progressively shift towards the location of the future effusive vents. The polarisation of the oscillations is similar to the polarisation of longer SP variations (1 h period or more) and are

  10. Self-potential chenges associated with volcanic activity: Short-term signals associated with March 9, 1998 eruption on La Fournaise volcano (Reunion Island

    Directory of Open Access Journals (Sweden)

    P. Yvetot


    Full Text Available After six years of quietness La Fournaise volcano entered into activity on March 9, 1998. Fissures opened gradually downwards on the northern flank of the cone. Two cones, Kapor and Krafft built, from which lava poured until September 1998. Several other vents opened during this eruption. Mappings, surveys, and continuous recordings of the Self-Potential have been performed on the volcano for twenty years. SP mappings disclose the variability of large scale SP anomalies due to the modification of the hydrothermal system over some ten years. Most of the eruptions take place along a Main Fracture Zone (MFZ in which ground water flows prevail. SP measurements have also regularly been made on the northern flank of the cone, on a west-east profile crossing the MFZ. Between 1981 and 1992 an enlargement and a shift of the MFZ to the east are evidenced. In particular, the eastern fissural axis trending N35°E could be related to the possible collapse of the east flank of the volcano. After a decrease between 1992 and 1997, the SP anomaly was enhanced again by the 1998 eruption. Short scale, about 250 m wide, 750 mV amplitude anomalies were superimposed on a large scale one, 2500 m wide, and about 250 mV in amplitude. For several years, continuous stations have been measuring the electric field along two directions, with a 20 s sampling, in order to record the genesis of SP signals associated with the volcanic activity. Oscillations belonging to the ULF band were evidenced several days before the 1988 eruption, some of them at 9 km from the summit. Their amplitude reached several tens mV/km. These oscillations sometimes present a phase lag from one station to another; they progressively shift towards the location of the future effusive vents. The polarisation of the oscillations is similar to the polarisation of longer SP variations (1 h period or more and are correlated with the structural anisotropy. Finally, during the last hours preceding the

  11. SENP1, but not fetal hemoglobin, differentiates Andean highlanders with chronic mountain sickness from healthy individuals among Andean highlanders. (United States)

    Hsieh, Matthew M; Callacondo, David; Rojas-Camayo, Jose; Quesada-Olarte, Jose; Wang, Xunde; Uchida, Naoya; Maric, Irina; Remaley, Alan T; Leon-Velarde, Fabiola; Villafuerte, Francisco C; Tisdale, John F


    Chronic mountain sickness (CMS) results from chronic hypoxia. It is unclear why certain highlanders develop CMS. We hypothesized that modest increases in fetal hemoglobin (HbF) are associated with lower CMS severity. In this cross-sectional study, we found that HbF levels were normal (median = 0.4%) in all 153 adult Andean natives in Cerro de Pasco, Peru. Compared with healthy adults, the borderline elevated hemoglobin group frequently had symptoms (headaches, tinnitus, cyanosis, dilatation of veins) of CMS. Although the mean hemoglobin level differed between the healthy (17.1 g/dL) and CMS (22.3 g/dL) groups, mean plasma erythropoietin (EPO) levels were similar (healthy, 17.7 mIU/mL; CMS, 12.02 mIU/mL). Sanger sequencing determined that single-nucleotide polymorphisms in endothelial PAS domain 1 (EPAS1) and egl nine homolog 1 (EGLN1), associated with lower hemoglobin in Tibetans, were not identified in Andeans. Sanger sequencing of sentrin-specific protease 1 (SENP1) and acidic nuclear phosphoprotein 32 family, member D (ANP32D), in healthy and CMS individuals revealed that non-G/G genotypes were associated with higher CMS scores. No JAK2 V617F mutation was detected in CMS individuals. Thus, HbF and other classic erythropoietic parameters did not differ between healthy and CMS individuals. However, the non-G/G genotypes of SENP1 appeared to differentiate individuals with CMS from healthy Andean highlanders.

  12. Volcanism and Oil & Gas In Northeast China

    Institute of Scientific and Technical Information of China (English)

    Shan Xuanlong


    Based on study on the relation with volcanic rock and oil & gas in Songliao Basin and Liaohe Basin in northeast China, author proposes that material from deep by volcanism enrichs the resources in basins, that heat by volcanism promotes organic matter transforming to oil and gas, that volcanic reservoir is fracture, vesicular, solution pore, intercrystal pore.Lava facies and pyroclastic facies are favourable reservoir. Mesozoic volcanic reservoir is majority of intermediate, acid rock,but Cenozoic volcanic reservoir is majority of basalt. Types of oil and gas pool relating to volcanic rock include volcanic fracture pool, volcanic unconformity pool, volcanic rock - screened pool, volcanic darpe structural pool.


    Directory of Open Access Journals (Sweden)

    George Pararas-Carayannis


    Full Text Available Earthquakes, volcanic eruptions, volcanic island flank failures and underwater slides have generated numerous destructive tsunamis in the Caribbean region. Convergent, compressional and collisional tectonic activity caused primarily from the eastward movement of the Caribbean Plate in relation to the North American, Atlantic and South American Plates, is responsible for zones of subduction in the region, the formation of island arcs and the evolution of particular volcanic centers on the overlying plate. The inter-plate tectonic interaction and deformation along these marginal boundaries result in moderate seismic and volcanic events that can generate tsunamis by a number of different mechanisms. The active geo-dynamic processes have created the Lesser Antilles, an arc of small islands with volcanoes characterized by both effusive and explosive activity. Eruption mechanisms of these Caribbean volcanoes are complex and often anomalous. Collapses of lava domes often precede major eruptions, which may vary in intensity from Strombolian to Plinian. Locally catastrophic, short-period tsunami-like waves can be generated directly by lateral, direct or channelized volcanic blast episodes, or in combination with collateral air pressure perturbations, nuéss ardentes, pyroclastic flows, lahars, or cascading debris avalanches. Submarine volcanic caldera collapses can also generate locally destructive tsunami waves. Volcanoes in the Eastern Caribbean Region have unstable flanks. Destructive local tsunamis may be generated from aerial and submarine volcanic edifice mass edifice flank failures, which may be triggered by volcanic episodes, lava dome collapses, or simply by gravitational instabilities. The present report evaluates volcanic mechanisms, resulting flank failure processes and their potential for tsunami generation. More specifically, the report evaluates recent volcanic eruption mechanisms of the Soufriere Hills volcano on Montserrat, of Mt. Pel

  14. Possible Late Pleistocene volcanic activity on Nightingale Island, South Atlantic Ocean, based on geoelectrical resistivity measurements, sediment corings and 14C dating

    DEFF Research Database (Denmark)

    Bjørk, Anders Anker; Björck, Svante; Cronholm, Anders


    Tristan da Cunha is a volcanic island group situated in the central South Atlantic. The oldest of these islands, Nightingale Island, has an age of about 18Ma. In the interior of the island, there are several wetlands situated in topographic depressions. The ages of these basins have been unknown,...

  15. Evolution of Mesozoic Volcanic Basins and Red Basins in the Gan-Hang Tectonic-Volcanic Metallogenic Belt

    Institute of Scientific and Technical Information of China (English)


    This paper mainly proposes six major regional geological events in the active continental-margin mantle uplift zone and discusses the oscillation nature of the evolution of Mesozoic volcanic basins and red basins, origin of erosion in the late stage of red basins and mechanism of volcanism.

  16. Modeling volcanic ash dispersal

    CERN Document Server

    CERN. Geneva


    The assessment of volcanic fallout hazard is an important scientific, economic, and political issue, especially in densely populated areas. From a scientific point of view, considerable progress has been made during the last two decades through the use of increasingly powerful computational models and capabilities. Nowadays, models are used to quantify hazard...

  17. Andean rural children's views of the environment: A qualitative study (United States)

    Maurial, Mahia

    Andean rural children's drawings and narratives about their crops and the immediate biological environment are rich tools to understand local views of the environment. Children's drawings and narratives were collected and linked to interviews as well as participant observation gathered from parents, leaders and teachers. The research sites are the community of Willca and the school of Mayu. Fieldwork was completed in 1998. In the conceptual framework I distinguish between two dissimilar knowledges, school knowledge and local knowledge. These knowledges produce two dissimilar views of the environment. I further analyze relationships of knowledge and power and argue that school knowledge overpowers local knowledge. Concomitantly, I studied set of ideas associated with two knowledges aforementioned: superacion (surpass) and regeneration (Apffel-Marglin 1995). Although these ideas coexist in peoples' minds they are not linked or effectively connected. In order to link local knowledge and school knowledge together, I propose the integration of environmental studies and art education to enhance a local sense of place (Blandy et. al 1993) in Andean and other schools. This will contribute to grassroots educational policy.

  18. Climate change forces new ecological states in tropical Andean lakes.

    Directory of Open Access Journals (Sweden)

    Neal Michelutti

    Full Text Available Air temperatures in the tropical Andes have risen at an accelerated rate relative to the global average over recent decades. However, the effects of climate change on Andean lakes, which are vital to sustaining regional biodiversity and serve as an important water resource to local populations, remain largely unknown. Here, we show that recent climate changes have forced alpine lakes of the equatorial Andes towards new ecological and physical states, in close synchrony to the rapid shrinkage of glaciers regionally. Using dated sediment cores from three lakes in the southern Sierra of Ecuador, we record abrupt increases in the planktonic thalassiosiroid diatom Discostella stelligera from trace abundances to dominance within the phytoplankton. This unprecedented shift occurs against the backdrop of rising temperatures, changing atmospheric pressure fields, and declining wind speeds. Ecological restructuring in these lakes is linked to warming and/or enhanced water column stratification. In contrast to seasonally ice-covered Arctic and temperate alpine counterparts, aquatic production has not increased universally with warming, and has even declined in some lakes, possibly because enhanced thermal stability impedes the re-circulation of hypolimnetic nutrients to surface waters. Our results demonstrate that these lakes have already passed important ecological thresholds, with potentially far-reaching consequences for Andean water resources.

  19. Directionality Evidence in High Andean Forest Early Successional Process

    Directory of Open Access Journals (Sweden)

    Manuel Eduardo Lequerica Támara


    Full Text Available Secondary growth forests have increased their extension in the last decades, and have been suggested as potential conservation reservoirs. The objective of this study was to evaluate diversity and vegetation composition in pastures and forests at (Granada, Cundinamarca, Colombia to assess if successional processes show evidence of directionality, we placed six plots by 0.1-ha in the forest edges, one towards the forest and other to the abandoned paddocks in three locations. We determined the average vegetation structure, diversity, and floristic composition for each plot. We found that diversity is significantly higher in forest plots than in paddock plots (at early succession stage in high Andean cloud ecosystems. The successional stage of each one of the study sites was characterized using non-metric multidimensional scaling. This analysis shows that vegetation tends to group in function of age groups more that it does by geographic location of the plots, suggesting succession is a directional process. Seedling recruitment was not significantly different between forest edge and forest interior. An inverse relation was found between floristic and geographic distances, reflecting the fact that matrix discontinuity is a limiting factor for seed dispersal, thus it is a barrier for high Andean cloud forest succession.

  20. Recent seismicity detection increase in the Santorini volcanic island complex (United States)

    Chouliaras, G.; Drakatos, G.; Makropoulos, K.; Melis, N. S.


    Santorini is the most active volcanic complex in the South Aegean Volcanic Arc. To improve the seismological network detectability of the seismicity in this region, the Institute of Geodynamics of the National Observatory of Athens (NOA) recently installed 4 portable seismological stations supplementary to the 3 permanent stations operating in the region. The addition of these stations has significantly improved the detectability and reporting of the local seismic activity in the NOA instrumental seismicity catalogue. In this study we analyze quantitatively the seismicity of the Santorini volcanic complex. The results indicate a recent significant reporting increase mainly for events of small magnitude and an increase in the seismicity rate by more than 100%. The mapping of the statistical significance of the rate change with the z-value method reveals that the rate increase exists primarily in the active fault zone perpendicular to the extensional tectonic stress regime that characterizes this region. The spatial distribution of the b-value around the volcanic complex indicates a low b-value distribution parallel to the extensional stress field, while the b-value cross section of the volcanic complex indicates relatively high b-values under the caldera and a significant b-value decrease with depth. These results are found to be in general agreement with the results from other volcanic regions and they encourage further investigations concerning the seismic and volcanic hazard and risk estimates for the Santorini volcanic complex using the NOA earthquake catalogue.

  1. Along-Strike Variations in Focal Mechanisms of Central Andean Crustal Earthquakes: Northern Peru through the Argentina Sierras Pampeanas (United States)

    Devlin, S.; Isacks, B. L.


    120 shallow focal mechanisms in the crust above the subducted Nazca plate were assembled from the Harvard CMT catalog and published studies covering over 40 years of seismicity. The study area included the Andes crust above three major segments of the subducted plate, the Peruvian and Argentinean flat-slab segments and the intervening segment where the subducted Nazca plate dips more steeply. The most seismically active regions continue to be the thick-skinned foreland thrust belts in the eastern Andes of Peru and the Sierras Pampeanas. The earthquakes there are clearly associated with youthful tectonic structures with strong topographic signatures as revealed by the new 90 m SRTM digital elevation models. The mechanisms are dominantly of the thrust type but include a minority of strike-slip orientations. However the P axes remain consistent. The thin-skinned thrust belts east of the central Andean Plateau show significant activity only near Santa Cruz, Bolivia and northern Argentina; most of the Sub-Andean thrust belt of Bolivia and southern Peru remains aseismic. The central Andean plateau itself also remains aseismic except for the region of southern Peru and two earthquakes in the Puna. The crustal seismicity in southern Peru is largely concentrated on the western side of the plateau. The focal mechanisms show a strong grouping of T axes in a horizontal, north-south orientation. Both normal and strike-slip mechanisms occur in this region, with no obvious correlation with elevation or surface structures. Remarkably, with the exception of one normal fault type mechanism near the Cusco basin, the earthquakes occur in regions of the western parts of the Altiplano that do not exhibit topographic evidence of substantial crustal deformation. These results are consistent with a model in which the Altiplano of southern Peru, with a trend most oblique to the overall direction of convergence, manifests a left-lateral shearing component across the orogen.

  2. Seismic imaging of the upper mantle beneath the northern Central Andean Plateau: Implications for surface topography (United States)

    Ward, K. M.; Zandt, G.; Beck, S. L.; Wagner, L. S.


    Extending over 1,800 km along the active South American Cordilleran margin, the Central Andean Plateau (CAP) as defined by the 3 km elevation contour is second only to the Tibetan Plateau in geographic extent. The uplift history of the 4 km high Plateau remains uncertain with paleoelevation studies along the CAP suggesting a complex, non-uniform uplift history. As part of the Central Andean Uplift and the Geodynamics of High Topography (CAUGHT) project, we use surface waves measured from ambient noise and two-plane wave tomography to image the S-wave velocity structure of the crust and upper mantle to investigate the upper mantle component of plateau uplift. We observe three main features in our S-wave velocity model including (1), a high velocity slab (2), a low velocity anomaly above the slab where the slab changes dip from near horizontal to a normal dip, and (3), a high-velocity feature in the mantle above the slab that extends along the length of the Altiplano from the base of the Moho to a depth of ~120 km with the highest velocities observed under Lake Titicaca. A strong spatial correlation exists between the lateral extent of this high-velocity feature beneath the Altiplano and the lower elevations of the Altiplano basin suggesting a potential relationship. Non-uniqueness in our seismic models preclude uniquely constraining this feature as an uppermost mantle feature bellow the Moho or as a connected eastward dipping feature extending up to 300 km in the mantle as seen in deeper mantle tomography studies. Determining if the high velocity feature represents a small lithospheric root or a delaminating lithospheric root extending ~300 km into the mantle requires more integration of observations, but either interpretation shows a strong geodynamic connection with the uppermost mantle and the current topography of the northern CAP.

  3. Dynamic Paleogeography of the Jurassic Andean Basin: pattern of regression and general considerations on main features

    Directory of Open Access Journals (Sweden)

    J-C. Vicente


    Full Text Available Following examination of the evolution of the Jurassic Andean retroarc basin at a global scale for the Central Andes, this paper analyses the pattern of the regressive process, and discusses some general features concerning Andean Jurassic Paleogeography. The early Upper Jurassic regression obeys to an exactly reverse pattern as the one evidenced for the Lower Jurassic transgressive process. Sectors with late transgressions become those with early regressions while those with early transgressions show later regressions. This fact may indicate that the Norte Chico Isthmus (29°S to 30°30'S was a precociously emerged zone from the Bajocian. This carries again a split up between the Tarapacá and Aconcagua-Neuquén basins until their complete drying up in the Late Oxfordian following their restricted circulation. This evaporitic late stage presents great analogy with the Mediterranean «Messinian crisis» and gives evidence of a general tectonic and magmatic control on the straits. The local transgressions observed on the cratonic margin of the central part of these shrinking basins were due to shifting of water masses resulting from the regressive process on the northern and southern margins. Comparison between the main stages of transgression and regression allows some quantification concerning velocities of displacement of coastlines, specifically lengthwise. The permanence of paleogeographic and structural features over the time argues for an indisputable tectonic heritage. In the dynamic framework of this typical barred retroarc basin where arc magmatic activity has contributed considerably to variation on sediment supply and changing bathymetry of the seaways connecting with the Pacific Ocean, evidence for an assumed global eustatic cycle remains questionable or very subordinated.

  4. Lidar Observations of Aerosol Disturbances of the Stratosphere over Tomsk (56.5∘N; 85.0∘E in Volcanic Activity Period 2006–2011

    Directory of Open Access Journals (Sweden)

    Oleg E. Bazhenov


    Full Text Available The lidar measurements (Tomsk: 56.5∘N; 85.0∘E of the optical characteristics of the stratospheric aerosol layer (SAL in the volcanic activity period 2006–2011 are summarized and analyzed. The background SAL state with minimum aerosol content, observed since 1997 under the conditions of long-term volcanically quiet period, was interrupted in October 2006 by series of explosive eruptions of volcanoes of Pacific Ring of Fire: Rabaul (October 2006, New Guinea; Okmok and Kasatochi (July-August 2008, Aleutian Islands; Redoubt (March-April 2009, Alaska; Sarychev Peak (June 2009, Kuril Islands; Grimsvötn (May 2011, Iceland. A short-term and minor disturbance of the lower stratosphere was also observed in April 2010 after eruption of the Icelandic volcano Eyjafjallajokull. The developed regional empirical model of the vertical distribution of background SAL optical characteristics was used to identify the periods of elevated stratospheric aerosol content after each of the volcanic eruptions. Trends of variations in the total ozone content are also considered.

  5. Some isotopic and geochemical anomalies observed in Mexico prior to large scale earthquakes and volcanic eruptions

    Energy Technology Data Exchange (ETDEWEB)

    Cruz R, S. de la; Armienta, M.A.; Segovia A, N


    A brief account of some experiences obtained in Mexico, related with the identification of geochemical precursors of volcanic eruptions and isotopic precursors of earthquakes and volcanic activity is given. The cases of three recent events of volcanic activity and one large earthquake are discussed in the context of an active geological environment. The positive results in the identification of some geochemical precursors that helped to evaluate the eruptive potential during two volcanic crises (Tacana 1986 and Colima 1991), and the significant radon-in-soil anomalies observed during a volcanic catastrophic eruption (El Chichon, 1982) and prior to a major earthquake (Michoacan, 1985) are critically analysed. (Author)

  6. Melting Behavior of Volcanic Ash relevant to Aviation Ash Hazard (United States)

    Song, W.; Hess, K.; Lavallee, Y.; Cimarelli, C.; Dingwell, D. B.


    Volcanic ash is one of the major hazards caused by volcanic eruptions. In particular, the threat to aviation from airborne volcanic ash has been widely recognized and documented. In the past 12 years, more than 60 modern jet airplanes, mostly jumbo jets, have been damaged by drifting clouds of volcanic ash that have contaminated air routes and airport facilities. Seven of these encounters are known to have caused in-flight loss of engine power to jumbo jets carrying a total of more than 2000 passengers. The primary cause of engine thrust loss is that the glass in volcanic ash particles is generated at temperatures far lower than the temperatures in the combustion chamber of a jet engine ( i.e. > 1600 oC) and when the molten volcanic ash particles leave this hottest section of the engine, the resolidified molten volcanic ash particles will be accumulated on the turbine nozzle guide vanes, which reduced the effective flow of air through the engine ultimately causing failure. Thus, it is essential to investigate the melting process and subsequent deposition behavior of volcanic ash under gas turbine conditions. Although few research studies that investigated the deposition behavior of volcanic ash at the high temperature are to be found in public domain, to the best our knowledge, no work addresses the formation of molten volcanic ash. In this work, volcanic ash produced by Santiaguito volcano in Guatemala in November 8, 2012 was selected for study because of their recent activity and potential hazard to aircraft safety. We used the method of accessing the behavior of deposit-forming impurities in high temperature boiler plants on the basis of observations of the change in shape and size of a cylindrical coal ash to study the sintering and fusion phenomena as well as determine the volcanic ash melting behavior by using characteristic temperatures by means of hot stage microscope (HSM), different thermal analysis (DTA) and Thermal Gravimetric Analysis (TGA) to


    Institute of Scientific and Technical Information of China (English)


    This paper is concentrated on Cenozoic volcanism and geothermal resources in Northeast China. There are a lot of Cenozoic volcanoes, a large area of volcanic rocks, a large number of active faults and rich geothermal resources in Northeast China. The time and space characteristics of Cenozoic volcanism and the space distribution characters of hot springs and high geothermal flux regions in Northeast China are described and discussed on the basis of geological, geothermal, drilling and volcanological data. It is revealed that the hot springs and high geothermal flux regions are re lated to the Cenozoic volcanism, rifting and faulting in Northeast China. It is especially emphasized that the hot springs and high geothermal anomaly areas are controlled by active deep faults. It is proposed that the Cenozoic volcanism re gions, rift basins, active fault belts, activated plate suture zones and large earthquake occurrence points are the best areas for prospecting geothermal resources. The geothermal resources in younger volcanic zones are richer than those in older volcanic belts. The hot springs and active or activated faults might be a very good clue for looking for geothermal resources.

  8. Collaborative studies target volcanic hazards in Central America (United States)

    Bluth, Gregg J. S.; Rose, William I.

    Central America is the second-most consistently active volcanic zone on Earth, after Indonesia. Centuries of volcanic activity have produced a spectacular landscape of collapsed calderas, debris flows, and thick blankets of pyroclastic materials. Volcanic activity dominates the history, culture, and daily life of Central American countries.January 2002 marked the third consecutive year in which a diverse group of volcanologists and geophysicists conducted focused field studies in Central America. This type of multi-institutional collaboration reflects the growing involvement of a number of U.S. and non-U.S. universities, and of other organizations, in Guatemala and El Salvador (Table 1).

  9. Geochemical and petrologic investigation of the Ola Plateau-basalts from the Okhotsk-Chukotka Volcanic Belt (NE Russia) (United States)

    Leitner, Jürgen; Ntaflos, Theodoros; Akinin, Vyacheslav; Tschegg, Cornelius


    The Okhotsk-Chukotka volcanic belt to a large degree consists of coeval Cretaceous and Early Tertiary volcanic and plutonic rocks that occur along the continental margin in northeast Russia. These igneous-arc related rocks build up an Andean-style magmatic arc sequence that occurs for about 3.500 km along the entire length of the Eurasian continent, from Chukotka Peninsula in the north down to north-east China. The rocks of the Okhotsk-Chukotka Volcanic Belt (OCVB) comprise Late Cretaceous, andesitic basalts, andesites, dacites, rhyolites, tuffs, rare beds of nonmarine clastic rocks with conglomerates and sandstones in the base and locally Paleocene gently dipping basalts. The duration of the magmatic activity in the Okhotsk-Chukotka volcanic belt is still in debate but generally it has been estimated from middle of Albian to Campanian. The studied area, the Ola Plateau Basalts (OPB) and the Hypotetica Basalts (HB), comprise basaltic andesites, trachy- basalts, basaltic trachy- andesite and rhyolitic dykes, belongs to the Okhotsk-Cukotka volcanic belt and represents the last volcanic activity related to the subduction of the palaeo-Pacific plate in this region. The exposed lavas have a thickness of 0.5 km and the estimated volume is about 222 km³. Fine grained 4 m thick rhyolitic dykes represent the very last event of the studied sequence. According to Ar/Ar and U/Pb dating (Hourigan, Akinin, 2004;), the average age of the OPB/ HB is 78.8 to 74 Ma. The basaltic rocks that build up the Ola Plateau are mainly fine grained calc- alkaline basalts with clinopyroxene, plagioclase and strongly to moderately altered olivine phenocrysts with spinel inclusions. The Mg# of the calc- alkaline basalts vary from 0.35 to 0.57 and the TiO2 from 1.2 to 2.2 wt% whereas CaO correlates positive with MgO contents. The OPB and HB lavas, according to their primitive mantle normalized trace elements, can be divided into three groups: Group (I) is characterized by positive Sr anomaly with

  10. Monitoring glaciers and indications of subglacial volcanic activity using small-scale Top-Hat reflectors - An IsViews experiment on Myrdalsjökull, Iceland (United States)

    Minet, Christian; Duque Biarge, Sergi; Jaenicke, Julia; Münzer, Ulrich; Mayer, Christoph; Franke, Jonas; Guðmundsson, Águst; Parizzi, Alessandro; Fritz, Thomas; Eineder, Michael


    Subglacial volcanic eruptions often provide indications of activity some time before the actual catastrophic event. Surface undulations appear on top of the ice cap and meltwater torrents can occur at the glacier margin. Even large scale uplifts of ice caps have been observed. Within the project IsViews a processing chain, based on high spatially and temporally resolved remote sensing imagery, will be developed in order to automatically identify such early indications. The main data used for this analysis are acquired by the TerraSAR-X, TanDEM-X and RapidEye satellites. First investigations concerning the feasibility of the near real-time warning system and the general baseline conditions are carried out on two large plateau glaciers in southern Iceland, namely Mördalsjökull and Vatnajökull. Within the 2013 IsViews field work an experiment was started in order to test a new way of glacier monitoring. Two test sites were established on the Mördalsjökull ice cap (one at the equilibrium line and one below), each consisting of a permanent GPS station and two nearby RADAR reflectors. These RADAR reflectors are specially designed Top-Hat reflectors, which are cheap to manufacture, small (50 cm diameter) and lightweight and therefore easy to handle, transport and deploy. Their special design makes them visible in SAR images independent of orientation, so different acquisition geometries and even different sensors can be used. The drawback of the small, low reflecting Top-Hat can be overcome by using the newly implemented Staring Spotlight Mode of the German SAR Satellite TerraSAR-X, providing an unprecedented resolution of down to 20 cm in the azimuth direction. The reflectors, as point targets, allow absolute positioning within the cm-level in the TerraSAR-X data. Time series of SAR data can be used to derive position and altitude changes of the reflector itself and possibly even melting rates by exploiting the different signal paths. The visibility of the Top

  11. Bioprospecting in potato fields in the Central Andean Highlands: screening of rhizobacteria for plant growth-promoting properties. (United States)

    Ghyselinck, Jonas; Velivelli, Siva L S; Heylen, Kim; O'Herlihy, Eileen; Franco, Javier; Rojas, Mercy; De Vos, Paul; Prestwich, Barbara Doyle


    The Central Andean Highlands are the center of origin of the potato plant (Solanum tuberosum). Ages of mutualism between potato plants and soil bacteria in this region support the hypothesis that Andean soils harbor interesting plant growth-promoting (PGP) bacteria. Therefore, the aim of this study was to isolate rhizobacteria from Andean ecosystems, and to identify those with PGP properties. A total of 585 bacterial isolates were obtained from eight potato fields in the Andes and they were screened for suppression of Phytophthora infestans and Rhizoctonia solani. Antagonistic mechanisms were determined and antagonistic isolates were further tested for phosphate solubilization, 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity, and production of NH3- and indole-3-acetic acid (IAA). PGP was studied in healthy and R. solani diseased plantlets under growth room conditions. Performance was compared to the commercial strain B. subtilis FZB24(®) WG. Isolates were dereplicated with matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS), and identified with 16S rRNA gene sequencing and multi locus sequence analysis (MLSA). A total of 10% of the isolates were effective antagonists, of which many were able to solubilize phosphate, and produce IAA, ACC deaminase, NH3 and hydrogen cyanide (HCN). During growth room experiments, 23 antagonistic isolates were associated with plant growth-promotion and/or disease suppression. Ten isolates had a statistically significant impact on test parameters compared to the uninoculated control. Three isolates significantly promoted plant growth in healthy plantlets compared to the commercial strain, and seven isolates outperformed the commercial strain in in vitro R. solani diseased plantlets.

  12. Discovery of an active shallow submarine silicic volcano in the northern Izu-Bonin Arc: volcanic structure and potential hazards of Oomurodashi Volcano (Invited) (United States)

    Tani, K.; Ishizuka, O.; Nichols, A. R.; Hirahara, Y.; Carey, R.; McIntosh, I. M.; Masaki, Y.; Kondo, R.; Miyairi, Y.


    Oomurodashi is a bathymetric high located ~20 km south of Izu-Oshima, an active volcanic island of the northern Izu-Bonin Arc. Using the 200 m bathymetric contour to define its summit dimensions, the diameter of Oomurodashi is ~20 km. Oomurodashi has been regarded as inactive, largely because it has a vast flat-topped summit at 100 - 150 meters below sea level (mbsl). During cruise NT07-15 of R/V Natsushima in 2007, we conducted a dive survey in a small crater, Oomuro Hole, located in the center of the flat-topped summit, using the remotely-operated vehicle (ROV) Hyper-Dolphin. The only heat flow measurement conducted on the floor of Oomuro Hole during the dive recorded an extremely high value of 4,200 mW/m2. Furthermore, ROV observations revealed that the southwestern wall of Oomuro Hole consists of fresh rhyolitic lavas. These findings suggest that Oomurodashi is in fact an active silicic submarine volcano. To confirm this hypothesis, we conducted detailed geological and geophysical ROV Hyper-Dolphin (cruise NT12-19). In addition to further ROV surveys, we carried out single-channel seismic (SCS) surveys across Oomurodashi in order to examine the shallow structures beneath the current edifice. The ROV surveys revealed numerous active hydrothermal vents on the floor of Oomuro Hole, at ~200 mbsl, with maximum water temperature measured at the hydrothermal vents reaching 194°C. We also conducted a much more detailed set of heat flow measurements across the floor of Oomuro Hole, detecting very high heat flows of up to 29,000 mW/m2. ROV observations revealed that the area surrounding Oomuro Hole on the flat-topped summit of Oomurodashi is covered by extensive fresh rhyolitic lava and pumice clasts with minimum biogenetic or manganese cover, suggesting recent eruption(s). These findings strongly indicate that Oomurodashi is an active silicic submarine volcano, with recent eruption(s) occurring from Oomuro Hole. Since the summit of Oomurodashi is in shallow water, it

  13. Carotenoid composition and vitamin A value in ají (Capsicum baccatum L.) and rocoto (C. pubescens R. & P.), 2 pepper species from the Andean region. (United States)

    Rodríguez-Burruezo, Adrián; González-Mas, Maria del Carmen; Nuez, Fernando


    The carotenoid patterns of fully ripe fruits from 12 Bolivian accessions of the Andean peppers Capsicum baccatum (ají) and C. pubescens (rocoto) were determined by high-performance liquid chromatography (HPLC)-photodiode array detector (PDA)-mass spectrometry (MS). We include 2 California Wonder cultivars as C. annuum controls. A total of 16 carotenoids were identified and differences among species were mostly found at the quantitative level. Among red-fruited genotypes, capsanthin was the main carotenoid in the 3 species (25% to 50% contribution to carotenoid fraction), although ajíes contained the lowest contribution of this carotenoid. In addition, the contribution of capsanthin 5,6-epoxide to total carotenoids in this species was high (11% to 27%) in comparison to rocotos and red C. annuum. Antheraxanthin and violaxanthin were, in general, the next most relevant carotenoids in the red Andean peppers (6.1% to 10.6%). Violaxanthin was the major carotenoid in yellow-/orange-fruited genotypes of the 3 species (37% to 68% total carotenoids), although yellow rocotos were characterized by lower levels (<45%). Cis-violaxanthin, antheraxanthin, and lutein were the next most relevant carotenoids in the yellow/orange Andean peppers (5% to 14%). As a whole, rocotos showed the highest contributions of provitamin A carotenoids to the carotenoid fraction. In terms of nutritional contribution, both ajíes and rocotos provide a remarkable provitamin A activity, with several accessions showing a content in retinol equivalents higher than California Wonder controls. Furthermore, levels of lutein in yellow/orange ajíes and rocotos were clearly higher than California Wonder pepper (≥1000 μg·100/g). Finally, the Andean peppers, particularly red ajíes, can be also considered as a noticeable source of capsanthin, the most powerful antioxidant compound among pepper carotenoids. Practical Application: Capsicum peppers are known for their content in carotenoids, although there is

  14. E-MORB glasses from the Gakkel Ridge (Arctic Ocean) at 87°N: evidence for the Earth's most northerly volcanic activity


    R. Mühe; Bohrmann, H.; Garbe-Schönberg, Dieter; Kassens, Heidemarie


    During the ARCTIC '91 expedition aboard RV Polarstern (ARK VIII/3) to the Central Arctic Ocean, a box corer sample on the Gakkel Ridge at 87 degrees N and 60 degrees E yielded a layer of sand-sized, dark brown volcanic glass shards at the surface of the sediment core. These shards have been investigated by petrographic, mineralogical, geochemical and radiogenic isotope methods. The nearly vesicle-free and aphyric glass shards bear only minute microphenocrysts of magnesiochromite and olivine (...

  15. Subdiffusion of volcanic earthquakes

    CERN Document Server

    Abe, Sumiyoshi


    A comparative study is performed on volcanic seismicities at Mt.Eyjafjallajokull in Iceland and Mt. Etna in Sicily, Italy, from the viewpoint of science of complex systems, and the discovery of remarkable similarities between them regarding their exotic spatio-temporal properties is reported. In both of the volcanic seismicities as point processes, the jump probability distributions of earthquakes are found to obey the exponential law, whereas the waiting-time distributions follow the power law. In particular, a careful analysis is made about the finite size effects on the waiting-time distributions, and accordingly, the previously reported results for Mt. Etna [S. Abe and N. Suzuki, EPL 110, 59001 (2015)] are reinterpreted. It is shown that spreads of the volcanic earthquakes are subdiffusive at both of the volcanoes. The aging phenomenon is observed in the "event-time-averaged" mean-squared displacements of the hypocenters. A comment is also made on presence/absence of long term memories in the context of t...

  16. Radon levels in the volcanic region of La Garrotxa, Spain

    Energy Technology Data Exchange (ETDEWEB)

    Baixeras, C. [Grup de Fisica de les Radiacions. Edifici Cc, Departament de Fisica, Universitat Autonoma de Barcelona, E-08193 Bellaterra (Spain)]. E-mail:; Bach, J. [Unitat de Geodinamica Externa. Departament de Geologia. Edifici Cs, Universitat Autonoma de Barcelona, E-08193 Bellaterra (Spain); Amgarou, K. [Grup de Fisica de les Radiacions. Edifici Cc, Departament de Fisica, Universitat Autonoma de Barcelona, E-08193 Bellaterra (Spain); Moreno, V. [Grup de Fisica de les Radiacions. Edifici Cc, Departament de Fisica, Universitat Autonoma de Barcelona, E-08193 Bellaterra (Spain); Font, Ll. [Grup de Fisica de les Radiacions. Edifici Cc, Departament de Fisica, Universitat Autonoma de Barcelona, E-08193 Bellaterra (Spain)


    A preliminary survey in the city of Olot, the main town of the volcanic region of La Garrotxa, showed that dwellings built on volcanic formations present higher indoor radon levels than dwellings on non-volcanic materials. The soil of the area is not especially rich in radium. However, some of the volcanic materials present very high permeability and therefore radon entering the houses might have travelled over long distances. In this paper we present indoor radon values measured in a larger survey carried out during April-July 2004. The influence of the volcanic materials found in the preliminary survey has been confirmed. The results obtained suggest the possibility that radon comes from the degassification of mantle through active faults. The values obtained in working places do not constitute a relevant radiological risk for workers.

  17. An Outbreak of Bartonella bacilliformis in an Endemic Andean Community.

    Directory of Open Access Journals (Sweden)

    Nuria Sanchez Clemente

    Full Text Available Bartonellosis affects small Andean communities in Peru, Colombia and Ecuador. Research in this area has been limited.Retrospective review of 191 cases of bartonellosis managed in Caraz District Hospital, Peru, during the last outbreak (2003.The majority of cases (65% were 14 years old and younger. There was a peak in acute cases after the rainy season; chronic cases presented more constantly throughout the year. The sensitivity of blood smear against blood culture in acute disease was 25%. The most commonly used treatment for chronic disease was rifampicin; chloramphenicol was used to treat most acute cases. Complications arose in 6.8% and there were no deaths.Diagnostic and treatment algorithms for acute and chronic bartonellosis have been developed without a strong evidence base. Preparation of ready-to-go operational research protocols for future outbreaks would strengthen the evidence base for diagnostic and treatment strategies and enhance opportunities for control.

  18. A new minute Andean Pristimantis (Anura: Strabomantidae from Venezuela

    Directory of Open Access Journals (Sweden)

    César L. Barrio-Amorós


    Full Text Available A new species of Pristimantis is described from the Venezuelan Andes. The new species is the smallest in its genus known in Venezuela and belongs to the Pristimantis unistrigatus Group. It differs from the rest of Venezuelan Andean congeners in body size (mean male SVL < 21.3 mm, female SVL < 26.3 mm, expanded discs on fingers and toes, absence of dorsolateral folds, and a distinctivecall consisting in 2–5 cricket-like short notes. The new species inhabits the southwestern part of the Cordillera de Mérida in Venezuela and the Venezuelan side of the Cordillera Oriental deColombia, and could be present on the Colombian portion of the cordillera as well.

  19. Spatial random downscaling of rainfall signals in Andean heterogeneous terrain (United States)

    Posadas, A.; Duffaut Espinosa, L. A.; Yarlequé, C.; Carbajal, M.; Heidinger, H.; Carvalho, L.; Jones, C.; Quiroz, R.


    Remotely sensed data are often used as proxies for indirect precipitation measures over data-scarce and complex-terrain areas such as the Peruvian Andes. Although this information might be appropriate for some research requirements, the extent at which local sites could be related to such information is very limited because of the resolution of the available satellite data. Downscaling techniques are used to bridge the gap between what climate modelers (global and regional) are able to provide and what decision-makers require (local). Precipitation downscaling improves the poor local representation of satellite data and helps end-users acquire more accurate estimates of water availability. Thus, a multifractal downscaling technique complemented by a heterogeneity filter was applied to TRMM (Tropical Rainfall Measuring Mission) 3B42 gridded data (spatial resolution ~ 28 km) from the Peruvian Andean high plateau or Altiplano to generate downscaled rainfall fields that are relevant at an agricultural scale (spatial resolution ~ 1 km).

  20. Climate Change Impacts in a Colombian Andean Tropical Basin (United States)

    Ocampo, O. L.; Vélez, J. J.; Londoño, A.


    Climate change and climate variability have a large impact on water resources. Developing regions have less capacity to prepare for, respond to, and recover from climate-related hazards and effects, and then, populations may be disproportionately affected. In Colombia, the geographical location and the marked irregularity in the terrain, give as a result, a complex climate. These factors have contributed to the water supply of the territory. Unfortunately, the visualization of abundant and inexhaustible water resources created a great disregard for them. Besides, the water supply is not distributed uniformly across the country, and then there is water-deficit in some areas as Andean Region, where the largest population and the main development centers are located. In recent decades, water conflicts have emerged locally and regionally, which have generated a crisis in the allocation mechanisms and have improved the understanding of the water situation in Colombia. The Second National Communication to CCMNU alerts on possible future consequences of climate change and the need for regional studies for understanding climate change impacts on the fragile ecosystems of high mountains as paramos and fog forest, which are water production regulators. Colombian water resources are greatly affected by changes in rainfall patterns influenced by El Niño and La Niña. The recent disasters in the 2010-2011 rainy seasons have caught the attention of not only the authorities but from the scientific community to explore strategies to improve water management by tracking, anticipating and responding to climate variability and climate change. Whereas sound water management is built upon long-term, the country is undertaking a pilot exercise for the integrated management of water resources, five Basins are selected, among them, is the Chinchiná River Basin; this Andean tropical Basin is located on the western slopes at the central range in the Andes between 4°48 and 5°12 N

  1. Forward modeling of δ18O in Andean ice cores (United States)

    Hurley, J. V.; Vuille, M.; Hardy, D. R.


    Tropical ice core archives are among the best dated and highest resolution from the tropics, but a thorough understanding of processes that shape their isotope signature as well as the simulation of observed variability remain incomplete. To address this, we develop a tropical Andean ice core isotope forward model from in situ hydrologic observations and satellite water vapor isotope measurements. A control simulation of snow δ18O captures the mean and seasonal trend but underestimates the observed intraseasonal variability. The simulation of observed variability is improved by including amount effects associated with South American cold air incursions, linking synoptic-scale disturbances and monsoon dynamics to tropical ice core δ18O. The forward model was calibrated with and run under present-day conditions but can also be driven with past climate forcings to reconstruct paleomonsoon variability. The model is transferable and may be used to render a (paleo)climatic context at other ice core locations.

  2. A new Andean species of Philodryas (Dipsadidae, Xenodontinae) from Ecuador. (United States)

    Zaher, Hussam; Arredondo, Juan C; Valencia, Jorge H; Arbeláez, Ernesto; Rodrigues, Miguel T; Altamirano-Benavides, Marco


    We describe a new species of Philodryas from the highlands of southern Ecuador. The new species is distinguished from all known species of Philodryas by a unique combination of coloration, scalation, and hemipenial characters. The new species resembles Philodryas simonsii in color pattern. However, they differ notoriously by their hemipenial morphology. The three other trans-Andean members of the genus (Philodryas simonsii, Philodryas chamissonis, and Philodryas tachymenoides), along with the new species, compose a probably monophyletic group that may be characterized by the presence of ungrooved postdiastemal teeth in the maxilla. Unlike most species of the genus Philodryas, the new species shows a restricted distribution,