WorldWideScience

Sample records for active 8b solar

  1. Measurement of the total active 8B solar neutrino flux at the Sudbury Neutrino Observatory with enhanced neutral current sensitivity

    International Nuclear Information System (INIS)

    The Sudbury Neutrino Observatory (SNO) has precisely determined the total active (vx)8B solar neutrino flux without assumptions about the energy dependence of the ve survival probability. The measurements were made with dissolved NaCl in the heavy water to enhance the sensitivity and signature for neutral-current interactions. The flux is found to be 5.21+-0.27 (stat)+-0.38(syst)x10-6 cm-2s-1, in agreement with previous measurements and standard solar models. A global analysis of these and other solar and reactor neutrino results yields Δm2 = 7.1+1.2-0.6 x 10-5 eV2 and θ 32.5+2.4-2.3 degrees. Maximal mixing is rejected at the equivalent of 5.4 standard deviations

  2. Measurement of the Total Active 8B Solar Neutrino Flux at the Sudbury Neutrino Observatory with Enhanced Neutral Current Sensitivity

    CERN Document Server

    Ahmed, S N; Beier, E W; Bellerive, A; Biller, S D; Boger, J; Boulay, M G; Bowler, M G; Bowles, T J; Brice, S J; Bullard, T V; Chan, Y D; Chen, M; Chen, X; Cleveland, B T; Cox, G A; Dai, X; Dalnoki-Veress, F; Doe, P J; Dosanjh, R S; Doucas, G; Dragowsky, M R; Duba, C A; Duncan, F A; Dunford, M; Dunmore, J A; Earle, E D; Elliott, S R; Evans, H C; Ewan, G T; Farine, J; Fergani, H; Fleurot, F; Formaggio, J A; Fowler, M M; Frame, K; Fulsom, B G; Gagnon, N; Graham, K; Grant, D R; Hahn, R L; Hall, J C; Hallin, A L; Hallman, E D; Hamer, A S; Handler, W B; Hargrove, C K; Harvey, P J; Hazama, R; Heeger, K M; Heintzelman, W J; Heise, J; Helmer, R L; Hemingway, R J; Hime, A; Howe, M A; Jagam, P; Jelley, N A; Klein, J R; Kos, M S; Krumins, A V; Kutter, T; Kyba, C C M; Labranche, H; Lange, R; Law, J; Lawson, I T; Lesko, K T; Leslie, J R; Levine, I; Luoma, S; MacLellan, R; Majerus, S; Mak, H B; Maneira, J; Marino, A D; McCauley, N; McDonald, A B; McGee, S; McGregor, G; Miin, C; Miknaitis, K K S; Miller, G G; Moffat, B A; Nally, C W; Nickel, B G; Noble, A J; Norman, E B; Oblath, N S; Okada, C E; Ollerhead, R W; Orrell, J L; Oser, S M; Ouellet, C V; Peeters, S J M; Poon, A W P; Robertson, B C; Robertson, R G H; Rollin, E; Rosendahl, S S E; Rusu, V L; Schwendener, M H; Simard, O; Simpson, J J; Sims, C J; Sinclair, D; Skensved, P; Smith, M W E; Starinsky, N; Stokstad, R G; Stonehill, L C; Tafirout, R; Takeuchi, Y; Tesic, G; Thomson, M; Thorman, M; Van Berg, R; Van de Water, R G; Virtue, C J; Wall, B L; Waller, D; Waltham, C E; Wan Chan Tseung, H; Wark, D L; West, N; Wilhelmy, J B; Wilkerson, J F; Wilson, J R; Wouters, J M; Yeh, M; Zuber, K

    2004-01-01

    The Sudbury Neutrino Observatory (SNO) has precisely determined the total active (nu_x) 8B solar neutrino flux without assumptions about the energy dependence of the nu_e survival probability. The measurements were made with dissolved NaCl in the heavy water to enhance the sensitivity and signature for neutral-current interactions. The flux is found to be 5.21 +/- 0.27 (stat) +/- 0.38 (syst) x10^6 cm^{-2}s^{-1}, in agreement with previous measurements and standard solar models. A global analysis of these and other solar and reactor neutrino results yields Delta m^{2} = 7.1^{+1.2}_{-0.6}x10^{-5} ev^2 and theta = 32.5^{+2.4}_{-2.3} degrees. Maximal mixing is rejected at the equivalent of 5.4 standard deviations.

  3. Measurement of the total active 8B solar neutrino flux at the Sudbury Neutrino Observatory with enhanced neutral current sensitivity.

    Science.gov (United States)

    Ahmed, S N; Anthony, A E; Beier, E W; Bellerive, A; Biller, S D; Boger, J; Boulay, M G; Bowler, M G; Bowles, T J; Brice, S J; Bullard, T V; Chan, Y D; Chen, M; Chen, X; Cleveland, B T; Cox, G A; Dai, X; Dalnoki-Veress, F; Doe, P J; Dosanjh, R S; Doucas, G; Dragowsky, M R; Duba, C A; Duncan, F A; Dunford, M; Dunmore, J A; Earle, E D; Elliott, S R; Evans, H C; Ewan, G T; Farine, J; Fergani, H; Fleurot, F; Formaggio, J A; Fowler, M M; Frame, K; Fulsom, B G; Gagnon, N; Graham, K; Grant, D R; Hahn, R L; Hall, J C; Hallin, A L; Hallman, E D; Hamer, A S; Handler, W B; Hargrove, C K; Harvey, P J; Hazama, R; Heeger, K M; Heintzelman, W J; Heise, J; Helmer, R L; Hemingway, R J; Hime, A; Howe, M A; Jagam, P; Jelley, N A; Klein, J R; Kos, M S; Krumins, A V; Kutter, T; Kyba, C C M; Labranche, H; Lange, R; Law, J; Lawson, I T; Lesko, K T; Leslie, J R; Levine, I; Luoma, S; MacLellan, R; Majerus, S; Mak, H B; Maneira, J; Marino, A D; McCauley, N; McDonald, A B; McGee, S; McGregor, G; Mifflin, C; Miknaitis, K K S; Miller, G G; Moffat, B A; Nally, C W; Nickel, B G; Noble, A J; Norman, E B; Oblath, N S; Okada, C E; Ollerhead, R W; Orrell, J L; Oser, S M; Ouellet, C; Peeters, S J M; Poon, A W P; Robertson, B C; Robertson, R G H; Rollin, E; Rosendahl, S S E; Rusu, V L; Schwendener, M H; Simard, O; Simpson, J J; Sims, C J; Sinclair, D; Skensved, P; Smith, M W E; Starinsky, N; Stokstad, R G; Stonehill, L C; Tafirout, R; Takeuchi, Y; Tesić, G; Thomson, M; Thorman, M; Van Berg, R; Van de Water, R G; Virtue, C J; Wall, B L; Waller, D; Waltham, C E; Tseung, H Wan Chan; Wark, D L; West, N; Wilhelmy, J B; Wilkerson, J F; Wilson, J R; Wouters, J M; Yeh, M; Zuber, K

    2004-05-01

    The Sudbury Neutrino Observatory has precisely determined the total active (nu(x)) 8B solar neutrino flux without assumptions about the energy dependence of the nu(e) survival probability. The measurements were made with dissolved NaCl in heavy water to enhance the sensitivity and signature for neutral-current interactions. The flux is found to be 5.21 +/- 0.27(stat)+/-0.38(syst) x 10(6) cm(-2) s(-1), in agreement with previous measurements and standard solar models. A global analysis of these and other solar and reactor neutrino results yields Deltam(2)=7.1(+1.2)(-0.6) x 10(-5) eV(2) and theta=32.5(+2.4)(-2.3) degrees. Maximal mixing is rejected at the equivalent of 5.4 standard deviations.

  4. An Independent Measurement of the Total Active 8B Solar Neutrino Flux Using an Array of 3He Proportional Counters at the Sudbury Neutrino Observatory

    CERN Document Server

    Aharmim, B; Amsbaugh, J F; Anthony, A E; Banar, J; Barros, N; Beier, E W; Bellerive, A; Beltran, B; Bergevin, M; Biller, S D; Boudjemline, K; Boulay, M G; Bowles, T J; Browne, M C; Bullard, T V; Burritt, T H; Cai, B; Chan, Y D; Chauhan, D; Chen, M; Cleveland, B T; Cox-Mobrand, G A; Currat, C A; Dai, X; Deng, H; Detwiler, J; Di Marco, M; Doe, P J; Doucas, G; Drouin, P L; Duba, C A; Duncan, F A; Dunford, M; Earle, E D; Elliott, S R; Evans, H C; Ewan, G T; Farine, J; Fergani, H; Fleurot, F; Ford, R J; Formaggio, J A; Fowler, M M; Gagnon, N; Germani, J V; Goldschmidt, A; Goon, J T M; Graham, K; Guillian, E; Habib, S; Hahn, R L; Hallin, A L; Hallman, E D; Hamian, A A; Harper, G C; Harvey, P J; Hazama, R; Heeger, K M; Heintzelman, W J; Heise, J; Helmer, R L; Henning, R; Hime, A; Howard, C; Howe, M A; Huang, M; Jagam, P; Jamieson, B; Jelley, N A; Keeter, K J; Klein, J R; Kormos, L L; Kos, M; Krüger, A; Kraus, C; Krauss, C B; Kutter, T; Kyba, C C M; Lange, R; Law, J; Lawson, I T; Lesko, K T; Leslie, J R; Loach, J C; MacLellan, R; Majerus, S; Mak, H B; Maneira, J; Martin, R; McBryde, K; McCauley, N; McDonald, A B; McGee, S; Miin, C; Miller, G G; Miller, M L; Monreal, B; Monroe, J; Morissette, B; Myers, A; Nickel, B G; Noble, A J; Oblath, N S; O'Keeffe, H M; Ollerhead, R W; Orebi Gann, G D; Oser, S M; Ott, R A; Peeters, S J M; Poon, A W P; Prior, G; Reitzner, S D; Rielage, K; Robertson, B C; Robertson, R G H; Rollin, E; Schwendener, M H; Secrest, J A; Seibert, S R; Simard, O; Simpson, J J; Sinclair, L; Skensved, P; Smith, M W E; Steiger, T D; Stonehill, L C; Tesic, G; Thornewell, P M; Tolich, N; Tsui, T; Tunnell, C D; Van Wechel, T; Van Berg, R; Van Devender, B A; Virtue, C J; Walker, T J; Wall, B L; Waller, D; Wan Chan Tseung, H; Wendland, J; West, N; Wilhelmy, J B; Wilkerson, J F; Wilson, J R; Wouters, J M; Wright, A; Yeh, M; Zhang, F; Zuber, K

    2008-01-01

    The Sudbury Neutrino Observatory (SNO) used an array of 3He proportional counters to measure the rate of neutral-current interactions in heavy water and precisely determined the total active (nu_x) 8B solar neutrino flux. This technique is independent of previous methods employed by SNO. The total flux is found to be 5.54(+0.33/-0.31 stat, +0.36/-0.34 syst) x 10^6 cm^-2 s^-1, in agreement with previous measurements and standard solar models. A global analysis of solar and reactor neutrino results yields Delta m^2 = 7.94(+0.42/-0.26) x 10^-5 eV^2 and theta = 33.8(+1.4/-1.3) degrees. The uncertainty on the mixing angle has been reduced from SNO's previous results.

  5. Independent measurement of the total active 8B solar neutrino flux using an array of 3He proportional counters at the Sudbury Neutrino Observatory.

    Science.gov (United States)

    Aharmim, B; Ahmed, S N; Amsbaugh, J F; Anthony, A E; Banar, J; Barros, N; Beier, E W; Bellerive, A; Beltran, B; Bergevin, M; Biller, S D; Boudjemline, K; Boulay, M G; Bowles, T J; Browne, M C; Bullard, T V; Burritt, T H; Cai, B; Chan, Y D; Chauhan, D; Chen, M; Cleveland, B T; Cox-Mobrand, G A; Currat, C A; Dai, X; Deng, H; Detwiler, J; DiMarco, M; Doe, P J; Doucas, G; Drouin, P-L; Duba, C A; Duncan, F A; Dunford, M; Earle, E D; Elliott, S R; Evans, H C; Ewan, G T; Farine, J; Fergani, H; Fleurot, F; Ford, R J; Formaggio, J A; Fowler, M M; Gagnon, N; Germani, J V; Goldschmidt, A; Goon, J T M; Graham, K; Guillian, E; Habib, S; Hahn, R L; Hallin, A L; Hallman, E D; Hamian, A A; Harper, G C; Harvey, P J; Hazama, R; Heeger, K M; Heintzelman, W J; Heise, J; Helmer, R L; Henning, R; Hime, A; Howard, C; Howe, M A; Huang, M; Jagam, P; Jamieson, B; Jelley, N A; Keeter, K J; Klein, J R; Kormos, L L; Kos, M; Krüger, A; Kraus, C; Krauss, C B; Kutter, T; Kyba, C C M; Lange, R; Law, J; Lawson, I T; Lesko, K T; Leslie, J R; Loach, J C; MacLellan, R; Majerus, S; Mak, H B; Maneira, J; Martin, R; McBryde, K; McCauley, N; McDonald, A B; McGee, S; Mifflin, C; Miller, G G; Miller, M L; Monreal, B; Monroe, J; Morissette, B; Myers, A; Nickel, B G; Noble, A J; Oblath, N S; O'Keeffe, H M; Ollerhead, R W; Gann, G D Orebi; Oser, S M; Ott, R A; Peeters, S J M; Poon, A W P; Prior, G; Reitzner, S D; Rielage, K; Robertson, B C; Robertson, R G H; Rollin, E; Schwendener, M H; Secrest, J A; Seibert, S R; Simard, O; Simpson, J J; Sinclair, L; Skensved, P; Smith, M W E; Steiger, T D; Stonehill, L C; Tesić, G; Thornewell, P M; Tolich, N; Tsui, T; Tunnell, C D; Van Wechel, T; Van Berg, R; VanDevender, B A; Virtue, C J; Walker, T J; Wall, B L; Waller, D; Tseung, H Wan Chan; Wendland, J; West, N; Wilhelmy, J B; Wilkerson, J F; Wilson, J R; Wouters, J M; Wright, A; Yeh, M; Zhang, F; Zuber, K

    2008-09-12

    The Sudbury Neutrino Observatory (SNO) used an array of 3He proportional counters to measure the rate of neutral-current interactions in heavy water and precisely determined the total active (nu_x) 8B solar neutrino flux. This technique is independent of previous methods employed by SNO. The total flux is found to be 5.54_-0.31;+0.33(stat)-0.34+0.36(syst)x10(6) cm(-2) s(-1), in agreement with previous measurements and standard solar models. A global analysis of solar and reactor neutrino results yields Deltam2=7.59_-0.21;+0.19x10(-5) eV2 and theta=34.4_-1.2;+1.3 degrees. The uncertainty on the mixing angle has been reduced from SNO's previous results.

  6. Independent measurement of the total active 8B solar neutrino flux using an array of 3He proportional counters at the Sudbury Neutrino Observatory.

    Science.gov (United States)

    Aharmim, B; Ahmed, S N; Amsbaugh, J F; Anthony, A E; Banar, J; Barros, N; Beier, E W; Bellerive, A; Beltran, B; Bergevin, M; Biller, S D; Boudjemline, K; Boulay, M G; Bowles, T J; Browne, M C; Bullard, T V; Burritt, T H; Cai, B; Chan, Y D; Chauhan, D; Chen, M; Cleveland, B T; Cox-Mobrand, G A; Currat, C A; Dai, X; Deng, H; Detwiler, J; DiMarco, M; Doe, P J; Doucas, G; Drouin, P-L; Duba, C A; Duncan, F A; Dunford, M; Earle, E D; Elliott, S R; Evans, H C; Ewan, G T; Farine, J; Fergani, H; Fleurot, F; Ford, R J; Formaggio, J A; Fowler, M M; Gagnon, N; Germani, J V; Goldschmidt, A; Goon, J T M; Graham, K; Guillian, E; Habib, S; Hahn, R L; Hallin, A L; Hallman, E D; Hamian, A A; Harper, G C; Harvey, P J; Hazama, R; Heeger, K M; Heintzelman, W J; Heise, J; Helmer, R L; Henning, R; Hime, A; Howard, C; Howe, M A; Huang, M; Jagam, P; Jamieson, B; Jelley, N A; Keeter, K J; Klein, J R; Kormos, L L; Kos, M; Krüger, A; Kraus, C; Krauss, C B; Kutter, T; Kyba, C C M; Lange, R; Law, J; Lawson, I T; Lesko, K T; Leslie, J R; Loach, J C; MacLellan, R; Majerus, S; Mak, H B; Maneira, J; Martin, R; McBryde, K; McCauley, N; McDonald, A B; McGee, S; Mifflin, C; Miller, G G; Miller, M L; Monreal, B; Monroe, J; Morissette, B; Myers, A; Nickel, B G; Noble, A J; Oblath, N S; O'Keeffe, H M; Ollerhead, R W; Gann, G D Orebi; Oser, S M; Ott, R A; Peeters, S J M; Poon, A W P; Prior, G; Reitzner, S D; Rielage, K; Robertson, B C; Robertson, R G H; Rollin, E; Schwendener, M H; Secrest, J A; Seibert, S R; Simard, O; Simpson, J J; Sinclair, L; Skensved, P; Smith, M W E; Steiger, T D; Stonehill, L C; Tesić, G; Thornewell, P M; Tolich, N; Tsui, T; Tunnell, C D; Van Wechel, T; Van Berg, R; VanDevender, B A; Virtue, C J; Walker, T J; Wall, B L; Waller, D; Tseung, H Wan Chan; Wendland, J; West, N; Wilhelmy, J B; Wilkerson, J F; Wilson, J R; Wouters, J M; Wright, A; Yeh, M; Zhang, F; Zuber, K

    2008-09-12

    The Sudbury Neutrino Observatory (SNO) used an array of 3He proportional counters to measure the rate of neutral-current interactions in heavy water and precisely determined the total active (nu_x) 8B solar neutrino flux. This technique is independent of previous methods employed by SNO. The total flux is found to be 5.54_-0.31;+0.33(stat)-0.34+0.36(syst)x10(6) cm(-2) s(-1), in agreement with previous measurements and standard solar models. A global analysis of solar and reactor neutrino results yields Deltam2=7.59_-0.21;+0.19x10(-5) eV2 and theta=34.4_-1.2;+1.3 degrees. The uncertainty on the mixing angle has been reduced from SNO's previous results. PMID:18851271

  7. How to observe 8B solar neutrinos in liquid scintillator detectors

    CERN Document Server

    Ianni, A; Villante, F L

    2016-01-01

    We show that liquid organic scintillator detectors (e.g., KamLAND and Borexino) can measure the 8B solar neutrino flux by means of the nu_e charged current interaction with the 13C nuclei naturally contained in the scintillators. The neutrino events can be identified by exploiting the time and space coincidence with the subsequent decay of the produced 13N nuclei. We perform a detailed analysis of the background in KamLAND, Borexino and in a possible liquid scintillator detector at SNOLab, showing that the 8B solar neutrino signal can be extracted with a reasonable uncertainty in a few years of data taking. KamLAND should be able to extract about 18 solar neutrino events from the already collected data. Prospects for gigantic scintillator detectors (such as LENA) are also studied.

  8. The CREB Transcription Factor Controls Transcriptional Activity of the Human RIC8B Gene.

    Science.gov (United States)

    Maureira, Alejandro; Sánchez, Rodolfo; Valenzuela, Nicole; Torrejón, Marcela; Hinrichs, María V; Olate, Juan; Gutiérrez, José L

    2016-08-01

    Proper regulation of gene expression is essential for normal development, cellular growth, and differentiation. Differential expression profiles of mRNA coding for vertebrate Ric-8B during embryo and adult stages have been observed. In addition, Ric-8B is expressed in few cerebral nuclei subareas. These facts point to a dynamic control of RIC8B gene expression. In order to understand the transcriptional regulation of this gene, we searched for cis-elements in the sequence of the human RIC8B promoter region, identifying binding sites for the basic/leucine zipper (bZip) CREB transcription factor family (CRE sites) and C/EBP transcription factor family (C/EBP sites). CRE sites were found clustered near the transcription start site, while the C/EBP sites were found clustered at around 300 bp upstream the CRE sites. Here, we demonstrate the ability of CREB1 and C/EBPβ to bind their respective elements identified in the RIC8B promoter. Comparative protein-DNA interaction analyses revealed only the proximal elements as high affinity sites for CREB1 and only the distal elements as high affinity sites for C/EBPβ. Chromatin immunoprecipitation analyses, carried out using a human neuroblastoma cell line, confirmed the preferential association of CREB to the proximal region of the RIC8B promoter. By performing luciferase reporter assays, we found the CRE sites as the most relevant elements for its transcriptional activity. Taken together, these data show the existence of functional CREB and C/EBP binding sites in the human RIC8B gene promoter, a particular distribution of these sites and demonstrate a relevant role of CREB in stimulating transcriptional activity of this gene. J. Cell. Biochem. 117: 1797-1805, 2016. © 2016 Wiley Periodicals, Inc. PMID:26729411

  9. Dissertation Award in Nuclear Physics Prize Talk: Model-Independent Measurement of the ^8B Solar Neutrino Flux and Evidence for Neutrino Flavor Change at SNO

    Science.gov (United States)

    Heeger, Karsten M.

    2003-04-01

    With heavy water as a target medium the Sudbury Neutrino Observatory (SNO) is designed to study solar neutrinos by measuring both the total flux of ^8B neutrinos through the neutral-current interaction as well as the electron-type neutrino flux via charged-current dissociation of deuterium. Using data from the pure D_2O phase of SNO we have determined the interaction rates of solar neutrinos with deuterium and characterized the backgrounds throughout the SNO detector volume. Without assumptions about the shape of the underlying ^8B spectrum a model-independent measurement of the total flux of active solar ^8B neutrinos is made. The measurement of the neutral-current and charged-current interaction rates provides direct evidence for the flavor transformation of solar neutrinos and indicates that neutrinos have mass. A combined analysis of solar neutrino data from SNO and Super-Kamiokande can be used to constrain the leading weak axial two-body current, the dominant uncertainty of the low-energy weak interaction deuteron breakup process. It is shown that the theoretical inputs to SNO's determination of the CC and NC interaction rates are not a significant theoretical uncertainty and can be self-calibrated.

  10. A comment on the 7Be(p,γ)8B cross section and the solar neutrino problem

    International Nuclear Information System (INIS)

    Evidence is presented which indicates that the accepted value for the cross section of the 7Be(p,γ)8B reaction at stellar energies is probably too large. It is suggested that the accepted value of the 7Li(d,p)8Li cross section, which has been used for normalization purposes, is too large; that the accepted value for the ratio of the 7Be(p,γ)8B and 7Li(d,p)8Li cross sections is too large; and that the energy dependence used to extrapolate to stellar energies from the higher energies at which measurements have been made is inaccurate. The consequent reduction of the 7Be(p,γ)8B cross section by about 30% would not be sufficient to resolve the solar neutrino problem but would significantly lessen the discrepancy between observation and calculation

  11. A Search for Periodicities in the $^8$B Solar Neutrino Flux Measured by the Sudbury Neutrino Observatory

    CERN Document Server

    Aharmim, B; Anthony, A E; Beier, E W; Bellerive, A; Bergevin, M; Biller, S D; Boulay, M G; Bowler, M G; Chan, Y D; Chen, M; Chen, X; Cleveland, B T; Costin, T; Cox, G A; Currat, C A; Dai, X; Deng, H; Detwiler, J; Doe, P J; Dosanjh, R S; Doucas, G; Duba, C A; Duncan, F A; Dunford, M; Dunmore, J A; Earle, E D; Elliott, S R; Evans, H C; Ewan, G T; Farine, J; Fergani, H; Fleurot, F; Formaggio, J A; Frati, W; Fulsom, B G; Gagnon, N; Goon, J T M; Graham, K; Hahn, R L; Hallin, A L; Hallman, E D; Handler, W B; Hargrove, C K; Harvey, P J; Hazama, R; Heeger, K M; Heelan, L; Heintzelman, W J; Heise, J; Helmer, R L; Hemingway, R J; Hime, A; Howe, M A; Huang, M; Inrig, E; Jagam, P; Jelley, N A; Klein, J R; Kormos, L L; Kos, M S; Krüger, A; Kraus, C V; Krauss, C B; Krumins, A V; Kutter, T; Kyba, C C M; Labranche, H; Lange, R; Law, J; Lawson, I T; Lesko, K T; Leslie, J R; Levine, I; Loach, J C; Luoma, S; MacLellan, R; Majerus, S; Maneira, J; Marino, A D; McCauley, N; McDonald, A B; McGee, S; Miin, C; Miknaitis, K K S; Nickel, B G; Noble, A J; Norman, E B; Oblath, N S; Okada, C E; O'Keeffe, H M; Ollerhead, R W; Orebi-Gann, G D; Orrell, J L; Oser, S M; Ouvarova, T; Peeters, S J M; Poon, A W P; Pun, C S J; Rielage, K; Robertson, B C; Robertson, R G H; Rollin, E; Rosendahl, S S E; Schwendener, M H; Seibert, S R; Simard, O; Simpson, J J; Sims, C J; Sinclair, D; Sinclair, L; Skensved, P; Smith, M W E; Stokstad, R G; Stonehill, L C; Tafirout, R; Takeuchi, Y; Tesic, G; Thomson, M; Tsang, K V; Tsui, T; Van Berg, R; Virtue, C J; Wall, B L; Waller, D; Waltham, C E; Wan Chan Tseung, H; Wark, D L; Wendland, J; West, N; Wilkerson, J F; Wilson, J R; Wouters, J M; Yeh, M; Zuber, K

    2005-01-01

    A search has been made for sinusoidal periodic variations in the $^8$B solar neutrino flux using data collected by the Sudbury Neutrino Observatory over a 4-year time interval. The variation at a period of one year is consistent with modulation of the $^8$B neutrino flux by the Earth's orbital eccentricity. No significant sinusoidal periodicities are found with periods between 1 day and 10 years with either an unbinned maximum likelihood analysis or a Lomb-Scargle periodogram analysis. The data are inconsistent with the hypothesis that the results of the recent analysis by Sturrock et al., based on elastic scattering events in Super-Kamiokande, can be attributed to a 7% sinusoidal modulation of the total $^8$B neutrino flux.

  12. Halo effective field theory constrains the solar 7Be + p → 8B + γ rate

    Science.gov (United States)

    Zhang, Xilin; Nollett, Kenneth M.; Phillips, D. R.

    2015-12-01

    We report an improved low-energy extrapolation of the cross section for the process 7Be (p , γ)8B, which determines the 8B neutrino flux from the Sun. Our extrapolant is derived from Halo Effective Field Theory (EFT) at next-to-leading order. We apply Bayesian methods to determine the EFT parameters and the low-energy S-factor, using measured cross sections and scattering lengths as inputs. Asymptotic normalization coefficients of 8B are tightly constrained by existing radiative capture data, and contributions to the cross section beyond external direct capture are detected in the data at E EFT subsumes all models into a controlled low-energy approximant, where they are characterized by nine parameters at next-to-leading order. These are fit to data, and marginalized over via Monte Carlo integration to produce the improved prediction for S (E).

  13. Measurement of the rate of nu(e) + d --> p + p + e(-) interactions produced by (8)B solar neutrinos at the Sudbury Neutrino Observatory.

    Science.gov (United States)

    Ahmad, Q R; Allen, R C; Andersen, T C; Anglin, J D; Bühler, G; Barton, J C; Beier, E W; Bercovitch, M; Bigu, J; Biller, S; Black, R A; Blevis, I; Boardman, R J; Boger, J; Bonvin, E; Boulay, M G; Bowler, M G; Bowles, T J; Brice, S J; Browne, M C; Bullard, T V; Burritt, T H; Cameron, K; Cameron, J; Chan, Y D; Chen, M; Chen, H H; Chen, X; Chon, M C; Cleveland, B T; Clifford, E T; Cowan, J H; Cowen, D F; Cox, G A; Dai, Y; Dai, X; Dalnoki-Veress, F; Davidson, W F; Doe, P J; Doucas, G; Dragowsky, M R; Duba, C A; Duncan, F A; Dunmore, J; Earle, E D; Elliott, S R; Evans, H C; Ewan, G T; Farine, J; Fergani, H; Ferraris, A P; Ford, R J; Fowler, M M; Frame, K; Frank, E D; Frati, W; Germani, J V; Gil, S; Goldschmidt, A; Grant, D R; Hahn, R L; Hallin, A L; Hallman, E D; Hamer, A; Hamian, A A; Haq, R U; Hargrove, C K; Harvey, P J; Hazama, R; Heaton, R; Heeger, K M; Heintzelman, W J; Heise, J; Helmer, R L; Hepburn, J D; Heron, H; Hewett, J; Hime, A; Howe, M; Hykawy, J G; Isaac, M C; Jagam, P; Jelley, N A; Jillings, C; Jonkmans, G; Karn, J; Keener, P T; Kirch, K; Klein, J R; Knox, A B; Komar, R J; Kouzes, R; Kutter, T; Kyba, C C; Law, J; Lawson, I T; Lay, M; Lee, H W; Lesko, K T; Leslie, J R; Levine, I; Locke, W; Lowry, M M; Luoma, S; Lyon, J; Majerus, S; Mak, H B; Marino, A D; McCauley, N; McDonald, A B; McDonald, D S; McFarlane, K; McGregor, G; McLatchie, W; Meijer Drees, R; Mes, H; Mifflin, C; Miller, G G; Milton, G; Moffat, B A; Moorhead, M; Nally, C W; Neubauer, M S; Newcomer, F M; Ng, H S; Noble, A J; Norman, E B; Novikov, V M; O'Neill, M; Okada, C E; Ollerhead, R W; Omori, M; Orrell, J L; Oser, S M; Poon, A W; Radcliffe, T J; Roberge, A; Robertson, B C; Robertson, R G; Rowley, J K; Rusu, V L; Saettler, E; Schaffer, K K; Schuelke, A; Schwendener, M H; Seifert, H; Shatkay, M; Simpson, J J; Sinclair, D; Skensved, P; Smith, A R; Smith, M W; Starinsky, N; Steiger, T D; Stokstad, R G; Storey, R S; Sur, B; Tafirout, R; Tagg, N; Tanner, N W; Taplin, R K; Thorman, M; Thornewell, P; Trent, P T; Tserkovnyak, Y I; Van Berg, R; Van de Water, R G; Virtue, C J; Waltham, C E; Wang, J X; Wark, D L; West, N; Wilhelmy, J B; Wilkerson, J F; Wilson, J; Wittich, P; Wouters, J M; Yeh, M

    2001-08-13

    Solar neutrinos from (8)B decay have been detected at the Sudbury Neutrino Observatory via the charged current (CC) reaction on deuterium and the elastic scattering (ES) of electrons. The flux of nu(e)'s is measured by the CC reaction rate to be straight phi(CC)(nu(e)) = 1.75 +/- 0.07(stat)(+0.12)(-0.11)(syst) +/- 0.05(theor) x 10(6) cm(-2) s(-1). Comparison of straight phi(CC)(nu(e)) to the Super-Kamiokande Collaboration's precision value of the flux inferred from the ES reaction yields a 3.3 sigma difference, assuming the systematic uncertainties are normally distributed, providing evidence of an active non- nu(e) component in the solar flux. The total flux of active 8B neutrinos is determined to be 5.44+/-0.99 x 10(6) cm(-2) s(-1).

  14. Trafficking and gating of hyperpolarization-activated cyclic nucleotide-gated channels are regulated by interaction with tetratricopeptide repeat-containing Rab8b-interacting protein (TRIP8b) and cyclic AMP at distinct sites

    NARCIS (Netherlands)

    Y. Han; Y. Noam; A.S. Lewis; J.J. Gallagher; W.J. Wadman; T.Z. Baram; D.M. Chetkovich

    2011-01-01

    Ion channel trafficking and gating are often influenced by interactions with auxiliary subunits. Tetratricopeptide repeat-containing Rab8b-interacting protein (TRIP8b) is an auxiliary subunit for neuronal hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. TRIP8b interacts directly w

  15. Measurement of the νe and total 8B solar neutrino fluxes with the Sudbury Neutrino Observatory phase-III data set

    Science.gov (United States)

    Aharmim, B.; Ahmed, S. N.; Amsbaugh, J. F.; Anaya, J. M.; Anthony, A. E.; Banar, J.; Barros, N.; Beier, E. W.; Bellerive, A.; Beltran, B.; Bergevin, M.; Biller, S. D.; Boudjemline, K.; Boulay, M. G.; Bowles, T. J.; Browne, M. C.; Bullard, T. V.; Burritt, T. H.; Cai, B.; Chan, Y. D.; Chauhan, D.; Chen, M.; Cleveland, B. T.; Cox, G. A.; Currat, C. A.; Dai, X.; Deng, H.; Detwiler, J. A.; DiMarco, M.; Doe, P. J.; Doucas, G.; Dragowsky, M. R.; Drouin, P.-L.; Duba, C. A.; Duncan, F. A.; Dunford, M.; Earle, E. D.; Elliott, S. R.; Evans, H. C.; Ewan, G. T.; Farine, J.; Fergani, H.; Fleurot, F.; Ford, R. J.; Formaggio, J. A.; Fowler, M. M.; Gagnon, N.; Germani, J. V.; Goldschmidt, A.; Goon, J. TM.; Graham, K.; Guillian, E.; Habib, S.; Hahn, R. L.; Hallin, A. L.; Hallman, E. D.; Hamian, A. A.; Harper, G. C.; Harvey, P. J.; Hazama, R.; Heeger, K. M.; Heintzelman, W. J.; Heise, J.; Helmer, R. L.; Henning, R.; Hime, A.; Howard, C.; Howe, M. A.; Huang, M.; Jagam, P.; Jamieson, B.; Jelley, N. A.; Keeter, K. J.; Klein, J. R.; Kormos, L. L.; Kos, M.; Krüger, A.; Kraus, C.; Krauss, C. B.; Kutter, T.; Kyba, C. C. M.; Lange, R.; Law, J.; Lawson, I. T.; Lesko, K. T.; Leslie, J. R.; Loach, J. C.; MacLellan, R.; Majerus, S.; Mak, H. B.; Maneira, J.; Martin, R.; McCauley, N.; McDonald, A. B.; McGee, S. R.; Mifflin, C.; Miller, G. G.; Miller, M. L.; Monreal, B.; Monroe, J.; Morissette, B.; Myers, A. W.; Nickel, B. G.; Noble, A. J.; O'Keeffe, H. M.; Oblath, N. S.; Ollerhead, R. W.; Orebi Gann, G. D.; Oser, S. M.; Ott, R. A.; Peeters, S. J. M.; Poon, A. W. P.; Prior, G.; Reitzner, S. D.; Rielage, K.; Robertson, B. C.; Robertson, R. G. H.; Rollin, E.; Schwendener, M. H.; Secrest, J. A.; Seibert, S. R.; Simard, O.; Simpson, J. J.; Skensved, P.; Smith, M. W. E.; Sonley, T. J.; Steiger, T. D.; Stonehill, L. C.; Tešić, G.; Thornewell, P. M.; Tolich, N.; Tsui, T.; Tunnell, C. D.; Van Wechel, T.; Van Berg, R.; VanDevender, B. A.; Virtue, C. J.; Wall, B. L.; Waller, D.; Wan Chan Tseung, H.; Wendland, J.; West, N.; Wilhelmy, J. B.; Wilkerson, J. F.; Wilson, J. R.; Wouters, J. M.; Wright, A.; Yeh, M.; Zhang, F.; Zuber, K.

    2013-01-01

    This paper details the solar neutrino analysis of the 385.17-day phase-III data set acquired by the Sudbury Neutrino Observatory (SNO). An array of 3He proportional counters was installed in the heavy-water target to measure precisely the rate of neutrino-deuteron neutral-current interactions. This technique to determine the total active 8B solar neutrino flux was largely independent of the methods employed in previous phases. The total flux of active neutrinos was measured to be 5.54-0.31+0.33(stat.)-0.34+0.36(syst.)×106 cm-2 s-1, consistent with previous measurements and standard solar models. A global analysis of solar and reactor neutrino mixing parameters yielded the best-fit values of Δm2=7.59-0.21+0.19×10-5eV2 and θ=34.4-1.2+1.3degrees.

  16. Halo effective field theory constrains the solar 7Be + p → 8B + γ rate

    Directory of Open Access Journals (Sweden)

    Xilin Zhang

    2015-12-01

    Full Text Available We report an improved low-energy extrapolation of the cross section for the process Be7(p,γB8, which determines the 8B neutrino flux from the Sun. Our extrapolant is derived from Halo Effective Field Theory (EFT at next-to-leading order. We apply Bayesian methods to determine the EFT parameters and the low-energy S-factor, using measured cross sections and scattering lengths as inputs. Asymptotic normalization coefficients of 8B are tightly constrained by existing radiative capture data, and contributions to the cross section beyond external direct capture are detected in the data at E<0.5 MeV. Most importantly, the S-factor at zero energy is constrained to be S(0=21.3±0.7 eVb, which is an uncertainty smaller by a factor of two than previously recommended. That recommendation was based on the full range for S(0 obtained among a discrete set of models judged to be reasonable. In contrast, Halo EFT subsumes all models into a controlled low-energy approximant, where they are characterized by nine parameters at next-to-leading order. These are fit to data, and marginalized over via Monte Carlo integration to produce the improved prediction for S(E.

  17. Measurement of the nue and Total 8B Solar Neutrino Fluxes with theSudbury Neutrino Observatory Phase I Data Set

    Energy Technology Data Exchange (ETDEWEB)

    Aharmim, B.; Ahmad, Q.R.; Ahmed, S.N.; Allen, R.C.; Andersen,T.C.; Anglin, J.D.; Buehler, G.; Barton, J.C.; Beier, E.W.; Bercovitch,M.; Bergevin, M.; Bigu, J.; Biller, S.D.; Black, R.A.; Blevis, I.; Boardman, R.J.; Boger, J.; Bonvin, E.; Boulay, M.G.; Bowler, M.G.; Bowles, T.J.; Brice, S.J.; Browne, M.C.; Bullard, T.V.; Burritt, T.H.; Cameron, J.; Chan, Y.D.; Chen, H.H.; Chen, M.; Chen, X.; Cleveland, B.T.; Cowan, J.H.M.; Cowen, D.F.; Cox, G.A.; Currat, C.A.; Dai, X.; Dalnoki-Veress, F.; Davidson, W.F.; Deng, H.; DiMarco, M.; Doe, P.J.; Doucas, G.; Dragowsky, M.R.; Duba, C.A.; Duncan, F.A.; Dunford, M.; Dunmore, J.A.; Earle, E.D.; Elliott, S.R.; Evans, H.C.; Ewan, G.T.; Farine, J.; Fergani, H.; Ferraris, A.P.; Fleurot, F.; Ford, R.J.; Formaggio, J.A.; Fowler, M.M.; Frame, K.; Frank, E.D.; Frati, W.; Gagnon,N.; Germani, J.V.; Gil, S.; Goldschmidt, A.; Goon, J.T.M.; Graham, K.; Grant, D.R.; Guillian, E.; Hahn, R.L.; Hallin, A.L.; Hallman, E.D.; Hamer, A.S.; Hamian, A.A.; Handler, W.B.; Haq, R.U.; Hargrove, C.K.; Harvey, P.J.; Hazama, R.; Heeger, K.M.; Heintzelman, W.J.; Heise, J.; Helmer, R.L.; Henning, R.; Hepburn, J.D.; Heron, H.; Hewett, J.; Hime,A.; Howard, C.; Howe, M.A.; Huang, M.; Hykawy, J.G.; Isaac, M.C.P.; Jagam, P.; Jamieson, B.; Jelley, N.A.; Jillings, C.; Jonkmans, G.; Kazkaz, K.; Keener, P.T.; Kirch, K.; Klein, J.R.; Knox, A.B.; Komar,R.J.; Kormos, L.L.; Kos, M.; Kouzes, R.; Krueger, A.; Kraus, C.; Krauss,C.B.; Kutter, T.; Kyba, C.C.M.; Labranche, H.; Lange, R.; Law, J.; Lawson, I.T.; Lay, M.; Lee, H.W.; Lesko, K.T.; Leslie, J.R.; Levine, I.; Loach, J.C.; Locke, W.; Luoma, S.; Lyon, J.; MacLellan, R.; Majerus, S.; Mak, H.B.; Maneira, J.; Marino, A.D.; Martin, R.; McCauley, N.; McDonald,A.B.; McDonald, D.S.; McFarlane, K.; McGee, S.; McGregor, G.; MeijerDrees, R.; Mes, H.; Mifflin, C.; Miknaitis, K.K.S.; Miller, M.L.; Milton,G.; Moffat, B.A.; Monreal, B.; Moorhead, M.; Morrissette, B.; Nally,C.W.; Neubauer, M.S.; et al.

    2007-02-01

    This article provides the complete description of resultsfrom the Phase I data set of the Sudbury Neutrino Observatory (SNO). ThePhase I data set is based on a 0.65 kt-year exposure of heavy water tothe solar 8B neutrino flux. Included here are details of the SNO physicsand detector model, evaluations of systematic uncertainties, andestimates of backgrounds. Also discussed are SNO's approach tostatistical extraction of the signals from the three neutrino reactions(charged current, neutral current, and elastic scattering) and theresults of a search for a day-night asymmetry in the ?e flux. Under theassumption that the 8B spectrum is undistorted, the measurements fromthis phase yield a solar ?e flux of ?(?e) =1.76+0.05?0.05(stat.)+0.09?0.09 (syst.) x 106 cm?2 s?1, and a non-?ecomponent ?(? mu) = 3.41+0.45?0.45(stat.)+0.48?0.45 (syst.) x 106 cm?2s?1. The sum of these components provides a total flux in excellentagreement with the predictions of Standard Solar Models. The day-nightasymmetry in the ?e flux is found to be Ae = 7.0 +- 4.9 (stat.)+1.3?1.2percent (sys.), when the asymmetry in the total flux is constrained to bezero.

  18. Electron Energy Spectra, Fluxes, and Day-Night Asymmetries of $^{8}$B Solar Neutrinos from the 391-Day Salt Phase SNO Data Set

    CERN Document Server

    Aharmim, B; Anthony, A E; Beier, E W; Bellerive, A; Bergevin, M; Biller, S D; Boger, J; Boulay, M G; Bowler, M G; Bullard, T V; Chan, Y D; Chen, M; Chen, X; Cleveland, B T; Cox, G A; Currat, C A; Dai, X; Dalnoki-Veress, F; Deng, H; Doe, P J; Dosanjh, R S; Doucas, G; Duba, C A; Duncan, F A; Dunford, M; Dunmore, J A; Earle, E D; Elliott, S R; Evans, H C; Ewan, G T; Farine, J; Fergani, H; Fleurot, F; Formaggio, J A; Frame, K; Frati, W; Fulsom, B G; Gagnon, N; Graham, K; Grant, D R; Hahn, R L; Hall, J C; Hallin, A L; Hallman, E D; Handler, W B; Hargrove, C K; Harvey, P J; Hazama, R; Heeger, K M; Heelan, L; Heintzelman, W J; Heise, J; Helmer, R L; Hemingway, R J; Hime, A; Howard, C; Howe, M A; Huang, M; Jagam, P; Jelley, N A; Klein, J R; Kormos, L L; Kos, M S; Krüger, A; Kraus, C V; Krauss, C B; Krumins, A V; Kutter, T; Kyba, C C M; Labranche, H; Lange, R; Law, J; Lawson, I T; Lesko, K T; Leslie, J R; Levine, I; Loach, J C; Luoma, S; MacLellan, R; Majerus, S; Mak, H B; Maneira, J; Marino, A D; McCauley, N; McDonald, A B; McGee, S; McGregor, G; Miin, C; Miknaitis, K K S; Moffat, B A; Nally, C W; Neubauer, M S; Nickel, B G; Noble, A J; Norman, E B; Oblath, N S; Okada, C E; Ollerhead, R W; Orrell, J L; Oser, S M; Ouellet, C V; Peeters, S J M; Poon, A W P; Rielage, K; Robertson, B C; Robertson, R G H; Rollin, E; Rosendahl, S S E; Rusu, V L; Schwendener, M H; Seibert, S R; Simard, O; Simpson, J J; Sims, C J; Sinclair, D; Skensved, P; Smith, M W E; Starinsky, N; Stokstad, R G; Stonehill, L C; Tafirout, R; Takeuchi, Y; Tesic, G; Thomson, M; Thorman, M; Tsui, T; Van Berg, R; Van de Water, R G; Virtue, C J; Wall, B L; Waller, D; Waltham, C E; Wan Chan Tseung, H; Wark, D L; Wendland, J; West, N; Wilkerson, J F; Wilson, J R; Wittich, P; Wouters, J M; Wright, A; Yeh, M; Zuber, K

    2005-01-01

    Results are reported from the complete salt phase of the Sudbury Neutrino Observatory experiment in which NaCl was dissolved in the D$_2$O target. The addition of salt enhanced the signal from neutron capture, as compared to the pure D$_2$O detector. By making a statistical separation of charged-current events from other types based on event-isotropy criteria, the effective electron recoil energy spectrum has been extracted. In units of $ 10^6$ cm$^{-2}$ s$^{-1}$, the total flux of active-flavor neutrinos from $^8$B decay in the Sun is found to be $4.94^{+0.21}_{-0.21}{(stat)}^{+0.38}_{-0.34}{(syst)}$ and the integral flux of electron neutrinos for an undistorted $^8$B spectrum is $1.68^{+0.06}_{-0.06}{(stat)}^{+0.08}_{-0.09}{(syst)}$; the signal from ($\

  19. Measurement of the efficient cross section of the reaction {sup 7}Be(p, {gamma}){sup 8}B at low energies and implications in the problem of solar neutrinos; Mesures de la section efficace de la reaction {sup 7}Be(p,{gamma}){sup 8}B a basses energies et implications dans le probleme des neutrinos solaires

    Energy Technology Data Exchange (ETDEWEB)

    Hammache, Fairouz

    1999-07-01

    The {sup 8}B produced inside the sun through the reaction {sup 7}Be(p,{gamma}){sup 8}B is the main, and even unique, source of high energy neutrinos detected in most solar neutrino detection experiments, except with Gallex and Sage. These experiments have all measured a neutrinos flux lower than the one predicted by solar models. Several explanations have been proposed to explain this deficit, but all require a precise knowledge of the efficient cross-section of the reaction {sup 7}Be(p,{gamma}){sup 8}B, because the neutrinos flux of {sup 8}B is directly proportional to this reaction. The direct measurement of this cross section for the solar energy is impossible because of its low value (about 1 femto-barn). In order to get round this problem, the cross sections are measured at higher energy and extrapolated to the solar energy using a theoretical energy dependence. The 6 previous experimental determinations of the efficient cross section were shared in two distinct groups with differences of about 30% which leads to an uncertainty of the same order on the high energy neutrinos flux. The re-measurement of the cross section of this reaction with a better precision is thus of prime importance. A direct measurement of the cross section in the energy range comprised between 0.35 and 1.4 MeV (cm) has been performed first. These experiments have permitted the precise measurement of each parameter involved in the determination of the cross section. Then, measurements of the cross section have been carried out with the PAPAP accelerator at 185.8, 134.7 and 111.7 keV, the lowest mass center energy never reached before. The results are in excellent agreement with those obtained at higher energies. The value obtained by extrapolation of these data for the astrophysical factor S{sub 17}(0) is 19.21.3 EV-B, which leads to a significant reduction of the uncertainty on the high energy neutrinos flux of {sup 8}B. (J.S.)

  20. Activities for Teaching Solar Energy.

    Science.gov (United States)

    Mason, Jack Lee; Cantrell, Joseph S.

    1980-01-01

    Plans and activities are suggested for teaching elementary children about solar energy. Directions are included for constructing a flat plate collector and a solar oven. Activities for a solar field day are given. (SA)

  1. Physics of solar activity

    Science.gov (United States)

    Sturrock, Peter A.

    1993-01-01

    The aim of the research activity was to increase our understanding of solar activity through data analysis, theoretical analysis, and computer modeling. Because the research subjects were diverse and many researchers were supported by this grant, a select few key areas of research are described in detail. Areas of research include: (1) energy storage and force-free magnetic field; (2) energy release and particle acceleration; (3) radiation by nonthermal electrons; (4) coronal loops; (5) flare classification; (6) longitude distributions of flares; (7) periodicities detected in the solar activity; (8) coronal heating and related problems; and (9) plasma processes.

  2. Magnetohydrodynamic process in solar activity

    Directory of Open Access Journals (Sweden)

    Jingxiu Wang

    2014-01-01

    Full Text Available Magnetohydrodynamics is one of the major disciplines in solar physics. Vigorous magnetohydrodynamic process is taking place in the solar convection zone and atmosphere. It controls the generating and structuring of the solar magnetic fields, causes the accumulation of magnetic non-potential energy in the solar atmosphere and triggers the explosive magnetic energy release, manifested as violent solar flares and coronal mass ejections. Nowadays detailed observations in solar astrophysics from space and on the ground urge a great need for the studies of magnetohydrodynamics and plasma physics to achieve better understanding of the mechanism or mechanisms of solar activity. On the other hand, the spectacular solar activity always serves as a great laboratory of magnetohydrodynamics. In this article, we reviewed a few key unresolved problems in solar activity studies and discussed the relevant issues in solar magnetohydrodynamics.

  3. Solar activity and the weather

    Science.gov (United States)

    Wilcox, J. M.

    1975-01-01

    Attempts during the past century to establish a connection between solar activity and the weather are discussed. Some critical remarks about the quality of much of the literature in this field are given, and several recent investigations are summarized. Use of the solar-interplanetary magnetic sector structure in future investigations may add an element of cohesiveness and interaction to these investigations.

  4. Solar activity and myocardial infarction.

    Science.gov (United States)

    Szczeklik, E; Mergentaler, J; Kotlarek-Haus, S; Kuliszkiewicz-Janus, M; Kucharczyk, J; Janus, W

    1983-01-01

    The correlation between the incidence of myocardial infarction, sudden cardiac death, the solar activity and geomagnetism in the period 1969-1976 was studied, basing on Wrocław hospitals material registered according to WHO standards; sudden death was assumed when a person died within 24 hours after the onset of the disease. The highest number of infarctions and sudden deaths was detected for 1975, which coincided with the lowest solar activity, and the lowest one for the years 1969-1970 coinciding with the highest solar activity. Such an inverse, statistically significant correlation was not found to exist between the studied biological phenomena and geomagnetism. PMID:6851574

  5. 15 CFR 8b.3 - Definitions.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Definitions. 8b.3 Section 8b.3... Definitions. As used in this part, the term: (a) The Act means the Rehabilitation Act of 1973, Pub. L. 93-112... hearing impairments, cerebral palsy, epilepsy, muscular dystrophy, multiple sclerosis, cancer,...

  6. 15 CFR 8b.18 - New construction.

    Science.gov (United States)

    2010-01-01

    ... Standards (UFAS) (Appendix A to 41 CFR subpart 101-19.6) shall be deemed to comply with the requirements of... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false New construction. 8b.18 Section 8b.18... construction. (a) Design and construction. Each facility or part of a facility constructed by, on behalf of,...

  7. Activity Cycle of Solar Filaments

    Indian Academy of Sciences (India)

    K. J. Li; Q. X. Li; P. X. Gao; J. Mu; H. D. Chen; T. W. Su

    2007-06-01

    Long-term variation in the distribution of the solar filaments observed at the Observatorie de Paris, Section de Meudon from March 1919 to December 1989 is presented to compare with sunspot cycle and to study the periodicity in the filament activity, namely the periods of the coronal activity with the Morlet wavelet used. It is inferred that the activity cycle of solar filaments should have the same cycle length as sunspot cycle, but the cycle behavior of solar filaments is globally similar in profile with, but different in detail from, that of sunspot cycles. The amplitude of solar magnetic activity should not keep in phase with the complexity of solar magnetic activity. The possible periods in the filament activity are about 10.44 and 19.20 years. The wavelet local power spectrum of the period 10.44 years is statistically significant during the whole consideration time. The wavelet local power spectrum of the period 19.20 years is under the 95% confidence spectrum during the whole consideration time, but over the mean red-noise spectrum of = 0.72 before approximate Carrington rotation number 1500, and after that the filament activity does not statistically show the period. Wavelet reconstruction indicates that the early data of the filament archive (in and before cycle 16) are more noiseful than the later (in and after cycle 17).

  8. Deciphering Solar Magnetic Activity: On Grand Minima in Solar Activity

    CERN Document Server

    McIntosh, Scott W

    2015-01-01

    The Sun provides the energy necessary to sustain our existence. While the Sun provides for us, it is also capable of taking away. The weather and climatic scales of solar evolution and the Sun-Earth connection are not well understood. There has been tremendous progress in the century since the discovery of solar magnetism - magnetism that ultimately drives the electromagnetic, particulate and eruptive forcing of our planetary system. There is contemporary evidence of a decrease in solar magnetism, perhaps even indicators of a significant downward trend, over recent decades. Are we entering a minimum in solar activity that is deeper and longer than a typical solar minimum, a "grand minimum"? How could we tell if we are? What is a grand minimum and how does the Sun recover? These are very pertinent questions for modern civilization. In this paper we present a hypothetical demonstration of entry and exit from grand minimum conditions based on a recent analysis of solar features over the past 20 years and their p...

  9. Solar Activity and Classical Physics

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This review of solar physics emphasizes several of the more conspicuous scientific puzzles posed by contemporary observational knowledge of the magnetic activity of the Sun. The puzzles emphasize how much classical physics we have yet to learn from the Sun. The physics of solar activity is based on the principles of Newton, Maxwell, Lorentz, Boltzmann, et. al., along with the principles of radiative transfer. In the large, these principles are expressed by magnetohydrodynamics. A brief derivation of the magnetohydrodynamic induction and momentum equations is provided, with a discussion of popular misconceptions.

  10. 15 CFR 8b.25 - Nonacademic services.

    Science.gov (United States)

    2010-01-01

    ... § 8b.22(d) and only if no qualified handicapped student is denied the opportunity to compete for teams... of particular careers. (c) Social organizations. A recipient that provides significant assistance to fraternities, sororities, or similar organizations shall assure itself that the membership practices of...

  11. Neuroprotection of Neuro2a cells and the cytokine suppressive and anti-inflammatory mode of action of resveratrol in activated RAW264.7 macrophages and C8-B4 microglia.

    Science.gov (United States)

    Steiner, Nicole; Balez, Rachelle; Karunaweera, Niloo; Lind, Joanne M; Münch, Gerald; Ooi, Lezanne

    2016-05-01

    Chronic inflammation is a hallmark of neurodegenerative disease and cytotoxic levels of nitric oxide (NO) and pro-inflammatory cytokines can initiate neuronal death pathways. A range of cellular assays were used to assess the anti-inflammatory and neuroprotective action of resveratrol using murine microglial (C8-B4), macrophage (RAW264.7) and neuronal-like (Neuro2a) cell lines. We examined the release of NO by Griess assay and used a Bioplex array to measure a panel of pro- and anti-inflammatory cytokines and chemokines, in response to the inflammatory stimuli lipopolysaccharide (LPS) and interferon-γ (IFN-γ). Resveratrol was a potent inhibitor of NO and cytokine release in activated macrophages and microglia. The activity of resveratrol increased marginally in potency with longer pre-incubation times in cell culture that was not due to cytotoxicity. Using an NO donor we show that resveratrol can protect Neuro2a cells from cytotoxic concentrations of NO. The protective effect of resveratrol from pro-inflammatory signalling in RAW264.7 cells was confirmed in co-culture experiments leading to increased survival of Neuro2a cells. Together our data are indicative of the potential neuroprotective effect of resveratrol during nitrosative stress and neuroinflammation. PMID:26522689

  12. Forecasting the solar activity cycle: new insights

    OpenAIRE

    Nandy, Dibyendu; Karak, Bidya Binay

    2013-01-01

    Having advanced knowledge of solar activity is important because the Sun's magnetic output governs space weather and impacts technologies reliant on space. However, the irregular nature of the solar cycle makes solar activity predictions a challenging task. This is best achieved through appropriately constrained solar dynamo simulations and as such the first step towards predictions is to understand the underlying physics of the solar dynamo mechanism. In Babcock-Leighton type dynamo models, ...

  13. Monitoring of the solar activity and solar energetic particles

    International Nuclear Information System (INIS)

    Solar activity is the source of various space weather phenomena in geospace and deep space. Solar X-ray radiation in flare, energetic particles, coronal mass ejection (CME) can cause various kind of disturbance near earth space. Therefore, detailed monitoring of the solar activity and its propagation in the interplanetary space is essential task for space weather. For example, solar energetic particle which sometimes affect spacecraft operation and manned space flight, is considered to be produced by solar flares and travelling shockwave caused by flares and CME. The research and development of monitoring technique and system for various solar activity has been an important topic of space weather forecast program in NICT. In this article, we will introduce the real time data acquisitions of STEREO and optical and radio observations of the Sun at Hiraiso Solar Observatory. (author)

  14. Forecasting the solar activity cycle: new insights

    CERN Document Server

    Nandy, Dibyendu

    2013-01-01

    Having advanced knowledge of solar activity is important because the Sun's magnetic output governs space weather and impacts technologies reliant on space. However, the irregular nature of the solar cycle makes solar activity predictions a challenging task. This is best achieved through appropriately constrained solar dynamo simulations and as such the first step towards predictions is to understand the underlying physics of the solar dynamo mechanism. In Babcock-Leighton type dynamo models, the poloidal field is generated near the solar surface whereas the toroidal field is generated in the solar interior. Therefore a finite time is necessary for the coupling of the spatially segregated source layers of the dynamo. This time delay introduces a memory in the dynamo mechanism which allows forecasting of future solar activity. Here we discuss how this forecasting ability of the solar cycle is affected by downward turbulent pumping of magnetic flux. With significant turbulent pumping the memory of the dynamo is ...

  15. Magnetohydrodynamic process in solar activity

    OpenAIRE

    Jingxiu Wang; Jie Jiang

    2014-01-01

    Magnetohydrodynamics is one of the major disciplines in solar physics. Vigorous magnetohydrodynamic process is taking place in the solar convection zone and atmosphere. It controls the generating and structuring of the solar magnetic fields, causes the accumulation of magnetic non-potential energy in the solar atmosphere and triggers the explosive magnetic energy release, manifested as violent solar flares and coronal mass ejections. Nowadays detailed observations in solar astrophysics from s...

  16. Coronal Streamers and Solar Activity

    Science.gov (United States)

    Delone, A. B.; Porfir'eva, G. A.; Smirnova, O. B.; Yakunina, G. V.

    2013-03-01

    We analyze the structure of the streamer belt and plasma ejection dynamics during the last two solar minima (1996-1997 and 2006-2009) using white light observations by SOHO and STEREO space observatories. We consider the role of activity centers and of the sectorial structure of the Sun's global magnetic field in the streamer belt topology. During the last minimum plasma was ejected from the streamer belt at a velocity several tens of km/s higher than that during the preceding minimum. We have used the data from Internet and papers published in science journals.

  17. Evidence for distinct modes of solar activity

    CERN Document Server

    Usoskin, I G; Gallet, Y; Roth, R; Licht, A; Joos, F; Kovaltsov, G A; Thebault, E; Khokhlov, A

    2014-01-01

    Aims. The Sun shows strong variability in its magnetic activity, from Grand minima to Grand maxima, but the nature of the variability is not fully understood, mostly because of the insufficient length of the directly observed solar activity records and of uncertainties related to long-term reconstructions. Here we present a new adjustment-free reconstruction of solar activity over three millennia and study its different modes. Methods. We present a new adjustment-free, physical reconstruction of solar activity over the past three millennia, using the latest verified carbon cycle, 14C production, and archeomagnetic field models. This great improvement allowed us to study different modes of solar activity at an unprecedented level of details. Results. The distribution of solar activity is clearly bi-modal, implying the existence of distinct modes of activity. The main regular activity mode corresponds to moderate activity that varies in a relatively narrow band between sunspot numbers about 20 and 67. The exist...

  18. Deciphering Solar Magnetic Activity: On Grand Minima in Solar Activity

    OpenAIRE

    Scott William Mcintosh; Leamon, Robert J.

    2015-01-01

    The Sun provides the energy necessary to sustain our existence. While the Sun provides for us, it is also capable of taking away. The weather and climatic scales of solar evolution and the Sun-Earth connection are not well understood. There has been tremendous progress in the century since the discovery of solar magnetism - magnetism that ultimately drives the electromagnetic, particulate and eruptive forcing of our planetary system. There is contemporary evidence of a decrease in solar magne...

  19. Deciphering solar magnetic activity: on grand minima in solar activity

    OpenAIRE

    Mcintosh, Scott W.; Leamon, Robert J.

    2015-01-01

    The Sun provides the energy necessary to sustain our existence. While the Sun provides for us, it is also capable of taking away. The weather and climatic scales of solar evolution and the Sun-Earth connection are not well understood. There has been tremendous progress in the century since the discovery of solar magnetism - magnetism that ultimately drives the electromagnetic, particulate and eruptive forcing of our planetary system. There is contemporary evidence of a decrease in solar magne...

  20. Sustainable Buildings. Using Active Solar Power

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, M. Keith [Univ. of Louisville, KY (United States); Barnett, Russell [Univ. of Louisville, KY (United States)

    2015-04-20

    The objective of this project is to promote awareness and knowledge of active solar energy technologies by installing and monitoring the following demonstration systems in Kentucky: 1) Pool heating system, Churchill Park School, 2) Water heating and daylighting systems, Middletown and Aiken Road Elementary Schools, 3) Photovoltaic street light comparison, Louisville Metro, 4) up to 25 domestic water heating systems across Kentucky. These tasks will be supported by outreach activities, including a solar energy installer training workshop and a Kentucky Solar Energy Conference.

  1. Dynamo theory prediction of solar activity

    Science.gov (United States)

    Schatten, Kenneth H.

    1988-01-01

    The dynamo theory technique to predict decadal time scale solar activity variations is introduced. The technique was developed following puzzling correlations involved with geomagnetic precursors of solar activity. Based upon this, a dynamo theory method was developed to predict solar activity. The method was used successfully in solar cycle 21 by Schatten, Scherrer, Svalgaard, and Wilcox, after testing with 8 prior solar cycles. Schatten and Sofia used the technique to predict an exceptionally large cycle, peaking early (in 1990) with a sunspot value near 170, likely the second largest on record. Sunspot numbers are increasing, suggesting that: (1) a large cycle is developing, and (2) that the cycle may even surpass the largest cycle (19). A Sporer Butterfly method shows that the cycle can now be expected to peak in the latter half of 1989, consistent with an amplitude comparable to the value predicted near the last solar minimum.

  2. Solar neutrinos, solar flares, solar activity cycle and the proton decay

    Science.gov (United States)

    Raychaudhuri, P.

    1985-01-01

    It is shown that there may be a correlation between the galactic cosmic rays and the solar neutrino data, but it appears that the neutrino flux which may be generated during the large solar cosmic ray events cannot in any way effect the solar neutrino data in Davis experiment. Only initial stage of mixing between the solar core and solar outer layers after the sunspot maximum in the solar activity cycle can explain the higher (run number 27 and 71) of solar neutrino data in Davis experiment. But solar flare induced atmospheric neutrino flux may have effect in the nucleon decay detector on the underground. The neutrino flux from solar cosmic rays may be a useful guide to understand the background of nucleon decay, magnetic monopole search, and the detection of neutrino flux in sea water experiment.

  3. Solar Spots - Activities to Introduce Solar Energy into the K-8 Curricula.

    Science.gov (United States)

    Longe, Karen M.; McClelland, Michael J.

    Following an introduction to solar technology which reviews solar heating and cooling, passive solar systems (direct gain systems, thermal storage walls, sun spaces, roof ponds, and convection loops), active solar systems, solar electricity (photovoltaic and solar thermal conversion systems), wind energy, and biomass, activities to introduce solar…

  4. Solar Activity and the Climate of Prebaikalia

    Institute of Scientific and Technical Information of China (English)

    V. A. Kovalenko; G.A. Zherebtsov; S.I. Molodykh

    2005-01-01

    This paper presents convincing evidence for the reality of manifestations of solar variability in climate characteristics of the Prebaikalia. A numerical estimate is obtained of this influence on ground air temperature. It is shown that the main meaningful variations in air temperature in the region for the period1881-1960 were caused by solar activity. Since the 1960s till the present, with the influence of solar variability continuing, a clear-cut influence of another factor has been observed, the role of which has been steadily increasing, and in the hst decade it has now exceeded the contribution of solar variability. Research results on the variations in hydrological characteristics of Lake Baikal and the Angara river and their connection with solar activity are presented. It is shown that these characteristics are closely correlated with the duration of solar cycles.

  5. Magnetic activity of seismic solar analogs

    CERN Document Server

    Salabert, D

    2016-01-01

    We present our latest results on the solar-stellar connection by studying 18 solar analogs that we identified among the Kepler seismic sample (Salabert et al., 2016a). We measured their magnetic activity properties using observations collected by the Kepler satellite and the ground-based, high-resolution Hermes spectrograph. The photospheric (Sph) and chromospheric (S) magnetic activity proxies of these seismic solar analogs are compared in relation to solar activity. We show that the activity of the Sun is actually comparable to the activity of the seismic solar analogs. Furthermore, we report on the discovery of temporal variability in the acoustic frequencies of the young (1 Gyr-old) solar analog KIC10644253 with a modulation of about 1.5 years, which agrees with the derived photospheric activity (Salabert et al., 2016b). It could actually be the signature of the short-period modulation, or quasi-biennal oscillation, of its magnetic activity as observed in the Sun and the 1-Gyr-old solar analog HD30495. In...

  6. Gap between active and passive solar heating

    Energy Technology Data Exchange (ETDEWEB)

    Balcomb, J.D.

    1985-01-01

    The gap between active and passive solar could hardly be wider. The reasons for this are discussed and advantages to narrowing the gap are analyzed. Ten years of experience in both active and passive systems are reviewed, including costs, frequent problems, performance prediction, performance modeling, monitoring, and cooling concerns. Trends are analyzed, both for solar space heating and for service water heating. A tendency for the active and passive technologies to be converging is observed. Several recommendations for narrowing the gap are presented.

  7. Science Activities in Energy: Solar Energy II.

    Science.gov (United States)

    Oak Ridge Associated Universities, TN.

    Included in this science activities energy package are 14 activities related to solar energy for secondary students. Each activity is outlined on a single card and is introduced by a question such as: (1) how much solar heat comes from the sun? or (2) how many times do you have to run water through a flat-plate collector to get a 10 degree rise in…

  8. Solar collector manufacturing activity, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-09

    This report presents data provided by US-based manufacturers and importers of solar collectors. Summary data on solar thermal collector shipments are presented for the years 1974 through 1992. Summary data on photovoltaic cell and module shipments are presented for the years 1982 through 1992. Detailed information for solar thermal collectors and photovoltaic cells and modules are presented for 1992. Appendix A describes the survey methodology. Appendix B contains the 1992 survey forms and instructions. Appendices C and D list the companies that responded to the 1992 surveys and granted permission for their names and addresses to appear in the report. Appendix E provides selected tables from this report with data shown in the International System of Units (SI) metric units. Appendix F provides an estimate of installed capacity and energy production from solar collectors for 1992.

  9. A putative, novel coli surface antigen 8B (CS8B) of enterotoxigenic Escherichia coli.

    Science.gov (United States)

    Njoroge, Samuel M; Boinett, Christine J; Madé, Laure F; Ouko, Tom T; Fèvre, Eric M; Thomson, Nicholas R; Kariuki, Samuel

    2015-10-01

    Enterotoxigenic Escherichia coli (ETEC) strains harbor multiple fimbriae and pili to mediate host colonization, including the type IVb pilus, colonization factor antigen III (CFA/III). Not all colonization factors are well characterized or known in toxin positive ETEC isolates, which may have an impact identifying ETEC isolates based on molecular screening of these biomarkers. We describe a novel coli surface antigen (CS) 8 subtype B (CS8B), a family of CFA/III pilus, in a toxin producing ETEC isolate from a Kenyan collection. In highlighting the existence of this putative CS, we provide the sequence and specific primers, which can be used alongside other ETEC primers previously described.

  10. Sources of solar wind over the solar activity cycle.

    Science.gov (United States)

    Poletto, Giannina

    2013-05-01

    Fast solar wind has been recognized, about 40 years ago, to originate in polar coronal holes (CHs), that, since then, have been identified with sources of recurrent high speed wind streams. As of today, however, there is no general consensus about whether there are, within CHs, preferential locations where the solar wind is accelerated. Knowledge of slow wind sources is far from complete as well. Slow wind observed in situ can be traced back to its solar source by backward extrapolation of magnetic fields whose field lines are streamlines of the outflowing plasma. However, this technique often has not the necessary precision for an indisputable identification of the region where wind originates. As the Sun progresses through its activity cycle, different wind sources prevail and contribute to filling the heliosphere. Our present knowledge of different wind sources is here summarized. Also, a Section addresses the problem of wind acceleration in the low corona, as inferred from an analysis of UV data, and illustrates changes between fast and slow wind profiles and possible signatures of changes along the solar cycle. A brief reference to recent work about the deep roots of solar wind and their changes over different solar cycles concludes the review.

  11. Solar activities and Climate change hazards

    Science.gov (United States)

    Hady, A. A., II

    2014-12-01

    Throughout the geological history of Earth, climate change is one of the recurrent natural hazards. In recent history, the impact of man brought about additional climatic change. Solar activities have had notable effect on palaeoclimatic changes. Contemporary, both solar activities and building-up of green-house gases effect added to the climatic changes. This paper discusses if the global worming caused by the green-house gases effect will be equal or less than the global cooling resulting from the solar activities. In this respect, we refer to the Modern Dalton Minimum (MDM) which stated that starting from year 2005 for the next 40 years; the earth's surface temperature will become cooler than nowadays. However the degree of cooling, previously mentioned in old Dalton Minimum (c. 210 y ago), will be minimized by building-up of green-house gases effect during MDM period. Regarding to the periodicities of solar activities, it is clear that now we have a new solar cycle of around 210 years. Keywords: Solar activities; solar cycles; palaeoclimatic changes; Global cooling; Modern Dalton Minimum.

  12. A History of Solar Activity over Millennia

    Directory of Open Access Journals (Sweden)

    Ilya G. Usoskin

    2013-03-01

    Full Text Available Presented here is a review of present knowledge of the long-term behavior of solar activity on a multi-millennial timescale, as reconstructed using the indirect proxy method. The concept of solar activity is discussed along with an overview of the special indices used to quantify different aspects of variable solar activity, with special emphasis upon sunspot number. Over long timescales, quantitative information about past solar activity can only be obtained using a method based upon indirect proxies, such as the cosmogenic isotopes 14C and 10Be in natural stratified archives (e.g., tree rings or ice cores. We give an historical overview of the development of the proxy-based method for past solar-activity reconstruction over millennia, as well as a description of the modern state. Special attention is paid to the verification and cross-calibration of reconstructions. It is argued that this method of cosmogenic isotopes makes a solid basis for studies of solar variability in the past on a long timescale (centuries to millennia during the Holocene. A separate section is devoted to reconstructions of strong solar energetic-particle (SEP events in the past, that suggest that the present-day average SEP flux is broadly consistent with estimates on longer timescales, and that the occurrence of extra-strong events is unlikely. Finally, the main features of the long-term evolution of solar magnetic activity, including the statistics of grand minima and maxima occurrence, are summarized and their possible implications, especially for solar/stellar dynamo theory, are discussed.

  13. HATS-8b: A Low-Density Transiting Super-Neptune

    CERN Document Server

    Bayliss, D; Bakos, G Á; Penev, K; Zhou, G; Brahm, R; Rabus, M; Jordán, A; Mancini, L; de Val-Borro, M; Bhatti, W; Espinoza, N; Csubry, Z; Howard, A W; Fulton, B J; Buchhave, L A; Henning, T; Schmidt, B; Ciceri, S; Noyes, R W; Isaacson, H; Marcy, G W; Suc, V; Lázár, J; Papp, I; Sári, P

    2015-01-01

    HATS-8b is a low density transiting super-Neptune discovered as part of the HATSouth project. The planet orbits its solar-like G dwarf host (V=14.03 $\\pm$ 0.10 and T$_{eff}$ =5679 $\\pm$ 50 K) with a period of 3.5839 d. HATS-8b is the third lowest mass transiting exoplanet to be discovered from a wide-field ground based search, and with a mass of 0.138 $\\pm$ 0.019 M$_J$ it is approximately half-way between the masses of Neptune and Saturn. However HATS-8b has a radius of 0.873 (+0.123,-0.075) R$_J$, resulting in a bulk density of just 0.259 $\\pm$ 0.091 g.cm$^{-3}$. The metallicity of the host star is super-Solar ([Fe/H]=0.210 $\\pm$ 0.080), arguing against the idea that low density exoplanets form from metal-poor environments. The low density and large radius of HATS-8b results in an atmospheric scale height of almost 1000 km, and in addition to this there is an excellent reference star of near equal magnitude at just 19 arcsecond separation on the sky. These factors make HATS-8b an exciting target for future a...

  14. New NSO Solar Surface Activity Maps

    Science.gov (United States)

    Henney, C. J.; Harvey, J. W.

    2001-05-01

    Using NSO-Kitt Peak Vacuum Telescope (KPVT) synoptic data, we present several new solar surface activity maps. The motivation is to test conventional wisdom about conditions that are likely to produce solar activity such as flares, coronal mass ejections and high speed solar wind streams. The ultimate goal is to improve real-time, observation-based models for the purpose of predicting solar activity. A large number of maps will eventually be produced based on the wide range of ideas and models of the conditions thought to lead to solar activity events. When data from the new SOLIS instruments becomes available, the range of possible models that can be tested will be greatly expanded. At present, the daily maps include ones that show magnetic field complexity, emerging flux and high speed solar wind sources. As a proxy for local magnetic potential energy, each element of the magnetic complexity map is the distance-weighted rms of the opposing ambient magnetic field. The flux emergence map is the difference between the two most recent absolute magnetic flux images. The solar wind source map is produced from coronal hole area data. The new maps are available on the NSO-Kitt Peak World Wide Web page. This research was supported in part by the Office of Navel Research Grant N00014-91-J-1040. The NSO-Kitt Peak data used here are produced cooperatively by NSF/AURA, NASA/GSFC, and NOAA/SEC.

  15. Solar activity forcing of the middle atmosphere

    Directory of Open Access Journals (Sweden)

    K. Mohanakumar

    Full Text Available Studies on the influence of solar activity in 11-year cycle on middle atmospheric thermodynamic parameters, such as temperature, pressure and density, and zonal and meridional wind components over three meteorological rocket launching stations, located in the tropics (Thumba, mid-latitude (Volgograd and high-latitude (Heiss Island regions of the northern hemisphere have been carried out. The temperature in all the three regions showed a negative response in the stratosphere and positive association in the mesosphere with the changes in solar activity. The temperature decreases by 2–3% from its mean value in the stratosphere and increases by 4–6% in the mesosphere for an increase in 100 units of solar radio flux. Atmospheric pressure is found to be more sensitive to solar changes. An average solar maximum condition enhances the pressure in the stratosphere by 5% and in the upper mesosphere by 16–18% compared to the respective mean values. Density also showed strong association with the changes in solar activity. Increase in the solar radio flux tends to strengthen winter westerlies in the upper stratosphere over the mid-latitude and summer easterlies in the middle stratosphere over tropics. Larger variability in the zonal wind is noted near stratopause height. Results obtained from the study indicate that there is an external force exerted on the Earth's atmosphere during the period of high solar activity. These results can be incorporated for further studies on the dynamics of the middle atmosphere in association with the changes in solar activity.

  16. A History of Solar Activity over Millennia

    CERN Document Server

    Usoskin, Ilya G

    2013-01-01

    Presented here is a review of present knowledge of the long-term behavior of solar activity on a multi-millennial timescale, as reconstructed using the indirect proxy method. The concept of solar activity is discussed along with an overview of the special indices used to quantify different aspects of variable solar activity, with special emphasis upon sunspot number. Over long timescales, quantitative information about past solar activity can only be obtained using a method based upon indirect proxy, such as the cosmogenic isotopes 14C and 10Be in natural stratified archives (e.g., tree rings or ice cores). We give an historical overview of the development of the proxy-based method for past solar-activity reconstruction over millennia, as well as a description of the modern state. Special attention is paid to the verification and cross-calibration of reconstructions. It is argued that this method of cosmogenic isotopes makes a solid basis for studies of solar variability in the past on a long timescale (centu...

  17. A History of Solar Activity over Millennia

    Directory of Open Access Journals (Sweden)

    Usoskin Ilya G.

    2008-10-01

    Full Text Available Presented here is a review of present knowledge of the long-term behavior of solar activity on a multi-millennial timescale, as reconstructed using the indirect proxy method.The concept of solar activity is discussed along with an overview of the special indices used to quantify different aspects of variable solar activity, with special emphasis upon sunspot number.Over long timescales, quantitative information about past solar activity can only be obtained using a method based upon indirect proxy, such as the cosmogenic isotopes 14C and 10Be in natural stratified archives (e.g., tree rings or ice cores. We give an historical overview of the development of the proxy-based method for past solar-activity reconstruction over millennia, as well as a description of the modern state. Special attention is paid to the verification and cross-calibration of reconstructions. It is argued that this method of cosmogenic isotopes makes a solid basis for studies of solar variability in the past on a long timescale (centuries to millennia during the Holocene.A separate section is devoted to reconstructions of strong solar–energetic-particle (SEP events in the past, that suggest that the present-day average SEP flux is broadly consistent with estimates on longer timescales, and that the occurrence of extra-strong events is unlikely.Finally, the main features of the long-term evolution of solar magnetic activity, including the statistics of grand minima and maxima occurrence, are summarized and their possible implications, especially for solar/stellar dynamo theory, are discussed.

  18. 15 CFR 8b.11 - Discrimination prohibited.

    Science.gov (United States)

    2010-01-01

    ... unions, with organizations providing or administering fringe benefits to employees of the recipient, and... against discrimination in employment applies to the following activities: (1) Recruitment, advertising and... other form of compensation and changes in compensation; pension or other benefit the applicant...

  19. Magnetic Helicity Injection in Solar Active Regions

    Institute of Scientific and Technical Information of China (English)

    Hong-Qi Zhang

    2006-01-01

    We present the evolution of magnetic field and its relationship with magnetic (current) helicity in solar active regions from a series of photospheric vector magnetograms obtained by Huairou Solar Observing Station, longitudinal magnetograms by MDI of SOHO and white light images of TRACE. The photospheric current helicity density is a quantity reflecting the local twisted magnetic field and is related to the remaining magnetic helicity in the photosphere, even if the mean current helicity density brings the general chiral property in a layer of solar active regions. As new magnetic flux emerges in active regions, changes of photospheric current helicity density with the injection of magnetic helicity into the corona from the subatmosphere can be detected, including changes in sign caused by the injection of magnetic helicity of opposite sign. Because the injection rate of magnetic helicity and photospheric current helicity density have different means in the solar atmosphere,the injected magnetic helicity is probably not proportional to the current helicity density remaining in the photosphere. The evidence is that rotation of sunspots does not synchronize exactly with the twist of photospheric transverse magnetic field in some active regions (such as, delta active regions). They represent different aspects of magnetic chirality. A combined analysis of the observational magnetic helicity parameters actually provides a relative complete picture of magnetic helicity and its transfer in the solar atmosphere.

  20. Microbial solar cells: applying photosynthetic and electrochemically active organisms

    NARCIS (Netherlands)

    Strik, D.P.B.T.B.; Timmers, R.A.; Helder, M.; Steinbusch, K.J.J.; Hamelers, H.V.M.; Buisman, C.J.N.

    2011-01-01

    Microbial solar cells (MSCs) are recently developed technologies that utilize solar energy to produce electricity or chemicals. MSCs use photoautotrophic microorganisms or higher plants to harvest solar energy, and use electrochemically active microorganisms in the bioelectrochemical system to gener

  1. Active Solar Energy Use Approaching Sustainability

    Directory of Open Access Journals (Sweden)

    NikouJavadiEshkalak,

    2014-06-01

    Full Text Available Nowadays, sustainability becomes one of the most important issues that should be taken into consideration in various fields especially in architecture. Our responsibility for the future generation insinuates us for using renewable energy sources and integrating this pioneer system into the built environment. Although the world is facing problems of fossil fuel resources but unfortunately Utilization of solar energy received limited attention until recently. However, Integrating of active solar energy devices into the building envelopes is one of the good strategies for heat producing and power generating simultaneously from the same building. This paper discusses some characteristics about integration of PV s and solar thermal collectors. Therefore, the aim of this paper is to find suitable and possible ways of PV s and solar thermal collector's building integration in order to increasing energy efficiency without any impact on architectural features. \\

  2. Solar Energy Education. Home economics: student activities. Field test edition

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    A view of solar energy from the standpoint of home economics is taken in this book of activities. Students are provided information on solar energy resources while performing these classroom activities. Instructions for the construction of a solar food dryer and a solar cooker are provided. Topics for study include window treatments, clothing, the history of solar energy, vitamins from the sun, and how to choose the correct solar home. (BCS)

  3. Multiscale statistical analysis of coronal solar activity

    CERN Document Server

    Gamborino, Diana; Martinell, Julio J

    2016-01-01

    Multi-filter images from the solar corona are used to obtain temperature maps which are analyzed using techniques based on proper orthogonal decomposition (POD) in order to extract dynamical and structural information at various scales. Exploring active regions before and after a solar flare and comparing them with quiet regions we show that the multiscale behavior presents distinct statistical properties for each case that can be used to characterize the level of activity in a region. Information about the nature of heat transport is also be extracted from the analysis.

  4. Solar activity and the mean global temperature

    CERN Document Server

    Erlykin, A D; Wolfendale, A W

    2009-01-01

    The variation with time from 1956-2002 of the globally averaged rate of ionization produced by cosmic rays in the atmosphere is deduced and shown to have a cyclic component of period roughly twice the 11 year solar cycle period. Long term variations in the global average surface temperature as a function of time since 1956 are found to have a similar cyclic component. The cyclic variations are also observed in the solar irradiance and in the mean daily sun spot number. The cyclic variation in the cosmic ray rate is observed to be delayed by 2-4 years relative to the temperature, the solar irradiance and daily sun spot variations suggesting that the origin of the correlation is more likely to be direct solar activity than cosmic rays. Assuming that the correlation is caused by such solar activity, we deduce that the maximum recent increase in the mean surface temperature of the Earth which can be ascribed to this activity is $\\lesssim14%$ of the observed global warming.

  5. Solar activity geomagnetic field and terrestrial weather

    Science.gov (United States)

    Knight, J. W.; Sturrock, P. A.

    1976-01-01

    Spectral analysis is used as an independent test of the reported association between interplanetary-magnetic-field structure and terrestrial weather. Spectra of the Ap geomagnetic activity index and the vorticity area index for the years from 1964 to 1970 are examined for common features that may be associated with solar-related phenomena, specifically for peaks in the power spectra of both time series with periods near 27.1 days. The spectra are compared in three ways, and the largest peak with the smallest probability estimate is found to occur at a period of 27.49 days. This result is considered to be statistically significant at the 98% level. It is concluded that the period derived from the Ap spectrum is related to solar rotation and that the analysis provides supporting evidence for a connection between the vorticity area index and solar activity.

  6. The phospholipid flippase ATP8B1 mediates apical localization of the cystic fibrosis transmembrane regulator.

    Science.gov (United States)

    van der Mark, Vincent A; de Jonge, Hugo R; Chang, Jung-Chin; Ho-Mok, Kam S; Duijst, Suzanne; Vidović, Dragana; Carlon, Marianne S; Oude Elferink, Ronald P J; Paulusma, Coen C

    2016-09-01

    Progressive familial intrahepatic cholestasis type 1 (PFIC1) is caused by mutations in the gene encoding the phospholipid flippase ATP8B1. Apart from severe cholestatic liver disease, many PFIC1 patients develop extrahepatic symptoms characteristic of cystic fibrosis (CF), such as pulmonary infection, sweat gland dysfunction and failure to thrive. CF is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), a chloride channel essential for epithelial fluid transport. Previously it was shown that CFTR transcript levels were strongly reduced in livers of PFIC1 patients. Here we have investigated the hypothesis that ATP8B1 is important for proper CFTR expression and function. We analyzed CFTR expression in ATP8B1-depleted intestinal and pulmonary epithelial cell lines and assessed CFTR function by measuring short-circuit currents across transwell-grown ATP8B1-depleted intestinal T84 cells and by a genetically-encoded fluorescent chloride sensor. In addition, we studied CFTR surface expression upon induction of CFTR transcription. We show that CFTR protein levels are strongly reduced in the apical membrane of human ATP8B1-depleted intestinal and pulmonary epithelial cell lines, a phenotype that coincided with reduced CFTR activity. Apical membrane insertion upon induction of ectopically-expressed CFTR was strongly impaired in ATP8B1-depleted cells. We conclude that ATP8B1 is essential for correct apical localization of CFTR in human intestinal and pulmonary epithelial cells, and that impaired CFTR localization underlies some of the extrahepatic phenotypes observed in ATP8B1 deficiency. PMID:27301931

  7. Solar Energy Project, Activities: Chemistry & Physics.

    Science.gov (United States)

    Tullock, Bruce, Ed.; And Others

    This guide contains lesson plans and outlines of science activities which present concepts of solar energy in the context of chemistry and physics experiments. Each unit presents an introduction to the unit; objectives; required skills and knowledge; materials; method; questions; recommendations for further work; and a teacher information sheet.…

  8. Foothills Parkway Section 8B Final Environmental Report, Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Blasing, T.J.; Cada, G.F.; Carer, M.; Chin, S.M.; Dickerman, J.A.; Etnier, D.A.; Gibson, R.; Harvey, M.; Hatcher, B.; Lietzske, D.; Mann, L.K.; Mulholland, P.J.; Petrich, C.H.; Pounds, L.; Ranney, J.; Reed, R.M.; Ryan, P.F.; Schweitzer, M.; Smith, D.; Thomason, P.; Wade, M.C.

    1999-07-01

    In 1994, Oak Ridge National Laboratory (ORNL) was tasked by the National Park Service (NPS) to prepare an Environmental Report (ER) for Section 8B of the Foothills Parkway in the Great Smoky Mountains National Park (GSMNP). Section 8B represents 27.7 km (14.2 miles) of a total of 115 km (72 miles) of the planned Foothills Parkway and would connect the Cosby community on the east to the incorporated town of Pittman Center to the west.

  9. Total Solar Irradiance Variability and the Solar Activity Cycle

    OpenAIRE

    Raychaudhuri, Probhas

    2006-01-01

    It is suggested that the solar variability is due to the perturbed nature of the solar core and this variability is provided by the variability of the solar neutrino flux from the solar neutrino detectors i.e., Homestake, Superkamiokande, SAGE and GALLEX-GNO. The solar neutrino flux in the standard solar model (SSM) was calculated on the assumption of L_nu (neutrino luminosity) = L_gamma (optical luminosity) which implies that if there is a change in optical luminosity then solar neutrino flu...

  10. Thermal cyclotron radiation from solar active regions

    International Nuclear Information System (INIS)

    Various frequency spectra with the fine structure resulting from the thermal cyclotron radio emission from solar active regions are discussed. The conditions in sources (distribution of magnetic field and kinetic temperature over the height) are put forward which provide the frequency spectrum as a set of cyclotron lines and high frequency cut-offs. For each kind of distribution the frequency spectrum and polarization are of peculiar character. This permits one to find the conditions in the source through the properties of the observed microwave solar radio emission. To obtain reliable data on the fine structure and judge about conditions in the sources it is necessary to study microwave solar radio emission using the swept-frequency or multi-channel receivers combined with high directional antennae. (Auth.)

  11. Coronal Activity and Extended Solar Cycles

    Science.gov (United States)

    Altrock, R. C.

    2012-12-01

    Wilson et al. (1988, Nature 333, 748) discussed a number of solar parameters, which appear at high latitudes and gradually migrate towards the equator, merging with the sunspot "butterfly diagram". They found that this concept had been identified by earlier investigators extending back to 1957. They named this process the "Extended Solar Cycle" (ESC). Altrock (1997, Solar Phys. 170, 411) found that this process continued in Fe XIV 530.3 nm emission features. In cycles 21 - 23 solar maximum occurred when the number of Fe XIV emission regions per day > 0.19 (averaged over 365 days and both hemispheres) first reached latitudes 18°, 21° and 21°, for an average of 20° ± 1.7°. Other recent studies have shown that Torsional Oscillation (TO) negative-shear zones are co-located with the ESC from at least 50° down to the equator and also in the zones where the Rush to the Poles occur. These phenomena indicate that coronal activity occurring up to 50° and higher latitudes is related to TO shear zones, another indicator that the ESC is an important solar process. Another high-latitude process, which appears to be connected with the ESC, is the "Rush to the Poles" ("Rush") of polar crown prominences and their associated coronal emission, including Fe XIV. The Rush is is a harbinger of solar maximum (cf. Altrock, 2003, Solar Phys. 216, 343). Solar maximum in cycles 21 - 23 occurred when the center line of the Rush reached a critical latitude. These latitudes were 76°, 74° and 78°, respectively, for an average of 76° ± 2°. Applying the above conclusions to Cycle 24 is difficult due to the unusual nature of this cycle. Cycle 24 displays an intermittent "Rush" that is only well-defined in the northern hemisphere. In 2009 an initial slope of 4.6°/yr was found in the north, compared to an average of 9.4 ± 1.7 °/yr in the previous three cycles. This early fit to the Rush would have reached 76° at 2014.6. However, in 2010 the slope increased to 7.5°/yr (an increase

  12. Division E Commission 10: Solar Activity

    Science.gov (United States)

    Schrijver, Carolus J.; Fletcher, Lyndsay; van Driel-Gesztelyi, Lidia; Asai, Ayumi; Cally, Paul S.; Charbonneau, Paul; Gibson, Sarah E.; Gomez, Daniel; Hasan, Siraj S.; Veronig, Astrid M.; Yan, Yihua

    2016-04-01

    After more than half a century of community support related to the science of ``solar activity'', IAU's Commission 10 was formally discontinued in 2015, to be succeeded by C.E2 with the same area of responsibility. On this occasion, we look back at the growth of the scientific disciplines involved around the world over almost a full century. Solar activity and fields of research looking into the related physics of the heliosphere continue to be vibrant and growing, with currently over 2,000 refereed publications appearing per year from over 4,000 unique authors, publishing in dozens of distinct journals and meeting in dozens of workshops and conferences each year. The size of the rapidly growing community and of the observational and computational data volumes, along with the multitude of connections into other branches of astrophysics, pose significant challenges; aspects of these challenges are beginning to be addressed through, among others, the development of new systems of literature reviews, machine-searchable archives for data and publications, and virtual observatories. As customary in these reports, we highlight some of the research topics that have seen particular interest over the most recent triennium, specifically active-region magnetic fields, coronal thermal structure, coronal seismology, flares and eruptions, and the variability of solar activity on long time scales. We close with a collection of developments, discoveries, and surprises that illustrate the range and dynamics of the discipline.

  13. Cosmic rays, solar activity and the climate

    International Nuclear Information System (INIS)

    Although it is generally believed that the increase in the mean global surface temperature since industrialization is caused by the increase in green house gases in the atmosphere, some people cite solar activity, either directly or through its effect on cosmic rays, as an underestimated contributor to such global warming. In this letter a simplified version of the standard picture of the role of greenhouse gases in causing the global warming since industrialization is described. The conditions necessary for this picture to be wholly or partially wrong are then introduced. Evidence is presented from which the contributions of either cosmic rays or solar activity to this warming is deduced. The contribution is shown to be less than 10% of the warming seen in the twentieth century. (letter)

  14. Solar activities at Sandia National Laboratories

    Science.gov (United States)

    Klimas, Paul C.; Hasti, David E.

    The use of renewable energy technologies is typically thought of as an integral part of creating and sustaining an environment that maximizes the overall quality of life of the Earth's present inhabitants and does not leave an undue burden on future generations. Sandia National Laboratories has been a leader in developing and deploying many of these technologies over the last two decades. A common but special aspect of all of these activities is that they are all conducted in cooperation with various types of partners. Some of these partners have an interest in seeing these systems grow in the marketplace, while others are primarily concerned with economic benefits that can come from immediate use of these renewable energy systems. This paper describes solar thermal and photovoltaic technology activities at Sandia that are intended to accelerate the commercialization of these solar systems.

  15. Long-term variations of solar activity

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Using the Lomb-Scargle periodogram we analyzed two sunspot series: the one over the past 11000 years at the 10-year interval based upon the survey data of 14C concentration in tree-rings, reconstructed by Solanki et al.; and the sunspot number over the past 7000 years, derived from geomagnetic variations by Usoskin et al. We found the periods and quasi-periods in solar activity, such as about 225, 352, 441, 522 and 561 a, and near 1000 and 2000 a. An approach of wavelet transform was applied to check the two sunspot time series, with emphasis on investigating time-varying characteristics in the long-term fluctuations of solar activity. The results show that the lengths and amplitudes of the periods have changed with time, and large variations have taken place during some periods.

  16. Cosmic rays, solar activity and the climate

    Science.gov (United States)

    Sloan, T.; Wolfendale, A. W.

    2013-12-01

    Although it is generally believed that the increase in the mean global surface temperature since industrialization is caused by the increase in green house gases in the atmosphere, some people cite solar activity, either directly or through its effect on cosmic rays, as an underestimated contributor to such global warming. In this letter a simplified version of the standard picture of the role of greenhouse gases in causing the global warming since industrialization is described. The conditions necessary for this picture to be wholly or partially wrong are then introduced. Evidence is presented from which the contributions of either cosmic rays or solar activity to this warming is deduced. The contribution is shown to be less than 10% of the warming seen in the twentieth century.

  17. Solar Eruptions Initiated in Sigmoidal Active Regions

    Science.gov (United States)

    Savcheva, Antonia

    2016-07-01

    active regions that have been shown to possess high probability for eruption. They present a direct evidence of the existence of flux ropes in the corona prior to the impulsive phase of eruptions. In order to gain insight into their eruptive behavior and how they get destabilized we need to know their 3D magnetic field structure. First, we review some recent observations and modeling of sigmoidal active regions as the primary hosts of solar eruptions, which can also be used as useful laboratories for studying these phenomena. Then, we concentrate on the analysis of observations and highly data-constrained non-linear force-free field (NLFFF) models over the lifetime of several sigmoidal active regions, where we have captured their magnetic field structure around the times of major flares. We present the topology analysis of a couple of sigmoidal regions pointing us to the probable sites of reconnection. A scenario for eruption is put forward by this analysis. We demonstrate the use of this topology analysis to reconcile the observed eruption features with the standard flare model. Finally, we show a glimpse of how such a NLFFF model of an erupting region can be used to initiate a CME in a global MHD code in an unprecedented realistic manner. Such simulations can show the effects of solar transients on the near-Earth environment and solar system space weather.

  18. Analysis of Human TAAR8 and Murine Taar8b Mediated Signaling Pathways and Expression Profile

    Directory of Open Access Journals (Sweden)

    Jessica Mühlhaus

    2014-11-01

    Full Text Available The thyroid hormone derivative 3-iodothyronamine (3-T1AM exerts metabolic effects in vivo that contradict known effects of thyroid hormones. 3-T1AM acts as a trace amine-associated receptor 1 (TAAR1 agonist and activates Gs signaling in vitro. Interestingly, 3-T1AM-meditated in vivo effects persist in Taar1 knockout-mice indicating that further targets of 3-T1AM might exist. Here, we investigated another member of the TAAR family, the only scarcely studied mouse and human trace-amine-associated receptor 8 (Taar8b, TAAR8. By RT-qPCR and locked-nucleic-acid (LNA in situ hybridization, Taar8b expression in different mouse tissues was analyzed. Functionally, we characterized TAAR8 and Taar8b with regard to cell surface expression and signaling via different G-protein-mediated pathways. Cell surface expression was verified by ELISA, and cAMP accumulation was quantified by AlphaScreen for detection of Gs and/or Gi/o signaling. Activation of G-proteins Gq/11 and G12/13 was analyzed by reporter gene assays. Expression analyses revealed at most marginal Taar8b expression and no gender differences for almost all analyzed tissues. In heart, LNA-in situ hybridization demonstrated the absence of Taar8b expression. We could not identify 3-T1AM as a ligand for TAAR8 and Taar8b, but both receptors were characterized by a basal Gi/o signaling activity, a so far unknown signaling pathway for TAARs.

  19. Phospholipase D2 mediates signaling by ATPase class I type 8B membrane 1[S

    OpenAIRE

    Chen, Frank; Ghosh, Ayantika; Shneider, Benjamin L.

    2013-01-01

    Functional defects in ATPase class I type 8B membrane 1 (ATP8B1 or familial intrahepatic cholestasis 1, FIC1) lead to cholestasis by mechanism(s) that are not fully understood. One proposed pathophysiology involves aberrant signaling to the bile acid sensor, the farnesoid X receptor (FXR), via protein kinase C ζ (PKCζ). The following cell line-based studies investigated whether phospholipase D2 may transduce a signal from FIC1 to FXR. PLD2 gain of function led to activation of the bile salt e...

  20. The Heliosphere through the Solar Activity Cycle

    CERN Document Server

    Balogh, André; Suess, Steven T

    2008-01-01

    Understanding how the Sun changes though its 11-year sunspot cycle and how these changes affect the vast space around the Sun – the heliosphere – has been one of the principal objectives of space research since the advent of the space age. This book presents the evolution of the heliosphere through an entire solar activity cycle. The last solar cycle (cycle 23) has been the best observed from both the Earth and from a fleet of spacecraft. Of these, the joint ESA-NASA Ulysses probe has provided continuous observations of the state of the heliosphere since 1990 from a unique vantage point, that of a nearly polar orbit around the Sun. Ulysses’ results affect our understanding of the heliosphere from the interior of the Sun to the interstellar medium - beyond the outer boundary of the heliosphere. Written by scientists closely associated with the Ulysses mission, the book describes and explains the many different aspects of changes in the heliosphere in response to solar activity. In particular, the authors...

  1. Tsunami related to solar and geomagnetic activity

    Science.gov (United States)

    Cataldi, Gabriele; Cataldi, Daniele; Straser, Valentino

    2016-04-01

    The authors of this study wanted to verify the existence of a correlation between earthquakes of high intensity capable of generating tsunami and variations of solar and Earth's geomagnetic activity. To confirming or not the presence of this kind of correlation, the authors analyzed the conditions of Spaceweather "near Earth" and the characteristics of the Earth's geomagnetic field in the hours that preceded the four earthquakes of high intensity that have generated tsunamis: 1) Japan M9 earthquake occurred on March 11, 2011 at 05:46 UTC; 2) Japan M7.1 earthquake occurred on October 25, 2013 at 17:10 UTC; 3) Chile M8.2 earthquake occurred on April 1, 2014 at 23:46 UTC; 4) Chile M8.3 earthquake occurred on September 16, 2015 at 22:54 UTC. The data relating to the four earthquakes were provided by the United States Geological Survey (USGS). The data on ion density used to realize the correlation study are represented by: solar wind ion density variation detected by ACE (Advanced Composition Explorer) Satellite, in orbit near the L1 Lagrange point, at 1.5 million of km from Earth, in direction of the Sun. The instrument used to perform the measurement of the solar wind ion density is the Electron, Proton, and Alpha Monitor (EPAM) instrument, equipped on the ACE Satellite. To conduct the study, the authors have taken in consideration the variation of the solar wind protons density of three different energy fractions: differential proton flux 1060-1900 keV (p/cm^2-sec-ster-MeV); differential proton flux 761-1220 keV (p/cm^2-sec-ster-MeV); differential proton flux 310-580 keV (p/cm^2-sec-ster-MeV). Geomagnetic activity data were provided by Tromsø Geomagnetic Observatory (TGO), Norway; by Scoresbysund Geomagnetic Observatory (SCO), Greenland, Denmark and by Space Weather Prediction Center of Pushkov Institute of terrestrial magnetism, ionosphere and radio wave propagation (IZMIRAN), Troitsk, Moscow Region. The results of the study, in agreement with what already

  2. Preferred longitudes in solar and stellar activity

    Science.gov (United States)

    Berdyugina, S. V.

    An analysis of the distribution of starspots on the surfaces of very active stars, such as RS CVn- FK Com-type stars as well as young solar analogs, reveals preferred longitudes of spot formation and their quasi-periodic oscillations, i.e. flip-flop cycles. A non-linear migration of the preferred longitudes suggests the presence of the differential rotation and variations of mean spot latitudes. It enables recovering stellar butterfly diagrams. Such phenomena are found to persist in the sunspot activity as well. A comparison of the observed properties of preferred longitudes on the Sun with those detected on more active stars leads to the conclusion that we can learn fine details of the stellar dynamo by studying the Sun, while its global parameters on the evolutionary time scale are provided by a sample of active stars.

  3. Transient flows of the solar wind associated with small-scale solar activity in solar minimum

    Science.gov (United States)

    Slemzin, Vladimir; Veselovsky, Igor; Kuzin, Sergey; Gburek, Szymon; Ulyanov, Artyom; Kirichenko, Alexey; Shugay, Yulia; Goryaev, Farid

    The data obtained by the modern high sensitive EUV-XUV telescopes and photometers such as CORONAS-Photon/TESIS and SPHINX, STEREO/EUVI, PROBA2/SWAP, SDO/AIA provide good possibilities for studying small-scale solar activity (SSA), which is supposed to play an important role in heating of the corona and producing transient flows of the solar wind. During the recent unusually weak solar minimum, a large number of SSA events, such as week solar flares, small CMEs and CME-like flows were observed and recorded in the databases of flares (STEREO, SWAP, SPHINX) and CMEs (LASCO, CACTUS). On the other hand, the solar wind data obtained in this period by ACE, Wind, STEREO contain signatures of transient ICME-like structures which have shorter duration (<10h), weaker magnetic field strength (<10 nT) and lower proton temperature than usual ICMEs. To verify the assumption that ICME-like transients may be associated with the SSA events we investigated the number of weak flares of C-class and lower detected by SPHINX in 2009 and STEREO/EUVI in 2010. The flares were classified on temperature and emission measure using the diagnostic means of SPHINX and Hinode/EIS and were confronted with the parameters of the solar wind (velocity, density, ion composition and temperature, magnetic field, pitch angle distribution of the suprathermal electrons). The outflows of plasma associated with the flares were identified by their coronal signatures - CMEs (only in few cases) and dimmings. It was found that the mean parameters of the solar wind projected to the source surface for the times of the studied flares were typical for the ICME-like transients. The results support the suggestion that weak flares can be indicators of sources of transient plasma flows contributing to the slow solar wind at solar minimum, although these flows may be too weak to be considered as separate CMEs and ICMEs. The research leading to these results has received funding from the European Union’s Seventh Programme

  4. Searches for high frequency variations in the 8-B neutrino flux at the Sudbury neutrino observatory

    International Nuclear Information System (INIS)

    We have peformed three searches for high-frequency signals in the solar neutrino flux measured by the Sudbury Neutrino Observatory (SNO), motivated by the possibility that solar g-mode oscillations could affect the production or propagation of solar 8B neutrinos. The first search looked for any significant peak in the frequency range l/day to 144/day, with a sensitivity to sinusoidal signals with amplitudes of 12% or greater. The second search focused on regions in which g-mode signals have been claimed by experiments aboard the SoHO satellite, and was sensitive to signals with amplitudes of 10% or greater. The third search looked for extra power across the entire frequency band. No statistically significant signal was detected in any of the three searches.

  5. Searches for high frequency variations in the 8-B neutrino flux at the Sudbury neutrino observatory

    Energy Technology Data Exchange (ETDEWEB)

    Rielage, Keith [Los Alamos National Laboratory; Seibert, Stanley R [Los Alamos National Laboratory; Hime, Andrew [Los Alamos National Laboratory; Elliott, Steven R [Los Alamos National Laboratory; Stonehill, L C [Los Alamos National Laboratory; Wouters, J M [Los Alamos National Laboratory; Aharmim, B [LAURENTIAN UNIV; Ahmed, S N [QUEEN' S UNIV; Anthony, A E [UNIV OF TEXAS; Barros, N [PORTUGAL; Beier, E W [UNIV OF PA; Bellerive, A [CARLETON UNIV; Belttran, B [UNIV OF ALBERTA; Bergevin, M [LBNL; Biller, S D [UNIV OF OXFORD; Boudjemline, K [CARLETON UNIV; Burritt, T H [UNIV OF WASHINGTON; Cai, B [QUEEN' S UNIV; Chan, Y D [LBNL; Chauhan, D [LAURENTIAN UNIV; Chen, M [QUEEN' S UNIV; Cleveland, B T [UNIV OF OXFORD; Cox - Mobrand, G A [UNIV OF WASHINGTON; Dai, X [QUEEN' S UNIV; Deng, H [UNIV OF PA; Detwiler, J [LBNL; Dimarco, M [QUEEN' S UNIV; Doe, P J [UNIV OF WASHINGTON; Drouin, P - L [CARLTON UNIV; Duba, C A [UNIV OF WASHINGTON; Duncan, F A [SNOLAB, SUDBURY; Dunford, M [UNIV OF PA; Earle, E D [QUEEN' S UNIV; Evans, H C [QUEEN' S UNIV; Ewan, G T [QUEEN' S UNIV; Farine, J [LAURENTTIAN UNIV; Fergani, H [UNIV OF OXFORD; Fleurot, F [LAURENTIAN UNIV; Ford, R J [SNOLAB, SUDBURY; Formaggilo, J A [MASSACHUSETTS INST. OF TECH.; Gagnon, N [UNIV OF WASHINGTON; Goon, J Tm [LOUISIANA STATE UNIV; Guillian, E [QUEEN' S UNIV; Habib, S [UNIV OF ALBERTA; Hahn, R L [BNL; Hallin, A L [UNIV OF ALBERTA; Hallman, E D [LAURENTIAN UNIV; Harvey, P J [QUEEN' S UNIV; Hazama, R [UNIV OF WASHINGTON; Heintzelman, W J [UNIV OF PA; Heise, J [SNOLAB, SUDBURY; Helmer, R L [TRIUMF; Howard, C [UNIV OF ALBERTA; Howe, M A [UNIV OF WASHINGTON; Huang, M [UNIV OF TEXAS; Jamieson, B [UNIV OF BRITISH COLUMBIA; Jelley, N A [UNIV OF OXFORD; Keeter, K J [SNOLAB, SUDBURY; Klein, J R [UNIV OF TEXAS; Kos, M [QUEEN' S UNIV; Kraus, C [QUEEN' S UNIV; Krauss, C B [UNIV OF ALBERTA; Kutter, T [LOUISIANA STATE UNIV; Kyba, C C M [UNIV OF PA; Law, J [UNIV OF GUELPH; Lawson, I T [SNOLAB, SUDBURY; Lesko, K T [LBNL; Leslie, J R [QUEEN' S UNIV; Loach, J C [UNIV OF OXFORD; Maclellan, R [QUEEN' S UNIV; Majerus, S [UNIV OF OXFORD; Mak, H B [QUEEN' S UNIV; Maneira, J [PORTUGAL; Martin, R [QUEEN' S UNIV; Mccauley, N [UNIV OF PA; Mc Donald, A B [QUEEN' S UNIV; Mcgee, S [UNIV OF WASHINGTON; Miffin, C [CARLETON UNIV; Miller, M L [MASSACHUSETTS INST. OF TECH.; Monreal, B [MASSACHUSETTS INST. OF TECH.; Monroe, J [MASSACHUSETTS INST. OF TECH; Morissette, B [SNOLAB, SUDBURY; Nickel, B G [UNIV OF GUELPH; Noble, A J [QUEEN' S UNIV; O' Keeffe, H M [UNIV OF OXFORD; Oblath, N S [UNIV OF WASHINGTON; Orebi Gann, G D [UNIV OF OXFORD; Oser, S M [UNIV OF BRITISH COLUMBIA; Ott, R A [MASSACHUSETTS INST. OF TECH.; Peeters, S J M [UNIV OF OXFORD; Poon, A W P [LBNL; Prior, G [LBNL; Reitzner, S D [UNIV OF GUELPH; Robertson, B C [QUEEN' S UNIV; Robertson, R G H [UNIV OF WASHINGTON; Rollin, E [CARLETON UNIV; Schwendener, M H [LAURENTIAN UNIV; Secrest, J A [UNIV OF PA; Seibert, S R [UNIV OF TEXAS; Simard, O [CARLETON UNIV; Sinclair, D [CARLETON UNIV; Sinclair, L [CARLETON UNIV; Skensved, P [QUEEN' S UNIV; Sonley, T J [MASSACHUSETTS INST. OF TECH.; Tesic, G [CARLETON UNIV; Tolich, N [UNIV OF WASHINGTON; Tsui, T [UNIV OF BRITISH COLUMBIA; Tunnell, C D [UNIV OF TEXAS; Van Berg, R [UNIV OF PA; Van Devender, B A [UNIV OF WASHINGTON; Virtue, C J [LAURENTIAN UNIV; Wall, B L [UNIV OF WASHINGTON; Waller, D [CARLETON UNIV; Wan Chan Tseung, H [UNIV OF OXFORD; West, N [UNIV OF OXFORD; Wilkerson, J F [UNIV OF WASHINGTON; Wilson, J R [UNIV OF OXFORD; Wright, A [QUEEN' S UNIV; Yeh, M [BNL; Zhang, F [CARLETON UNIV; Zuber, K [UNIV OF OXFORD

    2009-01-01

    We have peformed three searches for high-frequency signals in the solar neutrino flux measured by the Sudbury Neutrino Observatory (SNO), motivated by the possibility that solar g-mode oscillations could affect the production or propagation of solar {sup 8}B neutrinos. The first search looked for any significant peak in the frequency range l/day to 144/day, with a sensitivity to sinusoidal signals with amplitudes of 12% or greater. The second search focused on regions in which g-mode signals have been claimed by experiments aboard the SoHO satellite, and was sensitive to signals with amplitudes of 10% or greater. The third search looked for extra power across the entire frequency band. No statistically significant signal was detected in any of the three searches.

  6. Automatic Tracking of Active Regions and Detection of Solar Flares in Solar EUV Images

    Science.gov (United States)

    Caballero, C.; Aranda, M. C.

    2014-05-01

    Solar catalogs are frequently handmade by experts using a manual approach or semi-automated approach. The appearance of new tools is very useful because the work is automated. Nowadays it is impossible to produce solar catalogs using these methods, because of the emergence of new spacecraft that provide a huge amount of information. In this article an automated system for detecting and tracking active regions and solar flares throughout their evolution using the Extreme UV Imaging Telescope (EIT) on the Solar and Heliospheric Observatory (SOHO) spacecraft is presented. The system is quite complex and consists of different phases: i) acquisition and preprocessing; ii) segmentation of regions of interest; iii) clustering of these regions to form candidate active regions which can become active regions; iv) tracking of active regions; v) detection of solar flares. This article describes all phases, but focuses on the phases of tracking and detection of active regions and solar flares. The system relies on consecutive solar images using a rotation law to track the active regions. Also, graphs of the evolution of a region and solar evolution are presented to detect solar flares. The procedure developed has been tested on 3500 full-disk solar images (corresponding to 35 days) taken from the spacecraft. More than 75 % of the active regions are tracked and more than 85 % of the solar flares are detected.

  7. Electric Current Systems in Solar Active Regions

    Science.gov (United States)

    LaBonte, B. J.; Mickey, D. L.

    2000-05-01

    The first study to show the persistence of local field-aligned current systems in active regions was reported by Pevtsov, Canfield, and Metcalf (Astrophys. J., 425, L117, 1994). Their work was limited to a sample of complex, flare-productive regions because of the sensitivity limit of the data from the Haleakala Stokes Polarimeter. I report here on a new survey of active regions with the Imaging Vector Magnetograph (IVM) at Mees Solar Observatory. The IVM data permit a look at current systems in simpler, more typical active regions, because of better sensitivity, temporal sampling, spatial resolution and field-of-view. Small scale current systems are commonly seen. Transport of current systems by advective processes is commonly seen over times of hours. This work was supported by NASA grant NAG5-4941 and by a subcontract with LMSAL in support of NASA contract NAS8-40801 for YOHKOH SXT.

  8. Solar Magnetism and the Activity Telescope at HSOS

    Institute of Scientific and Technical Information of China (English)

    Hong-Qi Zhang; Ya-Nan Wang; Qi-Qian Hu; Jun-Sun Xue; Hai-Tian Lu; Hou-Kun Ni; Han-Liang Chen; Xiao-Jun Zhou; Qing-Sheng Zhu; Lü-Jun Yuan; Yong Zhu; Dong-Guang Wang; Yuan-Yong Deng; Ke-Liang Hu; Jiang-Tao Su; Jia-Ben Lin; Gang-Hua Lin; Shi-Mo Yang; Wei-Jun Mao

    2007-01-01

    A new solar telescope system is described, which has been operating at Huairou Solar Observing Station (HSOS), National Astronomical Observatories, Chinese Academy of Sciences (CAS), since the end of 2005. This instrument, the Solar Magnetism and Activity Telescope (SMAT), comprises two telescopes which respectively make measurements of full solar disk vector magnetic field and Hα observation. The core of the full solar disk video vector magnetograph is a birefringent filter with 0.1(A) bandpass, installed in the tele-centric optical system of the telescope. We present some preliminary observational results of the full solar disk vector magnetograms and Hα filtergrams obtained with this telescope system.

  9. Properties of nuclear and Coulomb breakup of 8B

    CERN Document Server

    Ogata, K; Iseri, Y; Yahiro, M

    2008-01-01

    Dependence of breakup cross sections of 8B at 65 MeV/nucleon on target mass number A_T is investigated by means of the continuum-discretized coupled-channels method (CDCC) with more reliable distorting potentials than in preceding study. The scaling law of the nuclear breakup cross section as A_T^(1/3) is found to be satisfied only in the middle A_T region of 40 < A_T < 150. Interference between nuclear and Coulomb breakup amplitudes turns out to vanish at very forward angles with respect to the center-of-mass of 8B, independent of target nucleus. Truncation of the relative energy between the p and 7Be fragments slightly reduces contribution from nuclear breakup at very forward angles, while the angular region in which the first-order perturbation theory works well does not change essentially.

  10. Long-term persistence of solar activity

    Science.gov (United States)

    Ruzmaikin, Alexander; Feynman, Joan; Robinson, Paul

    1994-01-01

    We examine the question of whether or not the non-periodic variations in solar activity are caused by a white-noise, random process. The Hurst exponent, which characterizes the persistence of a time series, is evaluated for the series of C-14 data for the time interval from about 6000 BC to 1950 AD. We find a constant Hurst exponent, suggesting that solar activity in the frequency range from 100 to 3000 years includes an important continuum component in addition to the well-known periodic variations. The value we calculate, H approximately 0.8, is significantly larger than the value of 0.5 that would correspond to variations produced by a white-noise process. This value is in good agreement with the results for the monthly sunspot data reported elsewhere, indicating that the physics that produces the continuum is a correlated random process and that it is the same type of process over a wide range of time interval lengths.

  11. ANATOMY OF SOLAR CYCLE LENGTH AND SUNSPOT NUMBER: DEPENDENCE OF AVERAGE GLOBAL TEMPERATURE ON SOLAR ACTIVITY

    Directory of Open Access Journals (Sweden)

    A. B. BHATTACHARYA

    2011-11-01

    Full Text Available The paper examines thoroughly all the past 23 sunspot cycles and the associated 11 hale cycles. It is noticed that solar cycle 23 had a deep minimum with longest decline phase. When solar cycles 20 to 23 are compared with solar cycles 1 to 4, the forthcoming Dalton minimum can be expected. The predicted variation of sunspot number for the present solar cycle 24 is examined at length and it appears that the peak monthly sunspot number of the solar cycle 24 will be around 80. We have correlated the solar cycle length and peak sunspot number witha priority to the solar cycle 24. From an elaborate analysis it appears that the most common cycle length is around 10.5 years, with few cycles in the range 11.5 to 12.5 years. Global temperature depends upon the total solar irradiance which in turn depends on duration of solar cycle. Also cloud cover directly depends on the solar irradiance. Our analysis supports that the global temperature is governed by the length of the predicted cycle.From the increased length of solar cycle 23, we have estimated the temperature variation of cycle 24. The predicted result reassures that average global temperature will be decreased for next few solar cycles due totypical solar activity. The results have been interpreted emphasizing the formation of type III solar radio bursts caused by plasma excitation.

  12. Boundary Flows in Solar Active Regions

    Science.gov (United States)

    Georgoulis, M. K.; Labonte, B. J.

    2005-05-01

    We present a general technique to calculate the flow field at the altitude where vector magnetic field measurements of solar active regions have been obtained. The velocity field vector is reconstructed fully by solving the ideal induction equation of magnetohydrodynamics for the cross-field velocity component and by utilizing the Doppler velocity information to calculate the field-aligned velocity component. Because solving the induction equation is an under-determined problem, we have formulated our technique in such a way as to provide a unique solution of the induction equation when the vertical (normal to the boundary) component of the cross-field velocity is prescribed. We provide examples of various possible choices for the cross-field vertical velocity and we discuss the respective results. Moreover, we showcase the validity of our technique by predicting the particular area of NOAA active region 8210 from which a flare and a CME were triggered, using the reconstructed velocity field vector.

  13. Solar wind turbulence as a driver of geomagnetic activity

    Science.gov (United States)

    Ikechukwu Ugwu, Ernest Benjamin; Nneka Okeke, Francisca; Ugonabo, Obiageli Josephine

    2016-07-01

    We carried out simultaneous analyses of interplanetary and geomagnetic datasets for the period of (solar Maunder) least (2009) and maximum (2002) solar activity to determine the nature of solar wind turbulence on geomagnetic activity using AE, ASY-D, and ASY-H indices. We determined the role played by Alfvénic fluctuations in the solar wind so as to find out the nature of the turbulence. Our analyses showed that solar wind turbulence play a role in geomagnetic processes at high latitudes during periods of low and high solaractivity but does not have any effect at mid-low latitudes.

  14. Solar active regions: a nonparametric statistical analysis

    CERN Document Server

    Pelt, J; Tuominen, I

    2009-01-01

    The sunspots and other solar activity indicators tend to cluster on the surface of the Sun.These clusters very often occur at certain longitudes that persist in time.It is of general interest to find new and simple ways to characterize the observed distributions of different indicators and their behaviour in time. In the present work we use Greenwich sunspot data to evaluate statistical but not totally coherent stability of sunspot distribution along latitudes as well as longitudes. The aim was to obtain information on the longitudinal distribution of the underlying spot-generating mechanism rather than on the distribution and migration of sunspots or sunspot groups on the solar surface. Therefore only sunspot groups were included in the analysis, and only the time of their first appearance was used. We use simple nonparametric approach to reveal sunspot migration patterns and their persistency. Our analysis shows that regions where spots are generated tend to rotate differentially as the spots and spot group...

  15. Solar Activity Studies using Microwave Imaging Observations

    Science.gov (United States)

    Gopalswamy, N.

    2016-01-01

    We report on the status of solar cycle 24 based on polar prominence eruptions (PEs) and microwave brightness enhancement (MBE) information obtained by the Nobeyama radioheliograph. The north polar region of the Sun had near-zero field strength for more than three years (2012-2015) and ended only in September 2015 as indicated by the presence of polar PEs and the lack of MBE. The zero-polar-field condition in the south started only around 2013, but it ended by June 2014. Thus the asymmetry in the times of polarity reversal switched between cycle 23 and 24. The polar MBE is a good proxy for the polar magnetic field strength as indicated by the high degree of correlation between the two. The cross-correlation between the high- and low-latitude MBEs is significant for a lag of approximately 5.5 to 7.3 years, suggesting that the polar field of one cycle indicates the sunspot number of the next cycle in agreement with the Babcock-Leighton mechanism of solar cycles. The extended period of near-zero field in the north-polar region should result in a weak and delayed sunspot activity in the northern hemisphere in cycle 25.

  16. Active Vibration Damping of Solar Arrays

    Science.gov (United States)

    Reinicke, Gunar; Baier, Horst; Grillebeck, Anton; Scharfeld, Frank; Hunger, Joseph; Abou-El-Ela, A.; Lohberg, Andreas

    2012-07-01

    Current generations of large solar array panels are lightweight and flexible constructions to reduce net masses. They undergo strong vibrations during launch. The active vibration damping is one convenient option to reduce vibration responses and limit stresses in facesheets. In this study, two actuator concepts are used for vibration damping. A stack interface actuator replaces a panel hold down and is decoupled from bending moments and shear forces. Piezoelectric patch actuators are used as an alternative, where the number, position and size of actuators are mainly driven by controllability analyses. Linear Quadratic Gaussian control is used to attenuate vibrations of selected mode shapes with both actuators. Simulations as well as modal and acoustic tests show the feasibility of selected actuator concepts.

  17. Nuclear Interference effects in 8B sub-Coulomb breakup

    OpenAIRE

    Nunes, F. M.; Thompson, I.J.

    1998-01-01

    The breakup of $^8$B on $^{58}$Ni below the Coulomb barrier was measured recently with the aim of determining the Coulomb breakup components. We reexamine this reaction, and perform one step quantum-mechanical calculations that include E1, E2 and nuclear contributions. We show that the nuclear contribution is by no means negligible at the intermediate angular range where data was taken. Our results indicate that, for an accurate description of this reaction, Coulomb E1, E2 and nuclear process...

  18. Solar air-conditioning-active, hybrid and passive

    Energy Technology Data Exchange (ETDEWEB)

    Yellott, J. I.

    1981-04-01

    After a discussion of summer air conditioning requirements in the United States, active, hybrid, and passive cooling systems are defined. Active processes and systems include absorption, Rankine cycle, and a small variety of miscellaneous systems. The hybrid solar cooling and dehumidification technology of desiccation is covered as well as evaporative cooling. The passive solar cooling processes covered include convective, radiative and evaporative cooling. Federal and state involvement in solar cooling is then discussed. (LEW)

  19. The solar-stellar connection: Magnetic activity of seismic solar analogs

    CERN Document Server

    Salabert, D; Beck, P G; Regulo, C; Ballot, J; Creevey, O L; Egeland, R; Nascimento, J -D do; Hernandez, F Perez; Bigot, L; Mathur, S; Metcalfe, T S; Corsaro, E; Palle, P L

    2016-01-01

    Finding solar-analog stars with fundamental properties as close as possible to the Sun and studying the characteristics of their surface magnetic activity is a very promising way to understand the solar variability and its associated dynamo process. However, the identification of solar-analog stars depends on the accuracy of the estimated stellar parameters. Thanks to the photometric CoROT and Kepler space missions, the addition of asteroseismic data was proven to provide the most accurate fundamental properties that can be derived from stellar modeling today. Here, we present our latest results on the solar-stellar connection by studying 18 solar analogs that we identified among the Kepler seismic sample (Salabert et al., 2016a). We measured their magnetic activity properties using the observations collected by the Kepler satellite and the ground-based, high-resolution HERMES spectrograph. The photospheric (Sph) and chromospheric (S) magnetic activity proxies of these seismic solar analogs are compared in re...

  20. Can origin of the 2400-year cycle of solar activity be caused by solar inertial motion?

    Directory of Open Access Journals (Sweden)

    I. Charvátová

    Full Text Available A solar activity cycle of about 2400 years has until now been of uncertain origin. Recent results indicate it is caused by solar inertial motion. First we describe the 178.7-year basic cycle of solar motion. The longer cycle, over an 8000 year interval, is found to average 2402.2 years. This corresponds to the Jupiter/Heliocentre/Barycentre alignments (9.8855 × 243. Within each cycle an exceptional segment of 370 years has been found characterized by a looping pattern by a trefoil or quasitrefoil geometry. Solar activity, evidenced by 14C tree-ring proxies, shows the same pattern. Solar motion is computable in advance, so this provides a basis for future predictive assessments. The next 370-year segment will occur between AD 2240 and 2610.

    Key words: Solar physics (celestial mechanics

  1. Solar Activity, Different Geomagnetic Activity Levels and Acute Myocardial Infarction

    Science.gov (United States)

    Dimitrova, Svetla; Jordanova, Malina; Stoilova, Irina; Taseva, Tatiana; Maslarov, Dimitar

    Results on revealing a possible relationship between solar activity (SA) and geomagnetic activity (GMA) and acute myocardial infarction (AMI) morbidity are presented. Studies were based on medical data covering the period from 1.12.1995 to 31.12.2004 and concerned daily distribution of patients with AMI diagnose (in total 1192 cases) from Sofia region on the day of admission at the hospital. Analysis of variance (ANOVA) was applied to check the significance of GMA intensity effect and the type of geomagnetic storms, those caused by Magnetic Clouds (MC) and by High Speed Solar Wind Streams (HSSWS), on AMI morbidity. Relevant correlation coefficients were calculated. Results revealed statistically significant positive correlation between considered GMA indices and AMI. ANOVA revealed that AMI number was signifi- cantly increased from the day before (-1st) till the day after (+1st) geomagnetic storms with different intensities. Geomagnetic storms caused by MC were related to significant increase of AMI number in comparison with the storms caused by HSSWS. There was a trend for such different effects even on -1st and +1st day.

  2. Size-Flux Relation in Solar Active Regions

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    We present a study of the relationship between integral area and corre-sponding total magnetic flux for solar active regions. It is shown that some of theserelationships are satisfied to simple power laws. Fractal examination showed thatsome of these power laws can not be justified inside the simple models of stationarymagnetic flux tube aggregation. All magnetic fluxes and corresponding areas werecalculated using the data measured with the Solar Magnetic Field Telescope of theHuairou Solar Observing Station in Beijing.

  3. IPS activity observed as a precursor of solar induced terrestrial activity. [solar wind density fluctuations

    Science.gov (United States)

    Cronyn, W. M.; Shawhan, S. D.; Rickard, J. J.; Mitchell, D. G.; Roelof, E. C.; Gotwols, B. L.

    1978-01-01

    A radio telescope designed to exploit the interplanetary scintillation (IPS) technique and locate, map, and track solar wind disturbances which result in geomagnetic disturbances, thereby providing a forecast capability, is described. Preliminary results from operation of the telescope include: (1) evidence for a precursor signal in the IPS activity with a 1-2 day lead time with respect to density enhancements which frequently give rise to geomagnetic activity; (2) detection of a spectral broadening signature which also serves as a precursor of geomagnetic activity; (3) out-of-the-ecliptic plasma density enhancements which were not detected by near-Earth, ecliptic plane spacecraft; (4) detection of 12 corotating density enhancements;(5) detection of over 80 sources which give detectable scintillation of which 45 have been used for detailed synoptic analysis and 9 for spectral analysis; and (6) measurement of 0-lag coefficient of 0.56 between density and IPS activity enhancements.

  4. Observation of Hysteresis between Solar Activity Indicators and -mode Frequency Shifts for Solar Cycle 22

    Indian Academy of Sciences (India)

    S. C. Tripathy; Brajesh Kumar; Kiran Jain; A. Bhatnagar

    2000-09-01

    Using intermediate degree p-mode frequency data sets for solar cycle 22, we find that the frequency shifts and magnetic activity indicators show a ``hysteresis" phenomenon. It is observed that the magnetic indices follow different paths for the ascending and descending phases of the solar cycle while for radiative indices, the separation between the paths are well within the error limits.

  5. Annual DOE active solar heating and cooling contractors' review meeting. Premeeting proceedings and project summaries

    Energy Technology Data Exchange (ETDEWEB)

    None,

    1981-09-01

    Ninety-three project summaries are presented which discuss the following aspects of active solar heating and cooling: Rankine solar cooling systems; absorption solar cooling systems; desiccant solar cooling systems; solar heat pump systems; solar hot water systems; special projects (such as the National Solar Data Network, hybrid solar thermal/photovoltaic applications, and heat transfer and water migration in soils); administrative/management support; and solar collector, storage, controls, analysis, and materials technology. (LEW)

  6. On the Relationship Between Solar Wind Speed, Geomagnetic Activity, and the Solar Cycle Using Annual Values

    Science.gov (United States)

    Wilson, Robert M.; Hathaway, David H.

    2008-01-01

    The aa index can be decomposed into two separate components: the leading sporadic component due to solar activity as measured by sunspot number and the residual or recurrent component due to interplanetary disturbances, such as coronal holes. For the interval 1964-2006, a highly statistically important correlation (r = 0.749) is found between annual averages of the aa index and the solar wind speed (especially between the residual component of aa and the solar wind speed, r = 0.865). Because cyclic averages of aa (and the residual component) have trended upward during cycles 11-23, cyclic averages of solar wind speed are inferred to have also trended upward.

  7. Recent perspectives in solar physics - Elemental composition, coronal structure and magnetic fields, solar activity

    Science.gov (United States)

    Newkirk, G., Jr.

    1975-01-01

    Elemental abundances in the solar corona are studied. Abundances in the corona, solar wind and solar cosmic rays are compared to those in the photosphere. The variation in silicon and iron abundance in the solar wind as compared to helium is studied. The coronal small and large scale structure is investigated, emphasizing magnetic field activity and examining cosmic ray generation mechanisms. The corona is observed in the X-ray and EUV regions. The nature of coronal transients is discussed with emphasis on solar-wind modulation of galactic cosmic rays. A schematic plan view of the interplanetary magnetic field during sunspot minimum is given showing the presence of magnetic bubbles and their concentration in the region around 4-5 AU by a fast solar wind stream.

  8. Solar-collector manufacturing activity, July through December, 1981

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-03-01

    Solar thermal collector and solar cell manufacturing activity is both summarized and tabulated. Data are compared for three survey periods (July through December, 1981; January through June, 1981; and July through December, 1980). Annual totals are also provided for the years 1979 through 1981. Data include total producer shipments, end use, market sector, imports and exports. (LEW)

  9. Solar Energy Education. Renewable energy activities for biology

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    An instructional aid for teachers is presented that will allow biology students the opportunity to learn about renewable energy sources. Some of the school activities include using leaves as collectors of solar energy, solar energy stored in wood, and a fuel value test for green and dry woods. A study of organic wastes as a source of fuel is included. (BCS)

  10. Helicity of Solar Active Regions from a Dynamo Model

    Indian Academy of Sciences (India)

    Piyali Chatterjee

    2006-06-01

    We calculate helicities of solar active regions based on the idea that poloidal flux lines get wrapped around a toroidal flux tube rising through the convection zone, thereby giving rise to the helicity. We use our solar dynamo model based on the Babcock–Leighton -effect to study how helicity varies with latitude and time.

  11. The Magnetic Classification of Solar Active Regions 1992 - 2015

    OpenAIRE

    Jaeggli, Sarah A.; Norton, Aimee A.

    2016-01-01

    The purpose of this letter is to address a blind-spot in our knowledge of solar active region statistics. To the best of our knowledge there are no published results showing the variation of the Mount Wilson magnetic classifications as a function of solar cycle based on modern observations. We show statistics for all active regions reported in the daily Solar Region Summary from 1992 January 1 to 2015 December 31. We find that the $\\alpha$ and $\\beta$ class active regions (including all sub-g...

  12. Secular variations in the solar corona shape according to observations during a solar activity minimum epoch

    OpenAIRE

    Tlatov, A. G.

    2008-01-01

    Analysis of the solar corona structure during the periods of minimum solar activity from 1867 till 2006 has been carried out. A new flattening index for the large coronal streamers has been proposed. It has been shown that the index has been smoothly changing during the last 140 years. The minimal value of the index occurred during activity cycles 17--19; this was the period when the solar corona most of all corresponded to the dipole configuration of the global magnetic field of the Sun. At ...

  13. Assessment of active solar systems in the residential sector of North Carolina, 1974 - 1995

    Science.gov (United States)

    Brown, D.; St. John, K.

    1981-02-01

    An evaluation is presented of the contribution active solar systems can make in North Carolina's residential sector over the next 15 years. The report is divided into 5 parts: introduction; current solar industry status; projected use of active solar systems to 1995; maximum potential for active solar systems to 1995; recommendations for state solar incentives. Information in the appendices includes: conversion methodology; square feet of collector to Btu; economic analysis of solar systems based on life costs; methodology for percentage breakdowns on projected solar system sales; North Carolina solar manufacturers/distributors and national manufacturers; solar legislation; economic analysis of solar systems; and data sources.

  14. Solar active envelope module with an adjustable transmittance/absorptance

    OpenAIRE

    C. Villasante Villasante; I. del Hoyo; Pagola, I. (I.); Sanchez, M.; E. Aranzabe

    2015-01-01

    A solar active envelope module with a high flexibility degree is proposed in this paper. The transparent module controls the day-lighting of the room, improving the indoor environment, while absorbing the superfluous solar energy inside. That energy is used to increase the efficiency of heating, ventilation, and the air-conditioning (HVAC) system of the building. This is carried out through a fine control of the absorptance of the envelope module. The active envelope module consists of three ...

  15. Solar activity dependence of nightside aurora in winter conditions

    Science.gov (United States)

    Zhou, Su; Luan, Xiaoli; Dou, Xiankang

    2016-02-01

    The dependence of the nightside (21:00-03:00 MLT; magnetic local time) auroral energy flux on solar activity was quantitatively studied for winter/dark and geomagnetically quiet conditions. Using data combined from Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics/Global Ultraviolet Imager and Defense Meteorological Satellite Program/Special Sensor Ultraviolet Spectrographic Imager observations, we separated the effects of geomagnetic activity from those of solar flux on the nightside auroral precipitation. The results showed that the nightside auroral power was reduced by ~42% in solar maximum (F10.7 = 200 sfu; solar flux unit 1 sfu = 10-22 W m-2 Hz-1) with respect to that under solar minimum (F10.7 = 70 sfu) for the Kp = 1 condition, and this change rate became less (~21%) for the Kp = 3 condition. In addition, the solar cycle dependence of nightside auroral power was similar with that from both the premidnight (21:00-23:00 MLT) and postmidnight (01:00-03:00 MLT) sectors. These results indicated that as the ionospheric ionization increases with the enhanced auroral and geomagnetic activities, the solar activity dependences of nightside auroral power become weaker, at least under geomagnetically quiet conditions.

  16. Solar activity and life. A review

    International Nuclear Information System (INIS)

    Recent claims advocate a downward revision of the solar oxygen abundance. This is a reflection of what may be called a 'solar crisis' whereby we mean that previous consensus in our understanding of our nearest star was unfounded. The implications for solar physics, and chemistry, are obvious and much research in the near future will give us a much clearer understanding of the Sun. We wish to review and update recent work concerning the frontier between Space Weather (SpW) and Astrobiology. We argue that the present robust programs of various space agencies reinforce our hope for a better understanding of the bases of Astrobiology. Eventually with a more realistic model of the Sun, more reliable discussions of all the factors influencing the origin of life on Earth will be possible. (author)

  17. Radio Imaging Observations of Solar Activity Cycle and Its Anomaly

    Science.gov (United States)

    Shibasaki, K.

    2011-12-01

    The 24th solar activity cycle has started and relative sunspot numbers are increasing. However, their rate of increase is rather slow compared to previous cycles. Active region sizes are small, lifetime is short, and big (X-class) flares are rare so far. We study this anomalous situation using data from Nobeyama Radioheliograph (NoRH). Radio imaging observations have been done by NoRH since 1992. Nearly 20 years of daily radio images of the Sun at 17 GHz are used to synthesize a radio butterfly diagram. Due to stable operation of the instrument and a robust calibration method, uniform datasets are available covering the whole period of observation. The radio butterfly diagram shows bright features corresponding to active region belts and their migration toward low latitude as the solar cycle progresses. In the present solar activity cycle (24), increase of radio brightness is delayed and slow. There are also bright features around both poles (polar brightening). Their brightness show solar cycle dependence but peaks around solar minimum. Comparison between the last minimum and the previous one shows decrease of its brightness. This corresponds to weakening of polar magnetic field activity between them. In the northern pole, polar brightening is already weakened in 2011, which means it is close to solar maximum in the northern hemisphere. Southern pole does not show such feature yet. Slow rise of activity in active region belt, weakening of polar activity during the minimum, and large north-south asymmetry in polar activity imply that global solar activity and its synchronization are weakening.

  18. Latitude migration of solar activity at high latitudes

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Utilized here is the Carte Synoptique solar filament archive,namely the catalogue of solar filaments from March 1919 to December 1989,corresponding to solar rotation numbers 876 to 1823 to study Iatitudinal migration of solar activity at high Iatitudes.Except the well-known poleward migration of solar activity from middle Iatitudes to the poles,an equatorward migration is found from the solar poles toward middle Iatitudes(about 40°)within a normal cycle,which iS neglected before,and the time interval for the former migration(4.4 years)is about 2.2 years shorter than that for the latter(6.6 years),indicating that the change from one migration to the other takes place around the maximum time of a normal cycle.In the future,a dynamo model should represent the migration from the poles toward middle Iatitudes of the Sun,besides the migration in"butterfly diagrams"and the"rush to the poles".The traditional extended activity cycle is actually a part of the period of the successive migration from the poles toward the solar equator.

  19. Are cold winters in Europe associated with low solar activity?

    Energy Technology Data Exchange (ETDEWEB)

    Lockwood, M; Harrison, R G; Woollings, T [Space Environment Physics Group, Department of Meteorology, University of Reading, Earley Gate, PO Box 243, Reading RG6 6BB (United Kingdom); Solanki, S K, E-mail: m.lockwood@reading.ac.uk [MPI fuer Sonnensystemforschung, Max-Planck-Strasse 2, 37191 Katlenburg-Lindau (Germany)

    2010-04-15

    Solar activity during the current sunspot minimum has fallen to levels unknown since the start of the 20th century. The Maunder minimum (about 1650-1700) was a prolonged episode of low solar activity which coincided with more severe winters in the United Kingdom and continental Europe. Motivated by recent relatively cold winters in the UK, we investigate the possible connection with solar activity. We identify regionally anomalous cold winters by detrending the Central England temperature (CET) record using reconstructions of the northern hemisphere mean temperature. We show that cold winter excursions from the hemispheric trend occur more commonly in the UK during low solar activity, consistent with the solar influence on the occurrence of persistent blocking events in the eastern Atlantic. We stress that this is a regional and seasonal effect relating to European winters and not a global effect. Average solar activity has declined rapidly since 1985 and cosmogenic isotopes suggest an 8% chance of a return to Maunder minimum conditions within the next 50 years (Lockwood 2010 Proc. R. Soc. A 466 303-29): the results presented here indicate that, despite hemispheric warming, the UK and Europe could experience more cold winters than during recent decades.

  20. The risk characteristics of solar and geomagnetic activity

    Science.gov (United States)

    Podolska, Katerina

    2016-04-01

    The main aim of this contribution is a deeper analysis of the influence of solar activity which is expected to have an impact on human health, and therefore on mortality, in particular civilization and degenerative diseases. We have constructed the characteristics that represent the risk of solar and geomagnetic activity on human health on the basis of our previous analysis of association between the daily numbers of death on diseases of the nervous system and diseases of the circulatory system and solar and geomagnetic activity in the Czech Republic during the years 1994 - 2013. We used long period daily time series of numbers of deaths by cause, long period time series of solar activity indices (namely R and F10.7), geomagnetic indicies (Kp planetary index, Dst) and ionospheric parameters (foF2 and TEC). The ionospheric parameters were related to the geographic location of the Czech Republic and adjusted for middle geographic latitudes. The risk characteristics were composed by cluster analysis in time series according to the phases of the solar cycle resp. the seasonal insolation at mid-latitudes or the daily period according to the impact of solar and geomagnetic activity on mortality by cause of death from medical cause groups of death VI. Diseases of the nervous system and IX. Diseases of the circulatory system mortality by 10th Revision of International Classification of Diseases WHO (ICD-10).

  1. Active solar heating and cooling information user study

    Energy Technology Data Exchange (ETDEWEB)

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-01-01

    The results of a series of telephone interviews with groups of users of information on active solar heating and cooling (SHAC). An earlier study identified the information user groups in the solar community and the priority (to accelerate solar energy commercialization) of getting information to each group. In the current study only high-priority groups were examined. Results from 19 SHAC groups respondents are analyzed in this report: DOE-Funded Researchers, Non-DOE-Funded Researchers, Representatives of Manufacturers (4 groups), Distributors, Installers, Architects, Builders, Planners, Engineers (2 groups), Representatives of Utilities, Educators, Cooperative Extension Service County Agents, Building Owners/Managers, and Homeowners (2 groups). The data will be used as input to the determination of information products and services the Solar Energy Research Institute, the Solar Energy Information Data Bank Network, and the entire information outreach community should be preparing and disseminating.

  2. Search for the second forbidden beta decay of 8B to the ground state of 8Be

    CERN Document Server

    Bacrania, M K; Robertson, R G H; Storm, D W

    2007-01-01

    A significant decay branch of 8B to the ground state of 8Be would extend the solar neutrino spectrum to higher energies than anticipated in the standard solar models. These high-energy neutrinos would affect current neutrino oscillation results and also would be a background to measurements of the hep process. We have measured the delayed alpha particles from the decay of 8B, with the goal of observing the two 46-keV alpha particles arising from the ground-state decay. The 8B was produced using an in-flight radioactive beam technique. It was implanted in a silicon PIN-diode detector that was capable of identifying the alpha-particles from the 8Be ground state. From this measurement we find an upper limit (at 90% confidence level) of 7.3 x 10^{-5} for the branching ratio to the ground state. In addition to describing this measurement, we present a theoretical calculation for this branching ratio.

  3. Solar activity monitoring and forecasting capabilities at Big Bear Solar Observatory

    Directory of Open Access Journals (Sweden)

    P. T. Gallagher

    Full Text Available The availability of full-disk, high-resolution Ha images from Big Bear Solar Observatory (USA, Kanzelhöhe Solar Observatory (Austria, and Yunnan Astronomical Observatory (China allows for the continual monitoring of solar activity with unprecedented spatial and temporal resolution. Typically, this Global Ha Network (GHN provides almost uninterrupted Ha images with a cadence of 1 min and an image scale of 1'' per pixel. 

    Every hour, GHN images are transferred to the web-based BBSO Active Region Monitor (ARM; www.bbso.njit.edu/arm, which includes the most recent EUV, continuum, and magnetogram data from the Solar and Heliospheric Observatory, together with magnetograms from the Global Oscillation Network Group. ARM also includes a variety of active region properties from the National Oceanic and Atmospheric Administration’s Space Environment Center, such as up-to-date active region positions, GOES 5-min X-ray data, and flare identification. Stokes I, V, Q, and U images are available from the recently operational BBSO Digital Vector Magnetograph and the Vector Magnetograph at the Huairou Solar Observing Station of Beijing Observatory. Vector magnetograms provide complete information on the photospheric magnetic field, and allow for magnetic flux gradients, electric currents, and shear forces to be calculated: these measurements are extremely sensitive to conditions resulting in flaring activity. Furthermore, we have developed a Flare Prediction System which estimates the probability for each region to produce C-, M-, or X-class flares based on nearly eight years of NOAA data from cycle 22. This, in addition to BBSO’s daily solar activity reports, has proven a useful resource for activity forecasting.

    Key words. Solar physics, astronomy and astrophysics (flares and mass ejections; instruments and techniques

  4. Strain background modifies phenotypes in the ATP8B1-deficient mouse

    NARCIS (Netherlands)

    S. Shah; U.R. Sanford; J.C. Vargas; H. Xu; A. Groen; C.C. Paulusma; J.P. Grenert; L. Pawlikowska; S. Sen; R.P.J. Oude Elferink; L.N. Bull

    2010-01-01

    BACKGROUND: Mutations in ATP8B1 (FIC1) underlie cases of cholestatic disease, ranging from chronic and progressive (progressive familial intrahepatic cholestasis) to intermittent (benign recurrent intrahepatic cholestasis). The ATP8B1-deficient mouse serves as an animal model of human ATP8B1 deficie

  5. The Magnetic Classification of Solar Active Regions 1992-2015

    Science.gov (United States)

    Jaeggli, S. A.; Norton, A. A.

    2016-03-01

    The purpose of this Letter is to address a blindspot in our knowledge of solar active region (AR) statistics. To the best of our knowledge, there are no published results showing the variation of the Mount Wilson magnetic classifications as a function of solar cycle based on modern observations. We show statistics for all ARs reported in the daily Solar Region Summary from 1992 January 1 to 2015 December 31. We find that the α and β class ARs (including all sub-groups, e.g., βγ, βδ) make up fractions of approximately 20% and 80% of the sample, respectively. This fraction is relatively constant during high levels of activity however, an increase in the α fraction to about 35% and and a decrease in the β fraction to about 65% can be seen near each solar minimum and are statistically significant at the 2σ level. Over 30% of all ARs observed during the years of solar maxima were appended with the classifications γ and/or δ, while these classifications account for only a fraction of a percent during the years near the solar minima. This variation in the AR types indicates that the formation of complex ARs may be due to the pileup of frequent emergence of magnetic flux during solar maximum, rather than the emergence of complex, monolithic flux structures.

  6. Solar activity forecast with a dynamo model

    OpenAIRE

    Jiang, Jie; Chatterjee, Piyali; Choudhuri, Arnab Rai

    2007-01-01

    Although systematic measurements of the solar polar magnetic field exist only from mid 1970s, other proxies can be used to infer the polar field at earlier times. The observational data indicate a strong correlation between the polar field at a sunspot minimum and the strength of the next cycle, although the strength of the cycle is not correlated well with the polar field produced at its end. This suggests that the Babcock Leighton mechanism of poloidal field generation from decaying sunspot...

  7. Investigation of relationships between parameters of solar nano-flares and solar activity

    Science.gov (United States)

    Safari, Hossein; Javaherian, Mohsen; Kaki, Bardia

    2016-07-01

    Solar flares are one of the important coronal events which are originated in solar magnetic activity. They release lots of energy during the interstellar medium, right after the trigger. Flare prediction can play main role in avoiding eventual damages on the Earth. Here, to interpret solar large-scale events (e.g., flares), we investigate relationships between small-scale events (nano-flares) and large-scale events (e.g., flares). In our method, by using simulations of nano-flares based on Monte Carlo method, the intensity time series of nano-flares are simulated. Then, the solar full disk images taken at 171 angstrom recorded by SDO/AIA are employed. Some parts of the solar disk (quiet Sun (QS), coronal holes (CHs), and active regions (ARs)) are cropped and the time series of these regions are extracted. To compare the simulated intensity time series of nano-flares with the intensity time series of real data extracted from different parts of the Sun, the artificial neural networks is employed. Therefore, we are able to extract physical parameters of nano-flares like both kick and decay rate lifetime, and the power of their power-law distributions. The procedure of variations in the power value of power-law distributions within QS, CH is similar to AR. Thus, by observing the small part of the Sun, we can follow the procedure of solar activity.

  8. Solar-Type Activity in Main-Sequence Stars

    CERN Document Server

    Gershberg, Roald E

    2005-01-01

    Solar-type activity over the whole range of the electromagnetic spectrum is a phenomenon inherent in the majority of low- and moderate-mass main sequence stars. In this monograph observational results are summarized in a systematic and comprehensive fashion. The analysis of the various manifestations of such stellar activity leads to the identification of these phenomena with macroscopic non-linear processes in a magnetized plasma. Comparative study of flare stars and the Sun has become increasingly fruitful and is presently an active field of research involving stellar and solar physicists, experts in plasma physics and high-energy astrophysicists. This book will provide them with both an introduction and overview of observational results from the first optical photometry and spectroscopy, from the satellite telescopes International Ultraviolet Explorer to Hubble Space Telescope, XMM-Newton and Chandra, as well as with the present physical interpretation of solar-type activity in main sequence stars. Gershbe...

  9. The Magnetic Classification of Solar Active Regions 1992 - 2015

    CERN Document Server

    Jaeggli, Sarah A

    2016-01-01

    The purpose of this letter is to address a blind-spot in our knowledge of solar active region statistics. To the best of our knowledge there are no published results showing the variation of the Mount Wilson magnetic classifications as a function of solar cycle based on modern observations. We show statistics for all active regions reported in the daily Solar Region Summary from 1992 January 1 to 2015 December 31. We find that the $\\alpha$ and $\\beta$ class active regions (including all sub-groups e.g. $\\beta\\gamma$, $\\beta\\delta$) make up fractions of approximately 20% and 80% of the sample respectively. This fraction is relatively constant during high levels of activity, however, an increase in the $\\alpha$ fraction to about 35% and and a decrease in the $\\beta$ fraction to about 65% can be seen near each solar minimum and is statistically significant at the 2-$\\sigma$ level. Over 30% of all active regions observed during the years of solar maxima were appended with the classifications $\\gamma$ and/or $\\del...

  10. Experimental evaluation of an active solar thermoelectric radiant wall system

    International Nuclear Information System (INIS)

    Highlights: • A novel active solar thermoelectric radiant wall are proposed and tested. • The novel wall can control thermal flux of building envelope by using solar energy. • The novel wall can eliminate building envelop thermal loads and provide cooling capacity for space cooling. • Typical application issues including connection strategies, coupling with PV system etc. are discussed. - Abstract: Active solar thermoelectric radiant wall (ASTRW) system is a new solar wall technology which integrates thermoelectric radiant cooling and photovoltaic (PV) technologies. In ASTRW system, a PV system transfers solar energy directly into electrical energy to power thermoelectric cooling modes. Both the thermoelectric cooling modes and PV system are integrated into one enclosure surface as radiant panel for space cooling and heating. Hence, ASTRW system presents fundamental shift from minimizing building envelope energy losses by optimizing the insulation thickness to a new regime where active solar envelop is designed to eliminate thermal loads and increase the building’s solar gains while providing occupant comfort in all seasons. This article presents an experimental study of an ASTRW system with a dimension of 1580 × 810 mm. Experimental results showed that the inner surface temperature of the ASTRW is 3–8 °C lower than the indoor temperature of the test room, which indicated that the ASTRW system has the ability to control thermal flux of building envelope by using solar energy and reduce the air conditioning system requirements. Based on the optimal operating current of TE modules and the analysis based upon PV modeling theories, the number and type of the electrical connections for the TE modules in ASTRW system are discussed in order to get an excellent performance in the operation of the ASTRW system

  11. Fast growth associated with aberrant vasculature and hypoxia in fibroblast growth factor 8b (FGF8b over-expressing PC-3 prostate tumour xenografts

    Directory of Open Access Journals (Sweden)

    Kinnunen Ilpo

    2010-10-01

    Full Text Available Abstract Background Prostate tumours are commonly poorly oxygenated which is associated with tumour progression and development of resistance to chemotherapeutic drugs and radiotherapy. Fibroblast growth factor 8b (FGF8b is a mitogenic and angiogenic factor, which is expressed at an increased level in human prostate tumours and is associated with a poor prognosis. We studied the effect of FGF8b on tumour oxygenation and growth parameters in xenografts in comparison with vascular endothelial growth factor (VEGF-expressing xenografts, representing another fast growing and angiogenic tumour model. Methods Subcutaneous tumours of PC-3 cells transfected with FGF8b, VEGF or empty (mock vectors were produced and studied for vascularity, cell proliferation, glucose metabolism and oxygenation. Tumours were evaluated by immunohistochemistry (IHC, flow cytometry, use of radiolabelled markers of energy metabolism ([18F]FDG and hypoxia ([18F]EF5, and intratumoral polarographic measurements of pO2. Results Both FGF8b and VEGF tumours grew rapidly in nude mice and showed highly vascularised morphology. Perfusion studies, pO2 measurements, [18F]EF5 and [18F]FDG uptake as well as IHC staining for glucose transport protein (GLUT1 and hypoxia inducible factor (HIF 1 showed that VEGF xenografts were well-perfused and oxygenised, as expected, whereas FGF8b tumours were as hypoxic as mock tumours. These results suggest that FGF8b-induced tumour capillaries are defective. Nevertheless, the growth rate of hypoxic FGF8b tumours was highly increased, as that of well-oxygenised VEGF tumours, when compared with hypoxic mock tumour controls. Conclusion FGF8b is able to induce fast growth in strongly hypoxic tumour microenvironment whereas VEGF-stimulated growth advantage is associated with improved perfusion and oxygenation of prostate tumour xenografts.

  12. Fast growth associated with aberrant vasculature and hypoxia in fibroblast growth factor 8b (FGF8b) over-expressing PC-3 prostate tumour xenografts

    International Nuclear Information System (INIS)

    Prostate tumours are commonly poorly oxygenated which is associated with tumour progression and development of resistance to chemotherapeutic drugs and radiotherapy. Fibroblast growth factor 8b (FGF8b) is a mitogenic and angiogenic factor, which is expressed at an increased level in human prostate tumours and is associated with a poor prognosis. We studied the effect of FGF8b on tumour oxygenation and growth parameters in xenografts in comparison with vascular endothelial growth factor (VEGF)-expressing xenografts, representing another fast growing and angiogenic tumour model. Subcutaneous tumours of PC-3 cells transfected with FGF8b, VEGF or empty (mock) vectors were produced and studied for vascularity, cell proliferation, glucose metabolism and oxygenation. Tumours were evaluated by immunohistochemistry (IHC), flow cytometry, use of radiolabelled markers of energy metabolism ([18F]FDG) and hypoxia ([18F]EF5), and intratumoral polarographic measurements of pO2. Both FGF8b and VEGF tumours grew rapidly in nude mice and showed highly vascularised morphology. Perfusion studies, pO2 measurements, [18F]EF5 and [18F]FDG uptake as well as IHC staining for glucose transport protein (GLUT1) and hypoxia inducible factor (HIF) 1 showed that VEGF xenografts were well-perfused and oxygenised, as expected, whereas FGF8b tumours were as hypoxic as mock tumours. These results suggest that FGF8b-induced tumour capillaries are defective. Nevertheless, the growth rate of hypoxic FGF8b tumours was highly increased, as that of well-oxygenised VEGF tumours, when compared with hypoxic mock tumour controls. FGF8b is able to induce fast growth in strongly hypoxic tumour microenvironment whereas VEGF-stimulated growth advantage is associated with improved perfusion and oxygenation of prostate tumour xenografts

  13. Solar Activity Studies using Microwave Imaging Observations

    CERN Document Server

    Gopalswamy, Nat

    2016-01-01

    We report on the status of solar cycle 24 based on polar prominence eruptions (PEs) and microwave brightness enhancement (MBE) information obtained by the Nobeyama radioheliograph. The north polar region of the Sun had near-zero field strength for more than three years (2012 to 2015) and ended only in September 2015 as indicated by the presence of polar PEs and the lack of MBE. The zero-polar-field condition in the south started only around 2013, but it ended by June 2014. Thus the asymmetry in the times of polarity reversal switched between cycle 23 and 24. The polar MBE is a good proxy for the polar magnetic field strength as indicated by the high degree of correlation between the two. The cross-correlation between the high- and low-latitude MBEs is significant for a lag of ~5.5 to 7.3 years, suggesting that the polar field of one cycle indicates the sunspot number of the next cycle in agreement with the Babcock-Leighton mechanism of solar cycles. The extended period of near-zero field in the north-polar re...

  14. Initiation of non-tropical thunderstorms by solar activity

    International Nuclear Information System (INIS)

    Correlative evidence accumulating since 1926 suggests that there must be some physical coupling mechanism between solar activity and thunderstorm occurrence in middle to high latitudes. Such a link may be provided by alteration of atmospheric electric parameters through the influence of cosmic ray decreases and/or high-energy solar protons associated with active solar events. Galactic cosmic ray decreases tend to enhance the electric field at low heights. The protons produce excess ionization near and above 20 km, greatly increasing the atmospheric conductivity and possibly lowering the height of the electrosphere. Consequent effects near the solar proton cut-off latitude also lead to an enhancement of the atmospheric electric field near the surface. If appropriate meteorological conditions (warm moist air with updrafts) exist or develop during a solar event, the atmospheric electric field enhancement may be sufficient to trigger thunderstorm development. The suggested mechanism appears plausible enough to warrant a co-ordinated experimental effort involving satellite balloon and ground-based measurements of the possible forcing functions (solar protons and cosmic rays) and the responding atmospheric electrical and ionic species' characteristics. (author)

  15. Surface magnetic fields during the solar activity cycle

    Energy Technology Data Exchange (ETDEWEB)

    Howard, R.; Labonte, B.J. (Mount Wilson Observatory, Pasadena, CA (USA))

    1981-11-01

    We examine magnetic field measurements from Mount Wilson that cover the solar surface over a 13 1/2 year interval, from 1967 to mid-1980. Seen in long-term averages, the sunspot latitudes are characterized by fields of preceding polarity, while the polar fields are built up by a few discrete flows of following polarity fields. These drift speeds average about 10 ms/sup -1/ in latitude - slower early in the cycle and faster later in the cycle - and result from a large-scale poleward displacement of field lines, not diffusion. Weak field plots show essentially the same pattern as the stronger fields, and both data indicate that the large-scale field patterns result only from fields emerging at active region latitudes. The total magnetic flux over the solar surface varies only by a factor of about 3 from mimimum to a very strong maximum (1979). Magnetic flux is highly concentrated toward the solar equator; only about 1% of the flux is at the poles. Magnetic flux appears at the solar surface at a rate which is sufficient to create all the flux that is seen at the solar surface within a period of only 10 days. Flux can spread relatively rapidly over the solar surface from outbreaks of activity. This is presumably caused by diffusion. In general, magnetic field lines at the photospheric level are nearly radial.

  16. Reconstructed Total Solar Irradiance as a precursor for long-term solar activity predictions: a nonlinear dynamics approach

    CERN Document Server

    Sello, S

    2012-01-01

    Total solar irradiance variations, about 0.1% between solar activity maximum and minimum, are available from accurate satellite measurements since 1978 and thus do not provide useful information on longer-term secular trends. Recently, Krivova et al., 2007 reconstructed, using suitable models, the total solar irradiance from the end of the Maunder minimum to the present, based on variations of the surface distribution of the solar magnetic field. The latter is calculated from the long historical record of the sunspot numbers using a simple but consistent physical model. There are many classes of proposed prediction methods for solar cycles behavior, based on different direct solar activity indices or on various valuable proxies. In particular, the precursor based methods, utilize a given proxy index to predict the future evolution of solar activity. Long-term time series of sunspot numbers, allow us to reliably predict the behavior of the next solar cycle, few years in advance. In previous papers we predicted...

  17. CORRELATIVE ANALYSIS OF COSMIC RAY INTENSITY AND SOLAR ACTIVITY PARAMETERS

    Directory of Open Access Journals (Sweden)

    M. ROY

    2014-02-01

    Full Text Available Incoming cosmic ray shows significant intensity modulation in association with different solar geo parameters during their passage through heliosphere. Cosmic ray intensity is found anticorrelated with solar activity parameters. Using pressure corrected data of Mcmurdo neutron monitor, modulation of cosmic ray is analyzed covering solar cycles 21, 22, 23 and 24 (from 1976 to 2013. Negative and high correlations are obtained with some time lag for most of the solar parameters. Difference in shapes of hysteresis curves CRI~SSN, CRI~SRF. CRI~CI and CRI~FI for odd and even cycles pointed out that different mechanisms convection and diffusion are the dominating factors to drift cosmic ray particles.

  18. Multi-parametric Effect of Solar Activity on Cosmic Rays

    Indian Academy of Sciences (India)

    V. K. Mishra; Meera Gupta; B. N. Mishra; S. K. Nigam; A. P. Mishra

    2008-03-01

    The long-term modulation of cosmic ray intensity (CRI) by different solar activity (SA) parameters and an inverse correlation between individual SA parameter and CRI is well known. Earlier, it has been suggested that the concept of multi-parametric modulation of CRI may play an important role in the study of long-term modulation of CRI. In the present study, we have tried to investigate the combined effect of a set of two SA parameters in the long-term modulation of CRI. For this purpose, we have used a new statistical technique called “Running multiple correlation method”, based on the “Running cross correlation method”. The running multiple correlation functions among different sets of two SA parameters (e.g., sunspot numbers and solar flux, sunspot numbers and coronal index, sunspot numbers and grouped solar flares, etc.) and CRI have been correlated separately. It is found that the strength of multiple correlation (among two SA parameters and CRI) and cross correlation (between individual SA parameter and CRI) is almost similar throughout the period of investigation (1955–2005). It is also found that the multiple correlations among various SA parameters and CRI is stronger during ascending and descending phases of the solar cycles and it becomes weaker during maxima and minima of the solar cycles, which is in accordance with the linear relationship between SA parameters and CRI. The values of multiple correlation functions among different sets of SA parameters and CRI fall well within the 95% confidence interval. In the view of odd–even hypothesis of solar cycles, the strange behaviour of present cycle 23 (odd cycle), as this is characterized by many peculiarities with double peaks and many quiet periods (Gnevyshev gaps) interrupted the solar activity (for example April 2001, October–November 2003 and January 2005), leads us to speculate that the solar cycle 24 (even cycle) might be of exceptional nature.

  19. Adsorption of Procion Red MX 8B using spent tea leaves as adsorbent

    Science.gov (United States)

    Heraldy, Eddy; Osa, Riesta Ramdhaniyati; Suryanti, Venty

    2016-02-01

    The adsorption of Procion Red MX 8B using spent tea leaves (STL) as adsorbent, has been studied by batch adsorption technique. The adsorbent was activated by NaOH 4% for 24 hours for delignification process. The adsorbent was characterized using FTIR to indetify the functional groups of cellulose was shown by uptake -OH, C-H and C-O. The optimum conditions of adsorption experiments were achieved when pH was set as 6 with contact time of 75 minutes and capacity of adsorption was 3.28 mg/g. The equilibrium data were fitted to Langmuir and Isotherm Freundlichs. The kinetic models, pseudo first order and pseudo second order were employed to describe the adsorption mechanism. The experimental results showed that the pseudo second order equation was the best model that described the adsorption behavior with the coefficient of correlation (R2) was equal higher than 0.99 The results suggested that STL had high potential to be used as effective adsorbent for Procion Red MX 8B removal.

  20. Calibration Of Sno For The Detection Of (8)b Neutrinos

    CERN Document Server

    Ford, R J

    1999-01-01

    The Sudbury Neutrino Observatory (SNO) is a second generation water Čerenkov detector using 1000 tonnes of heavy water to study neutrino astrophysics. Using deuterium neutrino reactions, SNO will measure the flux and energy spectrum of solar electron neutrinos, and will measure the flavour-blind flux of neutrinos. A nitrogen/multi-dye laser diffuser ball has been designed and installed in SNO for calibration of the electronics, photomultiplier tubes (PMTs) and optical parameters. The laser provides pulsed radiation at 337.1 nm with a 600 psec width and pulse rate up to 50 Hz. The laser can be used directly or as a pump for one of four dye laser resonators, which provides five wavelength selections from 337–500 nm. The light is delivered to a pseudo-isotropic diffuser ball (the laserball) by a 100 μm UV-VIS fibre bundle with less than 1 nsec dispersion at 337 nm. The laserball can be deployed throughout the detector with the rope manipulator system. The laserball output is adjustabl...

  1. Edge Adapted Wavelets, Solar Magnetic Activity, and Climate Change

    CERN Document Server

    Johnson, Robert W

    2009-01-01

    The continuous wavelet transform is adapted to account for signal truncation through renormalization and by modifying the shape of the analyzing window. Comparison is made of the instant and integrated wavelet power with previous algorithms. The edge adapted and renormalized admissible wavelet transforms are used to estimate the level of solar magnetic activity from the sunspot record. The solar activity is compared to Oerlemans' temperature reconstruction and to the Central England Temperature record. A correlation is seen for years between 1610 and 1990, followed by a strong deviation as the recently observed temperature increases.

  2. Is the current lack of solar activity only skin deep?

    CERN Document Server

    Broomhall, A -M; Elsworth, Y; Fletcher, S T; New, R; 10.1088/0004-637X/700/2/L162

    2009-01-01

    The Sun is a variable star whose magnetic activity and total irradiance vary on a timescale of approximately 11 years. The current activity minimum has attracted considerable interest because of its unusual duration and depth. This raises the question: what might be happening beneath the surface where the magnetic activity ultimately originates? The surface activity can be linked to the conditions in the solar interior by the observation and analysis of the frequencies of the Sun's natural seismic modes of oscillation - the p modes. These seismic frequencies respond to changes in activity and are probes of conditions within the Sun. The Birmingham Solar-Oscillations Network (BiSON) has made measurements of p-mode frequencies over the last three solar activity cycles, and so is in a unique position to explore the current unusual and extended solar minimum. We show that the BiSON data reveal significant variations of the p-mode frequencies during the current minimum. This is in marked contrast to the surface ac...

  3. The Solar System Ballet: A Kinesthetic Spatial Astronomy Activity

    Science.gov (United States)

    Heyer, Inge; Slater, T. F.; Slater, S. J.; Astronomy, Center; Education ResearchCAPER, Physics

    2011-05-01

    The Solar System Ballet was developed in order for students of all ages to learn about the planets, their motions, their distances, and their individual characteristics. To teach people about the structure of our Solar System can be revealing and rewarding, for students and teachers. Little ones (and some bigger ones, too) often cannot yet grasp theoretical and spatial ideas purely with their minds. Showing a video is better, but being able to learn with their bodies, essentially being what they learn about, will help them understand and remember difficult concepts much more easily. There are three segments to this activity, which can be done together or separately, depending on time limits and age of the students. Part one involves a short introductory discussion about what students know about the planets. Then students will act out the orbital motions of the planets (and also moons for the older ones) while holding a physical model. During the second phase we look at the structure of the Solar System as well as the relative distances of the planets from the Sun, first by sketching it on paper, then by recreating a scaled version in the class room. Again the students act out the parts of the Solar System bodies with their models. The third segment concentrates on recreating historical measurements of Earth-Moon-Sun system. The Solar System Ballet activity is suitable for grades K-12+ as well as general public informal learning activities.

  4. Measurement of the $^{7}$Be$(p,\\gamma)^{8}$B Cross-Section with an Implanted Target

    CERN Multimedia

    2002-01-01

    % IS366\\\\ \\\\ The $^7$Be(p,$\\gamma)^8$B capture reaction is of major importance to the physics of the sun and the issues of the ``solar neutrino puzzle'' and neutrino masses. We report here on a new determination of the absolute cross section of this reaction, using a novel method which overcomes some of the major experimental uncertainties of previous measurements. We utilize an implanted $^7$Be target and a uniformly scanned particle beam larger than the target spot, eliminating issues of target homogeneity and backscattering loss of $^8$B reaction products. The target was produced using a beam of 1.8 10$^{10}$/s $^7$Be nuclei extracted at ISOLDE(CERN) from a graphite target bombarded by 1 GeV protons in a two-step resonant laser ionization source. The $^7$Be nuclei were directly implanted into a copper substrate to obtain a target of 2 mm diameter with a total of 3.10$^{15}$ atoms. The measurement of the $^8$B production cross section was carried out at the Van de Graaff laboratory of the Weizmann Institute...

  5. Rotation of the Earth, solar activity and cosmic ray intensity

    Energy Technology Data Exchange (ETDEWEB)

    Barlyaeva, T.; Bard, E. [Aix-Marseille Univ., CNRS, IRD, Aix-en-Provence (France). CEREGE, College de France; Abarca-del-Rio, R. [Universidad de Concepcion (UDEC) (Chile). Dept. de Geofisica (DGEO)

    2014-10-01

    We analyse phase lags between the 11-year variations of three records: the semi-annual oscillation of the length of day (LOD), the solar activity (SA) and the cosmic ray intensity (CRI). The analysis was done for solar cycles 20-23. Observed relationships between LOD, CRI and SA are discussed separately for even and odd solar cycles. Phase lags were calculated using different methods (comparison of maximal points of cycles, maximal correlation coefficient, line of synchronization of cross-recurrence plots). We have found different phase lags between SA and CRI for even and odd solar cycles, confirming previous studies. The evolution of phase lags between SA and LOD as well as between CRI and LOD shows a positive trend with additional variations of phase lag values. For solar cycle 20, phase lags between SA and CRI, between SA and LOD, and between CRI and LOD were found to be negative. Overall, our study suggests that, if anything, the length of day could be influenced by solar irradiance rather than by cosmic rays.

  6. Solar activity forecast with a dynamo model

    CERN Document Server

    Jiang, Jie; Choudhuri, Arnab Rai

    2007-01-01

    Although systematic measurements of the solar polar magnetic field exist only from mid 1970s, other proxies can be used to infer the polar field at earlier times. The observational data indicate a strong correlation between the polar field at a sunspot minimum and the strength of the next cycle, although the strength of the cycle is not correlated well with the polar field produced at its end. This suggests that the Babcock Leighton mechanism of poloidal field generation from decaying sunspots involves randomness, whereas the other aspects of the dynamo process must be reasonably ordered and deterministic. Only if the magnetic diffusivity within the convection zone is assumed to be high, we can explain the correlation between the polar field at a minimum and the next cycle. We give several independent arguments that the diffusivity must be of this order. In a dynamo model with diffusivity like this, the poloidal field generated at the mid latitudes is advected toward the poles by the meridional circulation an...

  7. Global Dynamics of Subsurface Solar Active Regions

    CERN Document Server

    Jouve, L; Aulanier, G

    2012-01-01

    We present three-dimensional numerical simulations of a magnetic loop evolving in either a convectively stable or unstable rotating shell. The magnetic loop is introduced in the shell in such a way that it is buoyant only in a certain portion in longitude, thus creating an \\Omega-loop. Due to the action of magnetic buoyancy, the loop rises and develops asymmetries between its leading and following legs, creating emerging bipolar regions whose characteristics are similar to the ones of observed spots at the solar surface. In particular, we self-consistently reproduce the creation of tongues around the spot polarities, which can be strongly affected by convection. We moreover emphasize the presence of ring-shaped magnetic structures around our simulated emerging regions, which we call "magnetic necklace" and which were seen in a number of observations without being reported as of today. We show that those necklaces are markers of vorticity generation at the periphery and below the rising magnetic loop. We also ...

  8. Reconstructed Total Solar Irradiance as a precursor for long-term solar activity predictions: a nonlinear dynamics approach

    OpenAIRE

    Sello, S.

    2012-01-01

    Total solar irradiance variations, about 0.1% between solar activity maximum and minimum, are available from accurate satellite measurements since 1978 and thus do not provide useful information on longer-term secular trends. Recently, Krivova et al., 2007 reconstructed, using suitable models, the total solar irradiance from the end of the Maunder minimum to the present, based on variations of the surface distribution of the solar magnetic field. The latter is calculated from the long histori...

  9. Considerations of active solar installations in urban planning; Consideracion de las instalaciones solares activas en el planeamiento urbanistico

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, G.; Fernandez-Llebrez, F.; Villanueva, M.

    2004-07-01

    This article establishes measures to be considered from the urban planning stage in order to favour the implementation of active solar installations in the urban field. Due to this, some examples will analyse the possible influences between solar installations and urban parameters. Consequently synergies will be proposed between solar thermal installations and urban variables to establish measures aimed at designs that increase solar contribution in cities and new development zones. In this way the planning itself will introduce measures that will increase the active use of solar energy. (Author)

  10. Phosphodiesterase 8B gene polymorphism in women with recurrent miscarriage: A retrospective case control study

    OpenAIRE

    Granfors Michaela; Karypidis Helena; Hosseini Frida; Skjöldebrand-Sparre Lottie; Stavreus-Evers Anneli; Bremme Katarina; Landgren Britth-Marie; Sundström-Poromaa Inger; Wikström Anna-Karin; Åkerud Helena

    2012-01-01

    Abstract Background Recurrent miscarriage affects approximately 1% of all couples. There is a known relation between hypothyroidism and recurrent miscarriage. Phosphodiesterase 8B (PDE8B) is a regulator of cyclic adenosine monophosphate (cAMP) with important influence on human thyroid metabolism. Single nucleotide polymorphism (SNP) rs 4704397 in the PDE8B gene has been shown to be associated with variations in serum Thyroid Stimulating Hormone (TSH) and thyroxine (T4) levels. The aim of this...

  11. Photospheric Magnetic Free Energy Density of Solar Active Regions

    CERN Document Server

    Zhang, Hongqi

    2016-01-01

    We present the photospheric energy density of magnetic fields in two solar active regions inferred from observational vector magnetograms, and compare it with the possible different defined energy parameters of magnetic fields in the photosphere. We analyze the magnetic fields in active region NOAA 6580-6619-6659 and 11158. It is noticed that the quantity 1/4pi Bn.Bp is an important energy parameter that reflects the contribution of magnetic shear on the difference between the potential magnetic field (Bp) and non-potential one (Bn), and also the contribution to the free magnetic energy near the magnetic neutral lines in the active regions. It is found that the photospheric mean magnetic energy density changes obviously before the powerful solar flares in the active region NOAA 11158, it is consistent with the change of magnetic fields in the lower atmosphere with flares.

  12. Distribution of Electric Currents in Solar Active Regions

    CERN Document Server

    Török, Tibor; Titov, Viacheslav S; Archontis, Vasilis; Mikić, Zoran; Linton, Mark G; Dalmasse, Kévin; Aulanier, Guillaume; Kliem, Bernhard

    2014-01-01

    There has been a long-lasting debate on the question of whether or not electric currents in solar active regions are neutralized. That is, whether or not the main (or direct) coronal currents connecting the active region polarities are surrounded by shielding (or return) currents of equal total value and opposite direction. Both theory and observations are not yet fully conclusive regarding this question, and numerical simulations have, surprisingly, barely been used to address it. Here we quantify the evolution of electric currents during the formation of a bipolar active region by considering a three-dimensional magnetohydrodynamic simulation of the emergence of a sub-photospheric, current-neutralized magnetic flux rope into the solar atmosphere. We find that a strong deviation from current neutralization develops simultaneously with the onset of significant flux emergence into the corona, accompanied by the development of substantial magnetic shear along the active region's polarity inversion line. After t...

  13. Transport of Helicity and Dynamics of Solar Active Regions

    Science.gov (United States)

    Georgoulis, Manolis K.; Rust, David M.; Labonte, Barry J.

    We outline a simple method to monitor variations of the magnetic helicity the current helicity and the non-potential (free) magnetic energy on the photospheric boundary of solar active regions. Explicit manifestations of dynamical activity in the solar atmosphere such as flares coronal mass ejections and filament eruptions may be related to these variations. While similar methods require knowledge of the vector potential and the velocity field vector on the photosphere our method requires only the photospheric potential magnetic field corresponding to the observed magnetograms. The calculation of the potential field for any given magnetogram is straightforward. Moreover our method relies on the constant-alpha force-free approximation assumed to hold in the active region. Whether the above is a realistic assumption can be tested using an array of well-documented methods. Therefore our technique may prove quite useful to at least a subset of active regions in which the linear force-free approximation is justifiable.

  14. Transport of Magnetic Helicity and Dynamics of Solar Active Regions

    Science.gov (United States)

    Georgoulis, M. K.; Labonte, B. J.; Rust, D. M.

    2005-01-01

    We outline a simple method to monitor variations of the magnetic helicity the current helicity and the non-potential (free) magnetic energy on the photospheric boundary of solar active regions. Explicit manifestations of dynamical activity in the solar atmosphere such as flares coronal mass ejections and filament eruptions may be related to these variations. While similar methods require knowledge of the vector potential and the velocity field vector on the photosphere our method requires only the photospheric potential magnetic field corresponding to the observed magnetograms. The calculation of the potential field for any given magnetogram is straightforward. Moreover our method relies on the constant-alpha force-free approximation assumed to hold in the active region. Whether the above is a realistic assumption can be tested using an array of well-documented methods. Therefore our technique may prove quite useful to at least a subset of active regions in which the linear force-free approximation is justifiable.

  15. Solar Rotation Rate During the Cycle 24 Minimum in Activity

    OpenAIRE

    Antia, H. M.; Basu, Sarbani

    2010-01-01

    The minimum of solar cycle 24 is significantly different from most other minima in terms of its duration as well as its abnormally low levels of activity. Using available helioseismic data that cover epochs from the minimum of cycle 23 to now, we study the differences in the nature of the solar rotation between the minima of cycles 23 and 24. We find that there are significant differences between the rotation rates during the two minima. There are differences in the zonal-flow pattern too. We...

  16. Helical Magnetic Fields in Solar Active Regions: Theory vs. Observations

    CERN Document Server

    Petrovay, K; Choudhuri, A

    2006-01-01

    The mean value of the normalized current helicity in solar active regions is on the order of 1e-8 1/m, negative in the northern hemisphere, positive in the southern hemisphere. Observations indicate that this helicity has a subsurface origin. Possible mechanisms leading to a twist of this amplitude in magnetic flux tubes include the solar dynamo, convective buffeting of rising flux tubes, and the accretion of weak external poloidal flux by a rising toroidal flux tube. After briefly reviewing the observational and theoretical constraints on the origin of helicity, we present a recently developed detailed model for poloidal flux accretion.

  17. Quasi-biennial modulation of solar neutrino flux: connections with solar activity

    Science.gov (United States)

    Vecchio, A.; Laurenza, M.; D'alessi, L.; Carbone, V.; Storini, M.

    2011-12-01

    A quasi-biennial periodicity has been recently found (Vecchio et al., 2010) in the solar neutrino flux, as detected at the Homestake experiment, as well as in the flux of solar energetic protons, by means of the Empirical Modes Decomposition technique. Moreover, both fluxes have been found to be significantly correlated at the quasi-biennial timescale, thus supporting the hypothesis of a connection between solar neutrinos and solar activity. The origin of this connection is investigated, by modeling how the standard Mikheyev-Smirnov-Wolfenstein (MSW) effect (the process for which the well-known neutrino flavor oscillations are modified in passing through the material) could be influenced by matter fluctuations. As proposed by Burgess et al., 2004, by introducing a background magnetic field in the helioseismic model, density fluctuations can be excited in the radiative zone by the resonance between helioseismic g-modes and Alfvén waves. In particular, with reasonable values of the background magnetic field (10-100 kG), the distance between resonant layers could be of the same order of neutrino oscillation length. We study the effect over this distance of a background magnetic field which is variable with a ~2 yr period, in agreement with typical variations of solar activity. Our findings suggest that the quasi-biennial modulation of the neutrino flux is theoretically possible as a consequence of the magnetic field variations in the solar interior. A. Vecchio, M. Laurenza, V. Carbone, M. Storini, The Astrophysical Journal Letters, 709, L1-L5 (2010). C. Burgess, N. S. Dzhalilov, T. I. Rashba, V., B.Semikoz, J. W. F. Valle, Mon. Not. R. Astron. Soc., 348, 609-624 (2004).

  18. Observational Study of Solar Magnetic Active Phenomena

    Indian Academy of Sciences (India)

    Hongqi Zhang

    2006-06-01

    The electric current separated into two parts reflected the quantative properties of heterogeneity and chirality of magnetic field, and defined them as the shear and twist components of current. We analyze the basic configuration and evolution of superactive region NOAA 6580-6619-6659. It is found that the contribution of the twist component of current cannot be reflected in the normal analysis of the magnetic shear and gradient of the active regions. The observational evidence of kink magnetic ropes generated from the subatmosphere cannot be found completely in some super delta active regions.

  19. Modeling of the atmospheric response to a strong decrease of the solar activity

    Science.gov (United States)

    Rozanov, Eugene V.; Egorova, Tatiana A.; Shapiro, Alexander I.; Schmutz, Werner K.

    2012-07-01

    We estimate the consequences of a potential strong decrease of the solar activity using the model simulations of the future driven by pure anthropogenic forcing as well as its combination with different solar activity related factors: total solar irradiance, spectral solar irradiance, energetic electron precipitation, solar protons and galactic cosmic rays. The comparison of the model simulations shows that introduced strong decrease of solar activity can lead to some delay of the ozone recovery and partially compensate greenhouse warming acting in the direction opposite to anthropogenic effects. The model results also show that all considered solar forcings are important in different atmospheric layers and geographical regions. However, in the global scale the solar irradiance variability can be considered as the most important solar forcing. The obtained results constitute probably the upper limit of the possible solar influence. Development of the better constrained set of future solar forcings is necessary to address the problem of future climate and ozone layer with more confidence.

  20. Long-term solar activity influences on South American rivers

    CERN Document Server

    Mauas, Pablo; Flamenco, Eduardo

    2010-01-01

    River streamflows are excellent climatic indicators since they integrate precipitation over large areas. Here we follow up on our previous study of the influence of solar activity on the flow of the Parana River, in South America. We find that the unusual minimum of solar activity in recent years have a correlation on very low levels in the Parana's flow, and we report historical evidence of low water levels during the Little Ice Age. We also study data for the streamflow of three other rivers (Colorado, San Juan and Atuel), and snow levels in the Andes. We obtained that, after eliminating the secular trends and smoothing out the solar cycle, there is a strong positive correlation between the residuals of both the Sunspot Number and the streamflows, as we obtained for the Parana. Both results put together imply that higher solar activity corresponds to larger precipitation, both in summer and in wintertime, not only in the large basin of the Parana, but also in the Andean region north of the limit with Patago...

  1. Foothills Parkway Section 8B Final Environmental Report, Volume 2, Appendices A-C

    Energy Technology Data Exchange (ETDEWEB)

    Blasing, T.J.; Cada, G.F.; Carer, M.; Chin, S.M.; Dickerman, J.A.; Etnier, D.A.; Gibson, R.; Harvey, M.; Hatcher, B.; Lietzske, D.; Mann, L.K.; Mulholland, P.J.; Petrich, C.H.; Pounds, L.; Ranney, J.; Reed, R.M.; Ryan, P.F.; Schweitzer, M.; Smith, D.; Thomason, P.; Wade, M.C.

    1999-07-01

    In 1994, Oak Ridge National Laboratory (ORNL) was tasked by the National Park Service (NPS) to prepare an Environmental Report (ER) for Section 8B of the Foothills Parkway in the Great Smoky Mountains National Park (GSMNP). Section 8B represents 27.7 km (14.2 miles) of a total of 115 km (72 miles) of the planned Foothills Parkway and would connect the Cosby community on the east to the incorporated town of Pittman Center to the west. The major deliverables for the project are listed. From August 1995 through October 1996, NW, GSMNP, and ORNL staff interacted with Federal Highway Administration staff to develop a conceptual design plan for Section 8B with the intent of protecting critical resources identified during the ER process to the extent possible. In addition, ORNL arranged for bioengineering experts to discuss techniques that might be employed on Section 8B with NPS, GSMNP, and ORNL staff during September 1996. For the purposes of this EN there are two basic alternatives under consideration: (1) a build alternative and (2) a no-build alternative. Within the build alternative are a number of options including constructing Section 8B with no interchanges, constricting Section 8B with an interchange at SR 416 or U.S. 321, constructing Section 8B with a spur road on Webb Mountain, and considering operation of Section 8B both before and after the operation of Section 8C. The no-build alternative is considered the no-action alternative and is not to construct Section 8B. This volume of the ER, which consists of Appendices A, B, and C, assesses the potential geologic impacts of the proposed Section 8B construction, presents the results of the Section 8B soil survey, and describes the water quality studies and analyses performed for the ER. The following summary sections provide information for geology, soils, and water quality.

  2. Global gene profiling of aging lungs in Atp8b1 mutant mice

    Science.gov (United States)

    Soundararajan, Ramani; Stearns, Timothy M.; Czachor, Alexander; Fukumoto, Jutaro; Turn, Christina; Westermann-Clark, Emma; Breitzig, Mason; Tan, Lee; Lockey, Richard F.; King, Benjamin L.; Kolliputi, Narasaiah

    2016-01-01

    Objective Recent studies implicate cardiolipin oxidation in several age-related diseases. Atp8b1 encoding Type 4 P-type ATPases is a cardiolipin transporter. Mutation in Atp8b1 gene or inflammation of the lungs impairs the capacity of Atp8b1 to clear cardiolipin from lung fluid. However, the link between Atp8b1 mutation and age-related gene alteration is unknown. Therefore, we investigated how Atp8b1 mutation alters age-related genes. Methods We performed Affymetrix gene profiling of lungs isolated from young (7-9 wks, n=6) and aged (14 months, 14 M, n=6) C57BL/6 and Atp8b1 mutant mice. In addition, Ingenuity Pathway Analysis (IPA) was performed. Differentially expressed genes were validated by quantitative real-time PCR (qRT-PCR). Results Global transcriptome analysis revealed 532 differentially expressed genes in Atp8b1 lungs, 157 differentially expressed genes in C57BL/6 lungs, and 37 overlapping genes. IPA of age-related genes in Atp8b1 lungs showed enrichment of Xenobiotic metabolism and Nrf2-mediated signaling pathways. The increase in Adamts2 and Mmp13 transcripts in aged Atp8b1 lungs was validated by qRT-PCR. Similarly, the decrease in Col1a1 and increase in Cxcr6 transcripts was confirmed in both Atp8b1 mutant and C57BL/6 lungs. Conclusion Based on transcriptome profiling, our study indicates that Atp8b1 mutant mice may be susceptible to age-related lung diseases. PMID:27689529

  3. Screening a phage display library for a novel FGF8b-binding peptide with anti-tumor effect on prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wenhui; Chen, Xilei; Li, Tao; Li, Yanmei; Wang, Ruixue; He, Dan; Luo, Wu [Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou 510632 (China); Li, Xiaokun [Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou 510632 (China); School of Pharmaceutical Science, Wenzhou Medical College, Wenzhou 325035 (China); Wu, Xiaoping, E-mail: twxp@jnu.edu.cn [Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou 510632 (China); School of Pharmaceutical Science, Wenzhou Medical College, Wenzhou 325035 (China)

    2013-05-01

    Fibroblast growth factor 8b (FGF8b) is the major isoform of FGF8 expressed in prostate cancer and it correlates with the stage and grade of the disease. FGF8b has been considered as a potential target for prostate cancer therapy. Here we isolated 12 specific FGF8b-binding phage clones by screening a phage display heptapeptide library with FGF8b. The peptide (HSQAAVP, named as P12) corresponding to one of these clones showed high homology to the immunoglobulin-like (Ig-like) domain II(D2) of high-affinity FGF8b receptor (FGFR3c), contained 3 identical amino acids (AVP) to the authentic FGFR3 D2 sequence aa 163–169 (LLAVPAA) directly participating in ligand binding, carried the same charges as its corresponding motif (aa163–169) in FGFR3c, suggesting that P12 may have a greater potential to interrupt FGF8b binding to its receptors than other identified heptapeptides do. Functional analysis indicated that synthetic P12 peptides mediate significant inhibition of FGF8b-induced cell proliferation, arrest cell cycle at the G0/G1 phase via suppression of Cyclin D1 and PCNA, and blockade of the activations of Erk1/2 and Akt cascades in both prostate cancer cells and vascular endothelial cells. The results demonstrated that the P12 peptide acting as an FGF8b antagonist may have therapeutic potential in prostate cancer. - Highlights: ► A novel FGF8b-binding peptide P12 was isolated from a phage display library. ► The mechanisms for P12 peptide inhibiting cell proliferation were proposed. ► P12 caused cell cycle arrest at G0/G1 phase via suppression of Cyclin D1 and PCNA. ► P12 suppressed FGF8b-induced activations of Akt and MAP kinases. ► P12 acting as an FGF8b antagonist may have therapeutic potential in prostate cancer.

  4. Interplanetary Lyman $\\alpha$ line profiles: variations with solar activity cycle

    CERN Document Server

    Quemerais, E; Bertaux, J L; Koutroumpa, D; Clarke, J; Kyrola, E; Schmidt, W; Qu\\'emerais, Eric; Lallement, Rosine; Bertaux, Jean-Loup; Koutroumpa, Dimitra; Clarke, John; Kyrola, Erkki; Schmidt, Walter

    2006-01-01

    Interplanetary Lyman alpha line profiles are derived from the SWAN H cell data measurements. The measurements cover a 6-year period from solar minimum (1996) to after the solar maximum of 2001. This allows us to study the variations of the line profiles with solar activity. These line profiles were used to derive line shifts and line widths in the interplanetary medium for various angles of the LOS with the interstellar flow direction. The SWAN data results were then compared to an interplanetary background upwind spectrum obtained by STIS/HST in March 2001. We find that the LOS upwind velocity associated with the mean line shift of the IP \\lya line varies from 25.7 km/s to 21.4 km/s from solar minimum to solar maximum. Most of this change is linked with variations in the radiation pressure. LOS kinetic temperatures derived from IP line widths do not vary monotonically with the upwind angle of the LOS. This is not compatible with calculations of IP line profiles based on hot model distributions of interplanet...

  5. Some Daytime Activities in Solar Astronomy

    Science.gov (United States)

    Burin, Michael J.

    2016-01-01

    This century's transits of Venus (2004, 2012) captured significant public attention, reminding us that the wonders of astronomy need not be confined to the night. And while nighttime telescope viewing gatherings (a.k.a. "star parties") are perennially popular, astronomy classes are typically held in the daytime. The logistics of coordinating students outside of class can often be problematic, leading to dark-sky activities that are relegated to extra credit for only those who can attend.

  6. Variation of North-South Asymmetry of Solar Flare Index and Associated Solar Activity

    Directory of Open Access Journals (Sweden)

    A. B. BHATTACHARYA

    2012-07-01

    Full Text Available The unequal distributions of various aspects of solar activity between the north and south hemisphere of the Sun have been reported in the paper. When we consider north and south asymmetries of both sunspot area and solar flare indices over the cycles 20 to 23 it is noted that (i there are large variations both in northern and southern sunspot areas, (ii both hemispheres have an asymmetric behavior in terms of a solar activity measure, (iiisunspot areas in northern and southern hemispheres exhibit 11 year periodicity when they were analyzed separately, (iv asymmetry at the end of prolonged cycle 23 is unusually high, (v the northern hemisphere is dominant up to 2001 but thereafter the southern hemisphere takes over from 2002 to the end of solar cycle 23 and then the northern hemisphere dominates in the beginning of cycle 24, (vi yearly plot of flare index reveals that the northern and southern hemisphere is not in phase wherein the northern hemisphere leads in phase by 2 years with two adjacent peaks.

  7. 17 CFR 270.8b-33 - XBRL-Related Documents.

    Science.gov (United States)

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false XBRL-Related Documents. 270.8b...) RULES AND REGULATIONS, INVESTMENT COMPANY ACT OF 1940 § 270.8b-33 XBRL-Related Documents. A registrant that participates in the voluntary XBRL (eXtensible Business Reporting Language) program may submit,...

  8. Data of evolutionary structure change: 1TU8B-2AAWC [Confc[Archive

    Lifescience Database Archive (English)

    Full Text Available n>1TU8B SIKSQ---FQFGQ > GGG--- re... C 2AAWC KNFKKEKDTPFEQ ...>HHHHHH > ATOM 2082 CA LYS C 46 3.335 27.932 37.753 1.00 ...bChain> 1TU8B LLATR----GNGRN >HGGG ----GGG ...tryIDChain> LLKKNHTNNNNDKY >HHHH

  9. 17 CFR 270.8b-12 - Requirements as to paper, printing and language.

    Science.gov (United States)

    2010-04-01

    ... and reports shall be in the English language. If any exhibit or other paper or document filed with a... English language. (f) Where a registration statement or report is distributed through an electronic medium..., printing and language. 270.8b-12 Section 270.8b-12 Commodity and Securities Exchanges SECURITIES...

  10. Infrared Photometry of Solar Active Regions

    Indian Academy of Sciences (India)

    Μ. Sobotka; Μ. V'azquez; Μ. S'anchez Cuberes; J. A. Bonet; A. Hanslmeier

    2000-09-01

    Simultaneous time series of broad-band images of two active regions close to the disk center were acquired at the maximum (0.80 m) and minimum (1.55 m) continuum opacities. Dark faculae are detected in images obtained as weighted intensity differences between both wave-length bands. The elements of quiet regions can be clearly distinguished from those of faculae and pores in scatter plots of brightness temperatures. There is a smooth transition between faculae and pores in the scatter plots. These facts are interpreted in terms of the balance between the inhibition of convective energy transport and the lateral radiative heating.

  11. Long-term persistence of solar activity. [Abstract only

    Science.gov (United States)

    Ruzmaikin, Alexander; Feynman, Joan; Robinson, Paul

    1994-01-01

    The solar irradiance has been found to change by 0.1% over the recent solar cycle. A change of irradiance of about 0.5% is required to effect the Earth's climate. How frequently can a variation of this size be expected? We examine the question of the persistence of non-periodic variations in solar activity. The Huerst exponent, which characterizes the persistence of a time series (Mandelbrot and Wallis, 1969), is evaluated for the series of C-14 data for the time interval from about 6000 BC to 1950 AD (Stuiver and Pearson, 1986). We find a constant Huerst exponent, suggesting that solar activity in the frequency range of from 100 to 3000 years includes an important continuum component in addition to the well-known periodic variations. The value we calculate, H approximately equal to 0.8, is significantly larger than the value of 0.5 that would correspond to variations produced by a white-noise process. This value is in good agreement with the results for the monthly sunspot data reported elsewhere, indicating that the physics that produces the continuum is a correlated random process (Ruzmaikin et al., 1992), and that is is the same type of process over a wide range of time interval lengths. We conclude that the time period over which an irradiance change of 0.5% can be expected to occur is significantly shorter than that which would be expected for variations produced by a white-noise process.

  12. Solar activity impact on the Earth's upper atmosphere

    Science.gov (United States)

    Kutiev, Ivan; Tsagouri, Ioanna; Perrone, Loredana; Pancheva, Dora; Mukhtarov, Plamen; Mikhailov, Andrei; Lastovicka, Jan; Jakowski, Norbert; Buresova, Dalia; Blanch, Estefania; Andonov, Borislav; Altadill, David; Magdaleno, Sergio; Parisi, Mario; Miquel Torta, Joan

    2013-02-01

    The paper describes results of the studies devoted to the solar activity impact on the Earth's upper atmosphere and ionosphere, conducted within the frame of COST ES0803 Action. Aim: The aim of the paper is to represent results coming from different research groups in a unified form, aligning their specific topics into the general context of the subject. Methods: The methods used in the paper are based on data-driven analysis. Specific databases are used for spectrum analysis, empirical modeling, electron density profile reconstruction, and forecasting techniques. Results: Results are grouped in three sections: Medium- and long-term ionospheric response to the changes in solar and geomagnetic activity, storm-time ionospheric response to the solar and geomagnetic forcing, and modeling and forecasting techniques. Section 1 contains five subsections with results on 27-day response of low-latitude ionosphere to solar extreme-ultraviolet (EUV) radiation, response to the recurrent geomagnetic storms, long-term trends in the upper atmosphere, latitudinal dependence of total electron content on EUV changes, and statistical analysis of ionospheric behavior during prolonged period of solar activity. Section 2 contains a study of ionospheric variations induced by recurrent CIR-driven storm, a case-study of polar cap absorption due to an intense CME, and a statistical study of geographic distribution of so-called E-layer dominated ionosphere. Section 3 comprises empirical models for describing and forecasting TEC, the F-layer critical frequency foF2, and the height of maximum plasma density. A study evaluates the usefulness of effective sunspot number in specifying the ionosphere state. An original method is presented, which retrieves the basic thermospheric parameters from ionospheric sounding data.

  13. Solar activity impact on the Earth’s upper atmosphere

    Directory of Open Access Journals (Sweden)

    Parisi Mario

    2013-02-01

    Full Text Available The paper describes results of the studies devoted to the solar activity impact on the Earth’s upper atmosphere and ionosphere, conducted within the frame of COST ES0803 Action. Aim: The aim of the paper is to represent results coming from different research groups in a unified form, aligning their specific topics into the general context of the subject. Methods: The methods used in the paper are based on data-driven analysis. Specific databases are used for spectrum analysis, empirical modeling, electron density profile reconstruction, and forecasting techniques. Results: Results are grouped in three sections: Medium- and long-term ionospheric response to the changes in solar and geomagnetic activity, storm-time ionospheric response to the solar and geomagnetic forcing, and modeling and forecasting techniques. Section 1 contains five subsections with results on 27-day response of low-latitude ionosphere to solar extreme-ultraviolet (EUV radiation, response to the recurrent geomagnetic storms, long-term trends in the upper atmosphere, latitudinal dependence of total electron content on EUV changes, and statistical analysis of ionospheric behavior during prolonged period of solar activity. Section 2 contains a study of ionospheric variations induced by recurrent CIR-driven storm, a case-study of polar cap absorption due to an intense CME, and a statistical study of geographic distribution of so-called E-layer dominated ionosphere. Section 3 comprises empirical models for describing and forecasting TEC, the F-layer critical frequency foF2, and the height of maximum plasma density. A study evaluates the usefulness of effective sunspot number in specifying the ionosphere state. An original method is presented, which retrieves the basic thermospheric parameters from ionospheric sounding data.

  14. Distinguishing Between Eruptive and Quiescent Solar Active Regions

    Science.gov (United States)

    Georgoulis, M. K.; Labonte, B. J.

    2005-05-01

    We present a method to fully evaluate the energy-helicity formula in solar active regions by using only photospheric vector magnetograms of these active regions. At the moment, the method relies on the linear force-free approximation and provides the total magnetic energy, the magnetic energy of the vacuum (potential) magnetic field, and the non-potential (free) magnetic energy relating to the total magnetic helicity in an active region. The formulation of the technique allows an upgrade to a nonlinear force-free evaluation of the energy-helicity formula, which will be a more realistic approach especially when chromospheric vector magnetograms of solar active regions become available. Even with the linear force-free approximation, however, we find that the magnitudes of the total helicity, as well as the ratios of the free magnetic energy to the total magnetic energy are distinctly higher for eruptive active regions as compared to quiescent active regions. Eruptive active regions produce flares and might trigger CMEs, so the method presents a viable way to discriminate between these two types of active regions even in case a single vector magnetogram of these active regions is available.

  15. Accumulation in Dasuopu ice core in Qinghai-Tibet Plateau and solar activity

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The time series of accumulation in recent 300 years correlated well with solar activity in Dasuopu ice core. Results of spectrum analysis on the accumulation time series of the Dasuopu ice core shows that there are some periods that coincide with the periods of solar activity. By comparing the long-time change trend of the accumulation in the Dasuopu ice core with various kinds of indexes of solar activity intensity, a negative correlation is found between the trend and solar activity.

  16. How Large Scale Flows in the Solar Convection Zone may Influence Solar Activity

    Science.gov (United States)

    Hathaway, D. H.

    2004-01-01

    Large scale flows within the solar convection zone are the primary drivers of the Sun s magnetic activity cycle. Differential rotation can amplify the magnetic field and convert poloidal fields into toroidal fields. Poleward meridional flow near the surface can carry magnetic flux that reverses the magnetic poles and can convert toroidal fields into poloidal fields. The deeper, equatorward meridional flow can carry magnetic flux toward the equator where it can reconnect with oppositely directed fields in the other hemisphere. These axisymmetric flows are themselves driven by large scale convective motions. The effects of the Sun s rotation on convection produce velocity correlations that can maintain the differential rotation and meridional circulation. These convective motions can influence solar activity themselves by shaping the large-scale magnetic field pattern. While considerable theoretical advances have been made toward understanding these large scale flows, outstanding problems in matching theory to observations still remain.

  17. VARIATIONS OF SOLAR ROTATION AND SUNSPOT ACTIVITY

    International Nuclear Information System (INIS)

    The continuous wavelet transformation is used to study the temporal variations of the rotational cycle length of daily sunspot numbers from 1849 January 1 to 2010 February 28, from a global point of view. The rotational cycle length of the Sun is found to have a secular trend, which statistically shows a linear decrease by about 0.47 days during the time interval considered. The empirical mode decomposition analysis of the temporal variations of the rotational cycle length shows an acceleration trend for the surface rotation rate from cycles 11 to 19, but a deceleration trend from the beginning of cycle 20 onward. We cannot determine whether the rotation rate around the maximum times of the Schwable cycles should be faster or slower than that around the minimum times, implying no Schwable cycle in the long-term variations of rotation. The results obtained are compared to those from the literature. It is inferred that the variation of the rotational cycle length may be related to the variation of sunspot activity in the long run.

  18. A Statistical Analysis of Solar Surface Indices Through the Solar Activity Cycles 21-23

    CERN Document Server

    Goker, Umit Deniz; Nutku, Ferhat; Priyal, Muthu

    2016-01-01

    Variations of total solar irradiance (TSI), magnetic field, Ca II K-flux, faculae and plage areas due to the number and the type of sunspots/sunspot groups (SGs) are well established by using ground based data from various centers such as Solar Irradiance Platform, Stanford Data (SFO), Kodaikanal data (KKL) and National Geographical Data Center (NGDC) Homepage, respectively. We applied time series analysis for extracting the data over the descending phases of solar activity cycles (SACs) 21, 22 and 23, and the ascending phases 22 and 23 of SACs, and analyzed the selected data using the Python programming language. Our detailed analysis results suggest that there is a stronger correlation between solar surface indices and the changes in the relative portion of the small and large SGs. This somewhat unexpected finding suggest that plage regions decreased in a lower values in spite of the higher number of large SGs in SAC 23 while Ca II K-flux did not decrease by large amount or it was comparable with SAC 22 for...

  19. Online educative activities for solar ultraviolet radiation based on measurements of cloud amount and solar exposures.

    Science.gov (United States)

    Parisi, A V; Downs, N; Turner, J; Amar, A

    2016-09-01

    A set of online activities for children and the community that are based on an integrated real-time solar UV and cloud measurement system are described. These activities use the functionality of the internet to provide an educative tool for school children and the public on the influence of cloud and the angle of the sun above the horizon on the global erythemal UV or sunburning UV, the diffuse erythemal UV, the global UVA (320-400nm) and the vitamin D effective UV. Additionally, the units of UV exposure and UV irradiance are investigated, along with the meaning and calculation of the UV index (UVI). This research will help ensure that children and the general public are better informed about sun safety by improving their personal understanding of the daily and the atmospheric factors that influence solar UV radiation and the solar UV exposures of the various wavebands in the natural environment. The activities may correct common misconceptions of children and the public about UV irradiances and exposure, utilising the widespread reach of the internet to increase the public's awareness of the factors influencing UV irradiances and exposures in order to provide clear information for minimizing UV exposure, while maintaining healthy, outdoor lifestyles. PMID:27450297

  20. Solar activity: nowcasting and forecasting at the SIDC

    Directory of Open Access Journals (Sweden)

    D. Berghmans

    2005-11-01

    Full Text Available The Solar Influences Data analysis Center (SIDC is the World Data Center for the production and the distribution of the International Sunspot Index, coordinating a network of about 80 stations worldwide. From this core activity, the SIDC has grown in recent years to a European center for nowcasting and forecasting of solar activity on all timescales. This paper reviews the services (data, forecasts, alerts, software that the SIDC currently offers to the scientific community. The SIDC operates instruments both on the ground and in space. The USET telescope in Brussels produces daily white light and Hα images. Several members of the SIDC are co-investigators of the EIT instrument onboard SOHO and are involved in the development of the next generation of Europe's solar weather monitoring capabilities. While the SIDC is staffed only during day-time (7 days/week, the monitoring service is a 24 h activity thanks to the implementation of autonomous software for data handling and analysis and the sending of automated alerts. We will give an overview of recently developed techniques for visualization and automated analysis of solar images and detection of events significant for space weather (e.g. CMEs or EIT waves. As part of the involvement of the SIDC in the ESA Pilot Project for Space Weather Applications we have developed services dedicated to the users of the Global Positioning System (GPS. As a Regional Warning Center (RWC of the International Space Environment Service (ISES, the SIDC produces daily forecasts of flaring probability, geomagnetic activity and 10.7 cm radio flux. The accuracy of these forecasts will be investigated through an in-depth quality analysis.

  1. Dayside Auroral Activity During Solar Maximum and Minimum Periods

    Science.gov (United States)

    Rawie, M.; Fasel, G. J.; Flicker, J.; Angelo, A.; Bender, S.; Alyami, M.; Sibeck, D. G.; Sigernes, F.; Lorentzen, D. A.; Green, D.

    2014-12-01

    It is well documented that the dayside auroral oval shifts equatorward when the interplanetary magnetic field (IMF) Bz-component turns southward [Burch, 1973; Akasofu, 1977; Horwitz and Akasofu, 1977; Sandholt et al., 1986, 1988]. During these periods of oval expansion dayside transients are observed to move away from the poleward edge of the auroral oval and drift poleward. These poleward-moving auroral forms are believed to be ionospheric signatures of dayside merging. The dayside auroral oval usually begins to contract when the interplanetary magnetic field turns sharply northward, Bz>0. Eighteen years of meridian scanning photometer (MSP) data from the Kjell Henriksen Observatory in Longyearbyen, Norway are analyzed. During the boreal winter the Sun is several degrees below the horizon. This permits optical observations throughout the daytime period. The MSP Data is selected two hours before and after local noon in Longyearbeyn. Solar wind data (solar wind pressure and speed, along with the IMF Bx, By, Bz components) are collected for each interval and combined with the MSP observations. This data is then separated using solar maximum and minimum periods. Auroral activity (oval expansions and contractions along with the frequency and number of poleward-moving auroral forms) is documented for both solar maximum and minimum periods.

  2. Forecasting the Peak of the Present Solar Activity Cycle

    Science.gov (United States)

    Hamid, Rabab; Marzouk, Beshir

    2016-07-01

    Solar forecasting of the level of sun Activity is very important subject for all space programs. Most predictions are based on the physical conditions prevailing at or before the solar cycle minimum preceding the maximum in question. Our aim is to predict the maximum peak of cycle 24 using precursor techniques in particular those using spotless event, geomagnetic aa min. index and solar flux F10.7. Also prediction of exact date of the maximum (Tr) is taken in consideration. A study of variation over previous spotless event for cycles 7-23 and that for even cycles (8-22) are carried out for the prediction. Linear correlation between RM and spotless event around the preceding minimum gives RM24t = 101.9with rise time Tr = 4.5 Y. For the even cycles RM24e = 108.3 with rise time Tr = 3.9 Y. Based on the average aa min. index for the year of sunspot minimum cycles (13 - 23), we estimate the expected amplitude for cycle 24 to be RMaa = 116.5 for both the total and even cycles. Application of the data of solar flux F10.7 which cover only cycles (19-23) was taken in consideration and gives predicted maximum amplitude R24 10.7 = 146, which are over estimation. Our result indicating a somewhat weaker cycle 24 as compared to cycles 21-23.

  3. The solar activity cycle physical causes and consequences

    CERN Document Server

    Hudson, Hugh; Petrovay, Kristóf; Steiger, Rudolf

    2015-01-01

    A collection of papers edited by four experts in the field, this book sets out to describe the way solar activity is manifested in observations of the solar interior, the photosphere, the chromosphere, the corona and the heliosphere. The 11-year solar activity cycle, more generally known as the sunspot cycle, is a fundamental property of the Sun.  This phenomenon is the generation and evolution of magnetic fields in the Sun’s convection zone, the photosphere.  It is only by the careful enumeration and description of the phenomena and their variations that one can clarify their interdependences.   The sunspot cycle has been tracked back about four centuries, and it has been recognized that to make this data set a really useful tool in understanding how the activity cycle works and how it can be predicted, a very careful and detailed effort is needed to generate sunspot numbers.  This book deals with this topic, together with several others that present related phenomena that all indicate the physical pr...

  4. Active other worlds in the Solar System and beyond

    Science.gov (United States)

    Forget, François

    2016-04-01

    Over the past decades, space exploration has moved planetology from the field of astronomy to the disciplines of geosciences. A fleet of spacecrafts have discovered and study tens of worlds in our solar system and beyond. Everywhere, we have been surprised by the diversity and the vigour of the geophysical activity, from volcanic eruptions to plasma waves... Every scientists present at EGU could -and should- be interested in the extraterrestrial processes that are discovered and analyzed elsewhere. In our solar system, a variety of clouds and fluid dynamical phenomena can be studied in six terrestrial atmospheres and on four giant planets. Active glaciers are found on Mars and Pluto. Rivers and lakes have sculpted the surface of Titan and Mars. Sometime, we can even study geophysical activity with no equivalent on our planet: ice caps made of frozen atmosphere that erupt in geysers, hazes formed by organic polymers which can completely shroud a moon, etc. We study these active worlds because we are curious and wish to understand our universe and our origins. However, more than ever, two specific motivations drive solar system geosciences in 2016: Firstly, as we become more and more familiar with the other worlds around us, we can use them to better understand our own planet. Throughout the solar system, we can access to data that are simply not available on the Earth, or study active processes that are subtle on Earth but of greater importance elsewhere, so that we can better understand them. Many geophysical concepts and tools developed for the Earth can also be tested on other planets. For instance the numerical Climate Models used to assess Earth's future climate change are applied to other planets. Much is learned from such experiments. Secondly, the time has come to generalize the fundamental lessons that we have learned from the examples in the solar system (including the Earth) to address the countless scientific questions that are -and will be- raised by

  5. Prediction of Solar Activity from Solar Background Magnetic Field Variations in Cycles 21-23

    Science.gov (United States)

    Shepherd, Simon J.; Zharkov, Sergei I.; Zharkova, Valentina V.

    2014-11-01

    A comprehensive spectral analysis of both the solar background magnetic field (SBMF) in cycles 21-23 and the sunspot magnetic field in cycle 23 reported in our recent paper showed the presence of two principal components (PCs) of SBMF having opposite polarity, e.g., originating in the northern and southern hemispheres, respectively. Over a duration of one solar cycle, both waves are found to travel with an increasing phase shift toward the northern hemisphere in odd cycles 21 and 23 and to the southern hemisphere in even cycle 22. These waves were linked to solar dynamo waves assumed to form in different layers of the solar interior. In this paper, for the first time, the PCs of SBMF in cycles 21-23 are analyzed with the symbolic regression technique using Hamiltonian principles, allowing us to uncover the underlying mathematical laws governing these complex waves in the SBMF presented by PCs and to extrapolate these PCs to cycles 24-26. The PCs predicted for cycle 24 very closely fit (with an accuracy better than 98%) the PCs derived from the SBMF observations in this cycle. This approach also predicts a strong reduction of the SBMF in cycles 25 and 26 and, thus, a reduction of the resulting solar activity. This decrease is accompanied by an increasing phase shift between the two predicted PCs (magnetic waves) in cycle 25 leading to their full separation into the opposite hemispheres in cycle 26. The variations of the modulus summary of the two PCs in SBMF reveals a remarkable resemblance to the average number of sunspots in cycles 21-24 and to predictions of reduced sunspot numbers compared to cycle 24: 80% in cycle 25 and 40% in cycle 26.

  6. Prediction of solar activity from solar background magnetic field variations in cycles 21-23

    Energy Technology Data Exchange (ETDEWEB)

    Shepherd, Simon J. [School of Engineering, University of Bradford, Bradford, BD7 1DP (United Kingdom); Zharkov, Sergei I. [Department of Physics and Mathematics, University of Hull, Kingston upon Tyne, HU6 7RS (United Kingdom); Zharkova, Valentina V., E-mail: s.j.shepherd@brad.ac.uk, E-mail: s.zharkov@hull.ac.uk, E-mail: valentina.zharkova@northumbria.ac.uk [Department of Mathematics and Information Systems, University of Northumbria, Newcastle upon Tyne, NE2 8ST (United Kingdom)

    2014-11-01

    A comprehensive spectral analysis of both the solar background magnetic field (SBMF) in cycles 21-23 and the sunspot magnetic field in cycle 23 reported in our recent paper showed the presence of two principal components (PCs) of SBMF having opposite polarity, e.g., originating in the northern and southern hemispheres, respectively. Over a duration of one solar cycle, both waves are found to travel with an increasing phase shift toward the northern hemisphere in odd cycles 21 and 23 and to the southern hemisphere in even cycle 22. These waves were linked to solar dynamo waves assumed to form in different layers of the solar interior. In this paper, for the first time, the PCs of SBMF in cycles 21-23 are analyzed with the symbolic regression technique using Hamiltonian principles, allowing us to uncover the underlying mathematical laws governing these complex waves in the SBMF presented by PCs and to extrapolate these PCs to cycles 24-26. The PCs predicted for cycle 24 very closely fit (with an accuracy better than 98%) the PCs derived from the SBMF observations in this cycle. This approach also predicts a strong reduction of the SBMF in cycles 25 and 26 and, thus, a reduction of the resulting solar activity. This decrease is accompanied by an increasing phase shift between the two predicted PCs (magnetic waves) in cycle 25 leading to their full separation into the opposite hemispheres in cycle 26. The variations of the modulus summary of the two PCs in SBMF reveals a remarkable resemblance to the average number of sunspots in cycles 21-24 and to predictions of reduced sunspot numbers compared to cycle 24: 80% in cycle 25 and 40% in cycle 26.

  7. Solar activity and climate change during the 1750 A.D. solar minimum

    Science.gov (United States)

    Bard, Edouard; Baroni, Mélanie; Aster Team

    2015-04-01

    The number of sunspots and other characteristics have been widely used to reconstruct the solar activity beyond the last three decades of accurate satellite measurements. It has also been possible to reconstruct the long-term solar behavior by measuring the abundance on Earth of cosmogenic nuclides such as carbon 14 and beryllium 10. These isotopes are formed by the interaction of galactic cosmic rays with atmospheric molecules. Accelerator mass spectrometry is used to measure the abundance of these isotopes in natural archives such as polar ice (for 10Be), tree rings and corals (for 14C). Over the last millennium, the solar activity has been dominated by alternating active and quiet periods, such as the Maunder Minimum, which occurred between 1645 and 1715 A.D. The climate forcing of this solar variability is the subject of intense research, both because the exact scaling in terms of irradiance is still a matter of debate and because other solar variations may have played a role in amplifying the climatic response. Indeed, the past few decades of accurate solar measurements do not include conditions equivalent to an extended solar minimum. A further difficulty of the analysis lies in the presence of other climate forcings during the last millennium, which are superimposed on the solar variations. Finally, the inherent precision of paleotemperature proxies are close to the signal amplitude retrieved from various paleoclimate archives covering the last millennium. Recent model-data comparisons for the last millennium have led to the conclusion that the solar forcing during this period was minor in comparison to volcanic eruptions and greenhouse gas concentrations (e.g. Schurer et al. 2013 J. Clim., 2014 Nat. Geo.). In order to separate the different forcings, it is useful to focus on a temperature change in phase with a well-documented solar minimum so as to maximize the response to this astronomical forcing. This is the approach followed by Wagner et al. (2005 Clim

  8. Solar-Type Activity: Epochs of Cycle Formation

    CERN Document Server

    Katsova, M M; Livshits, M A

    2015-01-01

    The diagram of indices of coronal and chromospheric activity allowed us to reveal stars where solar-type activity appears and regular cycles are forming. Using new consideration of a relation between coronal activity and the rotation rate, together with new data on the ages of open clusters, we estimate the age of the young Sun corresponding to the epoch of formation of its cycle. The properties of the activity of this young Sun, with an age slightly older than one billion years, are briefly discussed. An analysis of available data on the long-term regular variability of late-type stars leads to the conclusion that duration of a cycle associated with solar-type activity increases with the deceleration of the stellar rotation; i.e., with age. New data on the magnetic fields of comparatively young G stars and changes in the role of the large-scale and the local magnetic fields in the formation of the activity of the young Sun are discussed. Studies in this area aim to provide observational tests aimed at identi...

  9. Sources of oscillation frequency increase with rising solar activity

    OpenAIRE

    Dziembowski, W. A.; Goode, P. R.

    2005-01-01

    We analyze and interpret SOHO/MDI data on oscillation frequency changes between 1996 and 2004 focusing on differences between activity minimum and maximum of solar cycle 23. We study only the behavior of the centroid frequencies, which reflect changes averaged over spherical surfaces. Both the f-mode and p-mode frequencies are correlated with general measures of the sun's magnetic activity. However, the physics behind each of the two correlations is quite different. We show that for the f-mod...

  10. Solar active envelope module with an adjustable transmittance/absorptance

    Directory of Open Access Journals (Sweden)

    C. Villasante Villasante

    2015-06-01

    Full Text Available A solar active envelope module with a high flexibility degree is proposed in this paper. The transparent module controls the day-lighting of the room, improving the indoor environment, while absorbing the superfluous solar energy inside. That energy is used to increase the efficiency of heating, ventilation, and the air-conditioning (HVAC system of the building. This is carried out through a fine control of the absorptance of the envelope module. The active envelope module consists of three glazed chambers with advanced coatings and frames to assure a minimum thermal transmittance while allowing transparency. A fluid containing heat-absorbing nanoparticles flows inside the central chamber and is heated up due to the impinging solar energy. Unlike other systems proposed in the past, which included transparency control systems based on complex filters and chemical processes, the absorption of the module is controlled by the variation of the thickness of the central chamber with a mechanical device. That is, varying the thickness of the central chamber, it allows controlling the absorptance of the whole system and, as a result, indoor day-lighting and thermal loads. Therefore, a new system is proposed that enables to:  

  11. Impacts of Extended Periods of Low Solar Activity on Climate (Abstract)

    Science.gov (United States)

    Denig, W. F.

    2016-06-01

    (Abstract only) There has been great interest in determining the length and amplitude of Solar Cycle 24 in recent years, in part due to increasing speculation that the current solar minimum is anomalously quiet and perhaps signaling the beginning of a decreased period of solar activity in the coming decades. We aim to examine the current solar minimum and compare it to previous solar minima in order to: determine if the current minimum shares characteristics with other historically quiet solar minima (sometimes referred to as grand minima); outline the potential consequences of a grand minimum with respect to climate; and predict the future of Solar Cycle 24.

  12. On the possible relations between solar activities and global seismicity in the solar cycle 20 to 23

    International Nuclear Information System (INIS)

    Solar activities consist of high energetic particle streams, electromagnetic radiation, magnetic and orbital gravitational forces. The well-know solar activity main indicator is the existence of sunspot which has mean variation in 11 years, named by solar cycle, allow for the above fluctuations. Solar activities are also related to the space weather affecting all planetary atmospheric variability, moreover to the Earth’s climate variability. Large extreme space and geophysical events (high magnitude earthquakes, explosive volcanic eruptions, magnetic storms, etc.) are hazards for humankind, infrastructure, economies, technology and the activities of civilization. With a growing world population, and with modern reliance on delicate technological systems, human society is becoming increasingly vulnerable to natural hazardous events. The big question arises to the relation between solar forcing energy to the Earth’s global seismic activities. Estimates are needed for the long term occurrence-rate probabilities of these extreme natural hazardous events. We studied connectivity from yearly seismic activities that refer to and sunspot number within the solar cycle 20 to 23 of year 1960 to 2013 (53 years). We found clear evidences that in general high magnitude earthquake events and their depth were related to the low solar activity

  13. On the possible relations between solar activities and global seismicity in the solar cycle 20 to 23

    Energy Technology Data Exchange (ETDEWEB)

    Herdiwijaya, Dhani, E-mail: dhani@as.itb.ac.id [Astronomy Research Division and Bosscha Observatory, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Ganesha 10, Bandung, Indonesia 40132 (Indonesia); Arif, Johan [Geology Research Division, Faculty of Earth Sciences and Technology, Bandung Institute of Technology, Ganesha 10, Bandung, Indonesia 40132 (Indonesia); Nurzaman, Muhamad Zamzam; Astuti, Isna Kusuma Dewi [Astronomy Study Program, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Ganesha 10, Bandung, Indonesia 40132 (Indonesia)

    2015-09-30

    Solar activities consist of high energetic particle streams, electromagnetic radiation, magnetic and orbital gravitational forces. The well-know solar activity main indicator is the existence of sunspot which has mean variation in 11 years, named by solar cycle, allow for the above fluctuations. Solar activities are also related to the space weather affecting all planetary atmospheric variability, moreover to the Earth’s climate variability. Large extreme space and geophysical events (high magnitude earthquakes, explosive volcanic eruptions, magnetic storms, etc.) are hazards for humankind, infrastructure, economies, technology and the activities of civilization. With a growing world population, and with modern reliance on delicate technological systems, human society is becoming increasingly vulnerable to natural hazardous events. The big question arises to the relation between solar forcing energy to the Earth’s global seismic activities. Estimates are needed for the long term occurrence-rate probabilities of these extreme natural hazardous events. We studied connectivity from yearly seismic activities that refer to and sunspot number within the solar cycle 20 to 23 of year 1960 to 2013 (53 years). We found clear evidences that in general high magnitude earthquake events and their depth were related to the low solar activity.

  14. Electrically active defects in solar grade multicrystalline silicon

    DEFF Research Database (Denmark)

    Dahl, Espen

    2013-01-01

    gettering techniques. It was found that a high density of dislocations provided centres for precipitation of metallic impurities in a substantial part of wafers based on commercially available silicon from the metallurgic route. These precipitates introduce a range of defect levels in the silicon band gap...... distribution of metallic point defects. In addition, it has been proven that introduction of sodium lead to significant recombination activity in silicon. The gettering potential of metallic impurities varied significantly based on the type of material. This is most likely related to the density of......Shortage in high purity silicon feedstock, as a result of the formidable increased demand for solar cell devices during the last two decades, can be mitigated by the introduction of cheaper feedstock of solar grade (So-G) quality. Silicon produced through the metallurgical process route has shown...

  15. Non-Stationary Effects and Cross Correlations in Solar Activity

    Science.gov (United States)

    Nefedyev, Yuri; Panischev, Oleg; Demin, Sergey

    2016-07-01

    In this paper within the framework of the Flicker-Noise Spectroscopy (FNS) we consider the dynamic properties of the solar activity by analyzing the Zurich sunspot numbers. As is well-known astrophysics objects are the non-stationary open systems, whose evolution are the quite individual and have the alternation effects. The main difference of FNS compared to other related methods is the separation of the original signal reflecting the dynamics of solar activity into three frequency bands: system-specific "resonances" and their interferential contributions at lower frequencies, chaotic "random walk" ("irregularity-jump") components at larger frequencies, and chaotic "irregularity-spike" (inertial) components in the highest frequency range. Specific parameters corresponding to each of the bands are introduced and calculated. These irregularities as well as specific resonance frequencies are considered as the information carriers on every hierarchical level of the evolution of a complex natural system with intermittent behavior, consecutive alternation of rapid chaotic changes in the values of dynamic variables on small time intervals with small variations of the values on longer time intervals ("laminar" phases). The jump and spike irregularities are described by power spectra and difference moments (transient structural functions) of the second order. FNS allows revealing the most crucial points of the solar activity dynamics by means of "spikiness" factor. It is shown that this variable behaves as the predictor of crucial changes of the sunspot number dynamics, particularly when the number comes up to maximum value. The change of averaging interval allows revealing the non-stationary effects depending by 11-year cycle and by inside processes in a cycle. To consider the cross correlations between the different variables of solar activity we use the Zurich sunspot numbers and the sequence of corona's radiation energy. The FNS-approach allows extracting the

  16. Solar EUV Variability from FISM and SDO/EVE During Solar Minimum, Active, and Flaring Time Periods

    Science.gov (United States)

    Chamberlin, Phillip C.

    2011-01-01

    The Living With a Star (LWS) Focus Science Team has identified three periods of different solar activity levels for which they will be determining the Earth's Ionosphere and Thermosphere response. Not only will the team be comparing individual models (e.g. FLIP, T1MEGCM, GLOW) outcome driven by the various levels of solar activity, but the models themselves will also be compared. These models all rely on the input solar EUV (0.1 -190 nm) irradiance to drive the variability. The Flare Irradiance Spectral Model (FISM) and the EUV Variability Experiment (EVE) onboard provide the Solar Dynamics Observatory (SDO) provide the most accurate quantification of these irradiances. Presented and discussed are how much the solar EUV irradiance changes during these three scenarios, both as a function of activity and wavelength.

  17. Solar technology assessment project. Volume 4: Solar air conditioning: Active, hybrid and passive

    Science.gov (United States)

    Yellott, J. I.

    1981-04-01

    The status of absorption cycle solar air conditioning and the Rankine cycle solar cooling system is reviewed. Vapor jet ejector chillers, solar pond based cooling, and photovoltaic compression air conditioning are also briefly discussed. Hybrid solar cooling by direct and indirect evaporative cooling, and dehumidification by desiccation are described and discussed. Passive solar cooling by convective and radiative processes, evaporative cooling by passive processes, and cooling with roof ponds and movable insulation are reviewed. Federal and state involvement in solar cooling is discussed.

  18. Foothills Parkway Section 8B Final Environmental Report, Volume 6, Appendix N

    Energy Technology Data Exchange (ETDEWEB)

    Blasing, T.J.; Cada, G.F.; Carer, M.; Chin, S.M.; Dickerman, J.A.; Etnier, D.A.; Gibson, R.; Harvey, M.; Hatcher, B.; Lietzske, D.; Mann, L.K.; Mulholland, P.J.; Petrich, C.H.; Pounds, L.; Ranney, J.; Reed, R.M.; Ryan, P.F.; Schweitzer, M.; Smith, D.; Thomason, P.; Wade, M.C.

    1999-07-01

    In 1994, Oak Ridge National Laboratory (ORNL) was tasked by the National Park Service (NPS) to prepare an Environmental Report (ER) for Section 8B of the Foothills Parkway in the Great Smoky Mountains National Park (GSMNP). Section 8B represents 27.7 km (14.2 miles) of a total of 115 km (72 miles) of the planned Foothills Parkway and would connect the Cosby community on the east to the incorporated town of Pittman Center to the west. The major deliverables for the project are listed. From August 1995 through October 1996, NPS, GSMNP, and ORNL staff interacted with Federal Highway Administration staff to develop a conceptual design plan for Section 8B with the intent of protecting critical resources identified during the ER process to the extent possible. In addition, ORNL arranged for bioengineering experts to discuss techniques that might be employed on Section 8B with NPS, GSMNP, and ORNL staff during September 1996. For the purposes of this ER, there are two basic alternatives under consideration: (1) a build alternative and (2) a no-build alternative. Within the build alternative are a number of options including constructing Section 8B with no interchanges, constructing Section 8B with an interchange at SR 416 or U.S. 321, constructing Section 8B with a spur road on Webb Mountain, and considering operation of Section 8B both before and after the operation of Section 8C. The no-build alternative is considered the no-action alternative and is not to construct Section 8B. This volume of the ER documents the results of the architectural, historical, and cultural resources assessment for the entire Section 8B ROW that was completed in May 1995 to document the architectural, historical, and cultural resources located within the project area. The assessment included evaluation of the potential for cultural (i.e., rural historic) landscapes in the area of the ROW. The assessment showed that one National Register-listed property is located 0.3 mile south of the ROW

  19. Coulomb dissociation of {sup 8}B at 254 A MeV

    Energy Technology Data Exchange (ETDEWEB)

    Suemmerer, K.; Boue, F.; Baumann, T.; Geissel, H.; Hellstroem, M.; Koczon, P.; Schwab, E.; Schwab, W.; Senger, P.; Surowiecz, A. [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany); Iwasa, N.; Ozawa, A. [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany)]|[RIKEN Institute of Physical and Chemical Research, Saitama (Japan); Surowka, G. [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany)]|[Jagiellonian Univ., Krakow (Poland). Inst. of Physics; Blank, B.; Czajkowski, S.; Marchand, C.; Pravikoff, M.S. [Centre d`Etudes Nucleaires de Bordeaux-Gradignan, 33 (France); Foerster, A.; Lauer, F.; Oeschler, H.; Speer, J.; Sturm, C.; Uhlig, F.; Wagner, A. [Technische Univ. Darmstadt (Germany); Gai, M. [Connecticut Univ., Storrs, CT (United States). Dept. of Physics; Grosse, E. [Inst. fuer Kern- und Hadronenphysik, Forschungszentrum Rossendorf, Dresden (Germany); Kohlmeyer, B. [Philipps Univ., Marburg (Germany). Fachbereich Physik; Kulessa, R.; Walus, W. [Jagiellonian Univ., Krakow (Poland). Inst. of Physics; Motobayashi, T. [Rikkyo Univ., Tokyo (Japan). Dept. of Physics; Teranishi, T. [RIKEN Institute of Physical and Chemical Research, Saitama (Japan)

    1998-06-01

    As an alternative method for determining the astrophysical S-factor for the {sup 7}Be(p,{gamma}){sup 8}B reaction we have measured the Coulomb dissociation of {sup 8}B at 254 A MeV. From our preliminary results, we obtain good agreement with both the accepted direct-reaction measurements and the low-energy Coulomb dissociation study of Iwasa et al. performed at about 50 A MeV. (orig.)

  20. A comparative analysis of the Army MQ-8B Fire Scout Vertical Takeoff Unmanned Aerial Vehicle (VTUAV) AND Navy MQ-8B manpower and training requirements

    OpenAIRE

    Raymer, Michael K.

    2009-01-01

    Approved for public release, distribution unlimited The recent increased urgency to combat terrorism and asymmetric threats, combined with the environment in which field troops are forced to operate has created a unique demand for non-standard war fighting capabilities. Beginning in 2004, the U.S. Navy, in a joint effort with the U.S. Army, began jointly testing and evaluating the Northrop Grumman MQ-8B Fire Scout Vertical Take Off Unmanned Aerial Vehicle (VTUAV). This platform has sho...

  1. Foothills Parkway Section 8B Final Environmental Report, Volume 3, Appendix D

    Energy Technology Data Exchange (ETDEWEB)

    Blasing, T.J.; Cada, G.F.; Carer, M.; Chin, S.M.; Dickerman, J.A.; Etnier, D.A.; Gibson, R.; Harvey, M.; Hatcher, B.; Lietzske, D.; Mann, L.K.; Mulholland, P.J.; Petrich, C.H.; Pounds, L.; Ranney, J.; Reed, R.M.; Ryan, P.F.; Schweitzer, M.; Smith, D.; Thomason, P.; Wade, M.C.

    1999-07-01

    In 1994, Oak Ridge National Laboratory (ORNL) was tasked by the National Park Service (NPS) to prepare an Environmental Report (ER) for Section 8B of the Foothills Parkway in the Great Smoky Mountains National Park (GSMNP). Section 8B represents 27.7 km (14.2 miles) of a total of 115 km (72 miles) of the planned Foothills Parkway and would connect the Cosby community on the east to the incorporated town of Pittman Center to the west. The major deliverables for the project are listed. From August 1995 through October 1996, NPS, GSMNP, and ORNL staff interacted with Federal Highway Administration staff to develop a conceptual design plan for Section 8B with the intent of protecting critical resources identified during the ER process to the extent possible. In addition, ORNL arranged for bioengineering experts to discuss techniques that might be employed on Section 8B with NPS, GSMNP, and ORNL staff during September 1996. For the purposes of this ER, there are two basic alternatives under consideration: (1) a build alternative and (2) a no-build alternative. Within the build alternative are a number of options including constructing Section 8B with no interchanges, constructing Section 8B with an interchange at SR416 or U.S. 321, constructing Section 8B with a spur road on Webb Mountain, and considering operation of Section 8B both before and after the operation of Section 8C. The no-build alternative is considered the no-action alternative and is not to construct Section 8B. This volume of the ER inventories the fishes and benthic macroinvertebrates inhabiting the aquatic ecosystems potentially affected by the proposed construction of Section 8B. Stream biological surveys were completed at 31 stream sites during the Fall of 1994. The sampling strategy for both invertebrates and fish was to survey the different taxa from all available habitats. For benthic invertebrates, a standardized qualitative manual collection technique was employed for all 31 stations. For fish

  2. Argonne Solar Energy Program annual report. Summary of solar program activities for fiscal year 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-06-01

    The R and D work done at Argonne National Laboratory on solar energy technologies during the period October 1, 1978 to September 30, 1979 is described. Technical areas included in the ANL solar program are solar energy collection, heating and cooling, thermal energy storage, ocean thermal energy conversion, photovoltaics, biomass conversion, satellite power systems, and solar liquid-metal MHD power systems.

  3. Temporal associations of life with solar and geophysical activity

    Directory of Open Access Journals (Sweden)

    T. K. Breus

    Full Text Available In biology, circadian rhythms with a period of one cycle in 20–28 h are known to be ubiquitous and partly endogenous. Rhythms with a frequency lower than one cycle per day are called 'infradian rhythms'. Among them are components with one cycle in about 3.5, 7, 14 and 28 days, the multiseptans, which, like the circadians, must be regarded as a general characteristic of life: they characterize unicells as well as much more differentiated organisms. We hypothesize that heliogeophysical factors other than the solar visible light, held responsible for the evolution of circadian periodicity, underlie the infradian rhythms of biosystems. The periodicities in the solar wind and variations in the interplanetary magnetic field (IMF which are associated with the solar rotation are very similar in length to the biological periodicities. We investigate the temporal relations of variations in solar activity and in biological systems to test associations between events in the IMF, in geomagnetic disturbance, in myocardial infarction and in physiology. By cross-spectral analysis, we also find relations at certain frequencies between changes in human physiology on the one hand, and (1 the vertical component of the induction vector of the IMF, Bz, and (2 a global index of geomagnetic disturbance, Kp, on the other hand. We wish to stimulate interest in these periodicities of both biological systems and geophysical endpoints among physicists and biologists alike, so that problems relevant to clinicians and other biologists, including evolutionists, are eventually solved by their cooperation with the geophysical community.

  4. Solar activity around AD 775 from aurorae and radiocarbon

    Science.gov (United States)

    Neuhäuser, R.; Neuhäuser, D. L.

    2015-04-01

    A large variation in 14C around AD 775 has been considered to be caused by one or more solar super-flares within one year. We critically review all known aurora reports from Europe as well as the Near, Middle, and Far East from AD 731 to 825 and find 39 likely true aurorae plus four more potential aurorae and 24 other reports about halos, meteors, thunderstorms etc., which were previously misinterpreted as aurorae or misdated; we assign probabilities for all events according to five aurora criteria. We find very likely true aurorae in AD 743, 745, 762, 765, 772, 773, 793, 796, 807, and 817. There were two aurorae in the early 770s observed near Amida (now Diyarbak\\i r in Turkey near the Turkish-Syrian border), which were not only red, but also green-yellow - being at a relatively low geomagnetic latitude, they indicate a relatively strong solar storm. However, it cannot be argued that those aurorae (geomagnetic latitude 43 to 50°, considering five different reconstructions of the geomagnetic pole) could be connected to one or more solar super-flares causing the 14C increase around AD 775: There are several reports about low- to mid-latitude aurorae at 32 to 44° geomagnetic latitude in China and Iraq; some of them were likely observed (quasi-)simultaneously in two of three areas (Europe, Byzantium/Arabia, East Asia), one lasted several nights, and some indicate a particularly strong geomagnetic storm (red colour and dynamics), namely in AD 745, 762, 793, 807, and 817 - always without 14C peaks. We use 39 likely true aurorae as well as historic reports about sunspots together with the radiocarbon content from tree rings to reconstruct the solar activity: From AD {˜ 733} to {˜ 823}, we see at least nine Schwabe cycles; instead of one of those cycles, there could be two short, weak cycles - reflecting the rapid increase to a high 14C level since AD 775, which lies at the end of a strong cycle. In order to show the end of the dearth of naked-eye sunspots, we

  5. Sign singularity and flares in solar active region NOAA 11158

    CERN Document Server

    Sorriso-Valvo, Luca; Kazachenko, Maria D; Krucker, Sam; Primavera, Leonardo; Servidio, Sergio; Vecchio, Antonio; Welsch, Brian T; Fisher, George H; Lepreti, Fabio; Carbone, Vincenzo

    2015-01-01

    Solar Active Region NOAA 11158 has hosted a number of strong flares, including one X2.2 event. The complexity of current density and current helicity are studied through cancellation analysis of their sign-singular measure, which features power-law scaling. Spectral analysis is also performed, revealing the presence of two separate scaling ranges with different spectral index. The time evolution of parameters is discussed. Sudden changes of the cancellation exponents at the time of large flares, and the presence of correlation with EUV and X-ray flux, suggest that eruption of large flares can be linked to the small scale properties of the current structures.

  6. Evolution and Dynamics of a Solar Active Prominence

    CERN Document Server

    Magara, Tetsuya

    2015-01-01

    The life of a solar active prominence, one of the most remarkable objects on the Sun, is full of dynamics; after first appearing on the Sun the prominence continuously evolves with various internal motions and eventually produces a global eruption toward the interplane- tary space. Here we report that the whole life of an active prominence is successfully re- produced by performing as long-term a magnetohydrodynamic simulation of a magnetized prominence plasma as was ever done. The simulation reveals underlying dynamic processes that give rise to observed properties of an active prominence: invisible subsurface flows self- consistently produce the cancellation of magnetic flux observed at the photosphere, while observed and somewhat counterintuitive strong upflows are driven against gravity by en- hanced gas pressure gradient force along a magnetic field line locally standing vertical. The most highlighted dynamic event, transition into an eruptive phase, occurs as a natural con- sequence of the self-consiste...

  7. Eruptions that Drive Coronal Jets in a Solar Active Region

    Science.gov (United States)

    Sterling, Alphonse C.; Moore, Ronald L.; Falconer, David A.; Panesar, Navdeep K.; Akiyama, Sachiko; Yashiro, Seiji; Gopalswamy, Nat

    2016-01-01

    Solar coronal jets are common in both coronal holes and in active regions (e.g., Shibata et al. 1992, Shimojo et al. 1996, Cirtain et al. 2007. Savcheva et al. 2007). Recently, Sterling et al. (2015), using data from Hinode/XRT and SDO/AIA, found that coronal jets originating in polar coronal holes result from the eruption of small-scale filaments (minifilaments). The jet bright point (JBP) seen in X-rays and hotter EUV channels off to one side of the base of the jet's spire develops at the location where the minifilament erupts, consistent with the JBPs being miniature versions of typical solar flares that occur in the wake of large-scale filament eruptions. Here we consider whether active region coronal jets also result from the same minifilament-eruption mechanism, or whether they instead result from a different mechanism (e.g. Yokoyama & Shibata 1995). We present observations of an on-disk active region (NOAA AR 11513) that produced numerous jets on 2012 June 30, using data from SDO/AIA and HMI, and from GOES/SXI. We find that several of these active region jets also originate with eruptions of miniature filaments (size scale 20'') emanating from small-scale magnetic neutral lines of the region. This demonstrates that active region coronal jets are indeed frequently driven by minifilament eruptions. Other jets from the active region were also consistent with their drivers being minifilament eruptions, but we could not confirm this because the onsets of those jets were hidden from our view. This work was supported by funding from NASA/LWS, NASA/HGI, and Hinode. A full report of this study appears in Sterling et al. (2016).

  8. On the solar activity variations of nocturnal F region vertical drifts covering two solar cycles in the Indian longitude sector

    Science.gov (United States)

    Madhav Haridas, M. K.; Manju, G.; Pant, Tarun Kumar

    2015-02-01

    A comprehensive analysis of the seasonal and solar cycle variabilities of nighttime vertical drift over the Indian longitude sector is accomplished using ionosonde data located at the magnetic equatorial location, Trivandrum (8.5°N, 76.5°E). The analysis extends over a span of two decades (1988-2008). The representative seasonal variations based on the extensive data of nocturnal vertical drift during three different solar activity epochs is arrived at, for the first time. Seasonally, it is seen that maximum post sunset Vd is obtained in vernal equinox (VE), followed by autumnal equinox (AE), winter solstice (WS), and summer solstice (SS) for high and moderate solar epochs, while for low solar epoch, maximum Vd occurs in WS followed by VE, AE, and SS. Further, the role of sunset times at the magnetic conjugate points in modulating the time and magnitude of peak drifts during different solar epochs is ascertained. The equinoctial asymmetry in peak Vd during high and moderate solar epochs is another significant outcome of this study. The solar activity dependence of vertical drift for a wide range of solar fluxes has been quantified for all the seasons. In the present era of GPS-based communication and navigation, these are important results that give a better handle in understanding essential factors that impact equatorial ionospheric phenomena.

  9. Reconstructing Past Solar Activity using Meridian Solar Observations: the Case of the Royal Observatory of the Spanish Navy (1833-1840)

    CERN Document Server

    Vaquero, J M

    2014-01-01

    Solar meridian observations have been used to evaluate the solar activity of the past. Some important examples are the solar meridian observations made at the Basilica of San Petronio in Bologna by several astronomers and the observations made by Hevelius published in his book Machina Coelestis. However, we do not know whether these observations, which were not aimed to estimate the solar activity, are reliable for evaluating solar activity. In this paper, we present the marginal notes about sunspots that are included in the manuscripts of the meridian solar observations made at the Royal Observatory of the Spanish Navy during the period 1833-1840. We compare these observations with other solar activity indices such as sunspot area and number. Our conclusion is that solar meridian observations should be used with extreme caution to evaluate past solar activity.

  10. Variations of the temperature and solar activity in China

    Institute of Scientific and Technical Information of China (English)

    MingQi Li; QuanSheng Ge; ZhiXin Hao; JingYun Zheng

    2014-01-01

    In this paper we analyze daily mean, minimum, and maximum temperature data collected at 119 meteorological stations over five regions of China during the period 1951-2010. The series of minimum, maximum, and mean temperatures from each climatic region have similar signatures, but there are differences among the five regions and the countrywide average. The results indicate that the periods of faster warming were not synchronous across the regions studied: warming in northeast China and Tibet began in 1986, while in central-east, southeast, and northwest China the warming emerged in 1995. Furthermore, central-east and northwest China, and Tibet, have warmed continuously since 2000, but the temper-ature has decreased during this period in southeast China. We evaluated the evolution of these temperature series using a novel nonlinear filtering technique based on the concept of the lifetime of temperature curves. The decadal to secular evolution of solar activity and temperature variation had similar signatures in the northeast, southeast, and northwest re-gions and the average across the whole country, indicating that solar activity is a significant control on climate change over secular time scales in these regions. In comparison with these regions, the signatures were different in central-east China and Tibet because of regional differences (e.g., landforms and elevation) and indirect effects (e.g., cloud cover influencing the radiation balance, thereby inducing climate change). Furthermore, the results of wavelet analysis indicated that the El Niño Southern Oscillation (ENSO) has had a significant impact on climate change, but at different times among the regions, and these changes were most probably induced by differing responses of the atmospheric system to solar forcing.

  11. Foothills Parkway Section 8B Final Environmental Report, Volume 4, Appendices E-I

    Energy Technology Data Exchange (ETDEWEB)

    Blasing, T.J.; Cada, G.F.; Carer, M.; Chin, S.M.; Dickerman, J.A.; Etnier, D.A.; Gibson, R.; Harvey, M.; Hatcher, B.; Lietzske, D.; Mann, L.K.; Mulholland, P.J.; Petrich, C.H.; Pounds, L.; Ranney, J.; Reed, R.M.; Ryan, P.F.; Schweitzer, M.; Smith, D.; Thomason, P.; Wade, M.C.

    1999-07-01

    In 1994, Oak Ridge National Laboratory (ORNL) was tasked by the National Park Service (NPS) to prepare an Environmental Report (ER) for Section 8B of the Foothills Parkway in the Great Smoky Mountains National Park (GSMNP). Section 8B represents 27.7 km (14.2 miles) of a total of 115 km (72 miles) of the planned Foothills Parkway and would connect the Cosby community on the east to the incorporated town of Pittman Center to the west. The major deliverables for the project are listed. From August 1995 through October 1996, NPS, GSMNP, and ORNL staff interacted with Federal Highway Administration staff to develop a conceptual design plan for Section 8B with the intent of protecting critical, resources identified during the ER process to the extent possible. In addition, ORNL arranged for bioengineering experts to discuss techniques that might be employed on Section 8B with NPS, GSMNP, and ORNL staff during September 1996. For the purposes of this ER, there are two basic alternatives under consideration: (1) a build alternative and (2) a no-build alternative. Within the build alternative are a number of options including constructing Section 8B with no interchanges, constructing Section 8B with an interchange at SR 416 or U.S. 321, constructing Section 8B with a spur road on Webb Mountain, and considering operation of Section 8B both before and after the operation of Section 8C. The no-build alternative is considered the no-action alternative and is not to construct Section 8B. This volume of the ER consists of Appendices E through I (all ecological survey reports), which are summarized individually in the sections that follow. The following conclusions result from the completion of these surveys and the ER impact analysis: (1) Forest clearing should be limited as much as possible; (2) Disturbed areas should be replanted with native trees; (3) Drainages should be bridged rather than leveled with cut and fill; (4) For areas of steep slopes and potential erosion

  12. ATP8B1-mediated spatial organization of Cdc42 signaling maintains singularity during enterocyte polarization

    Science.gov (United States)

    Bruurs, Lucas J.M.; Donker, Lisa; Zwakenberg, Susan; Zwartkruis, Fried J.; Begthel, Harry; Knisely, A.S.; Posthuma, George; van de Graaf, Stan F.J.; Paulusma, Coen C.

    2015-01-01

    During yeast cell polarization localization of the small GTPase, cell division control protein 42 homologue (Cdc42) is clustered to ensure the formation of a single bud. Here we show that the disease-associated flippase ATPase class I type 8b member 1 (ATP8B1) enables Cdc42 clustering during enterocyte polarization. Loss of this regulation results in increased apical membrane size with scattered apical recycling endosomes and permits the formation of more than one apical domain, resembling the singularity defect observed in yeast. Mechanistically, we show that to become apically clustered, Cdc42 requires the interaction between its polybasic region and negatively charged membrane lipids provided by ATP8B1. Disturbing this interaction, either by ATP8B1 depletion or by introduction of a Cdc42 mutant defective in lipid binding, increases Cdc42 mobility and results in apical membrane enlargement. Re-establishing Cdc42 clustering, by tethering it to the apical membrane or lowering its diffusion, restores normal apical membrane size in ATP8B1-depleted cells. We therefore conclude that singularity regulation by Cdc42 is conserved between yeast and human and that this regulation is required to maintain healthy tissue architecture. PMID:26416959

  13. A Relationship between Solar Activity and Frequency of Natural Disasters in China

    Institute of Scientific and Technical Information of China (English)

    王钟睿; 冯松; 汤懋苍

    2003-01-01

    The relationship between the length of the solar cycle, a good indicator of long-term change in solar activity, and natural disasters (drought, flood, and strong earthquakes) in China during the last 108 years is analyzed. The results suggest that the length of solar cycle may be a useful indicator for drought/flood and strong earthquakes. When the solar activity strengthens, we see the length of the solar cycle shorten and more floods occur in South China and frequent strong earthquakes happen in the Tibetan Plateau, but the droughts in East China as well as the strong earthquakes in Taiwan and at the western boundary of China are very few. The opposite frequencies occur when the solar activity weakens. The current study indicates that the solar activity may play an important role in the climate extremes and behavior in the lithosphere.

  14. Solar Energy Education. Social studies: activities and teacher's guide. Field test edition

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    Solar energy information is made available to students through classroom instruction by way of the Solar Energy Education teaching manuals. In this manual solar energy, as well as other energy sources like wind power, is introduced by performing school activities in the area of social studies. A glossary of energy related terms is included. (BCS)

  15. Solar and terrestrial physics. [effects of solar activities on earth environment

    Science.gov (United States)

    1975-01-01

    The effects of solar radiation on the near space and biomental earth, the upper atmosphere, and the magnetosphere are discussed. Data obtained from the OSO satellites pertaining to the solar cycle variation of extreme ultraviolet (EUV) radiation are analyzed. The effects of solar cycle variation of the characteristics of the solar wind are examined. The fluid mechanics of shock waves and the specific relationship to the characteristics of solar shock waves are investigated. The solar and corpuscular heating of the upper atmosphere is reported based on the findings of the AEROS and NATE experiments. Seasonal variations of the upper atmosphere composition are plotted based on OGO-6 mass spectrometer data.

  16. Spring-fall asymmetry of substorm strength, geomagnetic activity and solar wind: Implications for semiannual variation and solar hemispheric asymmetry

    Science.gov (United States)

    Marsula, K.; Tanskanen, E.; Love, J.J.

    2011-01-01

    We study the seasonal variation of substorms, geomagnetic activity and their solar wind drivers in 1993–2008. The number of substorms and substorm mean duration depict an annual variation with maxima in Winter and Summer, respectively, reflecting the annual change of the local ionosphere. In contradiction, substorm mean amplitude, substorm total efficiency and global geomagnetic activity show a dominant annual variation, with equinoctial maxima alternating between Spring in solar cycle 22 and Fall in cycle 23. The largest annual variations were found in 1994 and 2003, in the declining phase of the two cycles when high-speed streams dominate the solar wind. A similar, large annual variation is found in the solar wind driver of substorms and geomagnetic activity, which implies that the annual variation of substorm strength, substorm efficiency and geomagnetic activity is not due to ionospheric conditions but to a hemispherically asymmetric distribution of solar wind which varies from one cycle to another. Our results imply that the overall semiannual variation in global geomagnetic activity has been seriously overestimated, and is largely an artifact of the dominant annual variation with maxima alternating between Spring and Fall. The results also suggest an intimate connection between the asymmetry of solar magnetic fields and some of the largest geomagnetic disturbances, offering interesting new pathways for forecasting disturbances with a longer lead time to the future.

  17. Detectability of active triangulation range finder: a solar irradiance approach.

    Science.gov (United States)

    Liu, Huizhe; Gao, Jason; Bui, Viet Phuong; Liu, Zhengtong; Lee, Kenneth Eng Kian; Peh, Li-Shiuan; Png, Ching Eng

    2016-06-27

    Active triangulation range finders are widely used in a variety of applications such as robotics and assistive technologies. The power of the laser source should be carefully selected in order to satisfy detectability and still remain eye-safe. In this paper, we present a systematic approach to assess the detectability of an active triangulation range finder in an outdoor environment. For the first time, we accurately quantify the background noise of a laser system due to solar irradiance by coupling the Perez all-weather sky model and ray tracing techniques. The model is validated with measurements with a modeling error of less than 14.0%. Being highly generic and sufficiently flexible, the proposed model serves as a guide to define a laser system for any geographical location and microclimate.

  18. YAV-8B reaction control system bleed and control power usage in hover and transition

    Science.gov (United States)

    Borchers, Paul F.; Moralez, Ernesto, III; Merrick, Vernon K.; Stortz, Michael W.

    1994-01-01

    Using a calibrated Rolls-Royce Pegasus engine and existing aircraft instrumentation and pressure taps, total and individual nozzle reaction control system (RCS) bleed flow rates have been measured on a YAV-8B Harrier during typical short takeoff, transition, hover, and vertical landing maneuvers. RCS thrust forces were calculated from RCS nozzle total pressure measurements, and control power was determined from the moments produced by these thrusts and the aircraft's moments of inertia. These data document the characteristics of the YAV-8B RCS with its basic stability augmentation system (SAS) engaged. Advanced control system designs for the YAV-8B can be compared to the original SAS based on the total bleed use and the percentage of available bleed used. In addition, the peak and mean values of the bleed and control power data can be used for sizing the reaction controls for a future short takeoff and vertical landing (STOVL) aircraft.

  19. Determination of 8B(p,gamma)9C reaction rate from 9C breakup

    CERN Document Server

    Fukui, Tokuro; Minomo, Kosho; Yahiro, Masanobu

    2012-01-01

    The astrophysical factor of the 8B(p,gamma)9C at zero energy, S18(0), is determined from three-body model analysis of 9C breakup processes. The elastic breakup 208Pb(9C,p8B)208Pb at 65 MeV/nucleon and the one-proton removal reaction of 9C at 285 MeV/nucleon on C and Al targets are calculated with the continuum-discretized coupled-channels method (CDCC) and the eikonal reaction theory (ERT), respectively. The asymptotic normalization coefficient (ANC) of 9C in the p-8B configuration extracted from the two reactions show good consistency, in contrast to in the previous studies. As a result of the present analysis, S18(0) = 66 \\pm 10 eVb is obtained.

  20. Reaction mechanisms in collisions induced by 8B beam close to the barrier

    CERN Multimedia

    The aim of the proposed experiment is to investigate on the reaction dynamics of proton-halo induced collisions at energies around the Coulomb barrier where coupling to continuum effects are expected to be important. We propose to measure $^{8}$B+$^{64}$Zn elastic scattering angular distribution together with the measurement, for the first time, of p-$^{7}$Be coincidences coming from transfer and/or break-up of $^{8}$B. The latter will allow a better understanding of the relative contribution of elastic $\\textit{vs}$ non-elastic break-up in reactions induced by extremely weakly-bound nuclei. We believe that with the availability of the post accelerated $^{8}$B beam at REX-ISOLDE we will be able to collect for the first time high quality data for the study of such an important topic.

  1. Low-consumption building with an active solar system; Niedrigenergiehaus mit aktiver Solartechnik

    Energy Technology Data Exchange (ETDEWEB)

    Abrecht, B.

    1997-01-01

    The low-consumption solar building at Keltern-Dietlingen is an alternative to passive solar buildings in that instead of saving energy by reducing consumption, additional energy sources are saved by active use of solar energy. (orig.) [Deutsch] Das solare Niedrigenergiehaus in Keltern-Dietlingen stellt eine Alternative zum Passivhaus dar. Denn der Energieverbrauch wird nicht noch weiter verringert, sondern die Einsparung an zusaetzlichen Energietraegern kommt durch die aktive Nutzung der Sonnenenergie zustande. (orig.)

  2. Resonance of about-weekly human heart rate rhythm with solar activity change.

    Science.gov (United States)

    Cornelissen, G; Halberg, F; Wendt, H W; Bingham, C; Sothern, R B; Haus, E; Kleitman, E; Kleitman, N; Revilla, M A; Revilla, M; Breus, T K; Pimenov, K; Grigoriev, A E; Mitish, M D; Yatsyk, G V; Syutkina, E V

    1996-12-01

    In several human adults, certain solar activity rhythms may influence an about 7-day rhythm in heart rate. When no about-weekly feature was found in the rate of change in sunspot area, a measure of solar activity, the double amplitude of a circadian heart rate rhythm, approximated by the fit of a 7-day cosine curve, was lower, as was heart rate corresponds to about-weekly features in solar activity and/or relates to a sunspot cycle.

  3. Active Solar Sail Designs for Chip-Scale Spacecraft

    OpenAIRE

    Weis, Lorraine; Peck, Mason

    2014-01-01

    Centimeter-scale spacecraft, known as ”Chipsats,” have very high surface-area-to-mass ratios, which accentuates solar radiation pressure (SRP) effects. In contrast to traditional. large solar sails, chip-scale solar sails have the potential to be highly agile in terms of attitude because of their structural rigidity and low moments of inertia. This ability to easily reorient a solar sail greatly expands the orbits that a solar-sail spacecraft can achieve. Solar sail actuation through electroc...

  4. Near-earth solar wind flows and related geomagnetic activity during more than four solar cycles (1963–2011

    Directory of Open Access Journals (Sweden)

    Richardson Ian G.

    2012-05-01

    Full Text Available In past studies, we classified the near-Earth solar wind into three basic flow types based on inspection of solar wind plasma and magnetic field parameters in the OMNI database and additional data (e.g., geomagnetic indices, energetic particle, and cosmic ray observations. These flow types are: (1 High-speed streams associated with coronal holes at the Sun, (2 Slow, interstream solar wind, and (3 Transient flows originating with coronal mass ejections at the Sun, including interplanetary coronal mass ejections and the associated upstream shocks and post-shock regions. The solar wind classification in these previous studies commenced with observations in 1972. In the present study, as well as updating this classification to the end of 2011, we have extended the classification back to 1963, the beginning of near-Earth solar wind observations, thereby encompassing the complete solar cycles 20 to 23 and the ascending phase of cycle 24. We discuss the cycle-to-cycle variations in near-Earth solar wind structures and the related geomagnetic activity over more than four solar cycles, updating some of the results of our earlier studies.

  5. 7Be- and 8B-reaction dynamics at Coulomb barrier energies

    Directory of Open Access Journals (Sweden)

    Mazzocco M.

    2016-01-01

    Full Text Available We investigated the reaction dynamics induced by the Radioactive Ion Beams 7Be and 8B on a 208Pb target at energies around the Coulomb barrier. The two measurements are strongly interconnected, being 7Be (Sα = 1.586 MeV the loosely bound core of the even more exotic 8B (Sp = 0.1375 MeV nucleus. Here we summarize the present status of the data analysis for the measurement of the elastic scattering process for both reactions and the preliminary results for the optical model analysis of the collected data.

  6. 7Be- and 8B-reaction dynamics at Coulomb barrier energies

    Science.gov (United States)

    Mazzocco, M.; Boiano, A.; Boiano, C.; La Commara, M.; Manea, C.; Parascandolo, C.; Pierroutsakou, D.; Signorini, C.; Strano, E.; Torresi, D.; Yamaguchi, H.; Kahl, D.; Acosta, L.; Di Meo, P.; Fernandez-Garcia, J. P.; Glodariu, T.; Grebosz, J.; Guglielmetti, A.; Imai, N.; Hirayama, Y.; Ishiyama, H.; Iwasa, N.; Jeong, S. C.; Jia, H. M.; Keeley, N.; Kim, Y. H.; Kimura, S.; Kubono, S.; Lay, J. A.; Lin, C. J.; Marquinez-Duran, G.; Martel, I.; Miyatake, H.; Mukai, M.; Nakao, T.; Nicoletto, M.; Pakou, A.; Rusek, K.; Sakaguchi, Y.; Sánchez-Benítez, A. M.; Sava, T.; Sgouros, O.; Stefanini, C.; Soramel, F.; Soukeras, V.; Stiliaris, E.; Stroe, L.; Teranishi, T.; Toniolo, N.; Wakabayashi, Y.; Watanabe, Y. X.; Yang, L.; Yang, Y. Y.

    2016-05-01

    We investigated the reaction dynamics induced by the Radioactive Ion Beams 7Be and 8B on a 208Pb target at energies around the Coulomb barrier. The two measurements are strongly interconnected, being 7Be (Sα = 1.586 MeV) the loosely bound core of the even more exotic 8B (Sp = 0.1375 MeV) nucleus. Here we summarize the present status of the data analysis for the measurement of the elastic scattering process for both reactions and the preliminary results for the optical model analysis of the collected data.

  7. 15 CFR 8b.10 - Effect of state or local law or other requirements and effect of employment opportunities.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Effect of state or local law or other requirements and effect of employment opportunities. 8b.10 Section 8b.10 Commerce and Foreign Trade Office of... PROGRAMS OPERATED BY THE DEPARTMENT OF COMMERCE General Provisions § 8b.10 Effect of state or local law...

  8. On the Relation between Solar Activity and Clear-Sky Terrestrial Irradiance

    CERN Document Server

    Feulner, Georg

    2012-01-01

    The Mauna Loa Observatory record of direct-beam solar irradiance measurements for the years 1958-2010 is analysed to investigate the variation of clear-sky terrestrial insolation with solar activity over more than four solar cycles. The raw irradiance data exhibit a marked seasonal cycle, extended periods of lower irradiance due to emissions of volcanic aerosols, and a long-term decrease in atmospheric transmission independent of solar activity. After correcting for these effects, it is found that clear-sky terrestrial irradiance typically varies by about 0.2 +/- 0.1% over the course of the solar cycle, a change of the same order of magnitude as the variations of the total solar irradiance above the atmosphere. An investigation of changes in the clear-sky atmospheric transmission fails to find a significant trend with sunspot number. Hence there is no evidence for a yet unknown effect amplifying variations of clear-sky irradiance with solar activity.

  9. Energy balance in solar active regions - The dip of April, 1985

    Science.gov (United States)

    Hudson, H. S.

    1986-01-01

    The presence of a solar active region affects the luminosity of the sun. Sunspots directly produce 'dips' in the total solar irradiance approximately proportionally to their projected area, while faculae produce excess energy. These effects were discovered during the solar maximum period of 1980, and the sunspot effect during solar minimum is examined. The 'dip' due to an active region in April, 1985, as observed in the total solar irradiance by the ACRIM instrument on the Solar Maximum Mission is examined. These data (obtained after the spacecraft repair in May, 1984) have simple variations, relative to those observed in 1980, because of the reduced level of activity approaching solar minimum. It is found that the PSI index of projected sunspot area as defined in 1980 appears to describe this 'dip' satisfactorily.

  10. Periodic Variation of the North-South Asymmetry of Solar Activity Phenomena

    Indian Academy of Sciences (India)

    V. Κ. Verma

    2000-09-01

    We report here a study of various solar activity phenomena occurring in both north and south hemispheres of the Sun during solar cycles 8-23. In the study we have used sunspot data for the period 1832—1976, flare index data for the period 1936-1993, H flare data 1993-1998 and solar active prominences data for the period 1957-1998. Earlier Verma reported long-term cyclic period in N-S asymmetry and also that the N-S asymmetry of solar activity phenomena during solar cycles 21, 22, 23 and 24 will be south dominated and the N-S asymmetry will shift to north hemisphere in solar cycle 25. The present study shows that the N-S asymmetry during solar cycles 22 and 23 are southern dominated as suggested by Verma.

  11. The origin of net electric currents in solar active regions

    CERN Document Server

    Dalmasse, K; Démoulin, P; Kliem, B; Török, T; Pariat, E

    2015-01-01

    There is a recurring question in solar physics about whether or not electric currents are neutralized in active regions (ARs). This question was recently revisited using three-dimensional (3D) magnetohydrodynamic (MHD) numerical simulations of magnetic flux emergence into the solar atmosphere. Such simulations showed that flux emergence can generate a substantial net current in ARs. Another source of AR currents are photospheric horizontal flows. Our aim is to determine the conditions for the occurrence of net vs. neutralized currents with this second mechanism. Using 3D MHD simulations, we systematically impose line-tied, quasi-static, photospheric twisting and shearing motions to a bipolar potential magnetic field. We find that such flows: (1) produce both {\\it direct} and {\\it return} currents, (2) induce very weak compression currents - not observed in 2.5D - in the ambient field present in the close vicinity of the current-carrying field, and (3) can generate force-free magnetic fields with a net current...

  12. Simulation of the Formation of a Solar Active Region

    Science.gov (United States)

    Cheung, M. C. M.; Rempel, M.; Title, A. M.; Schüssler, M.

    2010-09-01

    We present a radiative magnetohydrodynamics simulation of the formation of an active region (AR) on the solar surface. The simulation models the rise of a buoyant magnetic flux bundle from a depth of 7.5 Mm in the convection zone up into the solar photosphere. The rise of the magnetic plasma in the convection zone is accompanied by predominantly horizontal expansion. Such an expansion leads to a scaling relation between the plasma density and the magnetic field strength such that B vprop rhov1/2. The emergence of magnetic flux into the photosphere appears as a complex magnetic pattern, which results from the interaction of the rising magnetic field with the turbulent convective flows. Small-scale magnetic elements at the surface first appear, followed by their gradual coalescence into larger magnetic concentrations, which eventually results in the formation of a pair of opposite polarity spots. Although the mean flow pattern in the vicinity of the developing spots is directed radially outward, correlations between the magnetic field and velocity field fluctuations allow the spots to accumulate flux. Such correlations result from the Lorentz-force-driven, counterstreaming motion of opposite polarity fragments. The formation of the simulated AR is accompanied by transient light bridges between umbrae and umbral dots. Together with recent sunspot modeling, this work highlights the common magnetoconvective origin of umbral dots, light bridges, and penumbral filaments.

  13. Solar activity, magnetic storms and their effects on biological systems

    International Nuclear Information System (INIS)

    Full text: In the present time much attention is spent on the electromagnetic waves, solar radiation and magnetic storms on biological systems, including on person. However, there are few publications describing the mechanism of these influences on human. First of all it is necessary to point out that electromagnetic waves, the flow of particles in space and magnetic storms, acting on person human-all is connected with biophysical processes. So approach to influence of these factors on organism follows the processes of influence of these waves on bio system. Magnetic storms are phenomena continuously connected with solar activity. Investigation of cosmic space has intensified the practical importance of the problem of interaction with natural factors of external ambience. Much attention deserves the cosmic radiation, geomagnetic field, elements of climate and weathers. However the mechanism of bio tropic action of these factors is not enough studied. Beginning XXI century was already signified the successes in investigation of Mars. The Space shuttles 'Spirit' and 'Opportunity' successfully have carried out some work on examining and finding of water on Mars. A flight of person to Mars is being considered. One of the important mechanisms of influence on human organism is, in our opinion, the rising of the resonance at coincidence of frequencies and their more important factor is a phenomena of electromagnetic induction and forming the radicals in the organism

  14. ANATOMY OF SOLAR CYCLE LENGTH AND SUNSPOT NUMBER: DEPENDENCE OF AVERAGE GLOBAL TEMPERATURE ON SOLAR ACTIVITY

    OpenAIRE

    Bhattacharya, A. B.; B. RAHA; Das, T.; M. Debnath; D. HALDER

    2011-01-01

    The paper examines thoroughly all the past 23 sunspot cycles and the associated 11 hale cycles. It is noticed that solar cycle 23 had a deep minimum with longest decline phase. When solar cycles 20 to 23 are compared with solar cycles 1 to 4, the forthcoming Dalton minimum can be expected. The predicted variation of sunspot number for the present solar cycle 24 is examined at length and it appears that the peak monthly sunspot number of the solar cycle 24 will be around 80. We have correlated...

  15. The effects of solar activity on the global solar radiation measured at Khargha Oasis in the Western Dessert of Egypt

    Science.gov (United States)

    Shaltout, M.; Mohamed, A.

    Khargha is an Oasis in the Western Desert of Egypt of coordinates lat. 25 o 27/ N, long. 30 o 32 / E, and elevation 77.8 meter over the sea level. It is one of the driest areas in the world, the global solar radiation measured starting from January 1976 till now by station belong to the Egyptian Meteorological Authority. We used the data for the last 25 years of the 20"' Century on the daily bases, it is more than two solar cycles. The annual mean of relative humidity for Khargha is 30, and the total rainfall in mms as annual mean is less than one. Where, the evaporation in mms per day as annual mean is about 16. The total sky cover in oktas as annual mean is 0.4 at the midnight, while it is one oktas at the noon as 2annual mean, and 0.7 oktas on the mean of the day. The annual mean is 6.5 Kwh/rn /day for global solar radiation. Fourier analysis technique used to analysis the time series to show any reflection for the 11-year cycle of the solar activity on the measured global radiation in remote, clean, and dry desert area. The results indicate periodicity's similar to the solar activity periodicities, especially that of the eleven year cycle, in a good indication for the effect of solar activity on the climate change.

  16. VTEC behavior in the American sector during high solar activity

    CERN Document Server

    Ezquer, R G; Brunini, C; Conicet; Meza, A; Mosert, M; Radicella, S M

    2002-01-01

    The behavior of the vertical total electron content (VTEC) obtained from GPS signals received during the high solar activity year 1999 at stations placed in the American sector, is reported. The considered latitude range extends from 18.4 to -64.7 and the longitude ranges from 281.3 to 297.7. Median, lower and upper quartiles are used to specify variability, because they have the advantage of being less affected by large deviations that can occur during magnetic storms. The results show that the VTEC values corresponding to equinox are greater than those of solstice and that, the highest VTEC values are observed at low latitude stations. In general, the variability during daylight hours is about 30% of median or less, and that observed for nighttime hours is greater than the mentioned percentage, particularly at last hours of the night near the northern peak of the equatorial anomaly.

  17. VTEC behavior in the American sector during high solar activity

    International Nuclear Information System (INIS)

    The behavior of the vertical total electron content (VTEC) obtained from GPS signals received during the high solar activity year 1999 at stations placed in the American sector, is reported. The considered latitude range extends from 18.4 to -64.7 and the longitude ranges from 281.3 to 297.7. Median, lower and upper quartiles are used to specify variability, because they have the advantage of being less affected by large deviations that can occur during magnetic storms. The results show that the VTEC values corresponding to equinox are greater than those of solstice and that, the highest VTEC values are observed at low latitude stations. In general, the variability during daylight hours is about 30% of median or less, and that observed for nighttime hours is greater than the mentioned percentage, particularly at last hours of the night near the northern peak of the equatorial anomaly. (author)

  18. Solar activity and climate during the last millennium

    Science.gov (United States)

    Solanki, S. K.; Usoskin, I.; Schüssler, M.

    The sunspot number is the longest running direct index of solar activity, with direct measurements starting in 1610. For many purposes, e.g., for comparisons with climate indices, it is still too short. We present a reconstruction of the cycle-averaged sunspot number over the last millennium based on 10Be concentrations in Greenland and Antarctic ice cores. As intermediate steps of the method, we also reconstruct the cosmic ray flux at Earth and the Sun's open magnetic flux. The reconstructions are validated by comparison with direct measurements or independent reconstructions. We also compare with records of global climate, in particular with the global temperature ("hockey stick") curve of Mann et al (1998). A reasonable agreement is found for the entire millennium, excluding only the last decades, when the two curves start diverging from each other.

  19. Discovery and Rossiter-McLauglin effect of exoplanet kepler-8b

    DEFF Research Database (Denmark)

    Jenkins...[], Jon M.; Borucki, W.J.; Koch, D. G.;

    2010-01-01

    We report on the discovery and the Rossiter-McLaughlin (R-M) effect of Kepler-8b, a transiting planet identified by the NASA Kepler Mission. Kepler photometry and Keck-HIRES radial velocities yield the radius and mass of the planet around this F8IV subgiant host star. The planet has a radius R P ...

  20. The expansion of Phytophthora clade 8b: three new species associated with winter grown vegetable crops.

    Science.gov (United States)

    Bertier, L; Brouwer, H; de Cock, A W A M; Cooke, D E L; Olsson, C H B; Höfte, M

    2013-12-01

    Despite its association with important agricultural crops, Phytophthora clade 8b is a poorly studied group of species. The clade currently consists of three officially described species (Phytophthora porri, P. brassicae and P. primulae) that are host-specific pathogens of leek, cabbages and Primula spp., respectively. However, over the past few decades, several other clade 8b-like Phytophthoras have been found on a variety of different host plants that were all grown at low temperatures in winter seasons. In this study, a collection of 30 of these isolates was subjected to a phylogenetic study using two loci (the rDNA ITS region and the mitochondrial cox1 gene). This analysis revealed a clear clustering of isolates according to their host plants. To verify whether these isolates belong to separate species, a detailed morphological study was conducted. On the basis of genetic and morphological differences and host specificity, we now present the official description of three new species in clade 8b: Phytophthora cichorii sp. nov., P. dauci sp. nov. and P. lactucae sp. nov. Two other groups of isolates (Phytophthora taxon castitis and Phytophthora taxon parsley) might also represent new species but the data available at this time are insufficient for an official description. This brings Phytophthora clade 8b to a group of six species that are all host-specific, slow-growing and specifically infect herbaceous crops at low temperatures.

  1. The expansion of Phytophthora clade 8b: three new species associated with winter grown vegetable crops

    NARCIS (Netherlands)

    Bertier, L.; Brouwer, H.; Cock, de A.W.A.M.; Cooke, D.E.L.; Olsson, C.H.B.; Höfte, M.

    2013-01-01

    Despite its association with important agricultural crops, Phytophthora clade 8b is a poorly studied group of species. The clade currently consists of three officially described species (Phytophthora porri, P. brassicae and P. primulae) that are host-specific pathogens of leek, cabbages and Primula

  2. Data of evolutionary structure change: 1DR8B-3DMSA [Confc[Archive

    Lifescience Database Archive (English)

    Full Text Available 1DR8B-3DMSA 1DR8 3DMS B A --------------------------MKVAVLPGDGIGP...D>3DMS A 3DMSA AVEKAYGGKKKIH ...entryChain> 3DMS A 3DMSA TKVYGPDV...90 SER CA 526 3DMS A 3DMSA...ine>PHE CA 324 3DMS A 3DMSA

  3. ATP8B1 deficiency; Pathophysiology and treatment of a cholestatic syndrome with extrahepatic symptoms

    NARCIS (Netherlands)

    Stapelbroek, J.M.

    2009-01-01

    ATP8B1 deficiency is a severe and clinically highly variable hereditary disorder that is primarily characterized by intrahepatic cholestasis. It generally presents as a permanent disorder, progressive familial intrahepatic cholestasis type 1 (PFIC1), or with intermittent cholestasis (benign recurren

  4. P-Wave Nuclear Halos in 8B and 11Be

    Institute of Scientific and Technical Information of China (English)

    LIU Zu-Hua; BAO Jing-Dong

    2004-01-01

    @@ We use a procedure to extract valuable information regarding the p-wave halos in 8B and 11Be from the measured nuclear asymptotic normalization coefficients. With this procedure, we evaluate the probabilities of valence particle being outside the binding potential, which are 0.31 ± 0.03 for the 8B ground state and 0.59 ± 0.06 for the 11 Be first excited state. More than 50% probability outside the binding potential means that the 11 Be first excited state has a typical p-wave neutron halo. The rms radii are obtained to be 3.9 ± 0.2 fm for the valence proton in the 8B ground state and to be 6.5 ± 0.3 fm for the valence neutron in the 11Be first excited state.The probabilities of the valence particle being in the non-classical region are extracted to be 0.41 ± 0.04 and 0.46 ± 0.05 for the 8B ground state and the 11 Be first excited state, respectively. The results demonstrate that although hindered by the effects of Coulomb and/or centrifugal barriers, their valence particle wave function still penetrates substantially into the classically forbidden region.

  5. Data of evolutionary structure change: 1BT8B-1UNFX [Confc[Archive

    Lifescience Database Archive (English)

    Full Text Available 1BT8B-1UNFX 1BT8 1UNF B X ---AVYTLPELPYDYSALEPYISGEIMELHHDKHHKAYV...EEEEEEEEEGGG EEEEEEE EEE EEE HHHH HHHHHHHHHH EEHHHHHHHHHHHHHH EVID> 1UNF X 1UNFX VN...d>2.942183017730713 5.374790191650391 ...> TRP CA 395 ASP CA 318 ASP CA 362 1UNF

  6. Determination of S17 from Systematic Analysis of 8B Coulomb Dissociation

    CERN Document Server

    Ogata, K; Iseri, Y; Matsumoto, T; Yamashita, N; Kamimura, M; Ogata, Kazuyuki

    2003-01-01

    Systematic analysis of 8B Coulomb dissociation with the Asymptotic Normalization Coefficient (ANC) method is proposed to determine the astrophysical factor S17 accurately. An important advantage of the analysis is that uncertainties of the extracted S17 coming from the use of the ANC method can quantitatively be evaluated, in contrast to previous analyses using the Virtual Photon Theory (VPT). Calculation of measured spectra in dissociation experiments is done by means of the method of Continuum-Discretized Coupled-Channels (CDCC). From the analysis of 58Ni(8B,7Be+p)58Ni at 25.8 MeV, S17=22.83 +/- 0.51(theo) +/- 2.28(expt) (eVb) is obtained; the ANC method turned out to work in this case within 1% of error. Preceding systematic analysis of experimental data at intermediate energies, we propose hybrid (HY) Coupled-Channels (CC) calculation of 8B Coulomb dissociation, which makes numerical calculation much simple, retaining its accuracy. The validity of the HY calculation is tested for 58Ni(8B,7Be+p)58Ni at 240...

  7. Active space heating and hot water supply with solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Karaki, S.; Loef, G. O.G.

    1981-04-01

    Technical and economic assessments are given of solar water heaters, both circulating, and of air-based and liquid-based solar space heating systems. Both new and retrofit systems are considered. The technical status of flat-plate and evacuated tube collectors and of thermal storage is also covered. Non-technical factors are also briefly discussed, including the participants in the use of solar heat, incentives and deterrents. Policy implications are considered as regards acceleration of solar use, goals for solar use, means for achieving goals, and interaction of governments, suppliers, and users. Government actions are recommended. (LEW)

  8. Impact of solar activity on climate changes in Athens region, Greece

    CERN Document Server

    Gizani, Nectaria A B; Vatikiotis, Leonidas; Zervas, Efthimios

    2011-01-01

    The scope of this work is to study the role that the solar weather plays in terrestrial weather. For this reason we study the effect of the solar activity on the climate changes in Greece. In the current work we look for possible correlation between the solar activity data spanning the years from 1975 to 2000 and the meteorological data from two weather stations based inside the city of Athens, Greece (New Philadelphia) and in greater Athens in the north of Attica (Tatoi area). We examine the annual variations of the average values of six meteorological parameters: temperature, atmospheric pressure, direction and intensity of wind, rainfall and relative air humidity. The solar data include decade variations, within the above period, of the solar irradiance, mean sunspot number between two solar cycles, magnetic cycle influence, and solar UV driving of climate (radio flux).

  9. The correlation of 27 day period solar activity and daily maximum temperature in continental Australia

    OpenAIRE

    Edmonds, Ian

    2013-01-01

    We report the first observation of a 27 day period component in daily maximum temperature recorded at widely spaced locations in Australia. The 27 day component, extracted by band pass filtering, is correlated with the variation of daily solar radio flux during years close to solar minimum. We demonstrate that the correlation is related to the emergence of regions of solar activity on the Sun separated, temporally, from the emergence of other active regions. In this situation, which occurs on...

  10. Magnetic Nonpotentiality in Photospheric Active Regions as a Predictor of Solar Flares

    OpenAIRE

    Yang, Xiao; Lin, GangHua; Zhang, Hongqi; Mao, Xinjie

    2013-01-01

    Based on several magnetic nonpotentiality parameters obtained from the vector photospheric active region magnetograms obtained with the Solar Magnetic Field Telescope at the Huairou Solar Observing Station over two solar cycles, a machine learning model has been constructed to predict the occurrence of flares in the corresponding active region within a certain time window. The Support Vector Classifier, a widely used general classifier, is applied to build and test the prediction models. Seve...

  11. A study of solar magnetic fields below the surface, at the surface, and in the solar atmosphere - understanding the cause of major solar activity

    Science.gov (United States)

    Chintzoglou, Georgios

    Magnetic fields govern all aspects of solar activity from the 11-year solar cycle to the most energetic events in the solar system, such as solar flares and Coronal Mass Ejections (CMEs). As seen on the surface of the sun, this activity emanates from localized concentrations of magnetic fields emerging sporadically from the solar interior. These locations are called solar Active Regions (ARs). However, the fundamental processes regarding the origin, emergence and evolution of solar magnetic fields as well as the generation of solar activity are largely unknown or remain controversial. In this dissertation, multiple important issues regarding solar magnetism and activities are addressed, based on advanced observations obtained by AIA and HMI instruments aboard the SDO spacecraft. First, this work investigates the formation of coronal magnetic flux ropes (MFRs), structures associated with major solar activity such as CMEs. In the past, several theories have been proposed to explain the cause of this major activity, which can be categorized in two contrasting groups (a) the MFR is formed in the eruption, and (b) the MFR pre-exists the eruption. This remains a topic of heated debate in modern solar physics. This dissertation provides a complete treatment of the role of MFRs from their genesis all the way to their eruption and even destruction. The study has uncovered the pre-existence of two weakly twisted MFRs, which formed during confined flaring 12 hours before their associated CMEs. Thus, it provides unambiguous evidence for MFRs truly existing before the CME eruptions, resolving the pre-existing MFR controversy. Second, this dissertation addresses the 3-D magnetic structure of complex emerging ARs. In ARs the photospheric fields might show all aspects of complexity, from simple bipolar regions to extremely complex multi-polar surface magnetic distributions. In this thesis, we introduce a novel technique to infer the subphotospheric configuration of emerging

  12. Solar-stellar connection : A solar analogous behaviour by an active ultra fast rotator

    Science.gov (United States)

    Sairam, Lalitha; Schmitt, Juergen; Pal Singh, Kulinder

    2015-08-01

    AB Dor is an ultra-fast rotating (Prot ~ 0.51 d) active young K dwarf with an age of ~40-50 Myr. Located as a foreground star towards large magellanic cloud (LMC), AB Dor has the advantage of being observed at all times by most of the X-ray satellites making it a favourite calibration target. AB Dor has been repeatedly observed for calibration by reflection grating spectrometer (RGS) on board XMM- Newton over last decade. This gives an ideal opportunity to perform a detailed analysis of the coronal emission, and to compare the flare characteristics with the Sun, since the Sun is usually considered as a prototype of low mass stars. Flares are frequent in low mass active stars across the electromagnetic spectrum similar to the Sun. We will for the first time, present an analysis of 30 intense X-ray flares observed from AB Dor. These flares detected in XMM-Newton data show a rapid rise (500-3000 s) and a slow decay (1000-6000 s). The derived X-ray luminosity during the flares ranges between 30.20 ≤ log(Lx) ≤ 30.83 erg/s; the flare peak temperature lies between 30-80 MK and the emission measures for these flares are in the range of 52.3 ≤ log(EM) ≤ 53.5 cm^-3. Our studies suggest that the scaling law between the flare peak emission measure and the flare peak temperature for all the flares observed on AB Dor is very similar to the relationship followed by solar flares, despite the fact that the AB Dor flare emission is ~250 times higher than the solar flare emission. We also carried out a homogenous study of flare frequencies, energetics and its occurrence in AB Dor. The frequency distribution of flare energies is a crucial diagnostic to calculate the overall energy residing in a flare. Our results of this study indicate that the large flare (33 ≤ log(E) ≤ 34 erg) may not contribute to the heating of the corona. We will show the presence of a possible long-term cycle in AB Dor both from a photospheric and coronal point of view, similar to the 11-year

  13. Lyman-alpha line as a solar activity index for calculations of solar spectrum in the EUV region

    Science.gov (United States)

    Nusinov, Anatoliy; Kazachevskaya, Tamara; Katyushina, Valeria; Woods, Thomas

    It is investigated a possibility of retrieval of solar spectrum data using intensity observational data of the only solar spectral line L (Hydrogen Lyman-alpha, 121.6 nm).Using as an example spectra obtained by SEE instruments on TIMED satellite, it was shown, that both for lines and for continuum in the spectral range 27-105 nm, which is essential for ionization processes in the ionosphere, a correlation between their intensities and L was high. Therefore it becomes possible to use L measurements data as a natural solar activity index for calculations of EUV solar emission spectrum for solving aeronomical problems. It is noticed, that EUV model, obtained with using SEE data, does not allow to calculate correctly critical frequencies of ionospheric E-layer owing to low intensities of lines 97.7 and 102.6 nm, which produce the main part of ionization in ionospheric E-region.

  14. Solar Energy Education. Humanities: activities and teacher's guide. Field test edition

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    Activities are outlined to introduce students to information on solar energy while performing ordinary classroom work. In this teaching manual solar energy is integrated with the humanities. The activities include such things as stories, newspapers, writing assignments, and art and musical presentations all filled with energy related terms. An energy glossary is provided. (BCS)

  15. Relationships between solar activity and climate change. [sunspot cycle effects on lower atmosphere

    Science.gov (United States)

    Roberts, W. O.

    1974-01-01

    Recurrent droughts are related to the double sunspot cycle. It is suggested that high solar activity generally increases meridional circulations and blocking patterns at high and intermediate latitudes, especially in winter. This effect is related to the sudden formation of cirrus clouds during strong geomagnetic activity that originates in the solar corpuscular emission.

  16. Solar Power and Solar Fuels Synthesis Report. Technology, market and research activities 2006-2011

    Energy Technology Data Exchange (ETDEWEB)

    Ridell, Bengt; Nilsson, Ronny; Rehnlund, Bjoern [Grontmij, Stockholm (Sweden); Kasemo, Bengt [Chalmers Univ. of Technology, Goeteborg (Sweden)

    2012-11-01

    The objectives of the synthesis is to survey the situation and give an accumulated and concentrated knowledge about status, needs and opportunities for Swedish research and Swedish industry within the area of solar power and solar fuels, to be used for prioritisation of further efforts. The synthesis shall identify strengths and weaknesses in areas fundamental for development of solar power and solar fuels, focused on the development in Sweden, but in an international context. The synthesis shall also cover proposals for future Swedish research efforts and organisation of future Swedish research programs.

  17. SPECTROSCOPIC OBSERVATIONS OF Fe XVIII IN SOLAR ACTIVE REGIONS

    Energy Technology Data Exchange (ETDEWEB)

    Teriaca, Luca; Curdt, Werner [Max-Planck-Institut fuer Sonnensystemforschung, Max-Planck-Str. 2, 37191 Katlenburg-Lindau (Germany); Warren, Harry P. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States)

    2012-08-01

    The large uncertainties associated with measuring the amount of high temperature emission in solar active regions (ARs) represents a significant impediment to making progress on the coronal heating problem. Most current observations at temperatures of 3 MK and above are taken with broadband soft X-ray instruments. Such measurements have proven difficult to interpret unambiguously. Here, we present the first spectroscopic observations of the Fe XVIII 974.86 A emission line in an on-disk AR taken with the SUMER instrument on SOHO. Fe XVIII has a peak formation temperature of 7.1 MK and provides important constraints on the amount of impulsive heating in the corona. Detailed evaluation of the spectra and comparison of the SUMER data with soft X-ray images from the X-Ray Telescope on Hinode confirm that this line is unblended. We also compare the spectroscopic data with observations from the Atmospheric Imaging Assembly (AIA) 94 A channel on the Solar Dynamics Observatory. The AIA 94 A channel also contains Fe XVIII, but is blended with emission formed at lower temperatures. We find that it is possible to remove the contaminating blends and form relatively pure Fe XVIII images that are consistent with the spectroscopic observations from SUMER. The observed spectra also contain the Ca XIV 943.63 A line that, although a factor 2-6 weaker than the Fe XVIII 974.86 A line, allows us to probe the plasma around 3.5 MK. The observed ratio between the two lines indicates (isothermal approximation) that most of the plasma in the brighter Fe XVIII AR loops is at temperatures between 3.5 and 4 MK.

  18. Spectroscopic Observations of Fe XVIII in Solar Active Regions

    Science.gov (United States)

    Teriaca, Luca; Warren, Harry P.; Curdt, Werner

    2012-08-01

    The large uncertainties associated with measuring the amount of high temperature emission in solar active regions (ARs) represents a significant impediment to making progress on the coronal heating problem. Most current observations at temperatures of 3 MK and above are taken with broadband soft X-ray instruments. Such measurements have proven difficult to interpret unambiguously. Here, we present the first spectroscopic observations of the Fe XVIII 974.86 Å emission line in an on-disk AR taken with the SUMER instrument on SOHO. Fe XVIII has a peak formation temperature of 7.1 MK and provides important constraints on the amount of impulsive heating in the corona. Detailed evaluation of the spectra and comparison of the SUMER data with soft X-ray images from the X-Ray Telescope on Hinode confirm that this line is unblended. We also compare the spectroscopic data with observations from the Atmospheric Imaging Assembly (AIA) 94 Å channel on the Solar Dynamics Observatory. The AIA 94 Å channel also contains Fe XVIII, but is blended with emission formed at lower temperatures. We find that it is possible to remove the contaminating blends and form relatively pure Fe XVIII images that are consistent with the spectroscopic observations from SUMER. The observed spectra also contain the Ca XIV 943.63 Å line that, although a factor 2-6 weaker than the Fe XVIII 974.86 Å line, allows us to probe the plasma around 3.5 MK. The observed ratio between the two lines indicates (isothermal approximation) that most of the plasma in the brighter Fe XVIII AR loops is at temperatures between 3.5 and 4 MK.

  19. Detrimental Effects of Extreme Solar Activity on Life on Earth

    Science.gov (United States)

    Airapetian, Vladimir; Glocer, Alex; Jackman, Charles

    2015-07-01

    Solar Coronal Mass Ejections (CMEs), the most energetic eruptions in the Solar System, represent large-scale disturbances forming with the solar corona and are associated with solar flares and Solar Energetic Particles (SEP) events. Current Kepler data from solar-like stars suggest that the frequency of occurrence of energetic flares and associated CMEs from the Sun can be as high as 1 per 1500 years. What effects would CME and associated SEPs have on Earth's habitability? We have performed a three-dimensional time-dependent global magnetohydrodynamic simulation of the magnetic interaction of such a CME cloud with the Earth's magnetosphere. We calculated the global structure of the perturbed magnetosphere and derive the latitude of the open-closed magnetic field boundary. We used a 2D GSFC atmospheric code to calculate the efficiency of ozone depletion in the Earth's atmosphere due to SEP events and its effects on our society and life on Earth.

  20. Influence of solar wind variability on geomagnetic activity

    Science.gov (United States)

    Garrett, H. B.; Dessler, A. J.; Hill, T. W.

    1974-01-01

    A statistical study of solar wind data from the Explorer 33 satellite shows that interplanetary magnetic field irregularities are enhanced in the interaction region where a fast solar wind stream overtakes a slower solar wind stream. Comparison with geomagnetic AE and ap indexes further shows that these interplanetary irregularities enhance the level of geomagnetic disturbances. Thus while substorm occurrence is highly correlated with the dawn-dusk component of the solar wind electric field, the amplitude of the substorms is an increasing function of the variance in the interplanetary field. This result can be interpreted as a capacitative effect of the magnetopause that allows a time-varying solar wind electric field to penetrate the magnetosphere more effectively than a static solar wind electric field.

  1. Spectroscopic Observations of Fe XVIII in Solar Active Regions

    CERN Document Server

    Teriaca, Luca; Curdt, Werner

    2012-01-01

    The large uncertainties associated with measuring the amount of high temperature emission in solar active regions represents a significant impediment to making progress on the coronal heating problem. Most current observations at temperatures of 3 MK and above are taken with broad band soft X-ray instruments. Such measurements have proven difficult to interpret unambiguously. Here we present the first spectroscopic observations of the Fe XVIII 974.86 AA emission line in an on-disk active region taken with then SUMER instrument on SOHO. Fe XVIII has a peak formation temperature of 7.1 MK and provides important constraints on the amount of impulsive heating in the corona. Detailed evaluation of the spectra and comparison of the SUMER data with soft X-ray images from the XRT on Hinode confirm that this line is unblended. We also compare the spectroscopic data with observations from the AIA 94 AA channel on SDO. The AIA 94 AA channel also contains Fe XVIII, but is blended with emission formed at lower temperature...

  2. A Study of Solar Magnetic Fields Below the Surface, at the Surface, and in the Solar Atmosphere - Understanding the Cause of Major Solar Activity

    Science.gov (United States)

    Chintzoglou, Georgios

    2016-05-01

    The fundamental processes regarding the origin, emergence and evolution of solar magnetic fields as well as the generation of solar activity are largely unknown or remain controversial. In this dissertation, multiple important issues regarding solar magnetism and activities are addressed, based on advanced observations obtained by the AIA and HMI instruments aboard the SDO spacecraft.This dissertation addresses the 3D magnetic structure of complex emerging Active Regions (ARs). In ARs the photospheric fields might show all aspects of complexity, from simple bipolar regions to extremely complex multipolar surface magnetic distributions. Here, we introduce a novel technique to infer the subphotospheric configuration of emerging magnetic flux tubes forming ARs on the surface. Using advanced 3D visualization tools with this technique on a complex flare and CME productive AR, we found that the magnetic flux tubes forming the complex AR may originate from a single progenitor flux tube in the SCZ. The complexity can be explained as a result of vertical and horizontal bifurcations that occurred on the progenitor flux tube.In addition, this dissertation proposes a new scenario on the origin of major solar activity. When more than one flux tubes are in close proximity to each other while they break through the photospheric surface, collision and shearing may occur as they emerge. Once this collisional shearing occurs between nonconjugated sunspots (opposite polarities not belonging to the same bipole), major solar activity is triggered. The collision and shearing occur due to the natural separation of polarities in emerging bipoles. In this continuous collision, more poloidal flux is added to the system effectively creating an expanding MFR into the corona, accompanied by filament formation above the PIL together with flare activity and CMEs. Our results reject two popular scenarios on the possible cause of solar eruptions (1) shearing motion between conjugate polarities, (2

  3. Breakup and finite-range effects on the 8B(d,n)9C reaction

    CERN Document Server

    Fukui, Tokuro; Yahiro, Masanobu

    2014-01-01

    The astrophysical factor of 8B(p,{\\gamma})9C at zero energy, S18(0), is determined by a three-body coupled-channels analysis of the transfer reaction 8B(d,n)9C at 14.4 MeV/nucleon. Effects of the breakup channels of deuteron are investigated with the continuum-discretized coupled-channels method (CDCC). It is found that the transfer process through the deuteron breakup states, its interference with that through the deuteron ground state in particular, gives a large increase in the transfer cross section. The finite-range effects with respect to the proton- neutron relative coordinate are found to be less than 5%. As a result of the present analysis, S18(0) = 33 +/- 10 eVb is obtained that is smaller than the result of the previous DWBA analysis by about 26%.

  4. ATP8B1 deficiency; Pathophysiology and treatment of a cholestatic syndrome with extrahepatic symptoms

    OpenAIRE

    Stapelbroek, J.M.

    2009-01-01

    ATP8B1 deficiency is a severe and clinically highly variable hereditary disorder that is primarily characterized by intrahepatic cholestasis. It generally presents as a permanent disorder, progressive familial intrahepatic cholestasis type 1 (PFIC1), or with intermittent cholestasis (benign recurrent intrahepatic cholestasis type 1 (BRIC1)). Currently there is no effective medical therapy, and most patients need invasive surgery such as partial biliary drainage (PBD) or liver transplantation....

  5. Experimental study on solar-powered adsorption refrigeration cycle with activated alumina and activated carbon as adsorbent

    Directory of Open Access Journals (Sweden)

    Himsar Ambarita

    2016-03-01

    Full Text Available Typical adsorbent applied in solar-powered adsorption refrigeration cycle is activated carbon. It is known that activated alumina shows a higher adsorption capacity when it is tested in the laboratory using a constant radiation heat flux. In this study, solar-powered adsorption refrigeration cycle with generator filled by different adsorbents has been tested by exposing to solar radiation in Medan city of Indonesia. The generator is heated using a flat-plate type solar collector with a dimension of 0.5 m×0.5 m. Four cases experiments of solar-powered adsorption cycle were carried out, they are with generator filled by 100% activated alumina (named as 100AA, by a mixed of 75% activated alumina and 25% activated carbon (75AA, by a mixed of 25% activated alumina and 75% activated carbon (25AA, and filled by 100% activated carbon. Each case was tested for three days. The temperature and pressure history and the performance have been presented and analyzed. The results show that the average COP of 100AA, 75AA, 25AA, and 100AC is 0.054, 0.056, 0.06, and 0.074, respectively. The main conclusion can be drawn is that for Indonesian condition and flat-plate type solar collector the pair of activated carbon and methanol is the better than activated alumina.

  6. Cosmogenic Radiocarbon as a Means of Studying Solar Activity in the Past

    Science.gov (United States)

    Kocharov, G. E.; Ogurtsov, M. G.; Tsereteli, S. L.

    2003-12-01

    A series of yearly data on the concentration of radioactive carbon 14C in tree rings measured at the Tbilisi State University in 1983-1986 and covering the time interval 1600-1940 is statistically analyzed. We find evidence for a 22-year cyclicity in the intensity of Galactic cosmic rays (GCRs) during the Maunder minimum of the solar activity (1645-1715), testifying that the solar dynamo mechanism continued to operate during this epoch. Variations of Δ14C on timescales of tens and hundreds of years correlate well with the corresponding variations of the GCR intensity and solar activity, making radiocarbon a reliable source of information on long-timescale variations of solar activity in the past. Short-timescale (30 years) fluctuations of Δ14C may be appreciably distorted by time variations not associated directly with solar activity; probable origins of this distortion are discussed.

  7. Rab8b Regulates Transport of West Nile Virus Particles from Recycling Endosomes.

    Science.gov (United States)

    Kobayashi, Shintaro; Suzuki, Tadaki; Kawaguchi, Akira; Phongphaew, Wallaya; Yoshii, Kentaro; Iwano, Tomohiko; Harada, Akihiro; Kariwa, Hiroaki; Orba, Yasuko; Sawa, Hirofumi

    2016-03-18

    West Nile virus (WNV) particles assemble at and bud into the endoplasmic reticulum (ER) and are secreted from infected cells through the secretory pathway. However, the host factor related to these steps is not fully understood. Rab proteins, belonging to the Ras superfamily, play essential roles in regulating many aspects of vesicular trafficking. In this study, we sought to determine which Rab proteins are involved in intracellular trafficking of nascent WNV particles. RNAi analysis revealed that Rab8b plays a role in WNV particle release. We found that Rab8 and WNV antigen were colocalized in WNV-infected human neuroblastoma cells, and that WNV infection enhanced Rab8 expression in the cells. In addition, the amount of WNV particles in the supernatant of Rab8b-deficient cells was significantly decreased compared with that of wild-type cells. We also demonstrated that WNV particles accumulated in the recycling endosomes in WNV-infected cells. In summary, these results suggest that Rab8b is involved in trafficking of WNV particles from recycling endosomes to the plasma membrane. PMID:26817838

  8. The active thermal solar; Le solaire thermique actif

    Energy Technology Data Exchange (ETDEWEB)

    Bedel, St.; Salomon, Th.

    2000-05-01

    This information paper recalls the different types of solar cells and their operating. It presents the possible utilizations for the buildings heating (air and water systems) and for the water heating in the residential houses (also for the heating of swimming pools) and the collective buildings. The drying of agricultural products and the solar cooling are also discussed. (A.L.B.)

  9. Study of the relationship between solar activity and terrestrial weather

    Science.gov (United States)

    Sturrock, P. A.; Brueckner, G. E.; Dickinson, R. E.; Fukuta, N.; Lanzerotti, L. J.; Lindzen, R. S.; Park, C. G.; Wilcox, J. M.

    1976-01-01

    Evidence for some connection between weather and solar related phenomena is presented. Historical data of world wide temperature variations with relationship to change in solar luminosity are examined. Several test methods for estimating the statistical significance of such phenomena are discussed in detail.

  10. Empirically modelled Pc3 activity based on solar wind parameters

    Directory of Open Access Journals (Sweden)

    T. Raita

    2010-09-01

    Full Text Available It is known that under certain solar wind (SW/interplanetary magnetic field (IMF conditions (e.g. high SW speed, low cone angle the occurrence of ground-level Pc3–4 pulsations is more likely. In this paper we demonstrate that in the event of anomalously low SW particle density, Pc3 activity is extremely low regardless of otherwise favourable SW speed and cone angle. We re-investigate the SW control of Pc3 pulsation activity through a statistical analysis and two empirical models with emphasis on the influence of SW density on Pc3 activity. We utilise SW and IMF measurements from the OMNI project and ground-based magnetometer measurements from the MM100 array to relate SW and IMF measurements to the occurrence of Pc3 activity. Multiple linear regression and artificial neural network models are used in iterative processes in order to identify sets of SW-based input parameters, which optimally reproduce a set of Pc3 activity data. The inclusion of SW density in the parameter set significantly improves the models. Not only the density itself, but other density related parameters, such as the dynamic pressure of the SW, or the standoff distance of the magnetopause work equally well in the model. The disappearance of Pc3s during low-density events can have at least four reasons according to the existing upstream wave theory: 1. Pausing the ion-cyclotron resonance that generates the upstream ultra low frequency waves in the absence of protons, 2. Weakening of the bow shock that implies less efficient reflection, 3. The SW becomes sub-Alfvénic and hence it is not able to sweep back the waves propagating upstream with the Alfvén-speed, and 4. The increase of the standoff distance of the magnetopause (and of the bow shock. Although the models cannot account for the lack of Pc3s during intervals when the SW density is extremely low, the resulting sets of optimal model inputs support the generation of mid latitude Pc3 activity predominantly through

  11. Breathing of heliospheric structures triggered by the solar-cycle activity

    Directory of Open Access Journals (Sweden)

    K. Scherer

    Full Text Available Solar wind ram pressure variations occuring within the solar activity cycle are communicated to the outer heliosphere as complicated time-variabilities, but repeating its typical form with the activity period of about 11 years. At outer heliospheric regions, the main surviving solar cycle feature is a periodic variation of the solar wind dynamical pressure or momentum flow, as clearly recognized by observations of the VOYAGER-1/2 space probes. This long-periodic variation of the solar wind dynamical pressure is modeled here through application of appropriately time-dependent inner boundary conditions within our multifluid code to describe the solar wind – interstellar medium interaction. As we can show, it takes several solar cycles until the heliospheric structures adapt to an average location about which they carry out a periodic breathing, however, lagged in phase with respect to the solar cycle. The dynamically active heliosphere behaves differently from a static heliosphere and especially shows a historic hysteresis in the sense that the shock structures move out to larger distances than explained by the average ram pressure. Obviously, additional energies are pumped into the heliosheath by means of density and pressure waves which are excited. These waves travel outwards through the interface from the termination shock towards the bow shock. Depending on longitude, the heliospheric sheath region memorizes 2–3 (upwind and up to 6–7 (downwind preceding solar activity cycles, i.e. the cycle-induced waves need corresponding travel times for the passage over the heliosheath. Within our multifluid code we also adequately describe the solar cycle variations in the energy distributions of anomalous and galactic cosmic rays, respectively. According to these results the distribution of these high energetic species cannot be correctly described on the basis of the actually prevailing solar wind conditions.

    Key words. Interplanetary

  12. Zeeman-Doppler imaging of active young solar type stars

    CERN Document Server

    Hackman, Thomas; Rosén, Lisa; Kochukhov, Oleg; Käpylä, Maarit J

    2015-01-01

    By studying young magnetically active late-type stars, i.e. analogues to the young Sun, one can draw conclusions on the evolution of the solar dynamo. We determine the topology of the surface magnetic field and study the relation between the magnetic field and cool photospheric spots in three young late-type stars. High-resolution spectropolarimetry of the targets were obtained with the HARPSpol instrument mounted at the ESO 3.6 m telescope. The signal-to-noise ratio of the Stokes IV measurements were boosted by combining the signal from a large number of spectroscopic absorption lines through the least squares deconvolution technique. Surface brightness and magnetic field maps were calculated using the Zeeman-Doppler imaging technique. All the three targets show clear signs of both magnetic fields and cool spots. Only one of the targets, namely V1358 Ori, shows evidence of the dominance of non-axisymmetric modes. In two of the targets, the poloidal field is significantly stronger than the toroidal one, indic...

  13. Simulation of ionospheric corrections regarding of solar activity on GNSS

    Energy Technology Data Exchange (ETDEWEB)

    Schlueter, S.; Engler, E. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V., Neustrelitz (Germany)

    1999-07-01

    Future use of satellite navigation systems in transportation, especially in aviation and shipping, will make great demands on precision and integrity of existing new systems. As a first step in the direction of a GNSS, the US, Japan and Europe are building up the GPS augmentation systems WAAS, MSAS and EGNOS to improve the current situation in navigation and positioning. The improvement of existing as well as the development of new systems needs suitable simulation tools for design and validation. In this context the projects NavSim and SatNav SIMplus have to be seen. They are parts of the cooperation agreements between DLR (Deutsches Zentrum fuer Luft- und Raumfahrt) and DSS (Daymler Chrysler Aerospace, Dornier Satellitensystem GmbH). Both projects complement on another on the way to establish and end-to-end software simulator for navigation systems. Here we present some preliminary simulations based on the ionospheric module of the NavSim simulator taking into account the situation of high solar activity in the years 2000-2001. (orig.)

  14. The role of filament activation in a solar eruption

    CERN Document Server

    da Costa, Fatima Rubio; Fletcher, Lyndsay; Romano, Paolo; Labrosse, Nicolas

    2014-01-01

    Observations show that the mutual relationship between filament eruptions and solar flares cannot be described in terms of an unique scenario. In some cases, the eruption of a filament appears to trigger a flare, while in others the observations are more consistent with magnetic reconnection that produces both the flare observational signatures (e.g., ribbons, plasma jets, post-flare loops, etc.) and later the destabilization and eruption of a filament. We study an event which occurred in NOAA 8471, where a flare and the activation of (at least) two filaments were observed on 28 February 1999. By using imaging data acquired in the 1216, 1600, 171 and 195 \\AA\\ TRACE channels and by BBSO in the continnum and in H$\\alpha$, a morphological study of the event is carried out. Using TRACE 1216 and 1600 \\AA\\ data, an estimate of the "pure" Ly$\\alpha$ power is obtained. The extrapolation of the magnetic field lines is done using the SOHO/MDI magnetograms and assuming a potential field. The potential magnetic field ext...

  15. Optimization of a PV/T (photovoltaic/thermal) active solar still

    International Nuclear Information System (INIS)

    In this paper, the optimization of a PV/T (photovoltaic/thermal) active solar still is carried out. Analytical expressions for glass cover temperature, basin temperature, brackish water temperature and fresh water productivity are obtained by writing energy balance for different components of PV/T active solar still. The output electrical power of PV/T active solar still is calculated by four-parameter I–V (current–voltage) model. Objective function in present study is the energy efficiency of PV/T active solar still. A computer simulation program has been developed in order to obtain thermal and electrical parameters, respectively. The simulation results of the present study are in fair agreement with the experimental data of previous literatures. Finally, the optimization of PV/T active solar still has been carried out and the optimized value of mass flow rate, number of PV/T collector and the objective function have been obtained. Furthermore, the effect of various operating parameters on energy efficiency have been investigated. - Highlights: • The comprehensive optimization of a PV/T active solar still is carried out. • Present study is based on numerical simulation. • A modified energy efficiency for PV/T active solar still is obtained. • The effect of design and operating parameters is investigated on energy efficiency

  16. Precision measurement of the $^{7}$Be(p, $\\gamma$)$\\,^{8}$B cross section with an implanted $^{7}$Be target

    CERN Document Server

    Baby, L T; Goldring, G; Hass, M; Weissman, L; Fedosseev, V; Köster, U; Nir-El, Y; Haquin, G; Gäggeler, H W; Weinreich, R

    2003-01-01

    The $^{7}$Be(p, $\\gamma$) $\\,^{8}$B reaction plays a central role in the evaluation of solar neutrino fluxes. We report on a new precision measurement of the cross section of this reaction, following our previous experiment with an implanted $^{7}$Be target, a raster- scanned beam, and the elimination of the backscattering loss. The new measurement incorporates a more abundant $^{7}$Be target and a number of improvements in design and procedure. The point at E$_{lab}$ = 991 keV was measured several times under varying experimental conditions, yielding a value of S$_{17}$(E$_{c.m.}$ = 850 keV) = 24.0 $\\pm$ 0.5 eV b. Measurements were carried out at lower energies as well. Because of the precise knowledge of the implanted $^{7}$Be density profile, it was possible to reconstitute both the off- and on-resonance parts of the cross section and to obtain from the entire set of measurements an extrapolated value of S$_{17}$(0)=21.2 $\\pm$ 0.7 eV b.

  17. How well do we understand 7Be + p → 8B + γ? An Effective Field Theory perspective

    Science.gov (United States)

    Zhang, Xilin; Nollett, Kenneth M.; Phillips, D. R.

    2016-03-01

    We have studied the 7Be(p, γ)8B reaction in the Halo effective field theory (EFT) framework. The leading order (LO) results were published in Ref. [1] after the isospin mirror process, 7Li(n, γ)8Li, was addressed in Ref. [2]. In both calculations, one key step was using the final shallow bound state asymptotic normalization coefficients (ANCs) computed by ab initio methods to fix the EFT couplings. Recently we have developed the next-to-LO (NLO) formalism [3], which could reproduce other model results by no worse than 1% when the 7Be-p energy was between 0 and 0:5 MeV. In our recent report [4], a different approach from that in Ref. [1] was used. We applied Bayesian analysis to constrain all the NLO-EFT parameters based on measured S-factors, and found tight constraints on the S -factor at solar energies. Our S (E = 0 MeV) = 21.3 ± 0.7 eV b. The uncertainty is half of that previously recommended. In this proceeding, we provide extra details of the Bayesian analysis, including the computed EFT parameters' probability distribution functions (PDFs) and how the choice of input data impacts final results.

  18. How well do we understand 7Be + p → 8B + γ? An Effective Field Theory perspective

    Directory of Open Access Journals (Sweden)

    Zhang Xilin

    2016-01-01

    Full Text Available We have studied the 7Be(p, γ8B reaction in the Halo effective field theory (EFT framework. The leading order (LO results were published in Ref. [1] after the isospin mirror process, 7Li(n, γ8Li, was addressed in Ref. [2]. In both calculations, one key step was using the final shallow bound state asymptotic normalization coefficients (ANCs computed by ab initio methods to fix the EFT couplings. Recently we have developed the next-to-LO (NLO formalism [3], which could reproduce other model results by no worse than 1% when the 7Be-p energy was between 0 and 0:5 MeV. In our recent report [4], a different approach from that in Ref. [1] was used. We applied Bayesian analysis to constrain all the NLO-EFT parameters based on measured S-factors, and found tight constraints on the S -factor at solar energies. Our S (E = 0 MeV = 21.3 ± 0.7 eV b. The uncertainty is half of that previously recommended. In this proceeding, we provide extra details of the Bayesian analysis, including the computed EFT parameters’ probability distribution functions (PDFs and how the choice of input data impacts final results.

  19. The sunspot cycle no. 24 in relation to long term solar activity variation.

    Science.gov (United States)

    Komitov, Boris; Kaftan, Vladimir

    2013-05-01

    The solar minimum between solar cycles 23 and 24 during the period 2007-2009 has been the longest and deepest one at least since for the last 100 years. We suggest that the Sun is going to his next supercenturial minimum. The main aim of this paper is to tell about arguments concerning this statement. They are based on series of studies, which have been provided during the period since 1997 up to 2010. The progress of solar cycle 24 since its minimum at the end of 2008 up to the end of October 2011 in the light of long term solar activity dynamics is analyzed. PMID:25685429

  20. The sunspot cycle no. 24 in relation to long term solar activity variation

    Directory of Open Access Journals (Sweden)

    Boris Komitov

    2013-05-01

    Full Text Available The solar minimum between solar cycles 23 and 24 during the period 2007–2009 has been the longest and deepest one at least since for the last 100 years. We suggest that the Sun is going to his next supercenturial minimum. The main aim of this paper is to tell about arguments concerning this statement. They are based on series of studies, which have been provided during the period since 1997 up to 2010. The progress of solar cycle 24 since its minimum at the end of 2008 up to the end of October 2011 in the light of long term solar activity dynamics is analyzed.

  1. Determining the solar wind speed above active regions using remote radio-wave observations

    Science.gov (United States)

    Fainberg, J.; Stone, R. G.; Bougeret, J.-L.

    1983-01-01

    A new technique has made it possible to measure the velocity of portions of the solar wind during its flow outward from the sun. This analysis utilizes spacecraft (ISEE-3) observations of radio emission generated in regions of the solar wind associated with solar active regions. By tracking the source of these radio waves over periods of days, it is possible to measure the motion of the emission regions. Evidence of solar wind acceleration during this outward flow, consistent with theoretical models, has also been obtained.

  2. Energy Storage and Release through the Solar Activity Cycle Models Meet Radio Observations

    CERN Document Server

    Nindos, Alexander

    2012-01-01

    For nearly sixty years, radio observations have provided a unique insight into the physics of the active and quiescent solar atmosphere. Thanks to the variety of emission mechanisms and to the large altitude range available to observations, fundamental plasma parameters have been measured from the low chromosphere to the upper corona and interplanetary medium. This book presents current research in solar radio astronomy and shows how well it fits in the exceptional scientific context brought by the current space solar observatories. It essentially contains contributed research and review papers presented during the 2010 Community of European Solar Radio Astronomers (CESRA) meeting, which took place in Belgium in June 2010. This book is aimed at graduate students and researchers working in solar physics and space science. Previously published in Solar Physics journal, Vol. 273/2, 2011.

  3. Molybdenum solar neutrino experiment

    International Nuclear Information System (INIS)

    The goal of the molybdenum solar neutrino experiment is to deduce the 8B solar neutrino flux, averaged over the past several million years, from the concentration of 98Tc in a deeply buried molybdenum deposit. The experiment is important to an understanding of stellar processes because it will shed light on the reason for the discrepancy between theory and observation of the chlorine solar neutrino experiment. Possible reasons for the discrepancy may lie in the properties of neutrinos (neutrino oscillations or massive neutrinos) or in deficiencies of the standard solar model. The chlorine experiment only measures the 8B neutrino flux in current times and does not address possible temporal variations in the interior of the sun, which are also not considered in the standard model. In the molybdenum experiment, we plan to measure 98Tc (4.2 Myr), also produced by 8B neutrinos, and possibly 97Tc (2.6 Myr), produced by lower energy neutrinos

  4. Morphology of 557.7 nm dayglow emission under varying solar activity conditions

    Science.gov (United States)

    Krishna, M. V. Sunil; Singh, Vir

    The atomic oxygen emission at 557.7 nm is the most widely observed airglow feature in the upper mesosphere and lower thermospheric regions. The approximation of solar irradiance fluxes is very crucial in the modeling of this emission. The recently introduced Solar2000 EUV flux model is a suitable candidate to provide the solar EUV flux for any level of solar activity on any given day. The Solar2000 EUV flux model has not been tested for its applicability in the airglow modeling studies. In the present study a comprehensive model has been developed to study the 557.7 nm dayglow emission using Solar2000 EUV flux model. This study presents the model results of diurnal and yearly variations of 557.7 nm dayglow emission under equinox conditions. The effect of varying solar activity on this emission is studied for a period of five years (2001-2005) at a fixed date of April 3. This date is chosen due to the fact of large variations in the solar activity during the period of five years. The volume emission rates obtained from the model in the upper mesospheric region are found higher than the observed results. This discrepancy is due to the extremely high values of solar EUV flux generated by the Solar2000 EUV flux model at 102.5 and 103.7 nm wavelengths. The model is found in good agreement with the measurements in the thermospheric region. The morphology is presented as a function of F10.7 solar index for five years (2001 -2005) equator and 45° N at a fixed longitude.

  5. Magnetic activity in the young solar analog LQ Hydrae. I. Active longitudes and cycles

    Science.gov (United States)

    Berdyugina, S. V.; Pelt, J.; Tuominen, I.

    2002-11-01

    We present the first evidence that a single active dwarf of solar type can show a long-lived, nonaxisymmetric spot distribution - active longitudes on opposite hemispheres, similar to evolved, rapidly rotating RS CVn-type binary stars. We analyse new as well as published photometric observations of the young active dwarf LQ Hya, spanning almost 20 years. We find that activity of the star has three activity cycles: a 5.2-yr ``flip-flop'' cycle, a 7.7-yr period in the amplitude modulation of the brightness and an approximately 15-yr period in variations of the mean brightness. The two shorter cycles are related to the alternating active longitudes and are similar to cycles observed in RS CVn-type stars. The 15-yr cycle reflects periodic changes of the mean spottedness of the star and resembles the solar 11-year cycle. The spot rotation period (about 1.6 days) changes during the 15-yr cycle, indicating the presence of small differential rotation. The lengths of the three cycles are related as 3:2:1, with the repetition of the spot configuration after 15 years. We discuss the possibility that the observed spot cycles represent two different magnetic dynamo modes operating in LQ Hya: an axisymmetric mode, as in the Sun, and a nonaxisymmetric higher order mode with two cycles in spot patterns. Our results suggest that young stars exhibit their cycles in spot distribution, as seen in LQ Hya. This is in contrast to the conclusion based on the analysis of Ca Ii H&K emission from plages. The results suggest also that the Vaughan-Preston gap represents a transition from a multiple-mode dynamo to a single-mode dynamo. Table 2 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/394/505

  6. Development and testing of heat transport fluids for use in active solar heating and cooling systems

    Science.gov (United States)

    Parker, J. C.

    1981-01-01

    Work on heat transport fluids for use with active solar heating and cooling systems is described. Program objectives and how they were accomplished including problems encountered during testing are discussed.

  7. The Variability of Solar Spectral Irradiance and Solar Surface Indices Through the Solar Activity Cycles 21-23

    Science.gov (United States)

    Deniz Goker, Umit

    2016-07-01

    A study of variations of solar spectral irradiance (SSI) in the wavelength ranges 121.5 nm-300.5 nm for the period 1981-2009 is presented. We used various data for ultraviolet (UV) spectral lines and international sunspot number (ISSN) from interactive data centers as SME (NSSDC), UARS (GDAAC), SORCE (LISIRD) and SIDC, respectively. We developed a special software for extracting the data and reduced this data by using the MATLAB. In this respect, we revealed negative correlations of intensities of UV (289.5 nm-300.5 nm) emission lines originating in the solar chromosphere with the ISSN index during the unusually prolonged minimum between the solar cycles (SCs) 23 and 24. We also compared our results with the ground-based telescopes as Solar Irradiance Platform, Stanford Data (SFO), Kodaikanal Data (KKL) and NGDC Homepage (Rome and Learmonth Solar Observatories). We studied the variations of total solar irradiance (TSI), magnetic field, sunspots/sunspot groups, Ca II K-flux, faculae and plage areas data with these ground-based telescopes, respectively. We reduced the selected data using the Phyton programming language and plot with the IDL programme. Therefore, we found that there was a decrease in the area of bright faculae and chromospheric plages while the percentage of dark faculae and plage decrease, as well. However, these decreases mainly occurred in small sunspots, contrary to this, these terms in large sunspot groups were comparable to previous SCs or even larger. Nevertheless, negative correlations between ISSN and SSI data indicate that these emissions are in close connection with the classes of sunspots/sunspot groups and "PLAGE" regions. Finally, we applied the time series of the chemical elements correspond to the wavelengths 121.5 nm-300.5 nm and compared with the ISSN data. We found an unexpected increasing in the 298.5 nm for the Fe II element. The variability of Fe II (298.5 nm) is in close connection with the plage regions and the sizes of the

  8. ATPase Class I Type 8B Member 1 and Protein Kinase C-ζ Induce the Expression of the Canalicular Bile Salt Export Pump in Human Hepatocytes

    OpenAIRE

    Chen, Frank; Ellis, Ewa; Strom, Stephen C.; Shneider, Benjamin L.

    2010-01-01

    The exact molecular mechanism(s) of the disease that results from defects in the ATPase Class I Type 8B Member 1 gene remains controversial. Prior investigations of human ileum and in intestinal and ovarian cell lines have suggested that Familial Intrahepatic Cholestasis 1 (FIC1) activates the Farnesoid X-Receptor (FXR) via a pathway involving Protein Kinase C ζ (PKCζ). Translational investigations of human liver from individuals with FIC1 disease have been confounded by secondary affects of ...

  9. Solar activity in the past and the chaotic behaviour of the dynamo

    CERN Document Server

    Arlt, R

    2014-01-01

    The record of solar activity is reviewed here with emphasis on peculiarities. Since sunspot positions tell us a lot more about the solar dynamo than the various global sunspot numbers, we first focus on the records of telescopic observations of sunspots leading to positional information. Then we turn to the proxy record from cosmogenic isotope abundances, which shows recurrent grand minima over the last 9500 years. The apparent distinction between episodes of strong modulation, and intervening episodes with milder modulation and weaker overall activity, hints at the solar dynamo following a variety of solutions, with different symmetries, over the course of millennia.

  10. A logistic model for magnetic energy storage in solar active regions

    Institute of Scientific and Technical Information of China (English)

    Hua-Ning Wang; Yan-Mei Cui; Han He

    2009-01-01

    Previous statistical analyses of a large number of SOHO/MDI full disk longitu-dinal magnetograms provided a result that demonstrated how responses of solar flares to photospheric magnetic properties can be fitted with sigmoid functions. A logistic model reveals that these fitted sigmoid functions might be related to the free energy storage process in solar active regions. Although this suggested model is rather simple, the free energy level of active regions can be estimated and the probability of a solar flare with importance over a threshold can be forecast within a given time window.

  11. The Solar Thermal Design Assistance Center report of its activities and accomplishments in Fiscal Year 1993

    Energy Technology Data Exchange (ETDEWEB)

    Menicucci, D.F.

    1994-03-01

    The Solar Thermal Design Assistance Center (STDAC) at Sandia National Laboratories is a resource provided by the US Department of Energy`s Solar Thermal Program. Its major objectives are to accelerate the use of solar thermal systems through (a) direct technical assistance to users, (b) cooperative test, evaluation, and development efforts with private industry, and (c) educational outreach activities. This report outlines the major activities and accomplishments of the STDAC in Fiscal Year 1993. The report also contains a comprehensive list of persons who contacted the STDAC by telephone for information or technical consulting.

  12. Coupling of the solar wind to measures of magnetic activity

    International Nuclear Information System (INIS)

    The technique of linear prediction filtering has been used to generate empirical response functions relating the solar wind electric field to the most frequently used magnetic indices, AL, AU, Dst and ASYM. Two datasets, one from 1967-1968 and one from 1973-1974, provided the information needed to calculate the empirical response functions. These functions have been convolved with solar wind observations obtained during the IMS to predict the indices. These predictions are compared with the observed indices during two, three-day intervals studied extensively by participants in the CDAW-6 workshop. Differences between the observed and predicted indices are discussed in terms of the linear assumption and in terms of physical processes other than direct solar wind-magnetosphere interaction

  13. Active Control of Solar Array Dynamics During Spacecraft Maneuvers

    Science.gov (United States)

    Ross, Brant A.; Woo, Nelson; Kraft, Thomas G.; Blandino, Joseph R.

    2016-01-01

    Recent NASA mission plans require spacecraft to undergo potentially significant maneuvers (or dynamic loading events) with large solar arrays deployed. Therefore there is an increased need to understand and possibly control the nonlinear dynamics in the spacecraft system during such maneuvers. The development of a nonlinear controller is described. The utility of using a nonlinear controller to reduce forces and motion in a solar array wing during a loading event is demonstrated. The result is dramatic reductions in system forces and motion during a 10 second loading event. A motion curve derived from the simulation with the closed loop controller is used to obtain similar benefits with a simpler motion control approach.

  14. Acceleration and Radiation Model of Particles in Solar Active Regions

    Science.gov (United States)

    Anastasiadis, Anastasios; Dauphin, Cyril; Vilmer, Nicole

    2006-08-01

    Cellular Automata (CA) models have successfully reproduced several statistical properties of solar flares such as the peak flux or the total flux distribution. We are using a CA model based on the concept of self organized criticality (SOC) to model the evolution of the magnetic energy released in a solar flare. Each burst of magnetic energy released is assumed to be the consequence of a magnetic reconnection process, where the particles are accelerated by a direct electric field. We relate the difference of energy gain of particles (alpha particles, protons and electrons) to the magnetic energy released and we calculate the resulting kinetic energy distributions and the emitted radiation.

  15. Solar Indices - Solar Corona

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  16. Solar Indices - Solar Flares

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  17. Solar Indices - Solar Ultraviolet

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  18. Solar Indices - Solar Irradiance

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  19. The persistence of equatorial spread F - an analysis on seasonal, solar activity and geomagnetic activity aspects

    Science.gov (United States)

    Sreeja, V.; Devasia, C. V.; Ravindran, Sudha; Sridharan, R.

    2009-02-01

    The persistence (duration) of Equatorial Spread F (ESF), which has significant impact on communication systems, is addressed. Its behavior during different seasons and geomagnetic activity levels under the solar maximum (2001) and minimum (2006) conditions, is reported using the data from the magnetic equatorial location of Trivandrum (8.5° N; 77° E; dip 0.5° N) in India. The study reveals that the persistence of the irregularities can be estimated to a reasonable extent by knowing the post sunset F region vertical drift velocity (Vz) and the magnetic activity index Kp. Any sort of advance information on the possible persistence of the ionospheric irregularities responsible for ESF is important for understanding the scintillation morphology, and the results which form the first step in this direction are presented and discussed.

  20. Solar activity and transformer failures in the Greek national electric grid

    Directory of Open Access Journals (Sweden)

    Zois Ioannis Panayiotis

    2013-11-01

    Full Text Available Aims: We study both the short term and long term effects of solar activity on the large transformers (150 kV and 400 kV of the Greek national electric grid. Methods: We use data analysis and various statistical methods and models. Results: Contrary to common belief in PPC Greece, we see that there are considerable both short term (immediate and long term effects of solar activity onto large transformers in a mid-latitude country like Greece. Our results can be summarised as follows: For the short term effects: During 1989–2010 there were 43 “stormy days” (namely days with for example Ap ≥ 100 and we had 19 failures occurring during a stormy day plus or minus 3 days and 51 failures occurring during a stormy day plus or minus 7 days. All these failures can be directly related to Geomagnetically Induced Currents (GICs. Explicit cases are briefly presented. For the long term effects, again for the same period 1989–2010, we have two main results: The annual number of transformer failures seems to follow the solar activity pattern. Yet the maximum number of transformer failures occurs about half a solar cycle after the maximum of solar activity. There is statistical correlation between solar activity expressed using various newly defined long term solar activity indices and the annual number of transformer failures. These new long term solar activity indices were defined using both local (from the geomagnetic station in Greece and global (planetary averages geomagnetic data. Applying both linear and non-linear statistical regression we compute the regression equations and the corresponding coefficients of determination.

  1. Two principal components of solar magnetic field variations and prediction of solar activity on multi-millennium timescale

    Science.gov (United States)

    Zharkova, Valentina; Popova, Helen; Zharkov, Sergei; Shepherd, Simon

    2016-07-01

    We present principal components analysis (PCA) of temporal magnetic field variations over the solar cycles 21-24 and their classification with symbolic regression analysis using Hamiltonian method. PCA reveals 4 pairs of magnetic waves with a significant variance and the two principal components with the highest eigen values covering about 40% of this variance. The PC waves are found to have close frequencies while travelling from the opposite hemispheres with an increasing phase shift. Extrapolation of these PCs through their summary curve backward for 5000 years reveals a repeated number of ~350-400 year grand cycles superimposed on 22 year-cycles with the features showing a remarkable resemblance to sunspot activity reported in the past including Maunder, Dalton and Wolf minima, as well as the modern, medieval and roman warmth periods. The summary curve calculated forward for the next millennium predicts further three grand cycles with the closest grand minimum (Maunder minimum) occurring in the forthcoming cycles 25-27 when the two magnetic field waves approach the phase shift of 11 years. We also note a super-grand cycle of about 2000 years which reveal the 5 repeated grand cycles of 350 years with the similar patterns. We discuss a role of other 3 pairs of magnetic waves in shaping the solar activity and compare our predicted curve with the previous predictions of the solar activity on a long timescale based on the terrestrial proxies. These grand cycle variations are probed by Parker's two layer dynamo model with meridional circulation revealing two dynamo waves generated with close frequencies. Their interaction leads to beating effects responsible for the grand cycles (300-350 years) and super-grand cycles of 2000 years superimposed on standard 22 year cycles. This approach opens a new era in investigation and prediction of solar activity on long-term timescales.

  2. Solar activity phase diagram and forecast of the coming 23rd cycle.

    Science.gov (United States)

    Pankratov, A. K.; Narmanskij, V. Ya.; Vladimirskij, B. M.

    1998-10-01

    The phase diagram method is used for investigation of relations between planetary dynamics and solar activity variations. It was found that the calculated moments of solar activity maxima/minima are disposed regularly in the coordinates of the difference of heliocentric longitudes of Uranus-Neptune versus the difference of heliocentric longitudes of Saturn-Neptune. There are separate zones containing maxima (minima) of only the northern (or southern) polarity of solar mean magnetic field. There is also a region where only maxima of small amplitudes are concentrated (Rz cycle. The minimum of activity must be observed in 1999±2. The maximum is forecast in 2006±2. The amplitude Rz can be as small as 60±20. Probably there will be no change of the polarity of the mean solar magnetic field.

  3. Multifractal features of magnetospheric dynamics and their dependence on solar activity

    Science.gov (United States)

    Gopinath, Sumesh

    2016-09-01

    In the present study, novel wavelet leaders (WL) based multifractal analysis has been used to get a better knowledge of the self-organization phenomena inherent in complex magnetospheric dynamics during disturbance and quiescent periods, focusing mainly on the intermittent features of auroral electrojet (AE) index. The results derived from the analysis certainly exhibit the phase transition property of magnetosphere system with respect to variabilities in the driving conditions. By using the novel WL method, solar activity dependence/independence of intermittency of magnetospheric proxies such as AE, SYM-H and Dst indices have been compared. The results indicate that the multifractality of AE index does not follow the solar activity cycle while intermittent features of SYM-H and Dst indices show high degree of solar activity dependence. This shows that along with the external solar wind perturbations, certain complex phenomena of internal origin also significantly modulate the dynamics of geomagnetic fluctuations in the auroral region.

  4. Signatures of Slow Solar Wind Streams from Active Regions in the Inner Corona

    Science.gov (United States)

    Slemzin, V.; Harra, L.; Urnov, A.; Kuzin, S.; Goryaev, F.; Berghmans, D.

    2013-08-01

    The identification of solar-wind sources is an important question in solar physics. The existing solar-wind models ( e.g., the Wang-Sheeley-Arge model) provide the approximate locations of the solar wind sources based on magnetic field extrapolations. It has been suggested recently that plasma outflows observed at the edges of active regions may be a source of the slow solar wind. To explore this we analyze an isolated active region (AR) adjacent to small coronal hole (CH) in July/August 2009. On 1 August, Hinode/EUV Imaging Spectrometer observations showed two compact outflow regions in the corona. Coronal rays were observed above the active-region coronal hole (ARCH) region on the eastern limb on 31 July by STEREO-A/EUVI and at the western limb on 7 August by CORONAS- Photon/TESIS telescopes. In both cases the coronal rays were co-aligned with open magnetic-field lines given by the potential field source surface model, which expanded into the streamer. The solar-wind parameters measured by STEREO-B, ACE, Wind, and STEREO-A confirmed the identification of the ARCH as a source region of the slow solar wind. The results of the study support the suggestion that coronal rays can represent signatures of outflows from ARs propagating in the inner corona along open field lines into the heliosphere.

  5. Variability of foE in the equatorial ionosphere with solar activity

    Science.gov (United States)

    Abe, O. E.; Rabiu, A. B.; Adeniyi, J. O.

    2013-01-01

    This research examined the variability of foE in the equatorial ionosphere with solar activity within the equatorial ionospheric anomaly region. Ionosonde data recorded at Ouagadougou (lat. 12.4°N, long. 1.5°W and magnetic dip 1.43°N) were engaged to study the transient variations of the critical frequency of the E-layer (foE) and its dependence on solar activity. The study revealed that foE increases with the increase in solar intensity of the sun. The variability of the foE decreases with increases in the solar activity. The maximum value of the foE is at local noon when the ionosphere is stable; the variability at this local time is minimal. The minimum value of the foE is at sunrise and sunset, at this period on local time the equatorial ionosphere recorded its maxima variability. Irrespective of the degree of solar activity, foE is observed to be maximum in June solstice, followed by the equinoxes and minimum in December solstice. Equinoctial asymmetry occurred in the variation of the relative standard deviation of foE with maximum in September/March equinox for low/high solar activity.

  6. North-south asymmetry in solar activity: predicting the amplitude of the next solar cycle

    CERN Document Server

    Javaraiah, J

    2007-01-01

    Using Greenwich and SOON sunspot group data during the period 1874 -- 2005, we find that the sums of the areas of the sunspot groups in $0^\\circ$ -- $10^\\circ$ latitude-interval of the Sun's northern hemisphere and in the time-interval, minus 1.35 year to plus 2.15 year from the time of the preceding minimum--and in the same latitude interval of the southern hemisphere but plus 1.0 year to plus 1.75 year from the time of the maximum--of a sunspot cycle are well correlating with the amplitude (maximum of the smoothed monthly sunspot number) of its immediate following cycle. Using this relationship it is possible to predict the amplitude of a sunspot cycle by about 9 -- 13 years in advance. We predicted $74 \\pm 10$ for the amplitude of the upcoming cycle~24. Variations in solar meridional flows during solar cycles and 9 -- 16 year variations in solar equatorial rotation may be responsible for the aforementioned relationship.

  7. Inclusion body hepatitis (IBH outbreak associated with fowl adenovirus type 8b in broilers

    Directory of Open Access Journals (Sweden)

    Zadravec M.

    2013-01-01

    Full Text Available The causative agent of inclusion body hepatitis (IBH was identified as fowl adenovirus (FAdV type 8b, a member of the Fowl adenovirus E species, based on PCR results of adenoviral polymerase and the hexon gene in an outbreak of acute mortality that affected a broiler flock of 12,000 animals. In two waves of elevated mortality rate, a total of 264 chickens were found dead. Affected birds showed ruffled feathers, depression, watery droppings and limping. The most common pathological lesions seen on necropsy were pale, swollen and friable livers. On histological examination, acute hepatitis characterized by necrosis of hepatocytes, with large basophilic intranuclear inclusion bodies, were observed. In addition, infectious bursal disease virus and infectious bronchitis virus were detected in the same flock.

  8. 1995 Bird survey Foothills parkway section 8B National Park Service, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Wade, M.C.; Giffen, N.R.; Wade, B.A.

    1996-05-01

    The Foothills Parkway Section 8B right-of-way (ROW) is a stretch of land between Pittman Center and Cosby, Tennessee that is approximately 14.2 miles long and 1,000 ft wide, with a considerably wider section on Webb Mountain. A breeding bird survey was conducted at selected sample points along the ROW. The intent of the survey was to identify bird communities, area sensitive species (birds dependent on extensive forest systems for all their needs) and endangered, threatened, federal candidate, and state `in need of management` species now using the ROW. The survey also provides baseline data to assess future habitat impacts as well as cumulative impacts of the project.

  9. 8B7 Spectrin-a New Member of Spectrin Family%8B7血影蛋白-血影蛋白家族的一个新成员

    Institute of Scientific and Technical Information of China (English)

    刘荣; 田云; 鞠吉雨; 汪燚; 周异群; 刘音; 朱立平

    2006-01-01

    目的 分析8B7cDNA编码的蛋白质的性质及其在细胞中的定位.方法 用Blastn、Blastp及Tmpred分析8B7cDNA编码的蛋白质的性质.采用Northern印迹分析8B7mRNA在细胞和组织中的表达.构建重组定位表达载体,转染COS-7细胞,激光扫描共聚焦显微镜观察细胞中EGFP-8B7融合蛋白的表达.结果 8B7cDNA编码的蛋白质长363个氨基酸,分子中有血影蛋白重复序列,它与Enaptin蛋白、Nasprin-1蛋白、Myne 1蛋白及Syne-1蛋白的C末端363个氨基酸序列100%同源,是血影蛋白家族的一个新成员,故称8B7血影蛋白.Northern印迹分析,可见人脾脏和小肠组织有1.8kb的8B7mRNA表达.定位实验见COS-7细胞的核膜有荧光,胞浆中也见网状的荧光.转染pEGFP-△SR8B7的COS-7细胞中发射荧光的部位与转染pEGFP-8B7cDNA的细胞相似.结论 8B7cDNA编码的蛋白质是血影蛋白家族的一个新成员,用COS-细胞所做的定位实验证实其定位于细胞的核膜和胞浆中的网状结构,是8B7血影蛋白C端的KASH结构域决定了其在COS-7细胞中的定位.

  10. The nature of the solar activity during the Maunder Minimum revealed by the Guliya ice core record

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Whether the solar activity was very low, and especially whether the solar cycle existed, during the Maunder Minimum (1645-1715 AD), have been disputed for a long time. In this paper we use the Guliya NO3- data, which can reflect the solar activity, to analyze the characteristics of the solar activity during the Maunder Minimum. The results show that the solar activity was indeed low, and solar cycle displayed normal as present, i.e. about 11a, in that period. Moreover, it was found that the solar activity contains a 36-year periodic component probably, which might be related to the variations in the length of the sunspot cycle. This finding is of importance for the study of the relationship between the sun variability and the Earth climate change.

  11. Influence of Solar Activity on State of Wheat Market in Medieval England

    CERN Document Server

    Pustilnik, L A; Pustilnik, Lev A.; Din, Gregory Yom

    2003-01-01

    The database of Prof. Rogers (1887), which includes wheat prices in England in the Middle Ages, was used to search for a possible influence of solar activity on the wheat market. We present a conceptual model of possible modes for sensitivity of wheat prices to weather conditions, caused by solar cycle variations, and compare expected price fluctuations with price variations recorded in medieval England. We compared statistical properties of the intervals between wheat price bursts during years 1249-1703 with statistical properties of the intervals between minimums of solar cycles during years 1700-2000. We show that statistical properties of these two samples are similar, both for characteristics of the distributions and for histograms of the distributions. We analyze a direct link between wheat prices and solar activity in the 17th Century, for which wheat prices and solar activity data (derived from 10Be isotope) are available. We show that for all 10 time moments of the solar activity minimums the observe...

  12. The observed relationships between some solar rotation parameters and the activity cycle

    Science.gov (United States)

    Howard, R.; Labonte, B. J.

    1983-01-01

    Several parameters of the solar rotation show variations which appear to relate to the phase of the solar-activity cycle. The latitude gradient of the differential rotation, as seen in the coefficients of the sin2 and sin4 terms in the latitude expansion, shows marked variations with the cycle. One of these variations may be described as a one-cycle-per-hemisphere torsional oscillation with a period of 11 years, where the high latitudes rotate faster at solar-activity maximum and slower at minimum, and the low latitudes rotate faster at solar-activity minimum and slower at maximum. Another variation is a periodic oscillation of the fractional difference in the low-latitude rotation between north and south hemispheres. The possibility of a variation in the absolute rotational velocity of the sun in phase with the solar cycle remains an open question. The two-cycle-per-hemisphere torsional waves in the solar rotation also represent an aspect of the rotation which varies with the cycle. It is shown that the amplitude of the fast flowing zone rises a year before the rise to activity maximum. The fast zone seems to be physically the more significant of the two zones.

  13. Geomagnetic activity during 10 - 11 solar cycles that has been observed by old Russian observatories.

    Science.gov (United States)

    Seredyn, Tomasz; Wysokinski, Arkadiusz; Kobylinski, Zbigniew; Bialy, Jerzy

    2016-07-01

    A good knowledge of solar-terrestrial relations during past solar activity cycles could give the appropriate tools for a correct space weather forecast. The paper focuses on the analysis of the historical collections of the ground based magnetic observations and their operational indices from the period of two sunspot solar cycles 10 - 11, period 1856 - 1878 (Bartels rotations 324 - 635). We use hourly observations of H and D geomagnetic field components registered at Russian stations: St. Petersburg - Pavlovsk, Barnaul, Ekaterinburg, Nertshinsk, Sitka, and compare them to the data obtained from the Helsinki observatory. We compare directly these records and also calculated from the data of the every above mentioned station IHV indices introduced by Svalgaard (2003), which have been used for further comparisons in epochs of assumed different polarity of the heliospheric magnetic field. We used also local index C9 derived by Zosimovich (1981) from St. Petersburg - Pavlovsk data. Solar activity is represented by sunspot numbers. The correlative and continuous wavelet analyses are applied for estimation of the correctness of records from different magnetic stations. We have specially regard to magnetic storms in the investigated period and the special Carrington event of 1-2 Sep 1859. Generally studied magnetic time series correctly show variability of the geomagnetic activity. Geomagnetic activity presents some delay in relation to solar one as it is seen especially during descending and minimum phase of the even 11-year cycle. This pattern looks similarly in the case of 16 - 17 solar cycles.

  14. Solar Energy and Building Physics Laboratory - Activity Report 2009

    OpenAIRE

    Scartezzini, Jean-Louis

    2010-01-01

    The Solar Energy and Building Physics Laboratory (LESO-PB) works at the forefront of research and technological development in renewable energy, building science and urban physics. It is part of the Civil Engineering Institute (IIC) of the School of Architecture, Civil and Environmental Engineering (ENAC) of the Swiss Federal Institute of Technology (EPFL) in Lausanne, Switzerland. Placed under the responsibility of Prof. Dr Jean-Louis Scartezzini and four group leaders, the laboratory counts...

  15. Active solar heating system performance and data review

    Energy Technology Data Exchange (ETDEWEB)

    Bates, J.; Bertarelli, L.; Schmidt, G.

    1999-07-01

    This report summarises the results of a study investigating the performance and costs of solar heating systems in Europe, and their relevance to systems in the UK. Details are given of the identification and review of the available data, the collection of information on UK and overseas systems, and the assessment and analysis of the data. Appendices give a lists of the monitored parameters, European contacts, data sources, the questionnaire for gathering information, and a printout of the data files. (uk)

  16. The long-term changes in solar meridional circulation as the cause for the long-term changes in the correlation between solar and geomagnetic activity

    CERN Document Server

    Georgieva, K

    2007-01-01

    Since the beginning of the 20th century, the correlation in the 11-year solar cycle between the sunspot number and geomagnetic aa-index has been decreasing, while the lag between the two has been increasing. We show how this can be used as a proxy for the solar meridional circulation, and investigate the long-term changes in the meridional circulation and their role for solar activity and terrestrial climate.

  17. Focused Solar Ablation: A Nanosat-Based Method for Active Removal of Space Debris

    OpenAIRE

    Alexeenko, Alina A; Venkattraman, A.

    2011-01-01

    A novel concept for the active removal of space debris using solar power is proposed. Focused solar ablation is an in-space propulsion concept based on using concentrator mirrors on nanosats and using the solar power to evaporate material from the debris to produce deceleration thrust thereby providing the ∆V necessary to deorbit. An energy balance is used along with free-molecular effusion theory to estimate the thrust produced by the concept and the corresponding deorbit times for an alumin...

  18. CORONAS-F Project: The Study of Solar Activity and Its Effects on the Earth

    Science.gov (United States)

    Kuznetsov, V. D.

    The CORONAS-F space mission is characterized in general terms as part of the Russian CORONAS space project aimed at the study of solar activity and solar-terrestrial coupling. The composition of the scientific payload and the basic characteristic of the instruments are described. Some observations carried out on board the CORONAS-F satellite are discussed, including global oscillations of the Sun, active regions, flares and mass ejections, high-energy particles in near-Earth space, etc. The results of investigation of the Earth's upper atmosphere are provided as obtained from the analysis of the absorption of solar hard X-rays at shadow entry and shadow exit of the satellite, as well as the night glow events caused by solar radiation fluxes, galactic cosmic rays, and precipitations of charged particles from the magnetosphere.

  19. A Space Weather Mission Concept: Observatories of the Solar Corona and Active Regions (OSCAR)

    CERN Document Server

    Strugarek, Antoine; Lee, Arrow; Löschl, Philipp; Seifert, Bernhard; Hoilijoki, Sanni; Kraaikamp, Emil; Mrigakshi, Alankrita Isha; Philippe, Thomas; Spina, Sheila; Bröse, Malte; Massahi, Sonny; O'Halloran, Liam; Blanco, Victor Pereira; Stausland, Christoffer; Escoubet, Philippe; Kargl, Günter

    2014-01-01

    Coronal Mass Ejections (CMEs) and Corotating Interaction Regions (CIRs) are major sources of magnetic storms on Earth and are therefore considered to be the most dangerous space weather events. The Observatories of Solar Corona and Active Regions (OSCAR) mission is designed to identify the 3D structure of coronal loops and to study the trigger mechanisms of CMEs in solar Active Regions (ARs) as well as their evolution and propagation processes in the inner heliosphere. It also aims to provide monitoring and forecasting of geo-effective CMEs and CIRs. OSCAR would contribute to significant advancements in the field of solar physics, improvements of the current CME prediction models, and provide data for reliable space weather forecasting. These objectives are achieved by utilising two spacecraft with identical instrumentation, located at a heliocentric orbital distance of 1~AU from the Sun. The spacecraft will be separated by an angle of 68$^{\\circ}$ to provide optimum stereoscopic view of the solar corona. We ...

  20. On the Role of Rotating Sunspots in the Activity of Solar Active Region NOAA 11158

    CERN Document Server

    Vemareddy, P; Maurya, R A

    2012-01-01

    We study the role of rotating sunspots in relation to the evolution of various physical parameters characterizing the non-potentiality of the active region NOAA 11158 and its eruptive events using the magnetic field data from the Helioseismic and Magnetic Imager (HMI) and multi-wavelength observations from the Atmospheric Imaging Assembly (AIA) on board Solar Dynamics Observatory (SDO). From the evolutionary study of HMI intensity and AIA channels, it is observed that the AR consists of two major rotating sunspots one connected to flare-prone region and another with CME. The constructed space-time intensity maps reveal that the sunspots exhibited peak rotation rates coinciding with the occurrence of the major eruptive events. Further, temporal profiles of twist parameters, viz., average shear angle, $\\alpha_{\\rm av}$, $\\alpha_{\\rm best}$, derived from HMI vector magnetograms and the rate of helicity injection, obtained from the horizontal flux motions of HMI line-of-sight magnetograms, corresponded well with ...

  1. Reexamination of the coronal index of solar activity

    Science.gov (United States)

    Rybanský, M.; Rušin, V.; Minarovjech, M.; Klocok, L.; Cliver, E. W.

    2005-08-01

    The coronal index (CI) of solar activity is the irradiance of the Sun as a star in the coronal green line (Fe XIV, 530.3 nm or 5303 Å). It is derived from ground-based observations of the green corona made by the network of coronal stations (currently Kislovodsk, Lomnický Štít, Norikura, and Sacramento Peak). The CI was introduced by Rybanský (1975) to facilitate comparison of ground-based green line measurements with satellite-based extreme ultraviolet and soft X-ray observations. The CI since 1965 is based on the Lomnický Štít photometric scale; the CI was extended to earlier years by Rybanský et al. (1994) based on cross-calibrations of Lomnický Štít data with measurements made at Pic du Midi and Arosa. The resultant 1939-1992 CI had the interesting property that its value at the peak of the 11-year cycle increased more or less monotonically from cycle 18 through cycle 22 even though the peak sunspot number of cycle 20 exhibited a significant local minimum between that of cycles 19 and 21. Rušin and Rybanský (2002) recently showed that the green line intensity and photospheric magnetic field strength were highly correlated from 1976 to 1999. Since the photospheric magnetic field strength is highly correlated with sunspot number, the lack of close correspondence between the sunspot number and the CI from 1939 to 2002 is puzzling. Here we show that the CI and sunspot number are highly correlated only after 1965, calling the previously-computed coronal index for earlier years (1939-1965) into question. We can use the correlation between the CI and sunspot number (also the 2800 MHz radio flux and the cosmic ray intensity) to recompute daily values of the CI for years before 1966. In fact, this method can be used to obtain CI values as far back as we have reliable sunspot observations (˜1850). The net result of this exercise is a CI that closely tracks the sunspot number at all times. We can use the sunspot-CI relationship (for 1966-2002) to identify

  2. The Sun-like activity of the solar twin 18 Scorpii

    CERN Document Server

    Hall, J C; Lockwood, G W; Hall, Jeffrey C.; Henry, Gregory W.

    2007-01-01

    We present the results of 10 yr of complementary spectroscopic and photometric observations of the solar twin 18 Scorpii. We show that over the course of its ~7 year chromospheric activity cycle, 18 Sco's brightness varies in the same manner as the Sun's and with a likely brightness variation of 0.09%, similar to the 0.1% decadal variation in the total solar irradiance.

  3. A Space Weather mission concept: Observatories of the Solar Corona and Active Regions (OSCAR)

    DEFF Research Database (Denmark)

    Strugarek, Antoine; Janitzek, Nils; Lee, Arrow;

    2015-01-01

    Coronal Mass Ejections (CMEs) and Corotating Interaction Regions (CIRs) are major sources of magnetic storms on Earth and are therefore considered to be the most dangerous space weather events. The Observatories of Solar Corona and Active Regions (OSCAR) mission is designed to identify the 3D....... The spacecraft will be separated by an angle of 68 degrees to provide optimum stereoscopic view of the solar corona. We study the feasibility of such a mission and propose a preliminary design for OSCAR....

  4. The effects of changing solar activity on climate: contributions from palaeoclimatological studies

    Directory of Open Access Journals (Sweden)

    Engels Stefan

    2012-07-01

    Full Text Available Natural climate change currently acts in concert with human-induced changes in the climate system. To disentangle the natural variability in the climate system and the human-induced effects on the global climate, a critical analysis of climate change in the past may offer a better understanding of the processes that drive the global climate system. In this review paper, we present palaeoclimatological evidence for the past influence of solar variability on Earth’s climate, highlighting the effects of solar forcing on a range of timescales. On a decadal timescale, instrumental measurements as well as historical records show the effects of the 11-year Schwabe cycle on climate. The variation in total solar irradiance that is associated with a Schwabe cycle is only ~1 W m−2 between a solar minimum and a maximum, but winter and spring temperatures on the Northern Hemisphere show a response even to this small-scale variability. There is a large body of evidence from palaeoclimatic reconstructions that shows the influence of solar activity on a centennial to millennial timescale. We highlight a period of low solar activity starting at 2800 years before present when Europe experienced a shift to colder and wetter climate conditions. The spatial pattern of climate change that can be recognized in the palaeoclimatological data is in line with the suggested pattern of climate change as simulated by climate models. Millennial-scale climate oscillations can be recognized in sediment records from the Atlantic Ocean as well as in records of lake-level fluctuations in southeastern France. These oscillations coincide with variation in 14C production as recognized in the atmospheric 14C record (which is a proxy-record for solar activity, suggesting that Earth’s climate is sensitive to changes in solar activity on a millennial timescale as well.

  5. Impact of variations in solar activity on hydrological decadal patterns in northern Italy

    Science.gov (United States)

    Zanchettin, D.; Rubino, A.; Traverso, P.; Tomasino, M.

    2008-06-01

    Using spectral and statistical analyses of discharges and basin average precipitation rates acquired over the Po River since the early 1800s, we investigate the impact of variations in solar activity on hydrological decadal patterns over northern Italy. Wet and dry periods appear to alternate in accordance with polarized sunspot cycles. Intriguingly, a solar signature on Po River discharges is detected to be highly significant since the late 1800s, before the onset of sunspots hyperactivity established by the middle 1900s. In particular, observed hydrological patterns over northern Italy are significantly correlated, under periods of quiet sunspot activity, with parameters characterizing the Sun's orbital motion, specifically with the time derivative of the solar angular momentum (τ) which is thought to modulate the strength of the solar wind and sunspot dynamics under weak sunspot activity. The North Atlantic Oscillation (NAO) is detected as potential link between the Sun and Po River discharges, since it is significantly correlated with both solar activity and the decadal variability in the north Italian climate. In particular, positive (negative) NAO anomalies, which are associated with comparatively lower (higher) Po River discharges, are assessed to alternatively correlate at decadal timescales either with τ or with the Earth's geomagnetic activity (GA), which closely follows sunspot activity. This changing correlation seems to be regulated by the strength of sunspot activity: under periods of quiet sunspot activity, a weakening of the GA-NAO connection and a reinforcement of the τ-NAO connection is observed. In this sense, the strength of solar activity apparently modulates the connection between the NAO and Po River discharges.

  6. The Hemispheric Asymmetry of Solar Activity During the Twentieth Century and the Solar Dynamo

    OpenAIRE

    Goel, Ashish; Choudhuri, Arnab Rai

    2007-01-01

    We believe the Babcock--Leighton process of poloidal field generation to be the main source of irregularity in the solar cycle. The random nature of this process may make the poloidal field in one hemisphere stronger than that in the other hemisphere at the end of a cycle. We expect this to induce an asymmetry in the next sunspot cycle. We look for evidence of this in the observational data and then model it theoretically with our dynamo code. Since actual polar field measurements exist only ...

  7. On dependence of seismic activity on 11 year variations in solar activity and/or cosmic rays

    Science.gov (United States)

    Zhantayev, Zhumabek; Khachikyan, Galina; Breusov, Nikolay

    2014-05-01

    It is found in the last decades that seismic activity of the Earth has a tendency to increase with decreasing solar activity (increasing cosmic rays). A good example of this effect may be the growing number of catastrophic earthquakes in the recent rather long solar minimum. Such results support idea on existence a solar-lithosphere relationship which, no doubts, is a part of total pattern of solar-terrestrial relationships. The physical mechanism of solar-terrestrial relationships is not developed yet. It is believed at present that one of the main contenders for such mechanism may be the global electric circuit (GEC) - vertical current loops, piercing and electrodynamically coupling all geospheres. It is also believed, that the upper boundary of the GEC is located at the magnetopause, where magnetic field of the solar wind reconnects with the geomagnetic field, that results in penetrating solar wind energy into the earth's environment. The effectiveness of the GEC operation depends on intensity of cosmic rays (CR), which ionize the air in the middle atmosphere and provide its conductivity. In connection with the foregoing, it can be expected: i) quantitatively, an increasing seismic activity from solar maximum to solar minimum may be in the same range as increasing CR flux; and ii) in those regions of the globe, where the crust is shipped by the magnetic field lines with number L= ~ 2.0, which are populated by anomalous cosmic rays (ACR), the relationship of seismic activity with variations in solar activity will be manifested most clearly, since there is a pronounced dependence of ACR on solar activity variations. Checking an assumption (i) with data of the global seismological catalog of the NEIC, USGS for 1973-2010, it was found that yearly number of earthquake with magnitude M≥4.5 varies into the 11 year solar cycle in a quantitative range of about 7-8% increasing to solar minimum, that qualitatively and quantitatively as well is in agreement with the

  8. Stellar Magnetic Activity, the Earth and Exoplanets: How Future Space Missions Can Contribute to Understanding Solar Activity and Solar-terrestrial Influences

    Science.gov (United States)

    Baliunas, S. L.; Soon, W. W.-H.

    2004-05-01

    The solar spectral and particle output varies over time scales of minutes to eons; some of those variations are documented or claimed to have influenced the terrestrial environment. The origins of solar variability include the progress of fusion through time and the complex interaction of the interior gas and magnetic fields. The Mount Wilson HK Project has yielded information on stellar magnetic activity on more than 2,000 stars going as far back as 38 years in order to put solar magnetic activity in a physical perspective unavailable from theory and models alone. We discuss how future space missions like Space Interferometry Mission (SIM) and Stellar Imager (SI) would contribute to understanding solar variability that has influenced -- and should continue to influence -- life and the environment on earth. This research funded in part by MIT-MSG 5710001241, JPL 1236821, AF 49620-02-1-0194, a grant from NASA HQ and GSFC to SAO for the SI Vision Mission Study, NASA NAG5-7635, NRC COBASE, CRDF 322, Richard Lounsberry Foundation, Langley-Abbot, Rollins, Scholarly Studies and James Arthur Funds (Smithsonian Institution) and several generous individuals.

  9. Towards solar activity maximum 24 as seen by GOLF and VIRGO/SPM instruments

    CERN Document Server

    Garcia, R A; Mathur, S; Regulo, C; Ballot, J; Davies, G R; Jimenez, A; Simoniello, R

    2013-01-01

    All p-mode parameters vary with time as a response to the changes induced by the cyclic behavior of solar magnetic activity. After the unusual long solar-activity minimum between cycles 23 and 24, where the p-mode parameters have shown a different behavior than the surface magnetic proxies, we analyze the temporal variation of low-degree p-mode parameters measured by GOLF (in velocity) and VIRGO (in intensity) Sun-as-a-star instruments on board SoHO. We then compared our results with other activity proxies.

  10. The Hemispheric Asymmetry of Solar Activity During the Twentieth Century and the Solar Dynamo

    CERN Document Server

    Goel, Ashish

    2007-01-01

    We believe the Babcock--Leighton process of poloidal field generation to be the main source of irregularity in the solar cycle. The random nature of this process may make the poloidal field in one hemisphere stronger than that in the other hemisphere at the end of a cycle. We expect this to induce an asymmetry in the next sunspot cycle. We look for evidence of this in the observational data and then model it theoretically with our dynamo code. Since actual polar field measurements exist only from 1970s, we use the polar faculae number data recorded by Sheeley (1991) as a proxy of the polar field and estimate the hemispheric asymmetry of the polar field in different solar minima during the major part of the twentieth century. This asymmetry is found to have a reasonable correlation with the asymmetry of the next cycle. We then run our dynamo code by feeding information about this asymmetry at the successive minima and compare with observational data. We find that the theoretically computed asymmetries of diffe...

  11. Activity associated with coronal mass ejections at solar minimum - SMM observations from 1984-1986

    Science.gov (United States)

    St. Cyr, O. C.; Webb, D. F.

    1991-01-01

    Seventy-three coronal mass ejections (CMEs) observed by the coronagraph aboard SMM between 1984 and 1986 were examined in order to determine the distribution of various forms of solar activity that were spatially and temporally associated with mass ejections during solar minimum phase. For each coronal mass ejection a speed was measured, and the departure time of the transient from the lower corona estimated. Other forms of solar activity that appeared within 45 deg longitude and 30 deg latitude of the mass ejection and within +/-90 min of its extrapolated departure time were explored. The statistical results of the analysis of these 73 CMEs are presented, and it is found that slightly less than half of them were infrequently associated with other forms of solar activity. It is suggested that the distribution of the various forms of activity related to CMEs does not change at different phases of the solar cycle. For those CMEs with associations, it is found that eruptive prominences and soft X-rays were the most likely forms of activity to accompany the appearance of mass ejections.

  12. Latitude dependence of long-term geomagnetic activity and its solar wind drivers

    Energy Technology Data Exchange (ETDEWEB)

    Myllys, M. [Helsinki Univ. (Finland). Dept. of Physics; Partamies, N. [Finnish Meteorological Institute, Helsinki (Finland); University Centre in Svalbard, Longyearbyen (Norway). Dept. of Arctic Geophysics; Juusola, L. [Finnish Meteorological Institute, Helsinki (Finland)

    2015-09-01

    To validate the usage of global indices in studies of geomagnetic activity, we have examined the latitude dependence of geomagnetic variations in Fennoscandia and Svalbard from 1994 to 2010. Daily standard deviation (SD) values of the horizontal magnetic field have been used as a measure of the ground magnetic disturbance level.We found that the timing of the geomagnetic minimum depends on the latitude region: corresponding to the minimum of sunspot cycle 22 (in 1996), the geomagnetic minimum occurred between the geomagnetic latitudes 57-61 in 1996 and at the latitudes 64-67 in 1997, which are the average auroral oval latitudes. During sunspot cycle 23, all latitude regions experienced the minimum in 2009, a year after the sunspot minimum. These timing differences are due to the latitude dependence of the 10 s daily SD on the different solar wind drivers. In the latitude region of 64-67 , the impact of the high-speed solar wind streams (HSSs) on the geomagnetic activity is the most pronounced compared to the other latitude groups, while in the latitude region of 57-61 , the importance of the coronal mass ejections (CMEs) dominates. The geomagnetic activity maxima during ascending solar cycle phases are typically caused by CME activity and occur especially in the oval and sub-auroral regions. The strongest geomagnetic activity occurs during the descending solar cycle phases due to a mixture of CME and HSS activity. Closer to the solar minimum, less severe geomagnetic activity is driven by HSSs and mainly visible in the poleward part of the auroral region. According to our study, however, the timing of the geomagnetic activity minima (and maxima) in different latitude bands is different, due to the relative importance of different solar wind drivers at different latitudes.

  13. Long-term north-south asymmetry in solar wind speed inferred from geomagnetic activity: A new type of century-scale solar oscillation?

    DEFF Research Database (Denmark)

    Mursula, K.; Zieger, B.

    2001-01-01

    A significant and very similar annual variation in solar wind speed and in geomagnetic activity was recently found around all the four solar cycle minima covered by direct SW observations since mid-1960's. We have shown that the phase of this annual variation reverses with the Sun's polarity...... registrations of geomagnetic activity. We find a significant annual variation during the high-activity solar cycles in mid-19th century and since 1930's. Most interestingly, the SW speed asymmetry in mid-19th century was opposite to the present asymmetry, i.e., the minimum speed region was then shifted toward...

  14. Solar wind and geomagnetism. Toward a standard classification of geomagnetic activity from 1868 to 2009

    Energy Technology Data Exchange (ETDEWEB)

    Zerbo, J.L. [Univ. Polytechnique de Bobo Dioulasso (Burkina Faso); UPMC/Polytechique/CNRS, UMR 7648, Saint-Maur-des-Fosses (France). LPP-Lab. de Physique des Plasmas; Mazaudier, C. Amory [UPMC/Polytechique/CNRS, UMR 7648, Saint-Maur-des-Fosses (France). LPP-Lab. de Physique des Plasmas; Ouattara, F. [Koudougou Univ. (Burkina Faso). Ecole Normale Superieure; Richardson, J.D. [M.I.T., Cambridge, MA (United States). Center for Space Research

    2012-07-01

    We examined solar activity with a large series of geomagnetic data from 1868 to 2009. We have revisited the geomagnetic activity classification scheme of Legrand and Simon (1989) and improve their scheme by lowering the minimum Aa index value for shock and recurrent activity from 40 to 20 nT. This improved scheme allows us to clearly classify about 80% of the geomagnetic activity in this time period instead of only 60% for the previous Legrand and Simon classification. (orig.)

  15. Solar wind and geomagnetism: toward a standard classification of geomagnetic activity from 1868 to 2009

    OpenAIRE

    Zerbo, J. L.; Amory Mazaudier, C.; Ouattara, F.; Richardson, J. D.

    2012-01-01

    International audience We examined solar activity with a large series of geomagnetic data from 1868 to 2009. We have revisited the geomagnetic activity classification scheme of Legrand and Simon (1989) and improve their scheme by lowering the minimum Aa index value for shock and recurrent activity from 40 to 20 nT. This improved scheme allows us to clearly classify about 80% of the geomagnetic activity in this time period instead of only 60% for the previous Legrand and Simon classification.

  16. Solar activity around AD 775 from aurorae and radiocarbon

    CERN Document Server

    Neuhaeuser, Ralph

    2015-01-01

    A large variation in 14 C around AD 775 has been considered to be caused by one or more solar super-flares within one year. We critically review all known aurora reports from Europe as well as the Near, Middle, and Far East from AD 731 to 825 and find 39 likely true aurorae plus four more potential aurorae and 24 other reports about halos, meteors, thunderstorms etc., which were previously misinterpreted as aurorae or misdated; we assign probabilities for all events according to five aurora criteria. We find very likely true aurorae in AD 743, 745, 762, 765, 772, 773, 793, 796, 807, and 817. There were two aurorae in the early 770s observed near Amida (now Diyarbakir in Turkey near the Turkish-Syrian border), which were not only red, but also green-yellow - being at a relatively low geo-magnetic latidude, they indicate a relatively strong solar storm. However, it cannot be argued that those aurorae (geo-magnetical latitude 43 to 50 deg, considering five different reconstructions of the geo-magnetic pole) coul...

  17. SOLAR MAGNETIC ACTIVITY CYCLES, CORONAL POTENTIAL FIELD MODELS AND ERUPTION RATES

    Energy Technology Data Exchange (ETDEWEB)

    Petrie, G. J. D. [National Solar Observatory, Tucson, AZ 85719 (United States)

    2013-05-10

    We study the evolution of the observed photospheric magnetic field and the modeled global coronal magnetic field during the past 3 1/2 solar activity cycles observed since the mid-1970s. We use synoptic magnetograms and extrapolated potential-field models based on longitudinal full-disk photospheric magnetograms from the National Solar Observatory's three magnetographs at Kitt Peak, the Synoptic Optical Long-term Investigations of the Sun vector spectro-magnetograph, the spectro-magnetograph and the 512-channel magnetograph instruments, and from Stanford University's Wilcox Solar Observatory. The associated multipole field components are used to study the dominant length scales and symmetries of the coronal field. Polar field changes are found to be well correlated with active fields over most of the period studied, except between 2003 and 2006 when the active fields did not produce significant polar field changes. Of the axisymmetric multipoles, only the dipole and octupole follow the poles whereas the higher orders follow the activity cycle. All non-axisymmetric multipole strengths are well correlated with the activity cycle. The tilt of the solar dipole is therefore almost entirely due to active-region fields. The axial dipole and octupole are the largest contributors to the global field except while the polar fields are reversing. This influence of the polar fields extends to modulating eruption rates. According to the Computer Aided CME Tracking, Solar Eruptive Event Detection System, and Nobeyama radioheliograph prominence eruption catalogs, the rate of solar eruptions is found to be systematically higher for active years between 2003 and 2012 than for those between 1997 and 2002. This behavior appears to be connected with the weakness of the late-cycle 23 polar fields as suggested by Luhmann. We see evidence that the process of cycle 24 field reversal is well advanced at both poles.

  18. Deep Solar Activity Minimum 2007-2009: Solar Wind Properties and Major Effects on the Terrestrial Magnetosphere

    Science.gov (United States)

    Farrugia, C. J.; Harris, B.; Leitner, M.; Moestl, C.; Galvin, A. B.; Simunac, K. D. C.; Torbert, R. B.; Temmer, M. B.; Veronig, A. M.; Erkaev, N. V.; Szabo, A.; Ogilvie, K. W.; Luhman, J. G.; Osherovich, V. A.

    2012-01-01

    We discuss the temporal variations and frequency distributions of solar wind and interplanetary magnetic field parameters during the solar minimum of 2007 - 2009 from measurements returned by the IMPACT and PLASTIC instruments on STEREO-A.We find that the density and total field strength were significantly weaker than in the previous minimum. The Alfven Mach number was higher than typical. This reflects the weakness of magnetohydrodynamic (MHD) forces, and has a direct effect on the solar wind-magnetosphere interactions.We then discuss two major aspects that this weak solar activity had on the magnetosphere, using data from Wind and ground-based observations: i) the dayside contribution to the cross-polar cap potential (CPCP), and ii) the shapes of the magnetopause and bow shock. For i) we find a low interplanetary electric field of 1.3+/-0.9 mV/m and a CPCP of 37.3+/-20.2 kV. The auroral activity is closely correlated to the prevalent stream-stream interactions. We suggest that the Alfven wave trains in the fast streams and Kelvin-Helmholtz instability were the predominant agents mediating the transfer of solar wind momentum and energy to the magnetosphere during this three-year period. For ii) we determine 328 magnetopause and 271 bow shock crossings made by Geotail, Cluster 1, and the THEMIS B and C spacecraft during a three-month interval when the daily averages of the magnetic and kinetic energy densities attained their lowest value during the three years under survey.We use the same numerical approach as in Fairfield's empirical model and compare our findings with three magnetopause models. The stand-off distance of the subsolar magnetopause and bow shock were 11.8 R(sub E) and 14.35 R(sub E), respectively. When comparing with Fairfield's classic result, we find that the subsolar magnetosheath is thinner by approx. 1 R(sub E). This is mainly due to the low dynamic pressure which results in a sunward shift of the magnetopause. The magnetopause is more flared

  19. Chromosome aberration and environmental physical activity: Down syndrome and solar and cosmic ray activity, Israel, 1990-2000

    Science.gov (United States)

    Stoupel, Eliahu G.; Frimer, Helena; Appelman, Zvi; Ben-Neriah, Ziva; Dar, Hanna; Fejgin, Moshe D.; Gershoni-Baruch, Ruth; Manor, Esther; Barkai, Gad; Shalev, Stavit; Gelman-Kohan, Zully; Reish, Orit; Lev, Dorit; Davidov, Bella; Goldman, Boleslaw; Shohat, Mordechai

    2005-09-01

    The possibility that environmental effects are associated with chromosome aberrations and various congenital pathologies has been discussed previously. Recent advances in the collection and computerization of data make studying these potential associations more feasible. The aim of this study was to investigate a possible link between the number of Down syndrome (DS) cases detected prenatally or at birth yearly in Israel over a 10-year period compared with the levels of solar and cosmic ray activity 1 year before the detection or birth of each affected child. Information about 1,108,449 births was collected for the years 1990-2000, excluding 1991, when data were unavailable. A total of 1,310 cases of DS were detected prenatally or at birth—138 in the non-Jewish community and 1,172 in the Jewish population. Solar activity indices—sunspot number and solar radio flux 2,800 MHz at 10.7 cm wavelength for 1989-1999—were compared with the number of DS cases detected. Pearson correlation coefficients (r) and their probabilities (P) were established for the percentage of DS cases in the whole population. There was a significant inverse correlation between the indices of solar activity and the number of cases of DS detected—r=-0.78, P=0.008 for sunspot number and r=-0.76, P=0.01 for solar flux. The possibility that cosmophysical factors inversely related to solar activity play a role in the pathogenesis of chromosome aberrations should be considered. We have confirmed a strong trend towards an association between the cosmic ray activity level and the incidence of DS.

  20. The relationships of solar flares with both sunspot and geomagnetic activity

    Institute of Scientific and Technical Information of China (English)

    Zhan-Le Du; Hua-Ning Wang

    2012-01-01

    The relationships between solar flare parameters (total importance,time duration,flare index,and flux) and sunspot activity (R2) as well as those between geomagnetic activity (aa index) and the flare parameters can be well described by an integral response model with the response time scales of about 8 and 13 months,respectively.Compared with linear relationships,the correlation coefficients of the flare parameters with Rz,of aa with the flare parameters,and of aa with Rz based on this model have increased about 6%,17%,and 47% on average,respectively.The time delays between the flare parameters with respect to Rz,aa to the flare parameters,and aa to Rz at their peaks in a solar cycle can be predicted in part by this model (82%,47%,and 78%,respectively).These results may be further improved when using a cosine filter with a wider window.It implies that solar flares are related to the accumulation of solar magnetic energy in the past through a time decay factor.The above results may help us to understand the mechanism of solar flares and to improve the prediction of the solar flares.

  1. Dynamo model for grand maxima of solar activity: can superflares occur on the Sun?

    Science.gov (United States)

    Kitchatinov, L. L.; Olemskoy, S. V.

    2016-07-01

    Recent data on superflares on Sun-like stars and radiocarbon data on solar activity in the past are both indicative of transient epochs of unusually high magnetic activity. We propose an explanation for the grand activity maxima in the framework of a solar dynamo model with fluctuating parameters. Solar-type dynamos are oscillatory because of the combination of the solar-type differential rotation with positive (in the Northern hemisphere) alpha-effect. An artificial reversal of the sign in the alpha-effect changes the dynamo to a steady regime with hundreds of times larger magnetic energy compared to the amplitude of the cyclic dynamo. Sufficiently large and durable fluctuations reversing the sign of the alpha-effect during the growth phase of a magnetic cycle can, therefore, cause a transient change to a steady dynamo with considerably increased magnetic energy. This qualitative scenario for grand activity maxima is supported by computations of the dynamo model with a fluctuating alpha-effect. The computed statistics of several thousand magnetic cycles gives examples of cycles with very high magnetic energy. Our preliminary estimations, however, suggest that the probability of solar superflares is extremely low.

  2. The hemispheric asymmetry of solar activity during the last century and the solar dynamo

    Institute of Scientific and Technical Information of China (English)

    Ashish Goel; Arnab Rai Choudhuri

    2009-01-01

    We believe the Babcock-Leighton process of poloidal field generation to be the main source of irregularity in the solar cycle. The random nature of this process may make the poloidal field in one hemisphere stronger than that in the other hemisphere at the end of a cycle. We expect this to induce an asymmetry in the next sunspot cycle. We look for evidence of this in the observational data and then model it theoretically with our dynamo code. Since actual polar field measurements exist only from the 1970s, we use the polar faculae number data recorded by Sheeley (1991, 2008) as a proxy of the polar field and estimate the hemispheric asymmetry of the polar field in different solar minima during the major part of the twentieth century. This asymmetry is found to have a reasonable correlation with the asymmetry of the next cycle. We then run our dynamo code by feeding information about this asymmetry at the successive minima and compare the results with observational data. We find that the theoretically computed asymmetries of different cycles compare favorably with the observational data, with the correlation co-efficient being 0.73. Due to the coupling between the two hemispheres, any hemispheric asymmetry tends to get attenuated with time. The hemispheric asymmetry of a cycle ei-ther from observational data or from theoretical calculations statistically tends to be less than the asymmetry in the polar field (as inferred from the faculae data) in the preceding minimum. This reduction factor turns out to be 0.43 and 0.51 respectively in observational data and theoretical simulations.

  3. The acoustic cut-off frequency of the Sun and the solar magnetic activity cycle

    CERN Document Server

    Jimenez, A; Palle, P L

    2011-01-01

    The acoustic cut-off frequency -the highest frequency for acoustic solar eigenmodes- is an important parameter of the solar atmosphere as it determines the upper boundary of the p-mode resonant cavities. At frequencies beyond this value, acoustic disturbances are no longer trapped but traveling waves. Interference amongst them give rise to higher-frequency peaks -the pseudomodes- in the solar acoustic spectrum. The pseudomodes are shifted slightly in frequency with respect to p modes making possible the use of pseudomodes to determine the acoustic cut-off frequency. Using data from GOLF and VIRGO instruments on board the SOHO spacecraft, we calculate the acoustic cut-off frequency using the coherence function between both the velocity and intensity sets of data. By using data gathered by these instruments during the entire lifetime of the mission (1996 till the present), a variation in the acoustic cut-off frequency with the solar magnetic activity cycle is found.

  4. Photospheric and chromospheric magnetic activity of seismic solar analogs. Observational inputs on the solar/stellar connection from Kepler and Hermes

    CERN Document Server

    Salabert, D; Beck, P G; Egeland, R; Palle, P L; Mathur, S; Metcalfe, T S; Nascimento, J -D do; Ceillier, T; Andersen, M F; Hage, A Trivino

    2016-01-01

    We identify a set of 18 solar analogs among the seismic sample of solar-like stars observed by the Kepler satellite rotating between 10 and 40 days. This set is constructed using the asteroseismic stellar properties derived using either the global oscillation properties or the individual acoustic frequencies. We measure the magnetic activity properties of these stars using observations collected by the photometric Kepler satellite and by the ground-based, high-resolution Hermes spectrograph mounted on the Mercator telescope. The photospheric (Sph) and chromospheric (S index) magnetic activity levels of these seismic solar analogs are estimated and compared in relation to the solar activity. We show that the activity of the Sun is comparable to the activity of the seismic solar analogs, within the maximum-to-minimum temporal variations of the 11-year solar activity cycle 23. In agreement with previous studies, the youngest stars and fastest rotators in our sample are actually the most active. The activity of s...

  5. Nanocrystallization in Co67Cr7Fe4Si8B14 Amorphous Alloy Ribbons

    Directory of Open Access Journals (Sweden)

    Zahra Jamili-Shirvan

    2013-12-01

    Full Text Available The nanocrystallization of Co67Fe4Cr7Si8B14 amorphous ribbons which prepared by planar flow melt spinning process (PFMS was investigated. Crystallization of the ribbons was studied by differential thermal analysis (DTA, X-ray diffraction (XRD and transmission electron microscopy (TEM. The DTA result of amorphous ribbon at heating rate of 10˚C/min showedoccurrence of phase transitions in two stages. The ribbons were isothermally annealed for 30 minutes in argon atmosphere at different temperatures between 300 and 650ºC with 25ºC steps. The magnetic properties of annealed samples were measured using a vibrating sample magnetometer (VSM. The VSM results revealed that optimum soft magnetic properties occurred at 400ºC. XRD patterns showed that the samples isothermally annealed up to 450ºC were amorphous, while TEM results at 400ºC indicated 7-8 nm mean size nanocrytallites in amorphous matrix and size of the nanocrystallites increased by increasing temperature. Also by X-ray diffraction pattern, precipitation of different phases at higher temperatures confirmed.

  6. An Independent Analysis of Kepler-4b through Kepler-8b

    CERN Document Server

    Kipping, David M

    2010-01-01

    We present two independent, homogeneous, global analyses of the transit light curves, radial velocities and spectroscopy of Kepler-4b through Kepler-8b, with numerous differences over the previous methods. These include: 1) improved decorrelated parameter fitting set 2) new limb darkening coefficients 3) time stamps modified to BJD for consistency with RV data 4) two different methods for compensating for the integration time of Kepler LC data 5) best-fit secondary eclipse depths and excluded upper limits 6) fitted mid-transit times, durations, depths and baseline fluxes for individual transits. We make several determinations not found in the discovery papers: 1) We detect a secondary eclipse for Kepler-7b of depth (47+/-14)ppm and significance 3.5-sigma. We conclude reflected light is a much more plausible origin than thermal emission and determine an albedo of Ag=(0.38+/-0.12) 2) We find that an eccentric orbit model for the Neptune-mass planet Kepler-4b is detected at the 3-sigma level with e=(0.19+/-0.10)...

  7. Discovery and Rossiter-McLaughlin Effect of Exoplanet Kepler-8b

    CERN Document Server

    Jenkins, Jon M; Koch, David G; Marcy, Geoffrey W; Cochran, William D; Basri, Gibor; Batalha, Natalie M; Buchhave, Lars A; Brown, Tim M; Caldwell, Douglas A; Dunham, Edward W; Endl, Michael; Fischer, Debra A; Gautier, Thomas N; Geary, John C; Gilliland, Ronald L; Howell, Steve B; Isaacson, Howard; Johnson, John Asher; Latham, David W; Lissauer, Jack J; Monet, David G; Rowe, Jason F; Sasselov, Dimitar D; Welsh, William F; Howard, Andrew W; MacQueen, Phillip; Chandrasekaran, Hema; Twicken, Joseph D; Bryson, Stephen T; Quintana, Elisa V; Clarke, Bruce D; Li, Jie; Allen, Christopher; Tenenbaum, Peter; Wu, Hayley; Meibom, Soren; Klaus, Todd C; Middour, Christopher K; Cote, Miles T; McCauliff, Sean; Girouard, Forrest R; Gunter, Jay P; Wohler, Bill; Hall, Jennifer R; Ibrahim, Khadeejah; Uddin, AKM Kamal; Wu, Michael S; Bhavsar, Paresh A; Van Cleve, Jeffrey; Pletcher, David L; Dotson, Jessie A; Haas, Michael R

    2010-01-01

    We report the discovery and the Rossiter-McLaughlin effect of Kepler-8b, a transiting planet identified by the NASA Kepler Mission. Kepler photometry and Keck-HIRES radial velocities yield the radius and mass of the planet around this F8IV subgiant host star. The planet has a radius RP = 1.419 RJ and a mass, MP = 0.60 MJ, yielding a density of 0.26 g cm^-3, among the lowest density planets known. The orbital period is P = 3.523 days and orbital semima jor axis is 0.0483+0.0006/-0.0012 AU. The star has a large rotational v sin i of 10.5 +/- 0.7 km s^-1 and is relatively faint (V = 13.89 mag), both properties deleterious to precise Doppler measurements. The velocities are indeed noisy, with scatter of 30 m s^-1, but exhibit a period and phase consistent with the planet implied by the photometry. We securely detect the Rossiter-McLaughlin effect, confirming the planet's existence and establishing its orbit as prograde. We measure an inclination between the projected planetary orbital axis and the projected stell...

  8. WASP-12b and HAT-P-8b are Members of Triple Star Systems

    CERN Document Server

    Bechter, Eric B; Ngo, Henry; Knutson, Heather A; Batygin, Konstantin; Hinkley, Sasha; Muirhead, Phillip S; Johnson, John Asher; Howard, Andrew W; Montet, Benjamin T; Matthews, Christopher T; Morton, Timothy D

    2013-01-01

    We present high spatial resolution images that demonstrate the hot Jupiters WASP-12b and HAT-P-8b orbit the primary star of hierarchical triple star systems. In each case, two distant companions with colors and brightness consistent with M dwarfs co-orbit the planet host as well as one another. Our adaptive optics images spatially resolve the secondary around WASP-12, previously identified by Bergfors et al. 2011 and Crossfield et al. 2012, into two distinct sources separated by 84.3+/-0.6 mas (21 +/- 3 AU). We find that the secondary to HAT-P-8, also identified by Bergfors et al. 2011, is in fact composed of two stars separated by 65.3+/-0.5 mas (15+/-1 AU). Our follow-up observations demonstrate physical association through common proper-motion. HAT-P-8 C has a particularly low mass, which we estimate to be 0.18+/-0.02Msun using photometry. Due to their hierarchy, WASP-12 BC and HAT-P-8 BC will enable the first dynamical mass determination for hot Jupiter stellar companions. These previously well-studied pl...

  9. Changes in solar oscillation frequencies during the current activity maximum analysis and interpretation

    CERN Document Server

    Dziembowski, W A; Goode, Philip R.

    2001-01-01

    We describe systematic changes in the centroid frequencies and the splitting coefficients as found using data from MDI on board SOHO, covering cycle 23. The data allow us to construct a seismic map of the evolving solar activity -- covering all latitudes. At lower latitudes, the temporal evolution closely tracks that of {\\it butterfly diagram}. The additional information from higher latitudes in the map is of a significant activity in the polar region, peaking at activity minimum in 1996. The most plausible source of solar oscillation frequency changes over the solar cycle is the evolution of the radial component of the small-scale magnetic field. The amplitude of the required mean field changes is about 100 G at the photosphere, and increasing going inward.

  10. Magnetic Nonpotentiality in Photospheric Active Regions as a Predictor of Solar Flares

    CERN Document Server

    Yang, Xiao; Zhang, HongQi; Mao, XinJie

    2013-01-01

    Based on several magnetic nonpotentiality parameters obtained from the vector photospheric active region magnetograms obtained with the Solar Magnetic Field Telescope at the Huairou Solar Observing Station over two solar cycles, a machine learning model has been constructed to predict the occurrence of flares in the corresponding active region within a certain time window. The Support Vector Classifier, a widely used general classifier, is applied to build and test the prediction models. Several classical verification measures are adopted to assess the quality of the predictions. We investigate different flare levels within various time windows, and thus it is possible to estimate the rough classes and erupting times of flares for particular active regions. Several combinations of predictors have been tested in the experiments. The True Skill Statistics are higher than 0.36 in 97% of cases and the Heidke Skill Scores range from 0.23 to 0.48. The predictors derived from longitudinal magnetic fields do perform ...

  11. Solar Neutrino Physics

    Energy Technology Data Exchange (ETDEWEB)

    Bowles, T.J.; Brice, S.J.; Esch, E.-I.; Fowler, M.M.; Goldschmidt, A.; Hime, A.; McGirt, F.; Miller, G.G.; Thornewell, P.M.; Wilhelmy, J.B.; Wouters, J.M.

    1999-07-15

    With its heavy water target, the Sudbury Neutrino Observatory (SNO) offers the unique opportunity to measure both the 8B flux of electron neutrinos from the Sun and, independently, the flux of all active neutrino species reaching the Earth. A model-independent test of the hypothesis that neutrino oscillations are responsible for the observed solar neutrino deficit can be made by comparing the charged-current (CC) and neutral-current (NC) rates. This LDRD proposal supported the research and development necessary for an assessment of backgrounds and performance of the SNO detector and the ability to extract the NC/CC-Ratio. Particular emphasis is put upon the criteria for deployment and signal extraction from a discrete NC detector array based upon ultra-low background 3He proportional counters.

  12. Stellar activity as noise in exoplanet detection - I. Methods and application to solar-like stars and activity cycles

    Science.gov (United States)

    Korhonen, H.; Andersen, J. M.; Piskunov, N.; Hackman, T.; Juncher, D.; Järvinen, S. P.; Jørgensen, U. G.

    2015-04-01

    The detection of exoplanets using any method is prone to confusion due to the intrinsic variability of the host star. We investigate the effect of cool starspots on the detectability of the exoplanets around solar-like stars using the radial velocity method. For investigating this activity-caused `jitter' we calculate synthetic spectra using radiative transfer, known stellar atomic and molecular lines, different surface spot configurations and an added planetary signal. Here, the methods are described in detail, tested and compared to previously published studies. The methods are also applied to investigate the activity jitter in old and young solar-like stars, and over a solar-like activity cycles. We find that the mean full jitter amplitude obtained from the spot surfaces mimicking the solar activity varies during the cycle approximately between 1 and 9 m s-1. With a realistic observing frequency a Neptune-mass planet on a 1-yr orbit can be reliably recovered. On the other hand, the recovery of an Earth-mass planet on a similar orbit is not feasible with high significance. The methods developed in this study have a great potential for doing statistical studies of planet detectability, and also for investigating the effect of stellar activity on recovered planetary parameters.

  13. The technical analysis of the stock exchange and physics: Japanese candlesticks for solar activity

    Science.gov (United States)

    Dineva, C.; Atanasov, V.

    2013-09-01

    In this article, we use the Japanese candlesticks, a method popular in the technical analysis of the Stock/Forex markets and apply it to a variable in physics-the solar activity. This method is invented and used exclusively for economic analysis and its application to a physical problem produced unexpected results. We found that the Japanese candlesticks are convenient tool in the analysis of the variables in the physics of the Sun. Based on our observations, we differentiated a new cycle in the solar activity.

  14. Statistical analysis of interplanetary shock waves observed during a complete solar activity cycle

    Science.gov (United States)

    Khalisi, E.; Schwenn, R.

    1995-01-01

    During the Helios mission a total of 391 fast forward non-corotating interplanetary shock waves was identified. For most of the 12 years between 1974 and 1986 unique shock detection was possible for more than 80 % of the time. The occurrence rate (in shocks per day) varied from 0.02 at activity minimum in 1976 to 0.17 in 1979 and 0.22 in 1982 with a significant drop to 0.13 in 1980, i.e. right at activity maximum. The average properties of all events as functions of solar distance. phase in the solar cycle, heliographic and -magnetic latitude and others are discussed.

  15. Lithium abundance/surface activity connections in solar-type Pleiades

    OpenAIRE

    Clarke, D.; MacDonald, E. C.; Owens, S.

    2004-01-01

    The relation between the lithium abundance, ALi, and photospheric activity of solar-type Pleiads is investigated for the first time via acquisition and analysis of B and V-band data. Predictions of activity levels of target stars were made according to the ALi/(B - V) relation and then compared with new CCD photometric measurements. Six sources behaved according to the predictions while one star (HII 676), with low predicted activity, exhibited the largest variability of the study; another st...

  16. Periodic analysis of solar activity and its link with the Arctic oscillation phenomenon

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Weizheng; Li, Chun; Du, Ling; Huang, Fei [Ocean University of China, 14-1' -601, 2117 Jinshui Road, Qingdao 266100 (China); Li, Yanfang, E-mail: quweizhe@ouc.edu.cn [Yantai Institute of Coastal Zone Research Chinese Academy of Sciences (China)

    2014-12-01

    Based on spectrum analysis, we provide the arithmetic expressions of the quasi 11 yr cycle, 110 yr century cycle of relative sunspot numbers, and quasi 22 yr cycle of solar magnetic field polarity. Based on a comparative analysis of the monthly average geopotential height, geopotential height anomaly, and temperature anomaly of the northern hemisphere at locations with an air pressure of 500 HPa during the positive and negative phases of AO (Arctic Oscillation), one can see that the abnormal warming period in the Arctic region corresponds to the negative phase of AO, while the anomalous cold period corresponds to its positive phase. This shows that the abnormal change in the Arctic region is an important factor in determining the anomalies of AO. In accordance with the analysis performed using the successive filtering method, one can see that the AO phenomenon occurring in January shows a clear quasi 88 yr century cycle and quasi 22 yr decadal cycle, which are closely related to solar activities. The results of our comparative analysis show that there is a close inverse relationship between the solar activities (especially the solar magnetic field index changes) and the changes in the 22 yr cycle of the AO occurring in January, and that the two trends are basically opposite of each other. That is to say, in most cases after the solar magnetic index MI rises from the lowest value, the solar magnetic field turns from north to south, and the high-energy particle flow entering the Earth's magnetosphere increases to heat the polar atmosphere, thus causing the AO to drop from the highest value; after the solar magnetic index MI drops from the highest value, the solar magnetic field turns from south to north, and the solar high-energy particle flow passes through the top of the Earth's magnetosphere rather than entering it to heat the polar atmosphere. Thus the polar temperature drops, causing the AO to rise from the lowest value. In summary, the variance

  17. Two dynamo waves derived with Principal Component Analysis of solar magnetic field and prediction of solar activity on millenium scales

    Science.gov (United States)

    Zharkova, V. V.; Shepherd, S. J.; Popova, E.; Zharkov, S.

    2015-12-01

    We present principal components analysis (PCA) of temporal magnetic field variations over the solar cycles 21-24. These PCs reveal two main magnetic waves with close frequencies (covering 40% of data variance) travelling from the opposite hemispheres with an increasing phase shift. Extrapolation of these PCs through their summary curve backward for 2000 years reveals a number of ~350-year grand cycles superimposed on 22 year-cycles with the features showing a remarkable resemblance to sunspot activity reported in the past. The summary curve calculated forward for the next millennium predicts further three grand cycles with the closest grand minimum occurring in the forthcoming cycles 25-27 when the two magnetic field waves have a phase shift of 11 years. These grand cycle variations are probed by Parker's two layer dynamo model with meridional circulation revealing two dynamo waves generated with close frequencies. Their interaction leads to beating effects responsible for the grand cycles (300-350 years) superimposed on standard 22 year cycles and for the super-grand cycle of 900-1000 years. This approach opens a new era in investigation and prediction of solar activity on long-term timescales.

  18. Stellar activity as noise in exoplanet detection I. Methods and application to solar-like stars and activity cycles

    CERN Document Server

    Korhonen, H; Piskunov, N; Hackman, T; Juncher, D; Jarvinen, S P; Joergensen, U G

    2015-01-01

    The detection of exoplanets using any method is prone to confusion due to the intrinsic variability of the host star. We investigate the effect of cool starspots on the detectability of the exoplanets around solar-like stars using the radial velocity method. For investigating this activity-caused "jitter" we calculate synthetic spectra using radiative transfer, known stellar atomic and molecular lines, different surface spot configurations, and an added planetary signal. Here, the methods are described in detail, tested and compared to previously published studies. The methods are also applied to investigate the activity jitter in old and young solar-like stars, and over a solar-like activity cycles. We find that the mean full jitter amplitude obtained from the spot surfaces mimicking the solar activity varies during the cycle approximately between 1 m/s and 9 m/s. With a realistic observing frequency a Neptune mass planet on a one year orbit can be reliably recovered. On the other hand, the recovery of an Ea...

  19. Evidence for a functional subdivision of Premotor Ear-Eye Field (Area 8B.

    Directory of Open Access Journals (Sweden)

    Marco eLanzilotto

    2015-01-01

    Full Text Available The Supplementary Eye Field (SEF and the Frontal Eye Field (FEF have been described as participating in gaze shift control. Recent evidence suggests, however, that other areas of the dorsomedial prefrontal cortex also influence gaze shift. Herein, we have investigated electrically evoked ear- and eye movements from the Premotor Ear-Eye Field, or PEEF (area 8B of macaque monkeys. We stimulated PEEF during spontaneous condition (outside the task performance and during the execution of a visual fixation task (VFT. In the first case, we functionally identified two regions within the PEEF: a core and a belt. In the core region, stimulation elicited forward ear movements; regarding the evoked eye movements, in some penetrations, stimulation elicited contraversive fixed-vectors with a mean amplitude of 5.14°; while in other penetrations, we observed prevalently contralateral goal-directed eye movements having end-points that fell within 15° in respect to the primary eye position. On the contrary, in the belt region, stimulation elicited backward ear movements; regarding the eye movements, in some penetrations stimulation elicited prevalently contralateral goal-directed eye movements having end-points that fell within 15° in respect to the primary eye position, while in the lateral edge of the investigated region, stimulation elicited contralateral goal-directed eye movements having end-points that fell beyond 15° in respect to the primary eye position. Stimulation during VFT either did not elicit eye movements or evoked saccades of only a few degrees. Finally, even though no head rotation movements were observed during the stimulation period, we viewed a relationship between the duration of stimulation and the neck forces exerted by the monkey’s head. We propose an updated vision of the PEEF composed of two functional regions, core and belt, which may be involved in integrating auditory and visual information important to the programming of gaze

  20. Discovery and Rossiter-Mclaughlin Effect of Exoplanet Kepler-8b

    Science.gov (United States)

    Jenkins, Jon M.; Borucki, William J.; Koch, David G.; Marcy, Geoffrey W.; Cochran, William D.; Welsh, William F.; Basri, Gibor; Batalha, Natalie M.; Buchhave, Lars A.; Brown, Timothy M.; Caldwell, Douglas A.; Dunham, Edward W.; Endl, Michael; Fischer, Debra A.; Gautier, Thomas N., III; Geary, John C.; Gilliland, Ronald L.; Howell, Steve B.; Isaacson, Howard; Johnson, John Asher; Latham, David W.; Lissauer, Jack J.; Monet, David G.; Rowe, Jason F.; Sasselov, Dimitar D.; Howard, Andrew W.; MacQueen, Phillip; Orosz, Jerome A.; Chandrasekaran, Hema; Twicken, Joseph D.; Bryson, Stephen T.; Quintana, Elisa V.; Clarke, Bruce D.; Li, Jie; Allen, Christopher; Tenenbaum, Peter; Wu, Hayley; Meibom, Søren; Klaus, Todd C.; Middour, Christopher K.; Cote, Miles T.; McCauliff, Sean; Girouard, Forrest R.; Gunter, Jay P.; Wohler, Bill; Hall, Jennifer R.; Ibrahim, Khadeejah; Kamal Uddin, AKM; Wu, Michael S.; Bhavsar, Paresh A.; Van Cleve, Jeffrey; Pletcher, David L.; Dotson, Jessie L.; Haas, Michael R.

    2010-12-01

    We report on the discovery and the Rossiter-McLaughlin (R-M) effect of Kepler-8b, a transiting planet identified by the NASA Kepler Mission. Kepler photometry and Keck-HIRES radial velocities yield the radius and mass of the planet around this F8IV subgiant host star. The planet has a radius R P = 1.419 R J and a mass M P = 0.60 M J, yielding a density of 0.26 g cm-3, one of the lowest planetary densities known. The orbital period is P = 3.523 days and the orbital semimajor axis is 0.0483+0.0006 -0.0012 AU. The star has a large rotational vsin i of 10.5 ± 0.7 km s-1 and is relatively faint (V ≈ 13.89 mag); both properties are deleterious to precise Doppler measurements. The velocities are indeed noisy, with scatter of 30 m s-1, but exhibit a period and phase that are consistent with those implied by transit photometry. We securely detect the R-M effect, confirming the planet's existence and establishing its orbit as prograde. We measure an inclination between the projected planetary orbital axis and the projected stellar rotation axis of λ = -26fdg4 ± 10fdg1, indicating a significant inclination of the planetary orbit. R-M measurements of a large sample of transiting planets from Kepler will provide a statistically robust measure of the true distribution of spin-orbit orientations for hot Jupiters around F and early G stars. Based in part on observations obtained at the W. M. Keck Observatory, which is operated as a scientific partnership between the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  1. On the current solar magnetic activity in the light of its behaviour during the Holocene

    CERN Document Server

    Inceoglu, F; Knudsen, M F; Karoff, C; Olsen, J; Turck-Chièze, S

    2015-01-01

    Solar modulation potential (SMP) reconstructions based on cosmogenic nuclide records reflect changes in the open solar magnetic field and can therefore help us obtain information on the behaviour of the open solar magnetic field over the Holocene period. We aim at comparing the Sun's large-scale magnetic field behaviour over the last three solar cycles with variations in the SMP reconstruction through the Holocene epoch. To achieve these objectives, we use the IntCal13 $^{14}$C data to investigate distinct patterns in the occurrences of grand minima and maxima during the Holocene period. We then check whether these patterns might mimic the recent solar magnetic activity by investigating the evolution of the energy in the Sun's large-scale dipolar magnetic field using the Wilcox Solar Observatory data. The cosmogenic radionuclide data analysis shows that $\\sim$71\\% of grand maxima during the period from 6600 BC to 1650 AD were followed by a grand minimum. The occurrence characteristics of grand maxima and mini...

  2. Diurnal anisotropy of cosmic rays during intensive solar activity for the period 2001-2014

    Science.gov (United States)

    Tezari, A.; Mavromichalaki, H.

    2016-07-01

    The diurnal variation of cosmic ray intensity, based on the records of two neutron monitor stations at Athens (Greece) and Oulu (Finland) for the time period 2001 to 2014, is studied. This period covers the maximum and the descending phase of the solar cycle 23, the minimum of the solar cycles 23/24 and the ascending phase of the solar cycle 24.These two stations differ in their geographic latitude and magnetic threshold rigidity. The amplitude and phase of the diurnal anisotropy vectors have been calculated on annual and monthly basis. From our analysis it is resulted that there is a different behaviour in the characteristics of the diurnal anisotropy during the different phases of the solar cycle, depended on the solar magnetic field polarity, but also during extreme events of solar activity, such as Ground Level Enhancements and cosmic ray events, such as Forbush decreases and magnetospheric events. These results may be useful to Space Weather forecasting and especially to Biomagnetic studies.

  3. Solar activity and terrestrial climate: an analysis of some purported correlations

    DEFF Research Database (Denmark)

    Laut, Peter

    2003-01-01

    Hemisphere land temperatures. These hypotheses play an important role in the scientific as well as in the public debate about the possibility or reality of a man-made global climate change. I have analyzed a number of published graphs which have played a major role in these debates and which have been......The last decade has seen a revival of various hypotheses claiming a strong correlation between solar activity and a number of terrestrial climate parameters: Links between cosmic rays and cloud cover, first total cloud cover and then only low clouds, and between solar cycle lengths and Northern...... existence of important links between solar activity and terrestrial climate. Such links have over the years been demonstrated by many authors. The sole objective of the present analysis is to draw attention to the fact that some of the widely publicized, apparent correlations do not properly reflect the...

  4. The burst of solar and geomagnetic activity in August–September 2005

    Directory of Open Access Journals (Sweden)

    V. Oleneva

    2009-03-01

    Full Text Available During the August–September 2005 burst of solar activity, close to the current solar cycle minimum, a significant number of powerful X-ray flares were recorded, among which was the outstanding X17.0 flare of 7 September 2005. Within a relatively short period (from 22 August to 17 September two severe magnetic storms were also recorded as well as several Forbush effects. These events are studied in this work, using hourly mean variations of cosmic ray density and anisotropy, derived from data of the neutron monitor network. During these Forbush effects the behavior of high energy cosmic ray characteristics (density and anisotropy is analyzed together with interplanetary disturbances and their solar sources, and is compared to the variations observed in geomagnetic activity. A big and long lasting (~6 h cosmic ray pre-decrease (~2% is defined before the shock arrival on 15 September 2005. The calculated cosmic ray gradients for September 2005 are also discussed.

  5. The Exceptional Aspects of the Confined X-class Flares of Solar Active Region 2192

    CERN Document Server

    Thalmann, Julia K; Temmer, Manuela; Veronig, Astrid M

    2016-01-01

    During late October 2014, active region NOAA 2192 caused an unusual high level of solar activity, within an otherwise weak solar cycle. While crossing the solar disk, during a period of 11 days, it was the source of 114 flares of GOES class C1.0 and larger, including 29 M- and 6 X-flares. Surprisingly, none of the major flares (GOES class M5.0 and larger) was accompanied by a coronal mass ejection, contrary to statistical tendencies found in the past. From modeling the coronal magnetic field of NOAA 2192 and its surrounding, we suspect that the cause of the confined character of the flares is the strong surrounding and overlying large-scale magnetic field. Furthermore, we find evidence for multiple magnetic reconnection processes within a single flare, during which electrons were accelerated to unusual high energies.

  6. Solar activity during the Holocene: the Hallstatt cycle and its consequence for grand minima and maxim

    CERN Document Server

    Usoskin, I G; Lopes, F; Kovaltsov, G A; Hulot, G

    2016-01-01

    Cosmogenic isotopes provide the only quantitative proxy for analyzing the long-term solar variability over a centennial timescale. While essential progress has been achieved in both measurements and modeling of the cosmogenic proxy, uncertainties still remain in the determination of the geomagnetic dipole moment evolution. Here we improve the reconstruction of solar activity over the past nine millennia using a multi-proxy approach. We used records of the 14C and 10Be cosmogenic isotopes, current numerical models of the isotope production and transport in Earth's atmosphere, and available geomagnetic field reconstructions, including a new reconstruction relying on an updated archeo-/paleointensity database. The obtained series were analyzed using the singular spectrum analysis (SSA) method to study the millennial-scale trends. A new reconstruction of the geomagnetic dipole field moment, GMAG.9k, is built for the last nine millennia. New reconstructions of solar activity covering the last nine millennia, quant...

  7. On the GCR intensity and the inversion of the heliospheric magnetic field during the periods of the high solar activity

    CERN Document Server

    Krainev, M B

    2014-01-01

    We consider the long-term behavior of the solar and heliospheric parameters and the GCR intensity in the periods of high solar activity and the inversions of heliospheric magnetic field (HMF). The classification of the HMF polarity structures and the meaning of the HMF inversion are discussed. The procedure is considered how to use the known HMF polarity distribution for the GCR intensity modeling during the periods of high solar activity. We also briefly discuss the development and the nearest future of the sunspot activity and the GCR intensity in the current unusual solar cycle 24.

  8. Kinematic active region formation in a three-dimensional solar dynamo model

    CERN Document Server

    Yeates, A R

    2013-01-01

    We propose a phenomenological technique for modelling the emergence of active regions within a three-dimensional, kinematic dynamo framework. By imposing localised velocity perturbations, we create emergent flux-tubes out of toroidal magnetic field at the base of the convection zone, leading to the eruption of active regions at the solar surface. The velocity perturbations are calibrated to reproduce observed active region properties (including the size and flux of active regions, and the distribution of tilt angle with latitude), resulting in a more consistent treatment of flux-tube emergence in kinematic dynamo models than artificial flux deposition. We demonstrate how this technique can be used to assimilate observations and drive a kinematic 3D model, and use it to study the characteristics of active region emergence and decay as a source of poloidal field. We find that the poloidal components are strongest not at the solar surface, but in the middle convection zone, in contrast with the common assumption...

  9. NONLINEAR DYNAMICS OF MAGNETOHYDRODYNAMIC ROSSBY WAVES AND THE CYCLIC NATURE OF SOLAR MAGNETIC ACTIVITY

    Energy Technology Data Exchange (ETDEWEB)

    Raphaldini, Breno; Raupp, Carlos F. M., E-mail: brenorfs@gmail.com, E-mail: carlos.raupp@iag.usp.br [Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Departamento de Geofísica, Rua do Matão, 1226-Cidade Universitária São Paulo-SP 05508-090 (Brazil)

    2015-01-20

    The solar dynamo is known to be associated with several periodicities, with the nearly 11/22 yr cycle being the most pronounced one. Even though these quasiperiodic variations of solar activity have been attributed to the underlying dynamo action in the Sun's interior, a fundamental theoretical description of these cycles is still elusive. Here, we present a new possible direction in understanding the Sun's cycles based on resonant nonlinear interactions among magnetohydrodynamic (MHD) Rossby waves. The WKB theory for dispersive waves is applied to magnetohydrodynamic shallow-water equations describing the dynamics of the solar tachocline, and the reduced dynamics of a resonant triad composed of MHD Rossby waves embedded in constant toroidal magnetic field is analyzed. In the conservative case, the wave amplitudes evolve periodically in time, with periods on the order of the dominant solar activity timescale (∼11 yr). In addition, the presence of linear forcings representative of either convection or instabilities of meridionally varying background states appears to be crucial in balancing dissipation and thus sustaining the periodic oscillations of wave amplitudes associated with resonant triad interactions. Examination of the linear theory of MHD Rossby waves embedded in a latitudinally varying mean flow demonstrates that MHD Rossby waves propagate toward the equator in a waveguide from –35° to 35° in latitude, showing a remarkable resemblance to the structure of the butterfly diagram of the solar activity. Therefore, we argue that resonant nonlinear magnetohydrodynamic Rossby wave interactions might significantly contribute to the observed cycles of magnetic solar activity.

  10. Statistical Analysis of Acoustic Wave Parameters Near Solar Active Regions

    Science.gov (United States)

    Rabello-Soares, M. Cristina; Bogart, Richard S.; Scherrer, Philip H.

    2016-08-01

    In order to quantify the influence of magnetic fields on acoustic mode parameters and flows in and around active regions, we analyze the differences in the parameters in magnetically quiet regions nearby an active region (which we call “nearby regions”), compared with those of quiet regions at the same disk locations for which there are no neighboring active regions. We also compare the mode parameters in active regions with those in comparably located quiet regions. Our analysis is based on ring-diagram analysis of all active regions observed by the Helioseismic and Magnetic Imager (HMI) during almost five years. We find that the frequency at which the mode amplitude changes from attenuation to amplification in the quiet nearby regions is around 4.2 mHz, in contrast to the active regions, for which it is about 5.1 mHz. This amplitude enhacement (the “acoustic halo effect”) is as large as that observed in the active regions, and has a very weak dependence on the wave propagation direction. The mode energy difference in nearby regions also changes from a deficit to an excess at around 4.2 mHz, but averages to zero over all modes. The frequency difference in nearby regions increases with increasing frequency until a point at which the frequency shifts turn over sharply, as in active regions. However, this turnover occurs around 4.9 mHz, which is significantly below the acoustic cutoff frequency. Inverting the horizontal flow parameters in the direction of the neigboring active regions, we find flows that are consistent with a model of the thermal energy flow being blocked directly below the active region.

  11. Discovery of an activity cycle in the solar analog HD 45184. Exploring Balmer and metallic lines as activity proxy candidates

    Science.gov (United States)

    Flores, M.; González, J. F.; Jaque Arancibia, M.; Buccino, A.; Saffe, C.

    2016-05-01

    Context. Most stellar activity cycles similar to that found in the Sun have been detected by using the chromospheric Ca ii H&K lines as stellar activity proxies. However, it is unclear whether such activity cycles can be identified using other optical lines. Aims: We aim to detect activity cycles in solar-analog stars and determine whether they can be identified through other optical lines, such as Fe II and Balmer lines. We study the solar-analog star HD 45184 using HARPS spectra. The temporal coverage and high quality of the spectra allow us to detect both long- and short-term activity variations. Methods: We analysed the activity signatures of HD 45184 by using 291 HARPS spectra obtained between 2003 and 2014. To search for line-core flux variations, we focused on Ca ii H&K and Balmer Hα and Hβ lines, which are typically used as optical chromospheric activity indicators. We calculated the HARPS-S index from Ca ii H&K lines and converted it into the Mount Wilson scale. In addition, we also considered the equivalent widths of Balmer lines as activity indicators. Moreover, we analysed the possible variability of Fe ii and other metallic lines in the optical spectra. The spectral variations were analysed for periodicity using the Lomb-Scargle periodogram. Results: We report for the first time a long-term 5.14-yr activity cycle in the solar-analog star HD 45184 derived from Mount Wilson S index. This makes HD 45184 one of most similar stars to the Sun with a known activity cycle. The variation is also evident in the first lines of the Balmer series, which do not always show a correlation with activity in solar-type stars. Notably, unlike the solar case, we also found that the equivalent widths of the high photospheric Fe ii lines (4924 Å, 5018 Å and 5169 Å) are modulated (±2 mÅ) by the chromospheric cycle of the star. These metallic lines show variations above 4σ in the rms spectrum, while some Ba ii and Ti ii lines present variations at 3σ level, which

  12. On the near-barrier fusion of the proton-halo {sup 8}B + {sup 58}Ni system

    Energy Technology Data Exchange (ETDEWEB)

    Rangel, J.; Lubian, J.; Gomes, P.R.S. [Universidade Federal Fluminense, Instituto de Fisica, Gragoata, Niteroi, R.J. (Brazil); Carlson, B.V. [Instituto Tecnologico de Aeronautica, Departamento de Fisica, Sao Paulo (Brazil); Chamon, L.C. [Universidade de Sao Paulo, Instituto de Fisica, CP 66318, Sao Paulo (Brazil); Gomez Camacho, A. [Instituto Nacional de Investigaciones, Departamento de Aceleradores, Apartado Postal 18-1027, C.P. 11801, Mexico, D.F. (Mexico)

    2013-05-15

    We have performed two independent calculations, without any free parameter, to predict the near-barrier fusion cross section for the proton-halo {sup 8}B + {sup 58}Ni system, for which data were recently reported. Standard coupled channel calculations predict fusion cross sections smaller than the data, while CDCC calculations for the absorption cross section (fusion + transfer + inelastic cross sections) agree with the data above the barrier, although transfer cross sections are calculated to have non-negligible cross section at this energy regime. At sub-barrier energies, region where transfer cross sections are particularly important, the CDCC calculations overpredict the data. The fusion data of the {sup 8}B + {sup 58}Ni system fail to follow the systematics of other weakly bound nuclei and the UFF curve and do not agree with the fusion data of the {sup 8}B + {sup 28}Si system. We try to explain this anomalous behaviour. (orig.)

  13. PREPARATION MICRO-FILTRATION CERAMIC MEMBRANE FROM NATURAL ZEOLITE FOR PROCION RED MX8B AND METHYLENE BLUE FILTRATION

    Directory of Open Access Journals (Sweden)

    Dyah Choiriyah

    2015-12-01

    Full Text Available The study of ceramic membrane fabrication from natural zeolite and its utilization for filtration of procion red MX8B and methylene blue has been investigated. The purposes of this study are to determine the effect of pressure on membrane permeability and selectivity and utilize natural zeolite as ceramic membranes procion red MX8B and methylene blue filtration. The membrane was prepared by metide press pellets and then calcined at 850 oC. The membranes were characterized by mechanical test, flux and rejection of dye. The compression test of the membrane found the values of 1369.178 psi in dry conditions to 1388.933 psi in wet conditions. The flux test found that the higher the pressure applied, the flux was increase. However, the high pressure also decreased the selectivity. Rejection test found that the rejection of methylene blue filtration up to 70 %. Meanwhile, procion red MX8B filtration has rejectivity less than 20 %.

  14. ON THE ROLE OF ROTATING SUNSPOTS IN THE ACTIVITY OF SOLAR ACTIVE REGION NOAA 11158

    International Nuclear Information System (INIS)

    We study the role of rotating sunspots in relation to the evolution of various physical parameters characterizing the non-potentiality of the active region (AR) NOAA 11158 and its eruptive events using the magnetic field data from the Helioseismic and Magnetic Imager (HMI) and multi-wavelength observations from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory. From the evolutionary study of HMI intensity and AIA channels, it is observed that the AR consists of two major rotating sunspots, one connected to a flare-prone region and another with coronal mass ejection (CME). The constructed space-time intensity maps reveal that the sunspots exhibited peak rotation rates coinciding with the occurrence of major eruptive events. Further, temporal profiles of twist parameters, namely, average shear angle, αav, αbest, derived from HMI vector magnetograms, and the rate of helicity injection, obtained from the horizontal flux motions of HMI line-of-sight magnetograms, correspond well with the rotational profile of the sunspot in the CME-prone region, giving predominant evidence of rotational motion causing magnetic non-potentiality. Moreover, the mean value of free energy from the virial theorem calculated at the photospheric level shows a clear step-down decrease at the onset time of the flares revealing unambiguous evidence of energy release intermittently that is stored by flux emergence and/or motions in pre-flare phases. Additionally, distribution of helicity injection is homogeneous in the CME-prone region while in the flare-prone region it is not and often changes sign. This study provides a clear picture that both proper and rotational motions of the observed fluxes played significant roles in enhancing the magnetic non-potentiality of the AR by injecting helicity, twisting the magnetic fields and thereby increasing the free energy, leading to favorable conditions for the observed transient activity.

  15. ON THE ROLE OF ROTATING SUNSPOTS IN THE ACTIVITY OF SOLAR ACTIVE REGION NOAA 11158

    Energy Technology Data Exchange (ETDEWEB)

    Vemareddy, P.; Ambastha, A. [Udaipur Solar Observatory, Physical Research Laboratory, Udaipur-313001 (India); Maurya, R. A., E-mail: vema@prl.res.in, E-mail: ambastha@prl.res.in, E-mail: ramajor@astro.snu.ac.kr [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of)

    2012-12-10

    We study the role of rotating sunspots in relation to the evolution of various physical parameters characterizing the non-potentiality of the active region (AR) NOAA 11158 and its eruptive events using the magnetic field data from the Helioseismic and Magnetic Imager (HMI) and multi-wavelength observations from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory. From the evolutionary study of HMI intensity and AIA channels, it is observed that the AR consists of two major rotating sunspots, one connected to a flare-prone region and another with coronal mass ejection (CME). The constructed space-time intensity maps reveal that the sunspots exhibited peak rotation rates coinciding with the occurrence of major eruptive events. Further, temporal profiles of twist parameters, namely, average shear angle, {alpha}{sub av}, {alpha}{sub best}, derived from HMI vector magnetograms, and the rate of helicity injection, obtained from the horizontal flux motions of HMI line-of-sight magnetograms, correspond well with the rotational profile of the sunspot in the CME-prone region, giving predominant evidence of rotational motion causing magnetic non-potentiality. Moreover, the mean value of free energy from the virial theorem calculated at the photospheric level shows a clear step-down decrease at the onset time of the flares revealing unambiguous evidence of energy release intermittently that is stored by flux emergence and/or motions in pre-flare phases. Additionally, distribution of helicity injection is homogeneous in the CME-prone region while in the flare-prone region it is not and often changes sign. This study provides a clear picture that both proper and rotational motions of the observed fluxes played significant roles in enhancing the magnetic non-potentiality of the AR by injecting helicity, twisting the magnetic fields and thereby increasing the free energy, leading to favorable conditions for the observed transient activity.

  16. Interplanetary scintillations of the radio source ensemble at the maximum of cycle 24 of solar activity

    Science.gov (United States)

    Chashei, I. V.; Shishov, V. I.; Tyul'bashev, S. A.; Subaev, I. A.

    2016-05-01

    The results of the interplanetary scintillation observations performed in the period of the maximum of solar activity from April 2013 to April 2014 on the BSA LPI radio telescope at the frequency 111MHz are presented. Fluctuations of the radio emission flux were recorded round the clock for all sources with a scintillating flux of more than 0.2 Jy falling in a strip of sky with a width of 50° over declinations corresponding to a 96-beam directional pattern of the radio telescope. The total number of sources observed during the day reaches 5000. The processing of the observational data was carried out on the assumption that a set of scintillating sources represents a homogeneous statistical ensemble. Daily two-dimensional maps of the distribution of the level of scintillations, whose analysis shows the strong nonstationarity and large-scale irregularity of the spatial distribution of solar wind parameters, were constructed. According to maps of the distribution of the level of scintillations averaged over monthly intervals, the global structure of the distribution of the solar wind was investigated in the period of the maximum of solar activity, which was found to be on the average close to spherically symmetric. The data show that on a spherically symmetric background an east-west asymmetry is observed, which indicates the presence of a large-scale structure of a spiral type in the solar wind.

  17. Coronal Radio Sounding Experiments with Mars Express: Scintillation Spectra during Low Solar Activity

    Science.gov (United States)

    Efimov, A. I.; Lukanina, L. A.; Samoznaev, L. N.; Rudash, V. K.; Chashei, I. V.; Bird, M. K.; Pätzold, M.; Tellmann, S.

    2010-03-01

    Coronal radio sounding observations were carried out with the radio science experiment MaRS on the ESA spacecraft Mars Express during the period from 25 August to 22 October 2004. Differential frequency and log-amplitude fluctuations of the dual-frequency signals were recorded during a period of low solar activity. The data are applicable to low heliographic latitudes, i.e. to slow solar wind. The mean frequency fluctuation and power law index of the frequency fluctuation temporal spectra are determined as a function of heliocentric distance. The radial dependence of the frequency fluctuation spectral index α reflects the previously documented flattening of the scintillation power spectra in the solar wind acceleration region. Temporal spectra of S-band and X-band normalized log-amplitude fluctuations were investigated over the range of fluctuation frequencies 0.01 Hzperiod of high solar activity. Ranging measurements are presented and compared with frequency and log-amplitude scintillation data. Evidence for a weak increase in the fractional electron density turbulence level is obtained in the range 10-40 solar radii.

  18. On the Dependence of the Ionospheric E-Region Electric Field of the Solar Activity

    Science.gov (United States)

    Denardini, Clezio Marcos; Schuch, Nelson Jorge; Moro, Juliano; Araujo Resende, Laysa Cristina; Chen, Sony Su; Costa, D. Joaquim

    2016-07-01

    We have being studying the zonal and vertical E region electric field components inferred from the Doppler shifts of type 2 echoes (gradient drift irregularities) detected with the 50 MHz backscatter coherent (RESCO) radar set at Sao Luis, Brazil (SLZ, 2.3° S, 44.2° W) during the solar cycle 24. In this report we present the dependence of the vertical and zonal components of this electric field with the solar activity, based on the solar flux F10.7. For this study we consider the geomagnetically quiet days only (Kp <= 3+). A magnetic field-aligned-integrated conductivity model was developed for proving the conductivities, using the IRI-2007, the MISIS-2000 and the IGRF-11 models as input parameters for ionosphere, neutral atmosphere and Earth magnetic field, respectively. The ion-neutron collision frequencies of all the species are combined through the momentum transfer collision frequency equation. The mean zonal component of the electric field, which normally ranged from 0.19 to 0.35 mV/m between the 8 and 18 h (LT) in the Brazilian sector, show a small dependency with the solar activity. Whereas, the mean vertical component of the electric field, which normally ranges from 4.65 to 10.12 mV/m, highlight the more pronounced dependency of the solar flux.

  19. Revisiting the prediction of solar activity based on the relationship between the solar maximum amplitude and max-max cycle length

    CERN Document Server

    Carrasco, V M S; Gallego, M C

    2016-01-01

    It is very important to forecast the future solar activity due to its effect on our planet and near space. Here, we employ the new version of the sunspot number index (version 2) to analyse the relationship between the solar maximum amplitude and max-max cycle length proposed by Du (2006). We show that the correlation between the parameters used by Du (2006) for the prediction of the sunspot number (amplitude of the cycle, Rm, and max-max cycle length for two solar cycles before, Pmax-2) disappears when we use solar cycles prior to solar cycle 9. We conclude that the correlation between these parameters depends on the time interval selected. Thus, the proposal of Du (2006) should definitively not be considered for prediction purposes.

  20. Dynamo model for grand maxima of solar activity: can superflares occur on the Sun?

    CERN Document Server

    Kitchatinov, L L

    2016-01-01

    Recent data on superflares on sun-like stars and radiocarbon data on solar activity in the past are both indicative of transient epochs of unusually high magnetic activity. We propose an explanation for the grand activity maxima in the framework of a solar dynamo model with fluctuating parameters. Solar-type dynamos are oscillatory because of the combination of the solar-type differential rotation with positive (in the northern hemisphere) alpha-effect. An artificial reversal of the sign in the alpha-effect changes the dynamo to a steady regime with hundreds of times larger magnetic energy compared to the amplitude of the cyclic dynamo. Sufficiently large and durable fluctuations reversing the sign of the alpha-effect during the growth phase of a magnetic cycle can, therefore, cause a transient change to a steady dynamo with considerably increased magnetic energy. This qualitative scenario for grand activity maxima is supported by computations of the dynamo model with a fluctuating alpha-effect. The computed ...

  1. Status report on preliminary design activities for solar heating and cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    1978-05-01

    Information presented provides status and progress on the development of solar heating and cooling systems. The major emphasis is placed on program organization, system size definition, site identification, system approaches, heat pump and equipment design, collector procurement, and other preliminary design activities as part of the contract requirements.

  2. The solar cycle variation of the rates of CMEs and related activity

    Science.gov (United States)

    Webb, David F.

    1991-01-01

    Coronal mass ejections (CMEs) are an important aspect of the physics of the corona and heliosphere. This paper presents results of a study of occurrence frequencies of CMEs and related activity tracers over more than a complete solar activity cycle. To properly estimate occurrence rates, observed CME rates must be corrected for instrument duty cycles, detection efficiencies away from the skyplane, mass detection thresholds, and geometrical considerations. These corrections are evaluated using CME data from 1976-1989 obtained with the Skylab, SMM and SOLWIND coronagraphs and the Helios-2 photometers. The major results are: (1) the occurrence rate of CMEs tends to track the activity cycle in both amplitude and phase; (2) the corrected rates from different instruments are reasonably consistent; and (3) over the long term, no one class of solar activity tracer is better correlated with CME rate than any other (with the possible exception of type II bursts).

  3. The Role of Coronal Hole and Active Region Boundaries in Solar Wind Formation

    CERN Document Server

    Harra, Louise

    2012-01-01

    Hinode observations have provided a new view of outflows from the Sun. These have been focussed in particular on flows emanating from the edges of active regions. These flows are long lasting and seem to exist to some extent in every active region. The flows measured have values ranging between tens of km s$^{-1}$ and 200 km s$^{-1}$. Various explanations have been put forward to explain these flows including reconnection, waves, and compression. Outflows have also been observed in coronal holes and this review will discuss those as well as the interaction of coronal holes with active regions. Although outflowing plasma has been observed in all regions of the Sun from quiet Sun to active regions, it is not clear how much of this plasma contributes to the solar wind. I will discuss various attempts to prove that the outflowing plasma forms part of the solar wind.

  4. PERSPECTIVE: Low solar activity is blamed for winter chill over Europe

    Science.gov (United States)

    Benestad, Rasmus E.

    2010-06-01

    Throughout recent centuries, there have been a large number of studies of the relationship between solar activity and various aspects of climate, and yet this question is still not entirely settled. In a recent study, Lockwood et al (2010) argue that the occurrence of persistent wintertime blocking events (periods with persistent high sea level pressure over a certain region) over the eastern Atlantic, and hence chilly winters over northern Europe, are linked to low solar activity. Is this then a breakthrough in our understanding of our climate? The Wolf sunspot number, which dates back to Galileo's invention of the telescope in the 17th century, represents one of our longest geophysical data records. Galileo was also involved in building the first barometers and thermometers around that period. Hence, the 17th century represents the start of instrumental measurements of weather and climate, and there are indeed historical records of speculations or studies on the link between changes in the sun and conditions on Earth dating from that time (Helland-Hansen and Nansen 1920). One notorious problem with many previous studies was that relationships established over the calibration interval subsequently broke down. There was a period in the mid-20th century when little work was done on solar activity and climate, but solar activity was considered a real forcing factor before 1920. With the advent of frontal theory, orbital forcing theory, and stronger awareness of the implications of enhanced greenhouse gas concentrations, the support for solar forcing seemed to have diminished in the climatology community by the mid-20th century (Monin 1972). But non-stationary relationships, the chaotic character of climate, weak effects, and lack of a physical understanding behind such a link, can also explain the low support for solar forcing at that time. For a long time, it was not established whether more sunspots meant a brighter or dimmer sun (the answer is brighter), and then

  5. Analysis of Vector Magnetic Fields in Solar Active Regions by Huairou, Mees and Mitaka Vector Magnetographs

    Science.gov (United States)

    Zhang, H.; Labonte, B.; Li, J.; Sakurai, T.

    2003-03-01

    We analyze the vector magnetograms in several well-developed active regions obtained at Huairou Solar Observing Station, National Astronomical Observatories of China, at Mees Solar Observatory, University of Hawaii, and at National Astronomical Observatory of Japan. It is found that there is a basic agreement on the transversal fields among these magnetographs. The observational error (mutual difference) for the transversal magnetic fields is estimated. In addition to comparison of transversal fields among different instruments, we used the morphological configurations of sunspot penumbrae in white-light and EUV 171 Å images obtained by the TRACE satellite as a reference of the orientation of transversal magnetic fields.

  6. Ancient cellular structures and modern humans: change of survival strategies before prolonged low solar activity period

    Science.gov (United States)

    Ragulskaya, Mariya; Rudenchik, Evgeniy; Gromozova, Elena; Voychuk, Sergei; Kachur, Tatiana

    The study of biotropic effects of modern space weather carries the information about the rhythms and features of adaptation of early biological systems to the outer space influence. The influence of cosmic rays, ultraviolet waves and geomagnetic field on early life has its signs in modern biosphere processes. These phenomena could be experimentally studied on present-day biological objects. Particularly inorganic polyphosphates, so-called "fossil molecules", attracts special attention as the most ancient molecules which arose in inanimate nature and have been accompanying biological objects at all stages of evolution. Polyphosphates-containing graves of yeast's cells of Saccharomyces cerevisiae strain Y-517, , from the Ukrainian Collection of Microorganisms was studied by daily measurements during 2000-2013 years. The IZMIRAN daily data base of physiological parameters dynamics during 2000-2013 years were analyzed simultaneously (25 people). The analysis showed significant simultaneous changes of the statistical parameters of the studied biological systems in 2004 -2006. The similarity of simultaneous changes of adaptation strategies of human organism and the cell structures of Saccharomyces cerevisiae during the 23-24 cycles of solar activity are discussed. This phenomenon could be due to a replacement of bio-effective parameters of space weather during the change from 23rd to 24th solar activity cycle and nonstandard geophysical peculiarities of the 24th solar activity cycle. It could be suggested that the observed similarity arose as the optimization of evolution selection of the living systems in expectation of probable prolonged period of low solar activity (4-6 cycles of solar activity).

  7. Geomagnetic response to solar activity: summary for the last ten years and analysis of selected cases

    Science.gov (United States)

    Hejda, Pavel; Bochníček, Josef; Valach, Fridrich; Revallo, Miloš

    2014-05-01

    The main sources of geomagnetic disturbances are either coronal mass ejections (CMEs), which are usually connected with eruptive flares, or high-speed streams of solar wind from coronal holes. Development of an eruptive flare and ejection of coronal mass is accompanied by magnetic reconnection. The evidence of reconnection can be found in a broad spectrum of observations. The observations of X-rays and radio bursts were used in our study. The geoeffectiveness of solar X-ray flares was initially analysed on data from the period 1996 - 2004 [1]. It was shown that the probability of geomagnetic response depends on the solar flare class and its position on the solar disc. The flares in the central region were found to be more geoeffective. The probability further increased if the flare was accompanied by Type II and/or Type IV of solar radio bursts. In the next step a neural network model was developed to determine the probability, with which flares will be followed by the geomagnetic response of a particular intensity. Enhancement of solar energetic particle flux was added to the set of input parameters. The results indicated that X-ray flares accompanied by solar radio bursts represent a good proxy of CMEs [2, 3]. This conclusion was now confirmed by the data from the period 2005 - 2012. Coronal holes are stable formations that can survive over several solar rotations. Corotating interaction regions (CIRs) between fast and slow solar wind can thus periodically pass over the Earth and cause recurrent geomagnetic storms. This periodicity makes the forecasts of the geomagnetic disturbances much easier [4] than in the case of eruptive phenomena. Our analysis confirmed that the strongest magnetic storms are caused by CMEs. Nevertheless, many geomagnetic disturbances in the active part of solar cycle are influenced by sequences of CMEs and CIRs, which increase their strength. [1] Bochníček, J., P. Hejda and F. Valach, Solar energetic events in the years 1996-2004. The

  8. North-south asymmetry of solar dynamo in the current activity cycle

    OpenAIRE

    Kitchatinov, L. L.; Khlystova, A. I.

    2014-01-01

    An explanation is suggested for the north-south asymmetry of the polar magnetic field reversal in the current cycle of solar activity. The contribution of the Babcock-Leighton mechanism to the poloidal field generation is estimated using sunspot data for the current activity cycle. Estimations are performed separately for the northern and southern hemispheres. The contribution of the northern hemisphere exceeded considerably that of the southern hemisphere during the initial stage of the cycl...

  9. Kinaesthetic Learning Activities and Learning about Solar Cells

    Science.gov (United States)

    Richards, A. J.; Etkina, Eugenia

    2013-01-01

    Kinaesthetic learning activities (KLAs) can be a valuable pedagogical tool for physics instructors. They have been shown to increase engagement, encourage participation and improve learning outcomes. This paper details several KLAs developed at Rutgers University for inclusion in an instructional unit about semiconductors, p-n junctions and solar…

  10. Helium line formation and abundance in a solar active region

    CERN Document Server

    Mauas, P J D; Falchi, A; Falciani, R; Teriaca, L N; Cauzzi, G

    2004-01-01

    An observing campaign (SOHO JOP 139), coordinated between ground based and SOHO instruments, has been planned to obtain simultaneous spectroheliograms of the same active region in several spectral lines. The chromospheric lines CaII K, Halpha and Na D as well as HeI 10830, 5876, 584 and HeII 304 AA lines have been observed.These simultaneous observations allow us to build semi-empirical models of the chromosphere and low transition region of an active region, taking into account the estimated total number of photoionizing photons impinging on the target active region and their spectral distribution. We obtained a model that matches very well all the observed line profiles, using a standard value for the He abundance ([He]=0.1) and a modified distribution of microturbulence. For this model we study the influence of the coronal radiation on the computed helium lines. We find that, even in an active region, the incident coronal radiation has a limited effect on the UV He lines, while it results of fundamental im...

  11. Survey of active solar thermal collectors, industry and markets in Canada : final report

    International Nuclear Information System (INIS)

    A survey of the solar thermal industry in Canada was presented. The aim of the survey was to determine the size of the Canadian solar thermal industry and market. Data were used to derive thermal energy output as well as avoided greenhouse gas (GHG) emissions from solar thermal systems. The questionnaire was distributed to 268 representatives. Results revealed annual sales of 24.2, 26.4 and 37.5 MWTH in 2002, 2003, and 2004 respectively, which represented over 50 per cent growth in the operating base during the 3 year survey period. Sales of all collector types grew substantially during the 3 year period, and survey respondents anticipated 20 per cent growth in both 2005 and 2006. Approximately 10 per cent of all sales were exported during 2002-2004. Unglazed liquid collectors constituted the majority of collector types sold in Canada, almost all of which were sold into the residential sector for swimming pool heating. The majority of air collectors were sold into the industrial/commercial and institutional (I/CI) sectors for use in space heating. Sales of liquid glazed and evacuated tube collectors were split between the residential and I/CI sectors. Residential sales were primarily for domestic water heating. In 2004, 23 per cent of sales in the residential sector were for combination domestic hot water and space heating applications, an indication of strong growth. Results of the survey indicated that the solar thermal market in Quebec differed from other regions, with more than double the annual per capita revenue of any other region as a result of greater market penetration of unglazed air collectors. Calculations of the GHG emissions avoided due to active solar thermal systems were made based on historical estimates of solar thermal installations. A model was developed to calculate an operating base by collector type from 1979 to the present. The model showed that many of the systems installed during the 1980s were decommissioned during the 1990s, and that

  12. On the Current Solar Magnetic Activity using Its Behavior During the Holocene

    Science.gov (United States)

    Inceoglu, Fadil; Simoniello, Rosaria; Faurschou Knudsen, Mads; Karoff, Christoffer; Olsen, Jesper; Turck-Chieze, Sylvaine

    2016-07-01

    Solar modulation potential (SMP) reconstructions based on cosmogenic nuclide records reflect changes in the open solar magnetic field and can therefore help us obtain information on the behavior of the open solar magnetic field over the Holocene period. Using the Greenland Ice Core Project (GRIP) ^{10}Be and IntCal13 ^{14}C records for the overlapping time period spanning between ˜1650 AD to 6600 BC, we first reconstructed the solar modulation potentials and subsequently investigate the statistics of peaks and dips simultaneously occurring in the two SMP reconstructions. Based on the distribution of these events, we propose a method to identify grand minima and maxima periods. We then aim at comparing the Sun's large-scale magnetic field behavior over the last three solar cycles with variations in the SMP reconstruction through the Holocene epoch. To achieve these objectives, we use the IntCal13 ^{14}C data to investigate distinct patterns in the occurrences of grand minima and maxima during the Holocene period. We then check whether these patterns might mimic the recent solar magnetic activity by investigating the evolution of the energy in the Sun's large-scale dipolar magnetic field using the Wilcox Solar Observatory data. The cosmogenic radionuclide data analysis shows that ˜71 % of grand maxima during the period from 6600 BC to 1650 AD were followed by a grand minimum. The characteristics of the occurrences of grand maxima and minima are consistent with the scenario in which the dynamical non-linearity induced by the Lorentz force leads the Sun to act as a relaxation oscillator. This finding implies that the probability for these events to occur is non-uniformly distributed in time, as there is a memory in their driving mechanism, which can be identified via the back-reaction of the Lorentz force.

  13. The influence of active region information on the prediction of solar flares: an empirical model using data mining

    Directory of Open Access Journals (Sweden)

    M. Núñez

    2005-11-01

    Full Text Available Predicting the occurrence of solar flares is a challenge of great importance for many space weather scientists and users. We introduce a data mining approach, called Behavior Pattern Learning (BPL, for automatically discovering correlations between solar flares and active region data, in order to predict the former. The goal of BPL is to predict the interval of time to the next solar flare and provide a confidence value for the associated prediction. The discovered correlations are described in terms of easy-to-read rules. The results indicate that active region dynamics is essential for predicting solar flares.

  14. GPS-Total electron content variability in Brazil during low solar activity

    Science.gov (United States)

    Mendes da Costa, A.; Vilas Boas, J.; Fonseca Junior, E.

    Variations of ionospheric Total Electron Content (TEC) have been calculated using GPS data obtained over a low latitude station Presidente Prudente, Brazil (22.1o S; 51.4o W ) in 1997, a period of low solar activity. Two hourly TEC averages are presented for the period. Diurnal, seasonal, solar activity variations and the Equatorial Anomaly effects are discussed. TEC diurnal means compared with IRI-95 predictions for equinoxes and solstices months showed that IRI-95 systematically overestimates the observed values. Pre-midnight TEC enhancements were observed all over the year, except in May and June. The TEC values measured reproduce the same general trend of the TEC observations over Cachoeira Paulista, Brazil (22.5o S 45o W). The "fountain" effect seems to be more effective at Presidente Prudente because of its lower magnetic dip latitude. A correlation between TEC experimental values and low solar flux (62 < F10.7 < 116 flux units) emphasizes the inadequacy of IRI to model low latitude TEC values at low solar activity periods. These are the first results obtained using TEC-GPS technique for total electron content measureme n t s at low latitudes in Brazil.

  15. Solar activity variations of nocturnal thermospheric meridional winds over Indian longitude sector

    Science.gov (United States)

    Madhav Haridas, M. K.; Manju, G.; Arunamani, T.

    2016-09-01

    The night time F-layer base height information from ionosondes located at two equatorial stations Trivandrum (TRV 8.5°N, 77°E) and Sriharikota (SHAR 13.7°N, 80.2°E) spanning over two decades are used to derive the climatology of equatorial nocturnal Thermospheric Meridional Winds (TMWs) prevailing during High Solar Activity (HSA) and Low Solar Activity (LSA) epochs. The important inferences from the analysis are 1) Increase in mean equatorward winds observed during LSA compared to HSA during pre midnight hours; 25 m/s for VE (Vernal Equinox) and 20 m/s for SS (Summer Solstice), AE (autumnal Equinox) and WS (Winter Solstice). 2) Mean wind response to Solar Flux Unit (SFU) is established quantitatively for all seasons for pre-midnight hours; rate of increase is 0.25 m/s/SFU for VE, 0.2 m/s/SFU for SS and WS and 0.08 m/s/SFU for AE. 3) Theoretical estimates of winds for the two epochs are performed and indicate the role of ion drag forcing as a major factor influencing TMWs. 4) Observed magnitude of winds and rate of flux dependencies are compared to thermospheric wind models. 5) Equinoctial asymmetry in TMWs is observed for HSA at certain times, with more equatorward winds during AE. These observations lend a potential to parameterize the wind components and effectively model the winds, catering to solar activity variations.

  16. A low upper limit on the subsurface rise speed of solar active regions

    CERN Document Server

    Birch, Aaron C; Braun, Douglas C; Cameron, Robert; Gizon, Laurent; Löptien, Björn; Rempel, Matthias

    2016-01-01

    Magnetic field emerges at the surface of the Sun as sunspots and active regions. This process generates a poloidal magnetic field from a rising toroidal flux tube, it is a crucial but poorly understood aspect of the solar dynamo. The emergence of magnetic field is also important because it is a key driver of solar activity. We show that measurements of horizontal flows at the solar surface around emerging active regions, in combination with numerical simulations of solar magnetoconvection, can constrain the subsurface rise speed of emerging magnetic flux. The observed flows imply that the rise speed of the magnetic field is no larger than 150 m/s at a depth of 20 Mm, that is, well below the prediction of the (standard) thin flux tube model but in the range expected for convective velocities at this depth. We conclude that convective flows control the dynamics of rising flux tubes in the upper layers of the Sun and cannot be neglected in models of flux emergence.

  17. A low upper limit on the subsurface rise speed of solar active regions

    Science.gov (United States)

    Birch, Aaron C.; Schunker, Hannah; Braun, Douglas C.; Cameron, Robert; Gizon, Laurent; Löptien, Björn; Rempel, Matthias

    2016-01-01

    Magnetic field emerges at the surface of the Sun as sunspots and active regions. This process generates a poloidal magnetic field from a rising toroidal flux tube; it is a crucial but poorly understood aspect of the solar dynamo. The emergence of magnetic field is also important because it is a key driver of solar activity. We show that measurements of horizontal flows at the solar surface around emerging active regions, in combination with numerical simulations of solar magnetoconvection, can constrain the subsurface rise speed of emerging magnetic flux. The observed flows imply that the rise speed of the magnetic field is no larger than 150 m/s at a depth of 20 Mm, that is, well below the prediction of the (standard) thin flux tube model but in the range expected for convective velocities at this depth. We conclude that convective flows control the dynamics of rising flux tubes in the upper layers of the Sun and cannot be neglected in models of flux emergence. PMID:27453947

  18. Enhanced photocurrent density in graphene/Si based solar cell (GSSC) by optimizing active layer thickness

    Energy Technology Data Exchange (ETDEWEB)

    Rosikhin, Ahmad, E-mail: a.rosikhin86@yahoo.co.id; Hidayat, Aulia Fikri; Syuhada, Ibnu; Winata, Toto, E-mail: toto@fi.itb.ac.id [Department of physics, physics of electronic materials research division Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung Jl. Ganesha 10, Bandung 40132, Jawa Barat – Indonesia (Indonesia)

    2015-12-29

    Thickness dependent photocurrent density in active layer of graphene/Si based solar cell has been investigated via analytical – simulation study. This report is a preliminary comparison of experimental and analytical investigation of graphene/Si based solar cell. Graphene sheet was interfaced with Si thin film forming heterojunction solar cell that was treated as a device model for photocurrent generator. Such current can be enhanced by optimizing active layer thickness and involving metal oxide as supporting layer to shift photons absorption. In this case there are two type of devices model with and without TiO{sub 2} in which the silicon thickness varied at 20 – 100 nm. All of them have examined and also compared with each other to obtain an optimum value. From this calculation it found that generated currents almost linear with thickness but there are saturated conditions that no more enhancements will be achieved. Furthermore TiO{sub 2} layer is effectively increases photon absorption but reducing device stability, maximum current is fluctuates enough. This may caused by the disturbance of excitons diffusion and resistivity inside each layer. Finally by controlling active layer thickness, it is quite useful to estimate optimization in order to develop the next solar cell devices.

  19. Solar Energetic Particle Events at the Rise Phase of the 23rd Solar Activity Cycle Registered aboard the Spacecraft "INTERBALL-2"

    Indian Academy of Sciences (India)

    Vladislav Timofeev

    2000-09-01

    The experiment with 10K-80 aboard the INTER-BALL-2 (which detects protons with energies > 7 , 27-41, 41-58, 58-88, 88-180 and 180-300 MeV) registered six events of the solar energetic particle (SEP) increase. These events are during the initial rise phase of the 23rd solar activity cycle. Solar flares with the SEP generation are accompanied by coronal mass ejection (CME). Here we analyze the dynamics of the differential energy spectrum at different phases of the SEP increase.

  20. Diameter and solar figure observations in the solar activity context with the astrolabe of Rio de Janeiro in 1998-2003

    CERN Document Server

    Boscardin, Sérgio Calderari

    2013-01-01

    From 1998 to 2003 the CCD Solar Astrolabe of the Observatorio Nacional in Rio de Janeiro made more than 20000 observations of the Solar Semidiameter. In the present work similar corrections for the observational results of 2002 and 2003 were determined. Initially, the values have been corrected in function of their mean quadratic offset to the local trend averages, therefore without modifying the measured variations. Finally, the values have been corrected for the bias, using coefficients obtained from the correlation between some observational parameters and the observational measures. Then the total series was compared with series of pointers of the solar activity. The hypothesis of variation of the semidiameter tied to the solar activity was examined through the correlations between the different pairs of pointers. Strong correlations between some pairs were obtained. Next, the same correlations were obtained now considering time delays of one series in relation to the other. Several pairs have shown an in...

  1. Active charge/passive discharge solar heating systems: Thermal analysis and performance comparisons and performance comparisons

    Science.gov (United States)

    Swisher, J.

    1981-06-01

    This type of system combines liquid-cooled solar collector panels with a massive integral storage component that passively heats the building interior by radiation and free convection. The TRNSYS simulation program is used to evaluate system performance and to provide input for the development of a simplified analysis method. This method, which provides monthly calculations of delivered solar energy, is based on Klein's Phi-bar procedure and data from hourly TRNSYS simulations. The method can be applied to systems using a floor slab, a structural wall, or a water tank as the storage component. Important design parameters include collector area and orientation, building heat loss, collector and heat exchanger efficiencies, storage capacity, and storage to room coupling. Performance simulation results are used for comparisons with active and passive solar designs.

  2. The QBO and weak external forcing by solar activity: A three dimensional model study

    Science.gov (United States)

    Dameris, M.; Ebel, A.

    1989-01-01

    A better understanding is attempted of the physical mechanisms leading to significant correlations between oscillations in the lower and middle stratosphere and solar variability associated with the sun's rotation. A global 3-d mechanistic model of the middle atmosphere is employed to investigate the effects of minor artificially induced perturbations. The aim is to explore the physical mechanisms of the dynamical response especially of the stratosphere to weak external forcing as it may result from UV flux changes due to solar rotation. First results of numerical experiments dealing about the external forcing of the middle atmosphere by solar activity were presented elsewhere. Different numerical studies regarding the excitation and propagation of weak perturbations have been continued since then. The model calculations presented are made to investigate the influence of the quasi-biennial oscillation (QBO) on the dynamical response of the middle atmosphere to weak perturbations by employing different initial wind fields which represent the west and east phase of the QBO.

  3. Our Solar Connection: A themed Set of Activities for Grades 5-12

    Science.gov (United States)

    van der Veen, W. E.; Gary, D. E.; Gallagher, A. C.; Vinski, J. M.

    2005-12-01

    The project is a partnership between the Center for Solar-Terrestrial Research at New Jersey Institute of Technology (NJIT), and the New Jersey Astronomy Center for Education (NJACE) at Raritan Valley Community College. It was supported by a NASA Education/Public Outreach grant from the Office of Space Science. The project involved the development of a set of seven activities connected by the theme of solar magnetism and designed to meet the New Jersey Science Process Standards and the Science Core Curriculum Content Standards in Physics and Astronomy. The products include a 70-page teacher guide and an integrated CD-ROM with video clips, internet links, image sets used in the activities, and worksheets. The activities were presented at a series of teacher workshops. The teachers performed the activities themselves, learned additional background information on the Sun, solar magnetism, and the Sun-Earth connection, and were trained to use several items of equipment, which were made available in two "resource centers," one at NJIT and one at NJACE. In all, 81 teachers have been exposed to some or all of the activities. After the training, the teachers took the activities back to their classrooms, and 15 equipment to use with their students. Some teachers had access to, or had their schools purchase, Sunspotters and spectrometers rather than borrow the equipment. The success of the teacher training was assessed by questionnaires at the end of the workshops, by evaluation forms that the teachers filled out on returning the borrowed equipment.

  4. Heliophysics: Evolving Solar Activity and the Climates of Space and Earth

    Science.gov (United States)

    Schrijver, Carolus J.; Siscoe, George L.

    2012-01-01

    Preface; 1. Interconnectedness in heliophysics Carolus J. Schrijver and George L. Siscoe; 2. Long-term evolution of magnetic activity of Sun-like stars Carolus J. Schrijver; 3. Formation and early evolution of stars and proto-planetary disks Lee W. Hartmann; 4. Planetary habitability on astronomical time scales Donald E. Brownlee; 5. Solar internal flows and dynamo action Mark S. Miesch; 6. Modeling solar and stellar dynamos Paul Charbonneau; 7. Planetary fields and dynamos Ulrich R. Christensen; 8. The structure and evolution of the 3D solar wind John T. Gosling; 9. The heliosphere and cosmic rays J. Randy Jokipii; 10. Solar spectral irradiance: measurements and models Judith L. Lean and Thomas N. Woods; 11. Astrophysical influences on planetary climate systems Juerg Beer; 12. Evaluating the drivers of Earth's climate system Thomas J. Crowley; 13. Ionospheres of the terrestrial planets Stanley C. Solomon; 14. Long-term evolution of the geospace climate Jan J. Sojka; 15. Waves and transport processes in atmospheres and oceans Richard L. Walterscheid; 16. Solar variability, climate, and atmospheric photochemistry Guy P. Brasseur, Daniel Marsch and Hauke Schmidt; Appendix I. Authors and editors; List of illustrations; List of tables; Bibliography; Index.

  5. Decentralized Solar Energy Technology Assessment Program: review of activities (April 1978-December 1979)

    Energy Technology Data Exchange (ETDEWEB)

    Bronfman, B.H.; Carnes, S.A.; Schweitzer, M.; Peelle, E.; Enk, G.

    1980-05-01

    The Decentralized Solar Energy Technology Assessment Program (TAP), sponsored by the Office of Solar Energy, Department of Energy, is a technology assessment and planning activity directed at local communities. Specifically, the objectives of the TAP are: (1) to assess the socioeconomic and institutional impacts of the widespread use of renewable energy technologies; (2) to involve communities in planning for their energy futures; and (3) to plan for local energy development. This report discusses two major efforts of the TAP during the period April 1978 to December 1979: the community TA's and several support studies. Four communities have been contracted to undertake an assessment-planning exercise to examine the role of solar renewable energy technologies in their future. The communities selected are the Southern Tier Central Region of New York State, (STC); Richmond, Kentucky, Kent, Ohio; and Franklin County, Massachusetts. Descriptions and progress to date of the community TA's are presented in detail. Two major support study efforts are also presented. A review of existing literature on the legal and institutional issues relative to the adoption of decentralized solar technologies is summarized. A preliminary analysis of potential socioeconomic impacts and other social considerations relative to decentralized solar technologies is also described.

  6. Cost and performance goal methodology for active solar-cooling systems

    Science.gov (United States)

    Warren, M. L.; Wahlig, M. A.

    1982-02-01

    Economic and thermal performance analyses of typical residential and commercial active solar cooling systems are used to determine cost goals for systems to be installed between the years 1986 and 2000. Market studies indicate a relationship between market penetration (percent of market captured) and payback period for heating, ventilating, and air conditioning systems. Using reasonable values for fuel escalation and inflation rates, the payback period is related to the expected real return on investment. Postulating commercial introduction of solar cooling systems in 1986 with the market share increasing to 20% by the year 2000, payback and return on investment goals for cooling systems as a function of year of purchase are established. Using the results of systems analysis of representative 3 ton solar residential cooling/heating systems and 25 ton commercial solar cooling systems for four different cities (Ft. Worth, Phoenix, Miami, and Washington, DC), the return on investment goals are used to calculate the 20 year present value of energy savings of the solar energy systems.

  7. Radiative capture reaction {sup 7}Be(p,{gamma}){sup 8}B in the continuum shell model

    Energy Technology Data Exchange (ETDEWEB)

    Bennaceur, K.; Ploszajczak, M. [Grand Accelerateur National d`Ions Lourds (GANIL), Caen (France); Nowacki, F. [Grand Accelerateur National d`Ions Lourds (GANIL), Caen (France)]|[Lab. de Physique Theorique Strasbourg, Strasbourg (France); Okolowicz, J. [Grand Accelerateur National d`Ions Lourds (GANIL), Caen (France)]|[Inst. of Nuclear Physics, Krakow (Poland)

    1998-06-01

    We present here the first application of realistic shell model (SM) including coupling between many-particle (quasi-)bound states and the continuum of one-particle scattering states to the calculation of the total capture cross section and the astrophysical factor in the reaction {sup 7}Be(p,{gamma}){sup 8}B. (orig.)

  8. Peculiarities of dynamics of the global electric circuit elements during very low solar activity

    International Nuclear Information System (INIS)

    Complete text of publication follows. Accumulated data about dynamics of various elements of the solar - terrestrial relationship allow us to approach the problem of the solar activity influence on the middle atmosphere with taking into account role of the ground surface electrical conductivity. A special importance of this problem appears in the 23 cycle of the solar activity (2006-2009 years). This period is characterized by unusually low values of solar UV radiation as well as of magnitudes of the solar wind magnetic field. It means that impact of the solar electromagnetic energy on the near - Earth space is much weaker than usually. The Earth global electric circuit which includes the ionosphere, the stratosphere and the ground surface as its vital components has its own specific features during considered period. In this paper we outline these peculiarities of the global electric circuit and its influence on the middle atmosphere. First of all, we will demonstrate that experimental values of the atmospheric electric field (observations at Vostok Station, Antarctica) are the lowest during the last 3 years. We claim that role of the electric conductivity of the ground surface begin to play more significant role in the dynamics of the global electric circuit. To confirm that suggestion we studied interaction between the stratospheric temperature distribution in the high latitudes in winters of 2008 - 2009 and the area of the old sea ice (pack ice) in the Arctic Ocean during the same period. We will show that the areas of the low temperatures in the polar stratosphere correspond pretty well to distribution of the pack ice in the Arctic. Our explanation of the phenomena is based on difference of electric conductivity of the ice and of the open ocean water.

  9. Statistical Properties of Solar Active Regions Based on Objective Detection and Characterization

    Science.gov (United States)

    Zhang, Jie

    2010-05-01

    We present a study of the statistical properties of solar magnetic regions based on objective detection and characterization. The uniformity and consistency of the magnetogram images provided by SOHO/MDI make it an ideal database for automated detection of solar magnetic features. The results of detection are mainly controlled by the following four parameters or thresholds: (1) magnetic intensity threshold of kernel pixels (to find strong field regions), (2) erosion size threshold for morphological opening operation (to remove small patches), (3) magnetic intensity threshold of AR pixels (to recover the whole size of an AR), (4) dilation size threshold for morphological closing operation (to merge neighboring patches to form a whole AR). We find that the best combination of the above four parameters is (1) 250 Gauss, (2) 10 Mm, (3) 50 Gauss, and (4) 10 Mm, which yields a detection of 1772 ARs that is most similar to the NOAA catalog based on human operators; as a comparison, NOAA/SWPC reports 2281 ARs during the same period. By varying the values of the control parameters, the number of ARs detected can range from as small as 1000 to as large as 10000. With these data, we are now able to make detailed statistical study of solar active regions, including (1) how AR number and emerged magnetic flux vary with solar cycle? (2) how AR number and emerged magnetic flux vary with latitude during different phases of solar cycle? (3) the distribution of AR number with respect to the size; Is the distribution power-law, Gaussian or log-normal, and the implication on the mechanisms of generating ARs? Is there a north-south asymmetry of ARs? How the strong magnetic patches distribute within an AR? This study provides us new insights on the properties and generations of solar active regions.

  10. Downward Link of Solar Activity Variations Through Wave Driven Equatorial Oscillations (QBO and SAO)

    Science.gov (United States)

    Mengel, J. G.; Mayr, H. G.; Chan, K. L.; Porter, H. S.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Signatures of the 11-year solar activity/irradiance cycle are observed in the Quasi Biennial Oscillation (QBO) of the lower stratosphere. At these altitudes, the QBO is understood to be the result of "downward control" exerted by the wave mean flow interactions that drive the phenomenon. It is reasonable then to speculate that the QBO is a natural conduit to lower altitudes of solar activity variations in radiance (SAV). To test this hypothesis, we conducted experiments with a 2D version of our Numerical Spectral Model that incorporates Hines' Doppler Spread Parameterization for small-scale gravity waves (GW). To account for the SAV, we change the solar heating rate on a logarithmic scale from 0.1% at the surface to 1% at 50 kin to 10% at 100 km. With the same GW flux, we then conduct numerical experiments to evaluate the magnitude of the solar activity irradiance effect (SAE) on the zonal circulation at low latitudes. The numerical results obtained show that, under certain conditions, the SAE is significant in the zonal circulation and does extend to lower altitudes where the SAV is small. The differences in the wind velocities can be as large as 5 m/s at 20 kin. We carried out two numerical experiments with integrations over more than 20 years: 1) With the QBO period "tuned" to be 30 months, of academic interest but instructive, the seasonal cycle in the solar forcing [through the Semi-annual Oscillation (SAO)] acts as a strong pacemaker to produce a firm lock on the period and phase of the QBO. The SAE then shows up primarily as a distinct but relatively weak amplitude modulation. 2) With the QBO period between 30 and 34 (or less than 30, presumably) months, the seasonal phase lock is weak compared with (1). The SAV in the seasonal cycle then causes variations in the QBO period and phase, and this amplifies the SAE to produce relatively large variations in the wind field. We conclude that, under realistic conditions as in (2), the solar seasonal forcing, with

  11. An Improved Virial Estimate of Solar Active Region Energy

    OpenAIRE

    Wheatland, M. S.; Metcalf, T. R.

    2005-01-01

    The MHD virial theorem may be used to estimate the magnetic energy of active regions based on vector magnetic fields measured at the photosphere or chromosphere. However, the virial estimate depends on the measured vector magnetic field being force-free. Departure from force-freeness leads to an unknown systematic error in the virial energy estimate, and an origin dependence of the result. We present a method for estimating the systematic error by assuming that magnetic forces are confined to...

  12. Effect of solar and magnetic activity on VHF scintillations near the equatorial anomaly crest

    Directory of Open Access Journals (Sweden)

    R. P. Singh

    2004-09-01

    Full Text Available The VHF amplitude scintillation recorded during the period January 1991 to December 1993 in the declining phase of a solar cycle and April 1998 to December 1999 in the ascending phase of the next solar cycle at Varanasi (geogr. lat.=25.3°, long.=83.0°, dip=37°N have been analyzed to study the behavior of ionospheric irregularities during active solar periods and magnetic storms. It is shown that irregularities occur at arbitrary times and may last for <30min. A rise in solar activity increases scintillations during winter (November-February and near equinoxes (March-April; September-October, whereas it depresses the scintillations during the summer (May-July. In general, the role of magnetic activity is to suppress scintillations in the pre-midnight period and to increase it in the post-midnight period during equinox and winter seasons, whilst during summer months the effect is reversed. The pre-midnight scintillation is sometimes observed when the main phase of Dst corresponds to the pre-midnight period. The annual variation shows suppression of scintillations on disturbed days, both during pre-midnight and post-midnight period, which becomes more effective during years of high solar activity. It is observed that for magnetic storms for which the recovery phase starts post-midnight, the probability of occurrence of irregularities is enhanced during this time. If the magnetic storm occurred during daytime, then the probability of occurrence of scintillations during the night hours is decreased. The penetration of magnetospheric electric fields to the magnetic equator affects the evolution of low-latitude irregularities. A delayed disturbance dynamo electric field also affects the development of irregularities.

  13. No evidence for planetary influence on solar activity 330 000 years ago

    Science.gov (United States)

    Cauquoin, A.; Raisbeck, G. M.; Jouzel, J.; Bard, E.

    2014-01-01

    Context. Abreu et al. (2012, A&A. 548, A88) have recently compared the periodicities in a 14C - 10Be proxy record of solar variability during the Holocene and found a strong similarity with the periodicities predicted on the basis of a model of the time-dependent torque exerted by the planets on the sun's tachocline. If verified, this effect would represent a dramatic advance not only in the basic understanding of the Sun's variable activity, but also in the potential influence of this variability on the Earth's climate. Cameron and Schussler (2013, A&A. 557, A83) have seriously criticized the statistical treatment used by Abreu et al. to test the significance of the coincidences between the periodicities of their model with the Holocene proxy record. Aims: If the Abreu et al. hypothesis is correct, it should be possible to find the same periodicities in the records of cosmogenic nuclides at earlier times. Methods: We present here a high-resolution record of 10Be in the EPICA Dome C (EDC) ice core from Antarctica during the Marine Interglacial Stage 9.3 (MIS 9.3), 325-336 kyr ago, and investigate its spectral properties. Results: We find very limited similarity with the periodicities seen in the proxy record of solar variability during the Holocene, or with that of the model of Abreu et al. Conclusions: We find no support for the hypothesis of a planetary influence on solar activity, and raise the question of whether the centennial periodicities of solar activity observed during the Holocene are representative of solar activity variability in general.

  14. Solar Flare Activity and Variability of Electric Current Helicity

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Recent study using Huairou vector magnetograph data shows that dur ing flare activity, the current helicity exhibits rapid and substantial variations and,in some cases, a recovering phase. We considered various representative the mag netic confgurations. First, interacting twisted magnetic flux tubes are analyzed separately for positive, negative and mixed-sign helicity regions. The results show that the helicity during flares decreases in positive-sign, and increases in negative sign regions. Then, flaring arcade also shows that the magnitude of the helicity decreases after flares. We also investigated current sheets formed by sheared mag netic field and showed that the current helicity (with either positive and negative signs) vanishes after reconnection. The emergence of twisted flux tubes which can trigger flares may be another source of flare-associated variability of current helicity.We demorstrate the relevance of current helicity to the description of flare activity by compming its variation with that of shear angle in the active region AR 6891.

  15. FINE MAGNETIC FEATURES AND CHIRALITY IN SOLAR ACTIVE REGION NOAA 10930

    International Nuclear Information System (INIS)

    In this paper, we present fine magnetic features near the magnetic inversion line in the solar active region NOAA 10930. The high-resolution vector magnetograms obtained by Hinode allow detailed analyses around magnetic fibrils in the active region. The analyses are based on the fact that the electric current density can be divided into two components: the shear component caused by the magnetic inhomogeneity and the twist component caused by the magnetic field twist. The relationships between magnetic field, electric current density, and its two components are examined. It is found that the individual magnetic fibrils are dominated by the current density component caused by the magnetic inhomogeneity, while the large-scale magnetic region is generally dominated by the electric current component associated with the magnetic twist. The microstructure of the magnetic field in the solar atmosphere is far from the force-free field. The current mainly flows around the magnetic flux fibrils in the active regions.

  16. KamLAND, solar antineutrinos and their magnetic moment

    CERN Document Server

    Aliani, P; Picariello, M; Torrente-Lujan, E

    2003-01-01

    We investigate the possibility of detecting solar antineutrinos with the KamLAND experiment. These antineutrinos are predicted by spin-flavor oscillations at a significant rate even if this mechanism is not the leading solution to the SNP. The recent evidence from SNO shows that a) the neutrino oscillates, only around 34% of the initial solar neutrinos arrive at the Earth as electron neutrinos and b) the conversion is mainly into active neutrinos, however a non e, mu, tau component is allowed: the fraction of oscillation into non-mu-tau neutrinos is found to be cos^2(alpha) = 0.08^{+0.20}_{-0.40}. This residual flux could include sterile neutrinos and/or the antineutrinos of the active flavors. KamLAND is potentially sensitive to antineutrinos derived from solar ^8 B neutrinos. In case of negative results, we find that KamLAND could put strict limits on the flux of solar antineutrinos, Phi(^8 B) < 1.0 times 10^4 cm^{-2} s^{-1}, more than one order of magnitude smaller than existing limits, and on their app...

  17. Chromospheric activity and evolutionary age of the Sun and four solar twins

    CERN Document Server

    Mittag, M; Hempelmann, A; González-Pérez, J N; Schmitt, J H M M

    2016-01-01

    The activity levels of the solar-twin candidates HD 101364 and HD 197027 are measured and compared with the Sun, the known solar twin 18 Sco, and the solar-like star 51 Peg. Furthermore, the absolute ages of these five objects are estimated from their positions in the HR diagram and the evolutionary (relative) age compared with their activity levels. To represent the activity level of these stars, the Mount Wilson S-indices were used. To obtain consistent ages and evolutionary advance on the main sequence, we used evolutionary tracks calculated with the Cambridge Stellar Evolution Code. From our spectroscopic observations of HD 101364 and HD 197027 and based on the established calibration procedures, the respective Mount Wilson S-indices are determined. We find that the chromospheric activity of both stars is comparable with the present activity level of the Sun and that of 18 Sco, at least for the period in consideration. Furthermore, the absolute age of HD 101364, HD 197027, 51 Peg, and 18 Sco are found to ...

  18. On the non-Kolmogorov nature of flare-productive solar active regions

    CERN Document Server

    Mandage, Revati S

    2016-01-01

    A magnetic power spectral analysis is performed on 53 solar active regions, observed from August 2011 to July 2012. Magnetic field data obtained from the Helioseismic and Magnetic Imager, inverted as Active Region Patches, are used to study the evolution of the magnetic power index as each region rotates across the solar disk. Active regions are classified based on the number, and sizes, of solar flares they produce, in order to study the relationship between flare productivity and the magnetic power index. The choice of window size and inertial range plays a key role in determining the correct magnetic power index. The overall distribution of magnetic power indices has a range of $1.0-2.5$. Flare-quiet regions peak at a value of 1.6, however flare-productive regions peak at a value of 2.2. Overall, the histogram of the distribution of power indices of flare-productive active regions is well separated from flare-quiet active regions. Only 12\\% of flare-quiet regions exhibit an index greater than 2, whereas 90...

  19. The influence of active region information on the prediction of solar flares: an empirical model using data mining

    OpenAIRE

    Núñez, M.; Fidalgo, R.; Baena, M.; Morales, R.

    2005-01-01

    International audience Predicting the occurrence of solar flares is a challenge of great importance for many space weather scientists and users. We introduce a data mining approach, called Behavior Pattern Learning (BPL), for automatically discovering correlations between solar flares and active region data, in order to predict the former. The goal of BPL is to predict the interval of time to the next solar flare and provide a confidence value for the associated prediction. The discovered ...

  20. Evidence for Energy Supply by Active Region Spicules to the Solar Atmosphere

    CERN Document Server

    Zeighami, S; Tavabi, E; Ajabshirizadeh, A

    2016-01-01

    We investigate the role of active region spicules in the mass balance of the solar wind and energy supply for heating the solar atmosphere. We use high cadence observations from the Solar Optical Telescope (SOT) onboard the Hinode satellite in the Ca II H line filter obtained on 26 January 2007. The observational technique provides the high spatio-temporal resolution required to detect fine structures such as spicules. We apply Fourier power spectrum and wavelet analysis to SOT/Hinode time series of an active region data to explore the existence of coherent intensity oscillations. The presence of coherent waves could be an evidence for energy transport to heat the solar atmosphere. Using time series, we measure the phase difference between two intensity profiles obtained at two different heights, which gives information about the phase difference between oscillations at those heights as a function of frequency. The results of a fast Fourier transform (FFT) show peaks in the power spectrum at frequencies in th...

  1. A Space Weather mission concept: Observatories of the Solar Corona and Active Regions (OSCAR

    Directory of Open Access Journals (Sweden)

    Strugarek Antoine

    2015-01-01

    Full Text Available Coronal Mass Ejections (CMEs and Corotating Interaction Regions (CIRs are major sources of magnetic storms on Earth and are therefore considered to be the most dangerous space weather events. The Observatories of Solar Corona and Active Regions (OSCAR mission is designed to identify the 3D structure of coronal loops and to study the trigger mechanisms of CMEs in solar Active Regions (ARs as well as their evolution and propagation processes in the inner heliosphere. It also aims to provide monitoring and forecasting of geo-effective CMEs and CIRs. OSCAR would contribute to significant advancements in the field of solar physics, improvements of the current CME prediction models, and provide data for reliable space weather forecasting. These objectives are achieved by utilising two spacecraft with identical instrumentation, located at a heliocentric orbital distance of 1 AU from the Sun. The spacecraft will be separated by an angle of 68° to provide optimum stereoscopic view of the solar corona. We study the feasibility of such a mission and propose a preliminary design for OSCAR.

  2. Coronal Dynamic Activities in the Declining Phase of a Solar Cycle

    CERN Document Server

    Jang, Minhwan; Hong, Sunhak; Choe, G S

    2016-01-01

    It has been known that some solar activity indicators show a double-peak feature in their evolution through a solar cycle, which is not conspicuous in sunspot number. In this letter, we investigate the high solar dynamic activity in the declining phase of the sunspot cycle by examining the evolution of polar and low latitude coronal hole areas and the statistics of splitting and merging events of coronal holes and coronal mass ejections detected by SOHO/LASCO C3 in solar cycle 23. Although the total coronal hole area is at its maximum near the sunspot minimum, in which polar coronal holes prevail, it shows a comparable second maximum in the declining phase of the cycle, in which low latitude coronal holes are dominant. The events of coronal hole splitting or merging, which are attributed to surface motions of magnetic fluxes, are also mostly populated in the declining phase of the cycle. The far-reaching C3 coronal mass ejections are also over-populated in the declining phase of the cycle. From these results ...

  3. Design of Bicontinuous Donor/Acceptor Morphologies for Use as Organic Solar Cell Active Layers

    Science.gov (United States)

    Kipp, Dylan; Mok, Jorge; Verduzco, Rafael; Ganesan, Venkat

    Two of the primary challenges limiting the marketability of organic solar cells are i) the smaller device efficiency of the organic solar cell relative to the conventional silicon-based solar cell and ii) the long term thermal instability of the device active layer. The achievement of equilibrium donor/acceptor morphologies with the characteristics believed to yield high device performance characteristics could address each of these two challenges. In this work, we present the results of a combined simulations and experiments-based approach to investigate if a conjugated BCP additive can be used to control the self-assembled morphologies taken on by conjugated polymer/PCBM mixtures. First, we use single chain in mean field Monte Carlo simulations to identify regions within the conjugated polymer/PCBM composition space in which addition of copolymers can lead to bicontinuous equilibrium morphologies with high interfacial areas and nanoscale dimensions. Second, we conduct experiments as directed by the simulations to achieve such morphologies in the PTB7 + PTB7- b-PNDI + PCBM model blend. We characterize the results of our experiments via a combination of transmission electron microscopy and X-ray scattering techniques and demonstrate that the morphologies from experiments agree with those predicted in simulations. Accordingly, these results indicate that the approach utilized represents a promising approach to intelligently design the morphologies taken on by organic solar cell active layers.

  4. Enhanced photocatalytic activity of fish scale loaded TiO2 composites under solar light irradiation

    Institute of Scientific and Technical Information of China (English)

    Li-Ngee Ho; Soon-An Ong; Hakimah Osman; Fong-Mun Chong

    2012-01-01

    Fish scale (FS) loaded TiO2 composites were investigated as photocatalysts in degradation of Methyl Orange under solar light irradiation.Composites were prepared through sol-gel method by varying mass ratio of TiO2/FS at 90:10,70:30 and 50:50,respectively.The catalysts prepared in this study were characterized by using XRD,SEM,FT-IR and nitrogen sorption.The effects of solar irradiation,mass ratio of TiO2/FS composites,irradiation time and catalyst loadings were studied.Synergistic effect was found in TiO2/FS of 90:10 composite which performed higher photocatalytic degradation than synthesized TiO2 under solar light irradiation.However,further increasing fish scale content in the composites reduced the photocatalytic activity drastically.Under solar light irradiation,all the catalysts in this study exhibited photocatalytic activity,except TiO2/FS of 50:50 composite that only acted as a weak biosorbent without performing any photocatalytic property.Photocatalytic degradation increased with increasing catalyst loading and irradiation time but decreased with increased of initial dye concentration.

  5. Tragaldabas: a muon ground-based detector for the study of the solar activity; first observations

    Science.gov (United States)

    José Blanco, Juan

    2016-04-01

    A new RPC-based cosmic ray detector, TRAGALDABAS (acronym of "TRAsGo for the AnaLysis of the nuclear matter Decay, the Atmosphere, the earth's B-field And the Solar activity") has been installed at the Univ. of Santiago de Compostela, Spain (N:42°52'34",W:8°33'37"). The detector, in its present layout, consists of three 1.8 m2 planes of three 1mm-gap glass RPCs. Each plane is readout with 120 pads with grounded guard electrodes between them to minimize the crosstalk noise. The main performances of the detectors are: an arrival time resolution of about ~300 ps, a tracking angular resolution below 3°, a detection efficiency close to 1, and a solid angle acceptance of ~5 srad. TRAGALDABAS will be able to monitor the cosmic ray low energy component strongly modulated by solar activity by mean the observation of secondary muons from the interaction between cosmic rays and atmospheric molecules. Its cadence and its angular resolution will allow to study in detail, small variations in cosmic ray anisotropy. These variations can be a key parameter to understand the effect of solar disturbances on the propagation of cosmic ray in the inner heliosphere and, maybe, provide a new tool for space weather analysis. In this work first TRAGALDABAS observations of solar events are shown

  6. Could periodic patterns in human mortality be sensitive to solar activity?

    Directory of Open Access Journals (Sweden)

    R. Díaz-Sandoval

    2011-06-01

    Full Text Available Seasonal behaviour of human diseases have been observed and reported in the literature for years. Although the Sun plays an essential role in the origin and evolution of life on Earth, it is barely taken into account in biological processes for the development of a specific disease. Higher mortality rates occur during the winter season in the Northern Hemisphere for several diseases, particularly diseases of the cardiovascular and respiratory systems. This increment has been associated with seasonal and social causes. However, is there more behind these correlations, in particular in terms of solar variability? In this paper we attempt to make a first step towards answering this question. A detailed wavelet analysis of periodicities for diseases from England and Wales seem to reveal that mortality periodicities (3 days to half a year could be due to the Earth's position around the Sun. Moreover, crosswavelet and wavelet coherence analysis show common features between medical diseases and solar proxies around solar maximum activity suggesting that this relation, if any, has to be searched in times of high solar activity.

  7. Surface magnetic fields during the solar activity cycle

    Science.gov (United States)

    Howard, R.; Labonte, B. J.

    1981-01-01

    The behavior of the magnetic field of the sun as measured in the Fe I 5250 A line is summarized. A latitudinal distribution of the fields observed over 13.5 yr is presented, and episodic formation of the polar fields (about 6 gauss) from a poleward drift originating at the sunspots is noted. Weak magnetic fields (-2 to +2) reach a maximum two years before the maximum in the average field. The total flux remains constant from minimum to maximum, with strong magnetic flux exhibiting an equatorward drift; both strong and new flux appear mostly around sunspots. The appearance of new flux implies the decay of flux elsewhere on the sun, because of the measured constancy of total flux; total replacement of the surface flux can occur within ten days. Field annihilation is concentrated in the active latitudes, where strong opposite polarity fields occur close together.

  8. High Spatial Resolution Fe XII Observations of Solar Active Regions

    Science.gov (United States)

    Testa, Paola; De Pontieu, Bart; Hansteen, Viggo

    2016-08-01

    We use UV spectral observations of active regions with the Interface Region Imaging Spectrograph (IRIS) to investigate the properties of the coronal Fe xii 1349.4 Å emission at unprecedented high spatial resolution (˜0.33″). We find that by using appropriate observational strategies (i.e., long exposures, lossless compression), Fe xii emission can be studied with IRIS at high spatial and spectral resolution, at least for high-density plasma (e.g., post-flare loops and active region moss). We find that upper transition region (TR; moss) Fe xii emission shows very small average Doppler redshifts ({v}{{D}} ˜ 3 km s‑1) as well as modest non-thermal velocities (with an average of ˜24 km s‑1 and the peak of the distribution at ˜15 km s‑1). The observed distribution of Doppler shifts appears to be compatible with advanced three-dimensional radiative MHD simulations in which impulsive heating is concentrated at the TR footpoints of a hot corona. While the non-thermal broadening of Fe xii 1349.4 Å peaks at similar values as lower resolution simultaneous Hinode Extreme Ultraviolet Imaging Spectrometer (EIS) measurements of Fe xii 195 Å, IRIS observations show a previously undetected tail of increased non-thermal broadening that might be suggestive of the presence of subarcsecond heating events. We find that IRIS and EIS non-thermal line broadening measurements are affected by instrumental effects that can only be removed through careful analysis. Our results also reveal an unexplained discrepancy between observed 195.1/1349.4 Å Fe xii intensity ratios and those predicted by the CHIANTI atomic database.

  9. The persistence of equatorial spread F – an analysis on seasonal, solar activity and geomagnetic activity aspects

    OpenAIRE

    V. Sreeja; Devasia, C. V.; Sudha Ravindran; Sridharan, R.

    2009-01-01

    The persistence (duration) of Equatorial Spread F (ESF), which has significant impact on communication systems, is addressed. Its behavior during different seasons and geomagnetic activity levels under the solar maximum (2001) and minimum (2006) conditions, is reported using the data from the magnetic equatorial location of Trivandrum (8.5° N; 77° E; dip 0.5° N) in India. The study reveals that the persistence of the irregularities can be estimated to a reasonable extent by knowin...

  10. Stellar activity as noise in exoplanet detection I. Methods and application to solar-like stars and activity cycles

    OpenAIRE

    Korhonen, H.; Andersen, J. M.; Piskunov, N.; Hackman, T.; Juncher, D.; Jarvinen, S. P.; Joergensen, U. G.

    2015-01-01

    The detection of exoplanets using any method is prone to confusion due to the intrinsic variability of the host star. We investigate the effect of cool starspots on the detectability of the exoplanets around solar-like stars using the radial velocity method. For investigating this activity-caused "jitter" we calculate synthetic spectra using radiative transfer, known stellar atomic and molecular lines, different surface spot configurations, and an added planetary signal. Here, the methods are...

  11. Estrogens increase expression of bone morphogenetic protein 8b in brown adipose tissue of mice

    OpenAIRE

    Grefhorst, Aldo; van den Beukel, Johanna C; van Houten, E Leonie AF; Steenbergen, Jacobie; Visser, Jenny A.; Themmen, Axel PN

    2015-01-01

    Background In mammals, white adipose tissue (WAT) stores fat and brown adipose tissue (BAT) dissipates fat to produce heat. Several studies showed that females have more active BAT. Members of the bone morphogenetic protein (BMP) and fibroblast growth factor (FGF) families are expressed in BAT and are involved in BAT activity. We hypothesized that differential expression of BMPs and FGFs might contribute to sex differences in BAT activity. Methods We investigated the expression of BMPs and FG...

  12. [The effect of solar activity on lunar changes in cardiovascular mortality].

    Science.gov (United States)

    Sitar, J

    1989-03-31

    After a 9-year follow-up of mortality due to cardiovascular emergencies (a total of 1,437 cases), the author found its frequency to be correlated with the moon phases. There are two maximum and minimum risk periods during lunation; the differences between them have a high statistical significance. The mortality study which registered the cases according to separate periods of maximum solar activity (spots, eruptions, etc.), medium and minimum activity recorded on three individual curves, showed that the maximum and minimum mortality curves were shifting in time phase so that during high solar activity, the minimum mortality was nearer to the new moon and full moon phases, while the maximum death rate approached the first and last lunar quarters; during the medium and low solar activities, the mortality maxima and minima were shifting counterclockwise the moon's orbit round the Earth, i. e. from the Earth's view with the Sun moving more and more to the west. The author offers some probable explanations for this phenomenon, which can help to make a more exact prognosis of critical days for patients with cardiovascular disorder. In addition, these findings can contribute to basic helio-geophysical research.

  13. The mutual relations between solar activity, thunderstorms and Vertical Gradients of Electro Atmospheric Potential

    Directory of Open Access Journals (Sweden)

    C. SCUTERINI

    1974-06-01

    Full Text Available The mutual relations are established between solar activity expressed in Wolf numbers, the vertical gradient of electro atmospheric potential measured in the Geophysical Observatory of Macerata, the geomagnetic field measured in the Observatory of the nearby town of Aquila, and the thunderstorm activity over the whole of the Italian territory. The mutual relationship between the vertical gradient, the geomagnetic field and the frequency of thunderstorms and solar activity are clearly evident. In particular the antiparallel behavior between solar activity and the vertical gradient, as well as thunderstorm frequency lias been made clear by observations carried out over a period of 22 years. The results obtained from a study of the geomagnetic field and the vertical gradients agree with the research on a much shorter period of time recently carried out by Rao. Observational values have been treated as statistical elements (2 to enable smoother readings, without however moving the maximums and mínimums of the phenomenon in the given period of time so that parallelisms and antiparallelisms resulting from theso observational values are kept. The average values of the vertical gradients of electro atmospheric potential were derived for electrically calm days. From these 5 days per month were chosen by probability method; the averages were then calculated on these five days chosen stochastically. We considered an electrically calm day one in which the sky was absolutely clear, with no thunderstorms either in the vicinity or far from the observatory, with neither fog or haze present.

  14. Variations of 14C around AD 775 and AD 1795 - due to solar activity

    Science.gov (United States)

    Neuhäuser, R.; Neuhäuser, D. L.

    2015-12-01

    The motivation for our study is the disputed cause for the strong variation of 14C around AD 775. Our method is to compare the 14C variation around AD 775 with other periods of strong variability. Our results are: (a) We see three periods, where 14C varied over 200 yr in a special way showing a certain pattern of strong secular variation: after a Grand Minimum with strongly increasing 14C, there is a series of strong short-term drop(s), rise(s), and again drop(s) within 60 yr, ending up to 200 yr after the start of the Grand Minimum. These three periods include the strong rises around BC 671, AD 775, and AD 1795. (b) We show with several solar activity proxies (radioisotopes, sunspots, and aurorae) for the AD 770s and 1790s that such intense rapid 14C increases can be explained by strong rapid decreases in solar activity and, hence, wind, so that the decrease in solar modulation potential leads to an increase in radioisotope production. (c) The strong rises around AD 775 and 1795 are due to three effects, (i) very strong activity in the previous cycles (i.e. very low 14C level), (ii) the declining phase of a very strong Schwabe cycle, and (iii) a phase of very weak activity after the strong 14C rise - very short and/or weak cycle(s) like the suddenly starting Dalton minimum. (d) Furthermore, we can show that the strong change at AD 1795 happened after a pair of two packages of four Schwabe cycles with certain hemispheric leadership (each package consists of two Gnevyshev-Ohl pairs, respectively two Hale-Babcock pairs). We show with several additional arguments that the rise around AD 775 was not that special. We conclude that such large, short-term rises in 14C (around BC 671, AD 775, and 1795) do not need to be explained by highly unlikely solar super-flares nor other rare events, but by extra-solar cosmic rays modulated due to solar activity variations.

  15. Heartbeat Of the Sun Derived With PCA From Solar Background Magnetic Field And Its Use For Prediction Of the Solar Activity

    Science.gov (United States)

    Zharkova, V. V.; Shepherd, S.; Popova, H.; Zharkov, S.

    2014-12-01

    We report the principal components derived from the solar background magnetic field (SBMF in cycles 21-23) in a form of pairs of magnetic waves travelling with a phase shift from one hemisphere to another and analysed with the symbolic regression technique using Hamiltonian principles. This analysis allowed us to uncover the underlying mathematical laws governing these complex waves in the solar background magnetic field and to extrapolate these PCs to the cycles 24-26. The PCs predicted for cycle 24 fit very closely (with accuracy better than 98%) the PCs derived from the SBMF observations. This approach predicts a strong reduction of the solar background magnetic field in cycles 25 and 26 and, thus, a reduction of the resulting solar activity. This decrease is accompanied by an increasing phase shift between the two predicted principal components (magnetic waves) in cycle 25 leading to their full separation into the opposite hemispheres in cycle 26. The derived mathematical laws in PCs are also used to predict the dynamics of solar magnetic waves on larger temporal scales of centuries. The derived variations of PCs in SBMF are probed by the modified two layers Parker's dynamo model allowing us to predict on the similar temporal scale the evolution of the solar activity which reveal a remarkable close fit to the observations.

  16. Dependence of the Sunspot-group Size on the Level of Solar Activity and its Influence on the Calibration of Solar Observers

    CERN Document Server

    Usoskin, I G; Chatzistergos, T

    2016-01-01

    The distribution of the sunspot group size (area) and its dependence on the level of solar activity is studied. It is shown that the fraction of small groups is not constant but decreases with the level of solar activity so that high solar activity is largely defined by big groups. We study the possible influence of solar activity on the ability of a realistic observer to see and report the daily number of sunspot groups. It is shown that the relation between the number of sunspot groups as seen by different observers with different observational acuity thresholds is strongly non-linear and cannot be approximated by the traditionally used linear scaling ($k-$factors). The observational acuity threshold [$A_{\\rm th}$] is considered to quantify the quality of each observer, instead of the traditional relative $k-$factor. A nonlinear $c-$factor based on $A_{\\rm th}$ is proposed, which can be used to correct each observer to the reference conditions. The method is tested on a pair of principal solar observers, Wo...

  17. Day-Night Asymmetries in Active-Sterile Solar Neutrino Oscillations

    CERN Document Server

    Long, H W; Giunti, C

    2013-01-01

    Day-night asymmetries in active-sterile solar neutrino oscillations are discussed in the general $3+N_{s}$ mixing framework with three active and N_s sterile neutrinos. Analytical expressions of the probability of neutrino flavor transitions in the Earth in the perturbative approximation and in the slab approximation are presented and the effects of active-sterile mixing and of the CP-violating phases are discussed. The accuracy of the analytical approximations and the properties of the day-night asymmetries are illustrated numerically in the 3+1 neutrino mixing framework.

  18. Evidence for the impact of stellar activity on the detectability of solar-like oscillations observed by Kepler

    NARCIS (Netherlands)

    W.J. Chaplin; T.R. Bedding; A. Bonanno; A.M. Broomhall; R.A. Garcia; S. Hekker; D. Huber; G.A. Verner; S. Basu; Y. Elsworth; G. Houdek; S. Mathur; B. Mosser; R. New; I.R. Stevens; T. Appourchaux; C. Karoff; T.S. Metcalfe; J. Molenda-Zakowicz; M.J.P.F.G. Monteiro; M.J. Thompson; J. Christensen-Dalsgaard; R.L. Gilliland; S.D. Kawaler; H. Kjeldsen; J. Ballot; O. Benomar; E. Corsaro; T.L. Campante; P. Gaulme; S.J. Hale; R. Handberg; E. Jarvis; C. Regulo; I.W. Roxburgh; D. Salabert; D. Stello; F. Mullally; J. Li; W. Wohler

    2011-01-01

    We use photometric observations of solar-type stars, made by the NASA Kepler Mission, to conduct a statistical study of the impact of stellar surface activity on the detectability of solar-like oscillations. We find that the number of stars with detected oscillations falls significantly with increas

  19. Solar Indices

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  20. Dependence of regular background noise of VLF radiation and thunder-storm activity on solar wind proton density

    International Nuclear Information System (INIS)

    Correlation of the intensity of slowly changing regular background noise within 9.7 kHz frequency in Yakutsk (L = 3) and of the solar wind density protons was determined. This result explains the reverse dependence of the intensity of the regular background noise on the solar activity, 27-day frequency, increase before and following geomagnetic storms, absence of relation with Kp index of geomagnetic activity. Conclusion is made that growth of density of the solar wind protons results in increase of the regular background noise and thunderstorm activity

  1. Evidence for the impact of stellar activity on the detectability of solar-like oscillations observed by Kepler

    CERN Document Server

    Chaplin, W J; Bonanno, A; Broomhall, A -M; Garcia, R A; Hekker, S; Huber, D; Verner, G A; Basu, S; Elsworth, Y; Houdek, G; Mathur, S; Mosser, B; New, R; Stevens, I R; Appourchaux, T; Karoff, C; Metcalfe, T S; Molenda-Zakowicz, J; Monteiro, M J P F G; Thompson, M J; Christensen-Dalsgaard, J; Gilliland, R L; Kawaler, S D; Kjeldsen, H; Ballot, J; Benomar, O; Corsaro, E; Campante, T L; Gaulme, P; Hale, S J; Handberg, R; Jarvis, E; Regulo, C; Roxburgh, I W; Salabert, D; Stello, D; Mullally, F; Li, J; Wohler, W

    2011-01-01

    We use photometric observations of solar-type stars, made by the NASA Kepler Mission, to conduct a statistical study of the impact of stellar surface activity on the detectability of solar-like oscillations. We find that the number of stars with detected oscillations fall significantly with increasing levels of activity. The results present strong evidence for the impact of magnetic activity on the properties of near-surface convection in the stars, which appears to inhibit the amplitudes of the stochastically excited, intrinsically damped solar-like oscillations.

  2. Forecasting the Solar Drivers of Severe Space Weather from Active-Region Magnetograms

    Science.gov (United States)

    Falconer, David A.; Moore, Ronald L.; Barghouty, Abdulnasser F.; Khazanov, Igor

    2012-01-01

    Solar drivers of severe space weather can be predicted from line-of-sight magnetograms, via a free-energy proxy measured from the neutral lines. This can be done in near real time. In addition to depending strongly on the free magnetic energy, an active region's chance of having a major eruption depends strongly on other aspects of the evolving magnetic field (e.g., its complexity and flux emergence).

  3. Meridional flow velocities on solar-like stars with known activity cycles

    CERN Document Server

    Baklanova, Dilyara

    2014-01-01

    The direct measurements of the meridional flow velocities on stars are impossible today. To evaluate the meridional flow velocities on solar-like stars with stable activity periods, we supposed that during the stellar Hale cycle the matter on surfaces of stars passes the meridional way equivalent to $2\\pi R_\\star$. We present here the dependence of the mean meridional flow velocity on Rossby number, which is an effective parameter of the stellar magnetic dynamo.

  4. The problem of the periodicity of the epidemic process. [solar activity effects on diphtheria outbreak

    Science.gov (United States)

    Yagodinskiy, V. N.; Konovalenko, Z. P.; Druzhinin, I. P.

    1974-01-01

    An analysis of data from epidemics makes it possible to determine their principal causes, governed by environmental factors (solar activity, etc.) The results of an analysis of the periodicity of the epidemic process in the case of diphtheria are presented which was conducted with the aid of autocorrelation and spectral methods of analysis. Numerical data (annual figures) are used on the dynamics of diphtheria in 50 regions (points) with a total duration of 2,777 years.

  5. Solar magnetic activity cycles, coronal potential field models and eruption rates

    Science.gov (United States)

    Petrie, Gordon

    2013-07-01

    We study the evolution of the observed photospheric magnetic field and the modeled global coronal magnetic field during the past 3 1/2 solar activity cycles observed since the mid-1970s. We use synoptic magnetograms and extrapolated potential-field models based on longitudinal full-disk photospheric magnetograms from the NSO's three magnetographs at Kitt Peak, the Synoptic Optical Long-term Investigations of the Sun (SOLIS) vector spectro-magnetograph (VSM), the spectro-magnetograph and the 512-channel magnetograph instruments, and from the U. Stanford's Wilcox Solar Observatory. The associated multipole field components are used to study the dominant length scales and symmetries of the coronal field. Of the axisymmetric multipoles, only the dipole and octupole follow the poles whereas the higher orders follow the activity cycle. All non-axisymmetric multipole strengths are well correlated with the activity cycle. The axial dipole and octupole are the largest contributors to the global field except while the polar fields are reversing. This influence of the polar fields extends to modulating eruption rates. According to the Computer Aided CME Tracking (CACTus), Solar Eruptive Event Detection System (SEEDS), and Nobeyama radioheliograph prominence eruption catalogs, the rate of solar eruptions is found to be systematically higher for active years between 2003-2012 than for those between 1997-2002. This behavior appears to be connected with the weakness of the late-cycle 23 polar fields as suggested by Luhmann. We see evidence that the process of cycle 24 field reversal is well advanced at both poles.

  6. Non-neutralized Electric Current Patterns in Solar Active Regions: Origin of the Shear-Generating Lorentz Force

    CERN Document Server

    Georgoulis, Manolis K; Mikic, Zoran

    2012-01-01

    Using solar vector magnetograms of the highest available spatial resolution and signal-to-noise ratio we perform a detailed study of electric current patterns in two solar active regions: a flaring/eruptive, and a flare-quiet one. We aim to determine whether active regions inject non-neutralized (net) electric currents in the solar atmosphere, responding to a debate initiated nearly two decades ago that remains inconclusive. We find that well-formed, intense magnetic polarity inversion lines (PILs) within active regions are the only photospheric magnetic structures that support significant net current. More intense PILs seem to imply stronger non-neutralized current patterns per polarity. This finding revises previous works that claim frequent injections of intense non-neutralized currents by most active regions appearing in the solar disk but also works that altogether rule out injection of non-neutralized currents. In agreement with previous studies, we also find that magnetically isolated active regions re...

  7. A correction factor to f-chart predictions of active solar fraction in active-passive heating systems

    Science.gov (United States)

    Evans, B. L.; Beckman, W. A.; Duffie, J. A.; Mitchell, J. W.; Klein, S. A.

    1983-11-01

    The extent to which a passive system degrades the performance of an active solar space heating system was investigated, and a correction factor to account for these interactions was developed. The transient system simulation program TRNSYS is used to simulate the hour-by-hour performance of combined active-passive (hybrid) space heating systems in order to compare the active system performance with simplified design method predictions. The TRNSYS simulations were compared to results obtained using the simplified design calculations of the f-Chart method. Comparisons of TRNSYS and f-Chart were used to establish the accuracy of the f-Charts for active systems. A correlation was then developed to correct the monthly loads input into the f-Chart method to account for controller deadbands in both hybrid and active only buildings. A general correction factor was generated to be applied to the f-Chart method to produce more accurate and useful results for hybrid systems.

  8. Evidence of Energy Supply by Active-Region Spicules to the Solar Atmosphere

    Science.gov (United States)

    Zeighami, S.; Ahangarzadeh Maralani, A. R.; Tavabi, E.; Ajabshirizadeh, A.

    2016-03-01

    We investigate the role of active-region spicules in the mass balance of the solar wind and energy supply in heating the solar atmosphere. We use high-cadence observations from the Solar Optical Telescope (SOT) onboard the Hinode satellite in the Ca ii H-line filter obtained on 26 January 2007. The observational technique provides the high spatio-temporal resolution required to detect fine structures such as spicules. We apply a Fourier power spectrum and wavelet analysis to Hinode/SOT time series of an active-region data set to explore the existence of coherent intensity oscillations. Coherent waves could be evidence of energy transport that serves to heat the solar atmosphere. Using time series, we measure the phase difference between two intensity profiles obtained at two different heights, which gives information about the phase difference between oscillations at those heights as a function of frequency. The results of a fast Fourier transform (FFT) show peaks in the power spectrum at frequencies in the range from 2 to 8 mHz at four different heights (above the limb), while the wavelet analysis indicates dominant frequencies similar to those of the Fourier power spectrum results. A coherency study indicates coherent oscillations at about 5.5 mHz (3 min). We measure mean phase speeds in the range 250-425 km s^{-1} increasing with height. The energy flux of these waves is estimated to be F = 1.8 × 106-11.2 × 106 erg cm^{-2} s^{-1} or 1.8-11.2 kW m^{-2}, which indicates that they are sufficiently energetic to accelerate the solar wind and heat the corona to temperatures of several million degrees. We compute the the mass flux carried by spicules of 3 × 10^{-10}-2 × 10^{-9} g cm^{-2} s^{-1}, which is 10-60 times higher than the mass that is carried away from the corona because of the solar wind (about 3 × 10^{-11} g cm^{-2} s^{-1}). Therefore, our results indicate that about 0.02-0.1 of the spicule mass is ejected from the corona, while the remainder reverts

  9. Forecast daily indices of solar activity, F10.7, using support vector regression method

    Institute of Scientific and Technical Information of China (English)

    Cong Huang; Dan-Dan Liu; Jing-Song Wang

    2009-01-01

    The 10.7cm solar radio flux (F10.7), the value of the solar radio emission flux density at a wavelength of 10.7cm, is a useful index of solar activity as a proxy for solar extreme ultraviolet radiation. It is meaningful and important to predict F10.7 values accurately for both long-term (months-years) and short-term (days) forecasting, which are often used as inputs in space weather models. This study applies a novel neural network technique, support vector regression (SVR), to forecasting daily values of F10.7. The aim of this study is to examine the feasibility of SVR in short-term F10.7 forecasting. The approach, based on SVR, reduces the dimension of feature space in the training process by using a kernel-based learning algorithm. Thus, the complexity of the calculation becomes lower and a small amount of training data will be sufficient. The time series of F10.7 from 2002 to 2006 are employed as the data sets. The performance of the approach is estimated by calculating the norm mean square error and mean absolute percentage error. It is shown that our approach can perform well by using fewer training data points than the traditional neural network.

  10. Temporal and energy behavior of cosmic ray fluxes in the periods of low solar activity

    CERN Document Server

    Bazilevskaya, G A; Krainev, M B; Makhmutov, V S; Svirzhevskaya, A K; Svirzhevsky, N S

    2014-01-01

    Modulation of galactic cosmic ray intensity is governed by several mechanisms including diffusion, convection, adiabatic energy losses and drift. Relative roles of these factors change in the course of an 11-year solar cycle. That can result in the changes in the energy dependence of the 11-year cosmic ray modulation. The minimum between the solar cycles 23 and 24 was extremely deep and long-lasting which led to the record high cosmic ray fluxes low-energy particles dominating. This was a signature of unusually soft energy spectrum of the cosmic rays. In this work we examine the energy dependence of the 11-year modulation during the last three solar cycles and argue that a soft energy spectrum was observed in the minimum of each cycle however only for particles below of energy around 10 GeV. From mid 1980s the energy dependence of cosmic rays became softer from minimum to minimum of solar activity. The work is based on the cosmic ray data of the spacecraft, balloon-borne and the ground-based observations.

  11. Correlation study of some solar activity indices in the cycles 21 - 23

    CERN Document Server

    Bruevich, E A

    2013-01-01

    The correlation coefficients of the linear regression of six solar indices versus F10,7 were analyzed in solar cycles 21, 22 and 23. We also analyzed the interconnection between these indices and F10,7 with help of the approximation by the polynomials of second order. The indices we've studied in this paper are: Wolf numbers - W, 530,3 nm coronal line flux - F530, the total solar irradiance - TSI, Mg II UV-index 280 nm core-to-wing ratio, Flare Index - FI and Counts of flares. In the most cases the regressions of these solar indices versus F10,7 are close to linear except the moments of time near to the minimums and maximums of 11-year activity. For the linear regressions we found that the values of correlation coefficients Kcorr(t) for the indices versus F10,7 and W show the cyclic variations with periods approximately equal to the to half length of 11-year cycle - 5,5 years approximately.

  12. MAGNETIC HELICITY TRANSPORTED BY FLUX EMERGENCE AND SHUFFLING MOTIONS IN SOLAR ACTIVE REGION NOAA 10930

    International Nuclear Information System (INIS)

    We present a new methodology which can determine magnetic helicity transport by the passage of helical magnetic field lines from the sub-photosphere and the shuffling motions of footpoints of preexisting coronal field lines separately. It is well known that only the velocity component, which is perpendicular to the magnetic field (υB), has contributed to the helicity accumulation. Here, we demonstrate that υB can be deduced from a horizontal motion and vector magnetograms under a simple relation of υt = μt + (υn/Bn ) Bt, as suggested by Démoulin and Berger. Then after dividing υB into two components, as one is tangential and the other is normal to the solar surface, we can determine both terms of helicity transport. Active region (AR) NOAA 10930 is analyzed as an example during its solar disk center passage by using data obtained by the Spectropolarimeter and the Narrowband Filter Imager of Solar Optical Telescope on board Hinode. We find that in our calculation the helicity injection by flux emergence and shuffling motions have the same sign. During the period we studied, the main contribution of helicity accumulation comes from the flux emergence effect, while the dynamic transient evolution comes from the shuffling motions effect. Our observational results further indicate that for this AR the apparent rotational motion in the following sunspot is the real shuffling motions on the solar surface.

  13. Periodic and quiescent solar activity effects in the low ionosphere, using SAVNET data

    Science.gov (United States)

    Bertoni, F. C. P.; Raulin, J.-P.; Gavilan, H. R.; Kaufmann, P.; Raymundo, T. E.

    2010-10-01

    Important results have been acquired using the measurements of VLF amplitude and phase signals from the South America VLF Network (SAVNET) stations. This network is an international project coordinated by CRAAM, Brazil in cooperation with Peru and Argentina. It started operating in April 2006, and now counts on eight stations (Atibaia, Palmas, Santa Maria and Estaça~o Antártica Comandante Ferraz in Brazil; Piura, Punta-Lobos and Ica, in Peru; CASLEO, in Argentina). Researches, through the last decades, have demonstrated the versatility of the VLF technique for many scientific and technological purposes. In this work, we summarize some recent results using SAVNET data base. We have obtained daily maximum diurnal amplitude time series that exhibited behavior patterns in different time scales: 1) 1ong term variations indicating the solar activity level control of the low ionosphere; 2) characteristic periods of alternated slow and fast variations, the former being related to solar illumination conditions, and the latter that have been associated with the winter anomaly at high latitudes; 3) 27-days period related to the solar rotation and consequently associated to the solar Lyman-α radiation flux variations, reinforcing earlier theories about the importance of this spectral line for the D-region formation. Finally, we conclude presenting preliminary results of simulation using LWPC, which showed very good agreement at times of observed modal amplitude minima for a given VLF propagation path.

  14. Solar irradiance observed at Summit, Greenland: Possible links to magnetic activity on short timescales

    Science.gov (United States)

    Frederick, John E.

    2016-09-01

    Measurements of ground-level visible sunlight (400-600 nm) from Summit, Greenland over the period August 2004 through October 2014 define the attenuation provided by cloudiness, including its dependence on solar elevation and season. The long-term mean cloud-attenuation increases with increasing solar zenith angle, consistent with radiative transfer calculations which treat a cloud as a plane parallel layer with a strong bias toward forward scattering and an albedo for diffuse radiation near 0.1. The ratio of measured irradiance to clear-sky irradiance for solar zenith angles greater than 66° has a small, but statistically significant, positive correlation with the previous day's magnetic activity as measured by the daily Ap index, but no clear relationship exists between the irradiance ratio and daily changes in the ground-level neutron flux measured at Thule over the time frame considered. A high value of Ap on one day tends to be followed by a day whose ground-level solar irradiance is slightly greater than would occur otherwise. In an average sense, the visible irradiance following a day with Ap>16 exceeds that following a day with Ap≤16 by 1.2-1.3% with a 95% confidence range of approximately ±1.0%. The results are broadly compatible with small changes in atmospheric scattering following magnetic disturbances.

  15. On the Resolution of the Azimuthal Ambiguity in Vector Magnetograms of Solar Active Regions

    Science.gov (United States)

    Georgoulis, Manolis K.; LaBonte, Barry J.; Metcalf, Thomas R.

    2004-02-01

    We introduce a ``structure minimization'' technique to resolve the azimuthal ambiguity of 180°, intrinsic in solar vector magnetic field measurements. We resolve the 180° ambiguity by minimizing the inhomogeneities of the magnetic field strength perpendicular to the magnetic field vector. This relates to a minimization of the sheath currents that envelope the solar magnetic flux tubes, thus allowing for more space-filling and less complex magnetic fields. Structure minimization proceeds in two steps: First, it derives a local solution analytically, by means of a structure minimization function. Second, it reaches a global solution numerically, assuming smoothness of the magnetic field vector. Structure minimization (i) is disentangled from any use of potential or linear force-free extrapolations and (ii) eliminates pixel-to-pixel dependencies, thus reducing exponentially the required computations. We apply structure minimization to four active regions, located at various distances from disk center. The minimum structure solution for each case is compared with the ``minimum energy'' solution obtained by the slower simulated annealing algorithm. We find correlation coefficients ranging from significant to excellent. Moreover, structure minimization provides an ambiguity-free vertical gradient of the magnetic field strength that reveals the variation of the magnetic field with height. The simplicity and speed of the method allow a near real-time processing of solar vector magnetograms. This task was not possible in the past and may be of interest to both existing and future solar missions and ground-based magnetographs.

  16. On the neglect of causality principles in solar activity - climate relations.

    Science.gov (United States)

    Stauning, Peter

    2010-05-01

    Many research papers have claimed to demonstrate close relations between solar activity and the terrestrial climate. In most cases the relations have been based on comparisons between time series of solar activity parameters, for instance sunspot numbers, and climate parameters, for instance terrestrial temperatures. However, many of the reported close relations are based on skilfully manipulated data and neglect of basic causality principles. For cause-effect relations to be reliably established, the cause must obviously happen prior to the effects. Thus it is problematic to use, for instance, running averages of parameters if the result depends too much on posterior elements of the causative time series or precursory elements of the effects. Even more neglected are the causality principles for cause-effect relations with a strongly varying source function. Damping of source variations by smoothing data handling introduces additional implied delays, which should be considered in the judgement of apparent correlations between processed time series of cause and effect parameters. The presentation will discuss examples of frequently quoted solar activity-climate relations (e.g., by Reid, Friis-Christensen, and Svensmark), which violate basic causality principles.

  17. Dynamics of ozone layer under Serbia and solar activity: Previous statement

    Directory of Open Access Journals (Sweden)

    Ducić Vladan

    2008-01-01

    Full Text Available The aim of this paper is to identify ozone layer dynamics under Serbian area, as well as possible relations of change in stratospheric ozone concentration with some parameters of solar activity. During the period 1979-2005, the statistical decrease of ozone concentration was noticed under Serbian territory cumulatively for 24.5 DU (7.2%, apropos 9.4 DU (2.8% by decade. These changes are consistent with the changes in surrounding countries. From absolute minimum 1993, flexible trend of ozone layer pentad values validate hypotheses of its recovery. Correspondence of ozone thickness extreme period with Wolf's number and with the greatest volcanic eruptions shows that interannual variations of stratospheric ozone concentration are still in the function of natural factors above all, as are solar and volcanic activities. Investigation of larger number solar activity parameters shows statistically important antiphase synchronous between the number of polar faculae on the Sun and stratospheric ozone dynamics under Serbia. Respecting that relation between these two features until now isn't depicted, some possible causal mechanisms are proposed.

  18. Self-assembly Columnar Structure in Active Layer of Bulk Heterojunction Solar Cell

    Science.gov (United States)

    Pan, Cheng; Segui, Jennifer; Yu, Yingjie; Li, Hongfei; Akgun, Bulent; Satijia, Sushil. K.; Gersappe, Dilip; Nam, Chang-Yong; Rafailovich, Miriam

    2012-02-01

    Bulk Heterojunction (BHJ) polymer solar cells are an area of intense interest due to their flexibility and relatively low cost. However, due to the disordered inner structure in active layer, the power conversion efficiency of BHJ solar cell is relatively low. Our research provides the method to produce ordered self-assembly columnar structure within active layer of bulk heterojunction (BHJ) solar cell by introducing polystyrene (PS) into the active layer. The blend thin film of polystyrene, poly (3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) at different ratio are spin coated on substrate and annealed in vacuum oven for certain time. Atomic force microscopy (AFM) images show uniform phase segregation on the surface of polymer blend thin film and highly ordered columnar structure is then proven by etching the film with ion sputtering. TEM cross-section technology is also used to investigate the column structure. Neutron reflectometry was taken to establish the confinement of PCBM at the interface of PS and P3HT. The different morphological structures formed via phase segregation will be correlated with the performance of the PEV cells to be fabricated at the BNL-CFN.

  19. MAGNETIC NONPOTENTIALITY IN PHOTOSPHERIC ACTIVE REGIONS AS A PREDICTOR OF SOLAR FLARES

    International Nuclear Information System (INIS)

    Based on several magnetic nonpotentiality parameters obtained from the vector photospheric active region magnetograms obtained with the Solar Magnetic Field Telescope at the Huairou Solar Observing Station over two solar cycles, a machine learning model has been constructed to predict the occurrence of flares in the corresponding active region within a certain time window. The Support Vector Classifier, a widely used general classifier, is applied to build and test the prediction models. Several classical verification measures are adopted to assess the quality of the predictions. We investigate different flare levels within various time windows, and thus it is possible to estimate the rough classes and erupting times of flares for particular active regions. Several combinations of predictors have been tested in the experiments. The True Skill Statistics are higher than 0.36 in 97% of cases and the Heidke Skill Scores range from 0.23 to 0.48. The predictors derived from longitudinal magnetic fields do perform well, however, they are less sensitive in predicting large flares. Employing the nonpotentiality predictors from vector fields improves the performance of predicting large flares of magnitude ≥M5.0 and ≥X1.0

  20. Modelling the effects of solar activity onto the Greek national electric grid

    CERN Document Server

    Zois, Ioannis P

    2013-01-01

    We study both the short term and long term effects of solar activity on the large transformers (150kV and 400kV) of the Greek national electric grid. We use data analysis and various analytic and statistical methods and models. Contrary to the common belief in PPC Greece, we see that there are considerable both short term (immediate) and long term effects of solar activity onto large transformers in a mid-latitude country like Greece. Our results can be summarized as follows: For the short term effects: During 1989-2010 there were 43 stormy days (namely days with for example Ap larger or equal to 100) and we had 19 failures occurring during a stormy day plus or minus 3 days and 51 failures occurring during a stormy day plus or minus 7 days. All these failures can be directly related to Geomagnetically Induced Currents (GICs). Explicit cases are presented. For the long term effects we have two main results: The maximum number of transformer failures occur 3-4 years after the maximum of solar activity. There is...

  1. Life-style and genome structure of marine Pseudoalteromonas siphovirus B8b isolated from the northwestern Mediterranean Sea.

    Directory of Open Access Journals (Sweden)

    Elena Lara

    Full Text Available Marine viruses (phages alter bacterial diversity and evolution with impacts on marine biogeochemical cycles, and yet few well-developed model systems limit opportunities for hypothesis testing. Here we isolate phage B8b from the Mediterranean Sea using Pseudoalteromonas sp. QC-44 as a host and characterize it using myriad techniques. Morphologically, phage B8b was classified as a member of the Siphoviridae family. One-step growth analyses showed that this siphovirus had a latent period of 70 min and released 172 new viral particles per cell. Host range analysis against 89 bacterial host strains revealed that phage B8b infected 3 Pseudoalteromonas strains (52 tested, >99.9% 16S rRNA gene nucleotide identity and 1 non-Pseudoaltermonas strain belonging to Alteromonas sp. (37 strains from 6 genera tested, which helps bound the phylogenetic distance possible in a phage-mediated horizontal gene transfer event. The Pseudoalteromonas phage B8b genome size was 42.7 kb, with clear structural and replication modules where the former were delineated leveraging identification of 16 structural genes by virion structural proteomics, only 4 of which had any similarity to known structural proteins. In nature, this phage was common in coastal marine environments in both photic and aphotic layers (found in 26.5% of available viral metagenomes, but not abundant in any sample (average per sample abundance was 0.65% of the reads. Together these data improve our understanding of siphoviruses in nature, and provide foundational information for a new 'rare virosphere' phage-host model system.

  2. Long-term variations in the north-south asymmetry of solar activity and solar cycle prediction, III: prediction for the amplitude of solar cycle 25

    CERN Document Server

    Javaraiah, J

    2014-01-01

    The combined Greenwich and Solar Optical Observing Network (SOON) sunspot group data during 1874-2013 are analyzed and studied the relatively long-term variations in the annual sums of the areas of sunspot groups in 0-10 deg, 10-20 deg, and 20-30 deg latitude intervals of the Sun's northern and southern hemispheres. The variations in the corresponding north-south differences are also studied. Long periodicities in these parameters are determined from the fast Fourier transform (FFT), maximum entropy method (MEM), and Morlet wavelet analysis. It is found that in the difference between the sums of the areas of the sunspot groups in 0-10 deg latitude intervals of northern and southern hemispheres, there exist ~9-year periodicity during the high activity period 1940-1980 and ~12-year periodicity during the low activity period 1890-1939. It is also found that there exists a high correlation (85% from 128 data points) between the sum of the areas of the sunspot groups in 0-10 deg latitude interval of the southern h...

  3. Solar Indices - Solar Radio Flux

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  4. Determination of S17 from 8B breakup by means of the method of continuum-discretized coupled-channels

    CERN Document Server

    Ogata, K; Iseri, Y; Kamimura, M; Yahiro, M

    2006-01-01

    The astrophysical factor for 7Be(p,\\gamma)8B at zero energy, S17(0), is determined from 208Pb(8B, p+7Be)208Pb at 52 MeV/nucleon. We use the method of continuum-discretized coupled-channels (CDCC) to accurately calculate the 8B breakup cross section, taking account of nuclear breakup, Coulomb dipole and quadrupole transitions and higher-order processes. The asymptotic normalization coefficient (ANC) method is used to extract S17(0) from the calculated breakup-cross-section. The main result of the present paper is S17(0)=21.4 +2.0/-1.9 eV b. This result has +4.5%/-2.6% theoretical error, which comes from ambiguity of the p-7Be scattering length, and 8.4% systematic experimental error. CDCC calculation with one-step Coulomb dipole transitions results in a smaller value of S17(0), 20.2 eV b, which is almost consistent with the extracted value with the first-order perturbation theory: 18.9 eV b. Inclusion of Coulomb quadrupole transitions in one-step CDCC calculation is found to give further reduction of S17(0), i...

  5. Activity of processes on the visible surface of planets of Solar system

    Science.gov (United States)

    Vidmachenko, A. P.

    2016-05-01

    According to modern concepts bodies of the solar system formed from a single cloud of gas and dust. Calculations show that in the protoplanetary nebula where the temperature is lowered to 1600 K - appeared the first type of metal (aluminum and titanium) and metal oxides in the form of dust particles. With further decreasing temperature of the nebula to 1400 K - appeared also dust of iron and iron-nikel alloy; at 1300 K - appear solid silicates; magnesium minerals formed at T 1200 K. These components are material for the formation of basaltic rocks. At temperatures T 300 K begins to form water molecules. At 100-200 K in a remote part of the nebula - ammonia, methane and their ice are formed. In the outer part of Solar system this ices are now preserved in comet nuclei and in the icy satellites of giant planets. During T 400 million years after the formation of the Sun, at first - from dust component of the protoplanetary cloud was formed many intermediate bodies with the size of hundreds kilometers. Their gravitational interaction was reinforced in process of their grow. The bodies, which were growing fastest, they became the embryos of the future planets. All bodies of the solar system in different degrees show manifestations of different types of activity processes on the surface or at the level of the visible clouds. This activity depends on the distance of a particular body from the Sun, surface chemical composition, physical conditions at the surface and so on. The farther away from the Sun is the object, the temperature of its visible surface is lower, and by that more interesting is the set of processes, of chemical and physical transformations that there is possible to register. The surface of each planets of Solar system is very active in a variety of set temperature and chemical composition

  6. Solar flare injection as analog of active experiment in an ionosphere

    Science.gov (United States)

    Ruzhin, Yu.; Sinelnikov, V.; Shagimuratov, I.; Kanonidi, Kh.

    At realization of active experiment are always known precisely both localization and amplitude of an entered disturbance (whether at a beam particles or mass injection, whether at heating of an ionosphere by EM wave radiation). The nuclear explosion in atmosphere was the maiden active experiment, but the action source was instant and very multicomponent (shock wave, energetic particles and EM radiation with a broadband spectrum) or, in other words, effect was too complex. The solar flare renders mixed action on near Earth space too, but it is clear separated in time (the short pulse of electromagnetic radiation reaches the Earth behind some minutes, then the solar cosmic rays and after one day (or two) the high-velocity flow of plasma arrive) and space of each components action: ionosphere, polar cap or magnitosphere. Analysis of form and dynamics of the X-ray pulse radiation (data of GOES satellites) from a solar flare (class X17) 28.10.03 shows, that there are all basis to consider it as reference source for active experiment in an ionosphere. For this short pulse of EM radiation the investigation of disturbances (SFE, SID or Crochet) of ionosphere Sq currents system and dynamics of the integral plasma contents (or TEC, the data of GPS constellation) in an ionosphere for a network of Europe midlatitude stations (IGS and INTERMAGNET) are conducted. The availability of a maximum gradient (up to 15 A/km) of loop currents and sharp increase in TEC on a narrow range of Sun zenith angles (Z0=60°-75°) is shown. The observed spatial dependence of intensity of such localized disturbance generated in an ionosphere by short EM pulse from a solar flare is discussed.

  7. Turbulent Pumping of Magnetic Flux Reduces Solar Cycle Memory and thus Impacts Predictability of the Sun's Activity

    CERN Document Server

    Karak, Bidya Binay

    2012-01-01

    Prediction of the Sun's magnetic activity is important because of its effect on space environmental conditions and climate. However, recent efforts to predict the amplitude of the solar cycle have resulted in diverging forecasts with no consensus. It is understood that the dynamical memory of the solar dynamo mechanism governs predictability and this memory is different for advection- and diffusion-dominated solar convection zones. By utilizing stochastically forced, kinematic dynamo simulations, we demonstrate that the inclusion of downward turbulent pumping of magnetic flux reduces the memory of both advection- and diffusion-dominated solar dynamos to only one cycle; stronger pumping degrades this memory further. We conclude that reliable predictions for the maximum of solar activity can be made only at the preceding minimum and for more accurate predictions, sequential data assimilation would be necessary in forecasting models to account for the Sun's short memory.

  8. Estrogens increase expression of bone morphogenetic protein 8b in brown adipose tissue of mice

    NARCIS (Netherlands)

    A. Grefhorst (Aldo); J.C. van den Beukel (Johanna); A.F. van Houten (A.); J. Steenbergen (Jacobie); J.A. Visser (Jenny); A.P.N. Themmen (Axel)

    2015-01-01

    textabstractBackground: In mammals, white adipose tissue (WAT) stores fat and brown adipose tissue (BAT) dissipates fat to produce heat. Several studies showed that females have more active BAT. Members of the bone morphogenetic protein (BMP) and fibroblast growth factor (FGF) families are expressed

  9. Solar ALMA: Observation-Based Simulations of the mm and sub-mm Emissions from Active Regions

    Science.gov (United States)

    Fleishman, G.; Loukitcheva, M.; Nita, G.

    2015-12-01

    We developed an efficient algorithm integrated in our 3D modeling tool, GX Simulator (Nita et al. 2015), allowing quick computation of the synthetic intensity and polarization maps of solar active regions (AR) in the ALMA spectral range.

  10. Chromospheric activity and evolutionary age of the Sun and four solar twins

    Science.gov (United States)

    Mittag, M.; Schröder, K.-P.; Hempelmann, A.; González-Pérez, J. N.; Schmitt, J. H. M. M.

    2016-06-01

    Aims: The activity levels of the solar-twin candidates HD 101364 and HD 197027 are measured and compared with the Sun, the known solar twin 18 Sco, and the solar-like star 51 Peg. Furthermore, the absolute ages of these five objects are estimated from their positions in the HR diagram and the evolutionary (relative) age compared with their activity levels. Methods: To represent the activity level of these stars, the Mount Wilson S-indices were used. To obtain consistent ages and evolutionary advance on the main sequence, we used evolutionary tracks calculated with the Cambridge Stellar Evolution Code. Results: From our spectroscopic observations of HD 101364 and HD 197027 and based on the established calibration procedures, the respective Mount Wilson S-indices are determined. We find that the chromospheric activity of both stars is comparable with the present activity level of the Sun and that of 18 Sco, at least for the period in consideration. Furthermore, the absolute age of HD 101364, HD 197027, 51 Peg, and 18 Sco are found to be 7.2, 7.1, 6.1, and 5.1 Gyr, respectively. Conclusions: With the exception of 51 Peg, which has a significantly higher metallicity and a mass higher by about 10% than the Sun, the present Sun and its twins compare relatively well in their activity levels, even though the other twins are somewhat older. Even though 51 Peg has a similar age of 6.1 Gyr, this star is significantly less active. Only when we compare it on a relative age scale (which is about 20% shorter for 51 Peg than for the Sun in absolute terms) and use the higher-than-present long-term SMWO average of 0.18 for the Sun, does the S-index show a good correlation with evolutionary (relative) age. This shows that in the search for a suitably similar solar twin, the relative main-sequence age matters for obtaining a comparable activity level.

  11. Dynamo Sensitivity in Solar Analogs with 50 Years of Ca II H & K Activity

    CERN Document Server

    Egeland, Ricky; Baliunas, Sallie; Hall, Jeffrey C; Pevtsov, Alexei A; Henry, Gregory W

    2016-01-01

    The Sun has a steady 11-year cycle in magnetic activity most well-known by the rising and falling in the occurrence of dark sunspots on the solar disk in visible bandpasses. The 11-year cycle is also manifest in the variations of emission in the Ca II H & K line cores, due to non-thermal (i.e. magnetic) heating in the lower chromosphere. The large variation in Ca II H & K emission allows for study of the patterns of long-term variability in other stars thanks to synoptic monitoring with the Mount Wilson Observatory HK photometers (1966-2003) and Lowell Observatory Solar-Stellar Spectrograph (1994-present). Overlapping measurements for a set of 27 nearby solar-analog (spectral types G0-G5) stars were used to calibrate the two instruments and construct time series of magnetic activity up to 50 years in length. Precise properties of fundamental importance to the dynamo are available from Hipparcos, the Geneva-Copenhagen Survey, and CHARA interferometry. Using these long time series and measurements of fu...

  12. Parametric studies of an active solar water heating system with various types of PVT collectors

    Indian Academy of Sciences (India)

    Roonak Daghigh; Mohd Hafidz Ruslan; Kamaruzzaman Sopian

    2015-10-01

    This study simulated active photovoltaic thermal solar collectors (PV/T) for hot water production using TRNSYS. The PV/T collectors consist of the amorphous, monocrystalline and polycrystalline. The long-term performances for the glazed and unglazed PV/T collectors were also evaluated. In this simulation, the design parameters used were collector area of 4 m2, collector slope angle of 15 degree and mass flow rate to the collector area ratio of 8–20 kg/hm2. In addition the tank height between 0.9 m to 1.1 m for unglazed PV/T collectors and 0.9 m to 1 m for glazed collectors, as well as the storage tank volume between 200 and 300 L has been used. The climate parameters used were solar radiation levels range of 4–4.9 kWh/m2, the mean ambient temperature in the range of 25–28°C. The results of the simulation indicated that there was an increase in solar fraction and electrical power output of the active PV/T hot water system.

  13. Study of EGNOS safety of life service during the period of solar maximum activity

    Science.gov (United States)

    Grzegorzewski, Marek; Swiatek, Anna; Oszczak, Stanislaw; Ciecko, Adam; Cwiklak, Janusz

    2012-12-01

    The Satellite Base Augmentation System (SBAS) - EGNOS (European Geostationary Navigation Overlay Service) has been certified for Safety of Life (SoL) service for aircraft navigation since 2nd of March 2011. Unfortunately for the territory of Poland, located at the edge of EGNOS service area, the quality of the service corrections are still not sufficient for aircraft navigation requirements. Years 2012 and 2013 are forecasted as a maximum of solar activity in a 11-year solar cycle. This time period will be the chance to perform the first tests for the EGNOS Safety of Life service quality in disturbed ionospheric conditions. During the previous maximum of solar activity, the storm on 30 October 2003 resulted in the inability to use WAAS corrections for more than 12 hours. This was caused by a very large gradient of disturbances and its' very sharp boundaries - vertical TEC (VTEC) varied from ~ 40 to ~ 120 TECU (TEC units) within an hour (over ~ 150 km distance). These circumstances gave the opportunity to carry out the test flights to examine the navigation parameters obtained for EGNOS SoL service in disturbed ionospheric conditions. The paper presents project proposal of study and analyses of such fundamental navigation parameters as: accuracy of determined position, availability, continuity and integrity, determined for selected disturbances in relation to quiet conditions. It can give a possibility to estimate of the quality of EGNOS SoL service in Polish airspace during the different phases of flight and its resistance to critical ionospheric conditions.

  14. Resolution of the Azimuthal Ambiguity in Photospheric Vector Magnetograms of Solar Active Regions

    Science.gov (United States)

    Georgoulis, M. K.; LaBonte, B. J.

    2003-05-01

    We describe a simple technique to resolve the inherent azimuthal ambiguity of 180o in vector magnetic field measurements of solar active regions. The desired azimuth solution is the one that minimizes an introduced function. This function includes a weighted combination of the height derivative of the magnetic field strength, calculated under conditions of minimum electric current density, and the vertical component of a current density vector purely perpendicular to the magnetic field lines. The above function reduces the number of ambiguity states to two for each location on the heliographic plane. The process is initially local, i.e., independent for each location on the heliographic plane. Then, the initial azimuth solution is subjected to a numerical analysis which yields the global azimuth solution and ensures maximum continuity of the photospheric magnetic field vector. This tactic reduces dramatically the required computing time to only a small fraction of the time required by existing techniques. The construction of the above-mentioned function is such that the method works equally well for active regions located either near or far from the center of the solar disk. The speed and simplicity of this novel technique may lead to a near real-time processing of acquired photospheric vector magnetograms. A reliable azimuth solution is a prerequisite for further analysis of solar magnetic fields. Reaching such a solution fast, is paramount for challenging modern problems, such as space weather forecasting, for example.

  15. Variations of 14-C around AD 775 and AD 1795 - due to solar activity

    CERN Document Server

    Neuhaeuser, Ralph

    2015-01-01

    The motivation for our study is the disputed cause for the strong variation of 14-C around AD 775. Our method is to compare the 14-C variation around AD 775 with other periods of strong variability. Our results are: (a) We see three periods, where 14-C varied over 200 yr in a special way showing a certain pattern of strong secular variation: after a Grand Minimum with strongly increasing 14-C, there is a series of strong short-term drop(s), rise(s), and again drop(s) within 60 yr, ending up to 200 yr after the start of the Grand Minimum. These three periods include the strong rises around BC 671, AD 775, and AD 1795. (b) We show with several solar activity proxies (radioisotopes, sunspots, and aurorae) for the AD 770s and 1790s that such intense rapid 14-C increases can be explained by strong rapid decreases in solar activity and, hence, wind, so that the decrease in solar modulation potential leads to an increase in radioisotope production. (c) The strong rises around AD 775 and 1795 are due to three effects...

  16. Critical Analysis of a Hypothesis of the Planetary Tidal Influence on Solar Activity

    CERN Document Server

    Poluianov, Stepan

    2014-01-01

    The present work is a critical revision of the hypothesis of the planetary tidal influence on solar activity published by Abreu et al. (Astron. Astrophys. 548, A88, 2012; called A12 here). A12 describes a hypothesis that planets can have an impact on the solar tachocline and therefore on solar activity. We checked the procedure and results of A12, namely the algorithm of planetary tidal torque calculation and the wavelet coherence between torque and heliospheric modulation potential. We found that the claimed peaks in long-period range of the torque spectrum are artefacts caused by the calculation algorithm. Also the statistical significance of the results of the wavelet coherence is found to be overestimated by an incorrect choice of the background assumption of red noise. Using a more conservative non-parametric random phase method, we found that the long-period coherence between planetary torque and heliospheric modulation potential becomes insignificant. Thus we conclude that the considered hypothesis of ...

  17. The rotation of sunspots in the solar active region NOAA 10930

    Science.gov (United States)

    Gopasyuk, O. S.

    2014-06-01

    The rotation of sunspots in the solar active region NOAA 10930 was investigated on the basis of the data on the longitudinal magnetic field and the Doppler velocities using magnetograms and dopplergrams taken with the Solar Optical Telescope installed aboard the HINODE mission. Under the assumption of axial symmetry, areally-mean vertical, radial, and azimuthal components of the magnetic field and velocity vectors were calculated in both sunspots. The plasma in the sunspots rotated in opposite directions: in the leading sunspot, clockwise, and in the following sunspot, counterclockwise. The magnetic flux tubes that formed sunspots of the active region on the solar surface were twisted in one direction, clockwise. Electric currents generated as a result of the rotation and twisting of magnetic flux tubes were also flowing in one direction. Azimuthal components of magnetic and velocity fields of both sunspot umbrae reached their maximum on December 11, 2006. By the start of the X3.4 flare (December 13, 2006), their values became practically equal to zero.

  18. A digital driving technique for an 8 b QVGA AMOLED display using modulation

    OpenAIRE

    Jae Hyuk, Jang; Minho, Kwon; Tjandranegara, E.; Kywro, Lee; Byunghoo, Jung

    2009-01-01

    Active-matrix organic LED (AMOLED) is one of the most promising contenders for next-generation displays. However, the VT-shift issue in thin-film transistors (TFT) has to be addressed to enable wide deployment. Voltage programming and current programming are well-known VT-shift-compensation techniques for analog driving. However, they all need more than 4 TFTs per pixel, which increases the panel complexity and de...

  19. Solar Energy Education. Renewable energy activities for junior high/middle school science

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    Some basic topics on the subject of solar energy are outlined in the form of a teaching manual. The manual is geared toward junior high or middle school science students. Topics include solar collectors, solar water heating, solar radiation, insulation, heat storage, and desalination. Instructions for the construction of apparatus to demonstrate the solar energy topics are provided. (BCS)

  20. Effect of solar activity on the frequency of occurrence of major anomalies in the Arctic. [weather forecasting

    Science.gov (United States)

    Bolotinskaya, M. S.

    1978-01-01

    Major air pressure and temperature anomalies in certain arctic regions were studied with a view toward predicting their occurrence. Correlations are sought between the frequency of arctic anomalies and solar activity, or specifically the Wolf number and the index of geomagnetic disturbance. Graphic techniques are used to show that solar activity has a definite influence on the frequency of occurrence of major anomalies of pressure and temperature in the Arctic.

  1. Active doping of B in silicon nanostructures and development of a Si quantum dot solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seung Hui; Kim, Yong Sung; Lee, Woo; Kim, Young Heon; Song, Jae Yong; Jang, Jong Shik; Park, Jae Hee; Kim, Kyung Joong [Korea Research Institute of Standards and Science (KRISS), Yuseong, 305-340 Daejeon (Korea, Republic of); Choi, Suk-Ho, E-mail: kjkim@kriss.re.kr [Department of Applied Physics, Kyung Hee University, Yongin 446-701 (Korea, Republic of)

    2011-10-21

    Active doping of B was observed in nanometer silicon layers confined in SiO{sub 2} layers by secondary ion mass spectrometry (SIMS) depth profiling analysis and confirmed by Hall effect measurements. The uniformly distributed boron atoms in the B-doped silicon layers of [SiO{sub 2} (8 nm)/B-doped Si(10 nm)]{sub 5} films turned out to be segregated into the Si/SiO{sub 2} interfaces and the Si bulk, forming a distinct bimodal distribution by annealing at high temperature. B atoms in the Si layers were found to preferentially substitute inactive three-fold Si atoms in the grain boundaries and then substitute the four-fold Si atoms to achieve electrically active doping. As a result, active doping of B is initiated at high doping concentrations above 1.1 x 10{sup 20} atoms cm{sup -3} and high active doping of 3 x 10{sup 20} atoms cm{sup -3} could be achieved. The active doping in ultra-thin Si layers was implemented for silicon quantum dots (QDs) to realize a Si QD solar cell. A high energy-conversion efficiency of 13.4% was realized from a p-type Si QD solar cell with B concentration of 4 x 10{sup 20} atoms cm{sup -3}.

  2. Study of the Photospheric Magnetic Field and Coronal Emission from Solar Active Regions

    Science.gov (United States)

    Aguilera, Jordan Armando Guerra

    2016-01-01

    Solar explosive phenomena (flares and Coronal Mass Ejections, CMEs) are examples of how the most dynamical processes within the heliosphere are interconnected and powered by the Sun. Solar flares originate in active regions (AR) -- areas of strong magnetic field on the solar surface. The electromagnetic (EM) energy released during flares, along with the often-seen CMEs, propagate through the heliosphere. In the Earth's vicinity, EM radiation and charged particles have the potential to produce unfavorable conditions for humans and technology in space. From many points of view (scientific, operational, economical) it is thus important to understand and try to predict when solar flares and associated eruptive phenomena will occur. This dissertation explores how to best leverage the available observational data to provide predictive information about the future flaring activity. This dissertation consists of two main components: 1) investigation of the photosphere-corona coupling by analyzing photospheric magnetic field and coronal data in search for signals or behaviors that precede eruptions; and 2) the combination of existing flare prediction methods in order to develop a novel ensemble prediction. For the first part, the data employed correspond to line-of-sight (LOS) magnetograms from the Helioseismic and Magnetic Imager (HMI) and EUV intensity maps from the Atmospheric Imaging Assembly (AIA), both instruments onboard NASA's Solar Dynamics Observatory (SDO) satellite. Photospheric magnetic field and coronal EUV emissions were characterized by measuring the power-law decay of their spatio-temporal spectra and the data statistical associations (auto- and cross-correlations). These measures, calculated with high spatio-temporal resolution, appeared to characterize the AR evolution, provide information about the state of the photospheric plasma, reveal insights into the photospheric conditions for flares, and expose the potential of combining coronal and photospheric

  3. Dependence of Stellar Magnetic Activity Cycles on Rotational Period in a Nonlinear Solar-type Dynamo

    Science.gov (United States)

    Pipin, V. V.; Kosovichev, A. G.

    2016-06-01

    We study the turbulent generation of large-scale magnetic fields using nonlinear dynamo models for solar-type stars in the range of rotational periods from 14 to 30 days. Our models take into account nonlinear effects of dynamical quenching of magnetic helicity, and escape of magnetic field from the dynamo region due to magnetic buoyancy. The results show that the observed correlation between the period of rotation and the duration of activity cycles can be explained in the framework of a distributed dynamo model with a dynamical magnetic feedback acting on the turbulent generation from either magnetic buoyancy or magnetic helicity. We discuss implications of our findings for the understanding of dynamo processes operating in solar-like stars.

  4. Dependence of stellar magnetic activity cycles on rotational period in nonlinear solar-type dynamo

    CERN Document Server

    Pipin, Valery

    2016-01-01

    We study turbulent generation of large-scale magnetic fields using nonlinear dynamo models for solar-type stars in the range of rotational periods from 14 to 30 days. Our models take into account non-linear effects of dynamical quenching of magnetic helicity, and escape of magnetic field from the dynamo region due to magnetic buoyancy. The results show that the observed correlation between the period of rotation and the duration of activity cycles can be explained in the framework of a distributed dynamo model with a dynamical magnetic feedback acting on the turbulent generation either from magnetic buoyancy or magnetic helicity. We discuss implications of our findings for the understanding of dynamo processes operating in solar-like stars.

  5. Climatology of GNPs ionospheric scintillation at high and mid latitudes under different solar activity conditions

    International Nuclear Information System (INIS)

    We analyze data of ionospheric scintillation over North European regions for the same period (October to November) of two different years (2003 and 2008), characterized by different geomagnetic conditions. The work aims to develop a scintillation climatology of the high- and mid-latitude ionosphere, analyzing the behaviour of the scintillation occurrence as a function of the magnetic local time (MLT) and of the altitude adjusted corrected magnetic latitude (M lat), to characterize scintillation scenarios under different solar activity conditions. The results shown herein are obtained merging observations from a network of GISTMs (GPS Ionospheric Scintillation and TEC Monitor) located over a wide range of latitudes in the northern hemisphere. Our findings confirm the associations of the occurrence of the ionospheric irregularities with the expected position of the auroral oval and of the ionospheric trough walls and show the contribution of the polar cap patches even under solar minimum conditions.

  6. Properties and Photocatalytic Activity of β-Ga2O3 Nanorods under Simulated Solar Irradiation

    Directory of Open Access Journals (Sweden)

    Yinzhen Wang

    2015-01-01

    Full Text Available β-Ga2O3 nanorods are prepared by hydrothermal method and characterized by X-ray diffraction, high-resolution transmission electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, and photoluminescence spectra. The results reveal that high crystallinity, monoclinic phase of β-Ga2O3 nanorods were prepared with a diameter of about 60 nm and length of 500 nm. Photoluminescence study indicates that the β-Ga2O3 nanorods exhibit a broad blue light emission at room temperature. The β-Ga2O3 nanorods displayed high photocatalytic activity under simulated solar irradiation; after 2 h irradiation, over 95% of methylene blue solution and over 90% of methyl orange solution were decolorized. Since this process does not require additional hydrogen peroxide and uses solar light, it can be developed as an economically feasible and environmentally friendly method to treat dye effluent.

  7. Low latitude F2- and F3- layer variabilities over India: Effects of solar activity and ExB drift

    Science.gov (United States)

    Peddapati, PavanChaitanya; Patra, Amit; Balan, Nanan; Vijaya Bhaskara Rao, S.

    In this paper we present and discuss the results on F2 and F3 layers based on ionosonde observations made from low latitude stations in India. We also use ExB drift using daytime 150 km echoes made with the Gadanki MST radar. We present two important aspects of the F2 and F3 layers: (1) The variability of F2 and F3 layer properties during low solar activity period of 2008-2009 and compare them with those observed during the high solar activity period of 2002-2003 (2) The variability of F2 and F3 layer properties with ExB drift values simultaneously observed during low solar activity period. The results show that ionospheric F2 and F3 layers have distinctly different features during high and low solar activities. The critical frequencies of the F2 and F3 layers are 5-6 MHz higher in the high solar activity than those of low solar activity. F2 layer shows stronger semi-annual and solar rotation associated variations during high solar activity than in low solar activity. Occurrence of the F3 layer, however, was quite similar in high and low solar activities except for winter solstice. Simultaneous observations of F2 and F3 layers, and ExB drift made during the low solar activity period clearly suggest that a threshold value of the ExB drift and its time integrated value are important for the formation of the F3 layer. The heights of the F2 and F3 layers linearly increase with ExB drift, indicating the dominant role of zonal electric field in determining the height of the F2 and F3 layers due to the close proximity of Gadanki to the magnetic equator. In order to gain further insight on the role of meridional neutral wind, we study this effect using Sheffield University Plasmasphere Ionosphere Model (SUPIM) by employing the observed ExB drift and F3 layer parameters and meridional neutral wind from Horizontal Wind Model 90 (HWM90).

  8. Solar Energy and You.

    Science.gov (United States)

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    This booklet provides an introduction to solar energy by discussing: (1) how a home is heated; (2) how solar energy can help in the heating process; (3) the characteristics of passive solar houses; (4) the characteristics of active solar houses; (5) how solar heat is stored; and (6) other uses of solar energy. Also provided are 10 questions to…

  9. North-south asymmetry of solar dynamo in the current activity cycle

    CERN Document Server

    Kitchatinov, L L

    2014-01-01

    An explanation is suggested for the north-south asymmetry of the polar magnetic field reversal in the current cycle of solar activity. The contribution of the Babcock-Leighton mechanism to the poloidal field generation is estimated using sunspot data for the current activity cycle. Estimations are performed separately for the northern and southern hemispheres. The contribution of the northern hemisphere exceeded considerably that of the southern hemisphere during the initial stage of the cycle. This is the probable reason for the earlier reversal of the northern polar field. The estimated contributions of the Babcock-Leighton mechanism are considerably smaller than similar estimations for the previous activity cycles. A relatively weak (<1G) large-scale polar field can be expected for the next activity minimum.

  10. How Much Energy Can Be Stored in Solar Active Region Magnetic Fields?

    Science.gov (United States)

    Linker, J.; Downs, C.; Torok, T.; Titov, V. S.; Lionello, R.; Mikic, Z.; Riley, P.

    2015-12-01

    Major solar eruptions such as X-class flares and very fast coronal mass ejections usually originate in active regions on the Sun. The energy that powers these events is believed to be stored as free magnetic energy (energy above the potential field state) prior to eruption. While coronal magnetic fields are not in general force-free, active regions have very strong magnetic fields and at low coronal heights the plasma beta is therefore very small, making the field (in equilibrium) essentially force-free. The Aly-Sturrock theorem shows that the energy of a fully force-free field cannot exceed the energy of the so-called open field. If the theorem holds, this places an upper limit on the amount of free energy that can be stored: the maximum free energy (MFE) is the difference between the open field energy and the potential field energy of the active region. In thermodynamic MHD simulations of a major eruption (the July 14, 2000 'Bastille' day event) and a modest event (February 13, 2009, we have found that the MFE indeed bounds the energy stored prior to eruption. We compute the MFE for major eruptive events in cycles 23 and 24 to investigate the maximum amount of energy that can be stored in solar active regions.Research supported by AFOSR, NASA, and NSF.

  11. iota Horologi, the first coronal activity cycle in a young solar-like star

    CERN Document Server

    Sanz-Forcada, J; Metcalfe, T S; 10.1051/0004-6361/201321388

    2013-01-01

    Context: The shortest chromospheric (Ca II H&K) activity cycle (1.6 yr) has been recently discovered in the young (~600 Myr) solar-like star iota Hor. Coronal X-ray activity cycles have only been discovered in a few stars other than the Sun, all of them with an older age and a lower activity level than iota Hor. Aims: We intended to find the X-ray coronal counterpart of the chromospheric cycle for i Hor. This represents the first X-ray cycle observed in an active star, as well as the paradigm of the first coronal cycles in the life of a solar-like star. Methods: We monitored i Hor with XMM-Newton observations spanning almost two years. The spectra of each observation are fit with two-temperature coronal models to study the long-term variability of the star. Results: We find a cyclic behavior in X-rays very similar to the contemporaneous chromospheric cycle. The continuous chromospheric monitoring for more than three cycle lengths shows a trend toward decreasing amplitude, apparently modulated by a longer ...

  12. EARLINET dust observations vs. BSC-DREAM8b modeled profiles: 12-year-long systematic comparison at Potenza, Italy

    Science.gov (United States)

    Mona, L.; Papagiannopoulos, N.; Basart, S.; Baldasano, J.; Binietoglou, I.; Cornacchia, C.; Pappalardo, G.

    2014-08-01

    In this paper, we report the first systematic comparison of 12-year modeled dust extinction profiles vs. Raman lidar measurements. We use the BSC-DREAM8b model, one of the most widely used dust regional models in the Mediterranean, and Potenza EARLINET lidar profiles for Saharan dust cases, the largest one-site database of dust extinction profiles. A total of 310 dust cases were compared for the May 2000-July 2012 period. The model reconstructs the measured layers well: profiles are correlated within 5% of significance for 60% of the cases and the dust layer center of mass as measured by lidar and modeled by BSC-DREAM8b differ on average 0.3 ± 1.0 km. Events with a dust optical depth lower than 0.1 account for 70% of uncorrelated profiles. Although there is good agreement in terms of profile shape and the order of magnitude of extinction values, the model overestimates the occurrence of dust layer top above 10 km. Comparison with extinction profiles measured by the Raman lidar shows that BSC-DREAM8b typically underestimates the dust extinction coefficient, in particular below 3 km. Lowest model-observation differences (below 17%) correspond to a lidar ratio at 532 nm and Ångström exponent at 355/532 nm of 60 ± 13 and 0.1 ± 0.6 sr, respectively. These are in agreement with values typically observed and modeled for pure desert dust. However, the highest differences (higher than 85%) are typically related to greater Ångström values (0.5 ± 0.6), denoting smaller particles. All these aspects indicate that the level of agreement decreases with an increase in mixing/modification processes.

  13. Design of Solar Harvested Semi Active RFID Transponder with Supercapacitor Storage

    Directory of Open Access Journals (Sweden)

    Gary Valentine

    2015-01-01

    Full Text Available This paper presents the analysis, design and manufacture of a low cost, low maintenance and long-range prototype of RFID transponder with continuous operability. A prototype of semi-active RFID transponder is produced with a range that can be extended via a DC input to allow all of the readers signal power to be reflected via backscatter modulation. The transponder is powered via solar harvested power which is selected over other energy harvesting technologies as it provides a greater energy density and lower cost. Solar has one major drawback in terms of providing a steady DC voltage in it needed a constant supply of sunlight. A method of power storage is proposed, and the use of a supercapacitor over a rechargeable battery is used as it has a longer lifespan due to higher recharge rates. The prototype underwent a series of experiments in various working environments and proves an effective solution in providing long lasting operability. The paper concludes the use of solar harvesting with supercapacitor storage has potential for further uses in external remote sensors used in the Internet of Things.

  14. Multiple dynamo modes as a mechanism for long-term solar activity variations

    CERN Document Server

    Käpylä, Maarit J; Olspert, Nigul; Brandenburg, Axel; Warnecke, Jörn; Karak, Bidya B; Pelt, Jaan

    2015-01-01

    Solar magnetic activity shows both smooth secular changes, such as the Grand Modern Maximum, and quite abrupt drops that are denoted as Grand Minima. Direct numerical simulations (DNS) of convection drivendynamos offer one way of examining the mechanisms behind these events. In this work, we analyze a solution of a solar-like DNS that has been evolved for roughly 80 magnetic cycles of 5.4 years, during which epochs of irregular behavior are detected. The emphasis of our analysis is to find physical causes for such behavior. The DNS employed is a semi-global (wedge) magnetoconvection model. For data analysis we use Ensemble Empirical Mode Decomposition (EEMD) and phase dispersion (D^2) methods. A special property of the DNS is the existence of multiple dynamo modes at different depths and latitudes. The dominant mode is solar-like. This mode is accompanied by a higher frequency mode near the surface and a low-frequency mode in the bottom of the convection zone. The overall behavior of the dynamo solution is ve...

  15. Target-charge dependence of the breakup coupling effects in the elastic scattering of {sup 8}B

    Energy Technology Data Exchange (ETDEWEB)

    Kucuk, Y. [University of Padova, Department of Physics and Astronomy ' ' G. Galilei' ' (Italy); Akdeniz University, Department of Physics, Antalya (Turkey); INFN, Padova (Italy); Aciksoz, E. [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany); Akdeniz University, Department of Physics, Antalya (Turkey)

    2016-04-15

    We perform continuum discretized coupled-channels calculations for the elastic scattering of {sup 8}B on different targets to trace where the Coulomb-nuclear breakup coupling effects start to be dominant in the interaction of the proton halo nuclei. We observe a qualitative difference in angular distributions when the charge of the target increases as seen in the case of neutron halos, but the Coulomb-nuclear interference peak begins to disappear clearly at a relatively smaller value of Z{sub T} for the proton halos. (orig.)

  16. Quasi-elastic scattering of 6He, 7Be, and 8B nuclei by 12C nuclei

    CERN Document Server

    Kovalchuk, V I

    2016-01-01

    The observed cross sections of quasi-elastic scattering of 6He, 7Be, and 8B nuclei by 12C nuclei are described within the framework of the diffraction nuclear model and the model of nucleus-nucleus scattering in the high-energy approximation with a double folding potential, for intermediate energies of the incident particles. The calculations make use of realistic distributions of nucleon densities and take account of the Coulomb interaction and inelastic scattering with excitation of low-lying collective states of the target.

  17. Thermal and hydraulic analysis of multilayered asphalt pavements as active solar collectors

    International Nuclear Information System (INIS)

    Highlights: • A new type of asphalt solar collector has been introduced in this paper. • The common pipe network has been replaced for a highly porous asphalt layer. • The use of these collectors contributes to achieve current environmental targets. • Excellent thermal efficiencies have been obtained in the laboratory tests. • Further research is needed to increase the low flow rates achieved. - Abstract: The fulfillment of current environmental aims like reducing fossil fuel consumption or greenhouse gas emissions entails the development of new technologies that enable the use of cleaner, cheaper and renewable energies. Furthermore, the need to improve energy efficiency in buildings encourages scientists and engineers to find new ways of harvesting energy for later uses. The use of asphalt pavements as active solar collectors is introduced in this article. Several authors have studied the use of roads as an energy source before. However, a new technology is presented in which a multilayered pavement with a highly porous middle layer is used instead of a solar collector with an embedded pipe network. These collectors are fully integrated within the road infrastructure and may offer low cost solar energy for water heating. The paper includes a brief comment on the state-of-the-art. Then, a broad methodology is presented in which data, materials and procedures needed to run the tests are fully described. Finally, the results of the laboratory tests are stated and discussed. The prototype used in the laboratory provided excellent thermal efficiency. However, these good results contrast with the low flow rate levels registered during the tests. Thus, although this technology seems to be very promising, new experimental tests should be performed before an effective application is possible

  18. Mechanism for the effects of variable solar activity on the weather. Final report

    International Nuclear Information System (INIS)

    The goal of the research was to help in identifying the most likely physical mechanisms for the effects of variable solar activity on the weather. The method of attack was largely empirical, and this method was chosen for the following reasons: (1) in order to tap the great pool of scientific talent that may be able to offer sound physical mechanisms, it is necessary to demonstrate that there are some important relationships to explain; and (2) if the experiments are carefully designed, they can be useful in eliminating certain mechanisms which seem to have a low probability of success, and picking out the mechanisms which look more promising. Some results are presented

  19. Dynamics of ozone layer under Serbia and solar activity: Previous statement

    OpenAIRE

    Ducić Vladan; Nikolić Jugoslav

    2008-01-01

    The aim of this paper is to identify ozone layer dynamics under Serbian area, as well as possible relations of change in stratospheric ozone concentration with some parameters of solar activity. During the period 1979-2005, the statistical decrease of ozone concentration was noticed under Serbian territory cumulatively for 24.5 DU (7.2%), apropos 9.4 DU (2.8%) by decade. These changes are consistent with the changes in surrounding countries. From absolute minimum 1993, flexible trend of ozone...

  20. MEASUREMENTS OF NON-THERMAL LINE WIDTHS IN SOLAR ACTIVE REGIONS

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, David H. [College of Science, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States); Warren, Harry P. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States)

    2016-03-20

    Spectral line widths are often observed to be larger than can be accounted for by thermal and instrumental broadening alone. This excess broadening is a key observational constraint for both nanoflare and wave dissipation models of coronal heating. Here we present a survey of non-thermal velocities measured in the high temperature loops (1–4 MK) often found in the cores of solar active regions. This survey of Hinode Extreme Ultraviolet Imaging Spectrometer (EIS) observations covers 15 non-flaring active regions that span a wide range of solar conditions. We find relatively small non-thermal velocities, with a mean value of 17.6 ± 5.3 km s{sup −1}, and no significant trend with temperature or active region magnetic flux. These measurements appear to be inconsistent with those expected from reconnection jets in the corona, chromospheric evaporation induced by coronal nanoflares, and Alfvén wave turbulence models. Furthermore, because the observed non-thermal widths are generally small, such measurements are difficult and susceptible to systematic effects.