WorldWideScience

Sample records for active 8b solar

  1. Measurement of the Total Active 8B Solar Neutrino Flux at the Sudbury Neutrino Observatory with Enhanced Neutral Current Sensitivity

    CERN Document Server

    Ahmed, S N; Beier, E W; Bellerive, A; Biller, S D; Boger, J; Boulay, M G; Bowler, M G; Bowles, T J; Brice, S J; Bullard, T V; Chan, Y D; Chen, M; Chen, X; Cleveland, B T; Cox, G A; Dai, X; Dalnoki-Veress, F; Doe, P J; Dosanjh, R S; Doucas, G; Dragowsky, M R; Duba, C A; Duncan, F A; Dunford, M; Dunmore, J A; Earle, E D; Elliott, S R; Evans, H C; Ewan, G T; Farine, J; Fergani, H; Fleurot, F; Formaggio, J A; Fowler, M M; Frame, K; Fulsom, B G; Gagnon, N; Graham, K; Grant, D R; Hahn, R L; Hall, J C; Hallin, A L; Hallman, E D; Hamer, A S; Handler, W B; Hargrove, C K; Harvey, P J; Hazama, R; Heeger, K M; Heintzelman, W J; Heise, J; Helmer, R L; Hemingway, R J; Hime, A; Howe, M A; Jagam, P; Jelley, N A; Klein, J R; Kos, M S; Krumins, A V; Kutter, T; Kyba, C C M; Labranche, H; Lange, R; Law, J; Lawson, I T; Lesko, K T; Leslie, J R; Levine, I; Luoma, S; MacLellan, R; Majerus, S; Mak, H B; Maneira, J; Marino, A D; McCauley, N; McDonald, A B; McGee, S; McGregor, G; Miin, C; Miknaitis, K K S; Miller, G G; Moffat, B A; Nally, C W; Nickel, B G; Noble, A J; Norman, E B; Oblath, N S; Okada, C E; Ollerhead, R W; Orrell, J L; Oser, S M; Ouellet, C V; Peeters, S J M; Poon, A W P; Robertson, B C; Robertson, R G H; Rollin, E; Rosendahl, S S E; Rusu, V L; Schwendener, M H; Simard, O; Simpson, J J; Sims, C J; Sinclair, D; Skensved, P; Smith, M W E; Starinsky, N; Stokstad, R G; Stonehill, L C; Tafirout, R; Takeuchi, Y; Tesic, G; Thomson, M; Thorman, M; Van Berg, R; Van de Water, R G; Virtue, C J; Wall, B L; Waller, D; Waltham, C E; Wan Chan Tseung, H; Wark, D L; West, N; Wilhelmy, J B; Wilkerson, J F; Wilson, J R; Wouters, J M; Yeh, M; Zuber, K

    2004-01-01

    The Sudbury Neutrino Observatory (SNO) has precisely determined the total active (nu_x) 8B solar neutrino flux without assumptions about the energy dependence of the nu_e survival probability. The measurements were made with dissolved NaCl in the heavy water to enhance the sensitivity and signature for neutral-current interactions. The flux is found to be 5.21 +/- 0.27 (stat) +/- 0.38 (syst) x10^6 cm^{-2}s^{-1}, in agreement with previous measurements and standard solar models. A global analysis of these and other solar and reactor neutrino results yields Delta m^{2} = 7.1^{+1.2}_{-0.6}x10^{-5} ev^2 and theta = 32.5^{+2.4}_{-2.3} degrees. Maximal mixing is rejected at the equivalent of 5.4 standard deviations.

  2. Measurement of the total active 8B solar neutrino flux at the Sudbury Neutrino Observatory with enhanced neutral current sensitivity.

    Science.gov (United States)

    Ahmed, S N; Anthony, A E; Beier, E W; Bellerive, A; Biller, S D; Boger, J; Boulay, M G; Bowler, M G; Bowles, T J; Brice, S J; Bullard, T V; Chan, Y D; Chen, M; Chen, X; Cleveland, B T; Cox, G A; Dai, X; Dalnoki-Veress, F; Doe, P J; Dosanjh, R S; Doucas, G; Dragowsky, M R; Duba, C A; Duncan, F A; Dunford, M; Dunmore, J A; Earle, E D; Elliott, S R; Evans, H C; Ewan, G T; Farine, J; Fergani, H; Fleurot, F; Formaggio, J A; Fowler, M M; Frame, K; Fulsom, B G; Gagnon, N; Graham, K; Grant, D R; Hahn, R L; Hall, J C; Hallin, A L; Hallman, E D; Hamer, A S; Handler, W B; Hargrove, C K; Harvey, P J; Hazama, R; Heeger, K M; Heintzelman, W J; Heise, J; Helmer, R L; Hemingway, R J; Hime, A; Howe, M A; Jagam, P; Jelley, N A; Klein, J R; Kos, M S; Krumins, A V; Kutter, T; Kyba, C C M; Labranche, H; Lange, R; Law, J; Lawson, I T; Lesko, K T; Leslie, J R; Levine, I; Luoma, S; MacLellan, R; Majerus, S; Mak, H B; Maneira, J; Marino, A D; McCauley, N; McDonald, A B; McGee, S; McGregor, G; Mifflin, C; Miknaitis, K K S; Miller, G G; Moffat, B A; Nally, C W; Nickel, B G; Noble, A J; Norman, E B; Oblath, N S; Okada, C E; Ollerhead, R W; Orrell, J L; Oser, S M; Ouellet, C; Peeters, S J M; Poon, A W P; Robertson, B C; Robertson, R G H; Rollin, E; Rosendahl, S S E; Rusu, V L; Schwendener, M H; Simard, O; Simpson, J J; Sims, C J; Sinclair, D; Skensved, P; Smith, M W E; Starinsky, N; Stokstad, R G; Stonehill, L C; Tafirout, R; Takeuchi, Y; Tesić, G; Thomson, M; Thorman, M; Van Berg, R; Van de Water, R G; Virtue, C J; Wall, B L; Waller, D; Waltham, C E; Tseung, H Wan Chan; Wark, D L; West, N; Wilhelmy, J B; Wilkerson, J F; Wilson, J R; Wouters, J M; Yeh, M; Zuber, K

    2004-05-07

    The Sudbury Neutrino Observatory has precisely determined the total active (nu(x)) 8B solar neutrino flux without assumptions about the energy dependence of the nu(e) survival probability. The measurements were made with dissolved NaCl in heavy water to enhance the sensitivity and signature for neutral-current interactions. The flux is found to be 5.21 +/- 0.27(stat)+/-0.38(syst) x 10(6) cm(-2) s(-1), in agreement with previous measurements and standard solar models. A global analysis of these and other solar and reactor neutrino results yields Deltam(2)=7.1(+1.2)(-0.6) x 10(-5) eV(2) and theta=32.5(+2.4)(-2.3) degrees. Maximal mixing is rejected at the equivalent of 5.4 standard deviations.

  3. An Independent Measurement of the Total Active 8B Solar Neutrino Flux Using an Array of 3He Proportional Counters at the Sudbury Neutrino Observatory

    CERN Document Server

    Aharmim, B; Amsbaugh, J F; Anthony, A E; Banar, J; Barros, N; Beier, E W; Bellerive, A; Beltran, B; Bergevin, M; Biller, S D; Boudjemline, K; Boulay, M G; Bowles, T J; Browne, M C; Bullard, T V; Burritt, T H; Cai, B; Chan, Y D; Chauhan, D; Chen, M; Cleveland, B T; Cox-Mobrand, G A; Currat, C A; Dai, X; Deng, H; Detwiler, J; Di Marco, M; Doe, P J; Doucas, G; Drouin, P L; Duba, C A; Duncan, F A; Dunford, M; Earle, E D; Elliott, S R; Evans, H C; Ewan, G T; Farine, J; Fergani, H; Fleurot, F; Ford, R J; Formaggio, J A; Fowler, M M; Gagnon, N; Germani, J V; Goldschmidt, A; Goon, J T M; Graham, K; Guillian, E; Habib, S; Hahn, R L; Hallin, A L; Hallman, E D; Hamian, A A; Harper, G C; Harvey, P J; Hazama, R; Heeger, K M; Heintzelman, W J; Heise, J; Helmer, R L; Henning, R; Hime, A; Howard, C; Howe, M A; Huang, M; Jagam, P; Jamieson, B; Jelley, N A; Keeter, K J; Klein, J R; Kormos, L L; Kos, M; Krüger, A; Kraus, C; Krauss, C B; Kutter, T; Kyba, C C M; Lange, R; Law, J; Lawson, I T; Lesko, K T; Leslie, J R; Loach, J C; MacLellan, R; Majerus, S; Mak, H B; Maneira, J; Martin, R; McBryde, K; McCauley, N; McDonald, A B; McGee, S; Miin, C; Miller, G G; Miller, M L; Monreal, B; Monroe, J; Morissette, B; Myers, A; Nickel, B G; Noble, A J; Oblath, N S; O'Keeffe, H M; Ollerhead, R W; Orebi Gann, G D; Oser, S M; Ott, R A; Peeters, S J M; Poon, A W P; Prior, G; Reitzner, S D; Rielage, K; Robertson, B C; Robertson, R G H; Rollin, E; Schwendener, M H; Secrest, J A; Seibert, S R; Simard, O; Simpson, J J; Sinclair, L; Skensved, P; Smith, M W E; Steiger, T D; Stonehill, L C; Tesic, G; Thornewell, P M; Tolich, N; Tsui, T; Tunnell, C D; Van Wechel, T; Van Berg, R; Van Devender, B A; Virtue, C J; Walker, T J; Wall, B L; Waller, D; Wan Chan Tseung, H; Wendland, J; West, N; Wilhelmy, J B; Wilkerson, J F; Wilson, J R; Wouters, J M; Wright, A; Yeh, M; Zhang, F; Zuber, K

    2008-01-01

    The Sudbury Neutrino Observatory (SNO) used an array of 3He proportional counters to measure the rate of neutral-current interactions in heavy water and precisely determined the total active (nu_x) 8B solar neutrino flux. This technique is independent of previous methods employed by SNO. The total flux is found to be 5.54(+0.33/-0.31 stat, +0.36/-0.34 syst) x 10^6 cm^-2 s^-1, in agreement with previous measurements and standard solar models. A global analysis of solar and reactor neutrino results yields Delta m^2 = 7.94(+0.42/-0.26) x 10^-5 eV^2 and theta = 33.8(+1.4/-1.3) degrees. The uncertainty on the mixing angle has been reduced from SNO's previous results.

  4. Independent measurement of the total active 8B solar neutrino flux using an array of 3He proportional counters at the Sudbury Neutrino Observatory.

    Science.gov (United States)

    Aharmim, B; Ahmed, S N; Amsbaugh, J F; Anthony, A E; Banar, J; Barros, N; Beier, E W; Bellerive, A; Beltran, B; Bergevin, M; Biller, S D; Boudjemline, K; Boulay, M G; Bowles, T J; Browne, M C; Bullard, T V; Burritt, T H; Cai, B; Chan, Y D; Chauhan, D; Chen, M; Cleveland, B T; Cox-Mobrand, G A; Currat, C A; Dai, X; Deng, H; Detwiler, J; DiMarco, M; Doe, P J; Doucas, G; Drouin, P-L; Duba, C A; Duncan, F A; Dunford, M; Earle, E D; Elliott, S R; Evans, H C; Ewan, G T; Farine, J; Fergani, H; Fleurot, F; Ford, R J; Formaggio, J A; Fowler, M M; Gagnon, N; Germani, J V; Goldschmidt, A; Goon, J T M; Graham, K; Guillian, E; Habib, S; Hahn, R L; Hallin, A L; Hallman, E D; Hamian, A A; Harper, G C; Harvey, P J; Hazama, R; Heeger, K M; Heintzelman, W J; Heise, J; Helmer, R L; Henning, R; Hime, A; Howard, C; Howe, M A; Huang, M; Jagam, P; Jamieson, B; Jelley, N A; Keeter, K J; Klein, J R; Kormos, L L; Kos, M; Krüger, A; Kraus, C; Krauss, C B; Kutter, T; Kyba, C C M; Lange, R; Law, J; Lawson, I T; Lesko, K T; Leslie, J R; Loach, J C; MacLellan, R; Majerus, S; Mak, H B; Maneira, J; Martin, R; McBryde, K; McCauley, N; McDonald, A B; McGee, S; Mifflin, C; Miller, G G; Miller, M L; Monreal, B; Monroe, J; Morissette, B; Myers, A; Nickel, B G; Noble, A J; Oblath, N S; O'Keeffe, H M; Ollerhead, R W; Gann, G D Orebi; Oser, S M; Ott, R A; Peeters, S J M; Poon, A W P; Prior, G; Reitzner, S D; Rielage, K; Robertson, B C; Robertson, R G H; Rollin, E; Schwendener, M H; Secrest, J A; Seibert, S R; Simard, O; Simpson, J J; Sinclair, L; Skensved, P; Smith, M W E; Steiger, T D; Stonehill, L C; Tesić, G; Thornewell, P M; Tolich, N; Tsui, T; Tunnell, C D; Van Wechel, T; Van Berg, R; VanDevender, B A; Virtue, C J; Walker, T J; Wall, B L; Waller, D; Tseung, H Wan Chan; Wendland, J; West, N; Wilhelmy, J B; Wilkerson, J F; Wilson, J R; Wouters, J M; Wright, A; Yeh, M; Zhang, F; Zuber, K

    2008-09-12

    The Sudbury Neutrino Observatory (SNO) used an array of 3He proportional counters to measure the rate of neutral-current interactions in heavy water and precisely determined the total active (nu_x) 8B solar neutrino flux. This technique is independent of previous methods employed by SNO. The total flux is found to be 5.54_-0.31;+0.33(stat)-0.34+0.36(syst)x10(6) cm(-2) s(-1), in agreement with previous measurements and standard solar models. A global analysis of solar and reactor neutrino results yields Deltam2=7.59_-0.21;+0.19x10(-5) eV2 and theta=34.4_-1.2;+1.3 degrees. The uncertainty on the mixing angle has been reduced from SNO's previous results.

  5. Detecting the upturn of the solar {sup 8}B neutrino spectrum with LENA

    Energy Technology Data Exchange (ETDEWEB)

    Möllenberg, R., E-mail: randolph.moellenberg@ph.tum.de [Excellence Cluster Universe, Technische Universität München, 85748 Garching (Germany); Feilitzsch, F. von; Hellgartner, D.; Oberauer, L.; Tippmann, M. [Physik Department, Technische Universität München, 85748 Garching (Germany); Winter, J.; Wurm, M. [Institut für Physik, Excellence Cluster PRISMA, Johannes Gutenberg Universität Mainz, 55128 Mainz (Germany); Zimmer, V. [Physik Department, Technische Universität München, 85748 Garching (Germany)

    2014-10-07

    LENA (Low Energy Neutrino Astronomy) has been proposed as a next generation 50 kt liquid scintillator detector. The large target mass allows a high precision measurement of the solar {sup 8}B neutrino spectrum, with an unprecedented energy threshold of 2 MeV. Hence, it can probe the MSW-LMA prediction for the electron neutrino survival probability in the transition region between vacuum and matter-dominated neutrino oscillations. Based on Monte Carlo simulations of the solar neutrino and the corresponding background spectra, it was found that the predicted upturn of the solar {sup 8}B neutrino spectrum can be detected with 5σ significance after 5 years.

  6. Detecting the Upturn of the Solar $^8$B Neutrino Spectrum with LENA

    CERN Document Server

    Möllenberg, Randolph; Hellgartner, Dominikus; Oberauer, Lothar; Tippmann, Marc; Winter, Jürgen; Wurm, Michael; Zimmer, Vincenz

    2014-01-01

    LENA (Low Energy Neutrino Astronomy) has been proposed as a next generation 50 kt liquid scintillator detector. The large target mass allows a high precision measurement of the solar $^8$B neutrino spectrum, with an unprecedented energy threshold of 2 MeV. Hence, it can probe the MSW-LMA prediction for the electron neutrino survival probability in the transition region between vacuum and matter-dominated neutrino oscillations. Based on Monte Carlo simulations of the solar neutrino and the corresponding background spectra, it was found that the predicted upturn of the solar $^8$B neutrino spectrum can be detected with 5 sigma significance after 5 y.

  7. Detecting the upturn of the solar 8B neutrino spectrum with LENA

    Directory of Open Access Journals (Sweden)

    R. Möllenberg

    2014-10-01

    Full Text Available LENA (Low Energy Neutrino Astronomy has been proposed as a next generation 50 kt liquid scintillator detector. The large target mass allows a high precision measurement of the solar 8B neutrino spectrum, with an unprecedented energy threshold of 2 MeV. Hence, it can probe the MSW-LMA prediction for the electron neutrino survival probability in the transition region between vacuum and matter-dominated neutrino oscillations. Based on Monte Carlo simulations of the solar neutrino and the corresponding background spectra, it was found that the predicted upturn of the solar 8B neutrino spectrum can be detected with 5σ significance after 5 years.

  8. How to observe 8B solar neutrinos in liquid scintillator detectors

    CERN Document Server

    Ianni, A; Villante, F L

    2016-01-01

    We show that liquid organic scintillator detectors (e.g., KamLAND and Borexino) can measure the 8B solar neutrino flux by means of the nu_e charged current interaction with the 13C nuclei naturally contained in the scintillators. The neutrino events can be identified by exploiting the time and space coincidence with the subsequent decay of the produced 13N nuclei. We perform a detailed analysis of the background in KamLAND, Borexino and in a possible liquid scintillator detector at SNOLab, showing that the 8B solar neutrino signal can be extracted with a reasonable uncertainty in a few years of data taking. KamLAND should be able to extract about 18 solar neutrino events from the already collected data. Prospects for gigantic scintillator detectors (such as LENA) are also studied.

  9. Measurement of the 8B Solar Neutrino Flux with KamLAND

    Energy Technology Data Exchange (ETDEWEB)

    Abe, S.; Furuno, K.; Gando, A.; Gando, Y.; Ichimura, K.; Ikeda, H.; Inoue, K.; Kibe, Y.; Kimura, W.; Kishimoto, Y.; Koga, M.; Minekawa, Y.; Mitsui, T.; Morikawa, T.; Nagai, N.; Nakajima, K.; Nakamura, K.; Nakamura, M.; Narita, K.; Shimizu, I.; Shimizu, Y.; Shirai, J.; Suekane, F.; Suzuki, A.; Takahashi, H.; Takahashi, N.; Takemoto, Y.; Tamae, K.; Watanabe, H.; Xu, B.D.; Yabumoto, H.; Yonezawa, E.; Yoshida, H.; Yoshida, S.; Enomoto, S.; Kozlov, A.; Murayama, H.; Grant, C.; Keefer, G.; McKee, D.; Piepke, A.; Banks, T.I.; Bloxham, T.; Detwiler, J.A.; Freedman, S.J.; Fujikawa, B.K.; Han, K.; Kadel, R.; O' Donnell, T.; Steiner, H.M.; Winslow, L.A.; Dwyer, D.A.; Mauger, C.; McKeown, R.D.; Zhang, C.; Berger, B.E.; Lane, C.E.; Maricic, J.; Miletic, T.; Batygov, M.; Learned, J.G.; Matsuno, S.; Pakvasa, S.; Sakai, M.; Horton-Smith, G.A.; Tang, A.; Downum, K.E.; Gratta, G.; Tolich, K.; Efremenko, Y.; Kamyshkov, Y.; Perevozchikov, O.; Karwowski, H.J.; Markoff, D.M.; Tornow, W.; Heeger, K.M.; Piquemal, F.; Ricol, J.-S.; Decowski, M.P.

    2011-06-04

    We report a measurement of the neutrino-electron elastic scattering rate from {sup 8}B solar neutrinos based on a 123 kton-day exposure of KamLAND. The background-subtracted electron recoil rate, above a 5.5-MeV analysis threshold is 1.49 {+-} 0.14(stat) {+-} 0.17(syst) events per kton-day. Interpreted as due to a pure electron flavor flux with a {sup 8}B neutrino spectrum, this corresponds to a spectrum integrated flux of 2.77 {+-} 0.26(stat) {+-} 0.32(syst) x 10{sup 6} cm{sup -2}s{sup -1}. The analysis threshold is driven by {sup 208}Tl present in the liquid scintillator, and the main source of systematic uncertainty is due to background from cosmogenic {sup 11}Be. The measured rate is consistent with existing measurements and with standard solar model predictions which include matter-enhanced neutrino oscillation.

  10. Measurement of the 8B Solar Neutrino Flux with KamLAND

    CERN Document Server

    Abe, S; Gando, A; Gando, Y; Ichimura, K; Ikeda, H; Inoue, K; Kibe, Y; Kimura, W; Kishimoto, Y; Koga, M; Minekawa, Y; Mitsui, T; Morikawa, T; Nagai, N; Nakajima, K; Nakamura, K; Nakamura, M; Narita, K; Shimizu, I; Shimizu, Y; Shirai, J; Suekane, F; Suzuki, A; Takahashi, H; Takahashi, N; Takemoto, Y; Tamae, K; Watanabe, H; Xu, B D; Yabumoto, H; Yonezawa, E; Yoshida, H; Yoshida, S; Enomoto, S; Kozlov, A; Murayama, H; Grant, C; Keefer, G; McKee, D; Piepke, A; Banks, T I; Bloxham, T; Detwiler, J A; Freedman, S J; Fujikawa, B K; Han, K; Kadel, R; O'Donnell, T; Steiner, H M; Winslow, L A; Dwyer, D A; Mauger, C; McKeown, R D; Zhang, C; Berger, B E; Lane, C E; Maricic, J; Miletic, T; Batygov, M; Learned, J G; Matsuno, S; Pakvasa, S; Sakai, M; Horton-Smith, G A; Tang, A; Downum, K E; Gratta, G; Tolich, K; Efremenko, Y; Kamyshkov, Y; Perevozchikov, O; Karwowski, H J; Markoff, D M; Tornow, W; Heeger, K M; Piquemal, F; Ricol, J -S; Decowski, M P

    2011-01-01

    We report a measurement of the neutrino-electron elastic scattering rate from 8B solar neutrinos based on a 123 kton-day exposure of KamLAND. The background-subtracted electron recoil rate, above a 5.5 MeV analysis threshold is 1.49+/-0.14(stat)+/-0.17(syst) events per kton-day. Interpreted as due to a pure electron flavor flux with a 8B neutrino spectrum, this corresponds to a spectrum integrated flux of 2.77+/-0.26(stat)+/-0.32(syst) x 10^6 cm^-2s^-1. The analysis threshold is driven by 208Tl present in the liquid scintillator, and the main source of systematic uncertainty is due to background from cosmogenic 11Be. The measured rate is consistent with existing measurements and with Standard Solar Model predictions which include matter enhanced neutrino oscillation.

  11. Measurement of the 8B solar neutrino flux with the KamLAND liquid scintillator detector

    NARCIS (Netherlands)

    Abe, S.; et al., [Unknown; Decowski, M.P.

    2011-01-01

    We report a measurement of the neutrino-electron elastic scattering rate from 8B solar neutrinos based on a 123 kton-day exposure of KamLAND. The background-subtracted electron recoil rate, above a 5.5-MeV analysis threshold is 1.49 ± 0.14(stat) ± 0.17(syst) events per kton-day. Interpreted as due t

  12. RAB8B Is Required for Activity and Caveolar Endocytosis of LRP6

    Directory of Open Access Journals (Sweden)

    Kubilay Demir

    2013-09-01

    Full Text Available Wnt/β-catenin signaling plays an important role in embryonic development and adult tissue homeostasis. When Wnt ligands bind to the receptor complex, LRP5/6 coreceptors are activated by phosphorylation and concomitantly endocytosed. In vertebrates, Wnt ligands induce caveolin-dependent endocytosis of LRP6 to relay signal downstream, whereas antagonists such as Dickkopf promote clathrin-dependent endocytosis, leading to inhibition. However, little is known about how LRP6 is directed to different internalization mechanisms, and how caveolin-dependent endocytosis is mediated. In an RNAi screen, we identified the Rab GTPase RAB8B as being required for Wnt/β-catenin signaling. RAB8B depletion reduces LRP6 activity, β-catenin accumulation, and induction of Wnt target genes, whereas RAB8B overexpression promotes LRP6 activity and internalization and rescues inhibition of caveolar endocytosis. In Xenopus laevis and Danio rerio, RAB8B morphants show lower Wnt activity during embryonic development. Our results implicate RAB8B as an essential evolutionary conserved component of Wnt/β-catenin signaling through regulation of LRP6 activity and endocytosis.

  13. Dissertation Award in Nuclear Physics Prize Talk: Model-Independent Measurement of the ^8B Solar Neutrino Flux and Evidence for Neutrino Flavor Change at SNO

    Science.gov (United States)

    Heeger, Karsten M.

    2003-04-01

    With heavy water as a target medium the Sudbury Neutrino Observatory (SNO) is designed to study solar neutrinos by measuring both the total flux of ^8B neutrinos through the neutral-current interaction as well as the electron-type neutrino flux via charged-current dissociation of deuterium. Using data from the pure D_2O phase of SNO we have determined the interaction rates of solar neutrinos with deuterium and characterized the backgrounds throughout the SNO detector volume. Without assumptions about the shape of the underlying ^8B spectrum a model-independent measurement of the total flux of active solar ^8B neutrinos is made. The measurement of the neutral-current and charged-current interaction rates provides direct evidence for the flavor transformation of solar neutrinos and indicates that neutrinos have mass. A combined analysis of solar neutrino data from SNO and Super-Kamiokande can be used to constrain the leading weak axial two-body current, the dominant uncertainty of the low-energy weak interaction deuteron breakup process. It is shown that the theoretical inputs to SNO's determination of the CC and NC interaction rates are not a significant theoretical uncertainty and can be self-calibrated.

  14. A Search for Periodicities in the $^8$B Solar Neutrino Flux Measured by the Sudbury Neutrino Observatory

    CERN Document Server

    Aharmim, B; Anthony, A E; Beier, E W; Bellerive, A; Bergevin, M; Biller, S D; Boulay, M G; Bowler, M G; Chan, Y D; Chen, M; Chen, X; Cleveland, B T; Costin, T; Cox, G A; Currat, C A; Dai, X; Deng, H; Detwiler, J; Doe, P J; Dosanjh, R S; Doucas, G; Duba, C A; Duncan, F A; Dunford, M; Dunmore, J A; Earle, E D; Elliott, S R; Evans, H C; Ewan, G T; Farine, J; Fergani, H; Fleurot, F; Formaggio, J A; Frati, W; Fulsom, B G; Gagnon, N; Goon, J T M; Graham, K; Hahn, R L; Hallin, A L; Hallman, E D; Handler, W B; Hargrove, C K; Harvey, P J; Hazama, R; Heeger, K M; Heelan, L; Heintzelman, W J; Heise, J; Helmer, R L; Hemingway, R J; Hime, A; Howe, M A; Huang, M; Inrig, E; Jagam, P; Jelley, N A; Klein, J R; Kormos, L L; Kos, M S; Krüger, A; Kraus, C V; Krauss, C B; Krumins, A V; Kutter, T; Kyba, C C M; Labranche, H; Lange, R; Law, J; Lawson, I T; Lesko, K T; Leslie, J R; Levine, I; Loach, J C; Luoma, S; MacLellan, R; Majerus, S; Maneira, J; Marino, A D; McCauley, N; McDonald, A B; McGee, S; Miin, C; Miknaitis, K K S; Nickel, B G; Noble, A J; Norman, E B; Oblath, N S; Okada, C E; O'Keeffe, H M; Ollerhead, R W; Orebi-Gann, G D; Orrell, J L; Oser, S M; Ouvarova, T; Peeters, S J M; Poon, A W P; Pun, C S J; Rielage, K; Robertson, B C; Robertson, R G H; Rollin, E; Rosendahl, S S E; Schwendener, M H; Seibert, S R; Simard, O; Simpson, J J; Sims, C J; Sinclair, D; Sinclair, L; Skensved, P; Smith, M W E; Stokstad, R G; Stonehill, L C; Tafirout, R; Takeuchi, Y; Tesic, G; Thomson, M; Tsang, K V; Tsui, T; Van Berg, R; Virtue, C J; Wall, B L; Waller, D; Waltham, C E; Wan Chan Tseung, H; Wark, D L; Wendland, J; West, N; Wilkerson, J F; Wilson, J R; Wouters, J M; Yeh, M; Zuber, K

    2005-01-01

    A search has been made for sinusoidal periodic variations in the $^8$B solar neutrino flux using data collected by the Sudbury Neutrino Observatory over a 4-year time interval. The variation at a period of one year is consistent with modulation of the $^8$B neutrino flux by the Earth's orbital eccentricity. No significant sinusoidal periodicities are found with periods between 1 day and 10 years with either an unbinned maximum likelihood analysis or a Lomb-Scargle periodogram analysis. The data are inconsistent with the hypothesis that the results of the recent analysis by Sturrock et al., based on elastic scattering events in Super-Kamiokande, can be attributed to a 7% sinusoidal modulation of the total $^8$B neutrino flux.

  15. Measurement of the rate of nu(e) + d --> p + p + e(-) interactions produced by (8)B solar neutrinos at the Sudbury Neutrino Observatory.

    Science.gov (United States)

    Ahmad, Q R; Allen, R C; Andersen, T C; Anglin, J D; Bühler, G; Barton, J C; Beier, E W; Bercovitch, M; Bigu, J; Biller, S; Black, R A; Blevis, I; Boardman, R J; Boger, J; Bonvin, E; Boulay, M G; Bowler, M G; Bowles, T J; Brice, S J; Browne, M C; Bullard, T V; Burritt, T H; Cameron, K; Cameron, J; Chan, Y D; Chen, M; Chen, H H; Chen, X; Chon, M C; Cleveland, B T; Clifford, E T; Cowan, J H; Cowen, D F; Cox, G A; Dai, Y; Dai, X; Dalnoki-Veress, F; Davidson, W F; Doe, P J; Doucas, G; Dragowsky, M R; Duba, C A; Duncan, F A; Dunmore, J; Earle, E D; Elliott, S R; Evans, H C; Ewan, G T; Farine, J; Fergani, H; Ferraris, A P; Ford, R J; Fowler, M M; Frame, K; Frank, E D; Frati, W; Germani, J V; Gil, S; Goldschmidt, A; Grant, D R; Hahn, R L; Hallin, A L; Hallman, E D; Hamer, A; Hamian, A A; Haq, R U; Hargrove, C K; Harvey, P J; Hazama, R; Heaton, R; Heeger, K M; Heintzelman, W J; Heise, J; Helmer, R L; Hepburn, J D; Heron, H; Hewett, J; Hime, A; Howe, M; Hykawy, J G; Isaac, M C; Jagam, P; Jelley, N A; Jillings, C; Jonkmans, G; Karn, J; Keener, P T; Kirch, K; Klein, J R; Knox, A B; Komar, R J; Kouzes, R; Kutter, T; Kyba, C C; Law, J; Lawson, I T; Lay, M; Lee, H W; Lesko, K T; Leslie, J R; Levine, I; Locke, W; Lowry, M M; Luoma, S; Lyon, J; Majerus, S; Mak, H B; Marino, A D; McCauley, N; McDonald, A B; McDonald, D S; McFarlane, K; McGregor, G; McLatchie, W; Meijer Drees, R; Mes, H; Mifflin, C; Miller, G G; Milton, G; Moffat, B A; Moorhead, M; Nally, C W; Neubauer, M S; Newcomer, F M; Ng, H S; Noble, A J; Norman, E B; Novikov, V M; O'Neill, M; Okada, C E; Ollerhead, R W; Omori, M; Orrell, J L; Oser, S M; Poon, A W; Radcliffe, T J; Roberge, A; Robertson, B C; Robertson, R G; Rowley, J K; Rusu, V L; Saettler, E; Schaffer, K K; Schuelke, A; Schwendener, M H; Seifert, H; Shatkay, M; Simpson, J J; Sinclair, D; Skensved, P; Smith, A R; Smith, M W; Starinsky, N; Steiger, T D; Stokstad, R G; Storey, R S; Sur, B; Tafirout, R; Tagg, N; Tanner, N W; Taplin, R K; Thorman, M; Thornewell, P; Trent, P T; Tserkovnyak, Y I; Van Berg, R; Van de Water, R G; Virtue, C J; Waltham, C E; Wang, J X; Wark, D L; West, N; Wilhelmy, J B; Wilkerson, J F; Wilson, J; Wittich, P; Wouters, J M; Yeh, M

    2001-08-13

    Solar neutrinos from (8)B decay have been detected at the Sudbury Neutrino Observatory via the charged current (CC) reaction on deuterium and the elastic scattering (ES) of electrons. The flux of nu(e)'s is measured by the CC reaction rate to be straight phi(CC)(nu(e)) = 1.75 +/- 0.07(stat)(+0.12)(-0.11)(syst) +/- 0.05(theor) x 10(6) cm(-2) s(-1). Comparison of straight phi(CC)(nu(e)) to the Super-Kamiokande Collaboration's precision value of the flux inferred from the ES reaction yields a 3.3 sigma difference, assuming the systematic uncertainties are normally distributed, providing evidence of an active non- nu(e) component in the solar flux. The total flux of active 8B neutrinos is determined to be 5.44+/-0.99 x 10(6) cm(-2) s(-1).

  16. Measurement of the νe and total 8B solar neutrino fluxes with the Sudbury Neutrino Observatory phase-III data set

    Science.gov (United States)

    Aharmim, B.; Ahmed, S. N.; Amsbaugh, J. F.; Anaya, J. M.; Anthony, A. E.; Banar, J.; Barros, N.; Beier, E. W.; Bellerive, A.; Beltran, B.; Bergevin, M.; Biller, S. D.; Boudjemline, K.; Boulay, M. G.; Bowles, T. J.; Browne, M. C.; Bullard, T. V.; Burritt, T. H.; Cai, B.; Chan, Y. D.; Chauhan, D.; Chen, M.; Cleveland, B. T.; Cox, G. A.; Currat, C. A.; Dai, X.; Deng, H.; Detwiler, J. A.; DiMarco, M.; Doe, P. J.; Doucas, G.; Dragowsky, M. R.; Drouin, P.-L.; Duba, C. A.; Duncan, F. A.; Dunford, M.; Earle, E. D.; Elliott, S. R.; Evans, H. C.; Ewan, G. T.; Farine, J.; Fergani, H.; Fleurot, F.; Ford, R. J.; Formaggio, J. A.; Fowler, M. M.; Gagnon, N.; Germani, J. V.; Goldschmidt, A.; Goon, J. TM.; Graham, K.; Guillian, E.; Habib, S.; Hahn, R. L.; Hallin, A. L.; Hallman, E. D.; Hamian, A. A.; Harper, G. C.; Harvey, P. J.; Hazama, R.; Heeger, K. M.; Heintzelman, W. J.; Heise, J.; Helmer, R. L.; Henning, R.; Hime, A.; Howard, C.; Howe, M. A.; Huang, M.; Jagam, P.; Jamieson, B.; Jelley, N. A.; Keeter, K. J.; Klein, J. R.; Kormos, L. L.; Kos, M.; Krüger, A.; Kraus, C.; Krauss, C. B.; Kutter, T.; Kyba, C. C. M.; Lange, R.; Law, J.; Lawson, I. T.; Lesko, K. T.; Leslie, J. R.; Loach, J. C.; MacLellan, R.; Majerus, S.; Mak, H. B.; Maneira, J.; Martin, R.; McCauley, N.; McDonald, A. B.; McGee, S. R.; Mifflin, C.; Miller, G. G.; Miller, M. L.; Monreal, B.; Monroe, J.; Morissette, B.; Myers, A. W.; Nickel, B. G.; Noble, A. J.; O'Keeffe, H. M.; Oblath, N. S.; Ollerhead, R. W.; Orebi Gann, G. D.; Oser, S. M.; Ott, R. A.; Peeters, S. J. M.; Poon, A. W. P.; Prior, G.; Reitzner, S. D.; Rielage, K.; Robertson, B. C.; Robertson, R. G. H.; Rollin, E.; Schwendener, M. H.; Secrest, J. A.; Seibert, S. R.; Simard, O.; Simpson, J. J.; Skensved, P.; Smith, M. W. E.; Sonley, T. J.; Steiger, T. D.; Stonehill, L. C.; Tešić, G.; Thornewell, P. M.; Tolich, N.; Tsui, T.; Tunnell, C. D.; Van Wechel, T.; Van Berg, R.; VanDevender, B. A.; Virtue, C. J.; Wall, B. L.; Waller, D.; Wan Chan Tseung, H.; Wendland, J.; West, N.; Wilhelmy, J. B.; Wilkerson, J. F.; Wilson, J. R.; Wouters, J. M.; Wright, A.; Yeh, M.; Zhang, F.; Zuber, K.

    2013-01-01

    This paper details the solar neutrino analysis of the 385.17-day phase-III data set acquired by the Sudbury Neutrino Observatory (SNO). An array of 3He proportional counters was installed in the heavy-water target to measure precisely the rate of neutrino-deuteron neutral-current interactions. This technique to determine the total active 8B solar neutrino flux was largely independent of the methods employed in previous phases. The total flux of active neutrinos was measured to be 5.54-0.31+0.33(stat.)-0.34+0.36(syst.)×106 cm-2 s-1, consistent with previous measurements and standard solar models. A global analysis of solar and reactor neutrino mixing parameters yielded the best-fit values of Δm2=7.59-0.21+0.19×10-5eV2 and θ=34.4-1.2+1.3degrees.

  17. Halo effective field theory constrains the solar 7Be + p → 8B + γ rate

    Directory of Open Access Journals (Sweden)

    Xilin Zhang

    2015-12-01

    Full Text Available We report an improved low-energy extrapolation of the cross section for the process Be7(p,γB8, which determines the 8B neutrino flux from the Sun. Our extrapolant is derived from Halo Effective Field Theory (EFT at next-to-leading order. We apply Bayesian methods to determine the EFT parameters and the low-energy S-factor, using measured cross sections and scattering lengths as inputs. Asymptotic normalization coefficients of 8B are tightly constrained by existing radiative capture data, and contributions to the cross section beyond external direct capture are detected in the data at E<0.5 MeV. Most importantly, the S-factor at zero energy is constrained to be S(0=21.3±0.7 eVb, which is an uncertainty smaller by a factor of two than previously recommended. That recommendation was based on the full range for S(0 obtained among a discrete set of models judged to be reasonable. In contrast, Halo EFT subsumes all models into a controlled low-energy approximant, where they are characterized by nine parameters at next-to-leading order. These are fit to data, and marginalized over via Monte Carlo integration to produce the improved prediction for S(E.

  18. Solar 8B and hep neutrino measurements from 1258 days of Super-Kamiokande data.

    Science.gov (United States)

    Fukuda, S; Fukuda, Y; Ishitsuka, M; Itow, Y; Kajita, T; Kameda, J; Kaneyuki, K; Kobayashi, K; Koshio, Y; Miura, M; Moriyama, S; Nakahata, M; Nakayama, S; Okada, A; Sakurai, N; Shiozawa, M; Suzuki, Y; Takeuchi, H; Takeuchi, Y; Toshito, T; Totsuka, Y; Yamada, S; Desai, S; Earl, M; Kearns, E; Messier, M D; Scholberg, K; Stone, J L; Sulak, L R; Walter, C W; Goldhaber, M; Barszczak, T; Casper, D; Gajewski, W; Kropp, W R; Mine, S; Liu, D W; Price, L R; Smy, M B; Sobel, H W; Vagins, M R; Ganezer, K S; Keig, W E; Ellsworth, R W; Tasaka, S; Kibayashi, A; Learned, J G; Matsuno, S; Takemori, D; Hayato, Y; Ishii, T; Kobayashi, T; Nakamura, K; Obayashi, Y; Oyama, Y; Sakai, A; Sakuda, M; Kohama, M; Suzuki, A T; Inagaki, T; Nakaya, T; Nishikawa, K; Haines, T J; Blaufuss, E; Dazeley, S; Lee, K B; Svoboda, R; Goodman, J A; Guillian, G; Sullivan, G W; Turcan, D; Habig, A; Hill, J; Jung, C K; Martens, K; Malek, M; Mauger, C; McGrew, C; Sharkey, E; Viren, B; Yanagisawa, C; Mitsuda, C; Miyano, K; Saji, C; Shibata, T; Kajiyama, Y; Nagashima, Y; Nitta, K; Takita, M; Yoshida, M; Kim, H I; Kim, S B; Yoo, J; Okazawa, H; Ishizuka, T; Etoh, M; Gando, Y; Hasegawa, T; Inoue, K; Ishihara, K; Maruyama, T; Shirai, J; Suzuki, A; Koshiba, M; Hatakeyama, Y; Ichikawa, Y; Koike, M; Nishijima, K; Fujiyasu, H; Ishino, H; Morii, M; Watanabe, Y; Golebiewska, U; Kielczewska, D; Boyd, S C; Stachyra, A L; Wilkes, R J; Young, K K

    2001-06-18

    Solar neutrino measurements from 1258 days of data from the Super-Kamiokande detector are presented. The measurements are based on recoil electrons in the energy range 5.0-20.0 MeV. The measured solar neutrino flux is 2.32+/-0.03(stat)+0.08-0.07(syst)x10(6) cm(-2) x s(-1), which is 45.1+/-0.5(stat)+1.6-1.4(syst)% of that predicted by the BP2000 SSM. The day vs night flux asymmetry (Phi(n)-Phi(d))/Phi(average) is 0.033+/-0.022(stat)+0.013-0.012(syst). The recoil electron energy spectrum is consistent with no spectral distortion. For the hep neutrino flux, we set a 90% C.L. upper limit of 40x10(3) cm(-2) x s(-1), which is 4.3 times the BP2000 SSM prediction.

  19. Solar 8B and hep Neutrino Measurements from 1258 Days of Super-Kamiokande Data

    CERN Document Server

    Fukuda, S; Ishitsuka, M; Itow, Y; Kajita, T; Kameda, J; Kaneyuki, K; Kobayashi, K; Koshio, Y; Miura, M; Moriyama, S; Nakahata, M; Nakayama, S; Okada, A; Sakurai, N; Shiozawa, M; Suzuki, Y; Takeuchi, H; Takeuchi, Y; Toshito, T; Totsuka, Y; Yamada, S; Desai, S V; Earl, M A; Kearns, E T; Messier, M D; Scholberg, K; Stone, J L; Sulak, Lawrence R; Walter, C W; Goldhaber, M; Barszczak, T; Casper, David William; Gajewski, W; Kropp, W R; Mine, S; Liu, D W; Price, L R; Smy, M B; Sobel, H W; Vagins, M R; Ganezer, K S; Keig, W E; Ellsworth, R W; Tasaka, S; Kibayashi, A; Learned, J G; Matsuno, S; Takemori, D; Hayato, Y; Ishii, T; Kobayashi, T; Nakamura, K; Obayashi, Y; Oyama, Y; Sakai, A; Sakuda, M; Kohama, M; Suzuki, A T; Inagaki, T; Nakaya, T; Nishikawa, K; Haines, T J; Blaufuss, E; Dazeley, S A; Lee, K B; Svoboda, R; Chen, M L; Goodman, J A; Guillian, G; Sullivan, G W; Turcan, D; Habig, A; Hill, J; Jung, C K; Martens, K; Malek, M; Mauger, C; McGrew, C; Sharkey, E; Viren, B M; Yanagisawa, C; Mitsuda, C; Miyano, K; Saji, C; Shibata, T; Kajiyama, Y; Nagashima, Y; Nitta, K; Takita, M; Yoshida, M; Kim, H I; Kim, S B; Yoo, J; Okazawa, H; Ishizuka, T; Etoh, M; Gando, Y; Hasegawa, T; Inoue, K; Ishihara, K; Maruyama, T; Shirai, J; Suzuki, A; Koshiba, M; Hatakeyama, Y; Ichikawa, Y; Koike, M; Nishijima, K; Fujiyasu, H; Ishino, H; Morii, M; Watanabe, Y; Golebiewska, U; Kielczewska, D; Boyd, S C; Stachyra, A L; Wilkes, R J; Young, K K

    2001-01-01

    Solar neutrino measurements from 1258 days of data from the Super-Kamiokande detector are presented. The measurements are based on recoil electrons in the energy range 5.0-20.0MeV. The measured solar neutrino flux is 2.32 +- 0.03(stat.) +0.08-0.07(sys.)*10^6cm^{-2}s^{-1}, which is 45.1+-0.5(stat.)+1.6-1.4(sys.)% of that predicted by the BP2000 SSM. The day vs night flux asymmetry is 0.033+-0.022(stat.)+0.013-0.012(sys .). The recoil electron energy spectrum is consistent with no spectral distortion (\\chi^2/d.o.f. = 19.0/18). The seasonal variation of the flux is consistent with that expected from the eccentricity of the Earth's orbit (\\chi^2/d.o.f. = 3.7/7). For the hep neutrino flux, we set a 90% C.L. upper limit of 40 *10^3cm^{-2}s^{-1}, which is 4.3 times the BP2000 SSM prediction.

  20. Measurement of the nue and Total 8B Solar Neutrino Fluxes with theSudbury Neutrino Observatory Phase I Data Set

    Energy Technology Data Exchange (ETDEWEB)

    Aharmim, B.; Ahmad, Q.R.; Ahmed, S.N.; Allen, R.C.; Andersen,T.C.; Anglin, J.D.; Buehler, G.; Barton, J.C.; Beier, E.W.; Bercovitch,M.; Bergevin, M.; Bigu, J.; Biller, S.D.; Black, R.A.; Blevis, I.; Boardman, R.J.; Boger, J.; Bonvin, E.; Boulay, M.G.; Bowler, M.G.; Bowles, T.J.; Brice, S.J.; Browne, M.C.; Bullard, T.V.; Burritt, T.H.; Cameron, J.; Chan, Y.D.; Chen, H.H.; Chen, M.; Chen, X.; Cleveland, B.T.; Cowan, J.H.M.; Cowen, D.F.; Cox, G.A.; Currat, C.A.; Dai, X.; Dalnoki-Veress, F.; Davidson, W.F.; Deng, H.; DiMarco, M.; Doe, P.J.; Doucas, G.; Dragowsky, M.R.; Duba, C.A.; Duncan, F.A.; Dunford, M.; Dunmore, J.A.; Earle, E.D.; Elliott, S.R.; Evans, H.C.; Ewan, G.T.; Farine, J.; Fergani, H.; Ferraris, A.P.; Fleurot, F.; Ford, R.J.; Formaggio, J.A.; Fowler, M.M.; Frame, K.; Frank, E.D.; Frati, W.; Gagnon,N.; Germani, J.V.; Gil, S.; Goldschmidt, A.; Goon, J.T.M.; Graham, K.; Grant, D.R.; Guillian, E.; Hahn, R.L.; Hallin, A.L.; Hallman, E.D.; Hamer, A.S.; Hamian, A.A.; Handler, W.B.; Haq, R.U.; Hargrove, C.K.; Harvey, P.J.; Hazama, R.; Heeger, K.M.; Heintzelman, W.J.; Heise, J.; Helmer, R.L.; Henning, R.; Hepburn, J.D.; Heron, H.; Hewett, J.; Hime,A.; Howard, C.; Howe, M.A.; Huang, M.; Hykawy, J.G.; Isaac, M.C.P.; Jagam, P.; Jamieson, B.; Jelley, N.A.; Jillings, C.; Jonkmans, G.; Kazkaz, K.; Keener, P.T.; Kirch, K.; Klein, J.R.; Knox, A.B.; Komar,R.J.; Kormos, L.L.; Kos, M.; Kouzes, R.; Krueger, A.; Kraus, C.; Krauss,C.B.; Kutter, T.; Kyba, C.C.M.; Labranche, H.; Lange, R.; Law, J.; Lawson, I.T.; Lay, M.; Lee, H.W.; Lesko, K.T.; Leslie, J.R.; Levine, I.; Loach, J.C.; Locke, W.; Luoma, S.; Lyon, J.; MacLellan, R.; Majerus, S.; Mak, H.B.; Maneira, J.; Marino, A.D.; Martin, R.; McCauley, N.; McDonald,A.B.; McDonald, D.S.; McFarlane, K.; McGee, S.; McGregor, G.; MeijerDrees, R.; Mes, H.; Mifflin, C.; Miknaitis, K.K.S.; Miller, M.L.; Milton,G.; Moffat, B.A.; Monreal, B.; Moorhead, M.; Morrissette, B.; Nally,C.W.; Neubauer, M.S.; et al.

    2007-02-01

    This article provides the complete description of resultsfrom the Phase I data set of the Sudbury Neutrino Observatory (SNO). ThePhase I data set is based on a 0.65 kt-year exposure of heavy water tothe solar 8B neutrino flux. Included here are details of the SNO physicsand detector model, evaluations of systematic uncertainties, andestimates of backgrounds. Also discussed are SNO's approach tostatistical extraction of the signals from the three neutrino reactions(charged current, neutral current, and elastic scattering) and theresults of a search for a day-night asymmetry in the ?e flux. Under theassumption that the 8B spectrum is undistorted, the measurements fromthis phase yield a solar ?e flux of ?(?e) =1.76+0.05?0.05(stat.)+0.09?0.09 (syst.) x 106 cm?2 s?1, and a non-?ecomponent ?(? mu) = 3.41+0.45?0.45(stat.)+0.48?0.45 (syst.) x 106 cm?2s?1. The sum of these components provides a total flux in excellentagreement with the predictions of Standard Solar Models. The day-nightasymmetry in the ?e flux is found to be Ae = 7.0 +- 4.9 (stat.)+1.3?1.2percent (sys.), when the asymmetry in the total flux is constrained to bezero.

  1. Electron Energy Spectra, Fluxes, and Day-Night Asymmetries of $^{8}$B Solar Neutrinos from the 391-Day Salt Phase SNO Data Set

    CERN Document Server

    Aharmim, B; Anthony, A E; Beier, E W; Bellerive, A; Bergevin, M; Biller, S D; Boger, J; Boulay, M G; Bowler, M G; Bullard, T V; Chan, Y D; Chen, M; Chen, X; Cleveland, B T; Cox, G A; Currat, C A; Dai, X; Dalnoki-Veress, F; Deng, H; Doe, P J; Dosanjh, R S; Doucas, G; Duba, C A; Duncan, F A; Dunford, M; Dunmore, J A; Earle, E D; Elliott, S R; Evans, H C; Ewan, G T; Farine, J; Fergani, H; Fleurot, F; Formaggio, J A; Frame, K; Frati, W; Fulsom, B G; Gagnon, N; Graham, K; Grant, D R; Hahn, R L; Hall, J C; Hallin, A L; Hallman, E D; Handler, W B; Hargrove, C K; Harvey, P J; Hazama, R; Heeger, K M; Heelan, L; Heintzelman, W J; Heise, J; Helmer, R L; Hemingway, R J; Hime, A; Howard, C; Howe, M A; Huang, M; Jagam, P; Jelley, N A; Klein, J R; Kormos, L L; Kos, M S; Krüger, A; Kraus, C V; Krauss, C B; Krumins, A V; Kutter, T; Kyba, C C M; Labranche, H; Lange, R; Law, J; Lawson, I T; Lesko, K T; Leslie, J R; Levine, I; Loach, J C; Luoma, S; MacLellan, R; Majerus, S; Mak, H B; Maneira, J; Marino, A D; McCauley, N; McDonald, A B; McGee, S; McGregor, G; Miin, C; Miknaitis, K K S; Moffat, B A; Nally, C W; Neubauer, M S; Nickel, B G; Noble, A J; Norman, E B; Oblath, N S; Okada, C E; Ollerhead, R W; Orrell, J L; Oser, S M; Ouellet, C V; Peeters, S J M; Poon, A W P; Rielage, K; Robertson, B C; Robertson, R G H; Rollin, E; Rosendahl, S S E; Rusu, V L; Schwendener, M H; Seibert, S R; Simard, O; Simpson, J J; Sims, C J; Sinclair, D; Skensved, P; Smith, M W E; Starinsky, N; Stokstad, R G; Stonehill, L C; Tafirout, R; Takeuchi, Y; Tesic, G; Thomson, M; Thorman, M; Tsui, T; Van Berg, R; Van de Water, R G; Virtue, C J; Wall, B L; Waller, D; Waltham, C E; Wan Chan Tseung, H; Wark, D L; Wendland, J; West, N; Wilkerson, J F; Wilson, J R; Wittich, P; Wouters, J M; Wright, A; Yeh, M; Zuber, K

    2005-01-01

    Results are reported from the complete salt phase of the Sudbury Neutrino Observatory experiment in which NaCl was dissolved in the D$_2$O target. The addition of salt enhanced the signal from neutron capture, as compared to the pure D$_2$O detector. By making a statistical separation of charged-current events from other types based on event-isotropy criteria, the effective electron recoil energy spectrum has been extracted. In units of $ 10^6$ cm$^{-2}$ s$^{-1}$, the total flux of active-flavor neutrinos from $^8$B decay in the Sun is found to be $4.94^{+0.21}_{-0.21}{(stat)}^{+0.38}_{-0.34}{(syst)}$ and the integral flux of electron neutrinos for an undistorted $^8$B spectrum is $1.68^{+0.06}_{-0.06}{(stat)}^{+0.08}_{-0.09}{(syst)}$; the signal from ($\

  2. Data integrity and electronic calibrations for the Neutral Current Detector phase measurement of the 8B solar neutrino flux at the Sudbury Neutrino Observatory

    Science.gov (United States)

    Cox-Mobrand, Gary A.

    The Sudbury Neutrino Observatory (SNO) is a heavy water Cherenkov detector that observed solar neutrinos via elastic-scattering, charge-current and neutral-current interactions. SNO was designed to measure the flux the total 8B solar neutrino flux in three separate phases, making each measurement under a different set of detector conditions and detection mechanisms. In the third phase, an array of 3He proportional counters was installed, called Neutral Current Detectors (NCDs), which detected neutrons liberated in the neutral-current interactions with deuterium. The neutrino flux can be measured in the NCD phase by identification of neutron capture events via pulse-shape analysis techniques. To accomplish this, the transformation of the neutron capture signals caused by the NCD electronics and data acquisition system (NCD DAQ) must be well known. The NCD DAQ electronics model was developed and quantified, resulting in a small contribution to the systematic uncertainties of neutron identification. Of the four currently proposed neutron identification methods, the parameters which characterize the logarithmic amplification of pulse shapes contribute 1.65%, 0.65%, 0.05% and 0.0% to the systematic uncertainty in the number of identified neutrons. A mechanical problem in two NCDs was discovered that caused the detectors to disconnect from the signal cable with little evidence of being disconnected. The work presented here identified two NCDs that suffered from this mechanical problem and estimated the amount of time that each NCD was disconnected. The remaining NCDs are shown to be unaffected by this problem and an upper limit on the amount of time disconnected was estimated. This was accomplished by an analysis of the rate of thermal noise triggers, an instrumental background noise event. The detected rates of background alphas were also measured to test for anomalously low rates. It was determined that these two NCDs should be removed from the final neutrino flux

  3. Measurement of the efficient cross section of the reaction {sup 7}Be(p, {gamma}){sup 8}B at low energies and implications in the problem of solar neutrinos; Mesures de la section efficace de la reaction {sup 7}Be(p,{gamma}){sup 8}B a basses energies et implications dans le probleme des neutrinos solaires

    Energy Technology Data Exchange (ETDEWEB)

    Hammache, Fairouz

    1999-07-01

    The {sup 8}B produced inside the sun through the reaction {sup 7}Be(p,{gamma}){sup 8}B is the main, and even unique, source of high energy neutrinos detected in most solar neutrino detection experiments, except with Gallex and Sage. These experiments have all measured a neutrinos flux lower than the one predicted by solar models. Several explanations have been proposed to explain this deficit, but all require a precise knowledge of the efficient cross-section of the reaction {sup 7}Be(p,{gamma}){sup 8}B, because the neutrinos flux of {sup 8}B is directly proportional to this reaction. The direct measurement of this cross section for the solar energy is impossible because of its low value (about 1 femto-barn). In order to get round this problem, the cross sections are measured at higher energy and extrapolated to the solar energy using a theoretical energy dependence. The 6 previous experimental determinations of the efficient cross section were shared in two distinct groups with differences of about 30% which leads to an uncertainty of the same order on the high energy neutrinos flux. The re-measurement of the cross section of this reaction with a better precision is thus of prime importance. A direct measurement of the cross section in the energy range comprised between 0.35 and 1.4 MeV (cm) has been performed first. These experiments have permitted the precise measurement of each parameter involved in the determination of the cross section. Then, measurements of the cross section have been carried out with the PAPAP accelerator at 185.8, 134.7 and 111.7 keV, the lowest mass center energy never reached before. The results are in excellent agreement with those obtained at higher energies. The value obtained by extrapolation of these data for the astrophysical factor S{sub 17}(0) is 19.21.3 EV-B, which leads to a significant reduction of the uncertainty on the high energy neutrinos flux of {sup 8}B. (J.S.)

  4. Measurement of the $^{8}B$ neutrino spectrum

    CERN Document Server

    Winter, W; Jiang, C L; Ahmad, I; Freedman, S J; Greene, J; Heinz, A; Henderson, D; Janssens, R V F; Moore, E F; Mukherjee, G; Pardo, R C; Paul, M; Pennington, T; Savard, G; Schiffer, J P; Seweryniak, D; Zinkann, G P; 10.1016/S0375-9474(03)01122-9

    2003-01-01

    The neutrino spectrum from the decay of /sup 8/B is a crucial ingredient in interpreting recent data from solar neutrino detectors. The beta /sup +/ decay of /sup 8/B proceeds to a broad state in /sup 8/Be, and the shape of the neutrino spectrum may be obtained from a measurement of the alpha spectrum following the beta /sup +/ decay. A new technique has been used at the ATLAS accelerator to measure this spectrum by implanting /sup 8/B particles into the midplane of a 91 mu m thick Si detector. The advantage of this method is that both alpha particles are detected and systematic effects due to energy loss in catcher foils and dead layers of the detector are eliminated. To calibrate the detector, alpha 's from the decay of /sup 20/Na ions produced and implanted with the same technique were used. (5 refs).

  5. Tanzania - Kigoma Solar Activity

    Data.gov (United States)

    Millennium Challenge Corporation — The performance evaluation of the Kigoma solar activity was designed to answer questions about the implementation of the program and about outcomes that may have...

  6. Physics of solar activity

    Science.gov (United States)

    Sturrock, Peter A.

    1993-01-01

    The aim of the research activity was to increase our understanding of solar activity through data analysis, theoretical analysis, and computer modeling. Because the research subjects were diverse and many researchers were supported by this grant, a select few key areas of research are described in detail. Areas of research include: (1) energy storage and force-free magnetic field; (2) energy release and particle acceleration; (3) radiation by nonthermal electrons; (4) coronal loops; (5) flare classification; (6) longitude distributions of flares; (7) periodicities detected in the solar activity; (8) coronal heating and related problems; and (9) plasma processes.

  7. Magnetohydrodynamic process in solar activity

    Directory of Open Access Journals (Sweden)

    Jingxiu Wang

    2014-01-01

    Full Text Available Magnetohydrodynamics is one of the major disciplines in solar physics. Vigorous magnetohydrodynamic process is taking place in the solar convection zone and atmosphere. It controls the generating and structuring of the solar magnetic fields, causes the accumulation of magnetic non-potential energy in the solar atmosphere and triggers the explosive magnetic energy release, manifested as violent solar flares and coronal mass ejections. Nowadays detailed observations in solar astrophysics from space and on the ground urge a great need for the studies of magnetohydrodynamics and plasma physics to achieve better understanding of the mechanism or mechanisms of solar activity. On the other hand, the spectacular solar activity always serves as a great laboratory of magnetohydrodynamics. In this article, we reviewed a few key unresolved problems in solar activity studies and discussed the relevant issues in solar magnetohydrodynamics.

  8. 15 CFR 8b.4 - Discrimination prohibited.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Discrimination prohibited. 8b.4 Section 8b.4 Commerce and Foreign Trade Office of the Secretary of Commerce PROHIBITION OF DISCRIMINATION... Provisions § 8b.4 Discrimination prohibited. (a) General. No qualified handicapped individual shall, on...

  9. 15 CFR 8b.16 - Discrimination prohibited.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Discrimination prohibited. 8b.16 Section 8b.16 Commerce and Foreign Trade Office of the Secretary of Commerce PROHIBITION OF DISCRIMINATION... Accessibility § 8b.16 Discrimination prohibited. No qualified handicapped individual shall, because a...

  10. 15 CFR 8b.11 - Discrimination prohibited.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Discrimination prohibited. 8b.11 Section 8b.11 Commerce and Foreign Trade Office of the Secretary of Commerce PROHIBITION OF DISCRIMINATION... Practices § 8b.11 Discrimination prohibited. (a) General. (1) No qualified handicapped individual shall,...

  11. Deciphering Solar Magnetic Activity: On Grand Minima in Solar Activity

    Directory of Open Access Journals (Sweden)

    Scott William Mcintosh

    2015-07-01

    Full Text Available The Sun provides the energy necessary to sustain our existence. While the Sun provides for us, it is also capable of taking away. The weather and climatic scales of solar evolution and the Sun-Earth connection are not well understood. There has been tremendous progress in the century since the discovery of solar magnetism - magnetism that ultimately drives the electromagnetic, particulate and eruptive forcing of our planetary system. There is contemporary evidence of a decrease in solar magnetism, perhaps even indicators of a significant downward trend, over recent decades. Are we entering a minimum in solar activity that is deeper and longer than a typical solar minimum, a grand minimum? How could we tell if we are? What is a grand minimum and how does the Sun recover? These are very pertinent questions for modern civilization. In this paper we present a hypothetical demonstration of entry and exit from grand minimum conditions based on a recent analysis of solar features over the past 20 years and their possible connection to the origins of the 11(-ish year solar activity cycle.

  12. Activity Cycle of Solar Filaments

    Indian Academy of Sciences (India)

    K. J. Li; Q. X. Li; P. X. Gao; J. Mu; H. D. Chen; T. W. Su

    2007-06-01

    Long-term variation in the distribution of the solar filaments observed at the Observatorie de Paris, Section de Meudon from March 1919 to December 1989 is presented to compare with sunspot cycle and to study the periodicity in the filament activity, namely the periods of the coronal activity with the Morlet wavelet used. It is inferred that the activity cycle of solar filaments should have the same cycle length as sunspot cycle, but the cycle behavior of solar filaments is globally similar in profile with, but different in detail from, that of sunspot cycles. The amplitude of solar magnetic activity should not keep in phase with the complexity of solar magnetic activity. The possible periods in the filament activity are about 10.44 and 19.20 years. The wavelet local power spectrum of the period 10.44 years is statistically significant during the whole consideration time. The wavelet local power spectrum of the period 19.20 years is under the 95% confidence spectrum during the whole consideration time, but over the mean red-noise spectrum of = 0.72 before approximate Carrington rotation number 1500, and after that the filament activity does not statistically show the period. Wavelet reconstruction indicates that the early data of the filament archive (in and before cycle 16) are more noiseful than the later (in and after cycle 17).

  13. Solar dynamo and geomagnetic activity

    CERN Document Server

    Georgieva, Katya

    2010-01-01

    The correlation between geomagnetic activity and the sunspot number in the 11-year solar cycle exhibits long-term variations due to the varying time lag between the sunspot-related and non-sunspot related geomagnetic activity, and the varying relative amplitude of the respective geomagnetic activity peaks. As the sunspot-related and non-sunspot related geomagnetic activity are caused by different solar agents, related to the solar toroidal and poloidal fields, respectively, we use their variations to derive the parameters of the solar dynamo transforming the poloidal field into toroidal field and back. We find that in the last 12 cycles the solar surface meridional circulation varied between 5 and 20 m/s (averaged over latitude and over the sunspot cycle), the deep circulation varied between 2.5 and 5.5 m/s, and the diffusivity in the whole of the convection zone was ~10**12 m2/s. In the last 12 cycles solar dynamo has been operating in moderately diffusion dominated regime in the bulk of the convection zone....

  14. 15 CFR 8b.5 - Assurances required.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Assurances required. 8b.5 Section 8b.5 Commerce and Foreign Trade Office of the Secretary of Commerce PROHIBITION OF DISCRIMINATION AGAINST THE... otherwise encumber the real property as security to finance construction of new, or improvement of...

  15. 15 CFR 8b.18 - New construction.

    Science.gov (United States)

    2010-01-01

    ... Standards (UFAS) (Appendix A to 41 CFR subpart 101-19.6) shall be deemed to comply with the requirements of... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false New construction. 8b.18 Section 8b.18... construction. (a) Design and construction. Each facility or part of a facility constructed by, on behalf of,...

  16. Deciphering Solar Magnetic Activity: On Grand Minima in Solar Activity

    CERN Document Server

    McIntosh, Scott W

    2015-01-01

    The Sun provides the energy necessary to sustain our existence. While the Sun provides for us, it is also capable of taking away. The weather and climatic scales of solar evolution and the Sun-Earth connection are not well understood. There has been tremendous progress in the century since the discovery of solar magnetism - magnetism that ultimately drives the electromagnetic, particulate and eruptive forcing of our planetary system. There is contemporary evidence of a decrease in solar magnetism, perhaps even indicators of a significant downward trend, over recent decades. Are we entering a minimum in solar activity that is deeper and longer than a typical solar minimum, a "grand minimum"? How could we tell if we are? What is a grand minimum and how does the Sun recover? These are very pertinent questions for modern civilization. In this paper we present a hypothetical demonstration of entry and exit from grand minimum conditions based on a recent analysis of solar features over the past 20 years and their p...

  17. Solar Activity and Classical Physics

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This review of solar physics emphasizes several of the more conspicuous scientific puzzles posed by contemporary observational knowledge of the magnetic activity of the Sun. The puzzles emphasize how much classical physics we have yet to learn from the Sun. The physics of solar activity is based on the principles of Newton, Maxwell, Lorentz, Boltzmann, et. al., along with the principles of radiative transfer. In the large, these principles are expressed by magnetohydrodynamics. A brief derivation of the magnetohydrodynamic induction and momentum equations is provided, with a discussion of popular misconceptions.

  18. Ligand-dependent regulation of the activity of the orphan nuclear receptor, small heterodimer partner (SHP), in the repression of bile acid biosynthetic CYP7A1 and CYP8B1 genes.

    Science.gov (United States)

    Miao, Ji; Choi, Sung-E; Seok, Sun Mi; Yang, Linda; Zuercher, William J; Xu, Yong; Willson, Timothy M; Xu, H Eric; Kemper, Jongsook Kim

    2011-07-01

    Small heterodimer partner (SHP) plays important roles in diverse biological processes by directly interacting with transcription factors and inhibiting their activities. SHP has been designated an orphan nuclear receptor, but whether its activity can be modulated by ligands has been a long-standing question. Recently, retinoid-related molecules, including 4-[3-(1-adamantyl)-4-hydroxyphenyl]-3-chlorocinnamic acid (3Cl-AHPC), were shown to bind to SHP and enhance apoptosis. We have examined whether 3Cl-AHPC acts as an agonist and increases SHP activity in the repression of bile acid biosynthetic CYP7A1 and CYP8B1 genes and delineated the underlying mechanisms. Contrary to this expectation, micromolar concentrations of 3Cl-AHPC increased CYP7A1 expression but indirectly via p38 kinase signaling. Nanomolar concentrations, however, repressed CYP7A1 expression and decreased bile acid levels in HepG2 cells, and little repression was observed when SHP was down-regulated by small hairpin RNA. Mechanistic studies revealed that 3Cl-AHPC bound to SHP, increased the interaction of SHP with liver receptor homologue (LRH)-1, a hepatic activator for CYP7A1 and CYP8B1 genes, and with repressive cofactors, Brahma, mammalian Sin3a, and histone deacetylase-1, and, subsequently, increased the occupancy of SHP and these cofactors at the promoters. Mutation of Leu-100, predicted to contact 3Cl-AHPC within the SHP ligand binding pocket by molecular modeling, severely impaired the increased interaction with LRH-1, and repression of LRH-1 activity mediated by 3Cl-AHPC. 3Cl-AHPC repressed SHP metabolic target genes in a gene-specific manner in human primary hepatocytes and HepG2 cells. These data suggest that SHP may act as a ligand-regulated receptor in metabolic pathways. Modulation of SHP activity by synthetic ligands may be a useful therapeutic strategy.

  19. Forecasting the solar activity cycle: new insights

    CERN Document Server

    Nandy, Dibyendu

    2013-01-01

    Having advanced knowledge of solar activity is important because the Sun's magnetic output governs space weather and impacts technologies reliant on space. However, the irregular nature of the solar cycle makes solar activity predictions a challenging task. This is best achieved through appropriately constrained solar dynamo simulations and as such the first step towards predictions is to understand the underlying physics of the solar dynamo mechanism. In Babcock-Leighton type dynamo models, the poloidal field is generated near the solar surface whereas the toroidal field is generated in the solar interior. Therefore a finite time is necessary for the coupling of the spatially segregated source layers of the dynamo. This time delay introduces a memory in the dynamo mechanism which allows forecasting of future solar activity. Here we discuss how this forecasting ability of the solar cycle is affected by downward turbulent pumping of magnetic flux. With significant turbulent pumping the memory of the dynamo is ...

  20. 15 CFR 8b.25 - Nonacademic services.

    Science.gov (United States)

    2010-01-01

    ... § 8b.22(d) and only if no qualified handicapped student is denied the opportunity to compete for teams... of particular careers. (c) Social organizations. A recipient that provides significant assistance to fraternities, sororities, or similar organizations shall assure itself that the membership practices of...

  1. 15 CFR 8b.13 - Employment criteria.

    Science.gov (United States)

    2010-01-01

    ... sensory, manual, or speaking skills, the test results accurately to reflect the applicant's or employee's....13 Commerce and Foreign Trade Office of the Secretary of Commerce PROHIBITION OF DISCRIMINATION... Practices § 8b.13 Employment criteria. (a) A recipient may not make use of any employment test or...

  2. Neuroprotection of Neuro2a cells and the cytokine suppressive and anti-inflammatory mode of action of resveratrol in activated RAW264.7 macrophages and C8-B4 microglia.

    Science.gov (United States)

    Steiner, Nicole; Balez, Rachelle; Karunaweera, Niloo; Lind, Joanne M; Münch, Gerald; Ooi, Lezanne

    2016-05-01

    Chronic inflammation is a hallmark of neurodegenerative disease and cytotoxic levels of nitric oxide (NO) and pro-inflammatory cytokines can initiate neuronal death pathways. A range of cellular assays were used to assess the anti-inflammatory and neuroprotective action of resveratrol using murine microglial (C8-B4), macrophage (RAW264.7) and neuronal-like (Neuro2a) cell lines. We examined the release of NO by Griess assay and used a Bioplex array to measure a panel of pro- and anti-inflammatory cytokines and chemokines, in response to the inflammatory stimuli lipopolysaccharide (LPS) and interferon-γ (IFN-γ). Resveratrol was a potent inhibitor of NO and cytokine release in activated macrophages and microglia. The activity of resveratrol increased marginally in potency with longer pre-incubation times in cell culture that was not due to cytotoxicity. Using an NO donor we show that resveratrol can protect Neuro2a cells from cytotoxic concentrations of NO. The protective effect of resveratrol from pro-inflammatory signalling in RAW264.7 cells was confirmed in co-culture experiments leading to increased survival of Neuro2a cells. Together our data are indicative of the potential neuroprotective effect of resveratrol during nitrosative stress and neuroinflammation.

  3. Evidence for distinct modes of solar activity

    CERN Document Server

    Usoskin, I G; Gallet, Y; Roth, R; Licht, A; Joos, F; Kovaltsov, G A; Thebault, E; Khokhlov, A

    2014-01-01

    Aims. The Sun shows strong variability in its magnetic activity, from Grand minima to Grand maxima, but the nature of the variability is not fully understood, mostly because of the insufficient length of the directly observed solar activity records and of uncertainties related to long-term reconstructions. Here we present a new adjustment-free reconstruction of solar activity over three millennia and study its different modes. Methods. We present a new adjustment-free, physical reconstruction of solar activity over the past three millennia, using the latest verified carbon cycle, 14C production, and archeomagnetic field models. This great improvement allowed us to study different modes of solar activity at an unprecedented level of details. Results. The distribution of solar activity is clearly bi-modal, implying the existence of distinct modes of activity. The main regular activity mode corresponds to moderate activity that varies in a relatively narrow band between sunspot numbers about 20 and 67. The exist...

  4. Sustainable Buildings. Using Active Solar Power

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, M. Keith [Univ. of Louisville, KY (United States); Barnett, Russell [Univ. of Louisville, KY (United States)

    2015-04-20

    The objective of this project is to promote awareness and knowledge of active solar energy technologies by installing and monitoring the following demonstration systems in Kentucky: 1) Pool heating system, Churchill Park School, 2) Water heating and daylighting systems, Middletown and Aiken Road Elementary Schools, 3) Photovoltaic street light comparison, Louisville Metro, 4) up to 25 domestic water heating systems across Kentucky. These tasks will be supported by outreach activities, including a solar energy installer training workshop and a Kentucky Solar Energy Conference.

  5. Solar neutrinos, solar flares, solar activity cycle and the proton decay

    Science.gov (United States)

    Raychaudhuri, P.

    1985-01-01

    It is shown that there may be a correlation between the galactic cosmic rays and the solar neutrino data, but it appears that the neutrino flux which may be generated during the large solar cosmic ray events cannot in any way effect the solar neutrino data in Davis experiment. Only initial stage of mixing between the solar core and solar outer layers after the sunspot maximum in the solar activity cycle can explain the higher (run number 27 and 71) of solar neutrino data in Davis experiment. But solar flare induced atmospheric neutrino flux may have effect in the nucleon decay detector on the underground. The neutrino flux from solar cosmic rays may be a useful guide to understand the background of nucleon decay, magnetic monopole search, and the detection of neutrino flux in sea water experiment.

  6. Dynamo theory prediction of solar activity

    Science.gov (United States)

    Schatten, Kenneth H.

    1988-01-01

    The dynamo theory technique to predict decadal time scale solar activity variations is introduced. The technique was developed following puzzling correlations involved with geomagnetic precursors of solar activity. Based upon this, a dynamo theory method was developed to predict solar activity. The method was used successfully in solar cycle 21 by Schatten, Scherrer, Svalgaard, and Wilcox, after testing with 8 prior solar cycles. Schatten and Sofia used the technique to predict an exceptionally large cycle, peaking early (in 1990) with a sunspot value near 170, likely the second largest on record. Sunspot numbers are increasing, suggesting that: (1) a large cycle is developing, and (2) that the cycle may even surpass the largest cycle (19). A Sporer Butterfly method shows that the cycle can now be expected to peak in the latter half of 1989, consistent with an amplitude comparable to the value predicted near the last solar minimum.

  7. Solar Spots - Activities to Introduce Solar Energy into the K-8 Curricula.

    Science.gov (United States)

    Longe, Karen M.; McClelland, Michael J.

    Following an introduction to solar technology which reviews solar heating and cooling, passive solar systems (direct gain systems, thermal storage walls, sun spaces, roof ponds, and convection loops), active solar systems, solar electricity (photovoltaic and solar thermal conversion systems), wind energy, and biomass, activities to introduce solar…

  8. Low-lying states in 8B

    CERN Document Server

    Mitchell, J P; Johnson, E D; Baby, L T; Kemper, K W; Moro, A M; Peplowski, P N; Volya, A; Wiedenhoever, I

    2010-01-01

    Excitation functions of elastic and inelastic 7Be+p scattering were measured in the energy range between 1.6 and 2.8 MeV in the c.m. An R-matrix analysis of the excitation functions provides strong evidence for new positive parity states in 8B. A new 2+ state at an excitation energy of 2.55 MeV was observed and a new 0+ state at 1.9 MeV is tentatively suggested. The R-matrix and Time Dependent Continuum Shell Model were used in the analysis of the excitation functions. The new results are compared to the calculations of contemporary theoretical models.

  9. Solar Activity and the Climate of Prebaikalia

    Institute of Scientific and Technical Information of China (English)

    V. A. Kovalenko; G.A. Zherebtsov; S.I. Molodykh

    2005-01-01

    This paper presents convincing evidence for the reality of manifestations of solar variability in climate characteristics of the Prebaikalia. A numerical estimate is obtained of this influence on ground air temperature. It is shown that the main meaningful variations in air temperature in the region for the period1881-1960 were caused by solar activity. Since the 1960s till the present, with the influence of solar variability continuing, a clear-cut influence of another factor has been observed, the role of which has been steadily increasing, and in the hst decade it has now exceeded the contribution of solar variability. Research results on the variations in hydrological characteristics of Lake Baikal and the Angara river and their connection with solar activity are presented. It is shown that these characteristics are closely correlated with the duration of solar cycles.

  10. Magnetic activity of seismic solar analogs

    CERN Document Server

    Salabert, D

    2016-01-01

    We present our latest results on the solar-stellar connection by studying 18 solar analogs that we identified among the Kepler seismic sample (Salabert et al., 2016a). We measured their magnetic activity properties using observations collected by the Kepler satellite and the ground-based, high-resolution Hermes spectrograph. The photospheric (Sph) and chromospheric (S) magnetic activity proxies of these seismic solar analogs are compared in relation to solar activity. We show that the activity of the Sun is actually comparable to the activity of the seismic solar analogs. Furthermore, we report on the discovery of temporal variability in the acoustic frequencies of the young (1 Gyr-old) solar analog KIC10644253 with a modulation of about 1.5 years, which agrees with the derived photospheric activity (Salabert et al., 2016b). It could actually be the signature of the short-period modulation, or quasi-biennal oscillation, of its magnetic activity as observed in the Sun and the 1-Gyr-old solar analog HD30495. In...

  11. Gap between active and passive solar heating

    Energy Technology Data Exchange (ETDEWEB)

    Balcomb, J.D.

    1985-01-01

    The gap between active and passive solar could hardly be wider. The reasons for this are discussed and advantages to narrowing the gap are analyzed. Ten years of experience in both active and passive systems are reviewed, including costs, frequent problems, performance prediction, performance modeling, monitoring, and cooling concerns. Trends are analyzed, both for solar space heating and for service water heating. A tendency for the active and passive technologies to be converging is observed. Several recommendations for narrowing the gap are presented.

  12. New measurement and analysis of the $^{7}Be(p,\\gamma) ^{8}B$ cross section

    CERN Document Server

    Hammache, F; Aguer, P; Angulo, C; Barhoumi, S; Brillard, L; Chemin, J F; Claverie, G; Coc, A; Hussonnois, M; Jacotin, M; Kiener, J; Lefebvre, A; Scheurer, J N; Thibaud, J P; Virassamynaïken, E

    1998-01-01

    Cross sections for the 7Be(p,gamma)8B reaction have been measured for E_c.m.= 0.35-1.4 MeV using radioactive 7Be targets. Two independent measurements carried out with different beam conditions, different targets and detectors are in excellent agreement. A statistical comparison of these measurements with previous results leads to a restricted set of consistent data. The deduced zero-energy S-factor S(0) is found to be 15-20% smaller than the previously recommended value. This implies a 8B solar neutrino flux lower than previously predicted in various standard solar models.

  13. Sources of solar wind over the solar activity cycle.

    Science.gov (United States)

    Poletto, Giannina

    2013-05-01

    Fast solar wind has been recognized, about 40 years ago, to originate in polar coronal holes (CHs), that, since then, have been identified with sources of recurrent high speed wind streams. As of today, however, there is no general consensus about whether there are, within CHs, preferential locations where the solar wind is accelerated. Knowledge of slow wind sources is far from complete as well. Slow wind observed in situ can be traced back to its solar source by backward extrapolation of magnetic fields whose field lines are streamlines of the outflowing plasma. However, this technique often has not the necessary precision for an indisputable identification of the region where wind originates. As the Sun progresses through its activity cycle, different wind sources prevail and contribute to filling the heliosphere. Our present knowledge of different wind sources is here summarized. Also, a Section addresses the problem of wind acceleration in the low corona, as inferred from an analysis of UV data, and illustrates changes between fast and slow wind profiles and possible signatures of changes along the solar cycle. A brief reference to recent work about the deep roots of solar wind and their changes over different solar cycles concludes the review.

  14. Solar collector manufacturing activity, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-09

    This report presents data provided by US-based manufacturers and importers of solar collectors. Summary data on solar thermal collector shipments are presented for the years 1974 through 1992. Summary data on photovoltaic cell and module shipments are presented for the years 1982 through 1992. Detailed information for solar thermal collectors and photovoltaic cells and modules are presented for 1992. Appendix A describes the survey methodology. Appendix B contains the 1992 survey forms and instructions. Appendices C and D list the companies that responded to the 1992 surveys and granted permission for their names and addresses to appear in the report. Appendix E provides selected tables from this report with data shown in the International System of Units (SI) metric units. Appendix F provides an estimate of installed capacity and energy production from solar collectors for 1992.

  15. A History of Solar Activity over Millennia

    Directory of Open Access Journals (Sweden)

    Ilya G. Usoskin

    2013-03-01

    Full Text Available Presented here is a review of present knowledge of the long-term behavior of solar activity on a multi-millennial timescale, as reconstructed using the indirect proxy method. The concept of solar activity is discussed along with an overview of the special indices used to quantify different aspects of variable solar activity, with special emphasis upon sunspot number. Over long timescales, quantitative information about past solar activity can only be obtained using a method based upon indirect proxies, such as the cosmogenic isotopes 14C and 10Be in natural stratified archives (e.g., tree rings or ice cores. We give an historical overview of the development of the proxy-based method for past solar-activity reconstruction over millennia, as well as a description of the modern state. Special attention is paid to the verification and cross-calibration of reconstructions. It is argued that this method of cosmogenic isotopes makes a solid basis for studies of solar variability in the past on a long timescale (centuries to millennia during the Holocene. A separate section is devoted to reconstructions of strong solar energetic-particle (SEP events in the past, that suggest that the present-day average SEP flux is broadly consistent with estimates on longer timescales, and that the occurrence of extra-strong events is unlikely. Finally, the main features of the long-term evolution of solar magnetic activity, including the statistics of grand minima and maxima occurrence, are summarized and their possible implications, especially for solar/stellar dynamo theory, are discussed.

  16. Low Latitude Aurora: Index of Solar Activity

    Science.gov (United States)

    Bekli, M. R.; Aissani, D.; Chadou, I.

    2010-10-01

    Observations of aurora borealis at low latitudes are rare, and are clearly associated with high solar activity. In this paper, we analyze some details of the solar activity during the years 1769-1792. Moreover, we describe in detail three low latitude auroras. The first event was reported by ash-Shalati and observed in North Africa (1770 AD). The second and third events were reported by l'Abbé Mann and observed in Europe (1770 and 1777 AD).

  17. 11 -year planetary index of solar activity

    Science.gov (United States)

    Okhlopkov, Victor

    In papers [1,2] introduced me parameter - the average difference between the heliocentric longitudes of planets ( ADL ) , which was used for comparison with solar activity. The best connection of solar activity ( Wolf numbers used ) was obtained for the three planets - Venus, Earth and Jupiter. In [1,2] has been allocated envelope curve of the minimum values ADL which has a main periodicity for 22 years and describes well the alternating series of solar activity , which also has a major periodicity of 22. It was shown that the minimum values of the envelope curve extremes ADL planets Venus, Earth and Jupiter are well matched with the 11- year solar activity cycle In these extremes observed linear configuration of the planets Venus, Earth and Jupiter both in their location on one side of the Sun ( conjunctions ) and at the location on the opposite side of the Sun ( three configurations ) This work is a continuation of the above-mentioned , and here for minimum ADL ( planets are in conjunction ) , as well as on the minimum deviation of the planets from a line drawn through them and Sun at the location of the planets on opposite sides of the Sun , compiled index (denoted for brevity as JEV ) that uniquely describes the 11- year solar cycle A comparison of the index JEV with solar activity during the time interval from 1000 to 2013 conducted. For the period from 1000 to 1699 used the Schove series of solar activity and the number of Wolf (1700 - 2013 ) During the time interval from 1000 to 2013 and the main periodicity of the solar activity and the index ADL is 11.07 years. 1. Okhlopkov V.P. Cycles of Solar Activity and the Configurations of Planets // Moscow University Physics Bulletin, 2012 , Vol. 67 , No. 4 , pp. 377-383 http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.3103/S0027134912040108. 2 Okhlopkov VP, Relationship of Solar Activity Cycles to Planetary Configurations // Bulletin of the Russian Academy of Sciences. Physics, 2013 , Vol. 77 , No. 5

  18. Solar activity forcing of the middle atmosphere

    Directory of Open Access Journals (Sweden)

    K. Mohanakumar

    Full Text Available Studies on the influence of solar activity in 11-year cycle on middle atmospheric thermodynamic parameters, such as temperature, pressure and density, and zonal and meridional wind components over three meteorological rocket launching stations, located in the tropics (Thumba, mid-latitude (Volgograd and high-latitude (Heiss Island regions of the northern hemisphere have been carried out. The temperature in all the three regions showed a negative response in the stratosphere and positive association in the mesosphere with the changes in solar activity. The temperature decreases by 2–3% from its mean value in the stratosphere and increases by 4–6% in the mesosphere for an increase in 100 units of solar radio flux. Atmospheric pressure is found to be more sensitive to solar changes. An average solar maximum condition enhances the pressure in the stratosphere by 5% and in the upper mesosphere by 16–18% compared to the respective mean values. Density also showed strong association with the changes in solar activity. Increase in the solar radio flux tends to strengthen winter westerlies in the upper stratosphere over the mid-latitude and summer easterlies in the middle stratosphere over tropics. Larger variability in the zonal wind is noted near stratopause height. Results obtained from the study indicate that there is an external force exerted on the Earth's atmosphere during the period of high solar activity. These results can be incorporated for further studies on the dynamics of the middle atmosphere in association with the changes in solar activity.

  19. 17 CFR 270.8b-14 - Riders; inserts.

    Science.gov (United States)

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Riders; inserts. 270.8b-14 Section 270.8b-14 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) RULES AND REGULATIONS, INVESTMENT COMPANY ACT OF 1940 § 270.8b-14 Riders; inserts. Riders shall not be...

  20. A History of Solar Activity over Millennia

    CERN Document Server

    Usoskin, Ilya G

    2013-01-01

    Presented here is a review of present knowledge of the long-term behavior of solar activity on a multi-millennial timescale, as reconstructed using the indirect proxy method. The concept of solar activity is discussed along with an overview of the special indices used to quantify different aspects of variable solar activity, with special emphasis upon sunspot number. Over long timescales, quantitative information about past solar activity can only be obtained using a method based upon indirect proxy, such as the cosmogenic isotopes 14C and 10Be in natural stratified archives (e.g., tree rings or ice cores). We give an historical overview of the development of the proxy-based method for past solar-activity reconstruction over millennia, as well as a description of the modern state. Special attention is paid to the verification and cross-calibration of reconstructions. It is argued that this method of cosmogenic isotopes makes a solid basis for studies of solar variability in the past on a long timescale (centu...

  1. A History of Solar Activity over Millennia

    Directory of Open Access Journals (Sweden)

    Usoskin Ilya G.

    2008-10-01

    Full Text Available Presented here is a review of present knowledge of the long-term behavior of solar activity on a multi-millennial timescale, as reconstructed using the indirect proxy method.The concept of solar activity is discussed along with an overview of the special indices used to quantify different aspects of variable solar activity, with special emphasis upon sunspot number.Over long timescales, quantitative information about past solar activity can only be obtained using a method based upon indirect proxy, such as the cosmogenic isotopes 14C and 10Be in natural stratified archives (e.g., tree rings or ice cores. We give an historical overview of the development of the proxy-based method for past solar-activity reconstruction over millennia, as well as a description of the modern state. Special attention is paid to the verification and cross-calibration of reconstructions. It is argued that this method of cosmogenic isotopes makes a solid basis for studies of solar variability in the past on a long timescale (centuries to millennia during the Holocene.A separate section is devoted to reconstructions of strong solar–energetic-particle (SEP events in the past, that suggest that the present-day average SEP flux is broadly consistent with estimates on longer timescales, and that the occurrence of extra-strong events is unlikely.Finally, the main features of the long-term evolution of solar magnetic activity, including the statistics of grand minima and maxima occurrence, are summarized and their possible implications, especially for solar/stellar dynamo theory, are discussed.

  2. Global water cycle and solar activity variations

    Science.gov (United States)

    Al-Tameemi, Muthanna A.; Chukin, Vladimir V.

    2016-05-01

    The water cycle is the most active and most important component in the circulation of global mass and energy in the Earth system. Furthermore, water cycle parameters such as evaporation, precipitation, and precipitable water vapour play a major role in global climate change. In this work, we attempt to determine the impact of solar activity on the global water cycle by analyzing the global monthly values of precipitable water vapour, precipitation, and the Solar Modulation Potential in 1983-2008. The first object of this study was to calculate global evaporation for the period 1983-2008. For this purpose, we determined the water cycle rate from satellite data, and precipitation/evaporation relationship from 10 years of Planet Simulator model data. The second object of our study was to investigate the relationship between the Solar Modulation Potential (solar activity index) and the evaporation for the period 1983-2008. The results showed that there is a relationship between the solar modulation potential and the evaporation values for the period of study. Therefore, we can assume that the solar activity has an impact on the global water cycle.

  3. Prediciting Solar Activity: Today, Tomorrow, Next Year

    Science.gov (United States)

    Pesnell, William Dean

    2008-01-01

    Fleets of satellites circle the Earth collecting science data, protecting astronauts, and relaying information. All of these satellites are sensitive at some level to space weather effects. Predictions of drag on LEO spacecraft are one of the most important. Launching a satellite with less fuel can mean a higher orbit, but unanticipated solar activity and increased drag can make that a Pyrrhic victory. Energetic events at the Sun can produce crippling radiation storms. Predicting those events that will affect our assets in space includes a solar prediction and how the radiation will propagate through the solar system. I will talk our need for solar activity predictions and anticipate how those predictions could be made more accurate in the future.

  4. A putative, novel coli surface antigen 8B (CS8B) of enterotoxigenic Escherichia coli.

    Science.gov (United States)

    Njoroge, Samuel M; Boinett, Christine J; Madé, Laure F; Ouko, Tom T; Fèvre, Eric M; Thomson, Nicholas R; Kariuki, Samuel

    2015-10-01

    Enterotoxigenic Escherichia coli (ETEC) strains harbor multiple fimbriae and pili to mediate host colonization, including the type IVb pilus, colonization factor antigen III (CFA/III). Not all colonization factors are well characterized or known in toxin positive ETEC isolates, which may have an impact identifying ETEC isolates based on molecular screening of these biomarkers. We describe a novel coli surface antigen (CS) 8 subtype B (CS8B), a family of CFA/III pilus, in a toxin producing ETEC isolate from a Kenyan collection. In highlighting the existence of this putative CS, we provide the sequence and specific primers, which can be used alongside other ETEC primers previously described.

  5. Properties of solar activity and ionosphere for solar cycle 25

    Science.gov (United States)

    Deminov, M. G.; Nepomnyashchaya, E. V.; Obridko, V. N.

    2016-11-01

    Based on the known forecast of solar cycle 25 amplitude ( Rz max ≈ 50), the first assessments of the shape and amplitude of this cycle in the index of solar activity F10.7 (the magnitude of solar radio flux at the 10.7 cm wavelength) are given. It has been found that ( F10.7)max ≈ 115, which means that it is the lowest solar cycle ever encountered in the history of regular ionospheric measurements. For this reason, many ionospheric parameters for cycle 25, including the F2-layer peak height and critical frequency ( hmF2 and foF2), will be extremely low. For example, at middle latitudes, typical foF2 values will not exceed 8-10 MHz, which makes ionospheric heating ineffective in the area of upper hybrid resonance at frequencies higher than 10 MHz. The density of the atmosphere will also be extremely low, which significantly extends the lifetime of low-orbit satellites. The probability of F-spread will be increased, especially during night hours.

  6. Magnetic Helicity Injection in Solar Active Regions

    Institute of Scientific and Technical Information of China (English)

    Hong-Qi Zhang

    2006-01-01

    We present the evolution of magnetic field and its relationship with magnetic (current) helicity in solar active regions from a series of photospheric vector magnetograms obtained by Huairou Solar Observing Station, longitudinal magnetograms by MDI of SOHO and white light images of TRACE. The photospheric current helicity density is a quantity reflecting the local twisted magnetic field and is related to the remaining magnetic helicity in the photosphere, even if the mean current helicity density brings the general chiral property in a layer of solar active regions. As new magnetic flux emerges in active regions, changes of photospheric current helicity density with the injection of magnetic helicity into the corona from the subatmosphere can be detected, including changes in sign caused by the injection of magnetic helicity of opposite sign. Because the injection rate of magnetic helicity and photospheric current helicity density have different means in the solar atmosphere,the injected magnetic helicity is probably not proportional to the current helicity density remaining in the photosphere. The evidence is that rotation of sunspots does not synchronize exactly with the twist of photospheric transverse magnetic field in some active regions (such as, delta active regions). They represent different aspects of magnetic chirality. A combined analysis of the observational magnetic helicity parameters actually provides a relative complete picture of magnetic helicity and its transfer in the solar atmosphere.

  7. HATS-8b: A Low-Density Transiting Super-Neptune

    CERN Document Server

    Bayliss, D; Bakos, G Á; Penev, K; Zhou, G; Brahm, R; Rabus, M; Jordán, A; Mancini, L; de Val-Borro, M; Bhatti, W; Espinoza, N; Csubry, Z; Howard, A W; Fulton, B J; Buchhave, L A; Henning, T; Schmidt, B; Ciceri, S; Noyes, R W; Isaacson, H; Marcy, G W; Suc, V; Lázár, J; Papp, I; Sári, P

    2015-01-01

    HATS-8b is a low density transiting super-Neptune discovered as part of the HATSouth project. The planet orbits its solar-like G dwarf host (V=14.03 $\\pm$ 0.10 and T$_{eff}$ =5679 $\\pm$ 50 K) with a period of 3.5839 d. HATS-8b is the third lowest mass transiting exoplanet to be discovered from a wide-field ground based search, and with a mass of 0.138 $\\pm$ 0.019 M$_J$ it is approximately half-way between the masses of Neptune and Saturn. However HATS-8b has a radius of 0.873 (+0.123,-0.075) R$_J$, resulting in a bulk density of just 0.259 $\\pm$ 0.091 g.cm$^{-3}$. The metallicity of the host star is super-Solar ([Fe/H]=0.210 $\\pm$ 0.080), arguing against the idea that low density exoplanets form from metal-poor environments. The low density and large radius of HATS-8b results in an atmospheric scale height of almost 1000 km, and in addition to this there is an excellent reference star of near equal magnitude at just 19 arcsecond separation on the sky. These factors make HATS-8b an exciting target for future a...

  8. Microbial solar cells: applying photosynthetic and electrochemically active organisms

    NARCIS (Netherlands)

    Strik, D.P.B.T.B.; Timmers, R.A.; Helder, M.; Steinbusch, K.J.J.; Hamelers, H.V.M.; Buisman, C.J.N.

    2011-01-01

    Microbial solar cells (MSCs) are recently developed technologies that utilize solar energy to produce electricity or chemicals. MSCs use photoautotrophic microorganisms or higher plants to harvest solar energy, and use electrochemically active microorganisms in the bioelectrochemical system to gener

  9. Active Solar Energy Use Approaching Sustainability

    Directory of Open Access Journals (Sweden)

    NikouJavadiEshkalak,

    2014-06-01

    Full Text Available Nowadays, sustainability becomes one of the most important issues that should be taken into consideration in various fields especially in architecture. Our responsibility for the future generation insinuates us for using renewable energy sources and integrating this pioneer system into the built environment. Although the world is facing problems of fossil fuel resources but unfortunately Utilization of solar energy received limited attention until recently. However, Integrating of active solar energy devices into the building envelopes is one of the good strategies for heat producing and power generating simultaneously from the same building. This paper discusses some characteristics about integration of PV s and solar thermal collectors. Therefore, the aim of this paper is to find suitable and possible ways of PV s and solar thermal collector's building integration in order to increasing energy efficiency without any impact on architectural features. \\

  10. Solar Energy Education. Home economics: student activities. Field test edition

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    A view of solar energy from the standpoint of home economics is taken in this book of activities. Students are provided information on solar energy resources while performing these classroom activities. Instructions for the construction of a solar food dryer and a solar cooker are provided. Topics for study include window treatments, clothing, the history of solar energy, vitamins from the sun, and how to choose the correct solar home. (BCS)

  11. Multiscale statistical analysis of coronal solar activity

    CERN Document Server

    Gamborino, Diana; Martinell, Julio J

    2016-01-01

    Multi-filter images from the solar corona are used to obtain temperature maps which are analyzed using techniques based on proper orthogonal decomposition (POD) in order to extract dynamical and structural information at various scales. Exploring active regions before and after a solar flare and comparing them with quiet regions we show that the multiscale behavior presents distinct statistical properties for each case that can be used to characterize the level of activity in a region. Information about the nature of heat transport is also be extracted from the analysis.

  12. Catawba Science Center solar activities. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1983-01-01

    Two demonstration solar water heaters were built. One was to be used at the Science Center and the other with traveling programs. This was completed and both units are being used for these programs which continue. We were able to build a library of 99 solar energy books and booklets that are available to the public for reference. We also conducted programs for 683 students of all ages. The culminating activity was the planned Energy Awareness Festival. This was held on September 26, 1981 and attracted 450 area citizens. We offered free exhibit space and hosted 17 exhibitors.

  13. 15 CFR 8b.21 - Treatment of students.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Treatment of students. 8b.21 Section... Secondary Education § 8b.21 Treatment of students. (a) General. No qualified handicapped student shall, on... recipient to which this subpart applies that considers participation by students in education programs...

  14. Scattering of $^{7}$Be and $^{8}$B and the astrophysical S$_{17}$ factor

    CERN Document Server

    Tabacaru, G; Brinkley, J; Burjan, V; Cãrstoiu, F; Fu, C; Gagliardi, C A; Kroha, V; Mukhamedzhanov, A M; Tang, X; Trache, L; Tribble, R E; Zhou, S

    2006-01-01

    Measurements of scattering of $^{7}$Be at 87 MeV on a melamine (C$_{3}$N$ _{6}$H$_{6}$) target and of $^{8}$B at 95 MeV on C were performed. For $^{7}$Be the angular range was extended over previous measurements and monitoring of the intensity of the radioactive beam was improved. The measurements allowed us to check and improve the optical model potentials used in the incoming and outgoing channels for the analysis of existing data on the proton transfer reaction $^{14}$N($^{7}$Be,$^{8}$B)$^{13}$C. The resultslead to an updated determination of the asymptotic normalization coefficient for the virtual decay $^{8}$B $\\to$ $^{7}$Be + $p$. We find a slightly larger value, $C_{tot}^{2}(^{8}B)=0.466\\pm 0.047$ fm$^{-1}$, for the melamine target. This implies an astrophysical factor, $S_{17}(0)=18.0\\pm 1.8$ eV$\\cdot$b, for the solar neutrino generating reaction $^{7}$Be($p$,$\\gamma $)$^{8}$B.

  15. Division E Commission 10: Solar Activity

    Science.gov (United States)

    Schrijver, Carolus J.; Fletcher, Lyndsay; van Driel-Gesztelyi, Lidia; Asai, Ayumi; Cally, Paul S.; Charbonneau, Paul; Gibson, Sarah E.; Gomez, Daniel; Hasan, Siraj S.; Veronig, Astrid M.; Yan, Yihua

    2016-04-01

    After more than half a century of community support related to the science of ``solar activity'', IAU's Commission 10 was formally discontinued in 2015, to be succeeded by C.E2 with the same area of responsibility. On this occasion, we look back at the growth of the scientific disciplines involved around the world over almost a full century. Solar activity and fields of research looking into the related physics of the heliosphere continue to be vibrant and growing, with currently over 2,000 refereed publications appearing per year from over 4,000 unique authors, publishing in dozens of distinct journals and meeting in dozens of workshops and conferences each year. The size of the rapidly growing community and of the observational and computational data volumes, along with the multitude of connections into other branches of astrophysics, pose significant challenges; aspects of these challenges are beginning to be addressed through, among others, the development of new systems of literature reviews, machine-searchable archives for data and publications, and virtual observatories. As customary in these reports, we highlight some of the research topics that have seen particular interest over the most recent triennium, specifically active-region magnetic fields, coronal thermal structure, coronal seismology, flares and eruptions, and the variability of solar activity on long time scales. We close with a collection of developments, discoveries, and surprises that illustrate the range and dynamics of the discipline.

  16. Long-term variations of solar activity

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Using the Lomb-Scargle periodogram we analyzed two sunspot series: the one over the past 11000 years at the 10-year interval based upon the survey data of 14C concentration in tree-rings, reconstructed by Solanki et al.; and the sunspot number over the past 7000 years, derived from geomagnetic variations by Usoskin et al. We found the periods and quasi-periods in solar activity, such as about 225, 352, 441, 522 and 561 a, and near 1000 and 2000 a. An approach of wavelet transform was applied to check the two sunspot time series, with emphasis on investigating time-varying characteristics in the long-term fluctuations of solar activity. The results show that the lengths and amplitudes of the periods have changed with time, and large variations have taken place during some periods.

  17. Active Longitude and Solar Flare Occurrences

    CERN Document Server

    Gyenge, N; Baranyi, T

    2015-01-01

    The aim of the present work is to specify the spatio-temporal characteristics of flare activity observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and Geostationary Operational Environmental Satellite (GOES) satellites in connection with the behaviour of the longitudinal domain of enhanced sunspot activity known as active longitude (AL). By using our method developed for this purpose, we identified the AL in every Carrington Rotation provided by the Debrecen Photoheliographic Data (DPD). The spatial probability of flare occurrence has been estimated depending on the longitudinal distance from AL in the northern and southern hemispheres separately. We have found that more than the 60\\% of the RHESSI and GOES flares is located within $\\pm 36^{\\circ}$ from the active longitude. Hence, the most flare-productive active regions tend to be located in or close to the active longitudinal belt. This observed feature may allow predicting the geo-effective position of the domain of enhanced fla...

  18. Foothills Parkway Section 8B Final Environmental Report, Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Blasing, T.J.; Cada, G.F.; Carer, M.; Chin, S.M.; Dickerman, J.A.; Etnier, D.A.; Gibson, R.; Harvey, M.; Hatcher, B.; Lietzske, D.; Mann, L.K.; Mulholland, P.J.; Petrich, C.H.; Pounds, L.; Ranney, J.; Reed, R.M.; Ryan, P.F.; Schweitzer, M.; Smith, D.; Thomason, P.; Wade, M.C.

    1999-07-01

    In 1994, Oak Ridge National Laboratory (ORNL) was tasked by the National Park Service (NPS) to prepare an Environmental Report (ER) for Section 8B of the Foothills Parkway in the Great Smoky Mountains National Park (GSMNP). Section 8B represents 27.7 km (14.2 miles) of a total of 115 km (72 miles) of the planned Foothills Parkway and would connect the Cosby community on the east to the incorporated town of Pittman Center to the west.

  19. The Heliosphere through the Solar Activity Cycle

    CERN Document Server

    Balogh, André; Suess, Steven T

    2008-01-01

    Understanding how the Sun changes though its 11-year sunspot cycle and how these changes affect the vast space around the Sun – the heliosphere – has been one of the principal objectives of space research since the advent of the space age. This book presents the evolution of the heliosphere through an entire solar activity cycle. The last solar cycle (cycle 23) has been the best observed from both the Earth and from a fleet of spacecraft. Of these, the joint ESA-NASA Ulysses probe has provided continuous observations of the state of the heliosphere since 1990 from a unique vantage point, that of a nearly polar orbit around the Sun. Ulysses’ results affect our understanding of the heliosphere from the interior of the Sun to the interstellar medium - beyond the outer boundary of the heliosphere. Written by scientists closely associated with the Ulysses mission, the book describes and explains the many different aspects of changes in the heliosphere in response to solar activity. In particular, the authors...

  20. El Salvador - Rural Electrification Sub-Activity: Solar Panel Component

    Data.gov (United States)

    Millennium Challenge Corporation — This is a summative qualitative performance evaluation (PE) of the solar panel component of the solar panel component of the RE Sub-Activity. The final report will...

  1. Transient flows of the solar wind associated with small-scale solar activity in solar minimum

    Science.gov (United States)

    Slemzin, Vladimir; Veselovsky, Igor; Kuzin, Sergey; Gburek, Szymon; Ulyanov, Artyom; Kirichenko, Alexey; Shugay, Yulia; Goryaev, Farid

    The data obtained by the modern high sensitive EUV-XUV telescopes and photometers such as CORONAS-Photon/TESIS and SPHINX, STEREO/EUVI, PROBA2/SWAP, SDO/AIA provide good possibilities for studying small-scale solar activity (SSA), which is supposed to play an important role in heating of the corona and producing transient flows of the solar wind. During the recent unusually weak solar minimum, a large number of SSA events, such as week solar flares, small CMEs and CME-like flows were observed and recorded in the databases of flares (STEREO, SWAP, SPHINX) and CMEs (LASCO, CACTUS). On the other hand, the solar wind data obtained in this period by ACE, Wind, STEREO contain signatures of transient ICME-like structures which have shorter duration (<10h), weaker magnetic field strength (<10 nT) and lower proton temperature than usual ICMEs. To verify the assumption that ICME-like transients may be associated with the SSA events we investigated the number of weak flares of C-class and lower detected by SPHINX in 2009 and STEREO/EUVI in 2010. The flares were classified on temperature and emission measure using the diagnostic means of SPHINX and Hinode/EIS and were confronted with the parameters of the solar wind (velocity, density, ion composition and temperature, magnetic field, pitch angle distribution of the suprathermal electrons). The outflows of plasma associated with the flares were identified by their coronal signatures - CMEs (only in few cases) and dimmings. It was found that the mean parameters of the solar wind projected to the source surface for the times of the studied flares were typical for the ICME-like transients. The results support the suggestion that weak flares can be indicators of sources of transient plasma flows contributing to the slow solar wind at solar minimum, although these flows may be too weak to be considered as separate CMEs and ICMEs. The research leading to these results has received funding from the European Union’s Seventh Programme

  2. Automatic Tracking of Active Regions and Detection of Solar Flares in Solar EUV Images

    Science.gov (United States)

    Caballero, C.; Aranda, M. C.

    2014-05-01

    Solar catalogs are frequently handmade by experts using a manual approach or semi-automated approach. The appearance of new tools is very useful because the work is automated. Nowadays it is impossible to produce solar catalogs using these methods, because of the emergence of new spacecraft that provide a huge amount of information. In this article an automated system for detecting and tracking active regions and solar flares throughout their evolution using the Extreme UV Imaging Telescope (EIT) on the Solar and Heliospheric Observatory (SOHO) spacecraft is presented. The system is quite complex and consists of different phases: i) acquisition and preprocessing; ii) segmentation of regions of interest; iii) clustering of these regions to form candidate active regions which can become active regions; iv) tracking of active regions; v) detection of solar flares. This article describes all phases, but focuses on the phases of tracking and detection of active regions and solar flares. The system relies on consecutive solar images using a rotation law to track the active regions. Also, graphs of the evolution of a region and solar evolution are presented to detect solar flares. The procedure developed has been tested on 3500 full-disk solar images (corresponding to 35 days) taken from the spacecraft. More than 75 % of the active regions are tracked and more than 85 % of the solar flares are detected.

  3. Preferred longitudes in solar and stellar activity

    Science.gov (United States)

    Berdyugina, S. V.

    An analysis of the distribution of starspots on the surfaces of very active stars, such as RS CVn- FK Com-type stars as well as young solar analogs, reveals preferred longitudes of spot formation and their quasi-periodic oscillations, i.e. flip-flop cycles. A non-linear migration of the preferred longitudes suggests the presence of the differential rotation and variations of mean spot latitudes. It enables recovering stellar butterfly diagrams. Such phenomena are found to persist in the sunspot activity as well. A comparison of the observed properties of preferred longitudes on the Sun with those detected on more active stars leads to the conclusion that we can learn fine details of the stellar dynamo by studying the Sun, while its global parameters on the evolutionary time scale are provided by a sample of active stars.

  4. Variations of Solar Non-axisymmetric Activity

    CERN Document Server

    Gyenge, N; Ludmány, A

    2014-01-01

    The temporal behaviour of solar active longitudes has been examined by using two sunspot catalogues, the Greenwich Photoheliographic Results (GPR) and the Debrecen Photoheliographic Data (DPD). The time-longitude diagrams of the activity distribution reveal the preferred longitudinal zones and their migration with respect to the Carrington frame. The migration paths outline a set of patterns in which the activity zone has alternating prograde/retrograde angular velocities with respect to the Carrington rotation rate. The time profiles of these variations can be described by a set of successive parabolae. Two similar migration paths have been selected from these datasets, one northern path during cycles 21 - 22 and one southern path during cycles 13 - 14, for closer examination and comparison of their dynamical behaviours. The rates of sunspot emergence exhibited in both migration paths similar periodicities, close to 1.3 years. This behaviour may imply that the active longitude is connected to the bottom of c...

  5. Recurrent solar jets in active regions

    CERN Document Server

    Archontis, V; Gontikakis, C; 10.1051/0004-6361/200913752

    2010-01-01

    We study the emergence of a toroidal flux tube into the solar atmosphere and its interaction with a pre-existing field of an active region. We investigate the emission of jets as a result of repeated reconnection events between colliding magnetic fields. We perform 3D simulations by solving the time-dependent, resistive MHD equations in a highly stratified atmosphere. A small active region field is constructed by the emergence of a toroidal magnetic flux tube. A current structure is build up and reconnection sets in when new emerging flux comes into contact with the ambient field of the active region. The topology of the magnetic field around the current structure is drastically modified during reconnection. The modification results in a formation of new magnetic systems that eventually collide and reconnect. We find that reconnection jets are taking place in successive recurrent phases in directions perpendicular to each other, while in each phase they release magnetic energy and hot plasma into the solar at...

  6. Solar Magnetism and the Activity Telescope at HSOS

    Institute of Scientific and Technical Information of China (English)

    Hong-Qi Zhang; Ya-Nan Wang; Qi-Qian Hu; Jun-Sun Xue; Hai-Tian Lu; Hou-Kun Ni; Han-Liang Chen; Xiao-Jun Zhou; Qing-Sheng Zhu; Lü-Jun Yuan; Yong Zhu; Dong-Guang Wang; Yuan-Yong Deng; Ke-Liang Hu; Jiang-Tao Su; Jia-Ben Lin; Gang-Hua Lin; Shi-Mo Yang; Wei-Jun Mao

    2007-01-01

    A new solar telescope system is described, which has been operating at Huairou Solar Observing Station (HSOS), National Astronomical Observatories, Chinese Academy of Sciences (CAS), since the end of 2005. This instrument, the Solar Magnetism and Activity Telescope (SMAT), comprises two telescopes which respectively make measurements of full solar disk vector magnetic field and Hα observation. The core of the full solar disk video vector magnetograph is a birefringent filter with 0.1(A) bandpass, installed in the tele-centric optical system of the telescope. We present some preliminary observational results of the full solar disk vector magnetograms and Hα filtergrams obtained with this telescope system.

  7. 8B+27Al scattering at low energies

    Science.gov (United States)

    Morcelle, V.; Lichtenthäler, R.; Lépine-Szily, A.; Guimarães, V.; Pires, K. C. C.; Lubian, J.; Mendes Junior, D. R.; de Faria, P. N.; Kolata, J. J.; Becchetti, F. D.; Jiang, H.; Aguilera, E. F.; Lizcano, D.; Martinez-Quiroz, E.; Garcia, H.

    2017-01-01

    We present 8B 27Al elastic scattering angular distributions for the proton-halo nucleus 8B at two energies above the Coulomb barrier, namely Elab=15.3 and 21.7 MeV. The experiments were performed in the Radioactive Ion Beams in Brasil facility (RIBRAS) in São Paulo, and in the TwinSol facility at the University of Notre Dame, USA. The angular distributions were measured in the angular range of 15-80 degrees. Optical model and continuum discretized coupled channels calculations were performed, and the total reaction cross sections were derived. A comparison of the 8B+27Al total reaction cross sections with similar systems including exotic, weakly bound, and tightly bound projectiles impinging on the same target is presented.

  8. Enhanced invasion and tumor growth of fibroblast growth factor 8b-overexpressing MCF-7 human breast cancer cells.

    Science.gov (United States)

    Ruohola, J K; Viitanen, T P; Valve, E M; Seppänen, J A; Loponen, N T; Keskitalo, J J; Lakkakorpi, P T; Härkönen, P L

    2001-05-15

    Fibroblast growth factor 8 (FGF-8) is a secreted heparin-binding protein, which has mitogenic and transforming activity. Increased expression of FGF-8 has been found in human breast cancer, and it has a potential autocrine role in its progression. Human FGF-8 is alternatively spliced to generate four protein isoforms (a, b, e, and f). Isoform b has been shown to be the most transforming. In this work, we studied the role of FGF-8b in the growth (in vitro and in vivo) of MCF-7 human breast cancer cells, which proliferate in an estrogen-dependent manner. Constitutive overexpression of FGF-8b in MCF-7 cells down-regulated FGF-8b-binding receptors FGF receptor (FGFR) 1IIIc, FGFR2IIIc, and FGFR4 found to be expressed in these cells. FGF-8b overexpression led to an increase in the anchorage-independent proliferation rate in suspension culture and colony formation in soft agar, when MCF-7 cells were cultured with or without estradiol. FGF-8b also provided an additional growth advantage for cells stimulated with estradiol. In addition, FGF-8b-transfected cells invaded more actively through Matrigel than did control cells. This was possibly due to the increased secretion of matrix metalloproteinase 9. In vivo, FGF-8b-transfected MCF-7 cells formed faster growing tumors than vector-only-transfected cells when xenografted into nude mice. The tumors formed by FGF-8b-transfected cells were more vascular than the tumors formed by vector-only-transfected cells. In conclusion, FGF-8b expression confers a growth advantage to MCF-7 breast carcinoma cells, both in vitro and in vivo. In addition to stimulation of proliferation, this growth advantage probably arises from increased invasion and tumor vascularization induced by FGF-8b. The results suggest that FGF-8b signaling may be an important factor in the regulation of tumorigenesis and progression of human breast cancer.

  9. Can Asymmetry of Solar Activity be Extended into Extended Cycle?

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    With the use of the Royal Greenwich Observatory data set of sunspot groups, an attempt is made to examine the north-south asymmetry of solar activity in the "extended" solar cycles. It is inferred that the asymmetry established for individual solar cycles does not extend to the "extended" cycles.

  10. Solar Energy Education. Industrial arts: student activities. Field test edition

    Energy Technology Data Exchange (ETDEWEB)

    1981-02-01

    In this teaching manual several activities are presented to introduce students to information on solar energy through classroom instruction. Wind power is also included. Instructions for constructing demonstration models for passive solar systems, photovoltaic cells, solar collectors and water heaters, and a bicycle wheel wind turbine are provided. (BCS)

  11. Analysis of Human TAAR8 and Murine Taar8b Mediated Signaling Pathways and Expression Profile

    Directory of Open Access Journals (Sweden)

    Jessica Mühlhaus

    2014-11-01

    Full Text Available The thyroid hormone derivative 3-iodothyronamine (3-T1AM exerts metabolic effects in vivo that contradict known effects of thyroid hormones. 3-T1AM acts as a trace amine-associated receptor 1 (TAAR1 agonist and activates Gs signaling in vitro. Interestingly, 3-T1AM-meditated in vivo effects persist in Taar1 knockout-mice indicating that further targets of 3-T1AM might exist. Here, we investigated another member of the TAAR family, the only scarcely studied mouse and human trace-amine-associated receptor 8 (Taar8b, TAAR8. By RT-qPCR and locked-nucleic-acid (LNA in situ hybridization, Taar8b expression in different mouse tissues was analyzed. Functionally, we characterized TAAR8 and Taar8b with regard to cell surface expression and signaling via different G-protein-mediated pathways. Cell surface expression was verified by ELISA, and cAMP accumulation was quantified by AlphaScreen for detection of Gs and/or Gi/o signaling. Activation of G-proteins Gq/11 and G12/13 was analyzed by reporter gene assays. Expression analyses revealed at most marginal Taar8b expression and no gender differences for almost all analyzed tissues. In heart, LNA-in situ hybridization demonstrated the absence of Taar8b expression. We could not identify 3-T1AM as a ligand for TAAR8 and Taar8b, but both receptors were characterized by a basal Gi/o signaling activity, a so far unknown signaling pathway for TAARs.

  12. Long-term persistence of solar activity

    Science.gov (United States)

    Ruzmaikin, Alexander; Feynman, Joan; Robinson, Paul

    1994-01-01

    We examine the question of whether or not the non-periodic variations in solar activity are caused by a white-noise, random process. The Hurst exponent, which characterizes the persistence of a time series, is evaluated for the series of C-14 data for the time interval from about 6000 BC to 1950 AD. We find a constant Hurst exponent, suggesting that solar activity in the frequency range from 100 to 3000 years includes an important continuum component in addition to the well-known periodic variations. The value we calculate, H approximately 0.8, is significantly larger than the value of 0.5 that would correspond to variations produced by a white-noise process. This value is in good agreement with the results for the monthly sunspot data reported elsewhere, indicating that the physics that produces the continuum is a correlated random process and that it is the same type of process over a wide range of time interval lengths.

  13. The Solar Rotational Activity Variations during the 23-th Solar Cycle

    Science.gov (United States)

    Werner, R.; Hempelmann, A.; Valev, D.; Kostadinov, I.; Atanassov, At.; Giovanelli, G.; Petritoli, A.; Bortoli, D.; Ravegnani, F.

    2006-03-01

    The study of the solar activity variability has been of great interest since its discovery. On the one hand it is important for the understanding of the Sun as an active star and on the other hand for the investigations of the solar-terrestrial connections. The solar magnetic field reverses approximately every 22 years, and manifests the 11-year solar cycle, in which the Sun changes its activity from its maximum value to the minimum one. The activity variations, developed by the sun surface rotation in connection with the nonsymmetrical distribution of active regions over the solar disc appear in a shorter time scale. As it is well known, these variations have periods of about 27 days. The solar surface rotates with different velocity, depending on the latitude. The differential solar rotation period, observed from the Earth, varies from 26.75 days at the solar equator up to approximately 29 days at higher latitudes. However the observed periodicity is generally in a wider range: from 20 up to 36 days. This wider spread is a result of the combination of both active-region evolution and solar rotation. A simple empirical solar activity model is proposed, which describes the obtained behavior by harmonic oscillations with simultaneous amplitude and phase modulation. The solar rotational periodicity is analyzed using wavelet. It is demonstrated, that the model describes well the separate episodes of the active region evolution. Both kinds of modulations are the consequence of activity region growth or decay and hence, they are a result of a variable pattern of spots and active regions on the solar surface.

  14. Searches for high frequency variations in the 8-B neutrino flux at the Sudbury neutrino observatory

    Energy Technology Data Exchange (ETDEWEB)

    Rielage, Keith [Los Alamos National Laboratory; Seibert, Stanley R [Los Alamos National Laboratory; Hime, Andrew [Los Alamos National Laboratory; Elliott, Steven R [Los Alamos National Laboratory; Stonehill, L C [Los Alamos National Laboratory; Wouters, J M [Los Alamos National Laboratory; Aharmim, B [LAURENTIAN UNIV; Ahmed, S N [QUEEN' S UNIV; Anthony, A E [UNIV OF TEXAS; Barros, N [PORTUGAL; Beier, E W [UNIV OF PA; Bellerive, A [CARLETON UNIV; Belttran, B [UNIV OF ALBERTA; Bergevin, M [LBNL; Biller, S D [UNIV OF OXFORD; Boudjemline, K [CARLETON UNIV; Burritt, T H [UNIV OF WASHINGTON; Cai, B [QUEEN' S UNIV; Chan, Y D [LBNL; Chauhan, D [LAURENTIAN UNIV; Chen, M [QUEEN' S UNIV; Cleveland, B T [UNIV OF OXFORD; Cox - Mobrand, G A [UNIV OF WASHINGTON; Dai, X [QUEEN' S UNIV; Deng, H [UNIV OF PA; Detwiler, J [LBNL; Dimarco, M [QUEEN' S UNIV; Doe, P J [UNIV OF WASHINGTON; Drouin, P - L [CARLTON UNIV; Duba, C A [UNIV OF WASHINGTON; Duncan, F A [SNOLAB, SUDBURY; Dunford, M [UNIV OF PA; Earle, E D [QUEEN' S UNIV; Evans, H C [QUEEN' S UNIV; Ewan, G T [QUEEN' S UNIV; Farine, J [LAURENTTIAN UNIV; Fergani, H [UNIV OF OXFORD; Fleurot, F [LAURENTIAN UNIV; Ford, R J [SNOLAB, SUDBURY; Formaggilo, J A [MASSACHUSETTS INST. OF TECH.; Gagnon, N [UNIV OF WASHINGTON; Goon, J Tm [LOUISIANA STATE UNIV; Guillian, E [QUEEN' S UNIV; Habib, S [UNIV OF ALBERTA; Hahn, R L [BNL; Hallin, A L [UNIV OF ALBERTA; Hallman, E D [LAURENTIAN UNIV; Harvey, P J [QUEEN' S UNIV; Hazama, R [UNIV OF WASHINGTON; Heintzelman, W J [UNIV OF PA; Heise, J [SNOLAB, SUDBURY; Helmer, R L [TRIUMF; Howard, C [UNIV OF ALBERTA; Howe, M A [UNIV OF WASHINGTON; Huang, M [UNIV OF TEXAS; Jamieson, B [UNIV OF BRITISH COLUMBIA; Jelley, N A [UNIV OF OXFORD; Keeter, K J [SNOLAB, SUDBURY; Klein, J R [UNIV OF TEXAS; Kos, M [QUEEN' S UNIV; Kraus, C [QUEEN' S UNIV; Krauss, C B [UNIV OF ALBERTA; Kutter, T [LOUISIANA STATE UNIV; Kyba, C C M [UNIV OF PA; Law, J [UNIV OF GUELPH; Lawson, I T [SNOLAB, SUDBURY; Lesko, K T [LBNL; Leslie, J R [QUEEN' S UNIV; Loach, J C [UNIV OF OXFORD; Maclellan, R [QUEEN' S UNIV; Majerus, S [UNIV OF OXFORD; Mak, H B [QUEEN' S UNIV; Maneira, J [PORTUGAL; Martin, R [QUEEN' S UNIV; Mccauley, N [UNIV OF PA; Mc Donald, A B [QUEEN' S UNIV; Mcgee, S [UNIV OF WASHINGTON; Miffin, C [CARLETON UNIV; Miller, M L [MASSACHUSETTS INST. OF TECH.; Monreal, B [MASSACHUSETTS INST. OF TECH.; Monroe, J [MASSACHUSETTS INST. OF TECH; Morissette, B [SNOLAB, SUDBURY; Nickel, B G [UNIV OF GUELPH; Noble, A J [QUEEN' S UNIV; O' Keeffe, H M [UNIV OF OXFORD; Oblath, N S [UNIV OF WASHINGTON; Orebi Gann, G D [UNIV OF OXFORD; Oser, S M [UNIV OF BRITISH COLUMBIA; Ott, R A [MASSACHUSETTS INST. OF TECH.; Peeters, S J M [UNIV OF OXFORD; Poon, A W P [LBNL; Prior, G [LBNL; Reitzner, S D [UNIV OF GUELPH; Robertson, B C [QUEEN' S UNIV; Robertson, R G H [UNIV OF WASHINGTON; Rollin, E [CARLETON UNIV; Schwendener, M H [LAURENTIAN UNIV; Secrest, J A [UNIV OF PA; Seibert, S R [UNIV OF TEXAS; Simard, O [CARLETON UNIV; Sinclair, D [CARLETON UNIV; Sinclair, L [CARLETON UNIV; Skensved, P [QUEEN' S UNIV; Sonley, T J [MASSACHUSETTS INST. OF TECH.; Tesic, G [CARLETON UNIV; Tolich, N [UNIV OF WASHINGTON; Tsui, T [UNIV OF BRITISH COLUMBIA; Tunnell, C D [UNIV OF TEXAS; Van Berg, R [UNIV OF PA; Van Devender, B A [UNIV OF WASHINGTON; Virtue, C J [LAURENTIAN UNIV; Wall, B L [UNIV OF WASHINGTON; Waller, D [CARLETON UNIV; Wan Chan Tseung, H [UNIV OF OXFORD; West, N [UNIV OF OXFORD; Wilkerson, J F [UNIV OF WASHINGTON; Wilson, J R [UNIV OF OXFORD; Wright, A [QUEEN' S UNIV; Yeh, M [BNL; Zhang, F [CARLETON UNIV; Zuber, K [UNIV OF OXFORD

    2009-01-01

    We have peformed three searches for high-frequency signals in the solar neutrino flux measured by the Sudbury Neutrino Observatory (SNO), motivated by the possibility that solar g-mode oscillations could affect the production or propagation of solar {sup 8}B neutrinos. The first search looked for any significant peak in the frequency range l/day to 144/day, with a sensitivity to sinusoidal signals with amplitudes of 12% or greater. The second search focused on regions in which g-mode signals have been claimed by experiments aboard the SoHO satellite, and was sensitive to signals with amplitudes of 10% or greater. The third search looked for extra power across the entire frequency band. No statistically significant signal was detected in any of the three searches.

  15. Apparent Relations Between Solar Activity and Solar Tides Caused by the Planets

    Science.gov (United States)

    Hung, Ching-Cheh

    2007-01-01

    A solar storm is a storm of ions and electrons from the Sun. Large solar storms are usually preceded by solar flares, phenomena that can be characterized quantitatively from Earth. Twenty-five of the thirty-eight largest known solar flares were observed to start when one or more tide-producing planets (Mercury, Venus, Earth, and Jupiter) were either nearly above the event positions (less than 10 deg. longitude) or at the opposing side of the Sun. The probability for this to happen at random is 0.039 percent. This supports the hypothesis that the force or momentum balance (between the solar atmospheric pressure, the gravity field, and magnetic field) on plasma in the looping magnetic field lines in solar corona could be disturbed by tides, resulting in magnetic field reconnection, solar flares, and solar storms. Separately, from the daily position data of Venus, Earth, and Jupiter, an 11-year planet alignment cycle is observed to approximately match the sunspot cycle. This observation supports the hypothesis that the resonance and beat between the solar tide cycle and nontidal solar activity cycle influences the sunspot cycle and its varying magnitudes. The above relations between the unpredictable solar flares and the predictable solar tidal effects could be used and further developed to forecast the dangerous space weather and therefore reduce its destructive power against the humans in space and satellites controlling mobile phones and global positioning satellite (GPS) systems.

  16. The solar-stellar connection: Magnetic activity of seismic solar analogs

    CERN Document Server

    Salabert, D; Beck, P G; Regulo, C; Ballot, J; Creevey, O L; Egeland, R; Nascimento, J -D do; Hernandez, F Perez; Bigot, L; Mathur, S; Metcalfe, T S; Corsaro, E; Palle, P L

    2016-01-01

    Finding solar-analog stars with fundamental properties as close as possible to the Sun and studying the characteristics of their surface magnetic activity is a very promising way to understand the solar variability and its associated dynamo process. However, the identification of solar-analog stars depends on the accuracy of the estimated stellar parameters. Thanks to the photometric CoROT and Kepler space missions, the addition of asteroseismic data was proven to provide the most accurate fundamental properties that can be derived from stellar modeling today. Here, we present our latest results on the solar-stellar connection by studying 18 solar analogs that we identified among the Kepler seismic sample (Salabert et al., 2016a). We measured their magnetic activity properties using the observations collected by the Kepler satellite and the ground-based, high-resolution HERMES spectrograph. The photospheric (Sph) and chromospheric (S) magnetic activity proxies of these seismic solar analogs are compared in re...

  17. Revisiting the question: Does high-latitude solar activity lead low-latitude solar activity in time phase?

    Energy Technology Data Exchange (ETDEWEB)

    Kong, D. F.; Qu, Z. N. [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China); Guo, Q. L., E-mail: kdf@ynao.ac.cn [College of Mathematics Physics and Information Engineering, Jiaxing University, Jiaxing 314001 (China)

    2014-05-01

    Cross-correlation analysis and wavelet transform methods are used to investigate whether high-latitude solar activity leads low-latitude solar activity in time phase or not, using the data of the Carte Synoptique solar filaments archive from 1919 March to 1989 December. From the cross-correlation analysis, high-latitude solar filaments have a time lead of 12 Carrington solar rotations with respect to low-latitude ones. Both the cross-wavelet transform and wavelet coherence indicate that high-latitude solar filaments lead low-latitude ones in time phase. Furthermore, low-latitude solar activity is better correlated with high-latitude solar activity of the previous cycle than with that of the following cycle, which is statistically significant. Thus, the present study confirms that high-latitude solar activity in the polar regions is indeed better correlated with the low-latitude solar activity of the following cycle than with that of the previous cycle, namely, leading in time phase.

  18. Solar air-conditioning-active, hybrid and passive

    Energy Technology Data Exchange (ETDEWEB)

    Yellott, J. I.

    1981-04-01

    After a discussion of summer air conditioning requirements in the United States, active, hybrid, and passive cooling systems are defined. Active processes and systems include absorption, Rankine cycle, and a small variety of miscellaneous systems. The hybrid solar cooling and dehumidification technology of desiccation is covered as well as evaporative cooling. The passive solar cooling processes covered include convective, radiative and evaporative cooling. Federal and state involvement in solar cooling is then discussed. (LEW)

  19. Properties of nuclear and Coulomb breakup of 8B

    CERN Document Server

    Ogata, K; Iseri, Y; Yahiro, M

    2008-01-01

    Dependence of breakup cross sections of 8B at 65 MeV/nucleon on target mass number A_T is investigated by means of the continuum-discretized coupled-channels method (CDCC) with more reliable distorting potentials than in preceding study. The scaling law of the nuclear breakup cross section as A_T^(1/3) is found to be satisfied only in the middle A_T region of 40 < A_T < 150. Interference between nuclear and Coulomb breakup amplitudes turns out to vanish at very forward angles with respect to the center-of-mass of 8B, independent of target nucleus. Truncation of the relative energy between the p and 7Be fragments slightly reduces contribution from nuclear breakup at very forward angles, while the angular region in which the first-order perturbation theory works well does not change essentially.

  20. Can origin of the 2400-year cycle of solar activity be caused by solar inertial motion?

    Directory of Open Access Journals (Sweden)

    I. Charvátová

    Full Text Available A solar activity cycle of about 2400 years has until now been of uncertain origin. Recent results indicate it is caused by solar inertial motion. First we describe the 178.7-year basic cycle of solar motion. The longer cycle, over an 8000 year interval, is found to average 2402.2 years. This corresponds to the Jupiter/Heliocentre/Barycentre alignments (9.8855 × 243. Within each cycle an exceptional segment of 370 years has been found characterized by a looping pattern by a trefoil or quasitrefoil geometry. Solar activity, evidenced by 14C tree-ring proxies, shows the same pattern. Solar motion is computable in advance, so this provides a basis for future predictive assessments. The next 370-year segment will occur between AD 2240 and 2610.

    Key words: Solar physics (celestial mechanics

  1. Correlative Aspects of the Solar Electron Neutrino Flux and Solar Activity

    Science.gov (United States)

    Wilson, Robert M.

    2000-01-01

    Between 1970 and 1994, the Homestake Solar Neutrino Detector obtained 108 observations of the solar electron neutrino flux (less than 0.814 MeV). The "best fit" values derived from these observations suggest an average daily production rate of about 0.485 Ar-37 atom per day, a rate equivalent to about 2.6 SNU (solar neutrino units) or about a factor of 3 below the expected rate from the standard solar model. In order to explain, at least, a portion of this discrepancy, some researchers have speculated that the flux of solar neutrinos is variable, possibly being correlated with various markers of the solar cycle (e.g., sunspot number, the Ap index, etc.). In this paper, using the larger "standard data set," the issue of correlative behavior between solar electron neutrino flux and solar activity is re-examined. The results presented here clearly indicate that no statistically significant association exists between any of the usual markers of solar activity and the solar electron neutrino flux.

  2. Annual DOE active solar heating and cooling contractors' review meeting. Premeeting proceedings and project summaries

    Energy Technology Data Exchange (ETDEWEB)

    None,

    1981-09-01

    Ninety-three project summaries are presented which discuss the following aspects of active solar heating and cooling: Rankine solar cooling systems; absorption solar cooling systems; desiccant solar cooling systems; solar heat pump systems; solar hot water systems; special projects (such as the National Solar Data Network, hybrid solar thermal/photovoltaic applications, and heat transfer and water migration in soils); administrative/management support; and solar collector, storage, controls, analysis, and materials technology. (LEW)

  3. Size-Flux Relation in Solar Active Regions

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    We present a study of the relationship between integral area and corre-sponding total magnetic flux for solar active regions. It is shown that some of theserelationships are satisfied to simple power laws. Fractal examination showed thatsome of these power laws can not be justified inside the simple models of stationarymagnetic flux tube aggregation. All magnetic fluxes and corresponding areas werecalculated using the data measured with the Solar Magnetic Field Telescope of theHuairou Solar Observing Station in Beijing.

  4. Observation of Hysteresis between Solar Activity Indicators and -mode Frequency Shifts for Solar Cycle 22

    Indian Academy of Sciences (India)

    S. C. Tripathy; Brajesh Kumar; Kiran Jain; A. Bhatnagar

    2000-09-01

    Using intermediate degree p-mode frequency data sets for solar cycle 22, we find that the frequency shifts and magnetic activity indicators show a ``hysteresis" phenomenon. It is observed that the magnetic indices follow different paths for the ascending and descending phases of the solar cycle while for radiative indices, the separation between the paths are well within the error limits.

  5. Solar Activity, Different Geomagnetic Activity Levels and Acute Myocardial Infarction

    Science.gov (United States)

    Dimitrova, Svetla; Jordanova, Malina; Stoilova, Irina; Taseva, Tatiana; Maslarov, Dimitar

    Results on revealing a possible relationship between solar activity (SA) and geomagnetic activity (GMA) and acute myocardial infarction (AMI) morbidity are presented. Studies were based on medical data covering the period from 1.12.1995 to 31.12.2004 and concerned daily distribution of patients with AMI diagnose (in total 1192 cases) from Sofia region on the day of admission at the hospital. Analysis of variance (ANOVA) was applied to check the significance of GMA intensity effect and the type of geomagnetic storms, those caused by Magnetic Clouds (MC) and by High Speed Solar Wind Streams (HSSWS), on AMI morbidity. Relevant correlation coefficients were calculated. Results revealed statistically significant positive correlation between considered GMA indices and AMI. ANOVA revealed that AMI number was signifi- cantly increased from the day before (-1st) till the day after (+1st) geomagnetic storms with different intensities. Geomagnetic storms caused by MC were related to significant increase of AMI number in comparison with the storms caused by HSSWS. There was a trend for such different effects even on -1st and +1st day.

  6. A comment on the suspected solar neutrino -- solar activity connection

    Science.gov (United States)

    Wilson, Robert M.

    1994-01-01

    Recently, it has been proposed that there exists a highly statistically significant (at greater than or equal to 98% level of confidence) relationship between Ar-37 production rate (namely, solar neutrinos) and the Ap geomagnetic index (namely, solar particles), based on the chi-square goodness-of-fit test and correlation analysis, for the interval 1970-1990. While a relationship between the two parameters, indeed, seems to be discernible, the strength of the relationship has been overstated. Instead of being significant at the afore-mentioned level of confidence, the relationship is found to be significant at only greater than or equal to 95% level of confidence, based on Yates' modification to the chi-square test for 2 x 2 contingency tables. Likewise, while correlation analysis yields a value of r = 0.2691, it is important to note that such a value suggests that only about 7% of the variance can be 'explained' by the inferred correlation and that the remaining 93% of the variance must be attributed to other sources.

  7. Recent perspectives in solar physics - Elemental composition, coronal structure and magnetic fields, solar activity

    Science.gov (United States)

    Newkirk, G., Jr.

    1975-01-01

    Elemental abundances in the solar corona are studied. Abundances in the corona, solar wind and solar cosmic rays are compared to those in the photosphere. The variation in silicon and iron abundance in the solar wind as compared to helium is studied. The coronal small and large scale structure is investigated, emphasizing magnetic field activity and examining cosmic ray generation mechanisms. The corona is observed in the X-ray and EUV regions. The nature of coronal transients is discussed with emphasis on solar-wind modulation of galactic cosmic rays. A schematic plan view of the interplanetary magnetic field during sunspot minimum is given showing the presence of magnetic bubbles and their concentration in the region around 4-5 AU by a fast solar wind stream.

  8. Department of Energy solar process heat program: FY 1991 solar process heat prefeasibility studies activity

    Science.gov (United States)

    Hewett, R.

    1992-11-01

    During fiscal year (FY) 1991, the US Department of Energy (DOE) Solar Process Heat Program implemented a Solar Process Heat Prefeasibility Studies activity. For Program purposes, a prefeasibility study is an engineering assessment that investigates the technical and economic feasibility of a solar system for a specific application for a specific end-user. The study includes an assessment of institutional issues (e.g., financing, availability of insurance, etc.) that impact the feasibility of the proposed solar project. Solar process heat technology covers solar thermal energy systems (utilizing flat plate or concentrating solar collectors) for water heating, water preheating, cooling/refrigeration, steam generation, ventilation air heating/preheating, etc., for applications in industry, commerce, and government. The studies are selected for funding through a competitive solicitation. For FY-91, six projects were selected for funding. As of 31 Aug. 1992, three teams had completed their studies. This paper describes the prefeasibility studies activity, presents the results from the study performed by United Solar Technologies, and summarizes the conclusions from the studies that have been completed to date and their implications for the Solar Process Heat Program.

  9. Solar Cells Active in Complete Darkness

    Energy Technology Data Exchange (ETDEWEB)

    Dharmadasa, I M; Elsherif, O; Tolan, G J, E-mail: Dharme@shu.ac.uk [Materials and Engineering Research Institute, Sheffield Hallam University, Sheffield S1 1WB (United Kingdom)

    2011-03-01

    A graded bandgap multi-layer solar cell device structure was designed to absorb UV, visible and IR radiation, and to incorporate impact ionisation and impurity photovoltaic effects within one device. The design was experimentally tested with a well researched material system, MOVPE grown GaAs/AlGaAs. Open circuit voltages of {approx}1175 mV with highest possible FF values (0.83-0.87) and J{sub sc}{approx}12 mAcm{sup -2} have been observed [1,3]. These parameters were independently verified by measuring in five different laboratories in Europe and United States including NREL. While the work is continuing to increase short circuit current density values, these devices were tested to explore the experimental evidence of impurity PV effect, as expected from this design. Responsivity measurements and PV activity in dark conditions have been carried out to investigate impurity PV effect in these devices. Responsivity measurements indicate current collection in the infra-red region confirming the contribution from IR photons. The I-V measurements in dark conditions produce open circuit voltages exceeding 750 mV confirming the contribution from surrounding heat radiation. The new features of graded bandgap devices enable impurity PV effect to dominate and create useful charge carriers, suppressing detrimental recombination process. These experimental results will be presented in this paper.

  10. Solar energy education. Renewable energy activities for general science

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    Renewable energy topics are integrated with the study of general science. The literature is provided in the form of a teaching manual and includes such topics as passive solar homes, siting a home for solar energy, and wind power for the home. Other energy topics are explored through library research activities. (BCS)

  11. Solar-collector manufacturing activity, July through December, 1981

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-03-01

    Solar thermal collector and solar cell manufacturing activity is both summarized and tabulated. Data are compared for three survey periods (July through December, 1981; January through June, 1981; and July through December, 1980). Annual totals are also provided for the years 1979 through 1981. Data include total producer shipments, end use, market sector, imports and exports. (LEW)

  12. Helicity of Solar Active Regions from a Dynamo Model

    Indian Academy of Sciences (India)

    Piyali Chatterjee

    2006-06-01

    We calculate helicities of solar active regions based on the idea that poloidal flux lines get wrapped around a toroidal flux tube rising through the convection zone, thereby giving rise to the helicity. We use our solar dynamo model based on the Babcock–Leighton -effect to study how helicity varies with latitude and time.

  13. Solar Energy Education. Renewable energy activities for biology

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    An instructional aid for teachers is presented that will allow biology students the opportunity to learn about renewable energy sources. Some of the school activities include using leaves as collectors of solar energy, solar energy stored in wood, and a fuel value test for green and dry woods. A study of organic wastes as a source of fuel is included. (BCS)

  14. A Solar Cycle Dependence of Nonlinearity in Magnetospheric Activity

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Jay R; Wing, Simon

    2005-03-08

    The nonlinear dependencies inherent to the historical K(sub)p data stream (1932-2003) are examined using mutual information and cumulant based cost as discriminating statistics. The discriminating statistics are compared with surrogate data streams that are constructed using the corrected amplitude adjustment Fourier transform (CAAFT) method and capture the linear properties of the original K(sub)p data. Differences are regularly seen in the discriminating statistics a few years prior to solar minima, while no differences are apparent at the time of solar maximum. These results suggest that the dynamics of the magnetosphere tend to be more linear at solar maximum than at solar minimum. The strong nonlinear dependencies tend to peak on a timescale around 40-50 hours and are statistically significant up to one week. Because the solar wind driver variables, VB(sub)s and dynamical pressure exhibit a much shorter decorrelation time for nonlinearities, the results seem to indicate that the nonlinearity is related to internal magnetospheric dynamics. Moreover, the timescales for the nonlinearity seem to be on the same order as that for storm/ring current relaxation. We suggest that the strong solar wind driving that occurs around solar maximum dominates the magnetospheric dynamics suppressing the internal magnetospheric nonlinearity. On the other hand, in the descending phase of the solar cycle just prior to solar minimum, when magnetospheric activity is weaker, the dynamics exhibit a significant nonlinear internal magnetospheric response that may be related to increased solar wind speed.

  15. Solar Thermal Propulsion Investigation Activities in NAL

    Science.gov (United States)

    Sahara, Hironori; Shimizu, Morio

    2004-03-01

    We successfully developed the ultra-light single shell paraboloidal concentrators made of a sheet of aluminized or silvered polymer membrane, formed via plastic deformation due to stress relaxation under high temperature condition by means of Straight Formation Method. Furthermore, we improved the precision of the concentrators by taking the elastic deformation of residual stress into consideration, and obtained the best concentration performance equivalent to a highly precise paraboloidal glass mirror. In solar concentration, the diameter of solar focal image via the single shell polymer concentrator is almost equal to that via the glass mirror and they are twice as large as that of the theoretical. The ultra-light single shell polymer concentrators are very useful for the concentrator in solar thermal propulsion system and solar power station in particular, and also promising item for beamed energy propulsion.

  16. Binding of the auxiliary subunit TRIP8b to HCN channels shifts the mode of action of cAMP.

    Science.gov (United States)

    Hu, Lei; Santoro, Bina; Saponaro, Andrea; Liu, Haiying; Moroni, Anna; Siegelbaum, Steven

    2013-12-01

    Hyperpolarization-activated cyclic nucleotide-regulated cation (HCN) channels generate the hyperpolarization-activated cation current Ih present in many neurons. These channels are directly regulated by the binding of cAMP, which both shifts the voltage dependence of HCN channel opening to more positive potentials and increases maximal Ih at extreme negative voltages where voltage gating is complete. Here we report that the HCN channel brain-specific auxiliary subunit TRIP8b produces opposing actions on these two effects of cAMP. In the first action, TRIP8b inhibits the effect of cAMP to shift voltage gating, decreasing both the sensitivity of the channel to cAMP (K1/2) and the efficacy of cAMP (maximal voltage shift); conversely, cAMP binding inhibits these actions of TRIP8b. These mutually antagonistic actions are well described by a cyclic allosteric mechanism in which TRIP8b binding reduces the affinity of the channel for cAMP, with the affinity of the open state for cAMP being reduced to a greater extent than the cAMP affinity of the closed state. In a second apparently independent action, TRIP8b enhances the action of cAMP to increase maximal Ih. This latter effect cannot be explained by the cyclic allosteric model but results from a previously uncharacterized action of TRIP8b to reduce maximal current through the channel in the absence of cAMP. Because the binding of cAMP also antagonizes this second effect of TRIP8b, application of cAMP produces a larger increase in maximal Ih in the presence of TRIP8b than in its absence. These findings may provide a mechanistic explanation for the wide variability in the effects of modulatory transmitters on the voltage gating and maximal amplitude of Ih reported for different neurons in the brain.

  17. Rcscarch on Small-Scale Solar Magnetic Fields and Activities

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jun; YANG Shuhong

    2011-01-01

    It has been known that there are different kinds of small-scale active phenomena on the Sun. They are classified into spicules, macrospicules, and H-alpha jets, X-ray jets, etc., according to their sizes, velocities, lifetimes, and so on. All these phenomena are related to small-scale magnetic fields. The problems of solar upper atmospheric heating and solar wind acceleration have never been solved. Small-scale magnetic fields and activities are considered to play key roles in heating upper atmosphere and in accelerating solar wind.

  18. Latitude migration of solar activity at high latitudes

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Utilized here is the Carte Synoptique solar filament archive,namely the catalogue of solar filaments from March 1919 to December 1989,corresponding to solar rotation numbers 876 to 1823 to study Iatitudinal migration of solar activity at high Iatitudes.Except the well-known poleward migration of solar activity from middle Iatitudes to the poles,an equatorward migration is found from the solar poles toward middle Iatitudes(about 40°)within a normal cycle,which iS neglected before,and the time interval for the former migration(4.4 years)is about 2.2 years shorter than that for the latter(6.6 years),indicating that the change from one migration to the other takes place around the maximum time of a normal cycle.In the future,a dynamo model should represent the migration from the poles toward middle Iatitudes of the Sun,besides the migration in"butterfly diagrams"and the"rush to the poles".The traditional extended activity cycle is actually a part of the period of the successive migration from the poles toward the solar equator.

  19. Observations of hysteresis in solar cycle variations among seven solar activity indicators

    Science.gov (United States)

    Bachmann, Kurt T.; White, Oran R.

    1994-01-01

    We show that smoothed time series of 7 indices of solar activity exhibit significant solar cycle dependent differences in their relative variations during the past 20 years. In some cases these observed hysteresis patterns start to repeat over more than one solar cycle, giving evidence that this is a normal feature of solar variability. Among the indices we study, we find that the hysteresis effects are approximately simple phase shifts, and we quantify these phase shifts in terms of lag times behind the leading index, the International Sunspot Number. Our measured lag times range from less than one month to greater than four months and can be much larger than lag times estimated from short-term variations of these same activity indices during the emergence and decay of major active regions. We argue that hysteresis represents a real delay in the onset and decline of solar activity and is an important clue in the search for physical processes responsible for changing solar emission at various wavelengths.

  20. Active solar heating and cooling information user study

    Energy Technology Data Exchange (ETDEWEB)

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-01-01

    The results of a series of telephone interviews with groups of users of information on active solar heating and cooling (SHAC). An earlier study identified the information user groups in the solar community and the priority (to accelerate solar energy commercialization) of getting information to each group. In the current study only high-priority groups were examined. Results from 19 SHAC groups respondents are analyzed in this report: DOE-Funded Researchers, Non-DOE-Funded Researchers, Representatives of Manufacturers (4 groups), Distributors, Installers, Architects, Builders, Planners, Engineers (2 groups), Representatives of Utilities, Educators, Cooperative Extension Service County Agents, Building Owners/Managers, and Homeowners (2 groups). The data will be used as input to the determination of information products and services the Solar Energy Research Institute, the Solar Energy Information Data Bank Network, and the entire information outreach community should be preparing and disseminating.

  1. Cost Effective System Modeling of Active Micro- Module Solar Tracker

    Directory of Open Access Journals (Sweden)

    Md. Faisal Shuvo

    2014-01-01

    Full Text Available The increasing interests in using renewable energies are coming from solar thermal energy and solar photovoltaic systems to the micro production of electricity. Usually we already have considered the solar tracking topology in large scale applications like power plants and satellite but most of small scale applications don’t have any solar tracker system, mainly because of its high cost and complex circuit design. From that aspect, this paper confab microcontroller based one dimensional active micro-module solar tracking system, in which inexpensive LDR is used to generate reference voltage to operate microcontroller for functioning the tracking system. This system provides a fast response of tracking system to the parameters like change of light intensity as well as temperature variations. This micro-module model of tracking system can be used for small scale applications like portable electronic devices and running vehicles.

  2. The risk characteristics of solar and geomagnetic activity

    Science.gov (United States)

    Podolska, Katerina

    2016-04-01

    The main aim of this contribution is a deeper analysis of the influence of solar activity which is expected to have an impact on human health, and therefore on mortality, in particular civilization and degenerative diseases. We have constructed the characteristics that represent the risk of solar and geomagnetic activity on human health on the basis of our previous analysis of association between the daily numbers of death on diseases of the nervous system and diseases of the circulatory system and solar and geomagnetic activity in the Czech Republic during the years 1994 - 2013. We used long period daily time series of numbers of deaths by cause, long period time series of solar activity indices (namely R and F10.7), geomagnetic indicies (Kp planetary index, Dst) and ionospheric parameters (foF2 and TEC). The ionospheric parameters were related to the geographic location of the Czech Republic and adjusted for middle geographic latitudes. The risk characteristics were composed by cluster analysis in time series according to the phases of the solar cycle resp. the seasonal insolation at mid-latitudes or the daily period according to the impact of solar and geomagnetic activity on mortality by cause of death from medical cause groups of death VI. Diseases of the nervous system and IX. Diseases of the circulatory system mortality by 10th Revision of International Classification of Diseases WHO (ICD-10).

  3. Solar activity monitoring and forecasting capabilities at Big Bear Solar Observatory

    Directory of Open Access Journals (Sweden)

    P. T. Gallagher

    Full Text Available The availability of full-disk, high-resolution Ha images from Big Bear Solar Observatory (USA, Kanzelhöhe Solar Observatory (Austria, and Yunnan Astronomical Observatory (China allows for the continual monitoring of solar activity with unprecedented spatial and temporal resolution. Typically, this Global Ha Network (GHN provides almost uninterrupted Ha images with a cadence of 1 min and an image scale of 1'' per pixel. 

    Every hour, GHN images are transferred to the web-based BBSO Active Region Monitor (ARM; www.bbso.njit.edu/arm, which includes the most recent EUV, continuum, and magnetogram data from the Solar and Heliospheric Observatory, together with magnetograms from the Global Oscillation Network Group. ARM also includes a variety of active region properties from the National Oceanic and Atmospheric Administration’s Space Environment Center, such as up-to-date active region positions, GOES 5-min X-ray data, and flare identification. Stokes I, V, Q, and U images are available from the recently operational BBSO Digital Vector Magnetograph and the Vector Magnetograph at the Huairou Solar Observing Station of Beijing Observatory. Vector magnetograms provide complete information on the photospheric magnetic field, and allow for magnetic flux gradients, electric currents, and shear forces to be calculated: these measurements are extremely sensitive to conditions resulting in flaring activity. Furthermore, we have developed a Flare Prediction System which estimates the probability for each region to produce C-, M-, or X-class flares based on nearly eight years of NOAA data from cycle 22. This, in addition to BBSO’s daily solar activity reports, has proven a useful resource for activity forecasting.

    Key words. Solar physics, astronomy and astrophysics (flares and mass ejections; instruments and techniques

  4. Self-similar signature of the active solar corona within the inertial range of solar-wind turbulence.

    Science.gov (United States)

    Kiyani, K; Chapman, S C; Hnat, B; Nicol, R M

    2007-05-25

    We quantify the scaling of magnetic energy density in the inertial range of solar-wind turbulence seen in situ at 1 AU with respect to solar activity. At solar maximum, when the coronal magnetic field is dynamic and topologically complex, we find self-similar scaling in the solar wind, whereas at solar minimum, when the coronal fields are more ordered, we find multifractality. This quantifies the solar-wind signature that is of direct coronal origin and distinguishes it from that of local MHD turbulence, with quantitative implications for coronal heating of the solar wind.

  5. Investigation of relationships between parameters of solar nano-flares and solar activity

    Science.gov (United States)

    Safari, Hossein; Javaherian, Mohsen; Kaki, Bardia

    2016-07-01

    Solar flares are one of the important coronal events which are originated in solar magnetic activity. They release lots of energy during the interstellar medium, right after the trigger. Flare prediction can play main role in avoiding eventual damages on the Earth. Here, to interpret solar large-scale events (e.g., flares), we investigate relationships between small-scale events (nano-flares) and large-scale events (e.g., flares). In our method, by using simulations of nano-flares based on Monte Carlo method, the intensity time series of nano-flares are simulated. Then, the solar full disk images taken at 171 angstrom recorded by SDO/AIA are employed. Some parts of the solar disk (quiet Sun (QS), coronal holes (CHs), and active regions (ARs)) are cropped and the time series of these regions are extracted. To compare the simulated intensity time series of nano-flares with the intensity time series of real data extracted from different parts of the Sun, the artificial neural networks is employed. Therefore, we are able to extract physical parameters of nano-flares like both kick and decay rate lifetime, and the power of their power-law distributions. The procedure of variations in the power value of power-law distributions within QS, CH is similar to AR. Thus, by observing the small part of the Sun, we can follow the procedure of solar activity.

  6. THE MAGNETIC CLASSIFICATION OF SOLAR ACTIVE REGIONS 1992–2015

    Energy Technology Data Exchange (ETDEWEB)

    Jaeggli, S. A. [NASA Goddard Space Flight Center, Solar Physics Laboratory, Code 671, Greenbelt, MD 20771 (United States); Norton, A. A., E-mail: sarah.jaeggli@nasa.gov [W. W. Hansen Experimental Physics Laboratory, Stanford University, Palo Alto, CA 94305 (United States)

    2016-03-20

    The purpose of this Letter is to address a blindspot in our knowledge of solar active region (AR) statistics. To the best of our knowledge, there are no published results showing the variation of the Mount Wilson magnetic classifications as a function of solar cycle based on modern observations. We show statistics for all ARs reported in the daily Solar Region Summary from 1992 January 1 to 2015 December 31. We find that the α and β class ARs (including all sub-groups, e.g., βγ, βδ) make up fractions of approximately 20% and 80% of the sample, respectively. This fraction is relatively constant during high levels of activity; however, an increase in the α fraction to about 35% and and a decrease in the β fraction to about 65% can be seen near each solar minimum and are statistically significant at the 2σ level. Over 30% of all ARs observed during the years of solar maxima were appended with the classifications γ and/or δ, while these classifications account for only a fraction of a percent during the years near the solar minima. This variation in the AR types indicates that the formation of complex ARs may be due to the pileup of frequent emergence of magnetic flux during solar maximum, rather than the emergence of complex, monolithic flux structures.

  7. Microbial solar cells: applying photosynthetic and electrochemically active organisms.

    Science.gov (United States)

    Strik, David P B T B; Timmers, Ruud A; Helder, Marjolein; Steinbusch, Kirsten J J; Hamelers, Hubertus V M; Buisman, Cees J N

    2011-01-01

    Microbial solar cells (MSCs) are recently developed technologies that utilize solar energy to produce electricity or chemicals. MSCs use photoautotrophic microorganisms or higher plants to harvest solar energy, and use electrochemically active microorganisms in the bioelectrochemical system to generate electrical current. Here, we review the principles and performance of various MSCs in an effort to identify the most promising systems, as well as the bottlenecks and potential solutions, for "real-life" MSC applications. We present an outlook on future applications based on the intrinsic advantages of MSCs, specifically highlighting how these living energy systems can facilitate the development of an electricity-producing green roof.

  8. Influence of solar activity on fibrinolysis and fibrinogenolysis. [statistical correlation between solar flare and blood coagulation indices

    Science.gov (United States)

    Marchenko, V. I.

    1974-01-01

    During periods of high solar activity fibrinolysis and fibrinogenolysis are increased. A direct correlative relationship is established between the indices of fibrinolysis, fibrinogenolysis and solar flares which were recorded two days before the blood was collected for analysis.

  9. Correlation of Spectral Solar Irradiance with solar activity as measured by VIRGO

    CERN Document Server

    Wehrli, C; Shapiro, A I

    2013-01-01

    Context. The variability of Solar Spectral Irradiance over the rotational period and its trend over the solar activity cycle are important for understanding the Sun-Earth connection as well as for observational constraints for solar models. Recently the SIM experiment on SORCE has published an unexpected negative correlation with Total Solar Irradiance of the visible spectral range. It is compensated by a strong and positive variability of the near UV range. Aims. We aim to verify whether the anti-correlated SIM/SORCE-trend in the visible can be confirmed by independent observations of the VIRGO experiment on SOHO. The challenge of all space experiments measuring solar irradiance are sensitivity changes of their sensors due to exposure to intense UV radiation, which are difficult to assess in orbit. Methods. We analyze a 10-year time series of VIRGO sun photometer data between 2002 and 2012. The variability of Spectral Solar Irradiance is correlated with the variability of the Total Solar Irradiance, which is...

  10. Test for planetary influences on solar activity. [tidal effects

    Science.gov (United States)

    Dingle, L. A.; Van Hoven, G.; Sturrock, P. A.

    1973-01-01

    A method due to Schuster is used to test the hypothesis that solar activity is influenced by tides raised in the sun's atmosphere by planets. We calculate the distribution in longitude of over 1000 flares occurring in a 6 1/2 yr segment of solar cycle 19, referring the longitude system in turn to the orbital positions of Jupiter and Venus. The resulting distributions show no evidence for a tidal effect.

  11. The Magnetic Classification of Solar Active Regions 1992 - 2015

    CERN Document Server

    Jaeggli, Sarah A

    2016-01-01

    The purpose of this letter is to address a blind-spot in our knowledge of solar active region statistics. To the best of our knowledge there are no published results showing the variation of the Mount Wilson magnetic classifications as a function of solar cycle based on modern observations. We show statistics for all active regions reported in the daily Solar Region Summary from 1992 January 1 to 2015 December 31. We find that the $\\alpha$ and $\\beta$ class active regions (including all sub-groups e.g. $\\beta\\gamma$, $\\beta\\delta$) make up fractions of approximately 20% and 80% of the sample respectively. This fraction is relatively constant during high levels of activity, however, an increase in the $\\alpha$ fraction to about 35% and and a decrease in the $\\beta$ fraction to about 65% can be seen near each solar minimum and is statistically significant at the 2-$\\sigma$ level. Over 30% of all active regions observed during the years of solar maxima were appended with the classifications $\\gamma$ and/or $\\del...

  12. CORRELATIVE ANALYSIS OF COSMIC RAY INTENSITY AND SOLAR ACTIVITY PARAMETERS

    Directory of Open Access Journals (Sweden)

    M. ROY

    2014-02-01

    Full Text Available Incoming cosmic ray shows significant intensity modulation in association with different solar geo parameters during their passage through heliosphere. Cosmic ray intensity is found anticorrelated with solar activity parameters. Using pressure corrected data of Mcmurdo neutron monitor, modulation of cosmic ray is analyzed covering solar cycles 21, 22, 23 and 24 (from 1976 to 2013. Negative and high correlations are obtained with some time lag for most of the solar parameters. Difference in shapes of hysteresis curves CRI~SSN, CRI~SRF. CRI~CI and CRI~FI for odd and even cycles pointed out that different mechanisms convection and diffusion are the dominating factors to drift cosmic ray particles.

  13. Solar Activity Studies using Microwave Imaging Observations

    CERN Document Server

    Gopalswamy, Nat

    2016-01-01

    We report on the status of solar cycle 24 based on polar prominence eruptions (PEs) and microwave brightness enhancement (MBE) information obtained by the Nobeyama radioheliograph. The north polar region of the Sun had near-zero field strength for more than three years (2012 to 2015) and ended only in September 2015 as indicated by the presence of polar PEs and the lack of MBE. The zero-polar-field condition in the south started only around 2013, but it ended by June 2014. Thus the asymmetry in the times of polarity reversal switched between cycle 23 and 24. The polar MBE is a good proxy for the polar magnetic field strength as indicated by the high degree of correlation between the two. The cross-correlation between the high- and low-latitude MBEs is significant for a lag of ~5.5 to 7.3 years, suggesting that the polar field of one cycle indicates the sunspot number of the next cycle in agreement with the Babcock-Leighton mechanism of solar cycles. The extended period of near-zero field in the north-polar re...

  14. Multi-parametric Effect of Solar Activity on Cosmic Rays

    Indian Academy of Sciences (India)

    V. K. Mishra; Meera Gupta; B. N. Mishra; S. K. Nigam; A. P. Mishra

    2008-03-01

    The long-term modulation of cosmic ray intensity (CRI) by different solar activity (SA) parameters and an inverse correlation between individual SA parameter and CRI is well known. Earlier, it has been suggested that the concept of multi-parametric modulation of CRI may play an important role in the study of long-term modulation of CRI. In the present study, we have tried to investigate the combined effect of a set of two SA parameters in the long-term modulation of CRI. For this purpose, we have used a new statistical technique called “Running multiple correlation method”, based on the “Running cross correlation method”. The running multiple correlation functions among different sets of two SA parameters (e.g., sunspot numbers and solar flux, sunspot numbers and coronal index, sunspot numbers and grouped solar flares, etc.) and CRI have been correlated separately. It is found that the strength of multiple correlation (among two SA parameters and CRI) and cross correlation (between individual SA parameter and CRI) is almost similar throughout the period of investigation (1955–2005). It is also found that the multiple correlations among various SA parameters and CRI is stronger during ascending and descending phases of the solar cycles and it becomes weaker during maxima and minima of the solar cycles, which is in accordance with the linear relationship between SA parameters and CRI. The values of multiple correlation functions among different sets of SA parameters and CRI fall well within the 95% confidence interval. In the view of odd–even hypothesis of solar cycles, the strange behaviour of present cycle 23 (odd cycle), as this is characterized by many peculiarities with double peaks and many quiet periods (Gnevyshev gaps) interrupted the solar activity (for example April 2001, October–November 2003 and January 2005), leads us to speculate that the solar cycle 24 (even cycle) might be of exceptional nature.

  15. Edge Adapted Wavelets, Solar Magnetic Activity, and Climate Change

    CERN Document Server

    Johnson, Robert W

    2009-01-01

    The continuous wavelet transform is adapted to account for signal truncation through renormalization and by modifying the shape of the analyzing window. Comparison is made of the instant and integrated wavelet power with previous algorithms. The edge adapted and renormalized admissible wavelet transforms are used to estimate the level of solar magnetic activity from the sunspot record. The solar activity is compared to Oerlemans' temperature reconstruction and to the Central England Temperature record. A correlation is seen for years between 1610 and 1990, followed by a strong deviation as the recently observed temperature increases.

  16. Long-term solar activity influences on South American rivers

    OpenAIRE

    Mauas, Pablo; Buccino, Andrea P.; Flamenco, Eduardo

    2010-01-01

    River streamflows are excellent climatic indicators since they integrate precipitation over large areas. Here we follow up on our previous study of the influence of solar activity on the flow of the Parana River, in South America. We find that the unusual minimum of solar activity in recent years have a correlation on very low levels in the Parana's flow, and we report historical evidence of low water levels during the Little Ice Age. We also study data for the streamflow of three other river...

  17. Multi-scale statistical analysis of coronal solar activity

    Science.gov (United States)

    Gamborino, Diana; del-Castillo-Negrete, Diego; Martinell, Julio J.

    2016-07-01

    Multi-filter images from the solar corona are used to obtain temperature maps that are analyzed using techniques based on proper orthogonal decomposition (POD) in order to extract dynamical and structural information at various scales. Exploring active regions before and after a solar flare and comparing them with quiet regions, we show that the multi-scale behavior presents distinct statistical properties for each case that can be used to characterize the level of activity in a region. Information about the nature of heat transport is also to be extracted from the analysis.

  18. The Solar System Ballet: A Kinesthetic Spatial Astronomy Activity

    Science.gov (United States)

    Heyer, Inge; Slater, T. F.; Slater, S. J.; Astronomy, Center; Education ResearchCAPER, Physics

    2011-05-01

    The Solar System Ballet was developed in order for students of all ages to learn about the planets, their motions, their distances, and their individual characteristics. To teach people about the structure of our Solar System can be revealing and rewarding, for students and teachers. Little ones (and some bigger ones, too) often cannot yet grasp theoretical and spatial ideas purely with their minds. Showing a video is better, but being able to learn with their bodies, essentially being what they learn about, will help them understand and remember difficult concepts much more easily. There are three segments to this activity, which can be done together or separately, depending on time limits and age of the students. Part one involves a short introductory discussion about what students know about the planets. Then students will act out the orbital motions of the planets (and also moons for the older ones) while holding a physical model. During the second phase we look at the structure of the Solar System as well as the relative distances of the planets from the Sun, first by sketching it on paper, then by recreating a scaled version in the class room. Again the students act out the parts of the Solar System bodies with their models. The third segment concentrates on recreating historical measurements of Earth-Moon-Sun system. The Solar System Ballet activity is suitable for grades K-12+ as well as general public informal learning activities.

  19. Strain background modifies phenotypes in the ATP8B1-deficient mouse

    NARCIS (Netherlands)

    Shah, S.; Sanford, U.R.; Vargas, J.C.; Xu, H.; Groen, A.; Paulusma, C.C.; Grenert, J.P.; Pawlikowska, L.; Sen, S.; Oude Elferink, R.P.J.; Bull, L.N.

    2010-01-01

    BACKGROUND: Mutations in ATP8B1 (FIC1) underlie cases of cholestatic disease, ranging from chronic and progressive (progressive familial intrahepatic cholestasis) to intermittent (benign recurrent intrahepatic cholestasis). The ATP8B1-deficient mouse serves as an animal model of human ATP8B1 deficie

  20. Proton activity of the Sun in current solar cycle 24

    CERN Document Server

    Li, Chuan; Fang, Cheng

    2014-01-01

    We present a study of 7 large solar proton events (SPEs) of current solar cycle 24 (from 2009 January up to date). They were recorded by GOES spacecraft with highest proton fluxes over 200 pfu for energies $>$10 MeV. In situ particle measurements show that: (1) The profiles of the proton fluxes are highly dependent of the locations of their solar sources, namely flares or coronal mass ejections (CMEs); (2) The solar particle release (SPR) times fall in the decay phase of the flare emission, and are in accordance with the times when the CMEs travel to an average height of 7.9 solar radii; (3) The time differences between the SPR and the flare peak are also dependent of the locations of the solar active regions (ARs). The results tend to support the concept of proton acceleration by the CME-driven shock, even though there exists a possibility of particle acceleration at flare site with subsequent perpendicular diffusion of accelerated particles in the interplanetary magnetic field (IMF). We derive the integral ...

  1. Rotation of the Earth, solar activity and cosmic ray intensity

    Energy Technology Data Exchange (ETDEWEB)

    Barlyaeva, T.; Bard, E. [Aix-Marseille Univ., CNRS, IRD, Aix-en-Provence (France). CEREGE, College de France; Abarca-del-Rio, R. [Universidad de Concepcion (UDEC) (Chile). Dept. de Geofisica (DGEO)

    2014-10-01

    We analyse phase lags between the 11-year variations of three records: the semi-annual oscillation of the length of day (LOD), the solar activity (SA) and the cosmic ray intensity (CRI). The analysis was done for solar cycles 20-23. Observed relationships between LOD, CRI and SA are discussed separately for even and odd solar cycles. Phase lags were calculated using different methods (comparison of maximal points of cycles, maximal correlation coefficient, line of synchronization of cross-recurrence plots). We have found different phase lags between SA and CRI for even and odd solar cycles, confirming previous studies. The evolution of phase lags between SA and LOD as well as between CRI and LOD shows a positive trend with additional variations of phase lag values. For solar cycle 20, phase lags between SA and CRI, between SA and LOD, and between CRI and LOD were found to be negative. Overall, our study suggests that, if anything, the length of day could be influenced by solar irradiance rather than by cosmic rays.

  2. Considerations of active solar installations in urban planning; Consideracion de las instalaciones solares activas en el planeamiento urbanistico

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, G.; Fernandez-Llebrez, F.; Villanueva, M.

    2004-07-01

    This article establishes measures to be considered from the urban planning stage in order to favour the implementation of active solar installations in the urban field. Due to this, some examples will analyse the possible influences between solar installations and urban parameters. Consequently synergies will be proposed between solar thermal installations and urban variables to establish measures aimed at designs that increase solar contribution in cities and new development zones. In this way the planning itself will introduce measures that will increase the active use of solar energy. (Author)

  3. Solar Active Longitudes from Kodaikanal White-light Digitized Data

    Science.gov (United States)

    Mandal, Sudip; Chatterjee, Subhamoy; Banerjee, Dipankar

    2017-01-01

    The study of solar active longitudes has generated great interest in recent years. In this work we have used a unique, continuous sunspot data series obtained from the Kodaikanal observatory and revisited the problem. An analysis of the data shows a persistent presence of active longitudes during the whole 90 years of data. We compared two well-studied analysis methods and presented their results. The separation between the two most active longitudes is found be roughly 180° for the majority of time. Additionally, we also find a comparatively weaker presence of separations at 90° and 270°. The migration pattern of these active longitudes as revealed by our data is found to be consistent with the solar differential rotation curve. We also study the periodicities in the active longitudes and found two dominant periods of ≈1.3 and ≈2.2 years. These periods, also found in other solar proxies, indicate their relation with the global solar dynamo mechanism.

  4. Solar Active Longitudes From Kodaikanal White-light Digitized Data

    CERN Document Server

    Mandal, Sudip; Banerjee, Dipankar

    2016-01-01

    The study of solar active longitudes has generated a great interest in the recent years. In this work we have used an unique continuous sunspot data series obtained from Kodaikanal observatory and revisited the problem. Analysis of the data shows a persistent presence of the active longitude during the whole 90 years of data duration. We compare two well studied analysis methods and presented their respective results. The separation between the two most active longitudes is found be roughly 180{\\deg} for majority of time. Additionally, we also find a comparatively weaker presence of separations at 90{\\deg} and 270{\\deg}. Migration pattern of these active longitudes as revealed from our data is found to be consistent with the solar differential rotation curve. We also study the periodicities in the active longitudes and found two dominant periods of $\\approx$1.3 years and $\\approx$2.2 years. These periods, also found in other solar proxies, indicate their relation with the global solar dynamo mechanism.

  5. Indonesia Stratosphere and Troposphere Response to Solar Activity Variations

    Science.gov (United States)

    Sinambela, Wilson; Muh, La Ode; Musafar, K.; Sutastio, Heri

    2000-10-01

    Tropospheric and stratospheric response of Indonesia to the solar activity was analyzed based on the stratospheric total ozone concentrations above Watukosek station (07,6 deg S, 112,5 deg E) from 1979 to 1992, and tropospheric temperature at tropopause geopotential height, 500 mBar, 700 mbar above Cengkareng - Jakarta station (06 deg) 07 min 37 sec S, 106 deg 39 min 28 sec E) from 1986 to 1992, and ground surface air temperature above Polonia Median (03 deg 34 sec N, 98 deg 41 min E) and Kemayoran - Jakarta station (06 deg 09 min S 106 deg 51 min E) from 1979 - 1989. By using the moving average analysis of monthly average this tropospheric and stratospheric variable, were found that the behavior of the time series of the stratospheric ozone concentration, tropospheric temperature at geopotential height tropopause, 500 mBar, 700 mBar and ground surface air temperature above Indonesia showed a tendency to vary with a period of about 22 - 32 months. This is so - called " Quasi Biennial" (Q B 0). The behavior of the relative sunspot numbers and / or F 10,7 Cm solar radio flux as the measure of the solar activity also showed a tendency to vary Quasi - Biennially with a period about 27 - 30 months which was superimposed to the eleven - year solar cycle variations. The source of the variations was predicted from the inside of the sun, since the experiment showed that the neutrino flux from the sun varies with a period almost equal to the Quasi - Biennial variations of the solar activity. The Quasi - Biennial variations of the solar activity seems produce a similar variations on the earth atmospheric phenomena such as the stratospheric total ozone concentrations, mean tropospheric temperature at geopotential tropopause height, 500 mBar, 700 mBar, and mean ground surface air temperature above Indonesia.

  6. The reconstruction of solar activity in the context of solar dynamo modeling

    Science.gov (United States)

    Sokoloff, D.

    2017-01-01

    We discuss problems of interpretation of sunspot data for use in solar dynamo modelling. The variety of the current sunspot reconstructions of archival data creates substantial difficulties for such an endeavour. We suggest a possible strategy to avoid these problems. The point is that we have to accept the possibility of several solar activity reconstructions that are contradictory in detail, and have to compare several possible reconstructions with dynamo models. The point is that a given reconstruction may not cover all the time interval of interest because this reconstruction requires information unavailable at earlier or later times.

  7. Global Dynamics of Subsurface Solar Active Regions

    CERN Document Server

    Jouve, L; Aulanier, G

    2012-01-01

    We present three-dimensional numerical simulations of a magnetic loop evolving in either a convectively stable or unstable rotating shell. The magnetic loop is introduced in the shell in such a way that it is buoyant only in a certain portion in longitude, thus creating an \\Omega-loop. Due to the action of magnetic buoyancy, the loop rises and develops asymmetries between its leading and following legs, creating emerging bipolar regions whose characteristics are similar to the ones of observed spots at the solar surface. In particular, we self-consistently reproduce the creation of tongues around the spot polarities, which can be strongly affected by convection. We moreover emphasize the presence of ring-shaped magnetic structures around our simulated emerging regions, which we call "magnetic necklace" and which were seen in a number of observations without being reported as of today. We show that those necklaces are markers of vorticity generation at the periphery and below the rising magnetic loop. We also ...

  8. Analysis of Solar Magnetic Activity with the Wavelet Coherence Method

    Science.gov (United States)

    Velasco, V. M.; Perez-Peraza, J. A.; Mendoza, B. E.; Valdes-Galicia, J. F.; Sosa, O.; Alvarez-Madrigal, M.

    2007-05-01

    The origin, behavior and evolution of the solar magnetic field is one of the main challenges of observational and theoretical solar physics. Up to now the Dynamo theory gives us the best approach to the problem. However, it is not yet able to predict many features of the solar activity, which seems not to be strictly a periodical phenomenon. Among the indicators of solar magnetic variability there is the 11-years cycle of sunspots, as well as the solar magnetic cycle of 22 years (the Hale cycle). In order to provide more elements to the Dynamo theory that could help it in the predicting task, we analyze here the plausible existence of other periodicities associated with the solar magnetic field. In this preliminary work we use historical data (sunspots and aurora borealis), proxies (Be10 and C14) and modern instrumental data (Coronal Holes, Cosmic Rays, sunspots, flare indexes and solar radio flux at 10.7 cm). To find relationships between different time-frequency series we have employed the t Wavelet Coherence technique: this technique indicates if two time-series of solar activity have the same periodicities in a given time interval. If so, it determines whether such relation is a linear one or not. Such a powerful tool indicates that, if some periodicity at a given frequency has a confidence level below 95%, it appears very lessened or does not appear in the Wavelet Spectral Analysis, such periodicity does not exist . Our results show that the so called Glaisberg cycle of 80-90 years and the periodicity of 205 years (the Suess cycle) do not exist . It can be speculated that such fictitious periodicities hav been the result of using the Fourier transform with series with are not of stationary nature, as it is the case of the Be10 and C14 series. In contrast we confirm the presence of periodicities of 1.3, 1.7, 3.5, 5.5, 7, 60, 120 and 240 years. The concept of a Glaisberg cycle falls between those of 60 and 120 years. We conclude that the periodicity of 120 years

  9. Intermittency of the Solar Magnetic Field and Solar Magnetic Activity Cycle

    Science.gov (United States)

    Shibalova, A. S.; Obridko, V. N.; Sokoloff, D. D.

    2017-03-01

    Small-scale solar magnetic fields demonstrate features of fractal intermittent behavior, which requires quantification. For this purpose we investigate how the observational estimate of the solar magnetic flux density B depends on resolution D in order to obtain the scaling ln BD = - k ln D +a in a reasonably wide range. The quantity k demonstrates cyclic variations typical of a solar activity cycle. In addition, k depends on the magnetic flux density, i.e. the ratio of the magnetic flux to the area over which the flux is calculated, at a given instant. The quantity a demonstrates some cyclic variation, but it is much weaker than in the case of k. The scaling obtained generalizes previous scalings found for the particular cycle phases. The scaling is typical of fractal structures. In our opinion, the results obtained trace small-scale action in the solar convective zone and its coexistence with the conventional large-scale solar dynamo based on differential rotation and mirror-asymmetric convection.

  10. A Solar Station for Education and Research on Solar Activity at a National University in Peru

    Science.gov (United States)

    Ishitsuka, J. K.

    2006-11-01

    pepe@geo.igp.gob.pe Beginning in 1937, the Carnegie Institution of Washington made active regional observations with a spectro-helioscope at the Huancayo Observatory. In 1957, during the celebration of the International Geophysical Year Mutsumi Ishitsuka arrived at the Geophysical Institute of Peru and restarted solar observations from the Huancayo Observatory. Almost 69 years have passed and many contributions for the geophysical and solar sciences have been made. Now the Instituto Geofisico del Peru (IGP), in cooperation with the Faculty of Sciences of the Universidad Nacional San Luis Gonzaga de Ica (UNICA), and with the support of the National Astronomical Observatory of Japan, are planning to construct a solar station refurbishing a coelostat that worked for many years at the Huancayo Observatory. A 15 cm refractor telescope is already installed at the university, for the observation of sunspots. A solar Flare Monitor Telescope (FMT) from Hida Observatory of Kyoto University could be sent to Peru and installed at the solar station at UNICA. As the refurbished coelostat, FMT will become a good tool to improve education and research in sciences.

  11. An astro-comb calibrated solar telescope to study solar activity and search for the radial velocity signature of Venus

    Science.gov (United States)

    Phillips, David; HARPS-N Collaboration

    2017-01-01

    We recently demonstrated sub-m/s sensitivity in measuring the radial velocity (RV) between the Earth and Sun using a simple solar telescope feeding the HARPS-N spectrograph at the Italian National Telescope, which is calibrated with a laser frequency comb calibrator optimized for calibrating high resolution spectrographs and referred to as an astro-comb. We are using the solar telescope to characterize the effects of stellar (solar) RV jitter due to activity on the solar surface over the course of many hours every clear day. With the help of solar satellites such as the Solar Dynamics Observatory (SDO), we are characterizing the correlation between observed RV and detailed imaging of the solar photosphere. We plan to use these tools to mitigate the effects of stellar jitter with the goal of the detection of Venus from its solar RV signature, thus showing the potential of the RV technique to detect true Earth-twins.

  12. Connection between solar activity cycles and grand minima generation

    Science.gov (United States)

    Vecchio, A.; Lepreti, F.; Laurenza, M.; Alberti, T.; Carbone, V.

    2017-03-01

    Aims: The revised dataset of sunspot and group numbers (released by WDC-SILSO) and the sunspot number reconstruction based on dendrochronologically dated radiocarbon concentrations have been analyzed to provide a deeper characterization of the solar activity main periodicities and to investigate the role of the Gleissberg and Suess cycles in the grand minima occurrence. Methods: Empirical mode decomposition (EMD) has been used to isolate the time behavior of the different solar activity periodicities. A general consistency among the results from all the analyzed datasets verifies the reliability of the EMD approach. Results: The analysis on the revised sunspot data indicates that the highest energy content is associated with the Schwabe cycle. In correspondence with the grand minima (Maunder and Dalton), the frequency of this cycle changes to longer timescales of 14 yr. The Gleissberg and Suess cycles, with timescales of 60-120 yr and 200-300 yr, respectively, represent the most energetic contribution to sunspot number reconstruction records and are both found to be characterized by multiple scales of oscillation. The grand minima generation and the origin of the two expected distinct types of grand minima, Maunder and longer Spörer-like, are naturally explained through the EMD approach. We found that the grand minima sequence is produced by the coupling between Gleissberg and Suess cycles, the latter being responsible for the most intense and longest Spörer-like minima (with typical duration longer than 80 yr). Finally, we identified a non-solar component, characterized by a very long scale oscillation of 7000 yr, and the Hallstatt cycle ( 2000 yr), likely due to the solar activity. Conclusions: These results provide new observational constraints on the properties of the solar cycle periodicities, the grand minima generation, and thus the long-term behavior of the solar dynamo.

  13. Migration and Extension of Solar Active Longitudinal Zones

    CERN Document Server

    Gyenge, N; Ludmány, A

    2014-01-01

    Solar active longitudes show a characteristic migration pattern in the Carrington coordinate system when they can be identified at all. By following this migration, the longitudinal activity distribution around the center of the band can be determined. The halfwidth of the distribution is found to be varying in Cycles 21 - 23, and in some time intervals it was as narrow as 20 - 30 degrees. It was more extended around maximum but it was also narrow when the activity jumped to the opposite longitude. Flux emergence exhibited a quasi-periodic variation within the active zone with a period of about 1.3 years. The path of the active longitude migration does not support the view that it might be associated with the 11-year solar cycle. These results were obtained for a limited time interval of a few solar cycles and, bearing in mind uncertainties of the migration path definition, are only indicative. For the major fraction of dataset no systematic active longitudes were found. Sporadic migration of active longitude...

  14. Migration and Extension of Solar Active Longitudinal Zones

    Science.gov (United States)

    Gyenge, N.; Baranyi, T.; Ludmány, A.

    2014-02-01

    Solar active longitudes show a characteristic migration pattern in the Carrington coordinate system if they can be identified at all. By following this migration, the longitudinal activity distribution around the center of the band can be determined. The half-width of the distribution is found to be varying in Cycles 21 - 23, and in some time intervals it was as narrow as 20 - 30 degrees. It was more extended around a maximum but it was also narrow when the activity jumped to the opposite longitude. Flux emergence exhibited a quasi-periodic variation within the active zone with a period of about 1.3 years. The path of the active-longitude migration does not support the view that it might be associated with the 11-year solar cycle. These results were obtained for a limited time interval of a few solar cycles and, bearing in mind uncertainties of the migration-path definition, are only indicative. For the major fraction of the dataset no systematic active longitudes were found. Sporadic migration of active longitudes was identified only for Cycles 21 - 22 in the northern hemisphere and Cycle 23 in the southern hemisphere.

  15. Periodicities in the north-south asymmetry of solar activity

    Science.gov (United States)

    Vizoso, G.; Ballester, J. L.

    1989-09-01

    A Blackman-Tukey power spectrum is performed on the values of the north-south asymmetry in the sudden disappearance of solar prominences, and the results are reported. The findings confirm the proposed existence of a periodicity of around 11 years and fails to confirm another short periodicity of around 2.3 years. The results of the power spectrum performed using values of the flare number and flare index north-south asymmetry provide a significant peak of 3.1-3.2 years. This short periodicity could be related to those found by Ramanuja Rao (1973) in several indices of solar activity.

  16. Photospheric Magnetic Free Energy Density of Solar Active Regions

    Science.gov (United States)

    Zhang, Hongqi

    2016-12-01

    We present the photospheric energy density of magnetic fields in two solar active regions (one of them recurrent) inferred from observational vector magnetograms, and compare it with other available differently defined energy parameters of magnetic fields in the photosphere. We analyze the magnetic fields in Active Regions NOAA 6580-6619-6659 and 11158. The quantity 1/4π{B}n\\cdot{B}p is an important energy parameter that reflects the contribution of magnetic shear to the difference between the potential (Bp) and the non-potential magnetic field (Bn), and also the contribution to the free magnetic energy near the magnetic neutral lines in the active regions. It is found that the photospheric mean magnetic energy density shows clear changes before the powerful solar flares in Active Region NOAA 11158, which is consistent with the change in magnetic fields in the flaring lower atmosphere.

  17. Photospheric Magnetic Free Energy Density of Solar Active Regions

    CERN Document Server

    Zhang, Hongqi

    2016-01-01

    We present the photospheric energy density of magnetic fields in two solar active regions inferred from observational vector magnetograms, and compare it with the possible different defined energy parameters of magnetic fields in the photosphere. We analyze the magnetic fields in active region NOAA 6580-6619-6659 and 11158. It is noticed that the quantity 1/4pi Bn.Bp is an important energy parameter that reflects the contribution of magnetic shear on the difference between the potential magnetic field (Bp) and non-potential one (Bn), and also the contribution to the free magnetic energy near the magnetic neutral lines in the active regions. It is found that the photospheric mean magnetic energy density changes obviously before the powerful solar flares in the active region NOAA 11158, it is consistent with the change of magnetic fields in the lower atmosphere with flares.

  18. Static and Dynamic Modeling of a Solar Active Region

    Science.gov (United States)

    Warren, Harry P.; Winebarger, Amy R.

    2007-09-01

    Recent hydrostatic simulations of solar active regions have shown that it is possible to reproduce both the total intensity and the general morphology of the high-temperature emission observed at soft X-ray wavelengths using static heating models. These static models, however, cannot account for the lower temperature emission. In addition, there is ample observational evidence that the solar corona is highly variable, indicating a significant role for dynamical processes in coronal heating. Because they are computationally demanding, full hydrodynamic simulations of solar active regions have not been considered previously. In this paper we make first application of an impulsive heating model to the simulation of an entire active region, AR 8156 observed on 1998 February 16. We model this region by coupling potential field extrapolations to full solutions of the time-dependent hydrodynamic loop equations. To make the problem more tractable we begin with a static heating model that reproduces the emission observed in four different Yohkoh Soft X-Ray Telescope (SXT) filters and consider impulsive heating scenarios that yield time-averaged SXT intensities that are consistent with the static case. We find that it is possible to reproduce the total observed soft X-ray emission in all of the SXT filters with a dynamical heating model, indicating that nanoflare heating is consistent with the observational properties of the high-temperature solar corona. At EUV wavelengths the simulated emission shows more coronal loops, but the agreement between the simulation and the observation is still not acceptable.

  19. Long-term solar activity influences on South American rivers

    CERN Document Server

    Mauas, Pablo; Flamenco, Eduardo

    2010-01-01

    River streamflows are excellent climatic indicators since they integrate precipitation over large areas. Here we follow up on our previous study of the influence of solar activity on the flow of the Parana River, in South America. We find that the unusual minimum of solar activity in recent years have a correlation on very low levels in the Parana's flow, and we report historical evidence of low water levels during the Little Ice Age. We also study data for the streamflow of three other rivers (Colorado, San Juan and Atuel), and snow levels in the Andes. We obtained that, after eliminating the secular trends and smoothing out the solar cycle, there is a strong positive correlation between the residuals of both the Sunspot Number and the streamflows, as we obtained for the Parana. Both results put together imply that higher solar activity corresponds to larger precipitation, both in summer and in wintertime, not only in the large basin of the Parana, but also in the Andean region north of the limit with Patago...

  20. Background magnetic fields during last three cycles of solar activity

    Science.gov (United States)

    Andryeyeva, O. A.; Stepanian, N. N.

    2008-07-01

    This paper describes our studies of evolution of the solar magnetic field with different sign and field strength in the range from -100 G to 100 G. The structure and evolution of large-scale magnetic fields on the Sun during the last 3 cycles of solar activity is investigated using magnetograph data from the Kitt Peak Solar Observatory. This analysis reveals two groups of the large-scale magnetic fields evolving differently during the cycles. The first group is represented by relatively weak background fields, and is best observed in the range of 3-10 Gauss. The second group is represented by stronger fields of 75-100 Gauss. The spatial and temporal properties of these groups are described and compared with the total magnetic flux. It is shown that the anomalous behaviour of the total flux during the last cycle can be found only in the second group

  1. Interplanetary Lyman $\\alpha$ line profiles: variations with solar activity cycle

    CERN Document Server

    Quemerais, E; Bertaux, J L; Koutroumpa, D; Clarke, J; Kyrola, E; Schmidt, W; Qu\\'emerais, Eric; Lallement, Rosine; Bertaux, Jean-Loup; Koutroumpa, Dimitra; Clarke, John; Kyrola, Erkki; Schmidt, Walter

    2006-01-01

    Interplanetary Lyman alpha line profiles are derived from the SWAN H cell data measurements. The measurements cover a 6-year period from solar minimum (1996) to after the solar maximum of 2001. This allows us to study the variations of the line profiles with solar activity. These line profiles were used to derive line shifts and line widths in the interplanetary medium for various angles of the LOS with the interstellar flow direction. The SWAN data results were then compared to an interplanetary background upwind spectrum obtained by STIS/HST in March 2001. We find that the LOS upwind velocity associated with the mean line shift of the IP \\lya line varies from 25.7 km/s to 21.4 km/s from solar minimum to solar maximum. Most of this change is linked with variations in the radiation pressure. LOS kinetic temperatures derived from IP line widths do not vary monotonically with the upwind angle of the LOS. This is not compatible with calculations of IP line profiles based on hot model distributions of interplanet...

  2. Observational Study of Solar Magnetic Active Phenomena

    Indian Academy of Sciences (India)

    Hongqi Zhang

    2006-06-01

    The electric current separated into two parts reflected the quantative properties of heterogeneity and chirality of magnetic field, and defined them as the shear and twist components of current. We analyze the basic configuration and evolution of superactive region NOAA 6580-6619-6659. It is found that the contribution of the twist component of current cannot be reflected in the normal analysis of the magnetic shear and gradient of the active regions. The observational evidence of kink magnetic ropes generated from the subatmosphere cannot be found completely in some super delta active regions.

  3. Adsorption of Procion Red MX 8B using spent tea leaves as adsorbent

    Science.gov (United States)

    Heraldy, Eddy; Osa, Riesta Ramdhaniyati; Suryanti, Venty

    2016-02-01

    The adsorption of Procion Red MX 8B using spent tea leaves (STL) as adsorbent, has been studied by batch adsorption technique. The adsorbent was activated by NaOH 4% for 24 hours for delignification process. The adsorbent was characterized using FTIR to indetify the functional groups of cellulose was shown by uptake -OH, C-H and C-O. The optimum conditions of adsorption experiments were achieved when pH was set as 6 with contact time of 75 minutes and capacity of adsorption was 3.28 mg/g. The equilibrium data were fitted to Langmuir and Isotherm Freundlichs. The kinetic models, pseudo first order and pseudo second order were employed to describe the adsorption mechanism. The experimental results showed that the pseudo second order equation was the best model that described the adsorption behavior with the coefficient of correlation (R2) was equal higher than 0.99 The results suggested that STL had high potential to be used as effective adsorbent for Procion Red MX 8B removal.

  4. Accumulation in Dasuopu ice core in Qinghai-Tibet Plateau and solar activity

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The time series of accumulation in recent 300 years correlated well with solar activity in Dasuopu ice core. Results of spectrum analysis on the accumulation time series of the Dasuopu ice core shows that there are some periods that coincide with the periods of solar activity. By comparing the long-time change trend of the accumulation in the Dasuopu ice core with various kinds of indexes of solar activity intensity, a negative correlation is found between the trend and solar activity.

  5. Measurement of the $^{7}$Be$(p,\\gamma)^{8}$B Cross-Section with an Implanted Target

    CERN Multimedia

    2002-01-01

    % IS366\\\\ \\\\ The $^7$Be(p,$\\gamma)^8$B capture reaction is of major importance to the physics of the sun and the issues of the ``solar neutrino puzzle'' and neutrino masses. We report here on a new determination of the absolute cross section of this reaction, using a novel method which overcomes some of the major experimental uncertainties of previous measurements. We utilize an implanted $^7$Be target and a uniformly scanned particle beam larger than the target spot, eliminating issues of target homogeneity and backscattering loss of $^8$B reaction products. The target was produced using a beam of 1.8 10$^{10}$/s $^7$Be nuclei extracted at ISOLDE(CERN) from a graphite target bombarded by 1 GeV protons in a two-step resonant laser ionization source. The $^7$Be nuclei were directly implanted into a copper substrate to obtain a target of 2 mm diameter with a total of 3.10$^{15}$ atoms. The measurement of the $^8$B production cross section was carried out at the Van de Graaff laboratory of the Weizmann Institute...

  6. Density and Temperature Measurements in a Solar Active Region

    Science.gov (United States)

    Warren, Harry P.; Winebarger, Amy R.

    2003-10-01

    We present electron density and temperature measurements from an active region observed above the limb with the Solar Ultraviolet Measurements of Emitted Radiation spectrometer on the Solar and Heliospheric Observatory. Density-sensitive line ratios from Si VIII and S X indicate densities greater than 108 cm-3 as high as 200" (or 145 Mm) above the limb. At these heights, static, uniformly heated loop models predict densities close to 107 cm-3. Differential emission measure analysis shows that the observed plasma is nearly isothermal with a mean temperature of about 1.5 MK and a dispersion of about 0.2 MK. Both the differential emission measure and the Si XI/Si VIII line ratios indicate only small variations in the temperature at the heights observed. These measurements confirm recent observations from the Transition Region and Coronal Explorer of ``overdense'' plasma at temperatures near 1 MK in solar active regions. Time-dependent hydrodynamic simulations suggest that impulsive heating models can account for the large densities, but they have a difficult time reproducing the narrow range of observed temperatures. The observations of overdense, nearly isothermal plasma in the solar corona provide a significant challenge to theories of coronal heating.

  7. Long-term persistence of solar activity. [Abstract only

    Science.gov (United States)

    Ruzmaikin, Alexander; Feynman, Joan; Robinson, Paul

    1994-01-01

    The solar irradiance has been found to change by 0.1% over the recent solar cycle. A change of irradiance of about 0.5% is required to effect the Earth's climate. How frequently can a variation of this size be expected? We examine the question of the persistence of non-periodic variations in solar activity. The Huerst exponent, which characterizes the persistence of a time series (Mandelbrot and Wallis, 1969), is evaluated for the series of C-14 data for the time interval from about 6000 BC to 1950 AD (Stuiver and Pearson, 1986). We find a constant Huerst exponent, suggesting that solar activity in the frequency range of from 100 to 3000 years includes an important continuum component in addition to the well-known periodic variations. The value we calculate, H approximately equal to 0.8, is significantly larger than the value of 0.5 that would correspond to variations produced by a white-noise process. This value is in good agreement with the results for the monthly sunspot data reported elsewhere, indicating that the physics that produces the continuum is a correlated random process (Ruzmaikin et al., 1992), and that is is the same type of process over a wide range of time interval lengths. We conclude that the time period over which an irradiance change of 0.5% can be expected to occur is significantly shorter than that which would be expected for variations produced by a white-noise process.

  8. Solar activity impact on the Earth’s upper atmosphere

    Directory of Open Access Journals (Sweden)

    Parisi Mario

    2013-02-01

    Full Text Available The paper describes results of the studies devoted to the solar activity impact on the Earth’s upper atmosphere and ionosphere, conducted within the frame of COST ES0803 Action. Aim: The aim of the paper is to represent results coming from different research groups in a unified form, aligning their specific topics into the general context of the subject. Methods: The methods used in the paper are based on data-driven analysis. Specific databases are used for spectrum analysis, empirical modeling, electron density profile reconstruction, and forecasting techniques. Results: Results are grouped in three sections: Medium- and long-term ionospheric response to the changes in solar and geomagnetic activity, storm-time ionospheric response to the solar and geomagnetic forcing, and modeling and forecasting techniques. Section 1 contains five subsections with results on 27-day response of low-latitude ionosphere to solar extreme-ultraviolet (EUV radiation, response to the recurrent geomagnetic storms, long-term trends in the upper atmosphere, latitudinal dependence of total electron content on EUV changes, and statistical analysis of ionospheric behavior during prolonged period of solar activity. Section 2 contains a study of ionospheric variations induced by recurrent CIR-driven storm, a case-study of polar cap absorption due to an intense CME, and a statistical study of geographic distribution of so-called E-layer dominated ionosphere. Section 3 comprises empirical models for describing and forecasting TEC, the F-layer critical frequency foF2, and the height of maximum plasma density. A study evaluates the usefulness of effective sunspot number in specifying the ionosphere state. An original method is presented, which retrieves the basic thermospheric parameters from ionospheric sounding data.

  9. How Large Scale Flows in the Solar Convection Zone may Influence Solar Activity

    Science.gov (United States)

    Hathaway, D. H.

    2004-01-01

    Large scale flows within the solar convection zone are the primary drivers of the Sun s magnetic activity cycle. Differential rotation can amplify the magnetic field and convert poloidal fields into toroidal fields. Poleward meridional flow near the surface can carry magnetic flux that reverses the magnetic poles and can convert toroidal fields into poloidal fields. The deeper, equatorward meridional flow can carry magnetic flux toward the equator where it can reconnect with oppositely directed fields in the other hemisphere. These axisymmetric flows are themselves driven by large scale convective motions. The effects of the Sun s rotation on convection produce velocity correlations that can maintain the differential rotation and meridional circulation. These convective motions can influence solar activity themselves by shaping the large-scale magnetic field pattern. While considerable theoretical advances have been made toward understanding these large scale flows, outstanding problems in matching theory to observations still remain.

  10. Infrared Photometry of Solar Active Regions

    Indian Academy of Sciences (India)

    Μ. Sobotka; Μ. V'azquez; Μ. S'anchez Cuberes; J. A. Bonet; A. Hanslmeier

    2000-09-01

    Simultaneous time series of broad-band images of two active regions close to the disk center were acquired at the maximum (0.80 m) and minimum (1.55 m) continuum opacities. Dark faculae are detected in images obtained as weighted intensity differences between both wave-length bands. The elements of quiet regions can be clearly distinguished from those of faculae and pores in scatter plots of brightness temperatures. There is a smooth transition between faculae and pores in the scatter plots. These facts are interpreted in terms of the balance between the inhibition of convective energy transport and the lateral radiative heating.

  11. Solar optics-based active panel for solar energy storage and disinfection of greywater.

    Science.gov (United States)

    Lee, W; Song, J; Son, J H; Gutierrez, M P; Kang, T; Kim, D; Lee, L P

    2016-09-01

    Smart city and innovative building strategies are becoming increasingly more necessary because advancing a sustainable building system is regarded as a promising solution to overcome the depleting water and energy. However, current sustainable building systems mainly focus on energy saving and miss a holistic integration of water regeneration and energy generation. Here, we present a theoretical study of a solar optics-based active panel (SOAP) that enables both solar energy storage and photothermal disinfection of greywater simultaneously. Solar collector efficiency of energy storage and disinfection rate of greywater have been investigated. Due to the light focusing by microlens, the solar collector efficiency is enhanced from 25% to 65%, compared to that without the microlens. The simulation of greywater sterilization shows that 100% disinfection can be accomplished by our SOAP for different types of bacteria including Escherichia coli. Numerical simulation reveals that our SOAP as a lab-on-a-wall system can resolve the water and energy problem in future sustainable building systems.

  12. A Statistical Analysis of Solar Surface Indices Through the Solar Activity Cycles 21-23

    CERN Document Server

    Goker, Umit Deniz; Nutku, Ferhat; Priyal, Muthu

    2016-01-01

    Variations of total solar irradiance (TSI), magnetic field, Ca II K-flux, faculae and plage areas due to the number and the type of sunspots/sunspot groups (SGs) are well established by using ground based data from various centers such as Solar Irradiance Platform, Stanford Data (SFO), Kodaikanal data (KKL) and National Geographical Data Center (NGDC) Homepage, respectively. We applied time series analysis for extracting the data over the descending phases of solar activity cycles (SACs) 21, 22 and 23, and the ascending phases 22 and 23 of SACs, and analyzed the selected data using the Python programming language. Our detailed analysis results suggest that there is a stronger correlation between solar surface indices and the changes in the relative portion of the small and large SGs. This somewhat unexpected finding suggest that plage regions decreased in a lower values in spite of the higher number of large SGs in SAC 23 while Ca II K-flux did not decrease by large amount or it was comparable with SAC 22 for...

  13. Online educative activities for solar ultraviolet radiation based on measurements of cloud amount and solar exposures.

    Science.gov (United States)

    Parisi, A V; Downs, N; Turner, J; Amar, A

    2016-09-01

    A set of online activities for children and the community that are based on an integrated real-time solar UV and cloud measurement system are described. These activities use the functionality of the internet to provide an educative tool for school children and the public on the influence of cloud and the angle of the sun above the horizon on the global erythemal UV or sunburning UV, the diffuse erythemal UV, the global UVA (320-400nm) and the vitamin D effective UV. Additionally, the units of UV exposure and UV irradiance are investigated, along with the meaning and calculation of the UV index (UVI). This research will help ensure that children and the general public are better informed about sun safety by improving their personal understanding of the daily and the atmospheric factors that influence solar UV radiation and the solar UV exposures of the various wavebands in the natural environment. The activities may correct common misconceptions of children and the public about UV irradiances and exposure, utilising the widespread reach of the internet to increase the public's awareness of the factors influencing UV irradiances and exposures in order to provide clear information for minimizing UV exposure, while maintaining healthy, outdoor lifestyles.

  14. Prediction of solar activity from solar background magnetic field variations in cycles 21-23

    Energy Technology Data Exchange (ETDEWEB)

    Shepherd, Simon J. [School of Engineering, University of Bradford, Bradford, BD7 1DP (United Kingdom); Zharkov, Sergei I. [Department of Physics and Mathematics, University of Hull, Kingston upon Tyne, HU6 7RS (United Kingdom); Zharkova, Valentina V., E-mail: s.j.shepherd@brad.ac.uk, E-mail: s.zharkov@hull.ac.uk, E-mail: valentina.zharkova@northumbria.ac.uk [Department of Mathematics and Information Systems, University of Northumbria, Newcastle upon Tyne, NE2 8ST (United Kingdom)

    2014-11-01

    A comprehensive spectral analysis of both the solar background magnetic field (SBMF) in cycles 21-23 and the sunspot magnetic field in cycle 23 reported in our recent paper showed the presence of two principal components (PCs) of SBMF having opposite polarity, e.g., originating in the northern and southern hemispheres, respectively. Over a duration of one solar cycle, both waves are found to travel with an increasing phase shift toward the northern hemisphere in odd cycles 21 and 23 and to the southern hemisphere in even cycle 22. These waves were linked to solar dynamo waves assumed to form in different layers of the solar interior. In this paper, for the first time, the PCs of SBMF in cycles 21-23 are analyzed with the symbolic regression technique using Hamiltonian principles, allowing us to uncover the underlying mathematical laws governing these complex waves in the SBMF presented by PCs and to extrapolate these PCs to cycles 24-26. The PCs predicted for cycle 24 very closely fit (with an accuracy better than 98%) the PCs derived from the SBMF observations in this cycle. This approach also predicts a strong reduction of the SBMF in cycles 25 and 26 and, thus, a reduction of the resulting solar activity. This decrease is accompanied by an increasing phase shift between the two predicted PCs (magnetic waves) in cycle 25 leading to their full separation into the opposite hemispheres in cycle 26. The variations of the modulus summary of the two PCs in SBMF reveals a remarkable resemblance to the average number of sunspots in cycles 21-24 and to predictions of reduced sunspot numbers compared to cycle 24: 80% in cycle 25 and 40% in cycle 26.

  15. A Functional Link between AMPK and Orexin Mediates the Effect of BMP8B on Energy Balance

    Directory of Open Access Journals (Sweden)

    Luís Martins

    2016-08-01

    Full Text Available AMP-activated protein kinase (AMPK in the ventromedial nucleus of the hypothalamus (VMH and orexin (OX in the lateral hypothalamic area (LHA modulate brown adipose tissue (BAT thermogenesis. However, whether these two molecular mechanisms act jointly or independently is unclear. Here, we show that the thermogenic effect of bone morphogenetic protein 8B (BMP8B is mediated by the inhibition of AMPK in the VMH and the subsequent increase in OX signaling via the OX receptor 1 (OX1R. Accordingly, the thermogenic effect of BMP8B is totally absent in ox-null mice. BMP8B also induces browning of white adipose tissue (WAT, its thermogenic effect is sexually dimorphic (only observed in females, and its impact on OX expression and thermogenesis is abolished by the knockdown of glutamate vesicular transporter 2 (VGLUT2, implicating glutamatergic signaling. Overall, our data uncover a central network controlling energy homeostasis that may be of considerable relevance for obesity and metabolic disorders.

  16. Magnetic observations during the recent declining phase of solar activity

    Science.gov (United States)

    Smith, E. J.

    Changes in the heliospheric magnetic field during the recent declining phase in solar activity are reviewed and compared with observations during past sunspot cycles. The study is based principally on data obtained by IMP-8 and Ulysses. The field magnitude is found to have increased during the declining phase until it reached a maximum value of 11.5nT in approximately 1991.5, approximately two years after sunspot maximum. The field of the sun's south pole became negative after a reversal in early 1990. The sector structure disappeared at Ulysses in April 1993 when the latitude of the spacecraft was -30 deg revealing a low inclination of the heliospheric current sheet. A large outburst of solar activity in March 1991 caused four Coronal Mass Ejections (CMEs) and numerious shocks at the location of Ulysses. Following a delay of more than a year, a series of recurrent high speed streams and Corotating Interaction Regions commenced in July 1992 which were observed by IMP-8, Ulysses and Voyager 2. In all these respects, the behavior of the magnetic field mimics that seen in the two earlier sunspot cycles. The comprehensive data set suggests a correlation between the absolute value of B and sunspot number. The major solar cycle variations in the radial component (and magnitude) of the field have been successfully reproduced by a recent model consisting of a tilted solar dipole, whose strength and tilt undergo characteristic changes over the sunspot cycle, and the heliospheric current sheet. The large outbursts of activity in mid-1972, mid-1982 and the first quarter of 1991 may represent a characteristic last 'gasp' of solar activity before the sun evolves to a different state. The recurrent high speed streams in 1973, 1984 and 1992 accompany the developemnt of large asymetrical polar coronal holes and the growth in intensity of the polar cap fields. After they endure for about one year, the polar coronal holes recede and the high speed streams are replaced by weaker

  17. Solar activity: nowcasting and forecasting at the SIDC

    Directory of Open Access Journals (Sweden)

    D. Berghmans

    2005-11-01

    Full Text Available The Solar Influences Data analysis Center (SIDC is the World Data Center for the production and the distribution of the International Sunspot Index, coordinating a network of about 80 stations worldwide. From this core activity, the SIDC has grown in recent years to a European center for nowcasting and forecasting of solar activity on all timescales. This paper reviews the services (data, forecasts, alerts, software that the SIDC currently offers to the scientific community. The SIDC operates instruments both on the ground and in space. The USET telescope in Brussels produces daily white light and Hα images. Several members of the SIDC are co-investigators of the EIT instrument onboard SOHO and are involved in the development of the next generation of Europe's solar weather monitoring capabilities. While the SIDC is staffed only during day-time (7 days/week, the monitoring service is a 24 h activity thanks to the implementation of autonomous software for data handling and analysis and the sending of automated alerts. We will give an overview of recently developed techniques for visualization and automated analysis of solar images and detection of events significant for space weather (e.g. CMEs or EIT waves. As part of the involvement of the SIDC in the ESA Pilot Project for Space Weather Applications we have developed services dedicated to the users of the Global Positioning System (GPS. As a Regional Warning Center (RWC of the International Space Environment Service (ISES, the SIDC produces daily forecasts of flaring probability, geomagnetic activity and 10.7 cm radio flux. The accuracy of these forecasts will be investigated through an in-depth quality analysis.

  18. Forecasting the Peak of the Present Solar Activity Cycle

    Science.gov (United States)

    Hamid, Rabab; Marzouk, Beshir

    2016-07-01

    Solar forecasting of the level of sun Activity is very important subject for all space programs. Most predictions are based on the physical conditions prevailing at or before the solar cycle minimum preceding the maximum in question. Our aim is to predict the maximum peak of cycle 24 using precursor techniques in particular those using spotless event, geomagnetic aa min. index and solar flux F10.7. Also prediction of exact date of the maximum (Tr) is taken in consideration. A study of variation over previous spotless event for cycles 7-23 and that for even cycles (8-22) are carried out for the prediction. Linear correlation between RM and spotless event around the preceding minimum gives RM24t = 101.9with rise time Tr = 4.5 Y. For the even cycles RM24e = 108.3 with rise time Tr = 3.9 Y. Based on the average aa min. index for the year of sunspot minimum cycles (13 - 23), we estimate the expected amplitude for cycle 24 to be RMaa = 116.5 for both the total and even cycles. Application of the data of solar flux F10.7 which cover only cycles (19-23) was taken in consideration and gives predicted maximum amplitude R24 10.7 = 146, which are over estimation. Our result indicating a somewhat weaker cycle 24 as compared to cycles 21-23.

  19. Simultaneous Solar Maximum Mission (SMM) and Very Large Array (VLA) observations of solar active regions

    Science.gov (United States)

    Willson, Robert F.

    1991-01-01

    Very Large Array observations at 20 cm wavelength can detect the hot coronal plasma previously observed at soft x ray wavelengths. Thermal cyclotron line emission was detected at the apex of coronal loops where the magnetic field strength is relatively constant. Detailed comparison of simultaneous Solar Maximum Mission (SMM) Satellite and VLA data indicate that physical parameters such as electron temperature, electron density, and magnetic field strength can be obtained, but that some coronal loops remain invisible in either spectral domain. The unprecedent spatial resolution of the VLA at 20 cm wavelength showed that the precursor, impulsive, and post-flare components of solar bursts originate in nearby, but separate loops or systems of loops.. In some cases preburst heating and magnetic changes are observed from loops tens of minutes prior to the impulsive phase. Comparisons with soft x ray images and spectra and with hard x ray data specify the magnetic field strength and emission mechanism of flaring coronal loops. At the longer 91 cm wavelength, the VLA detected extensive emission interpreted as a hot 10(exp 5) K interface between cool, dense H alpha filaments and the surrounding hotter, rarefield corona. Observations at 91 cm also provide evidence for time-correlated bursts in active regions on opposite sides of the solar equator; they are attributed to flare triggering by relativistic particles that move along large-scale, otherwise-invisible, magnetic conduits that link active regions in opposite hemispheres of the Sun.

  20. Active other worlds in the Solar System and beyond

    Science.gov (United States)

    Forget, François

    2016-04-01

    Over the past decades, space exploration has moved planetology from the field of astronomy to the disciplines of geosciences. A fleet of spacecrafts have discovered and study tens of worlds in our solar system and beyond. Everywhere, we have been surprised by the diversity and the vigour of the geophysical activity, from volcanic eruptions to plasma waves... Every scientists present at EGU could -and should- be interested in the extraterrestrial processes that are discovered and analyzed elsewhere. In our solar system, a variety of clouds and fluid dynamical phenomena can be studied in six terrestrial atmospheres and on four giant planets. Active glaciers are found on Mars and Pluto. Rivers and lakes have sculpted the surface of Titan and Mars. Sometime, we can even study geophysical activity with no equivalent on our planet: ice caps made of frozen atmosphere that erupt in geysers, hazes formed by organic polymers which can completely shroud a moon, etc. We study these active worlds because we are curious and wish to understand our universe and our origins. However, more than ever, two specific motivations drive solar system geosciences in 2016: Firstly, as we become more and more familiar with the other worlds around us, we can use them to better understand our own planet. Throughout the solar system, we can access to data that are simply not available on the Earth, or study active processes that are subtle on Earth but of greater importance elsewhere, so that we can better understand them. Many geophysical concepts and tools developed for the Earth can also be tested on other planets. For instance the numerical Climate Models used to assess Earth's future climate change are applied to other planets. Much is learned from such experiments. Secondly, the time has come to generalize the fundamental lessons that we have learned from the examples in the solar system (including the Earth) to address the countless scientific questions that are -and will be- raised by

  1. Foothills Parkway Section 8B Final Environmental Report, Volume 2, Appendices A-C

    Energy Technology Data Exchange (ETDEWEB)

    Blasing, T.J.; Cada, G.F.; Carer, M.; Chin, S.M.; Dickerman, J.A.; Etnier, D.A.; Gibson, R.; Harvey, M.; Hatcher, B.; Lietzske, D.; Mann, L.K.; Mulholland, P.J.; Petrich, C.H.; Pounds, L.; Ranney, J.; Reed, R.M.; Ryan, P.F.; Schweitzer, M.; Smith, D.; Thomason, P.; Wade, M.C.

    1999-07-01

    In 1994, Oak Ridge National Laboratory (ORNL) was tasked by the National Park Service (NPS) to prepare an Environmental Report (ER) for Section 8B of the Foothills Parkway in the Great Smoky Mountains National Park (GSMNP). Section 8B represents 27.7 km (14.2 miles) of a total of 115 km (72 miles) of the planned Foothills Parkway and would connect the Cosby community on the east to the incorporated town of Pittman Center to the west. The major deliverables for the project are listed. From August 1995 through October 1996, NW, GSMNP, and ORNL staff interacted with Federal Highway Administration staff to develop a conceptual design plan for Section 8B with the intent of protecting critical resources identified during the ER process to the extent possible. In addition, ORNL arranged for bioengineering experts to discuss techniques that might be employed on Section 8B with NPS, GSMNP, and ORNL staff during September 1996. For the purposes of this EN there are two basic alternatives under consideration: (1) a build alternative and (2) a no-build alternative. Within the build alternative are a number of options including constructing Section 8B with no interchanges, constricting Section 8B with an interchange at SR 416 or U.S. 321, constructing Section 8B with a spur road on Webb Mountain, and considering operation of Section 8B both before and after the operation of Section 8C. The no-build alternative is considered the no-action alternative and is not to construct Section 8B. This volume of the ER, which consists of Appendices A, B, and C, assesses the potential geologic impacts of the proposed Section 8B construction, presents the results of the Section 8B soil survey, and describes the water quality studies and analyses performed for the ER. The following summary sections provide information for geology, soils, and water quality.

  2. Global gene profiling of aging lungs in Atp8b1 mutant mice

    Science.gov (United States)

    Soundararajan, Ramani; Stearns, Timothy M.; Czachor, Alexander; Fukumoto, Jutaro; Turn, Christina; Westermann-Clark, Emma; Breitzig, Mason; Tan, Lee; Lockey, Richard F.; King, Benjamin L.; Kolliputi, Narasaiah

    2016-01-01

    Objective Recent studies implicate cardiolipin oxidation in several age-related diseases. Atp8b1 encoding Type 4 P-type ATPases is a cardiolipin transporter. Mutation in Atp8b1 gene or inflammation of the lungs impairs the capacity of Atp8b1 to clear cardiolipin from lung fluid. However, the link between Atp8b1 mutation and age-related gene alteration is unknown. Therefore, we investigated how Atp8b1 mutation alters age-related genes. Methods We performed Affymetrix gene profiling of lungs isolated from young (7-9 wks, n=6) and aged (14 months, 14 M, n=6) C57BL/6 and Atp8b1 mutant mice. In addition, Ingenuity Pathway Analysis (IPA) was performed. Differentially expressed genes were validated by quantitative real-time PCR (qRT-PCR). Results Global transcriptome analysis revealed 532 differentially expressed genes in Atp8b1 lungs, 157 differentially expressed genes in C57BL/6 lungs, and 37 overlapping genes. IPA of age-related genes in Atp8b1 lungs showed enrichment of Xenobiotic metabolism and Nrf2-mediated signaling pathways. The increase in Adamts2 and Mmp13 transcripts in aged Atp8b1 lungs was validated by qRT-PCR. Similarly, the decrease in Col1a1 and increase in Cxcr6 transcripts was confirmed in both Atp8b1 mutant and C57BL/6 lungs. Conclusion Based on transcriptome profiling, our study indicates that Atp8b1 mutant mice may be susceptible to age-related lung diseases. PMID:27689529

  3. Strain background modifies phenotypes in the ATP8B1-deficient mouse.

    Directory of Open Access Journals (Sweden)

    Sohela Shah

    Full Text Available BACKGROUND: Mutations in ATP8B1 (FIC1 underlie cases of cholestatic disease, ranging from chronic and progressive (progressive familial intrahepatic cholestasis to intermittent (benign recurrent intrahepatic cholestasis. The ATP8B1-deficient mouse serves as an animal model of human ATP8B1 deficiency. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the effect of genetic background on phenotypes of ATP8B1-deficient and wild-type mice, using C57Bl/6 (B6, 129, and (B6-129 F1 strain backgrounds. B6 background resulted in greater abnormalities in ATP8B1-deficient mice than did 129 and/or F1 background. ATP8B1-deficient pups of B6 background gained less weight. In adult ATP8B1-deficient mice at baseline, those of B6 background had lower serum cholesterol levels, higher serum alkaline phosphatase levels, and larger livers. After challenge with cholate-supplemented diet, these mice exhibited higher serum alkaline phosphatase and bilirubin levels, greater weight loss and larger livers. ATP8B1-deficient phenotypes in mice of F1 and 129 backgrounds are usually similar, suggesting that susceptibility to manifestations of ATP8B1 deficiency may be recessive. We also detected differences in hepatobiliary phenotypes between wild-type mice of differing strains. CONCLUSIONS/SIGNIFICANCE: Our results indicate that the ATP8B1-deficient mouse in a B6 background may be a better model of human ATP8B1 deficiency and highlight the importance of informed background strain selection for mouse models of liver disease.

  4. On the possible relations between solar activities and global seismicity in the solar cycle 20 to 23

    Energy Technology Data Exchange (ETDEWEB)

    Herdiwijaya, Dhani, E-mail: dhani@as.itb.ac.id [Astronomy Research Division and Bosscha Observatory, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Ganesha 10, Bandung, Indonesia 40132 (Indonesia); Arif, Johan [Geology Research Division, Faculty of Earth Sciences and Technology, Bandung Institute of Technology, Ganesha 10, Bandung, Indonesia 40132 (Indonesia); Nurzaman, Muhamad Zamzam; Astuti, Isna Kusuma Dewi [Astronomy Study Program, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Ganesha 10, Bandung, Indonesia 40132 (Indonesia)

    2015-09-30

    Solar activities consist of high energetic particle streams, electromagnetic radiation, magnetic and orbital gravitational forces. The well-know solar activity main indicator is the existence of sunspot which has mean variation in 11 years, named by solar cycle, allow for the above fluctuations. Solar activities are also related to the space weather affecting all planetary atmospheric variability, moreover to the Earth’s climate variability. Large extreme space and geophysical events (high magnitude earthquakes, explosive volcanic eruptions, magnetic storms, etc.) are hazards for humankind, infrastructure, economies, technology and the activities of civilization. With a growing world population, and with modern reliance on delicate technological systems, human society is becoming increasingly vulnerable to natural hazardous events. The big question arises to the relation between solar forcing energy to the Earth’s global seismic activities. Estimates are needed for the long term occurrence-rate probabilities of these extreme natural hazardous events. We studied connectivity from yearly seismic activities that refer to and sunspot number within the solar cycle 20 to 23 of year 1960 to 2013 (53 years). We found clear evidences that in general high magnitude earthquake events and their depth were related to the low solar activity.

  5. Solar active envelope module with an adjustable transmittance/absorptance

    Directory of Open Access Journals (Sweden)

    C. Villasante Villasante

    2015-06-01

    Full Text Available A solar active envelope module with a high flexibility degree is proposed in this paper. The transparent module controls the day-lighting of the room, improving the indoor environment, while absorbing the superfluous solar energy inside. That energy is used to increase the efficiency of heating, ventilation, and the air-conditioning (HVAC system of the building. This is carried out through a fine control of the absorptance of the envelope module. The active envelope module consists of three glazed chambers with advanced coatings and frames to assure a minimum thermal transmittance while allowing transparency. A fluid containing heat-absorbing nanoparticles flows inside the central chamber and is heated up due to the impinging solar energy. Unlike other systems proposed in the past, which included transparency control systems based on complex filters and chemical processes, the absorption of the module is controlled by the variation of the thickness of the central chamber with a mechanical device. That is, varying the thickness of the central chamber, it allows controlling the absorptance of the whole system and, as a result, indoor day-lighting and thermal loads. Therefore, a new system is proposed that enables to:  

  6. Screening a phage display library for a novel FGF8b-binding peptide with anti-tumor effect on prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wenhui; Chen, Xilei; Li, Tao; Li, Yanmei; Wang, Ruixue; He, Dan; Luo, Wu [Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou 510632 (China); Li, Xiaokun [Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou 510632 (China); School of Pharmaceutical Science, Wenzhou Medical College, Wenzhou 325035 (China); Wu, Xiaoping, E-mail: twxp@jnu.edu.cn [Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou 510632 (China); School of Pharmaceutical Science, Wenzhou Medical College, Wenzhou 325035 (China)

    2013-05-01

    Fibroblast growth factor 8b (FGF8b) is the major isoform of FGF8 expressed in prostate cancer and it correlates with the stage and grade of the disease. FGF8b has been considered as a potential target for prostate cancer therapy. Here we isolated 12 specific FGF8b-binding phage clones by screening a phage display heptapeptide library with FGF8b. The peptide (HSQAAVP, named as P12) corresponding to one of these clones showed high homology to the immunoglobulin-like (Ig-like) domain II(D2) of high-affinity FGF8b receptor (FGFR3c), contained 3 identical amino acids (AVP) to the authentic FGFR3 D2 sequence aa 163–169 (LLAVPAA) directly participating in ligand binding, carried the same charges as its corresponding motif (aa163–169) in FGFR3c, suggesting that P12 may have a greater potential to interrupt FGF8b binding to its receptors than other identified heptapeptides do. Functional analysis indicated that synthetic P12 peptides mediate significant inhibition of FGF8b-induced cell proliferation, arrest cell cycle at the G0/G1 phase via suppression of Cyclin D1 and PCNA, and blockade of the activations of Erk1/2 and Akt cascades in both prostate cancer cells and vascular endothelial cells. The results demonstrated that the P12 peptide acting as an FGF8b antagonist may have therapeutic potential in prostate cancer. - Highlights: ► A novel FGF8b-binding peptide P12 was isolated from a phage display library. ► The mechanisms for P12 peptide inhibiting cell proliferation were proposed. ► P12 caused cell cycle arrest at G0/G1 phase via suppression of Cyclin D1 and PCNA. ► P12 suppressed FGF8b-induced activations of Akt and MAP kinases. ► P12 acting as an FGF8b antagonist may have therapeutic potential in prostate cancer.

  7. Activity trends in young solar-type stars

    CERN Document Server

    Lehtinen, Jyri; Hackman, Thomas; Kajatkari, Perttu; Henry, Gregory W

    2015-01-01

    We apply the Continuous Period Search (CPS) time series analysis method on Johnson B and V band photometry of 21 young and active solar-type, collected over 16 to 27 years and characterize the behaviour of their activity. Using the CPS method, differential rotation could be estimated from the observed variations of the photometric rotation period. Active longitudes were retrieved by applying a non-parametric period search on the light curve minimum epochs, and activity cycles by applying a secondary period search on the modelled light curve mean and amplitude values. We supplemented the time series results by calculating new $\\log{R'_{\\rm HK}}$ emission indices for the stars from high resolution spectroscopy. The measurements of the photometric rotation period variations point to a trend of increasing differential rotation coefficients towards longer rotation periods but do not reveal any dependence from the effective temperature of the stars. The secondary period searches revealed activity cycles in 18 of th...

  8. ATP8B1 gene expression is driven by a housekeeping-like promoter independent of bile acids and farnesoid X receptor.

    Directory of Open Access Journals (Sweden)

    Dita Cebecauerová

    Full Text Available BACKGROUND: Mutations in ATP8B1 gene were identified as a cause of low γ-glutamyltranspeptidase cholestasis with variable phenotype, ranging from Progressive Familial Intrahepatic Cholestasis to Benign Recurrent Intrahepatic Cholestasis. However, only the coding region of ATP8B1 has been described. The aim of this research was to explore the regulatory regions, promoter and 5'untranslated region, of the ATP8B1 gene. METHODOLOGY/PRINCIPAL FINDINGS: 5'Rapid Amplification of cDNA Ends using human liver and intestinal tissue was performed to identify the presence of 5' untranslated exons. Expression levels of ATP8B1 transcripts were determined by quantitative reverse-transcription PCR and compared with the non-variable part of ATP8B1. Three putative promoters were examined in vitro using a reporter gene assay and the main promoter was stimulated with chenodeoxycholic acid. Four novel untranslated exons located up to 71 kb upstream of the previously published exon 1 and twelve different splicing variants were found both in the liver and the intestine. Multiple transcription start sites were identified within exon -3 and the proximal promoter upstream of this transcription start site cluster was proven to be an essential regulatory element responsible for 70% of total ATP8B1 transcriptional activity. In vitro analysis demonstrated that the main promoter drives constitutive ATP8B1 gene expression independent of bile acids. CONCLUSIONS/SIGNIFICANCE: The structure of the ATP8B1 gene is complex and the previously published transcription start site is not significant. The basal expression of ATP8B1 is driven by a housekeeping-like promoter located 71 kb upstream of the first protein coding exon.

  9. The Role of Magnetic Reconnection in Solar Activity

    Science.gov (United States)

    Antiochos, Spiro; DeVore, C. R.

    2008-01-01

    The central challenge in solar/heliospheric physics is to understand how the emergence and transport of magnetic flux at the photosphere drives the structure and dynamics that we observe in the corona and heliosphere. This presentation focuses on the role of magnetic reconnection in determining solar/heliospheric activity. We demonstrate that two generic properties of the photospheric magnetic and velocity fields are responsible for the ubiquitous reconnection in the corona. First, the photospheric velocities are complex, which leads to the injection of energy and helicity into the coronal magnetic fields and to the efficient, formation of small-scale structure. Second, the flux distribution at the photosphere is multi-polar, which implies that topological discontinuities and, consequently, current sheets, must be present in the coronal magnetic field. We: present numerical simulations showing that photospherically-driven reconnection is responsible for the heating and dynamics of coronal plasma, and for the topology of the coronal/heliospheric magnetic field.

  10. Non-Stationary Effects and Cross Correlations in Solar Activity

    Science.gov (United States)

    Nefedyev, Yuri; Panischev, Oleg; Demin, Sergey

    2016-07-01

    In this paper within the framework of the Flicker-Noise Spectroscopy (FNS) we consider the dynamic properties of the solar activity by analyzing the Zurich sunspot numbers. As is well-known astrophysics objects are the non-stationary open systems, whose evolution are the quite individual and have the alternation effects. The main difference of FNS compared to other related methods is the separation of the original signal reflecting the dynamics of solar activity into three frequency bands: system-specific "resonances" and their interferential contributions at lower frequencies, chaotic "random walk" ("irregularity-jump") components at larger frequencies, and chaotic "irregularity-spike" (inertial) components in the highest frequency range. Specific parameters corresponding to each of the bands are introduced and calculated. These irregularities as well as specific resonance frequencies are considered as the information carriers on every hierarchical level of the evolution of a complex natural system with intermittent behavior, consecutive alternation of rapid chaotic changes in the values of dynamic variables on small time intervals with small variations of the values on longer time intervals ("laminar" phases). The jump and spike irregularities are described by power spectra and difference moments (transient structural functions) of the second order. FNS allows revealing the most crucial points of the solar activity dynamics by means of "spikiness" factor. It is shown that this variable behaves as the predictor of crucial changes of the sunspot number dynamics, particularly when the number comes up to maximum value. The change of averaging interval allows revealing the non-stationary effects depending by 11-year cycle and by inside processes in a cycle. To consider the cross correlations between the different variables of solar activity we use the Zurich sunspot numbers and the sequence of corona's radiation energy. The FNS-approach allows extracting the

  11. Data of evolutionary structure change: 1TU8B-2AAWC [Confc[Archive

    Lifescience Database Archive (English)

    Full Text Available n>1TU8B SIKSQ---FQFGQ > GGG--- re... C 2AAWC KNFKKEKDTPFEQ ...>HHHHHH > ATOM 2082 CA LYS C 46 3.335 27.932 37.753 1.00 ...bChain> 1TU8B LLATR----GNGRN >HGGG ----GGG ...tryIDChain> LLKKNHTNNNNDKY >HHHH

  12. 17 CFR 270.8b-12 - Requirements as to paper, printing and language.

    Science.gov (United States)

    2010-04-01

    ..., printing and language. 270.8b-12 Section 270.8b-12 Commodity and Securities Exchanges SECURITIES AND... Requirements as to paper, printing and language. (a) Registration statements and reports shall be filed on good.... (d) The body of all printed registration statements and reports and all notes to financial...

  13. First studies of the (8)B(alpha,p)(11)C reaction

    NARCIS (Netherlands)

    Rehm, KE; Jiang, CL; Greene, JP; Henderson, D; Janssens, RVF; Moore, EF; Mukherjee, G; Pardo, RC; Pennington, T; Schiffer, JP; Sinha, S; Tang, XD; Siemssen, RH; Jisonna, L; Segel, RE; Wuosmaa, AH

    2004-01-01

    The (8)B(alpha,p)(11)C reaction is part of the network that can bypass the triple a process leading to the production of (12)C. We have measured the astrophysical reaction rate for this reaction by studying the inverse (11)C(p,alpha)(8)B process. The radioactive (11)C beam was produced via the p((11

  14. 17 CFR 270.8b-33 - XBRL-Related Documents.

    Science.gov (United States)

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false XBRL-Related Documents. 270.8b...) RULES AND REGULATIONS, INVESTMENT COMPANY ACT OF 1940 § 270.8b-33 XBRL-Related Documents. A registrant that participates in the voluntary XBRL (eXtensible Business Reporting Language) program may submit,...

  15. DISTRIBUTION OF ELECTRIC CURRENTS IN SOLAR ACTIVE REGIONS

    Energy Technology Data Exchange (ETDEWEB)

    Török, T.; Titov, V. S.; Mikić, Z. [Predictive Science, Inc., 9990 Mesa Rim Road, Suite 170, San Diego, CA 92121 (United States); Leake, J. E. [College of Science, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States); Archontis, V. [School of Mathematics and Statistics, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9SS (United Kingdom); Linton, M. G. [U.S. Naval Research Lab, 4555 Overlook Avenue, SW Washington, DC 20375 (United States); Dalmasse, K.; Aulanier, G. [LESIA, Observatoire de Paris, CNRS, UPMC, Univ. Paris Diderot, 5 place Jules Janssen, F-92190 Meudon (France); Kliem, B. [Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam (Germany)

    2014-02-10

    There has been a long-standing debate on the question of whether or not electric currents in solar active regions are neutralized. That is, whether or not the main (or direct) coronal currents connecting the active region polarities are surrounded by shielding (or return) currents of equal total value and opposite direction. Both theory and observations are not yet fully conclusive regarding this question, and numerical simulations have, surprisingly, barely been used to address it. Here we quantify the evolution of electric currents during the formation of a bipolar active region by considering a three-dimensional magnetohydrodynamic simulation of the emergence of a sub-photospheric, current-neutralized magnetic flux rope into the solar atmosphere. We find that a strong deviation from current neutralization develops simultaneously with the onset of significant flux emergence into the corona, accompanied by the development of substantial magnetic shear along the active region's polarity inversion line. After the region has formed and flux emergence has ceased, the strong magnetic fields in the region's center are connected solely by direct currents, and the total direct current is several times larger than the total return current. These results suggest that active regions, the main sources of coronal mass ejections and flares, are born with substantial net currents, in agreement with recent observations. Furthermore, they support eruption models that employ pre-eruption magnetic fields containing such currents.

  16. Magnetic Properties of Solar Active Regions That Govern Large Solar Flares and Eruptions

    Science.gov (United States)

    Toriumi, Shin; Schrijver, Carolus J.; Harra, Louise K.; Hudson, Hugh; Nagashima, Kaori

    2017-01-01

    Solar flares and coronal mass ejections (CMEs), especially the larger ones, emanate from active regions (ARs). With the aim of understanding the magnetic properties that govern such flares and eruptions, we systematically survey all flare events with Geostationary Orbiting Environmental Satellite levels of ≥M5.0 within 45° from disk center between 2010 May and 2016 April. These criteria lead to a total of 51 flares from 29 ARs, for which we analyze the observational data obtained by the Solar Dynamics Observatory. More than 80% of the 29 ARs are found to exhibit δ-sunspots, and at least three ARs violate Hale’s polarity rule. The flare durations are approximately proportional to the distance between the two flare ribbons, to the total magnetic flux inside the ribbons, and to the ribbon area. From our study, one of the parameters that clearly determine whether a given flare event is CME-eruptive or not is the ribbon area normalized by the sunspot area, which may indicate that the structural relationship between the flaring region and the entire AR controls CME productivity. AR characterization shows that even X-class events do not require δ-sunspots or strong-field, high-gradient polarity inversion lines. An investigation of historical observational data suggests the possibility that the largest solar ARs, with magnetic flux of 2 × 1023 Mx, might be able to produce “superflares” with energies of the order of 1034 erg. The proportionality between the flare durations and magnetic energies is consistent with stellar flare observations, suggesting a common physical background for solar and stellar flares.

  17. Nonlinear techniques for forecasting solar activity directly from its time series

    Science.gov (United States)

    Ashrafi, S.; Roszman, L.; Cooley, J.

    1993-01-01

    This paper presents numerical techniques for constructing nonlinear predictive models to forecast solar flux directly from its time series. This approach makes it possible to extract dynamical in variants of our system without reference to any underlying solar physics. We consider the dynamical evolution of solar activity in a reconstructed phase space that captures the attractor (strange), give a procedure for constructing a predictor of future solar activity, and discuss extraction of dynamical invariants such as Lyapunov exponents and attractor dimension.

  18. An alternative measure of solar activity from detailed sunspot datasets

    CERN Document Server

    Muraközy, Judit; Ludmány, András

    2016-01-01

    The sunspot number is analyzed by using detailed sunspot data, including aspects of observability, sunspot sizes, and proper identification of sunspot groups as discrete entities of the solar activity. The tests show that besides the subjective factors there are also objective causes of the ambiguities in the series of sunspot numbers. To introduce an alternative activity measure the physical meaning of the sunspot number has to be reconsidered. It contains two components whose numbers are governed by different physical mechanisms, this is one source of the ambiguity. This article suggests an activity index, which is the amount of emerged magnetic flux. The only long-term proxy measure is the detailed sunspot area dataset with proper calibration to the magnetic flux amount. The Debrecen sunspot databases provide an appropriate source for the establishment of the suggested activity index.

  19. Continuous plasma outflows from the edge of a solar active region as a possible source of solar wind.

    Science.gov (United States)

    Sakao, Taro; Kano, Ryouhei; Narukage, Noriyuki; Kotoku, Jun'ichi; Bando, Takamasa; Deluca, Edward E; Lundquist, Loraine L; Tsuneta, Saku; Harra, Louise K; Katsukawa, Yukio; Kubo, Masahito; Hara, Hirohisa; Matsuzaki, Keiichi; Shimojo, Masumi; Bookbinder, Jay A; Golub, Leon; Korreck, Kelly E; Su, Yingna; Shibasaki, Kiyoto; Shimizu, Toshifumi; Nakatani, Ichiro

    2007-12-07

    The Sun continuously expels a huge amount of ionized material into interplanetary space as the solar wind. Despite its influence on the heliospheric environment, the origin of the solar wind has yet to be well identified. In this paper, we report Hinode X-ray Telescope observations of a solar active region. At the edge of the active region, located adjacent to a coronal hole, a pattern of continuous outflow of soft-x-ray-emitting plasmas was identified emanating along apparently open magnetic field lines and into the upper corona. Estimates of temperature and density for the outflowing plasmas suggest a mass loss rate that amounts to approximately 1/4 of the total mass loss rate of the solar wind. These outflows may be indicative of one of the solar wind sources at the Sun.

  20. Effects of Solar Activities on the Transient Luminous Events

    Science.gov (United States)

    Wu, Y.; Williams, E.; Chou, J.; Lee, L.; Huang, S.; Chang, S.; Chen, A. B.; Kuo, C.; Su, H.; Hsu, R.; Frey, H. U.; Takahashi, Y.; Lee, L.

    2013-12-01

    The Imager of Sprite and Upper Atmosphere Lightning (ISUAL) onboard the Formosat-2 was launched in May 2004; since then, it has continuously observed transient luminous events (TLEs) within the +/-60 degree of latitude for nearly 10 years. Due to ISUAL's long-term observations, the possible correlation between the TLE and the solar activity can be explored. Among the ISUAL TLEs, elves, which occur at the mesospheric altitude ~90 km and are caused by the heating incurred by the lightning-launched electromagnetic pulse of the lower ionosphere boundary are the most numerous and are the most suitable for this type of study. In previous studies, the elve distribution has proved to be a good surrogate for the lightning with exceptional peak current globally. ISUAL records the occurrence time and the height and location of elves, and the spectral emission intensities at six different band pass including the FUV N2 Lyman-Birge-Hopfield (LBH) band, which is a dominant emission in elves. The LBH intensity not only reflects the peak current of parent lightning, but may also represent the solar-activity-driven-lighting's perturbation to the ionosphere. In this study, we first examine whether the 11-year solar cycle affects the elve activity and altitude by analyzing the elve occurrence rates and heights in different latitudinal regions. To avoid the climatological and instrumental biases in the elve observations, the effects arising from the ENSO and moonlight must be carefully eliminated. Besides, we will discuss the elve variation in shorter time scale due to strong and sudden change of solar activity. Since the ion density of the mesosphere at mid-latitude may be significantly altered during/after a strong corona mass ejection (CME).Furthermore, it has been proven that the changes in the solar X-ray flux dominate the variations in the conductivity profile within the upper characteristic ELF layer (the 90-100km portion of the E-region). we will compare the variation of

  1. Temporal associations of life with solar and geophysical activity

    Directory of Open Access Journals (Sweden)

    T. K. Breus

    Full Text Available In biology, circadian rhythms with a period of one cycle in 20–28 h are known to be ubiquitous and partly endogenous. Rhythms with a frequency lower than one cycle per day are called 'infradian rhythms'. Among them are components with one cycle in about 3.5, 7, 14 and 28 days, the multiseptans, which, like the circadians, must be regarded as a general characteristic of life: they characterize unicells as well as much more differentiated organisms. We hypothesize that heliogeophysical factors other than the solar visible light, held responsible for the evolution of circadian periodicity, underlie the infradian rhythms of biosystems. The periodicities in the solar wind and variations in the interplanetary magnetic field (IMF which are associated with the solar rotation are very similar in length to the biological periodicities. We investigate the temporal relations of variations in solar activity and in biological systems to test associations between events in the IMF, in geomagnetic disturbance, in myocardial infarction and in physiology. By cross-spectral analysis, we also find relations at certain frequencies between changes in human physiology on the one hand, and (1 the vertical component of the induction vector of the IMF, Bz, and (2 a global index of geomagnetic disturbance, Kp, on the other hand. We wish to stimulate interest in these periodicities of both biological systems and geophysical endpoints among physicists and biologists alike, so that problems relevant to clinicians and other biologists, including evolutionists, are eventually solved by their cooperation with the geophysical community.

  2. Magnetohydrodynamic (MHD) modelling of solar active phenomena via numerical methods

    Science.gov (United States)

    Wu, S. T.

    1988-01-01

    Numerical ideal MHD models for the study of solar active phenomena are summarized. Particular attention is given to the following physical phenomena: (1) local heating of a coronal loop in an isothermal and stratified atmosphere, and (2) the coronal dynamic responses due to magnetic field movement. The results suggest that local heating of a magnetic loop will lead to the enhancement of the density of the neighboring loops through MHD wave compression. It is noted that field lines can be pinched off and may form a self-contained magnetized plasma blob that may move outward into interplanetary space.

  3. Understanding Activity Cycles of Solar Type Stars with Kepler

    Science.gov (United States)

    Tovar, Guadalupe; Montet, Benjamin; Johnson, John A.

    2017-01-01

    As the era of exploring new worlds and systems advances we seek to answer the question: How common is our Sun? There is considerable evidence about the recurring activity cycles of our Sun but very little is known about the activity cycles of other stars. By calibrating the full frame images from the original Kepler mission that were taken once a month over the course of four years, we are able to do relative photometry on roughly 5 million stars. By building a model of the pixel response function we were able to achieve 0.8% precision photometry. We identify 50,000 solar type stars based on magnitude, surface gravity, and temperature cuts. We observe the relative increase and decrease in brightness of the stars indicating signs of activity cycles similar to our Sun. We continue to explore how a data driven pixel response function model could improve our precision to 0.1% photometry measurements.

  4. Evolution and Dynamics of a Solar Active Prominence

    CERN Document Server

    Magara, Tetsuya

    2015-01-01

    The life of a solar active prominence, one of the most remarkable objects on the Sun, is full of dynamics; after first appearing on the Sun the prominence continuously evolves with various internal motions and eventually produces a global eruption toward the interplane- tary space. Here we report that the whole life of an active prominence is successfully re- produced by performing as long-term a magnetohydrodynamic simulation of a magnetized prominence plasma as was ever done. The simulation reveals underlying dynamic processes that give rise to observed properties of an active prominence: invisible subsurface flows self- consistently produce the cancellation of magnetic flux observed at the photosphere, while observed and somewhat counterintuitive strong upflows are driven against gravity by en- hanced gas pressure gradient force along a magnetic field line locally standing vertical. The most highlighted dynamic event, transition into an eruptive phase, occurs as a natural con- sequence of the self-consiste...

  5. A Relationship between Solar Activity and Frequency of Natural Disasters in China

    Institute of Scientific and Technical Information of China (English)

    王钟睿; 冯松; 汤懋苍

    2003-01-01

    The relationship between the length of the solar cycle, a good indicator of long-term change in solar activity, and natural disasters (drought, flood, and strong earthquakes) in China during the last 108 years is analyzed. The results suggest that the length of solar cycle may be a useful indicator for drought/flood and strong earthquakes. When the solar activity strengthens, we see the length of the solar cycle shorten and more floods occur in South China and frequent strong earthquakes happen in the Tibetan Plateau, but the droughts in East China as well as the strong earthquakes in Taiwan and at the western boundary of China are very few. The opposite frequencies occur when the solar activity weakens. The current study indicates that the solar activity may play an important role in the climate extremes and behavior in the lithosphere.

  6. Solar Energy Education. Social studies: activities and teacher's guide. Field test edition

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    Solar energy information is made available to students through classroom instruction by way of the Solar Energy Education teaching manuals. In this manual solar energy, as well as other energy sources like wind power, is introduced by performing school activities in the area of social studies. A glossary of energy related terms is included. (BCS)

  7. Variations of the temperature and solar activity in China

    Institute of Scientific and Technical Information of China (English)

    MingQi Li; QuanSheng Ge; ZhiXin Hao; JingYun Zheng

    2014-01-01

    In this paper we analyze daily mean, minimum, and maximum temperature data collected at 119 meteorological stations over five regions of China during the period 1951-2010. The series of minimum, maximum, and mean temperatures from each climatic region have similar signatures, but there are differences among the five regions and the countrywide average. The results indicate that the periods of faster warming were not synchronous across the regions studied: warming in northeast China and Tibet began in 1986, while in central-east, southeast, and northwest China the warming emerged in 1995. Furthermore, central-east and northwest China, and Tibet, have warmed continuously since 2000, but the temper-ature has decreased during this period in southeast China. We evaluated the evolution of these temperature series using a novel nonlinear filtering technique based on the concept of the lifetime of temperature curves. The decadal to secular evolution of solar activity and temperature variation had similar signatures in the northeast, southeast, and northwest re-gions and the average across the whole country, indicating that solar activity is a significant control on climate change over secular time scales in these regions. In comparison with these regions, the signatures were different in central-east China and Tibet because of regional differences (e.g., landforms and elevation) and indirect effects (e.g., cloud cover influencing the radiation balance, thereby inducing climate change). Furthermore, the results of wavelet analysis indicated that the El Niño Southern Oscillation (ENSO) has had a significant impact on climate change, but at different times among the regions, and these changes were most probably induced by differing responses of the atmospheric system to solar forcing.

  8. Solar and terrestrial physics. [effects of solar activities on earth environment

    Science.gov (United States)

    1975-01-01

    The effects of solar radiation on the near space and biomental earth, the upper atmosphere, and the magnetosphere are discussed. Data obtained from the OSO satellites pertaining to the solar cycle variation of extreme ultraviolet (EUV) radiation are analyzed. The effects of solar cycle variation of the characteristics of the solar wind are examined. The fluid mechanics of shock waves and the specific relationship to the characteristics of solar shock waves are investigated. The solar and corpuscular heating of the upper atmosphere is reported based on the findings of the AEROS and NATE experiments. Seasonal variations of the upper atmosphere composition are plotted based on OGO-6 mass spectrometer data.

  9. Spring-fall asymmetry of substorm strength, geomagnetic activity and solar wind: Implications for semiannual variation and solar hemispheric asymmetry

    Science.gov (United States)

    Marsula, K.; Tanskanen, E.; Love, J.J.

    2011-01-01

    We study the seasonal variation of substorms, geomagnetic activity and their solar wind drivers in 1993–2008. The number of substorms and substorm mean duration depict an annual variation with maxima in Winter and Summer, respectively, reflecting the annual change of the local ionosphere. In contradiction, substorm mean amplitude, substorm total efficiency and global geomagnetic activity show a dominant annual variation, with equinoctial maxima alternating between Spring in solar cycle 22 and Fall in cycle 23. The largest annual variations were found in 1994 and 2003, in the declining phase of the two cycles when high-speed streams dominate the solar wind. A similar, large annual variation is found in the solar wind driver of substorms and geomagnetic activity, which implies that the annual variation of substorm strength, substorm efficiency and geomagnetic activity is not due to ionospheric conditions but to a hemispherically asymmetric distribution of solar wind which varies from one cycle to another. Our results imply that the overall semiannual variation in global geomagnetic activity has been seriously overestimated, and is largely an artifact of the dominant annual variation with maxima alternating between Spring and Fall. The results also suggest an intimate connection between the asymmetry of solar magnetic fields and some of the largest geomagnetic disturbances, offering interesting new pathways for forecasting disturbances with a longer lead time to the future.

  10. Seasonal and solar activity changes of electron temperature in the F-region and topside ionosphere

    Science.gov (United States)

    Sethi, N. K.; Pandey, V. K.; Mahajan, K. K.

    Incoherent scatter radar data from Arecibo, for high solar activity (HSA) (1989-1990) as well as for low solar activity (LSA) (1974-1977) periods, are used to study the seasonal and solar activity variations in electron temperature (Te) for noontime conditions. Inspite of large day-to-day variations, clear seasonal variations in average Te can be identified for both solar activity periods, with winter temperatures significantly higher in the topside (400-700 km) ionosphere. Further, comparison of average Te profiles for each season reveals distinct solar activity variations - a large increase in the F-region (200-350 km) Te, during summer and equinox as compared to winter, occurs as one moves from low to HSA. In the topside, however, electron temperature changes little with solar activity. Comparisons with IRI-95 and refid="bib10">Truhlik et al. (2000) models show a reasonable agreement within one standard deviation of the measured values.

  11. Near-Earth Solar Wind Flows and Related Geomagnetic Activity During more than Four Solar Cycles (1963-2011)

    Science.gov (United States)

    Richardson, Ian G.; Cane, Hilary V.

    2012-01-01

    In past studies, we classified the near-Earth solar wind into three basic flow types based on inspection of solar wind plasma and magnetic field parameters in the OMNI database and additional data (e.g., geomagnetic indices, energetic particle, and cosmic ray observations). These flow types are: (1) High-speed streams associated with coronal holes at the Sun, (2) Slow, interstream solar wind, and (3) Transient flows originating with coronal mass ejections at the Sun, including interplanetary coronal mass ejections and the associated upstream shocks and post-shock regions. The solar wind classification in these previous studies commenced with observations in 1972. In the present study, as well as updating this classification to the end of 2011, we have extended the classification back to 1963, the beginning of near-Earth solar wind observations, thereby encompassing the complete solar cycles 20 to 23 and the ascending phase of cycle 24. We discuss the cycle-to-cycle variations in near-Earth solar wind structures and l1e related geomagnetic activity over more than four solar cycles, updating some of the results of our earlier studies.

  12. Near-earth solar wind flows and related geomagnetic activity during more than four solar cycles (1963–2011

    Directory of Open Access Journals (Sweden)

    Richardson Ian G.

    2012-05-01

    Full Text Available In past studies, we classified the near-Earth solar wind into three basic flow types based on inspection of solar wind plasma and magnetic field parameters in the OMNI database and additional data (e.g., geomagnetic indices, energetic particle, and cosmic ray observations. These flow types are: (1 High-speed streams associated with coronal holes at the Sun, (2 Slow, interstream solar wind, and (3 Transient flows originating with coronal mass ejections at the Sun, including interplanetary coronal mass ejections and the associated upstream shocks and post-shock regions. The solar wind classification in these previous studies commenced with observations in 1972. In the present study, as well as updating this classification to the end of 2011, we have extended the classification back to 1963, the beginning of near-Earth solar wind observations, thereby encompassing the complete solar cycles 20 to 23 and the ascending phase of cycle 24. We discuss the cycle-to-cycle variations in near-Earth solar wind structures and the related geomagnetic activity over more than four solar cycles, updating some of the results of our earlier studies.

  13. Characteristics of the 23 Cycle of Solar Activity

    Science.gov (United States)

    Kuznetsova, Tamara

    The aim of the present study is to search for special features of the 23-d cycle of solar activity. We present results of our analysis of spectra of sunspot number W for the time intervals of spaced measurements 1964-1997 and 1996-2005 and of the Interplanetary Magnetic Field (IMF), the solar wind velocity (V) calculated on the basis of measurements near the Earth's orbit for the period 1964-1997. A method of non-linear spectral analysis named by us the Method of Global Minimum (MGM) is used. MGM allows self-consistentidentification of trends from data and non-stationary sinusoids and estimation of statistical significance of spectral components. The IMF and W spectra for the period 1964-1997 both show the solar cycle at T=10.8 yr and its higher harmonics. But spectrum of sunspot number W for the period 1996-2005 (time interval of the 23-d cycle) has not spectral component at T=10.8 yr (at confidence statistical level 95%); however, this spectrum has higher harmonics of the 10.8-yr cycle (such as sinusoid with T=146.2 day). The most powerful spectral line from the spectrum (1996-2005) has period T=16.56 yr. We show that tide forces of the planets can be a cause of periodical changes in the analyzed data. Periods of perturbed tide forces of external planets and their higher harmonics (connected with motion of the Sun relative to the mass center of the solar system) are detected in the spectra. In particular, all periods from the spectrum of W for the period 1996-2005 can be interpreted as periods of perturbed tide force of a system: Sun - a pair Jupiter-Uranus: T=16.56 yr is period of perturbed tide force of pair Jupiter-Uranus (1st planet determines shift of mass center of the Sun relative to the mass center of a system the Sunthe 1st planet; the 2nd planet determines perturbed tide force acting on the Sun). The fact that spectrum of W for the period 1996-2005 has the most power spectral components at T=16.56 and T=1.83 yr (9 harmonics of the 16.56-yr cycle

  14. Resonance of about-weekly human heart rate rhythm with solar activity change.

    Science.gov (United States)

    Cornelissen, G; Halberg, F; Wendt, H W; Bingham, C; Sothern, R B; Haus, E; Kleitman, E; Kleitman, N; Revilla, M A; Revilla, M; Breus, T K; Pimenov, K; Grigoriev, A E; Mitish, M D; Yatsyk, G V; Syutkina, E V

    1996-12-01

    In several human adults, certain solar activity rhythms may influence an about 7-day rhythm in heart rate. When no about-weekly feature was found in the rate of change in sunspot area, a measure of solar activity, the double amplitude of a circadian heart rate rhythm, approximated by the fit of a 7-day cosine curve, was lower, as was heart rate corresponds to about-weekly features in solar activity and/or relates to a sunspot cycle.

  15. Foothills Parkway Section 8B Final Environmental Report, Volume 6, Appendix N

    Energy Technology Data Exchange (ETDEWEB)

    Blasing, T.J.; Cada, G.F.; Carer, M.; Chin, S.M.; Dickerman, J.A.; Etnier, D.A.; Gibson, R.; Harvey, M.; Hatcher, B.; Lietzske, D.; Mann, L.K.; Mulholland, P.J.; Petrich, C.H.; Pounds, L.; Ranney, J.; Reed, R.M.; Ryan, P.F.; Schweitzer, M.; Smith, D.; Thomason, P.; Wade, M.C.

    1999-07-01

    In 1994, Oak Ridge National Laboratory (ORNL) was tasked by the National Park Service (NPS) to prepare an Environmental Report (ER) for Section 8B of the Foothills Parkway in the Great Smoky Mountains National Park (GSMNP). Section 8B represents 27.7 km (14.2 miles) of a total of 115 km (72 miles) of the planned Foothills Parkway and would connect the Cosby community on the east to the incorporated town of Pittman Center to the west. The major deliverables for the project are listed. From August 1995 through October 1996, NPS, GSMNP, and ORNL staff interacted with Federal Highway Administration staff to develop a conceptual design plan for Section 8B with the intent of protecting critical resources identified during the ER process to the extent possible. In addition, ORNL arranged for bioengineering experts to discuss techniques that might be employed on Section 8B with NPS, GSMNP, and ORNL staff during September 1996. For the purposes of this ER, there are two basic alternatives under consideration: (1) a build alternative and (2) a no-build alternative. Within the build alternative are a number of options including constructing Section 8B with no interchanges, constructing Section 8B with an interchange at SR 416 or U.S. 321, constructing Section 8B with a spur road on Webb Mountain, and considering operation of Section 8B both before and after the operation of Section 8C. The no-build alternative is considered the no-action alternative and is not to construct Section 8B. This volume of the ER documents the results of the architectural, historical, and cultural resources assessment for the entire Section 8B ROW that was completed in May 1995 to document the architectural, historical, and cultural resources located within the project area. The assessment included evaluation of the potential for cultural (i.e., rural historic) landscapes in the area of the ROW. The assessment showed that one National Register-listed property is located 0.3 mile south of the ROW

  16. Detectability of active triangulation range finder: a solar irradiance approach.

    Science.gov (United States)

    Liu, Huizhe; Gao, Jason; Bui, Viet Phuong; Liu, Zhengtong; Lee, Kenneth Eng Kian; Peh, Li-Shiuan; Png, Ching Eng

    2016-06-27

    Active triangulation range finders are widely used in a variety of applications such as robotics and assistive technologies. The power of the laser source should be carefully selected in order to satisfy detectability and still remain eye-safe. In this paper, we present a systematic approach to assess the detectability of an active triangulation range finder in an outdoor environment. For the first time, we accurately quantify the background noise of a laser system due to solar irradiance by coupling the Perez all-weather sky model and ray tracing techniques. The model is validated with measurements with a modeling error of less than 14.0%. Being highly generic and sufficiently flexible, the proposed model serves as a guide to define a laser system for any geographical location and microclimate.

  17. Magnetic Properties of Solar Active Regions that Govern Large Solar Flares and Eruptions

    CERN Document Server

    Toriumi, Shin; Harra, Louise K; Hudson, Hugh; Nagashima, Kaori

    2016-01-01

    Solar flares and coronal mass ejections (CMEs), especially the larger ones, emanate from active regions (ARs). With the aim to understand the magnetic properties that govern such flares and eruptions, we systematically survey all flare events with GOES levels of >=M5.0 within 45 deg from disk center between May 2010 and April 2016. These criteria lead to a total of 51 flares from 29 ARs, for which we analyze the observational data obtained by the Solar Dynamics Observatory. More than 80% of the 29 ARs are found to exhibit delta-sunspots and at least three ARs violate Hale's polarity rule. The flare durations are approximately proportional to the distance between the two flare ribbons, to the total magnetic flux inside the ribbons, and to the ribbon area. From our study, one of the parameters that clearly determine whether a given flare event is CME-eruptive or not is the ribbon area normalized by the sunspot area, which may indicate that the structural relationship between the flaring region and the entire AR...

  18. Coulomb dissociation of {sup 8}B at 254 A MeV

    Energy Technology Data Exchange (ETDEWEB)

    Suemmerer, K.; Boue, F.; Baumann, T.; Geissel, H.; Hellstroem, M.; Koczon, P.; Schwab, E.; Schwab, W.; Senger, P.; Surowiecz, A. [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany); Iwasa, N.; Ozawa, A. [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany)]|[RIKEN Institute of Physical and Chemical Research, Saitama (Japan); Surowka, G. [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany)]|[Jagiellonian Univ., Krakow (Poland). Inst. of Physics; Blank, B.; Czajkowski, S.; Marchand, C.; Pravikoff, M.S. [Centre d`Etudes Nucleaires de Bordeaux-Gradignan, 33 (France); Foerster, A.; Lauer, F.; Oeschler, H.; Speer, J.; Sturm, C.; Uhlig, F.; Wagner, A. [Technische Univ. Darmstadt (Germany); Gai, M. [Connecticut Univ., Storrs, CT (United States). Dept. of Physics; Grosse, E. [Inst. fuer Kern- und Hadronenphysik, Forschungszentrum Rossendorf, Dresden (Germany); Kohlmeyer, B. [Philipps Univ., Marburg (Germany). Fachbereich Physik; Kulessa, R.; Walus, W. [Jagiellonian Univ., Krakow (Poland). Inst. of Physics; Motobayashi, T. [Rikkyo Univ., Tokyo (Japan). Dept. of Physics; Teranishi, T. [RIKEN Institute of Physical and Chemical Research, Saitama (Japan)

    1998-06-01

    As an alternative method for determining the astrophysical S-factor for the {sup 7}Be(p,{gamma}){sup 8}B reaction we have measured the Coulomb dissociation of {sup 8}B at 254 A MeV. From our preliminary results, we obtain good agreement with both the accepted direct-reaction measurements and the low-energy Coulomb dissociation study of Iwasa et al. performed at about 50 A MeV. (orig.)

  19. Periodic Variation of the North-South Asymmetry of Solar Activity Phenomena

    Indian Academy of Sciences (India)

    V. Κ. Verma

    2000-09-01

    We report here a study of various solar activity phenomena occurring in both north and south hemispheres of the Sun during solar cycles 8-23. In the study we have used sunspot data for the period 1832—1976, flare index data for the period 1936-1993, H flare data 1993-1998 and solar active prominences data for the period 1957-1998. Earlier Verma reported long-term cyclic period in N-S asymmetry and also that the N-S asymmetry of solar activity phenomena during solar cycles 21, 22, 23 and 24 will be south dominated and the N-S asymmetry will shift to north hemisphere in solar cycle 25. The present study shows that the N-S asymmetry during solar cycles 22 and 23 are southern dominated as suggested by Verma.

  20. Purchase intention, purchase behavior and the active solar market: a follow-up study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, P.E.; Lilien, G.L.

    1982-05-01

    By following up on some prior respondents to solar surveys, solar energy purchase intentions are related to actual purchase behavior. Also examined is the relationship between attitudinal and demographic variables and trends in intention variables. Two sets of data are analyzed. The first set was collected in the spring of 1980. The method used was an initial telephone survey followed by a mailing to each participating respondent. The mailing included information about active solar energy systems and a mail questionnaire for the respondent ot complete and return. The early study examined the homeowners' awareness of active solar energy systems, awareness of federal and state incentives for installing solar equipment, attitudes and beliefs about active solar systems, likelihood of purchasing a solar system in the short and long term, and demographics. The second set is a followup of 343 cases selected from the earlier study. (LEW)

  1. On the Relation between Solar Activity and Clear-Sky Terrestrial Irradiance

    CERN Document Server

    Feulner, Georg

    2012-01-01

    The Mauna Loa Observatory record of direct-beam solar irradiance measurements for the years 1958-2010 is analysed to investigate the variation of clear-sky terrestrial insolation with solar activity over more than four solar cycles. The raw irradiance data exhibit a marked seasonal cycle, extended periods of lower irradiance due to emissions of volcanic aerosols, and a long-term decrease in atmospheric transmission independent of solar activity. After correcting for these effects, it is found that clear-sky terrestrial irradiance typically varies by about 0.2 +/- 0.1% over the course of the solar cycle, a change of the same order of magnitude as the variations of the total solar irradiance above the atmosphere. An investigation of changes in the clear-sky atmospheric transmission fails to find a significant trend with sunspot number. Hence there is no evidence for a yet unknown effect amplifying variations of clear-sky irradiance with solar activity.

  2. Parker Lecture - Prominences: the key to understanding solar activity

    Science.gov (United States)

    Karpen, Judith T.

    2011-05-01

    Prominences are spectacular manifestations of both quiescent and eruptive solar activity. The largest examples can be seen with the naked eye during eclipses, making prominences among the first solar features to be described and catalogued. Steady improvements in temporal and spatial resolution from both ground- and space-based instruments have led us to recognize how complex and dynamic these majestic structures really are. Their distinguishing characteristics - cool knots and threads suspended in the hot corona, alignment along inversion lines in the photospheric magnetic field within highly sheared filament channels, and a tendency to disappear through eruption - offer vital clues as to their origin and dynamic evolution. Interpreting these clues has proven to be contentious, however, leading to fundamentally different models that address the basic questions: What is the magnetic structure supporting prominences, and how does so much cool, dense plasma appear in the corona? Despite centuries of increasingly detailed observations, the magnetic and plasma structures in prominences are poorly known. Routine measurements of the vector magnetic field in and around prominences have become possible only recently, while long-term monitoring of the underlying filament-channel formation process remains scarce. The process responsible for prominence mass is equally difficult to establish, although we have long known that the chromosphere is the only plausible source. As I will discuss, however, the motions and locations of prominence material can be used to trace the coronal field, thus defining the magnetic origins of solar eruptions. A combination of observations, theory, and numerical modeling must be used to determine whether any of the competing theories accurately represents the physics of prominences. I will discuss the criteria for a successful prominence model, compare the leading models, and present in detail one promising, comprehensive scenario for prominence

  3. Study of solar active regions based on BOAO vector magnetograms

    CERN Document Server

    Moon, Y J; Yun, H S; Cho, E A

    1999-01-01

    In this study we present the study of solar active regions based on BOAO vector magnetograms and $H\\alpha$ filtergrams. With the new calibration method we analyzed BOAO vector magnetograms taken from the SOFT observational system to compare with those of other observing systems. In this study it has been demonstrated that (1) our longitudinal magnetogram matches very well the corresponding Mitaka's magnetogram to the extent that the maximum correlation yields r=0.962 between our re-scaled longitudinal magnetogram and the Mitaka's magnetogram; (2) according to a comparison of our magnetograms of AR 8422 with those taken at Mitaka solar observatory their longitudinal fields are very similar to each other while transverse fields are a little different possibly due to large noise level; (3) main features seen by our longitudinal magnetograms of AR 8422 and AR 8419 and the corresponding Kitt Peak magnetograms are very similar to each other; (4) time series of our vector magnetograms and H-alpha observations of AR ...

  4. Simulation of the Formation of a Solar Active Region

    Science.gov (United States)

    Cheung, M. C. M.; Rempel, M.; Title, A. M.; Schüssler, M.

    2010-09-01

    We present a radiative magnetohydrodynamics simulation of the formation of an active region (AR) on the solar surface. The simulation models the rise of a buoyant magnetic flux bundle from a depth of 7.5 Mm in the convection zone up into the solar photosphere. The rise of the magnetic plasma in the convection zone is accompanied by predominantly horizontal expansion. Such an expansion leads to a scaling relation between the plasma density and the magnetic field strength such that B vprop rhov1/2. The emergence of magnetic flux into the photosphere appears as a complex magnetic pattern, which results from the interaction of the rising magnetic field with the turbulent convective flows. Small-scale magnetic elements at the surface first appear, followed by their gradual coalescence into larger magnetic concentrations, which eventually results in the formation of a pair of opposite polarity spots. Although the mean flow pattern in the vicinity of the developing spots is directed radially outward, correlations between the magnetic field and velocity field fluctuations allow the spots to accumulate flux. Such correlations result from the Lorentz-force-driven, counterstreaming motion of opposite polarity fragments. The formation of the simulated AR is accompanied by transient light bridges between umbrae and umbral dots. Together with recent sunspot modeling, this work highlights the common magnetoconvective origin of umbral dots, light bridges, and penumbral filaments.

  5. Foothills Parkway Section 8B Final Environmental Report, Volume 3, Appendix D

    Energy Technology Data Exchange (ETDEWEB)

    Blasing, T.J.; Cada, G.F.; Carer, M.; Chin, S.M.; Dickerman, J.A.; Etnier, D.A.; Gibson, R.; Harvey, M.; Hatcher, B.; Lietzske, D.; Mann, L.K.; Mulholland, P.J.; Petrich, C.H.; Pounds, L.; Ranney, J.; Reed, R.M.; Ryan, P.F.; Schweitzer, M.; Smith, D.; Thomason, P.; Wade, M.C.

    1999-07-01

    In 1994, Oak Ridge National Laboratory (ORNL) was tasked by the National Park Service (NPS) to prepare an Environmental Report (ER) for Section 8B of the Foothills Parkway in the Great Smoky Mountains National Park (GSMNP). Section 8B represents 27.7 km (14.2 miles) of a total of 115 km (72 miles) of the planned Foothills Parkway and would connect the Cosby community on the east to the incorporated town of Pittman Center to the west. The major deliverables for the project are listed. From August 1995 through October 1996, NPS, GSMNP, and ORNL staff interacted with Federal Highway Administration staff to develop a conceptual design plan for Section 8B with the intent of protecting critical resources identified during the ER process to the extent possible. In addition, ORNL arranged for bioengineering experts to discuss techniques that might be employed on Section 8B with NPS, GSMNP, and ORNL staff during September 1996. For the purposes of this ER, there are two basic alternatives under consideration: (1) a build alternative and (2) a no-build alternative. Within the build alternative are a number of options including constructing Section 8B with no interchanges, constructing Section 8B with an interchange at SR416 or U.S. 321, constructing Section 8B with a spur road on Webb Mountain, and considering operation of Section 8B both before and after the operation of Section 8C. The no-build alternative is considered the no-action alternative and is not to construct Section 8B. This volume of the ER inventories the fishes and benthic macroinvertebrates inhabiting the aquatic ecosystems potentially affected by the proposed construction of Section 8B. Stream biological surveys were completed at 31 stream sites during the Fall of 1994. The sampling strategy for both invertebrates and fish was to survey the different taxa from all available habitats. For benthic invertebrates, a standardized qualitative manual collection technique was employed for all 31 stations. For fish

  6. The effects of solar activity on the global solar radiation measured at Khargha Oasis in the Western Dessert of Egypt

    Science.gov (United States)

    Shaltout, M.; Mohamed, A.

    Khargha is an Oasis in the Western Desert of Egypt of coordinates lat. 25 o 27/ N, long. 30 o 32 / E, and elevation 77.8 meter over the sea level. It is one of the driest areas in the world, the global solar radiation measured starting from January 1976 till now by station belong to the Egyptian Meteorological Authority. We used the data for the last 25 years of the 20"' Century on the daily bases, it is more than two solar cycles. The annual mean of relative humidity for Khargha is 30, and the total rainfall in mms as annual mean is less than one. Where, the evaporation in mms per day as annual mean is about 16. The total sky cover in oktas as annual mean is 0.4 at the midnight, while it is one oktas at the noon as 2annual mean, and 0.7 oktas on the mean of the day. The annual mean is 6.5 Kwh/rn /day for global solar radiation. Fourier analysis technique used to analysis the time series to show any reflection for the 11-year cycle of the solar activity on the measured global radiation in remote, clean, and dry desert area. The results indicate periodicity's similar to the solar activity periodicities, especially that of the eleven year cycle, in a good indication for the effect of solar activity on the climate change.

  7. Impact of solar activity on climate changes in Athens region, Greece

    CERN Document Server

    Gizani, Nectaria A B; Vatikiotis, Leonidas; Zervas, Efthimios

    2011-01-01

    The scope of this work is to study the role that the solar weather plays in terrestrial weather. For this reason we study the effect of the solar activity on the climate changes in Greece. In the current work we look for possible correlation between the solar activity data spanning the years from 1975 to 2000 and the meteorological data from two weather stations based inside the city of Athens, Greece (New Philadelphia) and in greater Athens in the north of Attica (Tatoi area). We examine the annual variations of the average values of six meteorological parameters: temperature, atmospheric pressure, direction and intensity of wind, rainfall and relative air humidity. The solar data include decade variations, within the above period, of the solar irradiance, mean sunspot number between two solar cycles, magnetic cycle influence, and solar UV driving of climate (radio flux).

  8. Effects of Space Weather on Biomedical Parameters during the Solar Activity Cycles 23-24.

    Science.gov (United States)

    Ragul'skaya, M V; Rudenchik, E A; Chibisov, S M; Gromozova, E N

    2015-06-01

    The results of long-term (1998-2012) biomedical monitoring of the biotropic effects of space weather are discussed. A drastic change in statistical distribution parameters in the middle of 2005 was revealed that did not conform to usual sinusoidal distribution of the biomedical data reflecting changes in the number of solar spots over a solar activity cycle. The dynamics of space weather of 2001-2012 is analyzed. The authors hypothesize that the actual change in statistical distributions corresponds to the adaptation reaction of the biosphere to nonstandard geophysical characteristics of the 24th solar activity cycle and the probable long-term decrease in solar activity up to 2067.

  9. VTEC behavior in the American sector during high solar activity

    CERN Document Server

    Ezquer, R G; Brunini, C; Conicet; Meza, A; Mosert, M; Radicella, S M

    2002-01-01

    The behavior of the vertical total electron content (VTEC) obtained from GPS signals received during the high solar activity year 1999 at stations placed in the American sector, is reported. The considered latitude range extends from 18.4 to -64.7 and the longitude ranges from 281.3 to 297.7. Median, lower and upper quartiles are used to specify variability, because they have the advantage of being less affected by large deviations that can occur during magnetic storms. The results show that the VTEC values corresponding to equinox are greater than those of solstice and that, the highest VTEC values are observed at low latitude stations. In general, the variability during daylight hours is about 30% of median or less, and that observed for nighttime hours is greater than the mentioned percentage, particularly at last hours of the night near the northern peak of the equatorial anomaly.

  10. Active space heating and hot water supply with solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Karaki, S.; Loef, G. O.G.

    1981-04-01

    Technical and economic assessments are given of solar water heaters, both circulating, and of air-based and liquid-based solar space heating systems. Both new and retrofit systems are considered. The technical status of flat-plate and evacuated tube collectors and of thermal storage is also covered. Non-technical factors are also briefly discussed, including the participants in the use of solar heat, incentives and deterrents. Policy implications are considered as regards acceleration of solar use, goals for solar use, means for achieving goals, and interaction of governments, suppliers, and users. Government actions are recommended. (LEW)

  11. Minimum extreme temperature in the gulf of mexico: is there a connection with solar activity?

    Science.gov (United States)

    Maravilla, D.; Mendoza, B.; Jauregui, E.

    Minimum extreme temperature ( MET) series from several meteorological stations of the Gulf of Mexico are spectrally analyzed using the Maximum Entrophy Method. We obtained periodicities similar to those found in the sunspot number, the magnetic solar cycle, comic ray fluxes and geomagnetic activity which are modulated by solar activity. We suggested that the solar signal is perhaps present in the MET record of this region of Mexico.

  12. A study of solar magnetic fields below the surface, at the surface, and in the solar atmosphere - understanding the cause of major solar activity

    Science.gov (United States)

    Chintzoglou, Georgios

    2016-04-01

    Magnetic fields govern all aspects of solar activity from the 11-year solar cycle to the most energetic events in the solar system, such as solar flares and Coronal Mass Ejections (CMEs). As seen on the surface of the sun, this activity emanates from localized concentrations of magnetic fields emerging sporadically from the solar interior. These locations are called solar Active Regions (ARs). However, the fundamental processes regarding the origin, emergence and evolution of solar magnetic fields as well as the generation of solar activity are largely unknown or remain controversial. In this dissertation, multiple important issues regarding solar magnetism and activities are addressed, based on advanced observations obtained by AIA and HMI instruments aboard the SDO spacecraft. First, this work investigates the formation of coronal magnetic flux ropes (MFRs), structures associated with major solar activity such as CMEs. In the past, several theories have been proposed to explain the cause of this major activity, which can be categorized in two contrasting groups (a) the MFR is formed in the eruption, and (b) the MFR pre-exists the eruption. This remains a topic of heated debate in modern solar physics. This dissertation provides a complete treatment of the role of MFRs from their genesis all the way to their eruption and even destruction. The study has uncovered the pre-existence of two weakly twisted MFRs, which formed during confined flaring 12 hours before their associated CMEs. Thus, it provides unambiguous evidence for MFRs truly existing before the CME eruptions, resolving the pre-existing MFR controversy. Second, this dissertation addresses the 3-D magnetic structure of complex emerging ARs. In ARs the photospheric fields might show all aspects of complexity, from simple bipolar regions to extremely complex multi-polar surface magnetic distributions. In this thesis, we introduce a novel technique to infer the subphotospheric configuration of emerging

  13. Foothills Parkway Section 8B Final Environmental Report, Volume 4, Appendices E-I

    Energy Technology Data Exchange (ETDEWEB)

    Blasing, T.J.; Cada, G.F.; Carer, M.; Chin, S.M.; Dickerman, J.A.; Etnier, D.A.; Gibson, R.; Harvey, M.; Hatcher, B.; Lietzske, D.; Mann, L.K.; Mulholland, P.J.; Petrich, C.H.; Pounds, L.; Ranney, J.; Reed, R.M.; Ryan, P.F.; Schweitzer, M.; Smith, D.; Thomason, P.; Wade, M.C.

    1999-07-01

    In 1994, Oak Ridge National Laboratory (ORNL) was tasked by the National Park Service (NPS) to prepare an Environmental Report (ER) for Section 8B of the Foothills Parkway in the Great Smoky Mountains National Park (GSMNP). Section 8B represents 27.7 km (14.2 miles) of a total of 115 km (72 miles) of the planned Foothills Parkway and would connect the Cosby community on the east to the incorporated town of Pittman Center to the west. The major deliverables for the project are listed. From August 1995 through October 1996, NPS, GSMNP, and ORNL staff interacted with Federal Highway Administration staff to develop a conceptual design plan for Section 8B with the intent of protecting critical, resources identified during the ER process to the extent possible. In addition, ORNL arranged for bioengineering experts to discuss techniques that might be employed on Section 8B with NPS, GSMNP, and ORNL staff during September 1996. For the purposes of this ER, there are two basic alternatives under consideration: (1) a build alternative and (2) a no-build alternative. Within the build alternative are a number of options including constructing Section 8B with no interchanges, constructing Section 8B with an interchange at SR 416 or U.S. 321, constructing Section 8B with a spur road on Webb Mountain, and considering operation of Section 8B both before and after the operation of Section 8C. The no-build alternative is considered the no-action alternative and is not to construct Section 8B. This volume of the ER consists of Appendices E through I (all ecological survey reports), which are summarized individually in the sections that follow. The following conclusions result from the completion of these surveys and the ER impact analysis: (1) Forest clearing should be limited as much as possible; (2) Disturbed areas should be replanted with native trees; (3) Drainages should be bridged rather than leveled with cut and fill; (4) For areas of steep slopes and potential erosion

  14. Solar technology assessment project. Volume 3: Active space heating and hot water supply with solar energy

    Science.gov (United States)

    Karaki, S.; Loef, G. O. G.

    1981-04-01

    Several types of solar water heaters are described and assessed. These include thermosiphon water heaters and pump circulation water heaters. Auxiliary water heating is briefly discussed, and new and retrofit systems are compared. Liquid-based space heating systems and solar air heaters are described and assessed, auxiliary space heating are discussed, and new and retrofit solar space heating systems are compared. The status of flat plate collectors, evacuated tube collectors, and thermal storage systems is examined. Systems improvements, reliability, durability and maintenance are discussed. The economic assessment of space and water heating systems includes a comparison of new systems costs with conventional fuels, and sales history and projections. The variety of participants in the solar industry and users of solar heat is discussed, and various incentives and barriers to solar heating are examined. Several policy implications are discussed, and specific government actions are recommended.

  15. Solar Power and Solar Fuels Synthesis Report. Technology, market and research activities 2006-2011

    Energy Technology Data Exchange (ETDEWEB)

    Ridell, Bengt; Nilsson, Ronny; Rehnlund, Bjoern [Grontmij, Stockholm (Sweden); Kasemo, Bengt [Chalmers Univ. of Technology, Goeteborg (Sweden)

    2012-11-01

    The objectives of the synthesis is to survey the situation and give an accumulated and concentrated knowledge about status, needs and opportunities for Swedish research and Swedish industry within the area of solar power and solar fuels, to be used for prioritisation of further efforts. The synthesis shall identify strengths and weaknesses in areas fundamental for development of solar power and solar fuels, focused on the development in Sweden, but in an international context. The synthesis shall also cover proposals for future Swedish research efforts and organisation of future Swedish research programs.

  16. Solar Energy Education. Humanities: activities and teacher's guide. Field test edition

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    Activities are outlined to introduce students to information on solar energy while performing ordinary classroom work. In this teaching manual solar energy is integrated with the humanities. The activities include such things as stories, newspapers, writing assignments, and art and musical presentations all filled with energy related terms. An energy glossary is provided. (BCS)

  17. Relationships between solar activity and climate change. [sunspot cycle effects on lower atmosphere

    Science.gov (United States)

    Roberts, W. O.

    1974-01-01

    Recurrent droughts are related to the double sunspot cycle. It is suggested that high solar activity generally increases meridional circulations and blocking patterns at high and intermediate latitudes, especially in winter. This effect is related to the sudden formation of cirrus clouds during strong geomagnetic activity that originates in the solar corpuscular emission.

  18. In-house solar research and development projects. FY 1978 annual activity report, October 1, 1977-September 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, J.W.; Auh, P.C.; Kush, E.A.; Metz, P.D.; Wilhelm, W.G.

    1978-09-01

    Since Brookhaven National Laboratory initiated new solar acitivites in 1976, various in-house solar research and development projects have been generated by the Solar Technology Group. These projects are in the areas of solar-assisted heat pumps, solar cooling, study of low-cost solar collectors, and ground-coupling heat storage. The research and development activities are in parallel with technical support to the US Department of Energy. The technical progress made during FY 1978 is described here in detail.

  19. Reaction mechanisms in collisions induced by $^{8}$B beam close to the barrier

    CERN Multimedia

    The aim of the proposed experiment is to investigate the reaction dynamics of proton-halo induced collisions at energies around the Coulomb barrier where coupling to continuum effects are expected to be important. We propose to measure the $^{8}$B + $^{64}$Zn elastic scattering angular distribution together with the measurement, for the first time, of p - $^{7}$Be coincidences coming from transfer and/or break-up of $^{8}$B. The latter will allow a better understanding of the relative contribution of elastic $\\textit{vs}$ non-elastic break-up in reactions induced by extremely weakly-bound nuclei. We believe that with the availability of the post accelerated $^{8}$B beam at REX-ISOLDE we will be able to collect for the first time high quality data for the study of such an important topic.

  20. Determination of 8B(p,gamma)9C reaction rate from 9C breakup

    CERN Document Server

    Fukui, Tokuro; Minomo, Kosho; Yahiro, Masanobu

    2012-01-01

    The astrophysical factor of the 8B(p,gamma)9C at zero energy, S18(0), is determined from three-body model analysis of 9C breakup processes. The elastic breakup 208Pb(9C,p8B)208Pb at 65 MeV/nucleon and the one-proton removal reaction of 9C at 285 MeV/nucleon on C and Al targets are calculated with the continuum-discretized coupled-channels method (CDCC) and the eikonal reaction theory (ERT), respectively. The asymptotic normalization coefficient (ANC) of 9C in the p-8B configuration extracted from the two reactions show good consistency, in contrast to in the previous studies. As a result of the present analysis, S18(0) = 66 \\pm 10 eVb is obtained.

  1. Detrimental Effects of Extreme Solar Activity on Life on Earth

    Science.gov (United States)

    Airapetian, Vladimir; Glocer, Alex; Jackman, Charles

    2015-07-01

    Solar Coronal Mass Ejections (CMEs), the most energetic eruptions in the Solar System, represent large-scale disturbances forming with the solar corona and are associated with solar flares and Solar Energetic Particles (SEP) events. Current Kepler data from solar-like stars suggest that the frequency of occurrence of energetic flares and associated CMEs from the Sun can be as high as 1 per 1500 years. What effects would CME and associated SEPs have on Earth's habitability? We have performed a three-dimensional time-dependent global magnetohydrodynamic simulation of the magnetic interaction of such a CME cloud with the Earth's magnetosphere. We calculated the global structure of the perturbed magnetosphere and derive the latitude of the open-closed magnetic field boundary. We used a 2D GSFC atmospheric code to calculate the efficiency of ozone depletion in the Earth's atmosphere due to SEP events and its effects on our society and life on Earth.

  2. Activity of processes on the visible surfaces of Solar System bodies

    Science.gov (United States)

    Vidmachenko, A. P.

    2016-10-01

    We consider the physical processes on the surfaces of Solar System bodies, which lead to visible changes in their reflective characteristics. It is shown that each body in the Solar system has a set of chemical elements and their compounds, converting of which indicates significant activity in such a significant temperature change range from 700 K (for Mercury) to 30 K for Pluto. That is, all objects in the Solar system show a significant activity. However, they are very individual for the list and the type of the processes that take place on each body in the Solar system.

  3. 7Be- and 8B-reaction dynamics at Coulomb barrier energies

    Directory of Open Access Journals (Sweden)

    Mazzocco M.

    2016-01-01

    Full Text Available We investigated the reaction dynamics induced by the Radioactive Ion Beams 7Be and 8B on a 208Pb target at energies around the Coulomb barrier. The two measurements are strongly interconnected, being 7Be (Sα = 1.586 MeV the loosely bound core of the even more exotic 8B (Sp = 0.1375 MeV nucleus. Here we summarize the present status of the data analysis for the measurement of the elastic scattering process for both reactions and the preliminary results for the optical model analysis of the collected data.

  4. 7Be- and 8B-reaction dynamics at Coulomb barrier energies

    Science.gov (United States)

    Mazzocco, M.; Boiano, A.; Boiano, C.; La Commara, M.; Manea, C.; Parascandolo, C.; Pierroutsakou, D.; Signorini, C.; Strano, E.; Torresi, D.; Yamaguchi, H.; Kahl, D.; Acosta, L.; Di Meo, P.; Fernandez-Garcia, J. P.; Glodariu, T.; Grebosz, J.; Guglielmetti, A.; Imai, N.; Hirayama, Y.; Ishiyama, H.; Iwasa, N.; Jeong, S. C.; Jia, H. M.; Keeley, N.; Kim, Y. H.; Kimura, S.; Kubono, S.; Lay, J. A.; Lin, C. J.; Marquinez-Duran, G.; Martel, I.; Miyatake, H.; Mukai, M.; Nakao, T.; Nicoletto, M.; Pakou, A.; Rusek, K.; Sakaguchi, Y.; Sánchez-Benítez, A. M.; Sava, T.; Sgouros, O.; Stefanini, C.; Soramel, F.; Soukeras, V.; Stiliaris, E.; Stroe, L.; Teranishi, T.; Toniolo, N.; Wakabayashi, Y.; Watanabe, Y. X.; Yang, L.; Yang, Y. Y.

    2016-05-01

    We investigated the reaction dynamics induced by the Radioactive Ion Beams 7Be and 8B on a 208Pb target at energies around the Coulomb barrier. The two measurements are strongly interconnected, being 7Be (Sα = 1.586 MeV) the loosely bound core of the even more exotic 8B (Sp = 0.1375 MeV) nucleus. Here we summarize the present status of the data analysis for the measurement of the elastic scattering process for both reactions and the preliminary results for the optical model analysis of the collected data.

  5. Cosmogenic Radiocarbon as a Means of Studying Solar Activity in the Past

    Science.gov (United States)

    Kocharov, G. E.; Ogurtsov, M. G.; Tsereteli, S. L.

    2003-12-01

    A series of yearly data on the concentration of radioactive carbon 14C in tree rings measured at the Tbilisi State University in 1983-1986 and covering the time interval 1600-1940 is statistically analyzed. We find evidence for a 22-year cyclicity in the intensity of Galactic cosmic rays (GCRs) during the Maunder minimum of the solar activity (1645-1715), testifying that the solar dynamo mechanism continued to operate during this epoch. Variations of Δ14C on timescales of tens and hundreds of years correlate well with the corresponding variations of the GCR intensity and solar activity, making radiocarbon a reliable source of information on long-timescale variations of solar activity in the past. Short-timescale (30 years) fluctuations of Δ14C may be appreciably distorted by time variations not associated directly with solar activity; probable origins of this distortion are discussed.

  6. Breathing of heliospheric structures triggered by the solar-cycle activity

    Directory of Open Access Journals (Sweden)

    K. Scherer

    Full Text Available Solar wind ram pressure variations occuring within the solar activity cycle are communicated to the outer heliosphere as complicated time-variabilities, but repeating its typical form with the activity period of about 11 years. At outer heliospheric regions, the main surviving solar cycle feature is a periodic variation of the solar wind dynamical pressure or momentum flow, as clearly recognized by observations of the VOYAGER-1/2 space probes. This long-periodic variation of the solar wind dynamical pressure is modeled here through application of appropriately time-dependent inner boundary conditions within our multifluid code to describe the solar wind – interstellar medium interaction. As we can show, it takes several solar cycles until the heliospheric structures adapt to an average location about which they carry out a periodic breathing, however, lagged in phase with respect to the solar cycle. The dynamically active heliosphere behaves differently from a static heliosphere and especially shows a historic hysteresis in the sense that the shock structures move out to larger distances than explained by the average ram pressure. Obviously, additional energies are pumped into the heliosheath by means of density and pressure waves which are excited. These waves travel outwards through the interface from the termination shock towards the bow shock. Depending on longitude, the heliospheric sheath region memorizes 2–3 (upwind and up to 6–7 (downwind preceding solar activity cycles, i.e. the cycle-induced waves need corresponding travel times for the passage over the heliosheath. Within our multifluid code we also adequately describe the solar cycle variations in the energy distributions of anomalous and galactic cosmic rays, respectively. According to these results the distribution of these high energetic species cannot be correctly described on the basis of the actually prevailing solar wind conditions.

    Key words. Interplanetary

  7. The active thermal solar; Le solaire thermique actif

    Energy Technology Data Exchange (ETDEWEB)

    Bedel, St.; Salomon, Th.

    2000-05-01

    This information paper recalls the different types of solar cells and their operating. It presents the possible utilizations for the buildings heating (air and water systems) and for the water heating in the residential houses (also for the heating of swimming pools) and the collective buildings. The drying of agricultural products and the solar cooling are also discussed. (A.L.B.)

  8. Solar and Geomagnetic Activity Relation for the Last two Solar Cycles

    Science.gov (United States)

    Kilcik, A.; Yiǧit, E.; Yurchyshyn, V.; Ozguc, A.; Rozelot, J. P.

    2017-01-01

    The long-term relationship between solar (sunspot counts in different Zurich sunspot groups, International Sunspot Number (ISSN), solar wind, and X-Ray solar flare index and geomagnetic indices (Ap and Dst) is investigated. Data sets used in this study cover a time period from January 1996 to March 2014. Our main findings are as follows: 1) The best correlation between the sunspot counts and the Ap index are obtained for the large group time series, while the other categories exhibited lower (final and medium) or no correlation at all (small). It is interesting to note that Ap index is delayed by about 13 months relatively to all sunspot count series and ISSN data. 2) The best correlation between the sunspot counts and the Dst index was as well obtained for the large AR time series. The Dst index delays with respect to the large group by about 2 months. 3) The highest correlation between the solar and geomagnetic indices were obtained between the solar wind speed and Ap and Dst indices with zero time delays (r = 0.76, r = 0.52, respectively). 4) The correlation coefficients between the geomagnetic indices (Ap, Dst) and X-Ray solar flare index (r = 0.59, r = -0.48, respectively) are a little higher than the correlation coefficients between these geomagnetic indices and ISSN (r = 0.57, r = -0.43, respectively). 5) The magnitude of all solar and geomagnetic indices (except the solar wind speed) has significantly decreased during the current solar cycle as compared to the same phase of the previous cycle.

  9. Experimental study on solar-powered adsorption refrigeration cycle with activated alumina and activated carbon as adsorbent

    Directory of Open Access Journals (Sweden)

    Himsar Ambarita

    2016-03-01

    Full Text Available Typical adsorbent applied in solar-powered adsorption refrigeration cycle is activated carbon. It is known that activated alumina shows a higher adsorption capacity when it is tested in the laboratory using a constant radiation heat flux. In this study, solar-powered adsorption refrigeration cycle with generator filled by different adsorbents has been tested by exposing to solar radiation in Medan city of Indonesia. The generator is heated using a flat-plate type solar collector with a dimension of 0.5 m×0.5 m. Four cases experiments of solar-powered adsorption cycle were carried out, they are with generator filled by 100% activated alumina (named as 100AA, by a mixed of 75% activated alumina and 25% activated carbon (75AA, by a mixed of 25% activated alumina and 75% activated carbon (25AA, and filled by 100% activated carbon. Each case was tested for three days. The temperature and pressure history and the performance have been presented and analyzed. The results show that the average COP of 100AA, 75AA, 25AA, and 100AC is 0.054, 0.056, 0.06, and 0.074, respectively. The main conclusion can be drawn is that for Indonesian condition and flat-plate type solar collector the pair of activated carbon and methanol is the better than activated alumina.

  10. Data of evolutionary structure change: 1VL8B-2UVDB [Confc[Archive

    Lifescience Database Archive (English)

    Full Text Available 1VL8B-2UVDB 1VL8 2UVD B B VFDLRGRVALVTGGSRGLGFGIAQGLAEAGCSVVVASRN...>GLU CA 241 ALA CA 324 SER CA 282 2UV...D B 2UVDB VNYAGNEQKAN 2.647510051727295 1 2UV...D B 2UVDB EIKKL-GSDAI

  11. The expansion of Phytophthora clade 8b: three new species associated with winter grown vegetable crops

    NARCIS (Netherlands)

    Bertier, L.; Brouwer, H.; Cock, de A.W.A.M.; Cooke, D.E.L.; Olsson, C.H.B.; Höfte, M.

    2013-01-01

    Despite its association with important agricultural crops, Phytophthora clade 8b is a poorly studied group of species. The clade currently consists of three officially described species (Phytophthora porri, P. brassicae and P. primulae) that are host-specific pathogens of leek, cabbages and Primula

  12. The expansion of Phytophthora clade 8b: three new species associated with winter grown vegetable crops.

    Science.gov (United States)

    Bertier, L; Brouwer, H; de Cock, A W A M; Cooke, D E L; Olsson, C H B; Höfte, M

    2013-12-01

    Despite its association with important agricultural crops, Phytophthora clade 8b is a poorly studied group of species. The clade currently consists of three officially described species (Phytophthora porri, P. brassicae and P. primulae) that are host-specific pathogens of leek, cabbages and Primula spp., respectively. However, over the past few decades, several other clade 8b-like Phytophthoras have been found on a variety of different host plants that were all grown at low temperatures in winter seasons. In this study, a collection of 30 of these isolates was subjected to a phylogenetic study using two loci (the rDNA ITS region and the mitochondrial cox1 gene). This analysis revealed a clear clustering of isolates according to their host plants. To verify whether these isolates belong to separate species, a detailed morphological study was conducted. On the basis of genetic and morphological differences and host specificity, we now present the official description of three new species in clade 8b: Phytophthora cichorii sp. nov., P. dauci sp. nov. and P. lactucae sp. nov. Two other groups of isolates (Phytophthora taxon castitis and Phytophthora taxon parsley) might also represent new species but the data available at this time are insufficient for an official description. This brings Phytophthora clade 8b to a group of six species that are all host-specific, slow-growing and specifically infect herbaceous crops at low temperatures.

  13. Data of evolutionary structure change: 1DR8B-3DMSA [Confc[Archive

    Lifescience Database Archive (English)

    Full Text Available 1DR8B-3DMSA 1DR8 3DMS B A --------------------------MKVAVLPGDGIGP...D>3DMS A 3DMSA AVEKAYGGKKKIH ...entryChain> 3DMS A 3DMSA TKVYGPDV...90 SER CA 526 3DMS A 3DMSA...ine>PHE CA 324 3DMS A 3DMSA

  14. Discovery and Rossiter-McLauglin effect of exoplanet kepler-8b

    DEFF Research Database (Denmark)

    Jenkins...[], Jon M.; Borucki, W.J.; Koch, D. G.;

    2010-01-01

    We report on the discovery and the Rossiter-McLaughlin (R-M) effect of Kepler-8b, a transiting planet identified by the NASA Kepler Mission. Kepler photometry and Keck-HIRES radial velocities yield the radius and mass of the planet around this F8IV subgiant host star. The planet has a radius R P ...

  15. P-Wave Nuclear Halos in 8B and 11Be

    Institute of Scientific and Technical Information of China (English)

    LIU Zu-Hua; BAO Jing-Dong

    2004-01-01

    @@ We use a procedure to extract valuable information regarding the p-wave halos in 8B and 11Be from the measured nuclear asymptotic normalization coefficients. With this procedure, we evaluate the probabilities of valence particle being outside the binding potential, which are 0.31 ± 0.03 for the 8B ground state and 0.59 ± 0.06 for the 11 Be first excited state. More than 50% probability outside the binding potential means that the 11 Be first excited state has a typical p-wave neutron halo. The rms radii are obtained to be 3.9 ± 0.2 fm for the valence proton in the 8B ground state and to be 6.5 ± 0.3 fm for the valence neutron in the 11Be first excited state.The probabilities of the valence particle being in the non-classical region are extracted to be 0.41 ± 0.04 and 0.46 ± 0.05 for the 8B ground state and the 11 Be first excited state, respectively. The results demonstrate that although hindered by the effects of Coulomb and/or centrifugal barriers, their valence particle wave function still penetrates substantially into the classically forbidden region.

  16. Determination of S17 from Systematic Analysis of 8B Coulomb Dissociation

    CERN Document Server

    Ogata, K; Iseri, Y; Matsumoto, T; Yamashita, N; Kamimura, M; Ogata, Kazuyuki

    2003-01-01

    Systematic analysis of 8B Coulomb dissociation with the Asymptotic Normalization Coefficient (ANC) method is proposed to determine the astrophysical factor S17 accurately. An important advantage of the analysis is that uncertainties of the extracted S17 coming from the use of the ANC method can quantitatively be evaluated, in contrast to previous analyses using the Virtual Photon Theory (VPT). Calculation of measured spectra in dissociation experiments is done by means of the method of Continuum-Discretized Coupled-Channels (CDCC). From the analysis of 58Ni(8B,7Be+p)58Ni at 25.8 MeV, S17=22.83 +/- 0.51(theo) +/- 2.28(expt) (eVb) is obtained; the ANC method turned out to work in this case within 1% of error. Preceding systematic analysis of experimental data at intermediate energies, we propose hybrid (HY) Coupled-Channels (CC) calculation of 8B Coulomb dissociation, which makes numerical calculation much simple, retaining its accuracy. The validity of the HY calculation is tested for 58Ni(8B,7Be+p)58Ni at 240...

  17. Biodegradation of endosulfan and endosulfan sulfate by Achromobacter xylosoxidans strain C8B in broth medium.

    Science.gov (United States)

    Singh, Ngangbam Sarat; Singh, Dileep K

    2011-09-01

    Endosulfan is one of the most widely used wide spectrum cyclodiene organochlorine insecticide. In environment, endosulfan can undergo either oxidation or hydrolysis reaction to form endosulfan sulfate and endosulfan diol respectively. Endosulfan sulfate is as toxic and as persistent as its parent isomers. In the present study, endosulfan degrading bacteria were isolated from soil through selective enrichment technique using sulfur free medium with endosulfan as sole sulfur source. Out of the 8 isolated bacterial strains, strain C8B was found to be the most efficient endosulfan degrader, degrading 94.12% α-endosulfan and 84.52% β-endosulfan. The bacterial strain was identified as Achromobacter xylosoxidans strain C8B on the basis of 16S rDNA sequence similarity. Achromobacter xylosoxidans strain C8B was also found to degrade 80.10% endosulfan sulfate using it as sulfur source. No known metabolites were found to be formed in the culture media during the entire course of degradation. Besides, the bacterial strain was found to degrade all the known endosulfan metabolites. There was marked increase in the quantity of released CO(2) from the culture media with endosulfan as sulfur source as compared to MgSO(4) suggesting that the bacterial strain, Achromobacter xylosoxidans strain C8B probably degraded endosulfan completely through the formation of endosulfan ether.

  18. Data of evolutionary structure change: 1BT8B-1UNFX [Confc[Archive

    Lifescience Database Archive (English)

    Full Text Available 1BT8B-1UNFX 1BT8 1UNF B X ---AVYTLPELPYDYSALEPYISGEIMELHHDKHHKAYV...EEEEEEEEEGGG EEEEEEE EEE EEE HHHH HHHHHHHHHH EEHHHHHHHHHHHHHH EVID> 1UNF X 1UNFX VN...d>2.942183017730713 5.374790191650391 ...> TRP CA 395 ASP CA 318 ASP CA 362 1UNF

  19. 9,400 years of cosmic radiation and solar activity from ice cores and tree rings.

    Science.gov (United States)

    Steinhilber, Friedhelm; Abreu, Jose A; Beer, Jürg; Brunner, Irene; Christl, Marcus; Fischer, Hubertus; Heikkilä, Ulla; Kubik, Peter W; Mann, Mathias; McCracken, Ken G; Miller, Heinrich; Miyahara, Hiroko; Oerter, Hans; Wilhelms, Frank

    2012-04-17

    Understanding the temporal variation of cosmic radiation and solar activity during the Holocene is essential for studies of the solar-terrestrial relationship. Cosmic-ray produced radionuclides, such as (10)Be and (14)C which are stored in polar ice cores and tree rings, offer the unique opportunity to reconstruct the history of cosmic radiation and solar activity over many millennia. Although records from different archives basically agree, they also show some deviations during certain periods. So far most reconstructions were based on only one single radionuclide record, which makes detection and correction of these deviations impossible. Here we combine different (10)Be ice core records from Greenland and Antarctica with the global (14)C tree ring record using principal component analysis. This approach is only possible due to a new high-resolution (10)Be record from Dronning Maud Land obtained within the European Project for Ice Coring in Antarctica in Antarctica. The new cosmic radiation record enables us to derive total solar irradiance, which is then used as a proxy of solar activity to identify the solar imprint in an Asian climate record. Though generally the agreement between solar forcing and Asian climate is good, there are also periods without any coherence, pointing to other forcings like volcanoes and greenhouse gases and their corresponding feedbacks. The newly derived records have the potential to improve our understanding of the solar dynamics and to quantify the solar influence on climate.

  20. Empirically modelled Pc3 activity based on solar wind parameters

    Directory of Open Access Journals (Sweden)

    T. Raita

    2010-09-01

    Full Text Available It is known that under certain solar wind (SW/interplanetary magnetic field (IMF conditions (e.g. high SW speed, low cone angle the occurrence of ground-level Pc3–4 pulsations is more likely. In this paper we demonstrate that in the event of anomalously low SW particle density, Pc3 activity is extremely low regardless of otherwise favourable SW speed and cone angle. We re-investigate the SW control of Pc3 pulsation activity through a statistical analysis and two empirical models with emphasis on the influence of SW density on Pc3 activity. We utilise SW and IMF measurements from the OMNI project and ground-based magnetometer measurements from the MM100 array to relate SW and IMF measurements to the occurrence of Pc3 activity. Multiple linear regression and artificial neural network models are used in iterative processes in order to identify sets of SW-based input parameters, which optimally reproduce a set of Pc3 activity data. The inclusion of SW density in the parameter set significantly improves the models. Not only the density itself, but other density related parameters, such as the dynamic pressure of the SW, or the standoff distance of the magnetopause work equally well in the model. The disappearance of Pc3s during low-density events can have at least four reasons according to the existing upstream wave theory: 1. Pausing the ion-cyclotron resonance that generates the upstream ultra low frequency waves in the absence of protons, 2. Weakening of the bow shock that implies less efficient reflection, 3. The SW becomes sub-Alfvénic and hence it is not able to sweep back the waves propagating upstream with the Alfvén-speed, and 4. The increase of the standoff distance of the magnetopause (and of the bow shock. Although the models cannot account for the lack of Pc3s during intervals when the SW density is extremely low, the resulting sets of optimal model inputs support the generation of mid latitude Pc3 activity predominantly through

  1. Zeeman-Doppler imaging of active young solar type stars

    CERN Document Server

    Hackman, Thomas; Rosén, Lisa; Kochukhov, Oleg; Käpylä, Maarit J

    2015-01-01

    By studying young magnetically active late-type stars, i.e. analogues to the young Sun, one can draw conclusions on the evolution of the solar dynamo. We determine the topology of the surface magnetic field and study the relation between the magnetic field and cool photospheric spots in three young late-type stars. High-resolution spectropolarimetry of the targets were obtained with the HARPSpol instrument mounted at the ESO 3.6 m telescope. The signal-to-noise ratio of the Stokes IV measurements were boosted by combining the signal from a large number of spectroscopic absorption lines through the least squares deconvolution technique. Surface brightness and magnetic field maps were calculated using the Zeeman-Doppler imaging technique. All the three targets show clear signs of both magnetic fields and cool spots. Only one of the targets, namely V1358 Ori, shows evidence of the dominance of non-axisymmetric modes. In two of the targets, the poloidal field is significantly stronger than the toroidal one, indic...

  2. Magnetic helicity and energy spectra of a solar active region

    CERN Document Server

    Zhang, Hongqi; Sokoloff, D D

    2013-01-01

    We compute magnetic helicity and energy spectra of the solar active region NOAA 11158 during 11-15 February 2011 at 20 degr southern heliographic latitude using observational photospheric vector magnetograms. We adopt the isotropic representation of the Fourier-transformed two-point correlation tensor of the magnetic field. The sign of magnetic helicity turns out to be predominantly positive at all wavenumbers. This sign is consistent with what is theoretically expected for the southern hemisphere. The relative magnetic helicity is around 8% and strongest at intermediate wavenumbers of k ~ 0.4 Mm^{-1}, corresponding to a scale of 2 pi/k ~ 16 Mm. The same sign and a somewhat smaller value is also found for the relative current helicity evaluated in real space based on the vertical components of magnetic field and current density. The current helicity spectrum is estimated from the magnetic helicity spectrum and its modulus shows a k^{-5/3} spectrum at large wavenumbers. A similar power law is also obtained for...

  3. Simulation of ionospheric corrections regarding of solar activity on GNSS

    Energy Technology Data Exchange (ETDEWEB)

    Schlueter, S.; Engler, E. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V., Neustrelitz (Germany)

    1999-07-01

    Future use of satellite navigation systems in transportation, especially in aviation and shipping, will make great demands on precision and integrity of existing new systems. As a first step in the direction of a GNSS, the US, Japan and Europe are building up the GPS augmentation systems WAAS, MSAS and EGNOS to improve the current situation in navigation and positioning. The improvement of existing as well as the development of new systems needs suitable simulation tools for design and validation. In this context the projects NavSim and SatNav SIMplus have to be seen. They are parts of the cooperation agreements between DLR (Deutsches Zentrum fuer Luft- und Raumfahrt) and DSS (Daymler Chrysler Aerospace, Dornier Satellitensystem GmbH). Both projects complement on another on the way to establish and end-to-end software simulator for navigation systems. Here we present some preliminary simulations based on the ionospheric module of the NavSim simulator taking into account the situation of high solar activity in the years 2000-2001. (orig.)

  4. On the statistical relationship between solar activity and spontaneous social processes

    Science.gov (United States)

    Rodkin, M. V.; Kharin, E. P.

    2014-12-01

    The starting times of mass spontaneous social movements have been compared with temporal changes in solar activity (Wolf numbers) and in the Aa index of geomagnetic activity. It is shown that relatively high values of solar and, hence, geomagnetic activity are typical (on average) of a set of years when social cataclysms began. In addition, the relationship between social activity and geomagnetic activity is expressed somewhat more strongly than with solar activity. Heliogeomagnetic activity itself is not, however, the cause of social conflicts, as is evidenced by the weakness of the statistical relationship and the fact that the time intervals of an extremely large number of social conflicts (the decades of the 1800s, 1910s, and 1990s) occur during periods of a reduced mean level of solar and geomagnetic activity. From an averaged statistical model of the solar-geomagnetic influence on social activity and the current status and forecast of the 24th solar cycle, we can assume that heliogeomagnetic factors will contribute to an increased level of sociopolitical activity at least until the end of 2014 and, possibly, a little longer.

  5. Solar activity and terrestrial climate: an analysis of some purported correlations

    DEFF Research Database (Denmark)

    Laut, Peter

    2003-01-01

    The last decade has seen a revival of various hypotheses claiming a strong correlation between solar activity and a number of terrestrial climate parameters: Links between cosmic rays and cloud cover, first total cloud cover and then only low clouds, and between solar cycle lengths and Northern H...

  6. Solar attitude control including active nutation damping in a fixed-momentum wheel satellite

    Science.gov (United States)

    Azor, Ruth

    1992-08-01

    In geostationary cruise of a momentum biased satellite, it is necessary to stabilize the roll/yaw attitude due to disturbances, caused mainly by solar pressure. This work presents a roll/yaw control, which is obtained by the use of solar arrays and fixed flaps as actuators, with a horizon sensor for roll measurement. The design also includes an active nutation damping.

  7. Determining the solar wind speed above active regions using remote radio-wave observations.

    Science.gov (United States)

    Bougeret, J L; Fainberg, J; Stone, R G

    1983-11-04

    A new technique has made it possible to measure the velocity of portions of the solar wind during its flow outward from the sun. This analysis utilizes spacecraft (ISEE-3) observations of radio emission generated in regions of the solar wind associated with solar active regions. By tracking the source of these radio waves over periods of days, it is possible to measure the motion of the emission regions. Evidence of solar wind acceleration during this outward flow, consistent with theoretical models, has also been obtained.

  8. Organic solar cells: an overview focusing on active layer morphology.

    Science.gov (United States)

    Benanti, Travis L; Venkataraman, D

    2006-01-01

    Solar cells constructed of organic materials are becoming increasingly efficient due to the discovery of the bulk heterojunction concept. This review provides an overview of organic solar cells. Topics covered include: a brief history of organic solar cell development; device construction, definitions, and characteristics; and heterojunction morphology and its relation to device efficiency in conjugated polymer/fullerene systems. The aim of this article is to show that researchers are developing a better understanding of how material structure relates to function and that they are applying this knowledge to build more efficient light-harvesting devices.

  9. Spectral analysis of auroral geomagnetic activity during various solar cycles between 1960 and 2014

    Science.gov (United States)

    Kotzé, Pieter Benjamin

    2016-12-01

    In this paper we use wavelets and Lomb-Scargle spectral analysis techniques to investigate the changing pattern of the different harmonics of the 27-day solar rotation period of the AE (auroral electrojet) index during various phases of different solar cycles between 1960 and 2014. Previous investigations have revealed that the solar minimum of cycles 23-24 exhibited strong 13.5- and 9.0-day recurrence in geomagnetic data in comparison to the usual dominant 27.0-day synodic solar rotation period. Daily mean AE indices are utilized to show how several harmonics of the 27-day recurrent period change during every solar cycle subject to a 95 % confidence rule by performing a wavelet analysis of each individual year's AE indices. Results show that particularly during the solar minimum of 23-24 during 2008 the 27-day period is no longer detectable above the 95 % confidence level. During this interval geomagnetic activity is now dominated by the second (13.5-day) and third (9.0-day) harmonics. A Pearson correlation analysis between AE and various spherical harmonic coefficients describing the solar magnetic field during each Carrington rotation period confirms that the solar dynamo has been dominated by an unusual combination of sectorial harmonic structure during 23-24, which can be responsible for the observed anomalously low solar activity. These findings clearly show that, during the unusual low-activity interval of 2008, auroral geomagnetic activity was predominantly driven by high-speed solar wind streams originating from multiple low-latitude coronal holes distributed at regular solar longitude intervals.

  10. Long-term variations of geomagnetic activity and their solar sources

    CERN Document Server

    Kirov, B; Georgieva, K; Nepomnyashtaya, E V; Shelting, B D

    2013-01-01

    Geomagnetic activity in each phase of the solar cycle consists of 3 parts: (1) a floor below which the geomagnetic activity cannot fall even in the absence of sunspots, related to moderate graduate commencement storms; (2) sunspot-related activity due to sudden commencement storms caused by coronal mass ejections; (3) graduate commencement storms due to high speed solar wind from solar coronal holes. We find that the changes in the floor depend on the global magnetic moment of the Sun, and on the other side, from the height of the floor we can judge about the amplitude of the sunspot cycle.

  11. Calculation of the Solar Activity Effect on the Production Rate of Cosmogenic Radiocarbon in Polar Ice

    CERN Document Server

    Nesterenok, A V

    2012-01-01

    The propagation of cosmic rays in the Earth's atmosphere is simulated. Calculations of the omnidirectional differential flux of neutrons for different solar activity levels are presented. The solar activity effect on the production rate of cosmogenic radiocarbon by the nuclear-interacting and muon components of cosmic rays in polar ice is studied. It has been obtained that the $^{14}C$ production rate in ice by the cosmic ray nuclear-interacting component is lower or higher than the average value by 30% during periods of solar activity maxima or minima, respectively. Calculations of the altitudinal dependence of the radiocarbon production rate in ice by the cosmic ray components are illustrated.

  12. New information on solar activity, 1779-1818, from Sir William Herschel's unpublished notebooks

    Science.gov (United States)

    Hoyt, Douglas V.; Schatten, Kenneth H.

    1992-01-01

    Herschel's observations are analyzed in order to determine the level of solar activity for solar cycle 5. It is concluded that solar cycle 5 may have peaked as early as 1801 based upon the average number of groups with a probable secondary maximum in 1804. Depending on the technique adopted, the peak for solar cycle 5 occurred sometime between 1801 and 1804, rather than 1805.2, as commonly assumed. Instead of a solar cycle of 17 yrs, a cycle length of 14 yrs is found. It is also found that the peak yearly mean sunspot number is only about 38 rather than 45, as deduced by Wolf (1855). A technique for making early solar observations homogeneous with modern sunspot observations is proposed.

  13. Energy Storage and Release through the Solar Activity Cycle Models Meet Radio Observations

    CERN Document Server

    Nindos, Alexander

    2012-01-01

    For nearly sixty years, radio observations have provided a unique insight into the physics of the active and quiescent solar atmosphere. Thanks to the variety of emission mechanisms and to the large altitude range available to observations, fundamental plasma parameters have been measured from the low chromosphere to the upper corona and interplanetary medium. This book presents current research in solar radio astronomy and shows how well it fits in the exceptional scientific context brought by the current space solar observatories. It essentially contains contributed research and review papers presented during the 2010 Community of European Solar Radio Astronomers (CESRA) meeting, which took place in Belgium in June 2010. This book is aimed at graduate students and researchers working in solar physics and space science. Previously published in Solar Physics journal, Vol. 273/2, 2011.

  14. Program plan for reliability and maintainability in active solar heating and cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    1980-10-01

    This document presents a plan for the Department of Energy, Office of Solar Applications for Buildings program addressing reliability and maintainability (R and M) of active solar energy systems. The goal of the R and M program is to accelerate the removal of reliability and maintainability as major concerns impeding the widespread adoption of solar energy systems. Specific objectives that support that goal are as follows: (1) provide all groups that have solar R and M concerns with the information that is available to the program and that can assist in alleviating those concerns; (2) assist the solar energy industry in improving levels of R and M performance in state-of-the-art solar energy systems, components, and materials; (3) assist in the early development of a viable infrastructure for the design, manufacture, installation, and maintenance of reliable, maintainable, and durable solar energy systems; (4) assist in the development of appropriate standards, code provisions, and certification programs relating to the R and M performance of solar energy systems, components, and materials; and (5) develop the information required to support the other activities within the R and M program. These objectives correspond to five areas of action: regulations, research and development, technology transfer, solar industry infrastructure development, and data collection and analysis. (WHK)

  15. The ancient Egyptian civilization: maximum and minimum in coincidence with solar activity

    Science.gov (United States)

    Shaltout, M.

    It is proved from the last 22 years observations of the total solar irradiance (TSI) from space by artificial satellites, that TSI shows negative correlation with the solar activity (sunspots, flares, and 10.7cm Radio emissions) from day to day, but shows positive correlations with the same activity from year to year (on the base of the annual average for each of them). Also, the solar constant, which estimated fromth ground stations for beam solar radiations observations during the 20 century indicate coincidence with the phases of the 11- year cycles. It is known from sunspot observations (250 years) , and from C14 analysis, that there are another long-term cycles for the solar activity larger than 11-year cycle. The variability of the total solar irradiance affecting on the climate, and the Nile flooding, where there is a periodicities in the Nile flooding similar to that of solar activity, from the analysis of about 1300 years of the Nile level observations atth Cairo. The secular variations of the Nile levels, regularly measured from the 7 toth 15 century A.D., clearly correlate with the solar variations, which suggests evidence for solar influence on the climatic changes in the East African tropics The civilization of the ancient Egyptian was highly correlated with the Nile flooding , where the river Nile was and still yet, the source of the life in the Valley and Delta inside high dry desert area. The study depends on long -time historical data for Carbon 14 (more than five thousands years), and chronical scanning for all the elements of the ancient Egyptian civilization starting from the firs t dynasty to the twenty six dynasty. The result shows coincidence between the ancient Egyptian civilization and solar activity. For example, the period of pyramids building, which is one of the Brilliant periods, is corresponding to maximum solar activity, where the periods of occupation of Egypt by Foreign Peoples corresponding to minimum solar activity. The decline

  16. Solar Indices - Solar Corona

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  17. Solar Indices - Solar Flares

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  18. Solar Indices - Solar Irradiance

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  19. Solar Indices - Solar Ultraviolet

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  20. Warm Spitzer Photometry of XO-4b, HAT-P-6b and HAT-P-8b

    CERN Document Server

    Todorov, Kamen O; Knutson, Heather A; Burrows, Adam; Sada, Pedro V; Cowan, Nicolas B; Agol, Eric; Desert, Jean-Michel; Fortney, Jonathan J; Charbonneau, David; Laughlin, Gregory; Langton, Jonathan; Showman, Adam P; Lewis, Nikole K

    2011-01-01

    We have analyzed Warm Spitzer/IRAC observations of the secondary eclipses of three planets, XO-4b, HAT-P-6b and HAT-P-8b. We measure secondary eclipse amplitudes at 3.6{\\mu}m and 4.5{\\mu}m for each target. XO-4b exhibits a stronger eclipse depth at 4.5{\\mu}m than at 3.6{\\mu}m, which is consistent with the presence of a temperature inversion. HAT-P-8b shows a stronger eclipse amplitude at 3.6{\\mu}m, and is best-described by models without a temperature inversion. The eclipse depths of HAT-P-6b can be fitted with models with a small or no temperature inversion. We consider our results in the context of a postulated relationship between stellar activity and temperature inversions and a relationship between irradiation level and planet dayside temperature, as discussed by Knutson et al. (2010) and Cowan & Agol (2011), respectively. Our results are consistent with these hypotheses, but do not significantly strengthen them. To measure accurate secondary eclipse central phases, we require accurate ephemerides. W...

  1. A summary of recent activities at the National Solar Thermal Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, C.P.

    1992-09-01

    The United States Department of Energy`s National Solar Thermal Test Facility (NSTTF), located at Sandia National Laboratories in Albuquerque, New Mexico, is the major facility for testing of solar thermal components and systems in the United States. Since originally being constructed as the Central Receiver Test Facility in the late 1970`s, its mission has been expanded to include distributed receiver technologies, and it now includes line-focus and point-focus collectors, two solar furnaces, and an engine test facility. In addition, the unique capabilities of the facility have been applied to a wide variety of tests unrelated to solar energy, but using the intense heat from concentrated solar radiation or using the large-scale optical systems at the site. In this paper, current activities at the NSTTF are summarized, with an emphasis on activities that have not been described elsewhere.

  2. A summary of recent activities at the National Solar Thermal Test Facility

    Science.gov (United States)

    Cameron, C. P.

    The United States Department of Energy's National Solar Thermal Test Facility (NSTTF), located at Sandia National Laboratories in Albuquerque, New Mexico, is the major facility for testing of solar thermal components and systems in the United States. Since originally being constructed as the Central Receiver Test Facility in the late 1970's, its mission has been expanded to include distributed receiver technologies, and it now includes line-focus and point-focus collectors, two solar furnaces, and an engine test facility. In addition, the unique capabilities of the facility have been applied to a wide variety of tests unrelated to solar energy, but using the intense heat from concentrated solar radiation or using the large-scale optical systems at the site. In this paper, current activities at the NSTTF are summarized, with an emphasis on activities that have not been described elsewhere.

  3. A summary of recent activities at the National Solar Thermal Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, C.P.

    1992-01-01

    The United States Department of Energy's National Solar Thermal Test Facility (NSTTF), located at Sandia National Laboratories in Albuquerque, New Mexico, is the major facility for testing of solar thermal components and systems in the United States. Since originally being constructed as the Central Receiver Test Facility in the late 1970's, its mission has been expanded to include distributed receiver technologies, and it now includes line-focus and point-focus collectors, two solar furnaces, and an engine test facility. In addition, the unique capabilities of the facility have been applied to a wide variety of tests unrelated to solar energy, but using the intense heat from concentrated solar radiation or using the large-scale optical systems at the site. In this paper, current activities at the NSTTF are summarized, with an emphasis on activities that have not been described elsewhere.

  4. The Variability of Solar Spectral Irradiance and Solar Surface Indices Through the Solar Activity Cycles 21-23

    Science.gov (United States)

    Deniz Goker, Umit

    2016-07-01

    A study of variations of solar spectral irradiance (SSI) in the wavelength ranges 121.5 nm-300.5 nm for the period 1981-2009 is presented. We used various data for ultraviolet (UV) spectral lines and international sunspot number (ISSN) from interactive data centers as SME (NSSDC), UARS (GDAAC), SORCE (LISIRD) and SIDC, respectively. We developed a special software for extracting the data and reduced this data by using the MATLAB. In this respect, we revealed negative correlations of intensities of UV (289.5 nm-300.5 nm) emission lines originating in the solar chromosphere with the ISSN index during the unusually prolonged minimum between the solar cycles (SCs) 23 and 24. We also compared our results with the ground-based telescopes as Solar Irradiance Platform, Stanford Data (SFO), Kodaikanal Data (KKL) and NGDC Homepage (Rome and Learmonth Solar Observatories). We studied the variations of total solar irradiance (TSI), magnetic field, sunspots/sunspot groups, Ca II K-flux, faculae and plage areas data with these ground-based telescopes, respectively. We reduced the selected data using the Phyton programming language and plot with the IDL programme. Therefore, we found that there was a decrease in the area of bright faculae and chromospheric plages while the percentage of dark faculae and plage decrease, as well. However, these decreases mainly occurred in small sunspots, contrary to this, these terms in large sunspot groups were comparable to previous SCs or even larger. Nevertheless, negative correlations between ISSN and SSI data indicate that these emissions are in close connection with the classes of sunspots/sunspot groups and "PLAGE" regions. Finally, we applied the time series of the chemical elements correspond to the wavelengths 121.5 nm-300.5 nm and compared with the ISSN data. We found an unexpected increasing in the 298.5 nm for the Fe II element. The variability of Fe II (298.5 nm) is in close connection with the plage regions and the sizes of the

  5. Breakup and finite-range effects on the 8B(d,n)9C reaction

    CERN Document Server

    Fukui, Tokuro; Yahiro, Masanobu

    2014-01-01

    The astrophysical factor of 8B(p,{\\gamma})9C at zero energy, S18(0), is determined by a three-body coupled-channels analysis of the transfer reaction 8B(d,n)9C at 14.4 MeV/nucleon. Effects of the breakup channels of deuteron are investigated with the continuum-discretized coupled-channels method (CDCC). It is found that the transfer process through the deuteron breakup states, its interference with that through the deuteron ground state in particular, gives a large increase in the transfer cross section. The finite-range effects with respect to the proton- neutron relative coordinate are found to be less than 5%. As a result of the present analysis, S18(0) = 33 +/- 10 eVb is obtained that is smaller than the result of the previous DWBA analysis by about 26%.

  6. Beta-ray angular distributions of spin aligned {sup 8}Li and {sup 8}B

    Energy Technology Data Exchange (ETDEWEB)

    Sumikama, T. [Department of Physics, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Iwakoshi, T. [Department of Physics, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Nagatomo, T. [Department of Physics, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Ogura, M. [Department of Physics, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Nakashima, Y. [Department of Physics, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Fujiwara, H. [Department of Physics, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Matsuta, K. [Department of Physics, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Minamisono, T. [Department of Physics, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Mihara, M. [Department of Physics, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Fukuda, M. [Department of Physics, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Minamisono, K. [TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, V6T 2A3 (Canada); Yamaguchi, T. [Gesellschaft fuer Schwerionenforschung, Planckstrasse 1, D-64291 Darmstadt (Germany)

    2004-12-27

    The alignment correlation terms in the {beta}-ray angular distributions from spin aligned {sup 8}Li and {sup 8}B have been measured precisely. The difference of these terms between the mirror pair is compared with the prediction. As a result, the G-parity violating induced tensor term is found to be small. The significant contribution from the second-forbidden matrix elements is shown by comparing with the {beta}-{alpha} correlation coefficients.

  7. Inclusion body hepatitis (IBH) outbreak associated with fowl adenovirus type 8b in broilers

    OpenAIRE

    2013-01-01

    The causative agent of inclusion body hepatitis (IBH) was identified as fowl adenovirus (FAdV) type 8b, a member of the Fowl adenovirus E species, based on PCR results of adenoviral polymerase and the hexon gene in an outbreak of acute mortality that affected a broiler flock of 12,000 animals. In two waves of elevated mortality rate, a total of 264 chickens were found dead. Affected birds showed ruffled feathers, depression, watery droppings and limping. Th...

  8. On Magnetic Activity Band Overlap, Interaction, and the Formation of Complex Solar Active Regions

    CERN Document Server

    McIntosh, Scott W

    2014-01-01

    Recent work has revealed an phenomenological picture of the how the $\\sim$11-year sunspot cycle of Sun arises. The production and destruction of sunspots is a consequence of the latitudinal-temporal overlap and interaction of the toroidal magnetic flux systems that belong to the 22-year magnetic activity cycle and are rooted deep in the Sun's convective interior. We present a conceptually simple extension of this work, presenting a hypothesis on how complex active regions can form as a direct consequence of the intra- and extra-hemispheric interaction taking place in the solar interior. Furthermore, during specific portions of the sunspot cycle we anticipate that those complex active regions may be particular susceptible to profoundly catastrophic breakdown---producing flares and coronal mass ejections of most severe magnitude.

  9. Magnetic activity in the young solar analog LQ Hydrae. I. Active longitudes and cycles

    Science.gov (United States)

    Berdyugina, S. V.; Pelt, J.; Tuominen, I.

    2002-11-01

    We present the first evidence that a single active dwarf of solar type can show a long-lived, nonaxisymmetric spot distribution - active longitudes on opposite hemispheres, similar to evolved, rapidly rotating RS CVn-type binary stars. We analyse new as well as published photometric observations of the young active dwarf LQ Hya, spanning almost 20 years. We find that activity of the star has three activity cycles: a 5.2-yr ``flip-flop'' cycle, a 7.7-yr period in the amplitude modulation of the brightness and an approximately 15-yr period in variations of the mean brightness. The two shorter cycles are related to the alternating active longitudes and are similar to cycles observed in RS CVn-type stars. The 15-yr cycle reflects periodic changes of the mean spottedness of the star and resembles the solar 11-year cycle. The spot rotation period (about 1.6 days) changes during the 15-yr cycle, indicating the presence of small differential rotation. The lengths of the three cycles are related as 3:2:1, with the repetition of the spot configuration after 15 years. We discuss the possibility that the observed spot cycles represent two different magnetic dynamo modes operating in LQ Hya: an axisymmetric mode, as in the Sun, and a nonaxisymmetric higher order mode with two cycles in spot patterns. Our results suggest that young stars exhibit their cycles in spot distribution, as seen in LQ Hya. This is in contrast to the conclusion based on the analysis of Ca Ii H&K emission from plages. The results suggest also that the Vaughan-Preston gap represents a transition from a multiple-mode dynamo to a single-mode dynamo. Table 2 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/394/505

  10. A logistic model for magnetic energy storage in solar active regions

    Institute of Scientific and Technical Information of China (English)

    Hua-Ning Wang; Yan-Mei Cui; Han He

    2009-01-01

    Previous statistical analyses of a large number of SOHO/MDI full disk longitu-dinal magnetograms provided a result that demonstrated how responses of solar flares to photospheric magnetic properties can be fitted with sigmoid functions. A logistic model reveals that these fitted sigmoid functions might be related to the free energy storage process in solar active regions. Although this suggested model is rather simple, the free energy level of active regions can be estimated and the probability of a solar flare with importance over a threshold can be forecast within a given time window.

  11. The Solar Thermal Design Assistance Center report of its activities and accomplishments in Fiscal Year 1993

    Energy Technology Data Exchange (ETDEWEB)

    Menicucci, D.F.

    1994-03-01

    The Solar Thermal Design Assistance Center (STDAC) at Sandia National Laboratories is a resource provided by the US Department of Energy`s Solar Thermal Program. Its major objectives are to accelerate the use of solar thermal systems through (a) direct technical assistance to users, (b) cooperative test, evaluation, and development efforts with private industry, and (c) educational outreach activities. This report outlines the major activities and accomplishments of the STDAC in Fiscal Year 1993. The report also contains a comprehensive list of persons who contacted the STDAC by telephone for information or technical consulting.

  12. Solar activity in the past and the chaotic behaviour of the dynamo

    CERN Document Server

    Arlt, R

    2014-01-01

    The record of solar activity is reviewed here with emphasis on peculiarities. Since sunspot positions tell us a lot more about the solar dynamo than the various global sunspot numbers, we first focus on the records of telescopic observations of sunspots leading to positional information. Then we turn to the proxy record from cosmogenic isotope abundances, which shows recurrent grand minima over the last 9500 years. The apparent distinction between episodes of strong modulation, and intervening episodes with milder modulation and weaker overall activity, hints at the solar dynamo following a variety of solutions, with different symmetries, over the course of millennia.

  13. Recent National Solar Thermal Test Facility activities, in partnership with industry

    Science.gov (United States)

    Ghanbari, Cherly; Cameron, Christopher P.; Ralph, Mark E.; Pacheco, James E.; Rawlinson, K. Scott; Evans, Lindsey R.

    The National Solar Thermal Test Facility (NSTTF) at Sandia National Laboratories in Albuquerque, New Mexico, USA conducts testing of solar thermal components and systems, funded primarily by the US Department of Energy. Activities are conducted in support of Central Receiver Technology, Distributed Receiver Technology and Design Assistance projects. All activities are performed in support of various cost-shared government/industry joint ventures and, on a design assistance basis, in support of a number of other industry partners.

  14. Recent National Solar Thermal Test Facility activities, in partnership with industry

    Energy Technology Data Exchange (ETDEWEB)

    Ghanbari, C.; Cameron, C.P.; Ralph, M.E.; Pacheco, J.E.; Rawlinson, K.S. [Sandia National Labs., Albuquerque, NM (United States); Evans, L.R. [Ewing Technical Design, Albuquerque, NM (United States)

    1994-10-01

    The National Solar Thermal Test Facility (NSTTF) at Sandia National Laboratories in Albuquerque, New Mexico, USA conducts testing of solar thermal components and systems, funded primarily by the US Department of Energy. Activities are conducted in support of Central Receiver Technology, Distributed Receiver Technology and Design Assistance projects. All activities are performed in support of various cost-shared government/industry joint ventures and, on a design assistance basis, in support of a number of other industry partners.

  15. Solar Spectral Irradiance Variability of Some Chromospheric Emission Lines Through the Solar Activity Cycles 21-23

    Science.gov (United States)

    Göker, Ü. D.; Gigolashvili, M. Sh.; Kapanadze, N.

    2017-02-01

    A study of variations of solar spectral irradiance (SSI) in the wavelength ranges 121.5 nm-300.5 nm for the period 1981-2009 is presented. We used various data for ultraviolet (UV) spectral lines and international sunspot number (ISSN) from interactive data centers such as SME (NSSDC), UARS (GDAAC), SORCE (LISIRD) and SIDC, respectively. We reduced these data by using the MATLAB software package. In this respect, we revealed negative correlations of intensities of UV (289.5 nm-300.5 nm) spectral lines originating in the solar chromosphere with the ISSN index during the unusually prolonged minimum between the solar activity cycles (SACs) 23 and 24. We also compared our results with the variations of solar activity indices obtained by the ground-based telescopes. Therefore, we found that plage regions decrease while facular areas are increasing in SAC 23. However, the decrease in plage regions is seen in small sunspot groups (SGs), contrary to this, these regions in large SGs are comparable to previous SACs or even larger as is also seen in facular areas. Nevertheless, negative correlations between ISSN and SSI data indicate that these variations are in close connection with the classes of sunspots/SGs, faculae and plage regions. Finally, we applied the time series analysis of spectral lines corresponding to the wavelengths 121.5 nm-300.5 nm and made comparisons with the ISSN data. We found an unexpected increase in the 298.5 nm line for the Fe II ion. The variability of Fe II ion 298.5 nm line is in close connection with the facular areas and plage regions, and the sizes of these solar surface indices play an important role for the SSI variability, as well. So, we compared the connection between the sizes of faculae and plage regions, sunspots/SGs, chemical elements and SSI variability. Our future work will be the theoretical study of this connection and developing of a corresponding model.

  16. A 300-Year Typhoon Record in Taiwan and the Relationship with Solar Activity

    Directory of Open Access Journals (Sweden)

    Chih-wen Hung

    2013-01-01

    Full Text Available Previous studies have identified possible linkages between solar activity and tropical cyclone activity in the United States and Caribbean. This study used historical typhoon records dating back to the early 1700s, the Central Weather Bureau records (since 1897, and the JTWC (Joint Typhoon Warning Center (since 1945 to investigate the relationship between solar activity and the number of typhoons in Taiwan. The results show that a negative relationship exists between solar activity and typhoon frequency in Taiwan at decadal time scales. Fewer typhoons occurred during the periods 1770 to 1790 and 1930 to 1960, with a higher number of typhoons occurring during 1810 to 1830 and 1870 to 1930. A likely mechanism for the relationship is that more intense solar activity can warm the lower stratosphere and the upper troposphere through absorption of solar radiation by atmospheric ozone. This would decrease the convective available potential energy and reduce the frequency of typhoon occurrence. As a consequence, fewer typhoons form over the western North Pacific with fewer affecting Taiwan. The negative correlation between solar activity and the number of typhoons affecting Taiwan is important to understand changes in the frequency and behavior of typhoons resulting from climate change.

  17. Precision measurement of the $^{7}$Be(p, $\\gamma$)$\\,^{8}$B cross section with an implanted $^{7}$Be target

    CERN Document Server

    Baby, L T; Goldring, G; Hass, M; Weissman, L; Fedosseev, V; Köster, U; Nir-El, Y; Haquin, G; Gäggeler, H W; Weinreich, R

    2003-01-01

    The $^{7}$Be(p, $\\gamma$) $\\,^{8}$B reaction plays a central role in the evaluation of solar neutrino fluxes. We report on a new precision measurement of the cross section of this reaction, following our previous experiment with an implanted $^{7}$Be target, a raster- scanned beam, and the elimination of the backscattering loss. The new measurement incorporates a more abundant $^{7}$Be target and a number of improvements in design and procedure. The point at E$_{lab}$ = 991 keV was measured several times under varying experimental conditions, yielding a value of S$_{17}$(E$_{c.m.}$ = 850 keV) = 24.0 $\\pm$ 0.5 eV b. Measurements were carried out at lower energies as well. Because of the precise knowledge of the implanted $^{7}$Be density profile, it was possible to reconstitute both the off- and on-resonance parts of the cross section and to obtain from the entire set of measurements an extrapolated value of S$_{17}$(0)=21.2 $\\pm$ 0.7 eV b.

  18. Solar activity and transformer failures in the Greek national electric grid

    Directory of Open Access Journals (Sweden)

    Zois Ioannis Panayiotis

    2013-11-01

    Full Text Available Aims: We study both the short term and long term effects of solar activity on the large transformers (150 kV and 400 kV of the Greek national electric grid. Methods: We use data analysis and various statistical methods and models. Results: Contrary to common belief in PPC Greece, we see that there are considerable both short term (immediate and long term effects of solar activity onto large transformers in a mid-latitude country like Greece. Our results can be summarised as follows: For the short term effects: During 1989–2010 there were 43 “stormy days” (namely days with for example Ap ≥ 100 and we had 19 failures occurring during a stormy day plus or minus 3 days and 51 failures occurring during a stormy day plus or minus 7 days. All these failures can be directly related to Geomagnetically Induced Currents (GICs. Explicit cases are briefly presented. For the long term effects, again for the same period 1989–2010, we have two main results: The annual number of transformer failures seems to follow the solar activity pattern. Yet the maximum number of transformer failures occurs about half a solar cycle after the maximum of solar activity. There is statistical correlation between solar activity expressed using various newly defined long term solar activity indices and the annual number of transformer failures. These new long term solar activity indices were defined using both local (from the geomagnetic station in Greece and global (planetary averages geomagnetic data. Applying both linear and non-linear statistical regression we compute the regression equations and the corresponding coefficients of determination.

  19. Active Control of Solar Array Dynamics During Spacecraft Maneuvers

    Science.gov (United States)

    Ross, Brant A.; Woo, Nelson; Kraft, Thomas G.; Blandino, Joseph R.

    2016-01-01

    Recent NASA mission plans require spacecraft to undergo potentially significant maneuvers (or dynamic loading events) with large solar arrays deployed. Therefore there is an increased need to understand and possibly control the nonlinear dynamics in the spacecraft system during such maneuvers. The development of a nonlinear controller is described. The utility of using a nonlinear controller to reduce forces and motion in a solar array wing during a loading event is demonstrated. The result is dramatic reductions in system forces and motion during a 10 second loading event. A motion curve derived from the simulation with the closed loop controller is used to obtain similar benefits with a simpler motion control approach.

  20. Signatures of Slow Solar Wind Streams from Active Regions in the Inner Corona

    Science.gov (United States)

    Slemzin, V.; Harra, L.; Urnov, A.; Kuzin, S.; Goryaev, F.; Berghmans, D.

    2013-08-01

    The identification of solar-wind sources is an important question in solar physics. The existing solar-wind models ( e.g., the Wang-Sheeley-Arge model) provide the approximate locations of the solar wind sources based on magnetic field extrapolations. It has been suggested recently that plasma outflows observed at the edges of active regions may be a source of the slow solar wind. To explore this we analyze an isolated active region (AR) adjacent to small coronal hole (CH) in July/August 2009. On 1 August, Hinode/EUV Imaging Spectrometer observations showed two compact outflow regions in the corona. Coronal rays were observed above the active-region coronal hole (ARCH) region on the eastern limb on 31 July by STEREO-A/EUVI and at the western limb on 7 August by CORONAS- Photon/TESIS telescopes. In both cases the coronal rays were co-aligned with open magnetic-field lines given by the potential field source surface model, which expanded into the streamer. The solar-wind parameters measured by STEREO-B, ACE, Wind, and STEREO-A confirmed the identification of the ARCH as a source region of the slow solar wind. The results of the study support the suggestion that coronal rays can represent signatures of outflows from ARs propagating in the inner corona along open field lines into the heliosphere.

  1. The nature of the solar activity during the Maunder Minimum revealed by the Guliya ice core record

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Whether the solar activity was very low, and especially whether the solar cycle existed, during the Maunder Minimum (1645-1715 AD), have been disputed for a long time. In this paper we use the Guliya NO3- data, which can reflect the solar activity, to analyze the characteristics of the solar activity during the Maunder Minimum. The results show that the solar activity was indeed low, and solar cycle displayed normal as present, i.e. about 11a, in that period. Moreover, it was found that the solar activity contains a 36-year periodic component probably, which might be related to the variations in the length of the sunspot cycle. This finding is of importance for the study of the relationship between the sun variability and the Earth climate change.

  2. The long-term changes in solar meridional circulation as the cause for the long-term changes in the correlation between solar and geomagnetic activity

    CERN Document Server

    Georgieva, K

    2007-01-01

    Since the beginning of the 20th century, the correlation in the 11-year solar cycle between the sunspot number and geomagnetic aa-index has been decreasing, while the lag between the two has been increasing. We show how this can be used as a proxy for the solar meridional circulation, and investigate the long-term changes in the meridional circulation and their role for solar activity and terrestrial climate.

  3. Vacancy associates promoting solar-driven photocatalytic activity of ultrathin bismuth oxychloride nanosheets.

    Science.gov (United States)

    Guan, Meili; Xiao, Chong; Zhang, Jie; Fan, Shaojuan; An, Ran; Cheng, Qingmei; Xie, Junfeng; Zhou, Min; Ye, Bangjiao; Xie, Yi

    2013-07-17

    Crystal facet engineering of semiconductors is of growing interest and an important strategy for fine-tuning solar-driven photocatalytic activity. However, the primary factor in the exposed active facets that determines the photocatalytic property is still elusive. Herein, we have experimentally achieved high solar photocatalytic activity in ultrathin BiOCl nanosheets with almost fully exposed active {001} facets and provide some new and deep-seated insights into how the defects in the exposed active facets affect the solar-driven photocatalytic property. As the thickness of the nanosheets reduces to atomic scale, the predominant defects change from isolated defects V(Bi)‴ to triple vacancy associates V(Bi)‴V(O)••V(Bi)‴, which is unambiguously confirmed by the positron annihilation spectra. By virtue of the synergic advantages of enhanced adsorption capability, effective separation of electron–hole pairs and more reductive photoexcited electrons benefited from the V(Bi)‴V(O)••V(Bi)‴ vacancy associates, the ultrathin BiOCl nanosheets show significantly promoted solar-driven photocatalytic activity, even with extremely low photocatalyst loading. The finding of the existence of distinct defects (different from those in bulks) in ultrathin nanosheets undoubtedly leads to new possibilities for photocatalyst design using quasi-two-dimensional materials with high solar-driven photocatalytic activity.

  4. Ionospheric response to sudden stratospheric warming events at low and high solar activity

    Science.gov (United States)

    Fang, Tzu-Wei; Fuller-Rowell, Tim; Wang, Houjun; Akmaev, Rashid; Wu, Fei

    2014-09-01

    The sensitivity of the ionospheric response to a sudden stratospheric warming (SSW) event has been examined under conditions of low and high solar activity through simulations using the whole atmosphere model (WAM) and the global ionosphere plasmasphere model (GIP). During non-SSW conditions, simulated daytime mean vertical drifts at the magnetic equator show similar solar activity dependence as an empirical model. Model results of ionospheric total electron content (TEC) and equatorial vertical drift for the January 2009 major SSW, which occurred at very low solar activity conditions, show reasonable agreement with observations. The simulations demonstrate that the E region dynamo is capable of creating the semidiurnal variation of vertical drift. WAM and GIP were also run at high solar activity conditions, using the same lower atmosphere conditions as present in the January 2009 SSW event. The simulations indicate that the amplitude and phase of migrating tides in the dynamo region during the event have similar magnitudes for both solar flux conditions. However, comparing the ionospheric responses to a major SSW under low and high solar activity periods, it was found that the changes in the ionospheric vertical drifts and relative changes in TEC decreased with increasing solar activity. The simulations indicate that the F region dynamo becomes more important throughout the daytime and contributes to the upward drift in the afternoon during the event when the solar activity is higher. Our test simulations also confirm that the increase of the ionospheric conductivity associated with increasing solar activity is responsible for the decrease of vertical drift changes during an SSW. In particular, first, the increase in F region conductivity allows the closure of E region currents through the F region, reducing the polarization electric field before noon. Second, the F region dynamo contributes an upward drift postnoon, maintaining upward drifts till after sunset

  5. Active region plasma outflows as sources of slow/intermediate solar wind

    Science.gov (United States)

    van Driel-Gesztelyi, Lidia M.

    2015-08-01

    L. van Driel-Gesztelyi (1,2,3), D. Baker (1), P. Démoulin (2), Culhane, J.L. (1), M.L. DeRosa (4) C.H. Mandrini (5,6), D.H. Brooks (7), A.N. Fazakerley (1), L.K. Harra (1), L. Zhao (7), T.H. Zurbuchen (7), F.A. Nuevo (5,6), A.M. Vásquez (5,6), G.D. Cristiani (5,6) M. Pick (2)1) UCL/MSSL, UK, (2) Paris Observatory, LESIA, CNRS, France, (3) Konkoly Observatory, Hungary, (4) Lockheed Martin Solar and Astrophysics Laboratory, USA, (5) IAFE, CONICET-UBA, Argentina (6) FCEN, UBA, Argentina (7) Dept. of Atmospheric, Oceanic and Earth Sciences, Univ. of Michigan, USAWe analyse plasma upflows of tens of km/s from the edges of solar active regions discovered by Hinode/EIS and investigate whether or not they become outflows, i.e. find their way into the solar wind. We analyse two magnetic configurations: bipolar and quadrupolar and find that the active region plasma may be directly channeled into the solar wind via interchange reconnection at a high-altitude null point above the active region especially when active regions are located besides coronal holes or in a more complex way via multiple reconnections even from under a closed helmet streamer. We relate the solar observations to in-situ slow/intermediate solar wind streams.

  6. Influence of Solar Activity on State of Wheat Market in Medieval England

    CERN Document Server

    Pustilnik, L A; Pustilnik, Lev A.; Din, Gregory Yom

    2003-01-01

    The database of Prof. Rogers (1887), which includes wheat prices in England in the Middle Ages, was used to search for a possible influence of solar activity on the wheat market. We present a conceptual model of possible modes for sensitivity of wheat prices to weather conditions, caused by solar cycle variations, and compare expected price fluctuations with price variations recorded in medieval England. We compared statistical properties of the intervals between wheat price bursts during years 1249-1703 with statistical properties of the intervals between minimums of solar cycles during years 1700-2000. We show that statistical properties of these two samples are similar, both for characteristics of the distributions and for histograms of the distributions. We analyze a direct link between wheat prices and solar activity in the 17th Century, for which wheat prices and solar activity data (derived from 10Be isotope) are available. We show that for all 10 time moments of the solar activity minimums the observe...

  7. AV-8B Map System II: Moving Map Composer Software Users Manual

    Science.gov (United States)

    2007-11-02

    Plan A4112-23). The authors thank Captain Reese Hines in the AV-8B Program Office for his support of this project. We also thank Ms. Diana Lemon and...Place monitor, keyboard, and mouse next to stack of equipment; • Place scanner on a table with enough clearance for the moving scan bed. (3) Plug...Team Leader: Diana Lemon Project Engineers: Luie Trudy, Jean Carlton 70 Lohrenz et al. C4.5 National Imagery and Mapping Agency (NIMA) NIMA

  8. Are there nu_mu or nu_tau in the flux of solar neutrinos on earth?

    CERN Document Server

    Giunti, C

    2002-01-01

    Using the model independent method of Villante, Fiorentini, Lisi, Fogli, Palazzo, and the rates measured in the SNO and Super-Kamiokande solar neutrino experiment, we calculate the amount of active nu_mu or nu_tau present in the flux of solar neutrinos on Earth. We show that the probability of nu_e->nu_{mu,tau} transitions is larger than zero at 99.89% CL. We find that the averaged flux of nu_{mu,tau} on Earth is larger than 0.17 times the 8B nu_e flux predicted by the BP2000 Standard Solar Model at 99% CL. We also derive a model-independent lower limit of 0.52 at 99% CL for the ratio of the 8B nu_e flux produced in the Sun and its value in the BP2000 Standard Solar Model.

  9. A Space Weather Mission Concept: Observatories of the Solar Corona and Active Regions (OSCAR)

    CERN Document Server

    Strugarek, Antoine; Lee, Arrow; Löschl, Philipp; Seifert, Bernhard; Hoilijoki, Sanni; Kraaikamp, Emil; Mrigakshi, Alankrita Isha; Philippe, Thomas; Spina, Sheila; Bröse, Malte; Massahi, Sonny; O'Halloran, Liam; Blanco, Victor Pereira; Stausland, Christoffer; Escoubet, Philippe; Kargl, Günter

    2014-01-01

    Coronal Mass Ejections (CMEs) and Corotating Interaction Regions (CIRs) are major sources of magnetic storms on Earth and are therefore considered to be the most dangerous space weather events. The Observatories of Solar Corona and Active Regions (OSCAR) mission is designed to identify the 3D structure of coronal loops and to study the trigger mechanisms of CMEs in solar Active Regions (ARs) as well as their evolution and propagation processes in the inner heliosphere. It also aims to provide monitoring and forecasting of geo-effective CMEs and CIRs. OSCAR would contribute to significant advancements in the field of solar physics, improvements of the current CME prediction models, and provide data for reliable space weather forecasting. These objectives are achieved by utilising two spacecraft with identical instrumentation, located at a heliocentric orbital distance of 1~AU from the Sun. The spacecraft will be separated by an angle of 68$^{\\circ}$ to provide optimum stereoscopic view of the solar corona. We ...

  10. The effect of total solar eclipse on the daily activities of Nasalis larvatus (Wurmb.) in Mangrove Center, Kariangau, East Kalimantan

    Science.gov (United States)

    Sya Shanida, Sya; Hanik Lestari, Tiffany; Partasasmita, Ruhyat

    2016-11-01

    The total solar eclipse is an interesting phenomenon because the sun is covered by the moon. This phenomenon is like a night deception for animals, humans, and plants. One of the animals is Bekantan (Nasalis larvatus (Wurmb.)). Nasalis larvatus change its activity when this phenomenon occurs. The aims of the present study are (1) daily activity of Nasalis larvatus on total solar eclipse on March 9th, 2016 and (2) the effect of total solar eclipse on its activity in Mangrove Center, Kariangau, East Kalimantan. The adlibitum method was used in this study on Bekantan's adult female. The result shows that the total solar eclipse has considerable effect on the daily activity of Bekantan. During total solar eclipse, the activity of Bekantan significantly stopped. When the total solar eclipse finished, Bekantan started its daily activity, and it was indicated by feeding activity which was led by alfa-male.

  11. Active solar heating system performance and data review

    Energy Technology Data Exchange (ETDEWEB)

    Bates, J.; Bertarelli, L.; Schmidt, G.

    1999-07-01

    This report summarises the results of a study investigating the performance and costs of solar heating systems in Europe, and their relevance to systems in the UK. Details are given of the identification and review of the available data, the collection of information on UK and overseas systems, and the assessment and analysis of the data. Appendices give a lists of the monitored parameters, European contacts, data sources, the questionnaire for gathering information, and a printout of the data files. (uk)

  12. Exploiting the Magnetic Origin of Solar Activity in Forecasting Thermospheric Density Variations

    Science.gov (United States)

    2014-09-01

    solar EUV irradiance. Unfortunately, establishing and monitoring the absolute radiometric calibration of EUV instru- ments is difficult and much of our...a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE SEP...2014 2. REPORT TYPE 3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE Exploiting the Magnetic Origin of Solar Activity in

  13. Solar sail attitude control including active nutation damping in a fixed-momentum wheel satellite

    Science.gov (United States)

    Azor, Ruth

    1992-02-01

    In the geostationary cruise of a momentum biased satellite, it is necessary to stabilize the roll/yaw attitude due to disturbances caused by solar radiation pressure. This work presents a roll/yaw control system with a horizon sensor for roll measurement. Roll/yaw control is obtained by the use of solar arrays and fixed flaps as actuators. The design also includes an active nutation damping method.

  14. The effects of changing solar activity on climate: contributions from palaeoclimatological studies

    Directory of Open Access Journals (Sweden)

    Engels Stefan

    2012-07-01

    Full Text Available Natural climate change currently acts in concert with human-induced changes in the climate system. To disentangle the natural variability in the climate system and the human-induced effects on the global climate, a critical analysis of climate change in the past may offer a better understanding of the processes that drive the global climate system. In this review paper, we present palaeoclimatological evidence for the past influence of solar variability on Earth’s climate, highlighting the effects of solar forcing on a range of timescales. On a decadal timescale, instrumental measurements as well as historical records show the effects of the 11-year Schwabe cycle on climate. The variation in total solar irradiance that is associated with a Schwabe cycle is only ~1 W m−2 between a solar minimum and a maximum, but winter and spring temperatures on the Northern Hemisphere show a response even to this small-scale variability. There is a large body of evidence from palaeoclimatic reconstructions that shows the influence of solar activity on a centennial to millennial timescale. We highlight a period of low solar activity starting at 2800 years before present when Europe experienced a shift to colder and wetter climate conditions. The spatial pattern of climate change that can be recognized in the palaeoclimatological data is in line with the suggested pattern of climate change as simulated by climate models. Millennial-scale climate oscillations can be recognized in sediment records from the Atlantic Ocean as well as in records of lake-level fluctuations in southeastern France. These oscillations coincide with variation in 14C production as recognized in the atmospheric 14C record (which is a proxy-record for solar activity, suggesting that Earth’s climate is sensitive to changes in solar activity on a millennial timescale as well.

  15. A Space Weather mission concept: Observatories of the Solar Corona and Active Regions (OSCAR)

    DEFF Research Database (Denmark)

    Strugarek, Antoine; Janitzek, Nils; Lee, Arrow

    2015-01-01

    Coronal Mass Ejections (CMEs) and Corotating Interaction Regions (CIRs) are major sources of magnetic storms on Earth and are therefore considered to be the most dangerous space weather events. The Observatories of Solar Corona and Active Regions (OSCAR) mission is designed to identify the 3D str....... The spacecraft will be separated by an angle of 68 degrees to provide optimum stereoscopic view of the solar corona. We study the feasibility of such a mission and propose a preliminary design for OSCAR....

  16. Rescue of defective ATP8B1 trafficking by CFTR correctors as a therapeutic strategy for familial intrahepatic cholestasis

    DEFF Research Database (Denmark)

    van der Woerd, Wendy L; Wichers, Catharina G K; Vestergaard, Anna L;

    2016-01-01

    in cystic fibrosis transmembrane conductance regulator (CFTR), associated with cystic fibrosis, impair protein folding and trafficking. The aim of this study was to investigate whether compounds that rescue CFTR F508del trafficking are capable of improving p.I661T-ATP8B1 plasma membrane expression. METHODS...... functionality. Combination therapy of SAHA and compound C4 resulted in an additional improvement of ATP8B1 cell surface abundance. CONCLUSIONS: This study shows that several CFTR correctors can improve trafficking of p.I661T-ATP8B1 to the plasma membrane in vitro. Hence, these compounds may be suitable...... in other protein folding diseases. Using these compounds, we could indeed show improved trafficking to the (apical) plasma membrane of a mutated ATP8B1 protein, carrying the p.I661T missense mutation. This is the most frequently identified mutation in this rare cholestatic disorder. Importantly, ATP8B1...

  17. Impact of variations in solar activity on hydrological decadal patterns in northern Italy

    Science.gov (United States)

    Zanchettin, D.; Rubino, A.; Traverso, P.; Tomasino, M.

    2008-06-01

    Using spectral and statistical analyses of discharges and basin average precipitation rates acquired over the Po River since the early 1800s, we investigate the impact of variations in solar activity on hydrological decadal patterns over northern Italy. Wet and dry periods appear to alternate in accordance with polarized sunspot cycles. Intriguingly, a solar signature on Po River discharges is detected to be highly significant since the late 1800s, before the onset of sunspots hyperactivity established by the middle 1900s. In particular, observed hydrological patterns over northern Italy are significantly correlated, under periods of quiet sunspot activity, with parameters characterizing the Sun's orbital motion, specifically with the time derivative of the solar angular momentum (τ) which is thought to modulate the strength of the solar wind and sunspot dynamics under weak sunspot activity. The North Atlantic Oscillation (NAO) is detected as potential link between the Sun and Po River discharges, since it is significantly correlated with both solar activity and the decadal variability in the north Italian climate. In particular, positive (negative) NAO anomalies, which are associated with comparatively lower (higher) Po River discharges, are assessed to alternatively correlate at decadal timescales either with τ or with the Earth's geomagnetic activity (GA), which closely follows sunspot activity. This changing correlation seems to be regulated by the strength of sunspot activity: under periods of quiet sunspot activity, a weakening of the GA-NAO connection and a reinforcement of the τ-NAO connection is observed. In this sense, the strength of solar activity apparently modulates the connection between the NAO and Po River discharges.

  18. Structure of 8B from elastic and inelastic 7Be+p scattering

    CERN Document Server

    Mitchell, J P; Johnson, E D; Baby, L T; Kemper, K W; Moro, A M; Peplowski, P; Volya, A S; Wiedenhoever, I

    2013-01-01

    Motivation: Detailed experimental knowledge of the level structure of light weakly bound nuclei is necessary to guide the development of new theoretical approaches that combine nuclear structure with reaction dynamics. Purpose: The resonant structure of 8B is studied in this work. Method: Excitation functions for elastic and inelastic 7Be+p scattering were measured using a 7Be rare isotope beam. Excitation energies ranging between 1.6 and 3.4 MeV were investigated. An R-matrix analysis of the excitation functions was performed. Results: New low-lying resonances at 1.9, 2.5, and 3.3 MeV in 8B are reported with spin-parity assignment 0+, 2+, and 1+, respectively. Comparison to the Time Dependent Continuum Shell (TDCSM) model and ab initio no-core shell model/resonating-group method (NCSM/RGM) calculations is performed. This work is a more detailed analysis of the data first published as a Rapid Communication. [J.P. Mitchell, et al, Phys. Rev. C 82, 011601(R) (2010)] Conclusions: Identification of the 0+, 2+, 1+...

  19. WASP-8b: Characterization of a Cool and Eccentric Exoplanet with Spitzer

    CERN Document Server

    Cubillos, Patricio; Madhusudhan, Nikku; Stevenson, Kevin B; Hardy, Ryan A; Blecic, Jasmina; Anderson, David R; Hardin, Matthew; Campo, Christopher J

    2013-01-01

    WASP-8b has 2.18 times Jupiter's mass and is on an eccentric ($e=0.31$) 8.16-day orbit. With a time-averaged equilibrium temperature of 948 K, it is one of the least-irradiated hot Jupiters observed with the Spitzer Space Telescope. We have analyzed six photometric light curves of WASP-8b during secondary eclipse observed in the 3.6, 4.5, and 8.0 {\\microns} Infrared Array Camera bands. The eclipse depths are $0.113\\pm 0.018$%, $0.069\\pm 0.007$%, and $0.093\\pm 0.023$%, respectively, giving respective brightness temperatures of 1552, 1131, and 938 K. We characterized the atmospheric thermal profile and composition of the planet using a line-by-line radiative transfer code and a Markov-chain Monte Carlo sampler. The data indicated no thermal inversion, independently of any assumption about chemical composition. We noted an anomalously high 3.6-{\\microns} brightness temperature (1552 K); by modeling the eccentricity-caused thermal variation, we found that this temperature is plausible for radiative time scales le...

  20. On the Role of Rotating Sunspots in the Activity of Solar Active Region NOAA 11158

    CERN Document Server

    Vemareddy, P; Maurya, R A

    2012-01-01

    We study the role of rotating sunspots in relation to the evolution of various physical parameters characterizing the non-potentiality of the active region NOAA 11158 and its eruptive events using the magnetic field data from the Helioseismic and Magnetic Imager (HMI) and multi-wavelength observations from the Atmospheric Imaging Assembly (AIA) on board Solar Dynamics Observatory (SDO). From the evolutionary study of HMI intensity and AIA channels, it is observed that the AR consists of two major rotating sunspots one connected to flare-prone region and another with CME. The constructed space-time intensity maps reveal that the sunspots exhibited peak rotation rates coinciding with the occurrence of the major eruptive events. Further, temporal profiles of twist parameters, viz., average shear angle, $\\alpha_{\\rm av}$, $\\alpha_{\\rm best}$, derived from HMI vector magnetograms and the rate of helicity injection, obtained from the horizontal flux motions of HMI line-of-sight magnetograms, corresponded well with ...

  1. HCN channel dendritic targeting requires bipartite interaction with TRIP8b and regulates antidepressant-like behavioral effects

    Science.gov (United States)

    Han, Ye; Heuermann, Robert J.; Lyman, Kyle A.; Fisher, Daniel; Ismail, Quratul-Ain; Chetkovich, Dane M.

    2016-01-01

    Major Depressive Disorder is a prevalent psychiatric condition with limited therapeutic options beyond monoaminergic therapies. Although effective in some individuals, many patients fail to respond adequately to existing treatments and new pharmacologic targets are needed. HCN channels regulate excitability in neurons and blocking HCN channel function has been proposed as a novel antidepressant strategy. However, systemic blockade of HCN channels produces cardiac effects that limit this approach. Knockout (KO) of the brain-specific HCN channel auxiliary subunit TRIP8b also produces antidepressant-like behavioral effects and suggests that inhibiting TRIP8b function could produce antidepressant-like effects without affecting the heart. We examined the structural basis of TRIP8b-mediated HCN channel trafficking and its relationship to antidepressant-like behavior using a viral rescue approach in TRIP8b KO mice. We found that restoring TRIP8b to the hippocampus was sufficient to reverse the impaired HCN channel trafficking and antidepressant-like behavioral effects caused by TRIP8b KO. Moreover, we found that hippocampal expression of a mutated version of TRIP8b further impaired HCN channel trafficking and increased the antidepressant-like behavioral phenotype of TRIP8b KO mice. Thus, modulating the TRIP8b-HCN interaction bidirectionally influences channel trafficking and antidepressant-like behavior. Overall, our work suggests that small molecule inhibitors of the interaction between TRIP8b and HCN should produce antidepressant-like behaviors and could represent a new paradigm for the treatment of Major Depressive Disorder. PMID:27400855

  2. On dependence of seismic activity on 11 year variations in solar activity and/or cosmic rays

    Science.gov (United States)

    Zhantayev, Zhumabek; Khachikyan, Galina; Breusov, Nikolay

    2014-05-01

    It is found in the last decades that seismic activity of the Earth has a tendency to increase with decreasing solar activity (increasing cosmic rays). A good example of this effect may be the growing number of catastrophic earthquakes in the recent rather long solar minimum. Such results support idea on existence a solar-lithosphere relationship which, no doubts, is a part of total pattern of solar-terrestrial relationships. The physical mechanism of solar-terrestrial relationships is not developed yet. It is believed at present that one of the main contenders for such mechanism may be the global electric circuit (GEC) - vertical current loops, piercing and electrodynamically coupling all geospheres. It is also believed, that the upper boundary of the GEC is located at the magnetopause, where magnetic field of the solar wind reconnects with the geomagnetic field, that results in penetrating solar wind energy into the earth's environment. The effectiveness of the GEC operation depends on intensity of cosmic rays (CR), which ionize the air in the middle atmosphere and provide its conductivity. In connection with the foregoing, it can be expected: i) quantitatively, an increasing seismic activity from solar maximum to solar minimum may be in the same range as increasing CR flux; and ii) in those regions of the globe, where the crust is shipped by the magnetic field lines with number L= ~ 2.0, which are populated by anomalous cosmic rays (ACR), the relationship of seismic activity with variations in solar activity will be manifested most clearly, since there is a pronounced dependence of ACR on solar activity variations. Checking an assumption (i) with data of the global seismological catalog of the NEIC, USGS for 1973-2010, it was found that yearly number of earthquake with magnitude M≥4.5 varies into the 11 year solar cycle in a quantitative range of about 7-8% increasing to solar minimum, that qualitatively and quantitatively as well is in agreement with the

  3. Stellar Magnetic Activity, the Earth and Exoplanets: How Future Space Missions Can Contribute to Understanding Solar Activity and Solar-terrestrial Influences

    Science.gov (United States)

    Baliunas, S. L.; Soon, W. W.-H.

    2004-05-01

    The solar spectral and particle output varies over time scales of minutes to eons; some of those variations are documented or claimed to have influenced the terrestrial environment. The origins of solar variability include the progress of fusion through time and the complex interaction of the interior gas and magnetic fields. The Mount Wilson HK Project has yielded information on stellar magnetic activity on more than 2,000 stars going as far back as 38 years in order to put solar magnetic activity in a physical perspective unavailable from theory and models alone. We discuss how future space missions like Space Interferometry Mission (SIM) and Stellar Imager (SI) would contribute to understanding solar variability that has influenced -- and should continue to influence -- life and the environment on earth. This research funded in part by MIT-MSG 5710001241, JPL 1236821, AF 49620-02-1-0194, a grant from NASA HQ and GSFC to SAO for the SI Vision Mission Study, NASA NAG5-7635, NRC COBASE, CRDF 322, Richard Lounsberry Foundation, Langley-Abbot, Rollins, Scholarly Studies and James Arthur Funds (Smithsonian Institution) and several generous individuals.

  4. A Comment on the Suspected Solar Neutrino-Solar Activity Connection

    Science.gov (United States)

    Wilson, Robert M.

    1994-01-01

    Recently, it has been proposed that there exists a highly statistically significant (at greater than or equal to 98% level of confidence) relationship between Ar-37 production rate (viz., solar neutrinos) and the Ap geomagnetic index (viz., solar particles), based on the (chi)-square goodness-of-fit test and correlation analysis, for the interval 1970-1990. While a relationship between the two parameters, indeed, seems to be discernible, the strength of the relationship has been overstated. Instead of being significant at the afore-mentioned level of confidence, the relationship is found to be significant at only greater than or equal to 95% level of confidence, based on Yates' modification to the (chi)-square test for 2 x 2 contingency tables. Likewise, while correlation analysis yields a value of r = 0.2691, it is important to note that such a value suggests that only about 7% of the variance can be 'explained' by the inferred correlation and that the remaining 93% of the variance must be attributed to other sources.

  5. Long-term north-south asymmetry in solar wind speed inferred from geomagnetic activity: A new type of century-scale solar oscillation?

    DEFF Research Database (Denmark)

    Mursula, K.; Zieger, B.

    2001-01-01

    A significant and very similar annual variation in solar wind speed and in geomagnetic activity was recently found around all the four solar cycle minima covered by direct SW observations since mid-1960's. We have shown that the phase of this annual variation reverses with the Sun's polarity...... registrations of geomagnetic activity. We find a significant annual variation during the high-activity solar cycles in mid-19th century and since 1930's. Most interestingly, the SW speed asymmetry in mid-19th century was opposite to the present asymmetry, i.e., the minimum speed region was then shifted toward...

  6. Activity associated with coronal mass ejections at solar minimum - SMM observations from 1984-1986

    Science.gov (United States)

    St. Cyr, O. C.; Webb, D. F.

    1991-01-01

    Seventy-three coronal mass ejections (CMEs) observed by the coronagraph aboard SMM between 1984 and 1986 were examined in order to determine the distribution of various forms of solar activity that were spatially and temporally associated with mass ejections during solar minimum phase. For each coronal mass ejection a speed was measured, and the departure time of the transient from the lower corona estimated. Other forms of solar activity that appeared within 45 deg longitude and 30 deg latitude of the mass ejection and within +/-90 min of its extrapolated departure time were explored. The statistical results of the analysis of these 73 CMEs are presented, and it is found that slightly less than half of them were infrequently associated with other forms of solar activity. It is suggested that the distribution of the various forms of activity related to CMEs does not change at different phases of the solar cycle. For those CMEs with associations, it is found that eruptive prominences and soft X-rays were the most likely forms of activity to accompany the appearance of mass ejections.

  7. Testing the potential of 10Be in varved sediments from two lakes for solar activity reconstruction

    Science.gov (United States)

    Czymzik, Markus; Muscheler, Raimund; Brauer, Achim; Adolphi, Florian; Ott, Florian; Kienel, Ulrike; Dräger, Nadine; Slowinski, Michal; Aldahan, Ala; Possnert, Göran

    2015-04-01

    The potential of 10Be in annually laminated (varved) lake sediments for solar activity reconstruction is, to date, largely unexplored. It is hypothesized that 10Be contents in sediments from well-chosen lakes reflect the solar induced atmospheric production signal. The varved nature of these archives provides the chance to establish solar activity time-series with very high temporal precision. However, so far solar activity reconstruction from 10Be in varved lake sediments is hampered due to a lack of detailed knowledge of the process chain from production in the atmosphere to deposition on the lake floor. Calibrating 10Be time-series from varved lake sediments against complementary proxy records from the same sediment archive as well as instrumental meteorological and solar activity data will allow a process-based understanding of 10Be deposition in these lakes and a quantitative evaluation of their potential for solar activity reconstruction. 10Be concentration and flux time-series at annual resolution were constructed for the period 1983 to 2007 (approx. solar cycles 22 and 23) conducting accelerator mass spectrometry and varve chronology on varved sediments of Lakes Tiefer See and Czechowski, located on an east-west transect at a distance of about 450 km in the lowlands of northern-central Europe. 10Be concentrations vary between 0.9 and 1.8*108atoms/g, with a mean of 1.3*108atoms/g in Lake Tiefer See and between 0.6 and 1.6*108atoms/g, with a mean of 1*108atoms/g in Lake Czechowski. Calculated mean 10Be flux is 2.3*108atoms/cm2/year for Lake Tiefer See and 0.7*108atoms/cm2/year for Lake Czechowski. Calibrating the 10Be time-series against corresponding geochemical μ-XRF profiles, varve thickness and total organic carbon records as well as precipitation data from the nearby stations Schwerin for Lake Tiefer See and Koscierzyna for Lake Czechowski and a neutron monitor record of solar activity suggests (1) a complex interaction of varying processes influencing

  8. Energy spectrum of interplanetary magnetic flux ropes and its connection with solar activity

    Science.gov (United States)

    Wu, D. J.; Feng, H. Q.; Chao, J. K.

    2008-03-01

    Context: Recent observations of the solar wind show that interplanetary magnetic flux ropes (IMFRs) have a continuous scale-distribution from small-scale flux ropes to large-scale magnetic clouds. Aims: In this work, we investigate the energy spectrum of IMFRs and its possible connection with solar activity. Methods: In consideration of the detectable probability of an IMFR to be proportional to its diameter, the actual energy spectrum of IMFRs can be obtained from the observed spectrum based on spacecraft observations in the solar wind. Results: It is found that IMFRs have a negative power-law spectrum with an index α = 1.36±0.03, which is similar to that of solar flares, and is probably representative of interplanetary energy spectrum of coronal mass ejections (CMEs), that is, the energy spectrum of interplanetary CMEs (ICMEs). This indicates that the energy distribution of CMEs has a similar negative power-law spectrum. In particular, there are numerous small-scale CMEs in the solar corona, and their interplanetary consequences may be directly detected in situ by spacecraft in the solar wind as small-scale IMFRs, although they are too weak to appear clearly in current coronagraph observations. Conclusions: The presence of small-scale CMEs, especially the energy spectrum of CMEs is potentially important for understanding both the solar magneto-atmosphere and CMEs.

  9. Deep Solar Activity Minimum 2007-2009: Solar Wind Properties and Major Effects on the Terrestrial Magnetosphere

    Science.gov (United States)

    Farrugia, C. J.; Harris, B.; Leitner, M.; Moestl, C.; Galvin, A. B.; Simunac, K. D. C.; Torbert, R. B.; Temmer, M. B.; Veronig, A. M.; Erkaev, N. V.; Szabo, A.; Ogilvie, K. W.; Luhman, J. G.; Osherovich, V. A.

    2012-01-01

    We discuss the temporal variations and frequency distributions of solar wind and interplanetary magnetic field parameters during the solar minimum of 2007 - 2009 from measurements returned by the IMPACT and PLASTIC instruments on STEREO-A.We find that the density and total field strength were significantly weaker than in the previous minimum. The Alfven Mach number was higher than typical. This reflects the weakness of magnetohydrodynamic (MHD) forces, and has a direct effect on the solar wind-magnetosphere interactions.We then discuss two major aspects that this weak solar activity had on the magnetosphere, using data from Wind and ground-based observations: i) the dayside contribution to the cross-polar cap potential (CPCP), and ii) the shapes of the magnetopause and bow shock. For i) we find a low interplanetary electric field of 1.3+/-0.9 mV/m and a CPCP of 37.3+/-20.2 kV. The auroral activity is closely correlated to the prevalent stream-stream interactions. We suggest that the Alfven wave trains in the fast streams and Kelvin-Helmholtz instability were the predominant agents mediating the transfer of solar wind momentum and energy to the magnetosphere during this three-year period. For ii) we determine 328 magnetopause and 271 bow shock crossings made by Geotail, Cluster 1, and the THEMIS B and C spacecraft during a three-month interval when the daily averages of the magnetic and kinetic energy densities attained their lowest value during the three years under survey.We use the same numerical approach as in Fairfield's empirical model and compare our findings with three magnetopause models. The stand-off distance of the subsolar magnetopause and bow shock were 11.8 R(sub E) and 14.35 R(sub E), respectively. When comparing with Fairfield's classic result, we find that the subsolar magnetosheath is thinner by approx. 1 R(sub E). This is mainly due to the low dynamic pressure which results in a sunward shift of the magnetopause. The magnetopause is more flared

  10. Solar wind and geomagnetism. Toward a standard classification of geomagnetic activity from 1868 to 2009

    Energy Technology Data Exchange (ETDEWEB)

    Zerbo, J.L. [Univ. Polytechnique de Bobo Dioulasso (Burkina Faso); UPMC/Polytechique/CNRS, UMR 7648, Saint-Maur-des-Fosses (France). LPP-Lab. de Physique des Plasmas; Mazaudier, C. Amory [UPMC/Polytechique/CNRS, UMR 7648, Saint-Maur-des-Fosses (France). LPP-Lab. de Physique des Plasmas; Ouattara, F. [Koudougou Univ. (Burkina Faso). Ecole Normale Superieure; Richardson, J.D. [M.I.T., Cambridge, MA (United States). Center for Space Research

    2012-07-01

    We examined solar activity with a large series of geomagnetic data from 1868 to 2009. We have revisited the geomagnetic activity classification scheme of Legrand and Simon (1989) and improve their scheme by lowering the minimum Aa index value for shock and recurrent activity from 40 to 20 nT. This improved scheme allows us to clearly classify about 80% of the geomagnetic activity in this time period instead of only 60% for the previous Legrand and Simon classification. (orig.)

  11. Photospheric and chromospheric magnetic activity of seismic solar analogs. Observational inputs on the solar/stellar connection from Kepler and Hermes

    CERN Document Server

    Salabert, D; Beck, P G; Egeland, R; Palle, P L; Mathur, S; Metcalfe, T S; Nascimento, J -D do; Ceillier, T; Andersen, M F; Hage, A Trivino

    2016-01-01

    We identify a set of 18 solar analogs among the seismic sample of solar-like stars observed by the Kepler satellite rotating between 10 and 40 days. This set is constructed using the asteroseismic stellar properties derived using either the global oscillation properties or the individual acoustic frequencies. We measure the magnetic activity properties of these stars using observations collected by the photometric Kepler satellite and by the ground-based, high-resolution Hermes spectrograph mounted on the Mercator telescope. The photospheric (Sph) and chromospheric (S index) magnetic activity levels of these seismic solar analogs are estimated and compared in relation to the solar activity. We show that the activity of the Sun is comparable to the activity of the seismic solar analogs, within the maximum-to-minimum temporal variations of the 11-year solar activity cycle 23. In agreement with previous studies, the youngest stars and fastest rotators in our sample are actually the most active. The activity of s...

  12. SOLAR MAGNETIC ACTIVITY CYCLES, CORONAL POTENTIAL FIELD MODELS AND ERUPTION RATES

    Energy Technology Data Exchange (ETDEWEB)

    Petrie, G. J. D. [National Solar Observatory, Tucson, AZ 85719 (United States)

    2013-05-10

    We study the evolution of the observed photospheric magnetic field and the modeled global coronal magnetic field during the past 3 1/2 solar activity cycles observed since the mid-1970s. We use synoptic magnetograms and extrapolated potential-field models based on longitudinal full-disk photospheric magnetograms from the National Solar Observatory's three magnetographs at Kitt Peak, the Synoptic Optical Long-term Investigations of the Sun vector spectro-magnetograph, the spectro-magnetograph and the 512-channel magnetograph instruments, and from Stanford University's Wilcox Solar Observatory. The associated multipole field components are used to study the dominant length scales and symmetries of the coronal field. Polar field changes are found to be well correlated with active fields over most of the period studied, except between 2003 and 2006 when the active fields did not produce significant polar field changes. Of the axisymmetric multipoles, only the dipole and octupole follow the poles whereas the higher orders follow the activity cycle. All non-axisymmetric multipole strengths are well correlated with the activity cycle. The tilt of the solar dipole is therefore almost entirely due to active-region fields. The axial dipole and octupole are the largest contributors to the global field except while the polar fields are reversing. This influence of the polar fields extends to modulating eruption rates. According to the Computer Aided CME Tracking, Solar Eruptive Event Detection System, and Nobeyama radioheliograph prominence eruption catalogs, the rate of solar eruptions is found to be systematically higher for active years between 2003 and 2012 than for those between 1997 and 2002. This behavior appears to be connected with the weakness of the late-cycle 23 polar fields as suggested by Luhmann. We see evidence that the process of cycle 24 field reversal is well advanced at both poles.

  13. The acoustic cut-off frequency of the Sun and the solar magnetic activity cycle

    CERN Document Server

    Jimenez, A; Palle, P L

    2011-01-01

    The acoustic cut-off frequency -the highest frequency for acoustic solar eigenmodes- is an important parameter of the solar atmosphere as it determines the upper boundary of the p-mode resonant cavities. At frequencies beyond this value, acoustic disturbances are no longer trapped but traveling waves. Interference amongst them give rise to higher-frequency peaks -the pseudomodes- in the solar acoustic spectrum. The pseudomodes are shifted slightly in frequency with respect to p modes making possible the use of pseudomodes to determine the acoustic cut-off frequency. Using data from GOLF and VIRGO instruments on board the SOHO spacecraft, we calculate the acoustic cut-off frequency using the coherence function between both the velocity and intensity sets of data. By using data gathered by these instruments during the entire lifetime of the mission (1996 till the present), a variation in the acoustic cut-off frequency with the solar magnetic activity cycle is found.

  14. The hemispheric asymmetry of solar activity during the last century and the solar dynamo

    Institute of Scientific and Technical Information of China (English)

    Ashish Goel; Arnab Rai Choudhuri

    2009-01-01

    We believe the Babcock-Leighton process of poloidal field generation to be the main source of irregularity in the solar cycle. The random nature of this process may make the poloidal field in one hemisphere stronger than that in the other hemisphere at the end of a cycle. We expect this to induce an asymmetry in the next sunspot cycle. We look for evidence of this in the observational data and then model it theoretically with our dynamo code. Since actual polar field measurements exist only from the 1970s, we use the polar faculae number data recorded by Sheeley (1991, 2008) as a proxy of the polar field and estimate the hemispheric asymmetry of the polar field in different solar minima during the major part of the twentieth century. This asymmetry is found to have a reasonable correlation with the asymmetry of the next cycle. We then run our dynamo code by feeding information about this asymmetry at the successive minima and compare the results with observational data. We find that the theoretically computed asymmetries of different cycles compare favorably with the observational data, with the correlation co-efficient being 0.73. Due to the coupling between the two hemispheres, any hemispheric asymmetry tends to get attenuated with time. The hemispheric asymmetry of a cycle ei-ther from observational data or from theoretical calculations statistically tends to be less than the asymmetry in the polar field (as inferred from the faculae data) in the preceding minimum. This reduction factor turns out to be 0.43 and 0.51 respectively in observational data and theoretical simulations.

  15. Solar activity around AD 775 from aurorae and radiocarbon

    CERN Document Server

    Neuhaeuser, Ralph

    2015-01-01

    A large variation in 14 C around AD 775 has been considered to be caused by one or more solar super-flares within one year. We critically review all known aurora reports from Europe as well as the Near, Middle, and Far East from AD 731 to 825 and find 39 likely true aurorae plus four more potential aurorae and 24 other reports about halos, meteors, thunderstorms etc., which were previously misinterpreted as aurorae or misdated; we assign probabilities for all events according to five aurora criteria. We find very likely true aurorae in AD 743, 745, 762, 765, 772, 773, 793, 796, 807, and 817. There were two aurorae in the early 770s observed near Amida (now Diyarbakir in Turkey near the Turkish-Syrian border), which were not only red, but also green-yellow - being at a relatively low geo-magnetic latidude, they indicate a relatively strong solar storm. However, it cannot be argued that those aurorae (geo-magnetical latitude 43 to 50 deg, considering five different reconstructions of the geo-magnetic pole) coul...

  16. Influence of solar activity on the precipitation in the North-central China

    Science.gov (United States)

    Zhai, Qian

    2017-02-01

    The time series of sunspot number and the precipitation in the north-central China (108° ∼ 115° E, 33° ∼ 41° N) over the past 500 years (1470-2002) are investigated, through periodicity analysis, cross wavelet transform and ensemble empirical mode decomposition analysis. The results are as follows: the solar activity periods are determined in the precipitation time series of weak statistical significance, but are found in decomposed components of the series with statistically significance; the Quasi Biennial Oscillation (QBO) is determined to significantly exist in the time series, and its action on precipitation is opposite to the solar activity; the sun is inferred to act on precipitation in two ways, with one lagging the other by half of the solar activity period.

  17. Magnetic Nonpotentiality in Photospheric Active Regions as a Predictor of Solar Flares

    CERN Document Server

    Yang, Xiao; Zhang, HongQi; Mao, XinJie

    2013-01-01

    Based on several magnetic nonpotentiality parameters obtained from the vector photospheric active region magnetograms obtained with the Solar Magnetic Field Telescope at the Huairou Solar Observing Station over two solar cycles, a machine learning model has been constructed to predict the occurrence of flares in the corresponding active region within a certain time window. The Support Vector Classifier, a widely used general classifier, is applied to build and test the prediction models. Several classical verification measures are adopted to assess the quality of the predictions. We investigate different flare levels within various time windows, and thus it is possible to estimate the rough classes and erupting times of flares for particular active regions. Several combinations of predictors have been tested in the experiments. The True Skill Statistics are higher than 0.36 in 97% of cases and the Heidke Skill Scores range from 0.23 to 0.48. The predictors derived from longitudinal magnetic fields do perform ...

  18. t-C8B2N2: A potential superhard material

    Science.gov (United States)

    Wang, Dong; Shi, Rui; Gan, Li-Hua

    2017-02-01

    A potential superhard material C8B2N2 with I-4m2 space group is found and confirmed to be stable with first-principles calculations. The results show that its structure is highly incompressible with bulk modulus of 383.4 GPa and shear modulus of 383.0 GPa. It shows that this material is nearly isotropy with universal anisotropy index of 0.056, and its fractional anisotropy ratio of shear modulus and bulk modulus are 0.0055 and 0.0, respectively. Interestingly, its theoretical bulk modulus, shear modules, Young's modulus, Poisson's ratio and Vickers hardness are almost same to those of well-known superhard material c-BN.

  19. 1995 Bird survey Foothills parkway section 8B National Park Service, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Wade, M.C.; Giffen, N.R.; Wade, B.A.

    1996-05-01

    The Foothills Parkway Section 8B right-of-way (ROW) is a stretch of land between Pittman Center and Cosby, Tennessee that is approximately 14.2 miles long and 1,000 ft wide, with a considerably wider section on Webb Mountain. A breeding bird survey was conducted at selected sample points along the ROW. The intent of the survey was to identify bird communities, area sensitive species (birds dependent on extensive forest systems for all their needs) and endangered, threatened, federal candidate, and state `in need of management` species now using the ROW. The survey also provides baseline data to assess future habitat impacts as well as cumulative impacts of the project.

  20. Inclusion body hepatitis (IBH outbreak associated with fowl adenovirus type 8b in broilers

    Directory of Open Access Journals (Sweden)

    Zadravec M.

    2013-01-01

    Full Text Available The causative agent of inclusion body hepatitis (IBH was identified as fowl adenovirus (FAdV type 8b, a member of the Fowl adenovirus E species, based on PCR results of adenoviral polymerase and the hexon gene in an outbreak of acute mortality that affected a broiler flock of 12,000 animals. In two waves of elevated mortality rate, a total of 264 chickens were found dead. Affected birds showed ruffled feathers, depression, watery droppings and limping. The most common pathological lesions seen on necropsy were pale, swollen and friable livers. On histological examination, acute hepatitis characterized by necrosis of hepatocytes, with large basophilic intranuclear inclusion bodies, were observed. In addition, infectious bursal disease virus and infectious bronchitis virus were detected in the same flock.

  1. Solar Neutrino Physics

    Energy Technology Data Exchange (ETDEWEB)

    Bowles, T.J.; Brice, S.J.; Esch, E.-I.; Fowler, M.M.; Goldschmidt, A.; Hime, A.; McGirt, F.; Miller, G.G.; Thornewell, P.M.; Wilhelmy, J.B.; Wouters, J.M.

    1999-07-15

    With its heavy water target, the Sudbury Neutrino Observatory (SNO) offers the unique opportunity to measure both the 8B flux of electron neutrinos from the Sun and, independently, the flux of all active neutrino species reaching the Earth. A model-independent test of the hypothesis that neutrino oscillations are responsible for the observed solar neutrino deficit can be made by comparing the charged-current (CC) and neutral-current (NC) rates. This LDRD proposal supported the research and development necessary for an assessment of backgrounds and performance of the SNO detector and the ability to extract the NC/CC-Ratio. Particular emphasis is put upon the criteria for deployment and signal extraction from a discrete NC detector array based upon ultra-low background 3He proportional counters.

  2. Study of solar activity by measuring cosmic rays with a water Cherenkov detector

    Energy Technology Data Exchange (ETDEWEB)

    Bahena Bias, Angelica [Facultad de ciencias FIsico-Matematicas, Universidad Michoacana de San Nicolas de Hidalgo, Avenida Francisco J. Mujica S/N Ciudad Universitaria C.P. 58030 Morelia, Michoacan (Mexico); Villasenor, Luis, E-mail: anbahena@ifm.umich.mx, E-mail: villasen@ifm.umich.mx [Instituto de Fisica y Matematicas, Universidad Michoacana de San Nicolas de Hidalgo, Avenida Francisco J. Mujica S/N Ciudad Universitaria C.P. 58030 Morelia, Michoacan (Mexico)

    2011-04-01

    We report on an indirect study of solar activity by using the Forbush effect which consists on the anti-correlation between the intensity of solar activity and the intensity of secondary cosmic radiation detected at ground level at the Earth. We have used a cylindrical water Cherenkov detector to measure the rate of arrival of secondary cosmic rays in Morelia Mich., Mexico, at 1950 m.a.s.l. We describe the analysis required to unfold the effect of atmospheric pressure and the search for Forbush decreases in our data, the latter correspond to more than one year of continuous data collection.

  3. The technical analysis of the stock exchange and physics: Japanese candlesticks for solar activity

    Science.gov (United States)

    Dineva, C.; Atanasov, V.

    2013-09-01

    In this article, we use the Japanese candlesticks, a method popular in the technical analysis of the Stock/Forex markets and apply it to a variable in physics-the solar activity. This method is invented and used exclusively for economic analysis and its application to a physical problem produced unexpected results. We found that the Japanese candlesticks are convenient tool in the analysis of the variables in the physics of the Sun. Based on our observations, we differentiated a new cycle in the solar activity.

  4. Latitude dependence of the solar granulation during the minimum of activity in 2009

    Science.gov (United States)

    Muller, R.; Hanslmeier, A.; Utz, D.

    2017-01-01

    Context. Knowledge of the latitude variation of the solar granulation properties (contrast and scale) is useful to better understand interactions between magnetic field, convection, differential rotation, and meridional circulation in the solar atmosphere. Aims: We investigated the latitude dependence of the contrast and scale of the solar granulation, with the help of HINODE/SOT blue continuum images taken in the frame of the HOP 79 program, along the central meridian and along the equator on a monthly basis in 2009 during the last solar minimum of activity. Methods: We selected the sharpest images in latitude and longitude intervals. The selected images in all the N-S and E-W scans taken in 2009 were combined to get statistically reliable results. Results: The contrast of the solar granulation decreases towards the poles and the scale increases, but not regularly since a perturbation occurs at around 60° where both quantities return close to their values at the disk center. Conclusions: Such a latitude variation in a period of minimum of activity (2009), is probably not due to magnetic field, neither the quiet magnetic field at the surface, nor the strong magnetic flux tubes associated with active regions, which could be embedded more or less deeply in the convection zone before they reach the surface. The decrease in contrast and increase in scale towards the pole seem to be related to the differential rotation and the perturbation around 60° to the meridional circulation.

  5. Periodic analysis of solar activity and its link with the Arctic oscillation phenomenon

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Weizheng; Li, Chun; Du, Ling; Huang, Fei [Ocean University of China, 14-1' -601, 2117 Jinshui Road, Qingdao 266100 (China); Li, Yanfang, E-mail: quweizhe@ouc.edu.cn [Yantai Institute of Coastal Zone Research Chinese Academy of Sciences (China)

    2014-12-01

    Based on spectrum analysis, we provide the arithmetic expressions of the quasi 11 yr cycle, 110 yr century cycle of relative sunspot numbers, and quasi 22 yr cycle of solar magnetic field polarity. Based on a comparative analysis of the monthly average geopotential height, geopotential height anomaly, and temperature anomaly of the northern hemisphere at locations with an air pressure of 500 HPa during the positive and negative phases of AO (Arctic Oscillation), one can see that the abnormal warming period in the Arctic region corresponds to the negative phase of AO, while the anomalous cold period corresponds to its positive phase. This shows that the abnormal change in the Arctic region is an important factor in determining the anomalies of AO. In accordance with the analysis performed using the successive filtering method, one can see that the AO phenomenon occurring in January shows a clear quasi 88 yr century cycle and quasi 22 yr decadal cycle, which are closely related to solar activities. The results of our comparative analysis show that there is a close inverse relationship between the solar activities (especially the solar magnetic field index changes) and the changes in the 22 yr cycle of the AO occurring in January, and that the two trends are basically opposite of each other. That is to say, in most cases after the solar magnetic index MI rises from the lowest value, the solar magnetic field turns from north to south, and the high-energy particle flow entering the Earth's magnetosphere increases to heat the polar atmosphere, thus causing the AO to drop from the highest value; after the solar magnetic index MI drops from the highest value, the solar magnetic field turns from south to north, and the solar high-energy particle flow passes through the top of the Earth's magnetosphere rather than entering it to heat the polar atmosphere. Thus the polar temperature drops, causing the AO to rise from the lowest value. In summary, the variance

  6. A Time-Frequency Analysis of the Effects of Solar Activities on Tropospheric Thermodynamics

    Science.gov (United States)

    Kiang, Richard K.; Kyle, H. Lee; Wharton, Stephen W. (Technical Monitor)

    2001-01-01

    Whether the Sun has significantly influenced the climate during the last century has been under extensive debates for almost two decades. Since the solar irradiance varies very little in a solar cycle, it is puzzling that some geophysical parameters show proportionally large variations which appear to be responding to the solar cycles. For example, variation in low altitude clouds is shown correlated with solar cycle, and the onset of Forbush decrease is shown correlated with the reduction of the vorticity area index. A possible sun-climate connection is that galactic cosmic rays modulated by solar activities influence cloud formation. In this paper, we apply wavelet transform to satellite and surface data to examine this hypothesis. Data analyzed include the time series for solar irradiance, sunspots, UV index, temperature, cloud coverage, and neutron counter measurements. The interactions among the elements in the Earth System under the external and internal forcings give out very complex signals.The periodicity of the forcings or signals could range widely. Since wavelet transforms can analyze multi-scale phenomena that are both localized in frequency and time, it is a very useful technique for detecting, understanding and monitoring climate changes.

  7. Diurnal anisotropy of cosmic rays during intensive solar activity for the period 2001-2014

    Science.gov (United States)

    Tezari, A.; Mavromichalaki, H.

    2016-07-01

    The diurnal variation of cosmic ray intensity, based on the records of two neutron monitor stations at Athens (Greece) and Oulu (Finland) for the time period 2001 to 2014, is studied. This period covers the maximum and the descending phase of the solar cycle 23, the minimum of the solar cycles 23/24 and the ascending phase of the solar cycle 24.These two stations differ in their geographic latitude and magnetic threshold rigidity. The amplitude and phase of the diurnal anisotropy vectors have been calculated on annual and monthly basis. From our analysis it is resulted that there is a different behaviour in the characteristics of the diurnal anisotropy during the different phases of the solar cycle, depended on the solar magnetic field polarity, but also during extreme events of solar activity, such as Ground Level Enhancements and cosmic ray events, such as Forbush decreases and magnetospheric events. These results may be useful to Space Weather forecasting and especially to Biomagnetic studies.

  8. On the current solar magnetic activity in the light of its behaviour during the Holocene

    CERN Document Server

    Inceoglu, F; Knudsen, M F; Karoff, C; Olsen, J; Turck-Chièze, S

    2015-01-01

    Solar modulation potential (SMP) reconstructions based on cosmogenic nuclide records reflect changes in the open solar magnetic field and can therefore help us obtain information on the behaviour of the open solar magnetic field over the Holocene period. We aim at comparing the Sun's large-scale magnetic field behaviour over the last three solar cycles with variations in the SMP reconstruction through the Holocene epoch. To achieve these objectives, we use the IntCal13 $^{14}$C data to investigate distinct patterns in the occurrences of grand minima and maxima during the Holocene period. We then check whether these patterns might mimic the recent solar magnetic activity by investigating the evolution of the energy in the Sun's large-scale dipolar magnetic field using the Wilcox Solar Observatory data. The cosmogenic radionuclide data analysis shows that $\\sim$71\\% of grand maxima during the period from 6600 BC to 1650 AD were followed by a grand minimum. The occurrence characteristics of grand maxima and mini...

  9. On the GCR intensity and the inversion of the heliospheric magnetic field during the periods of the high solar activity

    CERN Document Server

    Krainev, M B

    2014-01-01

    We consider the long-term behavior of the solar and heliospheric parameters and the GCR intensity in the periods of high solar activity and the inversions of heliospheric magnetic field (HMF). The classification of the HMF polarity structures and the meaning of the HMF inversion are discussed. The procedure is considered how to use the known HMF polarity distribution for the GCR intensity modeling during the periods of high solar activity. We also briefly discuss the development and the nearest future of the sunspot activity and the GCR intensity in the current unusual solar cycle 24.

  10. An overview of current activities at the National Solar Thermal Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, C.P.; Klimas, P.C.

    1992-01-01

    This paper is a description of the United States Department of Energy's National Solar Thermal Test Facility, highlighting current test programs. In the central receiver area, research underway supports commercialization of molten nitrate salt technology, including receivers, thermal energy transport, and corrosion experiments. Concentrator research includes large-area, glass-metal heliostats and stretched-membrane heliostats and dishes. Test activities in support of dish-Stirling systems with reflux receivers are described. Research on parabolic troughs includes characterization of several receiver configurations. Other test facility activities include solar detoxification experiments, design assistance testing of commercially-available solar hardware, and non-DOE-funded work, including thermal exposure tests and. testing of volumetric and PV central receiver concepts.

  11. An overview of current activities at the National Solar Thermal Test Facility

    Science.gov (United States)

    Cameron, C. P.; Klimas, P. C.

    This paper is a description of the United States Department of Energy's National Solar Thermal Test Facility, highlighting current test programs. In the central receiver area, research underway supports commercialization of molten nitrate salt technology, including receivers, thermal energy transport, and corrosion experiments. Concentrator research includes large-area, glass-metal heliostats and stretched-membrane heliostats and dishes. Test activities in support of dish-Stirling systems with reflux receivers are described. Research on parabolic troughs includes characterization of several receiver configurations. Other test facility activities include solar detoxification experiments, design assistance testing of commercially-available solar hardware, and non-DOE-funded work, including thermal exposure tests and testing of volumetric and PV central receiver concepts.

  12. An overview of current activities at the National Solar Thermal Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, C.P.; Klimas, P.C.

    1992-10-01

    This paper is a description of the United States Department of Energy`s National Solar Thermal Test Facility, highlighting current test programs. In the central receiver area, research underway supports commercialization of molten nitrate salt technology, including receivers, thermal energy transport, and corrosion experiments. Concentrator research includes large-area, glass-metal heliostats and stretched-membrane heliostats and dishes. Test activities in support of dish-Stirling systems with reflux receivers are described. Research on parabolic troughs includes characterization of several receiver configurations. Other test facility activities include solar detoxification experiments, design assistance testing of commercially-available solar hardware, and non-DOE-funded work, including thermal exposure tests and. testing of volumetric and PV central receiver concepts.

  13. Solar activity during the Holocene: the Hallstatt cycle and its consequence for grand minima and maxim

    CERN Document Server

    Usoskin, I G; Lopes, F; Kovaltsov, G A; Hulot, G

    2016-01-01

    Cosmogenic isotopes provide the only quantitative proxy for analyzing the long-term solar variability over a centennial timescale. While essential progress has been achieved in both measurements and modeling of the cosmogenic proxy, uncertainties still remain in the determination of the geomagnetic dipole moment evolution. Here we improve the reconstruction of solar activity over the past nine millennia using a multi-proxy approach. We used records of the 14C and 10Be cosmogenic isotopes, current numerical models of the isotope production and transport in Earth's atmosphere, and available geomagnetic field reconstructions, including a new reconstruction relying on an updated archeo-/paleointensity database. The obtained series were analyzed using the singular spectrum analysis (SSA) method to study the millennial-scale trends. A new reconstruction of the geomagnetic dipole field moment, GMAG.9k, is built for the last nine millennia. New reconstructions of solar activity covering the last nine millennia, quant...

  14. The burst of solar and geomagnetic activity in August–September 2005

    Directory of Open Access Journals (Sweden)

    V. Oleneva

    2009-03-01

    Full Text Available During the August–September 2005 burst of solar activity, close to the current solar cycle minimum, a significant number of powerful X-ray flares were recorded, among which was the outstanding X17.0 flare of 7 September 2005. Within a relatively short period (from 22 August to 17 September two severe magnetic storms were also recorded as well as several Forbush effects. These events are studied in this work, using hourly mean variations of cosmic ray density and anisotropy, derived from data of the neutron monitor network. During these Forbush effects the behavior of high energy cosmic ray characteristics (density and anisotropy is analyzed together with interplanetary disturbances and their solar sources, and is compared to the variations observed in geomagnetic activity. A big and long lasting (~6 h cosmic ray pre-decrease (~2% is defined before the shock arrival on 15 September 2005. The calculated cosmic ray gradients for September 2005 are also discussed.

  15. Stellar activity as noise in exoplanet detection I. Methods and application to solar-like stars and activity cycles

    CERN Document Server

    Korhonen, H; Piskunov, N; Hackman, T; Juncher, D; Jarvinen, S P; Joergensen, U G

    2015-01-01

    The detection of exoplanets using any method is prone to confusion due to the intrinsic variability of the host star. We investigate the effect of cool starspots on the detectability of the exoplanets around solar-like stars using the radial velocity method. For investigating this activity-caused "jitter" we calculate synthetic spectra using radiative transfer, known stellar atomic and molecular lines, different surface spot configurations, and an added planetary signal. Here, the methods are described in detail, tested and compared to previously published studies. The methods are also applied to investigate the activity jitter in old and young solar-like stars, and over a solar-like activity cycles. We find that the mean full jitter amplitude obtained from the spot surfaces mimicking the solar activity varies during the cycle approximately between 1 m/s and 9 m/s. With a realistic observing frequency a Neptune mass planet on a one year orbit can be reliably recovered. On the other hand, the recovery of an Ea...

  16. Revisiting the prediction of solar activity based on the relationship between the solar maximum amplitude and max-max cycle length

    CERN Document Server

    Carrasco, V M S; Gallego, M C

    2016-01-01

    It is very important to forecast the future solar activity due to its effect on our planet and near space. Here, we employ the new version of the sunspot number index (version 2) to analyse the relationship between the solar maximum amplitude and max-max cycle length proposed by Du (2006). We show that the correlation between the parameters used by Du (2006) for the prediction of the sunspot number (amplitude of the cycle, Rm, and max-max cycle length for two solar cycles before, Pmax-2) disappears when we use solar cycles prior to solar cycle 9. We conclude that the correlation between these parameters depends on the time interval selected. Thus, the proposal of Du (2006) should definitively not be considered for prediction purposes.

  17. NONLINEAR DYNAMICS OF MAGNETOHYDRODYNAMIC ROSSBY WAVES AND THE CYCLIC NATURE OF SOLAR MAGNETIC ACTIVITY

    Energy Technology Data Exchange (ETDEWEB)

    Raphaldini, Breno; Raupp, Carlos F. M., E-mail: brenorfs@gmail.com, E-mail: carlos.raupp@iag.usp.br [Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Departamento de Geofísica, Rua do Matão, 1226-Cidade Universitária São Paulo-SP 05508-090 (Brazil)

    2015-01-20

    The solar dynamo is known to be associated with several periodicities, with the nearly 11/22 yr cycle being the most pronounced one. Even though these quasiperiodic variations of solar activity have been attributed to the underlying dynamo action in the Sun's interior, a fundamental theoretical description of these cycles is still elusive. Here, we present a new possible direction in understanding the Sun's cycles based on resonant nonlinear interactions among magnetohydrodynamic (MHD) Rossby waves. The WKB theory for dispersive waves is applied to magnetohydrodynamic shallow-water equations describing the dynamics of the solar tachocline, and the reduced dynamics of a resonant triad composed of MHD Rossby waves embedded in constant toroidal magnetic field is analyzed. In the conservative case, the wave amplitudes evolve periodically in time, with periods on the order of the dominant solar activity timescale (∼11 yr). In addition, the presence of linear forcings representative of either convection or instabilities of meridionally varying background states appears to be crucial in balancing dissipation and thus sustaining the periodic oscillations of wave amplitudes associated with resonant triad interactions. Examination of the linear theory of MHD Rossby waves embedded in a latitudinally varying mean flow demonstrates that MHD Rossby waves propagate toward the equator in a waveguide from –35° to 35° in latitude, showing a remarkable resemblance to the structure of the butterfly diagram of the solar activity. Therefore, we argue that resonant nonlinear magnetohydrodynamic Rossby wave interactions might significantly contribute to the observed cycles of magnetic solar activity.

  18. Kinematic active region formation in a three-dimensional solar dynamo model

    CERN Document Server

    Yeates, A R

    2013-01-01

    We propose a phenomenological technique for modelling the emergence of active regions within a three-dimensional, kinematic dynamo framework. By imposing localised velocity perturbations, we create emergent flux-tubes out of toroidal magnetic field at the base of the convection zone, leading to the eruption of active regions at the solar surface. The velocity perturbations are calibrated to reproduce observed active region properties (including the size and flux of active regions, and the distribution of tilt angle with latitude), resulting in a more consistent treatment of flux-tube emergence in kinematic dynamo models than artificial flux deposition. We demonstrate how this technique can be used to assimilate observations and drive a kinematic 3D model, and use it to study the characteristics of active region emergence and decay as a source of poloidal field. We find that the poloidal components are strongest not at the solar surface, but in the middle convection zone, in contrast with the common assumption...

  19. On the Dependence of the Ionospheric E-Region Electric Field of the Solar Activity

    Science.gov (United States)

    Denardini, Clezio Marcos; Schuch, Nelson Jorge; Moro, Juliano; Araujo Resende, Laysa Cristina; Chen, Sony Su; Costa, D. Joaquim

    2016-07-01

    We have being studying the zonal and vertical E region electric field components inferred from the Doppler shifts of type 2 echoes (gradient drift irregularities) detected with the 50 MHz backscatter coherent (RESCO) radar set at Sao Luis, Brazil (SLZ, 2.3° S, 44.2° W) during the solar cycle 24. In this report we present the dependence of the vertical and zonal components of this electric field with the solar activity, based on the solar flux F10.7. For this study we consider the geomagnetically quiet days only (Kp <= 3+). A magnetic field-aligned-integrated conductivity model was developed for proving the conductivities, using the IRI-2007, the MISIS-2000 and the IGRF-11 models as input parameters for ionosphere, neutral atmosphere and Earth magnetic field, respectively. The ion-neutron collision frequencies of all the species are combined through the momentum transfer collision frequency equation. The mean zonal component of the electric field, which normally ranged from 0.19 to 0.35 mV/m between the 8 and 18 h (LT) in the Brazilian sector, show a small dependency with the solar activity. Whereas, the mean vertical component of the electric field, which normally ranges from 4.65 to 10.12 mV/m, highlight the more pronounced dependency of the solar flux.

  20. Coronal Radio Sounding Experiments with Mars Express: Scintillation Spectra during Low Solar Activity

    Science.gov (United States)

    Efimov, A. I.; Lukanina, L. A.; Samoznaev, L. N.; Rudash, V. K.; Chashei, I. V.; Bird, M. K.; Pätzold, M.; Tellmann, S.

    2010-03-01

    Coronal radio sounding observations were carried out with the radio science experiment MaRS on the ESA spacecraft Mars Express during the period from 25 August to 22 October 2004. Differential frequency and log-amplitude fluctuations of the dual-frequency signals were recorded during a period of low solar activity. The data are applicable to low heliographic latitudes, i.e. to slow solar wind. The mean frequency fluctuation and power law index of the frequency fluctuation temporal spectra are determined as a function of heliocentric distance. The radial dependence of the frequency fluctuation spectral index α reflects the previously documented flattening of the scintillation power spectra in the solar wind acceleration region. Temporal spectra of S-band and X-band normalized log-amplitude fluctuations were investigated over the range of fluctuation frequencies 0.01 Hzperiod of high solar activity. Ranging measurements are presented and compared with frequency and log-amplitude scintillation data. Evidence for a weak increase in the fractional electron density turbulence level is obtained in the range 10-40 solar radii.

  1. Hale Cyclicity of Solar Activity and Its Relation to Climate Variability

    Science.gov (United States)

    Raspopov, O. M.; Dergachev, V. A.; Kolström, T.

    2004-10-01

    The periodicity of climatic processes along the Russian Arctic Ocean coast has been studied by analyzing the tree-ring chronologies for the regions close to the northern timberline. The wavelet analysis of annual series of conifer tree rings for the period 1458 1975 has revealed climatic oscillations with periods of 20 25 years. The amplitudes and periods of climatic oscillations in the region of Russian Arctic Ocean proved to exhibit appreciable changes. Especially strong climatic variations in comparison with the recent ones were found to occur during the Maunder minimum epoch when the period of oscillations increased from 22 23 years to 24 29 years, and oscillations with periods of 15 years appeared. After the Maunder minimum, the periods of oscillations and their amplitudes again decreased, and the 15 16-year maximum disappeared. Analysis of solar activity based on of radiocarbon (14C) concentration in annual tree rings has revealed a similar pattern in changes of periodicity before, during, and after the Maunder minimum. This suggests that quasi-bidecadal climatic oscillations and variations in solar activity can be connected with each other. A possible solar forcing of periodic climatic processes and its nonlinear influence on the atmosphere-ocean-continental system are discussed. The intense quasi-bidecadal climatic oscillations can be, in all probability, interpreted as resulting from amplification of a weak solar signal in the atmosphere-ocean system that has its own noises whose frequencies are close to the 22 23-year solar cycles.

  2. Highly efficient graphene-based Cu(In, Ga)Se₂ solar cells with large active area.

    Science.gov (United States)

    Yin, Ling; Zhang, Kang; Luo, Hailin; Cheng, Guanming; Ma, Xuhang; Xiong, Zhiyu; Xiao, Xudong

    2014-09-21

    Two-dimensional graphene has tremendous potential to be used as a transparent conducting electrode (TCE), owing to its high transparency and conductivity. To date graphene films have been applied to several kinds of solar cells except the Cu(In, Ga)Se₂ (CIGS) solar cell. In this work, we present a novel TCE structure consisting of a doped graphene film and a thin layer of poly(methyl methacrylate) (PMMA) to replace the ZnO:Al (AZO) electrode for CIGS. By optimizing the contact between graphene and intrinsic ZnO (i-ZnO), a high power conversion efficiency (PCE) of 13.5% has been achieved, which is among the highest efficiencies of graphene-based solar cells ever reported and approaching those of AZO-based solar cells. Besides, the active area of our solar cells reaches 45 mm(2), much larger than other highly efficient graphene-based solar cells (>10%) reported so far. Moreover, compared with AZO-based CIGS solar cells, the total reflectance of the graphene-based CIGS solar cells is decreased and the quantum efficiency of the graphene-based CIGS is enhanced in the near infrared region (NIR), which strongly support graphene as a competitive candidate material for the TCE in the CIGS solar cell. Furthermore, the graphene/PMMA film can protect the solar cell from moisture, making the graphene-based solar cells much more stable than the AZO-based solar cells.

  3. The statistical significance of the N-S asymmetry of solar activity revisited

    CERN Document Server

    Carbonell, M; Oliver, R; Ballester, J L

    2007-01-01

    The main aim of this study is to point out the difficulties found when trying to assess the statistical significance of the North-South asymmetry (hereafter SSNSA) of the most usually considered time series of solar activity. First of all, we distinguish between solar activity time series composed by integer or non-integer and dimensionless data, or composed by non-integer and dimensional data. For each of these cases, we discuss the most suitable statistical tests which can be applied and highlight the difficulties to obtain valid information about the statistical significance of solar activity time series. Our results suggest that, apart from the need to apply the suitable statistical tests, other effects such as the data binning, the considered units and the need, in some tests, to consider groups of data, affect substantially the determination of the statistical significance of the asymmetry. Our main conclusion is that the assessment of the statistical significance of the N-S asymmetry of solar activity ...

  4. Dynamo model for grand maxima of solar activity: can superflares occur on the Sun?

    CERN Document Server

    Kitchatinov, L L

    2016-01-01

    Recent data on superflares on sun-like stars and radiocarbon data on solar activity in the past are both indicative of transient epochs of unusually high magnetic activity. We propose an explanation for the grand activity maxima in the framework of a solar dynamo model with fluctuating parameters. Solar-type dynamos are oscillatory because of the combination of the solar-type differential rotation with positive (in the northern hemisphere) alpha-effect. An artificial reversal of the sign in the alpha-effect changes the dynamo to a steady regime with hundreds of times larger magnetic energy compared to the amplitude of the cyclic dynamo. Sufficiently large and durable fluctuations reversing the sign of the alpha-effect during the growth phase of a magnetic cycle can, therefore, cause a transient change to a steady dynamo with considerably increased magnetic energy. This qualitative scenario for grand activity maxima is supported by computations of the dynamo model with a fluctuating alpha-effect. The computed ...

  5. Statistical Analysis of Acoustic Wave Parameters Near Solar Active Regions

    Science.gov (United States)

    Rabello-Soares, M. Cristina; Bogart, Richard S.; Scherrer, Philip H.

    2016-08-01

    In order to quantify the influence of magnetic fields on acoustic mode parameters and flows in and around active regions, we analyze the differences in the parameters in magnetically quiet regions nearby an active region (which we call “nearby regions”), compared with those of quiet regions at the same disk locations for which there are no neighboring active regions. We also compare the mode parameters in active regions with those in comparably located quiet regions. Our analysis is based on ring-diagram analysis of all active regions observed by the Helioseismic and Magnetic Imager (HMI) during almost five years. We find that the frequency at which the mode amplitude changes from attenuation to amplification in the quiet nearby regions is around 4.2 mHz, in contrast to the active regions, for which it is about 5.1 mHz. This amplitude enhacement (the “acoustic halo effect”) is as large as that observed in the active regions, and has a very weak dependence on the wave propagation direction. The mode energy difference in nearby regions also changes from a deficit to an excess at around 4.2 mHz, but averages to zero over all modes. The frequency difference in nearby regions increases with increasing frequency until a point at which the frequency shifts turn over sharply, as in active regions. However, this turnover occurs around 4.9 mHz, which is significantly below the acoustic cutoff frequency. Inverting the horizontal flow parameters in the direction of the neigboring active regions, we find flows that are consistent with a model of the thermal energy flow being blocked directly below the active region.

  6. ON THE ROLE OF ROTATING SUNSPOTS IN THE ACTIVITY OF SOLAR ACTIVE REGION NOAA 11158

    Energy Technology Data Exchange (ETDEWEB)

    Vemareddy, P.; Ambastha, A. [Udaipur Solar Observatory, Physical Research Laboratory, Udaipur-313001 (India); Maurya, R. A., E-mail: vema@prl.res.in, E-mail: ambastha@prl.res.in, E-mail: ramajor@astro.snu.ac.kr [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of)

    2012-12-10

    We study the role of rotating sunspots in relation to the evolution of various physical parameters characterizing the non-potentiality of the active region (AR) NOAA 11158 and its eruptive events using the magnetic field data from the Helioseismic and Magnetic Imager (HMI) and multi-wavelength observations from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory. From the evolutionary study of HMI intensity and AIA channels, it is observed that the AR consists of two major rotating sunspots, one connected to a flare-prone region and another with coronal mass ejection (CME). The constructed space-time intensity maps reveal that the sunspots exhibited peak rotation rates coinciding with the occurrence of major eruptive events. Further, temporal profiles of twist parameters, namely, average shear angle, {alpha}{sub av}, {alpha}{sub best}, derived from HMI vector magnetograms, and the rate of helicity injection, obtained from the horizontal flux motions of HMI line-of-sight magnetograms, correspond well with the rotational profile of the sunspot in the CME-prone region, giving predominant evidence of rotational motion causing magnetic non-potentiality. Moreover, the mean value of free energy from the virial theorem calculated at the photospheric level shows a clear step-down decrease at the onset time of the flares revealing unambiguous evidence of energy release intermittently that is stored by flux emergence and/or motions in pre-flare phases. Additionally, distribution of helicity injection is homogeneous in the CME-prone region while in the flare-prone region it is not and often changes sign. This study provides a clear picture that both proper and rotational motions of the observed fluxes played significant roles in enhancing the magnetic non-potentiality of the AR by injecting helicity, twisting the magnetic fields and thereby increasing the free energy, leading to favorable conditions for the observed transient activity.

  7. The two Dictyostelium autophagy eight proteins, ATG8a and ATG8b, associate with the autophagosome in succession.

    Science.gov (United States)

    Matthias, Jan; Meßling, Susanne; Eichinger, Ludwig

    2016-01-01

    Autophagy is an ancient cellular pathway that is conserved from yeast to man. It contributes to many physiological and pathological processes and plays a major role in the degradation of proteins and/or organelles in response to starvation and stress. In the autophagic process cytosolic material is captured into double membrane-bound vesicles, the autophagosomes. After fusion with lysosomes, the cargo is degraded in the generated autolysosomes and then recycled for further use. Autophagy 8 (ATG8, in mammals LC3), a well-established marker of autophagy, is covalently linked to phosphatidylethanolamine on the autophagic membrane during autophagosome formation. Bioinformatic analysis of the Dictyostelium genome revealed two atg8 genes which encode the ATG8a and ATG8b paralogs. They are with around 14kDa similar in size, 54 % identical to one another and more closely related to the corresponding proteins in fungi and plants than in animals. For ATG8a we found a strong up-regulation throughout the 24h developmental time course while ATG8b expression was highest in vegetative cells followed by a moderate reduction during early development. Confocal microscopy of fluorescently tagged ATG8a and ATG8b in vegetative AX2 wild-type and in ATG9(-) cells showed that both proteins mainly co-localized on vesicular structures with a diameter above 500nm while those smaller than 500nm were predominantly positive for ATG8b. In ATG9(-) cells we found a strong increase in the relative abundance of ATG8a-positive large vesicular structures and of total ATG8b-positive structures per cell indicating autophagic flux problems in this mutant. We also found that vesicular structures positive for ATG8a and/or ATG8b were also positive for ubiquitin. Live cell imaging of AX2 and ATG9(-) cells co-expressing combinations of red and green tagged ATG8a, ATG8b or ATG9 revealed transient co localizations of these proteins. Our results suggest that ATG8b associates with nascent autophagosomes before

  8. Geomagnetic response to solar activity: summary for the last ten years and analysis of selected cases

    Science.gov (United States)

    Hejda, Pavel; Bochníček, Josef; Valach, Fridrich; Revallo, Miloš

    2014-05-01

    The main sources of geomagnetic disturbances are either coronal mass ejections (CMEs), which are usually connected with eruptive flares, or high-speed streams of solar wind from coronal holes. Development of an eruptive flare and ejection of coronal mass is accompanied by magnetic reconnection. The evidence of reconnection can be found in a broad spectrum of observations. The observations of X-rays and radio bursts were used in our study. The geoeffectiveness of solar X-ray flares was initially analysed on data from the period 1996 - 2004 [1]. It was shown that the probability of geomagnetic response depends on the solar flare class and its position on the solar disc. The flares in the central region were found to be more geoeffective. The probability further increased if the flare was accompanied by Type II and/or Type IV of solar radio bursts. In the next step a neural network model was developed to determine the probability, with which flares will be followed by the geomagnetic response of a particular intensity. Enhancement of solar energetic particle flux was added to the set of input parameters. The results indicated that X-ray flares accompanied by solar radio bursts represent a good proxy of CMEs [2, 3]. This conclusion was now confirmed by the data from the period 2005 - 2012. Coronal holes are stable formations that can survive over several solar rotations. Corotating interaction regions (CIRs) between fast and slow solar wind can thus periodically pass over the Earth and cause recurrent geomagnetic storms. This periodicity makes the forecasts of the geomagnetic disturbances much easier [4] than in the case of eruptive phenomena. Our analysis confirmed that the strongest magnetic storms are caused by CMEs. Nevertheless, many geomagnetic disturbances in the active part of solar cycle are influenced by sequences of CMEs and CIRs, which increase their strength. [1] Bochníček, J., P. Hejda and F. Valach, Solar energetic events in the years 1996-2004. The

  9. Nanocrystallization in Co67Cr7Fe4Si8B14 Amorphous Alloy Ribbons

    Directory of Open Access Journals (Sweden)

    Zahra Jamili-Shirvan

    2013-12-01

    Full Text Available The nanocrystallization of Co67Fe4Cr7Si8B14 amorphous ribbons which prepared by planar flow melt spinning process (PFMS was investigated. Crystallization of the ribbons was studied by differential thermal analysis (DTA, X-ray diffraction (XRD and transmission electron microscopy (TEM. The DTA result of amorphous ribbon at heating rate of 10˚C/min showedoccurrence of phase transitions in two stages. The ribbons were isothermally annealed for 30 minutes in argon atmosphere at different temperatures between 300 and 650ºC with 25ºC steps. The magnetic properties of annealed samples were measured using a vibrating sample magnetometer (VSM. The VSM results revealed that optimum soft magnetic properties occurred at 400ºC. XRD patterns showed that the samples isothermally annealed up to 450ºC were amorphous, while TEM results at 400ºC indicated 7-8 nm mean size nanocrytallites in amorphous matrix and size of the nanocrystallites increased by increasing temperature. Also by X-ray diffraction pattern, precipitation of different phases at higher temperatures confirmed.

  10. Discovery and Rossiter-McLaughlin Effect of Exoplanet Kepler-8b

    CERN Document Server

    Jenkins, Jon M; Koch, David G; Marcy, Geoffrey W; Cochran, William D; Basri, Gibor; Batalha, Natalie M; Buchhave, Lars A; Brown, Tim M; Caldwell, Douglas A; Dunham, Edward W; Endl, Michael; Fischer, Debra A; Gautier, Thomas N; Geary, John C; Gilliland, Ronald L; Howell, Steve B; Isaacson, Howard; Johnson, John Asher; Latham, David W; Lissauer, Jack J; Monet, David G; Rowe, Jason F; Sasselov, Dimitar D; Welsh, William F; Howard, Andrew W; MacQueen, Phillip; Chandrasekaran, Hema; Twicken, Joseph D; Bryson, Stephen T; Quintana, Elisa V; Clarke, Bruce D; Li, Jie; Allen, Christopher; Tenenbaum, Peter; Wu, Hayley; Meibom, Soren; Klaus, Todd C; Middour, Christopher K; Cote, Miles T; McCauliff, Sean; Girouard, Forrest R; Gunter, Jay P; Wohler, Bill; Hall, Jennifer R; Ibrahim, Khadeejah; Uddin, AKM Kamal; Wu, Michael S; Bhavsar, Paresh A; Van Cleve, Jeffrey; Pletcher, David L; Dotson, Jessie A; Haas, Michael R

    2010-01-01

    We report the discovery and the Rossiter-McLaughlin effect of Kepler-8b, a transiting planet identified by the NASA Kepler Mission. Kepler photometry and Keck-HIRES radial velocities yield the radius and mass of the planet around this F8IV subgiant host star. The planet has a radius RP = 1.419 RJ and a mass, MP = 0.60 MJ, yielding a density of 0.26 g cm^-3, among the lowest density planets known. The orbital period is P = 3.523 days and orbital semima jor axis is 0.0483+0.0006/-0.0012 AU. The star has a large rotational v sin i of 10.5 +/- 0.7 km s^-1 and is relatively faint (V = 13.89 mag), both properties deleterious to precise Doppler measurements. The velocities are indeed noisy, with scatter of 30 m s^-1, but exhibit a period and phase consistent with the planet implied by the photometry. We securely detect the Rossiter-McLaughlin effect, confirming the planet's existence and establishing its orbit as prograde. We measure an inclination between the projected planetary orbital axis and the projected stell...

  11. Pressure distribution for the wing of the YAV-8B airplane; with and without pylons

    Science.gov (United States)

    Saltzman, Edwin J.; Delfrate, John H.; Sabsay, Catherine M.; Yarger, Jill M.

    1992-01-01

    Pressure distribution data have been obtained in flight at four span stations on the wing panel of the YAV-8B airplane. Data obtained for the supercritical profiled wing, with and without pylons installed, ranged from Mach 0.46 to 0.88. The altitude ranged from approximately 20,000 to 40,000 ft and the resultant Reynolds numbers varied from approximately 7.2 million to 28.7 million based on the mean aerodynamic chord. Pressure distribution data and flow visualization results show that the full-scale flight wing performance is compromised because the lower surface cusp region experiences flow separation for some important transonic flight conditions. This condition is aggravated when local shocks occur on the lower surface of the wing (mostly between 20 and 35 percent chord) when the pylons are installed for Mach 0.8 and above. There is evidence that convex fairings, which cover the pylon attachment flanges, cause these local shocks. Pressure coefficients significantly more negative than those for sonic flow also occur farther aft on the lower surface (near 60 percent chord) whether or not the pylons are installed for Mach numbers greater than or equal to 0.8. These negative pressure coefficient peaks and associated local shocks would be expected to cause increasing wave and separation drag at transonic Mach number increases.

  12. WASP-12b and HAT-P-8b are Members of Triple Star Systems

    CERN Document Server

    Bechter, Eric B; Ngo, Henry; Knutson, Heather A; Batygin, Konstantin; Hinkley, Sasha; Muirhead, Phillip S; Johnson, John Asher; Howard, Andrew W; Montet, Benjamin T; Matthews, Christopher T; Morton, Timothy D

    2013-01-01

    We present high spatial resolution images that demonstrate the hot Jupiters WASP-12b and HAT-P-8b orbit the primary star of hierarchical triple star systems. In each case, two distant companions with colors and brightness consistent with M dwarfs co-orbit the planet host as well as one another. Our adaptive optics images spatially resolve the secondary around WASP-12, previously identified by Bergfors et al. 2011 and Crossfield et al. 2012, into two distinct sources separated by 84.3+/-0.6 mas (21 +/- 3 AU). We find that the secondary to HAT-P-8, also identified by Bergfors et al. 2011, is in fact composed of two stars separated by 65.3+/-0.5 mas (15+/-1 AU). Our follow-up observations demonstrate physical association through common proper-motion. HAT-P-8 C has a particularly low mass, which we estimate to be 0.18+/-0.02Msun using photometry. Due to their hierarchy, WASP-12 BC and HAT-P-8 BC will enable the first dynamical mass determination for hot Jupiter stellar companions. These previously well-studied pl...

  13. WASP-12b and HAT-P-8b are Members of Triple Star Systems

    Science.gov (United States)

    Bechter, Eric B.; Crepp, Justin R.; Ngo, Henry; Knutson, Heather A.; Batygin, Konstantin; Hinkley, Sasha; Muirhead, Philip S.; Johnson, John Asher; Howard, Andrew W.; Montet, Benjamin T.; Matthews, Christopher T.; Morton, Timothy D.

    2014-06-01

    We present high spatial resolution images that demonstrate that WASP-12b and HAT-P-8b orbit the primary stars of hierarchical triple star systems. In each case, two distant companions with colors and brightnesses consistent with M dwarfs co-orbit the hot Jupiter planet host as well as one another. Our adaptive optics images spatially resolve the secondary around WASP-12, previously identified by Bergfors et al. and Crossfield et al. into two distinct sources separated by 84.3 ± 0.6 mas (21 ± 3 AU). We find that the secondary to HAT-P-8, also identified by Bergfors et al., is in fact composed of two stars separated by 65.3 ± 0.5 mas (15 ± 1 AU). Our follow-up observations demonstrate physical association through common proper motion. HAT-P-8 C has a particularly low mass, which we estimate to be 0.18 ± 0.02 M ⊙ using photometry. Due to their hierarchy, WASP-12 BC and HAT-P-8 BC will enable the first dynamical mass determination for hot Jupiter stellar companions. These previously well studied planet hosts now represent higher-order multi-star systems with potentially complex dynamics, underscoring the importance of diffraction-limited imaging and providing additional context for understanding the migrant population of transiting hot Jupiters.

  14. Three Super Active Regions in the Descending Phase of Solar Cycle 23

    Institute of Scientific and Technical Information of China (English)

    Hong-Qi Zhang; Jiang-Tao Su; Juan Guo; Xiao-Fan Wang; Ke-Liang Hu; Gang-Hua Lin; Dong-Guang Wang; Xing-Ming Bao; Yin Zhang; Ji-Hong Liu; Shu-Dong Bao; Yuan-Yong Deng; Wei Li; Jie Chen; Jin-Ping Dun

    2003-01-01

    We analyze the magnetic configurations of three super active regions,NOAA 10484, 10486 and 10488, observed by the Huairou Multi-Channel Solar Telescope (MCST) from 2003 October 18 to November 4. Many energetic phenomena,such as flares (including a X-28 flare) and coronal mass ejections (CMEs), occurred during this period. We think that strong shear and fast emergence of magnetic flux are the main causes of these events. The question is also of great interest why these dramatic eruptions occurred so close together in the descending phase of the solar cycle.

  15. Improved Power Conversion Efficiency of Inverted Organic Solar Cells by Incorporating Au Nanorods into Active Layer.

    Science.gov (United States)

    He, Yeyuan; Liu, Chunyu; Li, Jinfeng; Zhang, Xinyuan; Li, Zhiqi; Shen, Liang; Guo, Wenbin; Ruan, Shengping

    2015-07-29

    This Research Article describes a cooperative plasmonic effect on improving the performance of organic solar cells. When Au nanorods(NRs) are incorporated into the active layers, the designed project shows superior enhanced light absorption behavior comparing with control devices, which leads to the realization of organic solar cell with power conversion efficiency of 6.83%, accounting for 18.9% improvement. Further investigations unravel the influence of plasmonic nanostructures on light trapping, exciton generation, dissociation, and charge recombination and transport inside the thin films devices. Moreover, the introduction of high-conductivity Au NRs improves electrical conductivity of the whole device, which contributes to the enhanced fill factor.

  16. Solar Energetic Particle Events at the Rise Phase of the 23rd Solar Activity Cycle Registered aboard the Spacecraft "INTERBALL-2"

    Indian Academy of Sciences (India)

    Vladislav Timofeev

    2000-09-01

    The experiment with 10K-80 aboard the INTER-BALL-2 (which detects protons with energies > 7 , 27-41, 41-58, 58-88, 88-180 and 180-300 MeV) registered six events of the solar energetic particle (SEP) increase. These events are during the initial rise phase of the 23rd solar activity cycle. Solar flares with the SEP generation are accompanied by coronal mass ejection (CME). Here we analyze the dynamics of the differential energy spectrum at different phases of the SEP increase.

  17. Thermal and magnetic properties of amorphous Prx(Fe0.8B0.2)1 - x

    Science.gov (United States)

    Kabacoff, L.; Dallek, S.; Modzelewski, C.; Krull, W.

    1982-03-01

    Amorphous ribbons of the composition Prx(Fe0.8B0.2)1-, 0?x?0.30, have been produced by meltspinning onto a copper wheel under argon atmosphere. The alloys were characterized thermally using a DuPont 1090 Thermal Analysis System. The crystallization onset temperature Tx, measured at a heating rate of 20 K/min, has a maximum of 899 K at x = 0.10. Tx equals 696 and 729 K for x = 0 and x = 0.30, respectively. The activation energy of crystallization of 5.4 eV for x = 0.05, dropping to 4.3 eV at x = 0.10, remaining approximately constant betwen x = 0.10 and 0.20, then dropping to 2.7 eV for x = 0.30. There is evidence that the alloys phase-separate slowly at room temperature, rapidly at elevated temperature. The magnetic moment was measured as a function of applied field at room temperature and at 4.2 K. The saturation moment decreased from 142 to 50.2 emu/gm at room temperature, and from 171.5 to 93.5 emu/gm at 4.2 K. The low temperature moments were strongly time dependent. The room temperature coercive force was too small to measure (<5 Oe).

  18. Diameter and solar figure observations in the solar activity context with the astrolabe of Rio de Janeiro in 1998-2003

    CERN Document Server

    Boscardin, Sérgio Calderari

    2013-01-01

    From 1998 to 2003 the CCD Solar Astrolabe of the Observatorio Nacional in Rio de Janeiro made more than 20000 observations of the Solar Semidiameter. In the present work similar corrections for the observational results of 2002 and 2003 were determined. Initially, the values have been corrected in function of their mean quadratic offset to the local trend averages, therefore without modifying the measured variations. Finally, the values have been corrected for the bias, using coefficients obtained from the correlation between some observational parameters and the observational measures. Then the total series was compared with series of pointers of the solar activity. The hypothesis of variation of the semidiameter tied to the solar activity was examined through the correlations between the different pairs of pointers. Strong correlations between some pairs were obtained. Next, the same correlations were obtained now considering time delays of one series in relation to the other. Several pairs have shown an in...

  19. On the Current Solar Magnetic Activity using Its Behavior During the Holocene

    Science.gov (United States)

    Inceoglu, Fadil; Simoniello, Rosaria; Faurschou Knudsen, Mads; Karoff, Christoffer; Olsen, Jesper; Turck-Chieze, Sylvaine

    2016-07-01

    Solar modulation potential (SMP) reconstructions based on cosmogenic nuclide records reflect changes in the open solar magnetic field and can therefore help us obtain information on the behavior of the open solar magnetic field over the Holocene period. Using the Greenland Ice Core Project (GRIP) ^{10}Be and IntCal13 ^{14}C records for the overlapping time period spanning between ˜1650 AD to 6600 BC, we first reconstructed the solar modulation potentials and subsequently investigate the statistics of peaks and dips simultaneously occurring in the two SMP reconstructions. Based on the distribution of these events, we propose a method to identify grand minima and maxima periods. We then aim at comparing the Sun's large-scale magnetic field behavior over the last three solar cycles with variations in the SMP reconstruction through the Holocene epoch. To achieve these objectives, we use the IntCal13 ^{14}C data to investigate distinct patterns in the occurrences of grand minima and maxima during the Holocene period. We then check whether these patterns might mimic the recent solar magnetic activity by investigating the evolution of the energy in the Sun's large-scale dipolar magnetic field using the Wilcox Solar Observatory data. The cosmogenic radionuclide data analysis shows that ˜71 % of grand maxima during the period from 6600 BC to 1650 AD were followed by a grand minimum. The characteristics of the occurrences of grand maxima and minima are consistent with the scenario in which the dynamical non-linearity induced by the Lorentz force leads the Sun to act as a relaxation oscillator. This finding implies that the probability for these events to occur is non-uniformly distributed in time, as there is a memory in their driving mechanism, which can be identified via the back-reaction of the Lorentz force.

  20. Energetic proton irradiation history of the HED parent body regolith and implications for ancient solar activity

    Science.gov (United States)

    Rao, M. N.; Garrison, D. H.; Palma, R. L.; Bogard, D. D.

    1997-07-01

    Previous studies have shown that the Kapoeta howardite, as well as several other meteorites, contain excess concentrations of cosmogenic neon in the darkened, solar-irradiated phase compared to the light, non-irradiated phase. The two explanations offered for the nuclear production of these Ne excesses in the parent body regolith are either from galactic particle (GCR) irradiation or from a greatly enhanced flux of energetic solar protons (SCR), as compared to the recent solar flux. Combining new isotopic data we obtained on acid-etched, separated feldspar from Kapoeta light and dark phases with literature data, we show that the cosmogenic 21Ne /22Ne ratio of light phase feldspar (0.80) is consistent with only GCR irradiation in space for ~3 Myr. However, the 21Ne/22Ne ratio (0.68) derived for irradiation of dark phase feldspar in the Kapoeta regolith indicates that cosmogenic Ne was produced in roughly equal proportions from galactic and solar protons. Considering a simple model of an immature Kapoeta parent body regolith, the duration of this early galactic exposure was only ~3-6 Myr, which would be an upper limit to the solar exposure time of individual grains. Concentrations of cosmogenic 21Ne in pyroxene separates and of cosmogenic 126Xe in both feldspar and pyroxene are consistent with this interpretation. The near-surface irradiation time of individual grains in the Kapoeta regolith probably varied considerably due to regolith mixing to an average GCR irradiation depth of ~10 cm. Because of the very different depth scales for production of solar ~Fe tracks, SCR Ne, and GCR Ne, the actual regolith exposure times for average grains probably differed correspondingly. However, both the SCR 21Ne and solar track ages appear to be longer because of enhanced production by early solar activity. The SCR/GCR production ratio of 21Ne inferred from the Kapoeta data is larger by a at least a factor of 10 and possibly as much as a factor of ~50 compared to recent solar

  1. Solar activity variations of nocturnal thermospheric meridional winds over Indian longitude sector

    Science.gov (United States)

    Madhav Haridas, M. K.; Manju, G.; Arunamani, T.

    2016-09-01

    The night time F-layer base height information from ionosondes located at two equatorial stations Trivandrum (TRV 8.5°N, 77°E) and Sriharikota (SHAR 13.7°N, 80.2°E) spanning over two decades are used to derive the climatology of equatorial nocturnal Thermospheric Meridional Winds (TMWs) prevailing during High Solar Activity (HSA) and Low Solar Activity (LSA) epochs. The important inferences from the analysis are 1) Increase in mean equatorward winds observed during LSA compared to HSA during pre midnight hours; 25 m/s for VE (Vernal Equinox) and 20 m/s for SS (Summer Solstice), AE (autumnal Equinox) and WS (Winter Solstice). 2) Mean wind response to Solar Flux Unit (SFU) is established quantitatively for all seasons for pre-midnight hours; rate of increase is 0.25 m/s/SFU for VE, 0.2 m/s/SFU for SS and WS and 0.08 m/s/SFU for AE. 3) Theoretical estimates of winds for the two epochs are performed and indicate the role of ion drag forcing as a major factor influencing TMWs. 4) Observed magnitude of winds and rate of flux dependencies are compared to thermospheric wind models. 5) Equinoctial asymmetry in TMWs is observed for HSA at certain times, with more equatorward winds during AE. These observations lend a potential to parameterize the wind components and effectively model the winds, catering to solar activity variations.

  2. A low upper limit on the subsurface rise speed of solar active regions

    CERN Document Server

    Birch, Aaron C; Braun, Douglas C; Cameron, Robert; Gizon, Laurent; Löptien, Björn; Rempel, Matthias

    2016-01-01

    Magnetic field emerges at the surface of the Sun as sunspots and active regions. This process generates a poloidal magnetic field from a rising toroidal flux tube, it is a crucial but poorly understood aspect of the solar dynamo. The emergence of magnetic field is also important because it is a key driver of solar activity. We show that measurements of horizontal flows at the solar surface around emerging active regions, in combination with numerical simulations of solar magnetoconvection, can constrain the subsurface rise speed of emerging magnetic flux. The observed flows imply that the rise speed of the magnetic field is no larger than 150 m/s at a depth of 20 Mm, that is, well below the prediction of the (standard) thin flux tube model but in the range expected for convective velocities at this depth. We conclude that convective flows control the dynamics of rising flux tubes in the upper layers of the Sun and cannot be neglected in models of flux emergence.

  3. Study of solar activity modulation of galactic cosmic rays using the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Anjos, J.C. dos [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    Full text: We show that the count rates of low energy secondary cosmic ray particles used for self-calibration of the water- Cherenkov detectors of the surface detector array of the Pierre Auger Observatory are highly sensitive, after correcting for atmospheric effects, to modulations of galactic cosmic rays due to solar activity and to transient events. The technique consists in recording low threshold rates - scalers - with all the surface detectors of the array. Transient events such as Gamma Ray Bursts and solar flares are expected to be seen as a significant change of the counting rates from the expected value. Temporal variations related with the activity of the heliosphere can be determined with high accuracy due to the high total count rates. We will present the available data collected since March 2005 together with an analysis focused on the observation of Forbush decreases, transient events characterized by short-term periods of strong depression of the cosmic ray flux observed at earth caused by the transit of a solar ejecta from a Coronal Mass Ejection from the Sun. A strong correlation with neutron monitor data from the close-by Observatory Los Cerrilos is observed, showing that water-Cherenkov detectors operating in scaler mode are highly sensitive to Forbush decreases and other transient events related to solar activity modulation of galactic cosmic rays. (author)

  4. Enhanced photocurrent density in graphene/Si based solar cell (GSSC) by optimizing active layer thickness

    Energy Technology Data Exchange (ETDEWEB)

    Rosikhin, Ahmad, E-mail: a.rosikhin86@yahoo.co.id; Hidayat, Aulia Fikri; Syuhada, Ibnu; Winata, Toto, E-mail: toto@fi.itb.ac.id [Department of physics, physics of electronic materials research division Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung Jl. Ganesha 10, Bandung 40132, Jawa Barat – Indonesia (Indonesia)

    2015-12-29

    Thickness dependent photocurrent density in active layer of graphene/Si based solar cell has been investigated via analytical – simulation study. This report is a preliminary comparison of experimental and analytical investigation of graphene/Si based solar cell. Graphene sheet was interfaced with Si thin film forming heterojunction solar cell that was treated as a device model for photocurrent generator. Such current can be enhanced by optimizing active layer thickness and involving metal oxide as supporting layer to shift photons absorption. In this case there are two type of devices model with and without TiO{sub 2} in which the silicon thickness varied at 20 – 100 nm. All of them have examined and also compared with each other to obtain an optimum value. From this calculation it found that generated currents almost linear with thickness but there are saturated conditions that no more enhancements will be achieved. Furthermore TiO{sub 2} layer is effectively increases photon absorption but reducing device stability, maximum current is fluctuates enough. This may caused by the disturbance of excitons diffusion and resistivity inside each layer. Finally by controlling active layer thickness, it is quite useful to estimate optimization in order to develop the next solar cell devices.

  5. Active thermal control for the 1.8-m primary mirror of the solar telescope CLST

    Science.gov (United States)

    Liu, Yangyi; Gu, Naiting; Li, Cheng; Cheng, Yuntao; Yao, Benxi; Wang, Zhiyong; Rao, Changhui

    2016-07-01

    The 1.8-m primary mirror of solar telescope is heated by the solar radiation and introduce harmful mirror seeing degrading the imaging quality. For the Chinese Large Solar Telescope (CLST), the thermal requirement based on the quantitative evaluation on mirror seeing effect shows that the temperature rise on mirror surface should be within 1 kelvin. To meet the requirement, an active thermal control system design for the CLST primary mirror is proposed, and realized on the subscale prototype of the CLST. The experimental results show that the temperature on the mirror surface is well controlled. The average and maximum thermal controlled error are less than 0.3 and 0.7 kelvins respectively, which completely meets the requirements.

  6. Active charge/passive discharge solar heating systems: Thermal analysis and performance comparisons and performance comparisons

    Science.gov (United States)

    Swisher, J.

    1981-06-01

    This type of system combines liquid-cooled solar collector panels with a massive integral storage component that passively heats the building interior by radiation and free convection. The TRNSYS simulation program is used to evaluate system performance and to provide input for the development of a simplified analysis method. This method, which provides monthly calculations of delivered solar energy, is based on Klein's Phi-bar procedure and data from hourly TRNSYS simulations. The method can be applied to systems using a floor slab, a structural wall, or a water tank as the storage component. Important design parameters include collector area and orientation, building heat loss, collector and heat exchanger efficiencies, storage capacity, and storage to room coupling. Performance simulation results are used for comparisons with active and passive solar designs.

  7. The impact of solar radiation and solar activity on climate variability after the end of the last glaciation

    Science.gov (United States)

    Dergachev, V. A.

    2016-12-01

    This paper analyzes climate changes since the end of the last glaciations 19-20 thousand years ago, including the modern warm interglacial Holocene age, which started about 11.5 thousand years ago. The connection between the impact of the orbital effect and solar activity on the Earth's climate is studied. This is important for estimation of the duration of the modern interglacial period. It is shown that there is significant inconsistency between temperature variations in Holocene, which is deduced from the large amount of recently obtained indirect data and the temperatures reproduced in the climate models. The trends of climate cooling in the Holocene on the whole and during the last 2000 years are investigated.

  8. PERSPECTIVE: Low solar activity is blamed for winter chill over Europe

    Science.gov (United States)

    Benestad, Rasmus E.

    2010-06-01

    Throughout recent centuries, there have been a large number of studies of the relationship between solar activity and various aspects of climate, and yet this question is still not entirely settled. In a recent study, Lockwood et al (2010) argue that the occurrence of persistent wintertime blocking events (periods with persistent high sea level pressure over a certain region) over the eastern Atlantic, and hence chilly winters over northern Europe, are linked to low solar activity. Is this then a breakthrough in our understanding of our climate? The Wolf sunspot number, which dates back to Galileo's invention of the telescope in the 17th century, represents one of our longest geophysical data records. Galileo was also involved in building the first barometers and thermometers around that period. Hence, the 17th century represents the start of instrumental measurements of weather and climate, and there are indeed historical records of speculations or studies on the link between changes in the sun and conditions on Earth dating from that time (Helland-Hansen and Nansen 1920). One notorious problem with many previous studies was that relationships established over the calibration interval subsequently broke down. There was a period in the mid-20th century when little work was done on solar activity and climate, but solar activity was considered a real forcing factor before 1920. With the advent of frontal theory, orbital forcing theory, and stronger awareness of the implications of enhanced greenhouse gas concentrations, the support for solar forcing seemed to have diminished in the climatology community by the mid-20th century (Monin 1972). But non-stationary relationships, the chaotic character of climate, weak effects, and lack of a physical understanding behind such a link, can also explain the low support for solar forcing at that time. For a long time, it was not established whether more sunspots meant a brighter or dimmer sun (the answer is brighter), and then

  9. Electrically active defects in solar grade multicrystalline silicon

    DEFF Research Database (Denmark)

    Dahl, Espen

    2013-01-01

    the potential to be such a feedstock. However, this feedstock has only few years of active commercial history and the detailed understanding of the nature of structural defects in this material still has fundamental shortcomings. In this thesis the electrical activity of structural defects, commonly associated......-SEM) for structural analysis. Some additional techniques have been implemented in order to fill in missing information. In addition, a part of the study aimed at improving the electrical performance of the material, by removing metallic impurities from active phases, with different gettering techniques. It was found...... with multicrystalline silicon, has been investigated in wafers based on different types of feedstock produced through a metallurgical process route. In order to provide detailed information on the nature of these defects, a set of complementary characterization methods has been implemented. These methods includes...

  10. Heliophysics: Evolving Solar Activity and the Climates of Space and Earth

    Science.gov (United States)

    Schrijver, Carolus J.; Siscoe, George L.

    2012-01-01

    Preface; 1. Interconnectedness in heliophysics Carolus J. Schrijver and George L. Siscoe; 2. Long-term evolution of magnetic activity of Sun-like stars Carolus J. Schrijver; 3. Formation and early evolution of stars and proto-planetary disks Lee W. Hartmann; 4. Planetary habitability on astronomical time scales Donald E. Brownlee; 5. Solar internal flows and dynamo action Mark S. Miesch; 6. Modeling solar and stellar dynamos Paul Charbonneau; 7. Planetary fields and dynamos Ulrich R. Christensen; 8. The structure and evolution of the 3D solar wind John T. Gosling; 9. The heliosphere and cosmic rays J. Randy Jokipii; 10. Solar spectral irradiance: measurements and models Judith L. Lean and Thomas N. Woods; 11. Astrophysical influences on planetary climate systems Juerg Beer; 12. Evaluating the drivers of Earth's climate system Thomas J. Crowley; 13. Ionospheres of the terrestrial planets Stanley C. Solomon; 14. Long-term evolution of the geospace climate Jan J. Sojka; 15. Waves and transport processes in atmospheres and oceans Richard L. Walterscheid; 16. Solar variability, climate, and atmospheric photochemistry Guy P. Brasseur, Daniel Marsch and Hauke Schmidt; Appendix I. Authors and editors; List of illustrations; List of tables; Bibliography; Index.

  11. Decentralized Solar Energy Technology Assessment Program: review of activities (April 1978-December 1979)

    Energy Technology Data Exchange (ETDEWEB)

    Bronfman, B.H.; Carnes, S.A.; Schweitzer, M.; Peelle, E.; Enk, G.

    1980-05-01

    The Decentralized Solar Energy Technology Assessment Program (TAP), sponsored by the Office of Solar Energy, Department of Energy, is a technology assessment and planning activity directed at local communities. Specifically, the objectives of the TAP are: (1) to assess the socioeconomic and institutional impacts of the widespread use of renewable energy technologies; (2) to involve communities in planning for their energy futures; and (3) to plan for local energy development. This report discusses two major efforts of the TAP during the period April 1978 to December 1979: the community TA's and several support studies. Four communities have been contracted to undertake an assessment-planning exercise to examine the role of solar renewable energy technologies in their future. The communities selected are the Southern Tier Central Region of New York State, (STC); Richmond, Kentucky, Kent, Ohio; and Franklin County, Massachusetts. Descriptions and progress to date of the community TA's are presented in detail. Two major support study efforts are also presented. A review of existing literature on the legal and institutional issues relative to the adoption of decentralized solar technologies is summarized. A preliminary analysis of potential socioeconomic impacts and other social considerations relative to decentralized solar technologies is also described.

  12. Statistical Properties of Solar Active Regions Based on Objective Detection and Characterization

    Science.gov (United States)

    Zhang, Jie

    2010-05-01

    We present a study of the statistical properties of solar magnetic regions based on objective detection and characterization. The uniformity and consistency of the magnetogram images provided by SOHO/MDI make it an ideal database for automated detection of solar magnetic features. The results of detection are mainly controlled by the following four parameters or thresholds: (1) magnetic intensity threshold of kernel pixels (to find strong field regions), (2) erosion size threshold for morphological opening operation (to remove small patches), (3) magnetic intensity threshold of AR pixels (to recover the whole size of an AR), (4) dilation size threshold for morphological closing operation (to merge neighboring patches to form a whole AR). We find that the best combination of the above four parameters is (1) 250 Gauss, (2) 10 Mm, (3) 50 Gauss, and (4) 10 Mm, which yields a detection of 1772 ARs that is most similar to the NOAA catalog based on human operators; as a comparison, NOAA/SWPC reports 2281 ARs during the same period. By varying the values of the control parameters, the number of ARs detected can range from as small as 1000 to as large as 10000. With these data, we are now able to make detailed statistical study of solar active regions, including (1) how AR number and emerged magnetic flux vary with solar cycle? (2) how AR number and emerged magnetic flux vary with latitude during different phases of solar cycle? (3) the distribution of AR number with respect to the size; Is the distribution power-law, Gaussian or log-normal, and the implication on the mechanisms of generating ARs? Is there a north-south asymmetry of ARs? How the strong magnetic patches distribute within an AR? This study provides us new insights on the properties and generations of solar active regions.

  13. Photospheric and chromospheric magnetic activity of seismic solar analogs. Observational inputs on the solar-stellar connection from Kepler and Hermes

    Science.gov (United States)

    Salabert, D.; García, R. A.; Beck, P. G.; Egeland, R.; Pallé, P. L.; Mathur, S.; Metcalfe, T. S.; do Nascimento, J.-D., Jr.; Ceillier, T.; Andersen, M. F.; Triviño Hage, A.

    2016-11-01

    We identify a set of 18 solar analogs among the seismic sample of solar-like stars observed by the Kepler satellite rotating between 10 and 40 days. This set is constructed using the asteroseismic stellar properties derived using either the global oscillation properties or the individual acoustic frequencies. We measure the magnetic activity properties of these stars using observations collected by the photometric Kepler satellite and by the ground-based, high-resolution Hermes spectrograph mounted on the Mercator telescope. The photospheric (Sph) and chromospheric (S index) magnetic activity levels of these seismic solar analogs are estimated and compared in relation to the solar activity. We show that the activity of the Sun is comparable to the activity of the seismic solar analogs, within the maximum-to-minimum temporal variations of the 11-yr solar activity cycle 23. In agreement with previous studies, the youngest stars and fastest rotators in our sample are actually the most active. The activity of stars older than the Sun seems to not evolve much with age. Furthermore, the comparison of the photospheric, Sph, with the well-established chromospheric, S index, indicates that the Sph index can be used to provide a suitable magnetic activity proxy which can be easily estimated for a large number of stars from space photometric observations. Based on observations collected by the NASA Kepler space telescope and the Hermes spectrograph mounted on the 1.2 m Mercator telescope at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.

  14. Effect of solar and magnetic activity on VHF scintillations near the equatorial anomaly crest

    Directory of Open Access Journals (Sweden)

    R. P. Singh

    2004-09-01

    Full Text Available The VHF amplitude scintillation recorded during the period January 1991 to December 1993 in the declining phase of a solar cycle and April 1998 to December 1999 in the ascending phase of the next solar cycle at Varanasi (geogr. lat.=25.3°, long.=83.0°, dip=37°N have been analyzed to study the behavior of ionospheric irregularities during active solar periods and magnetic storms. It is shown that irregularities occur at arbitrary times and may last for <30min. A rise in solar activity increases scintillations during winter (November-February and near equinoxes (March-April; September-October, whereas it depresses the scintillations during the summer (May-July. In general, the role of magnetic activity is to suppress scintillations in the pre-midnight period and to increase it in the post-midnight period during equinox and winter seasons, whilst during summer months the effect is reversed. The pre-midnight scintillation is sometimes observed when the main phase of Dst corresponds to the pre-midnight period. The annual variation shows suppression of scintillations on disturbed days, both during pre-midnight and post-midnight period, which becomes more effective during years of high solar activity. It is observed that for magnetic storms for which the recovery phase starts post-midnight, the probability of occurrence of irregularities is enhanced during this time. If the magnetic storm occurred during daytime, then the probability of occurrence of scintillations during the night hours is decreased. The penetration of magnetospheric electric fields to the magnetic equator affects the evolution of low-latitude irregularities. A delayed disturbance dynamo electric field also affects the development of irregularities.

  15. No evidence for planetary influence on solar activity 330 000 years ago

    Science.gov (United States)

    Cauquoin, A.; Raisbeck, G. M.; Jouzel, J.; Bard, E.

    2014-01-01

    Context. Abreu et al. (2012, A&A. 548, A88) have recently compared the periodicities in a 14C - 10Be proxy record of solar variability during the Holocene and found a strong similarity with the periodicities predicted on the basis of a model of the time-dependent torque exerted by the planets on the sun's tachocline. If verified, this effect would represent a dramatic advance not only in the basic understanding of the Sun's variable activity, but also in the potential influence of this variability on the Earth's climate. Cameron and Schussler (2013, A&A. 557, A83) have seriously criticized the statistical treatment used by Abreu et al. to test the significance of the coincidences between the periodicities of their model with the Holocene proxy record. Aims: If the Abreu et al. hypothesis is correct, it should be possible to find the same periodicities in the records of cosmogenic nuclides at earlier times. Methods: We present here a high-resolution record of 10Be in the EPICA Dome C (EDC) ice core from Antarctica during the Marine Interglacial Stage 9.3 (MIS 9.3), 325-336 kyr ago, and investigate its spectral properties. Results: We find very limited similarity with the periodicities seen in the proxy record of solar variability during the Holocene, or with that of the model of Abreu et al. Conclusions: We find no support for the hypothesis of a planetary influence on solar activity, and raise the question of whether the centennial periodicities of solar activity observed during the Holocene are representative of solar activity variability in general.

  16. SFC - The Solar activity and geomagnetic indices Forecast Center

    Science.gov (United States)

    Valette, Jean-Jacques; Nicolas, Fuller; Philippe, Yaya

    CLS which operates SFC still maintains close collaboration with scientific laboratories or the Space Agencies in order to improve the prediction service performances and to extend the range of its applications. SFC also participates to ISES activities as an Associate Regional Warning Center.

  17. Helium line formation and abundance in a solar active region

    CERN Document Server

    Mauas, P J D; Falchi, A; Falciani, R; Teriaca, L N; Cauzzi, G

    2004-01-01

    An observing campaign (SOHO JOP 139), coordinated between ground based and SOHO instruments, has been planned to obtain simultaneous spectroheliograms of the same active region in several spectral lines. The chromospheric lines CaII K, Halpha and Na D as well as HeI 10830, 5876, 584 and HeII 304 AA lines have been observed.These simultaneous observations allow us to build semi-empirical models of the chromosphere and low transition region of an active region, taking into account the estimated total number of photoionizing photons impinging on the target active region and their spectral distribution. We obtained a model that matches very well all the observed line profiles, using a standard value for the He abundance ([He]=0.1) and a modified distribution of microturbulence. For this model we study the influence of the coronal radiation on the computed helium lines. We find that, even in an active region, the incident coronal radiation has a limited effect on the UV He lines, while it results of fundamental im...

  18. Kinaesthetic Learning Activities and Learning about Solar Cells

    Science.gov (United States)

    Richards, A. J.; Etkina, Eugenia

    2013-01-01

    Kinaesthetic learning activities (KLAs) can be a valuable pedagogical tool for physics instructors. They have been shown to increase engagement, encourage participation and improve learning outcomes. This paper details several KLAs developed at Rutgers University for inclusion in an instructional unit about semiconductors, p-n junctions and solar…

  19. Solar Indices

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  20. Discovery and Rossiter-Mclaughlin Effect of Exoplanet Kepler-8b

    Science.gov (United States)

    Jenkins, Jon M.; Borucki, William J.; Koch, David G.; Marcy, Geoffrey W.; Cochran, William D.; Welsh, William F.; Basri, Gibor; Batalha, Natalie M.; Buchhave, Lars A.; Brown, Timothy M.; Caldwell, Douglas A.; Dunham, Edward W.; Endl, Michael; Fischer, Debra A.; Gautier, Thomas N., III; Geary, John C.; Gilliland, Ronald L.; Howell, Steve B.; Isaacson, Howard; Johnson, John Asher; Latham, David W.; Lissauer, Jack J.; Monet, David G.; Rowe, Jason F.; Sasselov, Dimitar D.; Howard, Andrew W.; MacQueen, Phillip; Orosz, Jerome A.; Chandrasekaran, Hema; Twicken, Joseph D.; Bryson, Stephen T.; Quintana, Elisa V.; Clarke, Bruce D.; Li, Jie; Allen, Christopher; Tenenbaum, Peter; Wu, Hayley; Meibom, Søren; Klaus, Todd C.; Middour, Christopher K.; Cote, Miles T.; McCauliff, Sean; Girouard, Forrest R.; Gunter, Jay P.; Wohler, Bill; Hall, Jennifer R.; Ibrahim, Khadeejah; Kamal Uddin, AKM; Wu, Michael S.; Bhavsar, Paresh A.; Van Cleve, Jeffrey; Pletcher, David L.; Dotson, Jessie L.; Haas, Michael R.

    2010-12-01

    We report on the discovery and the Rossiter-McLaughlin (R-M) effect of Kepler-8b, a transiting planet identified by the NASA Kepler Mission. Kepler photometry and Keck-HIRES radial velocities yield the radius and mass of the planet around this F8IV subgiant host star. The planet has a radius R P = 1.419 R J and a mass M P = 0.60 M J, yielding a density of 0.26 g cm-3, one of the lowest planetary densities known. The orbital period is P = 3.523 days and the orbital semimajor axis is 0.0483+0.0006 -0.0012 AU. The star has a large rotational vsin i of 10.5 ± 0.7 km s-1 and is relatively faint (V ≈ 13.89 mag); both properties are deleterious to precise Doppler measurements. The velocities are indeed noisy, with scatter of 30 m s-1, but exhibit a period and phase that are consistent with those implied by transit photometry. We securely detect the R-M effect, confirming the planet's existence and establishing its orbit as prograde. We measure an inclination between the projected planetary orbital axis and the projected stellar rotation axis of λ = -26fdg4 ± 10fdg1, indicating a significant inclination of the planetary orbit. R-M measurements of a large sample of transiting planets from Kepler will provide a statistically robust measure of the true distribution of spin-orbit orientations for hot Jupiters around F and early G stars. Based in part on observations obtained at the W. M. Keck Observatory, which is operated as a scientific partnership between the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  1. Evidence for a functional subdivision of Premotor Ear-Eye Field (Area 8B.

    Directory of Open Access Journals (Sweden)

    Marco eLanzilotto

    2015-01-01

    Full Text Available The Supplementary Eye Field (SEF and the Frontal Eye Field (FEF have been described as participating in gaze shift control. Recent evidence suggests, however, that other areas of the dorsomedial prefrontal cortex also influence gaze shift. Herein, we have investigated electrically evoked ear- and eye movements from the Premotor Ear-Eye Field, or PEEF (area 8B of macaque monkeys. We stimulated PEEF during spontaneous condition (outside the task performance and during the execution of a visual fixation task (VFT. In the first case, we functionally identified two regions within the PEEF: a core and a belt. In the core region, stimulation elicited forward ear movements; regarding the evoked eye movements, in some penetrations, stimulation elicited contraversive fixed-vectors with a mean amplitude of 5.14°; while in other penetrations, we observed prevalently contralateral goal-directed eye movements having end-points that fell within 15° in respect to the primary eye position. On the contrary, in the belt region, stimulation elicited backward ear movements; regarding the eye movements, in some penetrations stimulation elicited prevalently contralateral goal-directed eye movements having end-points that fell within 15° in respect to the primary eye position, while in the lateral edge of the investigated region, stimulation elicited contralateral goal-directed eye movements having end-points that fell beyond 15° in respect to the primary eye position. Stimulation during VFT either did not elicit eye movements or evoked saccades of only a few degrees. Finally, even though no head rotation movements were observed during the stimulation period, we viewed a relationship between the duration of stimulation and the neck forces exerted by the monkey’s head. We propose an updated vision of the PEEF composed of two functional regions, core and belt, which may be involved in integrating auditory and visual information important to the programming of gaze

  2. Evolution of Magnetic Helicity and Energy Spectra of Solar Active Regions

    CERN Document Server

    Zhang, Hongqi; Sokoloff, D D

    2015-01-01

    We adopt an isotropic representation of the Fourier-transformed two-point correlation tensor of the magnetic field for estimating magnetic energy and helicity spectra as well as current helicity spectra of individual active regions and the change of their spectral indices with the solar cycle. The departure of the spectral index of current helicity from 5/3 is analyzed, and it is found that it is lower than that of magnetic energy. There is no obvious relationship between the change of the normalized magnetic helicity and the integral scale of the magnetic field for individual active regions. The evolution of the spectral index reflects the development and distribution of various scales of magnetic structures in active regions. It is found that around solar maximum the magnetic energy and helicity spectra are steeper.

  3. On the non-Kolmogorov nature of flare-productive solar active regions

    CERN Document Server

    Mandage, Revati S

    2016-01-01

    A magnetic power spectral analysis is performed on 53 solar active regions, observed from August 2011 to July 2012. Magnetic field data obtained from the Helioseismic and Magnetic Imager, inverted as Active Region Patches, are used to study the evolution of the magnetic power index as each region rotates across the solar disk. Active regions are classified based on the number, and sizes, of solar flares they produce, in order to study the relationship between flare productivity and the magnetic power index. The choice of window size and inertial range plays a key role in determining the correct magnetic power index. The overall distribution of magnetic power indices has a range of $1.0-2.5$. Flare-quiet regions peak at a value of 1.6, however flare-productive regions peak at a value of 2.2. Overall, the histogram of the distribution of power indices of flare-productive active regions is well separated from flare-quiet active regions. Only 12\\% of flare-quiet regions exhibit an index greater than 2, whereas 90...

  4. Chromospheric activity and evolutionary age of the Sun and four solar twins

    CERN Document Server

    Mittag, M; Hempelmann, A; González-Pérez, J N; Schmitt, J H M M

    2016-01-01

    The activity levels of the solar-twin candidates HD 101364 and HD 197027 are measured and compared with the Sun, the known solar twin 18 Sco, and the solar-like star 51 Peg. Furthermore, the absolute ages of these five objects are estimated from their positions in the HR diagram and the evolutionary (relative) age compared with their activity levels. To represent the activity level of these stars, the Mount Wilson S-indices were used. To obtain consistent ages and evolutionary advance on the main sequence, we used evolutionary tracks calculated with the Cambridge Stellar Evolution Code. From our spectroscopic observations of HD 101364 and HD 197027 and based on the established calibration procedures, the respective Mount Wilson S-indices are determined. We find that the chromospheric activity of both stars is comparable with the present activity level of the Sun and that of 18 Sco, at least for the period in consideration. Furthermore, the absolute age of HD 101364, HD 197027, 51 Peg, and 18 Sco are found to ...

  5. Excellent channels of evaporation in the fusion of {sup 8} B with {sup 58} Ni; Canales relevantes de evaporacion en la fusion de {sup 8} B con {sup 58} Ni

    Energy Technology Data Exchange (ETDEWEB)

    Martinez Q, E.; Aguilera, E.F.; Garcia M, H.; Lizcano, D. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2004-07-01

    Inside the systematic studies of nuclear reactions with radioactive beams carried out by our group, using the installation TWINSOL of the University of Notre Dame, it was carried out an experiment where the fusion of the system {sup 8} B + {sup 58} Ni was measured to investigate the effects of the proton halo of the radioactive nuclei {sup 8} B to the interactionate with a target of {sup 58} Ni. The protons were detected taken place in the reaction and values were determined for the fusion cross section. (Author)

  6. Chromospherically Active Stars in the RAVE Survey. II. Young Dwarfs in the Solar Neighborhood

    Science.gov (United States)

    Žerjal, M.; Zwitter, T.; Matijevič, G.; Grebel, E. K.; Kordopatis, G.; Munari, U.; Seabroke, G.; Steinmetz, M.; Wojno, J.; Bienaymé, O.; Bland-Hawthorn, J.; Conrad, C.; Freeman, K. C.; Gibson, B. K.; Gilmore, G.; Kunder, A.; Navarro, J.; Parker, Q. A.; Reid, W.; Siviero, A.; Watson, F. G.; Wyse, R. F. G.

    2017-01-01

    A large sample of over 38,000 chromospherically active candidate solar-like stars and cooler dwarfs from the RAVE survey is addressed in this paper. An improved activity identification with respect to the previous study was introduced to build a catalog of field stars in the solar neighborhood with an excess emission flux in the calcium infrared triplet wavelength region. The central result of this work is the calibration of the age–activity relation for main-sequence dwarfs in a range from a few 10 {Myr} up to a few Gyr. It enabled an order of magnitude age estimation of the entire active sample. Almost 15,000 stars are shown to be younger than 1 {Gyr} and ∼2000 younger than 100 {Myr}. The young age of the most active stars is confirmed by their position off the main sequence in the J ‑ K versus {N}{UV}-V diagram showing strong ultraviolet excess, mid-infrared excess in the J ‑ K versus {W}1-{W}2 diagram, and very cool temperatures (J-K> 0.7). They overlap with the reference pre-main-sequence RAVE stars often displaying X-ray emission. The activity level increasing with the color reveals their different nature from the solar-like stars and probably represents an underlying dynamo-generating magnetic fields in cool stars. Of the RAVE objects from DR5, 50% are found in the TGAS catalog and supplemented with accurate parallaxes and proper motions by Gaia. This makes the database of a large number of young stars in a combination with RAVE’s radial velocities directly useful as a tracer of the very recent large-scale star formation history in the solar neighborhood. The data are available online in the Vizier database.

  7. Evidence for Energy Supply by Active Region Spicules to the Solar Atmosphere

    CERN Document Server

    Zeighami, S; Tavabi, E; Ajabshirizadeh, A

    2016-01-01

    We investigate the role of active region spicules in the mass balance of the solar wind and energy supply for heating the solar atmosphere. We use high cadence observations from the Solar Optical Telescope (SOT) onboard the Hinode satellite in the Ca II H line filter obtained on 26 January 2007. The observational technique provides the high spatio-temporal resolution required to detect fine structures such as spicules. We apply Fourier power spectrum and wavelet analysis to SOT/Hinode time series of an active region data to explore the existence of coherent intensity oscillations. The presence of coherent waves could be an evidence for energy transport to heat the solar atmosphere. Using time series, we measure the phase difference between two intensity profiles obtained at two different heights, which gives information about the phase difference between oscillations at those heights as a function of frequency. The results of a fast Fourier transform (FFT) show peaks in the power spectrum at frequencies in th...

  8. Coronal Dynamic Activities in the Declining Phase of a Solar Cycle

    CERN Document Server

    Jang, Minhwan; Hong, Sunhak; Choe, G S

    2016-01-01

    It has been known that some solar activity indicators show a double-peak feature in their evolution through a solar cycle, which is not conspicuous in sunspot number. In this letter, we investigate the high solar dynamic activity in the declining phase of the sunspot cycle by examining the evolution of polar and low latitude coronal hole areas and the statistics of splitting and merging events of coronal holes and coronal mass ejections detected by SOHO/LASCO C3 in solar cycle 23. Although the total coronal hole area is at its maximum near the sunspot minimum, in which polar coronal holes prevail, it shows a comparable second maximum in the declining phase of the cycle, in which low latitude coronal holes are dominant. The events of coronal hole splitting or merging, which are attributed to surface motions of magnetic fluxes, are also mostly populated in the declining phase of the cycle. The far-reaching C3 coronal mass ejections are also over-populated in the declining phase of the cycle. From these results ...

  9. Could periodic patterns in human mortality be sensitive to solar activity?

    Directory of Open Access Journals (Sweden)

    R. Díaz-Sandoval

    2011-06-01

    Full Text Available Seasonal behaviour of human diseases have been observed and reported in the literature for years. Although the Sun plays an essential role in the origin and evolution of life on Earth, it is barely taken into account in biological processes for the development of a specific disease. Higher mortality rates occur during the winter season in the Northern Hemisphere for several diseases, particularly diseases of the cardiovascular and respiratory systems. This increment has been associated with seasonal and social causes. However, is there more behind these correlations, in particular in terms of solar variability? In this paper we attempt to make a first step towards answering this question. A detailed wavelet analysis of periodicities for diseases from England and Wales seem to reveal that mortality periodicities (3 days to half a year could be due to the Earth's position around the Sun. Moreover, crosswavelet and wavelet coherence analysis show common features between medical diseases and solar proxies around solar maximum activity suggesting that this relation, if any, has to be searched in times of high solar activity.

  10. Enhanced photocatalytic activity of fish scale loaded TiO2 composites under solar light irradiation

    Institute of Scientific and Technical Information of China (English)

    Li-Ngee Ho; Soon-An Ong; Hakimah Osman; Fong-Mun Chong

    2012-01-01

    Fish scale (FS) loaded TiO2 composites were investigated as photocatalysts in degradation of Methyl Orange under solar light irradiation.Composites were prepared through sol-gel method by varying mass ratio of TiO2/FS at 90:10,70:30 and 50:50,respectively.The catalysts prepared in this study were characterized by using XRD,SEM,FT-IR and nitrogen sorption.The effects of solar irradiation,mass ratio of TiO2/FS composites,irradiation time and catalyst loadings were studied.Synergistic effect was found in TiO2/FS of 90:10 composite which performed higher photocatalytic degradation than synthesized TiO2 under solar light irradiation.However,further increasing fish scale content in the composites reduced the photocatalytic activity drastically.Under solar light irradiation,all the catalysts in this study exhibited photocatalytic activity,except TiO2/FS of 50:50 composite that only acted as a weak biosorbent without performing any photocatalytic property.Photocatalytic degradation increased with increasing catalyst loading and irradiation time but decreased with increased of initial dye concentration.

  11. A Space Weather mission concept: Observatories of the Solar Corona and Active Regions (OSCAR

    Directory of Open Access Journals (Sweden)

    Strugarek Antoine

    2015-01-01

    Full Text Available Coronal Mass Ejections (CMEs and Corotating Interaction Regions (CIRs are major sources of magnetic storms on Earth and are therefore considered to be the most dangerous space weather events. The Observatories of Solar Corona and Active Regions (OSCAR mission is designed to identify the 3D structure of coronal loops and to study the trigger mechanisms of CMEs in solar Active Regions (ARs as well as their evolution and propagation processes in the inner heliosphere. It also aims to provide monitoring and forecasting of geo-effective CMEs and CIRs. OSCAR would contribute to significant advancements in the field of solar physics, improvements of the current CME prediction models, and provide data for reliable space weather forecasting. These objectives are achieved by utilising two spacecraft with identical instrumentation, located at a heliocentric orbital distance of 1 AU from the Sun. The spacecraft will be separated by an angle of 68° to provide optimum stereoscopic view of the solar corona. We study the feasibility of such a mission and propose a preliminary design for OSCAR.

  12. Sub- and Quasi-Centurial Cycles in Solar and Geomagnetic Activity Data Series

    Science.gov (United States)

    Komitov, B.; Sello, S.; Duchlev, P.; Dechev, M.; Penev, K.; Koleva, K.

    2016-07-01

    The subject of this paper is the existence and stability of solar cycles with durations in the range of 20-250 years. Five types of data series are used: 1) the Zurich series (1749-2009 AD), the mean annual International sunspot number Ri, 2) the Group sunspot number series Rh (1610-1995 AD), 3) the simulated extended sunspot number from Extended time series of Solar Activity Indices (ESAI) (1090-2002 AD), 4) the simulated extended geomagnetic aa-index from ESAI (1099-2002 AD), 5) the Meudon filament series (1919-1991 AD). Two principally independent methods of time series analysis are used: the T-R periodogram analysis (both in standard and ``scanning window'' regimes) and the wavelet-analysis. The obtained results are very similar. A strong cycle with a mean duration of 55-60 years is found to exist in all series. On the other hand, a strong and stable quasi 110-120 years and ˜200-year cycles are obtained in all of these series except in the Ri one. The high importance of the long term solar activity dynamics for the aims of solar dynamo modeling and predictions is especially noted.

  13. The periodicities of Solar Magnetic Activity with the Wavelet Coherence Method

    Science.gov (United States)

    Velasco Herrera, Victor Manuel

    The origin, behavior and evolution of the solar magnetic field is one of the main challenges of observational and theoretical solar physics. Up to now the Dynamo theory gives us the best approach to the problem. However, it is not yet able to predict many features of the solar activity, which seems not to be strictly a periodical phenomenon. Among the indicators of solar magnetic variability there is the 11-years cycle of sunspots, as well as the solar magnetic cycle of 22 years (the Hale cycle). In order to provide more elements to the Dynamo theory that could help it in the predicting task, we analyze here the plausible existence of other periodicities associated with the solar magnetic field. In this preliminary work we use historical data (sunspots and aurora borealis), proxies (10 Be and 14 C) and modern instrumental data (Coronal Holes, Cosmic Rays, sunspots, flare indexes and solar radio flux at 10.7 cm). To find relationships between different time-frequency series we have employed the Wavelet Coherence technique: this technique indicates if two time-series of solar activity have the same periodicities in a given time interval. If so, it determines whether such relation is a linear one or not. Such a powerful tool indicates that, if some periodicity at a given frequency has a confidence level below 95%, it appears very lessened or does not appear in the Wavelet Spectral Analysis, such periodicity does not exist. Our results show that the so called Glaisberg cycle of 80-90 years and the periodicity of 205 years (the Suess cycle) do not exist. It can be speculated that such fictitious periodicities have been the result of using the Fourier transform with series with are not of stationary nature, as it is the case of the Be10 and C14 series. In contrast we confirm the presence of periodicities of 1.3, 1.7, quasi-triennial, quasi-quinquennial, Shawabe-cycle, Gale-cycle 60, 120 and 240 years.

  14. Solar Indices - Solar Radio Flux

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  15. On the near-barrier fusion of the proton-halo {sup 8}B + {sup 58}Ni system

    Energy Technology Data Exchange (ETDEWEB)

    Rangel, J.; Lubian, J.; Gomes, P.R.S. [Universidade Federal Fluminense, Instituto de Fisica, Gragoata, Niteroi, R.J. (Brazil); Carlson, B.V. [Instituto Tecnologico de Aeronautica, Departamento de Fisica, Sao Paulo (Brazil); Chamon, L.C. [Universidade de Sao Paulo, Instituto de Fisica, CP 66318, Sao Paulo (Brazil); Gomez Camacho, A. [Instituto Nacional de Investigaciones, Departamento de Aceleradores, Apartado Postal 18-1027, C.P. 11801, Mexico, D.F. (Mexico)

    2013-05-15

    We have performed two independent calculations, without any free parameter, to predict the near-barrier fusion cross section for the proton-halo {sup 8}B + {sup 58}Ni system, for which data were recently reported. Standard coupled channel calculations predict fusion cross sections smaller than the data, while CDCC calculations for the absorption cross section (fusion + transfer + inelastic cross sections) agree with the data above the barrier, although transfer cross sections are calculated to have non-negligible cross section at this energy regime. At sub-barrier energies, region where transfer cross sections are particularly important, the CDCC calculations overpredict the data. The fusion data of the {sup 8}B + {sup 58}Ni system fail to follow the systematics of other weakly bound nuclei and the UFF curve and do not agree with the fusion data of the {sup 8}B + {sup 28}Si system. We try to explain this anomalous behaviour. (orig.)

  16. PREPARATION MICRO-FILTRATION CERAMIC MEMBRANE FROM NATURAL ZEOLITE FOR PROCION RED MX8B AND METHYLENE BLUE FILTRATION

    Directory of Open Access Journals (Sweden)

    Dyah Choiriyah

    2015-12-01

    Full Text Available The study of ceramic membrane fabrication from natural zeolite and its utilization for filtration of procion red MX8B and methylene blue has been investigated. The purposes of this study are to determine the effect of pressure on membrane permeability and selectivity and utilize natural zeolite as ceramic membranes procion red MX8B and methylene blue filtration. The membrane was prepared by metide press pellets and then calcined at 850 oC. The membranes were characterized by mechanical test, flux and rejection of dye. The compression test of the membrane found the values of 1369.178 psi in dry conditions to 1388.933 psi in wet conditions. The flux test found that the higher the pressure applied, the flux was increase. However, the high pressure also decreased the selectivity. Rejection test found that the rejection of methylene blue filtration up to 70 %. Meanwhile, procion red MX8B filtration has rejectivity less than 20 %.

  17. Dependence of the Sunspot-group Size on the Level of Solar Activity and its Influence on the Calibration of Solar Observers

    CERN Document Server

    Usoskin, I G; Chatzistergos, T

    2016-01-01

    The distribution of the sunspot group size (area) and its dependence on the level of solar activity is studied. It is shown that the fraction of small groups is not constant but decreases with the level of solar activity so that high solar activity is largely defined by big groups. We study the possible influence of solar activity on the ability of a realistic observer to see and report the daily number of sunspot groups. It is shown that the relation between the number of sunspot groups as seen by different observers with different observational acuity thresholds is strongly non-linear and cannot be approximated by the traditionally used linear scaling ($k-$factors). The observational acuity threshold [$A_{\\rm th}$] is considered to quantify the quality of each observer, instead of the traditional relative $k-$factor. A nonlinear $c-$factor based on $A_{\\rm th}$ is proposed, which can be used to correct each observer to the reference conditions. The method is tested on a pair of principal solar observers, Wo...

  18. Changed Relation Between Radio Flux F10,7 And Some Solar Activity Indices During Cycles 21 - 23

    CERN Document Server

    Bruevich, E A

    2011-01-01

    A stable cyclicity of correlation coefficients Kcorr for some solar activity indices versus F10,7 was found after monthly averages values analysis. These indices are: Wolf numbers, 10,7 cm radio flux F10,7, 0,1-0,8 nm background, the total solar irradiance, Mg II UV-index (280 nm core to wing ratio) and counts of flares. The correlation coefficients of the linear regression of these solar activity indices versus F10,7 were analyzed for every year in solar cycles 21 - 23. We found out that the values of yearly determined correlation coefficients Kcorr for solar activity indices versus F10,7 show the cyclic variations with stable period closed to half length of 11-year cycle (5,5 years approximately)

  19. Solar neutrino physics with low-threshold dark matter detectors

    CERN Document Server

    Billard, J; Figueroa-Feliciano, E

    2014-01-01

    Dark matter detectors will soon be sensitive to Solar neutrinos via two distinct channels: coherent neutrino-nucleus scattering and neutrino electron elastic scattering. We establish an analysis method for extracting Solar model properties and neutrino properties from these measurements, including the possible effects of sterile neutrinos which have been hinted at by some reactor experiments and cosmological measurements. Even including sterile neutrinos, through the coherent scattering channel a 1 ton-year exposure with a low-threshold Germanium detector could improve on the current measurement of the normalization of the $^8$B Solar neutrino flux down to 3% or less. Combining with the elastic scattering data will provide constraints on both the high and low energy survival probability, and will improve on the uncertainty on the active-to-sterile mixing angle by a factor of two. This sensitivity to active-to-sterile transitions is competitive and complementary to forthcoming dedicated short baseline sterile ...

  20. [The effect of solar activity on lunar changes in cardiovascular mortality].

    Science.gov (United States)

    Sitar, J

    1989-03-31

    After a 9-year follow-up of mortality due to cardiovascular emergencies (a total of 1,437 cases), the author found its frequency to be correlated with the moon phases. There are two maximum and minimum risk periods during lunation; the differences between them have a high statistical significance. The mortality study which registered the cases according to separate periods of maximum solar activity (spots, eruptions, etc.), medium and minimum activity recorded on three individual curves, showed that the maximum and minimum mortality curves were shifting in time phase so that during high solar activity, the minimum mortality was nearer to the new moon and full moon phases, while the maximum death rate approached the first and last lunar quarters; during the medium and low solar activities, the mortality maxima and minima were shifting counterclockwise the moon's orbit round the Earth, i. e. from the Earth's view with the Sun moving more and more to the west. The author offers some probable explanations for this phenomenon, which can help to make a more exact prognosis of critical days for patients with cardiovascular disorder. In addition, these findings can contribute to basic helio-geophysical research.

  1. Measured Mass Loss Rates of Solar-like Stars as a Function of Age and Activity

    CERN Document Server

    Wood, B E; Zank, G P; Linsky, J L; Wood, Brian E.; Mueller, Hans-Reinhard; Zank, Gary P.; Linsky, Jeffrey L.

    2002-01-01

    Collisions between the winds of solar-like stars and the local ISM result in a population of hot hydrogen gas surrounding these stars. Absorption from this hot H I can be detected in high resolution Lyman-alpha spectra of these stars from the Hubble Space Telescope. The amount of absorption can be used as a diagnostic for the stellar mass loss rate. We present new mass loss rate measurements derived in this fashion for four stars (Epsilon Eri, 61 Cyg A, 36 Oph AB, and 40 Eri A). Combining these measurements with others, we study how mass loss varies with stellar activity. We find that for the solar-like GK dwarfs, the mass loss per unit surface area is correlated with X-ray surface flux. Fitting a power law to this relation yields Mdot ~ Fx^(1.15+/-0.20). The active M dwarf Proxima Cen and the very active RS CVn system Lambda And appear to be inconsistent with this relation. Since activity is known to decrease with age, the above power law relation for solar-like stars suggests that mass loss decreases with t...

  2. The problem of the periodicity of the epidemic process. [solar activity effects on diphtheria outbreak

    Science.gov (United States)

    Yagodinskiy, V. N.; Konovalenko, Z. P.; Druzhinin, I. P.

    1974-01-01

    An analysis of data from epidemics makes it possible to determine their principal causes, governed by environmental factors (solar activity, etc.) The results of an analysis of the periodicity of the epidemic process in the case of diphtheria are presented which was conducted with the aid of autocorrelation and spectral methods of analysis. Numerical data (annual figures) are used on the dynamics of diphtheria in 50 regions (points) with a total duration of 2,777 years.

  3. Forecasting the Solar Drivers of Severe Space Weather from Active-Region Magnetograms

    Science.gov (United States)

    Falconer, David A.; Moore, Ronald L.; Barghouty, Abdulnasser F.; Khazanov, Igor

    2012-01-01

    Solar drivers of severe space weather can be predicted from line-of-sight magnetograms, via a free-energy proxy measured from the neutral lines. This can be done in near real time. In addition to depending strongly on the free magnetic energy, an active region's chance of having a major eruption depends strongly on other aspects of the evolving magnetic field (e.g., its complexity and flux emergence).

  4. Optical Effects in the Active Layer of Organic Solar Cells with Embedded Noble Metal Nanoparticles

    OpenAIRE

    Supachai Sompech; Sukhontip Thaomola; Thananchai Dasri

    2016-01-01

    The optical properties of organic solar cells with noble metal nanoparticles such as Ag and Au embedded in the active layer were investigated. The Discrete Dipole Approximation theory was used to analyze the light scattering and absorption efficiencies. The results show that the size, refractive index of medium and amount of the metal nanoparticles are key factors that directly influence the plasmonic enhancements in the devices. These parameters were adjusted for the light scattering and abs...

  5. Solar magnetic activity cycles, coronal potential field models and eruption rates

    Science.gov (United States)

    Petrie, Gordon

    2013-07-01

    We study the evolution of the observed photospheric magnetic field and the modeled global coronal magnetic field during the past 3 1/2 solar activity cycles observed since the mid-1970s. We use synoptic magnetograms and extrapolated potential-field models based on longitudinal full-disk photospheric magnetograms from the NSO's three magnetographs at Kitt Peak, the Synoptic Optical Long-term Investigations of the Sun (SOLIS) vector spectro-magnetograph (VSM), the spectro-magnetograph and the 512-channel magnetograph instruments, and from the U. Stanford's Wilcox Solar Observatory. The associated multipole field components are used to study the dominant length scales and symmetries of the coronal field. Of the axisymmetric multipoles, only the dipole and octupole follow the poles whereas the higher orders follow the activity cycle. All non-axisymmetric multipole strengths are well correlated with the activity cycle. The axial dipole and octupole are the largest contributors to the global field except while the polar fields are reversing. This influence of the polar fields extends to modulating eruption rates. According to the Computer Aided CME Tracking (CACTus), Solar Eruptive Event Detection System (SEEDS), and Nobeyama radioheliograph prominence eruption catalogs, the rate of solar eruptions is found to be systematically higher for active years between 2003-2012 than for those between 1997-2002. This behavior appears to be connected with the weakness of the late-cycle 23 polar fields as suggested by Luhmann. We see evidence that the process of cycle 24 field reversal is well advanced at both poles.

  6. Temporal and energy behavior of cosmic ray fluxes in the periods of low solar activity

    CERN Document Server

    Bazilevskaya, G A; Krainev, M B; Makhmutov, V S; Svirzhevskaya, A K; Svirzhevsky, N S

    2014-01-01

    Modulation of galactic cosmic ray intensity is governed by several mechanisms including diffusion, convection, adiabatic energy losses and drift. Relative roles of these factors change in the course of an 11-year solar cycle. That can result in the changes in the energy dependence of the 11-year cosmic ray modulation. The minimum between the solar cycles 23 and 24 was extremely deep and long-lasting which led to the record high cosmic ray fluxes low-energy particles dominating. This was a signature of unusually soft energy spectrum of the cosmic rays. In this work we examine the energy dependence of the 11-year modulation during the last three solar cycles and argue that a soft energy spectrum was observed in the minimum of each cycle however only for particles below of energy around 10 GeV. From mid 1980s the energy dependence of cosmic rays became softer from minimum to minimum of solar activity. The work is based on the cosmic ray data of the spacecraft, balloon-borne and the ground-based observations.

  7. Forecast daily indices of solar activity, F10.7, using support vector regression method

    Institute of Scientific and Technical Information of China (English)

    Cong Huang; Dan-Dan Liu; Jing-Song Wang

    2009-01-01

    The 10.7cm solar radio flux (F10.7), the value of the solar radio emission flux density at a wavelength of 10.7cm, is a useful index of solar activity as a proxy for solar extreme ultraviolet radiation. It is meaningful and important to predict F10.7 values accurately for both long-term (months-years) and short-term (days) forecasting, which are often used as inputs in space weather models. This study applies a novel neural network technique, support vector regression (SVR), to forecasting daily values of F10.7. The aim of this study is to examine the feasibility of SVR in short-term F10.7 forecasting. The approach, based on SVR, reduces the dimension of feature space in the training process by using a kernel-based learning algorithm. Thus, the complexity of the calculation becomes lower and a small amount of training data will be sufficient. The time series of F10.7 from 2002 to 2006 are employed as the data sets. The performance of the approach is estimated by calculating the norm mean square error and mean absolute percentage error. It is shown that our approach can perform well by using fewer training data points than the traditional neural network.

  8. Major electron events and coronal magnetic configurations of the related solar active regions

    CERN Document Server

    Li, C; Matthews, S A; Dai, Y; Tang, Y H

    2013-01-01

    A statistical survey of 26 major electron events during the period 2002 February through the end of solar cycle 23 is presented. We have obtained electron solar onset times and the peak flux spectra for each event by fitting to a powerlaw spectrum truncated by an exponential high-energy tail. We also derived the coronal magnetic configurations of the related solar active regions (ARs) from the potential-field source-surface model. It is found that (1) 10 of the 11 well-connected open field-line events are prompt events whose solar onset times coincide with the maxima of flare emission and 13 of the 14 closed field-line events are delayed events. (2) A not-wellconnected open field-line event and one of the closed field-line events are prompt events, they are both associated with large-scale coronal disturbances or dimming. (3)An averaged harder spectrum is found in open field-line events compared with the closed ones. Specifically, the averaged spectral index is of 1.6 +/- 0.3 in open field-line events and of ...

  9. MAGNETIC HELICITY TRANSPORTED BY FLUX EMERGENCE AND SHUFFLING MOTIONS IN SOLAR ACTIVE REGION NOAA 10930

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y. [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Chaoyang District, Beijing 100012 (China); Kitai, R.; Takizawa, K., E-mail: zhangyin@kwasan.kyoto-u.ac.jp, E-mail: zhangyin@bao.ac.cn [Kwasan and Hida Observatories, Kyoto University, Yamashina-ku, Kyoto 607-8471 (Japan)

    2012-06-01

    We present a new methodology which can determine magnetic helicity transport by the passage of helical magnetic field lines from the sub-photosphere and the shuffling motions of footpoints of preexisting coronal field lines separately. It is well known that only the velocity component, which is perpendicular to the magnetic field ({upsilon}{sub B}), has contributed to the helicity accumulation. Here, we demonstrate that {upsilon}{sub B} can be deduced from a horizontal motion and vector magnetograms under a simple relation of {upsilon}{sub t} = {mu}{sub t} + ({upsilon}{sub n}/B{sub n} ) B{sub t}, as suggested by Demoulin and Berger. Then after dividing {upsilon}{sub B} into two components, as one is tangential and the other is normal to the solar surface, we can determine both terms of helicity transport. Active region (AR) NOAA 10930 is analyzed as an example during its solar disk center passage by using data obtained by the Spectropolarimeter and the Narrowband Filter Imager of Solar Optical Telescope on board Hinode. We find that in our calculation the helicity injection by flux emergence and shuffling motions have the same sign. During the period we studied, the main contribution of helicity accumulation comes from the flux emergence effect, while the dynamic transient evolution comes from the shuffling motions effect. Our observational results further indicate that for this AR the apparent rotational motion in the following sunspot is the real shuffling motions on the solar surface.

  10. Periodic and quiescent solar activity effects in the low ionosphere, using SAVNET data

    Science.gov (United States)

    Bertoni, F. C. P.; Raulin, J.-P.; Gavilan, H. R.; Kaufmann, P.; Raymundo, T. E.

    2010-10-01

    Important results have been acquired using the measurements of VLF amplitude and phase signals from the South America VLF Network (SAVNET) stations. This network is an international project coordinated by CRAAM, Brazil in cooperation with Peru and Argentina. It started operating in April 2006, and now counts on eight stations (Atibaia, Palmas, Santa Maria and Estaça~o Antártica Comandante Ferraz in Brazil; Piura, Punta-Lobos and Ica, in Peru; CASLEO, in Argentina). Researches, through the last decades, have demonstrated the versatility of the VLF technique for many scientific and technological purposes. In this work, we summarize some recent results using SAVNET data base. We have obtained daily maximum diurnal amplitude time series that exhibited behavior patterns in different time scales: 1) 1ong term variations indicating the solar activity level control of the low ionosphere; 2) characteristic periods of alternated slow and fast variations, the former being related to solar illumination conditions, and the latter that have been associated with the winter anomaly at high latitudes; 3) 27-days period related to the solar rotation and consequently associated to the solar Lyman-α radiation flux variations, reinforcing earlier theories about the importance of this spectral line for the D-region formation. Finally, we conclude presenting preliminary results of simulation using LWPC, which showed very good agreement at times of observed modal amplitude minima for a given VLF propagation path.

  11. Solar irradiance observed at Summit, Greenland: Possible links to magnetic activity on short timescales

    Science.gov (United States)

    Frederick, John E.

    2016-09-01

    Measurements of ground-level visible sunlight (400-600 nm) from Summit, Greenland over the period August 2004 through October 2014 define the attenuation provided by cloudiness, including its dependence on solar elevation and season. The long-term mean cloud-attenuation increases with increasing solar zenith angle, consistent with radiative transfer calculations which treat a cloud as a plane parallel layer with a strong bias toward forward scattering and an albedo for diffuse radiation near 0.1. The ratio of measured irradiance to clear-sky irradiance for solar zenith angles greater than 66° has a small, but statistically significant, positive correlation with the previous day's magnetic activity as measured by the daily Ap index, but no clear relationship exists between the irradiance ratio and daily changes in the ground-level neutron flux measured at Thule over the time frame considered. A high value of Ap on one day tends to be followed by a day whose ground-level solar irradiance is slightly greater than would occur otherwise. In an average sense, the visible irradiance following a day with Ap>16 exceeds that following a day with Ap≤16 by 1.2-1.3% with a 95% confidence range of approximately ±1.0%. The results are broadly compatible with small changes in atmospheric scattering following magnetic disturbances.

  12. Correlation study of some solar activity indices in the cycles 21 - 23

    CERN Document Server

    Bruevich, E A

    2013-01-01

    The correlation coefficients of the linear regression of six solar indices versus F10,7 were analyzed in solar cycles 21, 22 and 23. We also analyzed the interconnection between these indices and F10,7 with help of the approximation by the polynomials of second order. The indices we've studied in this paper are: Wolf numbers - W, 530,3 nm coronal line flux - F530, the total solar irradiance - TSI, Mg II UV-index 280 nm core-to-wing ratio, Flare Index - FI and Counts of flares. In the most cases the regressions of these solar indices versus F10,7 are close to linear except the moments of time near to the minimums and maximums of 11-year activity. For the linear regressions we found that the values of correlation coefficients Kcorr(t) for the indices versus F10,7 and W show the cyclic variations with periods approximately equal to the to half length of 11-year cycle - 5,5 years approximately.

  13. On the neglect of causality principles in solar activity - climate relations.

    Science.gov (United States)

    Stauning, Peter

    2010-05-01

    Many research papers have claimed to demonstrate close relations between solar activity and the terrestrial climate. In most cases the relations have been based on comparisons between time series of solar activity parameters, for instance sunspot numbers, and climate parameters, for instance terrestrial temperatures. However, many of the reported close relations are based on skilfully manipulated data and neglect of basic causality principles. For cause-effect relations to be reliably established, the cause must obviously happen prior to the effects. Thus it is problematic to use, for instance, running averages of parameters if the result depends too much on posterior elements of the causative time series or precursory elements of the effects. Even more neglected are the causality principles for cause-effect relations with a strongly varying source function. Damping of source variations by smoothing data handling introduces additional implied delays, which should be considered in the judgement of apparent correlations between processed time series of cause and effect parameters. The presentation will discuss examples of frequently quoted solar activity-climate relations (e.g., by Reid, Friis-Christensen, and Svensmark), which violate basic causality principles.

  14. Dynamics of ozone layer under Serbia and solar activity: Previous statement

    Directory of Open Access Journals (Sweden)

    Ducić Vladan

    2008-01-01

    Full Text Available The aim of this paper is to identify ozone layer dynamics under Serbian area, as well as possible relations of change in stratospheric ozone concentration with some parameters of solar activity. During the period 1979-2005, the statistical decrease of ozone concentration was noticed under Serbian territory cumulatively for 24.5 DU (7.2%, apropos 9.4 DU (2.8% by decade. These changes are consistent with the changes in surrounding countries. From absolute minimum 1993, flexible trend of ozone layer pentad values validate hypotheses of its recovery. Correspondence of ozone thickness extreme period with Wolf's number and with the greatest volcanic eruptions shows that interannual variations of stratospheric ozone concentration are still in the function of natural factors above all, as are solar and volcanic activities. Investigation of larger number solar activity parameters shows statistically important antiphase synchronous between the number of polar faculae on the Sun and stratospheric ozone dynamics under Serbia. Respecting that relation between these two features until now isn't depicted, some possible causal mechanisms are proposed.

  15. Solar Energy and You.

    Science.gov (United States)

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    This booklet provides an introduction to solar energy by discussing: (1) how a home is heated; (2) how solar energy can help in the heating process; (3) the characteristics of passive solar houses; (4) the characteristics of active solar houses; (5) how solar heat is stored; and (6) other uses of solar energy. Also provided are 10 questions to…

  16. Turbulent Pumping of Magnetic Flux Reduces Solar Cycle Memory and thus Impacts Predictability of the Sun's Activity

    CERN Document Server

    Karak, Bidya Binay

    2012-01-01

    Prediction of the Sun's magnetic activity is important because of its effect on space environmental conditions and climate. However, recent efforts to predict the amplitude of the solar cycle have resulted in diverging forecasts with no consensus. It is understood that the dynamical memory of the solar dynamo mechanism governs predictability and this memory is different for advection- and diffusion-dominated solar convection zones. By utilizing stochastically forced, kinematic dynamo simulations, we demonstrate that the inclusion of downward turbulent pumping of magnetic flux reduces the memory of both advection- and diffusion-dominated solar dynamos to only one cycle; stronger pumping degrades this memory further. We conclude that reliable predictions for the maximum of solar activity can be made only at the preceding minimum and for more accurate predictions, sequential data assimilation would be necessary in forecasting models to account for the Sun's short memory.

  17. Radiative capture reaction {sup 7}Be(p,{gamma}){sup 8}B in the continuum shell model

    Energy Technology Data Exchange (ETDEWEB)

    Bennaceur, K.; Ploszajczak, M. [Grand Accelerateur National d`Ions Lourds (GANIL), Caen (France); Nowacki, F. [Grand Accelerateur National d`Ions Lourds (GANIL), Caen (France)]|[Lab. de Physique Theorique Strasbourg, Strasbourg (France); Okolowicz, J. [Grand Accelerateur National d`Ions Lourds (GANIL), Caen (France)]|[Inst. of Nuclear Physics, Krakow (Poland)

    1998-06-01

    We present here the first application of realistic shell model (SM) including coupling between many-particle (quasi-)bound states and the continuum of one-particle scattering states to the calculation of the total capture cross section and the astrophysical factor in the reaction {sup 7}Be(p,{gamma}){sup 8}B. (orig.)

  18. Possible biophysical mechanism of the effect of the solar activity on the human central nervous system

    Science.gov (United States)

    Mikhailova, G. A.; Mikhailov, Y. M.

    Numerous studies, beginning with Tchizhevsky's works, demonstrated the undeniable effect of the solar activity on the human body. A possible geophysical mechanism of the effect of the solar activity on the human body was proposed by Vladimirsky. In this mechanism solar disturbances (powerful chromospheres flares) cause "magnetosphere and plasmasphere disturbances on the Earth (sudden magnetic storms), which are accompanied by a change in the spectrum of the electromagnetic field on the Earth's surface in the extremely low frequency band. In its turn, this brings about shifts in the phisiological indices of the human body". In this model, the human body is regarded as a self-oscillating system affected by external geophysical factors. We also adhere to the main principles of this model but refine the part of this model that describes the change in the spectrum of the electromagnetic field on the Earth's surface in the extremely low frequency band. Unlike Vladimirsky model, we regard the human is not as a self-oscillating system but as one of two coupled oscillating system with discrete resonance frequencies in the human-habitat ensemble. Solar processes and their induced changes in one of the two coupled oscillating systems, specifically, the habitat play the role of an external force. Such an approach is based on the fact that the brain rhythms have the following definite frequencies: the alpha rhythm, 8-13 Hz; the beta rhythm, 14-30 Hz; the gamma rhythm, above 30 Hz; the delta rhythm, 1.5-3 Hz; and the theta rhythm, 4-7 Hz. On the other hand, the natural electromagnetic field on the Earth's surface in the extremely low frequency band also has a quite distinct resonance distribution. There are so-called Schuman resonances of the cavity formed by the Earth's surface and the lower boundary of the ionosphere (the D and E layers) at f1=10.6; f2=18.3; f3=25.9; f4=33.5; f5=41.1 Hz. These resonance frequencies are variable and most sensitive to variations of the

  19. Solar flare injection as analog of active experiment in an ionosphere

    Science.gov (United States)

    Ruzhin, Yu.; Sinelnikov, V.; Shagimuratov, I.; Kanonidi, Kh.

    At realization of active experiment are always known precisely both localization and amplitude of an entered disturbance (whether at a beam particles or mass injection, whether at heating of an ionosphere by EM wave radiation). The nuclear explosion in atmosphere was the maiden active experiment, but the action source was instant and very multicomponent (shock wave, energetic particles and EM radiation with a broadband spectrum) or, in other words, effect was too complex. The solar flare renders mixed action on near Earth space too, but it is clear separated in time (the short pulse of electromagnetic radiation reaches the Earth behind some minutes, then the solar cosmic rays and after one day (or two) the high-velocity flow of plasma arrive) and space of each components action: ionosphere, polar cap or magnitosphere. Analysis of form and dynamics of the X-ray pulse radiation (data of GOES satellites) from a solar flare (class X17) 28.10.03 shows, that there are all basis to consider it as reference source for active experiment in an ionosphere. For this short pulse of EM radiation the investigation of disturbances (SFE, SID or Crochet) of ionosphere Sq currents system and dynamics of the integral plasma contents (or TEC, the data of GPS constellation) in an ionosphere for a network of Europe midlatitude stations (IGS and INTERMAGNET) are conducted. The availability of a maximum gradient (up to 15 A/km) of loop currents and sharp increase in TEC on a narrow range of Sun zenith angles (Z0=60°-75°) is shown. The observed spatial dependence of intensity of such localized disturbance generated in an ionosphere by short EM pulse from a solar flare is discussed.

  20. Activity of processes on the visible surface of planets of Solar system

    Science.gov (United States)

    Vidmachenko, A. P.

    2016-05-01

    According to modern concepts bodies of the solar system formed from a single cloud of gas and dust. Calculations show that in the protoplanetary nebula where the temperature is lowered to 1600 K - appeared the first type of metal (aluminum and titanium) and metal oxides in the form of dust particles. With further decreasing temperature of the nebula to 1400 K - appeared also dust of iron and iron-nikel alloy; at 1300 K - appear solid silicates; magnesium minerals formed at T 1200 K. These components are material for the formation of basaltic rocks. At temperatures T 300 K begins to form water molecules. At 100-200 K in a remote part of the nebula - ammonia, methane and their ice are formed. In the outer part of Solar system this ices are now preserved in comet nuclei and in the icy satellites of giant planets. During T 400 million years after the formation of the Sun, at first - from dust component of the protoplanetary cloud was formed many intermediate bodies with the size of hundreds kilometers. Their gravitational interaction was reinforced in process of their grow. The bodies, which were growing fastest, they became the embryos of the future planets. All bodies of the solar system in different degrees show manifestations of different types of activity processes on the surface or at the level of the visible clouds. This activity depends on the distance of a particular body from the Sun, surface chemical composition, physical conditions at the surface and so on. The farther away from the Sun is the object, the temperature of its visible surface is lower, and by that more interesting is the set of processes, of chemical and physical transformations that there is possible to register. The surface of each planets of Solar system is very active in a variety of set temperature and chemical composition

  1. Did Open Solar Magnetic Field Increase during the Last 100 Years: A Reanalysis of Geomagnetic Activity

    CERN Document Server

    Mursula, K; Karinen, A

    2004-01-01

    Long-term geomagnetic activity presented by the aa index has been used to show that the heliospheric magnetic field has more than doubled during the last 100 years. However, serious concern has been raised on the long-term consistency of the aa index and on the centennial rise of the solar magnetic field. Here we reanalyze geomagnetic activity during the last 100 years by calculating the recently suggested IHV (Inter-Hour Variability) index as a measure of local geomagnetic activity for seven stations. We find that local geomagnetic activity at all stations follows the same qualitative long-term pattern: an increase from early 1900s to 1960, a dramatic dropout in 1960s and a (mostly weaker) increase thereafter. Moreover, at all stations, the activity at the end of the 20th century has a higher average level than at the beginning of the century. This agrees with the result based on the aa index that global geomagnetic activity, and thereby, the open solar magnetic field has indeed increased during the last 100...

  2. Solar Energy Education. Renewable energy activities for junior high/middle school science

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    Some basic topics on the subject of solar energy are outlined in the form of a teaching manual. The manual is geared toward junior high or middle school science students. Topics include solar collectors, solar water heating, solar radiation, insulation, heat storage, and desalination. Instructions for the construction of apparatus to demonstrate the solar energy topics are provided. (BCS)

  3. CP-violating Phases in Active-Sterile Solar Neutrino Oscillations

    CERN Document Server

    Long, H W; Giunti, C

    2013-01-01

    Effects of CP-violating phases in active-sterile solar neutrino oscillations are discussed in a general scheme of 3+N_{s} mixing, without any constraint on the mixing between the three active and the N_{s} sterile neutrinos, assuming only a realistic hierarchy of neutrino mass-squared differences. A generalized Parke formula describing the neutrino oscillation probabilities inside the Sun is calculated. The validity of the analytical calculation and the probability variation due to the unknown CP-violating phases are illustrated with a numerical calculation of the evolution equation in the case of 3+1 neutrino mixing.

  4. A viable non-axisymmetric non-force-free field to represent solar active regions

    CERN Document Server

    Prasad, A

    2016-01-01

    A combination of analytical calculations and vectormagnetogram data are utilized to develop a non-axisymmetric non-force-free magnetic field and asses its viability in describing solar active regions. For the purpose, we construct a local spherical shell where a planar surface, tangential to the inner sphere, represents a Cartesian cutout of an active region. The magnetic field defined on the surface is then correlated with magnetograms. The analysis finds the non-axisymmetric non-force-free magnetic field, obtained by a superposition of two linear-force-free fields, correlates reasonably well with magnetograms.

  5. Charge States and FIP Bias of the Solar Wind from Coronal Holes, Active Regions, and Quiet Sun

    Science.gov (United States)

    Fu, Hui; Madjarska, Maria S.; Xia, LiDong; Li, Bo; Huang, ZhengHua; Wangguan, Zhipeng

    2017-02-01

    Connecting in situ measured solar-wind plasma properties with typical regions on the Sun can provide an effective constraint and test to various solar wind models. We examine the statistical characteristics of the solar wind with an origin in different types of source regions. We find that the speed distribution of coronal-hole (CH) wind is bimodal with the slow wind peaking at ∼400 km s‑1 and the fast at ∼600 km s‑1. An anti-correlation between the solar wind speeds and the O7+/O6+ ion ratio remains valid in all three types of solar wind as well during the three studied solar cycle activity phases, i.e., solar maximum, decline, and minimum. The {N}{Fe}/{N}{{O}} range and its average values all decrease with the increasing solar wind speed in different types of solar wind. The {N}{Fe}/{N}{{O}} range (0.06–0.40, first ionization potential (FIP) bias range 1–7) for active region wind is wider than for CH wind (0.06–0.20, FIP bias range 1–3), while the minimum value of {N}{Fe}/{N}{{O}} (∼ 0.06) does not change with the variation of speed, and it is similar for all source regions. The two-peak distribution of CH wind and the anti-correlation between the speed and O7+/O6+ in all three types of solar wind can be explained qualitatively by both the wave-turbulence-driven and reconnection-loop-opening (RLO) models, whereas the distribution features of {N}{Fe}/{N}{{O}} in different source regions of solar wind can be explained more reasonably by the RLO models.

  6. Effect of solar activity on the frequency of occurrence of major anomalies in the Arctic. [weather forecasting

    Science.gov (United States)

    Bolotinskaya, M. S.

    1978-01-01

    Major air pressure and temperature anomalies in certain arctic regions were studied with a view toward predicting their occurrence. Correlations are sought between the frequency of arctic anomalies and solar activity, or specifically the Wolf number and the index of geomagnetic disturbance. Graphic techniques are used to show that solar activity has a definite influence on the frequency of occurrence of major anomalies of pressure and temperature in the Arctic.

  7. Parametric studies of an active solar water heating system with various types of PVT collectors

    Indian Academy of Sciences (India)

    Roonak Daghigh; Mohd Hafidz Ruslan; Kamaruzzaman Sopian

    2015-10-01

    This study simulated active photovoltaic thermal solar collectors (PV/T) for hot water production using TRNSYS. The PV/T collectors consist of the amorphous, monocrystalline and polycrystalline. The long-term performances for the glazed and unglazed PV/T collectors were also evaluated. In this simulation, the design parameters used were collector area of 4 m2, collector slope angle of 15 degree and mass flow rate to the collector area ratio of 8–20 kg/hm2. In addition the tank height between 0.9 m to 1.1 m for unglazed PV/T collectors and 0.9 m to 1 m for glazed collectors, as well as the storage tank volume between 200 and 300 L has been used. The climate parameters used were solar radiation levels range of 4–4.9 kWh/m2, the mean ambient temperature in the range of 25–28°C. The results of the simulation indicated that there was an increase in solar fraction and electrical power output of the active PV/T hot water system.

  8. Variations of 14-C around AD 775 and AD 1795 - due to solar activity

    CERN Document Server

    Neuhaeuser, Ralph

    2015-01-01

    The motivation for our study is the disputed cause for the strong variation of 14-C around AD 775. Our method is to compare the 14-C variation around AD 775 with other periods of strong variability. Our results are: (a) We see three periods, where 14-C varied over 200 yr in a special way showing a certain pattern of strong secular variation: after a Grand Minimum with strongly increasing 14-C, there is a series of strong short-term drop(s), rise(s), and again drop(s) within 60 yr, ending up to 200 yr after the start of the Grand Minimum. These three periods include the strong rises around BC 671, AD 775, and AD 1795. (b) We show with several solar activity proxies (radioisotopes, sunspots, and aurorae) for the AD 770s and 1790s that such intense rapid 14-C increases can be explained by strong rapid decreases in solar activity and, hence, wind, so that the decrease in solar modulation potential leads to an increase in radioisotope production. (c) The strong rises around AD 775 and 1795 are due to three effects...

  9. Dynamo Sensitivity in Solar Analogs with 50 Years of Ca II H & K Activity

    CERN Document Server

    Egeland, Ricky; Baliunas, Sallie; Hall, Jeffrey C; Pevtsov, Alexei A; Henry, Gregory W

    2016-01-01

    The Sun has a steady 11-year cycle in magnetic activity most well-known by the rising and falling in the occurrence of dark sunspots on the solar disk in visible bandpasses. The 11-year cycle is also manifest in the variations of emission in the Ca II H & K line cores, due to non-thermal (i.e. magnetic) heating in the lower chromosphere. The large variation in Ca II H & K emission allows for study of the patterns of long-term variability in other stars thanks to synoptic monitoring with the Mount Wilson Observatory HK photometers (1966-2003) and Lowell Observatory Solar-Stellar Spectrograph (1994-present). Overlapping measurements for a set of 27 nearby solar-analog (spectral types G0-G5) stars were used to calibrate the two instruments and construct time series of magnetic activity up to 50 years in length. Precise properties of fundamental importance to the dynamo are available from Hipparcos, the Geneva-Copenhagen Survey, and CHARA interferometry. Using these long time series and measurements of fu...

  10. Study of the Photospheric Magnetic Field and Coronal Emission from Solar Active Regions

    Science.gov (United States)

    Aguilera, Jordan Armando Guerra

    2016-01-01

    Solar explosive phenomena (flares and Coronal Mass Ejections, CMEs) are examples of how the most dynamical processes within the heliosphere are interconnected and powered by the Sun. Solar flares originate in active regions (AR) -- areas of strong magnetic field on the solar surface. The electromagnetic (EM) energy released during flares, along with the often-seen CMEs, propagate through the heliosphere. In the Earth's vicinity, EM radiation and charged particles have the potential to produce unfavorable conditions for humans and technology in space. From many points of view (scientific, operational, economical) it is thus important to understand and try to predict when solar flares and associated eruptive phenomena will occur. This dissertation explores how to best leverage the available observational data to provide predictive information about the future flaring activity. This dissertation consists of two main components: 1) investigation of the photosphere-corona coupling by analyzing photospheric magnetic field and coronal data in search for signals or behaviors that precede eruptions; and 2) the combination of existing flare prediction methods in order to develop a novel ensemble prediction. For the first part, the data employed correspond to line-of-sight (LOS) magnetograms from the Helioseismic and Magnetic Imager (HMI) and EUV intensity maps from the Atmospheric Imaging Assembly (AIA), both instruments onboard NASA's Solar Dynamics Observatory (SDO) satellite. Photospheric magnetic field and coronal EUV emissions were characterized by measuring the power-law decay of their spatio-temporal spectra and the data statistical associations (auto- and cross-correlations). These measures, calculated with high spatio-temporal resolution, appeared to characterize the AR evolution, provide information about the state of the photospheric plasma, reveal insights into the photospheric conditions for flares, and expose the potential of combining coronal and photospheric

  11. Properties and Photocatalytic Activity of β-Ga2O3 Nanorods under Simulated Solar Irradiation

    Directory of Open Access Journals (Sweden)

    Yinzhen Wang

    2015-01-01

    Full Text Available β-Ga2O3 nanorods are prepared by hydrothermal method and characterized by X-ray diffraction, high-resolution transmission electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, and photoluminescence spectra. The results reveal that high crystallinity, monoclinic phase of β-Ga2O3 nanorods were prepared with a diameter of about 60 nm and length of 500 nm. Photoluminescence study indicates that the β-Ga2O3 nanorods exhibit a broad blue light emission at room temperature. The β-Ga2O3 nanorods displayed high photocatalytic activity under simulated solar irradiation; after 2 h irradiation, over 95% of methylene blue solution and over 90% of methyl orange solution were decolorized. Since this process does not require additional hydrogen peroxide and uses solar light, it can be developed as an economically feasible and environmentally friendly method to treat dye effluent.

  12. Statistical study of free magnetic energy and flare productivity of solar active regions

    CERN Document Server

    Su, J T; Wang, S; Wiegelmann, T; Wang, H M

    2014-01-01

    Photospheric vector magnetograms from Helioseismic and Magnetic Imager on board the Solar Dynamic Observatory are utilized as the boundary conditions to extrapolate both non-linear force-free and potential magnetic fields in solar corona. Based on the extrapolations, we are able to determine the free magnetic energy (FME) stored in active regions (ARs). Over 3000 vector magnetograms in 61 ARs were analyzed. We compare FME with ARs' flare index (FI) and find that there is a weak correlation ($<60\\%$) between FME and FI. FME shows slightly improved flare predictability relative to total unsigned magnetic flux of ARs in the following two aspects: (1) the flare productivity predicted by FME is higher than that predicted by magnetic flux and (2) the correlation between FI and FME is higher than that between FI and magnetic flux. However, this improvement is not significant enough to make a substantial difference in time-accumulated FI, rather than individual flare, predictions.

  13. On the Connection Between Solar Activity and Low-Latitude Aurorae in the Period 1715 - 1860

    Science.gov (United States)

    Vázquez, M.; Vaquero, J. M.; Curto, J. J.

    2006-11-01

    Observations of aurorae borealis at low latitudes are very rare and are clearly associated with strong geomagnetic storms. Morphologically, they are characterized by a diffuse red colour with no rapid motions. The main aim of this paper is to analyse two hitherto ignored aurorae that were observed at two low-latitude sites, Tenerife (28°N 18°W) and Mexico City (19°N 99°W), in 1770 and 1789, respectively. These observations can give supplementary information about the level of solar activity at those times where direct solar observations were rather scarce. Studying also the behaviour of the heliosphere during this period using different proxies, we find that the open magnetic field better describes auroral occurrences. The variation over time in geomagnetic latitude at the two sites is also calculated.

  14. Solid State Dye Solar Cells with Metallic Regenerators towards devices with enhanced active area

    Energy Technology Data Exchange (ETDEWEB)

    Lenzmann, F.O.; Olson, C.; Pichon, P.Y.; Heurtault, B.; Goris, M.J.A.A.; Budel, T. [ECN Solar Energy, Westerduinweg 3, NL-1755 LE Petten (Netherlands)

    2007-08-15

    In an alternative approach to solid state dye solar cells a molecular dye is situated at the interface between a TiO2 film and a metallic (Au) film. In a proof of principle with flat model devices, we have shown earlier that the Au layer efficiently regenerates the charge-neutral state of the dye upon electron injection into the TiO2 conduction band under illumination. For practically more relevant devices an increased active area is required for enhanced current output. A specially adapted TiO2 morphology with nanotubular morphology can minimize reflection losses from the metallic regenerator. In this paper the preparation of such films on transparent SnO2:F-coated glass substrates by electrochemical anodization of titanium layers is described. The focus is on preparative parameters with direct influence on film properties relevant to the application in solid-state dye solar cells (transparency and mechanical integrity of the layers)

  15. Nrf2 Activation Protects against Solar-Simulated Ultraviolet Radiation in Mice and Humans.

    Science.gov (United States)

    Knatko, Elena V; Ibbotson, Sally H; Zhang, Ying; Higgins, Maureen; Fahey, Jed W; Talalay, Paul; Dawe, Robert S; Ferguson, James; Huang, Jeffrey T-J; Clarke, Rosemary; Zheng, Suqing; Saito, Akira; Kalra, Sukirti; Benedict, Andrea L; Honda, Tadashi; Proby, Charlotte M; Dinkova-Kostova, Albena T

    2015-06-01

    The transcription factor Nrf2 determines the ability to adapt and survive under conditions of electrophilic, oxidative, and inflammatory stress by regulating the expression of elaborate networks comprising nearly 500 genes encoding proteins with versatile cytoprotective functions. In mice, disruption of Nrf2 increases susceptibility to carcinogens and accelerates disease pathogenesis. Paradoxically, Nrf2 is upregulated in established human tumors, but whether this upregulation drives carcinogenesis is not known. Here we show that the incidence, multiplicity, and burden of solar-simulated UV radiation-mediated cutaneous tumors that form in SKH-1 hairless mice in which Nrf2 is genetically constitutively activated are lower than those that arise in their wild-type counterparts. Pharmacologic Nrf2 activation by topical biweekly applications of small (40 nmol) quantities of the potent bis(cyano enone) inducer TBE-31 has a similar protective effect against solar-simulated UV radiation in animals receiving long-term treatment with the immunosuppressive agent azathioprine. Genetic or pharmacologic Nrf2 activation lowers the expression of the pro-inflammatory factors IL6 and IL1β, and COX2 after acute exposure of mice to UV radiation. In healthy human subjects, topical applications of extracts delivering the Nrf2 activator sulforaphane reduced the degree of solar-simulated UV radiation-induced skin erythema, a quantifiable surrogate endpoint for cutaneous damage and skin cancer risk. Collectively, these data show that Nrf2 is not a driver for tumorigenesis even upon exposure to a very potent and complete carcinogen and strongly suggest that the frequent activation of Nrf2 in established human tumors is a marker of metabolic adaptation.

  16. Active doping of B in silicon nanostructures and development of a Si quantum dot solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seung Hui; Kim, Yong Sung; Lee, Woo; Kim, Young Heon; Song, Jae Yong; Jang, Jong Shik; Park, Jae Hee; Kim, Kyung Joong [Korea Research Institute of Standards and Science (KRISS), Yuseong, 305-340 Daejeon (Korea, Republic of); Choi, Suk-Ho, E-mail: kjkim@kriss.re.kr [Department of Applied Physics, Kyung Hee University, Yongin 446-701 (Korea, Republic of)

    2011-10-21

    Active doping of B was observed in nanometer silicon layers confined in SiO{sub 2} layers by secondary ion mass spectrometry (SIMS) depth profiling analysis and confirmed by Hall effect measurements. The uniformly distributed boron atoms in the B-doped silicon layers of [SiO{sub 2} (8 nm)/B-doped Si(10 nm)]{sub 5} films turned out to be segregated into the Si/SiO{sub 2} interfaces and the Si bulk, forming a distinct bimodal distribution by annealing at high temperature. B atoms in the Si layers were found to preferentially substitute inactive three-fold Si atoms in the grain boundaries and then substitute the four-fold Si atoms to achieve electrically active doping. As a result, active doping of B is initiated at high doping concentrations above 1.1 x 10{sup 20} atoms cm{sup -3} and high active doping of 3 x 10{sup 20} atoms cm{sup -3} could be achieved. The active doping in ultra-thin Si layers was implemented for silicon quantum dots (QDs) to realize a Si QD solar cell. A high energy-conversion efficiency of 13.4% was realized from a p-type Si QD solar cell with B concentration of 4 x 10{sup 20} atoms cm{sup -3}.

  17. Variations in solar radiation in the solar activity cycle: Response of Earth's atmospheric parameters (numerical modeling and analysis of observational data)

    Science.gov (United States)

    Krivolutsky, A. A.; Dement'eva, A. V.; Kukoleva, A. A.

    2016-12-01

    The results of a three-dimensional numerical simulation of changes in the temperature and wind within a height range of up to 100 km caused by changes in fluxes in the solar ultraviolet (UV) radiation in the 23rd solar activity cycle (which was characterized by unusually low values of UV-radiation fluxes) and also of global changes in the ozone content are presented. The simulation results showed that the response of the temperature to variations in the UV radiation are substantially of a nonzonal character, which is caused by the presence in the model of sources of quasi-stationary waves corresponding to the observational data.

  18. Magnetic Complexity in Eruptive Solar Active Regions and Associated Eruption Parameters

    CERN Document Server

    Georgoulis, M K

    2007-01-01

    Using an efficient magnetic complexity index in the active-region solar photosphere, we quantify the preflare strength of the photospheric magnetic polarity inversion lines in 23 eruptive active regions with flare/CME/ICME events tracked all the way from the Sun to the Earth. We find that active regions with more intense polarity inversion lines host statistically stronger flares and faster, more impulsively accelerated, CMEs. No significant correlation is found between the strength of the inversion lines and the flare soft X-ray rise times, the ICME transit times, and the peak $Dst indices of the induced geomagnetic storms. Corroborating these and previous results, we speculate on a possible interpretation for the connection between source active regions, flares, and CMEs. Further work is needed to validate this concept and uncover its physical details.

  19. iota Horologi, the first coronal activity cycle in a young solar-like star

    CERN Document Server

    Sanz-Forcada, J; Metcalfe, T S; 10.1051/0004-6361/201321388

    2013-01-01

    Context: The shortest chromospheric (Ca II H&K) activity cycle (1.6 yr) has been recently discovered in the young (~600 Myr) solar-like star iota Hor. Coronal X-ray activity cycles have only been discovered in a few stars other than the Sun, all of them with an older age and a lower activity level than iota Hor. Aims: We intended to find the X-ray coronal counterpart of the chromospheric cycle for i Hor. This represents the first X-ray cycle observed in an active star, as well as the paradigm of the first coronal cycles in the life of a solar-like star. Methods: We monitored i Hor with XMM-Newton observations spanning almost two years. The spectra of each observation are fit with two-temperature coronal models to study the long-term variability of the star. Results: We find a cyclic behavior in X-rays very similar to the contemporaneous chromospheric cycle. The continuous chromospheric monitoring for more than three cycle lengths shows a trend toward decreasing amplitude, apparently modulated by a longer ...

  20. How Much Energy Can Be Stored in Solar Active Region Magnetic Fields?

    Science.gov (United States)

    Linker, J.; Downs, C.; Torok, T.; Titov, V. S.; Lionello, R.; Mikic, Z.; Riley, P.

    2015-12-01

    Major solar eruptions such as X-class flares and very fast coronal mass ejections usually originate in active regions on the Sun. The energy that powers these events is believed to be stored as free magnetic energy (energy above the potential field state) prior to eruption. While coronal magnetic fields are not in general force-free, active regions have very strong magnetic fields and at low coronal heights the plasma beta is therefore very small, making the field (in equilibrium) essentially force-free. The Aly-Sturrock theorem shows that the energy of a fully force-free field cannot exceed the energy of the so-called open field. If the theorem holds, this places an upper limit on the amount of free energy that can be stored: the maximum free energy (MFE) is the difference between the open field energy and the potential field energy of the active region. In thermodynamic MHD simulations of a major eruption (the July 14, 2000 'Bastille' day event) and a modest event (February 13, 2009, we have found that the MFE indeed bounds the energy stored prior to eruption. We compute the MFE for major eruptive events in cycles 23 and 24 to investigate the maximum amount of energy that can be stored in solar active regions.Research supported by AFOSR, NASA, and NSF.

  1. Variation of the temperature gradient in the solar photosphere with magnetic activity

    Science.gov (United States)

    Faurobert, M.; Balasubramanian, R.; Ricort, G.

    2016-10-01

    Context. The contribution of quiet-Sun regions to the solar irradiance variability is currently unclear. Some solar-cycle variations of the quiet-Sun physical structure, such as the temperature gradient or the photospheric radius, might affect the irradiance. Aims: We intend to investigate possible variations of the photospheric temperature gradient with magnetic activity. Methods: We used high-resolution center-to-limb observations of the FeI 630.15 nm line profile in the quiet Sun performed onboard the Hinode satellite on 2007, December 19, and on 2013, December 7, that is, close to a minimum and a maximum of magnetic activity, respectively. We analyzed samples of 10″ × 10″ internetwork regions. The wings of the FeI 630.15 nm line were used in a non-standard way to recover images at roughly constant continuum optical depths above the continuum formation level. The image formation height is derived from measuring its perspective shift with respect to the continuum image, both observed away from disk center. The measurement relies on a cross-spectral method that is not limited by the spatial resolution of the SOT telescope and does not rely on any radiative transfer computation. The radiation temperature measured in the images is related to the photospheric temperature at their respective formation height. Results: The method allows us to investigate the temperature gradient in the low photosphere at altitudes of between 0 and 60 km above the 500 nm continuum formation height. In this layer the internetwork temperature gradient appears steeper in our 2013 sample than in the sample of 2007 in the northern hemisphere, whereas we detect no significant change in the southern hemisphere. We argue that this might be related to some strong hemispheric asymmetry of the magnetic activity at the solar maximum of cycle 24. Conclusions: Structural changes have been observed in numerical simulations of the magneto-convection at the surface of the Sun where the increase of

  2. Benchmark Test of Differential Emission Measure Codes and Multi-thermal Energies in Solar Active Regions

    Science.gov (United States)

    Aschwanden, Markus J.; Boerner, Paul; Caspi, Amir; McTiernan, James M.; Ryan, Daniel; Warren, Harry

    2015-10-01

    We compare the ability of 11 differential emission measure (DEM) forward-fitting and inversion methods to constrain the properties of active regions and solar flares by simulating synthetic data using the instrumental response functions of the Solar Dynamics Observatory/ Atmospheric Imaging Assembly (SDO/AIA) and EUV Variability Experiment (SDO/EVE), the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI), and the Geostationary Operational Environmental Satellite/ X-ray Sensor (GOES/XRS). The codes include the single-Gaussian DEM, a bi-Gaussian DEM, a fixed-Gaussian DEM, a linear spline DEM, the spatial-synthesis DEM, the Monte-Carlo Markov Chain DEM, the regularized DEM inversion, the Hinode/ X-Ray Telescope (XRT) method, a polynomial spline DEM, an EVE+GOES, and an EVE+RHESSI method. Averaging the results from all 11 DEM methods, we find the following accuracies in the inversion of physical parameters: the EM-weighted temperature Tw^{fit}/Tw^{sim}=0.9±0.1, the peak emission measure EMp^{fit}/EMp^{sim}=0.6±0.2, the total emission measure EMt^{fit}/EMt^{sim}=0.8±0.3, and the multi-thermal energies E_{th}^{fit}/EM_{th}^{approx}=1.2±0.4. We find that the AIA spatial-synthesis, the EVE+GOES, and the EVE+RHESSI method yield the most accurate results.

  3. Multiple dynamo modes as a mechanism for long-term solar activity variations

    CERN Document Server

    Käpylä, Maarit J; Olspert, Nigul; Brandenburg, Axel; Warnecke, Jörn; Karak, Bidya B; Pelt, Jaan

    2015-01-01

    Solar magnetic activity shows both smooth secular changes, such as the Grand Modern Maximum, and quite abrupt drops that are denoted as Grand Minima. Direct numerical simulations (DNS) of convection drivendynamos offer one way of examining the mechanisms behind these events. In this work, we analyze a solution of a solar-like DNS that has been evolved for roughly 80 magnetic cycles of 5.4 years, during which epochs of irregular behavior are detected. The emphasis of our analysis is to find physical causes for such behavior. The DNS employed is a semi-global (wedge) magnetoconvection model. For data analysis we use Ensemble Empirical Mode Decomposition (EEMD) and phase dispersion (D^2) methods. A special property of the DNS is the existence of multiple dynamo modes at different depths and latitudes. The dominant mode is solar-like. This mode is accompanied by a higher frequency mode near the surface and a low-frequency mode in the bottom of the convection zone. The overall behavior of the dynamo solution is ve...

  4. Design of Solar Harvested Semi Active RFID Transponder with Supercapacitor Storage

    Directory of Open Access Journals (Sweden)

    Gary Valentine

    2015-01-01

    Full Text Available This paper presents the analysis, design and manufacture of a low cost, low maintenance and long-range prototype of RFID transponder with continuous operability. A prototype of semi-active RFID transponder is produced with a range that can be extended via a DC input to allow all of the readers signal power to be reflected via backscatter modulation. The transponder is powered via solar harvested power which is selected over other energy harvesting technologies as it provides a greater energy density and lower cost. Solar has one major drawback in terms of providing a steady DC voltage in it needed a constant supply of sunlight. A method of power storage is proposed, and the use of a supercapacitor over a rechargeable battery is used as it has a longer lifespan due to higher recharge rates. The prototype underwent a series of experiments in various working environments and proves an effective solution in providing long lasting operability. The paper concludes the use of solar harvesting with supercapacitor storage has potential for further uses in external remote sensors used in the Internet of Things.

  5. Life-style and genome structure of marine Pseudoalteromonas siphovirus B8b isolated from the northwestern Mediterranean Sea.

    Science.gov (United States)

    Lara, Elena; Holmfeldt, Karin; Solonenko, Natalie; Sà, Elisabet Laia; Ignacio-Espinoza, J Cesar; Cornejo-Castillo, Francisco M; Verberkmoes, Nathan C; Vaqué, Dolors; Sullivan, Matthew B; Acinas, Silvia G

    2015-01-01

    Marine viruses (phages) alter bacterial diversity and evolution with impacts on marine biogeochemical cycles, and yet few well-developed model systems limit opportunities for hypothesis testing. Here we isolate phage B8b from the Mediterranean Sea using Pseudoalteromonas sp. QC-44 as a host and characterize it using myriad techniques. Morphologically, phage B8b was classified as a member of the Siphoviridae family. One-step growth analyses showed that this siphovirus had a latent period of 70 min and released 172 new viral particles per cell. Host range analysis against 89 bacterial host strains revealed that phage B8b infected 3 Pseudoalteromonas strains (52 tested, >99.9% 16S rRNA gene nucleotide identity) and 1 non-Pseudoaltermonas strain belonging to Alteromonas sp. (37 strains from 6 genera tested), which helps bound the phylogenetic distance possible in a phage-mediated horizontal gene transfer event. The Pseudoalteromonas phage B8b genome size was 42.7 kb, with clear structural and replication modules where the former were delineated leveraging identification of 16 structural genes by virion structural proteomics, only 4 of which had any similarity to known structural proteins. In nature, this phage was common in coastal marine environments in both photic and aphotic layers (found in 26.5% of available viral metagenomes), but not abundant in any sample (average per sample abundance was 0.65% of the reads). Together these data improve our understanding of siphoviruses in nature, and provide foundational information for a new 'rare virosphere' phage-host model system.

  6. The role of EUV/X-ray solar activity and electron precipitations from radiation belts in the climate changes

    Science.gov (United States)

    Avakyan, Sergey; Voronin, Nikolai; Baranova, Lubov

    The authors associate the recently observed climate warming and carbon dioxide concentration growth in lower atmospheric layers with variations of the solar-geomagnetic activity contribution to global cloud formation and with significant decrease of carbon dioxide accumulation in forests in the process of photosynthesis. The contribution of the greenhouse effect of carbon-bearing gases to global warming turns out to be insignificant. We consider the impact of microwave emissions of the ionosphere disturbed by solar flares and magnetic storms on the troposphere and suggest the radio-optical trigger mechanism of the solar influence on weather and climate of the Earth, which consists of the following three stages: - the ionosphere absorbs the ionizing solar radiation and corpuscles from the radiation belts and transforms these into microwaves through the excitation of Rydberg states by electron impact (ionospheric photoelectron, secondary and Auger electrons); - the rates of formation and destruction of water cluster ions in the troposphere are regulated by the microwave radiation; - the clusters contribute to formation of clouds, which affects the energy flux of solar radiation through the troposphere and the flux of outgoing heat from the underlying surface. All stages of the proposed mechanism were strictly confirmed: amplification of ionospheric microwave radiation during solar flares and magnetic storms was detected; the regulation of humidity at altitude above 2 km by solar microwave emission during solar flares was registered; an influence of solar flares and magnetic storms on the cloudiness is distinctly registered at least in some geographic areas; a direct influence of solar-geomagnetic activity on the global total cloud cover in latest maximum of secular variability (in 1985 - in electromagnetic solar activity, and in 2003 - in geomagnetic activity) was discovered. Basing on analysis of satellite data on global cloud cover and radiation balance the

  7. The North-South asymmetry of solar activity: A signature of two coupled chaotic oscillators?

    Science.gov (United States)

    Donner, Reik V.

    2010-05-01

    The phase-coherent oscillatory dynamics on the 11-year frequency band (Schwabe cycle) is a common feature in all characteristic observables of solar activity. In this work, a wavelet-based framework [1,2] is applied for studying the mutual phase synchronicity of these oscillations. As a problem of specific scientific interest, the variability recorded on both solar hemispheres is systematically studied. It is demonstrated that time-varying phase shifts between the activity on Northern and Southern hemispheres provides a major contribution to the so-called North-South asymmetry (NSA). The presented results indicate that the NSA observations are consistent with the assumption of a different long-term phase diffusion of two weekly chaotic coupled oscillators, which evolve coherently in time. The obtained quantitative results on the variability of interhemispheric phase shifts are critically compared with the outcome of other studies using complementary methods of time series analysis [3]. The statistical reliability and implications of the derived long-term phase shift variability result are discussed. By using sophisticated methods for time series continuation and extrapolation [4], the recently hypothesised relationship between strong phase asynchrony of hemispheric variability and the occurrence of great minima of solar activity [5] is critically reexamined. References: [1] R. Donner, M. Thiel, A&A 475, L33-L36 (2007) [2] R. Donner, in: Nonlinear Time Series Analysis in the Geosciences (ed. by R.V. Donner and S.M. Barbosa), Springer, Berlin, 2008, pp. 355-386 [3] N.V. Zolotova, D.I. Ponyavin, N. Marwan, J. Kurths, A&A 503, 197-201 (2009) [4] C. Komalapriya, M. Thiel, M.C. Romano, N. Marwan, U. Schwarz, J. Kurths, Phys. Rev. E 78, 066217 (2008) [5] N.V. Zolotova, D.I. Ponyavin, A&A 470, L17-L20 (2007)

  8. Determination of S17 from 8B breakup by means of the method of continuum-discretized coupled-channels

    CERN Document Server

    Ogata, K; Iseri, Y; Kamimura, M; Yahiro, M

    2006-01-01

    The astrophysical factor for 7Be(p,\\gamma)8B at zero energy, S17(0), is determined from 208Pb(8B, p+7Be)208Pb at 52 MeV/nucleon. We use the method of continuum-discretized coupled-channels (CDCC) to accurately calculate the 8B breakup cross section, taking account of nuclear breakup, Coulomb dipole and quadrupole transitions and higher-order processes. The asymptotic normalization coefficient (ANC) method is used to extract S17(0) from the calculated breakup-cross-section. The main result of the present paper is S17(0)=21.4 +2.0/-1.9 eV b. This result has +4.5%/-2.6% theoretical error, which comes from ambiguity of the p-7Be scattering length, and 8.4% systematic experimental error. CDCC calculation with one-step Coulomb dipole transitions results in a smaller value of S17(0), 20.2 eV b, which is almost consistent with the extracted value with the first-order perturbation theory: 18.9 eV b. Inclusion of Coulomb quadrupole transitions in one-step CDCC calculation is found to give further reduction of S17(0), i...

  9. Alternatively spliced isoforms of TRIP8b differentially control h channel trafficking and function

    NARCIS (Netherlands)

    Lewis, A.S.; Schwartz, E.; Chan, C.S.; Noam, Y.; Shin, M.; Wadman, W.J.; Surmeier, D.J.; Baram, T.Z.; Macdonald, R.L.; Chetkovich, D.M.

    2009-01-01

    Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels (h channels) are the molecular basis for the current, I-h, which contributes crucially to intrinsic neuronal excitability. The subcellular localization and biophysical properties of h channels govern their function, but the mechanism

  10. Study of solar activity phenomenon from the point of view of the general systems theory

    Science.gov (United States)

    Chepurnoj, V.

    Solar activity is considered as a statistical system with memory. In this case, the 'input' action into a system under consideration is identified with planetary tidal effects, the Laplacian tide of the first type, while the 'output' of the system is connected with spline-flattened values of annual average Wolf numbers. It is proposed that the functional dependence of flattened values of annual average Wolf numbers is determined from the annual average values of the Laplacian tide of the first type. This dependence is given by the differential equation of a linear oscillator with variable parameters and a delayed feedback.

  11. The response of the temperature of cold-point mesopause to solar activity based on SABER data set

    Science.gov (United States)

    Tang, Chaoli; Liu, Dong; Wei, Heli; Wang, Yingjian; Dai, Congming; Wu, Pengfei; Zhu, Wenyue; Rao, Ruizhong

    2016-07-01

    The thermal structure and energy balance of upper atmosphere are dominated by solar activity. The response of cold-point mesopause (CPM) to solar activity is an important form. This article presents the response of the temperature of CPM (T-CPM) to solar activity using 14 year Sounding of the Atmosphere using Broadband Emission Radiometry data series over 80°S-80°N regions. These regions are divided into 16 latitude zones with 10° interval, and the spatial areas of 80°S-80°N, 180°W-180°E are divided into 96 lattices with 10°(latitude) × 60°(longitude) grid. The annual-mean values of T-CPM and F10.7 are calculated. The least squares regression method and correlation analysis are applied to these annual-mean series. First, the results show that the global T-CPM is significantly correlated to solar activity at the 0.05 level of significance with correlation coefficient of 0.90. The global solar response of T-CPM is 4.89 ± 0.67 K/100 solar flux unit. Then, for each latitude zone, the solar response of T-CPM and its fluctuation are obtained. The solar response of T-CPM becomes stronger with increasing latitude. The fluctuation ranges of solar response at middle-latitude regions are smaller than those of the equator and high-latitude regions, and the global distribution takes on W shape. The corelationship analysis shows that the T-CPM is significantly correlated to solar activity at the 0.05 level of significance for each latitude zone. The correlation coefficients at middle-latitude regions are higher than those of the equator and high-latitude regions, and the global distribution takes on M shape. At last, for each grid cell, the response of T-CPM to solar activity and their correlation coefficient are presented.

  12. Impacts of Multi-Scale Solar Activity on Climate.Part Ⅰ:Atmospheric Circulation Patterns and Climate Extremes

    Institute of Scientific and Technical Information of China (English)

    Hengyi WENG

    2012-01-01

    The impacts of solar activity on climate are explored in this two-part study.Based on the principles of atmospheric dynamics,Part Ⅰ propose an amplifying mechanism of solar impacts on winter climate extremes through changing the atmospheric circulation patterns.This mechanism is supported by data analysis of the sunspot number up to the predicted Solar Cycle 24,the historical surface temperature data,and atmospheric variables of NCEP/NCAR Reanalysis up to the February 2011 for the Northern Hemisphere winters.For low solar activity,the thermal contrast between the low- and high-latitudes is enhanced,so as the mid-latitude baroclinic ultra-long wave activity.The land-ocean thermal contrast is also enhanced,which amplifies the topographic waves.The enhanced mid-latitude waves in turn enhance the meridional heat transport from the low to high latitudes,making the atmospheric “heat engine” more efficient than normal. The jets shift southward and the polar vortex is weakened.The Northern Annular Mode (NAM) index tends to be negative.The mid-latitude surface exhibits large-scale convergence and updrafts,which favor extreme weather/climate events to occur.The thermally driven Siberian high is enhanced,which enhances the East Asian winter monsoon (EAWM).For high solar activity,the mid-latitude circulation patterns are less wavy with less meridional transport.The NAM tends to be positive,and the Siberian high and the EAWM tend to be weaker than normal.Thus the extreme weather/climate events for high solar activity occur in different regions with different severity from those for low solar activity.The solar influence on the midto high-latitude surface temperature and circulations can stand out after renoving the influence from the El Ni(n)o-Southern Oscillation.The atmospheric amplifying mechanism indicates that the solar impacts on climate should not be simply estimated by the magnitude of the change in the solar radiation over solar cycles when it is compared with

  13. Measurements of Non-thermal Line Widths in Solar Active Regions

    Science.gov (United States)

    Brooks, David H.; Warren, Harry P.

    2016-03-01

    Spectral line widths are often observed to be larger than can be accounted for by thermal and instrumental broadening alone. This excess broadening is a key observational constraint for both nanoflare and wave dissipation models of coronal heating. Here we present a survey of non-thermal velocities measured in the high temperature loops (1-4 MK) often found in the cores of solar active regions. This survey of Hinode Extreme Ultraviolet Imaging Spectrometer (EIS) observations covers 15 non-flaring active regions that span a wide range of solar conditions. We find relatively small non-thermal velocities, with a mean value of 17.6 ± 5.3 km s-1, and no significant trend with temperature or active region magnetic flux. These measurements appear to be inconsistent with those expected from reconnection jets in the corona, chromospheric evaporation induced by coronal nanoflares, and Alfvén wave turbulence models. Furthermore, because the observed non-thermal widths are generally small, such measurements are difficult and susceptible to systematic effects.

  14. Measurements of Non-Thermal Line Widths in Solar Active Regions

    CERN Document Server

    Brooks, David H

    2015-01-01

    Spectral line widths are often observed to be larger than can be accounted for by thermal and instrumental broadening alone. This excess broadening is a key observational constraint for both nanoflare and wave dissipation models of coronal heating. Here we present a survey of non-thermal velocities measured in the high temperature loops (1--5MK) often found in the cores of solar active regions. This survey of $\\textit{Hinode}$ Extreme Ultraviolet Imaging Spectrometer (EIS) observations covers 15 non-flaring active regions that span a wide range of solar conditions. We find relatively small non-thermal velocities, with a mean value of 17km s$^{-1}$, and no significant trend with temperature or active region magnetic flux. These measurements appear to be inconsistent with those expected from reconnection jets in the corona, chromospheric evaporation induced by coronal nanoflares, and Alfv\\'en wave turbulence models. Furthermore, because the observed non-thermal widths are generally small their measurements are ...

  15. Latitude and power characteristics of solar activity in the end of the Maunder minimum

    CERN Document Server

    Ivanov, V G

    2016-01-01

    Two important sources of information about sunspots in the Maunder minimum are the Sp\\"orer catalog and observations of the Paris observatory, which cover in total the last quarter of the 17th and the first two decades of the 18th century. These data, in particular, contain information about sunspot latitudes. As we showed in previous papers, dispersions of sunspot latitude distributions are tightly related to sunspot indices, so we can estimate the level of solar activity in this epoch by a method which is not based on direct calculation of sunspots and is weakly affected by loss of observational data. The latitude distributions of sunspots in the time of transition from the Maunder minimum to the common regime of solar activity proved to be wide enough. It gives evidences in favor of, first, not very low cycle No. -3 (1712-1723) with the Wolf number in maximum W=$100\\pm50$, and, second, nonzero activity in the maximum of cycle No. -4 (1700-1711) W=$60\\pm45$. Therefore, the latitude distributions in the end ...

  16. On the area expansion of magnetic flux tubes in solar active regions

    Energy Technology Data Exchange (ETDEWEB)

    Dudík, Jaroslav [DAMTP, CMS, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Dzifčáková, Elena [Astronomical Institute of the Academy of Sciences of the Czech Republic, Fričova 298, 251 65 Ondřejov (Czech Republic); Cirtain, Jonathan W., E-mail: J.Dudik@damtp.cam.ac.uk, E-mail: elena@asu.cas.cz [NASA Marshall Space Flight Center, VP 62, Huntsville, AL 35812 (United States)

    2014-11-20

    We calculated the three-dimensional (3D) distribution of the area expansion factors in a potential magnetic field, extrapolated from the high-resolution Hinode/SOT magnetogram of the quiescent active region NOAA 11482. Retaining only closed loops within the computational box, we show that the distribution of area expansion factors show significant structure. Loop-like structures characterized by locally lower values of the expansion factor are embedded in a smooth background. These loop-like flux tubes have squashed cross-sections and expand with height. The distribution of the expansion factors show an overall increase with height, allowing an active region core characterized by low values of the expansion factor to be distinguished. The area expansion factors obtained from extrapolation of the Solar Optical Telescope magnetogram are compared to those obtained from an approximation of the observed magnetogram by a series of 134 submerged charges. This approximation retains the general flux distribution in the observed magnetogram, but removes the small-scale structure in both the approximated magnetogram and the 3D distribution of the area expansion factors. We argue that the structuring of the expansion factor can be a significant ingredient in producing the observed structuring of the solar corona. However, due to the potential approximation used, these results may not be applicable to loops exhibiting twist or to active regions producing significant flares.

  17. MEASUREMENTS OF NON-THERMAL LINE WIDTHS IN SOLAR ACTIVE REGIONS

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, David H. [College of Science, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States); Warren, Harry P. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States)

    2016-03-20

    Spectral line widths are often observed to be larger than can be accounted for by thermal and instrumental broadening alone. This excess broadening is a key observational constraint for both nanoflare and wave dissipation models of coronal heating. Here we present a survey of non-thermal velocities measured in the high temperature loops (1–4 MK) often found in the cores of solar active regions. This survey of Hinode Extreme Ultraviolet Imaging Spectrometer (EIS) observations covers 15 non-flaring active regions that span a wide range of solar conditions. We find relatively small non-thermal velocities, with a mean value of 17.6 ± 5.3 km s{sup −1}, and no significant trend with temperature or active region magnetic flux. These measurements appear to be inconsistent with those expected from reconnection jets in the corona, chromospheric evaporation induced by coronal nanoflares, and Alfvén wave turbulence models. Furthermore, because the observed non-thermal widths are generally small, such measurements are difficult and susceptible to systematic effects.

  18. Solar magnetic activity cycles, coronal potential field models and eruption rates

    CERN Document Server

    Petrie, G J D

    2013-01-01

    We study the evolution of the observed photospheric magnetic field and the modeled global coronal magnetic field during the past 3 1/2 solar activity cycles observed since the mid-1970s. We use synoptic magnetograms and extrapolated potential-field models based on longitudinal full-disk photospheric magnetograms from the NSO's three magnetographs at Kitt Peak, the Synoptic Optical Long-term Investigations of the Sun (SOLIS) vector spectro-magnetograph (VSM), the spectro-magnetograph and the 512-channel magnetograph instruments, and from the U. Stanford's Wilcox Solar Observatory. The associated multipole field components are used to study the dominant length scales and symmetries of the coronal field. Polar field changes are found to be well correlated with active fields over most of the period studied, except between 2003-6 when the active fields did not produce significant polar field changes. Of the axisymmetric multipoles, only the dipole and octupole follow the poles whereas the higher orders follow the ...

  19. The Main Sequence of Explosive Solar Active Regions: Comparison of Emerging and Mature Active Regions

    Science.gov (United States)

    Falconer, David; Moore, Ron

    2011-01-01

    For mature active regions, an active region s magnetic flux content determines the maximum free energy the active region can have. Most Large flares and CMEs occur in active regions that are near their free-energy limit. Active-region flare power radiated in the GOES 1-8 band increases steeply as the free-energy limit is approached. We infer that the free-energy limit is set by the rate of release of an active region s free magnetic energy by flares, CMEs and coronal heating balancing the maximum rate the Sun can put free energy into the active region s magnetic field. This balance of maximum power results in explosive active regions residing in a "mainsequence" in active-region (flux content, free energy content) phase space, which sequence is analogous to the main sequence of hydrogen-burning stars in (mass, luminosity) phase space.

  20. Hands-on Activities for Exploring the Solar System in K-14 Formal and Informal Education Settings

    Science.gov (United States)

    Allen, J. S.; Tobola, K. W.

    2004-12-01

    Introduction: Activities developed by NASA scientists and teachers focus on integrating Planetary Science activities with existing Earth science, math, and language arts curriculum. Educators may choose activities that fit a particular concept or theme within their curriculum from activities that highlight missions and research pertaining to exploring the solar system. Most of the activities use simple, inexpensive techniques that help students understand the how and why of what scientists are learning about comets, asteroids, meteorites, moons and planets. The web sites for the activities contain current information so students experience recent mission information such as data from Mars rovers or the status of Stardust sample return. The Johnson Space Center Astromaterials Research and Exploration Science education team has compiled a variety of NASA solar system activities to produce an annotated thematic syllabus useful to classroom educators and informal educators as they teach space science. An important aspect of the syllabus is that it highlights appropriate science content information and key science and math concepts so educators can easily identify activities that will enhance curriculum development. The outline contains URLs for the activities and NASA educator guides as well as links to NASA mission science and technology. In the informal setting, educators can use solar system exploration activities to reinforce learning in association with thematic displays, planetarium programs, youth group gatherings, or community events. In both the informal and the primary education levels the activities are appropriately designed to excite interest, arouse curiosity and easily take the participants from pre-awareness to the awareness stage. Middle school educators will find activities that enhance thematic science and encourage students to think about the scientific process of investigation. Some of the activities offered may easily be adapted for the upper

  1. Active barrier films of PET for solar cell application: Processing and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Gabriella; Scarfato, Paola; Incarnato, Loredana [Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132 - 84084 Fisciano (Italy)

    2014-05-15

    A preliminary investigation was carried out on the possibility to improve the protective action offered by the standard multilayer structures used to encapsulate photovoltaic devices. With this aim, a commercial active barrier PET-based material, able to absorb oxygen when activated by liquid water, was used to produce flexible and transparent active barrier films, by means of a lab-scale film production plant. The obtained film, tested in terms of thermal, optical and oxygen absorption properties, shows a slow oxygen absorption kinetics, an acceptable transparency and an easy roll-to-roll processability, so proving itself as a good candidate for the development of protective coating for solar cells against the atmospheric degradation agents like the rain.

  2. A statistical study of the subsurface structure and eruptivity of solar active regions

    CERN Document Server

    Lin, Chia-Hsien

    2015-01-01

    A statistical study of 77 solar active regions (ARs) is conducted to investigate the existence of identifiable correlations between the subsurface structural disturbances and the activity level of the active regions. The disturbances examined in this study are $$, $$, and $$. where $\\Gamma_1$ and $c$ are the thermodynamic properties of first adiabatic index and sound speed modified by magnetic field, respectively. The averages are over three depth layers: $0.975-0.98 R_\\odot$, $0.98-0.99 R_\\odot$ and $0.99-0.995 R_\\odot$ to represent the structural disturbances in that layer. The level of the surface magnetic activity is measured by the Magnetic Activity Index (MAI) of active region and the relative and absolute MAI differences (rdMAI and dMAI) between the active and quiet regions. The eruptivity of each active region is quantified by its Flare Index, total number of coronal mass ejections (CMEs), and total kinetic energy of the CMEs. The existence and level of the correlations are evaluated by scatter plots ...

  3. Geomagnetic and solar activity dependence of ionospheric upflowing O+: FAST observations

    Science.gov (United States)

    Zhao, K.; Jiang, Y.; Chen, K. W.; Huang, L. F.

    2016-09-01

    This paper investigates the dependence of the occurrence frequency of ionospheric upflowing oxygen (O+) ions on the sunspot cycle and geomagnetic activity. We examine the upflows response to the geomagnetic disturbances as well as the influence of the ion energy factor in controlling the magnitude of the occurrence frequency and the net energy flux. We discuss the spatial distribution of the upflow occurrence frequency and construct a regression model as a function of the magnetic latitude. The results show an overall enhancement of the upflow occurrence frequency during magnetically disturbed periods and indicate that the high-occurrence area spreads out from the source regions during magnetically quiet periods. The high-occurrence areas are located at 70° magnetic latitude (mLat) in the dayside auroral oval zone and between 76-80° mLat in the dayside polar cusp region. In the nightside auroral oval zone, these areas are near 60° mLat, penetrating further equatorward to 55° mLat during magnetically disturbed periods. High energy (≥1 keV) upflowing ions are common in the nightside auroral oval zone while low energy (<1 keV) upflowing ions are found escaping from the high latitude dayside cusp region. A Gaussian function is shown to be a good fit to the occurrence frequency over the magnetic latitude. For high energy upflowing O+ ions, the occurrence frequency exhibits a single peak located at about 60° mLat in the nightside auroral oval zone while for low energy upflowing O+ ions, it exhibits two peaks, one near 60° mLat in the auroral oval zone and the other near 78° mLat in the cusp region. We study the solar activity dependence by analyzing the relationship between the upflow occurrence frequency and the sunspot number (RZ). The statistical result shows that the frequency decreases with declining solar activity level, from ˜30 % at solar maximum to ˜5 % at solar minimum. In addition, the correlation coefficient between the occurrence frequency and RZ

  4. Efficient solar photocatalytic activity of TiO2 coated nano-porous silicon by atomic layer deposition

    Science.gov (United States)

    Sampath, Sridhar; Maydannik, Philipp; Ivanova, Tatiana; Shestakova, Marina; Homola, Tomáš; Bryukvin, Anton; Sillanpää, Mika; Nagumothu, Rameshbabu; Alagan, Viswanathan

    2016-09-01

    In the present study, TiO2 coated nano-porous silicon (TiO2/PS) was prepared by atomic layer deposition (ALD) whereas porous silicon was prepared by stain etching method for efficient solar photocatalytic activity. TiO2/PS was characterized by FESEM, AFM, XRD, XPS and DRS UV-vis spectrophotometer. Absorbance spectrum revealed that TiO2/PS absorbs complete solar light with wave length range of 300 nm-800 nm and most importantly, it absorbs stronger visible light than UV light. The reason for efficient solar light absorption of TiO2/PS is that nanostructured TiO2 layer absorbs UV light and nano-porous silicon layer absorbs visible light which is transparent to TiO2 layer. The amount of visible light absorption of TiO2/PS directly increases with increase of silicon etching time. The effect of silicon etching time of TiO2/PS on solar photocatalytic activity was investigated towards methylene blue dye degradation. Layer by layer solar absorption mechanism was used to explain the enhanced photocatalytic activity of TiO2/PS solar absorber. According to this, the photo-generated electrons of porous silicon will be effectively injected into TiO2 via hetero junction interface which leads to efficient charge separation even though porous silicon is not participating in any redox reactions in direct.

  5. Solar and geomagnetic activity effects on mid-latitude F-region electric fields

    Directory of Open Access Journals (Sweden)

    V. V. Kumar

    2008-09-01

    Full Text Available Diurnal patterns of average F-region ionospheric drift (electric field and their dependence on solar and geomagnetic activity have been defined using digital ionosonde Doppler measurements recorded at a southern mid-latitude station (Bundoora 145.1° E, 37.7° S geographic, 49° S magnetic. A unique database consisting of 300 907 drift velocities was compiled, mostly using one specific mode of operation throughout 1632 days of a 5-year interval (1999–2003. The velocity magnitudes were generally larger during the night than day, except during the winter months (June–August, when daytime velocities were enhanced. Of all years, the largest drifts tended to occur during the high speed solar wind streams of 2003. Diurnal patterns in the average quiet time (AE<75 nT meridional drifts (zonal electric field peaked at up to ~6 m s−1 poleward (0.3 mV m−1 eastward at 03:30 LST, reversing in direction at ~08:30 LST, and gradually reaching ~10 m s−1 equatorward at ~13:30 LST. The quiet time zonal drifts (meridional electric fields displayed a clear diurnal pattern with peak eastward flows of ~10 m s−1 (0.52 mV m−1 equatorward at 09:30 LST and peak westward flows around midnight of ~18 m s−1 (0.95 mV m−1 poleward. As the AE index increased, the westward drifts increased in amplitude and they extended over a greater fraction of the day. The perturbation drifts changed in a similar way with decreasing Dst except the daytime equatorward flows strengthened with increasing AE index, whereas they became weak for Dst<−60 nT. The responses in all velocity components to changing solar flux values were small, but net poleward perturbations during the day were associated with large solar flux values (>192×10−22 W m−2 Hz−1. These results help to more fully quantify the response of the mid

  6. Solar Sprint

    Science.gov (United States)

    Tabor, Richard; Anderson, Stephen

    2007-01-01

    In the "Solar Sprint" activity, students design, test, and race a solar-powered car built with Legos. The use of ratios is incorporated to simulate the actual work of scientists and engineers. This method encourages fourth-grade students to think about multiple variables and stimulates their curiosity when an activity doesn't come out as…

  7. Seasons on Saturn. II. Influence of solar activity on variation of methane absorption

    Science.gov (United States)

    Vidmachenko, A. P.

    2015-10-01

    Methane and ammonia in the atmosphere of Saturn are in the form of impurities at the level of less than tenths of a percentage. They take part in photochemical processes, the main products of which are hydrocarbons and ammonia NH3. Polyacetylenes absorb sunlight almost to 400 nm, and hydrocarbons distribution over the disk of Saturn for 1964-2012 showed a significant seasonal changes in the levels of visible clouds and above clouds haze. Changes of methane absorption along the meridian in the equinox 1966 and 1995, had the opposite course to the results in equinox 1980. But the expected differences in the change of methane absorption at the equinox 2009, similar to 1980, did not happen. Although all the physical and orbital characteristics of Saturn at equinoxes in these moments repeated, but the response to them were received various. A few years before the equinox in 1966, 1980 and 1995, the number of R, characterizing solar activity, varied from 40 to 180. Before equinox 2009 the Sun has minimal activity and the R value was practically zero. According to observations at the time of equinox 2009, convection in the Saturn's atmosphere stayed at a minimal level. After exiting of rings shadows in winter northern hemisphere deep cloud layer was "frozen" at the same low level at absence of active processes on the Sun. This allowed easily to register a thick layer of methane and ammonia gas. So how such haze has a photochemical nature, it can be assumed that due to minimum of solar activity, in the Saturn’s atmosphere was not enough energy for formation of photochemical aerosol layer. Because of such a set of physical and chemical conditions in Saturn's atmosphere, and low-activity in winter hemisphere, the methane absorption remained almost unchanged and equal to the absorption in the former summer hemisphere with maximum irradiated sunlight.

  8. Degradation of Methyl Orange and Congo Red dyes by using TiO2 nanoparticles activated by the solar and the solar-like radiation.

    Science.gov (United States)

    Ljubas, Davor; Smoljanić, Goran; Juretić, Hrvoje

    2015-09-15

    In this study we used TiO2 nanoparticles as semiconductor photocatalysts for the degradation of Methyl Orange (MO) and Congo Red (CR) dyes in an aqueous solution. Since TiO2 particles become photocatalytically active by UV radiation, two sources of UV-A radiation were used - natural solar radiation which contains 3-5% UV-A and artificial, solar-like radiation, created by using a lamp. The optimal doses of TiO2 of 500 mg/L for the CR and 1500 mg/L for the MO degradation were determined in experiments with the lamp and were also used in degradation experiments with natural solar light. The efficiency of each process was determined by measuring the absorbance at two visible wavelengths, 466 nm for MO and 498 nm for CR, and the total organic carbon (TOC), i.e. decolorization and mineralization, respectively. In both cases, considerable potential for the degradation of CR and MO was observed - total decolorization of the solution was achieved within 30-60 min, while the TOC removal was in the range 60-90%. CR and MO solutions irradiated without TiO2 nanoparticles showed no observable changes in either decolorization or mineralization. Three different commercially available TiO2 nanoparticles were used: pure-phase anatase, pure-phase rutile, and mixed-phase preparation named Degussa P25. In terms of degradation kinetics, P25 TiO2 exhibited a photocatalytic activity superior to that of pure-phase anatase or rutile. The electric energy consumption per gram of removed TOC was determined. For nearly the same degradation effect, the consumption in the natural solar radiation experiment was more than 60 times lower than in the artificial solar-like radiation experiment.

  9. High-wavenumber solar $f$-mode strengthening prior to active region formation

    CERN Document Server

    Singh, Nishant K; Brandenburg, Axel

    2016-01-01

    Using the solar surface mode, i.e. the $f$-mode, we attempt to predict the emergence of active regions (ARs) in the days before they can be seen in magnetograms. Our study is motivated by earlier numerical findings of Singh et al. (2014) who showed that, in the presence of a nonuniform magnetic field which is concentrated a few scale heights below the surface, the $f$-mode fans out in the diagnostic $k\\omega$ diagram at high wavenumbers. Here we exploit this property using data from the Helioseismic and Magnetic Imager aboard the Solar Dynamics Observatory, and show for three ARs 11768, 11158 and 12051, that at large latitudinal wavenumbers (corresponding to horizontal scales of around $3000\\,{\\rm km}$), the $f$-mode displays strengthening about two days prior to AR formation and thus provides a new precursor for AR formation. The idea that the $f$-mode is perturbed days before any visible magnetic activity occurs on the surface can be important in constraining dynamo models aiming at understanding the global...

  10. Testing magnetofrictional extrapolation with the Titov-D\\'emoulin model of solar active regions

    CERN Document Server

    Valori, G; Török, T; Titov, V S

    2010-01-01

    We examine the nonlinear magnetofrictional extrapolation scheme using the solar active region model by Titov and D\\'emoulin as test field. This model consists of an arched, line-tied current channel held in force-free equilibrium by the potential field of a bipolar flux distribution in the bottom boundary. A modified version, having a parabolic current density profile, is employed here. We find that the equilibrium is reconstructed with very high accuracy in a representative range of parameter space, using only the vector field in the bottom boundary as input. Structural features formed in the interface between the flux rope and the surrounding arcade-"hyperbolic flux tube" and "bald patch separatrix surface"-are reliably reproduced, as are the flux rope twist and the energy and helicity of the configuration. This demonstrates that force-free fields containing these basic structural elements of solar active regions can be obtained by extrapolation. The influence of the chosen initial condition on the accuracy...

  11. CONFINED FLARES IN SOLAR ACTIVE REGION 12192 FROM 2014 OCTOBER 18 TO 29

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Huadong; Zhang, Jun; Yang, Shuhong; Li, Leping; Huang, Xin; Xiao, Junmin [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Ma, Suli, E-mail: hdchen@nao.cas.cn [College of Science, China University of Petroleum, Qingdao 266580 (China)

    2015-07-20

    Using the observations from the Atmospheric Imaging Assembly and Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory, we investigate 6 X-class and 29 M-class flares occurring in solar active region (AR) 12192 from October 18 to 29. Among them, 30 (including 6 X- and 24 M-class) flares originated from the AR core, and the other 5 M-flares appeared at the AR periphery. Four of the X-flares exhibited similar flaring structures, indicating they were homologous flares with an analogous triggering mechanism. The possible scenario is that photospheric motions of emerged magnetic fluxes lead to shearing of the associated coronal magnetic field, which then yields a tether-cutting favorable configuration. Among the five periphery M-flares, four were associated with jet activities. The HMI vertical magnetic field data show that the photospheric fluxes of opposite magnetic polarities emerged, converged, and canceled with each other at the footpoints of the jets before the flares. Only one M-flare from the AR periphery was followed by a coronal mass ejection (CME). From October 20 to 26, the mean decay index of the horizontal background field within the height range of 40–105 Mm is below the typical threshold for torus instability onset. This suggests that a strong confinement from the overlying magnetic field might be responsible for the poor CME production of AR 12192.

  12. Confined Flares in Solar Active Region 12192 from 2014 October 18 to 29

    CERN Document Server

    Chen, Huadong; Ma, Suli; Yang, Shuhong; Li, Leping; Huang, Xin; Xiao, Junmin

    2015-01-01

    Using the observations from the Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic Imager (HMI) aboard the Solar Dynamics Observatory (SDO), we investigate six X-class and twenty-nine M-class flares occurring in solar active region (AR) 12192 from October 18 to 29. Among them, thirty (including six X- and twenty-four M-class) flares originated from the AR core and the other five M-flares appeared at the AR periphery. Four of the X-flares exhibited similar flaring structures, indicating they were homologous flares with analogous triggering mechanism. The possible scenario is: photospheric motions of emerged magnetic fluxes lead to shearing of the associated coronal magnetic field, which then yields a tether-cutting favorable configuration. Among the five periphery M-flares, four were associated with jet activities. The HMI vertical magnetic field data show that the photospheric fluxes of opposite magnetic polarities emerged, converged and canceled with each other at the footpoints of the jets bef...

  13. Synthesis of Solar-Light-Responsive ZnO/TaON Nanocomposite and Their Photocatalytic Activity.

    Science.gov (United States)

    Kim, Tae-Ho; Jo, Yong-Hyun; Lee, Soo-Wohn; Cho, Sung-Hun; Kim, Seung-Ho

    2015-09-01

    The effects of the preparation conditions of ZnO-modified TaON on the photocatalytic activity for degradation of rhodamine B dye (Rh. B) under simulated solar light were investigated. The ZnO/TaON nanocomposite were prepared by loading particulate Ta2O5 with ZnO using different ZnO contents, followed by thermal nitridation at 1123 K for 5 h under NH3 flow (20 ml min(-1)). The as-prepared samples were characterized by XRD, UV-Vis-DRS, and SEM-EDX. The results revealed that the band gap energy absorption edge of as prepared nanocomposite samples was shifted to a longer wavelength as compared to ZnO and Ta2O5, and the 60 wt% ZnO/TaON nanocomposite exhibited the highest percentage (99.2%) of degradation of Rh. B and the highest reaction rate constant (0.0137 min(-1)) in 4 h which could be attributed to the enhanced absorption of the ZnO/TaON nanocomposite photocatalyst. Hence, these results suggest that the ZnO/TaON nanocomposite exhibits enhanced photocatalytic activity for the degradation of rhodamine B under simulated solar light irradiation in comparison to the commercial ZnO, Ta2O5, and TaON.

  14. The energy balance and pressure in the solar transition zone for network and active region features

    Science.gov (United States)

    Nicolas, K. R.; Bartoe, J.-D. F.; Brueckner, G. E.; Vanhoosier, M. E.

    1979-01-01

    The electron pressure and energy balance in the solar transition zone are determined for about 125 network and active region features on the basis of high spectral and spatial resolution extreme ultraviolet spectra. Si III line intensity ratios obtained from the Naval Research Laboratory high-resolution telescope and spectrograph during a rocket flight are used as diagnostics of electron density and pressure for solar features near 3.5 x 10 to the 4th K. Observed ratios are compared with the calculated dependence of the 1301 A/1312 A and 1301 A/1296 A line intensity ratios on electron density, temperature and pressure. Electron densities ranging from 2 x 10 to the 10th/cu cm to 10 to the 12th/cu cm and active region pressures from 3 x 10 to the 15th to 10 to the 16th/cu cm K are obtained. Energy balance calculations reveal the balance of the divergence of the conductive flux and turbulent energy dissipation by radiative energy losses in a plane-parallel homogeneous transition zone (fill factor of 1), and an energy source requirement for a cylindrical zone geometry (fill factor less than 0.04).

  15. Improving Photocatalytic Activity through Electrostatic Self-Assembly: Polyelectrolytes as Tool for Solar Energy Conversion?

    Science.gov (United States)

    Groehn, Franziska

    2015-03-01

    With regard to the world's decreasing energy resources, developing strategies to exploit solar energy become more and more important. One approach is to take advantage of photocatalysis. Inspired by natural systems such as assemblies performing photosynthesis, it is highly promising to self-assemble synthetic functional species to form more effective or tailored supramolecular units. In this contribution, a new type of photocatalytically active self-assembled nanostructures in aqueous solution will be presented: supramolecular nano-objects obtained through self-assembly of macroions and multivalent organic or inorganic counterions. Polyelectrolyte-porphyrin nanoscale assemblies exhibit up to 10-fold higher photocatalytic activity than the corresponding porphyrins without polymeric template. Other self-assembled catalysts based on polyelectrolytes can exhibit expressed selectivity in a photocatalytic model reaction or even allow catalytic reactions in solution that are not possible with the building blocks only. Further, current results on combining different functional units at the polyelectrolyte template represent a next step towards more complex supramolecular structures for solar energy conversion.

  16. IAU commission 10 "Solar Activity": Legacy report and triennial report for 2012-2015

    CERN Document Server

    Schrijver, Carolus J; van Driel-Gesztelyi, Lidia; Asai, Ayumi; Cally, Paul S; Charbonneau, Paul; Gibson, Sarah E; Gomez, Daniel; Hasan, Siraj S; Veronig, Astrid M; Yan, Yihua

    2015-01-01

    After more than half a century of community support related to the science of "solar activity'', IAU's Commission 10 was formally discontinued in 2015, to be succeeded by C.E2 with the same area of responsibility. On this occasion, we look back at the growth of the scientific disciplines involved around the world over almost a full century. Solar activity and fields of research looking into the related physics of the heliosphere continue to be vibrant and growing, with currently over 2,000 refereed publications appearing per year from over 4,000 unique authors, publishing in dozens of distinct journals and meeting in dozens of workshops and conferences each year. The size of the rapidly growing community and of the observational and computational data volumes, along with the multitude of connections into other branches of astrophysics, pose significant challenges; aspects of these challenges are beginning to be addressed through, among others, the development of new systems of literature reviews, machine-sear...

  17. Impacts of Multi-Scale Solar Activity on Climate.Part Ⅱ: Dominant Timescales in Decadal-Centennial Climate Variability

    Institute of Scientific and Technical Information of China (English)

    Hengyi WENG

    2012-01-01

    Part Ⅱ of this study detects the dominant decadal-centennial timescales in four SST indices up to the 2010/2011 winter and tries to relate them to the observed 11-yr and 88-yr solar activity with the sunspot number up to Solar Cycle 24.To explore plausible solar origins of the observed decadal-centennial timescales in the SSTs and climate variability in general,we design a simple one-dimensional dynamical system forced by an annual cycle modulated by a small-amplitude single- or multi-scale “solar activity.” Results suggest that nonlinear harmonic and subharmonic resonance of the system to the forcing and period-doubling bifurcations are responsible for the dominant timescales in the system,including the 60-yr timescale that dominates the Atlantic Multidecadal Oscillation.The dominant timescales in the forced system depend on the system's parameter setting.Scale enhancement among the dominant response timescales may result in dramatic amplifications over a few decades and extreme values of the time series on various timescales.Three possible energy sources for such amplifications and extremes are proposed.Dynamical model results suggest that solar activity may play an important yet not well recognized role in the observed decadal-centennial climate variability.The atmospheric dynamical amplifying mechanism shown in Part Ⅰ and the nonlinear resonant and bifurcation mechanisms shown in Part Ⅱ help us to understand the solar source of the multi-scale climate change in the 20th century and the fact that different solar influenced dominant timescales for recurrent climate extremes for a given region or a parameter setting.Part Ⅱ also indicates that solar influences on climate cannot be linearly compared with non-cyclic or sporadic thermal forcings because they cannot exert their influences on climate in the same way as the sun does.

  18. Planning a solar active house in Ticino with heat storage in slabs; Etude d'une maison solaire active avec stockage en dalles au Tessin

    Energy Technology Data Exchange (ETDEWEB)

    Pahud, D.

    2000-07-01

    A single-family house is planned in Tenero, Ticino, Switzerland, with the objective of integrating renewable energies in the space heating design. The space heating demand is reduced until the so-called 'Minergie' standard is met, so that the house can be heated by its 'activated' concrete plates. An 'active plate' is a concrete plate in which pipes have been fixed for the circulation of a heat transfer fluid, acting as a heat emitter with a very large heat capacity, used as a heat storage device for a solar heating system. The building and heating system are studied by means of computerized simulation. The TRNSYS system simulation programme is used to set up a calculation tool for the whole system including the building, the active concrete plates and the solar heating system. The dynamic simulations are used to confirm the technical feasibility of the studied concept, to establish the thermal performance of the solar heating system and of the house, and to compare various variants involving an uncovered solar absorber, a larger active concrete plate area and the influence of passive solar gains on the solar heating system. Three variants are studied to reduce the specific energy demand of the house. The additional costs associated with each measure (improved house envelope, fan-assisted balanced ventilation with heat recovery, solar domestic hot water, solar space heating and increased window area) are estimated. The energy cost associated with each measure is assessed, as well as the effective annual additional cost, which also takes into account the increase in price of the auxiliary heat.

  19. PATTERNS OF ACTIVITY IN A GLOBAL MODEL OF A SOLAR ACTIVE REGION

    Energy Technology Data Exchange (ETDEWEB)

    Bradshaw, S. J. [Department of Physics and Astronomy, Rice University, Houston, TX 77005 (United States); Viall, N. M., E-mail: stephen.bradshaw@rice.edu, E-mail: Nicholeen.M.Viall@nasa.gov [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2016-04-10

    In this work we investigate the global activity patterns predicted from a model active region heated by distributions of nanoflares that have a range of frequencies. What differs is the average frequency of the distributions. The activity patterns are manifested in time lag maps of narrow-band instrument channel pairs. We combine hydrodynamic and forward modeling codes with a magnetic field extrapolation to create a model active region and apply the time lag method to synthetic observations. Our aim is not to reproduce a particular set of observations in detail, but to recover some typical properties and patterns observed in active regions. Our key findings are the following. (1) Cooling dominates the time lag signature and the time lags between the channel pairs are generally consistent with observed values. (2) Shorter coronal loops in the core cool more quickly than longer loops at the periphery. (3) All channel pairs show zero time lag when the line of sight passes through coronal loop footpoints. (4) There is strong evidence that plasma must be re-energized on a timescale comparable to the cooling timescale to reproduce the observed coronal activity, but it is likely that a relatively broad spectrum of heating frequencies are operating across active regions. (5) Due to their highly dynamic nature, we find nanoflare trains produce zero time lags along entire flux tubes in our model active region that are seen between the same channel pairs in observed active regions.

  20. Flux-tube geometry and solar wind speed during an activity cycle

    Science.gov (United States)

    Pinto, R. F.; Brun, A. S.; Rouillard, A. P.

    2016-07-01

    Context. The solar wind speed at 1 AU shows cyclic variations in latitude and in time which reflect the evolution of the global background magnetic field during the activity cycle. It is commonly accepted that the terminal (asymptotic) wind speed in a given magnetic flux-tube is generally anti-correlated with its total expansion ratio, which motivated the definition of widely used semi-empirical scaling laws relating one to the other. In practice, such scaling laws require ad hoc corrections (especially for the slow wind in the vicinities of streamer/coronal hole boundaries) and empirical fits to in situ spacecraft data. A predictive law based solely on physical principles is still missing. Aims: We test whether the flux-tube expansion is the controlling factor of the wind speed at all phases of the cycle and at all latitudes (close to and far from streamer boundaries) using a very large sample of wind-carrying open magnetic flux-tubes. We furthermore search for additional physical parameters based on the geometry of the coronal magnetic field which have an influence on the terminal wind flow speed. Methods: We use numerical magneto-hydrodynamical simulations of the corona and wind coupled to a dynamo model to determine the properties of the coronal magnetic field and of the wind velocity (as a function of time and latitude) during a whole 11-yr activity cycle. These simulations provide a large statistical ensemble of open flux-tubes which we analyse conjointly in order to identify relations of dependence between the wind speed and geometrical parameters of the flux-tubes which are valid globally (for all latitudes and moments of the cycle). Results: Our study confirms that the terminal (asymptotic) speed of the solar wind depends very strongly on the geometry of the open magnetic flux-tubes through which it flows. The total flux-tube expansion is more clearly anti-correlated with the wind speed for fast rather than for slow wind flows, and effectively controls the