WorldWideScience

Sample records for activator receptor upar

  1. Targeting of peptide conjugated magnetic nanoparticles to urokinase plasminogen activator receptor (uPAR) expressing cells

    Science.gov (United States)

    Hansen, Line; Unmack Larsen, Esben Kjær; Nielsen, Erik Holm; Iversen, Frank; Liu, Zhuo; Thomsen, Karen; Pedersen, Michael; Skrydstrup, Troels; Nielsen, Niels Chr.; Ploug, Michael; Kjems, Jørgen

    2013-08-01

    Ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles are currently being used as a magnetic resonance imaging (MRI) contrast agent in vivo, mainly by their passive accumulation in tissues of interest. However, a higher specificity can ideally be achieved when the nanoparticles are targeted towards cell specific receptors and this may also facilitate specific drug delivery by an enhanced target-mediated endocytosis. We report efficient peptide-mediated targeting of magnetic nanoparticles to cells expressing the urokinase plasminogen activator receptor (uPAR), a surface biomarker for poor patient prognosis shared by several cancers including breast, colorectal, and gastric cancers. Conjugation of a uPAR specific targeting peptide onto polyethylene glycol (PEG) coated USPIO nanoparticles by click chemistry resulted in a five times higher uptake in vitro in a uPAR positive cell line compared to nanoparticles carrying a non-binding control peptide. In accordance with specific receptor-mediated recognition, a low uptake was observed in the presence of an excess of ATF, a natural ligand for uPAR. The uPAR specific magnetic nanoparticles can potentially provide a useful supplement for tumor patient management when combined with MRI and drug delivery.Ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles are currently being used as a magnetic resonance imaging (MRI) contrast agent in vivo, mainly by their passive accumulation in tissues of interest. However, a higher specificity can ideally be achieved when the nanoparticles are targeted towards cell specific receptors and this may also facilitate specific drug delivery by an enhanced target-mediated endocytosis. We report efficient peptide-mediated targeting of magnetic nanoparticles to cells expressing the urokinase plasminogen activator receptor (uPAR), a surface biomarker for poor patient prognosis shared by several cancers including breast, colorectal, and gastric cancers. Conjugation of a uPAR specific

  2. Targeting of peptide conjugated magnetic nanoparticles to urokinase plasminogen activator receptor (uPAR) expressing cells

    DEFF Research Database (Denmark)

    Hansen, Line; Unmack Larsen, Esben Kjær; Nielsen, Erik Holm

    2013-01-01

    Ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles are currently being used as a magnetic resonance imaging (MRI) contrast agent in vivo, mainly by their passive accumulation in tissues of interest. However, a higher specificity can ideally be achieved when the nanoparticles are targeted...... towards cell specific receptors and this may also facilitate specific drug delivery by an enhanced target-mediated endocytosis. We report efficient peptide-mediated targeting of magnetic nanoparticles to cells expressing the urokinase plasminogen activator receptor (uPAR), a surface biomarker for poor...... to nanoparticles carrying a non-binding control peptide. In accordance with specific receptor-mediated recognition, a low uptake was observed in the presence of an excess of ATF, a natural ligand for uPAR. The uPAR specific magnetic nanoparticles can potentially provide a useful supplement for tumor patient...

  3. Tumour microenvironments induce expression of urokinase plasminogen activator receptor (uPAR and concomitant activation of gelatinolytic enzymes.

    Directory of Open Access Journals (Sweden)

    Synnøve Magnussen

    Full Text Available The urokinase plasminogen activator receptor (uPAR is associated with poor prognosis in oral squamous cell carcinoma (OSCC, and increased expression of uPAR is often found at the invasive tumour front. The aim of the current study was to elucidate the role of uPAR in invasion and metastasis of OSCC, and the effects of various tumour microenvironments in these processes. Furthermore, we wanted to study whether the cells' expression level of uPAR affected the activity of gelatinolytic enzymes.The Plaur gene was both overexpressed and knocked-down in the murine OSCC cell line AT84. Tongue and skin tumours were established in syngeneic mice, and cells were also studied in an ex vivo leiomyoma invasion model. Soluble factors derived from leiomyoma tissue, as well as purified extracellular matrix (ECM proteins, were assessed for their ability to affect uPAR expression, glycosylation and cleavage. Activity of gelatinolytic enzymes in the tissues were assessed by in situ zymography.We found that increased levels of uPAR did not induce tumour invasion or metastasis. However, cells expressing low endogenous levels of uPAR in vitro up-regulated uPAR expression both in tongue, skin and leiomyoma tissue. Various ECM proteins had no effect on uPAR expression, while soluble factors originating from the leiomyoma tissue increased both the expression and glycosylation of uPAR, and possibly also affected the proteolytic processing of uPAR. Tumours with high levels of uPAR, as well as cells invading leiomyoma tissue with up-regulated uPAR expression, all displayed enhanced activity of gelatinolytic enzymes.Although high levels of uPAR are not sufficient to induce invasion and metastasis, the activity of gelatinolytic enzymes was increased. Furthermore, several tumour microenvironments have the capacity to induce up-regulation of uPAR expression, and soluble factors in the tumour microenvironment may have an important role in the regulation of posttranslational

  4. Structure, function and expression on blood and bone marrow cells of the urokinase-type plasminogen activator receptor, uPAR

    DEFF Research Database (Denmark)

    Plesner, T; Behrendt, N; Ploug, M

    1997-01-01

    Several important functions have been assigned to the receptor for urokinase-type plasminogen activator, uPAR. As implied by the name, uPAR was first identified as a high affinity cellular receptor for urokinase plasminogen activator (uPA). It mediates the binding of the zymogen, pro-uPA, to the ...

  5. The receptor for urokinase-plasminogen activator (uPAR) controls plasticity of cancer cell movement in mesenchymal and amoeboid migration style

    Science.gov (United States)

    Taddei, Maria Letizia; Giannoni, Elisa; Laurenzana, Anna; Biagioni, Alessio; Chillà, Anastasia; Chiarugi, Paola; Fibbi, Gabriella; Rosso1, Mario Del

    2014-01-01

    The receptor for the urokinase plasminogen activator (uPAR) is up-regulated in malignant tumors. Historically the function of uPAR in cancer cell invasion is strictly related to its property to promote uPA-dependent proteolysis of extracellular matrix and to open a path to malignant cells. These features are typical of mesenchymal motility. Here we show that the full-length form of uPAR is required when prostate and melanoma cancer cells convert their migration style from the “path generating” mesenchymal to the “path finding” amoeboid one, thus conferring a plasticity to tumor cell invasiveness across three-dimensional matrices. Indeed, in response to a protease inhibitors-rich milieu, prostate and melanoma cells activated an amoeboid invasion program connoted by retraction of cell protrusions, RhoA-mediated rounding of the cell body, formation of a cortical ring of actin and a reduction of Rac-1 activation. While the mesenchymal movement was reduced upon silencing of uPAR expression, the amoeboid one was almost completely abolished, in parallel with a deregulation of small Rho-GTPases activity. In melanoma and prostate cancer cells we have shown uPAR colocalization with β1/β3 integrins and actin cytoskeleton, as well integrins-actin co-localization under both mesenchymal and amoeboid conditions. Such co-localizations were lost upon treatment of cells with a peptide that inhibits uPAR-integrin interactions. Similarly to uPAR silencing, the peptide reduced mesenchymal invasion and almost abolished the amoeboid one. These results indicate that full-length uPAR bridges the mesenchymal and amoeboid style of movement by an inward-oriented activity based on its property to promote integrin-actin interactions and the following cytoskeleton assembly. PMID:24681666

  6. The receptor for urokinase-plasminogen activator (uPAR) controls plasticity of cancer cell movement in mesenchymal and amoeboid migration style.

    Science.gov (United States)

    Margheri, Francesca; Luciani, Cristina; Taddei, Maria Letizia; Giannoni, Elisa; Laurenzana, Anna; Biagioni, Alessio; Chillà, Anastasia; Chiarugi, Paola; Fibbi, Gabriella; Del Rosso, Mario

    2014-03-30

    The receptor for the urokinase plasminogen activator (uPAR) is up-regulated in malignant tumors. Historically the function of uPAR in cancer cell invasion is strictly related to its property to promote uPA-dependent proteolysis of extracellular matrix and to open a path to malignant cells. These features are typical of mesenchymal motility. Here we show that the full-length form of uPAR is required when prostate and melanoma cancer cells convert their migration style from the "path generating" mesenchymal to the "path finding" amoeboid one, thus conferring a plasticity to tumor cell invasiveness across three-dimensional matrices. Indeed, in response to a protease inhibitors-rich milieu, prostate and melanoma cells activated an amoeboid invasion program connoted by retraction of cell protrusions, RhoA-mediated rounding of the cell body, formation of a cortical ring of actin and a reduction of Rac-1 activation. While the mesenchymal movement was reduced upon silencing of uPAR expression, the amoeboid one was almost completely abolished, in parallel with a deregulation of small Rho-GTPases activity. In melanoma and prostate cancer cells we have shown uPAR colocalization with β1/β3 integrins and actin cytoskeleton, as well integrins-actin co-localization under both mesenchymal and amoeboid conditions. Such co-localizations were lost upon treatment of cells with a peptide that inhibits uPAR-integrin interactions. Similarly to uPAR silencing, the peptide reduced mesenchymal invasion and almost abolished the amoeboid one. These results indicate that full-length uPAR bridges the mesenchymal and amoeboid style of movement by an inward-oriented activity based on its property to promote integrin-actin interactions and the following cytoskeleton assembly.

  7. The urokinase plasminogen activator receptor (UPAR) is preferentially induced by nerve growth factor in PC12 pheochromocytoma cells and is required for NGF-driven differentiation.

    Science.gov (United States)

    Farias-Eisner, R; Vician, L; Silver, A; Reddy, S; Rabbani, S A; Herschman, H R

    2000-01-01

    Nerve growth factor (NGF)-driven differentiation of PC12 pheochromocytoma cells is a well studied model used both to identify molecular, biochemical, and physiological correlates of neurotrophin-driven neuronal differentiation and to determine the causal nature of specific events in this differentiation process. Although epidermal growth factor (EGF) elicits many of the same early biochemical and molecular changes in PC12 cells observed in response to NGF, EGF does not induce molecular or morphological differentiation of PC12 cells. The identification of genes whose expression is differentially regulated by NGF versus EGF in PC12 cells has, therefore, been considered a source of potential insight into the molecular specificity of neurotrophin-driven neuronal differentiation. A "second generation" representational difference analysis procedure now identifies the urokinase plasminogen activator receptor (UPAR) as a gene that is much more extensively induced by NGF than by EGF in PC12 cells. Both an antisense oligonucleotide for the UPAR mRNA and an antibody directed against UPAR protein block NGF-induced morphological and biochemical differentiation of PC12 cells; NGF-induced UPAR expression is required for subsequent NGF-driven differentiation.

  8. The urokinase receptor (uPAR facilitates clearance of Borrelia burgdorferi.

    Directory of Open Access Journals (Sweden)

    Joppe W R Hovius

    2009-05-01

    Full Text Available The causative agent of Lyme borreliosis, the spirochete Borrelia burgdorferi, has been shown to induce expression of the urokinase receptor (uPAR; however, the role of uPAR in the immune response against Borrelia has never been investigated. uPAR not only acts as a proteinase receptor, but can also, dependently or independently of ligation to uPA, directly affect leukocyte function. We here demonstrate that uPAR is upregulated on murine and human leukocytes upon exposure to B. burgdorferi both in vitro as well as in vivo. Notably, B. burgdorferi-inoculated C57BL/6 uPAR knock-out mice harbored significantly higher Borrelia numbers compared to WT controls. This was associated with impaired phagocytotic capacity of B. burgdorferi by uPAR knock-out leukocytes in vitro. B. burgdorferi numbers in vivo, and phagocytotic capacity in vitro, were unaltered in uPA, tPA (low fibrinolytic activity and PAI-1 (high fibrinolytic activity knock-out mice compared to WT controls. Strikingly, in uPAR knock-out mice partially backcrossed to a B. burgdorferi susceptible C3H/HeN background, higher B. burgdorferi numbers were associated with more severe carditis and increased local TLR2 and IL-1beta mRNA expression. In conclusion, in B. burgdorferi infection, uPAR is required for phagocytosis and adequate eradication of the spirochete from the heart by a mechanism that is independent of binding of uPAR to uPA or its role in the fibrinolytic system.

  9. Urinary-type plasminogen activator (uPA) and its receptor (uPAR) in squamous cell carcinoma of the oral cavity.

    Science.gov (United States)

    Shi, Zonggao; Stack, M Sharon

    2007-10-15

    OSCC (oral squamous cell carcinoma) is the most common oral malignancy and is estimated to affect approx. 350000 new patients worldwide this year. OSCC is characterized by a high degree of morbidity and mortality, as most patients exhibit local, regional and distant metastasis at the time of diagnosis. Recent genome-wide screening efforts have identified the serine proteinase uPA (urinary-type plasminogen activator, also known as urokinase) as a strong biomarker for prediction of poor disease outcome and a key candidate for molecular classification of oral neoplasms using a 'gene signature' approach. The proteinase uPA binds a surface-anchored receptor designated uPAR (uPA receptor), focalizing proteolytic activity to the pericellular milieu. Furthermore, uPA-uPAR can interact with transmembrane proteins to modify multiple signal transduction pathways and influence a wide variety of cellular behaviours. Correlative clinical data show elevated uPA-uPAR in oral tumour tissues, with tumours exhibiting high levels of both uPA and uPAR as the most invasive. Combined in vitro, pre-clinical and clinical data support the need for further analysis of uPA-uPAR as a prognostic indicator as well as a potential therapeutic target in OSCC.

  10. Expression of the urokinase plasminogen activator receptor (uPAR) and its ligand (uPA) in brain tissues of human immunodeficiency virus patients with opportunistic cerebral diseases.

    Science.gov (United States)

    Nebuloni, Manuela; Cinque, Paola; Sidenius, Nicolai; Ferri, Angelita; Lauri, Eleonora; Omodeo-Zorini, Elisabetta; Zerbi, Pietro; Vago, Luca

    2009-01-01

    The urokinase plasminogen activator receptor (uPAR) and its ligand (uPA) play an important role in cell migration and extracellular proteolysis. We previously described uPAR/uPA overexpression in the cerebrospinal fluid (CSF) and brain tissues of patients with human immunodeficiency virus (HIV)-related cerebral diseases. In this study, we examined uPAR/uPA expression by immunohistochemistry (IHC) in brains of HIV patients with opportunistic cerebral lesions and in HIV-positive/negative controls. uPAR was found in macrophages/microglia with the highest levels in cytomegalovirus (CMV) encephalitis, toxoplasmosis, and lymphomas; in cryptococcosis and progressive multifocal leukoencephalopathy (PML) cases, only a few positive cells were found and no positivity was observed in controls. uPA expression was demonstrated only in a few macrophages/microglia and lymphocytes in all the cases and HIV-positive controls without different pattern of distribution; no uPA immunostaining was found in cryptococcosis and HIV-negative controls. The higher expression of uPAR/uPA in most of the opportunistic cerebral lesions supports their role in these diseases, suggesting their contribution to tissue injury.

  11. The urokinase receptor (uPAR) facilitates clearance of Borrelia burgdorferi

    NARCIS (Netherlands)

    Hovius, J.W.R.; Bijlsma, M.F.; van der Windt, G.J.W.; Wiersinga, W.J.; Boukens, B.J.D.; Coumou, J.; Oei, A.; de Beer, R.; de Vos, A.F.; van 't Veer, C.; van Dam, A.P.; Wang, P.; Fikrig, E.; Levi, M.M.; Roelofs, J.J.T.H.; van der Poll, T.

    2009-01-01

    The causative agent of Lyme borreliosis, the spirochete Borrelia burgdorferi, has been shown to induce expression of the urokinase receptor (uPAR); however, the role of uPAR in the immune response against Borrelia has never been investigated. uPAR not only acts as a proteinase receptor, but can also

  12. Structure and ligand interactions of the urokinase receptor (uPAR)

    DEFF Research Database (Denmark)

    Kjaergaard, Magnus; Hansen, Line V.; Jacobsen, Benedikte

    2008-01-01

    The urokinase-type plasminogen activator receptor (uPAR or CD87) is a glycolipid-anchored membrane glycoprotein, which is responsible for focalizing plasminogen activation to the cell surface through its high-affinity binding to the serine protease uPA. This tight interaction (KD less than 1 nM) ...

  13. Mapping the topographic epitope landscape on the urokinase plasminogen activator receptor (uPAR) by surface plasmon resonance and X-ray crystallography

    DEFF Research Database (Denmark)

    Zhao, Baoyu; Gandhi, Sonu; Yuan, Cai

    2015-01-01

    as a dynamic modular protein structure composed of three homologous Ly6/uPAR domains (LU).This internally flexible protein structure of uPAR enables an allosteric regulation of the interactions with its two principal ligands: the serine protease urokinase-type plasminogen activator (uPA) and the provisional...... matrix protein vitronectin (Vn) (Mertens et al., 2012; Gårdsvoll et al., 2011; Madsen et al., 2007 [2-4]). The data presented here relates to the non-covalent trapping of one of these biologically relevant uPAR-conformations by a novel class of monoclonal antibodies (Zhao et al., 2015 [5......]) and to the general mapping of the topographic epitope landscape on uPAR. The methods required to achieve these data include: (1) recombinant expression and purification of a uPAR-hybrid protein trapped in the desired conformation [patent; WO 2013/020898 A12013]; (2) developing monoclonal antibodies with unique...

  14. Decreased expression of intercellular adhesion molecule-1 (ICAM-1) and urokinase-type plasminogen activator receptor (uPAR) is associated with tumor cell spreading in vivo.

    Science.gov (United States)

    Donadio, Ana C; Remedi, María M; Frede, Silvia; Bonacci, Gustavo R; Chiabrando, Gustavo A; Pistoresi-Palencia, María C

    2002-01-01

    The development of an effective antitumor immune response to control tumor growth is influenced by the tumor cell itself and/or by the tumor microenvironment. Tumor invasion and tumor cell spreading require a finely tuned regulation of the formation and loosening of adhesive contacts of tumor cells with the extracellular matrix (ECM). In our laboratory, a rat tumor cell line derived from a spontaneous rat sarcoma revealed, by flow cytometry, a high frequency of intercellular adhesion molecule-1 (ICAM-1, 70.1 +/- 8.7%) and urokinase-type plaminogen activator receptor (uPAR, 51.2 +/- 5.2%) positive cells, while a weak expression of MHC class II (IA, 2.2 +/- 0.2% and IE, 17.4 +/- 3.7%) and B7 (12.1 +/- 2.2%) antigens was detected. In our tumor experimental model, after implantation of tumor cells, visible tumor masses were present at days 5-7 with a relatively fast tumor growth until day 15 (progressive phase) followed by a suppression of the tumor growth (regressive phase). Here we present data that correlates a significant decrease in the frequency of ICAM-1 and uPAR expressing tumor cells with the appearance of tumor cells in sites distant from that of the primary tumor. In addition we describe the development of a cellular immune response which controls the tumor progression and is associated with an increase in the expression of major histocompatibility complex (MHC) class II IA antigen during tumor development. The histological examination at tumor progressive and regressive time points revealed the relevant presence of polymorphonuclear neutrophils (PMNs) evidencing colliquative necrosis in tumor growth areas. Taken together, these results support the idea that the balance between adhesive interactions, proteolytic activity and tumorigenicity may lead to a tumor invasive phenotype.

  15. A flexible multidomain structure drives the function of the urokinase-type plasminogen activator receptor (uPAR)

    DEFF Research Database (Denmark)

    Mertens, Haydyn D.T.; Kjærgaard, Magnus; Mysling, Simon

    2012-01-01

    -deuterium exchange, and surface plasmon resonance to develop a structural model describing the allosteric regulation of uPAR. We show that the flexibility of its N-terminal domain provides the key for understanding this allosteric mechanism. Importantly, our model has direct implications for understanding uPAR-assisted...... cell adhesion and migration as well as for translational research including targeted intervention therapy and non-invasive tumor imaging in vivo....

  16. The urokinase receptor (uPAR) and the uPAR-associated protein (uPARAP/Endo180)

    DEFF Research Database (Denmark)

    Behrendt, Niels

    2004-01-01

    processes involve a highly organized interplay between proteases and their cellular binding sites as well as specific substrates and internalization receptors. This review article is focused on two components, the urokinase plasminogen activator receptor (uPAR) and the uPAR-associated protein (uPARAP, also...

  17. Estradiol attenuates EGF-induced rapid uPAR mobilization and cell migration via the G-protein-coupled receptor 30 in ovarian cancer cells

    DEFF Research Database (Denmark)

    Henic, Emir; Noskova, Vera; Høyer-Hansen, Gunilla;

    2009-01-01

    : rapid mobilization of uPAR from detergent-resistant domains, increased mRNA, and decreased degradation. G-protein-coupled receptor 30 (GPR30) is a newly identified membrane estrogen receptor (ER).The objective of this study was to explore the effects of 17beta-estradiol (E(2)) on uPAR expression......Epidermal growth factor (EGF) stimulates proliferation and migration in ovarian cancer cells, and high tumor expression of the EGF system correlates with poor prognosis. Epidermal growth factor upregulates urokinase plasminogen activator receptor (uPAR) on the cell surface via 3 distinct mechanisms...... and cell migration in ovarian cancer cells and further to identify the ER involved.We used 7 ovarian cancer cell lines, cell migration assay, cellular binding of (125)I-uPA, cellular degradation of (125)I-uPA/PAI-1 complex, enzyme-linked immunosorbent assay for uPAR, solid-phase enzyme immunoassay...

  18. Copenhagen uPAR prostate cancer (CuPCa) database

    DEFF Research Database (Denmark)

    Lippert, Solvej; Berg, Kasper D; Høyer-Hansen, Gunilla

    2016-01-01

    AIM: Urokinase plasminogen activator receptor (uPAR) plays a central role during cancer invasion by facilitating pericellular proteolysis. We initiated the prospective 'Copenhagen uPAR Prostate Cancer' study to investigate the significance of uPAR levels in prostate cancer (PCa) patients. METHODS...

  19. Urokinase receptor (uPAR) ligand based recombinant toxins for human cancer therapy.

    Science.gov (United States)

    de Virgilio, Maddalena; Silvestris, Franco

    2011-01-01

    The urokinase receptor (uPAR) exerts essential functions in the pathophysiology of cancers and therefore constitutes an important drug target. In order to generate efficient drugs against uPAR, a new approach includes chimeric proteins associating one molecular address to specifically target uPAR and one bacterial or plant toxin that will eventually kill the tumoural cell. Using this frame, several recombinant toxins have been designed namely DTAT, DTAT13, EGFATFKDEL 7 mut, and ATF-SAP. As molecular address, all of these fusion proteins use the amino-terminal fragment of urokinase that binds with high affinity to uPAR through its growth factor domain (GFD). The various toxin moieties were derived from either diphtheria toxin, Pseudomonas exotoxin A (PE38), or saporin. In this review, we describe the rational, design, production and therapeutic anti-cancer potential of these chimeric toxins.

  20. The receptor for urokinase-plasminogen activator (uPAR) controls plasticity of cancer cell movement in mesenchymal and amoeboid migration style

    National Research Council Canada - National Science Library

    Margheri, Francesca; Luciani, Cristina; Taddei, Maria Letizia; Giannoni, Elisa; Laurenzana, Anna; Biagioni, Alessio; Chillà, Anastasia; Chiarugi, Paola; Fibbi, Gabriella; Del Rosso, Mario

    2014-01-01

    .... These features are typical of mesenchymal motility. Here we show that the full-length form of uPAR is required when prostate and melanoma cancer cells convert their migration style from the "path generating" mesenchymal to the "path finding" amoeboid...

  1. First (18)F-labeled ligand for PET imaging of uPAR

    DEFF Research Database (Denmark)

    Persson, Morten; Liu, Hongguang; Madsen, Jacob

    2013-01-01

    Urokinase-type plasminogen activator receptor (uPAR) is overexpressed in human prostate cancer and uPAR has been found to be associated with metastatic disease and poor prognosis. AE105 is a small linear peptide with high binding affinity to uPAR. We synthesized an N-terminal NOTA-conjugated vers...

  2. Urokinase-type plasminogen activator receptor (uPAR) on tumor-associated macrophages is a marker of poor prognosis in colorectal cancer

    DEFF Research Database (Denmark)

    Illemann, Martin; Laerum, Ole Didrik; Hasselby, Jane Preuss

    2014-01-01

    Patients were identified from a population-based prospective study of 4990 individuals with symptoms associated with colorectal cancer (CRC). A total of 244 CRC tissue samples were available for immunohistochemical staining of uPAR, semiquantitatively scored at the invasive front, and in the tumor...... core on cancer cells, macrophages, and myofibroblasts. In addition, the levels of the intact and cleaved uPAR-forms in blood from the same patients are evaluated in this study. In a univariate analysis, the number of uPAR-positive versus uPAR-negative macrophages (HR = 2.26, [95% CI: 1.39-3.66, P = 0.......0009]) and cancer cells (HR=1.49, [95% CI: 1.01-2.20, P = 0.047]) located in the tumor core were significantly associated to overall survival. In a multivariate analysis, uPAR-positive versus uPAR-negative macrophages located in the tumor core showed the best separation of patients with positive score associated...

  3. The intact urokinase receptor is required for efficient vitronectin binding

    DEFF Research Database (Denmark)

    Høyer-Hansen, G; Behrendt, N; Ploug, M;

    1997-01-01

    The urokinase receptor (uPAR) is a receptor for both urokinase plasminogen activator (uPA) and the adhesion protein vitronectin. There are two forms of cell surface-bound uPAR; intact uPAR and a cleaved form, uPAR(2+3), which is formed by uPA-catalyzed cleavage of uPAR. In ligand-blotting experim...

  4. First-in-human uPAR PET

    DEFF Research Database (Denmark)

    Persson, Morten; Skovgaard, Dorthe; Brandt-Larsen, Malene

    2015-01-01

    A first-in-human clinical trial with Positron Emission Tomography (PET) imaging of the urokinase-type plasminogen activator receptor (uPAR) in patients with breast, prostate and bladder cancer, is described. uPAR is expressed in many types of human cancers and the expression is predictive...... of invasion, metastasis and indicates poor prognosis. uPAR PET imaging therefore holds promise to be a new and innovative method for improved cancer diagnosis, staging and individual risk stratification. The uPAR specific peptide AE105 was conjugated to the macrocyclic chelator DOTA and labeled with (64)Cu...... for targeted molecular imaging with PET. The safety, pharmacokinetic, biodistribution profile and radiation dosimetry after a single intravenous dose of (64)Cu-DOTA-AE105 were assessed by serial PET and computed tomography (CT) in 4 prostate, 3 breast and 3 bladder cancer patients. Safety assessment...

  5. Urokinase plasminogen activator receptor: a functional integrator of extracellular proteolysis, cell adhesion, and signal transduction.

    Science.gov (United States)

    Ferraris, Gian Maria Sarra; Sidenius, Nicolai

    2013-06-01

    The urokinase plasminogen activator receptor (uPAR) is a cell surface receptor involved in a multitude of physiologic and pathologic processes. uPAR regulates simultaneously a branch of the plasminogen activator system and modulates cell adhesion and intracellular signaling by interacting with extracellular matrix components and signaling receptors. The multiple uPAR functions are deeply interconnected, and their integration determines the effects that uPAR expression triggers in different contexts. The proteolytic function of uPAR affects both the signaling and the adhesive functions of the receptor, whereas these latter two are closely interconnected. This review focuses on the molecular mechanisms that connect and mutually regulate the different uPAR functions. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  6. Identification of a new epitope in uPAR as a target for the cancer therapeutic monoclonal antibody ATN-658, a structural homolog of the uPAR binding integrin CD11b (αM.

    Directory of Open Access Journals (Sweden)

    Xiang Xu

    Full Text Available The urokinase plasminogen activator receptor (uPAR plays a role in tumor progression and has been proposed as a target for the treatment of cancer. We recently described the development of a novel humanized monoclonal antibody that targets uPAR and has anti-tumor activity in multiple xenograft animal tumor models. This antibody, ATN-658, does not inhibit ligand binding (i.e. uPA and vitronectin to uPAR and its mechanism of action remains unclear. As a first step in understanding the anti-tumor activity of ATN-658, we set out to identify the epitope on uPAR to which ATN-658 binds. Guided by comparisons between primate and human uPAR, epitope mapping studies were performed using several orthogonal techniques. Systematic site directed and alanine scanning mutagenesis identified the region of aa 268-275 of uPAR as the epitope for ATN-658. No known function has previously been attributed to this epitope Structural insights into epitope recognition were obtained from structural studies of the Fab fragment of ATN-658 bound to uPAR. The structure shows that the ATN-658 binds to the DIII domain of uPAR, close to the C-terminus of the receptor, corroborating the epitope mapping results. Intriguingly, when bound to uPAR, the complementarity determining region (CDR regions of ATN-658 closely mimic the binding regions of the integrin CD11b (αM, a previously identified uPAR ligand thought to be involved in leukocyte rolling, migration and complement fixation with no known role in tumor progression of solid tumors. These studies reveal a new functional epitope on uPAR involved in tumor progression and demonstrate a previously unrecognized strategy for the therapeutic targeting of uPAR.

  7. Identification of specific sites involved in ligand binding by photoaffinity labeling of the receptor for the urokinase-type plasminogen activator. Residues located at equivalent positions in uPAR domains I and III participate in the assembly of a composite ligand-binding site

    DEFF Research Database (Denmark)

    Ploug, M

    1998-01-01

    PA binding (SLNFSQYLWS) were previously tagged by specific site-directed photoaffinity labeling [Ploug, M., Ostergaard, S., Hansen, L. B. L., Holm, A., and Dano, K. (1998) Biochemistry 37, 3612-3622]. Replacement of the key functional residues Phe4 and Trp9 with either benzophenone or (trifluoromethyl......)aryldiazirine rendered this peptide antagonist photoactivatable, and as a consequence, it incorporated covalently upon photolysis into either uPAR domain I or domain III depending on the actual position of the photophore in the sequence. The residues of uPAR specifically targeted by photoaffinity labeling were...... identified by matrix-assisted laser desorption mass spectrometry, NH2-terminal sequence analysis, and amino acid composition analysis after enzymatic fragmentation and HPLC purification. According to these data, the formation of the receptor-ligand complex positions Phe4 of the peptide antagonist very close...

  8. A deficiency of uPAR alters endothelial angiogenic function and cell morphology

    Directory of Open Access Journals (Sweden)

    Balsara Rashna D

    2011-05-01

    Full Text Available Abstract The angiogenic potential of a cell requires dynamic reorganization of the cytoskeletal architecture that involves the interaction of urokinase-type plasminogen activator receptor (uPAR with the extracellular matrix. This study focuses on the effect of uPAR deficiency (uPAR-/- on angiogenic function and associated cytoskeletal organization. Utilizing murine endothelial cells, it was observed that adhesion, migration, proliferation, and capillary tube formation were altered in uPAR-/- cells compared to wild-type (WT cells. On a vitronectin (Vn matrix, uPAR-/- cells acquired a "fried egg" morphology characterized by circular actin organization and lack of lamellipodia formation. The up-regulation of β1 integrin, FAK(P-Tyr925, and paxillin (P-Tyr118, and decreased Rac1 activation, suggested increased focal adhesions, but delayed focal adhesion turnover in uPAR-/- cells. This accounted for the enhanced adhesion, but attenuated migration, on Vn. VEGF-enriched Matrigel implants from uPAR-/- mice demonstrated a lack of mature vessel formation compared to WT mice. Collectively, these results indicate that a uPAR deficiency leads to decreased angiogenic functions of endothelial cells.

  9. Epithelial and stromal cell urokinase plasminogen activator receptor expression differentially correlates with survival in rectal cancer stages B and C patients.

    Directory of Open Access Journals (Sweden)

    Seong Beom Ahn

    Full Text Available Urokinase plasminogen activator receptor (uPAR has been proposed as a potential prognostic factor for colorectal cancer (CRC patient survival. However, CRC uPAR expression remains controversial, especially regarding cell types where uPAR is overexpressed (e.g., epithelium (uPARE or stroma-associated cells (uPARS and associated prognostic relevance. In this study, two epitope-specific anti-uPAR monoclonal antibodies (MAbs could discriminate expression of uPARE from uPARS and were used to examine this association with survival of stages B and C rectal cancer (RC patients. Using immunohistochemistry, MAbs #3937 and R4 were used to discriminate uPARE from uPARS respectively in the central and invasive frontal regions of 170 stage B and 179 stage C RC specimens. Kaplan-Meier and Cox regression analyses were used to determine association with survival. uPAR expression occurred in both epithelial and stromal compartments with differential expression observed in many cases, indicating uPARE and uPARS have different cellular roles. In the central and invasive frontal regions, uPARE was adversely associated with overall stage B survival (HR = 1.9; p = 0.014 and HR = 1.5; p = 0.031, respectively reproducing results from previous studies. uPARS at the invasive front was associated with longer stage C survival (HR = 0.6; p = 0.007, reflecting studies demonstrating that macrophage peritumoural accumulation is associated with longer survival. This study demonstrates that different uPAR epitopes should be considered as being expressed on different cell types during tumour progression and at different stages in RC. Understanding how uPARE and uPARS expression affects survival is anticipated to be a useful clinical prognostic marker of stages B and C RC.

  10. Endothelial progenitor cell-dependent angiogenesis requires localization of the full-length form of uPAR in caveolae.

    Science.gov (United States)

    Margheri, Francesca; Chillà, Anastasia; Laurenzana, Anna; Serratì, Simona; Mazzanti, Benedetta; Saccardi, Riccardo; Santosuosso, Michela; Danza, Giovanna; Sturli, Niccolò; Rosati, Fabiana; Magnelli, Lucia; Papucci, Laura; Calorini, Lido; Bianchini, Francesca; Del Rosso, Mario; Fibbi, Gabriella

    2011-09-29

    Endothelial urokinase-type plasminogen activator receptor (uPAR) is thought to provide a regulatory mechanism in angiogenesis. Here we studied the proangiogenic role of uPAR in endothelial colony-forming cells (ECFCs), a cell population identified in human umbilical blood that embodies all of the properties of an endothelial progenitor cell matched with a high proliferative rate. By using caveolae-disrupting agents and by caveolin-1 silencing, we have shown that the angiogenic properties of ECFCs depend on caveolae integrity and on the presence of full-length uPAR in such specialized membrane invaginations. Inhibition of uPAR expression by antisense oligonucleotides promoted caveolae disruption, suggesting that uPAR is an inducer of caveolae organization. Vascular endothelial growth factor (VEGF) promoted accumulation of uPAR in ECFC caveolae in its undegraded form. We also demonstrated that VEGF-dependent ERK phosphorylation required integrity of caveolae as well as caveolar uPAR expression. VEGF activity depends on inhibition of ECFC MMP12 production, which results in impairment of MMP12-dependent uPAR truncation. Further, MMP12 overexpression in ECFC inhibited vascularization in vitro and in vivo. Our data suggest that intratumor homing of ECFCs suitably engineered to overexpress MMP12 could have the chance to control uPAR-dependent activities required for tumor angiogenesis and malignant cells spreading.

  11. Circulating intact and cleaved forms of the urokinase-type plasminogen activator receptor

    DEFF Research Database (Denmark)

    Sørensen, Tine Thurison; Christensen, Ib J; Lund, Ida K;

    2015-01-01

    BACKGROUND: High levels of circulating forms of the urokinase-type plasminogen activator receptor (uPAR) are significantly associated to poor prognosis in cancer patients. Our aim was to determine biological variations and reference intervals of the uPAR forms in blood, and in addition, to test t...

  12. Cell-surface acceleration of urokinase-catalyzed receptor cleavage

    DEFF Research Database (Denmark)

    Høyer-Hansen, G; Ploug, M; Behrendt, N

    1997-01-01

    The urokinase-type plasminogen activator (uPA) binds to a specific cell-surface receptor, uPAR. On several cell types uPAR is present both in the full-length form and a cleaved form, uPAR(2+3), which is devoid of binding activity. The formation of uPAR(2+3) on cultured U937 cells is either direct...

  13. Expression of uPAR in tumor-associated stromal cells is associated with colorectal cancer patient prognosis: a TMA study.

    Science.gov (United States)

    Boonstra, Martin C; Verbeek, Floris P R; Mazar, Andrew P; Prevoo, Hendrica A J M; Kuppen, Peter J K; van de Velde, Cornelis J H; Vahrmeijer, Alexander L; Sier, Cornelis F M

    2014-04-17

    The receptor for urokinase-type plasminogen activator (uPAR) is associated with cancer development and progression. Within the tumor microenvironment uPAR is expressed by malignant cells as well as tumor-associated stromal cells. However, the contribution of uPAR expression in these stromal cells to malignancy and patient survival in colorectal cancer is still unclear. This study compares the association of uPAR expression in both colorectal tumor-associated stromal cells and neoplastic cells with clinico-pathological characteristics and patient survival using tissue micro arrays (TMA). Immunohistochemical staining of uPAR expression was performed on tumor tissue from 262 colorectal cancer patients. Kaplan-Meier, log rank, and uni- and multivariate Cox's regression analyses were used to calculate associations between uPAR expression and patient survival. In the colorectal tumor-associated stromal microenvironment, uPAR is expressed in macrophages, (neoangiogenic) endothelial cells and myofibroblasts. uPAR expression in tumor-associated stromal cells and neoplastic cells (and both combined) were negatively associated with overall survival (OS) and Disease Free Survival (DFS). Uni- and multivariate Cox's regression analysis for combined uPAR expression in tumor-associated stromal and neoplastic cells showed significant and independent negative associations with OS and DFS. Only uPAR expression in tumor-associated stromal cells showed independent significance in the uni- and multivariate analysis for DFS. This study demonstrates a significant independent negative association between colorectal cancer patient survival and uPAR expression in especially tumor-associated stromal cells.

  14. Quantitation of the receptor for urokinase plasminogen activator by enzyme-linked immunosorbent assay

    DEFF Research Database (Denmark)

    Rønne, E; Behrendt, N; Ploug, M;

    1994-01-01

    variant of uPAR, suPAR, has been constructed by recombinant technique and the protein content of a purified suPAR standard preparation was determined by amino acid composition analysis. The sensitivity of the assay (0.6 ng uPAR/ml) is strong enough to measure uPAR in extracts of cultured cells and cancer......Binding of the urokinase plasminogen activator (uPA) to a specific cell surface receptor (uPAR) plays a crucial role in proteolysis during tissue remodelling and cancer invasion. An immunosorbent assay for the quantitation of uPAR has now been developed. This assay is based on two monoclonal...... tissue. Recent studies have shown that a high uPA level in tumor extracts is in some cancers associated with poor prognosis. The present assay will now allow similar prognostic studies of uPAR levels....

  15. Differential uPAR recruitment in caveolar-lipid rafts by GM1 and GM3 gangliosides regulates endothelial progenitor cells angiogenesis

    Science.gov (United States)

    Margheri, Francesca; Papucci, Laura; Schiavone, Nicola; D'Agostino, Riccardo; Trigari, Silvana; Serratì, Simona; Laurenzana, Anna; Biagioni, Alessio; Luciani, Cristina; Chillà, Anastasia; Andreucci, Elena; Del Rosso, Tommaso; Margheri, Giancarlo; Del Rosso, Mario; Fibbi, Gabriella

    2015-01-01

    Gangliosides and the urokinase plasminogen activator receptor (uPAR) tipically partition in specialized membrane microdomains called lipid-rafts. uPAR becomes functionally important in fostering angiogenesis in endothelial progenitor cells (EPCs) upon recruitment in caveolar-lipid rafts. Moreover, cell membrane enrichment with exogenous GM1 ganglioside is pro-angiogenic and opposite to the activity of GM3 ganglioside. On these basis, we first checked the interaction of uPAR with membrane models enriched with GM1 or GM3, relying on the adoption of solid-supported mobile bilayer lipid membranes with raft-like composition formed onto solid hydrophilic surfaces, and evaluated by surface plasmon resonance (SPR) the extent of uPAR recruitment. We estimated the apparent dissociation constants of uPAR-GM1/GM3 complexes. These preliminary observations, indicating that uPAR binds preferentially to GM1-enriched biomimetic membranes, were validated by identifying a pro-angiogenic activity of GM1-enriched EPCs, based on GM1-dependent uPAR recruitment in caveolar rafts. We have observed that addition of GM1 to EPCs culture medium promotes matrigel invasion and capillary morphogenesis, as opposed to the anti-angiogenesis activity of GM3. Moreover, GM1 also stimulates MAPKinases signalling pathways, typically associated with an angiogenesis program. Caveolar-raft isolation and Western blotting of uPAR showed that GM1 promotes caveolar-raft partitioning of uPAR, as opposed to control and GM3-challenged EPCs. By confocal microscopy, we have shown that in EPCs uPAR is present on the surface in at least three compartments, respectively, associated to GM1, GM3 and caveolar rafts. Following GM1 exogenous addition, the GM3 compartment is depleted of uPAR which is recruited within caveolar rafts thereby triggering angiogenesis. PMID:25313007

  16. Differential uPAR recruitment in caveolar-lipid rafts by GM1 and GM3 gangliosides regulates endothelial progenitor cells angiogenesis.

    Science.gov (United States)

    Margheri, Francesca; Papucci, Laura; Schiavone, Nicola; D'Agostino, Riccardo; Trigari, Silvana; Serratì, Simona; Laurenzana, Anna; Biagioni, Alessio; Luciani, Cristina; Chillà, Anastasia; Andreucci, Elena; Del Rosso, Tommaso; Margheri, Giancarlo; Del Rosso, Mario; Fibbi, Gabriella

    2015-01-01

    Gangliosides and the urokinase plasminogen activator receptor (uPAR) tipically partition in specialized membrane microdomains called lipid-rafts. uPAR becomes functionally important in fostering angiogenesis in endothelial progenitor cells (EPCs) upon recruitment in caveolar-lipid rafts. Moreover, cell membrane enrichment with exogenous GM1 ganglioside is pro-angiogenic and opposite to the activity of GM3 ganglioside. On these basis, we first checked the interaction of uPAR with membrane models enriched with GM1 or GM3, relying on the adoption of solid-supported mobile bilayer lipid membranes with raft-like composition formed onto solid hydrophilic surfaces, and evaluated by surface plasmon resonance (SPR) the extent of uPAR recruitment. We estimated the apparent dissociation constants of uPAR-GM1/GM3 complexes. These preliminary observations, indicating that uPAR binds preferentially to GM1-enriched biomimetic membranes, were validated by identifying a pro-angiogenic activity of GM1-enriched EPCs, based on GM1-dependent uPAR recruitment in caveolar rafts. We have observed that addition of GM1 to EPCs culture medium promotes matrigel invasion and capillary morphogenesis, as opposed to the anti-angiogenesis activity of GM3. Moreover, GM1 also stimulates MAPKinases signalling pathways, typically associated with an angiogenesis program. Caveolar-raft isolation and Western blotting of uPAR showed that GM1 promotes caveolar-raft partitioning of uPAR, as opposed to control and GM3-challenged EPCs. By confocal microscopy, we have shown that in EPCs uPAR is present on the surface in at least three compartments, respectively, associated to GM1, GM3 and caveolar rafts. Following GM1 exogenous addition, the GM3 compartment is depleted of uPAR which is recruited within caveolar rafts thereby triggering angiogenesis.

  17. Urokinase, urokinase receptor, and plasminogen activator inhibitor-1 expression on podocytes in immunoglobulin A glomerulonephritis

    OpenAIRE

    Lee, Ji-Hye; Oh, Mee-Hye; Park, Jae-seok; Na, Gyoung-Jae; Gil, Hye-Wook; Yang, Jong-Oh; Lee, Eun-Young; Hong, Sae-Yong

    2014-01-01

    Background/Aims The purpose of this study was to investigate the expression of urokinase-type plasminogen activator (uPA), uPA receptor (uPAR), and plasminogen activator inhibitor (PAI)-1 on podocytes in immunoglobulin A (IgA) glomerulonephritis (GN). Methods Renal biopsy specimens from 52 IgA GN patients were deparaffinized and subjected to immunohistochemical staining for uPA, PAI-1, and uPAR. The biopsies were classified into three groups according to the expression of uPA and uPAR on podo...

  18. Human Secreted Ly-6/uPAR Related Protein-1 (SLURP-1) Is a Selective Allosteric Antagonist of α7 Nicotinic Acetylcholine Receptor.

    Science.gov (United States)

    Lyukmanova, Ekaterina N; Shulepko, Mikhail A; Kudryavtsev, Denis; Bychkov, Maxim L; Kulbatskii, Dmitrii S; Kasheverov, Igor E; Astapova, Maria V; Feofanov, Alexey V; Thomsen, Morten S; Mikkelsen, Jens D; Shenkarev, Zakhar O; Tsetlin, Victor I; Dolgikh, Dmitry A; Kirpichnikov, Mikhail P

    2016-01-01

    SLURP-1 is a secreted toxin-like Ly-6/uPAR protein found in epithelium, sensory neurons and immune cells. Point mutations in the slurp-1 gene cause the autosomal inflammation skin disease Mal de Meleda. SLURP-1 is considered an autocrine/paracrine hormone that regulates growth and differentiation of keratinocytes and controls inflammation and malignant cell transformation. The majority of previous studies of SLURP-1 have been made using fusion constructs containing, in addition to the native protein, extra polypeptide sequences. Here we describe the activity and pharmacological profile of a recombinant analogue of human SLURP-1 (rSLURP-1) differing from the native protein only by one additional N-terminal Met residue. rSLURP-1 significantly inhibited proliferation (up to ~ 40%, EC50 ~ 4 nM) of human oral keratinocytes (Het-1A cells). Application of mecamylamine and atropine,--non-selective inhibitors of nicotinic acetylcholine receptors (nAChRs) and muscarinic acetylcholine receptors, respectively, and anti-α7-nAChRs antibodies revealed α7 type nAChRs as an rSLURP-1 target in keratinocytes. Using affinity purification from human cortical extracts, we confirmed that rSLURP-1 binds selectively to the α7-nAChRs. Exposure of Xenopus oocytes expressing α7-nAChRs to rSLURP-1 caused a significant non-competitive inhibition of the response to acetylcholine (up to ~ 70%, IC50 ~ 1 μM). It was shown that rSLURP-1 binds to α7-nAChRs overexpressed in GH4Cl cells, but does not compete with 125I-α-bungarotoxin for binding to the receptor. These findings imply an allosteric antagonist-like mode of SLURP-1 interaction with α7-nAChRs outside the classical ligand-binding site. Contrary to rSLURP-1, other inhibitors of α7-nAChRs (mecamylamine, α-bungarotoxin and Lynx1) did not suppress the proliferation of keratinocytes. Moreover, the co-application of α-bungarotoxin with rSLURP-1 did not influence antiproliferative activity of the latter. This supports the hypothesis that

  19. Human Secreted Ly-6/uPAR Related Protein-1 (SLURP-1 Is a Selective Allosteric Antagonist of α7 Nicotinic Acetylcholine Receptor.

    Directory of Open Access Journals (Sweden)

    Ekaterina N Lyukmanova

    Full Text Available SLURP-1 is a secreted toxin-like Ly-6/uPAR protein found in epithelium, sensory neurons and immune cells. Point mutations in the slurp-1 gene cause the autosomal inflammation skin disease Mal de Meleda. SLURP-1 is considered an autocrine/paracrine hormone that regulates growth and differentiation of keratinocytes and controls inflammation and malignant cell transformation. The majority of previous studies of SLURP-1 have been made using fusion constructs containing, in addition to the native protein, extra polypeptide sequences. Here we describe the activity and pharmacological profile of a recombinant analogue of human SLURP-1 (rSLURP-1 differing from the native protein only by one additional N-terminal Met residue. rSLURP-1 significantly inhibited proliferation (up to ~ 40%, EC50 ~ 4 nM of human oral keratinocytes (Het-1A cells. Application of mecamylamine and atropine,--non-selective inhibitors of nicotinic acetylcholine receptors (nAChRs and muscarinic acetylcholine receptors, respectively, and anti-α7-nAChRs antibodies revealed α7 type nAChRs as an rSLURP-1 target in keratinocytes. Using affinity purification from human cortical extracts, we confirmed that rSLURP-1 binds selectively to the α7-nAChRs. Exposure of Xenopus oocytes expressing α7-nAChRs to rSLURP-1 caused a significant non-competitive inhibition of the response to acetylcholine (up to ~ 70%, IC50 ~ 1 μM. It was shown that rSLURP-1 binds to α7-nAChRs overexpressed in GH4Cl cells, but does not compete with 125I-α-bungarotoxin for binding to the receptor. These findings imply an allosteric antagonist-like mode of SLURP-1 interaction with α7-nAChRs outside the classical ligand-binding site. Contrary to rSLURP-1, other inhibitors of α7-nAChRs (mecamylamine, α-bungarotoxin and Lynx1 did not suppress the proliferation of keratinocytes. Moreover, the co-application of α-bungarotoxin with rSLURP-1 did not influence antiproliferative activity of the latter. This supports the

  20. Urokinase plasminogen activator receptor is expressed in invasive cells in gastric carcinomas from high- and low-risk countries

    DEFF Research Database (Denmark)

    Alpizar Alpizar, Warner Enrique; Nielsen, Boye Schnack; Sierra, Rafaela

    2010-01-01

    Gastric cancer is the second cancer causing death worldwide. Both incidence and mortality rates vary according to geographical regions. The receptor for urokinase plasminogen activator (uPAR) is involved in extracellular matrix degradation by mediating cell surface associated plasminogen activation......, and its presence on gastric cancer cells is linked to micro-metastasis and poor prognosis. Immunohistochemical analyses of a set of 44 gastric cancer lesions from Costa Rica showed expression of uPAR in cancer cells in both intestinal subtype (14 of 27) and diffuse subtype (10 of 17). We compared...... the expression pattern of uPAR in gastric cancers from a high-risk country (Costa Rica) with a low-risk country (Norway). We found uPAR on gastric cancer cells in 24 of 44 cases (54%) from Costa Rica and in 13 of 23 cases (56%) from Norway. uPAR was seen in macrophages and neutrophils in all cases. We also...

  1. A conserved TATA-less proximal promoter drives basal transcription from the urokinase-type plasminogen activator receptor gene

    DEFF Research Database (Denmark)

    Soravia, E; Grebe, A; De Luca, P

    1995-01-01

    The urokinase-type plasminogen activator receptor (uPAR) focuses at the cell surface the activation of pro-uPA and, hence, the formation of plasmin, thus enhancing directional extracellular proteolysis. To characterize the transcriptional regulatory mechanisms that control receptor expression, we...... have cloned an uPAR DNA segment containing upstream regulatory sequences from both the human and murine genomes. We report that a proximal promoter, contained within 180 bp from the major transcription start sites of the human uPAR gene, drives basal transcription. This region lacks TATA and CAAT boxes...

  2. Urokinase plasminogen activator receptor affects bone homeostasis by regulating osteoblast and osteoclast function

    DEFF Research Database (Denmark)

    Furlan, Federico; Galbiati, Clara; Jørgensen, Niklas R;

    2007-01-01

    reorganization in mature osteoclasts. INTRODUCTION: Urokinase receptor (uPAR) is actively involved in the regulation of important cell functions, such as proliferation, adhesion, and migration. It was previously shown that the major players in bone remodeling, osteoblasts and osteoclasts, express u...... with other osteoblasts markers. On the resorptive side, the number of osteoclasts formed in vitro from uPAR KO monocytes was decreased. Podosome imaging in uPAR KO osteoclasts revealed a defect in actin ring formation. CONCLUSIONS: The defective proliferation and differentiation of bone cells, coincident...

  3. uPAR Expression Pattern in Patients with Urothelial Carcinoma of the Bladder

    DEFF Research Database (Denmark)

    Dohn, Line Hammer; Pappot, Helle; Iversen, Benedikte Richter;

    2015-01-01

    The objective of the present study was to confirm the expression and localisation pattern of the urokinase-type plasminogen activator receptor (uPAR) focusing on its possible clinical relevance in patients with urothelial neoplasia of the bladder. uPAR is a central molecule in tissue remodelling...... or positive as well as by the actual score. Separate scores were obtained for cancer cells, macrophages and myofibroblasts at the invasive front and in tumour core. We were able to confirm, in an independent patient cohort, the tissue expression and localisation pattern of uPAR as investigated...... investigations have generated new and valuable biological information about the cell types being involved in tumour invasion and progression through the plasminogen activation system....

  4. The urokinase plasminogen activator receptor-associated protein/endo180 is coexpressed with its interaction partners urokinase plasminogen activator receptor and matrix metalloprotease-13 during osteogenesis

    DEFF Research Database (Denmark)

    Engelholm, L H; Nielsen, B S; Netzel-Arnett, S

    2001-01-01

    The urokinase plasminogen activator receptor-associated protein/Endo180 (uPARAP/Endo180) is a newly discovered member of the macrophage mannose receptor family that was reported to interact with ligand-bound urokinase plasminogen activator receptor (uPAR), matrix metalloprotease-13 (MMP-13), and ...

  5. Interferon-alpha (Intron A) upregulates urokinase-type plasminogen activator receptor gene expression.

    Science.gov (United States)

    Wu, Shanshan; Murrell, George A C; Wang, Yao

    2002-07-01

    The regulation of urokinase plasminogen activator receptor (uPAR) gene expression by interferon-alpha (IFN-alpha, or Intron A) and interferon-gamma (IFN-gamma) was studied in a HCT116 colon cancer cell line. uPAR mRNA levels were increased in a dose- and time-dependent manner in cells stimulated with IFN-alpha or IFN-gamma. uPAR protein levels reflected IFN-alpha and IFN-gamma induction of uPAR mRNA production. Cycloheximide, a protein synthesis inhibitor, also induced uPAR mRNA accumulation either alone or in combination with IFN-alpha or IFN-gamma, suggesting that the effect on uPAR mRNA levels activated by IFN-alpha or IFN-gamma does not require de novo protein synthesis. Both sodium butyrate and amiloride inhibited the uPAR mRNA levels induced by IFN-alpha or IFN-gamma. These results may provide useful information for the treatment of patients receiving IFN-alpha or IFN-gamma.

  6. Clathrin and LRP-1-independent constitutive endocytosis and recycling of uPAR.

    Directory of Open Access Journals (Sweden)

    Katia Cortese

    Full Text Available BACKGROUND: The urokinase receptor (uPAR/CD87 is highly expressed in malignant tumours. uPAR, as a GPI anchored protein, is preferentially located at the cell surface, where it interacts with its ligands urokinase (uPA and the extracellular matrix protein vitronectin, thus promoting plasmin generation, cell-matrix interactions and intracellular signalling events. Interaction with a complex formed by uPA and its inhibitor PAI-1 induces cell surface down regulation and recycling of the receptor via the clathrin-coated pathway, a process dependent on the association to LRP-1. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we have found that along with the ligand-induced down-regulation, uPAR also internalizes and recycles constitutively through a second pathway that is independent of LRP-1 and clathrin but shares some properties with macropinocytosis. The ligand-independent route is amiloride-sensitive, does not require uPAR partitioning into lipid rafts, is independent of the activity of small GTPases RhoA, Rac1 and Cdc42, and does not require PI3K activity. Constitutively endocytosed uPAR is found in EEA1 positive early/recycling endosomes but does not reach lysosomes in the absence of ligands. Electron microscopy analysis reveals the presence of uPAR in ruffling domains at the cell surface, in macropinosome-like vesicles and in endosomal compartments. CONCLUSIONS/SIGNIFICANCE: These results indicate that, in addition to the ligand-induced endocytosis of uPAR, efficient surface expression and membrane trafficking might also be driven by an uncommon macropinocytic mechanism coupled with rapid recycling to the cell surface.

  7. Urokinase plasminogen activator receptor affects bone homeostasis by regulating osteoblast and osteoclast function

    DEFF Research Database (Denmark)

    Furlan, Federico; Galbiati, Clara; Jørgensen, Niklas R;

    2007-01-01

    reorganization in mature osteoclasts. INTRODUCTION: Urokinase receptor (uPAR) is actively involved in the regulation of important cell functions, such as proliferation, adhesion, and migration. It was previously shown that the major players in bone remodeling, osteoblasts and osteoclasts, express u...... to mechanical tests. UPAR KO calvaria osteoblasts were characterized by proliferation assays, RT-PCR for important proteins secreted during differentiation, and immunoblot for activator protein 1 (AP-1) family members. In vitro osteoclast formation was tested with uPAR KO bone marrow monocytes in the presence...... a proliferative advantage with no difference in apoptosis, higher matrix mineralization, and earlier appearance of alkaline phosphatase (ALP). Surface RANKL expression at different stages of differentiation was not altered. AP-1 components, such as JunB and Fra-1, were upregulated in uPAR KO osteoblasts, along...

  8. Characterisation of urokinase plasminogen activator receptor variants in human airway and peripheral cells

    Directory of Open Access Journals (Sweden)

    Sayers Ian

    2009-07-01

    Full Text Available Abstract Background Expression of the urokinase plasminogen activator receptor (UPAR has been shown to have clinical relevance in various cancers. We have recently identified UPAR as an asthma susceptibility gene and there is evidence to suggest that uPAR may be upregulated in lung diseases such as COPD and asthma. uPAR is a key receptor involved in the formation of the serine protease plasmin by interacting with uPA and has been implicated in many physiological processes including proliferation and migration. The current aim was to determine key regulatory regions and splice variants of UPAR and quantify its expression in primary human tissues and cells (including lung, bronchial epithelium (HBEC, airway smooth muscle (HASM and peripheral cells. Results Using Rapid Amplification of cDNA Ends (RACE a conserved transcription start site (-42 to -77 relative to ATG was identified and multiple transcription factor binding sites predicted. Seven major splice variants were identified (>5% total expression, including multiple exon deletions and an alternative exon 7b (encoding a truncated, soluble, 229aa protein. Variants were differentially expressed, with a high proportion of E7b usage in lung tissue and structural cells (55–87% of transcripts, whereas classical exon 7 (encoding the GPI-linked protein was preferentially expressed in peripheral cells (~80% of transcripts, often with exon 6 or 5+6 deletions. Real-time PCR confirmed expression of uPAR mRNA in lung, as well as airway and peripheral cell types with ~50–100 fold greater expression in peripheral cells versus airway cells and confirmed RACE data. Protein analysis confirmed expression of multiple different forms of uPAR in the same cells as well as expression of soluble uPAR in cell supernatants. The pattern of expression did not directly reflect that seen at the mRNA level, indicating that post-translational mechanisms of regulation may also play an important role. Conclusion We have

  9. Nicotine stimulates urokinase-type plasminogen activator receptor expression and cell invasiveness through mitogen-activated protein kinase and reactive oxygen species signaling in ECV304 endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Khoi, Pham Ngoc; Park, Jung Sun; Kim, Nam Ho; Jung, Young Do, E-mail: ydjung@chonnam.ac.kr

    2012-03-01

    Urokinase-type plasminogen activator receptor (uPAR) expression is elevated during inflammation, tissue remodeling and in many human cancers. This study investigated the effect of nicotine, a major alkaloid in tobacco, on uPAR expression and cell invasiveness in ECV304 endothelial cells. Nicotine stimulated uPAR expression in a dose-dependent manner and activated extracellular signal-regulated kinases-1/2 (Erk-1/2), c-Jun amino-terminal kinase (JNK) and p38 mitogen activated protein kinase (MAPK). Specific inhibitors of MEK-1 (PD98059) and JNK (SP600125) inhibited the nicotine-induced uPAR expression, while the p38 MAPK inhibitor SB203580 did not. Expression vectors encoding dominant negative MEK-1 (pMCL-K97M) and JNK (TAM67) also prevented nicotine-induced uPAR promoter activity. The intracellular hydrogen peroxide (H{sub 2}O{sub 2}) content was increased by nicotine treatment. The antioxidant N-acetylcysteine prevented nicotine-activated production of reactive oxygen species (ROS) and uPAR expression. Furthermore, exogenous H{sub 2}O{sub 2} increased uPAR mRNA expression. Deleted and site-directed mutagenesis demonstrated the involvement of the binding sites of transcription factor nuclear factor-kappaB (NF-κB) and activator protein (AP)-1 in the nicotine-induced uPAR expression. Studies with expression vectors encoding mutated NF-κB signaling molecules and AP-1 decoy confirmed that NF-κB and AP-1 were essential for the nicotine-stimulated uPAR expression. MAPK (Erk-1/2 and JNK) and ROS functioned as upstream signaling molecules in the activation of AP-1 and NF-κB, respectively. In addition, ECV304 endothelial cells treated with nicotine displayed markedly enhanced invasiveness, which was partially abrogated by uPAR neutralizing antibodies. The data indicate that nicotine induces uPAR expression via the MAPK/AP-1 and ROS/NF-κB signaling pathways and, in turn, stimulates invasiveness in human ECV304 endothelial cells. -- Highlights: ► Endothelial cells

  10. Stabilizing a flexible interdomain hinge region harboring the SMB binding site drives uPAR into its closed conformation

    DEFF Research Database (Denmark)

    Zhao, Baoyu; Gandhi, Sonu; Yuan, Cai;

    2015-01-01

    The urokinase-type plasminogen activator receptor (uPAR) is a multidomain glycolipid-anchored membrane protein, which facilitates extracellular matrix remodeling by focalizing plasminogen activation to cell surfaces via its high-affinity interaction with uPA. The modular assembly of its three LU ...

  11. Structure-function relationships in the receptor for urokinase-type plasminogen activator. Comparison to other members of the Ly-6 family and snake venom alpha-neurotoxins

    DEFF Research Database (Denmark)

    Ploug, M; Ellis, V

    1994-01-01

    Plasminogen activation is regulated by the interaction between urokinase-type plasminogen activator (uPA) and its specific glycolipid-anchored cell surface receptor (uPAR). uPAR is composed of three homologous domains and is the only multi-domain member of the Ly-6 family of glycolipid-anchored m......Plasminogen activation is regulated by the interaction between urokinase-type plasminogen activator (uPA) and its specific glycolipid-anchored cell surface receptor (uPAR). uPAR is composed of three homologous domains and is the only multi-domain member of the Ly-6 family of glycolipid......-anchored membrane proteins. Recent evidence has highlighted similarities between the individual domains of uPAR and the large family of secreted, single domain snake venom alpha-neurotoxins, suggesting that uPAR may adopt the same gross folding pattern as these structurally well characterized proteins. Structural...... aspects of the binding between alpha-neurotoxins and the acetylcholine receptor may have a major influence on future studies of the interaction between uPA and uPAR....

  12. uPAR EXPRESSION IN CANINE NORMAL PROSTATE AND WITH PROLIFERATIVE DISORDERS

    Directory of Open Access Journals (Sweden)

    Mariana Rodrigues Faleiro

    2013-06-01

    Full Text Available Prostatic lesions such as prostatic intraepithelial neoplasia (PIN and proliferative inflammatory atrophy (PIA are studied in human and canine species due to their malignance potential. The plasminogen activator (PA system has been suggested to play a central role in cell adhesion, angiogenesis, inflammation, and tumor invasion. The urokinase-type plasminogen activator receptor (uPAR is a component of the PA, with a range of expression in tumor and stromal cells. In this study, uPAR expression in both canine normal prostates and with proliferative disorders (benign prostatic hyperplasia-BPH, proliferative inflammatory atrophy-PIA, prostatic intraepithelial neoplasia-PIN, and carcinoma-PC was evaluated by immunohistochemistry in a tissue microarray (TMA slide to establish the role of this enzyme in extracellular matrix (ECM remodeling and in the processes of tissue invasion. A total of 298 cores and 355 diagnoses were obtained, with 36 (10.1% normal prostates, 46 (13.0% with BPH, 128 (36.1% with PIA, 74 (20.8% with PIN and 71 (20.0% with PC. There is variation in the expression of uPAR in canine prostate according to the lesion, with lower expression in normal tissue and with BPH, and higher expression in tissue with PIA, PIN and PC. The high expression of uPAR in inflammatory and neoplastic microenvironment indicates increased proteolytic activity in canine prostates with PIA, PIN, and PC.

  13. Urokinase receptor forms in serum from non-small cell lung cancer patients

    DEFF Research Database (Denmark)

    Almasi, Charlotte Elberling; Christensen, Ib Jarle; Høyer-Hansen, Gunilla;

    2011-01-01

    To study the prognostic impact of the different forms of the receptor for urokinase plasminogen activator (uPAR) in serum from 171 non-small cell lung cancer (NSCLC) patients.......To study the prognostic impact of the different forms of the receptor for urokinase plasminogen activator (uPAR) in serum from 171 non-small cell lung cancer (NSCLC) patients....

  14. The interaction between uPAR and vitronectin triggers ligand-independent adhesion signalling by integrins.

    Science.gov (United States)

    Ferraris, Gian Maria Sarra; Schulte, Carsten; Buttiglione, Valentina; De Lorenzi, Valentina; Piontini, Andrea; Galluzzi, Massimiliano; Podestà, Alessandro; Madsen, Chris D; Sidenius, Nicolai

    2014-11-03

    The urokinase-type plasminogen activator receptor (uPAR) is a non-integrin vitronectin (VN) cell adhesion receptor linked to the plasma membrane by a glycolipid anchor. Through structure-function analyses of uPAR, VN and integrins, we document that uPAR-mediated cell adhesion to VN triggers a novel type of integrin signalling that is independent of integrin-matrix engagement. The signalling is fully active on VN mutants deficient in integrin binding site and is also efficiently transduced by integrins deficient in ligand binding. Although integrin ligation is dispensable, signalling is crucially dependent upon an active conformation of the integrin and its association with intracellular adaptors such as talin. This non-canonical integrin signalling is not restricted to uPAR as it poses no structural constraints to the receptor mediating cell attachment. In contrast to canonical integrin signalling, where integrins form direct mechanical links between the ECM and the cytoskeleton, the molecular mechanism enabling the crosstalk between non-integrin adhesion receptors and integrins is dependent upon membrane tension. This suggests that for this type of signalling, the membrane represents a critical component of the molecular clutch. © 2014 The Authors.

  15. Domain interplay in the urokinase receptor. Requirement for the third domain in high affinity ligand binding and demonstration of ligand contact sites in distinct receptor domains

    DEFF Research Database (Denmark)

    Behrendt, N; Ronne, E; Dano, K

    1996-01-01

    The urokinase plasminogen activator receptor (uPAR) is a membrane protein comprised of three extracellular domains. In order to study the importance of this domain organization in the ligand-binding process of the receptor we subjected a recombinant, soluble uPAR (suPAR) to specific proteolytic c...

  16. Phospho-MEK1/2 and uPAR Expression Determine Sensitivity of AML Blasts to a Urokinase-Activated Anthrax Lethal Toxin (PrAgU2/LF

    Directory of Open Access Journals (Sweden)

    Amira Bekdash

    2015-10-01

    Full Text Available In this study, we attempt to target both the urokinase plasminogen activator and the mitogen-activated protein kinase pathway in acute myeloid leukemia (AML cell lines and primary AML blasts using PrAgU2/LF, a urokinase-activated anthrax lethal toxin. PrAgU2/LF was cytotoxic to five out of nine AML cell lines. Cytotoxicity of PrAgU2/LF appeared to be nonapoptotic and was associated with MAPK activation and urokinase activity because all the PrAgU2/LF-sensitive cell lines showed both uPAR expression and high levels of MEK1/2 phosphorylation. Inhibition of uPAR or desensitization of cells to MEK1/2 inhibition blocked toxicity of PrAgU2/LF, indicating requirement for both uPAR expression and MAPK activation for activity. PrAgU2/LF was also cytotoxic to primary blasts from AML patients, with blasts from four out of five patients showing a cytotoxic response to PrAgU2/LF. Cytotoxicity of primary AML blasts was also dependent on uPAR expression and phos-MEK1/2 levels. CD34+ bone marrow blasts and peripheral blood mononuclear cells lacked uPAR expression and were resistant to PrAgU2/LF, demonstrating the lack of toxicity to normal hematological cells and, therefore, the tumor selectivity of this approach. Dose escalation in mice revealed that the maximal tolerated dose of PrAgU2/LF is at least 5.7-fold higher than that of the wild-type anthrax lethal toxin, PrAg/LF, further demonstrating the increased safety of this molecule. We have shown, in this study, that PrAgU2/LF is a novel, dual-specific molecule for the selective targeting of AML.

  17. Cadmium induces urokinase-type plasminogen activator receptor expression and the cell invasiveness of human gastric cancer cells via the ERK-1/2, NF-κB, and AP-1 signaling pathways.

    Science.gov (United States)

    Khoi, Pham Ngoc; Xia, Yong; Lian, Sen; Kim, Ho Dong; Kim, Do Hyun; Joo, Young Eun; Chay, Kee-Oh; Kim, Kyung Keun; Jung, Young Do

    2014-10-01

    Cadmium exposure has been linked to human cancers, including stomach cancer. In this study, the effects of cadmium on urokinase-type plasminogen activator receptor (uPAR) expression in human gastric cancer cells and the underlying signal transduction pathways were investigated. Cadmium induced uPAR expression in a time- and concentration-dependent manner. Cadmium also induced uPAR promoter activity. Additionally, cadmium induced the activation of extracellular signal regulated kinase-1/2 (ERK-1/2), p38 mitogen-activated protein kinase (MAPK), and the activation of c-Jun amino terminal kinase (JNK). A specific inhibitor of MEK-1 (PD98059) inhibited cadmium-induced uPAR expression, while JNK and p38 MAPK inhibitors did not. Expression vectors encoding dominant-negative MEK-1 (pMCL-K97M) also prevented cadmium-induced uPAR promoter activity. Site-directed mutagenesis and electrophoretic mobility shift studies showed that sites for the transcription factors nuclear factor (NF)-κB and activator protein-1 (AP-1) were involved in cadmium-induced uPAR transcription. Suppression of the cadmium-induced uPAR promoter activity by a mutated-type NF-κB-inducing kinase and I-κB and an AP-1 decoy oligonucleotide confirmed that the activation of NF-κB and AP-1 are essential for cadmium-induced uPAR upregulation. Cells pretreated with cadmium showed markedly enhanced invasiveness and this effect was partially abrogated by uPAR-neutralizing antibodies and by inhibitors of ERK-1/2, NF-κB, and AP-1. These results suggest that cadmium induces uPAR expression via ERK-1/2, NF-κB, and AP-1 signaling pathways and, in turn, stimulates cell invasiveness in human gastric cancer AGS cells.

  18. Photoaffinity labeling of the human receptor for urokinase-type plasminogen activator using a decapeptide antagonist. Evidence for a composite ligand-binding site and a short interdomain separation

    DEFF Research Database (Denmark)

    Ploug, M; Ostergaard, S; Hansen, L B

    1998-01-01

    labeling. Proteolytic domain mapping using chymotrypsin revealed a specific labeling of both uPAR domain I and domains II + III dependent on the position of the photoprobe in the antagonist. On the basis of these studies, we propose the existence of a composite ligand binding site in uPAR combined......Binding of urokinase-type plasminogen activator (uPA) to its cellular receptor (uPAR) renders the cell surface a favored site for plasminogen activation. Recently, a 15-mer peptide antagonist of the uPA-uPAR interaction, with an IC50 value of 10 nM, was identified using phage display technology...... [Goodson, R. J., Doyle, M. V., Kaufman, S. E., and Rosenberg, S. (1994) Proc. Natl. Acad. Sci. 91, 7129-7133]. In the present study, the molecular aspects of the interaction between this peptide and uPAR have been investigated. We have characterized the real-time receptor binding kinetics...

  19. Identification and characterization of the murine cell surface receptor for the urokinase-type plasminogen activator

    DEFF Research Database (Denmark)

    Solberg, H.; Løber, D.; Eriksen, J

    1992-01-01

    Cell-binding experiments have indicated that murine cells on their surface have specific binding sites for mouse urokinase-type plasminogen activator (u-PA). In contrast to the human system, chemical cross-linking studies with an iodinated ligand did not yield any covalent adducts in the murine...... system, but in ligand-blotting analysis, two mouse u-PA-binding proteins could be visualized. To confirm that these proteins are the murine counterpart of the human u-PA receptor (u-PAR), a peptide was derived from the murine cDNA clone assigned to represent the murine u-PAR due to cross......-hybridization and pronounced sequence similarity with human u-PAR cDNA [Kristensen, P., Eriksen, J., Blasi, F. & Danø, K. (1991) J. Cell Biol. 115, 1763-1771]. A rabbit antiserum raised against this peptide specifically recognized two polypeptide bands with electrophoretic mobilities identical to those identified by ligand...

  20. Cellular receptors for plasminogen activators recent advances.

    Science.gov (United States)

    Ellis, V

    1997-10-01

    The generation of the broad-specificity protease plasmin by the plasminogen activators urokinase-type plasminogen activator (uPA) and tissue-type plasminogen activator (tPA) is implicated in a variety of pathophysiological processes, including vascular fibrin dissolution, extracellular matrix degradation and remodeling, and cell migration. A mechanism for the regulation of plasmin generation is through binding of the plasminogen activators to specific cellular receptors: uPA to the glycolipid-anchored membrane protein urokinase-type plasminogen activator receptor (uPAR) and tPA to a number of putative binding sites. The uPA-uPAR complex can interact with a variety of ligands, including plasminogen, vitronectin, and integrins, indicating a multifunctional role for uPAR, regulating not only efficient and spatially restricted plasmin generation but also having the potential to modulate cell adhesion and signal transduction. The cellular binding of tPA, although less well characterized, also has the capacity to regulate plasmin generation and to play a significant role in vessel-wall biology. (Trends Cardiovasc Med 1997;7:227-234). © 1997, Elsevier Science Inc.

  1. Vectors and methods for recombinant production of uPA-binding fragments of the human urokinase-type plasminogen receptor (uPAR)

    DEFF Research Database (Denmark)

    1999-01-01

    Activation of plasminogen to plasma is inhibited by preventing the binding of a receptor binding form of urokinase-type plasminogen activator to a urokinase-type plasminogen activator receptor in a mammal, thereby preventing the urokinase-type plasminogen activator from converting plasminogen int...... into plasmin. DNA fragments which encode for soluble, active fragments of the urokinase-type plasminogen activator are provided....

  2. Reversibility of epithelial-mesenchymal transition (EMT) induced in breast cancer cells by activation of urokinase receptor-dependent cell signaling.

    Science.gov (United States)

    Jo, Minji; Lester, Robin D; Montel, Valerie; Eastman, Boryana; Takimoto, Shinako; Gonias, Steven L

    2009-08-21

    Hypoxia induces expression of the urokinase receptor (uPAR) and activates uPAR-dependent cell signaling in cancer cells. This process promotes epithelial-mesenchymal transition (EMT). uPAR overexpression in cancer cells also promotes EMT. In this study, we tested whether uPAR may be targeted to reverse cancer cell EMT. When MDA-MB 468 breast cancer cells were cultured in 1% O(2), uPAR expression increased, as anticipated. Cell-cell junctions were disrupted, vimentin expression increased, and E-cadherin was lost from cell surfaces, indicating EMT. Transferring these cells back to 21% O(2) decreased uPAR expression and reversed the signs of EMT. In uPAR-overexpressing MDA-MB 468 cells, EMT was reversed by silencing expression of endogenously produced urokinase-type plasminogen activator (uPA), which is necessary for uPAR-dependent cell signaling, or by targeting uPAR-activated cell signaling factors, including phosphatidylinositol 3-kinase, Src family kinases, and extracellular signal-regulated kinase. MDA-MB 231 breast cancer cells express high levels of uPA and uPAR and demonstrate mesenchymal cell morphology under normoxic culture conditions (21% O(2)). Silencing uPA expression in MDA-MB-231 cells decreased expression of vimentin and Snail, and induced changes in morphology characteristic of epithelial cells. These results demonstrate that uPAR-initiated cell signaling may be targeted to reverse EMT in cancer.

  3. Stabilizing a flexible interdomain hinge region harboring the SMB binding site drives uPAR into its closed conformation.

    Science.gov (United States)

    Zhao, Baoyu; Gandhi, Sonu; Yuan, Cai; Luo, Zhipu; Li, Rui; Gårdsvoll, Henrik; de Lorenzi, Valentina; Sidenius, Nicolai; Huang, Mingdong; Ploug, Michael

    2015-03-27

    The urokinase-type plasminogen activator receptor (uPAR) is a multidomain glycolipid-anchored membrane protein, which facilitates extracellular matrix remodeling by focalizing plasminogen activation to cell surfaces via its high-affinity interaction with uPA. The modular assembly of its three LU (Ly6/uPAR-like) domains is inherently flexible and binding of uPA drives uPAR into its closed conformation, which presents the higher-affinity state for vitronectin thus providing an allosteric regulatory mechanism. Using a new class of epitope-mapped anti-uPAR monoclonal antibodies (mAbs), we now demonstrate that the reciprocal stabilization is indeed also possible. By surface plasmon resonance studies, we show that these mAbs and vitronectin have overlapping binding sites on uPAR and that they share Arg91 as hotspot residue in their binding interfaces. The crystal structure solved for one of these uPAR·mAb complexes at 3.0Å clearly shows that this mAb preselects the closed uPAR conformation with an empty but correctly assembled large hydrophobic binding cavity for uPA. Accordingly, these mAbs inhibit the uPAR-dependent lamellipodia formation and migration on vitronectin-coated matrices irrespective of the conformational status of uPAR and its occupancy with uPA. This is the first study to the best of our knowledge, showing that the dynamic assembly of the three LU domains in uPARwt can be driven toward the closed form by an external ligand, which is not engaging the hydrophobic uPA binding cavity. As this binding interface is also exploited by the somatomedin B domain of vitronectin, therefore, this relationship should be taken into consideration when exploring uPAR-dependent cell adhesion and migration in vitronectin-rich environments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Transcriptional Regulation of Urokinase-type Plasminogen Activator Receptor by Hypoxia-Inducible Factor 1 Is Crucial for Invasion of Pancreatic and Liver Cancer

    Directory of Open Access Journals (Sweden)

    Peter Büchler

    2009-02-01

    Full Text Available Angioinvasion is critical for metastasis with urokinase-type plasminogen activator receptor (uPAR and tumor hypoxia-activated hypoxia-inducible factor 1 (HIF-1 as key players. Transcriptional control of uPAR expression by HIF has never been reported. The aim of the present study, therefore, was to test whether tumor hypoxia-induced HIF expression may be linked to transcriptional activation of uPAR and dependent angioinvasion. We used human pancreatic cancer cells and a model of parental and derived HIF-1β-deficient mouse liver cancer cell lines and performed Northern blot analysis, nuclear runoff assays, electrophoretic mobility shift assay, polymerase chain reaction-generated deletion mutants, luciferase assays, Matrigel invasion assays, and in vivo angioinvasion assays in the chorioallantoic membrane of fertilized chicken eggs. Urokinase-type plasminogen activator receptor promoter analysis resulted in four putative HIF binding sites. Hypoxia strongly induced de novo transcription of uPAR mRNA. With sequential deletion mutants of the uPAR promoter, it was possible to identify one HIF binding site causing a nearly 200-fold increase in luciferase activity. Hypoxia enhanced the number of invading tumor cells in vitro and in vivo. In contrast, HIF-1β-deficient cells failed to upregulate uPAR expression, to activate luciferase activity, and to invade on hypoxia. Taken together, we show for the first time that uPAR is under transcriptional control of HIF and that this is important for hypoxia-induced metastasis.

  5. Quantitative PET of human urokinase-type plasminogen activator receptor with 64Cu-DOTA-AE105

    DEFF Research Database (Denmark)

    Persson, Morten; Madsen, Jacob; Østergaard, Søren

    2012-01-01

    Expression levels of the urokinase-type plasminogen activator receptor (uPAR) represent an established biomarker for poor prognosis in a variety of human cancers. The objective of the present study was to explore whether noninvasive PET can be used to perform a quantitative assessment of expressi...

  6. Prognostic value analysis of urokinase-type plasminogen activator receptor in oral squamous cell carcinoma: an immunohistochemical study

    Directory of Open Access Journals (Sweden)

    Rocchetti Romina

    2008-08-01

    Full Text Available Abstract Background Oral squamous cell carcinoma (OSCC represents the most common oral malignancy. Despite recent advances in therapy, up to 50% of the cases have relapse and/or metastasis. There is therefore a strong need for the identification of new biological markers able to predict the clinical behaviour of these lesions in order to improve quality of life and overall survival. Among tumour progression biomarkers, already known for their involvement in other neoplasia, a crucial role is ascribed to the urokinase-type plasminogen activator receptor (uPAR, which plays a multiple role in extracellular proteolysis, cell migration and tissue remodelling not only as a receptor for the zymogen pro-uPA but also as a component for cell adhesion and as a chemoattractant. The purpose of this study was to gain information on the expression of uPAR in OSCC and to verify whether this molecule can have a role as a prognostic/predictive marker for this neoplasia. Methods In a retrospective study, a cohort of 189 OSCC patients was investigated for uPAR expression and its cellular localization by immunohistochemistry. As standard controls, 8 normal oral mucosal tissues free of malignancy, obtained from patients with no evidence or history of oral cavity tumours, were similarly investigated. After grouping for uPAR expression, OSCCs were statistically analyzed for the variables age, gender, histological grading (G, tumour size, recurrence, TNM staging and overall survival rate. Results In our immunohistochemical study, 74 cases (39.1% of OSCC showed a mostly cytoplasmic positivity for uPAR, whereas 115 were negative. uPAR expression correlated with tumour differentiation grade and prognosis: percentage of positive cases was the greatest in G3 (70.4% and patients positives for uPAR expression had an expectation of life lower than those for uPAR negatives. Conclusion The results obtained in this study suggest a role of uPAR as a potential biomarker useful to

  7. The receptor for urokinase-type plasminogen activator and urokinase is translocated from two distinct intracellular compartments to the plasma membrane on stimulation of human neutrophils

    DEFF Research Database (Denmark)

    Plesner, T; Ploug, M; Ellis, V

    1994-01-01

    The cellular receptor for urokinase-type plasminogen activator (uPAR) binds pro-urokinase (pro-uPA) and facilitates its conversion to enzymatically active urokinase (uPA). uPA in turn activates surface-bound plasminogen to plasmin, a process of presumed importance for a number of biologic process...

  8. Ligand interaction between urokinase-type plasminogen activator and its receptor probed with 8-anilino-1-naphthalenesulfonate. Evidence for a hydrophobic binding site exposed only on the intact receptor

    DEFF Research Database (Denmark)

    Ploug, M; Ellis, V; Danø, K

    1994-01-01

    The cellular receptor for urokinase-type plasminogen activator (uPAR) is a glycolipid-anchored membrane protein thought to play a primary role in the generation of pericellular proteolytic activity, and to be involved in cancer cell invasion and metastasis. This protein is composed of three homol...

  9. Human Secreted Ly-6/uPAR Related Protein-1 (SLURP-1) Is a Selective Allosteric Antagonist of α7 Nicotinic Acetylcholine Receptor

    DEFF Research Database (Denmark)

    Lyukmanova, Ekaterina N; Shulepko, Mikhail A; Kudryavtsev, Denis

    2016-01-01

    SLURP-1 is a secreted toxin-like Ly-6/uPAR protein found in epithelium, sensory neurons and immune cells. Point mutations in the slurp-1 gene cause the autosomal inflammation skin disease Mal de Meleda. SLURP-1 is considered an autocrine/paracrine hormone that regulates growth and differentiation......AChRs. Exposure of Xenopus oocytes expressing α7-nAChRs to rSLURP-1 caused a significant non-competitive inhibition of the response to acetylcholine (up to ~ 70%, IC50 ~ 1 μM). It was shown that rSLURP-1 binds to α7-nAChRs overexpressed in GH4Cl cells, but does not compete with 125I-α-bungarotoxin for binding...

  10. 68Ga-labeling and in vivo evaluation of a uPAR binding DOTA- and NODAGA-conjugated peptide for PET imaging of invasive cancers

    DEFF Research Database (Denmark)

    Persson, Morten; Madsen, Jacob; Østergaard, Søren;

    2012-01-01

    INTRODUCTION: The urokinase-type plasminogen activator receptor (uPAR) is a well-established biomarker for tumor aggressiveness and metastatic potential. DOTA-AE105 and DOTA-AE105-NH(2) labeled with (64)Cu have previously been demonstrated to be able to noninvasively monitor uPAR expression using...... positron emission tomography (PET) in human cancer xenograft mice models. Here we introduce (68)Ga-DOTA-AE105-NH(2) and (68)Ga-NODAGA-AE105-NH(2) and evaluate their imaging properties using small-animal PET. METHODS: Synthesis of DOTA-AE105-NH(2) and NODAGA-AE105-NH(2) was based on solid-phase peptide......, uPAR binding affinity and cell uptake were determined. To characterize the in vivo properties, dynamic microPET imaging was carried out in nude mice bearing human glioma U87MG tumor xenograft. RESULTS: In vitro experiments revealed uPAR binding affinities in the lower nM range for both conjugated...

  11. PET imaging of urokinase-type plasminogen activator receptor (uPAR) in prostate cancer

    DEFF Research Database (Denmark)

    Skovgaard, Dorthe; Persson, Morten; Kjaer, Andreas

    2016-01-01

    (intact/cleaved forms)-provides independent additional clinical information to that contributed by PSA, Gleason score, and other relevant pathological and clinical parameters. In this respect, non-invasive molecular imaging by positron emission tomography (PET) offers a very attractive technology platform...

  12. Intact and cleaved plasma soluble urokinase receptor in patients with metastatic colorectal cancer treated with oxaliplatin with or without cetuximab

    DEFF Research Database (Denmark)

    Tarpgaard, Line Schmidt; Christensen, Ib Jarle; Høyer-Hansen, Gunilla

    2015-01-01

    Circulating forms of the urokinase plasminogen activator receptor (uPAR) are associated with prognosis in patients with colorectal cancer. Preclinical studies have shown that uPAR can influence the state of phosphorylation and signalling activity of the epidermal growth factor receptor (EGFR...... with FLOX + cetuximab as compared to patients with KRAS wild-type and high levels of suPAR. These results thus support the preclinical findings and should be further tested in an independent clinical data set....

  13. Method and tool for prognosticating HIV infection in a subject by measuring soluble urokinase plasminogen activator receptor, degradation products thereof, and urokinase plasminogen activator receptor

    DEFF Research Database (Denmark)

    2000-01-01

    Method of diagnosing and/or prognosticating HIV infection in a subject comprising the steps of: (a) performing in vitro a measurement of the level of a marker in the form of (i) urokinase plasminogen activator receptor (uPAR), (ii) soluble urokinase plasminogen activator receptor (suPAR), (iii......) urokinase-type plasminogen activator (uPA), (iv) one or more degradation products of (i), (ii), or (iii), and/or (v) an mRNA for (i), (ii) or (iii), in a biological fluid sample from a subject, and (b) using the measurement value obtained to evaluate the state of the subject....

  14. The soluble urokinase plasminogen activator receptor and its fragments in venous ulcers

    DEFF Research Database (Denmark)

    Ahmad, Anwar; Saha, Prakash; Evans, Colin

    2015-01-01

    OBJECTIVE: Activation of proteolytic mechanisms at the cell surface through the activity of urokinase-type plasminogen activator (uPA) bound to its receptor, uPAR, is an important process in wound healing. The soluble forms of uPAR (suPAR and its fragments I, II, and III) have nonproteolytic...... functions that include chemotaxis, adhesion, and proliferation, which also have a role in wound healing. The aim of this study was to determine whether suPAR and its cleaved fragments are present in venous ulcers and whether their levels are associated with healing. METHODS: Ulcer exudates were collected...... from patients with venous leg ulcers (n = 30). Healing was defined as complete re-epithelialization within 6 months of compression therapy. Time-resolved fluorescence immunoassays were validated for quantification of suPAR and its fragments in ulcer exudates. The effect of exudates on keratinocyte...

  15. Crystal structure of the human urokinase plasminogen activator receptor bound to an antagonist peptide

    DEFF Research Database (Denmark)

    Llinas, Paola; Le Du, Marie Hélène; Gårdsvoll, Henrik

    2005-01-01

    We report the crystal structure of a soluble form of human urokinase-type plasminogen activator receptor (uPAR/CD87), which is expressed at the invasive areas of the tumor-stromal microenvironment in many human cancers. The structure was solved at 2.7 A in association with a competitive peptide...... inhibitor of the urokinase-type plasminogen activator (uPA)-uPAR interaction. uPAR is composed of three consecutive three-finger domains organized in an almost circular manner, which generates both a deep internal cavity where the peptide binds in a helical conformation, and a large external surface...... accessible for other protein interactions (vitronectin and integrins). By this unique structural assembly, uPAR can orchestrate the fine interplay with the partners that are required to guide uPA-focalized proteolysis on the cell surface and control cell adhesion and migration....

  16. Immunoglobulin and enzyme-conjugated dextran polymers enhance u-PAR staining intensity of carcinoma cells in peripheral blood smears

    DEFF Research Database (Denmark)

    Werther, K; Normark, M; Hansen, B F;

    1999-01-01

    phenotyping of disseminated carcinoma cells in bone marrow and peripheral blood smears. In the first step, the cells were incubated with antibodies against urokinase plasminogen activator receptor (u-PAR) and subsequently with secondary antibodies conjugated to peroxidase-labeled dextran polymers. A brown...... color reaction was developed with diaminobenzidine as chromogen. In the second step, the cells were incubated with alkaline phosphatase-conjugated murine monoclonal antibodies against a common cytokeratin epitope and a red color reaction was developed with new fuchsin as substrate. This method allows...

  17. Urokinase plasminogen receptor and the fibrinolytic complex play a role in nerve repair after nerve crush in mice, and in human neuropathies.

    Directory of Open Access Journals (Sweden)

    Cristina Rivellini

    Full Text Available Remodeling of extracellular matrix (ECM is a critical step in peripheral nerve regeneration. In fact, in human neuropathies, endoneurial ECM enriched in fibrin and vitronectin associates with poor regeneration and worse clinical prognosis. Accordingly in animal models, modification of the fibrinolytic complex activity has profound effects on nerve regeneration: high fibrinolytic activity and low levels of fibrin correlate with better nerve regeneration. The urokinase plasminogen receptor (uPAR is a major component of the fibrinolytic complex, and binding to urokinase plasminogen activator (uPA promotes fibrinolysis and cell movement. uPAR is expressed in peripheral nerves, however, little is known on its potential function on nerve development and regeneration. Thus, we investigated uPAR null mice and observed that uPAR is dispensable for nerve development, whereas, loss of uPAR affects nerve regeneration. uPAR null mice showed reduced nerve repair after sciatic nerve crush. This was a consequence of reduced fibrinolytic activity and increased deposition of endoneurial fibrin and vitronectin. Exogenous fibrinolysis in uPAR null mice rescued nerve repair after sciatic nerve crush. Finally, we measured the fibrinolytic activity in sural nerve biopsies from patients with peripheral neuropathies. We showed that neuropathies with defective regeneration had reduced fibrinolytic activity. On the contrary, neuropathies with signs of active regeneration displayed higher fibrinolytic activity. Overall, our results suggest that enforced fibrinolysis may facilitate regeneration and outcome of peripheral neuropathies.

  18. Urokinase Plasminogen Receptor and the Fibrinolytic Complex Play a Role in Nerve Repair after Nerve Crush in Mice, and in Human Neuropathies

    Science.gov (United States)

    Rivellini, Cristina; Dina, Giorgia; Porrello, Emanuela; Cerri, Federica; Scarlato, Marina; Domi, Teuta; Ungaro, Daniela; Carro, Ubaldo Del; Bolino, Alessandra; Quattrini, Angelo; Comi, Giancarlo; Previtali, Stefano C.

    2012-01-01

    Remodeling of extracellular matrix (ECM) is a critical step in peripheral nerve regeneration. In fact, in human neuropathies, endoneurial ECM enriched in fibrin and vitronectin associates with poor regeneration and worse clinical prognosis. Accordingly in animal models, modification of the fibrinolytic complex activity has profound effects on nerve regeneration: high fibrinolytic activity and low levels of fibrin correlate with better nerve regeneration. The urokinase plasminogen receptor (uPAR) is a major component of the fibrinolytic complex, and binding to urokinase plasminogen activator (uPA) promotes fibrinolysis and cell movement. uPAR is expressed in peripheral nerves, however, little is known on its potential function on nerve development and regeneration. Thus, we investigated uPAR null mice and observed that uPAR is dispensable for nerve development, whereas, loss of uPAR affects nerve regeneration. uPAR null mice showed reduced nerve repair after sciatic nerve crush. This was a consequence of reduced fibrinolytic activity and increased deposition of endoneurial fibrin and vitronectin. Exogenous fibrinolysis in uPAR null mice rescued nerve repair after sciatic nerve crush. Finally, we measured the fibrinolytic activity in sural nerve biopsies from patients with peripheral neuropathies. We showed that neuropathies with defective regeneration had reduced fibrinolytic activity. On the contrary, neuropathies with signs of active regeneration displayed higher fibrinolytic activity. Overall, our results suggest that enforced fibrinolysis may facilitate regeneration and outcome of peripheral neuropathies. PMID:22363796

  19. uPA, uPAR and TGFβ₁ expression during early and late post myocardial infarction period in rat myocardium.

    Science.gov (United States)

    Stavropoulou, Anastasia; Philippou, Anastassios; Halapas, Antonios; Sourla, Antigone; Pissimissis, Nikolaos; Koutsilieris, Michael

    2010-01-01

    The expression patterns of transforming growth factor beta 1 (TGFβ₁), urokinase-type plasminogen activator (uPA) and uPA receptor (uPAR) were analysed after artery ligation-induced myocardial infarction (MI) in the rat myocardium. uPA and uPAR expressions were significantly increased both at transcriptional and protein level during early phase post MI period (uPA at 1 hour and uPAR at 24 hours post infarction). TGFβ1 mRNA expression profile revealed a significant increase of TGFβ1 expression from day 4 up to 8 weeks post infarction. These data suggest that the need for an increasing TGFβ₁ bioavailability during the post-infarction period in rat myocardium is achieved in the early post MI period by an increased expression of uPA/uPAR proteolytic system (indirect activation of latent TGFβ₁) and in the late post MI period by direct regulation of TGFβ₁ expression. It is therefore concluded that differential regulation of the TGFβ₁ bioavailability may be a crucial step of the repair mechanisms during the post MI infarction period in the rat myocardium.

  20. The structure and function of the urokinase receptor, a membrane protein governing plasminogen activation on the cell surface

    DEFF Research Database (Denmark)

    Behrendt, N; Rønne, E; Danø, K

    1995-01-01

    PA receptor, uPAR, is a cell-surface protein which plays an important role in the localization and regulation of these processes. In the present article a number of established conclusions concerning the structure and function of uPAR are presented, and in addition various models are discussed which might...... to an interplay between uPAR and other, unidentified components. In addition to the function in the regulation of proteolysis, uPAR seems to play a role in internalization processes and in cellular signal transduction and adhesion. A few reagents have been identified which are capable to inhibit the interaction...... between uPAR and uPA. The growing knowledge on the structure and function of uPAR which is a result of protein chemical analyses, functional studies and analyses of other, interacting components, should help to obtain a better understanding of the regulation of extracellular proteolysis. In conjunction...

  1. A region in urokinase plasminogen receptor domain III controlling a functional association with alpha5beta1 integrin and tumor growth

    DEFF Research Database (Denmark)

    Chaurasia, Pratima; Aguirre-Ghiso, Julio; Liang, Olin D

    2006-01-01

    Highly expressed urokinase plasminogen activator receptor (uPAR) can interact with alpha5beta1 integrin leading to persistent ERK activation and tumorigenicity. Disrupting this interaction reduces ERK activity, forcing cancer cells into dormancy. We identified a site in uPAR domain III that is in......Highly expressed urokinase plasminogen activator receptor (uPAR) can interact with alpha5beta1 integrin leading to persistent ERK activation and tumorigenicity. Disrupting this interaction reduces ERK activity, forcing cancer cells into dormancy. We identified a site in uPAR domain III...... that is indispensable for these effects. A 9-mer peptide derived from a sequence in domain III (residues 240-248) binds purified alpha5beta1 integrin. Substituting a single amino acid (S245A) in this peptide, or in full-length soluble uPAR, impairs binding of the purified integrin. In the recently solved crystal...... structure of uPAR the Ser-245 is confined to the large external surface of the receptor, a location that is well separated from the central urokinase plasminogen binding cavity. The impact of this site on alpha5beta1 integrin-dependent cell functions was examined by comparing cells induced to express u...

  2. The prognostic value of the suPARnosticTM ELISA assay in HIV-1 infected individuals is not affected by uPAR promoter polymorphisms

    DEFF Research Database (Denmark)

    Schneider, Uffe; Nielsen, Rikke; Pedersen, Court;

    2007-01-01

    ABSTRACT: BACKGROUND: High blood levels of soluble urokinase Plasminogen Activator Receptor (suPAR) are associated with poor outcomes in human immunodeficiency-1 (HIV-1) infected individuals. Research on the clinical value of suPAR in HIV-1 infection led to the development of the su......PARnosticTM assay for commercial use in 2006. The aim of this study was to: 1) Evaluate the prognostic value of the new suPARnosticTM assay and 2) Determine whether polymorphisms in the active promoter of uPAR influences survival and/or suPAR values in HIV-1 patients who are antiretroviral therapy (ART) naive...

  3. uPAR as anti-cancer target

    DEFF Research Database (Denmark)

    Lund, Ida K; Illemann, Martin; Thurison, Tine

    2011-01-01

    PAR on the cell surface and/or by direct inhibition of the catalytic activity of uPA. Both strategies have been pursued and inhibition of these functions has shown effect in xenogenic cancer models. Pericellular proteolysis has also been inhibited in vivo in mouse models of wound healing and hepatic fibrinolysis......, and a potential diagnostic and predictive impact of the different uPAR forms has been reported. Hence, pericellular proteolysis seems to be a suitable target for anti-cancer therapy and numerous approaches have been pursued. Targeting of this process may be achieved by preventing the binding of uPA to u...

  4. Urokinase-type Plasminogen Activator-like Proteases in Teleosts Lack Genuine Receptor-binding Epidermal Growth Factor-like Domains

    DEFF Research Database (Denmark)

    Bager, René; Kristensen, Thomas Kielsgaard; Jensen, Jan Kristian

    2012-01-01

    to be central to the functions of uPA, as uPA-catalyzed plasminogen activation activity appeared to be confined to cell surfaces through the binding of uPA to uPAR. However, a functional uPAR has so far only been identified in mammals. We have now cloned, recombinantly produced, and characterized two zebrafish...... be found in fish white blood cells or fish cell lines. We therefore propose that the current consensus of uPA-catalyzed plasminogen activation taking place on cell surfaces, derived from observations with mammals, is too narrow. Fish uPAs appear incapable of receptor binding in the manner known from...... mammals and uPA-catalyzed plasminogen activation in fish may occur mainly in solution. Studies with nonmammalian vertebrate species are needed to obtain a comprehensive understanding of the mechanism of plasminogen activation....

  5. Conformational regulation of urokinase receptor function

    DEFF Research Database (Denmark)

    Gårdsvoll, Henrik; Jacobsen, Benedikte; Kriegbaum, Mette C

    2011-01-01

    PA per se into the hydrophobic ligand binding cavity of uPAR that modulates the function of this receptor. Based on these data, we now propose a model in which the inherent interdomain mobility in uPAR plays a major role in modulating its function. Particularly one uPAR conformation, which is stabilized...

  6. Regulation of urokinase receptors in monocytelike U937 cells by phorbol ester phorbol myristate acetate

    DEFF Research Database (Denmark)

    Picone, R; Kajtaniak, E L; Nielsen, L S

    1989-01-01

    A specific surface receptor for urokinase plasminogen activator (uPA) recognizes the amino-terminal growth factor-like sequence of uPA, a region independent from and not required for the catalytic activity of this enzyme. The properties of the uPA receptor (uPAR) and the localization and distribu...

  7. Inhibition of establishment of primary and micrometastatic tumors by a urokinase plasminogen activator receptor antagonist.

    Science.gov (United States)

    Ignar, D M; Andrews, J L; Witherspoon, S M; Leray, J D; Clay, W C; Kilpatrick, K; Onori, J; Kost, T; Emerson, D L

    1998-01-01

    Tumor establishment and metastasis are dependent on extracellular matrix proteolysis, tumor cell migration, and angiogenesis. Urokinase plasminogen activator (uPA) and its receptor are essential mediators of these processes. The purpose of this study was to investigate the effect of a recombinant human uPAR antagonist on growth, establishment, and metastasis of tumors derived from human cancer cell lines. A noncatalytic recombinant protein, consisting of amino acids 1-137 of human uPA and the CH2 and CH3 regions of mouse IgG1 (uPA-IgG), was expressed, purified, and shown to bind specifically to human uPAR and to saturate the surface of human tumor cells which express uPAR. Daily i.p. administration of uPA-IgG to nude mice extended latencies of unstaged tumors derived from Lox melanoma and SW48 colon carcinoma cells by 7.7 and 5.5 days, respectively. uPA-IgG treatment did not affect the growth of Lox or KB tumors staged to 200 mg before antagonist treatment commenced. The effect of uPA-IgG on the establishment of micrometastases was assessed in SCID mice. KB head/neck tumor cells were injected in the tail vein and allowed to seed for 48 h before initiation of daily i.p. injections of uPA-IgG for 24 days. The number of lung colonies ranged between 5 and 30% of vehicle-treated mice in two separate experiments. Furthermore, a single 800 microg dose of uPA-IgG administered 1 h prior to tail vein injection of KB cells reduced lung colony formation to just 3.5% of vehicle-treated SCID mice. These data demonstrate that antagonism of uPAR arrested metastasis and inhibited the establishment of primary tumors and micrometastases. Thus, small molecule uPAR antagonists may serve as useful adjuvant agents in combination with existing cancer chemotherapy.

  8. The structure and function of the urokinase receptor, a membrane protein governing plasminogen activation on the cell surface

    DEFF Research Database (Denmark)

    Behrendt, N; Rønne, E; Danø, K

    1995-01-01

    PA receptor, uPAR, is a cell-surface protein which plays an important role in the localization and regulation of these processes. In the present article a number of established conclusions concerning the structure and function of uPAR are presented, and in addition various models are discussed which might...... explain additional observations for which the mechanisms involved have not yet been clarified experimentally. uPAR is a highly glycosylated, 3-domain protein, anchored in the plasma membrane by a glycolipid moiety. The domain organization is important for efficient ligand-binding, and the NH2-terminal...... to an interplay between uPAR and other, unidentified components. In addition to the function in the regulation of proteolysis, uPAR seems to play a role in internalization processes and in cellular signal transduction and adhesion. A few reagents have been identified which are capable to inhibit the interaction...

  9. ELISA for complexes between urokinase-type plasminogen activator and its receptor in lung cancer tissue extracts

    DEFF Research Database (Denmark)

    de Witte, H; Pappot, H; Brünner, N;

    1997-01-01

    A sandwich-type ELISA has been developed for the assessment of complexes between urokinase-type plasminogen activator (uPA) and its receptor (uPAR) in extracts of squamous cell lung carcinomas. The assay is based on a combination of rabbit polyclonal anti-uPA antibodies and a biotinylated mouse...... extraction of uPAR yields the highest amounts of uPA:uPAR complexes. Absorption of tumor extracts with anti-uPA or anti-uPAR MAbs results in a complete disappearance of the ELISA signal, demonstrating the specificity of the ELISA. The recovery of chemically cross-linked uPA:uPAR complexes added to tumor...... extracts varies between 80% and 105%. The intra- and inter-assay variation coefficients are 5.3% and 9.8%, respectively. Furthermore, a peptide antagonist for uPAR was employed to evaluate de novo uPA:uPAR complex formation during tumor tissue extraction and the immunoassay procedure. Our results strongly...

  10. Immunohistochemical localization of urokinase-type plasminogen activator, urokinase-type plasminogen activator receptor and α2-antiplasmin in human corneal perforation: a case report

    Directory of Open Access Journals (Sweden)

    Sugioka Koji

    2012-11-01

    Full Text Available Abstract Background Corneal ulceration leading to perforation is associated with infectious and non-infectious destructive conditions in the cornea. The fibrinolytic (plasminogen/plasmin system is considered to contribute to tissue remodeling in the wound healing process and it is believed to play an important role in proteolysis and fibrosis. To determine the localization of urokinase-type plasminogen activator (u-PA, u-PA receptor (u-PAR and α2-antiplasmin (α2AP in the tissue of a corneal perforation, we investigated immunohistochemical expressions of u-PA, u-PAR, α2AP, CD68, and α-smooth muscle actin (α-SMA in a patient with corneal perforation that developed from an ulcer of no clear cause. Case presentation The patient was a 77-year-old woman who presented with a perforated corneal ulcer in her right eye. The cause of her corneal ulcer was unknown. Double immunohistochemistry was performed for the combinations of u-PA with u-PAR, CD68 or α-SMA and α2AP with CD68 or α-SMA to detect the localization of u-PA and α2AP. u-PA and u-PAR co-localization was seen in the corneal ulceration area. u-PA was mainly observed in CD68-positive cells and in some α-SMA positive cells. On the other hand, α2AP was not expressed in CD68-positive cells, but was expressed in α-SMA positive cells. Conclusion We identified expression of the u-PA/u-PAR complex and α2AP in a patient with a corneal ulcer. These two molecules are believed to play a crucial role in inflammatory cell recruitment, ECM synthesis and degradation during corneal wound healing.

  11. Levels of plasminogen activator inhibitor type 1 and urokinase plasminogen activator receptor in non-small cell lung cancer as measured by quantitative ELISA and semiquantitative immunohistochemistry

    DEFF Research Database (Denmark)

    Pappot, Helle; Skov, Birgit Guldhammer; Pyke, Charles

    1997-01-01

    The components of the plasminogen activation system have been reported to have prognostic impact in several cancer types, e.g. breast-, colon-, gastric- and lung cancer. Most of these studies have used quantification by enzyme-linked immunosorbent assay (ELISA) on tumour tissue extracts. However...... methodology. In the present study we investigated levels of plasminogen activator inhibitor type 1 (PAI-I) and urokinase plasminogen activator receptor (uPAR), as quantitated by ELISA in tumour extracts from 64 NSCLC patients (38 squamous cell carcinomas, 26 adenocarcinomas), and compared them to staining...

  12. Urokinase receptor mediates osteoclastogenesis via M-CSF release from osteoblasts and the c-Fms/PI3K/Akt/NF-κB pathway in osteoclasts.

    Science.gov (United States)

    Kalbasi Anaraki, Parnian; Patecki, Margret; Tkachuk, Sergey; Kiyan, Yulia; Haller, Hermann; Dumler, Inna

    2015-02-01

    Bone remodeling is a dynamic process based on a fine-tuned balance between formation and degradation of bone. Osteoblasts (OBLs) are responsible for bone formation and bone resorption is mediated by osteoclasts (OCLs). The mechanisms regulating the OBL-OCL balance are critical in health and disease; however, they are still far from being understood. We reported recently that the multifunctional urokinase receptor (uPAR) mediates osteogenic differentiation of mesenchymal stem cells (MSCs) to OBLs and vascular calcification in atherosclerosis. Here, we address the question of whether uPAR may also be engaged in regulation of osteoclastogenesis. We show that uPAR mediates this process in a dual fashion. Thus, uPAR affected OBL-OCL interplay. We observed that osteoclastogenesis was significantly impaired in co-culture of monocyte-derived OCLs and in OBLs derived from MSCs lacking uPAR. We show that expression and release, from OBLs, of macrophage colony-stimulating factor (M-CSF), which is indispensable for OCL differentiation, was inhibited by uPAR loss. We further found that uPAR, on the other hand, controlled formation, differentiation, and functional properties of macrophage-derived OCLs. Expression of osteoclastogenic markers, such as tartrate-resistant acid phosphatase (TRAP) and cathepsin K, was impaired in OCLs derived from uPAR-deficient macrophages. The requirement of uPAR for osteoclastogenesis was further confirmed by immunocytochemistry and in bone resorption assay. We provide evidence that the underlying signaling mechanisms involve uPAR association with the M-CSF binding receptor c-Fms followed by c-Fms phosphorylation and activation of the PI3K/Akt/NF-κB pathway in OCLs. We further show that uPAR uses this pathway to regulate a balance between OCL differentiation, apoptosis, and cell proliferation. Our study identified uPAR as an important and multifaceted regulator of OBL-OCL molecular interplay that may serve as an attractive target in bone disease

  13. New peptide receptor radionuclide therapy of invasive cancer cells: in vivo studies using 177Lu-DOTA-AE105 targeting uPAR in human colorectal cancer xenografts

    DEFF Research Database (Denmark)

    Persson, Morten; Rasmussen, Palle; Madsen, Jacob;

    2012-01-01

    -of-concept for a theranostic approach as treatment modality in a human xenograft colorectal cancer model. MethodsA DOTA-conjugated 9-mer high affinity uPAR binding peptide (DOTA-AE105) was radiolabeled with 64Cu and 177Lu, for PET imaging and targeted radionuclide therapy study, respectively. Human uPAR-positive CRC HT-29...... by recording mouse weight and by H&E staining of kidneys in each treatment group. ResultsuPAR-positive HT-29 xenograft was clearly visualized by PET/CT imaging using 64Cu-DOTA-AE105. Subsequently, these xenograft transplants were locally irradiated using 177Lu-DOTA-AE105, where a significant effect on tumor...... size and the number of uPAR-positive cells in the tumor was found (p

  14. Urokinase receptor mRNA level and gene transcription are strongly and rapidly increased by phorbol myristate acetate in human monocyte-like U937 cells

    DEFF Research Database (Denmark)

    Lund, L R; Rønne, E; Roldan, A L;

    1991-01-01

    We have studied the effect of the tumor promotor phorbol myristate acetate (PMA) on the level of mRNA for the receptor for urokinase-type plasminogen activator (u-PAR) in the human monocyte-like cell line U937. PMA causes an early increase in the u-PAR mRNA level which reaches a maximal 50-fold...... enhancement after 24 h of treatment. Half-maximal stimulation occurs at approximately 5 nM PMA. The effect is observed only with phorbol esters that also act as tumor promotors. The protein synthesis inhibitor cycloheximide (10 micrograms/ml) also increases the level of u-PAR mRNA. Nuclear run-on experiments...... show a time-dependent increase in the u-PAR gene transcription rate after exposure of the cells to PMA. The PMA-induced increase in u-PAR mRNA is paralleled by a time-dependent increase in u-PAR protein as detected by cross-linking studies with radiolabeled ligand. We conclude that PMA stimulates...

  15. uPAR as anti-cancer target

    DEFF Research Database (Denmark)

    Lund, Ida K; Illemann, Martin; Thurison, Tine

    2011-01-01

    , and a potential diagnostic and predictive impact of the different uPAR forms has been reported. Hence, pericellular proteolysis seems to be a suitable target for anti-cancer therapy and numerous approaches have been pursued. Targeting of this process may be achieved by preventing the binding of uPA to u...... using mouse monoclonal antibodies (mAbs) against mouse uPA or uPAR. These reagents will target uPA and uPAR in both stromal cells and cancer cells, and their therapeutic potential can now be assessed in syngenic mouse cancer models....

  16. The Inhibitory Effects of an Antisense u-PAR Vector on Invasion of Highly Invasive Human Prostate Carcinoma PC-3M Cell Subclones

    Institute of Scientific and Technical Information of China (English)

    廖国宁; 李清芬; 冯友梅; 邓耀祖; 李卓娅; 龚非力; 马丁

    2003-01-01

    Summary: To observe the inhibitory effects of an antisense u-PAR vector on invasion of highly inva-sive PC-3M cell subclones, the effects of the antisense u-PAR on activity of MMP-9 in those highlyinvasive cell subclones were detected by a quantitative RT-PCR and zymography. The monolayer in-vasion assay and colony formation assay in soft agar were used. And tumorigenesis rate and invasionsby the cell subclones with or without the antisense u-PAR were observed in nude mice. It was foundthat in vitro growth of highly invasive PC-3M cell subclones transfected with the antisense u-PARwas declined, and the ability of anchorage-independent growth of those cell subclones was found de-creased sharply, with the inhibiting rate becoming 79 % and 60 %, respectively. Although the anti-sense u-PAR didn't change MMP-9 gene transcription, they could inhibit the activation of MMP-9 ofhighly invasive PC-3M cell subclones. Moreover, the tumorigenesis rate of the cell subclones with theantisense u-PAR decreased and the growth of a neoplasm also slowed down. Thet tests showed thedifference between experimental and control groups was statistically significant (P<0. 01). The anti-sense u-PAR vector could not only inhibit the invasion ability of highly invasive PC-3M cell subclonesin vitro but also restrain the growth of those cell subclones in vivo.

  17. The urokinase plasminogen activator receptor-associated protein/endo180 is coexpressed with its interaction partners urokinase plasminogen activator receptor and matrix metalloprotease-13 during osteogenesis

    DEFF Research Database (Denmark)

    Engelholm, L H; Nielsen, B S; Netzel-Arnett, Sarah

    2001-01-01

    intramembranously, and developing long bones undergoing endochondral ossification. uPARAP/Endo180 mRNA was expressed by both immature osteoblasts and by mature osteocalcin-producing osteoblasts-osteocytes, and was coexpressed with MMP-13. Interestingly, osteoblasts also expressed uPAR. Besides bone-forming tissues......, uPARAP/Endo180 expression was detected only in a mesenchymal condensation of the midbrain and in the developing lungs. The data suggest a function of this novel protease receptor in bone development, possibly mediated through its interactions with uPAR, MMP-13, or collagen V....

  18. Upregulation of the N-formyl Peptide receptors in scleroderma fibroblasts fosters the switch to myofibroblasts.

    Science.gov (United States)

    Rossi, Francesca Wanda; Napolitano, Filomena; Pesapane, Ada; Mascolo, Massimo; Staibano, Stefania; Matucci-Cerinic, Marco; Guiducci, Serena; Ragno, Pia; di Spigna, Gaetano; Postiglione, Loredana; Marone, Gianni; Montuori, Nunzia; de Paulis, Amato

    2015-06-01

    Systemic sclerosis (SSc) is characterized by chronic inflammation and fibrosis. N-Formyl peptide (fMLF) receptors (FPRs) are chemotactic receptors involved in inflammation. Three FPRs have been identified: FPR1, FPR2, and FPR3. We have examined, by RT-PCR, Western blot and immunohistochemistry, FPRs expression in skin fibroblasts from 10 normal subjects and 10 SSc patients, showing increased expression in SSc fibroblasts. Several functions of FPRs occur through the interaction with a region of the urokinase-type plasminogen activator receptor (uPAR88-92), able to interact with FPRs and to mediate urokinase (uPA) or fMLF-dependent cell migration. Soluble uPAR84-95 peptide can act as a direct ligand of FPRs. Furthermore, uPA or its aminoterminal fragment (ATF) can promote the exposure of the uPAR88-92 region. The WKYMVm peptide is a FPRs pan-agonist. We investigated the functional effects of these agonists on normal and SSc fibroblasts. ATF, uPAR84-95, and WKYMVm regulated adhesion, migration, and proliferation of normal fibroblasts. Despite FPR overexpression, the response of SSc fibroblasts to the same agonists was greatly reduced, except for the proliferative response to ATF. SSc fibroblasts showed increased α-smooth muscle actin expression and improved capability to induce wound closure. Indeed, they overexpressed a cleaved uPAR form, exposing the uPAR88-92 region, and vitronectin, both involved in fibrosis and in the fibroblast-to-myofibroblast transition. FPR stimulation promoted α-smooth muscle actin expression in normal fibroblasts as well as motility, matrix deposition, αvβ5 integrin expression, and radical oxygen species generation in normal and SSc fibroblasts. This study provides evidence that FPRs may play a role in fibrosis and in the fibroblast-to-myofibroblast transition. Copyright © 2015 by The American Association of Immunologists, Inc.

  19. ELISA for complexes between urokinase-type plasminogen activator and its receptor in lung cancer tissue extracts

    DEFF Research Database (Denmark)

    de Witte, H; Pappot, H; Brünner, N

    1997-01-01

    A sandwich-type ELISA has been developed for the assessment of complexes between urokinase-type plasminogen activator (uPA) and its receptor (uPAR) in extracts of squamous cell lung carcinomas. The assay is based on a combination of rabbit polyclonal anti-uPA antibodies and a biotinylated mouse a......PA:uPAR complexes in lung tumor tissue as well as other types of cancer.......A sandwich-type ELISA has been developed for the assessment of complexes between urokinase-type plasminogen activator (uPA) and its receptor (uPAR) in extracts of squamous cell lung carcinomas. The assay is based on a combination of rabbit polyclonal anti-uPA antibodies and a biotinylated mouse...... indicate that de novo complex formation is a major factor to consider and that complexes analyzed in the presence of this antagonist represent original uPA:uPAR complexes present prior to tumor tissue processing. The present ELISA appears suitable for studying the potential prognostic impact of u...

  20. HIV-1 infected lymphoid organs upregulate expression and release of the cleaved form of uPAR that modulates chemotaxis and virus expression.

    Directory of Open Access Journals (Sweden)

    Manuela Nebuloni

    Full Text Available Cell-associated receptor for urokinase plasminogen activator (uPAR is released as both full-length soluble uPAR (suPAR and cleaved (c-suPAR form that maintain ability to bind to integrins and other receptors, thus triggering and modulating cell signaling responses. Concerning HIV-1 infection, plasma levels of suPAR have been correlated with the severity of disease, levels of immune activation and ineffective immune recovery also in individuals receiving combination anti-retroviral therapy (cART. However, it is unknown whether and which suPAR forms might contribute to HIV-1 induced pathogenesis and to the related state of immune activation. In this regard, lymphoid organs represent an import site of chronic immune activation and virus persistence even in individuals receiving cART. Lymphoid organs of HIV-1(+ individuals showed an enhanced number of follicular dendritic cells, macrophages and endothelial cells expressing the cell-associated uPAR in comparison to those of uninfected individuals. In order to investigate the potential role of suPAR forms in HIV-1 infection of secondary lymphoid organs, tonsil histocultures were established from HIV-1 seronegative individuals and infected ex vivo with CCR5- and CXCR4-dependent HIV-1 strains. The levels of suPAR and c-suPAR were significantly increased in HIV-infected tonsil histocultures supernatants in comparison to autologous uninfected histocultures. Supernatants from infected and uninfected cultures before and after immunodepletion of suPAR forms were incubated with the chronically infected promonocytic U1 cell line characterized by a state of proviral latency in unstimulated conditions. In the contest of HIV-conditioned supernatants we established that c-suPAR, but not suPAR, inhibited chemotaxis and induced virus expression in U1 cells. In conclusion, lymphoid organs are an important site of production and release of both suPAR and c-suPAR, this latter form being endowed with the capacity of

  1. Anti-Urokinase Receptor Antisense Oligonucleotide (uPAR-aODN) to Prevent and Cure Long-Term Space Exploration-Related Retinal Pathological Angiogenesis

    Science.gov (United States)

    Lazzarano, Stefano; Lulli, Matteo; Fibbi, Gabriella; Margheri, Francesca; Papucci, Laura; Serrati, Simona; Witort, Ewa; Chilla, Anastasia; Lapucci, Andrea; Donnini, Martino; Quaglierini, Paolo; Romiti, Alice; Specogna, Rebecca; Del Rosso, Mario; Capaccioli, Sergio

    2008-06-01

    Angiogenesis underlies a variety of physiological processes and its possible deregulation during long term space exploration needs to be investigated. Angiogenesis is a multistep process of new blood capillary formation, where degradation of the extracellular matrix (ECM) by proteolytic enzymes, including uPA (urokinase plasminogen activator) and opening the way to migration of endothelial cells (EC), is critical. Plasminogen activation system regulates angiogenesis by both uPA-driven ECM degradation and uPA receptor (uPAR). Microgravity and low dose irradiations promote tissue neoangiogeenesis and neovascularization is often common occurence in ophthalmologic pathologies. We have designed and patented the uPAR antisense oligonucleotide (aODN) and evaluated its antiangiogenetic activity by EC cellular migration and capillary morphogenesis assays. The uPAR aODN treatment caused a 75% inhibition of human microvascular EC migration and a complete inhibition of capillary morphogenesis, suggesting its therapeutic application to prevent neoangiogenesis-related ophthalmologic pathologies during space exploration.

  2. Number and brightness image analysis reveals ATF-induced dimerization kinetics of uPAR in the cell membrane.

    Science.gov (United States)

    Hellriegel, Christian; Caiolfa, Valeria R; Corti, Valeria; Sidenius, Nicolai; Zamai, Moreno

    2011-09-01

    We studied the molecular forms of the GPI-anchored urokinase plasminogen activator receptor (uPAR-mEGFP) in the human embryo kidney (HEK293) cell membrane and demonstrated that the binding of the amino-terminal fragment (ATF) of urokinase plasminogen activator is sufficient to induce the dimerization of the receptor. We followed the association kinetics and determined precisely the dimeric stoichiometry of uPAR-mEGFP complexes by applying number and brightness (N&B) image analysis. N&B is a novel fluctuation-based approach for measuring the molecular brightness of fluorophores in an image time sequence in live cells. Because N&B is very sensitive to long-term temporal fluctuations and photobleaching, we have introduced a filtering protocol that corrects for these important sources of error. Critical experimental parameters in N&B analysis are illustrated and analyzed by simulation studies. Control experiments are based on mEGFP-GPI, mEGFP-mEGFP-GPI, and mCherry-GPI, expressed in HEK293. This work provides a first direct demonstration of the dimerization of uPAR in live cells. We also provide the first methodological guide on N&B to discern minor changes in molecular composition such as those due to dimerization events, which are involved in fundamental cell signaling mechanisms.

  3. Identification and characterization of the murine cell surface receptor for the urokinase-type plasminogen activator

    DEFF Research Database (Denmark)

    Solberg, H; Løber, D; Eriksen, J;

    1992-01-01

    -hybridization and pronounced sequence similarity with human u-PAR cDNA [Kristensen, P., Eriksen, J., Blasi, F. & Danø, K. (1991) J. Cell Biol. 115, 1763-1771]. A rabbit antiserum raised against this peptide specifically recognized two polypeptide bands with electrophoretic mobilities identical to those identified by ligand...... of this variant yielded a polypeptide with an apparent M(r) of about 30,000, which corresponds to the Mr calculated from the cDNA derived protein sequence of mouse u-PAR. Receptor-bound mouse u-PA could be released by phosphatidylinositol-specific phospholipase C treatment, indicating that mouse u-PAR is attached...... by ligand-blotting analysis.(ABSTRACT TRUNCATED AT 400 WORDS)...

  4. Ab initio molecular simulations for proposing novel peptide inhibitors blocking the ligand-binding pocket of urokinase receptor.

    Science.gov (United States)

    Mizushima, Tatsuroh; Sugimoto, Takuya; Kasumi, Tomoyo; Araki, Kohta; Kobayashi, Hiroshi; Kurita, Noriyuki

    2014-06-01

    Recent biochemical experiments have revealed that a variety of proteases play important roles in cancer invasion and metastasis. Among these proteases, urokinase-type plasminogen activator (uPA) is particularly important, since its specific binding to the receptor (uPAR) existing on the surface of a cancer cell is considered to be a trigger for cancer invasion. It is thus expected that the blocking of the binding can inhibit cancer invasion in the cancer patients and improve their prognosis dramatically. To develop a potent inhibitor for the binding, many types of peptides of amino acids were produced and their effect on the cancer invasion was investigated in the previous biochemical experiments. On the other hand, our previous ab initio molecular simulations have clarified that some amino acid residues of uPA play important roles in the specific binding between uPA and uPAR. In the present study, we propose some peptides composed of these important residues and investigate the specific interactions and the binding affinity between uPAR and the peptides at an electronic level, using ab initio molecular simulations. Base on the results simulated, we elucidate which peptide can bind more strongly to uPAR and propose a novel potent peptide which can inhibit the binding between uPAR and uPA efficiently.

  5. Prognostic value of intact and cleaved forms of the urokinase plasminogen activator receptor in a retrospective study of 518 colorectal cancer patients

    DEFF Research Database (Denmark)

    Lomholt, Anne Fog; Christensen, Ib J; Høyer-Hansen, Gunilla

    2010-01-01

    The levels of the soluble urokinase plasminogen activator receptor (suPAR) in blood have been shown to correlate with prognosis in various cancers. Plasma levels of the combined suPAR forms have previously shown to be a strong prognostic marker in the present cohort of CRC patients and could...... potentially identify high-risk patients among those with early stage disease. In order to investigate whether the individual suPAR forms are stronger prognostic markers than the combined amount we measured the different uPAR forms in serum from the same cohort and evaluated their prognostic significance....

  6. Evaluation of alpha 1-antitrypsin and the levels of mRNA expression of matrix metalloproteinase 7, urokinase type plasminogen activator receptor and COX-2 for the diagnosis of colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Luis Bujanda

    Full Text Available BACKGROUND: Colorectal cancer (CRC is the second most common cause of death from cancer in both men and women in the majority of developed countries. Molecular tests of blood could potentially provide this ideal screening tool. AIM: Our objective was to assess the usefulness of serum markers and mRNA expression levels in the diagnosis of CRC. METHODS: In a prospective study, we measured mRNA expression levels of 13 markers (carbonic anhydrase, guanylyl cyclase C, plasminogen activator inhibitor, matrix metalloproteinase 7 (MMP7, urokinase-type plasminogen activator receptor (uPAR, urokinase-type plasminogen activator, survivin, tetranectin, vascular endothelial growth factor (VEGF, cytokeratin 20, thymidylate synthase, cyclooxygenase 2 (COX-2, and CD44 and three proteins in serum (alpha 1 antitrypsin, carcinoembryonic antigen (CEA and activated C3 in 42 patients with CRC and 33 with normal colonoscopy results. RESULTS: Alpha 1-antitrypsin was the serum marker that was most useful for CRC diagnosis (1.79 ± 0.25 in the CRC group vs 1.27 ± 0.25 in the control group, P<0.0005. The area under the ROC curve for alpha 1-antitrypsin was 0.88 (0.79-0.96. The mRNA expression levels of five markers were statistically different between CRC cases and controls: those for which the ROC area was over 75% were MMP7 (0.81 and tetranectin (0.80, COX-2 (0.78, uPAR (0.78 and carbonic anhydrase (0.77. The markers which identified early stage CRC (Stages I and II were alpha 1-antitrypsin, uPAR, COX-2 and MMP7. CONCLUSIONS: Serum alpha 1-antitrypsin and the levels of mRNA expression of MMP7, COX-2 and uPAR have good diagnostic accuracy for CRC, even in the early stages.

  7. Markers of angiogenesis and epidermal growth factor receptor signalling in patients with pancreatic and gastroesophageal junction cancer.

    Science.gov (United States)

    Rohrberg, Kristoffer Staal; Skov, Birgit Guldhammer; Lassen, Ulrik; Christensen, Ib Jarle; Høyer-Hansen, Gunilla; Buysschaert, Ian; Pappot, Helle

    2010-01-01

    The epidermal growth factor receptor (EGFR) and angiogenesis are well established targets in anti-cancer therapy. Several targeted anti-cancer therapies are in clinical trials in pancreatic and gastroesophageal (GEJ) cancer. However, many patients do not respond to these targeted therapies and there is therefore an increasing need for biomarkers for selection of patients to these therapies. We investigated the expression of EGFR, vascular endothelial growth factor A (VEGF-A), and VEGF receptor 2 (VEGFR-2) in tumour tissue by immunohistochemistry, and soluble EGFR (sEGFR), soluble VEGFR-2 (sVEGFR-2), basic fibroblast growth factor (bFGF), placental growth factor (PlGF), plasminogen activator inhibitor 1 (PAI-1), and different forms of the urokinase plasminogen activator receptor (uPAR): uPAR (I), uPAR (I-III), and uPAR (I-III)+(II-III) in plasma by quantitative immunoassays in 14 patients with pancreatic and GEJ cancer. We found expression in tumour tissue and the plasma levels to be similar to those found in patients with other tumour types. No correlation was found between the blood levels of soluble receptors and the corresponding tumour tissue levels. We conclude that these markers are present in pancreatic and GEJ cancer patients, and could be investigated further as predictive biomarkers in such patients treated with EGFR or angiogenesis targeted therapies.

  8. Regulation of urokinase receptors in monocytelike U937 cells by phorbol ester phorbol myristate acetate

    DEFF Research Database (Denmark)

    Picone, R; Kajtaniak, E L; Nielsen, L S

    1989-01-01

    A specific surface receptor for urokinase plasminogen activator (uPA) recognizes the amino-terminal growth factor-like sequence of uPA, a region independent from and not required for the catalytic activity of this enzyme. The properties of the uPA receptor (uPAR) and the localization and distribu......A specific surface receptor for urokinase plasminogen activator (uPA) recognizes the amino-terminal growth factor-like sequence of uPA, a region independent from and not required for the catalytic activity of this enzyme. The properties of the uPA receptor (uPAR) and the localization...... and distribution of uPA in tumor cells and tissues suggest that the uPA/uPAR interaction may be important in regulating extracellular proteolysis-dependent processes (e.g., invasion, tissue destruction). Phorbol myristate acetate (PMA), an inducer of U937 cell differentiation to macrophage-like cells, elicits...

  9. Downregulation of uPAR and cathepsin B induces apoptosis via regulation of Bcl-2 and Bax and inhibition of the PI3K/Akt pathway in gliomas.

    Directory of Open Access Journals (Sweden)

    Ramarao Malla

    Full Text Available BACKGROUND: Glioma is the most commonly diagnosed primary brain tumor and is characterized by invasive and infiltrative behavior. uPAR and cathepsin B are known to be overexpressed in high-grade gliomas and are strongly correlated with invasive cancer phenotypes. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we observed that simultaneous downregulation of uPAR and cathepsin B induces upregulation of some pro-apoptotic genes and suppression of anti-apoptotic genes in human glioma cells. uPAR and cathepsin B (pCU-downregulated cells exhibited decreases in the Bcl-2/Bax ratio and initiated the collapse of mitochondrial membrane potential. We also observed that the broad caspase inhibitor, Z-Asp-2, 6-dichlorobenzoylmethylketone rescued pCU-induced apoptosis in U251 cells but not in 5310 cells. Immunoblot analysis of caspase-9 immunoprecipitates for Apaf-1 showed that uPAR and cathepsin B knockdown activated apoptosome complex formation in U251 cells. Downregulation of uPAR and cathepsin B also retarded nuclear translocation and interfered with DNA binding activity of CREB in both U251 and 5310 cells. Further western blotting analysis demonstrated that downregulation of uPAR and cathepsin B significantly decreased expression of the signaling molecules p-PDGFR-β, p-PI3K and p-Akt. An increase in the number of TUNEL-positive cells, increased Bax expression, and decreased Bcl-2 expression in nude mice brain tumor sections and brain tissue lysates confirm our in vitro results. CONCLUSIONS/SIGNIFICANCE: In conclusion, RNAi-mediated downregulation of uPAR and cathepsin B initiates caspase-dependent mitochondrial apoptosis in U251 cells and caspase-independent mitochondrial apoptosis in 5310 cells. Thus, targeting uPAR and cathepsin B-mediated signaling using siRNA may serve as a novel therapeutic strategy for the treatment of gliomas.

  10. Probing binding and cellular activity of pyrrolidinone and piperidinone small molecules targeting the urokinase receptor.

    Science.gov (United States)

    Mani, Timmy; Liu, Degang; Zhou, Donghui; Li, Liwei; Knabe, William Eric; Wang, Fang; Oh, Kyungsoo; Meroueh, Samy O

    2013-12-01

    The urokinase receptor (uPAR) is a cell-surface protein that is part of an intricate web of transient and tight protein interactions that promote cancer cell invasion and metastasis. Here, we evaluate the binding and biological activity of a new class of pyrrolidinone and piperidinone compounds, along with derivatives of previously-identified pyrazole and propylamine compounds. Competition assays revealed that the compounds displace a fluorescently labeled peptide (AE147-FAM) with inhibition constant (Ki ) values ranging from 6 to 63 μM. Structure-based computational pharmacophore analysis followed by extensive explicit-solvent molecular dynamics (MD) simulations and free energy calculations suggested the pyrazole-based and piperidinone-based compounds adopt different binding modes, despite their similar two-dimensional structures. In cells, pyrazole-based compounds showed significant inhibition of breast adenocarcinoma (MDA-MB-231) and pancreatic ductal adenocarcinoma (PDAC) cell proliferation, but piperidinone-containing compounds exhibited no cytotoxicity even at concentrations of 100 μM. One pyrazole-based compound impaired MDA-MB-231 invasion, adhesion, and migration in a concentration-dependent manner, while the piperidinone inhibited only invasion. The pyrazole derivative inhibited matrix metalloprotease-9 (gelatinase) activity in a concentration-dependent manner, while the piperidinone showed no effect suggesting different mechanisms for inhibition of cell invasion. Signaling studies further highlighted these differences, showing that pyrazole compounds completely inhibited ERK phosphorylation and impaired HIF1α and NF-κB signaling, while pyrrolidinones and piperidinones had no effect. Annexin V staining suggested that the effect of the pyrazole-based compound on proliferation was due to cell killing through an apoptotic mechanism. The compounds identified represent valuable leads in the design of further derivatives with higher affinities and

  11. Discrimination of different forms of the murine urokinase plasminogen activator receptor on the cell surface using monoclonal antibodies

    DEFF Research Database (Denmark)

    Rasch, M.G.; Pass, J.; Illemann, M.

    2008-01-01

    of saturation with the amino-terminal fragment of uPA, ATF. However, the signal intensity obtained using another uPAR domain I specific mAb, mR1, was significantly reduced upon ATF saturation. Furthermore, when adding ATF, mR4 selectively stained the cleaved receptor. Applying these newly generated mAbs, we...

  12. One-step affinity purification of recombinant urokinase-type plasminogen activator receptor using a synthetic peptide developed by combinatorial chemistry

    DEFF Research Database (Denmark)

    Jacobsen, B.; Gerdsvoll, H.; Funch, G.J.

    2007-01-01

    purification of a soluble, recombinant uPAR using the monoclonal antibody R2 or the peptide AE152 immobilized on Sepharose. The two affinity ligands perform equally well in purifying uPAR from Drosophila melanogaster Schneider 2 cell culture medium and yield products of comparable purity, activity...... purification of recombinant uPAR exploiting a high-affinity synthetic peptide antagonist (AE152). The corresponding parent peptide was originally identified in a random phage-display library and subsequently subjected to affinity maturation by combinatorial chemistry. This study compares the affinity......, and stability as judged by SDS-PAGE, size exclusion chromatography and surface plasmon resonance analysis. The general availability of peptide synthesis renders the present AE152-based affinity purification of uPAR more accessible than the traditional protein-based affinity purification strategies. In this way...

  13. Inflammation and N-formyl peptide receptors mediate the angiogenic activity of human vitreous humour in proliferative diabetic retinopathy.

    Science.gov (United States)

    Rezzola, Sara; Corsini, Michela; Chiodelli, Paola; Cancarini, Anna; Nawaz, Imtiaz M; Coltrini, Daniela; Mitola, Stefania; Ronca, Roberto; Belleri, Mirella; Lista, Liliana; Rusciano, Dario; De Rosa, Mario; Pavone, Vincenzo; Semeraro, Francesco; Presta, Marco

    2017-04-01

    Angiogenesis and inflammation characterise proliferative diabetic retinopathy (PDR), a major complication of diabetes mellitus. However, the impact of inflammation on the pathogenesis of PDR neovascularisation has not been elucidated. Here, we assessed the capacity of PDR vitreous fluid to induce pro-angiogenic/proinflammatory responses in endothelium and the contribution of the inflammation-related pattern recognition N-formyl peptide receptors (FPRs) in mediating these responses. Pooled and individual pars plana vitrectomy-derived PDR vitreous fluid ('PDR vitreous') samples were assessed in endothelial cell proliferation, motility, sprouting and morphogenesis assays, and for the capacity to induce proinflammatory transcription factor activation, reactive oxygen species production, intercellular junction disruption and leucocyte-adhesion molecule upregulation in these cells. In vivo, the pro-angiogenic/proinflammatory activity of PDR vitreous was tested in murine Matrigel plug and chick embryo chorioallantoic membrane (CAM) assays. Finally, the FPR inhibitors Boc-Phe-Leu-Phe-Leu-Phe (Boc-FLFLF) and Ac-L-Arg-Aib-L-Arg-L-Cα(Me)Phe-NH2 tetrapeptide (UPARANT) were evaluated for their capacity to affect the biological responses elicited by PDR vitreous. PDR vitreous activates a pro-angiogenic/proinflammatory phenotype in endothelial cells. Accordingly, PDR vitreous triggers a potent angiogenic/inflammatory response in vivo. Notably, the different capacity of individual PDR vitreous samples to induce neovessel formation in the CAM correlates with their ability to recruit infiltrating CD45(+) cells. Finally, the FPR inhibitor Boc-FLFLF and the novel FPR antagonist UPARANT inhibit neovessel formation and inflammatory responses triggered by PDR vitreous in the CAM assay. This study provides evidence that inflammation mediates the angiogenic activity of PDR vitreous and paves the way for the development of FPR-targeting anti-inflammatory/anti-angiogenic approaches for PDR

  14. TISSUE INHIBITOR OF METALLOPROTEINASE 1, MATRIX METALLOPROTEINASE 9, ALPHA-1 ANTITRYPSIN, METALLOTHIONEIN AND UROKINASE TYPE PLASMINOGEN ACTIVATOR RECEPTOR IN SKIN BIOPSIES FROM PATIENTS AFFECTED BY AUTOIMMUNE BLISTERING DISEASES

    Directory of Open Access Journals (Sweden)

    Ana Maria Abreu Velez

    2013-07-01

    Full Text Available Introduction: Proteinases and proteinase inhibitors have been described to play a role in autoimmune skin blistering diseases. We studied skin lesional biopsies from patients affected by several autoimmune skin blistering diseases for proteinases and proteinase inhibitors. Methods: We utilized immunohistochemistry to evaluate biopsies for alpha-1-antitrypsin, human matrix metalloproteinase 9 (MMP9, human tissue inhibitor of metalloproteinases 1 (TIMP-1, metallothionein and urokinase type plasminogen activator receptor (uPAR. We tested 30 patients affected by endemic pemphigus, 30 controls from the endemic area, and 15 normal controls. We also tested 30 biopsies from patients with bullous pemphigoid (BP, 20 with pemphigus vulgaris (PV, 8 with pemphigus foliaceus, and 14 with dermatitis herpetiformis (DH. Results: Contrary to findings in the current literature, most autoimmune skin blistering disease biopsies were negative for uPAR and MMP9. Only some chronic patients with El Bagre-EPF were positive to MMP9 in the dermis, in proximity to telocytes. TIMP-1 and metallothionein were positive in half of the biopsies from BP patients at the basement membrane of the skin, within several skin appendices, in areas of dermal blood vessel inflammation and within dermal mesenchymal-epithelial cell junctions.

  15. Bacterial endotoxin enhances colorectal cancer cell adhesion and invasion through TLR-4 and NF-kappaB-dependent activation of the urokinase plasminogen activator system.

    LENUS (Irish Health Repository)

    Killeen, S D

    2009-05-19

    Perioperative exposure to lipopolysaccharide (LPS) is associated with accelerated metastatic colorectal tumour growth. LPS directly affects cells through Toll-like receptor 4 (TLR-4) and the transcription factor NF-kappaB. The urokinase plasminogen activator (u-PA) system is intimately implicated in tumour cell extracellular matrix (ECM) interactions fundamental to tumour progression. Thus we sought to determine if LPS directly induces accelerated tumour cell ECM adhesion and invasion through activation of the u-PA system and to elucidate the cellular pathways involved. Human colorectal tumour cell lines were stimulated with LPS. u-PA concentration, u-PA activity, active u-PA, surface urokinase plasminogen activator receptor (u-PAR) and TLR-4 expression were assessed by ELISA, colorimetric assay, western blot analysis and flow cytometry respectively. In vitro tumour cell vitronectin adhesion and ECM invasion were analysed by vitronectin adhesion assay and ECM invasion chambers. u-PA and u-PAR function was inhibited with anti u-PA antibodies or the selective u-PA inhibitors amiloride or WXC-340, TLR-4 by TLR-4-blocking antibodies and NF-kappaB by the selective NF-kappaB inhibitor SN-50. LPS upregulates u-PA and u-PAR in a dose-dependent manner, enhancing in vitro tumour cell vitronectin adhesion and ECM invasion by >40% (P<0.01). These effects were ameliorated by u-PA and u-PAR inhibition. LPS activates NF-kappaB through TLR-4. TLR-4 and NF-kappaB inhibition ameliorated LPS-enhanced u-PA and u-PAR expression, tumour cell vitronectin adhesion and ECM invasion. LPS promotes tumour cell ECM adhesion and invasion through activation of the u-PA system in a TLR-4- and NF-kappaB-dependent manner.

  16. Characterization and function of human Ly-6/uPAR molecules

    Directory of Open Access Journals (Sweden)

    Hyun Kyung Kong & Jong Hoon Park*

    2012-11-01

    Full Text Available Human Ly-6/uPAR molecules are a superfamily composed oftwo subfamilies; one is the membrane bound proteins with aGPI-anchor and the other are secreted proteins without theGPI-anchor. Ly-6/uPAR molecules have remarkable amino acidhomology through a distinctive 8-10 cysteine-rich domain thatis associated predominantly with O-linked glycans. Thesemolecules are encoded by multiple tightly linked genes locatedon Chr. 8q23, and have a conserved genomic organization.Ly-6/uPAR molecules have an interesting expression patternduring hematopoiesis and on specific tumors indicating thatLy-6/uPAR molecules are associated with development of theimmune system and carcinogenesis. Thus, Ly-6/uPAR moleculesare useful antigens for diagnostic and therapeutic targets.This review summarizes our understanding of human Ly-6/uPAR molecules with regard to molecular structure as well aswhat is known about their function in normal and malignanttissues and suggest Ly-6/uPAR molecules as target antigens forcancer immunotherapy.

  17. Modulation of cellular migration and survival by c-Myc through the downregulation of urokinase (uPA) and uPA receptor.

    Science.gov (United States)

    Alfano, Daniela; Votta, Giuseppina; Schulze, Almut; Downward, Julian; Caputi, Mario; Stoppelli, Maria Patrizia; Iaccarino, Ingram

    2010-04-01

    It has been proposed that c-Myc proapoptotic activity accounts for most of its restraint of tumor formation. We established a telomerase-immortalized human epithelial cell line expressing an activatable c-Myc protein. We found that c-Myc activation induces, in addition to increased sensitivity to apoptosis, reductions in cell motility and invasiveness. Transcriptome analysis revealed that urokinase (uPA) and uPA receptor (uPAR) were strongly downregulated by c-Myc. Evidence is provided that the repression of uPA and uPAR may account for most of the antimigratory and proapoptotic activities of c-Myc. c-Myc is known to cooperate with Ras in cellular transformation. We therefore investigated if this cooperation could converge in the control of uPA/uPAR expression. We found that Ras is able to block the effects of c-Myc activation on apoptosis and cellular motility but not on cell invasiveness. Accordingly, the activation of c-Myc in the context of Ras expression had only minor influence on uPAR expression but still had a profound repressive effect on uPA expression. Thus, the differential regulation of uPA and uPAR by c-Myc and Ras correlates with the effects of these two oncoproteins on cell motility, invasiveness, and survival. In conclusion, we have discovered a novel link between c-Myc and uPA/uPAR. We propose that reductions of cell motility and invasiveness could contribute to the inhibition of tumorigenesis by c-Myc and that the regulation of uPA and uPAR expression may be a component of the ability of c-Myc to reduce motility and invasiveness.

  18. Administration of Recombinant Soluble Urokinase Receptor Per Se Is Not Sufficient to Induce Podocyte Alterations and Proteinuria in Mice

    DEFF Research Database (Denmark)

    Cathelin, Dominique; Placier, Sandrine; Ploug, Michael

    2014-01-01

    Circulating levels of soluble forms of urokinase-type plasminogen activator receptor (suPAR) are generally elevated in sera from children and adults with FSGS compared with levels in healthy persons or those with other types of kidney disease. In mice lacking the gene encoding uPAR, forced increa...... in increased glomerular proteinuria or altered podocyte architecture. Our findings suggest that glomerular deposits of suPAR caused by elevated plasma levels are not sufficient to engender albuminuria....

  19. uPAR as anti-cancer target: evaluation of biomarker potential, histological localization, and antibody-based therapy

    DEFF Research Database (Denmark)

    Lund, Ida K; Illemann, Martin; Sørensen, Tine Thurison

    2011-01-01

    PAR on the cell surface and/or by direct inhibition of the catalytic activity of uPA. Both strategies have been pursued and inhibition of these functions has shown effect in xenogenic cancer models. Pericellular proteolysis has also been inhibited in vivo in mouse models of wound healing and hepatic fibrinolysis......, and a potential diagnostic and predictive impact of the different uPAR forms has been reported. Hence, pericellular proteolysis seems to be a suitable target for anti-cancer therapy and numerous approaches have been pursued. Targeting of this process may be achieved by preventing the binding of uPA to u...

  20. Ligand binding alters dimerization and sequestering of urokinase receptors in raft-mimicking lipid mixtures.

    Science.gov (United States)

    Ge, Yifan; Siegel, Amanda P; Jordan, Rainer; Naumann, Christoph A

    2014-11-01

    Lipid heterogeneities, such as lipid rafts, are widely considered to be important for the sequestering of membrane proteins in plasma membranes, thereby influencing membrane protein functionality. However, the underlying mechanisms of such sequestration processes remain elusive, in part, due to the small size and often transient nature of these functional membrane heterogeneities in cellular membranes. To overcome these challenges, here we report the sequestration behavior of urokinase receptor (uPAR), a glycosylphosphatidylinositol-anchored protein, in a planar model membrane platform with raft-mimicking lipid mixtures of well-defined compositions using a powerful optical imaging platform consisting of confocal spectroscopy XY-scans, photon counting histogram, and fluorescence correlation spectroscopy analyses. This methodology provides parallel information about receptor sequestration, oligomerization state, and lateral mobility with single molecule sensitivity. Most notably, our experiments demonstrate that moderate changes in uPAR sequestration are not only associated with modifications in uPAR dimerization levels, but may also be linked to ligand-mediated allosteric changes of these membrane receptors. Our data show that these modifications in uPAR sequestration can be induced by exposure to specific ligands (urokinase plasminogen activator, vitronectin), but not via adjustment of the cholesterol level in the planar model membrane system. Good agreement of our key findings with published results on cell membranes confirms the validity of our model membrane approach. We hypothesize that the observed mechanism of receptor translocation in the presence of raft-mimicking lipid mixtures is also applicable to other glycosylphosphatidylinositol-anchored proteins.

  1. Structure-based design of an urokinase-type plasminogen activator receptor-derived peptide inhibiting cell migration and lung metastasis.

    Science.gov (United States)

    Carriero, Maria Vincenza; Longanesi-Cattani, Immacolata; Bifulco, Katia; Maglio, Ornella; Lista, Liliana; Barbieri, Antonio; Votta, Giuseppina; Masucci, Maria Teresa; Arra, Claudio; Franco, Renato; De Rosa, Mario; Stoppelli, Maria Patrizia; Pavone, Vincenzo

    2009-09-01

    The urokinase-type plasminogen activator receptor (uPAR) plays a central role in sustaining the malignant phenotype and promoting tumor metastasis. The Ser(88)-Arg-Ser-Arg-Tyr(92) is the minimum chemotactic sequence of uPAR required to induce the same intracellular signaling as its ligand uPA. Here, we describe the generation of new peptide inhibitors of cell migration and invasion derived from SRSRY by a drug design approach. Ac-Arg-Glu-Arg-Phe-NH(2) (i.e., RERF), which adopts a turned structure in solution, was selected for its ability to potently prevent SRSRY-directed cell migration. Fluorescein-RERF associates with very high affinity to RBL-2H3 rat basophilic leukemia cells expressing the human formyl peptide receptor (FPR). Accordingly, femtomolar concentrations of RERF prevent agonist-dependent internalization of FPR and inhibit N-formyl-Met-Leu-Phe-dependent migration in a dose-dependent manner. In the absence of FPR, fluorescein-RERF binds to cell surface at picomolar concentrations in an alphav integrin-dependent manner. The involvement of vitronectin receptor is further supported by the findings that 100 pmol/L RERF selectively inhibits vitronectin-dependent RBL-2H3 cell migration and prevents SRSRY-triggered uPAR/alphav association. Furthermore, RERF reduces the speed of wound closure and the extent of Matrigel invasion by human fibrosarcoma HT1080 cells without affecting cell proliferation. Finally, a 3- to 5-fold reduction of lung metastasis number and size in nude mice following i.v. injection of green fluorescent protein-expressing HT1080 cells in the presence of 3.32 mg/kg RERF is observed. Our findings indicate that RERF effectively prevents malignant cell invasion in vivo with no signs of toxicity and may represent a promising prototype drug for anticancer therapy.

  2. Leucocyte expression of genes implicated in the plasminogen activation cascade is modulated by yoghurt peptides.

    Science.gov (United States)

    Theodorou, Georgios; Politis, Ioannis

    2016-08-01

    The urokinase-plasminogen activator (u-PA), its receptor (u-PAR) and the inhibitors of u-PA (PAI-1 and PAI-2) provide a multi-molecular system in leucocytes that exerts pleiotropic functions influencing the development of inflammatory and immune responses. The objective of the present study was to examine the ability of water soluble extracts (WSE) obtained from traditional Greek yoghurt made from bovine or ovine milk to modulate the expression of u-PA, u-PAR, PAI-1 and PAI-2 in ovine monocytes and neutrophils. WSE were obtained from 8 commercial traditional type Greek yoghurts made from ovine or bovine milk. WSE upregulated the expression of all 4 u-PA related genes in monocytes but the upregulation was much higher in the PAI-1 (10-fold) than in u-PA and u-PAR (3-4 fold) thus, shifting the system towards inhibition. In line with this observation, WSE reduced total and membrane-bound u-PA activity in monocytes. In neutrophils, WSE caused small (50-60%) but significant (P yoghurts made from bovine or ovine milk were essentially equally effective in affecting the u-PA system except for the u-PAR gene in ovine neutrophils that was affected (reduced) by the ovine and not the bovine WSE. In conclusion, peptides present in WSE modulated the expression of u-PA related genes but the effect was much more prominent in monocytes than in neutrophils.

  3. Urokinase-catalysed cleavage of the urokinase receptor requires an intact glycolipid anchor

    DEFF Research Database (Denmark)

    Høyer-Hansen, G; Pessara, U; Holm, A;

    2001-01-01

    Urokinase (uPA) has the striking ability to cleave its receptor, uPAR, thereby inactivating the binding potential of this molecule. Here we demonstrate that the glycosylphosphatidylinositol (GPI) anchor of uPAR, which is attached to the third domain, is an important determinant in governing this ...

  4. The prognostic value of the suPARnosticTM ELISA assay in HIV-1 infected individuals is not affected by uPAR promoter polymorphisms

    DEFF Research Database (Denmark)

    Schneider, Uffe Vest; Nielsen, Rikke Lyngaa; Pedersen, Court

    2007-01-01

    and an A to G transition at -465 comparative to the transcription start site. These promoter transitions did not influence neither the suPAR levels nor patient survival. CONCLUSION: Plasma suPAR levels, as measured by the suPARnosticTM assay, were strongly predictive of survival in ART-naive HIV-1 infected...... for commercial use in 2006. The aim of this study was to: 1) Evaluate the prognostic value of the new suPARnosticTM assay and 2) Determine whether polymorphisms in the active promoter of uPAR influences survival and/or suPAR values in HIV-1 patients who are antiretroviral therapy (ART) naive. METHODS: DNA...... correlated to suPAR levels (pyear period; whereas only one of 54 patients with suPAR levels below 6 ng/ml died during this period. We identified two common uPAR promoter polymorphisms: a G to A transition at -118...

  5. Two distinct expression patterns of urokinase, urokinase receptor and plasminogen activator inhibitor-1 in colon cancer liver metastases

    DEFF Research Database (Denmark)

    Illemann, Martin; Bird, Nigel; Majeed, Ali;

    2009-01-01

    Metastatic growth and invasion by colon cancer cells in the liver requires the ability of the cancer cells to interact with the new tissue environment. Plasmin(ogen) is activated on cell surfaces by urokinase-type PA (uPA), and is regulated by uPAR and plasminogen activator inhibitor-1 (PAI-1......). To compare the expression patterns of uPA, uPAR and PAI-1 in colon cancer with that in their liver metastases, we analysed matched samples from 14 patients. In all 14 primary colon cancers, we found upregulation of uPAR, uPA mRNA and PAI-1 in primarily stromal cells at the invasive front. In 5 of the 14......, whereas 8 of the remaining 9 showed direct contact between the cancer cells and the liver parenchyma. We conclude that there are 2 distinct patterns of expression of uPAR, uPA and PAI-1 in colon cancer liver metastases and that these correlate closely with 2 morphological growth patterns. These findings...

  6. uPA/uPAR system activation drives a glycolytic phenotype in melanoma cells.

    Science.gov (United States)

    Laurenzana, Anna; Chillà, Anastasia; Luciani, Cristina; Peppicelli, Silvia; Biagioni, Alessio; Bianchini, Francesca; Tenedini, Elena; Torre, Eugenio; Mocali, Alessandra; Calorini, Lido; Margheri, Francesca; Fibbi, Gabriella; Del Rosso, Mario

    2017-09-15

    In this manuscript, we show the involvement of the uPA/uPAR system in the regulation of aerobic glycolysis of melanoma cells. uPAR over-expression in human melanoma cells controls an invasive and glycolytic phenotype in normoxic conditions. uPAR down-regulation by siRNA or its uncoupling from integrins, and hence from integrin-linked tyrosine kinase receptors (IL-TKRs), by an antagonist peptide induced a striking inhibition of the PI3K/AKT/mTOR/HIF1α pathway, resulting into impairment of glucose uptake, decrease of several glycolytic enzymes and of PKM2, a checkpoint that controls metabolism of cancer cells. Further, binding of uPA to uPAR regulates expression of molecules that govern cell invasion, including extracellular matrix metallo-proteinases inducer (EMPPRIN) and enolase, a glycolytyc enzyme that also serves as a plasminogen receptor, thus providing a common denominator between tumor metabolism and phenotypic invasive features. Such effects depend on the α5β1-integrin-mediated uPAR connection with EGFR in melanoma cells with engagement of the PI3K-mTOR-HIFα pathway. HIF-1α trans-activates genes whose products mediate tumor invasion and glycolysis, thus providing the common denominator between melanoma metabolism and its invasive features. These findings unveil a unrecognized interaction between the invasion-related uPAR and IL-TKRs in the control of glycolysis and disclose a new pharmacological target (i.e., uPAR/IL-TKRs axis) for the therapy of melanoma. © 2017 UICC.

  7. Profiling signalling pathways in formalin-fixed and paraffin-embedded breast cancer tissues reveals cross-talk between EGFR, HER2, HER3 and uPAR.

    Science.gov (United States)

    Berg, Daniela; Wolff, Claudia; Malinowsky, Katharina; Tran, Kai; Walch, Axel; Bronger, Holger; Schuster, Tibor; Höfler, Heinz; Becker, Karl-Friedrich

    2012-01-01

    In the last few years, new approaches and developments in patient-tailored cancer therapies have raised the need to select, more precisely, those patients who will respond to personalized treatments. Therefore, the most efficient way for optimal therapy and patient selection is to provide a tumour-specific protein network portrait prior to treatment. The aim of our study was to monitor protein networks in formalin-fixed and paraffin-embedded (FFPE) breast cancer tissues, with special emphasis on epidermal growth factor receptor 2 (HER2)-mediated signalling pathways, to identify and validate new disease markers. For this purpose we used a recently developed technology to extract full-length proteins from FFPE tissues and analysed 23 molecules involved in HER2-related signalling by reverse phase protein microarray (RPPA) in a series of 106 FFPE breast cancer tissue samples. We found a significant correlation of HER2 with human epidermal growth factor receptor 3 (HER3/erbB3), epidermal growth factor receptor 1 (EGFR/HER1/erbB1) and urokinase plasminogen receptor (uPAR) in routinely used FFPE breast cancer tissues. Thus, targeting HER2, EGFR, HER3 and uPAR together may offer a more efficient treatment option for patients with breast cancer.

  8. Chapter 8. Activation mechanisms of chemokine receptors

    DEFF Research Database (Denmark)

    Jensen, Pia C; Rosenkilde, Mette M

    2009-01-01

    Chemokine receptors belong to the large family of 7-transmembrane (7TM) G-protein-coupled receptors. These receptors are targeted and activated by a variety of different ligands, indicating that activation is a result of similar molecular mechanisms but not necessarily similar modes of ligand bin...

  9. Mechanism for the activation of glutamate receptors

    Science.gov (United States)

    Scientists at the NIH have used a technique called cryo-electron microscopy to determine a molecular mechanism for the activation and desensitization of ionotropic glutamate receptors, a prominent class of neurotransmitter receptors in the brain and spina

  10. Improved PET Imaging of uPAR expression using new Cu-64-labeled cross-bridged peptide ligands

    DEFF Research Database (Denmark)

    Persson, Morten; Hosseini, Masood; Madsen, Jacob;

    2013-01-01

    The correlation between uPAR expression, cancer cell invasion and metastases is now well-established and has prompted the development of a number of uPAR PET imaging agents, which could potentially identify cancer patients with invasive and metastatic lesions. In the present study, we synthesized...

  11. The urokinase receptor-derived cyclic peptide [SRSRY] suppresses neovascularization and intravasation of osteosarcoma and chondrosarcoma cells.

    Science.gov (United States)

    Ingangi, Vincenzo; Bifulco, Katia; Yousif, Ali Munaim; Ragone, Concetta; Motti, Maria Letizia; Rea, Domenica; Minopoli, Michele; Botti, Giovanni; Scognamiglio, Giuseppe; Fazioli, Flavio; Gallo, Michele; De Chiara, Annarosaria; Arra, Claudio; Grieco, Paolo; Carriero, Maria Vincenza

    2016-08-23

    The receptor for the urokinase-type plasminogen activator (uPAR) is a widely recognized master regulator of cell migration and uPAR88-92 is the minimal sequence required to induce cell motility and angiogenesis by interacting with the formyl peptide receptor type 1 (FPR1). In this study, we present evidence that the cyclization of the uPAR88-92 sequence generates a new potent inhibitor of migration, and extracellular matrix invasion of human osteosarcoma and chondrosarcoma cells expressing comparable levels of FPR1 on cell surface. In vitro, the cyclized peptide [SRSRY] prevents formation of capillary-like tubes by endothelial cells co-cultured with chondrosarcoma cells and trans-endothelial migration of osteosarcoma and chondrosarcoma cells. When chondrosarcoma cells were subcutaneously injected in nude mice, tumor size, intra-tumoral microvessel density and circulating tumor cells in blood samples collected before the sacrifice, were significantly reduced in animals treated daily with i.p-administration of 6 mg/Kg [SRSRY] as compared to animals treated with vehicle only. Our findings indicate that [SRSRY] prevents three key events occurring during the metastatic process of osteosarcoma and chondrosarcoma cells: the extracellular matrix invasion, the formation of a capillary network and the entry into bloodstream.

  12. CERAPP: Collaborative Estrogen Receptor Activity Prediction Project

    Data.gov (United States)

    U.S. Environmental Protection Agency — Data from a large-scale modeling project called CERAPP (Collaborative Estrogen Receptor Activity Prediction Project) demonstrating using predictive computational...

  13. Dosimetry of 64Cu-DOTA-AE105, a PET tracer for uPAR imaging

    DEFF Research Database (Denmark)

    Persson, Morten; El Ali, Henrik H.; Binderup, Tina

    2014-01-01

    studies in mice to evaluate the in vivo biodistribution and estimate human dosimetry of 64Cu-DOTA-AE105. MethodsFive mice received iv tail injection of 64Cu-DOTA-AE105 and were PET/CT scanned 1, 4.5 and 22h post injection. Volume-of-interest (VOI) were manually drawn on the following organs: heart, lung......, liver, kidney, spleen, intestine, muscle, bone and bladder. The activity concentrations in the mentioned organs [%ID/g] were used for the dosimetry calculation. The %ID/g of each organ at 1, 4.5 and 22h was scaled to human value based on a difference between organ and body weights. The scaled values......Favorable dosimetry estimates together with previously reported uPAR PET data fully support human testing of 64Cu-DOTA-AE105....

  14. Serum uPAR as Biomarker in Breast Cancer Recurrence: A Mathematical Model.

    Science.gov (United States)

    Hao, Wenrui; Friedman, Avner

    2016-01-01

    There are currently over 2.5 million breast cancer survivors in the United States and, according to the American Cancer Society, 10 to 20 percent of these women will develop recurrent breast cancer. Early detection of recurrence can avoid unnecessary radical treatment. However, self-examination or mammography screening may not discover a recurring cancer if the number of surviving cancer cells is small, while biopsy is too invasive and cannot be frequently repeated. It is therefore important to identify non-invasive biomarkers that can detect early recurrence. The present paper develops a mathematical model of cancer recurrence. The model, based on a system of partial differential equations, focuses on tissue biomarkers that include the plasminogen system. Among them, only uPAR is known to have significant correlation to its concentration in serum and could therefore be a good candidate for serum biomarker. The model includes uPAR and other associated cytokines and cells. It is assumed that the residual cancer cells that survived primary cancer therapy are concentrated in the same location within a region with a very small diameter. Model simulations establish a quantitative relation between the diameter of the growing cancer and the total uPAR mass in the cancer. This relation is used to identify uPAR as a potential serum biomarker for breast cancer recurrence.

  15. Urokinase receptor promotes ovarian cancer cell dissemination through its 84-95 sequence.

    Science.gov (United States)

    Bifulco, Katia; Votta, Giuseppina; Ingangi, Vincenzo; Di Carluccio, Gioconda; Rea, Domenica; Losito, Simona; Montuori, Nunzia; Ragno, Pia; Stoppelli, Maria Patrizia; Arra, Claudio; Carriero, Maria Vincenza

    2014-06-30

    The clinical relevance of the urokinase receptor (uPAR) as a prognostic marker in ovarian cancer is well documented. We had shown that the uPAR sequence corresponding to 84-95 residues, linking D1 and D2 domains (uPAR84-95), drives cell migration and angiogenesis in a protease-independent manner. This study was aimed at defining the contribution of uPAR84-95 sequence to invasion of ovarian cancer cells. Now, we provide evidence that the ability of uPAR-expressing ovarian cancer cells to cross extra-cellular matrix and mesothelial monolayers is prevented by specific inhibitors of the uPAR84-95 sequence. To specifically investigate uPAR84-95 function, uPAR-negative CHO-K1 cells were stably transfected with cDNAs coding for uPAR D2 and D3 regions exposing (uPARD2D3) or lacking (uPAR∆D2D3) the 84-95 sequence. CHO-K1/D2D3 cells were able to cross matrigel, mesothelial and endothelial monolayers more efficiently than CHO-K1/∆D2D3 cells, which behave as CHO-K1 control cells. When orthotopically implanted in nude mice, tumor nodules generated by CHO-K1/D2D3 cells spreading to peritoneal cavity were more numerous as compared to CHO-K1/∆D2D3 cells. Ovarian tumor size and intra-tumoral microvessel density were significantly reduced in the absence of uPAR84-95. Our results indicate that cell associated uPAR promotes growth and abdominal dissemination of ovarian cancer cells mainly through its uPAR84-95 sequence.

  16. Glycosylation profile of a recombinant urokinase-type plasminogen activator receptor expressed in Chinese hamster ovary cells

    DEFF Research Database (Denmark)

    Ploug, M; Rahbek-Nielsen, H; Nielsen, P F

    1998-01-01

    cells, after limited proteolysis using chymotrypsin and pepsin. The glycosylation patterns of these domains have been determined by matrix assisted laser desorption ionization and electrospray ionization mass spectrometry. Of the five potential attachment sites for asparagine-linked carbohydrate in u...... removed by N-glycanase treatment under nondenaturing conditions. This susceptibility was abrogated when uPAR participitated in a bimolecular complex with pro-uPA or smaller receptor binding derivatives thereof, demonstrating the proximity of the ligand-binding site to this particular carbohydrate moiety...

  17. New GABA amides activating GABAA-receptors.

    Science.gov (United States)

    Raster, Peter; Späth, Andreas; Bultakova, Svetlana; Gorostiza, Pau; König, Burkhard; Bregestovski, Piotr

    2013-01-01

    We have prepared a series of new and some literature-reported GABA-amides and determined their effect on the activation of GABAA-receptors expressed in CHO cells. Special attention was paid to the purification of the target compounds to remove even traces of GABA contaminations, which may arise from deprotection steps in the synthesis. GABA-amides were previously reported to be partial, full or superagonists. In our hands these compounds were not able to activate GABAA-receptor channels in whole-cell patch-clamp recordings. New GABA-amides, however, gave moderate activation responses with a clear structure-activity relationship suggesting some of these compounds as promising molecular tools for the functional analysis of GABAA-receptors.

  18. New GABA amides activating GABAA-receptors

    Directory of Open Access Journals (Sweden)

    Peter Raster

    2013-02-01

    Full Text Available We have prepared a series of new and some literature-reported GABA-amides and determined their effect on the activation of GABAA-receptors expressed in CHO cells. Special attention was paid to the purification of the target compounds to remove even traces of GABA contaminations, which may arise from deprotection steps in the synthesis. GABA-amides were previously reported to be partial, full or superagonists. In our hands these compounds were not able to activate GABAA-receptor channels in whole-cell patch-clamp recordings. New GABA-amides, however, gave moderate activation responses with a clear structure–activity relationship suggesting some of these compounds as promising molecular tools for the functional analysis of GABAA-receptors.

  19. Mechanism of FGF receptor dimerization and activation

    Science.gov (United States)

    Sarabipour, Sarvenaz; Hristova, Kalina

    2016-01-01

    Fibroblast growth factors (fgfs) are widely believed to activate their receptors by mediating receptor dimerization. Here we show, however, that the FGF receptors form dimers in the absence of ligand, and that these unliganded dimers are phosphorylated. We further show that ligand binding triggers structural changes in the FGFR dimers, which increase FGFR phosphorylation. The observed effects due to the ligands fgf1 and fgf2 are very different. The fgf2-bound dimer structure ensures the smallest separation between the transmembrane (TM) domains and the highest possible phosphorylation, a conclusion that is supported by a strong correlation between TM helix separation in the dimer and kinase phosphorylation. The pathogenic A391E mutation in FGFR3 TM domain emulates the action of fgf2, trapping the FGFR3 dimer in its most active state. This study establishes the existence of multiple active ligand-bound states, and uncovers a novel molecular mechanism through which FGFR-linked pathologies can arise.

  20. NMDA receptor activity in neuropsychiatric disorders

    Directory of Open Access Journals (Sweden)

    Shaheen E Lakhan

    2013-06-01

    Full Text Available N-Methyl-D-aspartate (NMDA receptors play a variety of physiologic roles and their proper signaling is essential for cellular homeostasis. Any disruption in this pathway, leading to either enhanced or decreased activity, may result in the manifestation of neuropsychiatric pathologies such as schizophrenia, mood disorders, substance induced psychosis, Huntington's disease, Alzheimer's disease, and neuropsychiatric systemic lupus erythematosus. Here, we explore the notion that the overlap in activity of at least one biochemical pathway, the NMDA receptor pathway, may be the link to understanding the overlap in psychotic symptoms between diseases. This review intends to present a broad overview of those neuropsychiatric disorders for which alternations in NMDA receptor activity is prominent thus suggesting that continued direction of pharmaceutical intervention to this pathway may present a viable option for managing symptoms.

  1. Activation of Neuropeptide FF Receptors by Kisspeptin Receptor Ligands.

    Science.gov (United States)

    Oishi, Shinya; Misu, Ryosuke; Tomita, Kenji; Setsuda, Shohei; Masuda, Ryo; Ohno, Hiroaki; Naniwa, Yousuke; Ieda, Nahoko; Inoue, Naoko; Ohkura, Satoshi; Uenoyama, Yoshihisa; Tsukamura, Hiroko; Maeda, Kei-Ichiro; Hirasawa, Akira; Tsujimoto, Gozoh; Fujii, Nobutaka

    2011-01-13

    Kisspeptin is a member of the RFamide neuropeptide family that is implicated in gonadotropin secretion. Because kisspeptin-GPR54 signaling is implicated in the neuroendocrine regulation of reproduction, GPR54 ligands represent promising therapeutic agents against endocrine secretion disorders. In the present study, the selectivity profiles of GPR54 agonist peptides were investigated for several GPCRs, including RFamide receptors. Kisspeptin-10 exhibited potent binding and activation of neuropeptide FF receptors (NPFFR1 and NPFFR2). In contrast, short peptide agonists bound with much lower affinity to NPFFRs while showing relatively high selectivity toward GPR54. The possible localization of secondary kisspeptin targets was also demonstrated by variation in the levels of GnRH release from the median eminence and the type of GPR54 agonists used. Negligible affinity of the reported NPFFR ligands to GPR54 was observed and indicates the unidirectional cross-reactivity between both ligands.

  2. 全身炎症反应综合征患者血浆尿激酶型纤溶酶原激活物及其特异性受体动态变化的研究%Dynamic changes in plasma levels of urokinase type plasminogen activator and urokinase type plasminogen activator receptor in patients with systemic inflammatory response syndrome

    Institute of Scientific and Technical Information of China (English)

    武晓灵; 喻莉; 龙鼎; 杨军辉; 张远超; 耿峰

    2011-01-01

    目的 观察全身炎症反应综合征(SIRS)患者血浆尿激酶型纤溶酶原激活物(uPA)及其特异性受体(uPAR)的动态变化以及对预后的影响.方法 采用前瞻性病例对照研究设计方法,将85例住院患者按SIRS诊断标准分为SIRS组(50例)和非SlRS组(35例);SIRS组再按病情分为单纯SIRS组(26例)和合并多器官功能障碍综合征(MODS)组(24例),按预后分为生存组(35例)和死亡组(15例);另选择同期30例健康体检者作为对照.非SIRS组于入院当日,SIRS组于发生SIRS后的1、3、5、7 d,健康对照组于体检时采集空腹静脉血2 ml,用双抗体夹心酶联免疫吸附法(ELISA)测定血浆uPA和uPAR含量,并分析SIRS患者血浆uPAR含量与急性生理学与慢性健康状况评分系统I(APACHE I)评分的相关性.结果 单纯SIRS组、合并MODS组患者血浆uPA和uPAR含量均较非SIRS组和健康对照组显著升高[uPA(μg/L):1.208±0.264、1.120±0.276比0.744±0.190、0.782±0.257;uPAR(μg/L):3.704±1.018、4.970±1.284比1.892±0.476、1.823±0.797,均P<0.01],且合并MODS组uPAR含量明显高于单纯SIRS组(P<0.01).与生存组比较,死亡组5 d、7 d血浆uPA含量(μg/L)明显升高(5 d:1.177±0.185比0.856±0.223,7 d:1.377±0.185比0.836±0.223,均P<0.01),1、3、5、7 d血浆uPAR含量(μg/L)显著增高(1 d:5.301±1.410比3.888±1.015,3 d:4.017±0.898比2.994±0.638,5 d:5.032±1.238比2.536±1.017,7 d:5.232±1.238比3.536±1.017,均P<0.01).SIRS患者血浆uPAR含量与APACHE I评分呈显著正相关(r=0.640,P<0.O1).结论 SIRS患者存在凝血功能障碍,血浆uPA、uPAR含量显著增高,uPAR含量的升高提示预后不良.%Objective To study the dynamic changes in plasma levels of urokinase type plasminogen activator (uPA) and urokinase type plasminogen activator receptor (uPAR) and their influence on prognosis in patients with systemic inflammatory response syndrome (SIRS). Methods In this study, a prospective clinical case-control study was

  3. A composite role of vitronectin and urokinase in the modulation of cell morphology upon expression of the urokinase receptor

    DEFF Research Database (Denmark)

    Hillig, Thore; Engelholm, Lars H; Ingvarsen, Signe

    2008-01-01

    The urokinase receptor, urokinase receptor (uPAR), is a glycosylphosphatidylinositol-anchored membrane protein engaged in pericellular proteolysis and cellular adhesion, migration, and modulation of cell morphology. A direct matrix adhesion is mediated through the binding of uPAR to vitronectin......, and this event is followed by downstream effects including changes in the cytoskeletal organization. However, it remains unclear whether the adhesion through uPAR-vitronectin is the only event capable of initiating these morphological rearrangements or whether lateral interactions between uPAR and integrins can...... a different single-site mutant, uPAR(Y57A), in the presence of a synthetic uPAR-binding peptide, as well as with wild-type uPAR, which underwent cytoskeletal rearrangements even when cultivated in uPA-deficient serum. Blocking of integrins with an Arg-Gly-Asp-containing peptide counteracted the matrix...

  4. CERAPP: Collaborative estrogen receptor activity prediction project

    DEFF Research Database (Denmark)

    Mansouri, Kamel; Abdelaziz, Ahmed; Rybacka, Aleksandra

    2016-01-01

    Background: Humans are exposed to thousands of man-made chemicals in the environment. Some chemicals mimic natural endocrine hormones and, thus, have the potential to be endocrine disruptors. Most of these chemicals have never been tested for their ability to interact with the estrogen receptor (ER......). Risk assessors need tools to prioritize chemicals for evaluation in costly in vivo tests, for instance, within the U.S. EPA Endocrine Disruptor Screening Program. oBjectives: We describe a large-scale modeling project called CERAPP (Collaborative Estrogen Receptor Activity Prediction Project...

  5. Phenobarbital and Insulin Reciprocate Activation of the Nuclear Receptor Constitutive Androstane Receptor through the Insulin Receptor.

    Science.gov (United States)

    Yasujima, Tomoya; Saito, Kosuke; Moore, Rick; Negishi, Masahiko

    2016-05-01

    Phenobarbital (PB) antagonized insulin to inactivate the insulin receptor and attenuated the insulin receptor downstream protein kinase B (AKT)-forkhead box protein O1 and extracellular signal-regulated kinase 1/2 signals in mouse primary hepatocytes and HepG2 cells. Hepatic AKT began dephosphorylation in an early stage of PB treatment, and blood glucose levels transiently increased in both wild-type and constitutive androstane receptor (CAR) knockout (KO) mice. On the other hand, blood glucose levels increased in wild-type mice, but not KO mice, in later stages of PB treatment. As a result, PB, acting as an insulin receptor antagonist, elicited CAR-independent increases and CAR-dependent decreases of blood glucose levels at these different stages of treatment, respectively. Reciprocally, insulin activation of the insulin receptor repressed CAR activation and induction of its target CYP2B6 gene in HepG2 cells. Thus, PB and insulin cross-talk through the insulin receptor to regulate glucose and drug metabolism reciprocally.

  6. Structure-driven design of radionuclide tracers for non-invasive imaging of uPAR and targeted radiotherapy. The tale of a synthetic peptide antagonist

    DEFF Research Database (Denmark)

    Ploug, Michael

    2013-01-01

    as for monitoring the effects of such treatments by non-invasive imaging using e.g. positron emission tomography. This mini-review will focus on recent advancements in translational research devoted to non-invasive targeting of uPAR, with a view to molecular imaging of its expression in live individuals as well......-function relationships in uPAR has been refined to such a level that a rational design of uPAR function as well as compounds specifically targeting defined functions of uPAR are now realistic options. This knowledge opens new avenues for developing therapeutic intervention regimens targeting uPAR as well...... as specific eradication of these cells by targeted radiotherapy....

  7. In IgA Nephropathy, Glomerulosclerosis Is Associated with Increased Urinary CD80 Excretion and Urokinase-Type Plasminogen Activator Receptor-Positive Podocyturia

    Directory of Open Access Journals (Sweden)

    Hernán Trimarchi

    2017-05-01

    Full Text Available Background: Podocyturia may determine the evolution to podocytopenia, glomerulosclerosis, and renal failure. According to the Oxford classification of IgA nephropathy (IgAN, the S1 lesion describes glomerulosclerosis. Urokinase-type plasminogen activator receptor (uPAR participates in podocyte attachment, while CD80 increases in glomerulosclerosis. We measured uPAR-positive urinary podocytes and urinary CD80 (uCD80 in controls and in IgAN subjects with M1E0S0T0 and M1E0S1T0 Oxford scores to assess a potential association between podocyturia, inflammation, and glomerulosclerosis. Methods: The groups were as follows: controls (G1, n = 20 and IgAN group (G2, n = 39, subdivided into M1E0S0T0 (G2A, n = 21 and M1E0S1T0 (G2B, n = 18. Among the included variables, we determined uPAR-positive podocytes/gram of urinary creatinine (gUrCr and uCD80 ng/gUrCr. Biopsies with interstitial fibrosis and tubular atrophy <10% were included. Results: Groups were not different in age and gender; urinary protein-creatinine (uP/C ratio, Chronic Kidney Disease-Epidemiology Collaboration (CKD-EPI equation, uPAR-positive podocytes/gUrCr, and uCD80 were significantly increased in G2 versus G1. G2A and G2B were not different in age, gender, hypertension, and follow-up. G2B displayed significantly higher uP/C, uPAR-positive podocytes, uCD80, and lower CKD-EPI versus G2A. Strong significant correlations were encountered between uCD80 and podocyturia in G2A and G2B. However, when G1 was compared to G2A and G2B separately, the differences with respect to uP/C, uPAR-positive podocytes, and podocyturia were significantly stronger versus G2B than versus G2A. Conclusions: IgAN presents elevated uCD80 excretion and uPAR-positive podocyturia, while CD80 correlates with podocyturia. Glomerulosclerosis (S1 at the time of biopsy is associated with higher uP/C, lower renal function, increased uPAR-positive podocyturia, and CD80 excretion, and is independent of M1. In IgAN, uPAR may

  8. Urokinase plasminogen activator cleaves its cell surface receptor releasing the ligand-binding domain

    DEFF Research Database (Denmark)

    Høyer-Hansen, G; Rønne, E; Solberg, H

    1992-01-01

    -domain form, uPAR(2+3), lacking ligand-binding domain 1. Trypsin treatment showed that both variants are present on the outside of the cells. Addition to the culture medium of an anticatalytic monoclonal antibody to uPA inhibited the formation of the uPAR(2+3), indicating that uPA is involved in its...

  9. Intact and cleaved forms of the urokinase receptor enhance discrimination of cancer from non-malignant conditions in patients presenting with symptoms related to colorectal cancer

    DEFF Research Database (Denmark)

    Lomholt, A F; Høyer-Hansen, G; Nielsen, H J;

    2009-01-01

    plasminogen activator receptor (suPAR) was proposed as a marker in CRC patients. This study was undertaken to evaluate the individual molecular forms of suPAR as discriminators in a group of patients undergoing endoscopical examination following symptoms related to colorectal cancer. METHODS: In a case......-control study comprising 308 patients undergoing endoscopical examination following CRC-related symptoms, 77 CRC patients with adenocarcinoma were age and gender matched to: 77 patients with adenomas; 77 with other non-malignant findings, and 77 with no findings. The different uPAR forms were measured...

  10. Urokinase receptor-associated protein (uPARAP) is expressed in connection with malignant as well as benign lesions of the human breast and occurs in specific populations of stromal cells

    DEFF Research Database (Denmark)

    Schnack Nielsen, Boye; Rank, Fritz; Engelholm, Lars H;

    2002-01-01

    The urokinase-type plasminogen activator (uPA) and the uPA receptor (uPAR) are key components in the plasminogen activation system, serving to promote specific events of extracellular matrix degradation in connection with tissue remodeling and cancer invasion. We recently described a new uPAR-ass...... lesions. Whereas the normal breast tissue was uPARAP-negative, all benign lesions and ductal carcinoma in situ lesions showed immunoreactivity in fibroblast-like cells and myoepithelial cells associated with the lesion. In invasive carcinoma, uPARAP immunoreactivity was limited to tumor...

  11. Peroxisome proliferator-activated receptors for hypertension

    Institute of Scientific and Technical Information of China (English)

    Daisuke; Usuda; Tsugiyasu; Kanda

    2014-01-01

    Peroxisome proliferator-activated receptors(PPARs) are ligand-activated transcription factors belonging to the nuclear receptor superfamily, which is composed of four members encoded by distinct genes(α, β, γ, and δ). The genes undergo transactivation or transrepression under specific mechanisms that lead to the induction or repression of target gene expression. As is the case with other nuclear receptors, all four PPAR isoforms contain five or six structural regions in four functional domains; namely, A/B, C, D, and E/F. PPARs have many functions, particularly functions involving control of vascular tone, inflammation, and energy homeostasis, and are, therefore, important targets for hypertension, obesity, obesity-induced inflammation, and metabolic syndrome in general. Hence, PPARs also represent drug targets, and PPARα and PPARγ agonists are used clinically in the treatment of dyslipidemia and type 2 diabetes mellitus, respectively. Because of their pleiotropic effects, they have been identified as active in a number of diseases and are targets for the development of a broad range of therapies for a variety of diseases. It is likely that the range of PPARγ agonist therapeutic actions will result in novel approaches to lifestyle and other diseases. The combination of PPARs with reagents or with other cardiovascular drugs, such as diuretics and angiotensin Ⅱ receptor blockers, should be studied.This article provides a review of PPAR isoform characteristics, a discussion of progress in our understanding of the biological actions of PPARs, and a summary of PPAR agonist development for patient management. We also include a summary of the experimental and clinical evidence obtained from animal studies and clinical trials conducted to evaluate the usefulness and effectiveness of PPAR agonists in the treatment of lifestyle-related diseases.

  12. Peroxisome proliferator-activated receptors for hypertension

    Science.gov (United States)

    Usuda, Daisuke; Kanda, Tsugiyasu

    2014-01-01

    Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors belonging to the nuclear receptor superfamily, which is composed of four members encoded by distinct genes (α, β, γ, and δ). The genes undergo transactivation or transrepression under specific mechanisms that lead to the induction or repression of target gene expression. As is the case with other nuclear receptors, all four PPAR isoforms contain five or six structural regions in four functional domains; namely, A/B, C, D, and E/F. PPARs have many functions, particularly functions involving control of vascular tone, inflammation, and energy homeostasis, and are, therefore, important targets for hypertension, obesity, obesity-induced inflammation, and metabolic syndrome in general. Hence, PPARs also represent drug targets, and PPARα and PPARγ agonists are used clinically in the treatment of dyslipidemia and type 2 diabetes mellitus, respectively. Because of their pleiotropic effects, they have been identified as active in a number of diseases and are targets for the development of a broad range of therapies for a variety of diseases. It is likely that the range of PPARγ agonist therapeutic actions will result in novel approaches to lifestyle and other diseases. The combination of PPARs with reagents or with other cardiovascular drugs, such as diuretics and angiotensin II receptor blockers, should be studied. This article provides a review of PPAR isoform characteristics, a discussion of progress in our understanding of the biological actions of PPARs, and a summary of PPAR agonist development for patient management. We also include a summary of the experimental and clinical evidence obtained from animal studies and clinical trials conducted to evaluate the usefulness and effectiveness of PPAR agonists in the treatment of lifestyle-related diseases. PMID:25228953

  13. Expression of urokinase-type plasminogen activator and urokinase-type plasminogen activator receptor in synovial fluid of patients with temporomandibular disorders%颞下颌关节紊乱病关节液中尿纤溶酶原激活物及其受体的表达

    Institute of Scientific and Technical Information of China (English)

    胡蕾; 梁新华; 朱桂全; 胡静; 史宗道

    2008-01-01

    Objective To investigate the level of urokinase-type plasminogen activator(uPA)and urokinase-type plasminogen activator receptor(uPAR)in synovial fluid of patients with temporomandibular disorders and to analyze their relation with temporomandibular disorders(TMD).Methods Synovial fluid was obtained from 64 sides of 56 TMD patients and from 16 sides of 10 asymptomatic healthy volunteers(control).The concentrations of uPA and uPAR in the synovial fluid were measured by ELISA.Forty-eight sides of TMD were divided into 3 groups:arthrosis,structure disorder and osteoarthrosis,each including 16 sides.Resuits The levels of uPA and uPAR were significantly higher in the synovial fluid of TMD patients than that in the control group(P<0.05),and the level of uPA and uPAR in osteoarthrosis group was significantly higher than that in arthrosis and structure disorder group(P<0.05).However,there was no difference in expression of uPA and uPAR between arthrosis and structure disorder groups(P>0.05).Conclusions uPA and uPAR in the synovial fluid may play a role in the pathogenesis of TMD.and the lever of uPA and uPAR in synovial fluid of TMD could be used as a biochemical markers to reflect pathological degree of TMD.%目的 检测颞下颌关节(TMJ)关节液中尿纤溶酶原激活物(urokinase-type plasminogen activator,uPA)及受体(urokinase-type plasminogen activator receptor,uPAR)的分泌量,探讨TMJ液中uPA及uPAR与颞下颌关节紊乱病(TMD)的关系.方法 采用酶联免疫吸附实验法检测56例TMD患者的64侧关节和10名健康志愿者的16侧关节的关节液标本中的uPA及uPAR的量.将符合纳入标准的48侧TMD患者的关节液标本根据临床诊断分为关节炎性组(A组)、结构紊乱组(B组)、骨关节病组(C组),每组16侧;10名健康志愿者的16侧关节液设为对照组(D组).结果 TMD中A组、B组、C组、D组uPA的检出量分别为(51.200±8.786)ng/L、(53.667±11.894)ng/L、(81.278±25.828)ng/L、(17.960±9.859)ng

  14. Towards universal approach for bacterial production of three-finger Ly6/uPAR proteins: Case study of cytotoxin I from cobra N. oxiana.

    Science.gov (United States)

    Shulepko, M A; Lyukmanova, E N; Shenkarev, Z O; Dubovskii, P V; Astapova, M V; Feofanov, A V; Arseniev, A S; Utkin, Y N; Kirpichnikov, M P; Dolgikh, D A

    2017-02-01

    Cytotoxins or cardiotoxins is a group of polycationic toxins from cobra venom belonging to the 'three-finger' protein superfamily (Ly6/uPAR family) which includes small β-structural proteins (60-90 residues) with high disulfide bond content (4-5 disulfides). Due to a high cytotoxic activity for cancer cells, cytotoxins are considered as potential anticancer agents. Development of the high-throughput production methods is required for the prospective applications of cytotoxins. Here, efficient approach for bacterial production of recombinant analogue of cytotoxin I from N. oxiana containing additional N-terminal Met-residue (rCTX1) was developed. rCTX1 was produced in the form of E. coli inclusion bodies. Refolding in optimized conditions provided ∼6 mg of correctly folded protein from 1 L of bacterial culture. Cytotoxicity of rCTX1 for C6 rat glioma cells was found to be similar to the activity of wild type CTX1. The milligram quantities of (13)C,(15)N-labeled rCTX1 were obtained. NMR study confirmed the similarity of the spatial structures of recombinant and wild-type toxins. Additional Met residue does not perturb the overall structure of the three-finger core. The analysis of available data for different Ly6/uPAR proteins of snake and human origin revealed that efficiency of their folding in vitro is correlated with the number of proline residues in the third loop and the surface area of hydrophobic residues buried within the protein interior. The obtained data indicate that hydrophobic core is important for the folding of proteins with high disulfide bond content. Developed expression method opens new possibilities for structure-function studies of CTX1 and other related three-finger proteins.

  15. Retro-inverso Urokinase Receptor Antagonists for the Treatment of Metastatic Sarcomas.

    Science.gov (United States)

    Carriero, Maria Vincenza; Bifulco, Katia; Ingangi, Vincenzo; Costantini, Susan; Botti, Giovanni; Ragone, Concetta; Minopoli, Michele; Motti, Maria Letizia; Rea, Domenica; Scognamiglio, Giosuè; Botti, Gerardo; Arra, Claudio; Ciliberto, Gennaro; Pessi, Antonello

    2017-05-02

    The development of metastases is a multistep process that requires the activation of physiological and biochemical processes that govern migration, invasion and entry of metastatic cells into blood vessels. The urokinase receptor (uPAR) promotes cell migration by interacting with the Formyl Peptide Receptors (FPRs). Since both uPAR and FPR1 are involved in tumor progression, the uPAR-FPR1 interaction is an attractive therapeutic target. We previously described peptide antagonists of the uPAR-FPR1 interaction that inhibited cell migration and angiogenesis. To develop enzyme-resistant analogues, we applied here the Retro-Inverso (RI) approach, whereby the topology of the side chains is maintained by inverting the sequence of the peptide and the chirality of all residues. Molecular dynamics suggests that peptide RI-3 adopts the turn structure typical of uPAR-FPR1 antagonists. Accordingly, RI-3 is a nanomolar competitor of N-formyl-Met-Leu-Phe for binding to FPR1 and inhibits migration, invasion, trans-endothelial migration of sarcoma cells and VEGF-triggered endothelial tube formation. When sarcoma cells were subcutaneously injected in nude mice, tumor size, intra-tumoral microvessel density, circulating tumor cells and pulmonary metastases were significantly reduced in animals treated daily with 6 mg/Kg RI-3 as compared to animals treated with vehicle only. Thus, RI-3 represents a promising lead for anti-metastatic drugs.

  16. Gi proteins regulate adenylyl cyclase activity independent of receptor activation.

    Science.gov (United States)

    Melsom, Caroline Bull; Ørstavik, Øivind; Osnes, Jan-Bjørn; Skomedal, Tor; Levy, Finn Olav; Krobert, Kurt Allen

    2014-01-01

    Despite the view that only β2- as opposed to β1-adrenoceptors (βARs) couple to G(i), some data indicate that the β1AR-evoked inotropic response is also influenced by the inhibition of Gi. Therefore, we wanted to determine if Gi exerts tonic receptor-independent inhibition upon basal adenylyl cyclase (AC) activity in cardiomyocytes. We used the Gs-selective (R,R)- and the Gs- and G(i)-activating (R,S)-fenoterol to selectively activate β2ARs (β1AR blockade present) in combination with Gi inactivation with pertussis toxin (PTX). We also determined the effect of PTX upon basal and forskolin-mediated responses. Contractility was measured ex vivo in left ventricular strips and cAMP accumulation was measured in isolated ventricular cardiomyocytes from adult Wistar rats. PTX amplified both the (R,R)- and (R,S)-fenoterol-evoked maximal inotropic response and concentration-dependent increases in cAMP accumulation. The EC50 values of fenoterol matched published binding affinities. The PTX enhancement of the Gs-selective (R,R)-fenoterol-mediated responses suggests that Gi regulates AC activity independent of receptor coupling to Gi protein. Consistent with this hypothesis, forskolin-evoked cAMP accumulation was increased and inotropic responses to forskolin were potentiated by PTX treatment. In non-PTX-treated tissue, phosphodiesterase (PDE) 3 and 4 inhibition or removal of either constitutive muscarinic receptor activation of Gi with atropine or removal of constitutive adenosine receptor activation with CGS 15943 had no effect upon contractility. However, in PTX-treated tissue, PDE3 and 4 inhibition alone increased basal levels of cAMP and accordingly evoked a large inotropic response. Together, these data indicate that Gi exerts intrinsic receptor-independent inhibitory activity upon AC. We propose that PTX treatment shifts the balance of intrinsic G(i) and Gs activity upon AC towards Gs, enhancing the effect of all cAMP-mediated inotropic agents.

  17. Peroxisome Proliferator Activated Receptors and Lipoprotein Metabolism

    Directory of Open Access Journals (Sweden)

    Sander Kersten

    2008-01-01

    Full Text Available Plasma lipoproteins are responsible for carrying triglycerides and cholesterol in the blood and ensuring their delivery to target organs. Regulation of lipoprotein metabolism takes place at numerous levels including via changes in gene transcription. An important group of transcription factors that mediates the effect of dietary fatty acids and certain drugs on plasma lipoproteins are the peroxisome proliferator activated receptors (PPARs. Three PPAR isotypes can be distinguished, all of which have a major role in regulating lipoprotein metabolism. PPARα is the molecular target for the fibrate class of drugs. Activation of PPARα in mice and humans markedly reduces hepatic triglyceride production and promotes plasma triglyceride clearance, leading to a clinically significant reduction in plasma triglyceride levels. In addition, plasma high-density lipoprotein (HDL-cholesterol levels are increased upon PPARα activation in humans. PPARγ is the molecular target for the thiazolidinedione class of drugs. Activation of PPARγ in mice and human is generally associated with a modest increase in plasma HDL-cholesterol and a decrease in plasma triglycerides. The latter effect is caused by an increase in lipoprotein lipase-dependent plasma triglyceride clearance. Analogous to PPARα, activation of PPARβ/δ leads to increased plasma HDL-cholesterol and decreased plasma triglyceride levels. In this paper, a fresh perspective on the relation between PPARs and lipoprotein metabolism is presented. The emphasis is on the physiological role of PPARs and the mechanisms underlying the effect of synthetic PPAR agonists on plasma lipoprotein levels.

  18. Identification of Gene Markers for Activation of the Nuclear Receptor Pregnane X Receptor

    Science.gov (United States)

    Many environmentally-relevant chemicals and drugs activate the nuclear receptor pregnane X receptor (PXR). Activation of PXR in the mouse liver can lead to increases in liver weight in part through increased hepatocyte replication similar to chemicals that activate other nuclear ...

  19. Identification of Gene Markers for Activation of the Nuclear Receptor Pregnane X Receptor

    Science.gov (United States)

    Many environmentally-relevant chemicals and drugs activate the nuclear receptor pregnane X receptor (PXR). Activation of PXR in the mouse liver can lead to increases in liver weight in part through increased hepatocyte replication similar to chemicals that activate other nuclear ...

  20. Model for growth hormone receptor activation based on subunit rotation within a receptor dimer

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Richard J.; Adams, Julian J.; Pelekanos, Rebecca A.; Wan, Yu; McKinstry, William J.; Palethorpe, Kathryn; Seeber, Ruth M.; Monks, Thea A.; Eidne, Karin A.; Parker, Michael W.; Waters, Michael J. (UWA); (St. Vincent); (Queensland)

    2010-07-13

    Growth hormone is believed to activate the growth hormone receptor (GHR) by dimerizing two identical receptor subunits, leading to activation of JAK2 kinase associated with the cytoplasmic domain. However, we have reported previously that dimerization alone is insufficient to activate full-length GHR. By comparing the crystal structure of the liganded and unliganded human GHR extracellular domain, we show here that there is no substantial change in its conformation on ligand binding. However, the receptor can be activated by rotation without ligand by inserting a defined number of alanine residues within the transmembrane domain. Fluorescence resonance energy transfer (FRET), bioluminescence resonance energy transfer (BRET) and coimmunoprecipitation studies suggest that receptor subunits undergo specific transmembrane interactions independent of hormone binding. We propose an activation mechanism involving a relative rotation of subunits within a dimeric receptor as a result of asymmetric placement of the receptor-binding sites on the ligand.

  1. Inhibition of tumor growth and metastasis by ATF-Fc, an engineered antibody targeting urokinase receptor.

    Science.gov (United States)

    Hu, Xian-Wen; Duan, Hai-Feng; Gao, Li-Hua; Pan, Shu-Yuan; Li, Yong-Mei; Xi, Yongyi; Zhao, Su-Rong; Yin, Liang; Li, Jin-Feng; Chen, Hui-Peng; Wu, Chu-Tse

    2008-05-01

    Urokinase (uPA) and its receptor (uPAR) play an important role in tumor growth and metastasis, and overexpression of these molecules is strongly correlated with poor prognosis in a variety of malignant tumors. In this study, ATF-Fc, an antibody-like molecule comprising the amino-terminal fragment of human uPA (ATF) linked to the Fc fragment of human IgG1 via a flexible linker was developed. Its antitumor activities were evaluated in vitro and in vivo. The results showed that ATF-Fc had obvious cytotoxic effect on several types of tumor cells, which is dependent on cellular expression of uPAR and its Fc fragment. Treatment with ATF-Fc caused a significant suppression on tumor growth and metastasis of xenograft human tumors (MCF-7 breast cancer and BGC-823 gastric cancer) in athymic nude mice. Furthermore, we demonstrated that ATF-Fc had an anti-angiogenesis activity both in vitro and in vivo. In conclusion, we provided a novel therapeutic antibody-like molecule in the management of a variety of solid tumors by disrupting the uPA/uPAR interaction.

  2. Interleukin-6 infusion during human endotoxaemia inhibits in vitro release of the urokinase receptor from peripheral blood mononuclear cells

    DEFF Research Database (Denmark)

    Ostrowski, S R; Plomgaard, P; Fischer, C P

    2005-01-01

    Leucocyte expression of the urokinase receptor [urokinase-type plasminogen activator receptor (uPAR)] is regulated by inflammatory mediators. This study investigated the in vivo effect of endotoxin, interleukin (IL)-6 and tumour necrosis factor (TNF)-alpha on uPAR-release in vivo and in vitro...... in humans. Healthy subjects received intravenous endotoxin injection [high-dose, 2 ng/kg (n=8) and low-dose, 0.06 ng/kg (n=7)], coadministration of 0.06 ng/kg endotoxin and 3 h recombinant human (rh)IL-6 infusion (n=7) or 3 h infusion of rhIL-6 (n=6), rhTNF-alpha (n=6) or NaCl (n=5). Soluble uPAR (su......PAR) was measured by enzyme-linked immunosorbent assay in plasma and supernatants from unstimulated and phytohaemagglutinin and lipopolysaccharide-stimulated peripheral blood mononuclear cell (PBMC) cultures incubated for 24 h. The spontaneous and stimulated uPAR-release from PBMC cultures was enhanced 5 h after...

  3. Design, synthesis, biochemical studies, cellular characterization, and structure-based computational studies of small molecules targeting the urokinase receptor.

    Science.gov (United States)

    Wang, Fang; Eric Knabe, W; Li, Liwei; Jo, Inha; Mani, Timmy; Roehm, Hartmut; Oh, Kyungsoo; Li, Jing; Khanna, May; Meroueh, Samy O

    2012-08-01

    The urokinase receptor (uPAR) serves as a docking site to the serine protease urokinase-type plasminogen activator (uPA) to promote extracellular matrix (ECM) degradation and tumor invasion and metastasis. Previously, we had reported a small molecule inhibitor of the uPAR·uPA interaction that emerged from structure-based virtual screening. Here, we measure the affinity of a large number of derivatives from commercial sources. Synthesis of additional compounds was carried out to probe the role of various groups on the parent compound. Extensive structure-based computational studies suggested a binding mode for these compounds that led to a structure-activity relationship study. Cellular studies in non-small cell lung cancer (NSCLC) cell lines that include A549, H460 and H1299 showed that compounds blocked invasion, migration and adhesion. The effects on invasion of active compounds were consistent with their inhibition of uPA and MMP proteolytic activity. These compounds showed weak cytotoxicity consistent with the confined role of uPAR to metastasis.

  4. Research progress of the relationship between urokinase receptor in tumor progression and development%尿激酶受体与肿瘤转移的关系研究进展

    Institute of Scientific and Technical Information of China (English)

    王合兵; 肖坚; 陈文新; 杨炳林

    2014-01-01

    Elevated level of urokinase receptor (uPAR) is detected in various aggressive cancer types and is closely associated with poor prognosis of cancers. Binding of uPA to uPAR triggers the conversion of plasminogen to plasmin and the subsequent activation of metalloproteinases. These events confer tumor cells with the capability to degrade the components of the surrounding extracellular matrix, thus contributing to tumor cell invasion and metastasis. uPA-uPAR interaction also elicits signals that stimulate cell proliferation/survival and the expression of tumor-promoting genes, thus assisting tumor development. In addition to its interaction with uPA, uPAR also interacts with vitronectin and this interaction promotes cancer metastasis by activating Rac and stimulating cell migration. Although underlying mechanisms are yet to be fully elucidated, uPAR has been shown to facilitate epithelial-mesenchymal transition (EMT) and induce cancer stem cell-like properties in breast cancer cells. The fact that uPAR lacks intracellular domain suggests that its signaling must be mediated through its co-receptors. Indeed, uPAR interacts with diverse transmembrane proteins including integrins, ENDO180, G protein-coupled receptors and growth factor receptors in cancer cells and these interactions are proven to be critical for the role of uPAR in tumorigenesis. Inhibitory peptide that prevents uPA-uPAR interaction has shown the promise to prolong patients’ survival in the early stage of clinical trial. The importance of uPAR’s co-receptor in uPAR’s tumor-promoting effects implicate that anti-cancer therapeutic agents may also be developed by disrupting the interactions between uPAR and its functional partners.%尿激酶受体(uPAR)水平升高在不同类型的浸润性肿瘤中大多可检测到,且与肿瘤预后差密切相关。尿激酶(uPA)与uPAR结合触发纤溶酶原转换成纤维蛋白溶酶,继而出现基质金属蛋白酶被激活,降低周围的细

  5. Recruitment of activation receptors at inhibitory NK cell immune synapses.

    Directory of Open Access Journals (Sweden)

    Nicolas Schleinitz

    Full Text Available Natural killer (NK cell activation receptors accumulate by an actin-dependent process at cytotoxic immune synapses where they provide synergistic signals that trigger NK cell effector functions. In contrast, NK cell inhibitory receptors, including members of the MHC class I-specific killer cell Ig-like receptor (KIR family, accumulate at inhibitory immune synapses, block actin dynamics, and prevent actin-dependent phosphorylation of activation receptors. Therefore, one would predict inhibition of actin-dependent accumulation of activation receptors when inhibitory receptors are engaged. By confocal imaging of primary human NK cells in contact with target cells expressing physiological ligands of NK cell receptors, we show here that this prediction is incorrect. Target cells included a human cell line and transfected Drosophila insect cells that expressed ligands of NK cell activation receptors in combination with an MHC class I ligand of inhibitory KIR. The two NK cell activation receptors CD2 and 2B4 accumulated and co-localized with KIR at inhibitory immune synapses. In fact, KIR promoted CD2 and 2B4 clustering, as CD2 and 2B4 accumulated more efficiently at inhibitory synapses. In contrast, accumulation of KIR and of activation receptors at inhibitory synapses correlated with reduced density of the integrin LFA-1. These results imply that inhibitory KIR does not prevent CD2 and 2B4 signaling by blocking their accumulation at NK cell immune synapses, but by blocking their ability to signal within inhibitory synapses.

  6. 新型抗uPAR人源化抗体的表达和活性检测%Expression and activity detection of the humanized anti-uPAR antibody

    Institute of Scientific and Technical Information of China (English)

    孙梦梅; 靳彦文; 李平; 曹诚; 张部昌

    2011-01-01

    目的 制备抗尿激酶型纤溶酶原激活物受体(uPAR)人源化抗体并初步检测它们与抗原的亲和能力.方法 通过计算机辅助设计的结果,合成新型抗uPAR抗体的轻链和重链可变区基因序列,通过重叠PCR方法,拼接成完整的轻链和重链基因并克隆入pIRES双向表达载体.瞬时转染293T细胞,收取细胞上清,rProtein A亲和层析法纯化目的 抗体,并进行SDS-PAGE和免疫印迹鉴定,采用Biacore3000技术检测抗体与抗原的结合能力.结果 成功构建5种表达载体S1~S5,纯化的抗体在还原SDS-PAGE中表现为相对分子质量约为25×103和55×103两条带;免疫印迹分析表明,该人源化抗体可与羊抗人IgG特异性结合.Biacore3000实验结果表明,S2、S4和S5抗体与抗原具有良好的亲和活性,且素和活性分别为1.74×10-8,1.49×10-8和1.05×10-8 mol/L.结论 成功构建并表达了5种抗uPAR人源化抗体,其中S2、S4和S5具有良好的抗原结合能力.%Objective To prepare the humanized monoclonal antibodies against urokinase-type plasminogen activator receptor (uPAR), and preliminarily detect their affinity to uPAR. Methods L and VH genes of humanized monoclonal antibodies against uPAR were designed by the computer and synthesized by overlap PCR. Genes encoding L and H chains were connected and then cloned into vector pIRES,a bicistronic expression vector. The recombinant plasmids were transfected into 293T cells, purified antibodies through rProteinA affinity chromatography,and further confirmed by Westernblotting. The affinity of the humanized antibodies to the uPAR was assessed by Biacore assay. Results Five expression vectors were constructed and the humanized monoclonal antibodies against uPAR were expressed and purified successfully.In reducing SDS-PAGE, the antibodies exhibited two bands of approximately 25 × 103 and 55 × 103, respectively. Western blotting assay showed that the humanized antibodies had recognition specificity to

  7. Thyroid hormone receptors regulate adipogenesis and carcinogenesis via crosstalk signaling with peroxisome proliferator-activated receptors

    Science.gov (United States)

    Lu, Changxue; Cheng, Sheue-Yann

    2012-01-01

    Peroxisome proliferator-activated receptors (PPARs) and thyroid hormone receptors (TRs) are members of the nuclear receptor superfamily. They are ligand-dependent transcription factors that interact with their cognate hormone response elements in the promoters to regulate respective target gene expression to modulate cellular functions. While the transcription activity of each is regulated by their respective ligands, recent studies indicate that via multiple mechanisms PPARs and TRs crosstalk to affect diverse biological functions. Here, we review recent advances in the understanding of the molecular mechanisms and biological impact of crosstalk between these two important nuclear receptors, focusing on their roles in adipogenesis and carcinogenesis. PMID:19741045

  8. Thyroid hormone receptors regulate adipogenesis and carcinogenesis via crosstalk signaling with peroxisome proliferator-activated receptors.

    Science.gov (United States)

    Lu, Changxue; Cheng, Sheue-Yann

    2010-03-01

    Peroxisome proliferator-activated receptors (PPARs) and thyroid hormone receptors (TRs) are members of the nuclear receptor superfamily. They are ligand-dependent transcription factors that interact with their cognate hormone response elements in the promoters to regulate respective target gene expression to modulate cellular functions. While the transcription activity of each is regulated by their respective ligands, recent studies indicate that via multiple mechanisms PPARs and TRs crosstalk to affect diverse biological functions. Here, we review recent advances in the understanding of the molecular mechanisms and biological impact of crosstalk between these two important nuclear receptors, focusing on their roles in adipogenesis and carcinogenesis.

  9. Cell death sensitization of leukemia cells by opioid receptor activation

    Science.gov (United States)

    Friesen, Claudia; Roscher, Mareike; Hormann, Inis; Fichtner, Iduna; Alt, Andreas; Hilger, Ralf A.; Debatin, Klaus-Michael; Miltner, Erich

    2013-01-01

    Cyclic AMP (cAMP) regulates a number of cellular processes and modulates cell death induction. cAMP levels are altered upon stimulation of specific G-protein-coupled receptors inhibiting or activating adenylyl cyclases. Opioid receptor stimulation can activate inhibitory Gi-proteins which in turn block adenylyl cyclase activity reducing cAMP. Opioids such as D,L-methadone induce cell death in leukemia cells. However, the mechanism how opioids trigger apoptosis and activate caspases in leukemia cells is not understood. In this study, we demonstrate that downregulation of cAMP induced by opioid receptor activation using the opioid D,L-methadone kills and sensitizes leukemia cells for doxorubicin treatment. Enhancing cAMP levels by blocking opioid-receptor signaling strongly reduced D,L-methadone-induced apoptosis, caspase activation and doxorubicin-sensitivity. Induction of cell death in leukemia cells by activation of opioid receptors using the opioid D,L-methadone depends on critical levels of opioid receptor expression on the cell surface. Doxorubicin increased opioid receptor expression in leukemia cells. In addition, the opioid D,L-methadone increased doxorubicin uptake and decreased doxorubicin efflux in leukemia cells, suggesting that the opioid D,L-methadone as well as doxorubicin mutually increase their cytotoxic potential. Furthermore, we found that opioid receptor activation using D,L-methadone alone or in addition to doxorubicin inhibits tumor growth significantly in vivo. These results demonstrate that opioid receptor activation via triggering the downregulation of cAMP induces apoptosis, activates caspases and sensitizes leukemia cells for doxorubicin treatment. Hence, opioid receptor activation seems to be a promising strategy to improve anticancer therapies. PMID:23633472

  10. Activation of glucocorticoid receptors increases 5-HT2A receptor levels

    DEFF Research Database (Denmark)

    Trajkovska, Viktorija; Kirkegaard, Lisbeth; Krey, Gesa;

    2009-01-01

    Major depression is associated with both dysregulation of the hypothalamic pituitary adrenal axis and serotonergic deficiency, not the least of the 5-HT2A receptor. However, how these phenomena are linked to each other, and whether a low 5-HT2A receptor level is a state or a trait marker...... of depression is unknown. In mice with altered glucocorticoid receptor (GR) expression we investigated 5-HT2A receptor levels by Western blot and 3H-MDL100907 receptor binding. Serotonin fibre density was analyzed by stereological quantification of serotonin transporter immunopositive fibers. To establish...... an effect of GR activation on 5-HT2A levels, mature organotypic hippocampal cultures were exposed to corticosterone with or without GR antagonist mifepristone and mineralocorticoid receptor (MR) antagonist spironolactone. In GR under-expressing mice, hippocampal 5-HT2A receptor protein levels were decreased...

  11. Family C 7TM receptor dimerization and activation

    DEFF Research Database (Denmark)

    Bonde, Marie Mi; Sheikh, Søren P; Hansen, Jakob Lerche

    2006-01-01

    The family C seven transmembrane (7TM) receptors constitutes a small and especially well characterized subfamily of the large 7TM receptor superfamily. Approximately 50% of current prescription drugs target 7TM receptors, this biologically important family represents the largest class of drug......-targets today. It is well established that family C 7TM receptors form homo- or hetero-dimers on the cell surface of living cells. The large extra-cellular domains (ECD) have been crystallized as a dimer in the presence and absence of agonist. Upon agonist binding, the dimeric ECD undergoes large conformational...... to be fully defined. This review presents the biochemical support for family C 7TM receptor dimerization and discusses its importance for receptor biosynthesis, surface expression, ligand binding and activation, since lessons learnt here may well be applicable to the whole superfamily of 7TM receptors....

  12. Functional characterization of protease-activated receptor -1 palmitoylation in receptor signaling and trafficking /

    OpenAIRE

    2014-01-01

    G protein-coupled receptors (GPCRs) are the largest family of signaling receptors that respond to diverse stimuli and regulate many physiological responses. GPCRs elicit their cellular responses by coupling to distinct subtypes of heterotrimeric G-proteins composed of G[alpha] and G[beta][gamma] subunits. Activated GPCRs undergo conformational changes that allow the receptor to exchange GDP for GTP on the G[alpha] subunit, which induces dissociation from the [beta][gamma] subunits and subsequ...

  13. The Orphan Nuclear Receptor TR4 Is a Vitamin A-activated Nuclear Receptor

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, X. Edward; Suino-Powell, Kelly M.; Xu, Yong; Chan, Cee-Wah; Tanabe, Osamu; Kruse, Schoen W.; Reynolds, Ross; Engel, James Douglas; Xu, H. Eric (Michigan-Med); (Van Andel)

    2015-11-30

    Testicular receptors 2 and 4 (TR2/4) constitute a subgroup of orphan nuclear receptors that play important roles in spermatogenesis, lipid and lipoprotein regulation, and the development of the central nervous system. Currently, little is known about the structural features and the ligand regulation of these receptors. Here we report the crystal structure of the ligand-free TR4 ligand binding domain, which reveals an autorepressed conformation. The ligand binding pocket of TR4 is filled by the C-terminal half of helix 10, and the cofactor binding site is occupied by the AF-2 helix, thus preventing ligand-independent activation of the receptor. However, TR4 exhibits constitutive transcriptional activity on multiple promoters, which can be further potentiated by nuclear receptor coactivators. Mutations designed to disrupt cofactor binding, dimerization, or ligand binding substantially reduce the transcriptional activity of this receptor. Importantly, both retinol and retinoic acid are able to promote TR4 to recruit coactivators and to activate a TR4-regulated reporter. These findings demonstrate that TR4 is a ligand-regulated nuclear receptor and suggest that retinoids might have a much wider regulatory role via activation of orphan receptors such as TR4.

  14. The orphan nuclear receptor TR4 is a vitamin A-activated nuclear receptor.

    Science.gov (United States)

    Zhou, X Edward; Suino-Powell, Kelly M; Xu, Yong; Chan, Cee-Wah; Tanabe, Osamu; Kruse, Schoen W; Reynolds, Ross; Engel, James Douglas; Xu, H Eric

    2011-01-28

    Testicular receptors 2 and 4 (TR2/4) constitute a subgroup of orphan nuclear receptors that play important roles in spermatogenesis, lipid and lipoprotein regulation, and the development of the central nervous system. Currently, little is known about the structural features and the ligand regulation of these receptors. Here we report the crystal structure of the ligand-free TR4 ligand binding domain, which reveals an autorepressed conformation. The ligand binding pocket of TR4 is filled by the C-terminal half of helix 10, and the cofactor binding site is occupied by the AF-2 helix, thus preventing ligand-independent activation of the receptor. However, TR4 exhibits constitutive transcriptional activity on multiple promoters, which can be further potentiated by nuclear receptor coactivators. Mutations designed to disrupt cofactor binding, dimerization, or ligand binding substantially reduce the transcriptional activity of this receptor. Importantly, both retinol and retinoic acid are able to promote TR4 to recruit coactivators and to activate a TR4-regulated reporter. These findings demonstrate that TR4 is a ligand-regulated nuclear receptor and suggest that retinoids might have a much wider regulatory role via activation of orphan receptors such as TR4.

  15. Tools and techniques to study ligand-receptor interactions and receptor activation by TNF superfamily members.

    Science.gov (United States)

    Schneider, Pascal; Willen, Laure; Smulski, Cristian R

    2014-01-01

    Ligands and receptors of the TNF superfamily are therapeutically relevant targets in a wide range of human diseases. This chapter describes assays based on ELISA, immunoprecipitation, FACS, and reporter cell lines to monitor interactions of tagged receptors and ligands in both soluble and membrane-bound forms using unified detection techniques. A reporter cell assay that is sensitive to ligand oligomerization can identify ligands with high probability of being active on endogenous receptors. Several assays are also suitable to measure the activity of agonist or antagonist antibodies, or to detect interactions with proteoglycans. Finally, self-interaction of membrane-bound receptors can be evidenced using a FRET-based assay. This panel of methods provides a large degree of flexibility to address questions related to the specificity, activation, or inhibition of TNF-TNF receptor interactions in independent assay systems, but does not substitute for further tests in physiologically relevant conditions.

  16. Cellular receptor for urokinase plasminogen activator. Carboxyl-terminal processing and membrane anchoring by glycosyl-phosphatidylinositol

    DEFF Research Database (Denmark)

    Ploug, M; Rønne, E; Behrendt, N

    1991-01-01

    analysis of u-PAR after micropurification by affinity chromatography and N-[2-hydroxy-1,1-bis(hydroxymethyl)-ethyl]glycine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed the presence of 2-3 mol of ethanolamine/mol protein. 2) Membrane-bound u-PAR is efficiently released from the surface...

  17. Evaluation of single amino acid chelate derivatives and regioselective radiolabelling of a cyclic peptide for the urokinase plasminogen activator receptor

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Andrea F.; Lemon, Jennifer A. [McMaster Institute for Applied Radiation Sciences, McMaster University, ON, L8S 4M1 (Canada); Czorny, Shannon K. [McMaster Institute for Applied Radiation Sciences, McMaster University, ON, L8S 4M1 (Canada); Juravinski Cancer Centre, Hamilton, ON, L8V 5C2 (Canada); Singh, Gurmit [Juravinski Cancer Centre, Hamilton, ON, L8V 5C2 (Canada); Valliant, John F. [Department of Chemistry, McMaster University, Hamilton, ON, L8S 4M1 (Canada); Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, ON, L8S 4M1 (Canada)], E-mail: valliant@mcmaster.ca

    2009-11-15

    Introduction: The aim of this work was to investigate the relative radiolabelling kinetics and affinity of a series of ligands for the [{sup 99m}Tc(CO){sub 3}]{sup +} core, both in the absence and in the presence of competing donors. This information was used to select a suitable ligand for radiolabelling complex peptide-based targeting vectors in high yield under mild conditions. Methods: A series of {alpha}-N-Fmoc-protected lysine derivatives bearing two heterocyclic donor groups at the {epsilon}-amine (, 2-pyridyl; , quinolyl; , 6-methoxy-2-pyridyl; 1d, 2-thiazolyl; 1e, N-methylimidazolyl; , 3-pyridyl) were synthesized and labelled with {sup 99m}Tc. A resin-capture purification strategy for the separation of residual ligand from the radiolabelled product was also developed. The binding affinities of targeted peptides 4, 5a and 5b for uPAR were determined using flow cytometry. Results: Variable temperature radiolabelling reactions using - and [{sup 99m}Tc(CO){sub 3}]{sup +} revealed optimal kinetics and good selectivity for compounds and 1d; in the case of , 1d, and 1e, the labelling can be conducted at ambient temperature. The utility of this class of ligands was further demonstrated by the radiolabelling of a cyclic peptide that is known to target the serine protease receptor uPAR; essentially quantitative incorporation of {sup 99m}Tc occurred exclusively at the SAAC site, despite the presence of a His residue, and without disruption of the disulfide bond. Conclusion: A series of single amino acid chelate (SAAC) ligands have been evaluated for their ability to incorporate {sup 99m}Tc into peptides. The lead agent to emerge from this work is the thiazole SAAC derivative 1d which has demonstrated the ability to regioselectively label the widest range of peptides.

  18. Peroxisome Proliferator-Activated Receptor Alpha Target Genes

    OpenAIRE

    Maryam Rakhshandehroo; Bianca Knoch; Michael Müller; Sander Kersten

    2010-01-01

    The peroxisome proliferator-activated receptor alpha (PPAR alpha) is a ligand-activated transcription factor involved in the regulation of a variety of processes, ranging from inflammation and immunity to nutrient metabolism and energy homeostasis. PPAR alpha serves as a molecular target for hypolipidemic fibrates drugs which bind the receptor with high affinity. Furthermore, PPAR alpha binds and is activated by numerous fatty acids and fatty acid-derived compounds. PPAR alpha governs biologi...

  19. Gene expression changes of urokinase plasminogen activator and urokinase receptor in rat testes at postnatal stages%出生后不同发育阶段大鼠睾丸uPA/uPAR基因表达的变化

    Institute of Scientific and Technical Information of China (English)

    D.H. Huang; H. Zhao; Y.H.Tian; H. G.Li; X. F. Ding; C. L.Xiong

    2007-01-01

    目的:为探讨uPA/uPAR系统在大鼠精子发生中的作用,研究出生后不同发育阶段大鼠睾丸组织中uPA/uPARmRNA表达的变化.方法:分别取出生后0、5、10、15、21、28、35、42、49、56天大鼠的睾丸组织,用实时定量聚合酶链反应法(PCR)检测各年龄组uPA/uPAR mRNA的表达变化.结果:除了出生后0天外,在其它大多数时间点uPA与uPAR mRNA表达趋势很相似.在出生后0天,大鼠睾丸组织中uPAR mRNA表达水平相对来说高于uPA mRNA表达水平,后逐渐减少,在出生后21天表达水平最低,到28天急剧增加,35天到达高峰,42天迅速下降,之后维持一个低表达水平.结论:uPA/uPAR系统可能通过调节生精细胞迁移及增殖、促进精子排放及残余胞体从成熟精子中脱落等方式与精子排放和精子发生密切相关.%Aim: To investigate the gene expression changes of urokinase plasminogen activator (uPA)/urokinase receptor (uPAR)in rat testes at postnatal stages and explore the effects of uPA/uPAR system on the rat spermatogenesis. Methods:The mRNAs of uPA and uPAR in rat testes were measured by using real-time quantitative polymerase chain reaction (PCR) at postnatal days 0, 5, 10, 15, 21, 28, 35, 42, 49 and 56, respectively. Results: The tendencies of uPA and uPAR mRNA expression were similar at most postnatal stages except for D0. The expression of uPAR mRNA in rats testes was relatively higher than that of uPA at postnatal D0, and both were decreased until D21, increased obviously at postnatal D28, reached a peak at postnatal D35, then declined sharply at postnatal D42 and retained at a low level afterwards. Conclusion: The uPA/uPAR system may be strongly linked to spermiation and spermatogenesis via regulating germ cell migration and proliferation, as well as promoting the spermiation and detached residual bodies from the mature spermatids. (Asian J Androl 2007 Sep; 9: 679-683)

  20. [Regulation of G protein-coupled receptor kinase activity].

    Science.gov (United States)

    Haga, T; Haga, K; Kameyama, K; Nakata, H

    1994-09-01

    Recent progress on the activation of G protein-coupled receptor kinases is reviewed. beta-Adrenergic receptor kinase (beta ARK) is activated by G protein beta gamma -subunits, which interact with the carboxyl terminal portion of beta ARK. Muscarinic receptor m2-subtypes are phosphorylated by beta ARK1 in the central part of the third intracellular loop (I3). Phosphorylation of I3-GST fusion protein by beta ARK1 is synergistically stimulated by the beta gamma -subunits and mastoparan or a peptide corresponding to portions adjacent to the transmembrane segments of m2-receptors or by beta gamma -subunits and the agonist-bound I3-deleted m2 variant. These results indicate that agonist-bound receptors serve as both substrates and activators of beta ARK.

  1. Structural basis for activation of G-protein-coupled receptors

    DEFF Research Database (Denmark)

    Gether, Ulrik; Asmar, Fazila; Meinild, Anne Kristine

    2002-01-01

    -type and mutant beta2-adrenergic receptors purified from Sf-9 insect cells. Our studies have also raised important questions regarding kinetics of receptors activation. These questions should be addressed in the future by application of techniques that will allow for simultaneous measurement of conformational...

  2. Endomorphins fully activate a cloned human mu opioid receptor.

    Science.gov (United States)

    Gong, J; Strong, J A; Zhang, S; Yue, X; DeHaven, R N; Daubert, J D; Cassel, J A; Yu, G; Mansson, E; Yu, L

    1998-11-13

    Endomorphins were recently identified as endogenous ligands with high selectivity for mu opioid receptors. We have characterized the ability of endomorphins to bind to and functionally activate the cloned human mu opioid receptor. Both endomorphin-1 and endomorphin-2 exhibited binding selectivity for the mu opioid receptor over the delta and kappa opioid receptors. Both agonists inhibited forskolin-stimulated increase of cAMP in a dose-dependent fashion. When the mu opioid receptor was coexpressed in Xenopus oocytes with G protein-activated K+ channels, application of either endomorphin activated an inward K+ current. This activation was dose-dependent and blocked by naloxone. Both endomorphins acted as full agonists with efficacy similar to that of [D-Ala2,N-Me-Phe4,Gly-ol5]enkephalin (DAMGO). These data indicate that endomorphins act as full agonists at the human mu opioid receptor, capable of stimulating the receptor to inhibit the cAMP/adenylyl cyclase pathway and activate G-protein-activated inwardly rectifying potassium (GIRK) channels.

  3. Activating Receptor Signals Drive Receptor Diversity in Developing Natural Killer Cells.

    Science.gov (United States)

    Freund, Jacquelyn; May, Rebecca M; Yang, Enjun; Li, Hongchuan; McCullen, Matthew; Zhang, Bin; Lenvik, Todd; Cichocki, Frank; Anderson, Stephen K; Kambayashi, Taku

    2016-08-01

    It has recently been appreciated that NK cells exhibit many features reminiscent of adaptive immune cells. Considerable heterogeneity exists with respect to the ligand specificity of individual NK cells and as such, a subset of NK cells can respond, expand, and differentiate into memory-like cells in a ligand-specific manner. MHC I-binding inhibitory receptors, including those belonging to the Ly49 and KIR families, are expressed in a variegated manner, which creates ligand-specific diversity within the NK cell pool. However, how NK cells determine which inhibitory receptors to express on their cell surface during a narrow window of development is largely unknown. In this manuscript, we demonstrate that signals from activating receptors are critical for induction of Ly49 and KIR receptors during NK cell development; activating receptor-derived signals increased the probability of the Ly49 bidirectional Pro1 promoter to transcribe in the forward versus the reverse direction, leading to stable expression of Ly49 receptors in mature NK cells. Our data support a model where the balance of activating and inhibitory receptor signaling in NK cells selects for the induction of appropriate inhibitory receptors during development, which NK cells use to create a diverse pool of ligand-specific NK cells.

  4. Phenobarbital indirectly activates the constitutive active androstane receptor (CAR) by inhibition of epidermal growth factor receptor signaling.

    Science.gov (United States)

    Mutoh, Shingo; Sobhany, Mack; Moore, Rick; Perera, Lalith; Pedersen, Lee; Sueyoshi, Tatsuya; Negishi, Masahiko

    2013-05-07

    Phenobarbital is a central nervous system depressant that also indirectly activates nuclear receptor constitutive active androstane receptor (CAR), which promotes drug and energy metabolism, as well as cell growth (and death), in the liver. We found that phenobarbital activated CAR by inhibiting epidermal growth factor receptor (EGFR) signaling. Phenobarbital bound to EGFR and potently inhibited the binding of EGF, which prevented the activation of EGFR. This abrogation of EGFR signaling induced the dephosphorylation of receptor for activated C kinase 1 (RACK1) at Tyr(52), which then promoted the dephosphorylation of CAR at Thr(38) by the catalytic core subunit of protein phosphatase 2A. The findings demonstrated that the phenobarbital-induced mechanism of CAR dephosphorylation and activation is mediated through its direct interaction with and inhibition of EGFR.

  5. Interaction of chemokines with their receptors--from initial chemokine binding to receptor activating steps

    DEFF Research Database (Denmark)

    Thiele, Stefanie; Rosenkilde, Mette Marie

    2014-01-01

    interactions possibly occur, resulting in a multi-step process, as recently proposed for other 7TM receptors. Overall, the N-terminus of chemokine receptors is pivotal for binding of all chemokines. During receptor activation, differences between the two major chemokine subgroups occur, as CC-chemokines mainly......The human chemokine system comprises 19 seven-transmembrane helix (7TM) receptors and 45 endogenous chemokines that often interact with each other in a promiscuous manner. Due to the chemokine system's primary function in leukocyte migration, it has a central role in immune homeostasis...... and surveillance. Chemokines are a group of 8-12 kDa large peptides with a secondary structure consisting of a flexible N-terminus and a core-domain usually stabilized by two conserved disulfide bridges. They mainly interact with the extracellular domains of their cognate 7TM receptors. Affinityand activity...

  6. Tonic activation of presynaptic GABAB receptors on rat pallidosubthalamic terminals

    Institute of Scientific and Technical Information of China (English)

    Lei CHEN; Wing-ho YUNG

    2005-01-01

    Aim: The subthalamic nucleus plays a critical role in the regulation of movement,and abnormal activity of its neurons is associated with some basal ganglia motor symptoms. We examined the presence of functional presynaptic GABAB receptors on pallidosubthalamic terminals and tested whether they were tonically active in the in vitro subthalamic slices. Methods: Whole-cell patch-clamp recordings were applied to acutely prepared rat subthalamic nucleus slices. The effects of specific GABAB agonist and antagonist on action potential-independent inhibitory postsynapfic currents (IPSCs), as well as holding current, were examined.Results: Superfusion of baclofen, a GABAB receptor agonist, significantly reduced the frequency of GABAA receptor-mediated miniature IPSCs (mIPSCs), in a Cd2+-sensitive manner, with no effect on the amplitude, indicating presynaptic inhibition on GABA release. In addition, baclofen induced a weak outward current only in a minority of subthalamic neurons. Both the pre- and post-synaptic effects of baclofen were prevented by the specific GABAB receptor antagonist,CGP55845. Furthermore, CGP55845 alone increased the frequency of mIPSCs,but had no effect on the holding current. Conclusion: These findings suggest the functional dominance of presynaptic GABAB receptors on the pallidosubthalamic terminals over the postsynaptic GABAB receptors on subthalamic neurons.Furthermore, the presynaptic, but not the postsynaptic, GABAB receptors are tonically active, suggesting that the presynaptic GABAB receptors in the subthalamic nucleus are potential therapeutic target for the treatment of Parkinson disease.

  7. Structure and dynamics of a constitutively active neurotensin receptor

    Energy Technology Data Exchange (ETDEWEB)

    Krumm, Brian E. [National Inst. of Health (NIH), Rockville, MD (United States). National Inst. of Neurological Disorders and Stroke, Dept. of Health and Human Services; Lee, Sangbae [Beckman Research Inst. of the City of Hope, Duarte, CA (United States). Dept. of Molecular Immunology; Bhattacharya, Supriyo [Beckman Research Inst. of the City of Hope, Duarte, CA (United States). Dept. of Molecular Immunology; Botos, Istvan [National Inst. of Health (NIH), Bethesda, MD (United States). National Inst. of Diabetes and; White, Courtney F. [National Inst. of Health (NIH), Rockville, MD (United States). National Inst. of Neurological Disorders and Stroke, Dept. of Health and Human Services; Du, Haijuan [National Inst. of Health (NIH), Rockville, MD (United States). National Inst. of Neurological Disorders and Stroke, Dept. of Health and Human Services; Vaidehi, Nagarajan [Beckman Research Inst. of the City of Hope, Duarte, CA (United States). Dept. of Molecular Immunology; Grisshammer, Reinhard [National Inst. of Health (NIH), Rockville, MD (United States). National Inst. of Neurological Disorders and Stroke, Dept. of Health and Human Services

    2016-12-07

    Many G protein-coupled receptors show constitutive activity, resulting in the production of a second messenger in the absence of an agonist; and naturally occurring constitutively active mutations in receptors have been implicated in diseases. To gain insight into mechanistic aspects of constitutive activity, we report here the 3.3 Å crystal structure of a constitutively active, agonist-bound neurotensin receptor (NTSR1) and molecular dynamics simulations of agonist-occupied and ligand-free receptor. Comparison with the structure of a NTSR1 variant that has little constitutive activity reveals uncoupling of the ligand-binding domain from conserved connector residues, that effect conformational changes during GPCR activation. Furthermore, molecular dynamics simulations show strong contacts between connector residue side chains and increased flexibility at the intracellular receptor face as features that coincide with robust signalling in cells. The loss of correlation between the binding pocket and conserved connector residues, combined with altered receptor dynamics, possibly explains the reduced neurotensin efficacy in the constitutively active NTSR1 and a facilitated initial engagement with G protein in the absence of agonist.

  8. Activation of 5-HT7 receptors increases neuronal platelet-derived growth factor β receptor expression.

    Science.gov (United States)

    Vasefi, Maryam S; Kruk, Jeff S; Liu, Hui; Heikkila, John J; Beazely, Michael A

    2012-03-09

    Several antipsychotics have a high affinity for 5-HT7 receptors yet despite intense interest in the 5-HT7 receptor as a potential drug target to treat psychosis, the function and signaling properties of 5-HT7 receptors in neurons remain largely uncharacterized. In primary mouse hippocampal and cortical neurons, as well as in the SH-SY5Y cell line, incubation with 5-HT, 5-carboxamidotryptamine (5-CT), or 5-HT7 receptor-selective agonists increases the expression of platelet-derived growth factor (PDGF)β receptors. The increased PDGFβ receptor expression is cyclic AMP-dependent protein kinase (PKA)-dependent, suggesting that 5-HT7 receptors couple to Gα(s) in primary neurons. Interestingly, up-regulated PDGFβ receptors display an increased basal phosphorylation state at the phospholipase Cγ-activating tyrosine 1021. This novel linkage between the 5-HT7 receptor and the PDGF system may be an important GPCR-neurotrophic factor signaling pathway in neurons.

  9. Multiple switches in G protein-coupled receptor activation.

    Science.gov (United States)

    Ahuja, Shivani; Smith, Steven O

    2009-09-01

    The activation mechanism of G protein-coupled receptors has presented a puzzle that finally may be close to solution. These receptors have a relatively simple architecture consisting of seven transmembrane helices that contain just a handful of highly conserved amino acids, yet they respond to light and a range of chemically diverse ligands. Recent NMR structural studies on the active metarhodopsin II intermediate of the visual receptor rhodopsin, along with the recent crystal structure of the apoprotein opsin, have revealed multiple structural elements or 'switches' that must be simultaneously triggered to achieve full activation. The confluence of several required structural changes is an example of "coincidence counting", which is often used by nature to regulate biological processes. In ligand-activated G protein-coupled receptors, the presence of multiple switches may provide an explanation for the differences between full, partial and inverse agonists.

  10. Activation of α7-containing nicotinic receptors on astrocytes triggers AMPA receptor recruitment to glutamatergic synapses.

    Science.gov (United States)

    Wang, Xulong; Lippi, Giordano; Carlson, David M; Berg, Darwin K

    2013-12-01

    Astrocytes, an abundant form of glia, are known to promote and modulate synaptic signaling between neurons. They also express α7-containing nicotinic acetylcholine receptors (α7-nAChRs), but the functional relevance of these receptors is unknown. We show here that stimulation of α7-nAChRs on astrocytes releases components that induce hippocampal neurons to acquire more α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors post-synaptically at glutamatergic synapses. The increase is specific in that no change is seen in synaptic NMDA receptor clusters or other markers for glutamatergic synapses, or in markers for GABAergic synapses. Moreover, the increases in AMPA receptors on the neuron surface are accompanied by increases in the frequency of spontaneous miniature synaptic currents mediated by the receptors and increases in the ratio of evoked synaptic currents mediated by AMPA versus NMDA receptors. This suggests that stimulating α7-nAChRs on astrocytes can convert 'silent' glutamatergic synapses to functional status. Astrocyte-derived thrombospondin is necessary but not sufficient for the effect, while tumor necrosis factor-α is sufficient but not necessary. The results identify astrocyte α7-nAChRs as a novel pathway through which nicotinic cholinergic signaling can promote the development of glutamatergic networks, recruiting AMPA receptors to post-synaptic sites and rendering the synapses more functional. We find that activation of nicotinic receptors on astrocytes releases a component that specifically recruits AMPA receptors to glutamatergic synapses. The recruitment appears to occur preferentially at what may be 'silent synapses', that is, synapses that have all the components required for glutamatergic transmission (including NMDA receptors) but lack sufficient AMPA receptors to generate a response. The results are unexpected and open up new possibilities for mechanisms underlying network formation and synaptic plasticity.

  11. 5-HT7 receptor activation promotes an increase in TrkB receptor expression and phosphorylation.

    Science.gov (United States)

    Samarajeewa, Anshula; Goldemann, Lolita; Vasefi, Maryam S; Ahmed, Nawaz; Gondora, Nyasha; Khanderia, Chandni; Mielke, John G; Beazely, Michael A

    2014-01-01

    The serotonin (5-HT) type 7 receptor is expressed throughout the CNS including the cortex and hippocampus. We have previously demonstrated that the application of 5-HT7 receptor agonists to primary hippocampal neurons and SH-SY5Y cells increases platelet-derived growth factor (PDGF) receptor expression and promotes neuroprotection against N-methyl-D-aspartate-(NMDA)-induced toxicity. The tropomyosin-related kinase B (TrkB) receptor is one of the receptors for brain-derived neurotrophic factor (BDNF) and is associated with neurodevelopmental and neuroprotective effects. Application of LP 12 to primary cerebral cortical cultures, SH-SY5Y cells, as well as the retinal ganglion cell line, RGC-5, increased both the expression of full length TrkB as well as its basal phosphorylation state at tyrosine 816. The increase in TrkB expression and phosphorylation was observed as early as 30 min after 5-HT7 receptor activation. In addition to full-length TrkB, kinase domain-deficient forms may be expressed and act as dominant-negative proteins toward the full length receptor. We have identified distinct patterns of TrkB isoform expression across our cell lines and cortical cultures. Although TrkB receptor expression is regulated by cyclic AMP and Gαs-coupled GPCRs in several systems, we demonstrate that, depending on the model system, pathways downstream of both Gαs and Gα12 are involved in the regulation of TrkB expression by 5-HT7 receptors. Given the number of psychiatric and degenerative diseases associated with TrkB/BDNF deficiency and the current interest in developing 5-HT7 receptor ligands as pharmaceuticals, identifying signaling relationships between these two receptors will aid in our understanding of the potential therapeutic effects of 5-HT7 receptor ligands.

  12. 5-HT7 receptor activation promotes an increase in TrkB receptor expression and phosphorylation

    Directory of Open Access Journals (Sweden)

    Anshula eSamarajeewa

    2014-11-01

    Full Text Available The serotonin (5-HT type 7 receptor is expressed throughout the CNS including cortical neurons. We have previously demonstrated that the application of 5-HT7 receptor agonists to primary hippocampal neurons and SH-SY5Y cells increases platelet-derived growth factor (PDGF receptor expression and promotes neuroprotection against N-methyl-D-aspartate-(NMDA-induced toxicity. The tropomyosin-related kinase B (TrkB receptor is one of the receptors for brain-derived neurotrophic factor (BDNF and is associated with neurodevelopmental and neuroprotective effects. Application of LP 12 to primary cerebral cortical cultures, SH-SY5Y cells, as well as the retinal ganglion cell line, RGC-5, increased both the expression of full length TrkB as well as its basal phosphorylation state at tyrosine 816. The increase in TrkB expression and phosphorylation was observed as early as 30 min after 5-HT7 receptor activation. In addition to full-length TrkB, kinase domain-deficient forms may be expressed and act as dominant-negative proteins towards the full length receptor. We have identified distinct patterns of TrkB isoform expression across our cell lines and cortical cultures. Although TrkB receptor expression is regulated by cyclic AMP and Gαs-coupled GPCRs in several systems, we demonstrate that, depending on the model system, pathways downstream of both Gαs and Gα12 are involved in the regulation of TrkB expression by 5-HT7 receptors. Given the number of psychiatric and degenerative diseases associated with TrkB/BDNF deficiency and the current interest in developing 5-HT7 receptor ligands as pharmaceuticals, identifying signaling relationships between these two receptors will aid in our understanding of the potential therapeutic effects of 5-HT7 receptor ligands.

  13. 5-HT7 receptor activation promotes an increase in TrkB receptor expression and phosphorylation

    Science.gov (United States)

    Samarajeewa, Anshula; Goldemann, Lolita; Vasefi, Maryam S.; Ahmed, Nawaz; Gondora, Nyasha; Khanderia, Chandni; Mielke, John G.; Beazely, Michael A.

    2014-01-01

    The serotonin (5-HT) type 7 receptor is expressed throughout the CNS including the cortex and hippocampus. We have previously demonstrated that the application of 5-HT7 receptor agonists to primary hippocampal neurons and SH-SY5Y cells increases platelet-derived growth factor (PDGF) receptor expression and promotes neuroprotection against N-methyl-D-aspartate-(NMDA)-induced toxicity. The tropomyosin-related kinase B (TrkB) receptor is one of the receptors for brain-derived neurotrophic factor (BDNF) and is associated with neurodevelopmental and neuroprotective effects. Application of LP 12 to primary cerebral cortical cultures, SH-SY5Y cells, as well as the retinal ganglion cell line, RGC-5, increased both the expression of full length TrkB as well as its basal phosphorylation state at tyrosine 816. The increase in TrkB expression and phosphorylation was observed as early as 30 min after 5-HT7 receptor activation. In addition to full-length TrkB, kinase domain-deficient forms may be expressed and act as dominant-negative proteins toward the full length receptor. We have identified distinct patterns of TrkB isoform expression across our cell lines and cortical cultures. Although TrkB receptor expression is regulated by cyclic AMP and Gαs-coupled GPCRs in several systems, we demonstrate that, depending on the model system, pathways downstream of both Gαs and Gα12 are involved in the regulation of TrkB expression by 5-HT7 receptors. Given the number of psychiatric and degenerative diseases associated with TrkB/BDNF deficiency and the current interest in developing 5-HT7 receptor ligands as pharmaceuticals, identifying signaling relationships between these two receptors will aid in our understanding of the potential therapeutic effects of 5-HT7 receptor ligands. PMID:25426041

  14. Helix 11 Dynamics is Critical for Constitutive Androstane Receptor Activity

    OpenAIRE

    Wright, Edward; Busby, Scott A.; Wisecarver, Sarah; Vincent, Jeremy; Griffin, Patrick R.; Fernandez, Elias J.

    2011-01-01

    The constitutive androstane receptor (CAR) transactivation can occur in the absence of exogenous ligand and this activity is enhanced by agonists TCPOBOP and meclizine. We use biophysical and cell-based assays to show that increased activity of CAR(TCPOBOP) relative to CAR(meclizine) corresponds to a higher affinity of CAR(TCPOBOP) for the steroid receptor coactivator-1. Additionally, steady-state fluorescence spectra suggest conformational differences between CAR(TCPOBOP):RXR and CAR(meclizi...

  15. Activation of 5-HT6 receptors inhibits corticostriatal glutamatergic transmission.

    Science.gov (United States)

    Tassone, Annalisa; Madeo, Graziella; Schirinzi, Tommaso; Vita, Daniela; Puglisi, Francesca; Ponterio, Giulia; Borsini, Franco; Pisani, Antonio; Bonsi, Paola

    2011-09-01

    We investigated the effect of 5-HT6 receptor subtype activation on glutamatergic transmission by means of whole-cell patch-clamp electrophysiological recordings from medium spiny neurons of the striatum and layer V pyramidal neurons of the prefrontal cortex. To this aim, we took advantage of a novel ligand, ST1936, showing nM affinity and agonist activity at the 5-HT6 receptor subtype. Our data show that 5-HT6 receptor activation by ST1936 reduces the frequency of spontaneous excitatory postsynaptic currents, with an IC50 of 1.3 μM. Moreover, 5-HT6 receptor activation also reduced the amplitude of spontaneous excitatory postsynaptic currents recorded from medium spiny neurons, suggesting a mechanism of action involving postsynaptic 5-HT6 receptors, as further confirmed by the paired-pulse analysis on evoked excitatory postsynaptic currents and by recordings of miniature glutamatergic events. The inhibitory effect of ST1936 on glutamatergic transmission was prevented by the selective 5-HT6 receptor antagonist SB258585 and mimicked by a different agonist, WAY-181187. Conversely, in the cortex ST1936 reduced the frequency, but not the amplitude, of spontaneous excitatory postsynaptic currents suggesting a presynaptic or indirect effect of the 5-HT6 receptor.

  16. Blocking the peroxisome proliferator-activated receptor (PPAR): an overview.

    Science.gov (United States)

    Ammazzalorso, Alessandra; De Filippis, Barbara; Giampietro, Letizia; Amoroso, Rosa

    2013-10-01

    Peroxisome proliferator-activated receptors (PPARs) have been studied extensively over the last few decades and have been assessed as molecular targets for the development of drugs against metabolic disorders. A rapid increase in understanding of the physiology and pharmacology of these receptors has occurred, together with the identification of novel chemical structures that are able to activate the various PPAR subtypes. More recent evidence suggests that moderate activation of these receptors could be favorable in pathological situations due to a decrease in the side effects brought about by PPAR agonists. PPAR partial agonists and antagonists are interesting tools that are currently used to better elucidate the biological processes modulated by this family of nuclear receptors. Herein we present an overview of the various molecular structures that are able to block each of the PPAR subtypes, with a focus on promising therapeutic applications. Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Nicotinic Receptor Activity Alters Synaptic Plasticity

    Directory of Open Access Journals (Sweden)

    John A. Dani

    2001-01-01

    Full Text Available Studies using specific agonists, antagonists, and lesions have shown that nicotinic cholinergic systems participate in attention, learning, and memory[1,2]. The nicotinic manipulations usually have the greatest influence on difficult tasks or on cognitively impaired subjects[2]. For example, Alzheimer's disease is characterized by a loss of cholinergic projections and nicotinic acetylcholine receptors (nAChRs in the cortex and hippocampus[3]. Nicotine skin patches can improve learning rates and attention in Alzheimer's patients[4].

  18. The peroxisome proliferator-activated receptor: A family of nuclear receptors role in various diseases

    Directory of Open Access Journals (Sweden)

    Sandeep Tyagi

    2011-01-01

    Full Text Available Peroxisome proliferator-activated receptors (PPARs are ligand-activated transcription factors of nuclear hormone receptor superfamily comprising of the following three subtypes: PPARα, PPARγ, and PPARβ/δ. Activation of PPAR-α reduces triglyceride level and is involved in regulation of energy homeostasis. Activation of PPAR-γ causes insulin sensitization and enhances glucose metabolism, whereas activation of PPAR- β/δ enhances fatty acids metabolism. Thus, PPAR family of nuclear receptors plays a major regulatory role in energy homeostasis and metabolic function. The present review critically analyzes the protective and detrimental effect of PPAR agonists in dyslipidemia, diabetes, adipocyte differentiation, inflammation, cancer, lung diseases, neurodegenerative disorders, fertility or reproduction, pain, and obesity.

  19. Modulation of β-catenin signaling by glucagon receptor activation.

    Directory of Open Access Journals (Sweden)

    Jiyuan Ke

    Full Text Available The glucagon receptor (GCGR is a member of the class B G protein-coupled receptor family. Activation of GCGR by glucagon leads to increased glucose production by the liver. Thus, glucagon is a key component of glucose homeostasis by counteracting the effect of insulin. In this report, we found that in addition to activation of the classic cAMP/protein kinase A (PKA pathway, activation of GCGR also induced β-catenin stabilization and activated β-catenin-mediated transcription. Activation of β-catenin signaling was PKA-dependent, consistent with previous reports on the parathyroid hormone receptor type 1 (PTH1R and glucagon-like peptide 1 (GLP-1R receptors. Since low-density-lipoprotein receptor-related protein 5 (Lrp5 is an essential co-receptor required for Wnt protein mediated β-catenin signaling, we examined the role of Lrp5 in glucagon-induced β-catenin signaling. Cotransfection with Lrp5 enhanced the glucagon-induced β-catenin stabilization and TCF promoter-mediated transcription. Inhibiting Lrp5/6 function using Dickkopf-1(DKK1 or by expression of the Lrp5 extracellular domain blocked glucagon-induced β-catenin signaling. Furthermore, we showed that Lrp5 physically interacted with GCGR by immunoprecipitation and bioluminescence resonance energy transfer assays. Together, these results reveal an unexpected crosstalk between glucagon and β-catenin signaling, and may help to explain the metabolic phenotypes of Lrp5/6 mutations.

  20. Nuclear receptor corepressor-dependent repression of peroxisome-proliferator-activated receptor delta-mediated transactivation

    DEFF Research Database (Denmark)

    Krogsdam, Anne-M; Nielsen, Curt A F; Neve, Søren

    2002-01-01

    delta-RXR alpha heterodimer bound to an acyl-CoA oxidase (ACO)-type peroxisome-proliferator response element recruited a glutathione S-transferase-NCoR fusion protein in a ligand-independent manner. Contrasting with most other nuclear receptors, PPAR delta was found to interact equally well......The nuclear receptor corepressor (NCoR) was isolated as a peroxisome-proliferator-activated receptor (PPAR) delta interacting protein using the yeast two-hybrid system. NCoR interacted strongly with the ligand-binding domain of PPAR delta, whereas interactions with the ligand-binding domains...

  1. Nuclear receptor corepressor-dependent repression of peroxisome-proliferator-activated receptor delta-mediated transactivation

    DEFF Research Database (Denmark)

    Krogsdam, Anne-M; Nielsen, Curt A F; Neve, Søren

    2002-01-01

    delta-RXR alpha heterodimer bound to an acyl-CoA oxidase (ACO)-type peroxisome-proliferator response element recruited a glutathione S-transferase-NCoR fusion protein in a ligand-independent manner. Contrasting with most other nuclear receptors, PPAR delta was found to interact equally well......The nuclear receptor corepressor (NCoR) was isolated as a peroxisome-proliferator-activated receptor (PPAR) delta interacting protein using the yeast two-hybrid system. NCoR interacted strongly with the ligand-binding domain of PPAR delta, whereas interactions with the ligand-binding domains...

  2. Analyzing the activation of the melanocortin-2 receptor of tetrapods.

    Science.gov (United States)

    Dores, Robert M; Liang, Liang

    2014-07-01

    Following the biochemical characterization of the pituitary hormone, adrenocorticotropin (ACTH), in the 1950's, a number of structure/function studies were done which identifies two amino acid motifs in ACTH, the HFRW motif and KKRR motif, as critical for the activation of the "ACTH" receptor on adrenal cortex cells. In the 1990's the "ACTH" receptor was identified as a member of the melanocortin receptor gene family, and given the name melanocortin-2 receptor (MC2R). Since that time a number of studies on both tetrapod and teleost MC2R orthologs have established that these orthologs can only be activated by ACTH, but not by any of the MSH-sized melanocortin ligands, and these orthologs require interaction with the melanocortin-2 receptor accessory protein (MRAP) for functional expression. This review summarizes recent structure/function studies on human ACTH, and points out the importance of the GKPVG motif in ACTH for the activation of the receptor. In this regard, a multiple-step model for the activation of tetrapod and teleost MC2R orthologs is presented, and the evolution of gnathostome MC2R ligand selectivity and the requirement for MRAP interaction is discussed in light of a recent study on a cartilaginous fish MC2R ortholog. This review contains excerpts from the Gorbman/Bern Lecture presented at the Second Meeting of the North American Society for Comparative Endocrinology (NASCE).

  3. uPAR Targeted Radionuclide Therapy with 177Lu-DOTA-AE105 Inhibits Dissemination of Metastatic Prostate Cancer

    DEFF Research Database (Denmark)

    Persson, Morten; Juhl, Karina; Rasmussen, Palle

    2014-01-01

    value of 100 nM in a competitive binding experiment. In vivo, uPAR targeted radionuclide therapy significantly reduced the number of metastatic lesions in the disseminated metastatic prostate cancer model, when compared to vehicle and nontargeted 177Lu groups (p bioluminescence imaging...... with bioluminescence imaging in a cohort of animals during the treatment study. In conclusion, uPAR targeted radiotherapy resulted in a significant reduction in the number of metastatic lesions in a human metastatic prostate cancer model. Furthermore, we have provided the first evidence of the potential...

  4. Monitoring leptin activity using the chicken leptin receptor.

    Science.gov (United States)

    Hen, Gideon; Yosefi, Sera; Ronin, Ana; Einat, Paz; Rosenblum, Charles I; Denver, Robert J; Friedman-Einat, Miriam

    2008-05-01

    We report on the construction of a leptin bioassay based on the activation of chicken leptin receptor in cultured cells. A human embryonic kidney (HEK)-293 cell line, stably transfected with the full-length cDNA of chicken leptin receptor together with a STAT3-responsive reporter gene specifically responded to recombinant human and Xenopus leptins. The observed higher sensitivity of chicken leptin receptor to the former is in agreement with the degree of sequence similarity among these species (about 60 and 38% identical amino acids between humans and chickens, and between humans and Xenopus respectively). The specific activation of signal transduction through the chicken leptin receptor, shown here for the first time, suggests that the transition of Gln269 (implicated in the Gln-to-Pro Zucker fatty mutation in rats) to Glu in chickens does not impair its activity. Analysis of leptin-like activity in human serum samples of obese and lean subjects coincided well with leptin levels determined by RIA. Serum samples of pre- and post partum cows showed a tight correlation with the degree of adiposity. However, specific activation of the chicken leptin receptor in this assay was not observed with serum samples from broiler or layer chickens (representing fat and lean phenotypes respectively) or with those from turkey. Similar leptin receptor activation profiles were observed with cells transfected with human leptin receptor. Further work is needed to determine whether the lack of leptin-like activity in the chicken serum samples is due to a lack of leptin in this species or simply to a serum level of leptin that is below the detection threshold.

  5. A human vitamin D receptor mutant activated by cholecalciferol.

    Science.gov (United States)

    Ousley, Amanda M; Castillo, Hilda S; Duraj-Thatte, Anna; Doyle, Donald F; Azizi, Bahareh

    2011-07-01

    The human vitamin D receptor (hVDR) is a member of the nuclear receptor superfamily, involved in calcium and phosphate homeostasis; hence implicated in a number of diseases, such as Rickets and Osteoporosis. This receptor binds 1α,25-dihydroxyvitamin D(3) (also referred to as 1,25(OH)(2)D(3)) and other known ligands, such as lithocholic acid. Specific interactions between the receptor and ligand are crucial for the function and activation of this receptor, as implied by the single point mutation, H305Q, causing symptoms of Type II Rickets. In this work, further understanding of the significant and essential interactions between the ligand and the receptor was deciphered, through a combination of rational and random mutagenesis. A hVDR mutant, H305F, was engineered with increased sensitivity towards lithocholic acid, with an EC(50) value of 10 μM and 40±14 fold activation in mammalian cell assays, while maintaining wild-type activity with 1,25(OH)(2)D(3). Furthermore, via random mutagenesis, a hVDR mutant, H305F/H397Y, was discovered to bind a novel small molecule, cholecalciferol, a precursor in the 1α,25-dihydroxyvitamin D(3) biosynthetic pathway, which does not activate wild-type hVDR. This variant, H305F/H397Y, binds and activates in response to cholecalciferol concentrations as low as 100 nM, with an EC(50) value of 300 nM and 70±11 fold activation in mammalian cell assays. In silico docking analysis of the variant displays a dramatic conformational shift of cholecalciferol in the ligand binding pocket in comparison to the docked analysis of cholecalciferol with wild-type hVDR. This shift is hypothesized to be due to the introduction of two bulkier residues, suggesting that the addition of these bulkier residues introduces molecular interactions between the ligand and receptor, leading to activation with cholecalciferol.

  6. Structure-activity relationships of strychnine analogs at glycine receptors.

    Science.gov (United States)

    Mohsen, Amal M Y; Heller, Eberhard; Holzgrabe, Ulrike; Jensen, Anders A; Zlotos, Darius P

    2014-08-01

    Nine strychnine derivatives including neostrychnine, strychnidine, isostrychnine, 21,22-dihydro-21-hydroxy-22-oxo-strychnine, and several hydrogenated analogs were synthesized, and their antagonistic activities at human α1 and α1β glycine receptors were evaluated. Isostrychnine has shown the best pharmacological profile exhibiting an IC50 value of 1.6 μM at α1 glycine receptors and 3.7-fold preference towards the α1 subtype. SAR Analysis indicates that the lactam moiety and the C(21) = C(22) bond in strychnine are essential structural features for its high antagonistic potency at glycine receptors. Copyright © 2014 Verlag Helvetica Chimica Acta AG, Zürich.

  7. UROKINASE-TYPE PLASMINOGEN ACTIVATOR, ITS RECEPTOR AND INHIBITOR EXPRESSION IN HEPATOCELLULAR CARCINOMA RELATION TO CANCER INVASIVENESS AND PROGNOSIS

    Institute of Scientific and Technical Information of China (English)

    Zheng Qi; Tang Zhaoyou; Wu Zhiquan; Shi Daren; Tang Huibin; Zhu Yunsong; Song Houyan

    1998-01-01

    Objective:To study the relevance of uPA, uPAR and PAI-1 to hepatocellular carcinoma (HCC). Methods:The expression at protein level of uPA, uPAR and PAI-1was determined in 48 cases of HCC and 12 cases of benign tumors of liver (as control) by immunohistochemistry.Results: When compared to cancer-adjacent liver tissue and the control, positive rate of immune staining for uPA,uPAR and PAI-1 on cell membrane were significantly higher in HCC cells (P<0.05). Positive staining of uPA and uPAR was seen in 16 of 22 and 19 of 22 cases of HCC with invasion, respectively (P<0.01 and P<0.001). In 8 of 8cases with cancer embolus, and in 6 of 6 cases with lymph node metastasis was the expression of positive uPAR.Compared with 2 of 17 cases without recurrence, uPAR was positive in 15 of 17 recurrent cases (P<0.01). In 36cases who survived, 17 was positive uPAR and 15 positive PAI-1, while in 12 cases who died 2 years after surgery, 12were positive for uPAR and 9 positive PAI-1, respectively (P<0.01 and P<0.05). In 15 positive cases for all three parameters, 11 had cancer invasion and 7 died within 2 years, while in negative cases, 2 had invasion and none died within 2 years (P<0.05). Conclusion: Expression of.uPA, uPAR and PAI-1 is increased in HCC, uPA and uPAR may contribute significantly to HCC invasion and metastasis. uPAR and PAI-1 are associated with poor prognosis of HCC.

  8. Activation and dynamic network of the M2 muscarinic receptor

    OpenAIRE

    Miao, Yinglong; Nichols, Sara E.; Gasper, Paul M.; Metzger, Vincent T; McCammon, J. Andrew

    2013-01-01

    G-protein-coupled receptors (GPCRs) mediate cellular responses to various hormones and neurotransmitters and are important targets for treating a wide spectrum of diseases. Although significant advances have been made in structural studies of GPCRs, details of their activation mechanism remain unclear. The X-ray crystal structure of the M2 muscarinic receptor, a key GPCR that regulates human heart rate and contractile forces of cardiomyocytes, was determined recently in an inactive antagonist...

  9. Presence of urokinase plasminogen activator, its inhibitor and receptor in small cell lung cancer and non-small cell lung cancer

    DEFF Research Database (Denmark)

    Pappot, H.; Pfeiffer, P.; Grøndahl Hansen, J.

    1997-01-01

    system, and compare the levels of uPA, PAI-1 and uPAR in extracts of NSCLC-tissue and SCLC-tissue. A statistically significant difference, P = 0.037, was found between uPA-levels in NSCLC-patients (n = 75) and SCLC-patients (n = 8), the highest levels being found in NSCLC. No such difference was found...... and the clinical parameters. This is the first report of a study using a quantitative method to compare levels of the components of the plasminogen activation system in tissue extracts from the two major lung cancer groups. The study shows that uPA, PAI-1 and uPAR are present in SCLC-tissue, suggesting...... that the plasminogen activation system could play a role in this type of cancer during invasion. In addition a difference in the levels of the components of the plasminogen activation system in NSCLC and SCLC is found, which could contribute to the differences in biology....

  10. Peroxisome proliferator-activated receptors and cancer: challenges and opportunities.

    Science.gov (United States)

    Youssef, Jihan; Badr, Mostafa

    2011-09-01

    Peroxisome proliferator-activated receptors (PPARs), members of the nuclear hormone receptor superfamily, function as transcription factors and modulators of gene expression. These actions allow PPARs to regulate a variety of biological processes and to play a significant role in several diseases and conditions. The current literature describes frequently opposing and paradoxical roles for the three PPAR isotypes, PPARα, PPARβ/δ and PPARγ, in cancer. While some studies have implicated PPARs in the promotion and development of cancer, others, in contrast, have presented evidence for a protective role for these receptors against cancer. In some tissues, the expression level of these receptors and/or their activation correlates with a positive outcome against cancer, while, in other tissue types, their expression and activation have the opposite effect. These disparate findings raise the possibility of (i) PPAR receptor-independent effects, including effects on receptors other than PPARs by the utilized ligands; (ii) cancer stage-specific effect; and/or (iii) differences in essential ligand-related pharmacokinetic considerations. In this review, we highlight the latest available studies on the role of the various PPAR isotypes in cancer in several major organs and present challenges as well as promising opportunities in the field. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  11. Peroxisome Proliferator-Activated Receptor Alpha Target Genes

    NARCIS (Netherlands)

    Rakhshandehroo, M.; Knoch, B.; Müller, M.R.; Kersten, A.H.

    2010-01-01

    The peroxisome proliferator-activated receptor alpha (PPAR alpha) is a ligand-activated transcription factor involved in the regulation of a variety of processes, ranging from inflammation and immunity to nutrient metabolism and energy homeostasis. PPAR alpha serves as a molecular target for hypolip

  12. Peroxisome Proliferator-Activated Receptor Alpha Target Genes

    NARCIS (Netherlands)

    Rakhshandehroo, M.; Knoch, B.; Müller, M.R.; Kersten, A.H.

    2010-01-01

    The peroxisome proliferator-activated receptor alpha (PPAR alpha) is a ligand-activated transcription factor involved in the regulation of a variety of processes, ranging from inflammation and immunity to nutrient metabolism and energy homeostasis. PPAR alpha serves as a molecular target for

  13. Extended Synaptotagmin Interaction with the Fibroblast Growth Factor Receptor Depends on Receptor Conformation, Not Catalytic Activity.

    Science.gov (United States)

    Tremblay, Michel G; Herdman, Chelsea; Guillou, François; Mishra, Prakash K; Baril, Joëlle; Bellenfant, Sabrina; Moss, Tom

    2015-06-26

    We previously demonstrated that ESyt2 interacts specifically with the activated FGF receptor and is required for a rapid phase of receptor internalization and for functional signaling via the ERK pathway in early Xenopus embryos. ESyt2 is one of the three-member family of Extended Synaptotagmins that were recently shown to be implicated in the formation of endoplasmic reticulum (ER)-plasma membrane (PM) junctions and in the Ca(2+) dependent regulation of these junctions. Here we show that ESyt2 is directed to the ER by its putative transmembrane domain, that the ESyts hetero- and homodimerize, and that ESyt2 homodimerization in vivo requires a TM adjacent sequence but not the SMP domain. ESyt2 and ESyt3, but not ESyt1, selectively interact in vivo with activated FGFR1. In the case of ESyt2, this interaction requires a short TM adjacent sequence and is independent of receptor autophosphorylation, but dependent on receptor conformation. The data show that ESyt2 recognizes a site in the upper kinase lobe of FGFR1 that is revealed by displacement of the kinase domain activation loop during receptor activation.

  14. Peroxisome Proliferator-Activated Receptor and Vitamin D Receptor Signaling Pathways in Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Satoru, E-mail: smatsuda@cc.nara-wu.ac.jp; Kitagishi, Yasuko [Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506 (Japan)

    2013-10-21

    Peroxisome proliferator-activated receptors (PPARs) are members of the superfamily of nuclear hormone receptors, which respond to specific ligands such as polyunsaturated fatty acids by altering gene expression. Three subtypes of this receptor have been discovered, each evolving to achieve different biological functions. Like other nuclear receptors, the transcriptional activity of PPARs is affected not only by ligand-stimulation, but also by cross-talk with other molecules. For example, both PPARs and the RXRs are ligand-activated transcription factors that coordinately regulate gene expression. In addition, PPARs and vitamin D receptor (VDR) signaling pathways regulate a multitude of genes that are of importance for cellular functions including cell proliferation and cell differentiation. Interaction of the PPARs and VDR signaling pathways has been shown at the level of molecular cross-regulation of their transcription factor. A variety of ligands influencing the PPARs and VDR signaling pathways have been shown to reveal chemopreventive potential by mediating tumor suppressive activities in human cancers. Use of these compounds may represent a potential novel strategy to prevent cancers. This review summarizes the roles of the PPARs and the VDR in pathogenesis and progression of cancer.

  15. Implications of compound heterozygous insulin receptor mutations in congenital muscle fibre type disproportion myopathy for the receptor kinase activation

    DEFF Research Database (Denmark)

    Klein, H H; Müller, R; Vestergaard, H

    1999-01-01

    % of the receptors to become insulin-dependently activated. The mother carries a point mutation at the last base pair in exon 17 which, due to abnormal alternative splicing, could lead to normally transcribed receptor or truncated receptor lacking the kinase region. Kinase activation was normal in the mother......We studied insulin receptor kinase activation in two brothers with congenital muscle fibre type disproportion myopathy and compound heterozygous mutations of the insulin receptor gene, their parents, and their unaffected brother. In the father who has a heterozygote Arg1174-->Gln mutation, in situ......'s skeletal muscle, suggesting that virtually no truncated receptor was expressed. Receptor kinase activity was, however, reduced by 95 and 91% in the compound heterozygous brothers. This suggests that the mother's mutated allele contributes little to the generation of functional receptor protein...

  16. Activities of nicotinic acetylcholine receptors modulate neurotransmission and synaptic architecture

    Institute of Scientific and Technical Information of China (English)

    Akira Oda; Hidekazu Tanaka

    2014-01-01

    The cholinergic system is involved in a broad spectrum of brain function, and its failure has been implicated in Alzheimer’s disease. Acetylcholine transduces signals through muscarinic and nicotinic acetylcholine receptors, both of which inlfuence synaptic plasticity and cognition. However, the mechanisms that relate the rapid gating of nicotinic acetylcholine receptors to per-sistent changes in brain function have remained elusive. Recent evidence indicates that nicotinic acetylcholine receptors activities affect synaptic morphology and density, which result in per-sistent rearrangements of neural connectivity. Further investigations of the relationships between nicotinic acetylcholine receptors and rearrangements of neural circuitry in the central nervous system may help understand the pathogenesis of Alzheimer’s disease.

  17. PSD-95 regulates D1 dopamine receptor resensitization, but not receptor-mediated Gs-protein activation

    Institute of Scientific and Technical Information of China (English)

    Peihua Sun; Jingru Wang; Weihua Gu; Wei Cheng; Guo-zhang Jin; Eitan Friedman; Jie Zheng; Xuechu Zhen

    2009-01-01

    The present study aims to define the role of postsynaptic density (PSD)-95 in the regulation of dopamine (DA) receptor function. We found that PSD-95 physically associates with either D1 or D2 DA receptors in co-transfected HEK-293 cells. Stimulation of DA receptors altered the association between D1 receptor and PSD-95 in a time-depen-dent manner. Functional assays indicated that PSD-95 co-expression did not affect D1 receptor-stimulated cAMP pro-duction, Gs-protein activation or receptor desensitization. However, PSD-95 accelerated the recovery of internalized membrane receptors by promoting receptor recycling, thus resulting in enhanced resensitization of internalized D1 receptors. Our results provide a novel mechanism for regulating DA receptor recycling that may play an important role in postsynaptic DA functional modulation and synaptic neuroplasticity.

  18. Neurotransmitter GABA activates muscle but not α7 nicotinic receptors.

    Science.gov (United States)

    Dionisio, Leonardo; Bergé, Ignacio; Bravo, Matías; Esandi, María Del Carmen; Bouzat, Cecilia

    2015-01-01

    Cys-loop receptors are neurotransmitter-activated ion channels involved in synaptic and extrasynaptic transmission in the brain and are also present in non-neuronal cells. As GABAA and nicotinic receptors (nAChR) belong to this family, we explored by macroscopic and single-channel recordings whether the inhibitory neurotransmitter GABA has the ability to activate excitatory nAChRs. GABA differentially activates nAChR subtypes. It activates muscle nAChRs, with maximal peak currents of about 10% of those elicited by acetylcholine (ACh) and 15-fold higher EC50 with respect to ACh. At the single-channel level, the weak agonism is revealed by the requirement of 20-fold higher concentration of GABA for detectable channel openings, a major population of brief openings, and absence of clusters of openings when compared with ACh. Mutations at key residues of the principal binding-site face of muscle nAChRs (αY190 and αG153) affect GABA activation similarly as ACh activation, whereas a mutation at the complementary face (εG57) shows a selective effect for GABA. Studies with subunit-lacking receptors show that GABA can activate muscle nAChRs through the α/δ interface. Interestingly, single-channel activity elicited by GABA is similar to that elicited by ACh in gain-of-function nAChR mutants associated to congenital myasthenic syndromes, which could be important in the progression of the disorders due to steady exposure to serum GABA. In contrast, GABA cannot elicit single-channel or macroscopic currents of α7 or the chimeric α7-serotonin-type 3 receptor, a feature important for preserving an adequate excitatory/inhibitory balance in the brain as well as for avoiding activation of non-neuronal receptors by serum GABA. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  19. Glycine Potentiates AMPA Receptor Function through Metabotropic Activation of GluN2A-containing NMDA Receptors

    Directory of Open Access Journals (Sweden)

    Li-Jun Li

    2016-10-01

    Full Text Available NMDA receptors are Ca2+-permeable ion channels. The activation of NMDA receptors requires agonist glutamate and co-agonist glycine. Recent evidence indicates that NMDA receptor also has metabotropic function. Here we report that in cultured mouse hippocampal neurons, glycine increases AMPA receptor-mediated currents independent of the channel activity of NMDA receptors and the activation of glycine receptors. The potentiation of AMPA receptor function by glycine is antagonized by the inhibition of ERK1/2. In the hippocampal neurons and in the HEK293 cells transfected with different combinations of NMDA receptors, glycine preferentially acts on GluN2A-containing NMDA receptors (GluN2ARs, but not GluN2B-containing NMDA receptors (GluN2BRs, to enhance ERK1/2 phosphorylation independent of the channel activity of GluN2ARs. Without requiring the channel activity of GluN2ARs, glycine increases AMPA receptor-mediated currents through GluN2ARs. Thus, these results reveal a metabotropic function of GluN2ARs in mediating glycine-induced potentiation of AMPA receptor function via ERK1/2 activation.

  20. Glycine Potentiates AMPA Receptor Function through Metabotropic Activation of GluN2A-Containing NMDA Receptors

    Science.gov (United States)

    Li, Li-Jun; Hu, Rong; Lujan, Brendan; Chen, Juan; Zhang, Jian-Jian; Nakano, Yasuko; Cui, Tian-Yuan; Liao, Ming-Xia; Chen, Jin-Cao; Man, Heng-Ye; Feng, Hua; Wan, Qi

    2016-01-01

    NMDA receptors are Ca2+-permeable ion channels. The activation of NMDA receptors requires agonist glutamate and co-agonist glycine. Recent evidence indicates that NMDA receptor also has metabotropic function. Here we report that in cultured mouse hippocampal neurons, glycine increases AMPA receptor-mediated currents independent of the channel activity of NMDA receptors and the activation of glycine receptors. The potentiation of AMPA receptor function by glycine is antagonized by the inhibition of ERK1/2. In the hippocampal neurons and in the HEK293 cells transfected with different combinations of NMDA receptors, glycine preferentially acts on GluN2A-containing NMDA receptors (GluN2ARs), but not GluN2B-containing NMDA receptors (GluN2BRs), to enhance ERK1/2 phosphorylation independent of the channel activity of GluN2ARs. Without requiring the channel activity of GluN2ARs, glycine increases AMPA receptor-mediated currents through GluN2ARs. Thus, these results reveal a metabotropic function of GluN2ARs in mediating glycine-induced potentiation of AMPA receptor function via ERK1/2 activation.

  1. Ghrelin receptor conformational dynamics regulate the transition from a preassembled to an active receptor:Gq complex.

    Science.gov (United States)

    Damian, Marjorie; Mary, Sophie; Maingot, Mathieu; M'Kadmi, Céline; Gagne, Didier; Leyris, Jean-Philippe; Denoyelle, Séverine; Gaibelet, Gérald; Gavara, Laurent; Garcia de Souza Costa, Mauricio; Perahia, David; Trinquet, Eric; Mouillac, Bernard; Galandrin, Ségolène; Galès, Céline; Fehrentz, Jean-Alain; Floquet, Nicolas; Martinez, Jean; Marie, Jacky; Banères, Jean-Louis

    2015-02-03

    How G protein-coupled receptor conformational dynamics control G protein coupling to trigger signaling is a key but still open question. We addressed this question with a model system composed of the purified ghrelin receptor assembled into lipid discs. Combining receptor labeling through genetic incorporation of unnatural amino acids, lanthanide resonance energy transfer, and normal mode analyses, we directly demonstrate the occurrence of two distinct receptor:Gq assemblies with different geometries whose relative populations parallel the activation state of the receptor. The first of these assemblies is a preassembled complex with the receptor in its basal conformation. This complex is specific of Gq and is not observed with Gi. The second one is an active assembly in which the receptor in its active conformation triggers G protein activation. The active complex is present even in the absence of agonist, in a direct relationship with the high constitutive activity of the ghrelin receptor. These data provide direct evidence of a mechanism for ghrelin receptor-mediated Gq signaling in which transition of the receptor from an inactive to an active conformation is accompanied by a rearrangement of a preassembled receptor:G protein complex, ultimately leading to G protein activation and signaling.

  2. Allosteric activation mechanism of the cys-loop receptors

    Institute of Scientific and Technical Information of China (English)

    Yong-chang CHANG; Wen WU; Jian-liang ZHANG; Yao HUANG

    2009-01-01

    Binding of a neurotransmitter to its ionotropic receptor opens a distantly located ion channel, a process termed allosteric activation. Here we review recent advances in the molecular mechanism by which the cys-loop receptors are activated with emphasis on the best studied nicotinic acetylcholine receptors (nAChRs). With a combination of affinity labeling, mutagenesis, electrophysiology, kinetic modeling, electron microscopy (EM), and crystal structure analysis, the allosteric activation mechanism is emerging. Specifically, the binding domain and gating domain are interconnected by an allosteric activation network. Agonist binding induces conformational changes, resulting in the rotation of a β sheet of amino-terminal domain and outward movement of loop 2, loop F, and cys-loop, which are coupled to the M2-M3 linker to pull the channel to open. However, there are still some controversies about the movement of the channel-lining domain M2. Nine angstrom resolution EM structure of a nAChR imaged in the open state suggests that channel opening is the result of rotation of the M2 domain. In contrast, recent crystal structures of bacterial homologues of the cys-loop receptor family in apparently open state have implied an M2 tilting model with pore dilation and quaternary twist of the whole pentameric receptor. An elegant study of the nAChR using protonation scanning of M2 domain supports a similar pore dilation activation mechanism with minimal rotation of M2. This remains to be validated with other approaches including high resolution structure determination of the mammalian cys-loop receptors in the open state.

  3. Immunomodulatory effects of endogenous and synthetic peptides activating opioid receptors.

    Science.gov (United States)

    Pomorska, Dorota K; Gach, Katarzyna; Janecka, Anna

    2014-01-01

    The main role of endogenous opioid peptides is the modulation of pain. Opioid peptides exert their analgesic activity by binding to the opioid receptors distributed widely in the central nervous system (CNS). However, opioid receptors are also found on tissues and organs outside the CNS, including the cells of the immune system, indicating that opioids are capable of exerting additional effects in periphery. Morphine, which is a gold standard in the treatment of chronic pain, is well-known for its immunosuppressive effects. Much less is known about the immunomodulatory effects exerted by endogenous (enkephalins, endorphins, dynorphins and endomorphins) and synthetic peptides activating opioid receptors. In this review we tried to summarize opioid peptide-mediated modulation of immune cell functions which can be stimulatory as well as inhibitory.

  4. A bacterial tyrosine phosphatase inhibits plant pattern recognition receptor activation.

    Science.gov (United States)

    Macho, Alberto P; Schwessinger, Benjamin; Ntoukakis, Vardis; Brutus, Alexandre; Segonzac, Cécile; Roy, Sonali; Kadota, Yasuhiro; Oh, Man-Ho; Sklenar, Jan; Derbyshire, Paul; Lozano-Durán, Rosa; Malinovsky, Frederikke Gro; Monaghan, Jacqueline; Menke, Frank L; Huber, Steven C; He, Sheng Yang; Zipfel, Cyril

    2014-03-28

    Innate immunity relies on the perception of pathogen-associated molecular patterns (PAMPs) by pattern-recognition receptors (PRRs) located on the host cell's surface. Many plant PRRs are kinases. Here, we report that the Arabidopsis receptor kinase EF-TU RECEPTOR (EFR), which perceives the elf18 peptide derived from bacterial elongation factor Tu, is activated upon ligand binding by phosphorylation on its tyrosine residues. Phosphorylation of a single tyrosine residue, Y836, is required for activation of EFR and downstream immunity to the phytopathogenic bacterium Pseudomonas syringae. A tyrosine phosphatase, HopAO1, secreted by P. syringae, reduces EFR phosphorylation and prevents subsequent immune responses. Thus, host and pathogen compete to take control of PRR tyrosine phosphorylation used to initiate antibacterial immunity.

  5. Buprenorphine-induced antinociception is mediated by mu-opioid receptors and compromised by concomitant activation of opioid receptor-like receptors.

    Science.gov (United States)

    Lutfy, Kabirullah; Eitan, Shoshana; Bryant, Camron D; Yang, Yu C; Saliminejad, Nazli; Walwyn, Wendy; Kieffer, Brigitte L; Takeshima, Hiroshi; Carroll, F Ivy; Maidment, Nigel T; Evans, Christopher J

    2003-11-12

    Buprenorphine is a mixed opioid receptor agonist-antagonist used clinically for maintenance therapy in opiate addicts and pain management. Dose-response curves for buprenorphine-induced antinociception display ceiling effects or are bell shaped, which have been attributed to the partial agonist activity of buprenorphine at opioid receptors. Recently, buprenorphine has been shown to activate opioid receptor-like (ORL-1) receptors, also known as OP4 receptors. Here we demonstrate that buprenorphine, but not morphine, activates mitogen-activated protein kinase and Akt via ORL-1 receptors. Because the ORL-1 receptor agonist orphanin FQ/nociceptin blocks opioid-induced antinociception, we tested the hypothesis that buprenorphine-induced antinociception might be compromised by concomitant activation of ORL-1 receptors. In support of this hypothesis, the antinociceptive effect of buprenorphine, but not morphine, was markedly enhanced in mice lacking ORL-1 receptors using the tail-flick assay. Additional support for a modulatory role for ORL-1 receptors in buprenorphine-induced antinociception was that coadministration of J-113397, an ORL-1 receptor antagonist, enhanced the antinociceptive efficacy of buprenorphine in wild-type mice but not in mice lacking ORL-1 receptors. The ORL-1 antagonist also eliminated the bell-shaped dose-response curve for buprenorphine-induced antinociception in wild-type mice. Although buprenorphine has been shown to interact with multiple opioid receptors, mice lacking micro-opioid receptors failed to exhibit antinociception after buprenorphine administration. Our results indicate that the antinociceptive effect of buprenorphine in mice is micro-opioid receptor-mediated yet severely compromised by concomitant activation of ORL-1 receptors.

  6. Ah receptor agonist activity in frequently consumed food items

    NARCIS (Netherlands)

    Waard, de W.J.; Aarts, J.M.M.J.G.; Peijnenburg, A.A.C.M.; Kok, de T.M.C.M.; Schooten, van F.J.; Hoogenboom, L.A.P.

    2008-01-01

    The aryl hydrocarbon receptor (AhR) receives much attention for its role in the toxicity of dioxins and dioxin-like polychlorinated biphenyls. However, many other compounds have also been reported to bind and activate AhR, of which natural food components are of special interest from a human health

  7. Ah receptor agonist activity in frequently consumed food items

    NARCIS (Netherlands)

    Waard, de W.J.; Aarts, J.M.M.J.G.; Peijnenburg, A.A.C.M.; Kok, de T.M.C.M.; Schooten, van F.J.; Hoogenboom, L.A.P.

    2008-01-01

    The aryl hydrocarbon receptor (AhR) receives much attention for its role in the toxicity of dioxins and dioxin-like polychlorinated biphenyls. However, many other compounds have also been reported to bind and activate AhR, of which natural food components are of special interest from a human health

  8. The cardiovascular effects of peroxisome proliferator-activated receptor agonists.

    Science.gov (United States)

    Friedland, Sayuri N; Leong, Aaron; Filion, Kristian B; Genest, Jacques; Lega, Iliana C; Mottillo, Salvatore; Poirier, Paul; Reoch, Jennifer; Eisenberg, Mark J

    2012-02-01

    Although peroxisome proliferator-activated receptor agonists are prescribed to improve cardiovascular risk factors, their cardiovascular safety is controversial. We therefore reviewed the literature to identify landmark randomized controlled trials evaluating the effect of peroxisome proliferator-activated receptor gamma agonists (pioglitazone and rosiglitazone), alpha agonists (fenofibrate and gemfibrozil), and pan agonists (bezafibrate, muraglitazar, ragaglitazar, tesaglitazar, and aleglitazar) on cardiovascular outcomes. Pioglitazone may modestly reduce cardiovascular events but also may increase the risk of bladder cancer. Rosiglitazone increases the risk of myocardial infarction and has been withdrawn in European and restricted in the United States. Fibrates improve cardiovascular outcomes only in select subgroups: fenofibrate in diabetic patients with metabolic syndrome, gemfibrozil in patients with dyslipidemia, and bezafibrate in patients with diabetes or metabolic syndrome. The cardiovascular safety of the new pan agonist aleglitazar, currently in phase II trials, remains to be determined. The heterogenous effects of peroxisome proliferator-activated receptor agonists to date highlight the importance of postmarketing surveillance. The critical question of why peroxisome proliferator-activated receptor agonists seem to improve cardiovascular risk factors without significantly improving cardiovascular outcomes requires further investigation.

  9. Urokinase plasminogen activator receptor on invasive cancer cells: A prognostic factor in distal gastric adenocarcinoma

    DEFF Research Database (Denmark)

    Alpizar, Warner Enrique Alpizar; Christensen, Ib Jarle; Santoni-Rugiu, Eric

    2012-01-01

    PAR was expressed by neoplastic cells, macrophages, myofibroblasts and neutrophils in both intestinal and diffuse subtypes. No association was demonstrated between the expression of uPAR on cancer cells and histological subtype (p = 0.64) or TNM stage (p = 0.75). Univariate analysis revealed a significant...

  10. Urokinase-Type Plasminogen Activator Receptor as a Potential PET Biomarker in Glioblastoma

    DEFF Research Database (Denmark)

    Persson, Morten; Nedergaard, Mette K; Brandt-Larsen, Malene

    2016-01-01

    an orthotopic xenograft model of glioblastoma. Tumor growth was monitored using bioluminescence imaging. Five to six weeks after inoculation, all mice were scanned with small-animal PET/CT using two new uPAR PET ligands ((64)Cu-NOTA-AE105 and (68)Ga-NOTA-AE105) and, for comparison, O-(2-(18)F...

  11. Regulation of Liver Energy Balance by the Nuclear Receptors Farnesoid X Receptor and Peroxisome Proliferator Activated Receptor α.

    Science.gov (United States)

    Kim, Kang Ho; Moore, David D

    2017-01-01

    The liver undergoes major changes in substrate utilization and metabolic output over the daily feeding and fasting cycle. These changes occur acutely in response to hormones such as insulin and glucagon, with rapid changes in signaling pathways mediated by protein phosphorylation and other post-translational modifications. They are also reflected in chronic alterations in gene expression in response to nutrient-sensitive transcription factors. Among these, the nuclear receptors farnesoid X receptor (FXR) and peroxisome proliferator activated receptor α (PPARα) provide an intriguing, coordinated response to maintain energy balance in the liver. FXR is activated in the fed state by bile acids returning to the liver, while PPARα is activated in the fasted state in response to the free fatty acids produced by adipocyte lipolysis or possibly other signals. Key Messages: Previous studies indicate that FXR and PPARα have opposing effects on each other's primary targets in key metabolic pathways including gluconeogenesis. Our more recent work shows that these 2 nuclear receptors coordinately regulate autophagy: FXR suppresses this pathway of nutrient and energy recovery, while PPARα activates it. Another recent study indicates that FXR activates the complement and coagulation pathway, while earlier studies identify this as a negative target of PPARα. Since secretion is a very energy- and nutrient-intensive process for hepatocytes, it is possible that FXR licenses it in the nutrient-rich fed state, while PPARα represses it to spare resources in the fasted state. Energy balance is a potential connection linking FXR and PPARα regulation of autophagy and secretion, 2 seemingly unrelated aspects of hepatocyte function. FXR and PPARα act coordinately to promote energy balance and homeostasis in the liver by regulating autophagy and potentially protein secretion. It is quite likely that their impact extends to additional pathways relevant to hepatic energy balance, and

  12. Identification of prostaglandin E2 receptor subtype 2 as a receptor activated by OxPAPC.

    Science.gov (United States)

    Li, Rongsong; Mouillesseaux, Kevin P; Montoya, Dennis; Cruz, Daniel; Gharavi, Navid; Dun, Martin; Koroniak, Lukasz; Berliner, Judith A

    2006-03-17

    Oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (OxPAPC), which has been shown to accumulate in atherosclerotic lesions and other sites of chronic inflammation, activates endothelial cells (EC) to bind monocytes by activation of endothelial beta1 integrin and subsequent deposition of fibronectin on the apical surface. Our previous studies suggest this function of OxPAPC is mediated via a Gs protein-coupled receptor (GPCR). PEIPC (1-palmitoyl-2-epoxyisoprostane E2-sn-glycero-3-phosphorylcholine) is the most active lipid in OxPAPC that activates this pathway. We screened a number of candidate GPCRs for their interaction with OxPAPC and PEIPC, using a reporter gene assay; we identified prostaglandin E2 receptor EP2 and prostaglandin D2 receptor DP as responsive to OxPAPC. We focused on EP2, which is expressed in ECs, monocytes, and macrophages. OxPAPC component PEIPC, but not POVPC, activated EP2 with an EC50 of 108.6 nmol/L. OxPAPC and PEIPC were also able to compete with PGE2 for binding to EP2 in a ligand-binding assay. The EP2 specific agonist butaprost was shown to mimic the effect of OxPAPC on the activation of beta1 integrin and the stimulation of monocyte binding to endothelial cells. Butaprost also mimicked the effect of OxPAPC on the regulation of tumor necrosis factor-alpha and interleukin-10 in monocyte-derived cells. EP2 antagonist AH6809 blocked the activation of EP2 by OxPAPC in HEK293 cells and blocked the interleukin-10 response to PEIPC in monocytic THP-1 cells. These results suggest that EP2 functions as a receptor for OxPAPC and PEIPC, either as the phospholipid ester or the released fatty acid, in both endothelial cells and macrophages.

  13. Facilitation of neocortical presynaptic terminal development by NMDA receptor activation

    OpenAIRE

    2012-01-01

    Abstract Background Neocortical circuits are established through the formation of synapses between cortical neurons, but the molecular mechanisms of synapse formation are only beginning to be understood. The mechanisms that control synaptic vesicle (SV) and active zone (AZ) protein assembly at developing presynaptic terminals have not yet been defined. Similarly, the role of glutamate receptor activation in control of presynaptic development remains unclear. Results Here, we use confocal imag...

  14. Neurohumoral activation in heart failure: the role of adrenergic receptors

    OpenAIRE

    Patricia C. Brum; Rolim, Natale P. L.; BACURAU, Aline V. N.; Alessandra Medeiros

    2006-01-01

    Heart failure (HF) is a common endpoint for many forms of cardiovascular disease and a significant cause of morbidity and mortality. The development of end-stage HF often involves an initial insult to the myocardium that reduces cardiac output and leads to a compensatory increase in sympathetic nervous system activity. Acutely, the sympathetic hyperactivity through the activation of beta-adrenergic receptors increases heart rate and cardiac contractility, which compensate for decreased cardia...

  15. The aryl hydrocarbon receptor and glucocorticoid receptor interact to activate human metallothionein 2A

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Shoko, E-mail: satosho@rs.tus.ac.jp [Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555 (Japan); Shirakawa, Hitoshi, E-mail: shirakah@m.tohoku.ac.jp [Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555 (Japan); Tomita, Shuhei, E-mail: tomita@med.tottori-u.ac.jp [Division of Molecular Pharmacology, Department of Pathophysiological and Therapeutic Science, Yonago 683-8503 (Japan); Tohkin, Masahiro, E-mail: tohkin@phar.nagoya-cu.ac.jp [Department of Medical Safety Science, Graduate School of Pharmaceutical Science, Nagoya City University, Nagoya 267-8603 (Japan); Gonzalez, Frank J., E-mail: gonzalef@mail.nih.gov [Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Komai, Michio, E-mail: mkomai@m.tohoku.ac.jp [Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555 (Japan)

    2013-11-15

    Although the aryl hydrocarbon receptor (AHR) and glucocorticoid receptor (GR) play essential roles in mammalian development, stress responses, and other physiological events, crosstalk between these receptors has been the subject of much debate. Metallothioneins are classic glucocorticoid-inducible genes that were reported to increase upon treatment with AHR agonists in rodent tissues and cultured human cells. In this study, the mechanism of human metallothionein 2A (MT2A) gene transcription activation by AHR was investigated. Cotreatment with 3-methylcholanthrene and dexamethasone, agonists of AHR and GR respectively, synergistically increased MT2A mRNA levels in HepG2 cells. MT2A induction was suppressed by RNA interference against AHR or GR. Coimmunoprecipitation experiments revealed a physical interaction between AHR and GR proteins. Moreover, chromatin immunoprecipitation assays indicated that AHR was recruited to the glucocorticoid response element in the MT2A promoter. Thus, we provide a novel mechanism whereby AHR modulates expression of human MT2A via the glucocorticoid response element and protein–protein interactions with GR. - Highlights: • Aryl hydrocarbon receptor forms a complex with glucocorticoid receptor in cells. • Human metallothionein gene is regulated by the AHR and GR interaction. • AHR–GR complex binds to glucocorticoid response element in metallothionein gene. • We demonstrated a novel transcriptional mechanism via AHR and GR interaction.

  16. Structural basis for AMPA receptor activation and ligand selectivity

    DEFF Research Database (Denmark)

    Hogner, A; Kastrup, Jette Sandholm Jensen; Jin, R

    2002-01-01

    Glutamate is the principal excitatory neurotransmitter within the mammalian CNS, playing an important role in many different functions in the brain such as learning and memory. In this study, a combination of molecular biology, X-ray structure determinations, as well as electrophysiology...... correlation between domain closure and efficacy has been obtained from electrophysiology experiments undertaken on non-desensitising GluR2i(Q)-L483Y receptors expressed in oocytes, providing strong evidence that receptor activation occurs as a result of domain closure. The structural results, combined...

  17. Influence of phasic and tonic dopamine release on receptor activation

    DEFF Research Database (Denmark)

    Dreyer, Jakob Kristoffer Kisbye; Herrik, Kjartan F; Berg, Rune W

    2010-01-01

    Tonic and phasic dopamine release is implicated in learning, motivation, and motor functions. However, the relationship between spike patterns in dopaminergic neurons, the extracellular concentration of dopamine, and activation of dopamine receptors remains unresolved. In the present study, we...... develop a computational model of dopamine signaling that give insight into the relationship between the dynamics of release and occupancy of D(1) and D(2) receptors. The model is derived from first principles using experimental data. It has no free parameters and offers unbiased estimation...

  18. Structure-activity relationships of strychnine analogues at glycine receptors

    DEFF Research Database (Denmark)

    Mohsen, A.M.Y.; Heller, Eberhard; Holzgrabe, Ulrike

    2014-01-01

    Nine strychnine derivatives including neostrychnine, strychnidine, isostrychnine, 21,22-dihydro-21-hydroxy-22-oxo-strychnine, and several hydrogenated analogs were synthesized, and their antagonistic activities at human α1 and α1β glycine receptors were evaluated. Isostrychnine has shown the best...... pharmacological profile exhibiting an IC50 value of 1.6 μM at α1 glycine receptors and 3.7-fold preference towards the α1 subtype. SAR Analysis indicates that the lactam moiety and the C(21)[DOUBLE BOND]C(22) bond in strychnine are essential structural features for its high antagonistic potency at glycine...

  19. An improved ivermectin-activated chloride channel receptor for inhibiting electrical activity in defined neuronal populations

    DEFF Research Database (Denmark)

    Lynagh, Timothy Peter; Lynch, Joseph W

    2010-01-01

    for surgically implanted stimulus delivery methods and their use of nonhuman receptors. A third silencing method, an invertebrate glutamate-gated chloride channel receptor (GluClR) activated by ivermectin, solves the stimulus delivery problem as ivermectin is a safe, well tolerated drug that reaches the brain...

  20. Screening of selected pesticides for oestrogen receptor activation in vitro

    DEFF Research Database (Denmark)

    Vinggaard, Anne; Breinholt, Vibeke; Larsen, John Christian

    1999-01-01

    .0, 2.4, and 1.9-fold increase in proliferation of human MCF7 breast cancer cells (E3 clone). The relative proliferation efficiency (RPE) was 43-69%, indicating partial agonism at the oestrogen receptor. Several pesticides did not have any effect oil the proliferation response after 6 days of exposure......Twenty pesticides were tested for their ability to activate the oestrogen receptor in vitro using an,MCF7 cell proliferation assay and a Yeast Oestrogen Screen. The fungicides fenarimol, triadimefon, and triadimenol were identified as weak oestrogen receptor agonists, which at 10 mu M induces a 2......, including. chlorpyrifos, diuron, iprodion, linuron, pentachlorphenol, prochloraz, propioconazol, propyzamine, quintozen, tetrachorvinphos and tetradifon. Some pesticides resulted in a negligible proliferation response, which was nor statistically significant under the present experimental conditions...

  1. Peroxisome proliferator-activated receptor alpha target genes.

    Science.gov (United States)

    Rakhshandehroo, Maryam; Knoch, Bianca; Müller, Michael; Kersten, Sander

    2010-01-01

    The peroxisome proliferator-activated receptor alpha (PPARα) is a ligand-activated transcription factor involved in the regulation of a variety of processes, ranging from inflammation and immunity to nutrient metabolism and energy homeostasis. PPARα serves as a molecular target for hypolipidemic fibrates drugs which bind the receptor with high affinity. Furthermore, PPARα binds and is activated by numerous fatty acids and fatty acid-derived compounds. PPARα governs biological processes by altering the expression of a large number of target genes. Accordingly, the specific role of PPARα is directly related to the biological function of its target genes. Here, we present an overview of the involvement of PPARα in lipid metabolism and other pathways through a detailed analysis of the different known or putative PPARα target genes. The emphasis is on gene regulation by PPARα in liver although many of the results likely apply to other organs and tissues as well.

  2. Peroxisome Proliferator-Activated Receptor Alpha Target Genes

    Directory of Open Access Journals (Sweden)

    Maryam Rakhshandehroo

    2010-01-01

    Full Text Available The peroxisome proliferator-activated receptor alpha (PPARα is a ligand-activated transcription factor involved in the regulation of a variety of processes, ranging from inflammation and immunity to nutrient metabolism and energy homeostasis. PPARα serves as a molecular target for hypolipidemic fibrates drugs which bind the receptor with high affinity. Furthermore, PPARα binds and is activated by numerous fatty acids and fatty acid-derived compounds. PPARα governs biological processes by altering the expression of a large number of target genes. Accordingly, the specific role of PPARα is directly related to the biological function of its target genes. Here, we present an overview of the involvement of PPARα in lipid metabolism and other pathways through a detailed analysis of the different known or putative PPARα target genes. The emphasis is on gene regulation by PPARα in liver although many of the results likely apply to other organs and tissues as well.

  3. Glycine Receptor α2 Subunit Activation Promotes Cortical Interneuron Migration

    Directory of Open Access Journals (Sweden)

    Ariel Avila

    2013-08-01

    Full Text Available Glycine receptors (GlyRs are detected in the developing CNS before synaptogenesis, but their function remains elusive. This study demonstrates that functional GlyRs are expressed by embryonic cortical interneurons in vivo. Furthermore, genetic disruption of these receptors leads to interneuron migration defects. We discovered that extrasynaptic activation of GlyRs containing the α2 subunit in cortical interneurons by endogenous glycine activates voltage-gated calcium channels and promotes calcium influx, which further modulates actomyosin contractility to fine-tune nuclear translocation during migration. Taken together, our data highlight the molecular events triggered by GlyR α2 activation that control cortical tangential migration during embryogenesis.

  4. Activation of D4 dopamine receptor decreases angiotensin II type 1 receptor expression in rat renal proximal tubule cells.

    Science.gov (United States)

    Chen, Ken; Deng, Kun; Wang, Xiaoyan; Wang, Zhen; Zheng, Shuo; Ren, Hongmei; He, Duofen; Han, Yu; Asico, Laureano D; Jose, Pedro A; Zeng, Chunyu

    2015-01-01

    The dopaminergic and renin-angiotensin systems interact to regulate blood pressure. Disruption of the D4 dopamine receptor gene in mice produces hypertension that is associated with increased renal angiotensin type 1 (AT1) receptor expression. We hypothesize that the D4 receptor can inhibit AT1 receptor expression and function in renal proximal tubule cells from Wistar-Kyoto (WKY) rats, but the D4 receptor regulation of AT1 receptor is aberrant in renal proximal tubule cells from spontaneously hypertensive rats (SHRs). The D4 receptor agonist, PD168077, decreased AT1 receptor protein expression in a time- and concentration-dependent manner in WKY cells. By contrast, in SHR cells, PD168077 increased AT1 receptor protein expression. The inhibitory effect of D4 receptor on AT1 receptor expression in WKY cells was blocked by a calcium channel blocker, nicardipine, or calcium-free medium, indicating that calcium is involved in the D4 receptor-mediated signaling pathway. Angiotensin II increased Na(+)-K(+) ATPase activity in WKY cells. Pretreatment with PD168077 decreased the stimulatory effect of angiotensin II on Na(+)-K(+) ATPase activity in WKY cells. In SHR cells, the inhibitory effect of D4 receptor on angiotensin II-mediated stimulation of Na(+)-K(+) ATPase activity was aberrant; pretreatment with PD168077 augmented the stimulatory effect of AT1 receptor on Na(+)-K(+) ATPase activity in SHR cells. This was confirmed in vivo; pretreatment with PD128077 for 1 week augmented the antihypertensive and natriuretic effect of losartan in SHRs but not in WKY rats. We suggest that an aberrant interaction between D4 and AT1 receptors may play a role in the abnormal regulation of sodium excretion in hypertension.

  5. Hyaluronic acid induces activation of the κ-opioid receptor.

    Directory of Open Access Journals (Sweden)

    Barbara Zavan

    Full Text Available INTRODUCTION: Nociceptive pain is one of the most common types of pain that originates from an injury involving nociceptors. Approximately 60% of the knee joint innervations are classified as nociceptive. The specific biological mechanism underlying the regulation of nociceptors is relevant for the treatment of symptoms affecting the knee joint. Intra-articular administration of exogenous hyaluronic acid (HA in patients with osteoarthritis (OA appears to be particularly effective in reducing pain and improving patient function. METHODS: We performed an in vitro study conducted in CHO cells that expressed a panel of opioid receptors and in primary rat dorsal root ganglion (DRG neurons to determine if HA induces the activation of opioid peptide receptors (OPr using both aequorin and the fluorescent dye Fura-2/AM. RESULTS: Selective agonists and antagonists for each OPr expressed on CHO cells were used to test the efficacy of our in vitro model followed by stimulation with HA. The results showed that HA induces stimulatory effects on the κ receptor (KOP. These effects of HA were also confirmed in rat DRG neurons, which express endogenously the OPr. CONCLUSIONS: HA activates the KOP receptor in a concentration dependent manner, with a pEC(50 value of 7.57.

  6. Pyrimidinergic Receptor Activation Controls Toxoplasma gondii Infection in Macrophages.

    Directory of Open Access Journals (Sweden)

    Aline Cristina Abreu Moreira-Souza

    Full Text Available Infection by the protozoan parasite Toxoplasma gondii is highly prevalent worldwide and may have serious clinical manifestations in immunocompromised patients. T. gondii is an obligate intracellular parasite that infects almost any cell type in mammalian hosts, including immune cells. The immune cells express purinergic P2 receptors in their membrane--subdivided into P2Y and P2X subfamilies--whose activation is important for infection control. Here, we examined the effect of treatment with UTP and UDP in mouse peritoneal macrophages infected with T. gondii tachyzoites. Treatment with these nucleotides reduced parasitic load by 90%, but did not increase the levels of the inflammatory mediators NO and ROS, nor did it modulate host cell death by apoptosis or necrosis. On the other hand, UTP and UDP treatments induced early egress of tachyzoites from infected macrophages, in a Ca2+-dependent manner, as shown by scanning electron microscopy analysis, and videomicroscopy. In subsequent infections, prematurely egressed parasites had reduced infectivity, and could neither replicate nor inhibit the fusion of lysosomes to the parasitophorous vacuole. The use of selective agonists and antagonists of the receptor subtypes P2Y2 and P2Y4 and P2Y6 showed that premature parasite egress may be mediated by the activation of these receptor subtypes. Our results suggest that the activity of P2Y host cell receptors controls T. gondii infection in macrophages, highlighting the importance of pyrimidinergic signaling for innate immune system response against infection. Finally the P2Y receptors should be considered as new target for the development of drugs against T. gondii infection.

  7. Neurohumoral activation in heart failure: the role of adrenergic receptors

    Directory of Open Access Journals (Sweden)

    Patricia C. Brum

    2006-09-01

    Full Text Available Heart failure (HF is a common endpoint for many forms of cardiovascular disease and a significant cause of morbidity and mortality. The development of end-stage HF often involves an initial insult to the myocardium that reduces cardiac output and leads to a compensatory increase in sympathetic nervous system activity. Acutely, the sympathetic hyperactivity through the activation of beta-adrenergic receptors increases heart rate and cardiac contractility, which compensate for decreased cardiac output. However, chronic exposure of the heart to elevated levels of catecholamines released from sympathetic nerve terminals and the adrenal gland may lead to further pathologic changes in the heart, resulting in continued elevation of sympathetic tone and a progressive deterioration in cardiac function. On a molecular level, altered beta-adrenergic receptor signaling plays a pivotal role in the genesis and progression of HF. beta-adrenergic receptor number and function are decreased, and downstream mechanisms are altered. In this review we will present an overview of the normal beta-adrenergic receptor pathway in the heart and the consequences of sustained adrenergic activation in HF. The myopathic potential of individual components of the adrenergic signaling will be discussed through the results of research performed in genetic modified animals. Finally, we will discuss the potential clinical impact of beta-adrenergic receptor gene polymorphisms for better understanding the progression of HF.A insuficiência cardíaca (IC é a via final comum da maioria das doenças cardiovasculares e uma das maiores causas de morbi-mortalidade. O desenvolvimento do estágio final da IC freqüentemente envolve um insulto inicial do miocárdio, reduzindo o débito cardíaco e levando ao aumento compensatório da atividade do sistema nervoso simpático (SNS. Existem evidências de que apesar da exposição aguda ser benéfica, exposições crônicas a elevadas concentra

  8. Activation of Penile Proadipogenic Peroxisome Proliferator-Activated Receptor with an Estrogen: Interaction with Estrogen Receptor Alpha during Postnatal Development

    Directory of Open Access Journals (Sweden)

    Mahmoud M. Mansour

    2008-01-01

    Full Text Available Exposure to the estrogen receptor alpha (ER ligand diethylstilbesterol (DES between neonatal days 2 to 12 induces penile adipogenesis and adult infertility in rats. The objective of this study was to investigate the in vivo interaction between DES-activated ER and the proadipogenic transcription factor peroxisome proliferator-activated receptor gamma (PPAR. Transcripts for PPARs , , and and 1a splice variant were detected in Sprague-Dawley normal rat penis with PPAR predominating. In addition, PPAR1b and PPAR2 were newly induced by DES. The PPAR transcripts were significantly upregulated with DES and reduced by antiestrogen ICI 182, 780. At the cellular level, PPAR protein was detected in urethral transitional epithelium and stromal, endothelial, neuronal, and smooth muscular cells. Treatment with DES activated ER and induced adipocyte differentiation in corpus cavernosum penis. Those adipocytes exhibited strong nuclear PPAR expression. These results suggest a biological overlap between PPAR and ER and highlight a mechanism for endocrine disruption.

  9. Visualising androgen receptor activity in male and female mice.

    Directory of Open Access Journals (Sweden)

    D Alwyn Dart

    Full Text Available Androgens, required for normal development and fertility of males and females, have vital roles in the reproductive tract, brain, cardiovascular system, smooth muscle and bone. Androgens function via the androgen receptor (AR, a ligand-dependent transcription factor. To assay and localise AR activity in vivo we generated the transgenic "ARE-Luc" mouse, expressing a luciferase reporter gene under the control of activated endogenous AR. In vivo imaging of androgen-mediated luciferase activity revealed several strongly expressing tissues in the male mouse as expected and also in certain female tissues. In males the testes, prostate, seminal vesicles and bone marrow all showed high AR activity. In females, strong activity was seen in the ovaries, uterus, omentum tissue and mammary glands. In both sexes AR expression and activity was also found in salivary glands, the eye (and associated glands, adipose tissue, spleen and, notably, regions of the brain. Luciferase protein expression was found in the same cell layers as androgen receptor expression. Additionally, mouse AR expression and activity correlated well with AR expression in human tissues. The anti-androgen bicalutamide reduced luciferase signal in all tissues. Our model demonstrates that androgens can act in these tissues directly via AR, rather than exclusively via androgen aromatisation to estrogens and activation of the estrogen receptor. Additionally, it visually demonstrates the fundamental importance of AR signalling outside the normal role in the reproductive organs. This model represents an important tool for physiological and developmental analysis of androgen signalling, and for characterization of known and novel androgenic or antiandrogenic compounds.

  10. Monocyte Signal Transduction Receptors in Active and Latent Tuberculosis

    Directory of Open Access Journals (Sweden)

    Magdalena Druszczynska

    2013-01-01

    Full Text Available The mechanisms that promote either resistance or susceptibility to TB disease remain insufficiently understood. Our aim was to compare the expression of cell signaling transduction receptors, CD14, TLR2, CD206, and β2 integrin LFA-1 on monocytes from patients with active TB or nonmycobacterial lung disease and healthy individuals with M.tb latency and uninfected controls to explain the background of the differences between clinical and subclinical forms of M.tb infection. A simultaneous increase in the expression of the membrane bound mCD14 receptor and LFA-1 integrin in patients with active TB may be considered a prodrome of breaking immune control by M.tb bacilli in subjects with the latent TB and absence of clinical symptoms.

  11. Manipulation of P2X Receptor Activities by Light Stimulation

    Directory of Open Access Journals (Sweden)

    Sang Seong Kim

    2016-01-01

    Full Text Available P2X receptors are involved in amplification of inflammatory responses in peripheral nociceptive fibers and in mediating pain-related signals to the CNS. Control of P2X activation has significant importance in managing unwanted hypersensitive neuron responses. To overcome the limitations of chemical ligand treatment, optical stimulation methods of optogenetics and photoswitching achieve efficient control of P2X activation while allowing specificity at the target site and convenient stimulation by light illumination. There are many potential applications for photosensitive elements, such as improved uncaging methods, photoisomerizable ligands, photoswitches, and gold nanoparticles. Each technique has both advantages and downsides, and techniques are selected according to the purpose of the application. Technical advances not only provide novel approaches to manage inflammation or pain mediated by P2X receptors but also suggest a similar approach for controlling other ion channels.

  12. [Peroxisome proliferator-activated receptors (PPAR). Antiproliferative properties].

    Science.gov (United States)

    Hojka, Anna; Rapak, Andrzej

    2011-06-21

    Peroxisome proliferator-activated receptors (PPAR) are transcription factors that belong to the hormone nuclear receptor superfamily. Their main role is control of fatty acid metabolism and to maintain glucose homeostasis. Isotype γ of PPAR can also be implicated in proliferation and cellular differentiation of both normal and cancer cells. Compounds that are PPARγ ligands have a negative influence on cancer cells and can induce apoptosis, inhibit proliferation or induce cellular differentiation of these cells. This review summarizes general information about PPAR and focuses on anticancer activities of PPARγ ligands and their use in combined therapy. Combination treatment using PPARγ ligands and other agents, especially retinoids and specific kinase inhibitors, may be an effective strategy for chemoprevention and treatment of some cancers.

  13. Acute activation, desensitization and smoldering activation of human acetylcholine receptors.

    Directory of Open Access Journals (Sweden)

    Barbara G Campling

    Full Text Available The behavioral effects of nicotine and other nicotinic agonists are mediated by AChRs in the brain. The relative contribution of acute activation versus chronic desensitization of AChRs is unknown. Sustained "smoldering activation" occurs over a range of agonist concentrations at which activated and desensitized AChRs are present in equilibrium. We used a fluorescent dye sensitive to changes in membrane potential to examine the effects of acute activation and chronic desensitization by nicotinic AChR agonists on cell lines expressing human α4β2, α3β4 and α7 AChRs. We examined the effects of acute and prolonged application of nicotine and the partial agonists varenicline, cytisine and sazetidine-A on these AChRs. The range of concentrations over which nicotine causes smoldering activation of α4β2 AChRs was centered at 0.13 µM, a level found in smokers. However, nicotine produced smoldering activation of α3β4 and α7 AChRs at concentrations well above levels found in smokers. The α4β2 expressing cell line contains a mixture of two stoichiometries, namely (α4β22β2 and (α4β22α4. The (α4β22β2 stoichiometry is more sensitive to activation by nicotine. Sazetidine-A activates and desensitizes only this stoichiometry. Varenicline, cytisine and sazetidine-A were partial agonists on this mixture of α4β2 AChRs, but full agonists on α3β4 and α7 AChRs. It has been reported that cytisine and varenicline are most efficacious on the (α4β22α4 stoichiometry. In this study, we distinguish the dual effects of activation and desensitization of AChRs by these nicotinic agonists and define the range of concentrations over which smoldering activation can be sustained.

  14. Estrogen receptor- and aryl hydrocarbon receptor- mediated activities of a coal-tar creosote

    Energy Technology Data Exchange (ETDEWEB)

    Fielden, M.R.; Wu, Z.F.; Sinal, C.J.; Jury, H.H.; Bend, J.R.; Hammond, G.L.; Zacharewski, T.R. [Michigan State University, East Lansing, MI (USA). Dept. of Biochemistry

    2000-05-01

    A coal-tar creosote was examined for estrogen receptor (ER)- and aryl hydrocarbon receptor (AhR)-mediated activity using a battery of mechanistically based assays. In vitro, creosote was found to bind the mouse ER, bind to the human sex hormone-binding globulin, and elicit partial agonist activity in reporter gene assays in transiently transfected MCF-7 cells. Based on competitive binding to the mouse ER, creosote contains approximately 165 mg/L of estradiol- equivalents. Creosote effectively transformed the AhR in vitro and induced a Cyp 1a1-regulated luciferase reporter gene in transiently transfected Hepa 1c1c7 cells. Based on dose-response curves, creosote contains approximately 730 mg/L of dioxin-equivalents. Creosote did not exhibit any AhR-mediated antiestrogenic activity in vitro. In vivo, creosote significantly induced liver pentoxyresorufin O- depentylation and ethoxyresorufin-O-deethylation (EROD) in a dose-dependent manner in ovariectomized (OVX) ICR mice, but did not increase uterine weight wet or vaginal cornification, due possibly to AhR-mediated antiestrogenic activity. In OVX DBA/2 mice, a strain less responsive to AhR ligands, creosote induced liver EROD to a lesser extent, but still did not show an increase in uterine wet weight or vaginal cornification. These results demonstrate that coal- tar creosote exhibits AhR- and ER-mediated activity in vitro, but its dioxinlike activity may suppress estrogenic response in vivo.

  15. Estrogen receptor- and aryl hydrocarbon receptor-mediated activities of a coal-tar creosote

    Energy Technology Data Exchange (ETDEWEB)

    Fielden, M.R.; Wu, Z.F.; Sinal, C.J.; Jury, H.H.; Bend, J.R.; Hammond, G.L.; Zacharewski, T.R.

    2000-05-01

    A coal-tar creosote was examined for estrogen receptor (ER)- and aryl hydrocarbon receptor (AhR)-mediated activity using a battery of mechanistically based assays. In vitro, creosote was found to bind to the mouse ER, bind to the human sex hormone-binding globulin, and elicit partial agonist activity in reporter gene assays in transiently transfected MCF-7 cells. Based on competitive binding to the mouse ER, creosote contains approximately 165 mg/L of estradiol-equivalents. Creosote effectively transformed the AhR in vitro and induced a Cyplal-regulated luciferase reporter gene in transiently transfected Hepa 1c1c7 cells. Based on dose-response curves, creosote contains approximately 730 mg/L of dioxin-equivalents. Creosote did not exhibit any AhR-mediated antiestrogenic activity in vitro. In vivo, creosote significantly induced liver pentoxyresorufin O-depentylation and ethoxyresorufin-O-deethylation (EROD) in a dose-dependent manner in ovariectomized (OVX) ICR mice, but did not increase uterine weight wet or vaginal cornification, due possibly to AhR-mediated antiestrogenic activity. In OVX DBA/2 mice, a strain less responsive to AhR ligands, creosote induced liver EROD to a lesser extent, but still did not show an increase in uterine wet weight or vaginal cornification. These results demonstrate that coal-tar creosote exhibits AhR- and ER-mediated activity in vitro, but its dioxinlike activity may suppress estrogenic responses in vivo.

  16. DHEA metabolites activate estrogen receptors alpha and beta

    OpenAIRE

    Michael Miller, Kristy K.; AL-RAYYAN, NUMAN; Ivanova, Margarita M.; Mattingly, Kathleen A.; Ripp, Sharon L.; Klinge, Carolyn M; Prough, Russell A.

    2012-01-01

    Dehydroepiandrosterone (DHEA) levels were reported to associate with increased breast cancer risk in postmenopausal women, but some carcinogen-induced rat mammary tumor studies question this claim. The purpose of this study was to determine how DHEA and its metabolites affect estrogen receptors α or β (ERα or ERβ) -regulated gene transcription and cell proliferation. In transiently transfected HEK-293 cells, androstenediol, DHEA, and DHEA-S activated ERα. In ERβ transfected HepG2 cells, andro...

  17. A novel hydroxyfuroic acid compound as an insulin receptor activator – structure and activity relationship of a prenylindole moiety to insulin receptor activation

    Directory of Open Access Journals (Sweden)

    Tsai Henry J

    2009-07-01

    Full Text Available Abstract Background Diabetes Mellitus is a chronic disease and many patients of which require frequent subcutaneous insulin injection to maintain proper blood glucose levels. Due to the inconvenience of insulin administration, an orally active insulin replacement has long been a prime target for many pharmaceutical companies. Demethylasterriquinone (DMAQ B1, extracted from tropical fungus, Pseudomassaria sp., has been reported to be an orally effective agent at lowering circulating glucose levels in diabetic (db/db mice; however, the cytotoxicity associated with the quinone moiety has not been addressed thus far. Methods A series of hydroxyfuroic acid compounds were synthesized and tested for their efficacies at activating human insulin receptor. Cytotoxicity to Chinese hamster ovary cells, selectivities over insulin-like growth factor-1 (IGF-1, epidermal growth factor (EGF, and fibroblast growth factor (FGF receptors were examined in this study. Result and Conclusion This study reports a new non-quinone DMAQ B1 derivative, a hydroxyfuroic acid compound (D-410639, which is 128 fold less cytotoxic as DMAQ B1 and as potent as compound 2, a DMAQ B1 synthetic derivative from Merck, at activating human insulin receptor. D-410639 has little activation potential on IGF-1 receptor but is a moderate inhibitor to EGF receptor. Structure and activity relationship of the prenylindole moiety to insulin receptor activation is discussed.

  18. Cannabinoids go nuclear: evidence for activation of peroxisome proliferator-activated receptors

    Science.gov (United States)

    O'Sullivan, S E

    2007-01-01

    Cannabinoids act at two classical cannabinoid receptors (CB1 and CB2), a 7TM orphan receptor and the transmitter-gated channel transient receptor potential vanilloid type-1 receptor. Recent evidence also points to cannabinoids acting at members of the nuclear receptor family, peroxisome proliferator-activated receptors (PPARs, with three subtypes α, β (δ) and γ), which regulate cell differentiation and lipid metabolism. Much evidence now suggests that endocannabinoids are natural activators of PPARα. Oleoylethanolamide regulates feeding and body weight, stimulates fat utilization and has neuroprotective effects mediated through activation of PPARα. Similarly, palmitoylethanolamide regulates feeding and lipid metabolism and has anti-inflammatory properties mediated by PPARα. Other endocannabinoids that activate PPARα include anandamide, virodhamine and noladin. Some (but not all) endocannabinoids also activate PPARγ; anandamide and 2-arachidonoylglycerol have anti-inflammatory properties mediated by PPARγ. Similarly, ajulemic acid, a structural analogue of a metabolite of Δ9-tetrahydrocannabinol (THC), causes anti-inflammatory effects in vivo through PPARγ. THC also activates PPARγ, leading to a time-dependent vasorelaxation in isolated arteries. Other cannabinoids which activate PPARγ include N-arachidonoyl-dopamine, HU210, WIN55212-2 and CP55940. In contrast, little research has been carried out on the effects of cannabinoids at PPARδ. In this newly emerging area, a number of research questions remain unanswered; for example, why do cannabinoids activate some isoforms and not others? How much of the chronic effects of cannabinoids are through activation of nuclear receptors? And importantly, do cannabinoids confer the same neuro- and cardioprotective benefits as other PPARα and PPARγ agonists? This review will summarize the published literature implicating cannabinoid-mediated PPAR effects and discuss the implications thereof. PMID:17704824

  19. Discovery of novel protease activated receptors 1 antagonists with potent antithrombotic activity in vivo.

    Science.gov (United States)

    Perez, Michel; Lamothe, Marie; Maraval, Catherine; Mirabel, Etienne; Loubat, Chantal; Planty, Bruno; Horn, Clemens; Michaux, Julien; Marrot, Sebastien; Letienne, Robert; Pignier, Christophe; Bocquet, Arnaud; Nadal-Wollbold, Florence; Cussac, Didier; de Vries, Luc; Le Grand, Bruno

    2009-10-08

    Protease activated receptors (PARs) or thrombin receptors constitute a class of G-protein-coupled receptors (GPCRs) implicated in the activation of many physiological mechanisms. Thus, thrombin activates many cell types such as vascular smooth muscle cells, leukocytes, endothelial cells, and platelets via activation of these receptors. In humans, thrombin-induced platelet aggregation is mediated by one subtype of these receptors, termed PAR1. This article describes the discovery of new antagonists of these receptors and more specifically two compounds: 2-[5-oxo-5-(4-pyridin-2-ylpiperazin-1-yl)penta-1,3-dienyl]benzonitrile 36 (F 16618) and 3-(2-chlorophenyl)-1-[4-(4-fluorobenzyl)piperazin-1-yl]propenone 39 (F 16357), obtained after optimization. Both compounds are able to inhibit SFLLR-induced human platelet aggregation and display antithrombotic activity in an arteriovenous shunt model in the rat after iv or oral administration. Furthermore, these compounds are devoid of bleeding side effects often observed with other types of antiplatelet drugs, which constitutes a promising advantage for this new class of antithrombotic agents.

  20. Methylthioadenosine reprograms macrophage activation through adenosine receptor stimulation.

    Directory of Open Access Journals (Sweden)

    Peter A Keyel

    Full Text Available Regulation of inflammation is necessary to balance sufficient pathogen clearance with excessive tissue damage. Central to regulating inflammation is the switch from a pro-inflammatory pathway to an anti-inflammatory pathway. Macrophages are well-positioned to initiate this switch, and as such are the target of multiple therapeutics. One such potential therapeutic is methylthioadenosine (MTA, which inhibits TNFα production following LPS stimulation. We found that MTA could block TNFα production by multiple TLR ligands. Further, it prevented surface expression of CD69 and CD86 and reduced NF-KB signaling. We then determined that the mechanism of this action by MTA is signaling through adenosine A2 receptors. A2 receptors and TLR receptors synergized to promote an anti-inflammatory phenotype, as MTA enhanced LPS tolerance. In contrast, IL-1β production and processing was not affected by MTA exposure. Taken together, these data demonstrate that MTA reprograms TLR activation pathways via adenosine receptors to promote resolution of inflammation.

  1. DMPD: Receptor tyrosine kinases and the regulation of macrophage activation. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 14726496 Receptor tyrosine kinases and the regulation of macrophage activation. Cor...(.csml) Show Receptor tyrosine kinases and the regulation of macrophage activation. PubmedID 14726496 Title ...Receptor tyrosine kinases and the regulation of macrophage activation. Authors Co

  2. Bioluminescence imaging of estrogen receptor activity during breast cancer progression.

    Science.gov (United States)

    Vantaggiato, Cristina; Dell'Omo, Giulia; Ramachandran, Balaji; Manni, Isabella; Radaelli, Enrico; Scanziani, Eugenio; Piaggio, Giulia; Maggi, Adriana; Ciana, Paolo

    2016-01-01

    Estrogen receptors (ER) are known to play an important regulatory role in mammary gland development as well as in its neoplastic transformation. Although several studies highlighted the contribution of ER signaling in the breast transformation, little is known about the dynamics of ER state of activity during carcinogenesis due to the lack of appropriate models for measuring the extent of receptor signaling in time, in the same animal. To this aim, we have developed a reporter mouse model for the non-invasive in vivo imaging of ER activity: the ERE-Luc reporter mouse. ERE-Luc is a transgenic mouse generated with a firefly luciferase (Luc) reporter gene driven by a minimal promoter containing an estrogen responsive element (ERE). This model allows to measure receptor signaling in longitudinal studies by bioluminescence imaging (BLI). Here, we have induced sporadic mammary cancers by treating systemically ERE-Luc reporter mice with DMBA (9,10-dimethyl 1,2-benzanthracene) and measured receptor signaling by in vivo imaging in individual animals from early stage until a clinically palpable tumor appeared in the mouse breast. We showed that DMBA administration induces an increase of bioluminescence in the whole abdominal area 6 h after treatment, the signal rapidly disappears. Several weeks later, strong bioluminescence is observed in the area corresponding to the mammary glands. In vivo and ex vivo imaging analysis demonstrated that this bioluminescent signal is localized in the breast area undergoing neoplastic transformation. We conclude that this non-invasive assay is a novel relevant tool to identify the activation of the ER signaling prior the morphological detection of the neoplastic transformation.

  3. Transgenic silkworms expressing human insulin receptors for evaluation of therapeutically active insulin receptor agonists.

    Science.gov (United States)

    Matsumoto, Yasuhiko; Ishii, Masaki; Ishii, Kenichi; Miyaguchi, Wataru; Horie, Ryo; Inagaki, Yoshinori; Hamamoto, Hiroshi; Tatematsu, Ken-ichiro; Uchino, Keiro; Tamura, Toshiki; Sezutsu, Hideki; Sekimizu, Kazuhisa

    2014-12-12

    We established a transgenic silkworm strain expressing the human insulin receptor (hIR) using the GAL4/UAS system. Administration of human insulin to transgenic silkworms expressing hIR decreased hemolymph sugar levels and facilitated Akt phosphorylation in the fat body. The decrease in hemolymph sugar levels induced by injection of human insulin in the transgenic silkworms expressing hIR was blocked by co-injection of wortmannin, a phosphoinositide 3-kinase inhibitor. Administration of bovine insulin, an hIR ligand, also effectively decreased sugar levels in the transgenic silkworms. These findings indicate that functional hIRs that respond to human insulin were successfully induced in the transgenic silkworms. We propose that the humanized silkworm expressing hIR is useful for in vivo evaluation of the therapeutic activities of insulin receptor agonists. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Structure and dynamics of the insulin receptor: implications for receptor activation and drug discovery.

    Science.gov (United States)

    Ye, Libin; Maji, Suvrajit; Sanghera, Narinder; Gopalasingam, Piraveen; Gorbunov, Evgeniy; Tarasov, Sergey; Epstein, Oleg; Klein-Seetharaman, Judith

    2017-07-01

    Recently, major progress has been made in uncovering the mechanisms of how insulin engages its receptor and modulates downstream signal transduction. Here, we present in detail the current structural knowledge surrounding the individual components of the complex, binding sites, and dynamics during the activation process. A novel kinase triggering mechanism, the 'bow-arrow model', is proposed based on current knowledge and computational simulations of this system, in which insulin, after its initial interaction with binding site 1, engages with site 2 between the fibronectin type III (FnIII)-1 and -2 domains, which changes the conformation of FnIII-3 and eventually translates into structural changes across the membrane. This model provides a new perspective on the process of insulin binding to its receptor and, thus, could lead to future novel drug discovery efforts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Urokinase-type plasminogen activator (uPA) stimulates triglyceride synthesis in Huh7 hepatoma cells via p38-dependent upregulation of DGAT2.

    Science.gov (United States)

    Paland, Nicole; Gamliel-Lazarovich, Aviva; Coleman, Raymond; Fuhrman, Bianca

    2014-11-01

    The liver is the central organ of fatty acid and triglyceride metabolism. Oxidation and synthesis of fatty acids and triglycerides is under the control of peroxisome-proliferator-activated receptors (PPAR) α. Impairment of these receptors' function contributes to the accumulation of triglycerides in the liver resulting in non-alcoholic fatty liver disease. Urokinase-type plasminogen activator (uPA) was shown to regulate gene expression in the liver involving PPARγ transcriptional activity. In this study we questioned whether uPA modulates triglyceride metabolism in the liver, and investigated the mechanisms involved in the observed processes. Huh7 hepatoma cells were incubated with increasing concentrations of uPA for 24 h uPA dose-dependently increased the cellular triglyceride mass, and this effect resulted from increased de novo triglyceride synthesis mediated by the enzyme diglyceride acyltransferase 2 (DGAT2). Also, the amount of free fatty acids was highly up regulated by uPA through activation of the transcription factor SREBP-1. Chemical activation of PPARα further increased uPA-stimulated triglyceride synthesis, whereas inhibition of p38, an upstream activator of PPARα, completely abolished the stimulatory effect of uPA on both triglyceride synthesis and DGAT2 upregulation. The effect of uPA on triglyceride synthesis in Huh7 cells was mediated via binding to its receptor, the uPAR. In vivo studies in uPAR(-/-) mice demonstrated that no lipid droplets were observed in their livers compared to C57BL/6 mice and the triglyceride levels were significantly lower. This study presents a new biological function of the uPA/uPAR system in the metabolism of triglycerides and might present a new target for an early therapeutic intervention for NAFLD. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. UV ACTIVATION OF RECEPTOR TYROSINE KINASE-ACTIVITY

    NARCIS (Netherlands)

    COFFER, PJ; BURGERING, BMT; PEPPELENBOSCH, MP; BOS, JL; KRUIJER, W

    1995-01-01

    The exposure of mammalian cells to ultraviolet radiation (UV) may lead to DNA damage resulting in mutation and thus possibly cancer, while irradiation can further act as a potent tumour promoter. In addition UV induces p21ras-mediated signalling leading to activation of transcription factors such as

  7. Liver x receptors regulate the transcriptional activity of the glucocorticoid receptor: implications for the carbohydrate metabolism.

    Directory of Open Access Journals (Sweden)

    Nancy Nader

    Full Text Available GLUCOCORTICOIDS are steroid hormones that strongly influence intermediary carbohydrate metabolism by increasing the transcription rate of glucose-6-phosphatase (G6Pase, a key enzyme of gluconeogenesis, and suppress the immune system through the glucocorticoid receptor (GR. The liver X receptors (LXRs, on the other hand, bind to cholesterol metabolites, heterodimerize with the retinoid X receptor (RXR, and regulate the cholesterol turnover, the hepatic glucose metabolism by decreasing the expression of G6Pase, and repress a set of inflammatory genes in immune cells. Since the actions of these receptors overlap with each other, we evaluated the crosstalk between the GR- and LXR-mediated signaling systems. Transient transfection-based reporter assays and gene silencing methods using siRNAs for LXRs showed that overexpression/ligand (GW3965 activation of LXRs/RXRs repressed GR-stimulated transactivation of certain glucocorticoid response element (GRE-driven promoters in a gene-specific fashion. Activation of LXRs by GW3965 attenuated dexamethasone-stimulated elevation of circulating glucose in rats. It also suppressed dexamethasone-induced mRNA expression of hepatic glucose-6-phosphatase (G6Pase in rats, mice and human hepatoma HepG2 cells, whereas endogenous, unliganded LXRs were required for dexamethasone-induced mRNA expression of phosphoenolpyruvate carboxylase. In microarray transcriptomic analysis of rat liver, GW3965 differentially regulated glucocorticoid-induced transcriptional activity of about 15% of endogenous glucocorticoid-responsive genes. To examine the mechanism through which activated LXRs attenuated GR transcriptional activity, we examined LXRα/RXRα binding to GREs. Endogenous LXRα/RXRα bound GREs and inhibited GR binding to these DNA sequences both in in vitro and in vivo chromatin immunoprecipitation assays, while their recombinant proteins did so on classic or G6Pase GREs in gel mobility shift assays. We propose that

  8. Liver X Receptors Regulate the Transcriptional Activity of the Glucocorticoid Receptor: Implications for the Carbohydrate Metabolism

    Science.gov (United States)

    Nader, Nancy; Ng, Sinnie Sin Man; Wang, Yonghong; Abel, Brent S.; Chrousos, George P.; Kino, Tomoshige

    2012-01-01

    GLUCOCORTICOIDS are steroid hormones that strongly influence intermediary carbohydrate metabolism by increasing the transcription rate of glucose-6-phosphatase (G6Pase), a key enzyme of gluconeogenesis, and suppress the immune system through the glucocorticoid receptor (GR). The liver X receptors (LXRs), on the other hand, bind to cholesterol metabolites, heterodimerize with the retinoid X receptor (RXR), and regulate the cholesterol turnover, the hepatic glucose metabolism by decreasing the expression of G6Pase, and repress a set of inflammatory genes in immune cells. Since the actions of these receptors overlap with each other, we evaluated the crosstalk between the GR- and LXR-mediated signaling systems. Transient transfection-based reporter assays and gene silencing methods using siRNAs for LXRs showed that overexpression/ligand (GW3965) activation of LXRs/RXRs repressed GR-stimulated transactivation of certain glucocorticoid response element (GRE)-driven promoters in a gene-specific fashion. Activation of LXRs by GW3965 attenuated dexamethasone-stimulated elevation of circulating glucose in rats. It also suppressed dexamethasone-induced mRNA expression of hepatic glucose-6-phosphatase (G6Pase) in rats, mice and human hepatoma HepG2 cells, whereas endogenous, unliganded LXRs were required for dexamethasone-induced mRNA expression of phosphoenolpyruvate carboxylase. In microarray transcriptomic analysis of rat liver, GW3965 differentially regulated glucocorticoid-induced transcriptional activity of about 15% of endogenous glucocorticoid-responsive genes. To examine the mechanism through which activated LXRs attenuated GR transcriptional activity, we examined LXRα/RXRα binding to GREs. Endogenous LXRα/RXRα bound GREs and inhibited GR binding to these DNA sequences both in in vitro and in vivo chromatin immunoprecipitation assays, while their recombinant proteins did so on classic or G6Pase GREs in gel mobility shift assays. We propose that administration of

  9. Peroxisome Proliferator–Activated Receptors and The Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Anna Meiliana

    2009-04-01

    Full Text Available BACKGROUND: Obesity is a growing threat to global health by virtue of its association with insulin resistance, inflammation, hypertension, and dyslipidemia, collectively known as the metabolic syndrome (MetS. The nuclear receptors PPARα and PPARγ are therapeutic targets for hypertriglyceridemia and insulin resistance, respectively, and drugs that modulate these receptors are currently in clinical use. More recent work on the PPARδ has uncovered a dual benefit for both hypertriglyceridemia and insulin resistance, highlighting the broad potential of PPARs in the treatment of metabolic disease. CONTENT: We have learned much about PPARs, the metabolic fat sensors, and the molecular pathways they regulate. Through their distinct tissue distribution and specific target gene activation, the three PPARs together control diverse aspects of fatty acid metabolism, energy balance, insulin sensitivity glucose homeostasis, inflammation, hypertension and atherosclerosis. These studies have advanced our understanding of the etiology for the MetS. Mechanisms revealed by these studies highlight the importance of emerging concepts, such as the endocrine function of adipose tissue, tissue-tissue cross-talk and lipotoxicity, in the pathogenesis of type 2 diabetes mellitus and CVD. SUMMARY: The elucidation of key regulators of energy balance and insulin signaling have revolutionized our understanding of fat and sugar metabolism and their intimate link. The three ‘lipidsensing’ (PPARα, PPARγ and PPARδ exemplify this connection, regulating diverse aspects of lipid and glucose homeostasis, and serving as bonafide therapeutic targets. KEYWORDS: peroxisome proliferator, activated receptor, metabolic syndrome.

  10. Persistently active cannabinoid receptors mute a subpopulation of hippocampal interneurons.

    Science.gov (United States)

    Losonczy, Attila; Biró, Agota A; Nusser, Zoltan

    2004-02-03

    Cortical information processing requires an orchestrated interaction between a large number of pyramidal cells and albeit fewer, but highly diverse GABAergic interneurons (INs). The diversity of INs is thought to reflect functional and structural specializations evolved to control distinct network operations. Consequently, specific cortical functions may be selectively modified by altering the input-output relationship of unique IN populations. Here, we report that persistently active cannabinoid receptors, the site of action of endocannabinoids, and the psychostimulants marijuana and hashish, switch off the output (mute) of a unique class of hippocampal INs. In paired recordings between cholecystokinin-immunopositive, mossy fiber-associated INs, and their target CA3 pyramidal cells, no postsynaptic currents could be evoked with single presynaptic action potentials or with repetitive stimulations at frequencies <25 Hz. Cannabinoid receptor antagonists converted these "mute" synapses into high-fidelity ones. The selective muting of specific GABAergic INs, achieved by persistent presynaptic cannabinoid receptor activation, provides a state-dependent switch in cortical networks.

  11. Receptor conformation and constitutive activity in CCR5 chemokine receptor function and HIV infection.

    Science.gov (United States)

    Flanagan, Colleen A

    2014-01-01

    The CCR5 chemokine receptor mediates the effects of proinflammatory β-chemokines that stimulate chemotaxis, activation, and proliferation of macrophages and T cells. CCR5 is also the major coreceptor that mediates HIV infection in combination with CD4. Chemokine agonists of CCR5 stimulate the activation of cellular calcium and protein kinase signaling pathways that depend on the activation of Gαi and probably also Gαq in some cells. Chemokines also stimulate the recruitment of β-arrestin, which is required for clathrin-dependent receptor internalization and acts as a scaffold protein for the chemotaxis signaling complex that mobilizes the actin cytoskeleton. CCR5 is partially constitutively active for the activation of Gαi, but the physiological significance has not been studied. HIV binding to CCR5 also activates G protein and protein kinase signaling but, in addition, stimulates the production of proinflammatory cytokines, including TNF-α, and mobilizes the actin cytoskeleton to form the fusion pore that allows viral entry and subsequently supports viral replication in the cell. The CCR5 conformation that mediates the fusion of the viral and cell membranes is unknown, but it is probably distinct from the conformation that mediates G protein signaling. Nonpeptide CCR5 blockers are allosteric inverse agonists that increase dissociation of both chemokines and HIV envelope proteins, but this does not correlate with their ability to inhibit HIV infection. Nevertheless, the inverse agonist activity may ameliorate the immune activation that exacerbates AIDS pathogenesis. Inverse agonists of CCR5 have established efficacy for the treatment of AIDS, but may also be useful in preventing HIV infection.

  12. Peroxisome proliferator-activated receptors and renal diseases.

    Science.gov (United States)

    Wu, Jing; Chen, Lihong; Zhang, Dongjuan; Huo, Ming; Zhang, Xiaoyan; Pu, Dan; Guan, Youfei

    2009-01-01

    Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily of ligand-dependent transcription factors. Three isoforms of PPAR, i.e., PPAR-a, -d, and -?, have been identified and are differentially expressed in various tissues, including the kidney. The target genes of PPARs are involved in diverse biological processes, including adipogenesis, lipid metabolism, insulin sensitivity, inflammatory response, reproduction, and cell growth and differentiation. PPARs have been reported to protect against renal injury through indirect systemic effects and/or direct renal effects in diabetic nephropathy, glomerulonephritis, renal cell carcinoma, acute renal failure and chronic renal disease. In this review, we summarize the role of the three identified PPAR isoforms, PPARa, -d, and -?, in renal physiology and discuss the renoprotective effects of PPAR ligands in various kidney diseases.

  13. Structural rearrangement of the intracellular domains during AMPA receptor activation

    DEFF Research Database (Denmark)

    Zachariassen, Linda Grønborg; Katchan, Ljudmila; Jensen, Anna Guldvang

    2016-01-01

    α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) are ligand-gated ion channels that mediate the majority of fast excitatory neurotransmission in the central nervous system. Despite recent advances in structural studies of AMPARs, information about the specific conformational...... changes that underlie receptor function is lacking. Here, we used single and dual insertion of GFP variants at various positions in AMPAR subunits to enable measurements of conformational changes using fluorescence resonance energy transfer (FRET) in live cells. We produced dual CFP/YFP-tagged GluA2...... subunit constructs that had normal activity and displayed intrareceptor FRET. We used fluorescence lifetime imaging microscopy (FLIM) in live HEK293 cells to determine distinct steady-state FRET efficiencies in the presence of different ligands, suggesting a dynamic picture of the resting state. Patch...

  14. Dual activities of odorants on olfactory and nuclear hormone receptors.

    Science.gov (United States)

    Pick, Horst; Etter, Sylvain; Baud, Olivia; Schmauder, Ralf; Bordoli, Lorenza; Schwede, Torsten; Vogel, Horst

    2009-10-30

    We have screened an odorant compound library and discovered molecules acting as chemical signals that specifically activate both G-protein-coupled olfactory receptors (ORs) on the cell surface of olfactory sensory neurons and the human nuclear estrogen receptor alpha (ER) involved in transcriptional regulation of cellular differentiation and proliferation in a wide variety of tissues. Hence, these apparent dual active odorants induce distinct signal transduction pathways at different subcellular localizations, which affect both neuronal signaling, resulting in odor perception, and the ER-dependent transcriptional control of specific genes. We demonstrate these effects using fluorescence-based in vitro and cellular assays. Among these odorants, we have identified synthetic sandalwood compounds, an important class of molecules used in the fragrance industry. For one estrogenic odorant we have also identified the cognate OR. This prompted us to compare basic molecular recognition principles of odorants on the two structurally and apparent functionally non-related receptors using computational modeling in combination with functional assays. Faced with the increasing evidence that ORs may perform chemosensory functions in a number of tissues outside of the nasal olfactory epithelium, the unraveling of these molecular ligand-receptor interaction principles is of critical importance. In addition the evidence that certain olfactory sensory neurons naturally co-express ORs and ERs may provide a direct functional link between the olfactory and hormonal systems in humans. Our results are therefore useful for defining the structural and functional characteristics of ER-specific odorants and the role of odorant molecules in cellular processes other than olfaction.

  15. Activation profiles of opioid ligands in HEK cells expressing δ opioid receptors

    OpenAIRE

    Clark J; Demirci Hasan; Gharagozlou Parham; Lameh Jelveh

    2002-01-01

    Abstract Background The aim of the present study was to characterize the activation profiles of 15 opioid ligands in transfected human embryonic kidney cells expressing only δ opioid receptors. Activation profiles of most of these ligands at δ opioid receptors had not been previously characterized in vitro. Receptor activation was assessed by measuring the inhibition of forskolin-stimulated cAMP production. Results Naltrexone and nalorphine were classified as antagonists at δ opioid receptor....

  16. Phagocytic receptors activate and immune inhibitory receptor SIRPalpha inhibits phagocytosis through paxillin and cofilin

    Directory of Open Access Journals (Sweden)

    Miri eGitik

    2014-04-01

    Full Text Available The innate-immune function of phagocytosis of apoptotic cells, tissue-debris, pathogens and cancer cells is essential for homeostasis, tissue repair, fighting infection and combating malignancy. Phagocytosis is carried out in the CNS by resident microglia and in both CNS and PNS by recruited macrophages. While phagocytosis proceeds, bystander healthy cells protect themselves by sending a do not eat me message to phagocytes as CD47 on their surface ligates immune inhibitory receptor SIRPα on the surface of phagocytes and SIRPα then produces the signaling which inhibits phagocytosis. This helpful mechanism becomes harmful when tissue-debris and unhealthy cells inhibit their own phagocytosis by employing the same mechanism. However, the inhibitory signaling that SIRPα produces has not been fully revealed. We focus here on how SIRPα inhibits the phagocytosis of the tissue-debris degenerated-myelin which hinders repair in axonal injury and neurodegenerative diseases. We tested whether SIRPα inhibits phagocytosis by regulating cytoskeleton function through paxillin and cofilin since (a the cytoskeleton generates the mechanical forces that drive phagocytosis and (b both paxillin and cofilin control cytoskeleton function. Paxillin and cofilin were transiently activated in microglia as phagocytosis was activated. In contrast, paxillin and cofilin were continuously activated and phagocytosis augmented in microglia in which SIRPα expression was knocked-down by SIRPα-shRNA. Further, levels of phagocytosis, paxillin activation and cofilin activation positively correlated with one another. Taken together, these observations suggest a novel mechanism whereby paxillin and cofilin are targeted to control phagocytosis by both the activating signaling that phagocytic receptors produce by promoting the activation of paxillin and cofilin and the inhibiting signaling that immune inhibitory SIRPα produces by promoting the inactivation of paxillin and cofilin.

  17. Phagocytic receptors activate and immune inhibitory receptor SIRPα inhibits phagocytosis through paxillin and cofilin.

    Science.gov (United States)

    Gitik, Miri; Kleinhaus, Rachel; Hadas, Smadar; Reichert, Fanny; Rotshenker, Shlomo

    2014-01-01

    The innate immune function of phagocytosis of apoptotic cells, tissue debris, pathogens, and cancer cells is essential for homeostasis, tissue repair, fighting infection, and combating malignancy. Phagocytosis is carried out in the central nervous system (CNS) by resident microglia and in both CNS and peripheral nervous system by recruited macrophages. While phagocytosis proceeds, bystander healthy cells protect themselves by sending a "do not eat me" message to phagocytes as CD47 on their surface ligates immune inhibitory receptor SIRPα on the surface of phagocytes and SIRPα then produces the signaling which inhibits phagocytosis. This helpful mechanism becomes harmful when tissue debris and unhealthy cells inhibit their own phagocytosis by employing the same mechanism. However, the inhibitory signaling that SIRPα produces has not been fully revealed. We focus here on how SIRPα inhibits the phagocytosis of the tissue debris "degenerated myelin" which hinders repair in axonal injury and neurodegenerative diseases. We tested whether SIRPα inhibits phagocytosis by regulating cytoskeleton function through paxillin and cofilin since (a) the cytoskeleton generates the mechanical forces that drive phagocytosis and (b) both paxillin and cofilin control cytoskeleton function. Paxillin and cofilin were transiently activated in microglia as phagocytosis was activated. In contrast, paxillin and cofilin were continuously activated and phagocytosis augmented in microglia in which SIRPα expression was knocked-down by SIRPα-shRNA. Further, levels of phagocytosis, paxillin activation, and cofilin activation positively correlated with one another. Taken together, these observations suggest a novel mechanism whereby paxillin and cofilin are targeted to control phagocytosis by both the activating signaling that phagocytic receptors produce by promoting the activation of paxillin and cofilin and the inhibiting signaling that immune inhibitory SIRPα produces by promoting the

  18. Identification of Modulators of the Nuclear Receptor Peroxisome Proliferator-Activated Receptor α (PPARα) in a Mouse Liver Gene Expression Compendium

    Science.gov (United States)

    The nuclear receptor family member peroxisome proliferator-activated receptor α (PPARα) is activated by therapeutic hypolipidemic drugs and environmentally-relevant chemicals to regulate genes involved in lipid transport and catabolism. Chronic activation of PPARα in rodents inc...

  19. Stimulation of cannabinoid receptor 2 (CB2 suppresses microglial activation

    Directory of Open Access Journals (Sweden)

    Fernandez Francisco

    2005-12-01

    Full Text Available Abstract Background Activated microglial cells have been implicated in a number of neurodegenerative disorders, including Alzheimer's disease (AD, multiple sclerosis (MS, and HIV dementia. It is well known that inflammatory mediators such as nitric oxide (NO, cytokines, and chemokines play an important role in microglial cell-associated neuron cell damage. Our previous studies have shown that CD40 signaling is involved in pathological activation of microglial cells. Many data reveal that cannabinoids mediate suppression of inflammation in vitro and in vivo through stimulation of cannabinoid receptor 2 (CB2. Methods In this study, we investigated the effects of a cannabinoid agonist on CD40 expression and function by cultured microglial cells activated by IFN-γ using RT-PCR, Western immunoblotting, flow cytometry, and anti-CB2 small interfering RNA (siRNA analyses. Furthermore, we examined if the stimulation of CB2 could modulate the capacity of microglial cells to phagocytise Aβ1–42 peptide using a phagocytosis assay. Results We found that the selective stimulation of cannabinoid receptor CB2 by JWH-015 suppressed IFN-γ-induced CD40 expression. In addition, this CB2 agonist markedly inhibited IFN-γ-induced phosphorylation of JAK/STAT1. Further, this stimulation was also able to suppress microglial TNF-α and nitric oxide production induced either by IFN-γ or Aβ peptide challenge in the presence of CD40 ligation. Finally, we showed that CB2 activation by JWH-015 markedly attenuated CD40-mediated inhibition of microglial phagocytosis of Aβ1–42 peptide. Taken together, these results provide mechanistic insight into beneficial effects provided by cannabinoid receptor CB2 modulation in neurodegenerative diseases, particularly AD.

  20. Helix 11 Dynamics is Critical for Constitutive Androstane Receptor Activity

    Science.gov (United States)

    Wright, Edward; Busby, Scott A.; Wisecarver, Sarah; Vincent, Jeremy; Griffin, Patrick R.; Fernandez, Elias J.

    2010-01-01

    Summary The constitutive androstane receptor (CAR) transactivation can occur in the absence of exogenous ligand and this activity is enhanced by agonists TCPOBOP and meclizine. We use biophysical and cell-based assays to show that increased activity of CAR(TCPOBOP) relative to CAR(meclizine) corresponds to a higher affinity of CAR(TCPOBOP) for the steroid receptor coactivator-1. Additionally, steady-state fluorescence spectra suggest conformational differences between CAR(TCPOBOP):RXR and CAR(meclizine):RXR. Hydrogen/deuterium exchange (HDX) data indicate that the CAR activation function 2 (AF-2) is more stable in CAR(TCPOBOP):RXR and CAR(meclizine):RXR than in CAR:RXR. HDX kinetics also show significant differences between CAR(TCPOBOP):RXR and CAR(meclizine):RXR. Unlike CAR(meclizine):RXR, CAR(TCPOBOP):RXR shows a higher overall stabilization that extends into RXR. We identify residues 339–345 in CAR as an allosteric regulatory site with a greater magnitude reduction in exchange kinetics in CAR(TCPOBOP):RXR than CAR(meclizine):RXR. Accordingly, assays with mutations on CAR at leucine-340 and leucine-343 confirm this region as an important determinant of CAR activity. PMID:21220114

  1. DHEA metabolites activate estrogen receptors alpha and beta

    Science.gov (United States)

    Michael Miller, Kristy K.; Al-Rayyan, Numan; Ivanova, Margarita M.; Mattingly, Kathleen A.; Ripp, Sharon L.; Klinge, Carolyn M.; Prough, Russell A.

    2012-01-01

    Dehydroepiandrosterone (DHEA) levels were reported to associate with increased breast cancer risk in postmenopausal women, but some carcinogen-induced rat mammary tumor studies question this claim. The purpose of this study was to determine how DHEA and its metabolites affect estrogen receptors α or β (ERα or ERβ) -regulated gene transcription and cell proliferation. In transiently transfected HEK-293 cells, androstenediol, DHEA, and DHEA-S activated ERα. In ERβ transfected HepG2 cells, androstenedione, DHEA, androstenediol, and 7-oxo DHEA stimulated reporter activity. ER antagonists ICI 182,780 (fulvestrant) and 4-hydroxytamoxifen, general P450 inhibitor miconazole, and aromatase inhibitor exemestane inhibited activation by DHEA or metabolites in transfected cells. ERβ-selective antagonist R,R-THC (R,R-cis-diethyl tetrahydrochrysene) inhibited DHEA and DHEA metabolite transcriptional activity in ERβ-transfected cells. Expression of endogenous estrogen-regulated genes: pS2, progesterone receptor, cathepsin D1, and nuclear respiratory factor-1 was increased by DHEA and its metabolites in an ER-subtype, gene, and cell-specific manner. DHEA metabolites, but not DHEA, competed with 17β-estradiol for ERα and ERβ binding and stimulated MCF-7 cell proliferation, demonstrating that DHEA metabolites interact directly with ERα and ERβ in vitro, modulating estrogen target genes in vivo. PMID:23123738

  2. Facilitation of neocortical presynaptic terminal development by NMDA receptor activation

    Directory of Open Access Journals (Sweden)

    Sceniak Michael P

    2012-02-01

    Full Text Available Abstract Background Neocortical circuits are established through the formation of synapses between cortical neurons, but the molecular mechanisms of synapse formation are only beginning to be understood. The mechanisms that control synaptic vesicle (SV and active zone (AZ protein assembly at developing presynaptic terminals have not yet been defined. Similarly, the role of glutamate receptor activation in control of presynaptic development remains unclear. Results Here, we use confocal imaging to demonstrate that NMDA receptor (NMDAR activation regulates accumulation of multiple SV and AZ proteins at nascent presynaptic terminals of visual cortical neurons. NMDAR-dependent regulation of presynaptic assembly occurs even at synapses that lack postsynaptic NMDARs. We also provide evidence that this control of presynaptic terminal development is independent of glia. Conclusions Based on these data, we propose a novel NMDAR-dependent mechanism for control of presynaptic terminal development in excitatory neocortical neurons. Control of presynaptic development by NMDARs could ultimately contribute to activity-dependent development of cortical receptive fields.

  3. Behavioral meaningful opioidergic stimulation activates kappa receptor gene expression

    Directory of Open Access Journals (Sweden)

    E. Teodorov

    2012-10-01

    Full Text Available The periaqueductal gray (PAG has been reported to be a location for opioid regulation of pain and a potential site for behavioral selection in females. Opioid-mediated behavioral and physiological responses differ according to the activity of opioid receptor subtypes. The present study investigated the effects of the peripheral injection of the kappa-opioid receptor agonist U69593 into the dorsal subcutaneous region of animals on maternal behavior and on Oprk1 gene activity in the PAG of female rats. Female Wistar rats weighing 200-250 g at the beginning of the study were randomly divided into 2 groups for maternal behavior and gene expression experiments. On day 5, pups were removed at 7:00 am and placed in another home cage that was distant from their mother. Thirty minutes after removing the pups, the dams were treated with U69593 (0.15 mg/kg, sc or 0.9% saline (up to 1 mL/kg and after 30 min were evaluated in the maternal behavior test. Latencies in seconds for pup retrieval, grouping, crouching, and full maternal behavior were scored. The results showed that U69593 administration inhibited maternal behavior (P < 0.05 because a lower percentage of kappa group dams showed retrieval of first pup, retrieving all pups, grouping, crouching and displaying full maternal behavior compared to the saline group. Opioid gene expression was evaluated using real-time reverse-transcription polymerase chain reaction (RT-PCR. A single injection of U69593 increased Oprk1 PAG expression in both virgin (P < 0.05 and lactating female rats (P < 0.01, with no significant effect on Oprm1 or Oprd1 gene activity. Thus, the expression of kappa-opioid receptors in the PAG may be modulated by single opioid receptor stimulation and behavioral meaningful opioidergic transmission in the adult female might occur simultaneously to specific changes in gene expression of kappa-opioid receptor subtype. This is yet another alert for the complex role of the opioid system in

  4. Behavioral meaningful opioidergic stimulation activates kappa receptor gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Teodorov, E. [Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Paulo, SP (Brazil); Ferrari, M.F.R. [Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP (Brazil); Fior-Chadi, D.R. [Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP (Brazil); Camarini, R. [Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP (Brazil); Felício, L.F. [Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP (Brazil)

    2012-06-01

    The periaqueductal gray (PAG) has been reported to be a location for opioid regulation of pain and a potential site for behavioral selection in females. Opioid-mediated behavioral and physiological responses differ according to the activity of opioid receptor subtypes. The present study investigated the effects of the peripheral injection of the kappa-opioid receptor agonist U69593 into the dorsal subcutaneous region of animals on maternal behavior and on Oprk1 gene activity in the PAG of female rats. Female Wistar rats weighing 200-250 g at the beginning of the study were randomly divided into 2 groups for maternal behavior and gene expression experiments. On day 5, pups were removed at 7:00 am and placed in another home cage that was distant from their mother. Thirty minutes after removing the pups, the dams were treated with U69593 (0.15 mg/kg, sc) or 0.9% saline (up to 1 mL/kg) and after 30 min were evaluated in the maternal behavior test. Latencies in seconds for pup retrieval, grouping, crouching, and full maternal behavior were scored. The results showed that U69593 administration inhibited maternal behavior (P < 0.05) because a lower percentage of U69593 group dams showed retrieval of first pup, retrieving all pups, grouping, crouching and displaying full maternal behavior compared to the saline group. Opioid gene expression was evaluated using real-time reverse-transcription polymerase chain reaction (RT-PCR). A single injection of U69593 increased Oprk1 PAG expression in both virgin (P < 0.05) and lactating female rats (P < 0.01), with no significant effect on Oprm1 or Oprd1 gene activity. Thus, the expression of kappa-opioid receptors in the PAG may be modulated by single opioid receptor stimulation and behavioral meaningful opioidergic transmission in the adult female might occur simultaneously to specific changes in gene expression of kappa-opioid receptor subtype. This is yet another alert for the complex role of the opioid system in female

  5. Peroxisome proliferator-activated receptor delta activation leads to increased transintestinal cholesterol efflux

    NARCIS (Netherlands)

    Vrins, Carlos L. J.; van der Velde, Astrid E.; van den Oever, Karin; Levels, Johannes H. M.; Huet, Stephane; Elferink, Ronald P. J. Oude; Kuipers, Folkert; Groen, Albert K.

    2009-01-01

    Peroxisome proliferator-activated receptor delta (PPAR delta) is involved in regulation of energy homeostasis. Activation of PPAR delta markedly increases fecal neutral sterol secretion, the last step in reverse cholesterol transport. This phenomenon can neither be explained by increased hepatobilia

  6. The adipogenic acetyltransferase Tip60 targets activation function 1 of peroxisome proliferator-activated receptor gamma

    DEFF Research Database (Denmark)

    van Beekum, Olivier; Brenkman, Arjan B; Grøntved, Lars

    2008-01-01

    The transcription factor peroxisome proliferator-activated receptor gamma (PPARgamma) plays a key role in the regulation of lipid and glucose metabolism in adipocytes, by regulating their differentiation, maintenance, and function. The transcriptional activity of PPARgamma is dictated by the set ...

  7. Sulfonylureas and glinides exhibit peroxisome proliferator-activated receptor gamma activity: A combined virtual screening and biological assay approach

    NARCIS (Netherlands)

    Scarsi, M.; Podvinec, M.; Roth, A.; Hug, H.; Kersten, A.H.; Albrecht, H.; Schwede, T.; Meyer, U.A.; Rucker, C.

    2007-01-01

    Most drugs currently employed in the treatment of type 2 diabetes either target the sulfonylurea receptor stimulating insulin release (sulfonylureas, glinides), or target the peroxisome proliferator-activated receptor (PPAR) improving insulin resistance (thiazolidinediones). Our work shows that sulf

  8. FATTY ACIDS MODULATE TOLL-LIKE RECEPTOR 4 ACTIVATION THROUGH REGULATION OF RECEPTOR DIMERIZATION AND RECRUITMENT INTO LIPID RAFTS

    Science.gov (United States)

    The saturated fatty acids acylated on Lipid A of lipopolysaccharide (LPS) or bacterial lipoproteins play critical roles in ligand recognition and receptor activation for Toll-like Receptor 4 (TLR4) and TLR2. The results from our previous studies (J Biol Chem 2003, 2004) demonstrated that saturated ...

  9. Methamphetamine Increases Locomotion and Dopamine Transporter Activity in Dopamine D5 Receptor-Deficient Mice

    OpenAIRE

    Seiji Hayashizaki; Shinobu Hirai; Yumi Ito; Yoshiko Honda; Yosefu Arime; Ichiro Sora; Haruo Okado; Tohru Kodama; Masahiko Takada

    2013-01-01

    Dopamine regulates the psychomotor stimulant activities of amphetamine-like substances in the brain. The effects of dopamine are mediated through five known dopamine receptor subtypes in mammals. The functional relevance of D5 dopamine receptors in the central nervous system is not well understood. To determine the functional relevance of D5 dopamine receptors, we created D5 dopamine receptor-deficient mice and then used these mice to assess the roles of D5 dopamine receptors in the behaviora...

  10. Dopamine Receptor Activation Increases HIV Entry into Primary Human Macrophages

    Science.gov (United States)

    Gaskill, Peter J.; Yano, Hideaki H.; Kalpana, Ganjam V.; Javitch, Jonathan A.; Berman, Joan W.

    2014-01-01

    Macrophages are the primary cell type infected with HIV in the central nervous system, and infection of these cells is a major component in the development of neuropathogenesis and HIV-associated neurocognitive disorders. Within the brains of drug abusers, macrophages are exposed to increased levels of dopamine, a neurotransmitter that mediates the addictive and reinforcing effects of drugs of abuse such as cocaine and methamphetamine. In this study we examined the effects of dopamine on HIV entry into primary human macrophages. Exposure to dopamine during infection increased the entry of R5 tropic HIV into macrophages, irrespective of the concentration of the viral inoculum. The entry pathway affected was CCR5 dependent, as antagonizing CCR5 with the small molecule inhibitor TAK779 completely blocked entry. The effect was dose-dependent and had a steep threshold, only occurring above 108 M dopamine. The dopamine-mediated increase in entry required dopamine receptor activation, as it was abrogated by the pan-dopamine receptor antagonist flupenthixol, and could be mediated through both subtypes of dopamine receptors. These findings indicate that the effects of dopamine on macrophages may have a significant impact on HIV pathogenesis. They also suggest that drug-induced increases in CNS dopamine may be a common mechanism by which drugs of abuse with distinct modes of action exacerbate neuroinflammation and contribute to HIV-associated neurocognitive disorders in infected drug abusers. PMID:25268786

  11. Dopamine receptor activation increases HIV entry into primary human macrophages.

    Directory of Open Access Journals (Sweden)

    Peter J Gaskill

    Full Text Available Macrophages are the primary cell type infected with HIV in the central nervous system, and infection of these cells is a major component in the development of neuropathogenesis and HIV-associated neurocognitive disorders. Within the brains of drug abusers, macrophages are exposed to increased levels of dopamine, a neurotransmitter that mediates the addictive and reinforcing effects of drugs of abuse such as cocaine and methamphetamine. In this study we examined the effects of dopamine on HIV entry into primary human macrophages. Exposure to dopamine during infection increased the entry of R5 tropic HIV into macrophages, irrespective of the concentration of the viral inoculum. The entry pathway affected was CCR5 dependent, as antagonizing CCR5 with the small molecule inhibitor TAK779 completely blocked entry. The effect was dose-dependent and had a steep threshold, only occurring above 108 M dopamine. The dopamine-mediated increase in entry required dopamine receptor activation, as it was abrogated by the pan-dopamine receptor antagonist flupenthixol, and could be mediated through both subtypes of dopamine receptors. These findings indicate that the effects of dopamine on macrophages may have a significant impact on HIV pathogenesis. They also suggest that drug-induced increases in CNS dopamine may be a common mechanism by which drugs of abuse with distinct modes of action exacerbate neuroinflammation and contribute to HIV-associated neurocognitive disorders in infected drug abusers.

  12. Characterization of human endothelial cell urokinase-type plasminogen activator receptor protein and messenger RNA

    DEFF Research Database (Denmark)

    Barnathan, E S; Kuo, A; Karikó, K

    1990-01-01

    Human umbilical vein endothelial cells in culture (HUVEC) express receptors for urokinase-type plasminogen activators (u-PA). The immunochemical nature of this receptor and its relationship to u-PA receptors expressed by other cell types is unknown. Cross-linking active site-blocked u-PA to HUVEC...

  13. Protease activated receptor-2 contributes to heart failure.

    Directory of Open Access Journals (Sweden)

    Silvio Antoniak

    Full Text Available Heart failure is a major clinical problem worldwide. Previous studies have demonstrated an important role for G protein-coupled receptors, including protease-activated receptors (PARs, in the pathology of heart hypertrophy and failure. Activation of PAR-2 on cardiomyocytes has been shown to induce hypertrophic growth in vitro. PAR-2 also contributes to myocardial infarction and heart remodeling after ischemia/reperfusion injury. In this study, we found that PAR-2 induced hypertrophic growth of cultured rat neonatal cardiomyocytes in a MEK1/2 and p38 dependent manner. In addition, PAR-2 activation on mouse cardiomyocytes increased expression of the pro-fibrotic chemokine MCP-1. Furthermore, cardiomyocyte-specific overexpression of PAR-2 in mice induced heart hypertrophy, cardiac fibrosis, inflammation and heart failure. Finally, in a mouse model of myocardial infarction induced by permanent ligation of the left anterior descending coronary artery, PAR-2 deficiency attenuated heart remodeling and improved heart function independently of its contribution to the size of the initial infarct. Taken together, our data indicate that PAR-2 signaling contributes to the pathogenesis of hypertrophy and heart failure.

  14. Activation of μ-opioid receptor and Toll-like receptor 4 by plasma from morphine-treated mice.

    Science.gov (United States)

    Xie, Nan; Gomes, Fabio P; Deora, Vandana; Gregory, Kye; Vithanage, Tharindu; Nassar, Zeyad D; Cabot, Peter J; Sturgess, David; Shaw, Paul N; Parat, Marie-Odile

    2017-03-01

    In this study, we quantified the ability of opioids present in biological samples to activate the μ-opioid receptor and TLR4 using cell-based assays. Each assay was standardised, in the presence of plasma, using morphine, its μ receptor-active metabolite morphine-6 glucuronide (M6G) and its μ receptor-inactive, but TLR4-active metabolite morphine-3 glucuronide (M3G). Specificity was verified using antagonists. Morphine- and M6G-spiked plasma samples exhibited μ receptor activation, which M3G-spiked plasma lacked. In contrast, M3G showed moderate but consistent activation of TLR-4. Plasma samples were collected at a number of time points from mice administered morphine (1 or 10mg/kg every 12h for 3days) or saline. Morphine administration led to intermittent μ receptor activation, reversed by μ receptor antagonists, and to TRL4 activation at time points where M3G is measured in plasma. Interestingly, this protocol of morphine administration also led to TLR4-independent NF-κB activation, at time points where M3G was not detected, presumably via elevation of circulating cytokines including, but not limited to, TNFα. Circulating TNFα was increased after three days of morphine administration, and TNFα mRNA elevated in the spleen of morphine-treated mice.

  15. Morphine induces μ opioid receptor endocytosis in guinea pig enteric neurons following prolonged receptor activation

    Science.gov (United States)

    Patierno, Simona; Anselmi, Laura; Jaramillo, Ingrid; Scott, David; Garcia, Rachel; Sternini, Catia

    2010-01-01

    Background & Aims The μ opioid receptor (μOR) undergoes rapid endocytosis following acute stimulation with opioids and most opiates, but not with morphine. We investigated whether prolonged activation of μOR affects morphine’s ability to induce receptor endocytosis in enteric neurons. Methods We compared the effects of morphine, a poor μOR-internalizing opiate, and [D-Ala2, MePhe4,Gly-ol5] enkephalin (DAMGO), a potent μOR-internalizing agonist, on μOR trafficking in enteric neurons and on the expression of dynamin and β-arrestin immunoreactivity in the ileum of guinea pigs rendered tolerant by chronic administration of morphine. Results Morphine (100 µM) strongly induced endocytosis of μOR in tolerant but not naïve neurons (55.7%±9.3% vs. 24.2%±7.3%, P<0.001) whereas DAMGO (10 µM) strongly induced internalization of μOR in neurons from tolerant and naïve animals (63.6%±8.4% and 66.5%±3.6%). Morphine- or DAMGO-induced μOR endocytosis resulted from direct interactions between the ligand and the μOR, because endocytosis was not affected by tetrodotoxin, a blocker of endogenous neurotransmitter release. Ligand-induced μOR internalization was inhibited by pretreatment with the dynamin inhibitor, dynasore. Chronic morphine administration resulted in a significant increase in dynamin and translocation of dynamin immunoreactivity from the intracellular pool to the plasma membrane, but did not affect β arrestin immunoreactivity. Conclusion Chronic activation of μORs increases the ability of morphine to induce μOR endocytosis in enteric neurons, which depends on the level and cellular localization of dynamin, a regulatory protein that has an important role in receptor-mediated signal transduction in cells. PMID:21070774

  16. Evidence that adiponectin receptor 1 activation exacerbates ischemic neuronal death

    Directory of Open Access Journals (Sweden)

    Thundyil John

    2010-08-01

    Full Text Available Abstract Background- Adiponectin is a hormone produced in and released from adipose cells, which has been shown to have anti-diabetic and anti-inflammatory actions in peripheral cells. Two cell surface adiponectin receptors (ADRs mediate the majority of the known biological actions of adiponectin. Thus far, ADR expression in the brain has been demonstrated in the arcuate and the paraventricular nucleus of hypothalamus, where its activation affects food intake. Recent findings suggest that levels of circulating adiponectin increase after an ischemic stroke, but the role of adiponectin receptor activation in stroke pathogenesis and its functional outcome is unclear. Methods- Ischemic stroke was induced in C57BL/6 mice by middle cerebral artery occlusion (MCAO for 1 h, followed by reperfusion. Primary cortical neuronal cultures were established from individual embryonic neocortex. For glucose deprivation (GD, cultured neurons were incubated in glucose-free Locke's medium for 6, 12 or 24 h. For combined oxygen and glucose deprivation (OGD, neurons were incubated in glucose-free Locke's medium in an oxygen-free chamber with 95% N2/5% CO2 atmosphere for either 3, 6, 9, 12 or 24 h. Primary neurons and brain tissues were analysed for Adiponectin and ADRs using reverse transcriptase polymerase chain reaction (RT-PCR, immunoblot and immunochemistry methods. Results- Cortical neurons express ADR1 and ADR2, and that the levels of ADR1 are increased in neurons in response to in vitro or in vivo ischemic conditions. Neurons treated with either globular or trimeric adiponectin exhibited increased vulnerability to oxygen and glucose deprivation which was associated with increased activation of a pro-apoptotic signaling cascade involving p38 mitogen-activated protein kinase (p38MAPK and AMP-activated protein kinase (AMPK. Conclusions- This study reveals a novel pathogenic role for adiponectin and adiponectin receptor activation in ischemic stroke. We show that

  17. Oxidatively fragmented phosphatidylcholines activate human neutrophils through the receptor for platelet-activating factor.

    Science.gov (United States)

    Smiley, P L; Stremler, K E; Prescott, S M; Zimmerman, G A; McIntyre, T M

    1991-06-15

    Platelet-activating factor (PAF, 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) activates neutrophils (polymorphonuclear leukocytes, PMN) through a receptor that specifically recognizes short sn-2 residues. We oxidized synthetic [2-arachidonoyl]phosphatidylcholine to fragment and shorten the sn-2 residue, and then examined the phospholipid products for the ability to stimulate PMN. 1-Palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine was fragmented by ozonolysis to 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine. This phospholipid activated human neutrophils at submicromolar concentrations, and is effects were inhibited by specific PAF receptor antagonists WEB2086, L659,989, and CV3988. 1-Palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine next was fragmented by an uncontrolled free radical-catalyzed reaction: it was treated with soybean lipoxygenase to form its sn-2 15-hydroperoxy derivative (which did not activate neutrophils) and then allowed to oxidize under air. The secondary oxidation resulted in the formation of numerous fragmented phospholipids (Stremler, K. E., Stafforini, D. M., Prescott, S. M., and McIntyre, T. M. (1991) J. Biol. Chem. 266, 11095-11103), some of which activated PMN. Hydrolysis of sn-2 residues with phospholipase A2 destroyed biologic activity, as did hydrolysis with PAF acetylhydrolase. PAF acetylhydrolase is specific for short or intermediate length sn-2 residues and does not hydrolyze the starting material (Stremler, K. E., Stafforini, D. M., Prescott, S. M., and McIntyre, T. M. (1991) J. Biol. Chem. 266, 11095-11103). Neutrophil activation was completely blocked by L659,989, a specific PAF receptor antagonist. We conclude that diacylphosphatidylcholines containing an sn-2 polyunsaturated fatty acyl residue can be oxidatively fragmented to species with sn-2 residues short enough to activate the PAF receptor of neutrophils. This suggests a new mechanism for the appearance of biologically active phospholipids, and shows

  18. NMDA receptor subunit expression and PAR2 receptor activation in colospinal afferent neurons (CANs during inflammation induced visceral hypersensitivity

    Directory of Open Access Journals (Sweden)

    Caudle Robert M

    2009-09-01

    Full Text Available Abstract Background Visceral hypersensitivity is a clinical observation made when diagnosing patients with functional bowel disorders. The cause of visceral hypersensitivity is unknown but is thought to be attributed to inflammation. Previously we demonstrated that a unique set of enteric neurons, colospinal afferent neurons (CANs, co-localize with the NR1 and NR2D subunits of the NMDA receptor as well as with the PAR2 receptor. The aim of this study was to determine if NMDA and PAR2 receptors expressed on CANs contribute to visceral hypersensitivity following inflammation. Recently, work has suggested that dorsal root ganglion (DRG neurons expressing the transient receptor potential vanilloid-1 (TRPV1 receptor mediate inflammation induced visceral hypersensitivity. Therefore, in order to study CAN involvement in visceral hypersensitivity, DRG neurons expressing the TRPV1 receptor were lesioned with resiniferatoxin (RTX prior to inflammation and behavioural testing. Results CANs do not express the TRPV1 receptor; therefore, they survive following RTX injection. RTX treatment resulted in a significant decrease in TRPV1 expressing neurons in the colon and immunohistochemical analysis revealed no change in peptide or receptor expression in CANs following RTX lesioning as compared to control data. Behavioral studies determined that both inflamed non-RTX and RTX animals showed a decrease in balloon pressure threshold as compared to controls. Immunohistochemical analysis demonstrated that the NR1 cassettes, N1 and C1, of the NMDA receptor on CANs were up-regulated following inflammation. Furthermore, inflammation resulted in the activation of the PAR2 receptors expressed on CANs. Conclusion Our data show that inflammation causes an up-regulation of the NMDA receptor and the activation of the PAR2 receptor expressed on CANs. These changes are associated with a decrease in balloon pressure in response to colorectal distension in non-RTX and RTX lesioned

  19. The glucagon-like peptide 1 receptor agonist enhances intrinsic peroxisome proliferator-activated receptor γ activity in endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Onuma, Hirohisa; Inukai, Kouichi, E-mail: kinukai@ks.kyorin-u.ac.jp; Kitahara, Atsuko; Moriya, Rie; Nishida, Susumu; Tanaka, Toshiaki; Katsuta, Hidenori; Takahashi, Kazuto; Sumitani, Yoshikazu; Hosaka, Toshio; Ishida, Hitoshi

    2014-08-22

    Highlights: • PPARγ activation was involved in the GLP-1-mediated anti-inflammatory action. • Exendin-4 enhanced endogenous PPARγ transcriptional activity in HUVECs. • H89, a PKA inhibitor, abolished GLP-1-induced PPARγ enhancement. • The anti-inflammatory effects of GLP-1 may be explained by PPARγ activation. - Abstract: Recent studies have suggested glucagon-like peptide-1 (GLP-1) signaling to exert anti-inflammatory effects on endothelial cells, although the precise underlying mechanism remains to be elucidated. In the present study, we investigated whether PPARγ activation is involved in the GLP-1-mediated anti-inflammatory action on endothelial cells. When we treated HUVEC cells with 0.2 ng/ml exendin-4, a GLP-1 receptor agonist, endogenous PPARγ transcriptional activity was significantly elevated, by approximately 20%, as compared with control cells. The maximum PPARγ activity enhancing effect of exendin-4 was observed 12 h after the initiation of incubation with exendin-4. As H89, a PKA inhibitor, abolished GLP-1-induced PPARγ enhancement, the signaling downstream from GLP-1 cross-talk must have been involved in PPARγ activation. In conclusion, our results suggest that GLP-1 has the potential to induce PPARγ activity, partially explaining the anti-inflammatory effects of GLP-1 on endothelial cells. Cross-talk between GLP-1 signaling and PPARγ activation would have major impacts on treatments for patients at high risk for cardiovascular disease.

  20. The novel plasminogen receptor, plasminogen receptor(KT) (Plg-R(KT)), regulates catecholamine release.

    Science.gov (United States)

    Bai, Hongdong; Baik, Nagyung; Kiosses, William B; Krajewski, Stan; Miles, Lindsey A; Parmer, Robert J

    2011-09-23

    Neurotransmitter release by catecholaminergic cells is negatively regulated by prohormone cleavage products formed from plasmin-mediated proteolysis. Here, we investigated the expression and subcellular localization of Plg-R(KT), a novel plasminogen receptor, and its role in catecholaminergic cell plasminogen activation and regulation of catecholamine release. Prominent staining with anti-Plg-R(KT) mAb was observed in adrenal medullary chromaffin cells in murine and human tissue. In Western blotting, Plg-R(KT) was highly expressed in bovine adrenomedullary chromaffin cells, human pheochromocytoma tissue, PC12 pheochromocytoma cells, and murine hippocampus. Expression of Plg-R(KT) fused in-frame to GFP resulted in targeting of the GFP signal to the cell membrane. Phase partitioning, co-immunoprecipitation with urokinase-type plasminogen activator receptor (uPAR), and FACS analysis with antibody directed against the C terminus of Plg-R(KT) were consistent with Plg-R(KT) being an integral plasma membrane protein on the surface of catecholaminergic cells. Cells stably overexpressing Plg-R(KT) exhibited substantial enhancement of plasminogen activation, and antibody blockade of non-transfected PC12 cells suppressed plasminogen activation. In functional secretion assays, nicotine-evoked [(3)H]norepinephrine release from cells overexpressing Plg-R(KT) was markedly decreased (by 51 ± 2%, p < 0.001) when compared with control transfected cells, and antibody blockade increased [(3)H]norepinephrine release from non-transfected PC12 cells. In summary, Plg-R(KT) is present on the surface of catecholaminergic cells and functions to stimulate plasminogen activation and modulate catecholamine release. Plg-R(KT) thus represents a new mechanism and novel control point for regulating the interface between plasminogen activation and neurosecretory cell function.

  1. Oleamide activates peroxisome proliferator-activated receptor gamma (PPARγ) in vitro.

    Science.gov (United States)

    Dionisi, Mauro; Alexander, Stephen P H; Bennett, Andrew J

    2012-05-14

    Oleamide (ODA) is a fatty acid primary amide first identified in the cerebrospinal fluid of sleep-deprived cats, which exerts effects on vascular and neuronal tissues, with a variety of molecular targets including cannabinoid receptors and gap junctions. It has recently been reported to exert a hypolipidemic effect in hamsters. Here, we have investigated the nuclear receptor family of peroxisome proliferator-activated receptors (PPARs) as potential targets for ODA action. Activation of PPARα, PPARβ and PPARγ was assessed using recombinant expression in Chinese hamster ovary cells with a luciferase reporter gene assay. Direct binding of ODA to the ligand binding domain of each of the three PPARs was monitored in a cell-free fluorescent ligand competition assay. A well-established assay of PPARγ activity, the differentiation of 3T3-L1 murine fibroblasts into adipocytes, was assessed using an Oil Red O uptake-based assay. ODA, at 10 and 50 μM, was able to transactivate PPARα, PPARβ and PPARγ receptors. ODA bound to the ligand binding domain of all three PPARs, although complete displacement of fluorescent ligand was only evident for PPARγ, at which an IC50 value of 38 μM was estimated. In 3T3-L1 cells, ODA, at 10 and 20 μM, induced adipogenesis. We have, therefore, identified a novel site of action of ODA through PPAR nuclear receptors and shown how ODA should be considered as a weak PPARγ ligand in vitro.

  2. Cloning and expression of the receptor for human urokinase plasminogen activator, a central molecule in cell surface, plasmin dependent proteolysis

    DEFF Research Database (Denmark)

    Roldan, A L; Cubellis, M V; Masucci, M T

    1990-01-01

    , and therefore the capacity of cells to migrate and invade neighboring tissues. We have isolated a 1.4 kb cDNA clone coding for the entire human uPAR. An oligonucleotide synthesized on the basis of the N-terminal sequence of the purified protein was used to screen a cDNA library made from SV40 transformed human......, a size very close to that of the cloned cDNA. Expression of the uPAR cDNA in mouse cells confirms that the clone is complete and expresses a functional uPA binding protein, located on the cell surface and with properties similar to the human uPAR. Caseinolytic plaque assay, immunofluorescence analysis...

  3. PDI regulates seizure activity via NMDA receptor redox in rats.

    Science.gov (United States)

    Kim, Ji Yang; Ko, Ah-Rhem; Hyun, Hye-Won; Min, Su-Ji; Kim, Ji-Eun

    2017-02-15

    Redox modulation of cysteine residues is one of the post-translational modifications of N-methyl-D-aspartate receptor (NMDAR). Protein disulfide isomerases (PDI), an endoplasmic reticulum (ER) chaperone, plays a crucial role in catalyzing disulfide bond formation, reduction, and isomerization. In the present study, we found that PDI bound to NMDAR in the normal hippocampus, and that this binding was increased in chronic epileptic rats. In vitro thiol reductase assay revealed that PDI increased the amount of thiols on full-length recombinant NR1 protein. PDI siRNA, 5-5'-dithio-bis(2-nitrobenzoic acid) (DTNB), bacitracin and PDI antibody reduced seizure susceptibility in response to pilocarpine. In addition, PDI knockdown effectively ameliorated spontaneous seizure activity in chronic epileptic rats. Anticonvulsive effects of PDI siRNA were correlated to the reduction of the amount of free- and nitrosothiols on NMDAR, accompanied by the inhibition of PDI activity. However, PDI knockdown did not lead to alteration in basal neurotransmission or ER stress under physiological condition. These findings provide mechanistic insight into sulfhydration of disulfide bonds on NMDAR by PDI, and suggest that PDI may represent a target of potential therapeutics for epilepsy, which avoids a possible side effect on physiological receptor functionality.

  4. Role of Peroxisome Proliferator-Activated Receptors in Inflammation Control

    Directory of Open Access Journals (Sweden)

    Jihan Youssef

    2004-01-01

    Full Text Available Peroxisome proliferator-activated receptors (PPARs were discovered over a decade ago, and were classified as orphan members of the nuclear receptor superfamily. To date, three PPAR subtypes have been discovered and characterized (PPARα, β/δ, γ. Different PPAR subtypes have been shown to play crucial roles in important diseases and conditions such as obesity, diabetes, atherosclerosis, cancer, and fertility. Among the most studied roles of PPARs is their involvement in inflammatory processes. Numerous studies have revealed that agonists of PPARα and PPARγ exert anti-inflammatory effects both in vitro and in vivo. Using the carrageenan-induced paw edema model of inflammation, a recent study in our laboratories showed that these agonists hinder the initiation phase, but not the late phase of the inflammatory process. Furthermore, in the same experimental model, we recently also observed that activation of PPARδ exerted an anti-inflammatory effect. Despite the fact that exclusive dependence of these effects on PPARs has been questioned, the bulk of evidence suggests that all three PPAR subtypes, PPARα,δ,γ, play a significant role in controlling inflammatory responses. Whether these subtypes act via a common mechanism or are independent of each other remains to be elucidated. However, due to the intensity of research efforts in this area, it is anticipated that these efforts will result in the development of PPAR ligands as therapeutic agents for the treatment of inflammatory diseases.

  5. Antitussive activity of Withania somnifera and opioid receptors.

    Science.gov (United States)

    Nosálová, Gabriela; Sivová, Veronika; Ray, Bimalendu; Fraňová, Soňa; Ondrejka, Igor; Flešková, Dana

    2015-01-01

    Arabinogalactan is a polysaccharide isolated from the roots of the medicinal plant Withania somnifera L. It contains 65% arabinose and 18% galactose. The aim of the present study was to evaluate the antitussive activity of arabinogalactan in conscious, healthy adult guinea pigs and the role of the opioid pathway in the antitussive action. A polysaccharide extract was given orally in a dose of 50 mg/kg. Cough was induced by an aerosol of citric acid in a concentration 0.3 mol/L, generated by a jet nebulizer into a plethysmographic chamber. The intensity of cough response was defined as the number of cough efforts counted during a 3-min exposure to the aerosol. The major finding was that arabinogalactan clearly suppressed the cough reflex; the suppression was comparable with that of codeine that was taken as a reference drug. The involvement of the opioid system was tested with the use of a blood-brain barrier penetrable, naloxone hydrochloride, and non-penetrable, naloxone methiodide, to distinguish between the central and peripheral mu-opioid receptor pathways. Both opioid antagonists acted to reverse the arabinogalactan-induced cough suppression; the reversion was total over time with the latter antagonist. We failed to confirm the presence of a bronchodilating effect of the polysaccharide, which could be involved in its antitussive action. We conclude that the polysaccharide arabinogalactan from Withania somnifera has a distinct antitussive activity consisting of cough suppression and that this action involves the mu-opioid receptor pathways.

  6. In vitro neuronal network activity in NMDA receptor encephalitis

    Directory of Open Access Journals (Sweden)

    Jantzen Sabine U

    2013-02-01

    Full Text Available Abstract Background Anti-NMDA-encephalitis is caused by antibodies against the N-methyl-D-aspartate receptor (NMDAR and characterized by a severe encephalopathy with psychosis, epileptic seizures and autonomic disturbances. It predominantly occurs in young women and is associated in 59% with an ovarian teratoma. Results We describe effects of cerebrospinal fluid (CSF from an anti-N-methyl-D-aspartate receptor (NMDAR encephalitis patient on in vitro neuronal network activity (ivNNA. In vitro NNA of dissociated primary rat cortical populations was recorded by the microelectrode array (MEA system. The 23-year old patient was severely affected but showed an excellent recovery following multimodal immunomodulatory therapy and removal of an ovarian teratoma. Patient CSF (pCSF taken during the initial weeks after disease onset suppressed global spike- and burst rates of ivNNA in contrast to pCSF sampled after clinical recovery and decrease of NMDAR antibody titers. The synchrony of pCSF-affected ivNNA remained unaltered during the course of the disease. Conclusion Patient CSF directly suppresses global activity of neuronal networks recorded by the MEA system. In contrast, pCSF did not regulate the synchrony of ivNNA suggesting that NMDAR antibodies selectively regulate distinct parameters of ivNNA while sparing their functional connectivity. Thus, assessing ivNNA could represent a new technique to evaluate functional consequences of autoimmune encephalitis-related CSF changes.

  7. Vasopeptidase-activated latent ligands of the histamine receptor-1.

    Science.gov (United States)

    Gera, Lajos; Roy, Caroline; Charest-Morin, Xavier; Marceau, François

    2013-11-01

    Whether peptidases present in vascular cells can activate prodrugs active on vascular cells has been tested with 2 potential latent ligands of the histamine H1 receptor (H1R). First, a peptide consisting of the antihistamine cetirizine (CTZ) condensed at the N-terminus of ε-aminocaproyl-bradykinin (εACA-BK) was evaluated for an antihistamine activity that could be revealed by degradation of the peptide part of the molecule. CTZ-εACA-BK had a submicromolar affinity for the BK B2 receptor (B2R; IC50 of 590 nM, [(3)H]BK binding competition), but a non-negligible affinity for the human H1 receptor (H1R; IC50 of 11 μM for [(3)H]pyrilamine binding). In the human isolated umbilical vein, a system where both endogenous B2R and H1R mediate strong contractions, CTZ-εACA-BK exerted mild antagonist effects on histamine-induced contraction that were not modified by omapatrilat or by a B2R antagonist that prevents endocytosis of the BK conjugate. Cells expressing recombinant ACE or B2R incubated with CTZ-εACA-BK did not release a competitor of [(3)H]pyrilamine binding to H1Rs. Thus, there is no evidence that CTZ-εACA-BK can release free cetirizine in biological environments. The second prodrug was a blocked agonist, L-alanyl-histamine, potentially activated by aminopeptidase N (APN). This compound did not compete for [(3)H]pyrilamine binding to H1Rs. The human umbilical vein contractility assay responded to L-alanyl-histamine (EC50 54.7 μM), but the APN inhibitor amastatin massively (17-fold) reduced its apparent potency. Amastatin did not influence the potency of histamine as a contractile agent. One of the 2 tested latent H1R ligands, L-alanyl-histamine, supported the feasibility of pro-drug activation by vascular ectopeptidases.

  8. Relationship between somatostatin receptors and activation of hepatic stellate cells

    Institute of Scientific and Technical Information of China (English)

    潘勤; 李定国; 陆汉明; 陆良勇; 尤汉宁; 徐芹芳

    2004-01-01

    Background Somafostatin receptors (SSTRs) have been suggested to involve in mediating the effect of somatostatin on hepatic stellate cells (HSCs) in an activation-dependent way. We, therefore, try to investigate the relationship between expression of SSTRs and activation of rat HSCs.Methods HSCs were isolated from rats by in situ perfusion and single-step density gradient centrifugation.SSTR1-5 mRNA levels in the differentiated first passage HSCs were detected by means of a reverse transcription polymerase chain reaction. On the other hand, hepatic fibrosis was induced in adult male Sprague-Dawley rats by carbon tetrachloride intoxication, and the expression of SSTR1-5 in normal as well as fibrotic livers was measured by immunohistochemical staining.Results SSTR mRNA and SSTR could not be found in freshly isolated rat HSCs or normal rat liver. However, SSTR1-3 mRNA appeared as HSCs became wholly activated, and could also be identified on the membrane of activated HSCs in the perisinusoid space, fibrous septa, etc.Conclusion The expression of SSTR1-3 in the rat HSC is closely related to its activation. This may reflect one of the main negative regulation mechanisms in the course of HSC activation.

  9. ERK5 activation by Gq-coupled muscarinic receptors is independent of receptor internalization and β-arrestin recruitment.

    Directory of Open Access Journals (Sweden)

    Guzmán Sánchez-Fernández

    Full Text Available G-protein-coupled receptors (GPCRs are known to activate both G protein- and β-arrestin-dependent signalling cascades. The initiation of mitogen-activated protein kinase (MAPK pathways is a key downstream event in the control of cellular functions including proliferation, differentiation, migration and apoptosis. Both G proteins and β-arrestins have been reported to mediate context-specific activation of ERK1/2, p38 and JNK MAPKs. Recently, the activation of ERK5 MAPK by Gq-coupled receptors has been described to involve a direct interaction between Gαq and two novel effectors, PKCζ and MEK5. However, the possible contribution of β-arrestin towards this pathway has not yet been addressed. In the present work we sought to investigate the role of receptor internalization processes and β-arrestin recruitment in the activation of ERK5 by Gq-coupled GPCRs. Our results show that ERK5 activation is independent of M1 or M3 muscarinic receptor internalization. Furthermore, we demonstrate that phosphorylation-deficient muscarinic M1 and M3 receptors are still able to fully activate the ERK5 pathway, despite their reported inability to recruit β-arrestins. Indeed, the overexpression of Gαq, but not that of β-arrestin1 or β-arrestin2, was found to potently enhance ERK5 activation by GPCRs, whereas silencing of β-arrestin2 expression did not affect the activation of this pathway. Finally, we show that a β-arrestin-biased mutant form of angiotensin II (SII; Sar1-Ile4-Ile8 AngII failed to promote ERK5 phosphorylation in primary cardiac fibroblasts, as compared to the natural ligand. Overall, this study shows that the activation of ERK5 MAPK by model Gq-coupled GPCRs does not depend on receptor internalization, β-arrestin recruitment or receptor phosphorylation but rather is dependent on Gαq-signalling.

  10. Activity-dependent neurotransmitter-receptor matching at the neuromuscular junction.

    Science.gov (United States)

    Borodinsky, Laura N; Spitzer, Nicholas C

    2007-01-02

    Signaling in the nervous system requires matching of neurotransmitter receptors with cognate neurotransmitters at synapses. The vertebrate neuromuscular junction is the best studied cholinergic synapse, but the mechanisms by which acetylcholine is matched with acetylcholine receptors are not fully understood. Because alterations in neuronal calcium spike activity alter transmitter specification in embryonic spinal neurons, we hypothesized that receptor expression in postsynaptic cells follows changes in transmitter expression to achieve this specific match. We find that embryonic vertebrate striated muscle cells normally express receptors for glutamate, GABA, and glycine as well as for acetylcholine. As maturation progresses, acetylcholine receptor expression prevails. Receptor selection is altered when early neuronal calcium-dependent activity is perturbed, and remaining receptor populations parallel changes in transmitter phenotype. In these cases, glutamatergic, GABAergic, and glycinergic synaptic currents are recorded from muscle cells, demonstrating that activity regulates matching of transmitters and their receptors in the assembly of functional synapses.

  11. Involvement of Activating NK Cell Receptors and Their Modulation in Pathogen Immunity

    Directory of Open Access Journals (Sweden)

    Francesco Marras

    2011-01-01

    Full Text Available Natural Killer (NK cells are endowed with cell-structure-sensing receptors providing inhibitory protection from self-destruction (inhibitory NK receptors, iNKRs, including killer inhibitory receptors and other molecules and rapid triggering potential leading to functional cell activation by Toll-like receptors (TLRs, cytokine receptors, and activating NK cell receptors including natural cytotoxicity receptors (NCRs, i.e., NKp46, NKp46, and NKp44. NCR and NKG2D recognize ligands on infected cells which may be endogenous or may directly bind to some structures derived from invading pathogens. In this paper, we address the known direct or indirect interactions between activating receptors and pathogens and their expression during chronic HIV and HCV infections.

  12. Selective 5-HT7 Receptor Activation May Enhance Synaptic Plasticity Through N-methyl-D-aspartate (NMDA) Receptor Activity in the Visual Cortex.

    Science.gov (United States)

    Xiang, Kangjian; Zhao, Xuefei; Li, Youjun; Zheng, Liang; Wang, Jue; Li, Yan-Hai

    2016-01-01

    Serotonin (5-hydroxytryptamine, 5-HT) is an important neurotransmitter that modulates N-methyl-D-aspartate (NMDA) receptor activity by binding to several different 5-HT receptor subtypes. In the present study, we used whole-cell patch-clamp recordings in transverse slice preparations to test the role of 5-HT receptors in modulating the NMDA receptor-mediated miniature excitatory postsynaptic currents (mEPSCs) in layer II/III pyramidal neurons of the rat visual cortex. We found that the NMDA receptor-mediated component of mEPSCs could be potentiated by exogenously applied 5-HT. Similar results were obtained by exogenously applied 5-CT or 8-OH-DPAT (the 5-HT1A and 5-HT7 receptor agonist). A specific antagonist for the 5-HT7 receptor, SB-269970, completely blocked the increase in NMDA receptor-mediated component of mEPSCs by 5-CT or 8- OH-DPAT. Moreover, the selective 5-HT1A receptor antagonist, WAY-100135, displayed no influence on the enhancement in NMDA receptor-mediated component of mEPSCs by 5-CT or 8-OHDPAT. These results indicated that the increase in NMDA receptor-mediated component of mEPSCs by 5-HT in layer II/III pyramidal neurons of the young rat visual cortex requires activation of 5-HT7 receptors, but not 5-HT1A receptors. These observations might be clinically relevant to schizophrenia and Alzheimer's disease (AD), where enhancing NMDA receptor-mediated neurotransmission is considered to be a promising strategy for treatment of these diseases.

  13. Activation of cardiac ryanodine receptors by cardiac glycosides.

    Science.gov (United States)

    Sagawa, Toshio; Sagawa, Kazuko; Kelly, James E; Tsushima, Robert G; Wasserstrom, J Andrew

    2002-03-01

    This study investigated the effects of cardiac glycosides on single-channel activity of the cardiac sarcoplasmic reticulum (SR) Ca2+ release channels or ryanodine receptor (RyR2) channels and how this action might contribute to their inotropic and/or toxic actions. Heavy SR vesicles isolated from canine left ventricle were fused with artificial planar lipid bilayers to measure single RyR2 channel activity. Digoxin and actodigin increased single-channel activity at low concentrations normally associated with therapeutic plasma levels, yielding a 50% of maximal effect of approximately 0.2 nM for each agent. Channel activation by glycosides did not require MgATP and occurred only when digoxin was applied to the cytoplasmic side of the channel. Similar results were obtained in human RyR2 channels; however, neither the crude skeletal nor the purified cardiac channel was activated by glycosides. Channel activation was dependent on [Ca2+] on the luminal side of the bilayer with maximal stimulation occurring between 0.3 and 10 mM. Rat RyR2 channels were activated by digoxin only at 1 microM, consistent with the lower sensitivity to glycosides in rat heart. These results suggest a model in which RyR2 channel activation by digoxin occurs only when luminal [Ca2+] was increased above 300 microM (in the physiological range). Consequently, increasing SR load (by Na+ pump inhibition) serves to amplify SR release by promoting direct RyR2 channel activation via a luminal Ca2+-sensitive mechanism. This high-affinity effect of glycosides could contribute to increased SR Ca2+ release and might play a role in the inotropic and/or toxic actions of glycosides in vivo.

  14. Aryl hydrocarbon receptor ligand activity of commercial health foods.

    Science.gov (United States)

    Amakura, Yoshiaki; Tsutsumi, Tomoaki; Nakamura, Masafumi; Handa, Hiroshi; Yoshimura, Morio; Matsuda, Rieko; Yoshida, Takashi

    2011-06-15

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that mediates toxicological effects by binding to agonists such as dioxins. We previously reported the presence of natural dioxin-like ligands in foods. To further characterise natural ligands with dioxin-like activity, we examined the influence of 50 kinds of commercial supplement and health food on the AhR, using a reporter gene assay. Some samples, prepared using soybean, sesame, or propolis as an ingredient, were revealed to show AhR-binding activity, similar to that of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), at high concentrations. To characterise the AhR-activating substances in eight active samples, the respective extracts were subjected to fractionation with n-hexane, ethyl acetate, and water, followed by estimating their AhR activities. The n-hexane fraction of the propolis extract sample, and the ethyl acetate fractions of the other samples, showed AhR activity similar to that of TCDD, at a high concentration range. HPLC analysis of the active fractions identified isoflavones, such as daidzein and glycitein, and flavones, such as tectochrysin and chrysin, in the samples. Among these compounds, tectochrysin exhibited marked AhR activation. Flavonoids, which are characterised as natural AhR ligands, are known to have representative beneficial effects on human health. The natural AhR ligands identified in this study are known to be useful for human health. Therefore, it is considered that AhR may play a beneficial regulatory role in humans. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. B cell activation triggered by the formation of the small receptor cluster: a computational study.

    Directory of Open Access Journals (Sweden)

    Beata Hat

    2011-10-01

    Full Text Available We proposed a spatially extended model of early events of B cell receptors (BCR activation, which is based on mutual kinase-receptor interactions that are characteristic for the immune receptors and the Src family kinases. These interactions lead to the positive feedback which, together with two nonlinearities resulting from the double phosphorylation of receptors and Michaelis-Menten dephosphorylation kinetics, are responsible for the system bistability. We demonstrated that B cell can be activated by a formation of a tiny cluster of receptors or displacement of the nucleus. The receptors and Src kinases are activated, first locally, in the locus of the receptor cluster or the region where the cytoplasm is the thinnest. Then the traveling wave of activation propagates until activity spreads over the whole cell membrane. In the models in which we assume that the kinases are free to diffuse in the cytoplasm, we found that the fraction of aggregated receptors, capable to initiate B cell activation decreases with the decreasing thickness of cytoplasm and decreasing kinase diffusion. When kinases are restricted to the cell membrane - which is the case for most of the Src family kinases - even a cluster consisting of a tiny fraction of total receptors becomes activatory. Interestingly, the system remains insensitive to the modest changes of total receptor level. The model provides a plausible mechanism of B cells activation due to the formation of small receptors clusters collocalized by binding of polyvalent antigens or arising during the immune synapse formation.

  16. Activation of Toll-like receptors by Burkholderia pseudomallei

    Directory of Open Access Journals (Sweden)

    Jansson-Hutson Malinka J

    2008-08-01

    Full Text Available Abstract Background Melioidosis, a lethal tropical infection that is endemic in southeast Asia and northern Australia, is caused by the saprophytic Gram-negative bacterium Burkholderia pseudomallei. Overall mortality approaches 40% yet little is known about mechanisms of host defense. Toll-like receptors (TLRs are host transmembrane receptors that recognize conserved pathogen molecular patterns and induce an inflammatory response. The lipopolysaccharide (LPS of Gram-negative bacteria is a potent inducer of the host innate immune system. TLR4, in association with MD-2, is the archetype receptor for LPS although B. pseudomallei LPS has been previously identified as a TLR2 agonist. We examined TLR signaling induced by B. pseudomallei, B. pseudomallei LPS, and B. pseudomallei lipid A using gain-of-function transfection assays of NF-κB activation and studies of TLR-deficient macrophages. Results In HEK293 cells transfected with murine or human TLRs, CD14, and MD-2, heat-killed B. pseudomallei activated TLR2 (in combination with TLR1 or TLR6 and TLR4. B. pseudomallei LPS and lipid A activated TLR4 and this TLR4-mediated signaling required MD-2. In TLR2-/- macrophages, stimulation with heat-killed B. pseudomallei augmented TNF-α and MIP-2 production whereas in TLR4-/- cells, TNF-α, MIP-2, and IL-10 production was reduced. Cytokine production by macrophages stimulated with B. pseudomallei LPS or lipid A was entirely dependent on TLR4 but was increased in the absence of TLR2. TLR adaptor molecule MyD88 strongly regulated TNF-α production in response to heat-killed B. pseudomallei. Conclusion B. pseudomallei activates TLR2 and TLR4. In the presence of MD-2, B. pseudomallei LPS and lipid A are TLR4 ligands. Although the macrophage cytokine response to B. pseudomallei LPS or lipid A is completely dependent on TLR4, in TLR2-/- macrophages stimulated with B. pseudomallei, B. pseudomallei LPS or lipid A, cytokine production is augmented. Other MyD88

  17. RELATIONSHIP BETWEEN SOMATOSTATIN RECEPTORS AND ACTIVATION OF HEPATIC STELLATE CELL

    Institute of Scientific and Technical Information of China (English)

    潘勤; 李定国; 陆汉明; 尤汉宁; 徐芹芳; 陆良勇

    2004-01-01

    Objective To investigate the relationship between expression of somatostatin receptors (SSTRs) and activation of rat hepatic stellate cell (HSC). Methods HSCs were isolated from rats by in situ perfusion and single-step density gradient centrifugation, and then SSTR1 ~5 mRNA levels in the differentiated first passage HSCs were detected by means of reverse transcription polymerase chain reaction. On the other hand, hepatic fibrosis was induced in adult male Sprague-Dawley rats by carbon tetrachloride intoxication, and the expression of SSTR1 ~5 in normal as well as fibrotic liver was measured by immunohistochemical staining. Results SSTR mRNA and SSTR could not be found in freshly isolated rat HSCs and normal rat liver. But SSTR1~3 mRNA appeared as HSCs became wholly activated, and SSTR1 ~3 could also be identified on the membrane of activated HSCs in the perisinusoid space, fibrous septa, etc Conclusion The expression of SSTR1~3 in the rat HSC is closely related to its activation. This may reflect one of the main negative regulation mechanisms in the course of HSC activation.

  18. Increased peroxisome proliferator-activated receptor-gamma activity reduces imatinib uptake and efficacy in chronic myeloid leukemia mononuclear cells.

    Science.gov (United States)

    Wang, Jueqiong; Lu, Liu; Kok, Chung H; Saunders, Verity A; Goyne, Jarrad M; Dang, Phuong; Leclercq, Tamara M; Hughes, Timothy P; White, Deborah L

    2017-02-02

    Imatinib is actively transported by OCT-1 influx transporter, and low OCT-1 activity in diagnostic chronic myeloid leukemia blood mononuclear cells is significantly associated with poor molecular response to imatinib. Here we report that, in diagnostic chronic myeloid leukemia mononuclear cells and BCR-ABL1+ cell lines, peroxisome proliferator-activated receptor gamma agonists (GW1929, rosiglitazone, pioglitazone) significantly decrease OCT-1 activity; conversely, peroxisome proliferator-activated receptor gamma antagonists (GW9662, T0070907) increase OCT-1 activity. Importantly, these effects can lead to corresponding changes in sensitivity to Bcr-Abl kinase inhibition. Results were confirmed in peroxisome proliferator-activated receptor gamma-transduced K562 cells. Furthermore, we identified a strong negative correlation between OCT-1 activity and peroxisome proliferator-activated receptor gamma transcriptional activity in diagnostic chronic myeloid leukemia patients (n=84; preceptor gamma activation has a negative impact on the intracellular uptake of imatinib and consequent Bcr-Abl kinase inhibition. The inter-patient variability of peroxisome proliferator-activated receptor gamma activation likely accounts for the heterogeneity observed in patient OCT-1 activity at diagnosis. Recently, the peroxisome proliferator-activated receptor gamma agonist pioglitazone was reported to act synergistically with imatinib targeting the residual chronic myeloid leukemia stem cell pool. Our findings suggest that peroxisome proliferator-activated receptor gamma ligands have differential effects on circulating mononuclear cells compared to stem cells. Since the effect of peroxisome proliferator-activated receptor gamma activation on imatinib uptake in mononuclear cells may counteract the clinical benefit of this activation in stem cells, caution should be applied when combining these therapies, especially in patients with high peroxisome proliferator-activated receptor gamma

  19. Guidance Receptors in the Nervous and Cardiovascular Systems.

    Science.gov (United States)

    Rubina, K A; Tkachuk, V A

    2015-10-01

    Blood vessels and nervous fibers grow in parallel, for they express similar receptors for chemokine substances. Recently, much attention is being given to studying guidance receptors and their ligands besides the growth factors, cytokines, and chemokines necessary to form structures in the nervous and vascular systems. Such guidance molecules determine trajectory for growing axons and vessels. Guidance molecules include Ephrins and their receptors, Neuropilins and Plexins as receptors for Semaphorins, Robos as receptors for Slit-proteins, and UNC5B receptors binding Netrins. Apart from these receptors and their ligands, urokinase and its receptor (uPAR) and T-cadherin are also classified as guidance molecules. The urokinase system mediates local proteolysis at the leading edge of cells, thereby providing directed migration. T-cadherin is a repellent molecule that regulates the direction of growing axons and blood vessels. Guidance receptors also play an important role in the diseases of the nervous and cardiovascular systems.

  20. New insights into the structural bases of activation of Cys-loop receptors.

    Science.gov (United States)

    Bouzat, Cecilia

    2012-01-01

    Neurotransmitter receptors of the Cys-loop superfamily mediate rapid synaptic transmission throughout the nervous system, and include receptors activated by ACh, GABA, glycine and serotonin. They are involved in physiological processes, including learning and memory, and in neurological disorders, and they are targets for clinically relevant drugs. Cys-loop receptors assemble either from five copies of one type of subunit, giving rise to homomeric receptors, or from several types of subunits, giving rise to heteromeric receptors. Homomeric receptors are invaluable models for probing fundamental relationships between structure and function. Receptors contain a large extracellular domain that carries the binding sites and a transmembrane region that forms the ion pore. How the structural changes elicited by agonist binding are propagated through a distance of 50Å to the ion channel gate is central to understanding receptor function. Depending on the receptor subtype, occupancy of either two, as in the prototype muscle nicotinic receptor, or three binding sites, as in homomeric receptors, is required for full activation. The conformational changes initiated at the binding sites are propagated to the gate through the interface between the extracellular and transmembrane domains. This region forms a network that relays structural changes from the binding site towards the pore, and also contributes to open channel lifetime and rate of desensitization. Thus, this coupling region controls the beginning and duration of a synaptic response. Here we review recent advances in the molecular mechanism by which Cys-loop receptors are activated with particular emphasis on homomeric receptors.

  1. The role of GH receptor tyrosine phosphorylation in Stat5 activation

    DEFF Research Database (Denmark)

    Hansen, J A; Hansen, L H; Wang, X;

    1997-01-01

    Stimulation of GH receptors leads to rapid activation of Jak2 kinase and subsequent tyrosine phosphorylation of the GH receptor. Three specific tyrosines located in the C-terminal domain of the GH receptor have been identified as being involved in GH-stimulated transcription of the Spi 2.1 promoter....... Mutated GH receptors lacking all but one of these three tyrosines are able to mediate a transcriptional response when transiently transfected into CHO cells together with a Spi 2.1 promoter/luciferase construct. Similarly, these GH receptors were found to be able to mediate activation of Stat5 DNA......-binding activity, whereas the GH receptor mutant lacking all intracellular tyrosines was not. Synthetic tyrosine phosphorylated peptides corresponding to the GH receptor sequence around the three tyrosines inhibited Stat5 DNA-binding activity while their non-phosphorylated counterparts were ineffective. Tyrosine...

  2. SHP-1 phosphatase activity counteracts increased T cell receptor affinity.

    Science.gov (United States)

    Hebeisen, Michael; Baitsch, Lukas; Presotto, Danilo; Baumgaertner, Petra; Romero, Pedro; Michielin, Olivier; Speiser, Daniel E; Rufer, Nathalie

    2013-03-01

    Anti-self/tumor T cell function can be improved by increasing TCR-peptide MHC (pMHC) affinity within physiological limits, but paradoxically further increases (K(d) affinity for the tumor antigen HLA-A2/NY-ESO-1, we investigated the molecular mechanisms underlying this high-affinity-associated loss of function. As compared with cells expressing TCR affinities generating optimal function (K(d) = 5 to 1 μM), those with supraphysiological affinity (K(d) = 1 μM to 15 nM) showed impaired gene expression, signaling, and surface expression of activatory/costimulatory receptors. Preferential expression of the inhibitory receptor programmed cell death-1 (PD-1) was limited to T cells with the highest TCR affinity, correlating with full functional recovery upon PD-1 ligand 1 (PD-L1) blockade. In contrast, upregulation of the Src homology 2 domain-containing phosphatase 1 (SHP-1/PTPN6) was broad, with gradually enhanced expression in CD8(+) T cells with increasing TCR affinities. Consequently, pharmacological inhibition of SHP-1 with sodium stibogluconate augmented the function of all engineered T cells, and this correlated with the TCR affinity-dependent levels of SHP-1. These data highlight an unexpected and global role of SHP-1 in regulating CD8(+) T cell activation and responsiveness and support the development of therapies inhibiting protein tyrosine phosphatases to enhance T cell-mediated immunity.

  3. Peroxisome Proliferator-Activated Receptor α Activation Induces Hepatic Steatosis, Suggesting an Adverse Effect

    OpenAIRE

    Fang Yan; Qi Wang; Chao Xu; Mingfeng Cao; Xiaoming Zhou; Tingting Wang; Chunxiao Yu; Fei Jing; Wenbin Chen; Ling Gao; Jiajun Zhao

    2014-01-01

    Non-alcoholic fatty liver disease (NAFLD) is characterized by hepatic triglyceride accumulation, ranging from steatosis to steatohepatitis and cirrhosis. NAFLD is a risk factor for cardiovascular diseases and is associated with metabolic syndrome. Antihyperlipidemic drugs are recommended as part of the treatment for NAFLD patients. Although fibrates activate peroxisome proliferator-activated receptor α (PPARα), leading to the reduction of serum triglyceride levels, the effects of these drugs ...

  4. Activation of liver X receptors with T0901317 attenuates cardiac hypertrophy in vivo

    NARCIS (Netherlands)

    Kuipers, Irma; Li, Jiang; Vreeswijk-Baudoin, Inge; Koster, Johan; van der Harst, Pim; Sillje, Herman H. W.; Kuipers, Folkert; van Veldhuisen, Dirk J.; van Gilst, Wiek H.; de Boer, Rudolf A.

    2010-01-01

    Liver X receptor (LXR) is a nuclear receptor regulating cholesterol metabolism. Liver X receptor has also been shown to exert anti-proliferative and anti-inflammatory properties. In this study, we evaluated the effect of LXR activation on cardiac hypertrophy in vitro and in vivo. Treatment with the

  5. Molecular pharmacological phenotyping of EBI2. An orphan seven-transmembrane receptor with constitutive activity

    DEFF Research Database (Denmark)

    Rosenkilde, Mette M; Benned-Jensen, Tau; Holst, Peter J

    2006-01-01

    Epstein-Barr virus (EBV)-induced receptor 2 (EBI2) is an orphan seven-transmembrane (7TM) receptor originally identified as the most up-regulated gene (>200-fold) in EBV-infected cells. Here we show that EBI2 signals with constitutive activity through Galpha(i) as determined by a receptor-mediate...

  6. Developmental stability of taurine's activation on glycine receptors in cultured neurons of rat auditory cortex.

    Science.gov (United States)

    Tang, Zheng-Quan; Lu, Yun-Gang; Chen, Lin

    2008-01-03

    Taurine is an endogenous amino acid that can activate glycine and/or gamma-aminobutyric acid type A (GABA(A)) receptors in the central nervous system. During natural development, taurine's receptor target undergoes a shift from glycine receptors to GABA(A) receptors in cortical neurons. Here, we demonstrate that taurine's receptor target in cortical neurons remains stable during in vitro development. With whole-cell patch-clamp recordings, we found that taurine always activated glycine receptors, rather than GABA(A) receptors, in neurons of rat auditory cortex cultured for 5-22 days. Our results suggest that the functional sensitivity of glycine and GABA(A) receptors to taurine is critically regulated by their developmental environments.

  7. Thrombin-Mediated Direct Activation of Proteinase-Activated Receptor-2: Another Target for Thrombin Signaling.

    Science.gov (United States)

    Mihara, Koichiro; Ramachandran, Rithwik; Saifeddine, Mahmoud; Hansen, Kristina K; Renaux, Bernard; Polley, Danny; Gibson, Stacy; Vanderboor, Christina; Hollenberg, Morley D

    2016-05-01

    Thrombin is known to signal to cells by cleaving/activating a G-protein-coupled family of proteinase-activated receptors (PARs). The signaling mechanism involves the proteolytic unmasking of an N-terminal receptor sequence that acts as a tethered receptor-activating ligand. To date, the recognized targets of thrombin cleavage and activation for signaling are PAR1 and PAR4, in which thrombin cleaves at a conserved target arginine to reveal a tethered ligand. PAR2, which like PAR1 is also cleaved at an N-terminal arginine to unmask its tethered ligand, is generally regarded as a target for trypsin but not for thrombin signaling. We now show that thrombin, at concentrations that can be achieved at sites of acute injury or in a tumor microenvironment, can directly activate PAR2 vasorelaxation and signaling, stimulating calcium and mitogen-activated protein kinase responses along with triggeringβ-arrestin recruitment. Thus, PAR2 can be added alongside PAR1 and PAR4 to the targets, whereby thrombin can affect tissue function.

  8. Family C 7TM receptor dimerization and activation

    DEFF Research Database (Denmark)

    Bonde, Marie Mi; Sheikh, Søren P; Hansen, Jakob Lerche

    2006-01-01

    The family C seven transmembrane (7TM) receptors constitutes a small and especially well characterized subfamily of the large 7TM receptor superfamily. Approximately 50% of current prescription drugs target 7TM receptors, this biologically important family represents the largest class of drug-tar...

  9. Exercise reduces adipose tissue via cannabinoid receptor type 1 which is regulated by peroxisome proliferator-activated receptor-delta

    DEFF Research Database (Denmark)

    Yan, Zhen Cheng; Liu, Dao Yan; Zhang, Li Li

    2007-01-01

    Obesity is one major cardiovascular risk factor. We tested effects of endurance exercise on cannabinoid receptor type 1 (CB1) and peroxisome proliferator-activated receptor-delta (PPAR-delta)-dependent pathways in adipose tissue. Male Wistar rats were randomly assigned to standard laboratory chow...... or a high-fat diet without and with regular endurance exercise. Exercise in rats on high-fat diet significantly reduced visceral fat mass, blood pressure, and adipocyte size (each p......Obesity is one major cardiovascular risk factor. We tested effects of endurance exercise on cannabinoid receptor type 1 (CB1) and peroxisome proliferator-activated receptor-delta (PPAR-delta)-dependent pathways in adipose tissue. Male Wistar rats were randomly assigned to standard laboratory chow...

  10. High-affinity benzodiazepine receptor ligands among benzodiazepines and betacarbolines with different intrinsic activity

    Energy Technology Data Exchange (ETDEWEB)

    Yliniemelae, A.; Gynther, J. (Univ. of Kuopio (Finland)); Konschin, H.; Tylli, H. (Univ. of Helsinki (Finland)); Rouvinen, J. (Univ. of Joensuu (Finland))

    1989-01-01

    Structural and electrostatic features of diazepam, flumazenil, and methyl betacarboline-3-carboxylate (BCCM) have been investigated using the molecular superimposition method. These high-affinity benzodiazepine (BZ) receptor ligands are structurally unrelated and they have different intrinsic activity. These ligands are superimposed in such a way that common structural and electrostatic features essential for the high receptor binding affinity overlap. In addition to this binding pharmacophore, there are roughly three separate binding zones in the BZ receptor, one for each class of ligands. The intrinsic activity of BZ receptor ligands depends on the molecular structures and the way the ligand approaches the receptor.

  11. Mu-opioid receptor knockout mice show diminished food-anticipatory activity

    NARCIS (Netherlands)

    Kas, Martien J H; van den Bos, Ruud; Baars, Annemarie M; Lubbers, Marianne; Lesscher, Heidi M B; Hillebrand, Jacquelien J G; Schuller, Alwin G; Pintar, John E; Spruijt, Berry M

    2004-01-01

    We have previously suggested that during or prior to activation of anticipatory behaviour to a coming reward, mu-opioid receptors are activated. To test this hypothesis schedule induced food-anticipatory activity in mu-opioid receptor knockout mice was measured using running wheels. We hypothesized

  12. Repressive effects of resveratrol on androgen receptor transcriptional activity.

    Directory of Open Access Journals (Sweden)

    Wen-feng Shi

    Full Text Available BACKGROUND: The chemopreventive effects of resveratrol (RSV on prostate cancer have been well established; the androgen receptor (AR plays pivotal roles in prostatic tumorigenesis. However, the exact underlying molecular mechanisms about the effects of RSV on AR have not been fully elucidated. A model system is needed to determine whether and how RSV represses AR transcriptional activity. METHODOLOGY: The AR cDNA was first cloned into the retroviral vector pOZ-N and then integrated into the genome of AR-negative HeLa cells to generate the AR(+ cells. The constitutively expressed AR was characterized by monitoring hormone-stimulated nuclear translocation, DNA binding, and transcriptional activation, with the AR(- cells serving as controls. AR(+ cells were treated with RSV, and both AR protein levels and AR transcriptional activity were measured simultaneously. Chromatin immunoprecipitation (ChIP assays were used to detect the effects of RSV on the recruitment of AR to its cognate element (ARE. RESULTS: AR in the AR (+ stable cell line functions in a manner similar to that of endogenously expressed AR. Using this model system we clearly demonstrated that RSV represses AR transcriptional activity independently of any effects on AR protein levels. However, neither the hormone-mediated nucleus translocation nor the AR/ARE interaction was affected by RSV treatment. CONCLUSION: We demonstrated unambiguously that RSV regulates AR target gene expression, at least in part, by repressing AR transcriptional activity. Repressive effects of RSV on AR activity result from mechanisms other than the affects of AR nuclear translocation or DNA binding.

  13. Estrogen receptor alpha binds to peroxisome proliferator-activated receptor response element and negatively interferes with peroxisome proliferator-activated receptor gamma signaling in breast cancer cells.

    Science.gov (United States)

    Bonofiglio, Daniela; Gabriele, Sabrina; Aquila, Saveria; Catalano, Stefania; Gentile, Mariaelena; Middea, Emilia; Giordano, Francesca; Andò, Sebastiano

    2005-09-01

    The molecular mechanisms involved in the repressive effects exerted by estrogen receptors (ER) on peroxisome proliferator-activated receptor (PPAR) gamma-mediated transcriptional activity remain to be elucidated. The aim of the present study was to provide new insight into the crosstalk between ERalpha and PPARgamma pathways in breast cancer cells. Using MCF7 and HeLa cells as model systems, we did transient transfections and electrophoretic mobility shift assay and chromatin immunoprecipitation studies to evaluate the ability of ERalpha to influence PPAR response element-mediated transcription. A possible direct interaction between ERalpha and PPARgamma was ascertained by co-immunoprecipitation assay, whereas their modulatory role in the phosphatidylinositol 3-kinase (PI3K)/AKT pathway was evaluated by determining PI3K activity and AKT phosphorylation. As a biological counterpart, we investigated the growth response to the cognate ligands of both receptors in hormone-dependent MCF7 breast cancer cells. Our data show for the first time that ERalpha binds to PPAR response element and represses its transactivation. Moreover, we have documented the physical and functional interactions of ERalpha and PPARgamma, which also involve the p85 regulatory subunit of PI3K. Interestingly, ERalpha and PPARgamma pathways have an opposite effect on the regulation of the PI3K/AKT transduction cascade, explaining, at least in part, the divergent response exerted by the cognate ligands 17beta-estradiol and BRL49653 on MCF7 cell proliferation. ERalpha physically associates with PPARgamma and functionally interferes with PPARgamma signaling. This crosstalk could be taken into account in setting new pharmacologic strategies for breast cancer disease.

  14. Recovery of network-driven glutamatergic activity in rat hippocampal neurons during chronic glutamate receptor blockade.

    Science.gov (United States)

    Leininger, Eric; Belousov, Andrei B

    2009-01-28

    Previous studies indicated that a long-term decrease in the activity of ionotropic glutamate receptors induces cholinergic activity in rat and mouse hypothalamic neuronal cultures. Here we studied whether a prolonged inactivation of ionotropic glutamate receptors also induces cholinergic activity in hippocampal neurons. Receptor activity was chronically suppressed in rat hippocampal primary neuronal cultures with two proportionally increasing sets of concentrations of NMDA plus non-NMDA receptor antagonists: 100 microM/10 microM AP5/CNQX (1X cultures) and 200 microM/20 microM AP5/CNQX (2X cultures). Using calcium imaging we demonstrate that cholinergic activity does not develop in these cultures. Instead, network-driven glutamate-dependent activity, that normally is detected in hyper-excitable conditions, reappears in each culture group in the presence of these antagonists and can be reversibly suppressed by higher concentrations of AP5/CNQX. This activity is mediated by non-NMDA receptors and is modulated by NMDA receptors. Further, non-NMDA receptors, the general level of glutamate receptor activity and CaMK-dependent signaling are critical for development of this network-driven glutamatergic activity in the presence of receptor antagonists. Using electrophysiology, western blotting and calcium imaging we show that some neuronal parameters are either reduced or not affected by chronic glutamate receptor blockade. However, other parameters (including neuronal excitability, mEPSC frequency, and expression of GluR1, NR1 and betaCaMKII) become up-regulated and, in some cases, proportionally between the non-treated, 1X and 2X cultures. Our data suggest recovery of the network-driven glutamatergic activity after chronic glutamate receptor blockade. This recovery may represent a form of neuronal plasticity that compensates for the prolonged suppression of the activity of glutamate receptors.

  15. Calcium is the switch in the moonlighting dual function of the ligand-activated receptor kinase phytosulfokine receptor 1

    KAUST Repository

    Muleya, Victor

    2014-09-23

    Background: A number of receptor kinases contain guanylate cyclase (GC) catalytic centres encapsulated in the cytosolic kinase domain. A prototypical example is the phytosulfokine receptor 1 (PSKR1) that is involved in regulating growth responses in plants. PSKR1 contains both kinase and GC activities however the underlying mechanisms regulating the dual functions have remained elusive. Findings: Here, we confirm the dual activity of the cytoplasmic domain of the PSKR1 receptor. We show that mutations within the guanylate cyclase centre modulate the GC activity while not affecting the kinase catalytic activity. Using physiologically relevant Ca2+ levels, we demonstrate that its GC activity is enhanced over two-fold by Ca2+ in a concentration-dependent manner. Conversely, increasing Ca2+ levels inhibits kinase activity up to 500-fold at 100 nM Ca2+. Conclusions: Changes in calcium at physiological levels can regulate the kinase and GC activities of PSKR1. We therefore propose a functional model of how calcium acts as a bimodal switch between kinase and GC activity in PSKR1 that could be relevant to other members of this novel class of ligand-activated receptor kinases.

  16. Activation of EphA receptors mediates the recruitment of the adaptor protein Slap, contributing to the downregulation of N-methyl-D-aspartate receptors.

    Science.gov (United States)

    Semerdjieva, Sophia; Abdul-Razak, Hayder H; Salim, Sharifah S; Yáñez-Muñoz, Rafael J; Chen, Philip E; Tarabykin, Victor; Alifragis, Pavlos

    2013-04-01

    Regulation of the activity of N-methyl-d-aspartate receptors (NMDARs) at glutamatergic synapses is essential for certain forms of synaptic plasticity underlying learning and memory and is also associated with neurotoxicity and neurodegenerative diseases. In this report, we investigate the role of Src-like adaptor protein (Slap) in NMDA receptor signaling. We present data showing that in dissociated neuronal cultures, activation of ephrin (Eph) receptors by chimeric preclustered eph-Fc ligands leads to recruitment of Slap and NMDA receptors at the sites of Eph receptor activation. Interestingly, our data suggest that prolonged activation of EphA receptors is as efficient in recruiting Slap and NMDA receptors as prolonged activation of EphB receptors. Using established heterologous systems, we examined whether Slap is an integral part of NMDA receptor signaling. Our results showed that Slap does not alter baseline activity of NMDA receptors and does not affect Src-dependent potentiation of NMDA receptor currents in Xenopus oocytes. We also demonstrate that Slap reduces excitotoxic cell death triggered by activation of NMDARs in HEK293 cells. Finally, we present evidence showing reduced levels of NMDA receptors in the presence of Slap occurring in an activity-dependent manner, suggesting that Slap is part of a mechanism that homeostatically modulates the levels of NMDA receptors.

  17. Immunomodulator CD200 promotes neurotrophic activity by interacting with and activating the fibroblast growth factor receptor

    DEFF Research Database (Denmark)

    Pankratova, Stanislava; Bjornsdottir, Halla; Christensen, Claus;

    2016-01-01

    in the suppression of microglia activation. We for the first time demonstrated that CD200 can interact with and transduce signaling through activation of the fibroblast growth factor receptor (FGFR), thereby inducing neuritogenesis and promoting neuronal survival in primary neurons. CD200-induced FGFR...... phosphorylation was abrogated by CD200R, whereas FGF2-induced FGFR activation was inhibited by CD200. We also identified a sequence motif located in the first Ig-like module of CD200, likely representing the minimal CD200 binding site for FGFR. The FGFR binding motif overlaps with the CD200R binding site......, suggesting that they can compete for CD200 binding in cells that express both receptors. We propose that CD200 in neurons functions as a ligand of FGFR....

  18. Activation of transient receptor potential ankyrin 1 by eugenol.

    Science.gov (United States)

    Chung, G; Im, S T; Kim, Y H; Jung, S J; Rhyu, M-R; Oh, S B

    2014-03-07

    Eugenol is a bioactive plant extract used as an analgesic agent in dentistry. The structural similarity of eugenol to cinnamaldehyde, an active ligand for transient receptor potential ankyrin 1 (TRPA1), suggests that eugenol might produce its effect via TRPA1, in addition to TRPV1 as we reported previously. In this study, we investigated the effect of eugenol on TRPA1, by fura-2-based calcium imaging and patch clamp recording in trigeminal ganglion neurons and in a heterologous expression system. As the result, eugenol induced robust calcium responses in rat trigeminal ganglion neurons that responded to a specific TRPA1 agonist, allyl isothiocyanate (AITC), and not to capsaicin. Capsazepine, a TRPV1 antagonist failed to inhibit eugenol-induced calcium responses in AITC-responding neurons. In addition, eugenol response was observed in trigeminal ganglion neurons from TRPV1 knockout mice and human embryonic kidney 293 cell lines that express human TRPA1, which was inhibited by TRPA1-specific antagonist HC-030031. Eugenol-evoked TRPA1 single channel activity and eugenol-induced TRPA1 currents were dose-dependent with EC50 of 261.5μM. In summary, these results demonstrate that the activation of TRPA1 might account for another molecular mechanism underlying the pharmacological action of eugenol.

  19. Significance of AT1 receptor independent activation of mineralocorticoid receptor in murine diabetic cardiomyopathy.

    Directory of Open Access Journals (Sweden)

    Yuji Nagatomo

    Full Text Available BACKGROUND: Diabetes mellitus (DM has deleterious influence on cardiac performance independent of coronary artery disease and hypertension. The objective of the present study was to investigate the role of the renin-angiotensin-aldosterone system, especially angiotensin II type 1a receptor (AT1aR and mineralocorticoid receptor (MR signaling, in left ventricular (LV dysfunction induced by diabetes mellitus (DM. METHODS AND RESULTS: DM was induced by intraperitoneal injection of streptozotocin (200 mg/kg BW in wild-type (WT or AT1aR knockout (KO male mice, and they were bred during 6 or 12 weeks. Some KO mice were administered the MR antagonist eplerenone (100 mg/kg body weight. At 6 weeks, LV diastolic function was impaired in WT-DM, but preserved in KO-DM. At that time point MR mRNA expression was upregulated, NADPH oxidase subunit (p47phox and glutathione peroxidase (GPx1 mRNA expression were upregulated, the staining intensities of LV tissue for 4-hydroxy-2-nonenal was stronger in immunohistochemistry, the number of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL positive cells was increased, Bcl-2 protein expression was significantly downregulated, and the expression of SERCA2a and phosphorylated phospholamban was depressed in WT-DM, while these changes were not seen in KO-DM. At 12 weeks, however, these changes were also noted in KO-DM. Eplerenone arrested those changes. The plasma aldosterone concentration was elevated in WT-DM but not in KO-DM at 6 weeks. It showed 3.7-fold elevation at 12 weeks even in KO-DM, which suggests "aldosterone breakthrough" phenomenon. However, the aldosterone content in LV tissue was unchanged in KO-DM. CONCLUSIONS: DM induced diastolic dysfunction was observed even in KO at 12 weeks, which was ameliorated by minelarocorticoid receptor antagonist, eplerenone. AT1-independent MR activation in the LV might be responsible for the pathogenesis of diabetic cardiomyopathy.

  20. Dihydropyridine receptors actively control gating of ryanodine receptors in resting mouse skeletal muscle fibres

    Science.gov (United States)

    Robin, Gaëlle; Allard, Bruno

    2012-01-01

    Contraction of skeletal muscle is triggered by the release of Ca2+ from the sarcoplasmic reticulum (SR) in response to depolarization of the muscle membrane. Depolarization is known to elicit a conformational change of the dihydropyridine receptor (DHPR) in the tubular membrane that controls in a time- and voltage-dependent manner the opening of the ryanodine receptor (RyR), the SR Ca2+ release channel. At rest, it is assumed that RyRs are kept in a closed state imposed by the repressive action of DHPRs; however, a direct control of the RyR gating by the DHPR has up to now never been demonstrated in resting adult muscle. In this study, we monitored slow changes in SR Ca2+ content using the Ca2+ indicator fluo-5N loaded in the SR of voltage-clamped mouse muscle fibres. We first show that external Ca2+ removal induced a reversible SR Ca2+ efflux at −80 mV and prevented SR Ca2+ refilling following depolarization-evoked SR Ca2+ depletion. The dihydropyridine compound nifedipine induced similar effects. The rate of SR Ca2+ efflux was also shown to be controlled in a time- and voltage-dependent manner within a membrane potential range more negative than −50 mV. Finally, intracellular addition of ryanodine produced an irreversible SR Ca2+ efflux and kept the SR in a highly depleted state following depolarization-evoked SR Ca2+ depletion. The fact that resting SR Ca2+ efflux is modulated by conformational changes of DHPRs induced by external Ca2+, nifedipine and voltage demonstrates that DHPRs exert an active control on gating of RyRs in resting skeletal muscle. PMID:23006480

  1. HIV-1 activates macrophages independent of Toll-like receptors.

    Directory of Open Access Journals (Sweden)

    Joseph N Brown

    Full Text Available BACKGROUND: Macrophages provide an interface between innate and adaptive immunity and are important long-lived reservoirs for Human Immunodeficiency Virus Type-1 (HIV-1. Multiple genetic networks involved in regulating signal transduction cascades and immune responses in macrophages are coordinately modulated by HIV-1 infection. METHODOLOGY/PRINCIPAL FINDINGS: To evaluate complex interrelated processes and to assemble an integrated view of activated signaling networks, a systems biology strategy was applied to genomic and proteomic responses by primary human macrophages over the course of HIV-1 infection. Macrophage responses, including cell cycle, calcium, apoptosis, mitogen-activated protein kinases (MAPK, and cytokines/chemokines, to HIV-1 were temporally regulated, in the absence of cell proliferation. In contrast, Toll-like receptor (TLR pathways remained unaltered by HIV-1, although TLRs 3, 4, 7, and 8 were expressed and responded to ligand stimulation in macrophages. HIV-1 failed to activate phosphorylation of IRAK-1 or IRF-3, modulate intracellular protein levels of Mx1, an interferon-stimulated gene, or stimulate secretion of TNF, IL-1beta, or IL-6. Activation of pathways other than TLR was inadequate to stimulate, via cross-talk mechanisms through molecular hubs, the production of proinflammatory cytokines typical of a TLR response. HIV-1 sensitized macrophage responses to TLR ligands, and the magnitude of viral priming was related to virus replication. CONCLUSIONS/SIGNIFICANCE: HIV-1 induced a primed, proinflammatory state, M1(HIV, which increased the responsiveness of macrophages to TLR ligands. HIV-1 might passively evade pattern recognition, actively inhibit or suppress recognition and signaling, or require dynamic interactions between macrophages and other cells, such as lymphocytes or endothelial cells. HIV-1 evasion of TLR recognition and simultaneous priming of macrophages may represent a strategy for viral survival, contribute

  2. TGF-β2 promotes RPE cell invasion into a collagen gel by mediating urokinase-type plasminogen activator (uPA) expression.

    Science.gov (United States)

    Sugioka, Koji; Kodama, Aya; Okada, Kiyotaka; Iwata, Mihoko; Yoshida, Koji; Kusaka, Shunji; Matsumoto, Chota; Kaji, Hiroshi; Shimomura, Yoshikazu

    2013-10-01

    Transforming growth factor-beta (TGF-β) is one of the main epithelial-mesenchymal transition (EMT)-inducing factors. In general, TGF-β-induced EMT promotes cell migration and invasion. TGF-β also acts as a potent regulator of pericellular proteolysis by regulating the expression and secretion of plasminogen activators. Urokinase-type plasminogen activator (uPA) is a serine protease that binds to its cell surface receptor (uPAR) with high affinity. uPA binding to uPAR stimulates uPAR's interaction with transmembrane proteins, such as integrins, to regulate cytoskeletal reorganization and cell migration, differentiation and proliferation. However, the influence of TGF-β and the uPA/uPAR system on EMT in retinal pigment epithelial (RPE) cells is still unclear. The purpose of this study was to determine the effect of TGF-β2, which is the predominant isoform in the retina, and the uPA/uPAR system on RPE cells. In this study, we first examined the effect of TGF-β2 and/or the inhibitor of uPA (u-PA-STOP(®)) on the proliferation of a human retinal pigment epithelial cell line (ARPE-19 cells). Treatment with TGF-β2 or u-PA-STOP(®) suppressed cell proliferation. Combination treatment of TGF-β2 and u-PA-STOP(®) enhanced cell growth suppression. Furthermore, western blot analysis, fibrin zymography and real-time reverse transcription PCR showed that that TGF-β2 induced EMT in ARPE-19 cells and that the expression of uPA and uPAR expression was up-regulated during EMT. The TGF-β inhibitor SB431542 suppressed TGF-β2-stimulated uPA expression and secretion but did not suppress uPAR expression. Furthermore, we seeded ARPE-19 cells onto Transwell chambers and allowed them to invade the collagen matrix in the presence of TGF-β2 alone or with TGF-β2 and u-PA-STOP(®). TGF-β2 treatment induced ARPE-19 cell invasion into the collagen gel. Treatment with a combination of TGF-β2 and the uPA inhibitor strongly inhibited ARPE-19 cell invasion compared with treatment with

  3. Oleamide activates peroxisome proliferator-activated receptor gamma (PPARγ in vitro

    Directory of Open Access Journals (Sweden)

    Dionisi Mauro

    2012-05-01

    Full Text Available Abstract Background Oleamide (ODA is a fatty acid primary amide first identified in the cerebrospinal fluid of sleep-deprived cats, which exerts effects on vascular and neuronal tissues, with a variety of molecular targets including cannabinoid receptors and gap junctions. It has recently been reported to exert a hypolipidemic effect in hamsters. Here, we have investigated the nuclear receptor family of peroxisome proliferator-activated receptors (PPARs as potential targets for ODA action. Results Activation of PPARα, PPARβ and PPARγ was assessed using recombinant expression in Chinese hamster ovary cells with a luciferase reporter gene assay. Direct binding of ODA to the ligand binding domain of each of the three PPARs was monitored in a cell-free fluorescent ligand competition assay. A well-established assay of PPARγ activity, the differentiation of 3T3-L1 murine fibroblasts into adipocytes, was assessed using an Oil Red O uptake-based assay. ODA, at 10 and 50 μM, was able to transactivate PPARα, PPARβ and PPARγ receptors. ODA bound to the ligand binding domain of all three PPARs, although complete displacement of fluorescent ligand was only evident for PPARγ, at which an IC50 value of 38 μM was estimated. In 3T3-L1 cells, ODA, at 10 and 20 μM, induced adipogenesis. Conclusions We have, therefore, identified a novel site of action of ODA through PPAR nuclear receptors and shown how ODA should be considered as a weak PPARγ ligand in vitro.

  4. Molecular Mechanism of Peroxisome Proliferator-Activated Receptor alpha Activation by WY14643: a New Mode of Ligand Recognition and Receptor Stabilization

    NARCIS (Netherlands)

    Bernardes, Amanda; Telles de Souza, Paulo C; Muniz, João R C; Ricci, Clarisse G; Ayers, Stephen D; Parekh, Nili M; Godoy, André S; Trivella, Daniela B B; Reinach, Peter; Webb, Paul; Skaf, Munir S; Polikarpov, Igor

    2013-01-01

    Peroxisome proliferator-activated receptors (PPARs) are members of a superfamily of nuclear transcription factors. They are involved in mediating numerous physiological effects in humans, including glucose and lipid metabolism. PPAR alpha ligands effectively treat dyslipidemia and have significant

  5. Adipocyte insulin receptor activity maintains adipose tissue mass and lifespan.

    Science.gov (United States)

    Friesen, Max; Hudak, Carolyn S; Warren, Curtis R; Xia, Fang; Cowan, Chad A

    2016-08-05

    Type 2 diabetes follows a well-defined progressive pathogenesis, beginning with insulin resistance in metabolic tissues such as the adipose. Intracellular signaling downstream of insulin receptor activation regulates critical metabolic functions of adipose tissue, including glucose uptake, lipogenesis, lipolysis and adipokine secretion. Previous studies have used the aP2 promoter to drive Cre recombinase expression in adipose tissue. Insulin receptor (IR) knockout mice created using this aP2-Cre strategy (FIRKO mice) were protected from obesity and glucose intolerance. Later studies demonstrated the promiscuity of the aP2 promoter, casting doubts upon the tissue specificity of aP2-Cre models. It is our goal to use the increased precision of the Adipoq promoter to investigate adipocyte-specific IR function. Towards this end we generated an adipocyte-specific IR knockout (AIRKO) mouse using an Adipoq-driven Cre recombinase. Here we report AIRKO mice are less insulin sensitive throughout life, and less glucose tolerant than wild-type (WT) littermates at the age of 16 weeks. In contrast to WT littermates, the insulin sensitivity of AIRKO mice is unaffected by age or dietary regimen. At any age, AIRKO mice are comparably insulin resistant to old or obese WT mice and have a significantly reduced lifespan. Similar results were obtained when these phenotypes were re-examined in FIRKO mice. We also found that the AIRKO mouse is protected from high-fat diet-induced weight gain, corresponding with a 90% reduction in tissue weight of major adipose depots compared to WT littermates. Adipose tissue mass reduction is accompanied by hepatomegaly and increased hepatic steatosis. These data indicate that adipocyte IR function is crucial to systemic energy metabolism and has profound effects on adiposity, hepatic homeostasis and lifespan. Copyright © 2016. Published by Elsevier Inc.

  6. Differential effects of exercise on brain opioid receptor binding and activation in rats.

    Science.gov (United States)

    Arida, Ricardo Mario; Gomes da Silva, Sérgio; de Almeida, Alexandre Aparecido; Cavalheiro, Esper Abrão; Zavala-Tecuapetla, Cecilia; Brand, Serge; Rocha, Luisa

    2015-01-01

    Physical exercise stimulates the release of endogenous opioid peptides supposed to be responsible for changes in mood, anxiety, and performance. Exercise alters sensitivity to these effects that modify the efficacy at the opioid receptor. Although there is evidence that relates exercise to neuropeptide expression in the brain, the effects of exercise on opioid receptor binding and signal transduction mechanisms downstream of these receptors have not been explored. Here, we characterized the binding and G protein activation of mu opioid receptor, kappa opioid receptor or delta opioid receptor in several brain regions following acute (7 days) and chronic (30 days) exercise. As regards short- (acute) or long-term effects (chronic) of exercise, overall, higher opioid receptor binding was observed in acute-exercise animals and the opposite was found in the chronic-exercise animals. The binding of [(35) S]GTPγS under basal conditions (absence of agonists) was elevated in sensorimotor cortex and hippocampus, an effect more evident after chronic exercise. Divergence of findings was observed for mu opioid receptor, kappa opioid receptor, and delta opioid receptor receptor activation in our study. Our results support existing evidence of opioid receptor binding and G protein activation occurring differentially in brain regions in response to diverse exercise stimuli. We characterized the binding and G protein activation of mu, kappa, and delta opioid receptors in several brain regions following acute (7 days) and chronic (30 days) exercise. Higher opioid receptor binding was observed in the acute exercise animal group and opposite findings in the chronic exercise group. Higher G protein activation under basal conditions was noted in rats submitted to chronic exercise, as visible in the depicted pseudo-color autoradiograms.

  7. Triclocarban mediates induction of xenobiotic metabolism through activation of the constitutive androstane receptor and the estrogen receptor alpha.

    Science.gov (United States)

    Yueh, Mei-Fei; Li, Tao; Evans, Ronald M; Hammock, Bruce; Tukey, Robert H

    2012-01-01

    Triclocarban (3,4,4'-trichlorocarbanilide, TCC) is used as a broad-based antimicrobial agent that is commonly added to personal hygiene products. Because of its extensive use in the health care industry and resistance to degradation in sewage treatment processes, TCC has become a significant waste product that is found in numerous environmental compartments where humans and wildlife can be exposed. While TCC has been linked to a range of health and environmental effects, few studies have been conducted linking exposure to TCC and induction of xenobiotic metabolism through regulation by environmental sensors such as the nuclear xenobiotic receptors (XenoRs). To identify the ability of TCC to activate xenobiotic sensors, we monitored XenoR activities in response to TCC treatment using luciferase-based reporter assays. Among the XenoRs in the reporter screening assay, TCC promotes both constitutive androstane receptor (CAR) and estrogen receptor alpha (ERα) activities. TCC treatment to hUGT1 mice resulted in induction of the UGT1A genes in liver. This induction was dependent upon the constitutive active/androstane receptor (CAR) because no induction occurred in hUGT1Car(-/-) mice. Induction of the UGT1A genes by TCC corresponded with induction of Cyp2b10, another CAR target gene. TCC was demonstrated to be a phenobarbital-like activator of CAR in receptor-based assays. While it has been suggested that TCC be classified as an endocrine disruptor, it activates ERα leading to induction of Cyp1b1 in female ovaries as well as in promoter activity. Activation of ERα by TCC in receptor-based assays also promotes induction of human CYP2B6. These observations demonstrate that TCC activates nuclear xenobiotic receptors CAR and ERα both in vivo and in vitro and might have the potential to alter normal physiological homeostasis. Activation of these xenobiotic-sensing receptors amplifies gene expression profiles that might represent a mechanistic base for potential human

  8. GabaB receptors activation in the NTS blocks the glycemic responses induced by carotid body receptor stimulation.

    Science.gov (United States)

    Lemus, Mónica; Montero, Sergio; Cadenas, José Luis; Lara, José Jesús; Tejeda-Chávez, Héctor Rafael; Alvarez-Buylla, Ramón; de Alvarez-Buylla, Elena Roces

    2008-08-18

    The carotid body receptors participate in glucose regulation sensing glucose levels in blood entering the cephalic circulation. The carotid body receptors information, is initially processed within the nucleus tractus solitarius (NTS) and elicits changes in circulating glucose and brain glucose uptake. Previous work has shown that gamma-aminobutyric acid (GABA) in NTS modulates respiratory reflexes, but the role of GABA within NTS in glucose regulation remains unknown. Here we show that GABA(B) receptor agonist (baclofen) or antagonists (phaclofen and CGP55845A) locally injected into NTS modified arterial glucose levels and brain glucose retention. Control injections outside NTS did not elicit these responses. In contrast, GABA(A) agonist and antagonist (muscimol or bicuculline) produced no significant changes in blood glucose levels. When these GABAergic drugs were applied before carotid body receptors stimulation, again, only GABA(B) agonist or antagonist significantly affected glycemic responses; baclofen microinjection significantly reduced the hyperglycemic response and brain glucose retention observed after carotid body receptors stimulation, while phaclofen produced the opposite effect, increasing significantly hyperglycemia and brain glucose retention. These results indicate that activation of GABA(B), but not GABA(A), receptors in the NTS modulates the glycemic responses after anoxic stimulation of the carotid body receptors, and suggest the presence of a tonic inhibitory mechanism in the NTS to avoid hyperglycemia.

  9. Biased signaling by peptide agonists of protease activated receptor 2.

    Science.gov (United States)

    Jiang, Yuhong; Yau, Mei-Kwan; Kok, W Mei; Lim, Junxian; Wu, Kai-Chen; Liu, Ligong; Hill, Timothy A; Suen, Jacky Y; Fairlie, David P

    2017-02-07

    Protease activated receptor 2 (PAR2) is associated with metabolism, obesity, inflammatory, respiratory and gastrointestinal disorders, pain, cancer and other diseases. The extracellular N-terminus of PAR2 is a common target for multiple proteases, which cleave it at different sites to generate different N-termini that activate different PAR2-mediated intracellular signaling pathways. There are no synthetic PAR2 ligands that reproduce the same signaling profiles and potencies as proteases. Structure-activity relationships here for 26 compounds spanned a signaling bias over 3 log units, culminating in three small ligands as biased agonist tools for interrogating PAR2 functions. DF253 (2f-LAAAAI-NH2) triggered PAR2-mediated calcium release (EC50 2 μM) but not ERK1/2 phosphorylation (EC50 > 100 μM) in CHO cells transfected with hPAR2. AY77 (Isox-Cha-Chg-NH2) was a more potent calcium-biased agonist (EC50 40 nM, Ca2+; EC50 2 μM, ERK1/2), while its analogue AY254 (Isox-Cha-Chg-A-R-NH2) was an ERK-biased agonist (EC50 2 nM, ERK1/2; EC50 80 nM, Ca2+). Signaling bias led to different functional responses in human colorectal carcinoma cells (HT29). AY254, but not AY77 or DF253, attenuated cytokine-induced caspase 3/8 activation, promoted scratch-wound healing and induced IL-8 secretion, all via PAR2-ERK1/2 signaling. Different ligand components were responsible for different PAR2 signaling and functions, clues that can potentially lead to drugs that modulate different pathway-selective cellular and physiological responses.

  10. Tumorigenesis induced by the HHV8-encoded chemokine receptor requires ligand modulation of high constitutive activity

    DEFF Research Database (Denmark)

    Holst, P J; Rosenkilde, M M; Manfra, D;

    2001-01-01

    ORF74 (or KSHV-vGPCR) is a highly constitutively active G protein-coupled receptor encoded by HHV8 that is regulated both positively and negatively by endogenous chemokines. When expressed in transgenic mice, this chemokine receptor induces an angioproliferative disease closely resembling Kaposi...... sarcoma (KS). Here we demonstrate that several lines of mice carrying mutated receptors deficient in either constitutive activity or chemokine regulation fail to develop KS-like disease. In addition, animals expressing a receptor that preserves chemokine binding and constitutive activity but that does...

  11. Biology and therapeutic applications of peroxisome proliferator- activated receptors.

    Science.gov (United States)

    Menendez-Gutierrez, Maria P; Roszer, Tamas; Ricote, Mercedes

    2012-01-01

    Peroxisome proliferator-activated receptors (PPARs) are ligand dependent transcription factors. The three mammalian PPARs are key regulators of fatty acid and lipoprotein metabolism, glucose homeostasis, cellular proliferation/ differentiation and the immune response. PPARs are therefore important targets in the treatment of metabolic disorders such as insulin resistance and type 2 diabetes mellitus, and are also of interest in relation to chronic inflammatory diseases such as atherosclerosis, arthritis, chronic pulmonary inflammation, pancreatitis, inflammatory bowel disease, and psoriasis. Recent advances have attributed novel functions to PPARs in blood pressure regulation, neuroinflammation, nerve-cell protection, inflammatory pain reduction, and the hypothalamic control of metabolism. The abundant pleiotropic actions of PPARs suggest that PPAR agonists have enormous therapeutic potential. However, current PPAR-based therapies often have undesired side effects due to the concomitant activation of PPARs in non-target cells. There is therefore growing interest in the development of cell-specific PPAR agonists and improvement of the clinical use of PPAR ligands. This review gives an overview of PPAR functions and discusses the current and potential medical implications of PPAR ligands in various pathologies, ranging from metabolic disorders to cardiovascular disease, chronic inflammation, neurodegenerative disorders and cancer.

  12. Peroxisome proliferator-activated receptors, metabolic syndrome and cardiovascular disease

    Science.gov (United States)

    Azhar, Salman

    2011-01-01

    Metabolic syndrome (MetS) is a constellation of risk factors including insulin resistance, central obesity, dyslipidemia and hypertension that markedly increase the risk of Type 2 diabetes (T2DM) and cardiovascular disease (CVD). The peroxisome proliferators-activated receptor (PPAR) isotypes, PPARα, PPARδ/β and PPARγ are ligand-activated nuclear transcription factors, which modulate the expression of an array of genes that play a central role in regulating glucose, lipid and cholesterol metabolism, where imbalance can lead to obesity, T2DM and CVD. They are also drug targets, and currently, PPARα (fibrates) and PPARγ (thiazolodinediones) agonists are in clinical use for treating dyslipidemia and T2DM, respectively. These metabolic characteristics of the PPARs, coupled with their involvement in metabolic diseases, mean extensive efforts are underway worldwide to develop new and efficacious PPAR-based therapies for the treatment of additional maladies associated with the MetS. This article presents an overview of the functional characteristics of three PPAR isotypes, discusses recent advances in our understanding of the diverse biological actions of PPARs, particularly in the vascular system, and summarizes the developmental status of new single, dual, pan (multiple) and partial PPAR agonists for the clinical management of key components of MetS, T2DM and CVD. It also summarizes the clinical outcomes from various clinical trials aimed at evaluating the atheroprotective actions of currently used fibrates and thiazolodinediones. PMID:20932114

  13. Reconstituted B cell receptor signaling reveals carbohydrate-dependent mode of activation

    OpenAIRE

    2016-01-01

    Activation of immune cells (but not B cells) with lectins is widely known. We used the structurally defined interaction between influenza hemagglutinin (HA) and its cell surface receptor sialic acid (SA) to identify a B cell receptor (BCR) activation modality that proceeded through non-cognate interactions with antigen. Using a new approach to reconstitute antigen-receptor interactions in a human reporter B cell line, we found that sequence-defined BCRs from the human germline repertoire coul...

  14. Activation of Cannabinoid Receptor 2 Enhances Osteogenic Differentiation of Bone Marrow Derived Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Yong-Xin Sun

    2015-01-01

    Full Text Available Bone marrow derived mesenchymal stem cells (BM-MSCs are considered as the most promising cells source for bone engineering. Cannabinoid (CB receptors play important roles in bone mass turnover. The aim of this study is to test if activation of CB2 receptor by chemical agonist could enhance the osteogenic differentiation and mineralization in bone BM-MSCs. Alkaline phosphatase (ALP activity staining and real time PCR were performed to test the osteogenic differentiation. Alizarin red staining was carried out to examine the mineralization. Small interference RNA (siRNA was used to study the role of CB2 receptor in osteogenic differentiation. Results showed activation of CB2 receptor increased ALP activity, promoted expression of osteogenic genes, and enhanced deposition of calcium in extracellular matrix. Knockdown of CB2 receptor by siRNA inhibited ALP activity and mineralization. Results of immunofluorescent staining showed that phosphorylation of p38 MAP kinase is reduced by knocking down of CB2 receptor. Finally, bone marrow samples demonstrated that expression of CB2 receptor is much lower in osteoporotic patients than in healthy donors. Taken together, data from this study suggested that activation of CB2 receptor plays important role in osteogenic differentiation of BM-MSCs. Lack of CB2 receptor may be related to osteoporosis.

  15. NMDA receptor activation regulates sociability by its effect on mTOR signaling activity

    Science.gov (United States)

    Burket, Jessica A.; Benson, Andrew D.; Tang, Amy H.; Deutsch, Stephen I.

    2017-01-01

    Tuberous Sclerosis Complex is one example of a syndromic form of autism spectrum disorder associated with disinhibited activity of mTORCl in neurons (e.g., cerebellar Purkinje cells). mTORCl is a complex protein possessing serine/threonine kinase activity and a key downstream molecule in a signaling cascade beginning at the cell surface with the transduction of neurotransmitters (e.g., glutamate and acetylcholine) and nerve growth factors (e.g., Brain-Derived Neurotrophic Factor). Interestingly, the severity of the intellectual disability in Tuberous Sclerosis Complex may relate more to this metabolic disturbance (i.e., overactivity of mTOR signaling) than the density of cortical tubers. Several recent reports showed that rapamycin, an inhibitor of mTORCl, improved sociability and other symptoms in mouse models of Tuberous Sclerosis Complex and autism spectrum disorder, consistent with mTORCl overactivity playing an important pathogenic role. NMDA receptor activation may also dampen mTORCl activity by at least two possible mechanisms: regulating intraneuronal accumulation of arginine and the phosphorylation status of a specific extracellular signal regulating kinase (i.e., ERK1/2), both of which are “drivers” of mTORCl activity. Conceivably, the prosocial effects of targeting the NMDA receptor with agonists in mouse models of autism spectrum disorders result from their ability to dampen mTORC1 activity in neurons. Strategies for dampening mTORC1 overactivity by NMDA receptor activation may be preferred to its direct inhibition in chronic neurodevelopmental disorders, such as autism spectrum disorders. PMID:25703582

  16. NMDA receptor activation regulates sociability by its effect on mTOR signaling activity.

    Science.gov (United States)

    Burket, Jessica A; Benson, Andrew D; Tang, Amy H; Deutsch, Stephen I

    2015-07-01

    Tuberous Sclerosis Complex is one example of a syndromic form of autism spectrum disorder associated with disinhibited activity of mTORC1 in neurons (e.g., cerebellar Purkinje cells). mTORC1 is a complex protein possessing serine/threonine kinase activity and a key downstream molecule in a signaling cascade beginning at the cell surface with the transduction of neurotransmitters (e.g., glutamate and acetylcholine) and nerve growth factors (e.g., Brain-Derived Neurotrophic Factor). Interestingly, the severity of the intellectual disability in Tuberous Sclerosis Complex may relate more to this metabolic disturbance (i.e., overactivity of mTOR signaling) than the density of cortical tubers. Several recent reports showed that rapamycin, an inhibitor of mTORC1, improved sociability and other symptoms in mouse models of Tuberous Sclerosis Complex and autism spectrum disorder, consistent with mTORC1 overactivity playing an important pathogenic role. NMDA receptor activation may also dampen mTORC1 activity by at least two possible mechanisms: regulating intraneuronal accumulation of arginine and the phosphorylation status of a specific extracellular signal regulating kinase (i.e., ERK1/2), both of which are "drivers" of mTORC1 activity. Conceivably, the prosocial effects of targeting the NMDA receptor with agonists in mouse models of autism spectrum disorders result from their ability to dampen mTORC1 activity in neurons. Strategies for dampening mTORC1 overactivity by NMDA receptor activation may be preferred to its direct inhibition in chronic neurodevelopmental disorders, such as autism spectrum disorders.

  17. [5-HT1A/5-HT7 receptor interplay: Chronic activation of 5-HT7 receptors decreases the functional activity of 5-HT1A receptor and its сontent in the mouse brain].

    Science.gov (United States)

    Kondaurova, E M; Bazovkina, D V; Naumenko, V S

    2017-01-01

    Serotonin receptors 5-HT1A and 5-HT7 are involved in the development of various psychopathologies. Some data indicate that there is an interplay between 5-HT1A 5-HT7 receptors that could be implicated in the regulation of their function. This work analyzed the effects of chronic 5-HT7 activation on the functional activity of 5-HT7 and 5-HT1A receptors, on the corresponding protein levels, and on the expression of genes encoding 5-HT7 and 5-HT1A receptors in the mouse brain. Chronic administration of the 5-HT7 selective agonist LP44 (20.5 nmol, i.c.v., 14 days) produced considerable desensitization of both 5-HT7 and 5-HT1A receptors. In LP44-treated mice, the hypothermic responses mediated by both 5-HT7 and 5-HT1A receptors were attenuated. Moreover, the levels of 5-HT1A receptor protein in the midbrain and the frontal cortex of LP44-treated mice were significantly decreased. However, the brain levels of 5-HT7 receptor protein did not differ between LP44-treated and control mice. Chronic LP44 treatment did not alter the expression of the 5-HT7 and 5-HT1A receptor genes in all investigated brain structure. These data suggest that 5-HT7 receptors participate in the posttranscriptional regulation of the 5-HT1A receptors functioning.

  18. Common structural basis for constitutive activity of the ghrelin receptor family

    DEFF Research Database (Denmark)

    Holst, Birgitte; Holliday, Nicholas D; Bach, Anders

    2004-01-01

    Three members of the ghrelin receptor family were characterized in parallel: the ghrelin receptor, the neurotensin receptor 2 and the orphan receptor GPR39. In transiently transfected COS-7 and human embryonic kidney 293 cells, all three receptors displayed a high degree of ligand-independent sig......, the structural basis for which is determined by an aromatic cluster on the inner face of the extracellular ends of TMs VI and VII.......-independent signaling activity. The structurally homologous motilin receptor served as a constitutively silent control; upon agonist stimulation, however, it signaled with a similar efficacy to the three related receptors. The constitutive activity of the ghrelin receptor and of neurotensin receptor 2 through the G......(q), phospholipase C pathway was approximately 50% of their maximal capacity as determined through inositol phosphate accumulation. These two receptors also showed very high constitutive activity in activation of cAMP response element-driven transcription. GPR39 displayed a clear but lower degree of constitutive...

  19. Stereostructure-activity studies on agonists at the AMPA and kainate subtypes of ionotropic glutamate receptors

    DEFF Research Database (Denmark)

    Johansen, Tommy N; Greenwood, Jeremy R; Frydenvang, Karla Andrea

    2003-01-01

    -methyl-4-isoxazolyl)propionic acid (AMPA) receptor subtype of ionotropic Glu receptors in the presence or absence of an agonist has provided important information about ligand-receptor interaction mechanisms. The availability of these binding domain crystal structures has formed the basis for rational...... design of ligands, especially for the AMPA and kainate subtypes of ionotropic Glu receptors. This mini-review will focus on structure-activity relationships on AMPA and kainate receptor agonists with special emphasis on stereochemical and three-dimensional aspects....

  20. Plasma soluble urokinase plasminogen activator receptor in children with urinary tract infection

    DEFF Research Database (Denmark)

    Wittenhagen, Per; Andersen, Jesper Brandt; Hansen, Anita

    2011-01-01

    In this prospective study we investigated the role of plasma levels of soluble urokinase plasminogen activator receptor (suPAR) in children with urinary tract infection.......In this prospective study we investigated the role of plasma levels of soluble urokinase plasminogen activator receptor (suPAR) in children with urinary tract infection....

  1. Activation of toll-like receptors and dendritic cells by a broad range of bacterial molecules

    NARCIS (Netherlands)

    Boele, L.C.L.; Bajramovic, J.J.; Vries, A.M.M.B.C. de; Voskamp-Visser, I.A.I.; Kaman, W.E.; Kleij, D. van der

    2009-01-01

    Activation of pattern recognition receptors such as Toll-like receptors (TLRs) by pathogens leads to activation and maturation of dendritic cells (DC), which orchestrate the development of the adaptive immune response. To create an overview of the effects of a broad range of pathogenic bacteria, the

  2. Peroxisome proliferators-activated receptor (PPAR) regulation in cardiac metabolism and disease

    NARCIS (Netherlands)

    el Azzouzi, H.|info:eu-repo/dai/nl/304072796

    2009-01-01

    Peroxisome proliferators-activated receptors (PPARs) are members of the nuclear receptor family of ligand activated transcription factors and consist of the three isoforms, PPAR, PPAR/ and PPAR. Considerable evidence has established the importance of PPARs in myocardial lipid homeostasis and

  3. Activation of toll-like receptors and dendritic cells by a broad range of bacterial molecules

    NARCIS (Netherlands)

    Boele, L.C.L.; Bajramovic, J.J.; Vries, A.M.M.B.C. de; Voskamp-Visser, I.A.I.; Kaman, W.E.; Kleij, D. van der

    2009-01-01

    Activation of pattern recognition receptors such as Toll-like receptors (TLRs) by pathogens leads to activation and maturation of dendritic cells (DC), which orchestrate the development of the adaptive immune response. To create an overview of the effects of a broad range of pathogenic bacteria, the

  4. Peroxisome proliferators-activated receptor (PPAR) regulation in cardiac metabolism and disease

    NARCIS (Netherlands)

    el Azzouzi, H.

    2009-01-01

    Peroxisome proliferators-activated receptors (PPARs) are members of the nuclear receptor family of ligand activated transcription factors and consist of the three isoforms, PPAR, PPAR/ and PPAR. Considerable evidence has established the importance of PPARs in myocardial lipid homeostasis and car

  5. Agonist-biased signaling via proteinase activated receptor-2: differential activation of calcium and mitogen-activated protein kinase pathways.

    Science.gov (United States)

    Ramachandran, Rithwik; Mihara, Koichiro; Mathur, Maneesh; Rochdi, Moulay Driss; Bouvier, Michel; Defea, Kathryn; Hollenberg, Morley D

    2009-10-01

    We evaluated the ability of different trypsin-revealed tethered ligand (TL) sequences of rat proteinase-activated receptor 2 (rPAR(2)) and the corresponding soluble TL-derived agonist peptides to trigger agonist-biased signaling. To do so, we mutated the proteolytically revealed TL sequence of rPAR(2) and examined the impact on stimulating intracellular calcium transients and mitogen-activated protein (MAP) kinase. The TL receptor mutants, rPAR(2)-Leu(37)Ser(38), rPAR(2)-Ala(37-38), and rPAR(2)-Ala(39-42) were compared with the trypsin-revealed wild-type rPAR(2) TL sequence, S(37)LIGRL(42)-. Upon trypsin activation, all constructs stimulated MAP kinase signaling, but only the wt-rPAR(2) and rPAR(2)-Ala(39-42) triggered calcium signaling. Furthermore, the TL-derived synthetic peptide SLAAAA-NH2 failed to cause PAR(2)-mediated calcium signaling but did activate MAP kinase, whereas SLIGRL-NH2 triggered both calcium and MAP kinase signaling by all receptors. The peptides AAIGRL-NH2 and LSIGRL-NH2 triggered neither calcium nor MAP kinase signals. Neither rPAR(2)-Ala(37-38) nor rPAR(2)-Leu(37)Ser(38) constructs recruited beta-arrestins-1 or -2 in response to trypsin stimulation, whereas both beta-arrestins were recruited to these mutants by SLIGRL-NH2. The lack of trypsin-triggered beta-arrestin interactions correlated with impaired trypsin-activated TL-mutant receptor internalization. Trypsin-stimulated MAP kinase activation by the TL-mutated receptors was not blocked by inhibitors of Galpha(i) (pertussis toxin), Galpha(q) [N-cyclohexyl-1-(2,4-dichlorophenyl)-1,4-dihydro-6-methylindeno[1,2-c]pyrazole-3-carboxamide (GP2A)], Src kinase [4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]-pyrimidine (PP1)], or the epidermal growth factor (EGF) receptor [4-(3'-chloroanilino)-6,7-dimethoxy-quinazoline (AG1478)], but was inhibited by the Rho-kinase inhibitor (R)-(+)-trans-N-(4-pyridyl)-4-(1-aminoethyl)-cyclohexanecarboxamide, 2HCl (Y27362). The data indicate that the

  6. Regulatory network of inflammation downstream of proteinase-activated receptors

    Directory of Open Access Journals (Sweden)

    Hurst Robert E

    2007-03-01

    Full Text Available Abstract Background Protease-activated receptors (PAR are present in the urinary bladder, and their expression is altered in response to inflammation. PARs are a unique class of G protein-coupled that carry their own ligands, which remain cryptic until unmasked by proteolytic cleavage. Although the canonical signal transduction pathway downstream of PAR activation and coupling with various G proteins is known and leads to the rapid transcription of genes involved in inflammation, the effect of PAR activation on the downstream transcriptome is unknown. We have shown that intravesical administration of PAR-activating peptides leads to an inflammatory reaction characterized by edema and granulocyte infiltration. Moreover, the inflammatory response to intravesical instillation of known pro-inflammatory stimuli such as E. coli lipopolysaccharide (LPS, substance P (SP, and antigen was strongly attenuated by PAR1- and to a lesser extent by PAR2-deficiency. Results Here, cDNA array experiments determined inflammatory genes whose expression is dependent on PAR1 activation. For this purpose, we compared the alteration in gene expression in wild type and PAR1-/- mice induced by classical pro-inflammatory stimuli (LPS, SP, and antigen. 75 transcripts were considered to be dependent on PAR-1 activation and further annotated in silico by Ingenuity Pathways Analysis (IPA and gene ontology (GO. Selected transcripts were target validated by quantitative PCR (Q-PCR. Among PAR1-dependent transcripts, the following have been implicated in the inflammatory process: b2m, ccl7, cd200, cd63, cdbpd, cfl1, dusp1, fkbp1a, fth1, hspb1, marcksl1, mmp2, myo5a, nfkbia, pax1, plaur, ppia, ptpn1, ptprcap, s100a10, sim2, and tnfaip2. However, a balanced response to signals of injury requires a transient cellular activation of a panel of genes together with inhibitory systems that temper the overwhelming inflammation. In this context, the activation of genes such as dusp1 and

  7. Phytoceramide and sphingoid bases derived from brewer's yeast Saccharomyces pastorianus activate peroxisome proliferator-activated receptors

    Directory of Open Access Journals (Sweden)

    Mitsutake Susumu

    2011-08-01

    Full Text Available Abstract Background Peroxisome proliferator-activated receptors (PPARs are ligand-activated transcription factors that regulate lipid and glucose metabolism. PPARα is highly expressed in the liver and controls genes involved in lipid catabolism. We previously reported that synthetic sphingolipid analogs, part of which contains shorter-length fatty acid chains than natural sphingolipids, stimulated the transcriptional activities of PPARs. Sphingosine and dihydrosphingosine (DHS are abundant sphingoid bases, and ceramide and dihydroceramide are major ceramide species in mammals. In contrast, phytosphingosine (PHS and DHS are the main sphingoid bases in fungi. PHS and phytoceramide exist in particular tissues such as the epidermis in mammals, and involvement of ceramide species in PPARβ activation in cultured keratinocytes has been reported. The purpose of the present study is to investigate whether natural sphingolipids with C18 fatty acid and yeast-derived sphingoid bases activate PPARs as PPAR agonists. Method Lipids of brewer's yeast contain PHS- and DHS-based sphingolipids. To obtain the sphingoid bases, lipids were extracted from brewer's yeast and acid-hydrolyzed. The sphingoid base fraction was purified and quantified. To assess the effects of sphingolipids on PPAR activation, luciferase reporter assay was carried out. NIH/3T3 and human hepatoma (HepG2 cells were transfected with expression vectors for PPARs and retinoid × receptors, and PPAR responsive element reporter vector. When indicated, the PPAR/Gal4 chimera system was performed to enhance the credibility of experiments. Sphingolipids were added to the cells and the dual luciferase reporter assay was performed to determine the transcriptional activity of PPARs. Results We observed that phytoceramide increased the transcriptional activities of PPARs significantly, whereas ceramide and dihydroceramide did not change PPAR activities. Phytoceramide also increased transactivation of

  8. Phytoceramide and sphingoid bases derived from brewer's yeast Saccharomyces pastorianus activate peroxisome proliferator-activated receptors.

    Science.gov (United States)

    Murakami, Itsuo; Wakasa, Yukari; Yamashita, Shinji; Kurihara, Toshio; Zama, Kota; Kobayashi, Naoyuki; Mizutani, Yukiko; Mitsutake, Susumu; Shigyo, Tatsuro; Igarashi, Yasuyuki

    2011-08-24

    Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors that regulate lipid and glucose metabolism. PPARα is highly expressed in the liver and controls genes involved in lipid catabolism. We previously reported that synthetic sphingolipid analogs, part of which contains shorter-length fatty acid chains than natural sphingolipids, stimulated the transcriptional activities of PPARs. Sphingosine and dihydrosphingosine (DHS) are abundant sphingoid bases, and ceramide and dihydroceramide are major ceramide species in mammals. In contrast, phytosphingosine (PHS) and DHS are the main sphingoid bases in fungi. PHS and phytoceramide exist in particular tissues such as the epidermis in mammals, and involvement of ceramide species in PPARβ activation in cultured keratinocytes has been reported. The purpose of the present study is to investigate whether natural sphingolipids with C18 fatty acid and yeast-derived sphingoid bases activate PPARs as PPAR agonists. Lipids of brewer's yeast contain PHS- and DHS-based sphingolipids. To obtain the sphingoid bases, lipids were extracted from brewer's yeast and acid-hydrolyzed. The sphingoid base fraction was purified and quantified. To assess the effects of sphingolipids on PPAR activation, luciferase reporter assay was carried out. NIH/3T3 and human hepatoma (HepG2) cells were transfected with expression vectors for PPARs and retinoid × receptors, and PPAR responsive element reporter vector. When indicated, the PPAR/Gal4 chimera system was performed to enhance the credibility of experiments. Sphingolipids were added to the cells and the dual luciferase reporter assay was performed to determine the transcriptional activity of PPARs. We observed that phytoceramide increased the transcriptional activities of PPARs significantly, whereas ceramide and dihydroceramide did not change PPAR activities. Phytoceramide also increased transactivation of PPAR/Gal4 chimera receptors. Yeast-derived sphingoid

  9. Five layers of receptor signalling in γδ T cell differentiation and activation

    Directory of Open Access Journals (Sweden)

    Sérgio T. Ribeiro

    2015-01-01

    Full Text Available The contributions of gamma-delta T cells to immunity to infection or tumours critically depend on their activation and differentiation into effectors capable of secreting cytokines and killing infected or transformed cells. These processes are molecularly controlled by surface receptors that capture key extracellular cues and convey downstream intracellular signals that regulate gamma-delta T cell physiology. The understanding of how environmental signals are integrated by gamma-delta T cells is critical for their manipulation in clinical settings. Here we discuss how different classes of surface receptors impact on human and murine gamma-delta T cell differentiation, activation and expansion. In particular, we review the role of five receptor types: the T cell receptor (TCR, costimulatory receptors, cytokine receptors, NK receptors and inhibitory receptors. Some of the key players are the costimulatory receptors CD27 and CD28, which differentially impact on pro-inflammatory subsets of gamma-delta T cells; the cytokine receptors IL-2R, IL-7R and IL-15R, which drive functional differentiation and expansion of gamma-delta T cells; the NK receptor NKG2D and its contribution to gamma-delta T cell cytotoxicity; and the inhibitory receptors PD-1 and BTLA that control gamma-delta T cell homeostasis. We discuss these and other receptors in the context of a five-step model of receptor signalling in gamma-delta T cell differentiation and activation, and discuss its implications for the manipulation of gamma-delta T cells in immunotherapy.

  10. Troglitazone inhibits cell proliferation by attenuation of epidermal growth factor receptor signaling independent of peroxisome proliferator-activated receptor γ

    Institute of Scientific and Technical Information of China (English)

    Xiaoqi Li; Xuanming Yang; Youli Xu; Xuejun Jiang; Xin Li; Fajun Nan; Hong Tang

    2009-01-01

    Peroxisome proliferator-activated receptors (PPAR) belong to the nuclear hormone receptor superfamily of ligand-dependent transcription factors. Recent results have shown that agonists of PPARy, such as troglitazone (TGZ), can inhibit cell proliferation and promote cell differentiation independent of PPARγ. In the present study, we provide evidence that TGZ may bind directly to EGFR and trigger its signaling and internalization independent of PPARγ. Detailed studies revealed that prolonged incubation with TGZ effectively attenuated EGFR signaling by target-ing the receptor to the endo-lysosomal degradation machinery. Although the extracellular signal-regulated kinase-signaling pathway was transiently activated by TGZ in EGFR overexpressing cancer cells, inhibition of EGF-induced Akt phosphorylation most likely accounted for the growth arrest of tumor cells caused by TGZ at pharmacologically achievable concentrations. Therefore, we have provided a new line of evidence indicating that TGZ inhibits cell pro-liferation by promoting EGFR degradation and attenuating Akt phosphorylation.

  11. Estrogen Receptor β Activation Rapidly Modulates Male Sexual Motivation through the Transactivation of Metabotropic Glutamate Receptor 1a.

    Science.gov (United States)

    Seredynski, Aurore L; Balthazart, Jacques; Ball, Gregory F; Cornil, Charlotte A

    2015-09-23

    In addition to the transcriptional activity of their liganded nuclear receptors, estrogens, such as estradiol (E2), modulate cell functions, and consequently physiology and behavior, within minutes through membrane-initiated events. The membrane-associated receptors (mERs) underlying the acute effects of estrogens on behavior have mostly been documented in females where active estrogens are thought to be of ovarian origin. We determined here, by acute intracerebroventricular injections of specific agonists and antagonists, the type(s) of mERs that modulate rapid effects of brain-derived estrogens on sexual motivation in male Japanese quail. Brain aromatase blockade acutely inhibited sexual motivation. Diarylpropionitrile (DPN), an estrogen receptor β (ERβ)-specific agonist, and to a lesser extent 17α-estradiol, possibly acting through ER-X, prevented this effect. In contrast, drugs targeting ERα (PPT and MPP), GPR30 (G1 and G15), and the Gq-mER (STX) did not affect sexual motivation. The mGluR1a antagonist LY367385 significantly inhibited sexual motivation but mGluR2/3 and mGluR5 antagonists were ineffective. LY367385 also blocked the behavioral restoration induced by E2 or DPN, providing functional evidence that ERβ interacts with metabotropic glutamate receptor 1a (mGluR1a) signaling to acutely regulate male sexual motivation. Together these results show that ERβ plays a key role in sexual behavior regulation and the recently uncovered cooperation between mERs and mGluRs is functional in males where it mediates the acute effects of estrogens produced centrally in response to social stimuli. The presence of an ER-mGluR interaction in birds suggests that this mechanism emerged relatively early in vertebrate history and is well conserved. Significance statement: The membrane-associated receptors underlying the acute effects of estrogens on behavior have mostly been documented in females, where active estrogens are thought to be of ovarian origin. Using acute

  12. Epidermal growth factor receptor transactivation by intracellular prostaglandin E2-activated prostaglandin E2 receptors. Role in retinoic acid receptor-β up-regulation.

    Science.gov (United States)

    Fernández-Martínez, Ana B; Lucio Cazaña, Francisco J

    2013-09-01

    The pharmacological modulation of renoprotective factor vascular endothelial growth factor-A (VEGF-A) in the proximal tubule has therapeutic interest. In human proximal tubular HK-2 cells, treatment with all-trans retinoic acid or prostaglandin E2 (PGE2) triggers the production of VEGF-A. The pathway involves an initial increase in intracellular PGE2, followed by activation of EP receptors (PGE2 receptors, most likely an intracellular subset) and increase in retinoic acid receptor-β (RARβ) expression. RARβ then up-regulates transcription factor hypoxia-inducible factor-1α (HIF-1α), which increases the transcription and production of VEGF-A. Here we studied the role in this pathway of epidermal growth factor receptor (EGFR) transactivation by EP receptors. We found that EGFR inhibitor AG1478 prevented the increase in VEGF-A production induced by PGE2- and all-trans retinoic acid. This effect was due to the inhibition of the transcriptional up-regulation of RARβ, which resulted in loss of the RARβ-dependent transcriptional up-regulation of HIF-1α. PGE2 and all-trans retinoic acid also increased EGFR phosphorylation and this effect was sensitive to antagonists of EP receptors. The role of intracellular PGE2 was indicated by two facts; i) PGE2-induced EGFR phosphorylation was substantially prevented by inhibitor of prostaglandin uptake transporter bromocresol green and ii) all-trans retinoic acid treatment, which enhanced intracellular but not extracellular PGE2, had lower effect on EGFR phosphorylation upon pre-treatment with cyclooxygenase inhibitor diclofenac. Thus, EGFR transactivation by intracellular PGE2-activated EP receptors results in the sequential activation of RARβ and HIF-1α leading to increased production of VEGF-A and it may be a target for the therapeutic modulation of HIF-1α/VEGF-A. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Activation of intracellular angiotensin AT2 receptors induces rapid cell death in human uterine leiomyosarcoma cells

    DEFF Research Database (Denmark)

    Zhao, Yi; Lützen, Ulf; Fritsch, Jürgen

    2015-01-01

    The presence of AT2 receptors in mitochondria and their role in NO generation and cell aging were recently demonstrated in various human and mouse non-tumour cells. We investigated the intracellular distribution of AT2 receptors including their presence in mitochondria and the role in the induction...... densities in mitochondria. Activation of the cell membrane AT2 receptors by a concomitant treatment with angiotensin II and the AT1 receptor antagonist, losartan, induces apoptosis but does not affect the rate of cell death. We demonstrate for the first time that the high-affinity, non-peptide AT2 receptor...... of apoptosis and cell death in cultured human uterine leiomyosarcoma (SK-UT-1) cells and control human uterine smooth muscle cells (HutSMC). The intracellular levels of the AT2 receptor are low in proliferating SK-UT-1 cells but the receptor is substantially up-regulated in quiescent SK-UT-1 cells with high...

  14. Is receptor oligomerization causally linked to activation of the EGF receptor kinase?

    Science.gov (United States)

    Rintoul, D. A.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    Transduction of a signal from an extracellular peptide hormone to produce an intracellular response is often mediated by a cell surface receptor, which is usually a glycoprotein. The secondary intracellular signal(s) generated after hormone binding to the receptor have been intensively studied. The nature of the primary signal generated by ligand binding to the receptor is understood less well in most cases. The particular case of the epidermal growth factor (EGF) receptor is analyzed, and evidence for or against two dissimilar models of primary signal transduction is reviewed. Evidence for the most widely accepted current model is found to be unconvincing. Evidence for the other model is substantial but indirect; a direct test of this model remains to be done.

  15. Sulindac metabolites inhibit epidermal growth factor receptor activation and expression

    Directory of Open Access Journals (Sweden)

    Pangburn Heather A

    2005-09-01

    Full Text Available Abstract Background Regular use of nonsteroidal anti-inflammatory drugs (NSAIDs is associated with a decreased mortality from colorectal cancer (CRC. NSAIDs induce apoptotic cell death in colon cancer cells in vitro and inhibit growth of neoplastic colonic mucosa in vivo however, the biochemical mechanisms required for these growth inhibitory effects are not well defined. We previously reported that metabolites of the NSAID sulindac downregulate extracellular-signal regulated kinase 1/2 (ERK1/2 signaling and that this effect is both necessary and sufficient for the apoptotic effects of these drugs. The goal of this project was to specifically test the hypothesis that sulindac metabolites block activation and/or expression of the epidermal growth factor (EGF receptor (EGFR. Methods HT29 human colon cancer cells were treated with EGF, alone, or in the presence of sulindac sulfide or sulindac sulfone. Cells lysates were assayed by immunoblotting for phosphorylated EGFR (pEGFR, pY1068, total EGFR, phosphorylated ERK1/2 (pERK1/2, total ERK1/2, activated caspase-3, and α-tubulin. Results EGF treatment rapidly induced phosphorylation of both EGFR and ERK1/2 in HT29 colon cancer cells. Pretreatment with sulindac metabolites for 24 h blocked EGF-induced phosphorylation of both EGFR and ERK1/2 and decreased total EGFR protein expression. Under basal conditions, downregulation of pEGFR and total EGFR was detected as early as 12 h following sulindac sulfide treatment and persisted through at least 48 h. Sulindac sulfone induced downregulation of pEGFR and total EGFR was detected as early as 1 h and 24 h, respectively, following drug treatment, and persisted through at least 72 h. EGFR downregulation by sulindac metabolites was observed in three different CRC cell lines, occurred prior to the observed downregulation of pERK1/2 and induction of apoptosis by these drugs, and was not dependent of caspase activation. Conclusion These results suggest that

  16. Molecular photoacoustic tomography of breast cancer using receptor targeted magnetic iron oxide nanoparticles as contrast agents.

    Science.gov (United States)

    Xi, Lei; Grobmyer, Stephen R; Zhou, Guangyin; Qian, Weiping; Yang, Lily; Jiang, Huabei

    2014-06-01

    In this report, we present a breast imaging technique combining high-resolution near-infrared (NIR) light induced photoacoustic tomography (PAT) with NIR dye-labeled amino-terminal fragments of urokinase plasminogen activator receptor (uPAR) targeted magnetic iron oxide nanoparticles (NIR830-ATF-IONP) for breast cancer imaging using an orthotopic mouse mammary tumor model. We show that accumulation of the targeted nanoparticles in the tumor led to photoacoustic contrast enhancement due to the high absorption of iron oxide nanoparticles (IONP). NIR fluorescence images were used to validate specific delivery of NIR830-ATF-IONP to mouse mammary tumors. We found that systemic delivery of the targeted IONP produced 4- and 10-fold enhancement in photoacoustic signals in the tumor, compared to the tumor of the mice that received non-targeted IONP or control mice. The use of targeted nanoparticles allowed imaging of tumors located as deep as 3.1 cm beneath the normal tissues. Our study indicates the potential of the combination of photoacoustic tomography and receptor-targeted NIR830-ATF-IONP as a clinical tool that can provide improved specificity and sensitivity for breast cancer detection.

  17. Protease-Activated Receptors and other G-Protein-Coupled Receptors: the Melanoma Connection

    OpenAIRE

    Rosero, Rebecca A.; Villares, Gabriel J.; Bar-Eli, Menashe

    2016-01-01

    The vast array of G-protein-coupled receptors (GPCRs) play crucial roles in both physiological and pathological processes, including vision, coagulation, inflammation, autophagy, and cell proliferation. GPCRs also affect processes that augment cell proliferation and metastases in many cancers including melanoma. Melanoma is the deadliest form of skin cancer, yet limited therapeutic modalities are available to patients with metastatic melanoma. Studies have found that both chemokine receptors ...

  18. Activation of NTS A2a adenosine receptors differentially resets baroreflex control of renal vs. adrenal sympathetic nerve activity.

    Science.gov (United States)

    Ichinose, Tomoko K; O'Leary, Donal S; Scislo, Tadeusz J

    2009-04-01

    The role of nucleus of solitary tract (NTS) A(2a) adenosine receptors in baroreflex mechanisms is controversial. Stimulation of these receptors releases glutamate within the NTS and elicits baroreflex-like decreases in mean arterial pressure (MAP), heart rate (HR), and renal sympathetic nerve activity (RSNA), whereas inhibition of these receptors attenuates HR baroreflex responses. In contrast, stimulation of NTS A(2a) adenosine receptors increases preganglionic adrenal sympathetic nerve activity (pre-ASNA), and the depressor and sympathoinhibitory responses are not markedly affected by sinoaortic denervation and blockade of NTS glutamatergic transmission. To elucidate the role of NTS A(2a) adenosine receptors in baroreflex function, we compared full baroreflex stimulus-response curves for HR, RSNA, and pre-ASNA (intravenous nitroprusside/phenylephrine) before and after bilateral NTS microinjections of selective adenosine A(2a) receptor agonist (CGS-21680; 2.0, 20 pmol/50 nl), selective A(2a) receptor antagonist (ZM-241385; 40 pmol/100 nl), and nonselective A(1) + A(2a) receptor antagonist (8-SPT; 1 nmol/100 nl) in urethane/alpha-chloralose anesthetized rats. Activation of A(2a) receptors decreased the range, upper plateau, and gain of baroreflex-response curves for RSNA, whereas these parameters all increased for pre-ASNA, consistent with direct effects of the agonist on regional sympathetic activity. However, no resetting of baroreflex-response curves along the MAP axis occurred despite the marked decreases in baseline MAP. The antagonists had no marked effects on baseline variables or baroreflex-response functions. We conclude that the activation of NTS A(2a) adenosine receptors differentially alters baroreflex control of HR, RSNA, and pre-ASNA mostly via non-baroreflex mechanism(s), and these receptors have virtually no tonic action on baroreflex control of these sympathetic outputs.

  19. Pharmacological activation of 5-HT7 receptors reduces nerve injury-induced mechanical and thermal hypersensitivity.

    Science.gov (United States)

    Brenchat, Alex; Nadal, Xavier; Romero, Luz; Ovalle, Sergio; Muro, Asunción; Sánchez-Arroyos, Ricard; Portillo-Salido, Enrique; Pujol, Marta; Montero, Ana; Codony, Xavier; Burgueño, Javier; Zamanillo, Daniel; Hamon, Michel; Maldonado, Rafael; Vela, José Miguel

    2010-06-01

    The involvement of the 5-HT(7) receptor in nociception and pain, particularly chronic pain (i.e., neuropathic pain), has been poorly investigated. In the present study, we examined whether the 5-HT(7) receptor participates in some modulatory control of nerve injury-evoked mechanical hypersensitivity and thermal (heat) hyperalgesia in mice. Activation of 5-HT(7) receptors by systemic administration of the selective 5-HT(7) receptor agonist AS-19 (1 and 10mg/kg) exerted a clear-cut reduction of mechanical and thermal hypersensitivities that were reversed by co-administering the selective 5-HT(7) receptor antagonist SB-258719. Interestingly, blocking of 5-HT(7) receptors with SB-258719 (2.5 and 10mg/kg) enhanced mechanical (but not thermal) hypersensitivity in nerve-injured mice and induced mechanical hypersensitivity in sham-operated mice. Effectiveness of the treatment with a 5-HT(7) receptor agonist was maintained after repeated systemic administration: no tolerance to the antiallodynic and antihyperalgesic effects was developed following treatment with the selective 5-HT(7) receptor agonist E-57431 (10mg/kg) twice daily for 11 days. The 5-HT(7) receptor co-localized with GABAergic cells in the dorsal horn of the spinal cord, suggesting that the activation of spinal inhibitory GABAergic interneurons could contribute to the analgesic effects of 5-HT(7) receptor agonists. In addition, a significant increase of 5-HT(7) receptors was found by immunohistochemistry in the ipsilateral dorsal horn of the spinal cord after nerve injury, suggesting a "pain"-triggered regulation of receptor expression. These results support the idea that the 5-HT(7) receptor subtype is involved in the control of pain and point to a new potential use of 5-HT(7) receptor agonists for the treatment of neuropathic pain.

  20. Topical Rosiglitazone Treatment Improves Ulcerative Colitis by Restoring Peroxisome Proliferator-Activated Receptor-gamma Activity

    DEFF Research Database (Denmark)

    Pedersen, G.; Brynskov, Jørn

    2010-01-01

    OBJECTIVES: Impaired epithelial expression of peroxisome proliferator-activated receptor-gamma (PPAR gamma) has been described in animal colitis models and briefly in patients with ulcerative colitis, but the functional significance in humans is not well defined. We examined PPAR gamma expression...... and functional activity in human colonic epithelium and explored the potential of topical treatment with rosiglitazone (a PPAR gamma ligand) in patients with ulcerative colitis. METHODS: Spontaneous and rosiglitazone-mediated PPAR gamma and adipophillin expression (a gene transcriptionally activated by PPAR...... for 14 days. RESULTS: PPAR gamma expression was fourfold reduced in epithelial cells from inflamed compared with uninflamed mucosa and controls. Adipophillin levels were decreased in parallel. Rosiglitazone induced a concentration-dependent increase in adipophillin levels and restored PPAR gamma activity...

  1. Quantitative structure-activity relationships of selective antagonists of glucagon receptor using QuaSAR descriptors.

    Science.gov (United States)

    Manoj Kumar, Palanivelu; Karthikeyan, Chandrabose; Hari Narayana Moorthy, Narayana Subbiah; Trivedi, Piyush

    2006-11-01

    In the present paper, quantitative structure activity relationship (QSAR) approach was applied to understand the affinity and selectivity of a novel series of triaryl imidazole derivatives towards glucagon receptor. Statistically significant and highly predictive QSARs were derived for glucagon receptor inhibition by triaryl imidazoles using QuaSAR descriptors of molecular operating environment (MOE) employing computer-assisted multiple regression procedure. The generated QSAR models revealed that factors related to hydrophobicity, molecular shape and geometry predominantly influences glucagon receptor binding affinity of the triaryl imidazoles indicating the relevance of shape specific steric interactions between the molecule and the receptor. Further, QSAR models formulated for selective inhibition of glucagon receptor over p38 mitogen activated protein (MAP) kinase of the compounds in the series highlights that the same structural features, which influence the glucagon receptor affinity, also contribute to their selective inhibition.

  2. Comparative study on transcriptional activity of 17 parabens mediated by estrogen receptor α and β and androgen receptor.

    Science.gov (United States)

    Watanabe, Yoko; Kojima, Hiroyuki; Takeuchi, Shinji; Uramaru, Naoto; Ohta, Shigeru; Kitamura, Shigeyuki

    2013-07-01

    The structure-activity relationships of parabens which are widely used as preservatives for transcriptional activities mediated by human estrogen receptor α (hERα), hERβ and androgen receptor (hAR) were investigated. Fourteen of 17 parabens exhibited hERα and/or hERβ agonistic activity at concentrations of ≤ 1 × 10(-5)M, whereas none of the 17 parabens showed AR agonistic or antagonistic activity. Among 12 parabens with linear alkyl chains ranging in length from C₁ to C₁₂, heptylparaben (C₇) and pentylparaben (C₅) showed the most potent ERα and ERβ agonistic activity in the order of 10(-7)M and 10(-8)M, respectively, and the activities decreased in a stepwise manner as the alkyl chain was shortened to C₁ or lengthened to C₁₂. Most parabens showing estrogenic activity exhibited ERβ-agonistic activity at lower concentrations than those inducing ERα-agonistic activity. The estrogenic activity of butylparaben was markedly decreased by incubation with rat liver microsomes, and the decrease of activity was blocked by a carboxylesterase inhibitor. These results indicate that parabens are selective agonists for ERβ over ERα; their interactions with ERα/β are dependent on the size and bulkiness of the alkyl groups; and they are metabolized by carboxylesterases, leading to attenuation of their estrogenic activity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Quantitative impedimetric NPY-receptor activation monitoring and signal pathway profiling in living cells.

    Science.gov (United States)

    te Kamp, Verena; Lindner, Ricco; Jahnke, Heinz-Georg; Krinke, Dana; Kostelnik, Katja B; Beck-Sickinger, Annette G; Robitzki, Andrea A

    2015-05-15

    Label-free and non-invasive monitoring of receptor activation and identification of the involved signal pathways in living cells is an ongoing analytic challenge and a great opportunity for biosensoric systems. In this context, we developed an impedance spectroscopy-based system for the activation monitoring of NPY-receptors in living cells. Using an optimized interdigital electrode array for sensitive detection of cellular alterations, we were able for the first time to quantitatively detect the NPY-receptor activation directly without a secondary or enhancer reaction like cAMP-stimulation by forskolin. More strikingly, we could show that the impedimetric based NPY-receptor activation monitoring is not restricted to the Y1-receptor but also possible for the Y2- and Y5-receptor. Furthermore, we could monitor the NPY-receptor activation in different cell lines that natively express NPY-receptors and proof the specificity of the observed impedimetric effect by agonist/antagonist studies in recombinant NPY-receptor expressing cell lines. To clarify the nature of the observed impedimetric effect we performed an equivalent circuit analysis as well as analyzed the role of cell morphology and receptor internalization. Finally, an antagonist based extensive molecular signal pathway analysis revealed small alterations of the actin cytoskeleton as well as the inhibition of at least L-type calcium channels as major reasons for the observed NPY-induced impedance increase. Taken together, our novel impedance spectroscopy based NPY-receptor activation monitoring system offers the opportunity to identify signal pathways as well as for novel versatile agonist/antagonist screening systems for identification of novel therapeutics in the field of obesity and cancer.

  4. Activity of protease-activated receptors in primary cultured human myenteric neurons

    Directory of Open Access Journals (Sweden)

    Eva Maria Kugler

    2012-09-01

    Full Text Available Activity of the four known protease-activated receptors (PARs has been well studied in rodent enteric nervous system and results in animal models established an important role for neuronal PAR2. We recently demonstrated that, unlike in rodents, PAR1 is the dominant neuronal protease receptor in the human submucous plexus. With this study we investigated whether this also applies to the human myenteric plexus. We used voltage sensitive dye recordings to detect action potential discharge in primary cultures of human myenteric neurons in response to PAR activating peptides (AP. Application of the PAR1-AP (TFLLR or PAR4-AP (GYPGQV evoked spike discharge in 79% or 23% of myenteric neurons, respectively. The PAR1-AP response was mimicked by the endogenous PAR1 activator thrombin and blocked by the PAR1 antagonists SCH79797. Human myenteric neurons did not respond to PAR2-AP. This was not due to culture conditions because all three PAR-APs evoked action potentials in cultured guinea pig myenteric neurons. Consecutive application of PAR-APs revealed coexpression (relative to the population responding to PAR-APs of PAR1/PAR2 in 51%, PAR1/PAR4 in 43% and of PAR2/PAR4 in 29% of guinea pig myenteric neurons. Our study provided further evidence for the prominent role of neuronal PAR1 in the human enteric nervous system.

  5. Novel indole and azaindole (pyrrolopyridine) cannabinoid (CB) receptor agonists: design, synthesis, structure-activity relationships, physicochemical properties and biological activity

    NARCIS (Netherlands)

    Blaazer, A.R.; Lange, J.H.M.; van der Neut, M.A.W.; Mulder, A.; den Boon, F.S.; Werkman, T.R.; Kruse, C.G.; Wadman, W.J.

    2011-01-01

    The discovery, synthesis and structure-activity relationship (SAR) of a novel series of cannabinoid 1 (CB1) and cannabinoid 2 (CB2) receptor ligands are reported. Based on the aminoalkylindole class of cannabinoid receptor agonists, a biphenyl moiety was introduced as novel lipophilic indole 3-acyl

  6. Src Family Kinases and Receptors: Analysis of Three Activation Mechanisms by Dynamic Systems Modeling

    OpenAIRE

    Fuß, Hendrik; Dubitzky, Werner; Downes, C. Stephen; Kurth, Mary Jo

    2007-01-01

    Src family kinases (SFKs) interact with a number of cellular receptors. They participate in diverse signaling pathways and cellular functions. Most of the receptors involved in SFK signaling are characterized by similar modes of regulation. This computational study discusses a general kinetic model of SFK-receptor interaction. The analysis of the model reveals three major ways of SFK activation: release of inhibition by C-terminal Src kinase, weakening of the inhibitory intramolecular phospho...

  7. Mechanisms involved in VPAC receptors activation and regulation: lessons from pharmacological and mutagenesis studies.

    Directory of Open Access Journals (Sweden)

    Ingrid eLanger

    2012-10-01

    Full Text Available VIP plays diverse and important role in human physiology and physiopathology and their receptors constitute potential targets for the treatment of several diseases such as neurodegenerative disorder, asthma, diabetes and inflammatory diseases. This article reviews the current knowledge regarding the two VIP receptors, VPAC1 and VPAC2, with respect to mechanisms involved in receptor activation, G protein coupling, signaling, regulation and oligomerization.

  8. Adenosine A3 receptor activation is neuroprotective against retinal neurodegeneration.

    Science.gov (United States)

    Galvao, Joana; Elvas, Filipe; Martins, Tiago; Cordeiro, M Francesca; Ambrósio, António Francisco; Santiago, Ana Raquel

    2015-11-01

    Death of retinal neural cells, namely retinal ganglion cells (RGCs), is a characteristic of several retinal neurodegenerative diseases. Although the role of adenosine A3 receptor (A3R) in neuroprotection is controversial, A3R activation has been reported to afford protection against several brain insults, with few studies in the retina. In vitro models (retinal neural and organotypic cultures) and animal models [ischemia-reperfusion (I-R) and partial optic nerve transection (pONT)] were used to study the neuroprotective properties of A3R activation against retinal neurodegeneration. The A3R selective agonist (2-Cl-IB-MECA, 1 μM) prevented apoptosis (TUNEL(+)-cells) induced by kainate and cyclothiazide (KA + CTZ) in retinal neural cultures (86.5 ± 7.4 and 37.2 ± 6.1 TUNEL(+)-cells/field, in KA + CTZ and KA + CTZ + 2-Cl-IB-MECA, respectively). In retinal organotypic cultures, 2-Cl-IB-MECA attenuated NMDA-induced cell death, assessed by TUNEL (17.3 ± 2.3 and 8.3 ± 1.2 TUNEL(+)-cells/mm(2) in NMDA and NMDA+2-Cl-IB-MECA, respectively) and PI incorporation (ratio DIV4/DIV2 3.3 ± 0.3 and 1.3 ± 0.1 in NMDA and NMDA+2-Cl-IB-MECA, respectively) assays. Intravitreal 2-Cl-IB-MECA administration afforded protection against I-R injury decreasing the number of TUNEL(+) cells by 72%, and increased RGC survival by 57%. Also, intravitreal administration of 2-Cl-IB-MECA inhibited apoptosis (from 449.4 ± 37.8 to 207.6 ± 48.9 annexin-V(+)-cells) and RGC loss (from 1.2 ± 0.6 to 8.1 ± 1.7 cells/mm) induced by pONT. This study demonstrates that 2-Cl-IB-MECA is neuroprotective to the retina, both in vitro and in vivo. Activation of A3R may have great potential in the management of retinal neurodegenerative diseases characterized by RGC death, as glaucoma and diabetic retinopathy, and ischemic diseases.

  9. Enhanced antitumor activity of cabazitaxel targeting CD44+ receptor ...

    African Journals Online (AJOL)

    prolonged circulation and slow release of the drug, as well as internalization of the nanocarrier into cancer cells. ... delivery of the anticancer drug via the CD44 receptor. ..... clinical pharmacology of the taxanes docetaxel and paclitaxel--a ...

  10. Binding and activity of the prostacyclin receptor (IP) agonists, treprostinil and iloprost, at human prostanoid receptors: treprostinil is a potent DP1 and EP2 agonist.

    Science.gov (United States)

    Whittle, Brendan J; Silverstein, Adam M; Mottola, David M; Clapp, Lucie H

    2012-07-01

    The prostacyclin analogues, iloprost and treprostinil are extensively used in treating pulmonary hypertension. Their binding profile and corresponding biochemical cellular responses on human prostanoid receptors expressed in cell lines, have now been compared. Iloprost had high binding affinity for EP1 and IP receptors (Ki 1.1 and 3.9 nM, respectively), low affinity for FP, EP3 or EP4 receptors, and very low affinity for EP2, DP1 or TP receptors. By contrast, treprostinil had high affinity for the DP1, EP2 and IP receptors (Ki 4.4, 3.6 and 32 nM, respectively), low affinity for EP1 and EP4 receptors and even lower affinity for EP3, FP and TP receptors. In functional assays, iloprost had similar high activity in elevating cyclic AMP levels in cells expressing the human IP receptor and stimulating calcium influx in cells expressing EP1 receptors (EC50 0.37 and 0.3 nM, respectively) with the rank order of activity on the other receptors comparable to the binding assays. As with binding studies, treprostinil elevated cyclic AMP with a similar high potency in cells expressing DP1, IP and EP2 receptors (EC50 0.6, 1.9 and 6.2 nM, respectively), but had low activity at the other receptors. Activation of IP, DP1 and EP2 receptors, as with treprostinil, can all result in vasodilatation of human pulmonary arteries. However, activation of EP1 receptors can provoke vasoconstriction, and hence may offset the IP-receptor mediated vasodilator effects of iloprost. Treprostinil may therefore differ from iloprost in its overall beneficial pulmonary vasorelaxant profile and other pharmacological actions, especially in diseases where the IP receptor is down-regulated. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Pharmacology and toxicology of fibrates as hypolipidemic drugs mediated by nuclear receptor peroxisome proliferator—activated receptor

    Institute of Scientific and Technical Information of China (English)

    SugaT

    2002-01-01

    PPAR(peroxisome proliferator-activated receptor) is a family of nuclear receptor.In recent years,it has been focused for the discovery and development of new drugs which are mediated by PPARs.Fibrate hypolipidemic drugs are the specific and potent ligands to PPAR alpha and have been widely used for the treatment of hyperlipidemia.But these drugs induce hepatocarcinogenesis in rodent animals after the long-term administration.However,there are species differences on these phenomena which are not seen in mammals ioncluding human.To clarify the mechanism of carcinogenesis by these drugs in important for the evaluation of safety of these drugs in human.

  12. Xenobiotic-induced hepatocyte proliferation associated with constitutive active/androstane receptor (CAR or peroxisome proliferator-activated receptor α (PPARα is enhanced by pregnane X receptor (PXR activation in mice.

    Directory of Open Access Journals (Sweden)

    Ryota Shizu

    Full Text Available Xenobiotic-responsive nuclear receptors pregnane X receptor (PXR, constitutive active/androstane receptor (CAR and peroxisome proliferator-activated receptor α (PPARα play pivotal roles in the metabolic functions of the liver such as xenobiotics detoxification and energy metabolism. While CAR or PPARα activation induces hepatocyte proliferation and hepatocarcinogenesis in rodent models, it remains unclear whether PXR activation also shows such effects. In the present study, we have investigated the role of PXR in the xenobiotic-induced hepatocyte proliferation with or without CAR activation by 1,4-bis[2-(3,5-dichloropyridyloxy]benzene (TCPOBOP and phenobarbital, or PPARα activation by Wy-14643 in mice. Treatment with TCPOBOP or phenobarbital increased the percentage of Ki-67-positive nuclei as well as mRNA levels of cell proliferation-related genes in livers as expected. On the other hand, treatment with the PXR activator pregnenolone 16α-carbonitrile (PCN alone showed no such effects. Surprisingly, PCN co-treatment significantly augmented the hepatocyte proliferation induced by CAR activation with TCPOBOP or phenobarbital in wild-type mice but not in PXR-deficient mice. Intriguingly, PXR activation also augmented the hepatocyte proliferation induced by Wy-14643 treatment. Moreover, PCN treatment increased the RNA content of hepatocytes, suggesting the induction of G0/G1 transition, and reduced mRNA levels of Cdkn1b and Rbl2, encoding suppressors of cell cycle initiation. Our present findings indicate that xenobiotic-induced hepatocyte proliferation mediated by CAR or PPARα is enhanced by PXR co-activation despite that PXR activation alone does not cause the cell proliferation in mouse livers. Thus PXR may play a novel and unique role in the hepatocyte/liver hyperplasia upon exposure to xenobiotics.

  13. Cellular phosphatases facilitate combinatorial processing of receptor-activated signals

    Directory of Open Access Journals (Sweden)

    Siddiqui Zaved

    2008-09-01

    Full Text Available Abstract Background Although reciprocal regulation of protein phosphorylation represents a key aspect of signal transduction, a larger perspective on how these various interactions integrate to contribute towards signal processing is presently unclear. For example, a key unanswered question is that of how phosphatase-mediated regulation of phosphorylation at the individual nodes of the signaling network translates into modulation of the net signal output and, thereby, the cellular phenotypic response. Results To address the above question we, in the present study, examined the dynamics of signaling from the B cell antigen receptor (BCR under conditions where individual cellular phosphatases were selectively depleted by siRNA. Results from such experiments revealed a highly enmeshed structure for the signaling network where each signaling node was linked to multiple phosphatases on the one hand, and each phosphatase to several nodes on the other. This resulted in a configuration where individual signaling intermediates could be influenced by a spectrum of regulatory phosphatases, but with the composition of the spectrum differing from one intermediate to another. Consequently, each node differentially experienced perturbations in phosphatase activity, yielding a unique fingerprint of nodal signals characteristic to that perturbation. This heterogeneity in nodal experiences, to a given perturbation, led to combinatorial manipulation of the corresponding signaling axes for the downstream transcription factors. Conclusion Our cumulative results reveal that it is the tight integration of phosphatases into the signaling network that provides the plasticity by which perturbation-specific information can be transmitted in the form of a multivariate output to the downstream transcription factor network. This output in turn specifies a context-defined response, when translated into the resulting gene expression profile.

  14. The formyl peptide receptor like-1 and scavenger receptor MARCO are involved in glial cell activation in bacterial meningitis

    Directory of Open Access Journals (Sweden)

    Jansen Sandra

    2011-02-01

    Full Text Available Abstract Background Recent studies have suggested that the scavenger receptor MARCO (macrophage receptor with collagenous structure mediates activation of the immune response in bacterial infection of the central nervous system (CNS. The chemotactic G-protein-coupled receptor (GPCR formyl-peptide-receptor like-1 (FPRL1 plays an essential role in the inflammatory responses of host defence mechanisms and neurodegenerative disorders such as Alzheimer's disease (AD. Expression of the antimicrobial peptide cathelicidin CRAMP/LL-37 is up-regulated in bacterial meningitis, but the mechanisms underlying CRAMP expression are far from clear. Methods Using a rat meningitis model, we investigated the influence of MARCO and FPRL1 on rCRAMP (rat cathelin-related antimicrobial peptide expression after infection with bacterial supernatants of Streptococcus pneumoniae (SP and Neisseria meningitides (NM. Expression of FPRL1 and MARCO was analyzed by immunofluorescence and real-time RT-PCR in a rat meningitis model. Furthermore, we examined the receptor involvement by real-time RT-PCR, extracellular-signal regulated kinases 1/2 (ERK1/2 phosphorylation and cAMP level measurement in glial cells (astrocytes and microglia and transfected HEK293 cells using receptor deactivation by antagonists. Receptors were inhibited by small interference RNA and the consequences in NM- and SP-induced Camp (rCRAMP gene expression and signal transduction were determined. Results We show an NM-induced increase of MARCO expression by immunofluorescence and real-time RT-PCR in glial and meningeal cells. Receptor deactivation by antagonists and small interfering RNA (siRNA verified the importance of FPRL1 and MARCO for NM- and SP-induced Camp and interleukin-1β expression in glial cells. Furthermore, we demonstrated a functional interaction between FPRL1 and MARCO in NM-induced signalling by real-time RT-PCR, ERK1/2 phosphorylation and cAMP level measurement and show differences between

  15. Tumor-Suppressive Activity of Lunatic Fringe in Prostate through Differential Modulation of Notch Receptor Activation

    Directory of Open Access Journals (Sweden)

    Shubing Zhang

    2014-02-01

    Full Text Available Elevated Notch ligand and receptor expression has been associated with aggressive forms of prostate cancer, suggesting a role for Notch signaling in regulation of prostate tumor initiation and progression. Here, we report a critical role for Lunatic Fringe (Lfng, which encodes an O-fucosylpeptide 3-ß-N-acetylglucosaminyltransferase known to modify epidermal growth factor repeats of Notch receptor proteins, in regulation of prostate epithelial differentiation and proliferation, as well as in prostate tumor suppression. Deletion of Lfng in mice caused altered Notch activation in the prostate, associated with elevated accumulation of Notch1, Notch2, and Notch4 intracellular domains, decreased levels of the putative Notch3 intracellular fragment, as well as increased expression of Hes1, Hes5, and Hey2. Loss of Lfng resulted in expansion of the basal layer, increased proliferation of both luminal and basal cells, and ultimately, prostatic intraepithelial neoplasia. The Lfng-null prostate showed down-regulation of prostatic tumor suppressor gene NKX3.1 and increased androgen receptor expression. Interestingly, expression of LFNG and NKX3.1 were positively correlated in publically available human prostate cancer data sets. Knockdown of LFNG in DU-145 prostate cancer cells led to expansion of CD44+CD24− and CD49f+CD24− stem/progenitor-like cell population associated with enhanced prostatosphere-forming capacity. Taken together, these data revealed a tumor-suppressive role for Lfng in the prostate through differential regulation of Notch signaling.

  16. Analysis of the epidermal growth factor receptor specific transcriptome: effect of receptor expression level and an activating mutation

    DEFF Research Database (Denmark)

    Pedersen, Mikkel W; Pedersen, Nina; Damstrup, Lars;

    2005-01-01

    moderately expressed or overexpressed at an in-itself transforming level. These changes were compared to those induced by the naturally occurring constitutively active variant EGFRvIII. This study provides novel insight on the activities and mechanisms of EGFRvIII and EGFR mediated transformation, as genes...... by interferons. Expression of this module was absent in the EGFRvIII-expressing cell line and the parental cell line. Treatment with the specific EGFR inhibitor AG1478 indicated that the regulations were primary, receptor-mediated events. Furthermore, activation of this module correlated with activation of STAT1...

  17. The protease-activated receptor-2 agonist induces gastric mucus secretion and mucosal cytoprotection

    OpenAIRE

    Kawabata, Atsufumi; Kinoshita, Mitsuhiro; Nishikawa, Hiroyuki; Kuroda, Ryotaro; Nishida, Minoru; Araki, Hiromasa; Arizono, Naoki; Oda, Yasuo; Kakehi, Kazuaki

    2001-01-01

    Protease-activated receptor-2 (PAR-2), a receptor activated by trypsin/tryptase, modulates smooth muscle tone and exocrine secretion in the salivary glands and pancreas. Given that PAR-2 is expressed throughout the gastrointestinal tract, we investigated effects of PAR-2 agonists on mucus secretion and gastric mucosal injury in the rat. PAR-2–activating peptides triggered secretion of mucus in the stomach, but not in the duodenum. This mucus secretion was abolished by pretreatment with capsai...

  18. Identification of chemical modulators of the constitutive activated receptor (CAR) in a gene expression compendium

    OpenAIRE

    Oshida, Keiyu; Vasani, Naresh; Jones, Carlton; Moore, Tanya; Hester, Susan; Nesnow, Stephen; Auerbach, Scott; Geter, David R.; Aleksunes, Lauren M; Thomas, Russell S.; Applegate, Dawn; Klaassen, Curtis D.; Corton, J. Christopher

    2015-01-01

    The nuclear receptor family member constitutive activated receptor (CAR) is activated by structurally diverse drugs and environmentally-relevant chemicals leading to transcriptional regulation of genes involved in xenobiotic metabolism and transport. Chronic activation of CAR increases liver cancer incidence in rodents, whereas suppression of CAR can lead to steatosis and insulin insensitivity. Here, analytical methods were developed to screen for chemical treatments in a gene expression comp...

  19. An angiotensin II type 1 receptor activation switch patch revealed through evolutionary trace analysis

    DEFF Research Database (Denmark)

    Bonde, Marie Mi; Yao, Rong; Ma, Jian-Nong;

    2010-01-01

    in the cytoplasmic parts of TM2, TM3, and TM6 to form an activation switch that is common to all family A 7TM receptors. We tested this hypothesis in the rat Angiotensin II (Ang II) type 1a (AT1a) receptor. The receptor has important roles in the cardiovascular system, but has also frequently been applied as a model...... for 7TM receptor activation and signaling. Six mutations: F66A, L67R, L70R, L119R, D125A, and I245F were targeted to the putative switch and assayed for changes in activation state by their ligand binding, signaling, and trafficking properties. All but one receptor mutant (that was not expressed well...

  20. Activation of peroxisome proliferator-activated receptor alpha in rat spinal cord after peripheral noxious stimulation.

    Science.gov (United States)

    Benani, A; Heurtaux, T; Netter, P; Minn, A

    2004-10-07

    Following recurrent noxious stimulation, both functional modification and structural reorganization such as activation of the arachidonate cascade or axon sprouting occur in the central nervous system (CNS). It has been recently proposed that these alterations observed during chronic pain state were supported by an intensification of the lipid metabolism. In this regard, it has been shown that mRNA coding for several fatty acid metabolizing enzymes are up-regulated in the rat lumbar spinal cord in response to persistent nociception induced by a peripheral inflammation. As peroxisome proliferators-activated receptor (PPAR) could mediate such effects, we therefore investigated the activation of this transcription factor in the rat spinal cord following subcutaneous injection of complete Freund's adjuvant (CFA) into a hind paw. In this study, we compared the DNA-binding activity of nuclear proteins extracted from healthy and inflamed rats toward a PPAR response element. Using electrophoretic mobility-shift assay (EMSA), we found that only the PPARalpha isoform was activated in the rat spinal cord after CFA injection. This activation occurred rapidly, as early as 30 min post-CFA injection, and was persistent up to 10 h, reaching a maximum at 6h after CFA injection. In view of the consequences of PPARalpha activation in other tissues, these results suggest that fatty acid utilization is enhanced in the CNS during chronic pain state. Although the physiopathological relevance of PPARalpha activation during hyperalgesia needs further investigation, we provided here a new player in the molecular modeling of pain pathways.

  1. A2A adenosine receptor antagonism enhances synaptic and motor effects of cocaine via CB1 cannabinoid receptor activation.

    Directory of Open Access Journals (Sweden)

    Alessandro Tozzi

    Full Text Available BACKGROUND: Cocaine increases the level of endogenous dopamine (DA in the striatum by blocking the DA transporter. Endogenous DA modulates glutamatergic inputs to striatal neurons and this modulation influences motor activity. Since D2 DA and A2A-adenosine receptors (A2A-Rs have antagonistic effects on striatal neurons, drugs targeting adenosine receptors such as caffeine-like compounds, could enhance psychomotor stimulant effects of cocaine. In this study, we analyzed the electrophysiological effects of cocaine and A2A-Rs antagonists in striatal slices and the motor effects produced by this pharmacological modulation in rodents. PRINCIPAL FINDINGS: Concomitant administration of cocaine and A2A-Rs antagonists reduced glutamatergic synaptic transmission in striatal spiny neurons while these drugs failed to produce this effect when given in isolation. This inhibitory effect was dependent on the activation of D2-like receptors and the release of endocannabinoids since it was prevented by L-sulpiride and reduced by a CB1 receptor antagonist. Combined application of cocaine and A2A-R antagonists also reduced the firing frequency of striatal cholinergic interneurons suggesting that changes in cholinergic tone might contribute to this synaptic modulation. Finally, A2A-Rs antagonists, in the presence of a sub-threshold dose of cocaine, enhanced locomotion and, in line with the electrophysiological experiments, this enhanced activity required activation of D2-like and CB1 receptors. CONCLUSIONS: The present study provides a possible synaptic mechanism explaining how caffeine-like compounds could enhance psychomotor stimulant effects of cocaine.

  2. Activation of histamine H3 receptors in human nasal mucosa inhibits sympathetic vasoconstriction.

    Science.gov (United States)

    Varty, LoriAnn M; Gustafson, Eric; Laverty, Maureen; Hey, John A

    2004-01-19

    The peripheral histamine H3 receptor is a presynaptic heterologous receptor located on postganglionic sympathetic nerve fibers innervating sympathetic effector systems such as blood vessels and the heart. An extensive body of evidence shows that activation of the histamine H3 receptor attenuates sympathetic tone by presynaptic inhibition of noradrenaline release. It is proposed that this sympathoinhibitory action, in vivo, leads to reduced vasoconstriction, thereby eliciting a vasodilatory effect. In humans, the peripheral histamine H3 receptor has also been shown to exert a sympathoinhibitory function on specific peripheral autonomic effector systems. For example, human saphenous vein and heart possess functional presynaptic histamine H3 receptors on the sympathetic nerve terminals that upon activation decrease the sympathetic tone to these respective organs. The present studies were conducted to define the role of histamine H3 receptors on neurogenic sympathetic vasoconstrictor responses in human nasal turbinate mucosa. Contractility studies were conducted to evaluate the effect of histamine H3 receptor activation on sympathetic vasoconstriction in surgically isolated human nasal turbinate mucosa. We found that the histamine H3 receptor agonist, (R)-alpha-methylhistamine (30 and 300 nM), inhibited electrical field stimulation-induced (neurogenic) sympathetic vasoconstriction in a concentration-dependent fashion. Pretreatment with the selective histamine H3 receptor antagonist, clobenpropit (100 nM), blocked the sympathoinhibitory effect of (R)-alpha-methylhistamine on the neurogenic sympathetic vasoconstriction. In addition, analysis of Taqman mRNA expression studies showed a specific, high level of distribution of the histamine H3 receptor localized in the human nasal mucosa. Taken together, these studies indicate that histamine H3 receptors modulate vascular contractile responses in human nasal mucosa most likely by inhibiting noradrenaline release from

  3. Enhancement of CA3 hippocampal network activity by activation of group II metabotropic glutamate receptors.

    Science.gov (United States)

    Ster, Jeanne; Mateos, José María; Grewe, Benjamin Friedrich; Coiret, Guyllaume; Corti, Corrado; Corsi, Mauro; Helmchen, Fritjof; Gerber, Urs

    2011-06-14

    Impaired function or expression of group II metabotropic glutamate receptors (mGluRIIs) is observed in brain disorders such as schizophrenia. This class of receptor is thought to modulate activity of neuronal circuits primarily by inhibiting neurotransmitter release. Here, we characterize a postsynaptic excitatory response mediated by somato-dendritic mGluRIIs in hippocampal CA3 pyramidal cells and in stratum oriens interneurons. The specific mGluRII agonists DCG-IV or LCCG-1 induced an inward current blocked by the mGluRII antagonist LY341495. Experiments with transgenic mice revealed a significant reduction of the inward current in mGluR3(-/-) but not in mGluR2(-/-) mice. The excitatory response was associated with periods of synchronized activity at theta frequency. Furthermore, cholinergically induced network oscillations exhibited decreased frequency when mGluRIIs were blocked. Thus, our data indicate that hippocampal responses are modulated not only by presynaptic mGluRIIs that reduce glutamate release but also by postsynaptic mGluRIIs that depolarize neurons and enhance CA3 network activity.

  4. Affinities and intrinsic activities of dopamine receptor agonists for the hD(21) and hD(4.4) receptors

    NARCIS (Netherlands)

    Lahti, RA; Mutin, A; Cochrane, EV; Tepper, PG; Dijkstra, D; Wikstrom, H; Tamminga, CA

    1996-01-01

    The affinity and intrinsic activity of dopamine receptor agonists were determined at the human dopamine hD(21) and hD(4.4) receptors. (-)-3-Hydroxy-N-n-propylpiperidine ((-)3-PPP) had an intrinsic activity of 46% and 83%, whereas (+)-N-propylnorapomorphine ((+)-NPA) had intrinsic activities of 61%

  5. Different efficacy of adenosine and NECA derivatives at the human A3 adenosine receptor: insight into the receptor activation switch.

    Science.gov (United States)

    Dal Ben, Diego; Buccioni, Michela; Lambertucci, Catia; Kachler, Sonja; Falgner, Nico; Marucci, Gabriella; Thomas, Ajiroghene; Cristalli, Gloria; Volpini, Rosaria; Klotz, Karl-Norbert

    2014-01-15

    A3 Adenosine receptors are promising drug targets for a number of diseases and intense efforts are dedicated to develop selective agonists and antagonists of these receptors. A series of adenosine derivatives with 2-(ar)-alkynyl chains, with high affinity and different degrees of selectivity for human A3 adenosine receptors was tested for the ability to inhibit forskolin-stimulated adenylyl cyclase. All these derivatives are partial agonists at A3 adenosine receptors; their efficacy is not significantly modified by the introduction of small alkyl substituents in the N(6)-position. In contrast, the adenosine-5'-N-ethyluronamide (NECA) analogs of 2-(ar)-alkynyladenosine derivatives are full A3 agonists. Molecular modeling analyses were performed considering both the conformational behavior of the ligands and the impact of 2- and 5'-substituents on ligand-target interaction. The results suggest an explanation for the different agonistic behavior of adenosine and NECA derivatives, respectively. A sub-pocket of the binding site was analyzed as a crucial interaction domain for receptor activation.

  6. Kaempferol inhibits cancer cell growth by antagonizing estrogen-related receptor α and γ activities.

    Science.gov (United States)

    Wang, Haibin; Gao, Minghui; Wang, Junjian

    2013-11-01

    Kaempferol is a dietary flavonoid that can function as a selective estrogen receptor modulator (SERM). Estrogen-related receptors alpha and gamma (ERRα and ERRγ) are orphan nuclear receptors that play important roles in mitochondrial biogenesis and cancer development. We have shown that kaempferol can functionally antagonize the activities of ERRs based on both response element reporter systems and target gene analysis. Kaempferol modulation of mitochondrial function and suppression cancer cell growth has been confirmed. These findings suggest that kaempferol may exert their anti-cancer activities through antagonizing ERRs activities.

  7. A Molecular Mechanism for Sequential Activation of a G Protein-Coupled Receptor

    DEFF Research Database (Denmark)

    Grundmann, Manuel; Tikhonova, Irina G; Hudson, Brian D

    2016-01-01

    Ligands targeting G protein-coupled receptors (GPCRs) are currently classified as either orthosteric, allosteric, or dualsteric/bitopic. Here, we introduce a new pharmacological concept for GPCR functional modulation: sequential receptor activation. A hallmark feature of this is a stepwise ligand...

  8. Allosteric regulation of G protein-coupled receptor activity by phospholipids.

    Science.gov (United States)

    Dawaliby, Rosie; Trubbia, Cataldo; Delporte, Cédric; Masureel, Matthieu; Van Antwerpen, Pierre; Kobilka, Brian K; Govaerts, Cédric

    2016-01-01

    Lipids are emerging as key regulators of membrane protein structure and activity. These effects can be attributed either to the modification of bilayer properties (thickness, curvature and surface tension) or to the binding of specific lipids to the protein surface. For G protein-coupled receptors (GPCRs), the effects of phospholipids on receptor structure and activity remain poorly understood. Here we reconstituted purified β2-adrenergic receptor (β2R) in high-density lipoparticles to systematically characterize the effect of biologically relevant phospholipids on receptor activity. We observed that the lipid headgroup type affected ligand binding (agonist and antagonist) and receptor activation. Specifically, phosphatidylgycerol markedly favored agonist binding and facilitated receptor activation, whereas phosphatidylethanolamine favored antagonist binding and stabilized the inactive state of the receptor. We then showed that these effects could be recapitulated with detergent-solubilized lipids, demonstrating that the functional modulation occurred in the absence of a bilayer. Our data suggest that phospholipids act as direct allosteric modulators of GPCR activity.

  9. Discoidin domain receptor 1 is activated independently of beta(1) integrin

    DEFF Research Database (Denmark)

    Vogel, W; Brakebusch, C; Fässler, R

    2000-01-01

    Various types of collagen have been identified as potential ligands for the two mammalian discoidin domain receptor (DDR) tyrosine kinases, DDR1 and DDR2. It is presently unclear whether collagen-induced DDR receptor activation, which occurs with very slow kinetics, involves additional proteins...... with kinase activity or membrane-anchored proteins serving as coreceptors. In particular, the role of the collagen-binding integrins alpha(1)beta(1) or alpha(2)beta(1) in the DDR activation process is undefined. Here, we provide three lines of evidence suggesting that DDR1 signaling is distinct from integrin...... activation. First we demonstrate that the enzymatic activity of DDR1 is essential for receptor tyrosine phosphorylation. Collagen-induced DDR receptor autophosphorylation can be blocked either by a dominant negative mutant or by a preparation of recombinant extracellular domain. Second, we show DDR1 signals...

  10. Allosteric activation of membrane-bound glutamate receptors using coordination chemistry within living cells

    Science.gov (United States)

    Kiyonaka, Shigeki; Kubota, Ryou; Michibata, Yukiko; Sakakura, Masayoshi; Takahashi, Hideo; Numata, Tomohiro; Inoue, Ryuji; Yuzaki, Michisuke; Hamachi, Itaru

    2016-10-01

    The controlled activation of proteins in living cells is an important goal in protein-design research, but to introduce an artificial activation switch into membrane proteins through rational design is a significant challenge because of the structural and functional complexity of such proteins. Here we report the allosteric activation of two types of membrane-bound neurotransmitter receptors, the ion-channel type and the G-protein-coupled glutamate receptors, using coordination chemistry in living cells. The high programmability of coordination chemistry enabled two His mutations, which act as an artificial allosteric site, to be semirationally incorporated in the vicinity of the ligand-binding pockets. Binding of Pd(2,2‧-bipyridine) at the allosteric site enabled the active conformations of the glutamate receptors to be stabilized. Using this approach, we were able to activate selectively a mutant glutamate receptor in live neurons, which initiated a subsequent signal-transduction pathway.

  11. Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR.

    Science.gov (United States)

    Calkin, Anna C; Tontonoz, Peter

    2012-03-14

    Nuclear receptors are integrators of hormonal and nutritional signals, mediating changes to metabolic pathways within the body. Given that modulation of lipid and glucose metabolism has been linked to diseases including type 2 diabetes, obesity and atherosclerosis, a greater understanding of pathways that regulate metabolism in physiology and disease is crucial. The liver X receptors (LXRs) and the farnesoid X receptors (FXRs) are activated by oxysterols and bile acids, respectively. Mounting evidence indicates that these nuclear receptors have essential roles, not only in the regulation of cholesterol and bile acid metabolism but also in the integration of sterol, fatty acid and glucose metabolism.

  12. Role of Triggering Receptor Expressed on Myeloid Cells in the Activation of Innate Immunity

    Directory of Open Access Journals (Sweden)

    V. G. Matveyeva

    2011-01-01

    Full Text Available The innate immune system plays a key role in triggering a systemic inflammatory response (SIR. The triggering receptor expressed on myeloid cells (TREM-1, which is located on neutrophils and monocytes, is involved in SIR, by regulating the effector mechanisms of innate immunity. Hyperproduction of proinflammatory cytokines is a pathogenetic component of the hyperergic phase of acute systemic inflammation. The simultaneous activation of Toll-like receptors and TREM-1 increases the production of cytokines manifold. This is compensatory and adaptive, however, resulting in damage to organs and tissues during excessive production of cytokines. Key words: triggering receptor expressed on myeloid cells, Toll-like receptors, cytokines, inflammation.

  13. DMPD: Proximal effects of Toll-like receptor activation in dendritic cells. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17142025 Proximal effects of Toll-like receptor activation in dendritic cells. Watt...) (.svg) (.html) (.csml) Show Proximal effects of Toll-like receptor activation in dendritic cells. PubmedID... 17142025 Title Proximal effects of Toll-like receptor activation in dendritic ce

  14. Maturational alterations in constitutive activity of medial prefrontal cortex kappa-opioid receptors in Wistar rats.

    Science.gov (United States)

    Sirohi, Sunil; Walker, Brendan M

    2015-11-01

    Opioid receptors can display spontaneous agonist-independent G-protein signaling (basal signaling/constitutive activity). While constitutive κ-opioid receptor (KOR) activity has been documented in vitro, it remains unknown if KORs are constitutively active in native systems. Using [(35) S] guanosine 5'-O-[gamma-thio] triphosphate coupling assay that measures receptor functional state, we identified the presence of medial prefrontal cortex KOR constitutive activity in young rats that declined with age. Furthermore, basal signaling showed an age-related decline and was insensitive to neutral opioid antagonist challenge. Collectively, the present data are first to demonstrate age-dependent alterations in the medial prefrontal cortex KOR constitutive activity in rats and changes in the constitutive activity of KORs can differentially impact KOR ligand efficacy. These data provide novel insights into the functional properties of the KOR system and warrant further consideration of KOR constitutive activity in normal and pathophysiological behavior. Opioid receptors exhibit agonist-independent constitutive activity; however, kappa-opioid receptor (KOR) constitutive activity has not been demonstrated in native systems. Our results confirm KOR constitutive activity in the medial prefrontal cortex (mPFC) that declines with age. With the ability to presynaptically inhibit multiple neurotransmitter systems in the mPFC, maturational or patho-logical alterations in constitutive activity could disrupt corticofugal glutamatergic pyramidal projection neurons mediating executive function. Regulation of KOR constitutive activity could serve as a therapeutic target to treat compromised executive function.

  15. Phospholipase A2-modified low-density lipoprotein activates macrophage peroxisome proliferator-activated receptors.

    Science.gov (United States)

    Namgaladze, Dmitry; Morbitzer, Daniel; von Knethen, Andreas; Brüne, Bernhard

    2010-02-01

    Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors modulating metabolic and inflammatory responses of phagocytes to stimuli such as fatty acids and their metabolites. We studied the role of PPARs in macrophages exposed to low-density lipoprotein (LDL) modified by secretory phospholipase A(2) (PLA). By analyzing PPAR ligand-binding domain luciferase reporter activation, we observed that PLA-LDL transactivates PPARalpha and PPARdelta, but not PPARgamma. We confirmed that PLA-LDL induced PPAR response element reporter activation by endogenous PPARalpha and PPARdelta in human THP-1 macrophages. By using THP-1 cells with a stable knockdown of PPARalpha and PPARdelta, we showed that PLA-LDL-activated PPARdelta altered macrophage gene expression related to lipid metabolism and lipid droplet formation. Although PPARalpha/delta silencing did not affect cholesterol and triglyceride accumulation in PLA-LDL-treated macrophages, PPARdelta activation by PLA-LDL attenuated macrophage inflammatory gene expression induced by interferon gamma and lipopolysaccharide. PPARdelta activation by PLA-LDL does not influence lipid accumulation in PLA-LDL-treated macrophages. However, it attenuates macrophage inflammatory responses, thus contributing to an anti-inflammatory cell phenotype.

  16. Activation, internalization, and recycling of the serotonin 2A receptor by dopamine

    Science.gov (United States)

    Bhattacharyya, Samarjit; Raote, Ishier; Bhattacharya, Aditi; Miledi, Ricardo; Panicker, Mitradas M.

    2006-01-01

    Serotonergic and dopaminergic systems, and their functional interactions, have been implicated in the pathophysiology of various CNS disorders. Here, we use recombinant serotonin (5-HT) 2A (5-HT2A) receptors to further investigate direct interactions between dopamine and 5-HT receptors. Previous studies in Xenopus oocytes showed that dopamine, although not the cognate ligand for the 5-HT2A receptor, acts as a partial-efficacy agonist. At micromolar concentrations, dopamine also acts as a partial-efficacy agonist on 5-HT2A receptors in HEK293 cells. Like 5-HT, dopamine also induces receptor-internalization in these cells, although at significantly higher concentrations than 5-HT. Interestingly, if the receptors are first sensitized or “primed” by subthreshold concentrations of 5-HT, then dopamine-induced internalization occurs at concentrations ≈10-fold lower than when dopamine is used alone. Furthermore, unlike 5-HT-mediated internalization, dopamine-mediated receptor internalization, alone, or after sensitization by 5-HT, does not depend on PKC. Dopamine-internalized receptors recycle to the surface at rates similar to those of 5-HT-internalized receptors. Our results suggest a previously uncharacterized role for dopamine in the direct activation and internalization of 5-HT2A receptors that may have clinical relevance to the function of serotonergic systems in anxiety, depression, and schizophrenia and also to the treatment of these disorders. PMID:17005723

  17. Activated receptors for peroxisomic proliferators. Its role in the atherosclerosis, obesity and high blood pressure.

    Directory of Open Access Journals (Sweden)

    Mikhail Benet Rodríguez

    2004-08-01

    Full Text Available The receptors activated by peroxisome proliferators are a family of factors of transcription that belong to the superfamily of the steroid receptors and include tree subtypes which are PPARá, PPAR©¬ and PPAR ã. These receptors join to direct hexameric repetitions in the form of heterodimers with the retinoid receptor. PPAR receptors regulate the expressions of a great variety of genes that codify the proteins that are implied in the lipid metabolism, the energetic homeostasis, the cellular differentiation and the formation of tumours. This review describes the features, regulation and target genes of the PPAR receptor and the physiopathological and pharmacological implications of the regulation of the lipid and glucose metabolism, the energetic homeostasis ,hypertension and endothelial dysfunction.

  18. GABA-B receptor activation and conflict behavior

    Energy Technology Data Exchange (ETDEWEB)

    Ketelaars, C.E.J.; Bollen, E.L.; Rigter, H.; Bruinvels, J.

    1988-01-01

    Baclofen and oxazepam enhance extinction of conflict behavior in the Geller-Seifter test while baclofen and diazepam release punished behavior in Vogel's conflict test. In order to investigate the possibility that the effect of the selective GABA-B receptor agonist baclofen is mediated indirectly via the GABA-A/benzodiazepine receptor complex, the effect of pretreatment of rats with baclofen on (/sup 3/H)-diazepam binding to washed and unwashed cortical and cerebellar membranes of rats has been studied. Baclofen pretreatment increase Bmax in washed cerebellar membranes when bicuculline was present in the incubation mixture. No effect was seen in cortical membranes. The present results render it unlikely that the effect of baclofen on extinction of conflict behavior and punished drinking is mediated via the GABA-A/benzodiazepine receptor complex. 50 references, 1 figure, 4 tables.

  19. Research Resource: Androgen Receptor Activity Is Regulated Through the Mobilization of Cell Surface Receptor Networks.

    Science.gov (United States)

    Hsiao, Jordy J; Ng, Brandon H; Smits, Melinda M; Martinez, Harryl D; Jasavala, Rohini J; Hinkson, Izumi V; Fermin, Damian; Eng, Jimmy K; Nesvizhskii, Alexey I; Wright, Michael E

    2015-08-01

    The aberrant expression of androgen receptor (AR)-dependent transcriptional programs is a defining pathology of the development and progression of prostate cancers. Transcriptional cofactors that bind AR are critical determinants of prostate tumorigenesis. To gain a deeper understanding of the proteins linked to AR-dependent gene transcription, we performed a DNA-affinity chromatography-based proteomic screen designed to identify proteins involved in AR-mediated gene transcription in prostate tumor cells. Functional experiments validated the coregulator roles of known AR-binding proteins in AR-mediated transcription in prostate tumor cells. More importantly, novel coregulatory functions were detected in components of well-established cell surface receptor-dependent signal transduction pathways. Further experimentation demonstrated that components of the TNF, TGF-β, IL receptor, and epidermal growth factor signaling pathways modulated AR-dependent gene transcription and androgen-dependent proliferation in prostate tumor cells. Collectively, our proteomic dataset demonstrates that the cell surface receptor- and AR-dependent pathways are highly integrated, and provides a molecular framework for understanding how disparate signal-transduction pathways can influence AR-dependent transcriptional programs linked to the development and progression of human prostate cancers.

  20. The angiotensin II type 1 receptor antagonist Losartan binds and activates bradykinin B2 receptor signaling

    DEFF Research Database (Denmark)

    Bonde, Marie Mi; Olsen, Kristine Boisen; Erikstrup, Niels;

    2011-01-01

    The angiotensin II type 1 receptor (AT1R) blocker (ARB) Losartan has cardioprotective effects during ischemia-reperfusion injury and inhibits reperfusion arrhythmias -effects that go beyond the benefits of lowering blood pressure. The renin-angiotensin and kallikrein-kinin systems are intricately...

  1. In vitro translation of androgen receptor cRNA results in an activated androgen receptor protein

    NARCIS (Netherlands)

    G.G.J.M. Kuiper (George); P.E. de Ruiter (Petra); J. Trapman (Jan); G.W. Jenster (Guido); A.O. Brinkmann (Albert)

    1993-01-01

    textabstractTranslation of androgen receptor (AR) cRNA in a reticulocyte lysate and subsequent analysis of the translation products by SDS/PAGE showed a protein with an apparent molecular mass of 108 kDa. Scatchard-plot analysis revealed a single binding component with

  2. G protein activation by G protein coupled receptors: ternary complex formation or catalyzed reaction?

    Science.gov (United States)

    Roberts, David J; Waelbroeck, Magali

    2004-09-01

    G protein coupled receptors catalyze the GDP/GTP exchange on G proteins, thereby activating them. The ternary complex model, designed to describe agonist binding in the absence of GTP, is often extended to G protein activation. This is logically unsatisfactory as the ternary complex does not accumulate when G proteins are activated by GTP. Extended models taking into account nucleotide binding exist, but fail to explain catalytic G protein activation. This review puts forward an enzymatic model of G protein activation and compares its predictions with the ternary complex model and with observed receptor phenomenon. This alternative model does not merely provide a new set of formulae but leads to a new philosophical outlook and more readily accommodates experimental observations. The ternary complex model implies that, HRG being responsible for efficient G protein activation, it should be as stable as possible. In contrast, the enzyme model suggests that although a limited stabilization of HRG facilitates GDP release, HRG should not be "too stable" as this might trap the G protein in an inactive state and actually hinder G protein activation. The two models also differ completely in the definition of the receptor "active state": the ternary complex model implies that the active state corresponds to a single active receptor conformation (HRG); in contrast, the catalytic model predicts that the active receptor state is mobile, switching smoothly through various conformations with high and low affinities for agonists (HR, HRG, HRGGDP, HRGGTP, etc.).

  3. Increased plasma soluble uPAR level is a risk marker of respiratory cancer in initially cancer-free individuals

    DEFF Research Database (Denmark)

    Langkilde, Anne A; Ladelund, Steen; Andersen, Ove

    2011-01-01

    codes and suPAR levels were measured using a commercially available ELISA. The association of suPAR levels with incident cancer during follow-up was analyzed using Cox regression, adjusted for established risk factors and the inflammatory markers C-reactive protein (CRP) and leukocyte numbers......BACKGROUND: Soluble urokinase plasminogen activator receptor (suPAR) is a stable plasma biomarker associated with inflammation and disease. This study tested the association between suPAR levels and incident respiratory, gastrointestinal or other types of cancer in initially cancer-free individuals...... from a general population-based prospective study.METHODS: Baseline plasma samples, baseline characteristics, and follow-up data were available from 2656 individuals from the population-based Danish MONICA10 study, followed for a median of 12.6 years. Cancer was diagnosed according to ICD-8 and ICD-10...

  4. Cell death-independent activities of the death receptors CD95, TRAILR1, and TRAILR2.

    Science.gov (United States)

    Siegmund, Daniela; Lang, Isabell; Wajant, Harald

    2017-04-01

    Since their identification more than 20 years ago, the death receptors CD95, TRAILR1, and TRAILR2 have been intensively studied with respect to their cell death-inducing activities. These receptors, however, can also trigger a variety of cell death-independent cellular responses reaching from the activation of proinflammatory gene transcription programs over the stimulation of proliferation and differentiation to induction of cell migration. The cell death-inducing signaling mechanisms of CD95 and the TRAIL death receptors are well understood. In contrast, despite the increasing recognition of the biological and pathophysiological relevance of the cell death-independent activities of CD95, TRAILR1, and TRAILR2, the corresponding signaling mechanisms are less understood and give no fully coherent picture. This review is focused on the cell death-independent activities of CD95 and the TRAIL death receptors and addresses mainly three questions: (a) how are these receptors linked to noncell death pathways at the molecular level, (b) which factors determine the balance of cell death and cell death-independent activities of CD95 and the TRAIL death receptors at the cellular level, and (c) what are the consequences of the cell death-independent functions of these receptors for their role in cancer and inflammatory diseases. © 2016 Federation of European Biochemical Societies.

  5. Effects of histamine H1 receptor signaling on glucocorticoid receptor activity. Role of canonical and non-canonical pathways

    Science.gov (United States)

    Zappia, Carlos Daniel; Granja-Galeano, Gina; Fernández, Natalia; Shayo, Carina; Davio, Carlos; Fitzsimons, Carlos P.; Monczor, Federico

    2015-01-01

    Histamine H1 receptor (H1R) antagonists and glucocorticoid receptor (GR) agonists are used to treat inflammatory conditions such as allergic rhinitis, atopic dermatitis and asthma. Consistent with the high morbidity levels of such inflammatory conditions, these receptors are the targets of a vast number of approved drugs, and in many situations their ligands are co-administered. However, this drug association has no clear rationale and has arisen from clinical practice. We hypothesized that H1R signaling could affect GR-mediated activity, impacting on its transcriptional outcome. Indeed, our results show a dual regulation of GR activity by the H1R: a potentiation mediated by G-protein βγ subunits and a parallel inhibitory effect mediated by Gαq-PLC pathway. Activation of the H1R by its full agonists resulted in a composite potentiating effect. Intriguingly, inactivation of the Gαq-PLC pathway by H1R inverse agonists resulted also in a potentiation of GR activity. Moreover, histamine and clinically relevant antihistamines synergized with the GR agonist dexamethasone to induce gene transactivation and transrepression in a gene-specific manner. Our work provides a delineation of molecular mechanisms underlying the widespread clinical association of antihistamines and GR agonists, which may contribute to future dosage optimization and reduction of well-described side effects associated with glucocorticoid administration. PMID:26635083

  6. Effects of histamine H1 receptor signaling on glucocorticoid receptor activity. Role of canonical and non-canonical pathways.

    Science.gov (United States)

    Zappia, Carlos Daniel; Granja-Galeano, Gina; Fernández, Natalia; Shayo, Carina; Davio, Carlos; Fitzsimons, Carlos P; Monczor, Federico

    2015-12-04

    Histamine H1 receptor (H1R) antagonists and glucocorticoid receptor (GR) agonists are used to treat inflammatory conditions such as allergic rhinitis, atopic dermatitis and asthma. Consistent with the high morbidity levels of such inflammatory conditions, these receptors are the targets of a vast number of approved drugs, and in many situations their ligands are co-administered. However, this drug association has no clear rationale and has arisen from clinical practice. We hypothesized that H1R signaling could affect GR-mediated activity, impacting on its transcriptional outcome. Indeed, our results show a dual regulation of GR activity by the H1R: a potentiation mediated by G-protein βγ subunits and a parallel inhibitory effect mediated by Gαq-PLC pathway. Activation of the H1R by its full agonists resulted in a composite potentiating effect. Intriguingly, inactivation of the Gαq-PLC pathway by H1R inverse agonists resulted also in a potentiation of GR activity. Moreover, histamine and clinically relevant antihistamines synergized with the GR agonist dexamethasone to induce gene transactivation and transrepression in a gene-specific manner. Our work provides a delineation of molecular mechanisms underlying the widespread clinical association of antihistamines and GR agonists, which may contribute to future dosage optimization and reduction of well-described side effects associated with glucocorticoid administration.

  7. Peripheral Sensitization Increases Opioid Receptor Expression and Activation by Crotalphine in Rats

    Science.gov (United States)

    Zambelli, Vanessa Olzon; Fernandes, Ana Carolina de Oliveira; Gutierrez, Vanessa Pacciari; Ferreira, Julio Cesar Batista; Parada, Carlos Amilcar; Mochly-Rosen, Daria; Cury, Yara

    2014-01-01

    Inflammation enhances the peripheral analgesic efficacy of opioid drugs, but the mechanisms involved in this phenomenon have not been fully elucidated. Crotalphine (CRP), a peptide that was first isolated from South American rattlesnake C.d. terrificus venom, induces a potent and long-lasting anti-nociceptive effect that is mediated by the activation of peripheral opioid receptors. Because the high efficacy of CRP is only observed in the presence of inflammation, we aimed to elucidate the mechanisms involved in the CRP anti-nociceptive effect induced by inflammation. Using real-time RT-PCR, western blot analysis and ELISA assays, we demonstrate that the intraplantar injection of prostaglandin E2 (PGE2) increases the mRNA and protein levels of the µ- and κ-opioid receptors in the dorsal root ganglia (DRG) and paw tissue of rats within 3 h of the injection. Using conformation state-sensitive antibodies that recognize activated opioid receptors, we show that PGE2, alone does not increase the activation of these opioid receptors but that in the presence of PGE2, the activation of specific opioid receptors by CRP and selective µ- and κ-opioid receptor agonists (positive controls) increases. Furthermore, PGE2 down-regulated the expression and activation of the δ-opioid receptor. CRP increased the level of activated mitogen-activated protein kinases in cultured DRG neurons, and this increase was dependent on the activation of protein kinase Cζ. This CRP effect was much more prominent when the cells were pretreated with PGE2. These results indicate that the expression and activation of peripheral opioid receptors by opioid-like drugs can be up- or down-regulated in the presence of an acute injury and that acute tissue injury enhances the efficacy of peripheral opioids. PMID:24594607

  8. Structure-activity relationships for the antifungal activity of selective estrogen receptor antagonists related to tamoxifen.

    Science.gov (United States)

    Butts, Arielle; Martin, Jennifer A; DiDone, Louis; Bradley, Erin K; Mutz, Mitchell; Krysan, Damian J

    2015-01-01

    Cryptococcosis is one of the most important invasive fungal infections and is a significant contributor to the mortality associated with HIV/AIDS. As part of our program to repurpose molecules related to the selective estrogen receptor modulator (SERM) tamoxifen as anti-cryptococcal agents, we have explored the structure-activity relationships of a set of structurally diverse SERMs and tamoxifen derivatives. Our data provide the first insights into the structural requirements for the antifungal activity of this scaffold. Three key molecular characteristics affecting anti-cryptococcal activity emerged from our studies: 1) the presence of an alkylamino group tethered to one of the aromatic rings of the triphenylethylene core; 2) an appropriately sized aliphatic substituent at the 2 position of the ethylene moiety; and 3) electronegative substituents on the aromatic rings modestly improved activity. Using a cell-based assay of calmodulin antagonism, we found that the anti-cryptococcal activity of the scaffold correlates with calmodulin inhibition. Finally, we developed a homology model of C. neoformans calmodulin and used it to rationalize the structural basis for the activity of these molecules. Taken together, these data and models provide a basis for the further optimization of this promising anti-cryptococcal scaffold.

  9. Structure-activity relationships for the antifungal activity of selective estrogen receptor antagonists related to tamoxifen.

    Directory of Open Access Journals (Sweden)

    Arielle Butts

    Full Text Available Cryptococcosis is one of the most important invasive fungal infections and is a significant contributor to the mortality associated with HIV/AIDS. As part of our program to repurpose molecules related to the selective estrogen receptor modulator (SERM tamoxifen as anti-cryptococcal agents, we have explored the structure-activity relationships of a set of structurally diverse SERMs and tamoxifen derivatives. Our data provide the first insights into the structural requirements for the antifungal activity of this scaffold. Three key molecular characteristics affecting anti-cryptococcal activity emerged from our studies: 1 the presence of an alkylamino group tethered to one of the aromatic rings of the triphenylethylene core; 2 an appropriately sized aliphatic substituent at the 2 position of the ethylene moiety; and 3 electronegative substituents on the aromatic rings modestly improved activity. Using a cell-based assay of calmodulin antagonism, we found that the anti-cryptococcal activity of the scaffold correlates with calmodulin inhibition. Finally, we developed a homology model of C. neoformans calmodulin and used it to rationalize the structural basis for the activity of these molecules. Taken together, these data and models provide a basis for the further optimization of this promising anti-cryptococcal scaffold.

  10. Activity of L-alpha-amino acids at the promiscuous goldfish odorant receptor 5.24

    DEFF Research Database (Denmark)

    Christiansen, Bolette; Wellendorph, Petrine; Bräuner-Osborne, Hans

    2006-01-01

    The goldfish odorant receptor 5.24 is a member of family C of G protein-coupled receptors and is closely related to the human receptor GPRC6A. Receptor 5.24 has previously been shown to have binding affinity for L-alpha-amino acids, especially the basic amino acids arginine and lysine. Here we...... a preference for basic amino acids....... report the agonist activities of the 20 proteinogenic L-alpha-amino acids, and L-ornithine and L-citrulline, measured in an intracellular calcium release assay in mammalian tsA cells. The results show that receptor 5.24 is broadly activated by 19 of the tested L-alpha-amino acids and displays...

  11. An Angiotensin II type 1 receptor activation switch patch revealed through Evolutionary Trace analysis

    DEFF Research Database (Denmark)

    Bonde, Marie Mi; Yao, Rong; Ma, Jian-Nong

    2010-01-01

    in the cytoplasmic parts of TM2, TM3, and TM6 to form an activation switch that is common to all family A 7TM receptors. We tested this hypothesis in the rat Angiotensin II (Ang II) type 1a (AT1a) receptor. The receptor has important roles in the cardiovascular system, but has also frequently been applied as a model......) displayed phenotypes associated with changed activation state, such as increased agonist affinity or basal activity, promiscuous activation, or constitutive internalization highlighting the importance of testing different signaling pathways. We conclude that this evolutionary important patch mediates...... to be completely resolved. Evolutionary Trace (ET) analysis is a computational method, which identifies clusters of functionally important residues by integrating information on evolutionary important residue variations with receptor structure. Combined with known mutational data, ET predicted a patch of residues...

  12. Chronic regulation of colonic epithelial secretory function by activation of G protein-coupled receptors.

    LENUS (Irish Health Repository)

    Toumi, F

    2011-02-01

    Enteric neurotransmitters that act at G protein-coupled receptors (GPCRs) are well known to acutely promote epithelial Cl(-) and fluid secretion. Here we examined if acute GPCR activation might have more long-term consequences for epithelial secretory function.

  13. Effects related to gene-gene interactions of peroxisome proliferator-activated receptor on essential hypertension

    Institute of Scientific and Technical Information of China (English)

    俞浩

    2013-01-01

    Objective To explore the impact of the gene-gene interaction among the single nucleotide polymorphisms(SNPs) of peroxisome proliferator-activated receptorα/δ/γ on essential hypertension(EH).Methods

  14. Identification of (beta-carboxyethyl)-rhodanine derivatives exhibiting peroxisome proliferator-activated receptor gamma activity.

    Science.gov (United States)

    Choi, Jiwon; Ko, Yoonae; Lee, Hui Sun; Park, Yun Sun; Yang, Young; Yoon, Sukjoon

    2010-01-01

    We applied an improved virtual screening scheme combining ligand-centric and receptor-centric methods for the identification of a new series of PPARgamma agonists known as (beta-carboxyethyl)-rhodanine derivatives which include a thiazolidin-based core structure, 2-thioxo-thiazolidine-4-one. An in vitro assay confirmed the nanomolar binding affinity in one of the (beta-carboxyethyl)-rhodanine derivatives, SP1818. It showed a PPARgamma agonistic activity similar to that of a known PPARgamma drug, pioglitazone, in a cell-based transactivation assay. Furthermore, the structure-activity relationships of the rhodanine derivatives were investigated through comparative molecular field analysis. We also characterized the inconsistency between the in vitro binding affinity and cell-based transactivation ability by using a set of property-based molecular descriptors. The binding mode analysis provided new insight concerning their agonistic effect on PPARgamma.

  15. Multiple activities of insect repellents on odorant receptors in mosquitoes

    Science.gov (United States)

    Several lines of evidence suggest that insect repellent molecules reduce mosquito-host contacts by interacting with odorants and odorant receptors (ORs) ultimately affecting olfactory-driven behaviors. We describe the molecular effects of ten insect repellents and a pyrethroid insecticide with known...

  16. The phosphoproteome of toll-like receptor-activated macrophages

    DEFF Research Database (Denmark)

    Weintz, Gabriele; Olsen, Jesper Velgaard; Frühauf, Katja;

    2010-01-01

    Recognition of microbial danger signals by toll-like receptors (TLR) causes re-programming of macrophages. To investigate kinase cascades triggered by the TLR4 ligand lipopolysaccharide (LPS) on systems level, we performed a global, quantitative and kinetic analysis of the phosphoproteome...

  17. Environmental polycyclic aromatic hydrocarbons affect androgen receptor activation in vitro

    DEFF Research Database (Denmark)

    Vinggaard, Anne Marie; Hnida, Christina; Larsen, John Christian

    2000-01-01

    Nine structurally different polycyclic aromatic hydrocarbons (PAHs) were tested for their ability to either agonize or antagonize the human androgen receptor (hAR) in a sensitive reporter gene assay based on CHO cells transiently cotransfected with a hAR vector and an MMTV-LUC vector. Benz...

  18. Altered activity profile of a tertiary silanol analog of multi-targeting nuclear receptor modulator T0901317.

    Science.gov (United States)

    Toyama, Hirozumi; Sato, Shoko; Shirakawa, Hitoshi; Komai, Michio; Hashimoto, Yuichi; Fujii, Shinya

    2016-04-01

    We report the design, synthesis, and physicochemical/biological evaluation of novel silanol derivative 6 (sila-T) as a silanol analog of multi-target nuclear receptor modulator T0901317 (5). Compound 6 showed intermediate hydrophobicity between the corresponding alcohol 13 and perfluoroalcohol 5. While 5 exhibited potent activities toward liver X receptor α and β, farnesoid X receptor, pregnane X receptor (PXR) and retinoic acid receptor-related orphan receptor (ROR)γ, silanol 6 exhibited activity only toward PXR and RORs. Incorporation of silanol instead of perfluoroalcohol is a promising option for developing novel target-selective, biologically active compounds.

  19. Telmisartan attenuates peritoneal fibrosis via peroxisome proliferator-activated receptoractivation in rats.

    Science.gov (United States)

    Su, Xuesong; Yu, Rui; Yang, Xu; Zhou, Guangyu; Wang, Yanqiu; Li, Li; Li, Detian

    2015-06-01

    Peritoneal dialysis (PD) is an effective treatment for patients with end-stage renal diseases, but long-term continuous PD causes peritoneal fibrosis (PF). This study aims to evaluate the anti-fibrotic effect of telmisartan on a rat model of PF and to investigate the underlying mechanisms. Five-sixths kidney nephrectomy and PD were used to establish the PF rat model. Glucose (2.5%) was used to establish an in vitro model in rat peritoneal mesothelial cells (PMC). Haematoxylin-eosin staining was used to examine the structural alterations. Masson's trichrome staining was used to observe the tissue fibrosis in peritoneal membrane of rats. Real-time polymerase chain reaction was used to measure messenger RNA expressions of profibrotic factors. Western blotting was used to determine protein expressions of profibrotic factors, peroxisome proliferator-activated receptor-γ, and mitogen-activated protein kinases (MAPK). Results demonstrated that administration of telmisartan dose-dependently attenuated the thickening of the peritoneal membrane and the fibrosis induced by long-term PD fluid exposure in rats. In addition, telmisartan treatment inhibited the upregulation of profibrotic factors induced by PD in the peritoneum of rats and by high-concentration glucose in PMC. Telmisartan was also effective in inhibiting PD and high-concentration, glucose-induced phosphorylation of MAPK in the peritoneum and PMC. Furthermore, peroxisome proliferator-activated receptor-γ (PPARγ) inhibitor GW9662 blocked these protective effects of telmisartan in PMC. The results suggest that telmisartan is effective in attenuating PD-induced PF, and this effect may be associated with the inhibition of profibrotic factor expression and MAPK phosphorylation via PPARγ activation. © 2015 Wiley Publishing Asia Pty Ltd.

  20. Antifibrotic effect by activation of peroxisome proliferator-activated receptor-gamma in corneal fibroblasts.

    Science.gov (United States)

    Pan, Hongwei; Chen, Jiansu; Xu, Jintang; Chen, Miaojiao; Ma, Rong

    2009-11-10

    The transformation of quiescent keratocytes to active phenotypes and the ensuing fibrotic response play important roles in corneal scar formation. This study aims to observe the antifibrotic effect of peroxisome proliferator-activated receptor-gamma (PPARgamma) agonist on corneal fibroblasts cultured in vitro, and to explore the potential application of peroxisome proliferator-activated receptor agonist to the prevention of corneal opacity following wound repair. Rabbit corneal keratocytes were cultured in a medium containing 10% serum to induce their transformation to fibroblasts and myofibroblasts, which are similar to those that repair corneas. After incubation with the PPARgamma agonist pioglitazone at different concentrations, the effect of pioglitazone on the migration, contractility, and viability of corneal fibroblasts was examined. The secretion of matrix metalloproteinase-2 and matrix metalloproteinase-9 was determined by gelatin zymography, and the synthesis of collagen I and fibronectin was investigated by western blotting. Treatment with pioglitazone at concentrations ranging from 1 to 10 mum significantly decreased corneal fibroblast migration, as determined by scrape-wound assay, inhibited corneal fibroblast-induced collagen lattice contraction, and reduced MMP-2 and MMP-9 secretion into the supernatant of cell cultures in a dose-dependent manner. The expression of fibronectin was significantly decreased, while the expression of collagen I was only decreased when treated with 10 mum pioglitazone. Cell viability was not evidently changed compared to the control. This in vitro study demonstrated the anti-fibrotic effect of pioglitazone, suggesting that activation of PPARgamma may be a new approach for the treatment of corneal opacity and scar formation in the corneal wound healing process.

  1. Structural and functional characterization of alternative transmembrane domain conformations in VEGF receptor 2 activation.

    Science.gov (United States)

    Manni, Sandro; Mineev, Konstantin S; Usmanova, Dinara; Lyukmanova, Ekaterina N; Shulepko, Mikhail A; Kirpichnikov, Mikhail P; Winter, Jonas; Matkovic, Milos; Deupi, Xavier; Arseniev, Alexander S; Ballmer-Hofer, Kurt

    2014-08-05

    Transmembrane signaling by receptor tyrosine kinases (RTKs) entails ligand-mediated dimerization and structural rearrangement of the extracellular domains. RTK activation also depends on the specific orientation of the transmembrane domain (TMD) helices, as suggested by pathogenic, constitutively active RTK mutants. Such mutant TMDs carry polar amino acids promoting stable transmembrane helix dimerization, which is essential for kinase activation. We investigated the effect of polar amino acids introduced into the TMD of vascular endothelial growth factor receptor 2, regulating blood vessel homeostasis. Two mutants showed constitutive kinase activity, suggesting that precise TMD orientation is mandatory for kinase activation. Nuclear magnetic resonance spectroscopy revealed that TMD helices in activated constructs were rotated by 180° relative to the interface of the wild-type conformation, confirming that ligand-mediated receptor activation indeed results from transmembrane helix rearrangement. A molecular dynamics simulation confirmed the transmembrane helix arrangement of wild-type and mutant TMDs revealed by nuclear magnetic resonance spectroscopy.

  2. Estradiol increases the anorexia associated with increased 5-HT2C receptor activation in ovariectomized rats

    OpenAIRE

    Rivera, Heidi M.; Santollo, Jessica; Nikonova, Larissa V.; Eckel, Lisa A.

    2011-01-01

    Estradiol’s inhibitory effect on food intake is mediated, in part, by its ability to increase the activity of meal-related signals, including serotonin (5-HT), which hasten satiation. The important role that postsynaptic 5-HT2C receptors play in mediating 5-HT’s anorexigenic effect prompted us to investigate whether a regimen of acute estradiol treatment increases the anorexia associated with increased 5-HT2C receptor activation in ovariectomized (OVX) rats. We demonstrated that intraperitone...

  3. Regulation of breast cancer stem cell activity by signaling through the Notch4 receptor

    OpenAIRE

    Harrison, Hannah; Farnie, Gillian; Howell, Sacha J.; Rock, Rebecca E; Stylianou, Spyros; Brennan, Keith R.; Bundred, Nigel J; Clarke, Robert B.

    2010-01-01

    Notch receptor signaling pathways play an important role not only in normal breast development but also in breast cancer development and progression. We assessed the role of Notch receptors in stem cell activity in breast cancer cell lines and nine primary human tumor samples. Stem cells were enriched by selection of anoikis-resistant cells or cells expressing the membrane phenotype ESA+/CD44+/CD24low. Using these breast cancer stem cell populations, we compared the activation status of Notch...

  4. Structure-activity relationships of fatty acid amide ligands in activating and desensitizing G protein-coupled receptor 119.

    Science.gov (United States)

    Kumar, Pritesh; Kumar, Akhilesh; Song, Zhao-Hui

    2014-01-15

    The purpose of the current study was to apply a high throughput assay to investigate the structure-activity relationships of fatty acid amides for activating and desensitizing G protein-coupled receptor 119, a promising therapeutic target for both type 2 diabetes and obesity. A cell-based, homogenous time resolved fluorescence (HTRF) method for measuring G protein-coupled receptor 119-mediated increase of cyclic adenosine monophosphate (cAMP) levels was validated and applied in this study. Using novel fatty acid amides and detailed potency and efficacy analyses, we have demonstrated that degree of saturation in acyl chain and charged head groups of fatty acid amides have profound effects on the ability of these compounds to activate G protein-coupled receptor 119. In addition, we have demonstrated for the first time that pretreatments with G protein-coupled receptor 119 agonists desensitize the receptor and the degrees of desensitization caused by fatty acid amides correlate well with their structure-activity relationships in activating the receptor.

  5. Binding of GTPgamma[35S] is regulated by GDP and receptor activation. Studies with the nociceptin/orphanin FQ receptor.

    Science.gov (United States)

    McDonald, John; Lambert, David G

    2010-03-01

    We have examined the effects of ligand efficacy and receptor density on the binding of guanosine 5'-[gamma-thio]triphosphate (GTPgammaS) and GDP to the nociceptin/orphanin FQ (N/OFQ) peptide receptor (NOP)-coupled G-proteins. In GTPgamma[(35)S] binding experiments, using stable (CHO(hNOP)) and inducible (CHO(INDhNOP)) recombinant human and rat NOP we have measured: (i) ligand-specific GDP requirements; (ii) the effects of receptor density on guanine nucleotide affinity/capacity; and (iii) the effect of ligand efficacy on GTPgammaS association kinetics. GTPgammaS competition curves were shallow and modelled by high- and low-affinity components that were relatively consistent between cell types and tissue preparations. In the presence of 1 microM N/OFQ a high-affinity GDP binding site was also present, but the fraction of total binding was reduced. In an efficacy-dependent manner, the partial agonists [F/G]N/OFQ(1-13)NH(2) ([Phe(1)psi(CH(2)-NH)Gly(2)]-nociceptin(1-13)NH(2)) and naloxone benzoylhydrazone both reduced the fraction of high-affinity sites for GDP (relative to basal). While the pIC(50) for high-affinity GDP binding site did not decrease in the presence of 1 microM N/OFQ, N/OFQ produced a significant reduction in pIC(50) for the low-affinity site. Agonist-mediated decrease in affinity for GDP binding was efficacy-dependent. GDP displayed three affinities: high, conserved in the presence and absence of ligand; intermediate, present as a low fraction under basal conditions; low (efficacy-dependent), present during receptor activation representing the majority of binding. The affinity of GTPgamma[(35)S] was regulated by GDP and receptor activation caused increased binding of GTPgamma[(35)S] through a reduction in GDP affinity.

  6. Regulation of retinoic acid receptor beta expression by peroxisome proliferator-activated receptor gamma ligands in cancer cells.

    Science.gov (United States)

    James, Sharon Y; Lin, Feng; Kolluri, Siva Kumar; Dawson, Marcia I; Zhang, Xiao-kun

    2003-07-01

    The peroxisome proliferator-activated receptor gamma (PPAR gamma) is a nuclear receptor family member that can form a heterodimeric complex with retinoid X receptor (RXR) and initiate transcription of target genes. In this study, we have examined the effects of the PPAR gamma ligand ciglitazone and the RXR ligand SR11237 on growth and induction of retinoic acid receptor (RAR) beta expression in breast and lung cancer cells. Our results demonstrated that ciglitazone and SR11237 cooperatively inhibited the growth of ZR-75-1 and T-47D breast cancer and Calu-6 lung cancer cells. Gel shift analysis indicated that PPAR gamma, in the presence of RXR, formed a strong complex with a retinoic acid response element (beta retinoic acid response element) in the RAR beta promoter. In reporter gene assays, RXR ligands and ciglitazone, but not the PPAR gamma ligand 15d-PGJ(2), cooperatively promoted the transcriptional activity of the beta retinoic acid response element. Ciglitazone, but not 15d-PGJ(2), strongly induced RAR beta expression in human breast and lung cancer cell lines when used together with SR11237. The induction of RAR beta expression by the ciglitazone and SR11237 combination was diminished by a PPAR gamma-selective antagonist, bisphenol A diglycidyl ether. All-trans-retinoic acid or the combination of ciglitazone and SR11237 was able to induce RAR beta in all-trans-retinoic acid-resistant MDA-MB-231 breast cancer cells only when the orphan receptor chick ovalbumin upstream promoter transcription factor was expressed, or in the presence of the histone deacetylase inhibitor trichostatin A. These studies indicate the existence of a novel RAR beta-mediated signaling pathway of PPAR gamma action, which may provide a molecular basis for developing novel therapies involving RXR and PPAR gamma ligands in potentiating antitumor responses.

  7. Activation of phosphoinositide 3-kinase by D2 receptor prevents apoptosis in dopaminergic cell lines.

    Science.gov (United States)

    Nair, Venugopalan D; Olanow, C Warren; Sealfon, Stuart C

    2003-07-01

    Whereas dopamine agonists are known to provide symptomatic benefits for Parkinson's disease, recent clinical trials suggest that they might also be neuroprotective. Laboratory studies demonstrate that dopamine agonists can provide neuroprotective effects in a number of model systems, but the role of receptor-mediated signalling in these effects is controversial. We find that dopamine agonists have robust, concentration-dependent anti-apoptotic activity in PC12 cells that stably express human D(2L) receptors from cell death due to H(2)O(2) or trophic withdrawal and that the protective effects are abolished in the presence of D(2)-receptor antagonists. D(2) agonists are also neuroprotective in the nigral dopamine cell line SN4741, which express endogenous D(2) receptors, whereas no anti-apoptotic activity is observed in native PC12 cells, which do not express detectable D(2) receptors. Notably, the agonists studied differ in their relative efficacy to mediate anti-apoptotic effects and in their capacity to stimulate [(35)S]guanosine 5'-[gamma-thio]triphosphate ([(35)S]GTP[S]) binding, an indicator of G-protein activation. Studies with inhibitors of phosphoinositide 3-kinase (PI 3-kinase), extracellular-signal-regulated kinase or p38 mitogen-activated protein kinase indicate that the PI 3-kinase pathway is required for D(2) receptor-mediated cell survival. These studies indicate that certain dopamine agonists can complex with D(2) receptors to preferentially transactivate neuroprotective signalling pathways and to mediate increased cell survival.

  8. EPO-independent functional EPO receptor in breast cancer enhances estrogen receptor activity and promotes cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Reinbothe, Susann; Larsson, Anna-Maria; Vaapil, Marica; Wigerup, Caroline [Department of Laboratory Medicine, Translational Cancer Research, Medicon Village, Lund University, SE-223 81 Lund (Sweden); CREATE Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv (Israel); Sun, Jianmin [Department of Laboratory Medicine, Translational Cancer Research, Medicon Village, Lund University, SE-223 81 Lund (Sweden); Jögi, Annika [Department of Laboratory Medicine, Translational Cancer Research, Medicon Village, Lund University, SE-223 81 Lund (Sweden); CREATE Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv (Israel); Neumann, Drorit [Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv (Israel); Rönnstrand, Lars [Department of Laboratory Medicine, Translational Cancer Research, Medicon Village, Lund University, SE-223 81 Lund (Sweden); Påhlman, Sven, E-mail: sven.pahlman@med.lu.se [Department of Laboratory Medicine, Translational Cancer Research, Medicon Village, Lund University, SE-223 81 Lund (Sweden); CREATE Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv (Israel)

    2014-02-28

    Highlights: • New anti-human EPOR antibody confirms full-length EPOR expression in breast cancer cells. • Proliferation of breast cancer cells is not affected by rhEPO treatment in vitro. • EPOR knockdown impairs proliferation of ERa positive breast cancer cells. • EPOR knockdown reduces AKT phosphorylation and ERa activity. - Abstract: The main function of Erythropoietin (EPO) and its receptor (EPOR) is the stimulation of erythropoiesis. Recombinant human EPO (rhEPO) is therefore used to treat anemia in cancer patients. However, clinical trials have indicated that rhEPO treatment might promote tumor progression and has a negative effect on patient survival. In addition, EPOR expression has been detected in several cancer forms. Using a newly produced anti-EPOR antibody that reliably detects the full-length isoform of the EPOR we show that breast cancer tissue and cells express the EPOR protein. rhEPO stimulation of cultured EPOR expressing breast cancer cells did not result in increased proliferation, overt activation of EPOR (receptor phosphorylation) or a consistent activation of canonical EPOR signaling pathway mediators such as JAK2, STAT3, STAT5, or AKT. However, EPOR knockdown experiments suggested functional EPO receptors in estrogen receptor positive (ERα{sup +}) breast cancer cells, as reduced EPOR expression resulted in decreased proliferation. This effect on proliferation was not seen in ERα negative cells. EPOR knockdown decreased ERα activity further supports a mechanism by which EPOR affects proliferation via ERα-mediated mechanisms. We show that EPOR protein is expressed in breast cancer cells, where it appears to promote proliferation by an EPO-independent mechanism in ERα expressing breast cancer cells.

  9. [Dependence of EGF receptor and STAT factor activation on redox of A431 cells].

    Science.gov (United States)

    Gonchar, I V; Burova, E B; Dorosh, V N; Gamaleĭ, I A; Nikol'skiĭ, N N

    2003-01-01

    Reactive oxygen species (ROS) were established to play an important role in cellular signaling as second messengers by integrating different pathways. Recently, we showed that EGF initiated a rapid tyrosine phosphorylation of both EGF-receptor and STAT factors with simultaneous increase in the intracellular ROS level. Now, we have investigated the effect of intracellular red-ox state on EGF- and H2O2-induced activation of EGF receptor, STAT1 and STAT3. We demonstrated that the pretreatment of A431 cells with antioxidant N-acetyl-L-cysteine (NAC) partly reduced the level of EGF-induced phosphorylation of proteins under investigation. Besides, H2O2-induced activation of EGF receptor, and STAT factors was fully prevented by NAC pretreatment. The inhibition of ROS generation by DPI declined EGF-dependent activation of EGF receptor and STAT factors to basal level. Our results demonstrate the essential role of cellular red-ox status in the modulation of EGF-mediated activation of receptor and STAT factors. We have postulated that EGF-induced ROS generation is a very important initial event promoting physiological activation of EGF receptor and subsequent STAT factor activation.

  10. In silico analysis of the histaprodifen induced activation pathway of the guinea-pig histamine H1-receptor

    Science.gov (United States)

    Straßer, Andrea; Wittmann, Hans-Joachim

    2010-09-01

    The binding of (partial) agonists in the binding pocket of biogenic amine receptors induces a conformational change from the inactive to the active state of the receptors. There is only little knowledge about the binding pathways of ligands into binding pocket on molecular level. So far, it was not possible with molecular dynamic simulations to observe the ligand binding and receptor activation. Furthermore, there is nearly nothing known, in which state of ligand binding, the receptor gets activated. The aim of this study was to get more detailed insight into the process of ligand binding and receptor activation. With the recently developed LigPath algorithm, we scanned the potential energy surface of the binding process of dimeric histaprodifen, a partial agonist at the histamine H1-receptor, into the guinea pig histamine H1-receptor, taking also into account the receptor activation. The calculations exhibited large conformational changes of Trp6.48 and Phe6.55 during ligand binding and receptor activation. Additionally, conformational changes were also observed for Phe6.52, Tyr6.51 and Phe6.44. Conformational changes of Trp6.48 and Phe6.52 are discussed in literature as rotamer toggle switch in context with receptor activation. Additionally, the calculations indicate that the binding of dimeric histaprodifen, accompanied by receptor activation is energetically preferred. In general, this study gives new, theoretical insights onto ligand binding and receptor activation on molecular level.

  11. Soluble Urokinase Receptors in Focal Segmental Glomerulosclerosis: A Review on the Scientific Point of View

    Directory of Open Access Journals (Sweden)

    Andreas Kronbichler

    2016-01-01

    Full Text Available Focal segmental glomerulosclerosis (FSGS is one of the primary glomerular disorders in both children and adults which can progress to end-stage renal failure. Although there are genetic and secondary causes, circulating factors have also been regarded as an important factor in the pathogenesis of FSGS, because about 40% of the patients with FSGS have recurrence after renal transplantation. Soluble urokinase-type plasminogen activator receptor (suPAR is a soluble form of uPAR, which is a membrane-bound protein linked to GPI in various immunologically active cells, including podocytes. It has recently been suggested as a potential circulating factor in FSGS by in vitro podocyte experiments, in vivo mice models, and human studies. However, there have also been controversies on this issue, because subsequent studies showed conflicting results. suPAR levels were also increased in patients with other glomerular diseases and were inversely correlated with estimated glomerular filtration rate. Nevertheless, there has been no balanced review on this issue. In this review, we compare the conflicting data on the involvement of suPAR in the pathogenesis of FSGS and shed light on interpretation by taking into account many points and the potential variables and confounders influencing serum suPAR levels.

  12. Metastin receptor is overexpressed in papillary thyroid cancer and activates MAP kinase in thyroid cancer cells.

    Science.gov (United States)

    Ringel, Matthew D; Hardy, Elena; Bernet, Victor J; Burch, Henry B; Schuppert, Frank; Burman, Kenneth D; Saji, Motoyasu

    2002-05-01

    The development of distant metastasis is the most important predictor of death from thyroid cancer. KiSS-1 is a recently cloned human metastasis suppressor gene whose product, metastin, was recently identified as the endogenous agonist for a novel Gq/11 coupled receptor (metastin receptor). The expression and functional consequences of metastin and the metastin receptor have not been evaluated in thyroid cancer. We measured metastin and metastin receptor mRNA levels in 10 FCs and 13 papillary carcinomas (PCs), 2 benign non-functioning follicular adenomas (FAs), and 11 normal thyroid samples, and evaluated the signaling pathways activated by metastin in ARO thyroid cancer cells that express the metastin receptor endogenously. Paired normal and tumor samples were available for 4 PC and 3 PFC samples. Metastin mRNA was detected in 6/11 normal samples, and 0/2 FA, 2/10 FC, and 9/13 PC samples (p Metastin receptor was not expressed in any normal thyroid or benign FA samples, and was expressed in only a minority (2/10) of FC samples. However, the receptor was expressed in the majority (10/13) of PCs (p = 0.002 for PC vs. normal tissue). Increased levels of metastin receptor were detected in all four PCs compared to adjacent normal tissue. Incubation levels of metastin receptor were detected in all four PCs compared to adjacent normal tissue. Incubation of metastin receptor expressing ARO thyroid cancer cells with metastin resulted in activation of ERK, but not Akt. Taken together, these data suggest a potential role for metastin and/or metastin receptors in modulating the biological behavior of thyroid cancers.

  13. Rapid effect of stress concentration corticosterone on glutamate receptor and its subtype NMDA receptor activity in cultured hippocampal neurons

    Institute of Scientific and Technical Information of China (English)

    刘玲; 孙继虎; 王春安

    2003-01-01

    Objective:To study the rapid effect of glucocorticoids(GCs)on NMDA receptor activity in hippocampal neurons in stress and to elucidate its underlying probable membrane mechanisms.Methods:Whole-cell patch-clamp recording was used to assess the effect of stress concentration corticosterone(B)on the responses of cultured hippocampal neurons to glutamate and NMDA(N-methy-D-asparatic acid).To make clear the target of B,intracellular dialysis of B(10 μ mol/L)through patch pipette and extracellular application of bovine serum albumin-conjugated corticosterone(B-BSA,10 μmol/L)were carried out to observe their influence on peak amplitude of NMDA-evoked current.Results:B had a rapid,reversible and inhibitory effect on peak amplitude of GLU- or NMDA-evoked current in cultured hippocampal neurons.Furthermore,B-BSA had the inhibitory effect on INMDA as that of B,but intracellularly dialyzed B had no significant effect on INMDA.Conclusion:These results suggest that under the condition of stress,GCs may rapidly,negatively regulate excitatory synaptic receptors-glutamate receptors(GluRs),especially NMDA receptor(NMDAR)in central nervous system,which is mediated by rapid membrane mechanisms,but not by classical,genomic mechanisms.

  14. Functional Selectivity and Antidepressant Activity of Serotonin 1A Receptor Ligands

    Science.gov (United States)

    Chilmonczyk, Zdzisław; Bojarski, Andrzej Jacek; Pilc, Andrzej; Sylte, Ingebrigt

    2015-01-01

    Serotonin (5-HT) is a monoamine neurotransmitter that plays an important role in physiological functions. 5-HT has been implicated in sleep, feeding, sexual behavior, temperature regulation, pain, and cognition as well as in pathological states including disorders connected to mood, anxiety, psychosis and pain. 5-HT1A receptors have for a long time been considered as an interesting target for the action of antidepressant drugs. It was postulated that postsynaptic 5-HT1A agonists could form a new class of antidepressant drugs, and mixed 5-HT1A receptor ligands/serotonin transporter (SERT) inhibitors seem to possess an interesting pharmacological profile. It should, however, be noted that 5-HT1A receptors can activate several different biochemical pathways and signal through both G protein-dependent and G protein-independent pathways. The variables that affect the multiplicity of 5-HT1A receptor signaling pathways would thus result from the summation of effects specific to the host cell milieu. Moreover, receptor trafficking appears different at pre- and postsynaptic sites. It should also be noted that the 5-HT1A receptor cooperates with other signal transduction systems (like the 5-HT1B or 5-HT2A/2B/2C receptors, the GABAergic and the glutaminergic systems), which also contribute to its antidepressant and/or anxiolytic activity. Thus identifying brain specific molecular targets for 5-HT1A receptor ligands may result in a better targeting, raising a hope for more effective medicines for various pathologies. PMID:26262615

  15. Activation of sigma-1 receptor chaperone in the treatment of neuropsychiatric diseases and its clinical implication

    Directory of Open Access Journals (Sweden)

    Kenji Hashimoto

    2015-01-01

    Full Text Available Endoplasmic reticulum (ER protein sigma-1 receptor represents unique chaperone activity in the central nervous system, and it exerts a potent influence on a number of neurotransmitter systems. Several lines of evidence suggest that activation of sigma-1 receptor plays a role in the pathophysiology of neuropsychiatric diseases, as well as in the mechanisms of some therapeutic drugs and neurosteroids. Preclinical studies showed that some selective serotonin reuptake inhibitors (SSRIs; fluvoxamine, fluoxetine, excitalopram, donepezil, and ifenprodil act as sigma-1 receptor agonists. Furthermore, sigma-1 receptor agonists could improve the N-methyl-D-aspartate (NMDA antagonist phencyclidine (PCP-induced cognitive deficits in mice. A study using positron emission tomography have demonstrated that an oral administration of fluvoxamine or donepezil could bind to sigma-1 receptor in the healthy human brain, suggesting that sigma-1 receptor might be involved in the therapeutic mechanisms of these drugs. Moreover, case reports suggest that sigma-1 receptor agonists, including fluvoxamine, and ifenprodil, may be effective in the treatment of cognitive impairment in schizophrenia, delirium in elderly people, and flashbacks in post-traumatic stress disorder. In this review article, the author would like to discuss the clinical implication of sigma-1 receptor agonists, including endogenous neurosteroids, in the neuropsychiatric diseases.

  16. Selective androgen receptor modulator activity of a steroidal antiandrogen TSAA-291 and its cofactor recruitment profile.

    Science.gov (United States)

    Hikichi, Yukiko; Yamaoka, Masuo; Kusaka, Masami; Hara, Takahito

    2015-10-15

    Selective androgen receptor modulators (SARMs) specifically bind to the androgen receptor and exert agonistic or antagonistic effects on target organs. In this study, we investigated the SARM activity of TSAA-291, previously known as a steroidal antiandrogen, in mice because TSAA-291 was found to possess partial androgen receptor agonist activity in reporter assays. In addition, to clarify the mechanism underlying its tissue selectivity, we performed comprehensive cofactor recruitment analysis of androgen receptor using TSAA-291 and dihydrotestosterone (DHT), an endogenous androgen. The androgen receptor agonistic activity of TSAA-291 was more obvious in reporter assays using skeletal muscle cells than in those using prostate cells. In castrated mice, TSAA-291 increased the weight of the levator ani muscle without increasing the weight of the prostate and seminal vesicle. Comprehensive cofactor recruitment analysis via mammalian two-hybrid methods revealed that among a total of 112 cofactors, 12 cofactors including the protein inhibitor of activated STAT 1 (PIAS1) were differently recruited to androgen receptor in the presence of TSAA-291 and DHT. Prostate displayed higher PIAS1 expression than skeletal muscle. Forced expression of the PIAS1 augmented the transcriptional activity of the androgen receptor, and silencing of PIAS1 by siRNAs suppressed the secretion of prostate-specific antigen, an androgen responsive marker. Our results demonstrate that TSAA-291 has SARM activity and suggest that TSAA-291 may induce different conformational changes of the androgen receptor and recruitment profiles of cofactors such as PIAS1, compared with DHT, to exert tissue-specific activity.

  17. The acute anorexic effect of liraglutide, a GLP-1 receptor agonist, does not require functional leptin receptor, serotonin, and hypothalamic POMC and CART activities in mice.

    Science.gov (United States)

    Nonogaki, Katsunori; Kaji, Takao

    2016-10-01

    The acute anorexic effect of liraglutide, a GLP-1 receptor agonist, did not require functional leptin receptor, serotonin, and hypothalamic proopiomelanocortin and cocaine amphetamine regulated transcript activities in mice, although decrease in functional hypothalamic orexin activity might be involved in the acute anorexic effect of liraglutide.

  18. Activation of peroxisome proliferator-activated receptor-{alpha} enhances fatty acid oxidation in human adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joo-Young; Hashizaki, Hikari; Goto, Tsuyoshi; Sakamoto, Tomoya; Takahashi, Nobuyuki [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan); Kawada, Teruo, E-mail: fat@kais.kyoto-u.ac.jp [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan)

    2011-04-22

    Highlights: {yields} PPAR{alpha} activation increased mRNA expression levels of adipocyte differentiation marker genes and GPDH activity in human adipocytes. {yields} PPAR{alpha} activation also increased insulin-dependent glucose uptake in human adipocytes. {yields} PPAR{alpha} activation did not affect lipid accumulation in human adipocytes. {yields} PPAR{alpha} activation increased fatty acid oxidation through induction of fatty acid oxidation-related genes in human adipocytes. -- Abstract: Peroxisome proliferator-activated receptor-{alpha} (PPAR{alpha}) is a key regulator for maintaining whole-body energy balance. However, the physiological functions of PPAR{alpha} in adipocytes have been unclarified. We examined the functions of PPAR{alpha} using human multipotent adipose tissue-derived stem cells as a human adipocyte model. Activation of PPAR{alpha} by GW7647, a potent PPAR{alpha} agonist, increased the mRNA expression levels of adipocyte differentiation marker genes such as PPAR{gamma}, adipocyte-specific fatty acid-binding protein, and lipoprotein lipase and increased both GPDH activity and insulin-dependent glucose uptake level. The findings indicate that PPAR{alpha} activation stimulates adipocyte differentiation. However, lipid accumulation was not changed, which is usually observed when PPAR{gamma} is activated. On the other hand, PPAR{alpha} activation by GW7647 treatment induced the mRNA expression of fatty acid oxidation-related genes such as CPT-1B and AOX in a PPAR{alpha}-dependent manner. Moreover, PPAR{alpha} activation increased the production of CO{sub 2} and acid soluble metabolites, which are products of fatty acid oxidation, and increased oxygen consumption rate in human adipocytes. The data indicate that activation of PPAR{alpha} stimulates both adipocyte differentiation and fatty acid oxidation in human adipocytes, suggesting that PPAR{alpha} agonists could improve insulin resistance without lipid accumulation in adipocytes. The expected

  19. Impaired effect of activation of rat hippocampal 5-HT7 receptors, induced by treatment with the 5-HT7 receptor antagonist SB 269970.

    Science.gov (United States)

    Kusek, M; Sowa, J; Tokarski, K; Hess, G

    2015-04-01

    Effects of the 5-HT(7) receptor antagonist SB 269970, administered for 14 days (1.25 mg/kg), were studied in ex vivo slices of rat hippocampus. To activate the 5-HT(7) receptor, 5-carboxamidotryptamine (5-CT, 200 nM) was applied in the presence of WAY 100635 (2 μM), a 5-HT(1A) receptor antagonist. In contrast to control preparations, no 5-HT(7) receptor-mediated increase in excitability nor depolarization and an increase in the input resistance of CA1 and CA3 pyramidal neurons were present in slices prepared from rats treated with SB 269970. The treatment also abolished the stimulatory effect of 5-HT(7) receptor activation on spontaneous excitatory postsynaptic currents recorded from CA1 stratum radiatum/lacunosum-moleculare interneurons. These data demonstrate that repeated administration of SB 269970 impairs the reactivity of the CA1 hippocampal neuronal network to 5-HT(7) receptor activation.

  20. The liberated domain I of urokinase plasminogen activator receptor - a new tumour marker in small cell lung cancer

    DEFF Research Database (Denmark)

    Almasi, Charlotte E; Drivsholm, Lars; Pappot, Helle;

    2013-01-01

    measured using time-resolved fluorescence immunoassays (TR-FIA 1-3). Assessment of association of the uPAR forms to overall survival (OS) was done using Cox regression analysis adjusted for clinical covariates [age, gender, stage, lactate dehydrogenase (LDH), WHO performance status (PS)]. Multivariate...... the first tertile. High serum uPAR(I) levels are associated with short OS in SCLC patient, independent of LDH and PS....

  1. Peroxisome Proliferator-Activated Receptor γ Activity is Required for Appropriate Cardiomyocyte Differentiation

    Directory of Open Access Journals (Sweden)

    Maryam Peymani

    2016-07-01

    Full Text Available Objective Peroxisome proliferator-activated receptor γ (PPARγ is a member of the PPAR nuclear receptor superfamily. Although PPARγ acts as a master transcription factor in adipocyte differentiation, it is also associated with a variety of cell functions including carbohydrate and lipid metabolism, glucose homeostasis, cell proliferation and cell differentiation. This study aimed to assess the expression level of PPARγ in order to address its role in cardiac cell differentiation of mouse embryonic stem cells (mESCs. Materials and Methods In this an intervening study, mESCs were subjected to cardiac differentiation. Total RNA was extracted from the cells and quantitative real time polymerase chain reaction (qPCR was carried out to estimate level of gene expression. Furthermore, the requirement of PPARγ in cardiac differentiation of mESCs, during cardiac progenitor cells (CPCs formation, was examined by applying the respective agonist and antagonist. Results The obtained data revealed an elevation in the expression level of PPARγ during spontaneous formation of CPCs and cardiomyocytes. Our results indicated that during CPC formation, PPARγ inactivation via treatment with GW9662 (GW reduced expression of CPC and cardiac markers. Conclusion We conclude that PPARγ modulation has an effective role on cardiac differentiation of mESCs at the early stage of cardiomyogenesis.

  2. Receptor-binding domain of ephrin-A1: production in bacterial expression system and activity.

    Science.gov (United States)

    Nekrasova, O V; Sharonov, G V; Tikhonov, R V; Kolosov, P M; Astapova, M V; Yakimov, S A; Tagvey, A I; Korchagina, A A; Bocharova, O V; Wulfson, A N; Feofanov, A V; Kirpichnikov, M P

    2012-12-01

    Eph receptor tyrosine kinases and their ligands, the ephrins, perform an important regulatory function in tissue organization, as well as participate in malignant transformation of cells. Ephrin-A1, a ligand of A class Eph receptors, is a modulator of tumor growth and progression, and the mechanism of its action needs detailed investigation. Here we report on the development of a system for bacterial expression of an ephrin-A1 receptor-binding domain (eA1), a procedure for its purification, and its renaturation with final yield of 50 mg/liter of culture. Functional activity of eA1 was confirmed by immunoblotting, laser scanning confocal microscopy, and flow cytometry. It is shown that monomeric non-glycosylated receptor-binding domain of ephrin-A1 is able to activate cellular EphA2 receptors, stimulating their phosphorylation. Ligand eA1 can be used to study the features of ephrin-A1 interactions with different A class Eph receptors. The created expression cassette is suitable for the development of ligands with increased activity and selectivity and experimental systems for the delivery of cytotoxins into tumor cells that overexpress EphA2 or other class A Eph receptors.

  3. Pharmacological activation of CB1 receptor modulates long term potentiation by interfering with protein synthesis.

    Science.gov (United States)

    Navakkode, Sheeja; Korte, Martin

    2014-04-01

    Cognitive impairment is one of the most important side effects associated with cannabis drug abuse, as well as the serious issue concerning the therapeutic use of cannabinoids. Cognitive impairments and neuropsychiatric symptoms are caused by early synaptic dysfunctions, such as loss of synaptic connections in different brain structures including the hippocampus, a region that is believed to play an important role in certain forms of learning and memory. We report here that metaplastic priming of synapses with a cannabinoid type 1 receptor (CB1 receptor) agonist, WIN55,212-2 (WIN55), significantly impaired long-term potentiation in the apical dendrites of CA1 pyramidal neurons. Interestingly, the CB1 receptor exerts its effect by altering the balance of protein synthesis machinery towards higher protein production. Therefore the activation of CB1 receptor, prior to strong tetanization, increased the propensity to produce new proteins. In addition, WIN55 priming resulted in the expression of late-LTP in a synaptic input that would have normally expressed early-LTP, thus confirming that WIN55 priming of LTP induces new synthesis of plasticity-related proteins. Furthermore, in addition to the effects on protein translation, WIN55 also induced synaptic deficits due to the ability of CB1 receptors to inhibit the release of acetylcholine, mediated by both muscarinic and nicotinic acetylcholine receptors. Taken together this supports the notion that the modulation of cholinergic activity by CB1 receptor activation is one mechanism that regulates the synthesis of plasticity-related proteins.

  4. Tonically Active α5GABAA Receptors Reduce Motoneuron Excitability and Decrease the Monosynaptic Reflex

    Directory of Open Access Journals (Sweden)

    Martha Canto-Bustos

    2017-09-01

    Full Text Available Motoneurons, the final common path of the Central Nervous System (CNS, are under a complex control of its excitability in order to precisely translate the interneuronal pattern of activity into skeletal muscle contraction and relaxation. To fulfill this relevant function, motoneurons are provided with a vast repertoire of receptors and channels, including the extrasynaptic GABAA receptors which have been poorly investigated. Here, we confirmed that extrasynaptic α5 subunit-containing GABAA receptors localize with choline acetyltransferase (ChAT positive cells, suggesting that these receptors are expressed in turtle motoneurons as previously reported in rodents. In these cells, α5GABAA receptors are activated by ambient GABA, producing a tonic shunt that reduces motoneurons’ membrane resistance and affects their action potential firing properties. In addition, α5GABAA receptors shunted the synaptic excitatory inputs depressing the monosynaptic reflex (MSR induced by activation of primary afferents. Therefore, our results suggest that α5GABAA receptors may play a relevant physiological role in motor control.

  5. Molecular Imaging Provides Novel Insights on Estrogen Receptor Activity in Mouse Brain

    Directory of Open Access Journals (Sweden)

    Alessia Stell

    2008-11-01

    Full Text Available Estrogen receptors have long been known to be expressed in several brain areas in addition to those directly involved in the control of reproductive functions. Investigations in humans and in animal models suggest a strong influence of estrogens on limbic and motor functions, yet the complexity and heterogeneity of neural tissue have limited our approaches to the full understanding of estrogen activity in the central nervous system. The aim of this study was to examine the transcriptional activity of estrogen receptors in the brain of male and female mice. Exploiting the ERE-Luc reporter mouse, we set up a novel, bioluminescence-based technique to study brain estrogen receptor transcriptional activity. Here we show, for the first time, that estrogen receptors are similarly active in male and female brains and that the estrous cycle affects estrogen receptor activity in regions of the central nervous system not known to be associated with reproductive functions. Because of its reproducibility and sensitivity, this novel bioluminescence application stands as a candidate as an innovative methodology for the study and development of drugs targeting brain estrogen receptors.

  6. Inhibition of migration and invasion of carcinoma cells by urokinase-derived antagonists of alphavbeta5 integrin activation.

    Science.gov (United States)

    Vocca, Immacolata; Franco, Paola; Alfano, Daniela; Votta, Giuseppina; Carriero, Maria Vincenza; Estrada, Yeriel; Caputi, Mario; Netti, Paolo A; Ossowski, Liliana; Stoppelli, Maria Patrizia

    2009-01-15

    We previously showed that, while binding to urokinase receptor (uPAR) through its growth factor domain (GFD, residues 1-49), urokinase (uPA) can engage alphavbeta5 integrin through an internal domain (CP, residues 132-158). This novel uPA/alphavbeta5 interaction promotes cytoskeletal rearrangements and directional cell migration (Franco et al., J Cell Sci 2006;119:3424-34). We now show that treatment of cells with phosphomimic uPA (uPA138E/303E, serine 138 and 303 substituted with glutamic acid) strongly inhibits matrix-induced cell migration. Unlike uPA, binding of uPA138E/303E to cell surface did not induce F-actin enriched protruding structures and caused a 5-fold reduction in cell translocation speed, as determined by video tracking of living cells. Inhibition of migration was found to be independent of uPAR, since uPA variants lacking the GFD domain, but carrying the relevant Ser to Glu substitutions were as effective inhibitor as uPA138E/303E. Through several independent approaches, we established that the phosphomimics specifically bind to alphavbeta5 integrin through the CP region carrying the S138E mutation. This interaction blocks integrin activation, as determined by a decreased affinity of alphavbeta5 to vitronectin and a reduced association of the beta5 cytoplasmic tail with talin. Finally, stable expression of uPA138E/303E in human squamous carcinoma cells prevented tumor cell invasion in vivo. Thus, when expressed in cancer cells, the inhibitory phosphomimic effect was dominant over the effect of endogenously produced uPA. These results shed light on the regulation of cell migration by uPA phosphorylation and provide a realistic opportunity for a novel antiinvasive/metastatic therapeutic intervention.

  7. Acanthamoeba protease activity promotes allergic airway inflammation via protease-activated receptor 2.

    Science.gov (United States)

    Park, Mi Kyung; Cho, Min Kyoung; Kang, Shin Ae; Park, Hye-Kyung; Kim, Dong-Hee; Yu, Hak Sun

    2014-01-01

    Acanthamoeba is a free-living amoeba commonly present in the environment and often found in human airway cavities. Acanthamoeba possesses strong proteases that can elicit allergic airway inflammation. To our knowledge, the aeroallergenicity of Acanthamoeba has not been reported. We repeatedly inoculated mice with Acanthamoeba trophozoites or excretory-secretory (ES) proteins intra-nasally and evaluated symptoms and airway immune responses. Acanthamoeba trophozoites or ES proteins elicited immune responses in mice that resembled allergic airway inflammation. ES proteins had strong protease activity and activated the expression of several chemokine genes (CCL11, CCL17, CCL22, TSLP, and IL-25) in mouse lung epithelial cells. The serine protease inhibitor phenyl-methane-sulfonyl fluoride (PMSF) inhibited ES protein activity. ES proteins also stimulated dendritic cells and enhanced the differentiation of naive T cells into IL-4-secreting T cells. After repeated inoculation of the protease-activated receptor 2 knockout mouse with ES proteins, airway inflammation and Th2 immune responses were markedly reduced, but not to basal levels. Furthermore, asthma patients had higher Acanthamoeba-specific IgE titers than healthy controls and we found Acanthamoeba specific antigen from house dust in typical living room. Our findings suggest that Acanthamoeba elicits allergic airway symptoms in mice via a protease allergen. In addition, it is possible that Acanthamoeba may be one of the triggers human airway allergic disease.

  8. Acanthamoeba protease activity promotes allergic airway inflammation via protease-activated receptor 2.

    Directory of Open Access Journals (Sweden)

    Mi Kyung Park

    Full Text Available Acanthamoeba is a free-living amoeba commonly present in the environment and often found in human airway cavities. Acanthamoeba possesses strong proteases that can elicit allergic airway inflammation. To our knowledge, the aeroallergenicity of Acanthamoeba has not been reported. We repeatedly inoculated mice with Acanthamoeba trophozoites or excretory-secretory (ES proteins intra-nasally and evaluated symptoms and airway immune responses. Acanthamoeba trophozoites or ES proteins elicited immune responses in mice that resembled allergic airway inflammation. ES proteins had strong protease activity and activated the expression of several chemokine genes (CCL11, CCL17, CCL22, TSLP, and IL-25 in mouse lung epithelial cells. The serine protease inhibitor phenyl-methane-sulfonyl fluoride (PMSF inhibited ES protein activity. ES proteins also stimulated dendritic cells and enhanced the differentiation of naive T cells into IL-4-secreting T cells. After repeated inoculation of the protease-activated receptor 2 knockout mouse with ES proteins, airway inflammation and Th2 immune responses were markedly reduced, but not to basal levels. Furthermore, asthma patients had higher Acanthamoeba-specific IgE titers than healthy controls and we found Acanthamoeba specific antigen from house dust in typical living room. Our findings suggest that Acanthamoeba elicits allergic airway symptoms in mice via a protease allergen. In addition, it is possible that Acanthamoeba may be one of the triggers human airway allergic disease.

  9. Soluble TL1A is sufficient for activation of death receptor 3.

    Science.gov (United States)

    Bittner, Sebastian; Knoll, Gertrud; Füllsack, Simone; Kurz, Maria; Wajant, Harald; Ehrenschwender, Martin

    2016-01-01

    Death receptor 3 (DR3) is a typical member of the tumor necrosis factor receptor family, and was initially identified as a T-cell co-stimulatory molecule. However, further studies revealed a more complex and partly dichotomous role for DR3 and its ligand TL1A under (patho)physiological conditions. TL1A and DR3 are not only a driving force in the development of autoimmune and inflammatory diseases, but also play an important role in counteracting these processes through an increase in the number of regulatory T cells. Ligands of the tumor necrosis factor family typically occur in two forms, membrane-bound and soluble, that can differ strikingly with respect to their efficacy in activating their corresponding receptor(s). Ligand-based approaches to activate the TL1A-DR3 pathway therefore require understanding of the molecular prerequisites of TL1A-based DR3 activation. To date, this has not been addressed. Here, we show that recombinant soluble trimeric TL1A is fully sufficient to strongly activate DR3-associated pro- and anti-apoptotic signaling pathways. In contrast to the TRAIL death receptors, which are much better activated by soluble TRAIL upon secondary ligand oligomerization, but similarly to the death receptor tumor necrosis factor receptor 1, DR3 is efficiently activated by soluble TL1A trimers. Additionally, we have measured the affinity of TL1A-DR3 interaction in a cell-based system, and demonstrated TL1A-induced DR3 internalization. Identification of DR3 as a tumor necrosis factor receptor that responds to soluble ligand trimers without further oligomerization provides a basis for therapeutic exploitation of the TL1A-DR3 pathway.

  10. Attenuation of eph receptor kinase activation in cancer cells by coexpressed ephrin ligands.

    Directory of Open Access Journals (Sweden)

    Giulia Falivelli

    Full Text Available The Eph receptor tyrosine kinases mediate juxtacrine signals by interacting "in trans" with ligands anchored to the surface of neighboring cells via a GPI-anchor (ephrin-As or a transmembrane segment (ephrin-Bs, which leads to receptor clustering and increased kinase activity. Additionally, soluble forms of the ephrin-A ligands released from the cell surface by matrix metalloproteases can also activate EphA receptor signaling. Besides these trans interactions, recent studies have revealed that Eph receptors and ephrins coexpressed in neurons can also engage in lateral "cis" associations that attenuate receptor activation by ephrins in trans with critical functional consequences. Despite the importance of the Eph/ephrin system in tumorigenesis, Eph receptor-ephrin cis interactions have not been previously investigated in cancer cells. Here we show that in cancer cells, coexpressed ephrin-A3 can inhibit the ability of EphA2 and EphA3 to bind ephrins in trans and become activated, while ephrin-B2 can inhibit not only EphB4 but also EphA3. The cis inhibition of EphA3 by ephrin-B2 implies that in some cases ephrins that cannot activate a particular Eph receptor in trans can nevertheless inhibit its signaling ability through cis association. We also found that an EphA3 mutation identified in lung cancer enhances cis interaction with ephrin-A3. These results suggest a novel mechanism that may contribute to cancer pathogenesis by attenuating the tumor suppressing effects of Eph receptor signaling pathways activated by ephrins in trans.

  11. Attenuation of Eph Receptor Kinase Activation in Cancer Cells by Coexpressed Ephrin Ligands

    Science.gov (United States)

    Falivelli, Giulia; Lisabeth, Erika Mathes; de la Torre, Elena Rubio; Perez-Tenorio, Gizeh; Tosato, Giovanna; Salvucci, Ombretta; Pasquale, Elena B.

    2013-01-01

    The Eph receptor tyrosine kinases mediate juxtacrine signals by interacting “in trans” with ligands anchored to the surface of neighboring cells via a GPI-anchor (ephrin-As) or a transmembrane segment (ephrin-Bs), which leads to receptor clustering and increased kinase activity. Additionally, soluble forms of the ephrin-A ligands released from the cell surface by matrix metalloproteases can also activate EphA receptor signaling. Besides these trans interactions, recent studies have revealed that Eph receptors and ephrins coexpressed in neurons can also engage in lateral “cis” associations that attenuate receptor activation by ephrins in trans with critical functional consequences. Despite the importance of the Eph/ephrin system in tumorigenesis, Eph receptor-ephrin cis interactions have not been previously investigated in cancer cells. Here we show that in cancer cells, coexpressed ephrin-A3 can inhibit the ability of EphA2 and EphA3 to bind ephrins in trans and become activated, while ephrin-B2 can inhibit not only EphB4 but also EphA3. The cis inhibition of EphA3 by ephrin-B2 implies that in some cases ephrins that cannot activate a particular Eph receptor in trans can nevertheless inhibit its signaling ability through cis association. We also found that an EphA3 mutation identified in lung cancer enhances cis interaction with ephrin-A3. These results suggest a novel mechanism that may contribute to cancer pathogenesis by attenuating the tumor suppressing effects of Eph receptor signaling pathways activated by ephrins in trans. PMID:24348920

  12. Molecular mechanisms of action of the soy isoflavones includes activation of promiscuous nuclear receptors. A review.

    Science.gov (United States)

    Ricketts, Marie-Louise; Moore, David D; Banz, William J; Mezei, Orsolya; Shay, Neil F

    2005-06-01

    Consumption of soy has been demonstrated to reduce circulating cholesterol levels, most notably reducing low-density lipoprotein (LDL) cholesterol levels in hypercholesterolemic individuals. The component or components that might be responsible for this effect is still a matter of debate or controversy among many researchers. Candidate agents include an activity of soy protein itself, bioactive peptides produced during the digestive process, or the soy isoflavones. Although soy intake may provide other health benefits including preventative or remediative effects on cancer, osteoporosis and symptoms of menopause, this review will focus on isoflavones as agents affecting lipid metabolism. Isoflavones were first discovered as a bioactive agent disrupting estrogen action in female sheep, thereby earning the often-used term 'phytoestrogens'. Subsequent work confirmed the ability of isoflavones to bind to estrogen receptors. Along with the cholesterol-lowering effect of soy intake, research that is more recent has pointed to a beneficial antidiabetic effect of soy intake, perhaps mediated by soy isoflavones. The two common categories of antidiabetic drugs acting on nuclear receptors known as peroxisome proliferator activated receptors (PPARs) are the fibrates and glitazones. We and others have recently asked the research question 'do the soy isoflavones have activities as either "phytofibrates" or "phytoglitazones"?' Such an activity should be able to be confirmed both in vivo and in vitro. In both the in vivo and in vitro cases, this action has indeed been confirmed. Further work suggests a possible action of isoflavones similar to the nonestrogenic ligands that bind the estrogen-related receptors (ERRs). Recently, these receptors have been demonstrated to contribute to lipolytic processes. Finally, evaluation of receptor activation studies suggests that thyroid receptor activation may provide additional clues explaining the metabolic action of isoflavones. The recent

  13. Activation of intracellular angiotensin AT₂ receptors induces rapid cell death in human uterine leiomyosarcoma cells.

    Science.gov (United States)

    Zhao, Yi; Lützen, Ulf; Fritsch, Jürgen; Zuhayra, Maaz; Schütze, Stefan; Steckelings, Ulrike M; Recanti, Chiara; Namsoleck, Pawel; Unger, Thomas; Culman, Juraj

    2015-05-01

    The presence of angiotensin type 2 (AT₂) receptors in mitochondria and their role in NO generation and cell aging were recently demonstrated in various human and mouse non-tumour cells. We investigated the intracellular distribution of AT₂ receptors including their presence in mitochondria and their role in the induction of apoptosis and cell death in cultured human uterine leiomyosarcoma (SK-UT-1) cells and control human uterine smooth muscle cells (HutSMC). The intracellular levels of the AT₂ receptor are low in proliferating SK-UT-1 cells but the receptor is substantially up-regulated in quiescent SK-UT-1 cells with high densities in mitochondria. Activation of the cell membrane AT₂ receptors by a concomitant treatment with angiotensin II and the AT₁ receptor antagonist, losartan, induces apoptosis but does not affect the rate of cell death. We demonstrate for the first time that the high-affinity, non-peptide AT₂ receptor agonist, Compound 21 (C21), penetrates the cell membrane of quiescent SK-UT-1 cells, activates intracellular AT₂ receptors and induces rapid cell death; approximately 70% of cells died within 24 h. The cells, which escaped cell death, displayed activation of the mitochondrial apoptotic pathway, i.e. down-regulation of the Bcl-2 protein, induction of the Bax protein and activation of caspase-3. All quiescent SK-UT-1 cells died within 5 days after treatment with a single dose of C21. C21 was devoid of cytotoxic effects in proliferating SK-UT-1 cells and in quiescent HutSMC. Our results point to a new, unique approach enabling the elimination non-cycling uterine leiomyosarcoma cells providing that they over-express the AT₂ receptor.

  14. Activation of peroxisome proliferator-activated receptor α in human endothelial cells increases plasminogen activator inhibitor type-1 expression

    Institute of Scientific and Technical Information of China (English)

    叶平; 胡晓晖; 刘永学; 赵亚力

    2003-01-01

    Objective To investigate the effect of peroxisome proliferator-activated receptors (PPARs) activators on plasminogen activator inhibitor 1 (PAI-1) expression in human umbilical vein endothelial cells and elucidate a possible mechanism.Methods Human umbilical vein endothelial cells (HUVECs) were obtained from normal fetus, and cultured conventionally. Then the HUVEC were exposed to fatty acids and prostaglandin J2 in varying concentrations with fresh media. RT-PCR and ELISA were used to determine the expression of PPAR and PAI-1 in HUVECs. Transient co-transfection of PAI-1 promoter and PPARα gene or PPARγ gene to ECV304 was performed.Results PPARα, PPARδ and PPARγ mRNA in HUVECs were detected by RT-PCR. Treatment of HUVECs with PPARα and PPARγ activators-linolenic acid, linoleic acid, oleic acid and prostaglandin J2, but not with stearic acid could augment PAI-I mRNA expression and protein secretion in a concentration-dependent manner. Proportional induction of PAI-1 promoter activity was observed through increasing amounts of PPARα DNA in HUVECs through a transient gene transfection assay, although the mRNA expression of the 3 subtypes of PPAR with their activators were not changed compared with controls.Conclusions HUVECs express PPARs. PPARs activators may increase PAI-1 expression in endothelial cells (EC). Although PPARs expression was not enhanced after being stimulated by their activators in EC, the functionally active PPARα is probably involved in regulating PAI-1 expression in EC.

  15. Angiotensin type 2-receptor (AT2R) activation induces hypotension in apolipoprotein E-deficient mice by activating peroxisome proliferator-activated receptor

    Science.gov (United States)

    Li, Ming; Tejada, Thor; Lambert, Jonathan P; Nicholson, Chad K; Yahiro, Eiji; Ambai, Vats T; Ali, Syeda F; Bradley, Eddie W; Graham, Robert M; Dell’Italia, Louis J; Calvert, John W; Naqvi, Nawazish

    2016-01-01

    Angiotensin II (Ang II) modulates blood pressure and atherosclerosis development through its vascular type-1 (AT1R) and type-2 (AT2R) receptors, which have opposing effects. AT2R activation produces hypotension, and is anti-atherogenic. Targeted overexpression of AT2Rs in vascular smooth muscle cells (VSMCs) indicates that these effects are due to increased nitric oxide (NO) generation. However, the role of endogenous VSMC AT2Rs in these events is unknown. Effect of 7-day low-dose Ang II-infusion (12 µg/kg/hr) on blood pressure was tested in 9-week-old apoE(-/-) mice fed a low or high cholesterol diet (LCD or HCD, respectively). Cardiac output was measured by echocardiography. Immunohistochemistry was performed to localize and quantify AT2Rs and p-Ser1177-endothelial nitric oxide synthase (eNOS) levels in the aortic arch. PD123319 and GW-9662 were used to selectively block the AT2R and peroxisome proliferator-activated receptor-γ (PPAR-γ), respectively. Ang II infusion decreased blood pressure by 12 mmHg (P LCD/apoE(-/-) mice without altering cardiac output; a response blocked by PD123319. Although, AT2R stimulation neither activated eNOS (p-Ser1177-eNOS) nor changed plasma NO metabolites, it caused an ~6-fold increase in VSMC PPAR-γ levels (P < 0.001) and the AT2R-mediated hypotension was abolished by GW-9662. AT2R-mediated hypotension was also inhibited by HCD, which selectively decreased VSMC AT2R expression by ~6-fold (P < 0.01). These findings suggest a novel pathway for the Ang II/AT2R-mediated hypotensive response that involves PPAR-γ, and is down regulated by a HCD. PMID:27679746

  16. Cloning and expression of the receptor for human urokinase plasminogen activator, a central molecule in cell surface, plasmin dependent proteolysis

    DEFF Research Database (Denmark)

    Roldan, A.L.; Cubellis, M.V.; Masucci, M.T.

    1990-01-01

    , and therefore the capacity of cells to migrate and invade neighboring tissues. We have isolated a 1.4 kb cDNA clone coding for the entire human uPAR. An oligonucleotide synthesized on the basis of the N-terminal sequence of the purified protein was used to screen a cDNA library made from SV40 transformed human......, a size very close to that of the cloned cDNA. Expression of the uPAR cDNA in mouse cells c