WorldWideScience

Sample records for activator ntrc1 structural

  1. Structural studies of the activation of the two component receiver domain NTRC by multidimensional heteronuclear NMR

    Energy Technology Data Exchange (ETDEWEB)

    Nohaile, Michael James [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry

    1996-05-01

    Multidimensional heteronuclear NMR spectroscopy was used to investigate the N-terminal domain of the transcriptional enhancer NTRC (NiTrogen Regulatory protein C). This domain belongs to the family of receiver domains of two-component regulatory systems involved in signal transduction. Phosphorylation of NTRC at D54 leads to an activated form of the molecule which stimulates transcription of genes involved in nitrogen regulation. Three and four dimensional NMR techniques were used to determine an intermediate resolution structure of the unphosphorylated, inactive form of the N-terminal domain of NTRC. The structure is comprised of five α-helices and a five-stranded β-sheet in a (β/α)5 topology. Analysis of the backbone dynamics of NTRC indicate that helix 4 and strand 5 are significantly more flexible than the rest of the secondary structure of the protein and that the loops making up the active site are flexible. The short lifetime of phospho-NTRC hampers the study of this form. However, conditions for determining the resonance assignments and, possibly, the three dimensional structure of phosphorylated NTRC have been obtained. Tentative assignments of the phosphorylated form indicate that the majority of the changes that NTRC experiences upon phosphorylation occur in helix 3, strand 4, helix 4, strand 5, and the loop between strand 5 and helix 5 (the 3445 face of NTRC) as well as near the site of phosphorylation. In order to examine a stable, activated form of the protein, constitutively active mutants of NTRC were investigated.

  2. The transcriptional activator NtrC controls the expression and activity of glutamine synthetase in Herbaspirillum seropedicae.

    Science.gov (United States)

    Persuhn, D C; Souza, E M; Steffens, M B; Pedrosa, F O; Yates, M G; Rigo, L U

    2000-11-15

    The role of the Ntr system in Herbaspirillum seropedicae was determined via ntrB and ntrC mutants. Three phenotypes were identified in these mutants: Nif(-), deficiency in growth using nitrate, and low glutamine synthetase (GS) activity. All phenotypes were restored by the plasmid pKRT1 containing the intact glnA, ntrB and ntrC genes of H. seropedicae. The promoter region of glnA was subcloned into a beta-galactosidase fusion vector and the results suggested that NtrC positively regulates the glnA promoter in response to low nitrogen. The H. seropedicae ntrC and ntrB mutant strains showed a deficiency of adenylylation/deadenylylation of GS, indicating that NtrC and NtrB are involved in both transcription and activity control of GS in this organism.

  3. Expression, purification, and DNA-binding activity of the solubilized NtrC protein of Herbaspirillum seropedicae.

    Science.gov (United States)

    Twerdochlib, Adriana L; Chubatsu, Leda S; Souza, Emanuel M; Pedrosa, Fábio O; Steffens, M Berenice R; Yates, M Geoffrey; Rigo, Liu U

    2003-07-01

    NtrC is a bacterial enhancer-binding protein (EBP) that activates transcription by the sigma54 RNA polymerase holoenzyme. NtrC has a three domain structure typical of EBP family. In Herbaspirillum seropedicae, an endophytic diazotroph, NtrC regulates several operons involved in nitrogen assimilation, including glnAntrBC. In order to over-express and purify the NtrC protein, DNA fragments containing the complete structural gene for the whole protein, and for the N-terminal+Central and Central+C-terminal domains were cloned into expression vectors. The NtrC and NtrC(N-terminal+Central) proteins were over-expressed as His-tag fusion proteins upon IPTG addition, solubilized using N-lauryl-sarcosyl and purified by metal affinity chromatography. The over-expressed His-tag-NtrC(Central+C-terminal) fusion protein was partially soluble and was also purified by affinity chromatography. DNA band-shift assays showed that the NtrC protein and the Central+C-terminal domains bound specifically to the H. seropedicae glnA promoter region. The C-terminal domain is presumably necessary for DNA-protein interaction and DNA-binding does not require a phosphorylated protein.

  4. Overexpression of Arabidopsis NADPH-dependent thioredoxin reductase C (AtNTRC) confers freezing and cold shock tolerance to plants

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Jeong Chan [National Institute of Ecology, 1210 Geumgang-ro, Maseo-myeon, Seocheon-gun 325-813 (Korea, Republic of); Lee, Sangmin [Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon (Korea, Republic of); Shin, Su Young [National Institute of Ecology, 1210 Geumgang-ro, Maseo-myeon, Seocheon-gun 325-813 (Korea, Republic of); Chae, Ho Byoung; Jung, Young Jun [Division of Applied Life Science - BK21+ program, PMBBRC, Gyeongsang National University, Jinju (Korea, Republic of); Jung, Hyun Suk [Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon (Korea, Republic of); Lee, Kyun Oh [Division of Applied Life Science - BK21+ program, PMBBRC, Gyeongsang National University, Jinju (Korea, Republic of); Lee, Jung Ro, E-mail: leejr73@nie.re.kr [National Institute of Ecology, 1210 Geumgang-ro, Maseo-myeon, Seocheon-gun 325-813 (Korea, Republic of); Department of Biochemistry and Biophysics, Texas A& M University, College Station, TX (United States); Lee, Sang Yeol, E-mail: sylee@gnu.ac.kr [Division of Applied Life Science - BK21+ program, PMBBRC, Gyeongsang National University, Jinju (Korea, Republic of)

    2015-08-07

    Overexpression of AtNTRC (AtNTRC{sup OE}) in Arabidopsis thaliana led to a freezing and cold stress tolerance, whereas a knockout mutant (atntrc) showed a stress-sensitive phenotype. Biochemical analyses showed that the recombinant AtNTRC proteins exhibited a cryoprotective activity for malate dehydrogenase and lactic dehydrogenase. Furthermore, conclusive evidence of its interaction with nucleic acids in vitro is provided here on the basis of gel shift and electron microscopy analysis. Recombinant AtNTRC efficiently protected RNA and DNA from RNase A and metal catalyzed oxidation damage, respectively. The C-terminal thioredoxin domain is required for the nucleic acid–protein complex formation. From these results, it can be hypothesized that AtNTRC, which is known to be an electron donor of peroxiredoxin, contributes the stability of macromolecules under cold stress. - Highlights: • AtNTRC has a cryoprotective activity in vitro. • Overexpression of AtNTRC increases tolerance to freezing and cold shock stresses. • Thioredoxin domain of AtNTRC protects nucleic acids in vitro. • AtNTRC inhibits protein aggregation under freezing stress in vitro.

  5. Overexpression of Arabidopsis NADPH-dependent thioredoxin reductase C (AtNTRC) confers freezing and cold shock tolerance to plants

    International Nuclear Information System (INIS)

    Moon, Jeong Chan; Lee, Sangmin; Shin, Su Young; Chae, Ho Byoung; Jung, Young Jun; Jung, Hyun Suk; Lee, Kyun Oh; Lee, Jung Ro; Lee, Sang Yeol

    2015-01-01

    Overexpression of AtNTRC (AtNTRC OE ) in Arabidopsis thaliana led to a freezing and cold stress tolerance, whereas a knockout mutant (atntrc) showed a stress-sensitive phenotype. Biochemical analyses showed that the recombinant AtNTRC proteins exhibited a cryoprotective activity for malate dehydrogenase and lactic dehydrogenase. Furthermore, conclusive evidence of its interaction with nucleic acids in vitro is provided here on the basis of gel shift and electron microscopy analysis. Recombinant AtNTRC efficiently protected RNA and DNA from RNase A and metal catalyzed oxidation damage, respectively. The C-terminal thioredoxin domain is required for the nucleic acid–protein complex formation. From these results, it can be hypothesized that AtNTRC, which is known to be an electron donor of peroxiredoxin, contributes the stability of macromolecules under cold stress. - Highlights: • AtNTRC has a cryoprotective activity in vitro. • Overexpression of AtNTRC increases tolerance to freezing and cold shock stresses. • Thioredoxin domain of AtNTRC protects nucleic acids in vitro. • AtNTRC inhibits protein aggregation under freezing stress in vitro

  6. Crystallization and preliminary X-ray analysis of the ATPase domain of the σ(54)-dependent transcription activator NtrC1 from Aquifex aeolicus bound to the ATP analog ADP-BeFx.

    Science.gov (United States)

    Sysoeva, Tatyana A; Yennawar, Neela; Allaire, Marc; Nixon, B Tracy

    2013-12-01

    One way that bacteria regulate the transcription of specific genes to adapt to environmental challenges is to use different σ factors that direct the RNA polymerase holoenzyme to distinct promoters. Unlike σ(70) RNA polymerase (RNAP), σ(54) RNAP is unable to initiate transcription without an activator: enhancer-binding protein (EBP). All EBPs contain one ATPase domain that belongs to the family of ATPases associated with various cellular activities (AAA+ ATPases). AAA+ ATPases use the energy of ATP hydrolysis to remodel different target macromolecules to perform distinct functions. These mechanochemical enzymes are known to form ring-shaped oligomers whose conformations strongly depend upon nucleotide status. Here, the crystallization of the AAA+ ATPase domain of an EBP from Aquifex aeolicus, NtrC1, in the presence of the non-hydrolyzable ATP analog ADP-BeFx is reported. X-ray diffraction data were collected from two crystals from two different protein fractions of the NtrC1 ATPase domain. Previously, this domain was co-crystallized with ADP and ATP, but the latter crystals were grown from the Walker B substitution variant E239A. Therefore, the new data sets are the first for a wild-type EBP ATPase domain co-crystallized with an ATP analog and they reveal a new crystal form. The resulting structure(s) will shed light on the mechanism of EBP-type transcription activators.

  7. Effect of an ntrC mutation on amino acid or urea utilization and on nitrogenase switch-off in Herbaspirillum seropedicae.

    Science.gov (United States)

    Gusso, Claudio L; de Souza, Emanuel M; Rigo, Liu Un; de Oliveira Pedrosa, Fábio; Yates, M G; de M Rego, Fabiane G; Klassen, Giseli

    2008-03-01

    Herbaspirillum seropedicae is a nitrogen-fixing bacterium that grows well with ammonium chloride or sodium nitrate as alternative single nitrogen sources but that grows more slowly with L-alanine, L-serine, L-proline, or urea. The ntrC mutant strain DCP286A was able to utilize only ammonium or urea of these nitrogen sources. The addition of 1 mmol.L-1 ammonium chloride to the nitrogen-fixing wild-type strain inhibited nitrogenase activity rapidly and completely. Urea was a less effective inhibitor; approximately 20% of nitrogenase activity remained 40 min after the addition of 1 mmol x L-1 urea. The effect of the ntrC mutation on nitrogenase inhibition (switch-off) was studied in strain DCP286A containing the constitutively expressed gene nifA of H. seropedicae. In this strain, nitrogenase inhibition by ammonium was completely abolished, but the addition of urea produced a reduction in nitrogenase activity similar to that of the wild-type strain. The results suggest that the NtrC protein is required for assimilation of nitrate and the tested amino acids by H. seropedicae. Furthermore, NtrC is also necessary for ammonium-induced switch-off of nitrogenase but is not involved in the mechanism of nitrogenase switch-off by urea.

  8. The transcriptional regulator NtrC controls glucose-6-phosphate dehydrogenase expression and polyhydroxybutyrate synthesis through NADPH availability in Herbaspirillum seropedicae.

    Science.gov (United States)

    Sacomboio, Euclides Nenga Manuel; Kim, Edson Yu Sin; Correa, Henrique Leonardo Ruchaud; Bonato, Paloma; Pedrosa, Fabio de Oliveira; de Souza, Emanuel Maltempi; Chubatsu, Leda Satie; Müller-Santos, Marcelo

    2017-10-19

    The NTR system is the major regulator of nitrogen metabolism in Bacteria. Despite its broad and well-known role in the assimilation, biosynthesis and recycling of nitrogenous molecules, little is known about its role in carbon metabolism. In this work, we present a new facet of the NTR system in the control of NADPH concentration and the biosynthesis of molecules dependent on reduced coenzyme in Herbaspirillum seropedicae SmR1. We demonstrated that a ntrC mutant strain accumulated high levels of polyhydroxybutyrate (PHB), reaching levels up to 2-fold higher than the parental strain. In the absence of NtrC, the activity of glucose-6-phosphate dehydrogenase (encoded by zwf) increased by 2.8-fold, consequently leading to a 2.1-fold increase in the NADPH/NADP + ratio. A GFP fusion showed that expression of zwf is likewise controlled by NtrC. The increase in NADPH availability stimulated the production of polyhydroxybutyrate regardless the C/N ratio in the medium. The mutant ntrC was more resistant to H 2 O 2 exposure and controlled the propagation of ROS when facing the oxidative condition, a phenotype associated with the increase in PHB content.

  9. The ntrB and ntrC Genes Are Involved in the Regulation of Poly-3-Hydroxybutyrate Biosynthesis by Ammonia in Azospirillum brasilense Sp7

    Science.gov (United States)

    Sun, Jun; Peng, Xuan; Van Impe, Jan; Vanderleyden, Jos

    2000-01-01

    Azospirillum brasilense Sp7 and its ntrA (rpoN), ntrBC, and ntrC mutants have been evaluated for their capabilities of poly-3-hydroxybutyrate (PHB) accumulation in media with high and low ammonia concentrations. It was observed that the ntrBC and ntrC mutants can produce PHB in both low- and high-C/N-ratio media, while no significant PHB production was observed for the wild type or the ntrA mutant in low-C/N-ratio media. Further investigation by fermentation analysis indicated that the ntrBC and ntrC mutants were able to grow and accumulate PHB simultaneously in the presence of a high concentration of ammonia in the medium, while little PHB was produced in the wild type and ntrA (rpoN) mutant during active growth phase. These results provide the first genetic evidence that the ntrB and ntrC genes are involved in the regulation of PHB synthesis by ammonia in A. brasilense Sp7. PMID:10618211

  10. Expression of the nifA gene of Herbaspirillum seropedicae: role of the NtrC and NifA binding sites and of the -24/-12 promoter element.

    Science.gov (United States)

    Souza, E M; Pedrosa, F O; Rigo, L U; Machado, H B; Yates, M G

    2000-06-01

    The nifA promoter of Herbaspirillum seropedicae contains potential NtrC, NifA and IHF binding sites together with a -12/-24 sigma(N)-dependent promoter. This region has now been investigated by deletion mutagenesis for the effect of NtrC and NifA on the expression of a nifA::lacZ fusion. A 5' end to the RNA was identified at position 641, 12 bp downstream from the -12/-24 promoter. Footprinting experiments showed that the G residues at positions -26 and -9 are hypermethylated, and that the region from -10 to +10 is partially melted under nitrogen-fixing conditions, confirming that this is the active nifA promoter. In H. seropedicae nifA expression from the sigma(N)-dependent promoter is repressed by fixed nitrogen but not by oxygen and is probably activated by the NtrC protein. NifA protein is apparently not essential for nifA expression but it can still bind the NifA upstream activating sequence.

  11. Structural studies of bacterial transcriptional regulatory proteins by multidimensional heteronuclear NMR

    Energy Technology Data Exchange (ETDEWEB)

    Volkman, Brian Finley [Univ. of California, Berkeley, CA (United States)

    1995-02-01

    Nuclear magnetic resonance spectroscopy was used to elucidate detailed structural information for peptide and protein molecules. A small peptide was designed and synthesized, and its three-dimensional structure was calculated using distance information derived from two-dimensional NMR measurements. The peptide was used to induce antibodies in mice, and the cross-reactivity of the antibodies with a related protein was analyzed with enzyme-linked immunosorbent assays. Two proteins which are involved in regulation of transcription in bacteria were also studied. The ferric uptake regulation (Fur) protein is a metal-dependent repressor which controls iron uptake in bacteria. Two- and three-dimensional NMR techniques, coupled with uniform and selective isotope labeling allowed the nearly complete assignment of the resonances of the metal-binding domain of the Fur protein. NTRC is a transcriptional enhancer binding protein whose N-terminal domain is a "receiver domain" in the family of "two-component" regulatory systems. Phosphorylation of the N-terminal domain of NTRC activates the initiation of transcription of aeries encoding proteins involved in nitrogen regulation. Three- and four-dimensional NMR spectroscopy methods have been used to complete the resonance assignments and determine the solution structure of the N-terminal receiver domain of the NTRC protein. Comparison of the solution structure of the NTRC receiver domain with the crystal structures of the homologous protein CheY reveals a very similar fold, with the only significant difference being the position of helix 4 relative to the rest of the protein. The determination of the structure of the NTRC receiver domain is the first step toward understanding a mechanism of signal transduction which is common to many bacterial regulatory systems.

  12. Design and Certification of Targets for Drop Tests at the NTRC Packaging Research Facility

    International Nuclear Information System (INIS)

    Ludwig, S.B.

    2003-01-01

    This report provides documentation of the design and certification of drop pad (targets) at the National Transportation Research Center (NTRC) Packaging Research Facility(PRF). Based on the evaluation performed, it has been demonstrated that the small (interior) drop pad (target) meets the regulatory definition of a flat, essentially unyielding, horizontal surface for packages weighing up to 3,150 lb (1,432 kg). The large (exterior) drop pad (target) meets the regulatory definition of a flat, essentially unyielding, horizontal surface for packages weighing up to 28,184 lb (12,811 kg)

  13. Overexpression of chloroplast NADPH-dependent thioredoxin reductase in Arabidopsis enhances leaf growth and elucidates in-vivo function of reductase and thioredoxin domains

    Directory of Open Access Journals (Sweden)

    Jouni eToivola

    2013-10-01

    Full Text Available Plant chloroplasts have versatile thioredoxin systems including two thioredoxin reductases and multiple types of thioredoxins. Plastid-localized NADPH-dependent thioredoxin reductase (NTRC contains both reductase (NTRd and thioredoxin (TRXd domains in a single polypeptide and forms homodimers. To study the action of NTRC and NTRC domains in vivo, we have complemented the ntrc knockout line of Arabidopsis with the wild type and full-length NTRC genes, in which 2-Cys motifs either in NTRd, or in TRXd were inactivated. The ntrc line was also transformed either with the truncated NTRd or TRXd alone. Overexpression of wild-type NTRC promoted plant growth by increasing leaf size and biomass yield of the rosettes. Complementation of the ntrc line with the full-length NTRC gene containing an active reductase but an inactive thioredoxin domain, or vice versa, recovered wild-type chloroplast phenotype and, partly, rosette biomass production, indicating that the NTRC domains are capable of interacting with other chloroplast thioredoxin systems. Overexpression of truncated NTRd or TRXd in ntrc background did not restore wild-type phenotype. Modelling of the 3-dimensional structure of the NTRC dimer indicates extensive interactions between the NTR domains and the TRX domains further stabilize the dimeric structure. The long linker region between the NTRd and TRXd, however, allows flexibility for the position of the TRXd in the dimer. Supplementation of the TRXd in the NTRC homodimer model by free chloroplast thioredoxins indicated that TRXf is the most likely partner to interact with NTRC. We propose that overexpression of NTRC promotes plant biomass yield both directly by stimulation of chloroplast biosynthetic and protected pathways controlled by NTRC and indirectly via free chloroplast thioredoxins. Our data indicate that overexpression of chloroplast thiol redox-regulator has a potential to increase biofuel yield in plant and algal species suitable for

  14. Role of the σ54 Activator Interacting Domain in Bacterial Transcription Initiation

    Energy Technology Data Exchange (ETDEWEB)

    Siegel, Alexander R. [Univ. of California, Berkeley, CA (United States); Wemmer, David E. [Univ. of California, Berkeley, CA (United States)

    2016-10-11

    Bacterial sigma factors are subunits of RNA polymerase that direct the holoenzyme to specific sets of promoters in the genome and are a central element of regulating transcription. Most polymerase holoenzymes open the promoter and initiate transcription rapidly after binding. However, polymerase containing the members of the σ54 family must be acted on by a transcriptional activator before DNA opening and initiation occur. A key domain in these transcriptional activators forms a hexameric AAA + ATPase that acts through conformational changes brought on by ATP hydrolysis. Contacts between the transcriptional activator and σ54 are primarily made through an N-terminal σ54 activator interacting domain (AID). To better understand this mechanism of bacterial transcription initiation, we characterized the σ54 AID by NMR spectroscopy and other biophysical methods and show that it is an intrinsically disordered domain in σ54 alone. In this paper, we identified a minimal construct of the Aquifex aeolicus σ54 AID that consists of two predicted helices and retains native-like binding affinity for the transcriptional activator NtrC1. Using the NtrC1 ATPase domain, bound with the non-hydrolyzable ATP analog ADP-beryllium fluoride, we studied the NtrC1–σ54 AID complex using NMR spectroscopy. We show that the σ54 AID becomes structured after associating with the core loops of the transcriptional activators in their ATP state and that the primary site of the interaction is the first predicted helix. Finally, understanding this complex, formed as the first step toward initiation, will help unravel the mechanism of σ54 bacterial transcription initiation.

  15. Project in determination of crystal structure of nitrogen fixation proteins from azospirilum brasiliense and herbaspirilum seropedicae by synchrotron x-ray diffraction

    International Nuclear Information System (INIS)

    Barbosa, Valma M.; Leggs, Luciana A.; Delboni, Luis F.; Chubatsu, LedaS.; Souza, Emanuel M.; Machado, Hidevaldo B.; Yates, Geoffrey M.; Pedrosa, Fabio O.

    1996-01-01

    Full text. Biological nitrogen fixation is essential for maintaining the nitrogen cycle on earth and of high importance for Brazilian agriculture. The nitrogenase enzyme system, which provides the biochemical machinery for nitrogen fixation, consists of two component metalloproteins, the molybdenumiron (Mo Fe) protein and the iron (Fe) protein. Nitrogen fixation is a very energy-intensive process, requiring around 16 moles of ATP for each mol of N 2 fixed (reduced). As a consequence, synthesis and activity of nitrogenase is tighty regulated at two levels: general and specific. The general level regulation is mediated by the ntr (nitrogen regulation) system. Two gene products are involved: the ntrB gene product (NtrB) is responsible for the activation of the ntrC gene product (NtrC) by phosphorylating a conserved Asp54, which activates the expression of the nifA gene. The nif specific control system is mediated by the NifA protein, which binds to a DNA specific sequence (UAS, Upstream Activator Sequence) and activates nif promoter transcriptions by RNA polymerase- α54 , following ATP hydrolysis. The aim of this project is to solve the crystal structure of dinitrogenase reductase (iron protein) and dinitrogenase (molybdenum-iron protein) from Azospirilim brasiliense and the regulatory proteins NifA from Herbaspirillum seropedicae and NtrC Azospirillum brasiliense. The three dimensional structure of the proteins involved in this project will allow a better understanding of the mechanism of biological nitrogen fixation. To this end, the data collection will probably be done at the LNLS facilities which will be available in the near future. (author)

  16. Project in determination of crystal structure of nitrogen fixation proteins from azospirilum brasiliense and herbaspirilum seropedicae by synchrotron x-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Valma M.; Leggs, Luciana A.; Delboni, Luis F.; Chubatsu, LedaS.; Souza, Emanuel M.; Machado, Hidevaldo B.; Yates, Geoffrey M.; Pedrosa, Fabio O. [Parana Univ., Curitiba, PR (Brazil). Dept. de Bioquimica

    1996-12-31

    Full text. Biological nitrogen fixation is essential for maintaining the nitrogen cycle on earth and of high importance for Brazilian agriculture. The nitrogenase enzyme system, which provides the biochemical machinery for nitrogen fixation, consists of two component metalloproteins, the molybdenumiron (Mo Fe) protein and the iron (Fe) protein. Nitrogen fixation is a very energy-intensive process, requiring around 16 moles of ATP for each mol of N{sub 2} fixed (reduced). As a consequence, synthesis and activity of nitrogenase is tighty regulated at two levels: general and specific. The general level regulation is mediated by the ntr (nitrogen regulation) system. Two gene products are involved: the ntrB gene product (NtrB) is responsible for the activation of the ntrC gene product (NtrC) by phosphorylating a conserved Asp54, which activates the expression of the nifA gene. The nif specific control system is mediated by the NifA protein, which binds to a DNA specific sequence (UAS, Upstream Activator Sequence) and activates nif promoter transcriptions by RNA polymerase-{sup {alpha}54}, following ATP hydrolysis. The aim of this project is to solve the crystal structure of dinitrogenase reductase (iron protein) and dinitrogenase (molybdenum-iron protein) from Azospirilim brasiliense and the regulatory proteins NifA from Herbaspirillum seropedicae and NtrC Azospirillum brasiliense. The three dimensional structure of the proteins involved in this project will allow a better understanding of the mechanism of biological nitrogen fixation. To this end, the data collection will probably be done at the LNLS facilities which will be available in the near future. (author)

  17. Comparative molecular modeling study of Arabidopsis NADPH-dependent thioredoxin reductase and its hybrid protein.

    Directory of Open Access Journals (Sweden)

    Yuno Lee

    Full Text Available 2-Cys peroxiredoxins (Prxs play important roles in the protection of chloroplast proteins from oxidative damage. Arabidopsis NADPH-dependent thioredoxin reductase isotype C (AtNTRC was identified as efficient electron donor for chloroplastic 2-Cys Prx-A. There are three isotypes (A, B, and C of thioredoxin reductase (TrxR in Arabidopsis. AtNTRA contains only TrxR domain, but AtNTRC consists of N-terminal TrxR and C-terminal thioredoxin (Trx domains. AtNTRC has various oligomer structures, and Trx domain is important for chaperone activity. Our previous experimental study has reported that the hybrid protein (AtNTRA-(Trx-D, which was a fusion of AtNTRA and Trx domain from AtNTRC, has formed variety of structures and shown strong chaperone activity. But, electron transfer mechanism was not detected at all. To find out the reason of this problem with structural basis, we performed two different molecular dynamics (MD simulations on AtNTRC and AtNTRA-(Trx-D proteins with same cofactors such as NADPH and flavin adenine dinucleotide (FAD for 50 ns. Structural difference has found from superimposition of two structures that were taken relatively close to average structure. The main reason that AtNTRA-(Trx-D cannot transfer the electron from TrxR domain to Trx domain is due to the difference of key catalytic residues in active site. The long distance between TrxR C153 and disulfide bond of Trx C387-C390 has been observed in AtNTRA-(Trx-D because of following reasons: i unstable and unfavorable interaction of the linker region, ii shifted Trx domain, and iii different or weak interface interaction of Trx domains. This study is one of the good examples for understanding the relationship between structure formation and reaction activity in hybrid protein. In addition, this study would be helpful for further study on the mechanism of electron transfer reaction in NADPH-dependent thioredoxin reductase proteins.

  18. Structural studies of conformational changes of proteins upon phosphorylation: Structures of activated CheY, CheY-N16-FliM complex, and AAA + ATPase domain of NtrC1 in both inactive and active states

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seok-Yong [Univ. of California, Berkeley, CA (United States)

    2003-04-10

    Protein phosphorylation is a general mechanism for signal transduction as well as regulation of cellular function. Unlike phosphorylation in eukaryotic systems that uses Ser/Thr for the sites of modification, two-component signal transduction systems, which are prevalent in bacteria, archea, and lower eukaryotes, use an aspartate as the site of phosphorylation. Two-component systems comprise a histidine kinase and a receiver domain. The conformational change of the receiver domain upon phosphorylation leads to signal transfer to the downstream target, a process that had not been understood well at the molecular level. The transient nature of the phospho-Asp bond had made structural studies difficult. The discovery of an excellent analogue for acylphosphate, BeF3-, enabled structural study of activated receiver domains. The structure of activated Chemotaxis protein Y (CheY) was determined both by NMR spectroscopy and X-ray crystallography. These structures revealed the molecular basis of the conformational change that is coupled to phosphorylation. Phosphorylation of the conserved Asp residue in the active site allows hydrogen bonding of the T87 Oγ to phospho-aspartate, which in turn leads to the rotation of Y106 into the ''in'' position (termed Y-T coupling). The structure of activated CheY complexed with the 16 N-terminal residues of FliM (N16-FliM), its target, was also determined by X-ray crystallography and confirmed the proposed mechanism of activation (Y-T coupling). First, N16-FliM binds to the region on CheY that undergoes a significant conformational change. Second, the ''in'' position of Y106 presents a better binding surface for FliM because the sidechain of Y106 in the inactive form of CheY (''out'' position) sterically interferes with binding of N16-FliM. In addition to confirmation of Y-T coupling, the structure of the activated CheY-N16-FliM complex suggested that the

  19. Thioredoxin and NADPH-Dependent Thioredoxin Reductase C Regulation of Tetrapyrrole Biosynthesis.

    Science.gov (United States)

    Da, Qingen; Wang, Peng; Wang, Menglong; Sun, Ting; Jin, Honglei; Liu, Bing; Wang, Jinfa; Grimm, Bernhard; Wang, Hong-Bin

    2017-10-01

    In chloroplasts, thioredoxin (TRX) isoforms and NADPH-dependent thioredoxin reductase C (NTRC) act as redox regulatory factors involved in multiple plastid biogenesis and metabolic processes. To date, less is known about the functional coordination between TRXs and NTRC in chlorophyll biosynthesis. In this study, we aimed to explore the potential functions of TRX m and NTRC in the regulation of the tetrapyrrole biosynthesis (TBS) pathway. Silencing of three genes, TRX m1 , TRX m2 , and TRX m4 ( TRX ms ), led to pale-green leaves, a significantly reduced 5-aminolevulinic acid (ALA)-synthesizing capacity, and reduced accumulation of chlorophyll and its metabolic intermediates in Arabidopsis ( Arabidopsis thaliana ). The contents of ALA dehydratase, protoporphyrinogen IX oxidase, the I subunit of Mg-chelatase, Mg-protoporphyrin IX methyltransferase (CHLM), and NADPH-protochlorophyllide oxidoreductase were decreased in triple TRX m- silenced seedlings compared with the wild type, although the transcript levels of the corresponding genes were not altered significantly. Protein-protein interaction analyses revealed a physical interaction between the TRX m isoforms and CHLM. 4-Acetoamido-4-maleimidylstilbene-2,2-disulfonate labeling showed the regulatory impact of TRX ms on the CHLM redox status. Since CHLM also is regulated by NTRC (Richter et al., 2013), we assessed the concurrent functions of TRX m and NTRC in the control of CHLM. Combined deficiencies of three TRX m isoforms and NTRC led to a cumulative decrease in leaf pigmentation, TBS intermediate contents, ALA synthesis rate, and CHLM activity. We discuss the coordinated roles of TRX m and NTRC in the redox control of CHLM stability with its corollary activity in the TBS pathway. © 2017 American Society of Plant Biologists. All Rights Reserved.

  20. The glnAntrBC operon of Herbaspirillum seropedicae is transcribed by two oppositely regulated promoters upstream of glnA.

    Science.gov (United States)

    Schwab, Stefan; Souza, Emanuel M; Yates, Marshall G; Persuhn, Darlene C; Steffens, M Berenice R; Chubatsu, Leda S; Pedrosa, Fábio O; Rigo, Liu U

    2007-01-01

    Herbaspirillum seropedicae is an endophytic bacterium that fixes nitrogen under microaerophilic conditions. The putative promoter sequences glnAp1 (sigma70-dependent) and glnAp2 (sigma54), and two NtrC-binding sites were identified upstream from the glnA, ntrB and ntrC genes of this microorganism. To study their transcriptional regulation, we used lacZ fusions to the H. seropedicae glnA gene, and the glnA-ntrB and ntrB-ntrC intergenic regions. Expression of glnA was up-regulated under low ammonium, but no transcription activity was detected from the intergenic regions under any condition tested, suggesting that glnA, ntrB and ntrC are co-transcribed from the promoters upstream of glnA. Ammonium regulation was lost in the ntrC mutant strain. A point mutation was introduced in the conserved -25/-24 dinucleotide (GG-->TT) of the putative sigma54-dependent promoter (glnAp2). Contrary to the wild-type promoter, glnA expression with the mutant glnAp2 promoter was repressed in the wild-type strain under low ammonium levels, but this repression was abolished in an ntrC background. Together our results indicate that the H. seropedicae glnAntrBC operon is regulated from two functional promoters upstream from glnA, which are oppositely regulated by the NtrC protein.

  1. Human exonuclease 1 (EXO1) activity characterization and its function on FLAP structures

    DEFF Research Database (Denmark)

    Keijzers, Guido; Bohr, Vilhelm A; Juel Rasmussen, Lene

    2015-01-01

    structures, we determined factors essential for the thermodynamic stability of EXO1. We show that enzymatic activity and stability of EXO1 on DNA is modulated by temperature. By characterization of EXO1 flap activity using various DNA flap substrates, we show that EXO1 has a strong capacity for degrading...... double stranded DNA and has a modest endonuclease or 5' flap activity. Furthermore, we report novel mechanistic insights into the processing of flap structures, showing that EXO1 preferentially cleaves one nucleotide inwards in a double stranded region of a forked and nicked DNA flap substrates...

  2. Chloroplast NADPH-Dependent Thioredoxin Reductase from Chlorella vulgaris Alleviates Environmental Stresses in Yeast Together with 2-Cys Peroxiredoxin

    Science.gov (United States)

    Machida, Takeshi; Ishibashi, Akiko; Kirino, Ai; Sato, Jun-ichi; Kawasaki, Shinji; Niimura, Youichi; Honjoh, Ken-ichi; Miyamoto, Takahisa

    2012-01-01

    Chloroplast NADPH-dependent thioredoxin reductase (NTRC) catalyzes the reduction of 2-Cys peroxiredoxin (2-Cys Prx) and, thus, probably functions as an antioxidant system. The functions of the enzyme in oxidative and salt stresses have been reported previously. We have previously identified and characterized NTRC in Chlorella vulgaris. In the present study, we isolated a full-length cDNA clone encoding 2-Cys Prx from C. vulgaris and investigated the involvement of Chlorella NTRC/2-Cys Prx system in several environmental stress tolerances by using yeast as a eukaryotic model. Deduced Chlorella 2-Cys Prx was homologous to those of chloroplast 2-Cys Prxs from plants, and two conserved cysteine residues were found in the deduced sequence. Enzyme assay showed that recombinant mature C. vulgaris NTRC (mCvNTRC) transferred electrons from NADPH to recombinant mature C. vulgaris 2-Cys Prx (mCvPrx), and mCvPrx decomposed hydrogen peroxide, tert-butyl hydroperoxide, and peroxynitrite by cooperating with mCvNTRC. Based on the results, the mCvNTRC/mCvPrx antioxidant system was identified in Chlorella. The antioxidant system genes were expressed in yeast separately or coordinately. Stress tolerances of yeast against freezing, heat, and menadione-induced oxidative stresses were significantly improved by expression of mCvNTRC, and the elevated tolerances were more significant when both mCvNTRC and mCvPrx were co-expressed. Our results reveal a novel feature of NTRC: it functions as an antioxidant system with 2-Cys Prx in freezing and heat stress tolerances. PMID:23029353

  3. Structural basis of divergent cyclin-dependent kinase activation by Spy1/RINGO proteins

    Energy Technology Data Exchange (ETDEWEB)

    McGrath, Denise A.; Fifield, Bre-Anne; Marceau, Aimee H.; Tripathi, Sarvind; Porter, Lisa A.; Rubin, Seth M. (UCSC); (Windsor)

    2017-06-30

    Cyclin-dependent kinases (Cdks) are principal drivers of cell division and are an important therapeutic target to inhibit aberrant proliferation. Cdk enzymatic activity is tightly controlled through cyclin interactions, posttranslational modifications, and binding of inhibitors such as the p27 tumor suppressor protein. Spy1/RINGO (Spy1) proteins bind and activate Cdk but are resistant to canonical regulatory mechanisms that establish cell-cycle checkpoints. Cancer cells exploit Spy1 to stimulate proliferation through inappropriate activation of Cdks, yet the mechanism is unknown. We have determined crystal structures of the Cdk2-Spy1 and p27-Cdk2-Spy1 complexes that reveal how Spy1 activates Cdk. We find that Spy1 confers structural changes to Cdk2 that obviate the requirement of Cdk activation loop phosphorylation. Spy1 lacks the cyclin-binding site that mediates p27 and substrate affinity, explaining why Cdk-Spy1 is poorly inhibited by p27 and lacks specificity for substrates with cyclin-docking sites. We identify mutations in Spy1 that ablate its ability to activate Cdk2 and to proliferate cells. Our structural description of Spy1 provides important mechanistic insights that may be utilized for targeting upregulated Spy1 in cancer.

  4. Activator Protein-1: redox switch controlling structure and DNA-binding

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Zhou; Machius, Mischa; Nestler, Eric J.; Rudenko, Gabby (Texas-MED); (Icahn)

    2017-09-07

    The transcription factor, activator protein-1 (AP-1), binds to cognate DNA under redox control; yet, the underlying mechanism has remained enigmatic. A series of crystal structures of the AP-1 FosB/JunD bZIP domains reveal ordered DNA-binding regions in both FosB and JunD even in absence DNA. However, while JunD is competent to bind DNA, the FosB bZIP domain must undergo a large conformational rearrangement that is controlled by a ‘redox switch’ centered on an inter-molecular disulfide bond. Solution studies confirm that FosB/JunD cannot undergo structural transition and bind DNA when the redox-switch is in the ‘OFF’ state, and show that the mid-point redox potential of the redox switch affords it sensitivity to cellular redox homeostasis. The molecular and structural studies presented here thus reveal the mechanism underlying redox-regulation of AP-1 Fos/Jun transcription factors and provide structural insight for therapeutic interventions targeting AP-1 proteins.

  5. Structure prediction and activity analysis of human heme oxygenase-1 and its mutant.

    Science.gov (United States)

    Xia, Zhen-Wei; Zhou, Wen-Pu; Cui, Wen-Jun; Zhang, Xue-Hong; Shen, Qing-Xiang; Li, Yun-Zhu; Yu, Shan-Chang

    2004-08-15

    To predict wild human heme oxygenase-1 (whHO-1) and hHO-1 His25Ala mutant (delta hHO-1) structures, to clone and express them and analyze their activities. Swiss-PdbViewer and Antheprot 5.0 were used for the prediction of structure diversity and physical-chemical changes between wild and mutant hHO-1. hHO-1 His25Ala mutant cDNA was constructed by site-directed mutagenesis in two plasmids of E. coli DH5alpha. Expression products were purified by ammonium sulphate precipitation and Q-Sepharose Fast Flow column chromatography, and their activities were measured. rHO-1 had the structure of a helical fold with the heme sandwiched between heme-heme oxygenase-1 helices. Bond angle, dihedral angle and chemical bond in the active pocket changed after Ala25 was replaced by His25, but Ala25 was still contacting the surface and the electrostatic potential of the active pocket was negative. The mutated enzyme kept binding activity to heme. Two vectors pBHO-1 and pBHO-1(M) were constructed and expressed. Ammonium sulphate precipitation and column chromatography yielded 3.6-fold and 30-fold higher purities of whHO-1, respectively. The activity of delta hHO-1 was reduced 91.21% after mutation compared with whHO-1. Proximal His25 ligand is crucial for normal hHO-1 catalytic activity. delta hHO-1 is deactivated by mutation but keeps the same binding site as whHO-1. delta hHO-1 might be a potential inhibitor of whHO-1 for preventing neonatal hyperbilirubinemia.

  6. Structural analysis and antimicrobial activity of 2[1H]-pyrimidinethione/selenone derivatives

    Science.gov (United States)

    Żesławska, Ewa; Korona-Głowniak, Izabela; Szczesio, Małgorzata; Olczak, Andrzej; Żylewska, Alicja; Tejchman, Waldemar; Malm, Anna

    2017-08-01

    Four new crystal structures of sulfur and selenium analogues of 2[1H]-pyrimidinone derivatives were determined with the use of X-ray diffraction method. The molecular geometry and intermolecular interactions of the investigated molecules were analyzed in order to find the structural features and geometrical parameters, which can be responsible for antimicrobial activities. The influence of chalcogen substituents (sulfur and selenium) on the crystal packing was also studied. The main differences in the molecular structures exist in mutual arrangement of two aromatic rings. The intermolecular interactions in all investigated compounds are similar. Furthermore, the in vitro antibacterial and antifungal activities for these compounds were evaluated. Preliminary investigations have identified two highly potent antibacterial compounds containing selenium atom, which display selectivity towards staphylococci and micrococci. This selectivity was not observed for a control compound used as a drug, namely vancomycin. These compounds possess also good antifungal activity. This is the first report of biological activities of 2[1H]-pyrimidineselenone derivatives.

  7. Synthesis, Antifungal Activity and Structure-Activity Relationships of Novel 3-(Difluoromethyl)-1-methyl-1H-pyrazole-4-carboxylic Acid Amides.

    Science.gov (United States)

    Du, Shijie; Tian, Zaimin; Yang, Dongyan; Li, Xiuyun; Li, Hong; Jia, Changqing; Che, Chuanliang; Wang, Mian; Qin, Zhaohai

    2015-05-08

    A series of novel 3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carboxylic acid amides were synthesized and their activities were tested against seven phytopathogenic fungi by an in vitro mycelia growth inhibition assay. Most of them displayed moderate to excellent activities. Among them N-(2-(5-bromo-1H-indazol-1-yl)phenyl)-3-(difluoro-methyl)-1-methyl-1H-pyrazole-4-carboxamide (9m) exhibited higher antifungal activity against the seven phytopathogenic fungi than boscalid. Topomer CoMFA was employed to develop a three-dimensional quantitative structure-activity relationship model for the compounds. In molecular docking, the carbonyl oxygen atom of 9m could form hydrogen bonds towards the hydroxyl of TYR58 and TRP173 on SDH.

  8. Synthesis, Antifungal Activity and Structure-Activity Relationships of Novel 3-(Difluoromethyl-1-methyl-1H-pyrazole-4-carboxylic Acid Amides

    Directory of Open Access Journals (Sweden)

    Shijie Du

    2015-05-01

    Full Text Available A series of novel 3-(difluoromethyl-1-methyl-1H-pyrazole-4-carboxylic acid amides were synthesized and their activities were tested against seven phytopathogenic fungi by an in vitro mycelia growth inhibition assay. Most of them displayed moderate to excellent activities. Among them N-(2-(5-bromo-1H-indazol-1-ylphenyl-3-(difluoro-methyl-1-methyl-1H-pyrazole-4-carboxamide (9m exhibited higher antifungal activity against the seven phytopathogenic fungi than boscalid. Topomer CoMFA was employed to develop a three-dimensional quantitative structure-activity relationship model for the compounds. In molecular docking, the carbonyl oxygen atom of 9m could form hydrogen bonds towards the hydroxyl of TYR58 and TRP173 on SDH.

  9. Activator Protein-1: redox switch controlling structure and DNA-binding.

    Science.gov (United States)

    Yin, Zhou; Machius, Mischa; Nestler, Eric J; Rudenko, Gabby

    2017-11-02

    The transcription factor, activator protein-1 (AP-1), binds to cognate DNA under redox control; yet, the underlying mechanism has remained enigmatic. A series of crystal structures of the AP-1 FosB/JunD bZIP domains reveal ordered DNA-binding regions in both FosB and JunD even in absence DNA. However, while JunD is competent to bind DNA, the FosB bZIP domain must undergo a large conformational rearrangement that is controlled by a 'redox switch' centered on an inter-molecular disulfide bond. Solution studies confirm that FosB/JunD cannot undergo structural transition and bind DNA when the redox-switch is in the 'OFF' state, and show that the mid-point redox potential of the redox switch affords it sensitivity to cellular redox homeostasis. The molecular and structural studies presented here thus reveal the mechanism underlying redox-regulation of AP-1 Fos/Jun transcription factors and provide structural insight for therapeutic interventions targeting AP-1 proteins. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Characterization of structure and activity of garlic peroxidase (POX(1B)).

    Science.gov (United States)

    El Ichi, Sarra; Miodek, Anna; Sauriat-Dorizon, Hélène; Mahy, Jean-Pierre; Henry, Céline; Marzouki, Mohamed Nejib; Korri-Youssoufi, Hafsa

    2011-01-01

    Structural characterization and study of the activity of new POX(1B) protein from garlic which has a high peroxidase activity and can be used as a biosensor for the detection of hydrogen peroxide and phenolic compounds were performed and compared with the findings for other heme peroxidases. The structure-function relationship was investigated by analysis of the spectroscopic properties and correlated to the structure determined by a new generation of high-performance hybrid mass spectrometers. The reactivity of the enzyme was analyzed by studies of the redox activity toward various ligands and the reactivity with various substrates. We demonstrated that, in the case of garlic peroxidase, the heme group is pentacoordinated, and has an histidine as a proximal ligand. POX(1B) exhibited a high affinity for hydrogen peroxide as well as various reducing cosubstrates. In addition, high enzyme specificity was demonstrated. The k(cat) and K(M) values were 411 and 400 mM(-1) s(-1) for 3,3',5,5'-tetramethylbenzidine and 2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid), respectively. Furthermore, the reduction of nitro compounds in the presence of POX(1B) was demonstrated by iron(II) nitrosoalkane complex assay. In addition, POX(1B) showed a great potential for application for drug metabolism since its ability to react with 1-nitrohexane in the presence of sodium dithionite was demonstrated by the appearance of a characteristic Soret band at 411 nm. The high catalytic efficiency obtained in the case of the new garlic peroxidase (POX(1B)) is suitable for the monitoring of different analytes and biocatalysis.

  11. Control of autogenous activation of Herbaspirillum seropedicae nifA promoter by the IHF protein.

    Science.gov (United States)

    Wassem, Roseli; Pedrosa, Fábio O; Yates, Marshall G; Rego, Fabiane G M; Chubatsu, Leda S; Rigo, Liu U; Souza, Emanuel M

    2002-07-02

    Analysis of the expression of the Herbaspirillum seropedicae nifA promoter in Escherichia coli and Herbaspirillum seropedicae, showed that nifA expression is primarily dependent on NtrC but also required NifA for maximal expression under nitrogen-fixing conditions. Deletion of the IHF (integration host factor)-binding site produced a promoter with two-fold higher activity than the native promoter in the H. seropedicae wild-type strain but not in a nifA strain, indicating that IHF controls NifA auto-activation. IHF is apparently required to prevent overexpression of the NifA protein via auto-activation under nitrogen-fixing conditions in H. seropedicae.

  12. NADPH-dependent thioredoxin reductase C plays a role in nonhost disease resistance against Pseudomonas syringae pathogens by regulating chloroplast-generated reactive oxygen species

    Directory of Open Access Journals (Sweden)

    Yasuhiro Ishiga

    2016-04-01

    Full Text Available Chloroplasts are cytoplasmic organelles for photosynthesis in eukaryotic cells. In addition, recent studies have shown that chloroplasts have a critical role in plant innate immunity against invading pathogens. Hydrogen peroxide is a toxic by-product from photosynthesis, which also functions as a signaling compound in plant innate immunity. Therefore, it is important to regulate the level of hydrogen peroxide in response to pathogens. Chloroplasts maintain components of the redox detoxification system including enzymes such as 2-Cys peroxiredoxins (2-Cys Prxs, and NADPH-dependent thioredoxin reductase C (NTRC. However, the significance of 2-Cys Prxs and NTRC in the molecular basis of nonhost disease resistance is largely unknown. We evaluated the roles of Prxs and NTRC using knock-out mutants of Arabidopsis in response to nonhost Pseudomonas syringae pathogens. Plants lacking functional NTRC showed localized cell death (LCD accompanied by the elevated accumulation of hydrogen peroxide in response to nonhost pathogens. Interestingly, the Arabidopsis ntrc mutant showed enhanced bacterial growth and disease susceptibility of nonhost pathogens. Furthermore, the expression profiles of the salicylic acid (SA and jasmonic acid (JA-mediated signaling pathways and phytohormone analyses including SA and JA revealed that the Arabidopsis ntrc mutant shows elevated JA-mediated signaling pathways in response to nonhost pathogen. These results suggest the critical role of NTRC in plant innate immunity against nonhost P. syringae pathogens.

  13. NtrC-dependent control of exopolysaccharide synthesis and motility in Burkholderia cenocepacia H111.

    Directory of Open Access Journals (Sweden)

    Yilei Liu

    Full Text Available Burkholderia cenocepacia is a versatile opportunistic pathogen that survives in a wide variety of environments, which can be limited in nutrients such as nitrogen. We have previously shown that the sigma factor σ54 is involved in the control of nitrogen assimilation and virulence in B. cenocepacia H111. In this work, we investigated the role of the σ54 enhancer binding protein NtrC in response to nitrogen limitation and in the pathogenicity of H111. Of 95 alternative nitrogen sources tested the ntrC showed defects in the utilisation of nitrate, urea, L-citrulline, acetamide, DL-lactamide, allantoin and parabanic acid. RNA-Seq and phenotypic analyses of an ntrC mutant strain showed that NtrC positively regulates two important phenotypic traits: exopolysaccharide (EPS production and motility. However, the ntrC mutant was not attenuated in C. elegans virulence.

  14. NADPH-thioredoxin reductase C mediates the response to oxidative stress and thermotolerance in the cyanobacterium Anabaena sp. PCC7120.

    Directory of Open Access Journals (Sweden)

    ANA MARÍA SÁNCHEZ-RIEGO

    2016-08-01

    Full Text Available NTRC (NADPH-thioredoxin reductase C is a bimodular enzyme composed of an NADPH-thioredoxin reductase and a thioredoxin domain extension in the same protein. In plants, NTRC has been described to be involved in the protection of the chloroplast against oxidative stress damage through reduction of the 2-Cys peroxiredoxin (2-Cys Prx as well as through other functions related to redox enzyme regulation. In cyanobacteria, the Anabaena NTRC has been characterized in vitro, however nothing was known about its in vivo function. In order to study that, we have generated the first knockout mutant strain (∆ntrC, apart from the previously described in Arabidopsis. Detailed characterization of this strain reveals a differential sensitivity to oxidative stress treatments with respect to the wild-type Anabaena strain, including a higher level of ROS (reactive oxygen species in normal growth conditions. In the mutant strain, different oxidative stress treatments such as hydrogen peroxide, methyl-viologen or high light irradiance provoke an increase in the expression of genes related to ROS detoxification, including AnNTRC and peroxiredoxin genes, with a concomitant increase in the amount of AnNTRC and 2-Cys Prx. Moreover, the role of AnNTRC in the antioxidant response is confirmed by the observation of a pronounced overoxidation of the 2-Cys Prx and a time-delay recovery of the reduced form of this protein upon oxidative stress treatments. Our results suggest the participation of this enzyme in the peroxide detoxification in Anabaena. In addition, we describe the role of Anabaena NTRC in thermotolerance, by the appearance of high molecular mass AnNTRC complexes, showing that the mutant strain is more sensitive to high temperature treatments.

  15. Copper(II) complexes with 4-(1H-1, 2, 4-trizol-1-ylmethyl) benzoic acid: Syntheses, crystal structures and antifungal activities

    International Nuclear Information System (INIS)

    Xiong, Pingping; Li, Jie; Bu, Huaiyu; Wei, Qing; Zhang, Ruolin; Chen, Sanping

    2014-01-01

    Reaction of Cu(II) with an asymmetric semi-rigid organic ligand 4-(1H-1, 2, 4-trizol-1-ylmethyl) benzoic acid (HL), yielded five compounds, [Cu 0.5 L] n (1), [Cu(HL) 2 Cl 2 ] n (2), [Cu(HL) 2 Cl 2 (H 2 O)] (3), [Cu(L) 2 (H 2 O)] n (4) and [Cu(L)(phen)(HCO 2 )] n (5), which have been fully characterized by infrared spectroscopy, elemental analysis, and single-crystal X-ray diffraction. As for compounds 1, 2 and 5, Cu(II) is bridged through HL, Cl - , and formic acid, respectively, featuring 1D chain-structure. In compound 3, Cu(II) with hexahedral coordination sphere is assembled through hydrogen-bonding into 3D supramolecular framework. In compound 4, 1D chain units –Cu–O–Cu–O– are ligand-bridged into a 3D network. All compounds were tested on fungi (Fusarium graminearum, Altemaria solani, Macrophoma kawatsukai, Alternaria alternata and Colletotrichum gloeosporioides). Compound 1 exhibits a better antifungal effect compared to other compounds. An effect of structure on the antifungal activity has also been correlated. - Graphical abstract: Copper(II) compounds with 4-(1H-1, 2, 4-trizol-1-ylmethyl) benzoic acid, were prepared, structurally characterized and investigated for antifungal activity. - Highlights: • The title compounds formed by thermodynamics and thermokinetics. • The five compounds show higher inhibition percentage than reactants. • The structure effect on the antifungal activity

  16. Conserved structural chemistry for incision activity in structurally non-homologous apurinic/apyrimidinic endonuclease APE1 and endonuclease IV DNA repair enzymes.

    Energy Technology Data Exchange (ETDEWEB)

    Tsutakawa, Susan E.; Shin, David S.; Mol, Clifford D.; Izum, Tadahide; Arvai, Andrew S.; Mantha, Anil K.; Szczesny, Bartosz; Ivanov, Ivaylo N.; Hosfield, David J.; Maiti, Buddhadev; Pique, Mike E.; Frankel, Kenneth A.; Hitomi, Kenichi; Cunningham, Richard P.; Mitra, Sankar; Tainer, John A.

    2013-03-22

    Non-coding apurinic/apyrimidinic (AP) sites in DNA form spontaneously and as DNA base excision repair intermediates are the most common toxic and mutagenic in vivo DNA lesion. For repair, AP sites must be processed by 5' AP endonucleases in initial stages of base repair. Human APE1 and bacterial Nfo represent the two conserved 5' AP endonuclease families in the biosphere; they both recognize AP sites and incise the phosphodiester backbone 5' to the lesion, yet they lack similar structures and metal ion requirements. Here, we determined and analyzed crystal structures of a 2.4 ? resolution APE1-DNA product complex with Mg(2+) and a 0.92 Nfo with three metal ions. Structural and biochemical comparisons of these two evolutionarily distinct enzymes characterize key APE1 catalytic residues that are potentially functionally similar to Nfo active site components, as further tested and supported by computational analyses. We observe a magnesium-water cluster in the APE1 active site, with only Glu-96 forming the direct protein coordination to the Mg(2+). Despite differences in structure and metal requirements of APE1 and Nfo, comparison of their active site structures surprisingly reveals strong geometric conservation of the catalytic reaction, with APE1 catalytic side chains positioned analogously to Nfo metal positions, suggesting surprising functional equivalence between Nfo metal ions and APE1 residues. The finding that APE1 residues are positioned to substitute for Nfo metal ions is supported by the impact of mutations on activity. Collectively, the results illuminate the activities of residues, metal ions, and active site features for abasic site endonucleases.

  17. Structure of the human protein kinase MPSK1 reveals an atypical activation loop architecture.

    Science.gov (United States)

    Eswaran, Jeyanthy; Bernad, Antonio; Ligos, Jose M; Guinea, Barbara; Debreczeni, Judit E; Sobott, Frank; Parker, Sirlester A; Najmanovich, Rafael; Turk, Benjamin E; Knapp, Stefan

    2008-01-01

    The activation segment of protein kinases is structurally highly conserved and central to regulation of kinase activation. Here we report an atypical activation segment architecture in human MPSK1 comprising a beta sheet and a large alpha-helical insertion. Sequence comparisons suggested that similar activation segments exist in all members of the MPSK1 family and in MAST kinases. The consequence of this nonclassical activation segment on substrate recognition was studied using peptide library screens that revealed a preferred substrate sequence of X-X-P/V/I-phi-H/Y-T*-N/G-X-X-X (phi is an aliphatic residue). In addition, we identified the GTPase DRG1 as an MPSK1 interaction partner and specific substrate. The interaction domain in DRG1 was mapped to the N terminus, leading to recruitment and phosphorylation at Thr100 within the GTPase domain. The presented data reveal an atypical kinase structural motif and suggest a role of MPSK1 regulating DRG1, a GTPase involved in regulation of cellular growth.

  18. Copper(II) complexes with 4-(1H-1, 2, 4-trizol-1-ylmethyl) benzoic acid: Syntheses, crystal structures and antifungal activities

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Pingping [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi' an 710069 (China); Li, Jie [Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, Xi' an 710069 (China); Bu, Huaiyu, E-mail: 7213792@qq.com [Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, Xi' an 710069 (China); Wei, Qing [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi' an 710069 (China); Zhang, Ruolin [Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, Xi' an 710069 (China); Chen, Sanping, E-mail: sanpingchen@126.com [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi' an 710069 (China)

    2014-07-01

    Reaction of Cu(II) with an asymmetric semi-rigid organic ligand 4-(1H-1, 2, 4-trizol-1-ylmethyl) benzoic acid (HL), yielded five compounds, [Cu{sub 0.5}L]{sub n} (1), [Cu(HL){sub 2}Cl{sub 2}]{sub n} (2), [Cu(HL){sub 2}Cl{sub 2}(H{sub 2}O)] (3), [Cu(L){sub 2}(H{sub 2}O)]{sub n} (4) and [Cu(L)(phen)(HCO{sub 2})]{sub n} (5), which have been fully characterized by infrared spectroscopy, elemental analysis, and single-crystal X-ray diffraction. As for compounds 1, 2 and 5, Cu(II) is bridged through HL, Cl{sup -}, and formic acid, respectively, featuring 1D chain-structure. In compound 3, Cu(II) with hexahedral coordination sphere is assembled through hydrogen-bonding into 3D supramolecular framework. In compound 4, 1D chain units –Cu–O–Cu–O– are ligand-bridged into a 3D network. All compounds were tested on fungi (Fusarium graminearum, Altemaria solani, Macrophoma kawatsukai, Alternaria alternata and Colletotrichum gloeosporioides). Compound 1 exhibits a better antifungal effect compared to other compounds. An effect of structure on the antifungal activity has also been correlated. - Graphical abstract: Copper(II) compounds with 4-(1H-1, 2, 4-trizol-1-ylmethyl) benzoic acid, were prepared, structurally characterized and investigated for antifungal activity. - Highlights: • The title compounds formed by thermodynamics and thermokinetics. • The five compounds show higher inhibition percentage than reactants. • The structure effect on the antifungal activity.

  19. Structure-Activity Relationships of the Human Immunodeficiency Virus Type 1 Maturation Inhibitor PF-46396.

    Science.gov (United States)

    Murgatroyd, Christopher; Pirrie, Lisa; Tran, Fanny; Smith, Terry K; Westwood, Nicholas J; Adamson, Catherine S

    2016-09-15

    HIV-1 maturation inhibitors are a novel class of antiretroviral compounds that consist of two structurally distinct chemical classes: betulinic acid derivatives and the pyridone-based compound PF-46396. It is currently believed that both classes act by similar modes of action to generate aberrant noninfectious particles via inhibition of CA-SP1 cleavage during Gag proteolytic processing. In this study, we utilized a series of novel analogues with decreasing similarity to PF-46396 to determine the chemical groups within PF-46396 that contribute to antiviral activity, Gag binding, and the relationship between these essential properties. A spectrum of antiviral activity (active, intermediate, and inactive) was observed across the analogue series with respect to CA-SP1 cleavage and HIV-1 (NL4-3) replication kinetics in Jurkat T cells. We demonstrate that selected inactive analogues are incorporated into wild-type (WT) immature particles and that one inactive analogue is capable of interfering with PF-46396 inhibition of CA-SP1 cleavage. Mutations that confer PF-46396 resistance can impose a defective phenotype on HIV-1 that can be rescued in a compound-dependent manner. Some inactive analogues retained the capacity to rescue PF-46396-dependent mutants (SP1-A3V, SP1-A3T, and CA-P157S), implying that they can also interact with mutant Gag. The structure-activity relationships observed in this study demonstrate that (i) the tert-butyl group is essential for antiviral activity but is not an absolute requirement for Gag binding, (ii) the trifluoromethyl group is optimal but not essential for antiviral activity, and (iii) the 2-aminoindan group is important for antiviral activity and Gag binding but is not essential, as its replacement is tolerated. Combinations of antiretroviral drugs successfully treat HIV/AIDS patients; however, drug resistance problems make the development of new mechanistic drug classes an ongoing priority. HIV-1 maturation inhibitors are novel as they

  20. [hHO-1 structure prediction and its mutant construct, expression, purification and activity analysis].

    Science.gov (United States)

    Xia, Zhen Wei; Cui, Wen Jun; Zhou, Wen Pu; Zhang, Xue Hong; Shen, Qing Xiang; Li, Yun Zhu; Yu, Shan Chang

    2004-10-01

    Human Heme Oxygenase-1 (hHO-1) is the rate-limiting enzyme in the catabolism reaction of heme, which directly regulates the concentration of bilirubin in human body. The mutant structure was simulated by Swiss-pdbviewer procedure, which showed that the structure of active pocket was changed distinctly after Ala25 substituted for His25 in active domain, but the mutated enzyme still binded with heme. On the basis of the results, the expression vectors, pBHO-1 and pBHO-1(M), were constructed, induced by IPTG and expressed in E. coli DH5alpha strain. The expression products were purified with 30%-60% saturation (NH4)2SO4 and Q-Sepharose Fast Flow column chromatography. The concentration of hHO-1 in 30%-60% saturation (NH4)2SO4 components and in fractions through twice column chromatography was 3.6-fold and 30-fold higher than that in initial product, respectively. The activity of wild hHO-1 (whHO-1) and mutant hHO-1 (deltahHO-1) showed that the activity of deltahHO-1 was reduced 91.21% compared with that of whHO-1. The study shows that His25 is of importance for the mechanism of hHO-1, and provides the possibility for effectively regulating the activity to exert biological function.

  1. Structural mechanism underlying capsaicin binding and activation of TRPV1 ion channel

    OpenAIRE

    Yang, Fan; Xiao, Xian; Cheng, Wei; Yang, Wei; Yu, Peilin; Song, Zhenzhen; Yarov-Yarovoy, Vladimir; Zheng, Jie

    2015-01-01

    Capsaicin bestows spiciness by activating TRPV1 channel with exquisite potency and selectivity. Capsaicin-bound channel structure was previously resolved by cryo-EM at 4.2-to-4.5 ? resolution, however important details required for mechanistic understandings are unavailable: capsaicin was registered as a small electron density, reflecting neither its chemical structure nor specific ligand-channel interactions. We obtained the missing atomic-level details by iterative computation, which were c...

  2. Structure of product-bound SMG1 lipase: active site gating implications.

    Science.gov (United States)

    Guo, Shaohua; Xu, Jinxin; Pavlidis, Ioannis V; Lan, Dongming; Bornscheuer, Uwe T; Liu, Jinsong; Wang, Yonghua

    2015-12-01

    Monoacylglycerol and diacylglycerol lipases are industrially interesting enzymes, due to the health benefits that arise from the consumption of diglycerides compared to the traditional triglyceride oils. Most lipases possess an α-helix (lid) directly over the catalytic pocket which regulates the activity of the enzyme. Generally, lipases exist in active and inactive conformations, depending on the positioning of this lid subdomain. However, lipase SMG1, a monoacylglycerol and diacylglycerol specific lipase, has an atypical activation mechanism. In the present study we were able to prove by crystallography, in silico analysis and activity tests that only two positions, residues 102 and 278, are responsible for a gating mechanism that regulates the active and inactive states of the lipase, and that no significant structural changes take place during activation except for oxyanion hole formation. The elucidation of the gating effect provided data enabling the rational design of improved lipases with 6-fold increase in the hydrolytic activity toward diacylglycerols, just by providing additional substrate stabilization with a single mutation (F278N or F278T). Due to the conservation of F278 among the monoacylglycerol and diacylglycerol lipases in the Rhizomucor miehei lipase-like family, the gating mechanism described herein might represent a general mechanism applicable to other monoacylglycerol and diacylglycerol lipases as well. Database: Structural data are available in the Protein Data Bank under the accession numbers 4ZRE (F278D mutant) and 4ZRD (F278N mutant). © 2015 FEBS.

  3. Sphingomyelinase D activity in model membranes: structural effects of in situ generation of ceramide-1-phosphate.

    Directory of Open Access Journals (Sweden)

    Roberto P Stock

    Full Text Available The toxicity of Loxosceles spider venom has been attributed to a rare enzyme, sphingomyelinase D, which transforms sphingomyelin to ceramide-1-phosphate. The bases of its inflammatory and dermonecrotic activity, however, remain unclear. In this work the effects of ceramide-1-phosphate on model membranes were studied both by in situ generation of this lipid using a recombinant sphingomyelinase D from the spider Loxosceles laeta and by pre-mixing it with sphingomyelin and cholesterol. The systems of choice were large unilamellar vesicles for bulk studies (enzyme kinetics, fluorescence spectroscopy and dynamic light scattering and giant unilamellar vesicles for fluorescence microscopy examination using a variety of fluorescent probes. The influence of membrane lateral structure on the kinetics of enzyme activity and the consequences of enzyme activity on the structure of target membranes containing sphingomyelin were examined. The findings indicate that: 1 ceramide-1-phosphate (particularly lauroyl ceramide-1-phosphate can be incorporated into sphingomyelin bilayers in a concentration-dependent manner and generates coexistence of liquid disordered/solid ordered domains, 2 the activity of sphingomyelinase D is clearly influenced by the supramolecular organization of its substrate in membranes and, 3 in situ ceramide-1-phosphate generation by enzymatic activity profoundly alters the lateral structure and morphology of the target membranes.

  4. Rational design, synthesis, biologic evaluation, and structure-activity relationship studies of novel 1-indanone alpha(1)-adrenoceptor antagonists.

    Science.gov (United States)

    Li, Minyong; Xia, Lin

    2007-11-01

    In the present report, a novel series of 1-indanone alpha(1)-adrenoceptor antagonists were designed and synthesized based on 3D-pharmacophore model. Their in vitro alpha(1)-adrenoceptor antagonistic assay showed that three compounds (2a, 2m, and 2o) had similar or improved alpha(1)-adrenoceptor antagonistic activities relative to the positive control prazosin. Based on these results, a three-dimensional quantitative structure-activity relationship study was performed using a Self-Organizing Molecular Field Analysis method to provide insight for the future development of alpha(1)-adrenoceptor antagonists.

  5. NADPH-Thioredoxin Reductase C Mediates the Response to Oxidative Stress and Thermotolerance in the Cyanobacterium Anabaena sp PCC7120

    NARCIS (Netherlands)

    Sanchez-Riego, Ana M.; Mata-Cabana, Alejandro; Galmozzi, CarlaV.; Florencio, Francisco J.

    2016-01-01

    NADPH-thioredoxin reductase C (NTRC) is a bimodular enzyme composed of an NADPH-thioredoxin reductase and a thiioredoxin domain extension in the same protein. In plants, NTRC has been described to be involved in the protection of the chloroplast against oxidative stress damage through reduction of

  6. Quantitative structure-activity relationship of some 1-benzylbenzimidazole derivatives as antifungal agents

    Directory of Open Access Journals (Sweden)

    Podunavac-Kuzmanović Sanja O.

    2007-01-01

    Full Text Available In the present study, the antifungal activity of some 1-benzylbenzimidazole derivatives against yeast Saccharomyces cerevisiae was investigated. The tested benzimidazoles displayed in vitro antifungal activity and minimum inhibitory concentration (MIC was determined for all the compounds. Quantitative structure-activity relationship (QSAR has been used to study the relationships between the antifungal activity and lipophilicity parameter, logP, calculated by using CS Chem-Office Software version 7.0. The results are discussed on the basis of statistical data. The best QSAR model for prediction of antifungal activity of the investigated series of benzimidazoles was developed. High agreement between experimental and predicted inhibitory values was obtained. The results of this study indicate that the lipophilicity parameter has a significant effect on antifungal activity of this class of compounds, which simplify design of new biologically active molecules.

  7. The poplar phi class glutathione transferase: expression, activity and structure of GSTF1

    Directory of Open Access Journals (Sweden)

    Henri ePégeot

    2014-12-01

    Full Text Available Glutathione transferases (GSTs constitute a superfamily of enzymes with essential roles in cellular detoxification and secondary metabolism in plants as in other organisms. Several plant GSTs, including those of the Phi class (GSTFs, require a conserved catalytic serine residue to perform glutathione (GSH-conjugation reactions. Genomic analyses revealed that terrestrial plants have around 10 GSTFs, 8 in the Populus trichocarpa genome, but their physiological functions and substrates are mostly unknown. Transcript expression analyses showed a predominant expression of all genes both in reproductive (female flowers, fruits, floral buds and vegetative organs (leaves, petioles. Here, we show that the recombinant poplar GSTF1 (PttGSTF1 possesses peroxidase activity towards cumene hydroperoxide and GSH-conjugation activity towards model substrates such as 2,4-dinitrochlorobenzene, benzyl and phenetyl isothiocyanate, 4-nitrophenyl butyrate and 4-hydroxy-2-nonenal but interestingly not on previously identified GSTF-class substrates. In accordance to analytical gel filtration data, crystal structure of PttGSTF1 showed a canonical dimeric organization with bound GSH or MES molecules. The structure of these protein-substrate complexes allowed delineating the residues contributing to both the G and H sites that form the active site cavity. In sum, the presence of GSTF1 transcripts and proteins in most poplar organs especially those rich in secondary metabolites such as flowers and fruits, together with its GSH-conjugation activity and its documented stress-responsive expression suggest that its function is associated with the catalytic transformation of metabolites and/or peroxide removal rather than with ligandin properties as previously reported for other GSTFs.

  8. In vitro anti-Candida activity and single crystal X-ray structure of ({(1E-[3-(1H-imidazol-1-yl-1-phenylpropylidene]amino}oxy(4-nitrophenylmethanone

    Directory of Open Access Journals (Sweden)

    Mohamed I. Attia

    2014-03-01

    Full Text Available Synthesis, characterization, and anti-Candida activity of ({(E-[3-(1H-imidazol-1-yl-1-phenylpropylidene]amino}oxy(4-nitrophenylmethanone (4 are repor-ted. Compound 4 showed anti-Candida albicans activity (MIC = 0.6862 µmol/mL being nearly 5-fold more potent than the gold standard antifungal drug, fluconazole (MIC ˃ 3.265 µmol/mL, on the clinical isolates of Candida albicans. Single crystal X-ray structure of the title compound 4 confirmed its assigned (E-configuration. The compound crystallizes in the triclinic, P-1 (no. 2, a = 6.4633 (1 Å, b = 11.1063 (2 Å, c = 12.9872 (2 Å, α = 67.650 (1°, β = 86.415 (1°, γ = 86.776 (1°, V = 860.01 (3Å3, Z = 2, R(F = 0.046, wR(F2 = 0.139, T = 296 K. The crystal structure is stabilized by weak intermolecular C—H•••O hydrogen interactions.

  9. Molecular Descriptors Family on Structure Activity Relationships 1. Review of the Methodology

    Directory of Open Access Journals (Sweden)

    Lorentz JÄNTSCHI

    2005-01-01

    Full Text Available This review cumulates the knowledge about the use of Molecular Descriptors Family usage on Structure Activity Relationships. The methodology is augmented through the general Structure Activity Relationships methodology. The obtained models in a series of five papers are quantitatively analyzed by comparing with previous reported results by using of the correlated correlations tests. The scores for a series of 13 data sets unpublished yet results are presented. Two unrestricted online access portals to the Molecular Descriptors Family Structure Activity Relationship models results are given.

  10. Anti-leishmanial and structure-activity relationship of ring substituted 3-phenyl-1-(1,4-di-N-oxide quinoxalin-2-yl-2-propen-1-one derivatives

    Directory of Open Access Journals (Sweden)

    Asunción Burguete

    2008-12-01

    Full Text Available A series of ring substituted 3-phenyl-1-(1,4-di-N-oxide quinoxalin-2-yl-2-propen-1-one derivatives were synthesized and tested for in vitro leishmanicidal activity against amastigotes of Leishmania amazonensis in axenical cultures and murine infected macrophages. Structure-activity relationships demonstrated the importance of a radical methoxy at position R3', R4' and R5'. (2E-3-(3,4,5-trimethoxy-phenyl-1-(3,6,7-trimethyl-1,4-dioxy-quinoxalin-2-yl-propenone was the most active. Cytotoxicity on macrophages revealed that this product was almost six times more active than toxic.

  11. Discovery, synthesis, and structure-activity relationships of 20(S)-protopanaxadiol (PPD) derivatives as a novel class of AMPKα2β1γ1 activators.

    Science.gov (United States)

    Liu, Junhua; Chen, Dakai; Liu, Peng; He, Mengna; Li, Jia; Li, Jingya; Hu, Lihong

    2014-05-22

    Adenosine 5'-monophosphate-activated protein kinase (AMPK) has been demonstrated as a promising drug target due to its regulatory function in glucose and lipid metabolism. 20(S)-protopanoxadiol (PPD) was firstly identified from high throughput screening as a small molecule activator of AMPK subtype α2β1γ1. In order to enhance its potency on AMPK, a series of PPD derivatives were synthesized and evaluated. Structure-activity relationship study showed that the amine derivatives at the 24-position (groups I-VI) can improve the potency (EC50: 0.7-2.3 μM) and efficacy (fold: 2.5-3.8). Among them, compounds 12 and 13 exhibited the best potency (EC50: 1.2 and 0.7 μM) and efficacy (fold: 3.7 and 3.8). Further study suggested the mechanism of AMPK activation may functioned at the allosteric position, resulting the inhibition of the lipid synthesis in HepG2 cell model. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  12. Synthesis, crystal structure and biological activity of n-(5-(o-tolyl)-1, 3, 4-thiadiazol-2-yl)cyclopropanecarboxamide

    International Nuclear Information System (INIS)

    Tong, J.Y.; Sun, N.B.; Wu, H.K.

    2013-01-01

    A new 1, 3, 4-thiadiazole compound, N-(5-(o-tolyl)-1,3,4-thiadiazol-2-yl) cyclopropanecarboxamide, was synthesized and its structure was confirmed by 1H NMR, MS and HRMS. The single crystal structure of the title compound was determined by X-ray diffraction. The preliminary biological test showed that the synthesized compound has moderate herbicidal activity against Brassica campestris and fungicidal activities against Sclerotinia sclerotiorum(Lib.) de Bary, Rhizoctonia solanii, Fusarium oxysporum, Corynespora cassiicola, and Botrytis cinerea. (author)

  13. Sphingomyelinase D activity in model membranes: structural effects of in situ generation of ceramide-1-phosphate

    DEFF Research Database (Denmark)

    Stock, Roberto; Brewer, Jonathan R.; Wagner, Kerstin

    2012-01-01

    The toxicity of Loxosceles spider venom has been attributed to a rare enzyme, sphingomyelinase D, which transforms sphingomyelin to ceramide-1-phosphate. The bases of its inflammatory and dermonecrotic activity, however, remain unclear. In this work the effects of ceramide-1-phosphate on model...... membranes were studied both by in situ generation of this lipid using a recombinant sphingomyelinase D from the spider Loxosceles laeta and by pre-mixing it with sphingomyelin and cholesterol. The systems of choice were large unilamellar vesicles for bulk studies (enzyme kinetics, fluorescence spectroscopy...... and dynamic light scattering) and giant unilamellar vesicles for fluorescence microscopy examination using a variety of fluorescent probes. The influence of membrane lateral structure on the kinetics of enzyme activity and the consequences of enzyme activity on the structure of target membranes containing...

  14. Structural mechanism underlying capsaicin binding and activation of TRPV1 ion channel

    Science.gov (United States)

    Cheng, Wei; Yang, Wei; Yu, Peilin; Song, Zhenzhen; Yarov-Yarovoy, Vladimir; Zheng, Jie

    2015-01-01

    Capsaicin bestows spiciness by activating TRPV1 channel with exquisite potency and selectivity. Capsaicin-bound channel structure was previously resolved by cryo-EM at 4.2-to-4.5 Å resolution, however important details required for mechanistic understandings are unavailable: capsaicin was registered as a small electron density, reflecting neither its chemical structure nor specific ligand-channel interactions. We obtained the missing atomic-level details by iterative computation, which were confirmed by systematic site-specific functional tests. We observed that the bound capsaicin takes “tail-up, head-down” configurations. The vanillyl and amide groups form specific interactions to anchor its bound position, while the aliphatic tail may sample a range of conformations, making it invisible in cryo-EM images. Capsaicin stabilizes the open state by “pull-and-contact” interactions between the vanillyl group and the S4-S5 linker. Our study provided a structural mechanism for the agonistic function of capsaicin and its analogs, and demonstrated an effective approach to obtain atomic level information from cryo-EM structures. PMID:26053297

  15. Structure-activity relationship studies of citalopram derivatives

    DEFF Research Database (Denmark)

    Larsen, M Andreas B; Plenge, Per; Andersen, Jacob

    2016-01-01

    towards the S2 site. EXPERIMENTAL APPROACH: We performed a systematic structure-activity relationship study based on the scaffold of citalopram and the structurally closely related congener, talopram, that shows low-affinity S1 binding in SERT. The role of the four chemical substituents, which distinguish...... citalopram from talopram in conferring selectivity towards the S1 and S2 site, respectively, was assessed by determining the binding of 14 citalopram/talopram analogous to the S1 and S2 binding sites in SERT using membranes of COS7 cells transiently expressing SERT. KEY RESULTS: The structure-activity...

  16. Stereodivergent Synthesis of 1,3-Syn-Polyol Natural Product for Stereochemical-Based Structure Activity Relationship Studies

    Science.gov (United States)

    Zheng, Jiamin

    The 1,3-syn-diol functionality is very common in many natural products. An important class containing this moiety are the 1,3-syn-polyol/pyranone natural products, which have been isolated from a variety of plant sources, and possess biological activities like plant growth inhibition as well as antifeedant, antifungal, antibacterial, and antitumor properties. The feature of this class is a 6-membered lactone where the lactoe oxygen is part of a 1,3-syn-diol motif. To pursue the 1,3-syn-polyol/pyranone natural products, an iterative hydration of polyene strategy was utilized to provide the 1,3- syn-diol functionality, and asymmetric synthetic strategies were explored to form the requisite stereochemistry. The versatility of the asymmetric approach was demonstrated in the synthesis of eupatorium pyranone and also in an ongoing project aimed at the synthesis of SIA7248. As an outgrowth of our work on the total syntheses of 1,3-syn -polyol natural products inspired a stereo-divergent synthesis of 1,3-syn-polyol natural products and their analogs for stereochemical-based structure-activity relationship (SSAR) studies. To identify the key structural factors important for the anticancer activity of the 1,3-syn-polyol/pyranones, a stereo-divergent 16-member library of pyranone/polyol congeners was designed, synthesized and tested with variations in both stereochemistry and numbers of polyol repeat units. Having access to stereochemical isomers of the biologically active natural products allowed us to design experiments that help illustrate their mechanisms of action.

  17. ICI 56,780 Optimization: Structure-Activity Relationship Studies of 7-(2-Phenoxyethoxy)-4(1H)-quinolones with Antimalarial Activity.

    Science.gov (United States)

    Maignan, Jordany R; Lichorowic, Cynthia L; Giarrusso, James; Blake, Lynn D; Casandra, Debora; Mutka, Tina S; LaCrue, Alexis N; Burrows, Jeremy N; Willis, Paul A; Kyle, Dennis E; Manetsch, Roman

    2016-07-28

    Though malaria mortality rates are down 48% globally since 2000, reported occurrences of resistance against current therapeutics threaten to reverse that progress. Recently, antimalarials that were once considered unsuitable therapeutic agents have been revisited to improve physicochemical properties and efficacy required for selection as a drug candidate. One such compound is 4(1H)-quinolone ICI 56,780, which is known to be a causal prophylactic that also displays blood schizonticidal activity against P. berghei. Rapid induction of parasite resistance, however, stalled its further development. We have completed a full structure-activity relationship study on 4(1H)-quinolones, focusing on the reduction of cross-resistance with atovaquone for activity against the clinical isolates W2 and TM90-C2B, as well as the improvement of microsomal stability. These studies revealed several frontrunner compounds with superb in vivo antimalarial activity. The best compounds were found to be curative with all mice surviving a Plasmodium berghei infection after 30 days.

  18. Structural Characterization of Maize SIRK1 Kinase Domain Reveals an Unusual Architecture of the Activation Segment

    Directory of Open Access Journals (Sweden)

    Bruno Aquino

    2017-05-01

    Full Text Available Kinases are primary regulators of plant metabolism and excellent targets for plant breeding. However, most kinases, including the abundant receptor-like kinases (RLK, have no assigned role. SIRK1 is a leucine-rich repeat receptor-like kinase (LRR-RLK, the largest family of RLK. In Arabidopsis thaliana, SIRK1 (AtSIRK1 is phosphorylated after sucrose is resupplied to sucrose-starved seedlings and it modulates the sugar response by phosphorylating several substrates. In maize, the ZmSIRK1 expression is altered in response to drought stress. In neither Arabidopsis nor in maize has the function of SIRK1 been completely elucidated. As a first step toward the biochemical characterization of ZmSIRK1, we obtained its recombinant kinase domain, demonstrated that it binds AMP-PNP, a non-hydrolysable ATP-analog, and solved the structure of ZmSIRK1- AMP-PNP co-crystal. The ZmSIRK1 crystal structure revealed a unique conformation for the activation segment. In an attempt to find inhibitors for ZmSIRK1, we screened a focused small molecule library and identified six compounds that stabilized ZmSIRK1 against thermal melt. ITC analysis confirmed that three of these compounds bound to ZmSIRK1 with low micromolar affinity. Solving the 3D structure of ZmSIRK1-AMP-PNP co-crystal provided information on the molecular mechanism of ZmSIRK1 activity. Furthermore, the identification of small molecules that bind this kinase can serve as initial backbone for development of new potent and selective ZmSIRK1 antagonists.

  19. Antimicrobial and antifungal activity of 2-(1H-tetrazolo-5-ylanilines and products of their structural modifications

    Directory of Open Access Journals (Sweden)

    O. M. Antypenko

    2016-08-01

    Full Text Available Virtually any molecule of antibiotic can be inactivated in the microbial cell by particular resistance mechanism. In this regard, each antibiotic effectiveness starts to decrease, which necessitates the synthesis of new antimicrobial agents. Aim. To examine the previously synthesized substituted 2-(1H-tetrazolo-5-ylanilines and products of their structural modification for antimicrobial and antifungal activity. Materials and methods. The study of biological activity was conducted by disco-diffusion method on Mueller-Hinton agar on these strains of microorganisms: Gram-positive cocci (Staphylococcus aureus ATCC 25923, Enterococcus aeruginosa, E. faecalis ATCC 29212, Gram-negative bacteria (Pseudomonas aeruginosa PSS27853, Escherichia coli ATCC 25922, facultative anaerobic gram-negative bacteria (Klebsiella pneumonia and fungi (Candida albicans ATCC 885653. Results. The studies showed, that the antifungal activity was characteristic only for S-substituted of tetrazolo[1,5-c]quinazoline-(6H-5-ones(thiones. The growth of gram-positive cocci Staphylococcus aureus and Enterococcus faecalis, more effectively detained 5-(N,N-dialkylaminoethylthio-tetrazolo[1,5-c]quinazolines (4.4-4.6. 1-(2- (1H-tetrazolo-5-yl-R1-phenyl-3-R2-phenyl(ethylureas (2.1-2.31 were more selective against Staphylococcus aureus and Enterococcus faecalis. Analysis of «structure-activity relationship» showed, that the introduction of halogen to the aniline fragment leads to increase of activity. Thus, the compound 2.3 with fluorine stopped the growth of Escherichia coli and Klebsiella pneumonia for 31 mm and 21 mm, respectively. Structures with chlorine (2.4 and bromine (2.5 stopped the growth of Pseudomonas aeruginosa at 20 mm and 23 mm, respectively. And the presence of trifluoromethyl group in the phenylureide fragment and chlorine in aniline fragment of compound 2.27 led to the highest growth delay zone 25 mm. Among the investigated compounds only 1-(4-methoxyphenyl-2

  20. Paracrystalline structure of activated carbons

    Science.gov (United States)

    Szczygielska, A.; Burian, A.; Dore, J. C.

    2001-06-01

    Structural studies by means of neutron diffraction of activated carbons, prepared from a polymer of phenol formaldehyde resin by carbonization and activation processes, with variable porosity, are presented. The neutron scattering data were recorded over the range of the scattering vector Q from 2.5 to 500 nm-1. The structure of activated carbons has been described in terms of disordered graphite-like layers with very weak interlayer correlations. The model has been generated by computer simulations and its validity has been tested by comparison of the experimental and calculated intensity functions. Modelling studies have shown that the model containing 3-4 layers each about 2 nm in diameter accounts for the experimental data and that graphite layers are randomly translated and rotated, according to the turbostratic structure. Near-neighbour carbon-carbon distances of about 0.139 nm and 0.154 nm have been determined. The Debye-Waller factor exp (-Q2σ2/2) with σ = σ0(r)1/2 suggests a paracrystalline structure within a single layer. The value of the interlayer spacing of 0.36 nm has been found from paracrystalline simulations of the layer arrangement in the c-axis direction. The high quality of the experimental data has enabled determination of the coordination numbers, the interatomic distances and their standard deviations using a curve-fitting procedure over the Q-range from 250 nm to 500 nm, providing structural information about short- and intermediate-range ordering.

  1. Recent package testing successes at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Ludwig, S.B.; Singley, P.T.; Michelhaugh, R.D.; Hawk, M.B.; Shappert, L.B.

    2004-01-01

    Oak Ridge National Laboratory (ORNL)'s history of testing of radioactive material packages dates back to the early 1960s, and includes the testing of hundreds of different packages of all shapes and sizes. This paper provides an overview of ORNL's new Packaging Research Facility (PRF) at the National Transportation Research Center (NTRC), and describes recent package testing successes conducted at the NTRC from September 2002 to September 2003

  2. QUANTITAVE STRUCTURE-ACTIVITY RELATIONSHIP ANALYSIS (QSAR OF ANTIMALARIAL 1,10-PHENANTHROLINE DERIVATIVES COMPOUNDS

    Directory of Open Access Journals (Sweden)

    Ruslin Hadanu

    2010-06-01

    Full Text Available Quantitative Electronic Structure-Activity Relationship (QSAR analysis of a series of 1,10-phenanthroline derivatives as antiplasmodial compounds have been conducted using atomic net charges (q, dipole moment (μ ELUMO, EHOMO, polarizability (α and log P as the descriptors. The descriptors were obtained from computational chemistry method using semi-empirical PM3. Antiplasmodial activities were taken as the activity of the drugs  against  chloroquine-resistant Plasmodium falciparum FCR3 strain and are presented as the value of ln (1/IC50 where IC50 is an effective concentration inhibiting 50% of the parasite growth. The best model of QSAR model was determine by multiple linear regression method and giving equation of QSAR: ln 1/IC50  =  3.732 + (5.098 qC5 + (7.051 qC7 + (36.696 qC9 + (41.467 qC11 -(135.497 qC12 + (0.332 μ -                    (0.170 α + (0.757 log P. The equation was significant on the 95% level with statistical parameters: n=16; r=0.987; r2= 0.975; SE=0.317;  Fcalc/Ftable = 15.337 and gave the PRESS=0.707. Its means that there were only a relatively few deviations between the experimental and theoretical data of antimalarial activity.   Keywords: QSAR, antimalarial, semi-empirical method, 1,10-phenanthroline.

  3. Structure-activity relationship of pentacylic triterpene esters from Uncaria rhynchophylla as inhibitors of phospholipase Cgamma1.

    Science.gov (United States)

    Lee, Ji Suk; Yoo, Hunseung; Suh, Young Ger; Jung, Jae Kyung; Kim, Jinwoong

    2008-10-01

    A systematic structure-activity relationship of 3beta-hydroxy-27- P- E-coumaroyloxyurs-12-en-28-oic acid ( 7), a triterpene ester isolated from UNCARIA RHYNCHOPHYLLA as a phospholipase Cgamma1 inhibitor, was undertaken with a view toward elucidating its chemical mode of action on PLCgamma1. Related derivatives and analogues of 7 were synthesized and their inhibitory activities against PLCgamma1 were evaluated IN VITRO. The results indicate that 3-OH and 27-esterification may be essential, and that 28-COOH and the 2' double bond appear to be important for activity. Furthermore, the compound possessing a P-coumaroyloxy at position 27 rather than at the 3 and 28 positions shows the greatest inhibitory activity against PLCgamma1. Therefore, this inhibitor will be providing a chemical lead for the further development of cancer chemopreventive or cancer chemotherapeutic agents that have lower toxicity against normal tissues.

  4. Varic acid analogues from fungus as PTP1B inhibitors: Biological evaluation and structure-activity relationships.

    Science.gov (United States)

    Sun, Wenlong; Zhuang, Chunlin; Li, Xia; Zhang, Bowei; Lu, Xinhua; Zheng, Zhihui; Dong, Yuesheng

    2017-08-01

    Protein tyrosine phosphatase 1B (PTP1B) inhibitors as potential therapies for diabetes and obesity have attracted much attention in recent years. Six varic acid analogues were isolated from two strains of fungi and evaluated for PTP1B inhibition activities. The structure-activity relationships were also characterized and predicted by molecular modeling. Further kinetic studies indicated the reversible and competitive inhibition manner of varic acid analogues. Trivaric acid showed insulin-sensitizing effect not only in vitro but also in vivo, representing a promising lead compound for further optimization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Relationship between structure and antiproliferative activity of 1-azaflavanones.

    Science.gov (United States)

    Kawaii, Satoru; Endo, Kotaro; Tokiwano, Tetsuo; Yoshizawa, Yuko

    2012-07-01

    The synthesis of 19 derivatives of 2-phenyl-3,4-dihydroquinolin-4(1H)-one, as aza analogs of flavanones, was carried out and these compounds were further screened for their antiproliferative activity toward HL60 promyelocytic leukemia cells. In comparison with flavanone the replacement of C-ring ether oxygen atom with a nitrogen atom potentiated activity by more than 100-fold. It was suggested that the aromaticity of the B-ring contributes greatly to the activity of 1-azaflavanones.

  6. Estimated long lived isotope activities in ET-RR-1 reactor structural materials for decommissioning study

    International Nuclear Information System (INIS)

    Ashoub, N.; Saleh, H.

    1995-01-01

    The first Egyptian research reactor, ET-RR-1 is tank type with light water as a moderator, coolant and reflector. Its nominal power is 2MWt and the average thermal neutron flux is 10 13 n/cm 2 sec -1 . Its criticality was on the fall of 1961. The reactor went through several modifications and updating and is still utilized for experimental research. A plan for decommissioning of ET-RR-1 reactor should include estimation of radioactivity in structural materials. The inventory will help in assessing the radiological consequences of decommissioning. This paper presents a conservative calculation to estimate the activity of the long lived isotopes which can be produced by neutron activation. The materials which are presented in significant quantities in the reactor structural materials are aluminum, cast iron, graphite, ordinary and iron shot concrete. The radioactivity of each component is dependent not only upon the major elements, but also on the concentration of the trace elements. The main radioactive inventory are expected to be from 60 Co and 55 Fe which are presented in aluminium as trace elements and in large quantities in other construction materials. (author)

  7. Synthesis, Spatial Structure and Analgesic Activity of Sodium 3-Benzylaminocarbonyl-1-methyl-2,2-dioxo-1H-2λ6,1-benzothiazin-4-olate Solvates

    Directory of Open Access Journals (Sweden)

    Igor V. Ukrainets

    2016-10-01

    Full Text Available In order to obtain and then test pharmocologically any possible conformers of the new feasible analgesic N-benzyl-4-hydroxy-1-methyl-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxamide, its 4-O-sodium salt was synthesized using two methods. X-ray diffraction study made possible to determine that, depending on the chosen synthesis conditions, the above-mentioned compound forms either monosolvate with methanol or monohydrate, where organic anion exists in the form of three different conformers. Pharmacological testing of the two known pseudo-enantiomeric forms of the original N-benzylamide and of the two solvates of its sodium salt was performed simultaneously under the same conditions and in equimolar doses. Comparison of the results obtained while studying the peculiarities of the synthesized compounds spatial structure and biological properties revealed an important structure-action relationship. In particular, it was shown that the intensity of analgesic effect of different conformational isomers of N-benzyl-4-hydroxy-1-methyl-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxamide may change considerably: while low active conformers are comparable with piroxicam, highly active conformers are more than twice as effective as meloxicam.

  8. Characterization of the orf1glnKamtB operon of Herbaspirillum seropedicae.

    Science.gov (United States)

    Noindorf, Lilian; Rego, Fabiane G M; Baura, Valter A; Monteiro, Rose A; Wassem, Roseli; Cruz, Leonardo M; Rigo, Liu U; Souza, Emanuel M; Steffens, Maria B R; Pedrosa, Fabio O; Chubatsu, Leda S

    2006-03-01

    Herbaspirillum seropedicae is an endophytic nitrogen-fixing bacterium that colonizes economically important grasses. In this organism, the amtB gene is co-transcribed with two other genes: glnK that codes for a PII-like protein and orf1 that codes for a probable periplasmatic protein of unknown function. The expression of the orf1glnKamtB operon is increased under nitrogen-limiting conditions and is dependent on NtrC. An amtB mutant failed to transport methylammonium. Post-translational control of nitrogenase was also partially impaired in this mutant, since a complete switch-off of nitrogenase after ammonium addition was not observed. This result suggests that the AmtB protein is involved in the signaling pathway for the reversible inactivation of nitrogenase in H. seropedicae.

  9. Synthesis, crystal structure and biological activity of a novel 1,2,3-thidiazole compound

    International Nuclear Information System (INIS)

    Ke, W.

    2013-01-01

    A new 1,2,3-thiadiazole compound was synthesized and characterized by 1H NMR, MS and HRMS. The crystal structure of the title compound (C/sub 12/H/sub 11/ClN/sub 2/O/sub 4/S/sub 2/, Mr = 346.80) has been determined by single-crystal X-ray diffraction. The crystal is of triclinic, space group P-1 with a = 8.4425(17) A, b = 8.9801(18) A, c = 9.859(2) A, alpha = 84.36(3) degree, beta = 86.71(3)degree, lambda = 83.25(3) degree, V = 737.9(3)A3, Z 2, F(000) = 356, Dc = 1.561 g/cm/sup 3/, mu = 0.557 mm-1, the final R1 0.0380 and wR2 = 0.0982 for 2160 observed reflections with I > 2sigma(I). A total of 12585 reflections were collected, of which 2601 were independent (Rint 0.0364). The herbicidal activity of title compound was determined, the results showed the title compound displayed excellent herbicidal activity against Brassica campestris. (author)

  10. Discovery and preliminary structure-activity relationship of the marine natural product manzamines as herpes simplex virus type-1 inhibitors.

    Science.gov (United States)

    Palem, Jayavardhana R; Mudit, Mudit; Hsia, Shao-Chung V; Sayed, Khalid A El

    2017-01-01

    Herpes simplex virus type-1 (HSV-1) is a member of alpha-herpesviridae family and is known to cause contagious human infections. The marine habitat is a rich source of structurally unique bioactive secondary metabolites. A small library of marine natural product classes 1-10 has been screened to discover a new hit entity active against HSV-1. Manzamine A showed potent activity against HSV-1 via targeting the viral gene ICP0. Manzamine A is a β-carboline alkaloid isolated from the Indo-Pacific sponge Acanthostrongylophora species. Currently, acyclovir is the drug of choice for HSV-1 infections. Compared with 50 µM acyclovir, manzamine A at 1 µM concentration produced potent repressive effects on viral replication and release of infectious viruses in SIRC cells in recent studies. The potent anti-HSV-1 activity of manzamine A prompted a preliminary structure-activity relationship study by testing targeted manzamines. These included 8-hydroxymanzamine A (11), to test the effect of the C-8 hydroxy substitution at the β-carboline moiety; manzamine E (12), to assess the importance of substitution at the azacyclooctane ring; and ircinal A (13), to determine whether the β-carboline ring is required for the activity. Manzamine A was chemically transformed to its salt forms, manzamine A monohydrochloride (14) and manzamine A monotartrate (15), to test whether improving water solubility and hydrophilicity will positively affect the activity. Compounds were tested for activity against HSV-1 using fluorescent microscopy and plaque assay. The results showed the reduced anti-HSV-1 activity of 11, suggesting that C-8 hydroxy substitution might adversely affect the activity. Similarly, manzamines 12 and 13 showed no activity against HSV-1, indicating the preference of the unsubstituted azacylcooctane and β-carboline rings to the activity. Anti-HSV-1 activity was significantly improved for the manzamine A salts 14 and 15, suggesting that improving the overall water solubility

  11. Structural Basis of Mec1-Ddc2-RPA Assembly and Activation on Single-Stranded DNA at Sites of Damage.

    Science.gov (United States)

    Deshpande, Ishan; Seeber, Andrew; Shimada, Kenji; Keusch, Jeremy J; Gut, Heinz; Gasser, Susan M

    2017-10-19

    Mec1-Ddc2 (ATR-ATRIP) is a key DNA-damage-sensing kinase that is recruited through the single-stranded (ss) DNA-binding replication protein A (RPA) to initiate the DNA damage checkpoint response. Activation of ATR-ATRIP in the absence of DNA damage is lethal. Therefore, it is important that damage-specific recruitment precedes kinase activation, which is achieved at least in part by Mec1-Ddc2 homodimerization. Here, we report a structural, biochemical, and functional characterization of the yeast Mec1-Ddc2-RPA assembly. High-resolution co-crystal structures of Ddc2-Rfa1 and Ddc2-Rfa1-t11 (K45E mutant) N termini and of the Ddc2 coiled-coil domain (CCD) provide insight into Mec1-Ddc2 homodimerization and damage-site targeting. Based on our structural and functional findings, we present a Mec1-Ddc2-RPA-ssDNA composite structural model. By way of validation, we show that RPA-dependent recruitment of Mec1-Ddc2 is crucial for maintaining its homodimeric state at ssDNA and that Ddc2's recruitment domain and CCD are important for Mec1-dependent survival of UV-light-induced DNA damage. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Identification of a New Class of Selective Excitatory Amino Acid Transporter Subtype 1 (EAAT1) Inhibitors Followed by a Structure-Activity-Relationship Study

    DEFF Research Database (Denmark)

    Hansen, Stinne Wessel; Erichsen, Mette Norman; Fu, Bingru

    2016-01-01

    in analogues with substantially improved inhibitory potencies at EAAT1 compared to that displayed by the hit, it provided a detailed insight into structural requirements for EAAT1 activity of this scaffold. The discovery of this new class of EAAT1-selective inhibitors not only supplements the currently...

  13. Catalytic water co-existing with a product peptide in the active site of HIV-1 protease revealed by X-ray structure analysis.

    Science.gov (United States)

    Prashar, Vishal; Bihani, Subhash; Das, Amit; Ferrer, Jean-Luc; Hosur, Madhusoodan

    2009-11-17

    It is known that HIV-1 protease is an important target for design of antiviral compounds in the treatment of Acquired Immuno Deficiency Syndrome (AIDS). In this context, understanding the catalytic mechanism of the enzyme is of crucial importance as transition state structure directs inhibitor design. Most mechanistic proposals invoke nucleophilic attack on the scissile peptide bond by a water molecule. But such a water molecule coexisting with any ligand in the active site has not been found so far in the crystal structures. We report here the first observation of the coexistence in the active site, of a water molecule WAT1, along with the carboxyl terminal product (Q product) peptide. The product peptide has been generated in situ through cleavage of the full-length substrate. The N-terminal product (P product) has diffused out and is replaced by a set of water molecules while the Q product is still held in the active site through hydrogen bonds. The position of WAT1, which hydrogen bonds to both the catalytic aspartates, is different from when there is no substrate bound in the active site. We propose WAT1 to be the position from where catalytic water attacks the scissile peptide bond. Comparison of structures of HIV-1 protease complexed with the same oligopeptide substrate, but at pH 2.0 and at pH 7.0 shows interesting changes in the conformation and hydrogen bonding interactions from the catalytic aspartates. The structure is suggestive of the repositioning, during substrate binding, of the catalytic water for activation and subsequent nucleophilic attack. The structure could be a snap shot of the enzyme active site primed for the next round of catalysis. This structure further suggests that to achieve the goal of designing inhibitors mimicking the transition-state, the hydrogen-bonding pattern between WAT1 and the enzyme should be replicated.

  14. Structural Insights into DD-Fold Assembly and Caspase-9 Activation by the Apaf-1 Apoptosome.

    Science.gov (United States)

    Su, Tsung-Wei; Yang, Chao-Yu; Kao, Wen-Pin; Kuo, Bai-Jiun; Lin, Shan-Meng; Lin, Jung-Yaw; Lo, Yu-Chih; Lin, Su-Chang

    2017-03-07

    Death domain (DD)-fold assemblies play a crucial role in regulating the signaling to cell survival or death. Here we report the crystal structure of the caspase recruitment domain (CARD)-CARD disk of the human apoptosome. The structure surprisingly reveals that three 1:1 Apaf-1:procaspase-9 CARD protomers form a novel helical DD-fold assembly on the heptameric wheel-like platform of the apoptosome. The small-angle X-ray scattering and multi-angle light scattering data also support that three protomers could form an oligomeric complex similar to the crystal structure. Interestingly, the quasi-equivalent environment of CARDs could generate different quaternary CARD assemblies. We also found that the type II interaction is conserved in all DD-fold complexes, whereas the type I interaction is found only in the helical DD-fold assemblies. This study provides crucial insights into the caspase activation mechanism, which is tightly controlled by a sophisticated and highly evolved CARD assembly on the apoptosome, and also enables better understanding of the intricate DD-fold assembly. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Multi-structure docking analysis of BACE1 crystal structures and non-peptidic ligands.

    Science.gov (United States)

    Haghighijoo, Zahra; Hemmateenejad, Bahram; Edraki, Najmeh; Miri, Ramin; Emami, Saeed

    2017-09-01

    In order to design novel non-peptidic inhibitors of BACE1, many research groups have attempted using computational studies including docking analyses. Since there are too many 3D structures for BACE1 in the protein database, the selection of suitable crystal structures is a key prerequisite for the successful application of molecular docking. We employed a multi-structure docking protocol. In which 615 ligands' structures were docked into 150 BACE1 structures. The large number of the resultant docking scores were post-processed by different data analysis methods including exploratory data analysis, regression analysis and discriminant analysis. It was found that using one crystal structure for docking did not result in high accuracy for predicting activity of the BACE1 inhibitors. Instead, using of the multi-structural docking scores, post-processed by chemometrics methods arrived to highly accurate predictive models. In this regards, the PDB accession codes of 4B70, 4DVF and 2WEZ could discriminate between active and inactive compounds, with higher accuracy. Clustering of the BACE1 structures based on principal component analysis of the crystallographic structures the revealed that the discriminant structures are in the center of the clusters. Thus, these structures can be selected as predominant crystal structures for docking studies of non-peptidic BACE1 inhibitors. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Spectroscopic studies, antimicrobial activities and crystal structures of N-(2-hydroxy-3-methoxybenzalidene)1-aminonaphthalene

    Science.gov (United States)

    Ünver, Hüseyin; Yıldız, Mustafa; Dülger, Başaran; Özgen, Özen; Kendi, Engin; Durlu, Tahsin Nuri

    2005-03-01

    Schiff base N-(2-hydroxy-3-methoxybenzalidene)1-aminonaphthalene has been synthesized from the reaction of 2-hydroxy-3-methoxybenzaldehyde with 1-aminonaphthalene. The compound were characterized by elemental analysis, FT-IR, 1H NMR, 13C NMR and UV-visible techniques. The UV-visible spectra of the Schiff base were studied in polar and nonpolar solvents in acidic and basic media. The structure of the compound has been examined cyrstallographically. There are two independent molecules in the asymmetric unit. It crystallizes in the monoclinic space group P21/c, with unit cell parameters: a=14, 602(2), b=5,800(1), c=16, 899(1) Å, V=1394.4(2) Å 3, Dx=1.321 g cm -3 and Z=4. The crystal structure was solved by direct methods and refined by full-matrix least squares to a find R=0.041 of for 1179 observed reflections. The title compound's antimicrobial activities also have been studied. The antimicrobial activities of the ligand has been screened in vitro against the organisms Escherichia coli ATCC 11230, Staphylococcus aureus ATCC 6538, Klebsiella pneumoniae UC57, Micrococcus luteus La 2971, Proteus vulgaris ATCC 8427, Pseudomonas aeruginosa ATCC 27853, Mycobacterium smegmatis CCM 2067, Bacillus cereus ATCC 7064 and Listeria monocytogenes ATCC 15313, the yeast cultures Candida albicans ATCC 10231, Kluyveromyces fragilis NRRL 2415, Rhodotorula rubra DSM 70403, Debaryomyces hansenii DSM 70238 and Hanseniaspora guilliermondii DSM 3432.

  17. Synthesis and structure activity relationships of carbamimidoylcarbamate derivatives as novel vascular adhesion protein-1 inhibitors.

    Science.gov (United States)

    Yamaki, Susumu; Yamada, Hiroyoshi; Nagashima, Akira; Kondo, Mitsuhiro; Shimada, Yoshiaki; Kadono, Keitaro; Yoshihara, Kosei

    2017-11-01

    Vascular adhesion protein-1 (VAP-1) is a promising therapeutic target for the treatment of diabetic nephropathy. Here, we conducted structural optimization of the glycine amide derivative 1, which we previously reported as a novel VAP-1 inhibitor, to improve stability in dog and monkey plasma, and aqueous solubility. By chemical modification of the right part in the glycine amide derivative, we identified the carbamimidoylcarbamate derivative 20c, which showed stability in dog and monkey plasma while maintaining VAP-1 inhibitory activity. We also found that conversion of the pyrimidine ring in 20c into saturated rings was effective for improving aqueous solubility. This led to the identification of 28a and 35 as moderate VAP-1 inhibitors with excellent aqueous solubility. Further optimization led to the identification of 2-fluoro-3-{3-[(6-methylpyridin-3-yl)oxy]azetidin-1-yl}benzyl carbamimidoylcarbamate (40b), which showed similar human VAP-1 inhibitory activity to 1 with improved aqueous solubility. 40b showed more potent ex vivo efficacy than 1, with rat plasma VAP-1 inhibitory activity of 92% at 1h after oral administration at 0.3mg/kg. In our pharmacokinetic study, 40b showed good oral bioavailability in rats, dogs, and monkeys, which may be due to its improved stability in dog and monkey plasma. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Catalytic water co-existing with a product peptide in the active site of HIV-1 protease revealed by X-ray structure analysis.

    Directory of Open Access Journals (Sweden)

    Vishal Prashar

    Full Text Available BACKGROUND: It is known that HIV-1 protease is an important target for design of antiviral compounds in the treatment of Acquired Immuno Deficiency Syndrome (AIDS. In this context, understanding the catalytic mechanism of the enzyme is of crucial importance as transition state structure directs inhibitor design. Most mechanistic proposals invoke nucleophilic attack on the scissile peptide bond by a water molecule. But such a water molecule coexisting with any ligand in the active site has not been found so far in the crystal structures. PRINCIPAL FINDINGS: We report here the first observation of the coexistence in the active site, of a water molecule WAT1, along with the carboxyl terminal product (Q product peptide. The product peptide has been generated in situ through cleavage of the full-length substrate. The N-terminal product (P product has diffused out and is replaced by a set of water molecules while the Q product is still held in the active site through hydrogen bonds. The position of WAT1, which hydrogen bonds to both the catalytic aspartates, is different from when there is no substrate bound in the active site. We propose WAT1 to be the position from where catalytic water attacks the scissile peptide bond. Comparison of structures of HIV-1 protease complexed with the same oligopeptide substrate, but at pH 2.0 and at pH 7.0 shows interesting changes in the conformation and hydrogen bonding interactions from the catalytic aspartates. CONCLUSIONS/SIGNIFICANCE: The structure is suggestive of the repositioning, during substrate binding, of the catalytic water for activation and subsequent nucleophilic attack. The structure could be a snap shot of the enzyme active site primed for the next round of catalysis. This structure further suggests that to achieve the goal of designing inhibitors mimicking the transition-state, the hydrogen-bonding pattern between WAT1 and the enzyme should be replicated.

  19. Synthesis, Crystal Structure and Anti-ischaemic Activity of (E)-1-{4 ...

    African Journals Online (AJOL)

    chloro- phenyl)prop-2-en-1-one (C28H29ClN2O3, Mr = 476.98) (5) was synthesized and studied by the single crystal X-ray diffraction method. Its structure was confirmed by 1HNMR, 13CNMR,HRMSand X-ray single crystal structure ...

  20. Crystal structure of prethrombin-1

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhiwei; Pelc, Leslie A.; Di Cera, Enrico (St. Louis-MED)

    2010-11-15

    Prothrombin is the zymogen precursor of the clotting enzyme thrombin, which is generated by two sequential cleavages at R271 and R320 by the prothrombinase complex. The structure of prothrombin is currently unknown. Prethrombin-1 differs from prothrombin for the absence of 155 residues in the N-terminal domain and is composed of a single polypeptide chain containing fragment 2 (residues 156-271), A chain (residues 272-320), and B chain (residues 321-579). The X-ray crystal structure of prethrombin-1 solved at 2.2-{angstrom} resolution shows an overall conformation significantly different (rmsd = 3.6 {angstrom}) from that of its active form meizothrombin desF1 carrying a cleavage at R320. Fragment 2 is rotated around the y axis by 29{sup o} and makes only few contacts with the B chain. In the B chain, the oxyanion hole is disrupted due to absence of the I16-D194 ion pair and the Na{sup +} binding site and adjacent primary specificity pocket are highly perturbed. A remarkable feature of the structure is that the autolysis loop assumes a helical conformation enabling W148 and W215, located 17 {angstrom} apart in meizothrombin desF1, to come within 3.3 {angstrom} of each other and completely occlude access to the active site. These findings suggest that the zymogen form of thrombin possesses conformational plasticity comparable to that of the mature enzyme and have significant implications for the mechanism of prothrombin activation and the zymogen {yields} protease conversion in trypsin-like proteases.

  1. Active Plasmonics: Principles, Structures, and Applications.

    Science.gov (United States)

    Jiang, Nina; Zhuo, Xiaolu; Wang, Jianfang

    2018-03-28

    Active plasmonics is a burgeoning and challenging subfield of plasmonics. It exploits the active control of surface plasmon resonance. In this review, a first-ever in-depth description of the theoretical relationship between surface plasmon resonance and its affecting factors, which forms the basis for active plasmon control, will be presented. Three categories of active plasmonic structures, consisting of plasmonic structures in tunable dielectric surroundings, plasmonic structures with tunable gap distances, and self-tunable plasmonic structures, will be proposed in terms of the modulation mechanism. The recent advances and current challenges for these three categories of active plasmonic structures will be discussed in detail. The flourishing development of active plasmonic structures opens access to new application fields. A significant part of this review will be devoted to the applications of active plasmonic structures in plasmonic sensing, tunable surface-enhanced Raman scattering, active plasmonic components, and electrochromic smart windows. This review will be concluded with a section on the future challenges and prospects for active plasmonics.

  2. Structural studies of a bacterial tRNA(HIS guanylyltransferase (Thg1-like protein, with nucleotide in the activation and nucleotidyl transfer sites.

    Directory of Open Access Journals (Sweden)

    Samantha J Hyde

    Full Text Available All nucleotide polymerases and transferases catalyze nucleotide addition in a 5' to 3' direction. In contrast, tRNA(His guanylyltransferase (Thg1 enzymes catalyze the unusual reverse addition (3' to 5' of nucleotides to polynucleotide substrates. In eukaryotes, Thg1 enzymes use the 3'-5' addition activity to add G-1 to the 5'-end of tRNA(His, a modification required for efficient aminoacylation of the tRNA by the histidyl-tRNA synthetase. Thg1-like proteins (TLPs are found in Archaea, Bacteria, and mitochondria and are biochemically distinct from their eukaryotic Thg1 counterparts TLPs catalyze 5'-end repair of truncated tRNAs and act on a broad range of tRNA substrates instead of exhibiting strict specificity for tRNA(His. Taken together, these data suggest that TLPs function in distinct biological pathways from the tRNA(His maturation pathway, perhaps in tRNA quality control. Here we present the first crystal structure of a TLP, from the gram-positive soil bacterium Bacillus thuringiensis (BtTLP. The enzyme is a tetramer like human THG1, with which it shares substantial structural similarity. Catalysis of the 3'-5' reaction with 5'-monophosphorylated tRNA necessitates first an activation step, generating a 5'-adenylylated intermediate prior to a second nucleotidyl transfer step, in which a nucleotide is transferred to the tRNA 5'-end. Consistent with earlier characterization of human THG1, we observed distinct binding sites for the nucleotides involved in these two steps of activation and nucleotidyl transfer. A BtTLP complex with GTP reveals new interactions with the GTP nucleotide in the activation site that were not evident from the previously solved structure. Moreover, the BtTLP-ATP structure allows direct observation of ATP in the activation site for the first time. The BtTLP structural data, combined with kinetic analysis of selected variants, provide new insight into the role of key residues in the activation step.

  3. Structural Insights into the Unusually Strong ATPase Activity of the AAA Domain of the Caenorhabditis elegans Fidgetin-like 1 (FIGL-1) Protein*

    Science.gov (United States)

    Peng, Wentao; Lin, Zhijie; Li, Weirong; Lu, Jing; Shen, Yuequan; Wang, Chunguang

    2013-01-01

    The FIGL-1 (fidgetin like-1) protein is a homolog of fidgetin, a protein whose mutation leads to multiple developmental defects. The FIGL-1 protein contains an AAA (ATPase associated with various activities) domain and belongs to the AAA superfamily. However, the biological functions and developmental implications of this protein remain unknown. Here, we show that the AAA domain of the Caenorhabditis elegans FIGL-1 protein (CeFIGL-1-AAA), in clear contrast to homologous AAA domains, has an unusually high ATPase activity and forms a hexamer in solution. By determining the crystal structure of CeFIGL-1-AAA, we found that the loop linking helices α9 and α10 folds into the short helix α9a, which has an acidic surface and interacts with a positively charged surface of the neighboring subunit. Disruption of this charge interaction by mutagenesis diminishes both the ATPase activity and oligomerization capacity of the protein. Interestingly, the acidic residues in helix α9a of CeFIGL-1-AAA are not conserved in other homologous AAA domains that have relatively low ATPase activities. These results demonstrate that the sequence of CeFIGL-1-AAA has adapted to establish an intersubunit charge interaction, which contributes to its strong oligomerization and ATPase activity. These unique properties of CeFIGL-1-AAA distinguish it from other homologous proteins, suggesting that CeFIGL-1 may have a distinct biological function. PMID:23979136

  4. Structural insights into the unusually strong ATPase activity of the AAA domain of the Caenorhabditis elegans fidgetin-like 1 (FIGL-1) protein.

    Science.gov (United States)

    Peng, Wentao; Lin, Zhijie; Li, Weirong; Lu, Jing; Shen, Yuequan; Wang, Chunguang

    2013-10-11

    The FIGL-1 (fidgetin like-1) protein is a homolog of fidgetin, a protein whose mutation leads to multiple developmental defects. The FIGL-1 protein contains an AAA (ATPase associated with various activities) domain and belongs to the AAA superfamily. However, the biological functions and developmental implications of this protein remain unknown. Here, we show that the AAA domain of the Caenorhabditis elegans FIGL-1 protein (CeFIGL-1-AAA), in clear contrast to homologous AAA domains, has an unusually high ATPase activity and forms a hexamer in solution. By determining the crystal structure of CeFIGL-1-AAA, we found that the loop linking helices α9 and α10 folds into the short helix α9a, which has an acidic surface and interacts with a positively charged surface of the neighboring subunit. Disruption of this charge interaction by mutagenesis diminishes both the ATPase activity and oligomerization capacity of the protein. Interestingly, the acidic residues in helix α9a of CeFIGL-1-AAA are not conserved in other homologous AAA domains that have relatively low ATPase activities. These results demonstrate that the sequence of CeFIGL-1-AAA has adapted to establish an intersubunit charge interaction, which contributes to its strong oligomerization and ATPase activity. These unique properties of CeFIGL-1-AAA distinguish it from other homologous proteins, suggesting that CeFIGL-1 may have a distinct biological function.

  5. Identification and Characterization of CINPA1 Metabolites Facilitates Structure-Activity Studies of the Constitutive Androstane Receptor

    Science.gov (United States)

    Cherian, Milu T.; Yang, Lei; Chai, Sergio C.; Lin, Wenwei

    2016-01-01

    The constitutive androstane receptor (CAR) regulates the expression of genes involved in drug metabolism and other processes. A specific inhibitor of CAR is critical for modulating constitutive CAR activity. We recently described a specific small-molecule inhibitor of CAR, CINPA1 (ethyl (5-(diethylglycyl)-10,11-dihydro-5H-dibenzo[b,f]azepin-3-yl)carbamate), which is capable of reducing CAR-mediated transcription by changing the coregulator recruitment pattern and reducing CAR occupancy at the promoter regions of its target genes. In this study, we showed that CINPA1 is converted to two main metabolites in human liver microsomes. By using cell-based reporter gene and biochemical coregulator recruitment assays, we showed that although metabolite 1 was very weak in inhibiting CAR function and disrupting CAR-coactivator interaction, metabolite 2 was inactive in this regard. Docking studies using the CAR ligand-binding domain structure showed that although CINPA1 and metabolite 1 can bind in the CAR ligand-binding pocket, metabolite 2 may be incapable of the molecular interactions required for binding. These results indicate that the metabolites of CINPA1 may not interfere with the action of CINPA1. We also used in vitro enzyme assays to identify the cytochrome P450 enzymes responsible for metabolizing CINPA1 in human liver microsomes and showed that CINPA1 was first converted to metabolite 1 by CYP3A4 and then further metabolized by CYP2D6 to metabolite 2. Identification and characterization of the metabolites of CINPA1 enabled structure-activity relationship studies of this family of small molecules and provided information to guide in vivo pharmacological studies. PMID:27519550

  6. Synthesis, biological evaluation, and structure-activity relationship of clonazepam, meclonazepam, and 1,4-benzodiazepine compounds with schistosomicidal activity.

    Science.gov (United States)

    Menezes, Carla M S; Rivera, Gildardo; Alves, Marina A; do Amaral, Daniel N; Thibaut, Jean Pierre B; Noël, François; Barreiro, Eliezer J; Lima, Lídia M

    2012-06-01

    The inherent morbidity and mortality caused by schistosomiasis is a serious public health problem in developing countries. Praziquantel is the only drug in therapeutic use, leading to a permanent risk of parasite resistance. In search for new schistosomicidal drugs, meclonazepam, the 3-methyl-derivative of clonazepam, is still considered an interesting lead-candidate because it has a proven schistosomicidal effect in humans but adverse effects on the central nervous system did not allow its clinical use. Herein, the synthesis, in vitro biological evaluation, and molecular modeling of clonazepam, meclonazepam, and analogues are reported to establish the first structure-activity relationship for schistosomicidal benzodiazepines. Our findings indicate that the amide moiety [N(1) H-C(2) (=O)] is the principal pharmacophoric unit of 1,4-benzodiazepine schistosomicidal compounds and that substitution on the amide nitrogen atom (N(1) position) is not tolerated. © 2012 John Wiley & Sons A/S.

  7. Synthesis, crystal structures, fluorescence and xanthine oxidase inhibitory activity of pyrazole-based 1,3,4-oxadiazole derivatives

    Science.gov (United States)

    Qi, De-Qiang; Yu, Chuan-Ming; You, Jin-Zong; Yang, Guang-Hui; Wang, Xue-Jie; Zhang, Yi-Ping

    2015-11-01

    A series of pyrazole-based 1,3,4-oxadiazole derivatives were rationally designed and synthesized in good yields by following a convenient route. All the newly synthesized molecules were fully characterized by IR, 1H NMR and elemental analysis. Eight compounds were structurally determined by single crystal X-ray diffraction analysis. The fluorescence properties of all the compounds were investigated in dimethyl sulfoxide media. In addition, these newly synthesized compounds were evaluated for in vitro inhibitory activity against commercial enzyme xanthine oxidase (XO) by measuring the formation of uric acid from xanthine. Among the compounds synthesized and tested, 3d and 3e were found to be moderate inhibitory activity against commercial XO with IC50 = 72.4 μM and 75.6 μM. The studies gave a new insight in further optimization of pyrazole-based 1,3,4-oxadiazole derivatives with excellent fluorescence properties and XO inhibitory activity.

  8. Development of activated carbon pore structure via physical and chemical activation of biomass fibre waste

    International Nuclear Information System (INIS)

    Williams, Paul T.; Reed, Anton R.

    2006-01-01

    Biomass waste in the form of biomass flax fibre, produced as a by-product of the textile industry was processed via both physical and chemical activation to produce activated carbons. The surface area of the physically activated carbons were up to 840 m 2 g -1 and the carbons were of mesoporous structure. Chemical activation using zinc chloride produced high surface area activated carbons up to 2400 m 2 g -1 and the pore size distribution was mainly microporous. However, the process conditions of temperature and zinc chloride concentration could be used to manipulate the surface area and porosity of the carbons to produce microporous, mesoporous and mixed microporous/mesoporous activated carbons. The physically activated carbons were found to be a mixture of Type I and Type IV carbons and the chemically activated carbons were found to be mainly Type I carbons. The development of surface morphology of physically and chemically activated carbons observed via scanning electron microscopy showed that physical activation produced activated carbons with a nodular and pitted surface morphology whereas activated carbons produced through chemical activation had a smooth surface morphology. Transmission electron microscopy analysis could identify mesopore structures in the physically activated carbon and microporous structures in the chemically activated carbons

  9. Detailed Structural Analyses of KOH Activated Carbon from Waste Coffee Beans

    Science.gov (United States)

    Takahata, Tomokazu; Toda, Ikumi; Ono, Hiroki; Ohshio, Shigeo; Akasaka, Hiroki; Himeno, Syuji; Kokubu, Toshinori; Saitoh, Hidetoshi

    2009-11-01

    The relationship of the detailed structural change of KOH activated carbon and hydrogen storage ability was investigated in activated carbon materials fabricated from waste coffee beans. The specific surface area of porous carbon materials calculated from N2 adsorption isotherms stood at 2070 m2/g when the weight ratio of KOH to carbon materials was 5:1, and pore size was in the range of approximately 0.6 to 1.1 nm as micropores. In the structural analysis, X-ray diffraction analysis and Raman spectroscopy indicated structural change in these carbon materials through KOH activation. The order of the graphite structure changed to a smaller scale with this activation. It is theorized that specific surface area increased using micropores provided by carbon materials developed from the descent of the graphite structure. Hydrogen storage ability improved with these structural changes, and reached 0.6 wt % at 2070 m2/g. These results suggest that hydrogen storage ability is conferred by the chemical effect on graphite of carbon materials.

  10. Mechanism of Folding and Activation of Subtilisin Kexin Isozyme-1 (SKI-1)/Site-1 Protease (S1P)*

    Science.gov (United States)

    da Palma, Joel Ramos; Cendron, Laura; Seidah, Nabil Georges; Pasquato, Antonella; Kunz, Stefan

    2016-01-01

    The proprotein convertase subtilisin kexin isozyme-1 (SKI-1)/site-1 protease (S1P) is implicated in lipid homeostasis, the unfolded protein response, and lysosome biogenesis. The protease is further hijacked by highly pathogenic emerging viruses for the processing of their envelope glycoproteins. Zymogen activation of SKI-1/S1P requires removal of an N-terminal prodomain, by a multistep process, generating the mature enzyme. Here, we uncover a modular structure of the human SKI-1/S1P prodomain and define its function in folding and activation. We provide evidence that the N-terminal AB fragment of the prodomain represents an autonomous structural and functional unit that is necessary and sufficient for folding and partial activation. In contrast, the C-terminal BC fragment lacks a defined structure but is crucial for autoprocessing and full catalytic activity. Phylogenetic analysis revealed that the sequence of the AB domain is highly conserved, whereas the BC fragment shows considerable variation and seems even absent in some species. Notably, SKI-1/S1P of arthropods, like the fruit fly Drosophila melanogaster, contains a shorter prodomain comprised of full-length AB and truncated BC regions. Swapping the prodomain fragments between fly and human resulted in a fully mature and active SKI-1/S1P chimera. Our study suggests that primordial SKI-1/S1P likely contained a simpler prodomain consisting of the highly conserved AB fragment that represents an independent folding unit. The BC region appears as a later evolutionary acquisition, possibly allowing more subtle fine-tuning of the maturation process. PMID:26645686

  11. Synthesis, crystal structure determination and antiproliferative activity of novel 2-amino-4-aryl-4,10-dihydro[1,3,5]triazino[1,2- a]benzimidazoles

    Science.gov (United States)

    Hranjec, Marijana; Pavlović, Gordana; Karminski-Zamola, Grace

    2012-01-01

    This manuscript describes the synthesis of novel 2-amino-4-aryl-4,10-dihydro-[1,3,5]triazino[1,2- a]benzimidazoles as hydrochloride salts 4a-n and 5b which were prepared in the reaction of cyclocondensation between 2-guanidinobenzimidazole and versatile heteroaromatic aldehydes. Structures of all prepared compounds have been studied by using 1H and 13C NMR, IR and UV/Vis spectroscopy. The crystal and molecular structure of 4f was determined by X-ray diffraction on single crystals. The molecule of 2-amino-4-(4'-methylphenyl)-4,10-dihydro[1,3,5]triazino[1,2- a]benzimidazole hydrochloride 4f (C 16H 16N 5+·Cl -) exists in the solid state in one of the possible tautomeric forms, being protonated at the one of the nitrogen atoms of the 1,4-dihydrotriazine ring. The molecule is highly delocalized within the 4,10-dihydro[1,3,5]triazino[1,2- a]benzimidazole moiety with the highest deviation from the plane for the methine carbon atom and the protonated nitrogen atom of the 1,4-dihydrotriazine ring. The cations are joined via N-H⋯N hydrogen bonds into R22(8) centrosymmetric dimers. Cation dimers are further connected with Cl - ions via N-H⋯Cl and C-H⋯Cl hydrogen bonds into 2D chains spreading along the b axis. The obtained single-crystal X-ray structure determination unequivocally confirms tautomeric form of the compound present in the solid-state and can represent tantative pattern for other prepared compounds. All prepared compounds were tested on their antiproliferative activity in vitro on several human cancer cell lines. Compound 4m was the most active one (IC 50 ≈ 20 μM), while compounds 4d, 4f, 4k, 4l4m showed moderate, but non-selective, antiproliferative activity with IC 50 25-60 μM.

  12. Identification and Characterization of CINPA1 Metabolites Facilitates Structure-Activity Studies of the Constitutive Androstane Receptor.

    Science.gov (United States)

    Cherian, Milu T; Yang, Lei; Chai, Sergio C; Lin, Wenwei; Chen, Taosheng

    2016-11-01

    The constitutive androstane receptor (CAR) regulates the expression of genes involved in drug metabolism and other processes. A specific inhibitor of CAR is critical for modulating constitutive CAR activity. We recently described a specific small-molecule inhibitor of CAR, CINPA1 (ethyl (5-(diethylglycyl)-10,11-dihydro-5H-dibenzo[b,f]azepin-3-yl)carbamate), which is capable of reducing CAR-mediated transcription by changing the coregulator recruitment pattern and reducing CAR occupancy at the promoter regions of its target genes. In this study, we showed that CINPA1 is converted to two main metabolites in human liver microsomes. By using cell-based reporter gene and biochemical coregulator recruitment assays, we showed that although metabolite 1 was very weak in inhibiting CAR function and disrupting CAR-coactivator interaction, metabolite 2 was inactive in this regard. Docking studies using the CAR ligand-binding domain structure showed that although CINPA1 and metabolite 1 can bind in the CAR ligand-binding pocket, metabolite 2 may be incapable of the molecular interactions required for binding. These results indicate that the metabolites of CINPA1 may not interfere with the action of CINPA1. We also used in vitro enzyme assays to identify the cytochrome P450 enzymes responsible for metabolizing CINPA1 in human liver microsomes and showed that CINPA1 was first converted to metabolite 1 by CYP3A4 and then further metabolized by CYP2D6 to metabolite 2. Identification and characterization of the metabolites of CINPA1 enabled structure-activity relationship studies of this family of small molecules and provided information to guide in vivo pharmacological studies. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  13. Antileishmanial activities of dihydrochalcones from piper elongatum and synthetic related compounds. Structural requirements for activity.

    Science.gov (United States)

    Hermoso, Alicia; Jiménez, Ignacio A; Mamani, Zulma A; Bazzocchi, Isabel L; Piñero, José E; Ravelo, Angel G; Valladares, Basilio

    2003-09-01

    Two dihydrochalcones (1 and 2) were isolated from Piper elongatum Vahl by activity-guided fractionation against extracellular promastigotes of Leishmania braziliensis in vitro. Their structures were elucidated by spectral analysis, including homonuclear and heteronuclear correlation NMR experiments. Derivatives 3-7 and 20 synthetic related compounds (8-27) were also assayed to establish the structural requirements for antileishmanial activity. Compounds 1-11 that proved to be more active that ketoconazol, used as positive control, were further assayed against promastigotes of Leishmania tropica and Leishmania infantum. Compounds 7 and 11, with a C(6)-C(3)-C(6) system, proved to be the most promising compounds, with IC(50) values of 2.98 and 3.65 microg/mL, respectively, and exhibited no toxic effect on macrophages (around 90% viability). Correlation between the molecular structures and antileishmanial activity is discussed in detail.

  14. Microwave-assisted synthesis, structural characterization, DFT studies, antibacterial and antioxidant activity of 2-methyl-4-oxo-1,2,3,4-tetrahydroquinazoline-2-carboxylic acid

    Science.gov (United States)

    Obafemi, Craig A.; Fadare, Olatomide A.; Jasinski, Jerry P.; Millikan, Sean P.; Obuotor, Efere M.; Iwalewa, Ezekiel O.; Famuyiwa, Samson O.; Sanusi, Kayode; Yilmaz, Yusuf; Ceylan, Ümit

    2018-03-01

    In the present study a new tetrahydroquinazoline-2-carboxylic, C10H10N2O3, 1‧, was synthesized and its structure was characterized by elemental analysis, IR, 1H NMR, 13C NMR data and high-resolution mass spectrometry. The spectral results are in line with the proposed structure. Single crystal X-ray structural analysis of the compound showed that the crystal structure adopts a monoclinic space group P21/c, with the packing of the molecule stabilized by Cdbnd O … …Hsbnd O, Nsbnd H … ….Odbnd Csbnd Osbnd intermolecular hydrogen bonding. The theoretical geometrical parameters of the compound have been calculated using density functional (DFT) and time-dependent density functional (TD-DFT) theory methods and have been used to predict the thermodynamic one-electron redox potential and the electronic absorption property of the compound. The theoretical characterization matched the experimental measurements, showing a good correlation. The calculated HOMO-LUMO gap (4.79 eV) suggests that compound 1‧ could be a potential antioxidant. The synthesized compound was screened for its in vitro antimicrobial activity against selected bacterial strains and antioxidant activity using the TAC, FRAP, NO and ABTS models. In vitro antioxidant activity of 1' showed a moderate activity, but weaker scavenging activity than the standards of ascorbic acid and trolox. Results of the antibacterial activity of the tested compound showed that it possesses a higher activity against Bacillus anthracis, Bacillus cereus, Bacillus polymyxa, Bacillus subtilis and Staphylococcus aureus than the two standard drugs, streptomycin and tetracycline, and better activity than tetracycline against Escherichia coli.

  15. Synthesis, antityrosinase activity of curcumin analogues, and crystal structure of (1E,4E)-1,5-bis(4-ethoxyphenyl)penta-1,4-dien-3-one

    Energy Technology Data Exchange (ETDEWEB)

    Chantrapromma, S., E-mail: suchada.c@psu.ac.th; Ruanwas, P. [Prince of Songkla University, Department of Chemistry, Faculty of Science (Thailand); Boonnak, N. [Thaksin University, Department of Basic Science and Mathematics, Faculty of Science (Thailand); Chantrapromma, K. [Hatyai University, Faculty of Science and Technology (Thailand); Fun, H.-K. [Universiti Sains Malaysia, X-ray Crystallography Unit, School of Physics (Malaysia)

    2016-12-15

    Five derivatives of curcumin analogue (R = OCH{sub 2}CH{sub 3} (1), R = N(CH{sub 3}){sub 2} (2), R = 2,4,5-OCH{sub 3} (3), R = 2,4,6-OCH{sub 3} (4), and R = 3,4,5-OCH{sub 3} (5)) were synthesized and characterized by {sup 1}H NMR, FT-IR and UV–Vis spectroscopy. The synthesized derivatives were screened for antityrosinase activity, and found that 4 and 5 possess such activity. The crystal structure of 1 was determined by single crystal X-ray diffraction: monoclinic, sp. gr. P2{sub 1}/c, a = 17.5728(15) Å, b = 5.9121(5) Å, c = 19.8269(13) Å, β = 121.155(5)°, Z = 4. The molecule 1 is twisted with the dihedral angle between two phenyl rings being 15.68(10)°. In the crystal packing, the molecules 1 are linked into chains by C−H···π interactions and further stacked by π···π interactions with the centroid–centroid distance of 3.9311(13) Å.

  16. Mechanism of Folding and Activation of Subtilisin Kexin Isozyme-1 (SKI-1)/Site-1 Protease (S1P).

    Science.gov (United States)

    da Palma, Joel Ramos; Cendron, Laura; Seidah, Nabil Georges; Pasquato, Antonella; Kunz, Stefan

    2016-01-29

    The proprotein convertase subtilisin kexin isozyme-1 (SKI-1)/site-1 protease (S1P) is implicated in lipid homeostasis, the unfolded protein response, and lysosome biogenesis. The protease is further hijacked by highly pathogenic emerging viruses for the processing of their envelope glycoproteins. Zymogen activation of SKI-1/S1P requires removal of an N-terminal prodomain, by a multistep process, generating the mature enzyme. Here, we uncover a modular structure of the human SKI-1/S1P prodomain and define its function in folding and activation. We provide evidence that the N-terminal AB fragment of the prodomain represents an autonomous structural and functional unit that is necessary and sufficient for folding and partial activation. In contrast, the C-terminal BC fragment lacks a defined structure but is crucial for autoprocessing and full catalytic activity. Phylogenetic analysis revealed that the sequence of the AB domain is highly conserved, whereas the BC fragment shows considerable variation and seems even absent in some species. Notably, SKI-1/S1P of arthropods, like the fruit fly Drosophila melanogaster, contains a shorter prodomain comprised of full-length AB and truncated BC regions. Swapping the prodomain fragments between fly and human resulted in a fully mature and active SKI-1/S1P chimera. Our study suggests that primordial SKI-1/S1P likely contained a simpler prodomain consisting of the highly conserved AB fragment that represents an independent folding unit. The BC region appears as a later evolutionary acquisition, possibly allowing more subtle fine-tuning of the maturation process. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Synthesis and nootropic activity of some 2,3-dihydro-1H-isoindol-1-one derivatives structurally related with piracetam.

    Science.gov (United States)

    Reyes, Adelfo; Huerta, Leticia; Alfaro, Marisol; Navarrete, Andrés

    2010-11-01

    Three 2,3-dihydro-1H-isoindol-1-ones structurally related with piracetam (=2-oxopyrrolidine-1-acetamide) have been synthesized and tested for their nootropic effects in the passive avoidance test in mice. Compounds (RS)-2, (R,R)-3, and (R,S)-3 were obtained in good yields in only two steps starting from methyl DL-phthaloylalanine. Compound (RS)-2 exhibited nootropic activity at lower doses than piracetam, used as reference drug, but it showed lower efficacy. Whereas diastereoisomers (R,R)-3 and (R,S)-3 were as potent as piracetam to revert amnesia induced by scopolamine, (R,S)-3 showed lower efficacy than (R,R)-3. Only (R,R)-3 showed myorelaxant effect at doses of 10 and 30 mg/kg; other compounds did not exhibit any anticonvulsant, sedative, myorelaxant, or impaired motor-coordination effect in mice. These synthesized 2,3-dihydro-1H-isoindol-1-one derivatives constitute a new kind of nootropic compounds.

  18. Synthesis, crystal structure, spectral analysis, dft studies and antimicrobial activity of ethyl 6-(4-(ethoxycarbonyl)-1h-1,2,3-triazol-1-yl)pyridine-3-carboxylate

    International Nuclear Information System (INIS)

    Ahmed, M.N.; Yasin, K.A.; Khan, R.A.H.; Mahmood, T.; Ayub, K.; Malik, D.

    2017-01-01

    Ethyl-6-(4-(ethoxycarbonyl)-1H-1,2,3-triazol-1-yl)pyridine-3-carboxylate (1), was synthesized via click reaction between ethyl tetrazolo[1,5-a]pyridine-6-carboxylate and ethyl propiolate in tetrahydrofuran (THF) in the presence of catalytic amount of a copper acetate. The structure was confirmed by single-crystal X-ray diffraction, NMR, FT-IR and MS. The compound crystallizes in the triclinic system, space group P-1 with a = 4.9122 (5), b = s9.5891 (11), c = 15.4851 (18) Å, a = 92.371 (5), beta = 90.015 (4), gamma = 101.722 (5) Z = 2 and V (Å /sup 3/) = 713.55 (14). Packing diagram indicates that there is dimeric interaction between two units via N(2)H(7). The crystal structure of the title compound 1 is stabilized by several nonboding interactions. Space filling model also revealed C-H...π and the π-π interactions in the molecule. Theoretical investigations were executed by using the Gaussian 09 software to enable comparison with X-ray structure as well as spectroscopic results, and to further probe the structural properties. The molecular electrostatic potential (MEP) analysis gave the idea about chemical reactivity and the Mulliken charge analysis gave quantitative estimate of the charges on the atoms. Frontier molecular orbitals analysis (electronic properties) was used to find the energy gap between the HOMO and the LUMO. The target compound was screened against three different bacterial strains like S. typhimurium, M. luteus and B. bronchiseptica as well as three different fungal strains i.e Aspergilus niger, Mucor specie and Aspergilus flavus. Moderate activities have been displayed by the target compound against tested strains. (author)

  19. Functional, structural and phylogenetic analysis of domains underlying the Al sensitivity of the aluminum-activated malate/anion transporter, TaALMT1.

    Science.gov (United States)

    Ligaba, Ayalew; Dreyer, Ingo; Margaryan, Armine; Schneider, David J; Kochian, Leon; Piñeros, Miguel

    2013-12-01

    Triticum aestivum aluminum-activated malate transporter (TaALMT1) is the founding member of a unique gene family of anion transporters (ALMTs) that mediate the efflux of organic acids. A small sub-group of root-localized ALMTs, including TaALMT1, is physiologically associated with in planta aluminum (Al) resistance. TaALMT1 exhibits significant enhancement of transport activity in response to extracellular Al. In this study, we integrated structure-function analyses of structurally altered TaALMT1 proteins expressed in Xenopus oocytes with phylogenic analyses of the ALMT family. Our aim is to re-examine the role of protein domains in terms of their potential involvement in the Al-dependent enhancement (i.e. Al-responsiveness) of TaALMT1 transport activity, as well as the roles of all its 43 negatively charged amino acid residues. Our results indicate that the N-domain, which is predicted to form the conductive pathway, mediates ion transport even in the absence of the C-domain. However, segments in both domains are involved in Al(3+) sensing. We identified two regions, one at the N-terminus and a hydrophobic region at the C-terminus, that jointly contribute to the Al-response phenotype. Interestingly, the characteristic motif at the N-terminus appears to be specific for Al-responsive ALMTs. Our study highlights the need to include a comprehensive phylogenetic analysis when drawing inferences from structure-function analyses, as a significant proportion of the functional changes observed for TaALMT1 are most likely the result of alterations in the overall structural integrity of ALMT family proteins rather than modifications of specific sites involved in Al(3+) sensing. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  20. Development of an efficient E. coli expression and purification system for a catalytically active, human Cullin3-RINGBox1 protein complex and elucidation of its quaternary structure with Keap1

    International Nuclear Information System (INIS)

    Small, Evan; Eggler, Aimee; Mesecar, Andrew D.

    2010-01-01

    Research highlights: → A novel expression strategy was used to purify Cul3-Rbx1 from E. coli. → The Cul3-Rbx1 complex is fully active and catalyzes ubiquitination of Nrf2 in vitro. → Cul3, Rbx1, and Keap1 form a complex with unique stoichiometry of 1:1:2. -- Abstract: The Cullin3-based E3 ubiquitin ligase complex is thought to play an important role in the cellular response to oxidative stress and xenobiotic assault. While limited biochemical studies of the ligase's role in these complex signaling pathways are beginning to emerge, structural studies are lagging far behind due to the inability to acquire sufficient quantities of full-length, highly pure and active Cullin3. Here we describe the design and construction of an optimized expression and purification system for the full-length, human Cullin3-RINGBox 1 (Rbx1) protein complex from Escherichia coli. The dual-expression system is comprised of codon-optimized Cullin3 and Rbx1 genes co-expressed from a single pET-Duet-1 plasmid. Rapid purification of the Cullin3-Rbx1 complex is achieved in two steps via an affinity column followed by size-exclusion chromatography. Approximately 15 mg of highly pure and active Cullin3-Rbx1 protein from 1 L of E. coli culture can be achieved. Analysis of the quaternary structure of the Cullin3-Rbx1 and Cullin3-Rbx1-Keap1 complexes by size-exclusion chromatography and analytical ultracentrifugation indicates a 1:1 stoichiometry for the Cullin3-Rbx1 complex (MW = 111 kDa), and a 1:1:2 stoichiometry for the Cullin3-Rbx1-Keap1 complex (MW = 280 kDa). This latter complex has a novel quaternary structural organization for cullin E3 ligases, and it is fully active based on an in vitro Cullin3-Rbx1-Keap1-Nrf2 ubiquitination activity assay that was developed and optimized in this study.

  1. Development of an efficient E. coli expression and purification system for a catalytically active, human Cullin3-RINGBox1 protein complex and elucidation of its quaternary structure with Keap1

    Energy Technology Data Exchange (ETDEWEB)

    Small, Evan [Department of Biochemistry, University of Illinois at Chicago, Chicago, IL 60607 (United States); Eggler, Aimee [Department of Biological Sciences, Purdue University, 240 S. Martin Jischke Drive, West Lafayette, IN 47907-1971 (United States); Mesecar, Andrew D., E-mail: amesecar@purdue.edu [Department of Biological Sciences, Purdue University, 240 S. Martin Jischke Drive, West Lafayette, IN 47907-1971 (United States)

    2010-10-01

    Research highlights: {yields} A novel expression strategy was used to purify Cul3-Rbx1 from E. coli. {yields} The Cul3-Rbx1 complex is fully active and catalyzes ubiquitination of Nrf2 in vitro. {yields} Cul3, Rbx1, and Keap1 form a complex with unique stoichiometry of 1:1:2. -- Abstract: The Cullin3-based E3 ubiquitin ligase complex is thought to play an important role in the cellular response to oxidative stress and xenobiotic assault. While limited biochemical studies of the ligase's role in these complex signaling pathways are beginning to emerge, structural studies are lagging far behind due to the inability to acquire sufficient quantities of full-length, highly pure and active Cullin3. Here we describe the design and construction of an optimized expression and purification system for the full-length, human Cullin3-RINGBox 1 (Rbx1) protein complex from Escherichia coli. The dual-expression system is comprised of codon-optimized Cullin3 and Rbx1 genes co-expressed from a single pET-Duet-1 plasmid. Rapid purification of the Cullin3-Rbx1 complex is achieved in two steps via an affinity column followed by size-exclusion chromatography. Approximately 15 mg of highly pure and active Cullin3-Rbx1 protein from 1 L of E. coli culture can be achieved. Analysis of the quaternary structure of the Cullin3-Rbx1 and Cullin3-Rbx1-Keap1 complexes by size-exclusion chromatography and analytical ultracentrifugation indicates a 1:1 stoichiometry for the Cullin3-Rbx1 complex (MW = 111 kDa), and a 1:1:2 stoichiometry for the Cullin3-Rbx1-Keap1 complex (MW = 280 kDa). This latter complex has a novel quaternary structural organization for cullin E3 ligases, and it is fully active based on an in vitro Cullin3-Rbx1-Keap1-Nrf2 ubiquitination activity assay that was developed and optimized in this study.

  2. Structural Basis for the Inhibition of RNase H Activity of HIV-1 Reverse Transcriptase by RNase H Active Site-Directed Inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Su, Hua-Poo; Yan, Youwei; Prasad, G. Sridhar; Smith, Robert F.; Daniels, Christopher L.; Abeywickrema, Pravien D.; Reid, John C.; Loughran, H. Marie; Kornienko, Maria; Sharma, Sujata; Grobler, Jay A.; Xu, Bei; Sardana, Vinod; Allison, Timothy J.; Williams, Peter D.; Darke, Paul L.; Hazuda, Daria J.; Munshi, Sanjeev (Merck)

    2010-09-02

    HIV/AIDS continues to be a menace to public health. Several drugs currently on the market have successfully improved the ability to manage the viral burden in infected patients. However, new drugs are needed to combat the rapid emergence of mutated forms of the virus that are resistant to existing therapies. Currently, approved drugs target three of the four major enzyme activities encoded by the virus that are critical to the HIV life cycle. Although a number of inhibitors of HIV RNase H activity have been reported, few inhibit by directly engaging the RNase H active site. Here, we describe structures of naphthyridinone-containing inhibitors bound to the RNase H active site. This class of compounds binds to the active site via two metal ions that are coordinated by catalytic site residues, D443, E478, D498, and D549. The directionality of the naphthyridinone pharmacophore is restricted by the ordering of D549 and H539 in the RNase H domain. In addition, one of the naphthyridinone-based compounds was found to bind at a second site close to the polymerase active site and non-nucleoside/nucleotide inhibitor sites in a metal-independent manner. Further characterization, using fluorescence-based thermal denaturation and a crystal structure of the isolated RNase H domain reveals that this compound can also bind the RNase H site and retains the metal-dependent binding mode of this class of molecules. These structures provide a means for structurally guided design of novel RNase H inhibitors.

  3. Structural optimization of N1-aryl-benzimidazoles for the discovery of new non-nucleoside reverse transcriptase inhibitors active against wild-type and mutant HIV-1 strains.

    Science.gov (United States)

    Monforte, Anna Maria; De Luca, Laura; Buemi, Maria Rosa; Agharbaoui, Fatima E; Pannecouque, Christophe; Ferro, Stefania

    2018-02-01

    Non-nucleoside reverse transcriptase inhibitors (NNRTIs) are recommended components of preferred combination antiretroviral therapies used for the treatment of human immunodeficiency virus (HIV) infection. These regimens are extremely effective in suppressing virus replication. Recently, our research group identified some N 1 -aryl-2-arylthioacetamido-benzimidazoles as a novel class of NNRTIs. In this research work we report the design, the synthesis and the structure-activity relationship studies of new compounds (20-34) in which some structural modifications have been introduced in order to investigate their effects on reverse transcriptase (RT) inhibition and to better define the features needed to increase the antiviral activity. Most of the new compounds proved to be highly effective in inhibiting both RT enzyme at nanomolar concentrations and HIV-1 replication in MT4 cells with minimal cytotoxicity. Among them, the most promising N 1 -aryl-2-arylthioacetamido-benzimidazoles and N 1 -aryl-2-aryloxyacetamido-benzimidazoles were also tested toward a panel of single- and double-mutants strain responsible for resistance to NNRTIs, showing in vitro antiviral activity toward single mutants L100I, K103N, Y181C, Y188L and E138K. The best results were observed for derivatives 29 and 33 active also against the double mutants F227L and V106A. Computational approaches were applied in order to rationalize the potency of the new synthesized inhibitors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. A New 1D Chained Coordination Polymer: Synthesis, Crystal Structure, Antitumor Activity and Luminescent Property

    Directory of Open Access Journals (Sweden)

    Xi-Shi Tai

    2015-11-01

    Full Text Available A new 1D chained coordination polymer of Zn(II, {[Zn(L2(4,4′-bipy]·(H2O}n(1 (HL = N-acetyl-l-phenylalanine; 4,4′-bipy = 4,4′-bipyridine has been synthesized and characterized by elemental analysis, IR and X-ray single crystal diffraction analysis. Theresults show that each asymmetric unit of Zn(II complex belongs to monoclinic, space group P21 with a = 11.421(2 Å, b = 9.2213(17 Å, c = 15.188(3 Å,β = 106.112(3°, V = 1536.7(5 Å3, Z = 2, Dc = 1.444 g·cm−3, µ = 0.857 mm−1, F(000 = 696, and final R1 = 0.0439, ωR2 = 0.1013. The molecules form one-dimensional chained structure by its the bridging 4,4′-bipyridine ligands. The antitumor activities and luminescent properties of Zn(II coordination polymer have also been investigated.

  5. Synthesis, crystal structure and biological activity of novel diester cyclophanes

    International Nuclear Information System (INIS)

    Zhang, Pengfei; Yang, Bingqin; Fang, Xianwen; Cheng, Zhao; Yang, Meipan

    2012-01-01

    A series of novel diester cyclophanes was synthesized by esterification of 1,2-benzenedicarbonyl chloride with eight different diols under high dilution conditions. The structures of the compounds were verified by elemental analysis, 1 H nuclear magnetic resonance (NMR), IR spectroscopy and high resolution mass spectrometry (HRMS). The crystal structures of two compounds were characterized by single crystal X-ray diffractometry (XRD). All the new cyclophanes were evaluated for biological activities and the results showed that some of these compounds have low antibacterial or antifungal activities (author)

  6. 3D monitoring of active tectonic structures

    Czech Academy of Sciences Publication Activity Database

    Stemberk, Josef; Košťák, Blahoslav; Vilímek, V.

    2003-01-01

    Roč. 36, 1-2 (2003), s. 103-112 ISSN 0264-3707 R&D Projects: GA MŠk OC 625.10 Institutional research plan: CEZ:AV0Z3046908 Keywords : tectonics * monitoring * active structures Subject RIV: DB - Geology ; Mineralogy Impact factor: 0.754, year: 2003

  7. Structures of the Mycobacterium tuberculosis GlpX protein (class II fructose-1,6-bisphosphatase): implications for the active oligomeric state, catalytic mechanism and citrate inhibition.

    Science.gov (United States)

    Wolf, Nina M; Gutka, Hiten J; Movahedzadeh, Farahnaz; Abad-Zapatero, Celerino

    2018-04-01

    The crystal structures of native class II fructose-1,6-bisphosphatase (FBPaseII) from Mycobacterium tuberculosis at 2.6 Å resolution and two active-site protein variants are presented. The variants were complexed with the reaction product fructose 6-phosphate (F6P). The Thr84Ala mutant is inactive, while the Thr84Ser mutant has a lower catalytic activity. The structures reveal the presence of a 222 tetramer, similar to those described for fructose-1,6/sedoheptulose-1,7-bisphosphatase from Synechocystis (strain 6803) as well as the equivalent enzyme from Thermosynechococcus elongatus. This homotetramer corresponds to a homologous oligomer that is present but not described in the crystal structure of FBPaseII from Escherichia coli and is probably conserved in all FBPaseIIs. The constellation of amino-acid residues in the active site of FBPaseII from M. tuberculosis (MtFBPaseII) is conserved and is analogous to that described previously for the E. coli enzyme. Moreover, the structure of the active site of the partially active (Thr84Ser) variant and the analysis of the kinetics are consistent with the previously proposed catalytic mechanism. The presence of metabolites in the crystallization medium (for example citrate and malonate) and in the corresponding crystal structures of MtFBPaseII, combined with their observed inhibitory effect, could suggest the existence of an uncharacterized inhibition of this class of enzymes besides the allosteric inhibition by adenosine monophosphate observed for the Synechocystis enzyme. The structural and functional insights derived from the structure of MtFBPaseII will provide critical information for the design of lead inhibitors, which will be used to validate this target for future chemical intervention.

  8. Study on pore structure properties of steam activated biomass chars

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Tong; Lu, Fei; Wang, Qinchao; Lu, Ping [Nanjing Normal Univ. (China). School of Energy and Mechanical Engineering

    2013-07-01

    Wheat straw and rice husk chars were prepared in a fixed bed reactor at different pyrolysis temperatures (673, 873 and 1,073K) and different pyrolysis procedure. The steam activated chars were also prepared in a fixed bed reactor at the following conditions: activation temperature is 1,073K, the flow rate of N{sub 2} is 5L/min, and N{sub 2} and H{sub 2}O molar ratio is 1:1. The specific surface area, pore structure and micro-morphology of different kinds of prepared biomass chars were measured by NOVA1000e analysis instrument and JSM-5610LV scanning electron microscopy (SEM), respectively. Results indicated that the internal structure was improved significantly by steam activation through enlarging the specific surface area and enriching the porosity. The wheat straw char prepared by both rapid pyrolysis at 873K and activation by steam is better than others, whose DR surface area increases from 3.10 to 1099.99m{sup 2}/g. The N{sub 2} adsorption volume of steam activated biomass chars has been significant promoted.

  9. Sequence-specific activation of the DNA sensor cGAS by Y-form DNA structures as found in primary HIV-1 cDNA.

    Science.gov (United States)

    Herzner, Anna-Maria; Hagmann, Cristina Amparo; Goldeck, Marion; Wolter, Steven; Kübler, Kirsten; Wittmann, Sabine; Gramberg, Thomas; Andreeva, Liudmila; Hopfner, Karl-Peter; Mertens, Christina; Zillinger, Thomas; Jin, Tengchuan; Xiao, Tsan Sam; Bartok, Eva; Coch, Christoph; Ackermann, Damian; Hornung, Veit; Ludwig, Janos; Barchet, Winfried; Hartmann, Gunther; Schlee, Martin

    2015-10-01

    Cytosolic DNA that emerges during infection with a retrovirus or DNA virus triggers antiviral type I interferon responses. So far, only double-stranded DNA (dsDNA) over 40 base pairs (bp) in length has been considered immunostimulatory. Here we found that unpaired DNA nucleotides flanking short base-paired DNA stretches, as in stem-loop structures of single-stranded DNA (ssDNA) derived from human immunodeficiency virus type 1 (HIV-1), activated the type I interferon-inducing DNA sensor cGAS in a sequence-dependent manner. DNA structures containing unpaired guanosines flanking short (12- to 20-bp) dsDNA (Y-form DNA) were highly stimulatory and specifically enhanced the enzymatic activity of cGAS. Furthermore, we found that primary HIV-1 reverse transcripts represented the predominant viral cytosolic DNA species during early infection of macrophages and that these ssDNAs were highly immunostimulatory. Collectively, our study identifies unpaired guanosines in Y-form DNA as a highly active, minimal cGAS recognition motif that enables detection of HIV-1 ssDNA.

  10. Synthesis, crystal structure and biological activity of novel diester cyclophanes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Pengfei; Yang, Bingqin; Fang, Xianwen; Cheng, Zhao; Yang, Meipan, E-mail: yangbq@nwu.edu.cn [Department of Chemistry, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Northwest University, Shaanxi (China)

    2012-10-15

    A series of novel diester cyclophanes was synthesized by esterification of 1,2-benzenedicarbonyl chloride with eight different diols under high dilution conditions. The structures of the compounds were verified by elemental analysis, {sup 1}H nuclear magnetic resonance (NMR), IR spectroscopy and high resolution mass spectrometry (HRMS). The crystal structures of two compounds were characterized by single crystal X-ray diffractometry (XRD). All the new cyclophanes were evaluated for biological activities and the results showed that some of these compounds have low antibacterial or antifungal activities (author)

  11. Structural Characterization and Evaluation of the Antioxidant Activity of Phenolic Compounds from Astragalus taipaishanensis and Their Structure-Activity Relationship

    Science.gov (United States)

    Pu, Wenjun; Wang, Dongmei; Zhou, Dan

    2015-09-01

    Eight phenolic compounds were isolated using bio-guided isolation and purified from the roots of Astragalus taipaishanensis Y. C. Ho et S. B. Ho (A. taipaishanensis) for the first time. Their structures were elucidated by ESI-MS, HR-ESI-MS, 1D-NMR and 2D-NMR as 7,2‧-dihydroxy-3‧,4‧-dimethoxy isoflavan (1), formononetin (2), isoliquiritigenin (3), quercetin (4), kaempferol (5), ononin (6), p-hydroxybenzoic acid (7) and vanillic acid (8). Six flavonoids (compounds 1-6) exhibited stronger antioxidant activities (determined by DPPH, ABTS, FRAP and lipid peroxidation inhibition assays) than those of BHA and TBHQ and also demonstrated noticeable protective effects (particularly quercetin and kaempferol) on Escherichia coli under oxidative stress. Additionally, the chemical constituents compared with those of Astragalus membranaceus and the structure-activity relationship of the isolated compounds were both analyzed. The results clearly demonstrated that A. taipaishanensis has the potential to be selected as an alternative medicinal and food plant that can be utilized in health food products, functional tea and pharmaceutical products.

  12. The Influence of the Activation Temperature on the Structural Properties of the Activated Carbon Xerogels and Their Electrochemical Performance

    Directory of Open Access Journals (Sweden)

    Nguyen Khanh Nguyen Quach

    2017-01-01

    Full Text Available The effect of activation temperature on the structural properties and the electrochemical performance of KOH-activated carbon xerogel was investigated in range of 700 to 1000°C. At a high temperature (1000°C, the chemical activation regenerated a more crystalline network structure of activated carbon xerogels, which was observed by Raman, XRD, and TEM images. Additionally, SEM images, BET, BJH, and t-plot were used to study the structural properties of carbon xerogels. The carbon xerogel sample activated at 900°C was found with the most appropriate structure, which has the high micropore area and a more-balanced porosity between the micropores and mesopores, for using as an electrode material. The highest obtained specific capacitance value was 270 Fg−1 in 6 M KOH electrolyte at scan rate of 5 mVs−1 from the cyclic voltammetry.

  13. Structural Characterization of the Loop at the Alpha-Subunit C-Terminus of the Mixed Lineage Leukemia Protein Activating Protease Taspase1.

    Directory of Open Access Journals (Sweden)

    Johannes van den Boom

    Full Text Available Type 2 asparaginases, a subfamily of N-terminal nucleophile (Ntn hydrolases, are activated by limited proteolysis. This activation yields a heterodimer and a loop region at the C-terminus of the α-subunit is released. Since this region is unresolved in all type 2 asparaginase crystal structures but is close to the active site residues, we explored this loop region in six members of the type 2 asparaginase family using homology modeling. As the loop model for the childhood cancer-relevant protease Taspase1 differed from the other members, Taspase1 activation as well as the conformation and dynamics of the 56 amino acids loop were investigated by CD and NMR spectroscopy. We propose a helix-turn-helix motif, which can be exploited as novel anticancer target to inhibit Taspase1 proteolytic activity.

  14. 1-[(3-Aryloxy-3-aryl)propyl]-1H-imidazoles, new imidazoles with potent activity against Candida albicans and dermatophytes. Synthesis, structure-activity relationship, and molecular modeling studies.

    Science.gov (United States)

    La Regina, Giuseppe; D'Auria, Felicia Diodata; Tafi, Andrea; Piscitelli, Francesco; Olla, Stefania; Caporuscio, Fabiana; Nencioni, Lucia; Cirilli, Roberto; La Torre, Francesco; De Melo, Nadja Rodrigues; Kelly, Steven L; Lamb, David C; Artico, Marino; Botta, Maurizio; Palamara, Anna Teresa; Silvestri, Romano

    2008-07-10

    New 1-[(3-aryloxy-3-aryl)propyl]-1 H-imidazoles were synthesized and evaluated against Candida albicans and dermatophytes in order to develop structure-activity relationships (SARs). Against C. albicans the new imidazoles showed minimal inhibitory concentrations (MICs) comparable to those of ketoconazole, miconazole, and econazole, and were more potent than fluconazole. Several derivatives ( 10, 12, 14, 18- 20, 24, 28, 29, 30, and 34) turned out to be potent inhibitors of C. albicans strains resistant to fluconazole, with MIC values less than 10 microg/mL. Against dermatophytes strains, compounds 20, 25, and 33 (MIC

  15. Stellar Photometric Structures of the Host Galaxies of Nearby Type 1 Active Galactic Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Minjin [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of); Ho, Luis C. [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China); Peng, Chien Y. [Giant Magellan Telescope Corporation, 251 S. Lake Ave., Suite 300, Pasadena, CA 91101 (United States); Barth, Aaron J. [Department of Physics and Astronomy, University of California at Irvine, 4129 Frederick Reines Hall, Irvine, CA 92697-4575 (United States); Im, Myungshin, E-mail: mkim@kasi.re.kr, E-mail: lho.pku@gmail.com, E-mail: peng@gmto.org, E-mail: barth@uci.edu, E-mail: mim@astro.snu.ac.kr [Department of Physics and Astronomy, Frontier Physics Research Division (FPRD), Seoul National University, Seoul (Korea, Republic of)

    2017-10-01

    We present detailed image analysis of rest-frame optical images of 235 low-redshift ( z ≲ 0.35) Type 1 active galactic nuclei (AGNs) observed with the Hubble Space Telescope . The high-resolution images enable us to perform rigorous two-dimensional image modeling to decouple the luminous central point source from the host galaxy, which, when warranted, is further decomposed into its principal structural components (bulge, bar, and disk). In many cases, care must be taken to account for structural complexities such as spiral arms, tidal features, and overlapping or interacting companion galaxies. We employ Fourier modes to characterize the degree of asymmetry of the light distribution of the stars as a quantitative measure of morphological distortion due to interactions or mergers. We examine the dependence of the physical parameters of the host galaxies on the properties of the AGNs, namely, radio-loudness and the width of the broad emission lines. In accordance with previous studies, narrow-line (H β FWHM ≤ 2000 km s{sup −1}) Type 1 AGNs, in contrast to their broad-line (H β FWHM > 2000 km s{sup −1}) counterparts, are preferentially hosted in later-type, lower-luminosity galaxies, which have a higher incidence of pseudo-bulges, are more frequently barred, and are less morphologically disturbed. This suggests that narrow-line Type 1 AGNs experienced a more quiescent evolutionary history driven primarily by internal secular evolution instead of external dynamical perturbations. The fraction of AGN hosts showing merger signatures is larger for more luminous sources. Radio-loud AGNs generally preferentially live in earlier-type (bulge-dominated), more massive hosts, although a minority of them appear to contain a significant disk component. We do not find convincing evidence for enhanced merger signatures in the radio-loud population.

  16. Regulation of synaptic structure by ubiquitin C-terminal hydrolase L1.

    Science.gov (United States)

    Cartier, Anna E; Djakovic, Stevan N; Salehi, Afshin; Wilson, Scott M; Masliah, Eliezer; Patrick, Gentry N

    2009-06-17

    Ubiquitin C-terminal hydrolase L1 (UCH-L1) is a deubiquitinating enzyme that is selectively and abundantly expressed in the brain, and its activity is required for normal synaptic function. Here, we show that UCH-L1 functions in maintaining normal synaptic structure in hippocampal neurons. We found that UCH-L1 activity is rapidly upregulated by NMDA receptor activation, which leads to an increase in the levels of free monomeric ubiquitin. Conversely, pharmacological inhibition of UCH-L1 significantly reduces monomeric ubiquitin levels and causes dramatic alterations in synaptic protein distribution and spine morphology. Inhibition of UCH-L1 activity increases spine size while decreasing spine density. Furthermore, there is a concomitant increase in the size of presynaptic and postsynaptic protein clusters. Interestingly, however, ectopic expression of ubiquitin restores normal synaptic structure in UCH-L1-inhibited neurons. These findings point to a significant role of UCH-L1 in synaptic remodeling, most likely by modulating free monomeric ubiquitin levels in an activity-dependent manner.

  17. Structural Basis for Selective Small Molecule Kinase Inhibition of Activated c-Met

    Energy Technology Data Exchange (ETDEWEB)

    Rickert, Keith W.; Patel, Sangita B.; Allison, Timothy J.; Byrne, Noel J.; Darke, Paul L.; Ford, Rachael E.; Guerin, David J.; Hall, Dawn L.; Kornienko, Maria; Lu, Jun; Munshi, Sanjeev K.; Reid, John C.; Shipman, Jennifer M.; Stanton, Elizabeth F.; Wilson, Kevin J.; Young, Jonathon R.; Soisson, Stephen M.; Lumb, Kevin J. (Merck)

    2012-03-15

    The receptor tyrosine kinase c-Met is implicated in oncogenesis and is the target for several small molecule and biologic agents in clinical trials for the treatment of cancer. Binding of the hepatocyte growth factor to the cell surface receptor of c-Met induces activation via autophosphorylation of the kinase domain. Here we describe the structural basis of c-Met activation upon autophosphorylation and the selective small molecule inhibiton of autophosphorylated c-Met. MK-2461 is a potent c-Met inhibitor that is selective for the phosphorylated state of the enzyme. Compound 1 is an MK-2461 analog with a 20-fold enthalpy-driven preference for the autophosphorylated over unphosphorylated c-Met kinase domain. The crystal structure of the unbound kinase domain phosphorylated at Tyr-1234 and Tyr-1235 shows that activation loop phosphorylation leads to the ejection and disorder of the activation loop and rearrangement of helix {alpha}C and the G loop to generate a viable active site. Helix {alpha}C adopts a orientation different from that seen in activation loop mutants. The crystal structure of the complex formed by the autophosphorylated c-Met kinase domain and compound 1 reveals a significant induced fit conformational change of the G loop and ordering of the activation loop, explaining the selectivity of compound 1 for the autophosphorylated state. The results highlight the role of structural plasticity within the kinase domain in imparting the specificity of ligand binding and provide the framework for structure-guided design of activated c-Met inhibitors.

  18. Unusual structural transition of antimicrobial VP1 peptide.

    Science.gov (United States)

    Shanmugam, Ganesh; Phambu, Nsoki; Polavarapu, Prasad L

    2011-05-01

    VP1 peptide, an active domain of m-calpain enzyme with antimicrobial activity is found to undergo an unusual conformational transition in trifluoroethanol (TFE) solvent. The nature of, and time dependent variations in, circular dichroism associated with the amide I vibrations, suggest that VP1 undergoes self-aggregation forming anti-parallel β-sheet structure in TFE. Transmission electron micrograph (TEM) images revealed that β-sheet aggregates formed by VP1 possess fibril-like assemblies. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Benzazepines: Structure-activity relationships between D1 receptor blockade and selected pharmacological effects

    International Nuclear Information System (INIS)

    Iorio, L.C.; Billiard, W.; Gold, E.H.

    1986-01-01

    This chapter describes the displacement of 3 H-23390 and 3 H-spiperone binding by dopamine agonists and antagonists. The authors undertook an evaluation of the ability of selected analogs of SCH 23390 to displace 3 H-SCH 23390 and 3 H-spiperone. Structure-activity relationships of SCH 23390 analogs: 7-position substituents, is shown. It is shown that, in general, benzazepines with a variety of substituents in the 7-position retain their selectivity for D 1 sites. Substituents at the 8-position and at the N-position are also discussed. The authors determine a correlation between displacement of 3 H-SCH 23390 and blockade of dopamine-sensitive adenylate cyclase (DSAC). These effects and inhibition of conditioned avoidance responsing (CAS) in rats was also studied. A detailed evaluation is presented of the effects of SCH 23390 and haloperidol in the Inclined Screen and CAR tests

  20. Synthesis, Crystal Structure and Anti-ischaemic Activity of (E)-1-{4 ...

    African Journals Online (AJOL)

    NICO

    Mr = 476.98) (5) was synthesized and studied by the single crystal X-ray diffraction method. Its structure was ... The reaction of cinnamic acid chloride with 1-[bis(4-methoxy- .... Displacement ellipsoids are drawn at the 70 % probability level.

  1. ERP Evidence for the Activation of Syntactic Structure During Comprehension of Lexical Idiom.

    Science.gov (United States)

    Zhang, Meichao; Lu, Aitao; Song, Pingfang

    2017-10-01

    The present study used event-related potentials to investigate whether the syntactic structure was activated in the comprehension of lexical idioms, and if so, whether it varied as a function of familiarity and semantic transparency. Participants were asked to passively read the "1+2" structural Chinese lexical idioms with each being presented following 3-5 contextual "1+2" (congruent-structure condition) or "2+1" structural Chinese phrases (incongruent-structure condition). The N400 ERP responses showed more positivity in congruent-structure condition relative to incongruent-structure condition in idioms with high familiarity and high semantic transparency, but less positivity in congruent-structure condition in idioms with high familiarity but low semantic transparency, idioms with low familiarity but high semantic transparency, and idioms with low familiarity and low semantic transparency. Our results suggest that syntactic structure, as the unnecessarity of lexical idiomatic words, was nevertheless activated, independent of familiarity and semantic transparency.

  2. Quantitative Structure ‒ Antiprotozoal Activity Relationships of Sesquiterpene Lactones

    Directory of Open Access Journals (Sweden)

    Reto Brun

    2009-06-01

    Full Text Available Prompted by results of our previous studies where we found high activity of some sesquiterpene lactones (STLs against Trypanosoma brucei rhodesiense (which causes East African sleeping sickness, we have now conducted a structure-(in-vitro-activity study on a set of 40 STLs against T. brucei rhodesiense, T. cruzi, Leishmania donovani and Plasmodium falciparum. Furthermore, cytotoxic activity against L6 rat skeletal myoblast cells was assessed. Some of the compounds possess high activity, especially against T. brucei (e.g. helenalin and some of its esters with IC50-values of 0.05-0.1 µM, which is about 10 times lower than their cytotoxic activity. It was found that all investigated antiprotozoal activities are significantly correlated with cytotoxicity and the major determinants for activity are a,b-unsaturated structural elements, also known to be essential for other biological activities of STLs. It was observed, however, that certain compounds are considerably more toxic against protozoa than against mammalian cells while others are more cytotoxic than active against the protozoa. A comparative QSAR analysis was therefore undertaken, in order to discern the antiparasitic activity of STLs against T. brucei and cytotoxicity. Both activities were found to depend to a large extent on the same structural elements and molecular properties. The observed variance in the biological data can be explained in terms of subtle variations in the relative influences of various molecular descriptors.

  3. Chemical Structure-Biological Activity Models for Pharmacophores’ 3D-Interactions

    Directory of Open Access Journals (Sweden)

    Mihai V. Putz

    2016-07-01

    Full Text Available Within medicinal chemistry nowadays, the so-called pharmaco-dynamics seeks for qualitative (for understanding and quantitative (for predicting mechanisms/models by which given chemical structure or series of congeners actively act on biological sites either by focused interaction/therapy or by diffuse/hazardous influence. To this aim, the present review exposes three of the fertile directions in approaching the biological activity by chemical structural causes: the special computing trace of the algebraic structure-activity relationship (SPECTRAL-SAR offering the full analytical counterpart for multi-variate computational regression, the minimal topological difference (MTD as the revived precursor for comparative molecular field analyses (CoMFA and comparative molecular similarity indices analysis (CoMSIA; all of these methods and algorithms were presented, discussed and exemplified on relevant chemical medicinal systems as proton pump inhibitors belonging to the 4-indolyl,2-guanidinothiazole class of derivatives blocking the acid secretion from parietal cells in the stomach, the 1-[(2-hydroxyethoxy-methyl]-6-(phenylthiothymine congeners’ (HEPT ligands antiviral activity against Human Immunodeficiency Virus of first type (HIV-1 and new pharmacophores in treating severe genetic disorders (like depression and psychosis, respectively, all involving 3D pharmacophore interactions.

  4. Synthesis and anticancer structure activity relationship investigation of cationic anthraquinone analogs.

    Science.gov (United States)

    Shrestha, Jaya P; Fosso, Marina Y; Bearss, Jeremiah; Chang, Cheng-Wei Tom

    2014-04-22

    We have synthesized a series of novel 4,9-dioxo-4,9-dihydro-1H-naphtho[2,3-d][1,2,3]triazol-3-ium salts, which can be viewed as analogs of cationic anthraquinones. Unlike the similar analogs that we have reported previously, these compounds show relatively weak antibacterial activities but exert strong anticancer activities (low μM to nM GI50), in particular, against melanoma, colon cancer, non-small cell lung cancer and central nervous system (CNS) cancer. These compounds are structurally different from their predecessors by having the aromatic group, instead of alkyl chains, directly attached to the cationic anthraquinone scaffold. Further investigation in the structure-activity relationship (SAR) reveals the significant role of electron donating substituents on the aromatic ring in enhancing the anticancer activities via resonance effect. Steric hindrance of these groups is disadvantageous but is less influential than the resonance effect. The difference in the attached groups at N-1 position of the cationic anthraquinone analog is the main structural factor for the switching of biological activity from antibacterial to anticancer. The discovery of these compounds may lead to the development of novel cancer chemotherapeutics. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  5. Crystal structure of a cold-active protease (Pro21717) from the psychrophilic bacterium, Pseudoalteromonas arctica PAMC 21717, at 1.4 Å resolution: Structural adaptations to cold and functional analysis of a laundry detergent enzyme.

    Science.gov (United States)

    Park, Ha Ju; Lee, Chang Woo; Kim, Dockyu; Do, Hackwon; Han, Se Jong; Kim, Jung Eun; Koo, Bon-Hun; Lee, Jun Hyuck; Yim, Joung Han

    2018-01-01

    Enzymes isolated from organisms found in cold habitats generally exhibit higher catalytic activity at low temperatures than their mesophilic homologs and are therefore known as cold-active enzymes. Cold-active proteases are very useful in a variety of biotechnological applications, particularly as active ingredients in laundry and dishwashing detergents, where they provide strong protein-degrading activity in cold water. We identified a cold-active protease (Pro21717) from a psychrophilic bacterium, Pseudoalteromonas arctica PAMC 21717, and determined the crystal structure of its catalytic domain (CD) at a resolution of 1.4 Å. The Pro21717-CD structure shows a conserved subtilisin-like fold with a typical catalytic triad (Asp185, His244, and Ser425) and contains four calcium ions and three disulfide bonds. Interestingly, we observed an unexpected electron density at the substrate-binding site from a co-purified peptide. Although the sequence of this peptide is unknown, analysis of the peptide-complexed structure nonetheless provides some indication of the substrate recognition and binding mode of Pro21717. Moreover, various parameters, including a wide substrate pocket size, an abundant active-site loop content, and a flexible structure provide potential explanations for the cold-adapted properties of Pro21717. In conclusion, this is first structural characterization of a cold-adapted subtilisin-like protease, and these findings provide a structural and functional basis for industrial applications of Pro21717 as a cold-active laundry or dishwashing detergent enzyme.

  6. Population activity structure of excitatory and inhibitory neurons.

    Science.gov (United States)

    Bittner, Sean R; Williamson, Ryan C; Snyder, Adam C; Litwin-Kumar, Ashok; Doiron, Brent; Chase, Steven M; Smith, Matthew A; Yu, Byron M

    2017-01-01

    Many studies use population analysis approaches, such as dimensionality reduction, to characterize the activity of large groups of neurons. To date, these methods have treated each neuron equally, without taking into account whether neurons are excitatory or inhibitory. We studied population activity structure as a function of neuron type by applying factor analysis to spontaneous activity from spiking networks with balanced excitation and inhibition. Throughout the study, we characterized population activity structure by measuring its dimensionality and the percentage of overall activity variance that is shared among neurons. First, by sampling only excitatory or only inhibitory neurons, we found that the activity structures of these two populations in balanced networks are measurably different. We also found that the population activity structure is dependent on the ratio of excitatory to inhibitory neurons sampled. Finally we classified neurons from extracellular recordings in the primary visual cortex of anesthetized macaques as putative excitatory or inhibitory using waveform classification, and found similarities with the neuron type-specific population activity structure of a balanced network with excitatory clustering. These results imply that knowledge of neuron type is important, and allows for stronger statistical tests, when interpreting population activity structure.

  7. Population activity structure of excitatory and inhibitory neurons.

    Directory of Open Access Journals (Sweden)

    Sean R Bittner

    Full Text Available Many studies use population analysis approaches, such as dimensionality reduction, to characterize the activity of large groups of neurons. To date, these methods have treated each neuron equally, without taking into account whether neurons are excitatory or inhibitory. We studied population activity structure as a function of neuron type by applying factor analysis to spontaneous activity from spiking networks with balanced excitation and inhibition. Throughout the study, we characterized population activity structure by measuring its dimensionality and the percentage of overall activity variance that is shared among neurons. First, by sampling only excitatory or only inhibitory neurons, we found that the activity structures of these two populations in balanced networks are measurably different. We also found that the population activity structure is dependent on the ratio of excitatory to inhibitory neurons sampled. Finally we classified neurons from extracellular recordings in the primary visual cortex of anesthetized macaques as putative excitatory or inhibitory using waveform classification, and found similarities with the neuron type-specific population activity structure of a balanced network with excitatory clustering. These results imply that knowledge of neuron type is important, and allows for stronger statistical tests, when interpreting population activity structure.

  8. Population activity structure of excitatory and inhibitory neurons

    Science.gov (United States)

    Doiron, Brent

    2017-01-01

    Many studies use population analysis approaches, such as dimensionality reduction, to characterize the activity of large groups of neurons. To date, these methods have treated each neuron equally, without taking into account whether neurons are excitatory or inhibitory. We studied population activity structure as a function of neuron type by applying factor analysis to spontaneous activity from spiking networks with balanced excitation and inhibition. Throughout the study, we characterized population activity structure by measuring its dimensionality and the percentage of overall activity variance that is shared among neurons. First, by sampling only excitatory or only inhibitory neurons, we found that the activity structures of these two populations in balanced networks are measurably different. We also found that the population activity structure is dependent on the ratio of excitatory to inhibitory neurons sampled. Finally we classified neurons from extracellular recordings in the primary visual cortex of anesthetized macaques as putative excitatory or inhibitory using waveform classification, and found similarities with the neuron type-specific population activity structure of a balanced network with excitatory clustering. These results imply that knowledge of neuron type is important, and allows for stronger statistical tests, when interpreting population activity structure. PMID:28817581

  9. Structure and catalytic activity of regenerated spent hydrotreating catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C.S.; Massoth, F.E.; Furimsky, E. (Utah University, Salt Lake City, UT (USA). Dept. of Fuels Engineering)

    1992-11-01

    Two spent catalysts, obtained from different hydrodemetallation operations, were regenerated by two different treatments, viz. 2% (V/V) O[sub 2]/N[sub 2] and air. One spent catalyst (B), contained 3 wt% V and 15 wt% C, while the other (H) contained 10 wt% V, 14 wt% C and 8 wt% Fe. After regeneration in the O[sub 2]/N[sub 2] stream, catalyst B showed essentially complete recovery of its original surface area, whereas catalyst H showed only 70% recovery. Both catalysts showed substantial losses in surface area by the air treatment. Catalytic activity tests on the regenerated catalysts for hydrodesulfurization of thiophene and for hydrogenation of 1-hexene showed low recovery of activities, even for the regenerated catalyst in which the surface area had been completely recovered. X-ray diffraction analyses of the spent-regenerated catalysts revealed substantial changes in catalyst structure. Surface area and catalytic activity results were qualitatively explained by these catalyst structural changes. 17 refs., 1 fig., 3 tabs.

  10. Static structure of active Brownian hard disks

    Science.gov (United States)

    de Macedo Biniossek, N.; Löwen, H.; Voigtmann, Th; Smallenburg, F.

    2018-02-01

    We explore the changes in static structure of a two-dimensional system of active Brownian particles (ABP) with hard-disk interactions, using event-driven Brownian dynamics simulations. In particular, the effect of the self-propulsion velocity and the rotational diffusivity on the orientationally-averaged fluid structure factor is discussed. Typically activity increases structural ordering and generates a structure factor peak at zero wave vector which is a precursor of motility-induced phase separation. Our results provide reference data to test future statistical theories for the fluid structure of active Brownian systems. This manuscript was submitted for the special issue of the Journal of Physics: Condensed Matter associated with the Liquid Matter Conference 2017.

  11. Structure-activity relationships of the antimicrobial peptide arasin 1 - and mode of action studies of the N-terminal, proline-rich region.

    Directory of Open Access Journals (Sweden)

    Victoria S Paulsen

    Full Text Available Arasin 1 is a 37 amino acid long proline-rich antimicrobial peptide isolated from the spider crab, Hyas araneus. In this work the active region of arasin 1 was identified through structure-activity studies using different peptide fragments derived from the arasin 1 sequence. The pharmacophore was found to be located in the proline/arginine-rich NH(2 terminus of the peptide and the fragment arasin 1(1-23 was almost equally active to the full length peptide. Arasin 1 and its active fragment arasin 1(1-23 were shown to be non-toxic to human red blood cells and arasin 1(1-23 was able to bind chitin, a component of fungal cell walls and the crustacean shell. The mode of action of the fully active N-terminal arasin 1(1-23 was explored through killing kinetic and membrane permeabilization studies. At the minimal inhibitory concentration (MIC, arasin 1(1-23 was not bactericidal and had no membrane disruptive effect. In contrast, at concentrations of 5×MIC and above it was bactericidal and interfered with membrane integrity. We conclude that arasin 1(1-23 has a different mode of action than lytic peptides, like cecropin P1. Thus, we suggest a dual mode of action for arasin 1(1-23 involving membrane disruption at peptide concentrations above MIC, and an alternative mechanism of action, possibly involving intracellular targets, at MIC.

  12. Stellar Photometric Structures of the Host Galaxies of Nearby Type 1 Active Galactic Nuclei

    Science.gov (United States)

    Kim, Minjin; Ho, Luis C.; Peng, Chien Y.; Barth, Aaron J.; Im, Myungshin

    2017-10-01

    We present detailed image analysis of rest-frame optical images of 235 low-redshift (z ≲ 0.35) Type 1 active galactic nuclei (AGNs) observed with the Hubble Space Telescope. The high-resolution images enable us to perform rigorous two-dimensional image modeling to decouple the luminous central point source from the host galaxy, which, when warranted, is further decomposed into its principal structural components (bulge, bar, and disk). In many cases, care must be taken to account for structural complexities such as spiral arms, tidal features, and overlapping or interacting companion galaxies. We employ Fourier modes to characterize the degree of asymmetry of the light distribution of the stars as a quantitative measure of morphological distortion due to interactions or mergers. We examine the dependence of the physical parameters of the host galaxies on the properties of the AGNs, namely, radio-loudness and the width of the broad emission lines. In accordance with previous studies, narrow-line (Hβ FWHM ≤ 2000 km s-1) Type 1 AGNs, in contrast to their broad-line (Hβ FWHM > 2000 km s-1) counterparts, are preferentially hosted in later-type, lower-luminosity galaxies, which have a higher incidence of pseudo-bulges, are more frequently barred, and are less morphologically disturbed. This suggests that narrow-line Type 1 AGNs experienced a more quiescent evolutionary history driven primarily by internal secular evolution instead of external dynamical perturbations. The fraction of AGN hosts showing merger signatures is larger for more luminous sources. Radio-loud AGNs generally preferentially live in earlier-type (bulge-dominated), more massive hosts, although a minority of them appear to contain a significant disk component. We do not find convincing evidence for enhanced merger signatures in the radio-loud population. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute

  13. Remedial Strategies in Structural Proteomics: Expression, Purification, And Crystallization of the Vav1/Rac1 Complex

    Energy Technology Data Exchange (ETDEWEB)

    Brooun, A.; Foster, S.A.; Chrencik, H.E.; Chien, E.Y.T.; Kolatkar, A.R.; Streiff, M.; Ramage, P.; Widmer, H.; Weckbecker, G.; Kuhn, P.

    2007-07-03

    The signal transduction pathway involving the Vav1 guanine nucleotide exchange factor (GEF) and the Rac1 GTPase plays several key roles in the immune response mediated by the T cell receptor. Vav1 is also a unique member of the GEF family in that it contains a cysteine-rich domain (CRD) that is critical for Rac1 binding and maximal guanine nucleotide exchange activity, and thus may provide a unique protein-protein interface compared to other GEF/GTPase pairs. Here, we have applied a number of remedial structural proteomics strategies, such as construct and expression optimization, surface mutagenesis, limited proteolysis, and protein formulation to successfully express, purify, and crystallize the Vav1-DH-PH-CRD/Rac1 complex in an active conformation. We have also systematically characterized various Vav1 domains in a GEF assay and Rac1 in vitro binding experiments. In the context of Vav1-DH-PH-CRD, the zinc finger motif of the CRD is required for the expression of stable Vav1, as well as for activity in both a GEF assay and in vitro formation of a Vav1/Rac1 complex suitable for biophysical and structural characterization. Our data also indicate that the isolated CRD maintains a low level of specific binding to Rac1, appears to be folded based on 1D NMR analysis and coordinates two zinc ions based on ICP-MS analysis. The protein reagents generated here are essential tools for the determination of a three dimensional Vav1/Rac1 complex crystal structure and possibly for the identification of inhibitors of the Vav1/Rac1 protein-protein interaction with potential to inhibit lymphocyte activation.

  14. Fuel Cell Demonstration Project - 200 kW - Phosphoric Acid Fuel Cell Power Plant Located at the National Transportation Research Center: FINAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Berry, JB

    2005-05-06

    Oak Ridge National Laboratory (ORNL) researches and develops distributed generation technology for the Department of Energy, Energy Efficiency and Renewable Energy Distributed Energy Program. This report describes installation and operation of one such distributed generation system, a United Technology Corporation fuel cell located at the National Transportation Research Center in Knoxville, Tennessee. Data collected from June 2003 to June of 2004, provides valuable insight regarding fuel cell-grid compatibility and the cost-benefit of the fuel cell operation. The NTRC fuel cell included a high-heat recovery option so that use of thermal energy improves project economics and improves system efficiency to 59% year round. During the year the fuel cell supplied a total of 834MWh to the NTRC and provided 300MBtu of hot water. Installation of the NTRC fuel cell was funded by the Distributed Energy Program with partial funding from the Department of Defense's Climate Change Fuel Cell Buy Down Program, administered by the National Energy Technology Laboratory. On-going operational expenses are funded by ORNL's utility budget and are paid from operational cost savings. Technical information and the benefit-cost of the fuel cell are both evaluated in this report and sister reports.

  15. Chimaerin suppresses Rac1 activation at the apical membrane to maintain the cyst structure.

    Directory of Open Access Journals (Sweden)

    Shunsuke Yagi

    Full Text Available Epithelial organs are made of a well-polarized monolayer of epithelial cells, and their morphology is maintained strictly for their proper functions. Previously, we showed that Rac1 activation is suppressed at the apical membrane in the mature organoid, and that such spatially biased Rac1 activity is required for the polarity maintenance. Here we identify Chimaerin, a GTPase activating protein for Rac1, as a suppressor of Rac1 activity at the apical membrane. Depletion of Chimaerin causes over-activation of Rac1 at the apical membrane in the presence of hepatocyte growth factor (HGF, followed by luminal cell accumulation. Importantly, Chimaerin depletion did not inhibit extension formation at the basal membrane. These observations suggest that Chimaerin functions as the apical-specific Rac1 GAP to maintain epithelial morphology.

  16. Active region structures in the transition region and corona

    International Nuclear Information System (INIS)

    Webb, D.F.

    1981-01-01

    Observational aspects of the transition region and coronal structures of the solar active region are reviewed with an emphasis on imaging of the plasma loops which act as tracers of the magnetic flux loops. The study of the basic structure of an active region is discussed in terms of the morphological and thermal classifications of active region loops, including umbral structures, and observational knowledge of the thermal structure of loops is considered in relation to scaling laws, emission measures and the structures of individual loops. The temporal evolution of active region loop structures is reviewed with emphasis on ephemeral regions and the emergence of active regions. Planned future spaceborne observations of active region loop structures in the EUV and soft X-ray regions are also indicated

  17. Structure-activity relationships in a new series of insecticidally active dioxatricycloalkenes derived by structural comparison of the GABA [γ-aminobutyric acid] antagonists bicycloorthocarboxylates and endosulfan

    International Nuclear Information System (INIS)

    Ozoe, Yoshihisa; Sawada, Yoshihiro; Mochida, Kazuo; Nakamura, Toshiie; Matsumura, Fumio

    1990-01-01

    To study structural requirements for picrotoxinin-type GABA (γ-aminobutyric acid) antagonists to interact with the receptor site, 5-substituted 4,6-dioxatricyclo[7.2.1.0 2,8 ]dodec-10-enes and related compounds were prepared and examined for their insecticidal activity and potency in displacing [ 35 S]tert-butylbicyclophosphorothionate (TBPS) binding. Compounds with high insecticidal activity possessed a phenyl group with an electron-withdrawing para substituent, a cycloalkyl group, or a C 3 -C 5 straight-chain alkyl group at the 5-position. The effect of the 5-substituents on insecticidal activity was very similar to that of the 1-substituents of the bicyloorthocarboxylate GABA antagonists. Representative dioxatricycloalkenes displaced the binding of the GABA antagonist [ 35 S]TBPS to housefly head membranes by 29-53% at 10 μM. X-ray crystal structure analysis demonstrated that this class of compounds had structures superimposable on those of 4-tert-butylbicycloorthocarboxylates. These findings indicate that the dioxatricycloalkenes and some other analogues occupy the picrotoxinin binding site in such a way that the fourth interacting subsite of the receptor site accommodates the 5-substituent

  18. Origami-inspired active structures: a synthesis and review

    International Nuclear Information System (INIS)

    Peraza-Hernandez, Edwin A; Hartl, Darren J; Malak Jr, Richard J; Lagoudas, Dimitris C

    2014-01-01

    Origami, the ancient art of paper folding, has inspired the design of engineering devices and structures for decades. The underlying principles of origami are very general, which has led to applications ranging from cardboard containers to deployable space structures. More recently, researchers have become interested in the use of active materials (i.e., those that convert various forms of energy into mechanical work) to effect the desired folding behavior. When used in a suitable geometry, active materials allow engineers to create self-folding structures. Such structures are capable of performing folding and/or unfolding operations without being kinematically manipulated by external forces or moments. This is advantageous for many applications including space systems, underwater robotics, small scale devices, and self-assembling systems. This article is a survey and analysis of prior work on active self-folding structures as well as methods and tools available for the design of folding structures in general and self-folding structures in particular. The goal is to provide researchers and practitioners with a systematic view of the state-of-the-art in this important and evolving area. Unifying structural principles for active self-folding structures are identified and used as a basis for a quantitative and qualitative comparison of numerous classes of active materials. Design considerations specific to folded structures are examined, including the issues of crease pattern identification and fold kinematics. Although few tools have been created with active materials in mind, many of them are useful in the overall design process for active self-folding structures. Finally, the article concludes with a discussion of open questions for the field of origami-inspired engineering. (topical review)

  19. The differences in physical activity levels in preschool children during free play recess and structured play recess

    Directory of Open Access Journals (Sweden)

    Megan L. Frank

    2018-04-01

    Full Text Available Background/Objective: Physical activity (PA is important in reducing childhood obesity, yet a majority of children are not meeting PA guidelines. Schools have been identified as a place to promote childhood PA. The purpose of this study was to determine the best type of physically active recess period to increase preschool-aged children's PA. Methods: PA was measured via accelerometers in preschool-aged children (n = 29 during three, 30-min recess conditions (control; structured play; free play on separate school days. Tertile splits were performed based on PA during the free play condition and children were divided into three groups: highly, moderately and least active. Results: For the aggregated sample, children were more (p ≤ 0.001 active during the free play (1282 ± 662 counts. min−1 and structured play (1416 ± 448 counts. min−1 recess versus the control condition (570 ± 460 counts. min−1 and activity was not different between the free play and structured conditions. However, children who were the most active during free play (1970 ± 647 counts·min−1 decreased (p ≤ 0.05 activity during structured play (1462 ± 535 counts·min−1, whereas children who were moderately active (1031 ± 112 counts·min−1 or the least (530 ± 239 counts·min−1 active during free play increased activity during structured play (1383 ± 345 counts·min−1 moderately active, 1313 ± 413 counts·min−1 least active. Conclusion: Providing a physically-active recess period will contribute to preschool-aged children meeting the recommended PA guidelines; however, different children may respond in a different way based upon the structure of the recess period.

  20. Synthesis and structure-activity relationship of di-(3, 8-diazabicyclo[3.2.1]octane) diquaternary ammonium salts as unique analgesics.

    Science.gov (United States)

    Liu, Hong; Cheng, Tie-Ming; Zhang, Hong-Mei; Li, Run-Tao

    2003-11-01

    Based on the structure characteristics of the lead compounds, 1, 1' octanedioyl-4, 4'-dimethyl-4, 4'-dibenzyl dipiperazinium dibromide (2) and 3, 8-disubstituted-3, 8-diazabicyclo [3.2.1]octanes (DBO), di-(3, 8-diazabicyclo [3.2.1]octane) diquaternary ammonium salts 3 a-c were designed and synthesized through a highly practical procedure. Target compounds 3 a-c and the hydrochloride salts of their precursors 10 a-c were evaluated for their in vivo analgesic and sedative activities. Interestingly, the introduction of an endoethylenic bridge in the piperazine of lead compound 2 causes loss of the analgesic activity and increases the toxicity dramatically. This result shows that the flexible conformation of piperazine in compound 2 is favorable for interaction with the receptor, and the quaternization of compounds 10 a-c is the main reason for the toxicity increase.

  1. Structural Insights into Arl1-Mediated Targeting of the Arf-GEF BIG1 to the trans-Golgi

    Directory of Open Access Journals (Sweden)

    Antonio Galindo

    2016-07-01

    Full Text Available The GTPase Arf1 is the major regulator of vesicle traffic at both the cis- and trans-Golgi. Arf1 is activated at the cis-Golgi by the guanine nucleotide exchange factor (GEF GBF1 and at the trans-Golgi by the related GEF BIG1 or its paralog, BIG2. The trans-Golgi-specific targeting of BIG1 and BIG2 depends on the Arf-like GTPase Arl1. We find that Arl1 binds to the dimerization and cyclophilin binding (DCB domain in BIG1 and report a crystal structure of human Arl1 bound to this domain. Residues in the DCB domain that bind Arl1 are required for BIG1 to locate to the Golgi in vivo. DCB domain-binding residues in Arl1 have a distinct conformation from those in known Arl1-effector complexes, and this plasticity allows Arl1 to interact with different effectors of unrelated structure. The findings provide structural insight into how Arf1 GEFs, and hence active Arf1, achieve their correct subcellular distribution.

  2. Structure-function of proteins interacting with the alpha1 pore-forming subunit of high voltage-activated calcium channel

    Directory of Open Access Journals (Sweden)

    Alan eNeely

    2014-06-01

    Full Text Available Openings of high-voltage-activated calcium channels lead to a transient increase in calcium concentration that in turn activate a plethora of cellular functions, including muscle contraction, secretion and gene transcription. To coordinate all these responses calcium channels form supramolecular assemblies containing effectors and regulatory proteins that couple calcium influx to the downstream signal cascades and to feedback elements. According to the original biochemical characterization of skeletal muscle Dihydropyridine receptors, high-voltage-activated calcium channels are multi-subunit protein complexes consisting of a pore-forming subunit (α1 associated with four additional polypeptide chains β, α2, δ and γ, often referred to as accessory subunits. Twenty-five years after the first purification of a high-voltage calcium channel, the concept of a flexible stoichiometry to expand the repertoire of mechanisms that regulate calcium channel influx has emerged. Several other proteins have been identified that associate directly with the α1-subunit, including calmodulin and multiple members of the small and large GTPase family. Some of these proteins only interact with a subset of α1-subunits and during specific stages of biogenesis. More strikingly, most of the α1-subunit interacting proteins, such as the β-subunit and small GTPases, regulate both gating and trafficking through a variety of mechanisms. Modulation of channel activity covers almost all biophysical properties of the channel. Likewise, regulation of the number of channels in the plasma membrane is performed by altering the release of the α1-subunit from the endoplasmic reticulum, by reducing its degradation or enhancing its recycling back to the cell surface. In this review, we discuss the structural basis, interplay and functional role of selected proteins that interact with the central pore-forming subunit of high-voltage-activated calcium channels.

  3. Investigating the Structure-Activity Relationship of the Insecticidal Natural Product Rocaglamide.

    Science.gov (United States)

    Hall, Roger G; Bruce, Ian; Cooke, Nigel G; Diorazio, Louis J; Cederbaum, Fredrik; Dobler, Markus R; Irving, Ed

    2017-12-01

    The natural product Rocaglamide (1), isolated from the tree Aglaia elliptifolia, is a compelling but also challenging lead structure for crop protection. In laboratory assays, the natural product shows highly interesting insecticidal activity against chewing pests and beetles, but also phytotoxicity on some crop plants. Multi-step syntheses with control of stereochemistry were required to probe the structure-activity relationship (SAR), and seek simplified analogues. After a significant research effort, just two areas of the molecule were identified which allow modification whilst maintaining activity, as will be highlighted in this paper.

  4. Active resonance tuning of stretchable plasmonic structures

    DEFF Research Database (Denmark)

    Zhu, Xiaolong; Xiao, Sanshui; Mortensen, N. Asger

    2012-01-01

    Active resonance tuning is highly desired for the applications of plasmonic structures, such as optical switches and surface enhanced Raman substrates. In this paper, we demonstrate the active tunable plasmonic structures, which composed of monolayer arrays of metallic semishells with dielectric...... cores on stretchable elastic substrates. These composite structures support Bragg-type surface plasmon resonances whose frequencies are sensitive to the arrangement of the metallic semishells. Under uniaxial stretching, the lattice symmetry of these plasmonic structures can be reconfigured from...... applications of the stretch-tunable plasmonic structures in sensing, switching, and filtering....

  5. RACK1, A Multifaceted Scaffolding Protein: Structure and Function

    LENUS (Irish Health Repository)

    Adams, David R

    2011-10-06

    Abstract The Receptor for Activated C Kinase 1 (RACK1) is a member of the tryptophan-aspartate repeat (WD-repeat) family of proteins and shares significant homology to the β subunit of G-proteins (Gβ). RACK1 adopts a seven-bladed β-propeller structure which facilitates protein binding. RACK1 has a significant role to play in shuttling proteins around the cell, anchoring proteins at particular locations and in stabilising protein activity. It interacts with the ribosomal machinery, with several cell surface receptors and with proteins in the nucleus. As a result, RACK1 is a key mediator of various pathways and contributes to numerous aspects of cellular function. Here, we discuss RACK1 gene and structure and its role in specific signaling pathways, and address how posttranslational modifications facilitate subcellular location and translocation of RACK1. This review condenses several recent studies suggesting a role for RACK1 in physiological processes such as development, cell migration, central nervous system (CN) function and circadian rhythm as well as reviewing the role of RACK1 in disease.

  6. Structure-Activity Relationships of Pentacyclic Triterpenoids as Potent and Selective Inhibitors against Human Carboxylesterase 1

    Directory of Open Access Journals (Sweden)

    Li-Wei Zou

    2017-06-01

    Full Text Available Human carboxylesterase 1 (hCE1, one of the most important serine hydrolases distributed in liver and adipocytes, plays key roles in endobiotic homeostasis and xenobiotic metabolism. This study aimed to find potent and selective inhibitors against hCE1 from phytochemicals and their derivatives. To this end, a series of natural triterpenoids were collected and their inhibitory effects against human carboxylesterases (hCEs were assayed using D-Luciferin methyl ester (DME and 6,8-dichloro-9,9-dimethyl-7-oxo-7,9-dihydroacridin-2-yl benzoate (DDAB as specific optical substrate for hCE1, and hCE2, respectively. Following screening of a series of natural triterpenoids, oleanolic acid (OA, and ursolic acid (UA were found with strong inhibitory effects on hCE1 and relative high selectivity over hCE2. In order to get the highly selective and potent inhibitors of hCE1, a series of OA and UA derivatives were synthesized from OA and UA by chemical modifications including oxidation, reduction, esterification, and amidation. The inhibitory effects of these derivatives on hCEs were assayed and the structure-activity relationships of tested triterpenoids as hCE1 inhibitors were carefully investigated. The results demonstrated that the carbonyl group at the C-28 site is essential for hCE1 inhibition, the modifications of OA or UA at this site including esters, amides and alcohols are unbeneficial for hCE1 inhibition. In contrast, the structural modifications on OA and UA at other sites, such as converting the C-3 hydroxy group to 3-O-β-carboxypropionyl (compounds 20 and 22, led to a dramatically increase of the inhibitory effects against hCE1 and very high selectivity over hCE2. 3D-QSAR analysis of all tested triterpenoids including OA and UA derivatives provide new insights into the fine relationships linking between the inhibitory effects on hCE1 and the steric-electrostatic properties of triterpenoids. Furthermore, both inhibition kinetic analyses and docking

  7. Structure of the intact ATM/Tel1 kinase

    Science.gov (United States)

    Wang, Xuejuan; Chu, Huanyu; Lv, Mengjuan; Zhang, Zhihui; Qiu, Shuwan; Liu, Haiyan; Shen, Xuetong; Wang, Weiwu; Cai, Gang

    2016-05-01

    The ataxia-telangiectasia mutated (ATM) protein is an apical kinase that orchestrates the multifaceted DNA-damage response. Normally, ATM kinase is in an inactive, homodimer form and is transformed into monomers upon activation. Besides a conserved kinase domain at the C terminus, ATM contains three other structural modules, referred to as FAT, FATC and N-terminal helical solenoid. Here we report the first cryo-EM structure of ATM kinase, which is an intact homodimeric ATM/Tel1 from Schizosaccharomyces pombe. We show that two monomers directly contact head-to-head through the FAT and kinase domains. The tandem N-terminal helical solenoid tightly packs against the FAT and kinase domains. The structure suggests that ATM/Tel1 dimer interface and the consecutive HEAT repeats inhibit the binding of kinase substrates and regulators by steric hindrance. Our study provides a structural framework for understanding the mechanisms of ATM/Tel1 regulation as well as the development of new therapeutic agents.

  8. Functional and structural characterization of recombinant dermcidin-1L, a human antimicrobial peptide

    International Nuclear Information System (INIS)

    Lai Yuping; Peng Yifei; Zuo Yi; Li Jun; Huang Jing; Wang Linfa; Wu Zirong

    2005-01-01

    Antimicrobial peptides from human skin are an important component of the innate immune response and play a key role as a first line of defense against infections. One such peptide is the recently discovered dermcidin-1L. To better understand its mechanism and to further investigate its antimicrobial spectrum, recombinant dermcidin-1L was expressed in Escherichia coli as a fusion protein and purified by affinity chromatography. The fusion protein was cleaved by factor Xa protease to produce recombinant dermcidin-1L. Antimicrobial and hemolytic assays demonstrated that dermcidin-1L displayed microbicidal activity against several opportunistic nosocomial pathogens, but no hemolytic activity against human erythrocytes even at concentrations up to 100 μM. Structural studies performed by circular dichroism spectroscopy indicated that the secondary structure of dermcidin-1L was very flexible, and both α-helix and β-sheet structures might be required for the antimicrobial activity. Our results confirmed previous findings indicating that dermcidin-1L could have promising therapeutic potentials and shed new light on the structure-function relationship of dermcidin-1L

  9. Structure and Dynamics of the Liver Receptor Homolog 1–PGC1 α Complex

    Energy Technology Data Exchange (ETDEWEB)

    Mays, Suzanne G.; Okafor, C. Denise; Tuntland, Micheal L.; Whitby, Richard J.; Dharmarajan, Venkatasubramanian; Stec, Józef; Griffin, Patrick R.; Ortlund, Eric A.

    2017-03-31

    Peroxisome proliferator-activated gamma coactivator 1-α (PGC1α) regulates energy metabolism by directly interacting with transcription factors to modulate gene expression. Among the PGC1α binding partners is liver receptor homolog 1 (LRH-1; NR5A2), an orphan nuclear hormone receptor that controls lipid and glucose homeostasis. Although PGC1α is known to bind and activate LRH-1, mechanisms through which PGC1α changes LRH-1 conformation to drive transcription are unknown. Here, we used biochemical and structural methods to interrogate the LRH-1–PGC1α complex. Purified, full-length LRH-1, as well as isolated ligand binding domain, bound to PGC1α with higher affinity than to the coactivator, nuclear receptor coactivator-2 (Tif2), in coregulator peptide recruitment assays. We present the first crystal structure of the LRH-1–PGC1α complex, which depicts several hydrophobic contacts and a strong charge clamp at the interface between these partners. In molecular dynamics simulations, PGC1α induced correlated atomic motion throughout the entire LRH-1 activation function surface, which was dependent on charge-clamp formation. In contrast, Tif2 induced weaker signaling at the activation function surface than PGC1α but promoted allosteric signaling from the helix 6/β-sheet region of LRH-1 to the activation function surface. These studies are the first to probe mechanisms underlying the LRH-1–PGC1α interaction and may illuminate strategies for selective therapeutic targeting of PGC1α-dependent LRH-1 signaling pathways.

  10. Angiotensin (1-7) ameliorates the structural and biochemical alterations of ovariectomy-induced osteoporosis in rats via activation of ACE-2/Mas receptor axis.

    Science.gov (United States)

    Abuohashish, Hatem M; Ahmed, Mohammed M; Sabry, Dina; Khattab, Mahmoud M; Al-Rejaie, Salim S

    2017-05-23

    The local and systemic renin angiotensin system (RAS) influences the skeletal system micro-structure and metabolism. Studies suggested angiotensin 1-7 (Ang(1-7)) as the beneficial RAS molecule via Mas receptor activation. This study examines the function of Ang(1-7) in bone micro-architecture and metabolism in an ovariectomized (OVX) rodent model of osteoporosis. OVX rats showed structural and bone metabolic degeneration in parallel with suppressed expressions of the angiotensin converting enzyme-2 (ACE-2)/Ang(1-7)/Mas components. The infusion of Ang(1-7) markedly alleviated the altered bone metabolism and significantly enhanced both trabecular (metaphyseal) and cortical (metaphyseal-diaphyseal) morphometry. Urinary and bones minerals were also improved in OVX rats by Ang(1-7). The infusion of the heptapeptide enhanced ACE-2/Mas receptor expressions, while down-regulated AngII, ACE, and AngII type-1 receptor (AT1R) in OVX animals. Moreover, Ang(1-7) markedly improved osteoprotegerin (OPG) and lowered receptor activator NF-κB ligand (RANKL) expressions. The defensive properties of Ang(1-7) on bone metabolism, structure and minerals were considerably eradicated after blockage of Mas receptor with A-779. Ang(1-7)-induced up-regulated ACE-2/Ang(1-7)/Mas cascade and OPG expressions were abolished and the expressions of ACE/AngII/AT1R and RANKL were provoked by A-779. These findings shows for the first time the novel valuable therapeutic role of Ang(1-7) on bone health and metabolism through the ACE-2/Mas cascade.

  11. Structure-activity relationship in the passage of different pyrrolizidine alkaloids through the gastrointestinal barrier: ABCB1 excretes heliotrine and echimidine.

    Science.gov (United States)

    Hessel, Stefanie; Gottschalk, Christoph; Schumann, Dania; These, Anja; Preiss-Weigert, Angelika; Lampen, Alfonso

    2014-05-01

    1,2-Unsaturated pyrrolizidine alkaloids (PA) are found in plants such as Asteraceae and Boraginaceae families. Acute PA poisoning via contaminated food or feed causes severe damage to liver depending on species-specific oral bioavailability. For assessing PA bioavailability, their passage across the intestinal barrier was investigated using Caco-2 cells. Differentiated Caco-2 cells were exposed in transport chambers to the PA heliotrine (Hn), echimidine (Em), senecionine (Sc), and senkirkine (Sk). Cell supernatants were analyzed by LC-MS/MS. PA pass Caco-2 monolayer from the apical into basolateral compartment depending on their chemical structure. Compared to the cyclic diesters Sc and Sk with a passage rate of 47% ± 4 and 40% ± 3, respectively, the transferred amount of the monoester Hn (32% ± 3) and open-chained diester Em (13% ± 2) was substantially lower. This suggested an active transport of Hn and Em. Using Madin-Darby canine kidney II/P-glycoprotein (ABCB1)-overexpressing cells, the active excretion of Hn and Em by ABCB1 from the gastrointestinal epithelium into the gut lumen was shown. PA cross the intestinal barrier structure-dependently. The passage of the noncyclic PA Hn and Em is reduced by an ABCB1-driven efflux into the gastrointestinal lumen resulting in a decreased oral bioavailability. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Effects of Mutations on Structure-Function Relationships of Matrix Metalloproteinase-1.

    Science.gov (United States)

    Singh, Warispreet; Fields, Gregg B; Christov, Christo Z; Karabencheva-Christova, Tatyana G

    2016-10-14

    Matrix metalloproteinase-1 (MMP-1) is one of the most widely studied enzymes involved in collagen degradation. Mutations of specific residues in the MMP-1 hemopexin-like (HPX) domain have been shown to modulate activity of the MMP-1 catalytic (CAT) domain. In order to reveal the structural and conformational effects of such mutations, a molecular dynamics (MD) study was performed of in silico mutated residues in the X-ray crystallographic structure of MMP-1 complexed with a collagen-model triple-helical peptide (THP). The results indicate an important role of the mutated residues in MMP-1 interactions with the THP and communication between the CAT and the HPX domains. Each mutation has a distinct impact on the correlated motions in the MMP-1•THP. An increased collagenase activity corresponded to the appearance of a unique anti-correlated motion and decreased correlated motions, while decreased collagenase activity corresponded both to increased and decreased anti-correlated motions.

  13. International activities concerning seismic effects on underground structures

    International Nuclear Information System (INIS)

    Hakala, W.W.

    1982-01-01

    At the 5th Annual Meeting of the ITA in Atlanta, Georgia, on June 15-17, 1979, the General Assembly approved the formation of the Working Group Seismic Effects on Underground Structures. The objectives of this Working Group are to: (1) collect data on earthquake damage to underground facilities throughout the world; (2) collect information on aseismic design procedures used within the various countries; and (3) synthesize the information and disseminate the results to the member nations of ITA. William W. Hakala of the US was designated the Animateur of the Working Group. The Working Group decided on the following sequential course of action to achieve the stated objectives: (1) continue to develop a bibliograhy on damages to underground structures by dynamic forces. This will be an ongoing activity of the Working Group; (2) each country is to develop a summary of case histories of earthquake damage to underground structures. These case histories will be discussed at the next meeting of the Working Group in order to identify those parameters that permit or prevent such damage; (3) the state-of-the-art paper on earthquake damage to underground opening being prepared in the US (John A. Blume and Associates, Engineers) is presently being printed and will then be distributed to the membership for comment. This report will form the basis for the activities described below; (4) the above activities should lead to a textbook - like document that provides a design philosophy for underground structures subjected to seismic forces; (5) the work tasks will suggest needed research to solve the identified problems. At each Working Group meeting the member nation delegates will provide a summary of research progress in their countries. These research needs will be documented, reviewed, revised, and disseminated on an annual basis

  14. Imidazole derivatives as angiotensin II AT1 receptor blockers: Benchmarks, drug-like calculations and quantitative structure-activity relationships modeling

    Science.gov (United States)

    Alloui, Mebarka; Belaidi, Salah; Othmani, Hasna; Jaidane, Nejm-Eddine; Hochlaf, Majdi

    2018-03-01

    We performed benchmark studies on the molecular geometry, electron properties and vibrational analysis of imidazole using semi-empirical, density functional theory and post Hartree-Fock methods. These studies validated the use of AM1 for the treatment of larger systems. Then, we treated the structural, physical and chemical relationships for a series of imidazole derivatives acting as angiotensin II AT1 receptor blockers using AM1. QSAR studies were done for these imidazole derivatives using a combination of various physicochemical descriptors. A multiple linear regression procedure was used to design the relationships between molecular descriptor and the activity of imidazole derivatives. Results validate the derived QSAR model.

  15. Pharmacological and Structure-Activity Relationship Evaluation of 4-aryl-1-Diphenylacetyl(thiosemicarbazides

    Directory of Open Access Journals (Sweden)

    Monika Wujec

    2014-04-01

    Full Text Available This article describes the synthesis of six 4-aryl-(thiosemicarbazides (series a and b linked with diphenylacetyl moiety along with their pharmacological evaluation on the central nervous system in mice and computational studies, including conformational analysis and electrostatic properties. All thiosemicarbazides (series b were found to exhibit strong antinociceptive activity in the behavioural model. Among them, compound 1-diphenylacetyl-4-(4-methylphenylthiosemicarbazide 1b was found to be the most potent analgesic agent, whose activity is connected with the opioid system. For compounds from series a significant anti-serotonergic effect, especially for compound 1-diphenylacetyl-4-(4-methoxyphenylsemicarbazide 2b was observed. The computational studies strongly support the obtained results.

  16. Structure-activity relationships in a new series of insecticidally active dioxatricycloalkenes derived by structural comparison of the GABA (. gamma. -aminobutyric acid) antagonists bicycloorthocarboxylates and endosulfan

    Energy Technology Data Exchange (ETDEWEB)

    Ozoe, Yoshihisa; Sawada, Yoshihiro; Mochida, Kazuo; Nakamura, Toshiie (Shimane Univ. (Japan)); Matsumura, Fumio (Univ. of California, Davis (USA))

    1990-05-01

    To study structural requirements for picrotoxinin-type GABA ({gamma}-aminobutyric acid) antagonists to interact with the receptor site, 5-substituted 4,6-dioxatricyclo(7.2.1.0{sup 2,8})dodec-10-enes and related compounds were prepared and examined for their insecticidal activity and potency in displacing ({sup 35}S)tert-butylbicyclophosphorothionate (TBPS) binding. Compounds with high insecticidal activity possessed a phenyl group with an electron-withdrawing para substituent, a cycloalkyl group, or a C{sub 3}-C{sub 5} straight-chain alkyl group at the 5-position. The effect of the 5-substituents on insecticidal activity was very similar to that of the 1-substituents of the bicyloorthocarboxylate GABA antagonists. Representative dioxatricycloalkenes displaced the binding of the GABA antagonist ({sup 35}S)TBPS to housefly head membranes by 29-53% at 10 {mu}M. X-ray crystal structure analysis demonstrated that this class of compounds had structures superimposable on those of 4-tert-butylbicycloorthocarboxylates. These findings indicate that the dioxatricycloalkenes and some other analogues occupy the picrotoxinin binding site in such a way that the fourth interacting subsite of the receptor site accommodates the 5-substituent.

  17. Structure-Activity Relationship Study on the Ethyl p-Methoxycinnamate as an Anti-Inflammatory Agent

    Directory of Open Access Journals (Sweden)

    Ismiarni Komala

    2018-02-01

    Full Text Available Ethyl p-methoxycinnamate (EPMC (1 has been isolated as a major compound from the rhizome of Kaempferia galanga together with the other compound ethyl cinnamate (2. As reported in the literature, EPMC (1 exhibited a significant in vitro and in vivo anti-inflammatory activity. In this research, we investigated the anti-inflammatory activity of compounds 1 and 2 by using anti-denaturation of heat bovine serum albumin (BSA method. In order to analyze active sites that are responsible for the anti-inflammatory activity, therefore, it is necessary to conduct structural modification of EPMC (1. The structural modification was performed through re-esterification reaction by using conventional and assistance of the unmodified microwave oven. Evaluation of the results of the bioassay indicated that the ester and methoxy functional groups of EPMC (1 play an important role for the anti-inflammatory activity.

  18. The Effect of Structured Exercise Intervention on Intensity and Volume of Total Physical Activity

    Directory of Open Access Journals (Sweden)

    Niko Wasenius

    2014-12-01

    Full Text Available This study aimed to investigate the effects of a 12-week structured exercise intervention on total physical activity and its subcategories. Twenty-three overweight or obese middle aged men with impaired glucose regulation were randomized into a 12-week Nordic walking group, a power-type resistance training group, and a non-exercise control group. Physical activity was measured with questionnaires before the intervention (1–4 weeks and during the intervention (1–12 weeks and was expressed in metabolic equivalents of task. No significant change in the volume of total physical activity between or within the groups was observed (p > 0.050. The volume of total leisure-time physical activity (structured exercises + non-structured leisure-time physical activity increased significantly in the Nordic walking group (p 0.050 compared to the control group. In both exercise groups increase in the weekly volume of total leisure-time physical activity was inversely associated with the volume of non-leisure-time physical activities. In conclusion, structured exercise intervention did not increase the volume of total physical activity. Albeit, endurance training can increase the volume of high intensity physical activities, however it is associated with compensatory decrease in lower intensity physical activities. To achieve effective personalized exercise program, individuality in compensatory behavior should be recognised.

  19. Copper-organic/octamolybdates: structures, bandgap sizes, and photocatalytic activities.

    Science.gov (United States)

    Luo, Lan; Lin, Haisheng; Li, Le; Smirnova, Tatyana I; Maggard, Paul A

    2014-04-07

    The structures, optical bandgap sizes, and photocatalytic activities are described for three copper-octamolybdate hybrid solids prepared using hydrothermal methods, [Cu(pda)]4[β-Mo8O26] (I; pda = pyridazine), [Cu(en)2]2[γ-Mo8O26] (II; en = ethylenediamine), and [Cu(o-phen)2]2[α-Mo8O26] (III; o-phen = o-phenanthroline). The structure of I consists of a [Cu(pda)]4(4+) tetramer that bridges to neighboring [β-Mo8O26](4-) octamolybdate clusters to form two-dimensional layers that stack along the a axis. The previously reported structures of II and III are constructed from [Cu2(en)4Mo8O26] and [Cu2(o-phen)4Mo8O26] clusters. The optical bandgap sizes were measured by UV-vis diffuse reflectance techniques to be ∼1.8 eV for I, ∼3.1 eV for II, and ∼3.0 eV for III. Electronic structure calculations show that the smaller bandgap size of I originates primarily from an electronic transition between the valence and conduction band edges comprised of filled 3d(10) orbitals on Cu(I) and empty 4d(0) orbitals on Mo(VI). Both II and III contain Cu(II) and exhibit larger bandgap sizes. Accordingly, aqueous suspensions of I exhibit visible-light photocatalytic activity for the production of oxygen at a rate of ∼90 μmol O2 g(-1) h(-1) (10 mg samples; radiant power density of ∼1 W/cm(2)) and a turnover frequency per calculated surface [Mo8O26](4-) cluster of ∼36 h(-1). Under combined ultraviolet and visible-light irradiation, I also exhibits photocatalytic activity for hydrogen production in 20% aqueous methanol of ∼316 μmol H2 g(-1) h(-1). By contrast, II decomposed during the photocatalysis measurements. The molecular [Cu2(o-phen)4(α-Mo8O26)] clusters of III dissolve into the aqueous methanol solution under ultraviolet irradiation and exhibit homogeneous photocatalytic rates for hydrogen production of up to ∼8670 μmol H2·g(-1) h(-1) and a turnover frequency of 17 h(-1). The clusters of III can be precipitated out by evaporation and redispersed into solution with

  20. Synthesis and antileishmanial activity of new 1-Aryl-1H-Pyrazole-4- carboximidamides derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Mauricio S. dos; Gomes, Adriana O.; Bernardino, Alice M.R.; Souza, Marcos C. de, E-mail: alicerolim@globo.co [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Programa de Pos-Graduacao em Quimica Organica; Khan, Misbahul A. [The Islamia University of Bahawalpur (Pakistan). Chemistry Dept.; Brito, Monique A. de [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Fac. de Farmacia. Lab. de Quimica Medicinal Computacional; Castro, Helena C.; Abreu, Paula A. [Universidade Federal Fluminense (LABioMol/GCM/UFF), Niteroi, RJ (Brazil). Inst. de Biologia. Lab. de Antibioticos, Bioquimica e Modelagem Molecular; Rodrigues, Carlos R. [Universidade Federal do Rio de Janeiro (ModMol/UFRJ), RJ (Brazil). Fac. de Farmacia. Lab. de Modelagem Molecular e QSAR; Leo, Rosa M.M. de; Leon, Leonor L.; Canto-Cavalheiro, Marilene M. [Fundacao Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ (Brazil). Instituto Oswaldo Cruz. Lab. de Bioquimica de Tripanosomatideos

    2011-07-01

    Chemotherapy for leishmaniasis, diseases caused by protozoa of the genus Leishmania, remains inefficient in several treatments. So there is a need to search for new drugs. In this work, we have synthesized 1-aryl-1H-pyrazole-4-carboximidamides derivatives and evaluated antileishmanial activities in vitro, as well as cytotoxic effects. Structure-activity relationship (SAR) studies were carried out with all the compounds of the series. Compound 2 showed an activity profile that can be improved through medicinal chemistry strategies. (author)

  1. Regulation of Synaptic Structure by the Ubiquitin C-terminal Hydrolase UCH-L1

    Science.gov (United States)

    Cartier, Anna E.; Djakovic, Stevan N.; Salehi, Afshin; Wilson, Scott M.; Masliah, Eliezer; Patrick, Gentry N.

    2009-01-01

    UCH-L1 is a de-ubiquitinating enzyme that is selectively and abundantly expressed in the brain, and its activity is required for normal synaptic function. Here, we show that UCH-L1 functions in maintaining normal synaptic structure in hippocampal neurons. We have found that UCH-L1 activity is rapidly up-regulated by NMDA receptor activation which leads to an increase in the levels of free monomeric ubiquitin. Conversely, pharmacological inhibition of UCH-L1 significantly reduces monomeric ubiquitin levels and causes dramatic alterations in synaptic protein distribution and spine morphology. Inhibition of UCH-L1 activity increases spine size while decreasing spine density. Furthermore, there is a concomitant increase in the size of pre and postsynaptic protein clusters. Interestingly, however, ectopic expression of ubiquitin restores normal synaptic structure in UCH-L1 inhibited neurons. These findings point to a significant role of UCH-L1 in synaptic remodeling most likely by modulating free monomeric ubiquitin levels in an activity-dependent manner. PMID:19535597

  2. Structural and mechanistic analysis of trans-3-chloroacrylic acid dehalogenase activity

    Energy Technology Data Exchange (ETDEWEB)

    Pegan, Scott D., E-mail: pegan@uic.edu [Center of Pharmaceutical Biotechnology and the Department of Medicinal Chemistry and Pharmacognosy, University of Illinois, Chicago (United States); Serrano, Hector; Whitman, Christian P. [Division of Medicinal Chemistry, College of Pharmacy, The University of Texas, Austin (United States); Mesecar, Andrew D., E-mail: pegan@uic.edu [Center of Pharmaceutical Biotechnology and the Department of Medicinal Chemistry and Pharmacognosy, University of Illinois, Chicago (United States)

    2008-12-01

    The X-ray structure of a noncovalently modified trans-3-chloroacrylic acid dehalogenase with a substrate-homolog acetate bound in the active site has been determined to 1.7 Å resolution. Elucidation of catalytically important water is reported and multiple conformations of the catalytic residue αGlu52 are observed. Trans-3-chloroacrylic acid dehalogenase (CaaD) is a critical enzyme in the trans-1, 3-dichloropropene (DCP) degradation pathway in Pseudomonas pavonaceae 170. This enzyme allows bacteria to use trans-DCP, a common component in commercially produced fumigants, as a carbon source. CaaD specifically catalyzes the fourth step of the pathway by cofactor-independent dehalogenation of a vinyl carbon–halogen bond. Previous studies have reported an X-ray structure of CaaD under acidic conditions with a covalent modification of the catalytic βPro1 residue. Here, the 1.7 Å resolution X-ray structure of CaaD under neutral (pH 6.5) conditions is reported without the presence of the covalent adduct. In this new structure, a substrate-like acetate molecule is bound within the active site in a position analogous to the putative substrate-binding site. Additionally, a catalytically important water molecule was identified, consistent with previously proposed reaction schemes. Finally, flexibility of the catalytically relevant side chain αGlu52 is observed in the structure, supporting its role in the catalytic mechanism.

  3. Ten-Structure as Strategy of Addition 1-20 by Involving Spatial Structuring Ability for First Grade Students

    Science.gov (United States)

    Salmah, Ummy; Putri, Ratu Ilma Indra; Somakim

    2015-01-01

    The aim of this study is to design learning activities that can support students to develop strategies for the addition of number 1 to 20 in the first grade by involving students' spatial structuring ability. This study was conducted in Indonesia by involving 27 students. In this paper, one of three activities is discussed namely ten-box activity.…

  4. Analysis of the crystal structure of an active MCM hexamer.

    Science.gov (United States)

    Miller, Justin M; Arachea, Buenafe T; Epling, Leslie B; Enemark, Eric J

    2014-09-29

    In a previous Research article (Froelich et al., 2014), we suggested an MCM helicase activation mechanism, but were limited in discussing the ATPase domain because it was absent from the crystal structure. Here we present the crystal structure of a nearly full-length MCM hexamer that is helicase-active and thus has all features essential for unwinding DNA. The structure is a chimera of Sulfolobus solfataricus N-terminal domain and Pyrococcus furiosus ATPase domain. We discuss three major findings: 1) a novel conformation for the A-subdomain that could play a role in MCM regulation; 2) interaction of a universally conserved glutamine in the N-terminal Allosteric Communication Loop with the AAA+ domain helix-2-insert (h2i); and 3) a recessed binding pocket for the MCM ssDNA-binding motif influenced by the h2i. We suggest that during helicase activation, the h2i clamps down on the leading strand to facilitate strand retention and regulate ATP hydrolysis.

  5. Overview of current activities relevant to structural analysis on LMFBR in Japan

    International Nuclear Information System (INIS)

    Ichimiya, Masakazu

    1983-01-01

    This paper presents the structural analysis activities on LMFBR in Japan. The structural analysis activities on LMFBR in Japan have been made mainly toward the validation of the rules of high temperature structural design guide which is to be used for the design of Class 1 components for elevated temperature service of the prototype fast breeder reactor, Monju. Main features of these analyses are as follows. (1) Since the design by elastic analysis is intended in the high temperature structural design guide of Monju, a large progress has been made in the bounding technique for high temperature inelastic behaviors, particularly the elastic follow-up. (2) There has been a progress in the clarification of the creep behavior in order to evaluate creep damage adequately. (3) Analysis techniques and design rules for piping have been developed with considerable emphasis. In addition, buckling analyses were performed considering the thin structures with low internal pressure in Monju components. Further test and analysis were made on ratcheting. (author)

  6. Synthesis, crystal structures, molecular docking, and in vitro biological activities evaluation of transition metal complexes with 4-(3,4-dichlorophenyl) piperazine-1-carboxylic acid

    Science.gov (United States)

    Chen, Zhi-Jian; Chen, Ya-Na; Xu, Chun-Na; Zhao, Shan-Shan; Cao, Qi-Yue; Qian, Shao-Song; Qin, Jie; Zhu, Hai-Liang

    2016-08-01

    Three novel mononuclear complexes, [MⅡ(L)2·2H2O], (M = Cu, Ni or Cd; HL = 4-(3,4-dichlorophenyl)piperazine-1-carboxylic acid)were synthesized and structurally determined by single-crystal X-ray diffraction. Molecular docking study preliminarily revealed that complex 1 had potential urease inhibitory activity. In accordance with the result of calculation, in vitro tests of the inhibitory activities of complexes 1-3 against jack bean urease showed complex 1 (IC50 = 8.17 ± 0.91 μM) had better inhibitory activities than the positive reference acetohydroxamic acid (AHA) (IC50 = 26.99 ± 1.43 μM), while complexes 2 and 3 showed no inhibitory activities., kinetics study was carried out to explore the mechanism of the inhibiting of the enzyme, and the result indicated that complex 1 was a competitive inhibitor of urease. Albumin binding experiment and in vitro toxicity evaluation of complex 1 were implemented to explore its Pharmacological properties.

  7. Photosynthesis-Inhibiting Activity of 1-[(2-Chlorophenylcarbamoyl]- and 1-[(2-Nitrophenylcarbamoyl]naphthalen-2-yl Alkylcarbamates

    Directory of Open Access Journals (Sweden)

    Tomas Gonec

    2017-07-01

    Full Text Available Eight 1-[(2-chlorophenylcarbamoyl]naphthalen-2-yl alkylcarbamates and eight 1-[(2-nitrophenylcarbamoyl]naphthalen-2-yl alkylcarbamates were tested for their activity related to the inhibition of photosynthetic electron transport (PET in spinach (Spinacia oleracea L. chloroplasts. The PET-inhibiting activity of the compounds was relatively low; the corresponding IC50 values ranged from 0.05 to 0.664 mmol/L; and the highest activity within the series of compounds was observed for 1-[(2-chlorophenyl-carbamoyl]naphthalen-2-yl propylcarbamate. It has been proven that the compounds are PET-inhibitors in photosystem II. Despite rather low PET-inhibiting activities, primary structure-activity trends can be discussed.

  8. Structural characterization and immunomodulating activity of polysaccharide from Dendrobium officinale.

    Science.gov (United States)

    He, Tao-Bin; Huang, Yan-Ping; Yang, Liu; Liu, Ti-Ti; Gong, Wan-Ying; Wang, Xuan-Jun; Sheng, Jun; Hu, Jiang-Miao

    2016-02-01

    A neutral heteropolysaccharide (DOP-1-1) consisted by mannose and glucose (5.9:1) with an average molecular weight at about 1.78×10(5) Da was purified from Dendrobium officinale. Based on Fourier transform infrared spectrum (FT-IR) and nuclear magnetic resonance (NMR) spectra, it suggested that partial structure of DOP-1-1 is an O-acetylated glucomannan with β-d configuration in pyranose sugar forms. The immunomodulatory activity of DOP-1-1 was evaluated by secretion level of cytokine (interleukin (IL)-1β and IL-10) and tumor necrosis factor (TNF)-α in vitro. Our results suggested that DOP-1-1 could stimulate cytokine production (TNF-α, IL-1β) in cells. These findings demonstrated that the purified polysaccharide from D. officinale presented significant immune-modulating activities. Furthermore, by Western-blot we can found that the signaling pathways of DOP-1-1 induced immune activities involving ERK1/2 and NF-кB. As to antioxidant activity, DOP-1-1 hadn't showed remarkable scavenging capacity of 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) in contrast with other studies of polysaccharides from D. officinale. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Structure based design of 11β-HSD1 inhibitors.

    Science.gov (United States)

    Singh, Suresh; Tice, Colin

    2010-11-01

    Controlling elevated tissue-specific levels of cortisol may provide a novel therapeutic approach for treating metabolic syndrome. This concept has spurred large scale medicinal chemistry efforts in the pharmaceutical industry for the design of 11β-HSD1 inhibitors. High resolution X-ray crystal structures of inhibitors in complex with the enzyme have facilitated the structure-based design of diverse classes of molecules. A summary of binding modes, trends in structure-activity relationships, and the pharmacodynamic data of inhibitors from each class is presented.

  10. Structures of the inactive and active states of RIP2 kinase inform on the mechanism of activation.

    Directory of Open Access Journals (Sweden)

    Erika Pellegrini

    Full Text Available Innate immune receptors NOD1 and NOD2 are activated by bacterial peptidoglycans leading to recruitment of adaptor kinase RIP2, which, upon phosphorylation and ubiquitination, becomes a scaffold for downstream effectors. The kinase domain (RIP2K is a pharmaceutical target for inflammatory diseases caused by aberrant NOD2-RIP2 signalling. Although structures of active RIP2K in complex with inhibitors have been reported, the mechanism of RIP2K activation remains to be elucidated. Here we analyse RIP2K activation by combining crystal structures of the active and inactive states with mass spectrometric characterization of their phosphorylation profiles. The active state has Helix αC inwardly displaced and the phosphorylated Activation Segment (AS disordered, whilst in the inactive state Helix αC is outwardly displaced and packed against the helical, non-phosphorylated AS. Biophysical measurements show that the active state is a stable dimer whilst the inactive kinase is in a monomer-dimer equilibrium, consistent with the observed structural differences at the dimer interface. We conclude that RIP2 kinase auto-phosphorylation is intimately coupled to dimerization, similar to the case of BRAF. Our results will help drug design efforts targeting RIP2 as a potential treatment for NOD2-RIP2 related inflammatory diseases.

  11. Monoalkylated barbiturate derivatives: X-ray crystal structure, theoretical studies, and biological activities

    Science.gov (United States)

    Barakat, Assem; Al-Majid, Abdullah Mohammed; Soliman, Saied M.; Islam, Mohammad Shahidul; Ghawas, Hussain Mansur; Yousuf, Sammer; Choudhary, M. Iqbal; Wadood, Abdul

    2017-08-01

    Barbiturate derivatives are privileged structures with a broad range of pharmaceutical applications. We prepared a series of 5-monoalkylated barbiturate derivatives (3a-l) and evaluated, in vitro, their antioxidant (DPPH assay), and α-glucosidase inhibitory activities. Compounds 3a-l were synthesized via Michael addition. The structure of compound 3k was determined using X-ray single-crystal diffraction, and geometric parameters were calculated using density functional theory at the B3LYP/6-311G(d,p) level of theory. Further, the structural analysis of 3k were also investigated. Biological studies revealed that compounds 3b (IC50 = 133.1 ± 3.2 μM), 3d (IC50 = 305 ± 7.7 μM), and 3e (IC50 = 184 ± 2.3 μM) have potent α-glucosidase enzyme inhibitors and showed greater activity than the standard drug acarbose (IC50 = 841 ± 1.73 μM). Compounds 3a-3i were found to show weak antioxidant activity against 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radicals (IC50 = 91 ± 0.75 to 122 ± 1.0 μM) when tested against a standard antioxidant, gallic acid (IC50 = 23 ± 0.43 μM).

  12. Synthesis and antimicrobial activity of 1-benzhydryl-sulfonyl-4-(3-(piperidin-4-yl) propyl)piperidine derivatives against pathogens of Lycopersicon esculentum: a structure-activity evaluation study.

    Science.gov (United States)

    Vinaya, K; Kavitha, R; Ananda Kumar, C S; Benaka Prasad, S B; Chandrappa, S; Deepak, S A; Nanjunda Swamy, S; Umesha, S; Rangappa, K S

    2009-01-01

    Several 1-benzhydryl-sulfonyl-4-(3-(piperidin-4-yl)propyl)piperidine derivatives 8(a-j) were prepared by the treatment of substituted benzhydryl chlorides with 4-(3-(piperidin-4-yl)propyl)piperidine followed by N-sulfonation with sulfonyl chlorides in the presence of dry methylene dichloride and triethyl amine. The synthesized compounds were characterized by (1)H-NMR, IR, and elemental analysis. All the synthesized compounds were evaluated in vitro for their efficacy as antimicrobial agents by artificial inoculation technique against standard strains of two important bacterial viz., Xanthomonas axonopodis pv. vesicatoria and Ralstonia solanacearum as well as and two fungal pathogens namely Alternaria solani and Fusarium solani of tomato plants. We have briefly investigated the structure-activity relation studies and reveal that the nature of substitutions on benzhydryl ring and sulfonamide ring influences the antibacterial activity. Among the synthesized new compounds 8b, 8d, 8g, 8h, 8i, and 8j were showed significant potent antimicrobial activities compared to the standard drugs chloramphenicol, mancozeb.

  13. Structural relationships and vasorelaxant activity of monoterpenes

    Directory of Open Access Journals (Sweden)

    Cardoso Lima Tamires

    2012-09-01

    Full Text Available Abstract Background and purpose of the study The hypotensive activity of the essential oil of Mentha x villosa and its main constituent, the monoterpene rotundifolone, have been reported. Therefore, our objective was to evaluate the vasorelaxant effect of monoterpenes found in medicinal plants and establish the structure-activity relationship of rotundifolone and its structural analogues on the rat superior mesenteric artery. Methods Contractions of the vessels were induced with 10 μM of phenylephine (Phe in rings with endothelium. During the tonic phase of the contraction, the monoterpenes (10-8 - 10-3, cumulatively were added to the organ bath. The extent of relaxation was expressed as the percentage of Phe-induced contraction. Results The results from the present study showed that both oxygenated terpenes (rotundifolone, (+-limonene epoxide, pulegone epoxide, carvone epoxide, and (+-pulegone and non-oxygenated terpene ((+-limonene exhibit relaxation activity. The absence of an oxygenated molecular structure was not a critical requirement for the molecule to be bioactive. Also it was found that the position of ketone and epoxide groups in the monoterpene structures influence the vasorelaxant potency and efficacy. Major conclusion The results suggest that the presence of functional groups in the chemical structure of rotundifolone is not essential for its vasorelaxant activity.

  14. Crystal Structure of the CTP1L Endolysin Reveals How Its Activity Is Regulated by a Secondary Translation Product.

    Science.gov (United States)

    Dunne, Matthew; Leicht, Stefan; Krichel, Boris; Mertens, Haydyn D T; Thompson, Andrew; Krijgsveld, Jeroen; Svergun, Dmitri I; Gómez-Torres, Natalia; Garde, Sonia; Uetrecht, Charlotte; Narbad, Arjan; Mayer, Melinda J; Meijers, Rob

    2016-03-04

    Bacteriophages produce endolysins, which lyse the bacterial host cell to release newly produced virions. The timing of lysis is regulated and is thought to involve the activation of a molecular switch. We present a crystal structure of the activated endolysin CTP1L that targets Clostridium tyrobutyricum, consisting of a complex between the full-length protein and an N-terminally truncated C-terminal cell wall binding domain (CBD). The truncated CBD is produced through an internal translation start site within the endolysin gene. Mutants affecting the internal translation site change the oligomeric state of the endolysin and reduce lytic activity. The activity can be modulated by reconstitution of the full-length endolysin-CBD complex with free CBD. The same oligomerization mechanism applies to the CD27L endolysin that targets Clostridium difficile and the CS74L endolysin that targets Clostridium sporogenes. When the CTP1L endolysin gene is introduced into the commensal bacterium Lactococcus lactis, the truncated CBD is also produced, showing that the alternative start codon can be used in other bacterial species. The identification of a translational switch affecting oligomerization presented here has implications for the design of effective endolysins for the treatment of bacterial infections. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Synthesis, Central Nervous System Activity and Structure-Activity Relationships of Novel 1-(1-Alkyl-4-aryl-4,5-dihydro-1H-imidazo-3-substituted Urea Derivatives

    Directory of Open Access Journals (Sweden)

    Elżbieta Szacoń

    2015-02-01

    Full Text Available A series of 10 novel urea derivatives has been synthesized and evaluated for their central nervous system activity. Compounds 3a–3h were prepared in the reaction between the respective 1-alkyl-4-aryl-4,5-dihydro-1H-imidazol-2-amines 1a and 1b and appropriate benzyl-, phenethyl-isocyanate or ethyl 4-isocyanatobenzoate and ethyl isocyanatoacetate 2 in dichloromethane. Derivatives 4c and 4g resulted from the conversion of 3c and 3g into the respective amides due to action of an aqueous ammonia solution. The results obtained in this study, based on literature data suggest a possible involvement of serotonin system and/or the opioid system in the effects of tested compounds, and especially in the effect of compound 3h. The best activity of compound 3h may be primarily attributed to its favourable ADMET properties, i.e., higher lipophilicity (related to lower polar surface area and greater molecular surface, volume and mass than for other compounds and good blood-brain permeation. This compound has also the greatest polarizability and ovality. The HOMO and LUMO energies do not seem to be directly related to activity.

  16. Structure and allosteric effects of low-molecular-weight activators on the protein kinase PDK1

    DEFF Research Database (Denmark)

    Hindie, Valerie; Stroba, Adriana; Zhang, Hua

    2009-01-01

    -dependent activation of AGC kinases. The AGC kinase PDK1 is activated by the docking of a phosphorylated motif from substrates. Here we present the crystallography of PDK1 bound to a rationally developed low-molecular-weight activator and describe the conformational changes induced by small compounds in the crystal...... molecular details of the allosteric changes induced by small compounds that trigger the activation of PDK1 through mimicry of phosphorylation-dependent conformational changes....

  17. Recombination activating activity of XRCC1 analogous genes in X-ray sensitive and resistant CHO cell lines

    International Nuclear Information System (INIS)

    Golubnitchaya-Labudova, O.; Hoefer, M.; Portele, A.; Vacata, V.; Rink, H.; Lubec, G.

    1997-01-01

    The XRCC1 gene (X-ray repair cross complementing) complements the DNA repair deficiency of the radiation sensitive Chinese hamster ovary (CHO) mutant cell line EM9 but the mechanism of the correction is not elucidated yet. XRCC1 shows substantial homology to the RAG2 gene (recombination activating gene) and we therefore tried to answer the question, whether structural similarities (sequence of a putative recombination activating domain, aa 332-362 for XRCC1 and aa 286-316 in RAG2) would reflect similar functions of the homologous, putative recombination activating domain. PCR experiments revealed that no sequence homologous to the structural part of human XRCC1 was present in cDNA of CHO. Differential display demonstrated two putative recombination activating in the parental CHO line AA8 and one in the radiosensitive mutant EM9. Southern blot experiments showed the presence of several genes with partial homology to human XRCC1. Recombination studies consisted of expressing amplified target domains within chimeric proteins in recA - bacteria and subsequent detection of recombination events by sequencing the recombinant plasmids. Recombination experiments demonstrated recombination activating activity of all putative recombination activating domains amplified from AA8 and EM9 genomes as reflected by deletions within the inserts of the recombinant plasmids. The recombination activating activity of XRCC1 analogues could explain a mechanism responsible for the correction of the DNA repair defect in EM9. (author)

  18. Comparison of NMR and crystal structures highlights conformational isomerism in protein active sites

    International Nuclear Information System (INIS)

    Serrano, Pedro; Pedrini, Bill; Geralt, Michael; Jaudzems, Kristaps; Mohanty, Biswaranjan; Horst, Reto; Herrmann, Torsten; Elsliger, Marc-André; Wilson, Ian A.; Wüthrich, Kurt

    2010-01-01

    Tools for systematic comparisons of NMR and crystal structures developed by the JCSG were applied to two proteins with known functions: the T. maritima anti-σ factor antagonist TM1081 and the mouse γ-glutamylamine cyclotransferase A2LD1 (gi:13879369). In an attempt to exploit the complementarity of crystal and NMR data, the combined use of the two structure-determination techniques was explored for the initial steps in the challenge of searching proteins of unknown functions for putative active sites. The JCSG has recently developed a protocol for systematic comparisons of high-quality crystal and NMR structures of proteins. In this paper, the extent to which this approach can provide function-related information on the two functionally annotated proteins TM1081, a Thermotoga maritima anti-σ factor antagonist, and A2LD1 (gi:13879369), a mouse γ-glutamylamine cyclotransferase, is explored. The NMR structures of the two proteins have been determined in solution at 313 and 298 K, respectively, using the current JCSG protocol based on the software package UNIO for extensive automation. The corresponding crystal structures were solved by the JCSG at 100 K and 1.6 Å resolution and at 100 K and 1.9 Å resolution, respectively. The NMR and crystal structures of the two proteins share the same overall molecular architectures. However, the precision of the structure determination along the amino-acid sequence varies over a significantly wider range in the NMR structures than in the crystal structures. Thereby, in each of the two NMR structures about 65% of the residues have displacements below the average and in both proteins the less well ordered residues include large parts of the active sites, in addition to some highly solvent-exposed surface areas. Whereas the latter show increased disorder in the crystal and in solution, the active-site regions display increased displacements only in the NMR structures, where they undergo local conformational exchange on the

  19. Structure of Mesorhizobium loti arylamine N-acetyltransferase 1

    Energy Technology Data Exchange (ETDEWEB)

    Holton, Simon J. [Laboratory of Molecular Biophysics, Department of Biochemistry, Oxford University, South Parks Road, Oxford OX1 3QU (United Kingdom); Dairou, Julien [CNRS-UMR 7000, Faculté de Médecine Pitié-Salpêtrière, 105 Boulevard de l’Hôpital, 75013 Paris (France); Sandy, James [Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT (United Kingdom); Rodrigues-Lima, Fernando; Dupret, Jean-Marie [CNRS-UMR 7000, Faculté de Médecine Pitié-Salpêtrière, 105 Boulevard de l’Hôpital, 75013 Paris (France); UFR de Biochimie, Université Denis Diderot-Paris 7, 75005 Paris (France); Noble, Martin E. M. [Laboratory of Molecular Biophysics, Department of Biochemistry, Oxford University, South Parks Road, Oxford OX1 3QU (United Kingdom); Sim, Edith, E-mail: edith.sim@pharm.ox.ac.uk [Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT (United Kingdom); Laboratory of Molecular Biophysics, Department of Biochemistry, Oxford University, South Parks Road, Oxford OX1 3QU (United Kingdom)

    2005-01-01

    The crystal structure of a M. loti arylamine N-acetyltransferase 1 has been determined at 2.0 Å resolution. The arylamine N-acetyltransferase (NAT) enzymes have been found in a broad range of both eukaryotic and prokaryotic organisms. The NAT enzymes catalyse the transfer of an acetyl group from acetyl Co-enzyme A onto the terminal nitrogen of a range of arylamine, hydrazine and arylhydrazine compounds. Recently, several NAT structures have been reported from different prokaryotic sources including Salmonella typhimurium, Mycobacterium smegmatis and Pseudomonas aeruginosa. Bioinformatics analysis of the Mesorhizobium loti genome revealed two NAT paralogues, the first example of multiple NAT isoenzymes in a eubacterial organism. The M. loti NAT 1 enzyme was recombinantly expressed and purified for X-ray crystallographic studies. The purified enzyme was crystallized in 0.5 M Ca(OAc){sub 2}, 16% PEG 3350, 0.1 M Tris–HCl pH 8.5 using the sitting-drop vapour-diffusion method. A data set diffracting to 2.0 Å was collected from a single crystal at 100 K. The crystal belongs to the orthorhombic spacegroup P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 53.2, b = 97.3, c = 114.3 Å. The structure was refined to a final free-R factor of 24.8%. The structure reveals that despite low sequence homology, M. loti NAT1 shares the common fold as reported in previous NAT structures and exhibits the same catalytic triad of residues (Cys-His-Asp) in the active site.

  20. Structure of Mesorhizobium loti arylamine N-acetyltransferase 1

    International Nuclear Information System (INIS)

    Holton, Simon J.; Dairou, Julien; Sandy, James; Rodrigues-Lima, Fernando; Dupret, Jean-Marie; Noble, Martin E. M.; Sim, Edith

    2004-01-01

    The crystal structure of a M. loti arylamine N-acetyltransferase 1 has been determined at 2.0 Å resolution. The arylamine N-acetyltransferase (NAT) enzymes have been found in a broad range of both eukaryotic and prokaryotic organisms. The NAT enzymes catalyse the transfer of an acetyl group from acetyl Co-enzyme A onto the terminal nitrogen of a range of arylamine, hydrazine and arylhydrazine compounds. Recently, several NAT structures have been reported from different prokaryotic sources including Salmonella typhimurium, Mycobacterium smegmatis and Pseudomonas aeruginosa. Bioinformatics analysis of the Mesorhizobium loti genome revealed two NAT paralogues, the first example of multiple NAT isoenzymes in a eubacterial organism. The M. loti NAT 1 enzyme was recombinantly expressed and purified for X-ray crystallographic studies. The purified enzyme was crystallized in 0.5 M Ca(OAc) 2 , 16% PEG 3350, 0.1 M Tris–HCl pH 8.5 using the sitting-drop vapour-diffusion method. A data set diffracting to 2.0 Å was collected from a single crystal at 100 K. The crystal belongs to the orthorhombic spacegroup P2 1 2 1 2 1 , with unit-cell parameters a = 53.2, b = 97.3, c = 114.3 Å. The structure was refined to a final free-R factor of 24.8%. The structure reveals that despite low sequence homology, M. loti NAT1 shares the common fold as reported in previous NAT structures and exhibits the same catalytic triad of residues (Cys-His-Asp) in the active site

  1. Disulfide-stabilized Helical Hairpin Structure and Activity of a Novel Antifungal Peptide EcAMP1 from Seeds of Barnyard Grass (Echinochloa crus-galli)*

    Science.gov (United States)

    Nolde, Svetlana B.; Vassilevski, Alexander A.; Rogozhin, Eugene A.; Barinov, Nikolay A.; Balashova, Tamara A.; Samsonova, Olga V.; Baranov, Yuri V.; Feofanov, Alexey V.; Egorov, Tsezi A.; Arseniev, Alexander S.; Grishin, Eugene V.

    2011-01-01

    This study presents purification, activity characterization, and 1H NMR study of the novel antifungal peptide EcAMP1 from kernels of barnyard grass Echinochloa crus-galli. The peptide adopts a disulfide-stabilized α-helical hairpin structure in aqueous solution and thus represents a novel fold among naturally occurring antimicrobial peptides. Micromolar concentrations of EcAMP1 were shown to inhibit growth of several fungal phytopathogens. Confocal microscopy revealed intensive EcAMP1 binding to the surface of fungal conidia followed by internalization and accumulation in the cytoplasm without disturbance of membrane integrity. Close spatial structure similarity between EcAMP1, the trypsin inhibitor VhTI from seeds of Veronica hederifolia, and some scorpion and cone snail toxins suggests natural elaboration of different functions on a common fold. PMID:21561864

  2. Disulfide-stabilized helical hairpin structure and activity of a novel antifungal peptide EcAMP1 from seeds of barnyard grass (Echinochloa crus-galli).

    Science.gov (United States)

    Nolde, Svetlana B; Vassilevski, Alexander A; Rogozhin, Eugene A; Barinov, Nikolay A; Balashova, Tamara A; Samsonova, Olga V; Baranov, Yuri V; Feofanov, Alexey V; Egorov, Tsezi A; Arseniev, Alexander S; Grishin, Eugene V

    2011-07-15

    This study presents purification, activity characterization, and (1)H NMR study of the novel antifungal peptide EcAMP1 from kernels of barnyard grass Echinochloa crus-galli. The peptide adopts a disulfide-stabilized α-helical hairpin structure in aqueous solution and thus represents a novel fold among naturally occurring antimicrobial peptides. Micromolar concentrations of EcAMP1 were shown to inhibit growth of several fungal phytopathogens. Confocal microscopy revealed intensive EcAMP1 binding to the surface of fungal conidia followed by internalization and accumulation in the cytoplasm without disturbance of membrane integrity. Close spatial structure similarity between EcAMP1, the trypsin inhibitor VhTI from seeds of Veronica hederifolia, and some scorpion and cone snail toxins suggests natural elaboration of different functions on a common fold.

  3. Structure-activity relationships of 3-O-β-chacotriosyl oleanic acid derivatives as entry inhibitors for highly pathogenic H5N1 influenza virus.

    Science.gov (United States)

    Li, Sumei; Jia, Xiuhua; Shen, Xintian; Wei, Zhuwen; Jiang, Zhiyan; Liao, Yixian; Guo, Yiming; Zheng, Xiaojun; Zhong, Guohua; Song, Gaopeng

    2017-08-15

    Highly pathogenic H5N1 virus (H5N1) entry is a key target for the development of novel anti-influenza agents with new mechanisms of action. In our continuing efforts to identify novel potential anti-H5N1 entry inhibitors, a series of 3-O-β-chacotriosyl oleanolic acid analogs have been designed, synthesized and evaluated as H5N1 entry inhibitors based on two small molecule inhibitors 1 and 2 previously discovered by us. The anti-H5N1 entry activities were determined based on HA/HIV and VSVG/HIV entry assays. Compound 15 displayed the most promising anti-H5N1 entry activities with average IC 50 values of 4.05μM and good selective index (22.9). Detailed structure-activity relationships (SARs) studies suggested that either the introduction of an additional oxo group to position 11 at OA or alteration of the C-3 configuration of OA from 3β- to 3α-forms can significantly enhance the selective index while maintaining their antiviral activities in vitro. Molecular simulation analysis confirmed that the compounds exert their inhibitory activity through binding tightly to hemagglutinin (HA2) protein near the fusion peptide and prevent virus entry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Centrally acting serotonergic and dopaminergic agents. 1. Synthesis and structure-activity relationships of 2,3,3a,4,5,9b-hexahydro-1H-benz[e]indole derivatives.

    Science.gov (United States)

    Lin, C H; Haadsma-Svensson, S R; Lahti, R A; McCall, R B; Piercey, M F; Schreur, P J; Von Voigtlander, P F; Smith, M W; Chidester, C G

    1993-04-16

    The synthesis and structure-activity relationships (SAR) of 2,3,3a,4,5,9b-hexahydro-1H-benz[e]indole derivatives (3) are described. These compounds are conformationally restricted, angular tricyclic analogs of 2-aminotetralin. The synthesis was achieved in several steps from the corresponding 2-tetralones. The enantiomers of the cis analogs were obtained from either fractional recrystallizations of the diastereomeric salts of di-p-toluoyl-L-(or D)-tartaric acid or an asymmetric synthesis using chiral (R)-alpha-methylbenzylamine. All analogs were evaluated in the in vitro 5-HT1A and D2 binding assays and selected analogs were investigated further in biochemical and behavioral tests. Analogs with 9-methoxy substitution (R1 in 3) showed mixed 5-HT1A agonist and dopamine antagonist activities whereas the corresponding 9-hydroxy analogs displayed selective 5-HT1A agonist activity. The cis analogs were found to be more potent than the corresponding trans analogs and in the cis series, the (3aR)-(-)-enantiomers displayed higher potency. Nitrogen substitution (R2 in 3) with either an n-propyl or an allyl group produced similar activities whereas replacement with a bulky alpha-methylbenzyl group resulted in loss of activity. Analogs without aromatic substitution (R1 = H in 3) still showed good 5-HT1A agonist activity, although less potent than the 9-methoxy series. In this case, the trans analogs possessed equal or higher in vitro 5-HT1A affinity than the corresponding cis analogs. Analogs with either 6-methoxy or 6-hydroxy substitution (R1 in 3) were found to display dopamine antagonist properties. However, only N-allyl analogs showed this activity. In the 6-methoxy-N-allyl series, the cis analog was found to be more potent than the trans analog. Again, between the pair of cis enantiomers, the (3aR)-(-)-enantiomer showed higher potency. Incorporation of an additional methyl group into 9-methoxy cis analogs at C-2 resulted in retention of potent 5-HT1A agonist activity.

  5. Structure and Structure-activity Relationship of Functional Organic Molecules

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    @@ Research theme The group is made up of junior scientists from the State Key Laboratory of Elemento-organic Chemistry, Nankai University.The scientists focus their studis on the structure and structure-activity relationship of functional organic molecules not only because it has been the basis of their research, but also because the functional study of organic compounds is now a major scientific issue for organic chemists around the world.

  6. Crystal Structure of Human Taspase1, a Crucial Protease Regulating the Function of MLL

    Energy Technology Data Exchange (ETDEWEB)

    Khan,J.; Dunn, B.; Tong, L.

    2005-01-01

    Taspase1 catalyzes the proteolytic processing of the mixed lineage leukemia (MLL) nuclear protein, which is required for maintaining Hox gene expression patterns. Chromosomal translocations of the MLL gene are associated with leukemia in infants. Taspase1, a threonine aspartase, is a member of the type 2 asparaginase family, but is the only protease in this family. We report here the crystal structures of human activated Taspase1 and its proenzyme, as well as the characterization of the effects of mutations in the active site region using a newly developed fluorogenic assay. The structure of Taspase1 has significant differences from other asparaginases, especially near the active site. Mutation of the catalytic nucleophile, Thr234, abolishes autocatalytic processing in cis but does not completely block proteolysis in trans. The structure unexpectedly showed the binding of a chloride ion in the active site, and our kinetic studies confirm that chlorides ions are inhibitors of this enzyme at physiologically relevant concentrations.

  7. Antiplasmodial Activity, Cytotoxicity and Structure-Activity Relationship Study of Cyclopeptide Alkaloids

    Directory of Open Access Journals (Sweden)

    Emmy Tuenter

    2017-02-01

    Full Text Available Cyclopeptide alkaloids are polyamidic, macrocyclic compounds, containing a 13-, 14-, or 15-membered ring. The ring system consists of a hydroxystyrylamine moiety, an amino acid, and a β-hydroxy amino acid; attached to the ring is a side chain, comprised of one or two more amino acid moieties. In vitro antiplasmodial activity was shown before for several compounds belonging to this class, and in this paper the antiplasmodial and cytotoxic activities of ten more cyclopeptide alkaloids are reported. Combining these results and the IC50 values that were reported by our group previously, a library consisting of 19 cyclopeptide alkaloids was created. A qualitative SAR (structure-activity relationship study indicated that a 13-membered macrocyclic ring is preferable over a 14-membered one. Furthermore, the presence of a β-hydroxy proline moiety could correlate with higher antiplasmodial activity, and methoxylation (or, to a lesser extent, hydroxylation of the styrylamine moiety could be important for displaying antiplasmodial activity. In addition, QSAR (quantitative structure-activity relationship models were developed, using PLS (partial least squares regression and MLR (multiple linear regression. On the one hand, these models allow for the indication of the most important descriptors (molecular properties responsible for the antiplasmodial activity. Additionally, predictions made for interesting structures did not contradict the expectations raised in the qualitative SAR study.

  8. Structure of Voltage-gated Two-pore Channel TPC1 from Arabidopsis thaliana

    Science.gov (United States)

    Guo, Jiangtao; Zeng, Weizhong; Chen, Qingfeng; Lee, Changkeun; Chen, Liping; Yang, Yi; Cang, Chunlei; Ren, Dejian; Jiang, Youxing

    2015-01-01

    Two-pore channels (TPCs) contain two copies of a Shaker-like six-transmembrane (6-TM) domain in each subunit and are ubiquitously expressed in both animals and plants as organellar cation channels. Here, we present the first crystal structure of a vacuolar two-pore channel from Arabidopsis thaliana, AtTPC1, which functions as a homodimer. AtTPC1 activation requires both voltage and cytosolic Ca2+. Ca2+ binding to the cytosolic EF-hand domain triggers conformational changes coupled to the pair of pore-lining inner helices (IS6 helices) from the first 6-TM domains, whereas membrane potential only activates the second voltage-sensing domain (VSD2) whose conformational changes are coupled to the pair of inner helices (IIS6 helices) from the second 6-TM domains. Luminal Ca2+ or Ba2+ can modulate voltage activation by stabilizing VSD2 in the resting state and shifts voltage activation towards more positive potentials. Our Ba2+ bound AtTPC1 structure reveals a voltage sensor in the resting state, providing hitherto unseen structural insight into the general voltage-gating mechanism among voltage-gated channels. PMID:26689363

  9. Inhibitors of nuclease and redox activity of apurinic/apyrimidinic endonuclease 1/redox effector factor 1 (APE1/Ref-1).

    Science.gov (United States)

    Laev, Sergey S; Salakhutdinov, Nariman F; Lavrik, Olga I

    2017-05-01

    Human apurinic/apyrimidinic endonuclease 1/redox effector factor 1 (APE1/Ref-1) is a multifunctional protein which is essential in the base excision repair (BER) pathway of DNA lesions caused by oxidation and alkylation. This protein hydrolyzes DNA adjacent to the 5'-end of an apurinic/apyrimidinic (AP) site to produce a nick with a 3'-hydroxyl group and a 5'-deoxyribose phosphate moiety or activates the DNA-binding activity of certain transcription factors through its redox function. Studies have indicated a role for APE1/Ref-1 in the pathogenesis of cancer and in resistance to DNA-interactive drugs. Thus, this protein has potential as a target in cancer treatment. As a result, major efforts have been directed to identify small molecule inhibitors against APE1/Ref-1 activities. These agents have the potential to become anticancer drugs. The aim of this review is to present recent progress in studies of all published small molecule APE1/Ref-1 inhibitors. The structures and activities of APE1/Ref-1 inhibitors, that target both DNA repair and redox activities, are presented and discussed. To date, there is an urgent need for further development of the design and synthesis of APE1/Ref-1 inhibitors due to high importance of this protein target. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Linking structure and activity in nonlinear spiking networks.

    Directory of Open Access Journals (Sweden)

    Gabriel Koch Ocker

    2017-06-01

    Full Text Available Recent experimental advances are producing an avalanche of data on both neural connectivity and neural activity. To take full advantage of these two emerging datasets we need a framework that links them, revealing how collective neural activity arises from the structure of neural connectivity and intrinsic neural dynamics. This problem of structure-driven activity has drawn major interest in computational neuroscience. Existing methods for relating activity and architecture in spiking networks rely on linearizing activity around a central operating point and thus fail to capture the nonlinear responses of individual neurons that are the hallmark of neural information processing. Here, we overcome this limitation and present a new relationship between connectivity and activity in networks of nonlinear spiking neurons by developing a diagrammatic fluctuation expansion based on statistical field theory. We explicitly show how recurrent network structure produces pairwise and higher-order correlated activity, and how nonlinearities impact the networks' spiking activity. Our findings open new avenues to investigating how single-neuron nonlinearities-including those of different cell types-combine with connectivity to shape population activity and function.

  11. Linking structure and activity in nonlinear spiking networks.

    Science.gov (United States)

    Ocker, Gabriel Koch; Josić, Krešimir; Shea-Brown, Eric; Buice, Michael A

    2017-06-01

    Recent experimental advances are producing an avalanche of data on both neural connectivity and neural activity. To take full advantage of these two emerging datasets we need a framework that links them, revealing how collective neural activity arises from the structure of neural connectivity and intrinsic neural dynamics. This problem of structure-driven activity has drawn major interest in computational neuroscience. Existing methods for relating activity and architecture in spiking networks rely on linearizing activity around a central operating point and thus fail to capture the nonlinear responses of individual neurons that are the hallmark of neural information processing. Here, we overcome this limitation and present a new relationship between connectivity and activity in networks of nonlinear spiking neurons by developing a diagrammatic fluctuation expansion based on statistical field theory. We explicitly show how recurrent network structure produces pairwise and higher-order correlated activity, and how nonlinearities impact the networks' spiking activity. Our findings open new avenues to investigating how single-neuron nonlinearities-including those of different cell types-combine with connectivity to shape population activity and function.

  12. 1.42 A crystal structure of mini-IGF-1(2): an analysis of the disulfide isomerization property and receptor binding property of IGF-1 based on the three-dimensional structure

    International Nuclear Information System (INIS)

    Yun Caihong; Tang Yuehua; Feng Youmin; An Xiaomin; Chang Wenrui; Liang Dongcai

    2004-01-01

    Insulin and insulin-like growth factor 1 (IGF-1) share a homologous sequence, a similar three-dimensional structure and weakly overlapping biological activity, but IGF-1 folds into two thermodynamically stable disulfide isomers, while insulin folds into one unique stable tertiary structure. This is a very interesting phenomenon in which one amino acid sequence encodes two three-dimensional structures, and its molecular mechanism has remained unclear for a long time. In this study, the crystal structure of mini-IGF-1(2), a disulfide isomer of an artificial analog of IGF-1, was solved by the SAD/SIRAS method using our in-house X-ray source. Evidence was found in the structure showing that the intra-A-chain/domain disulfide bond of some molecules was broken; thus, it was proposed that disulfide isomerization begins with the breakdown of this disulfide bond. Furthermore, based on the structural comparison of IGF-1 and insulin, a new assumption was made that in insulin the several hydrogen bonds formed between the N-terminal region of the B-chain and the intra-A-chain disulfide region of the A-chain are the main reason for the stability of the intra-A-chain disulfide bond and for the prevention of disulfide isomerization, while Phe B1 and His B5 are very important for the formation of these hydrogen bonds. Moreover, the receptor binding property of IGF-1 was analyzed in detail based on the structural comparison of mini-IGF-1(2), native IGF-1, and small mini-IGF-1

  13. Structural analysis and biological activity of a highly regular glycosaminoglycan from Achatina fulica.

    Science.gov (United States)

    Liu, Jie; Zhou, Lutan; He, Zhicheng; Gao, Na; Shang, Feineng; Xu, Jianping; Li, Zi; Yang, Zengming; Wu, Mingyi; Zhao, Jinhua

    2018-02-01

    Edible snails have been widely used as a health food and medicine in many countries. A unique glycosaminoglycan (AF-GAG) was purified from Achatina fulica. Its structure was analyzed and characterized by chemical and instrumental methods, such as Fourier transform infrared spectroscopy, analysis of monosaccharide composition, and 1D/2D nuclear magnetic resonance spectroscopy. Chemical composition analysis indicated that AF-GAG is composed of iduronic acid (IdoA) and N-acetyl-glucosamine (GlcNAc) and its average molecular weight is 118kDa. Structural analysis clarified that the uronic acid unit in glycosaminoglycan (GAG) is the fully epimerized and the sequence of AF-GAG is →4)-α-GlcNAc (1→4)-α-IdoA2S (1→. Although its structure with a uniform repeating disaccharide is similar to those of heparin and heparan sulfate, this GAG is structurally highly regular and homogeneous. Anticoagulant activity assays indicated that AF-GAG exhibits no anticoagulant activities, but considering its structural characteristic, other bioactivities such as heparanase inhibition may be worthy of further study. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. The sequential structure of brain activation predicts skill.

    Science.gov (United States)

    Anderson, John R; Bothell, Daniel; Fincham, Jon M; Moon, Jungaa

    2016-01-29

    In an fMRI study, participants were trained to play a complex video game. They were scanned early and then again after substantial practice. While better players showed greater activation in one region (right dorsal striatum) their relative skill was better diagnosed by considering the sequential structure of whole brain activation. Using a cognitive model that played this game, we extracted a characterization of the mental states that are involved in playing a game and the statistical structure of the transitions among these states. There was a strong correspondence between this measure of sequential structure and the skill of different players. Using multi-voxel pattern analysis, it was possible to recognize, with relatively high accuracy, the cognitive states participants were in during particular scans. We used the sequential structure of these activation-recognized states to predict the skill of individual players. These findings indicate that important features about information-processing strategies can be identified from a model-based analysis of the sequential structure of brain activation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Mounting evidence validates Ursolic Acid directly activates SIRT1: A powerful STAC which mimic endogenous activator of SIRT1.

    Science.gov (United States)

    Bakhtiari, Nuredin; Mirzaie, Sako; Hemmati, Roohullah; Moslemee-Jalalvand, Elham; Noori, Ali Reza; Kazemi, Jahanfard

    2018-05-16

    Ursolic Acid (UA), a pentacyclic triterpenoid compound, plays a vital role in aging process. However, the role of UA in the regulation of aging and longevity is still controversial as we have previously demonstrated that UA increases SIRT1 protein level in aged-mice. Here, we reveal that UA directly activates SIRT1 in silico, in vitro and in vivo. We have identified that UA binds to outer surface of SIRT1 and leads to tight binding of substrates to enzyme in comparison with Resveratrol (RSV) and control. Furthermore, our results indicate that UA drives the structure of SIRT1 toward a closed state (an active form of enzyme). Interestingly, our experimental findings are in agreement with the molecular dynamic results. Based on our data, UA increases the affinity of enzyme for both substrates with decreasing Km value, while enhances the Vmax of enzyme. Additionally, we have determined that UA heightened SIRT1 catalytic efficiency by 2 folds compared with RSV. Thereby, to identify the endogenous activator of SIRT1, UA was administrated to aged-mice and then the tissues were isolated. According to our results, it can be concluded that UA increases SIRT1 activity and mimics Lamin A and AROS behavior in the living cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Integrated Modeling for the James Webb Space Telescope (JWST) Project: Structural Analysis Activities

    Science.gov (United States)

    Johnston, John; Mosier, Mark; Howard, Joe; Hyde, Tupper; Parrish, Keith; Ha, Kong; Liu, Frank; McGinnis, Mark

    2004-01-01

    This paper presents viewgraphs about structural analysis activities and integrated modeling for the James Webb Space Telescope (JWST). The topics include: 1) JWST Overview; 2) Observatory Structural Models; 3) Integrated Performance Analysis; and 4) Future Work and Challenges.

  17. Biological activity of antitumoural MGBG: the structural variable.

    Science.gov (United States)

    Marques, M P M; Gil, F P S C; Calheiros, R; Battaglia, V; Brunati, A M; Agostinelli, E; Toninello, A

    2008-05-01

    The present study aims at determining the structure-activity relationships (SAR's) ruling the biological function of MGBG (methylglyoxal bis(guanylhydrazone)), a competitive inhibitor of S-adenosyl-L-methionine decarboxylase displaying anticancer activity, involved in the biosynthesis of the naturally occurring polyamines spermidine and spermine. In order to properly understand its biochemical activity, MGBG's structural preferences at physiological conditions were ascertained, by quantum mechanical (DFT) calculations.

  18. Structure of a rabbit muscle fructose-1, 6-bisphosphate aldolase A dimer variant

    Energy Technology Data Exchange (ETDEWEB)

    Sherawat, Manashi [Department of Physiology and Biophysics, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118-2394 (United States); Tolan, Dean R., E-mail: tolan@bu.edu [Department of Biology, Boston University, 5 Cummington Street, Boston, MA 02215 (United States); Allen, Karen N., E-mail: tolan@bu.edu [Department of Physiology and Biophysics, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118-2394 (United States)

    2008-05-01

    The X-ray crystallographic structure of a dimer variant of fructose-1, 6-bisphosphate aldolase demonstrates a stable oligomer that mirrors half of the native tetramer. The presence of product demonstrates that this is an active form. Fructose-1, 6-bisphosphate aldolase (aldolase) is an essential enzyme in glycolysis and gluconeogenesis. In addition to this primary function, aldolase is also known to bind to a variety of other proteins, a property that may allow it to perform ‘moonlighting’ roles in the cell. Although monomeric and dimeric aldolases possess full catalytic activity, the enzyme occurs as an unusually stable tetramer, suggesting a possible link between the oligomeric state and these noncatalytic cellular roles. Here, the first high-resolution X-ray crystal structure of rabbit muscle D128V aldolase, a dimeric form of aldolase mimicking the clinically important D128G mutation in humans associated with hemolytic anemia, is presented. The structure of the dimer was determined to 1.7 Å resolution with the product DHAP bound in the active site. The turnover of substrate to produce the product ligand demonstrates the retention of catalytic activity by the dimeric aldolase. The D128V mutation causes aldolase to lose intermolecular contacts with the neighboring subunit at one of the two interfaces of the tetramer. The tertiary structure of the dimer does not significantly differ from the structure of half of the tetramer. Analytical ultracentrifugation confirms the occurrence of the enzyme as a dimer in solution. The highly stable structure of aldolase with an independent active site is consistent with a model in which aldolase has evolved as a multimeric scaffold to perform other noncatalytic functions.

  19. 1H NMR structural characterization of a recombinant kringle 2 domain from human tissue-type plasminogen activator

    International Nuclear Information System (INIS)

    Byeon, I.J.L.; Llinas, M.; Kelley, R.F.

    1989-01-01

    The kringle 2 domain of human tissue-type plasminogen activator (t-PA) has been characterized via 1 H NMR spectroscopy at 300 and 620 MHz. The experiments were performed on the isolated domain obtained by expression of the 174-263 portion of t-PA in Escherichia coli. The spectrum of t-Pa kringle 2 is characteristic of a globular structure and shows overall similarity to that of the plasminogen (PGN) kringle 4. Spectral comparison with human and bovine PGN kringle 4 identified side-chain resonances from Leu 46 , which afford a fingerprint of kringle folding, and from most of the aromatic ring spin systems. Ligand-binding studies confirm that t-PA kringle 2 binds L-lysine with an association constant K a ∼ 11.9 mM -1 . The data indicate that homologous or conserved residues relative to those that compose the lysine-binding sites of PGN kringles 1 and 4 are involved in the binding of L-lysine to t-PA kringle 2. These include Tyr 36 and, within the kringle inner loop, Trp 62 , His 64 , Trp 72 , and Tyr 74 . Several labile NH protons of t-PA kringle 2 exhibit retarded H-exchange kinetics, requiring more than a week in 2 H 2 O for full deuteration in the presence of L-lysine at 37 degree C. This reveals that kringle 2 is endowed with a compact, dynamically stable conformation. Proton Overhauser experiments in 1 H 2 O, centered on well-resolved NH resonances between 9.8 and 12 ppm, identify signals arising from the His 48a imidazole NH3 proton and the three Trp indole NH1 protons. Overall, the data indicate a highly structured conformation for the recombinant t-PA kringle 2 that is closely related to that of the previously investigated PGN kringles 1, 4, and 5

  20. Structural basis for the substrate specificity and the absence of dehalogenation activity in 2-chloromuconate cycloisomerase from Rhodococcus opacus 1CP.

    Science.gov (United States)

    Kolomytseva, Marina; Ferraroni, Marta; Chernykh, Alexey; Golovleva, Ludmila; Scozzafava, Andrea

    2014-09-01

    2-Chloromuconate cycloisomerase from the Gram-positive bacterium Rhodococcus opacus 1CP (Rho-2-CMCI) is an enzyme of a modified ortho-pathway, in which 2-chlorophenol is degraded using 3-chlorocatechol as the central intermediate. In general, the chloromuconate cycloisomerases catalyze not only the cycloisomerization, but also the process of dehalogenation of the chloromuconate to dienelactone. However Rho-2-CMCI, unlike the homologous enzymes from the Gram-negative bacteria, is very specific for only one position of the chloride on the substrate chloromuconate. Furthermore, Rho-2-CMCI is not able to dehalogenate the 5-chloromuconolactone and therefore it cannot generate the dienelactone. The crystallographic structure of the homooctameric Rho-2-CMCI was solved by molecular replacement using the coordinates of the structure of chloromuconate cycloisomerase from Pseudomonas putida PRS2000. The structure was analyzed and compared to the other already known structures of (chloro)muconate cycloisomerases. In addition to this, molecular docking calculations were carried out, which allowed us to determine the residues responsible for the high substrate specificity and the lack of dehalogenation activity of Rho-2-CMCI. Our studies highlight that a histidine, located in a loop that closes the active site cavity upon the binding of the substrate, could be related to the dehalogenation inability of Rho-2-CMCI and in general of the muconate cycloisomerases. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Activation and micropore structure determination of activated carbon-fiber composites

    Energy Technology Data Exchange (ETDEWEB)

    Jagtoyen, M.; Derbyshire, F.; Kimber, G. [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research

    1997-09-05

    Rigid, high surface area activated carbon fiber composites have been produced with high permeabilities for environmental applications in gas and water purification. These novel monolithic adsorbents can be produced in single pieces to a given size and shape. The project involves a collaboration between the Oak Ridge National Laboratory (ORNL) and the Center for Applied Energy Research (CAER), University of Kentucky. The carbon fiber composites are produced at the ORNL and activated at the CAER using different methods, with the aims of producing a uniform degree of activation, and of closely controlling pore structure and adsorptive properties. The main focus of the present work has been to find a satisfactory means to uniformly activate large samples of carbon fiber composites and produce controlled pore structures. Several environmental applications have been explored for the activated carbon fiber composites. One of these was to evaluate the activated composites for the separation of CH{sub 4}-CO{sub 2} mixtures, and an apparatus was constructed specifically for this purpose. The composites were further evaluated in the cyclic recovery of volatile organics. The activated carbon fiber composites have also been tested for possible water treatment applications by studying the adsorption of sodium pentachlorophenolate, PCP.

  2. Imidazopyridine-fused [1,3]-diazepinones part 2: Structure-activity relationships and antiproliferative activity against melanoma cells.

    Science.gov (United States)

    Bellet, Virginie; Lichon, Laure; Arama, Dominique P; Gallud, Audrey; Lisowski, Vincent; Maillard, Ludovic T; Garcia, Marcel; Martinez, Jean; Masurier, Nicolas

    2017-01-05

    We recently described a pyrido-imidazodiazepinone derivative which could be a promising hit compound for the development of new drugs acting against melanoma cells. In this study, a series of 28 novel pyrido-imidazodiazepinones were synthesized and screened for their in vitro cytotoxic activities against the melanoma MDA-MB-435 cell line. Among the derivatives, seven of them showed 50% growth inhibitory activity at 1 μM concentration, and high selectivity against the melanoma cell line MDA-MB-435. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  3. Structure-function of proteins interacting with the α1 pore-forming subunit of high-voltage-activated calcium channels

    Science.gov (United States)

    Neely, Alan; Hidalgo, Patricia

    2014-01-01

    Openings of high-voltage-activated (HVA) calcium channels lead to a transient increase in calcium concentration that in turn activate a plethora of cellular functions, including muscle contraction, secretion and gene transcription. To coordinate all these responses calcium channels form supramolecular assemblies containing effectors and regulatory proteins that couple calcium influx to the downstream signal cascades and to feedback elements. According to the original biochemical characterization of skeletal muscle Dihydropyridine receptors, HVA calcium channels are multi-subunit protein complexes consisting of a pore-forming subunit (α1) associated with four additional polypeptide chains β, α2, δ, and γ, often referred to as accessory subunits. Twenty-five years after the first purification of a high-voltage calcium channel, the concept of a flexible stoichiometry to expand the repertoire of mechanisms that regulate calcium channel influx has emerged. Several other proteins have been identified that associate directly with the α1-subunit, including calmodulin and multiple members of the small and large GTPase family. Some of these proteins only interact with a subset of α1-subunits and during specific stages of biogenesis. More strikingly, most of the α1-subunit interacting proteins, such as the β-subunit and small GTPases, regulate both gating and trafficking through a variety of mechanisms. Modulation of channel activity covers almost all biophysical properties of the channel. Likewise, regulation of the number of channels in the plasma membrane is performed by altering the release of the α1-subunit from the endoplasmic reticulum, by reducing its degradation or enhancing its recycling back to the cell surface. In this review, we discuss the structural basis, interplay and functional role of selected proteins that interact with the central pore-forming subunit of HVA calcium channels. PMID:24917826

  4. 1,5-Diphenyl-1,4-pentadiene-3-ones and cyclic analogues as antioxidative agents. Synthesis and structure-activity relationship.

    NARCIS (Netherlands)

    Sardjiman, S.S.; Reksohadiprodjo, M.S.; Hakim, L.; van der Goot, H.; Timmerman, H.

    1997-01-01

    A series of 1,5-diphenyl-1,4-pentadiene-3-ones and cyclic analogues with OH-groups in the para position of the phenyl rings and various meta substituents were prepared and their antioxidant activity compared with that of curcumin. Most of them exhibited potent antioxidative activity, especially when

  5. Structures of thymidine kinase 1 of human and mycoplasma origin

    DEFF Research Database (Denmark)

    Welin, Martin; Kosinska, Urszula; Mikkelsen, Nils-Egil

    2004-01-01

    Cytosolic thymidine kinase, TK1, is a well-known cell cycle regulated enzyme of importance in nucleotide metabolism as well as an activator of antiviral and anticancer drugs as AZT. We have now determined the first structures of the TK1 family, the human and Ureaplasma urealyticum enzymes, in com...

  6. The mechanism of phospholipase Cγ1 activation

    Directory of Open Access Journals (Sweden)

    Paweł Krawczyk

    2011-08-01

    Full Text Available Phospholipase C is an enzyme which catalyzes the hydrolysis of phosphatidylinositol-4,5-bisphosphate (PI(4,5P2 into second messengers inositol-1,4,5-triphosphate (Ins(1,4,5P3 and diacylglycerol (DAG. These messengers then promote the activation of protein kinase C and release of Ca2 from intracellular stores, initiating numerous cellular events including proliferation, differentiation, signal transduction, endocytosis, cytoskeletal reorganization or activation of ion channels. There have been identified 14 isozymes of PLC among which PLCγ1 and PLCγ2 are of particular interest. PLC contains catalytic region XY and a few regulatory domains: PH, EF and C2. The most unique features of these two enzymes are the Src homology domains (SH2, SH3 and split PH domain within the catalytic barrel. PLC1 and PLCγ2 have an identical domain structure, but they differ in their function and occurrence. Phospholipase Cγ1 is expressed ubiquitously, especially in the brain, thymus and lungs.PLCγ1 can be activated by receptor tyrosine kinases (i.e.: PDGFR, EGFR, FGFR, Trk, as well as non-receptor protein kinases (Src, Syk, Tec or phosphatidic acid, tau protein and its analogue.The molecular mechanism of PLCγ1 activation includes membrane recruitment, phosphorylation, rearrangements and activation in the presence of growth factors.In reference to PLCγ1 regulation, a number of positive and negative modulators have been considered. The most important positive modulator is phosphatidylinositol-3,4,5-trisphosphate (PI(3,4,5P2. Protein kinase A and C, tyrosine phosphatases (SHP-1, PTP-1B and Cbl, Grb2, Jak2/PTP-1B complex proteins have been described as negative regulators of PLCγ1 activation.

  7. Active site of Zn2+-dependent sn-glycerol-1-phosphate dehydrogenase from Aeropyrum pernix K1

    Directory of Open Access Journals (Sweden)

    Jin-Suk Han

    2005-01-01

    Full Text Available The enzyme sn-glycerol-1-phosphate dehydrogenase (Gro1PDH, EC 1.1.1.261 is key to the formation of the enantiomeric configuration of the glycerophosphate backbone (sn-glycerol-1-phosphate of archaeal ether lipids. This enzyme catalyzes the reversible conversion between dihydroxyacetone phosphate and glycerol-1-phosphate. To date, no information about the active site and catalytic mechanism of this enzyme has been reported. Using the sequence and structural information for glycerol dehydrogenase, we constructed six mutants (D144N, D144A, D191N, H271A, H287A and D191N/H271A of Gro1PDH from Aeropyrum pernix K1 and examined their characteristics to clarify the active site of this enzyme. The enzyme was found to be a zinc-dependent metalloenzyme, containing one zinc ion for every monomer protein that was essential for activity. Site-directed mutagenesis of D144 increased the activity of the enzyme. Mutants D144N and D144A exhibited low affinity for the substrates and higher activity than the wild type, but their affinity for the zinc ion was the same as that of the wild type. Mutants D191N, H271A and H287A had a low affinity for the zinc ion and a low activity compared with the wild type. The double mutation, D191N/ H271A, had no enzyme activity and bound no zinc. From these results, it was clarified that residues D191, H271 and H287 participate in the catalytic activity of the enzyme by binding the zinc ion, and that D144 has an effect on substrate binding. The structure of the active site of Gro1PDH from A. pernix K1 seems to be similar to that of glycerol dehydrogenase, despite the differences in substrate specificity and biological role.

  8. Trichothecenes: structure-toxic activity relationships.

    Science.gov (United States)

    Wu, Qinghua; Dohnal, Vlastimil; Kuca, Kamil; Yuan, Zonghui

    2013-07-01

    Trichothecenes comprise a large family of structurally related toxins mainly produced by fungi belonging to the genus Fusarium. Among trichothecenes, type A and type B are of the most concern due to their broad and highly toxic nature. In order to address structure-activity relationships (SAR) of trichothecenes, relationships between structural features and biological effects of trichothecene mycotoxins in mammalian systems are summarized in this paper. The double bond between C-9-C-10 and the 12,13-epoxide ring are essential structural features for trichothecene toxicity. Removal of these groups results in a complete loss of toxicity. A hydroxyl group at C-3 enhances trichothecene toxicity, while this activity decreases gradually when C-3 is substituted with either hydrogen or an acetoxy group. The presence of a hydroxyl group at C-4 promotes slightly lower toxicity than an acetoxy group at the same position. The toxicity for type B trichothecenes decreases if the substituent at C-4 is changed from acetoxy to hydroxyl or hydrogen at C-4 position. The presence of hydroxyl and hydrogen groups on C-15 decreases the trichothecene toxicity in comparison with an acetoxy group attached to this carbon. Trichothecenes toxicity increases when a macrocyclic ring exists between the C-4 and C-15. At C-8 position, an oxygenated substitution at C-8 is essential for trichothecene toxicity, indicating a decrease in the toxicity if substituent change from isovaleryloxy through hydrogen to the hydroxyl group. The presence of a second epoxy ring at C-7-C-8 reduces the toxicity, whereas epoxidation at C-9-C-10 of some macrocyclic trichothecenes increases the activity. Conjugated trichothecenes could release their toxic precursors after hydrolysis in animals, and present an additional potential risk. The SAR study of trichothecenes should provide some crucial information for a better understanding of trichothecene chemical and biological properties in food contamination.

  9. Structure-activity relationships of strychnine analogues at glycine receptors

    DEFF Research Database (Denmark)

    Mohsen, A.M.Y.; Heller, Eberhard; Holzgrabe, Ulrike

    2014-01-01

    Nine strychnine derivatives including neostrychnine, strychnidine, isostrychnine, 21,22-dihydro-21-hydroxy-22-oxo-strychnine, and several hydrogenated analogs were synthesized, and their antagonistic activities at human α1 and α1β glycine receptors were evaluated. Isostrychnine has shown the best...... pharmacological profile exhibiting an IC50 value of 1.6 μM at α1 glycine receptors and 3.7-fold preference towards the α1 subtype. SAR Analysis indicates that the lactam moiety and the C(21)[DOUBLE BOND]C(22) bond in strychnine are essential structural features for its high antagonistic potency at glycine...

  10. 4(1H)-Pyridone and 4(1H)-Quinolone Derivatives as Antimalarials with Erythrocytic, Exoerythrocytic, and Transmission Blocking Activities

    Science.gov (United States)

    Monastyrskyi, Andrii; Kyle, Dennis E.; Manetsch, Roman

    2015-01-01

    Infectious diseases are the second leading cause of deaths in the world with malaria being responsible for approximately the same amount of deaths as cancer in 2012. Despite the success in malaria prevention and control measures decreasing the disease mortality rate by 45% since 2000, the development of single-dose therapeutics with radical cure potential is required to completely eradicate this deadly condition. Targeting multiple stages of the malaria parasite is becoming a primary requirement for new candidates in antimalarial drug discovery and development. Recently, 4(1H)-pyridone, 4(1H)-quinolone, 1,2,3,4-tetrahydroacridone, and phenoxyethoxy-4(1H)-quinolone chemotypes have been shown to be antimalarials with blood stage activity, liver stage activity, and transmission blocking activity. Advancements in structure-activity relationship and structure-property relationship studies, biological evaluation in vitro and in vivo, as well as pharmacokinetics of the 4(1H)-pyridone and 4(1H)-quinolone chemotypes will be discussed. PMID:25116582

  11. Vibration control of active structures an introduction

    CERN Document Server

    Preumont, Andre

    2002-01-01

    This text is an introduction to the dynamics of active structures and to the feedback control of lightly damped flexible structures. The emphasis is placed on basic issues and simple control strategies that work.

  12. 26 CFR 1.280B-1 - Demolition of structures.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 3 2010-04-01 2010-04-01 false Demolition of structures. 1.280B-1 Section 1... (CONTINUED) INCOME TAXES Items Not Deductible § 1.280B-1 Demolition of structures. (a) In general. Section 280B provides that, in the case of the demolition of any structure, no deduction otherwise allowable...

  13. Structure-Activity Relationships of 1,2-Disubstituted Benzimidazoles: Selective Inhibition of Heme Oxygenase-2 Activity.

    Science.gov (United States)

    Kong, Xianqi; Vukomanovic, Dragic; Nakatsu, Kanji; Szarek, Walter A

    2015-08-01

    Devising ways to up- or down-regulate heme oxygenase activity is attracting much interest as a strategy for the treatment of a variety of disorders. With a view of obtaining compounds that exhibit high potency and selectivity as inhibitors of the heme oxygenase-2 (HO-2) isozyme (constitutive) relative to the heme oxygenase-1 (HO-1) isozyme (inducible), several 1,2-disubstituted 1H-benzimidazoles were designed and synthesized. Specifically, analogues were synthesized in which the C2 substituent was the following: (1H-imidazol-1-yl)methyl, (N-morpholinyl)methyl, cyclopentylmethyl, cyclohexylmethyl, or (norborn-2-yl)methyl. Compounds with the cyclic system in the C2 substituent being a carbocyclic ring, especially cyclohexyl or norborn-2-yl, and the N1 substituent being a ring-substituted benzyl group, especially 4-chlorobenzyl or 4-bromobenzyl, best exhibited the target criteria of high potency and selectivity toward inhibition of HO-2. The new candidates should be useful pharmacological tools and may have therapeutic applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Structural studies of {delta}-endotoxin Cry 1 C from Bacillus thuringiensis

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, B.G.; Garratt, R.C.; Oliva, G. [Sao Paulo Univ., Sao Carlos, SP (Brazil). Inst. de Fisica; Lemos, M.V.F. [UNESP, Jaboticabal, SP (Brazil). Dept. de Biologia Aplicada Agropecuaria; Arantes, O.M.N. [Universidade Estadual de Londrina, PR (Brazil). Dept. de Biologia Geral

    1996-12-31

    Full text. The {delta}-endotoxins are a family of crystal protein by a soil bacterium, Bacillus thuringiensis. The study of these proteins has been of great interest due to their highly specific activity against insects of the orders Lepidoptera, Diptera and Coleoptera. Thus, the {delta}a-endotoxins have been used for more than two decades as biological insecticides to control agricultural pests and, more recently, insects vectors of some diseases. The knowledge of their three-dimensional structures is very important to understand their mechanism of action and their high specificity. To date, the structure of only three proteins of the {delta}-endotoxins family have been reported: Cry3A, a coleopteran-specific toxin (beetle toxin){sup 1}, Cry1Aa, a lepidopteran-specific toxin (butterfly toxin){sup 2} and CytB, a dipteran-specific toxin (mosquito toxin){sup 3} Our work is aimed at the determination of the crystallographic structure by X-ray diffraction of {delta}-endotoxin Cry1C, also toxic to insects of the Lepidoptera order but towards families other than those affected by Cry1Aa. A comparison between these structures may lead to important conclusions about the reasons for the specificity and would allow the planning of mutants with more efficient activity. The cry1C gene was cloned into an adequate vector and expressed in an acrystalliferous B. thuringiensis strain. After cell culture and sporulation the microcrystals of Cry1C were separated by ultra-centrifugation in sacharose. The protoxin inclusion bodies were activated by commercial trpsin and the protease-resistant core was purified by anion-exchange chromatography. Crystallization experiments are being conducted in order to obtain single crystals suitable for diffraction measurements. We intend to use the Protein Crystallograph Station of the LNLS to collect data as soon as it is available and we have suitable crystals. (author) 3 refs.

  15. Structural studies of δ-endotoxin Cry 1 C from Bacillus thuringiensis

    International Nuclear Information System (INIS)

    Guimaraes, B.G.; Garratt, R.C.; Oliva, G.; Lemos, M.V.F.; Arantes, O.M.N.

    1996-01-01

    Full text. The δ-endotoxins are a family of crystal protein by a soil bacterium, Bacillus thuringiensis. The study of these proteins has been of great interest due to their highly specific activity against insects of the orders Lepidoptera, Diptera and Coleoptera. Thus, the δa-endotoxins have been used for more than two decades as biological insecticides to control agricultural pests and, more recently, insects vectors of some diseases. The knowledge of their three-dimensional structures is very important to understand their mechanism of action and their high specificity. To date, the structure of only three proteins of the δ-endotoxins family have been reported: Cry3A, a coleopteran-specific toxin (beetle toxin) 1 , Cry1Aa, a lepidopteran-specific toxin (butterfly toxin) 2 and CytB, a dipteran-specific toxin (mosquito toxin) 3 Our work is aimed at the determination of the crystallographic structure by X-ray diffraction of δ-endotoxin Cry1C, also toxic to insects of the Lepidoptera order but towards families other than those affected by Cry1Aa. A comparison between these structures may lead to important conclusions about the reasons for the specificity and would allow the planning of mutants with more efficient activity. The cry1C gene was cloned into an adequate vector and expressed in an acrystalliferous B. thuringiensis strain. After cell culture and sporulation the microcrystals of Cry1C were separated by ultra-centrifugation in sacharose. The protoxin inclusion bodies were activated by commercial trpsin and the protease-resistant core was purified by anion-exchange chromatography. Crystallization experiments are being conducted in order to obtain single crystals suitable for diffraction measurements. We intend to use the Protein Crystallograph Station of the LNLS to collect data as soon as it is available and we have suitable crystals. (author)

  16. New insights into the reduction systems of plastidial thioredoxins point out the unique properties of thioredoxin z from Arabidopsis.

    Science.gov (United States)

    Bohrer, Anne-Sophie; Massot, Vincent; Innocenti, Gilles; Reichheld, Jean-Philippe; Issakidis-Bourguet, Emmanuelle; Vanacker, Hélène

    2012-11-01

    In plants, thioredoxins (TRX) constitute a large protein disulphide oxidoreductase family comprising 10 plastidial members in Arabidopsis thaliana and subdivided in five types. The f- and m-types regulate enzymes involved mainly in carbon metabolism whereas the x, y, and z types have an antioxidant function. The reduction of TRXm and f in chloroplasts is performed in the light by ferredoxin:thioredoxin reductase (FTR) that uses photosynthetically reduced ferredoxin (Fd) as a reductant. The reduction system of Arabidopsis TRXx, y, and z has never been demonstrated. Recently, a gene encoding an atypical plastidial NADPH-dependent TRX reductase (NTRC) was found. In the present study, gene expression analysis revealed that both reductases are expressed in all organs of Arabidopsis and could potentially serve as electron donors to plastidial TRX. This ability was tested in vitro either with purified NTRC in presence of NADPH or with a light-driven reconstituted system comprising thylakoids and purified Fd and FTR. The results demonstrate that FTR reduces the x and y TRX isoforms but not the recently identified TRXz. Moreover, the results show that NTRC cannot be an efficient alternative reducing system, neither for TRXz nor for the other plastidial TRX. The data reveal that TRXf, m, x, and y, known as redox regulators in the chloroplast, have also the ability to reduce TRXz in vitro. Overall, the present study points out the unique properties of TRXz among plastidial TRX.

  17. Structural characteristics of pineapple pulp polysaccharides and their antitumor cell proliferation activities.

    Science.gov (United States)

    Wang, Ling; Tang, De-Qiang; Kuang, Yu; Lin, Feng-Jiao; Su, Yu

    2015-09-01

    Pineapple has a delicious taste and good health benefits. Bioactive polysaccharides are important components of pineapple that might contribute to its health benefits. Since little structural information on these polysaccharides is currently available, the aim of this study was to investigate their structural characteristics and bioactivities. The polysaccharides of pineapple pulp were fractionated into three fractions (PAPs 1-3) by anion exchange chromatography. Their structural characteristics were first identified, including molecular weights and glycosidic linkages. The monosaccharide compositions were revealed as PAP 1 (Ara, Xyl, Man, Glc and Gal), PAP 2 (Rha, Ara, Xyl, Man, Glc and Gal) and PAP 3 (Rha, Ara, Xyl, Man and Gal). Nuclear magnetic resonance (NMR) spectra suggested that PAP 2 had a backbone of → 4)-α-d-Manp-(1 → 2,4)-α-d-Manp-(1 → with branches attached to O-4 of Manp. The NMR data of α-l-Araf-(1→, →3)-α-l-Araf-(1→, →4)-β-d-Galp-(1 → and → 4)-α-d-GalpAMe-(1 → were assigned. PAPs 1 and 2 showed significant antitumor cell proliferation activities against breast carcinoma cell line and strong antioxidant activities. The above findings indicated that PAPs 1-3 contributed much to the health benefits of pineapple. They could be used as health-beneficial food additives in functional foods. © 2015 Society of Chemical Industry.

  18. Synthesis, structural characterization, and pro-apoptotic activity of 1-indanone thiosemicarbazone platinum(II) and palladium(II) complexes: potential as antileukemic agents.

    Science.gov (United States)

    Gómez, Natalia; Santos, Diego; Vázquez, Ramiro; Suescun, Leopoldo; Mombrú, Alvaro; Vermeulen, Monica; Finkielsztein, Liliana; Shayo, Carina; Moglioni, Albertina; Gambino, Dinorah; Davio, Carlos

    2011-08-01

    In the search for alternative chemotherapeutic strategies against leukemia, various 1-indanone thiosemicarbazones, as well as eight novel platinum(II) and palladium(II) complexes, with the formula [MCl₂(HL)] and [M(HL)(L)]Cl, derived from two 1-indanone thiosemicarbazones were synthesized and tested for antiproliferative activity against the human leukemia U937 cell line. The crystal structure of [Pt(HL1)(L1)]Cl·2MeOH, where L1=1-indanone thiosemicarbazone, was solved by X-ray diffraction. Free thiosemicarbazone ligands showed no antiproliferative effect, but the corresponding platinum(II) and palladium(II) complexes inhibited cell proliferation and induced apoptosis. Platinum(II) complexes also displayed selective apoptotic activity in U937 cells but not in peripheral blood monocytes or the human hepatocellular carcinoma HepG2 cell line used to screen for potential hepatotoxicity. Present findings show that, in U937 cells, 1-indanone thiosemicarbazones coordinated to palladium(II) were more cytotoxic than those complexed with platinum(II), although the latter were found to be more selective for leukemic cells suggesting that they are promising compounds with potential therapeutic application against hematological malignancies. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Crystal Structure and Functional Characterization of the Complement Regulator Mannose-binding Lectin (MBL)/Ficolin-associated Protein-1 (MAP-1)

    DEFF Research Database (Denmark)

    Skjoedt, M.-o.; Roversi, P.; Hummelshoj, T.

    2012-01-01

    .5 nM, respectively. We studied structural aspects of MAP-1 and could show by multi-angle laser light scattering that MAP-1 forms a calcium-dependent homo-dimer in solution. We were able to determine the crystal structure of MAP-1, which also contains a head-to-tail dimer approximately 146 Angstrom...... long. This structure of MAP-1 also enables modeling and assembly of the MASP-1 molecule in its entirety. Finally we found that MAP-1 competes with all three MASPs for ligand binding and is able to mediate a strong dose dependent inhibitory effect on the lectin pathway activation, as measured by levels...

  20. Crystal Structure of Hyperthermophilic Endo-β-1,4-glucanase

    Science.gov (United States)

    Zheng, Baisong; Yang, Wen; Zhao, Xinyu; Wang, Yuguo; Lou, Zhiyong; Rao, Zihe; Feng, Yan

    2012-01-01

    Endo-β-1,4-glucanase from thermophilic Fervidobacterium nodosum Rt17-B1 (FnCel5A), a new member of glycosyl hydrolase family 5, is highly thermostable and exhibits the highest activity on carboxymethylcellulose among the reported homologues. To understand the structural basis for the thermostability and catalytic mechanism, we report here the crystal structures of FnCel5A and the complex with glucose at atomic resolution. FnCel5A exhibited a (β/α)8-barrel structure typical of clan GH-A of the glycoside hydrolase families with a large and deep catalytic pocket located in the C-terminal end of the β-strands that may permit substrate access. A comparison of the structure of FnCel5A with related structures from thermopile Clostridium thermocellum, mesophile Clostridium cellulolyticum, and psychrophile Pseudoalteromonas haloplanktis showed significant differences in intramolecular interactions (salt bridges and hydrogen bonds) that may account for the difference in their thermostabilities. The substrate complex structure in combination with a mutagenesis analysis of the catalytic residues implicates a distinctive catalytic module Glu167-His226-Glu283, which suggests that the histidine may function as an intermediate for the electron transfer network between the typical Glu-Glu catalytic module. Further investigation suggested that the aromatic residues Trp61, Trp204, Phe231, and Trp240 as well as polar residues Asn51, His127, Tyr228, and His235 in the active site not only participated in substrate binding but also provided a unique microenvironment suitable for catalysis. These results provide substantial insight into the unique characteristics of FnCel5A for catalysis and adaptation to extreme temperature. PMID:22128157

  1. Finding Community Structures In Social Activity Data

    KAUST Repository

    Peng, Chengbin

    2015-01-01

    Social activity data sets are increasing in number and volume. Finding community structure in such data is valuable in many applications. For example, understand- ing the community structure of social networks may reduce the spread of epidemics

  2. Indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors activate the aryl hydrocarbon receptor

    Energy Technology Data Exchange (ETDEWEB)

    Moyer, Benjamin J. [Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756 (United States); Rojas, Itzel Y. [Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756 (United States); Murray, Iain A. [Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802 (United States); Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802 (United States); Lee, Seokwon; Hazlett, Haley F. [Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756 (United States); Perdew, Gary H. [Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802 (United States); Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802 (United States); Tomlinson, Craig R., E-mail: Craig.R.Tomlinson@Dartmouth.edu [Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756 (United States); Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756 (United States)

    2017-05-15

    Indoleamine 2,3-dioxygenase 1 (IDO1) plays a key role in the immune system by regulating tryptophan levels and T cell differentiation. Several tumor types overexpress IDO1 to avoid immune surveillance making IDO1 of interest as a target for therapeutic intervention. As a result, several IDO1 inhibitors are currently being tested in clinical trials for cancer treatment as well as several other diseases. Many of the IDO1 inhibitors in clinical trials naturally bear structural similarities to the IDO1 substrate tryptophan, as such, they fulfill many of the structural and functional criteria as potential AHR ligands. Using mouse and human cell-based luciferase gene reporter assays, qPCR confirmation experiments, and CYP1A1 enzyme activity assays, we report that some of the promising clinical IDO1 inhibitors also act as agonists for the aryl hydrocarbon receptor (AHR), best known for its roles in xenobiotic metabolism and as another key regulator of the immune response. The dual role as IDO antagonist and AHR agonist for many of these IDO target drugs should be considered for full interrogation of their biological mechanisms and clinical outcomes. - Highlights: • Indoleamine-2,3-dioxygenase 1 (IDO1) inhibitors are in cancer clinical trials. • Some IDO1 inhibitors also potently activate AHR signaling. • The dual role of the IDO1 inhibitors may explain some past paradoxical findings. • AHR induction studies must be included in assessing clinical suitability.

  3. Indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors activate the aryl hydrocarbon receptor

    International Nuclear Information System (INIS)

    Moyer, Benjamin J.; Rojas, Itzel Y.; Murray, Iain A.; Lee, Seokwon; Hazlett, Haley F.; Perdew, Gary H.; Tomlinson, Craig R.

    2017-01-01

    Indoleamine 2,3-dioxygenase 1 (IDO1) plays a key role in the immune system by regulating tryptophan levels and T cell differentiation. Several tumor types overexpress IDO1 to avoid immune surveillance making IDO1 of interest as a target for therapeutic intervention. As a result, several IDO1 inhibitors are currently being tested in clinical trials for cancer treatment as well as several other diseases. Many of the IDO1 inhibitors in clinical trials naturally bear structural similarities to the IDO1 substrate tryptophan, as such, they fulfill many of the structural and functional criteria as potential AHR ligands. Using mouse and human cell-based luciferase gene reporter assays, qPCR confirmation experiments, and CYP1A1 enzyme activity assays, we report that some of the promising clinical IDO1 inhibitors also act as agonists for the aryl hydrocarbon receptor (AHR), best known for its roles in xenobiotic metabolism and as another key regulator of the immune response. The dual role as IDO antagonist and AHR agonist for many of these IDO target drugs should be considered for full interrogation of their biological mechanisms and clinical outcomes. - Highlights: • Indoleamine-2,3-dioxygenase 1 (IDO1) inhibitors are in cancer clinical trials. • Some IDO1 inhibitors also potently activate AHR signaling. • The dual role of the IDO1 inhibitors may explain some past paradoxical findings. • AHR induction studies must be included in assessing clinical suitability.

  4. The crystal structure of the core domain of a cellulose induced protein (Cip1 from Hypocrea jecorina, at 1.5 Å resolution.

    Directory of Open Access Journals (Sweden)

    Frida Jacobson

    Full Text Available In an effort to characterise the whole transcriptome of the fungus Hypocrea jecorina, cDNA clones of this fungus were identified that encode for previously unknown proteins that are likely to function in biomass degradation. One of these newly identified proteins, found to be co-regulated with the major H. jecorina cellulases, is a protein that was denoted Cellulose induced protein 1 (Cip1. This protein consists of a glycoside hydrolase family 1 carbohydrate binding module connected via a linker region to a domain with yet unknown function. After cloning and expression of Cip1 in H. jecorina, the protein was purified and biochemically characterised with the aim of determining a potential enzymatic activity for the novel protein. No hydrolytic activity against any of the tested plant cell wall components was found. The proteolytic core domain of Cip1 was then crystallised, and the three-dimensional structure of this was determined to 1.5 Å resolution utilising sulphur single-wavelength anomalous dispersion phasing (sulphor-SAD. A calcium ion binding site was identified in a sequence conserved region of Cip1 and is also seen in other proteins with the same general fold as Cip1, such as many carbohydrate binding modules. The presence of this ion was found to have a structural role. The Cip1 structure was analysed and a structural homology search was performed to identify structurally related proteins. The two published structures with highest overall structural similarity to Cip1 found were two poly-lyases: CsGL, a glucuronan lyase from H. jecorina and vAL-1, an alginate lyase from the Chlorella virus. This indicates that Cip1 may be a lyase. However, initial trials did not detect significant lyase activity for Cip1. Cip1 is the first structure to be solved of the 23 currently known Cip1 sequential homologs (with a sequence identity cut-off of 25%, including both bacterial and fungal members.

  5. Development of magnetostrictive active members for control of space structures

    Science.gov (United States)

    Johnson, Bruce G.; Avakian, Kevin M.; Fenn, Ralph C.; Gaffney, Monique S.; Gerver, Michael J.; Hawkey, Timothy J.; Boudreau, Donald J.

    1992-08-01

    The goal of this Phase 2 Small Business Innovative Research (SBIR) project was to determine the technical feasibility of developing magnetostrictive active members for use as truss elements in space structures. Active members control elastic vibrations of truss-based space structures and integrate the functions of truss structure element, actively controlled actuator, and sensor. The active members must control structural motion to the sub-micron level and, for many proposed space applications, work at cryogenic temperatures. Under this program both room temperature and cryogenic temperature magnetostrictive active members were designed, fabricated, and tested. The results of these performance tests indicated that room temperature magnetostrictive actuators feature higher strain, stiffness, and force capability with lower amplifier requirements than similarly sized piezoelectric or electrostrictive active members, at the cost of higher mass. Two different cryogenic temperature magnetostrictive materials were tested at liquid nitrogen temperatures, both with larger strain capability than the room temperature magnetostrictive materials. The cryogenic active member development included the design and fabrication of a cryostat that allows operation of the cryogenic active member in a space structure testbed.

  6. Distinct structural features of TFAM drive mitochondrial DNA packaging versus transcriptional activation.

    Science.gov (United States)

    Ngo, Huu B; Lovely, Geoffrey A; Phillips, Rob; Chan, David C

    2014-01-01

    TFAM (transcription factor A, mitochondrial) is a DNA-binding protein that activates transcription at the two major promoters of mitochondrial DNA (mtDNA)--the light strand promoter (LSP) and the heavy strand promoter 1 (HSP1). Equally important, it coats and packages the mitochondrial genome. TFAM has been shown to impose a U-turn on LSP DNA; however, whether this distortion is relevant at other sites is unknown. Here we present crystal structures of TFAM bound to HSP1 and to nonspecific DNA. In both, TFAM similarly distorts the DNA into a U-turn. Yet, TFAM binds to HSP1 in the opposite orientation from LSP explaining why transcription from LSP requires DNA bending, whereas transcription at HSP1 does not. Moreover, the crystal structures reveal dimerization of DNA-bound TFAM. This dimerization is dispensable for DNA bending and transcriptional activation but is important in DNA compaction. We propose that TFAM dimerization enhances mitochondrial DNA compaction by promoting looping of the DNA.

  7. Trypanocidal 1,3-arylene diketone bis(guanylhydrazone)s. Structure-activity relationships among substituted and heterocyclic analogues.

    Science.gov (United States)

    Ulrich, P; Cerami, A

    1984-01-01

    Based on the antitrypanosomal activity of 1,3-diacetylbenzene bis(guanylhydrazone) (4) and 2,6-diacetylpyridine bis(guanylhydrazone) (17), a number of substituted and heterocyclic 1,3-arylene diketone bis(guanylhydrazone)s were prepared and tested against Trypanosoma brucei infections in mice. A wide range of ED50 values was observed among 5-substituted derivatives of 4. The 5-amino analogue 5 and 5-acetamido analogue 6 were about twice as active as 4. 1,3,5-Triacetylbenzene tris(guanylhydrazone) (12) was about 9 times as active as 4 and was approximately one-half as active as the currently used trypanocide diminazene aceturate in this test system. Other 5-derivatives had activity equivalent to or less than that of the parent compound 4. Three new heterocyclic analogues were all less active than 2,6-diacetylpyridine derivative 17 and benzene derivative 4. Ring substitution ortho to the guanylhydrazone side chains was invariably detrimental to activity. Side-chain homologues 1,3-dipentanoylbenzene bis(guanylhydrazone) and 1,3-diacetylbenzene bis(2-imidazolin-2-ylhydrazone) were essentially inactive.

  8. The effects of physical activity on brain structure

    Directory of Open Access Journals (Sweden)

    Adam eThomas

    2012-03-01

    Full Text Available Aerobic activity is a powerful stimulus for improving mental health and for generating structural changes in the brain. We review the literature documenting these structural changes and explore exactly where in the brain these changes occur as well as the underlying substrates of the changes including neural, glial, and vasculature components. Aerobic activity has been shown to produce different types of changes in the brain. The presence of novel experiences or learning is an especially important component in how these changes are manifest. We also discuss the distinct time courses of structural brain changes with both aerobic activity and learning as well as how these effects might differ in diseased and elderly groups.

  9. Crystal structures of human sulfotransferases SULT1B1 and SULT1C1 complexed with the cofactor product adenosine-3'- 5'-diphosphate (PAP)

    Energy Technology Data Exchange (ETDEWEB)

    Dombrovski, Luidmila; Dong, Aiping; Bochkarev, Alexey; Plotnikov, Alexander N. (Toronto)

    2008-09-17

    Cytosolic sulfotransferases (SULTs), often referred as Phase II enzymes of chemical defense, are a superfamily of enzymes that catalyze the transfer of a sulfonate group from 3{prime}-phosphoadenosine 5{prime}-phosphosulfate (PAPS) to an acceptor group of substrates. This reaction modulates the activities of a large array of small endogenous and foreign chemicals including drugs, toxic compounds, steroid hormones, and neurotransmitters. In some cases, however, SULTs activate certain food and environmental compounds to mutagenenic and carcinogenic metabolites. Twelve human SULTs have been identified, which are partitioned into three families: SULT1, SULT2 and SULT4. The SULT1 family is further divided in four subfamilies, A, B, C, and E, and comprises eight members (1A1, 1A2, 1A3, 1B1, 1C1, 1C2, 1C3, and 1E1). Despite sequence and structural similarity among the SULTs, the family and subfamily members appear to have different biological function. SULT1 family shows substrate-binding specificity for simple phenols, estradiol, and thyroid hormones, as well as environmental xenobiotics and drugs. Human SULT1B1 is expressed in liver, colon, small intestine, and blood leukocytes, and shows substrate-binding specificity to thyroid hormones and benzylic alcohols. Human SULT1C1 is expressed in the adult stomach, kidney, and thyroid, as well as in fetal kidney and liver. SULT1C1 catalyzes the sulfonation of p-nitrophenol and N-hydroxy-2-acetylaminofluorene in vitro. However, the in vivo function of the enzyme remains unknown. We intend to solve the structures for all of the SULTs for which structural information is not yet available, and compare the structural and functional features of the entire SULT superfamily. Here we report the structures of two members of SULT1 family, SULT1B1 and SULT1C1, both in complex with the product of the PAPS cofactor, adenosine-3{prime}-5{prime}-diphosphate (PAP).

  10. Fear Conditioning Downregulates Rac1 Activity in the Basolateral Amygdala Astrocytes to Facilitate the Formation of Fear Memory.

    Science.gov (United States)

    Liao, Zhaohui; Tao, Yezheng; Guo, Xiaomu; Cheng, Deqin; Wang, Feifei; Liu, Xing; Ma, Lan

    2017-01-01

    Astrocytes are well known to scale synaptic structural and functional plasticity, while the role in learning and memory, such as conditioned fear memory, is poorly elucidated. Here, using pharmacological approach, we find that fluorocitrate (FC) significantly inhibits the acquisition of fear memory, suggesting that astrocyte activity is required for fear memory formation. We further demonstrate that fear conditioning downregulates astrocytic Rac1 activity in basolateral amygdala (BLA) in mice and promotes astrocyte structural plasticity. Ablation of astrocytic Rac1 in BLA promotes fear memory acquisition, while overexpression or constitutive activation of astrocytic Rac1 attenuates fear memory acquisition. Furthermore, temporal activation of Rac1 by photoactivatable Rac1 (Rac1-PA) induces structural alterations in astrocytes and in vivo activation of Rac1 in BLA astrocytes during fear conditioning attenuates the formation of fear memory. Taken together, our study demonstrates that fear conditioning-induced suppression of BLA astrocytic Rac1 activity, associated with astrocyte structural plasticity, is required for the formation of conditioned fear memory.

  11. Activity and structure of calcined coal gangue

    Energy Technology Data Exchange (ETDEWEB)

    Gong Chenchen; Li Dongxu; Wang Xiaojun; Li Zongjin [Nanjing University of Technology, Nanjing (China). College of Materials Science and Engineering

    2007-12-15

    Coal gangue was activated by means of calcination in seven temperature ranges. Systematic research was made about activation mechanism and structural evolution. The glycerin-ethanol method, SEM, MIP and XRD were used to determine the variation of structure and activation of coal gangue during calcination. The experimental results show that because of heat treatment in the range of calcination temperatures, mineral composition and microstructure of coal gangue are changed. In addition, its activity is improved. The amount of lime absorbed by the sample calcined at 700{sup o}C is 2-4 times that by uncalcined coal gangue in the course of hydration. When NaOH is added to coal gangue-lime system, the hydration reaction rate of the system is increased and the microstructure of hydrating samples of coal gangue is improved.

  12. Structural Characteristics of the Novel Polysaccharide FVPA1 from Winter Culinary-Medicinal Mushroom, Flammulina velutipes (Agaricomycetes), Capable of Enhancing Natural Killer Cell Activity against K562 Tumor Cells.

    Science.gov (United States)

    Jia, Wei; Feng, Jie; Zhang, Jing-Song; Lin, Chi-Chung; Wang, Wen-Han; Chen, Hong-Ge

    2017-01-01

    FVPA1, a novel polysaccharide, has been isolated from fruiting bodies of the culinary-medicinal mushroom Flammulina velutipes, a historically popular, widely cultivated and consumed functional food with an attractive taste, beneficial nutraceutical properties such as antitumor and immunomodulatory effects, and a number of essential biological activities. The average molecular weight was estimated to be ~1.8 × 104 Da based on high-performance size exclusion chromatography. Sugar analyses, methylation analyses, and 1H, 13C, and 2-dimensional nuclear magnetic resonance spectroscopy revealed the following structure of the repeating units of the FVPA1 polysaccharide Identification of this structure would conceivably lead to better understanding of the nutraceutical functions of this very important edible fungus. Bioactivity tests in vitro indicated that FVPA1 could significantly enhance natural killer cell activity against K562 tumor cells.

  13. Outlook for activity and structural change

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    The level of energy-using activities is continuing to increase throughout the world, but the rates of likely growth differ among regions. Over the next 20 years, manufacturing production is expected to grow at a rapid pace in parts of the developing world, and moderately in the OECD countries. In the Former East Bloc, it seems likely to stagnate or decline for much of the 1990s, but could then grow at a moderate pace if the transition to a market economy is successfully managed. Domestic passenger travel seems likely to increase everywhere, and growth in international travel will be especially strong. Freight transport activity is difficult to evaluate in the aggregate, since the composition of goods changes over time, but increase is expected in all regions, especially in the developing countries. Structural change within sectors will have significant impacts on energy use. In manufacturing, faster growth in light industry will lead to lower energy intensity in the OECD countries and especially in the Former East Bloc. The outlook in the LDCs suggests somewhat higher growth in energy-intensive industries, but this trend will vary among countries. In passenger travel, structural change is pointing toward higher energy intensity in most of the world as the role of automobiles and air travel continues to grow. Increase in the use of trucks is pushing in a similar direction in freight transport. In the residential sector, structural change will have only a moderate impact in the OECD countries, where per capita levels of home services are already high, but will push energy use significantly upward in the LDCs, and to a lesser extent, in the Former East Bloc. 17 refs., 4 figs., 1 tab

  14. Leisure-time physical activity behavior: structured and unstructured choices according to sex, age, and level of physical activity.

    Science.gov (United States)

    Mota, Jorge; Esculcas, Carlos

    2002-01-01

    The main goals of this cross-sectional survey were (a) to describe the associations between sex, age, and physical activity behavior and (b) to describe the age and sex-related associations with the choice of structured (formal) and unstructured (nonformal) physical activity programs. At baseline, data were selected randomly from 1,013 students, from the 7th to the 12th grades. A response rate of 73% (n = 739) was obtained. Accordingly, the sample of this study consisted of 594 adolescents (304 females and 290 males) with mean age of 15.9 years (range 13-20). Physical activity was assessed by means of a questionnaire. A questionnaire about leisure activities was applied to the sample to define the nominal variable "nature of physical activity." The data showed that significantly more girls than boys (p < or = .001) belonged to the sedentary group (80.7% girls) and low activity group (64.5% girls). Boys more frequently belonged to the more active groups (92.1%; p < or = .001). The older participants were more engaged in formal physical activities, whereas the younger mostly chose informal ones whatever their level of physical activity. There were more significant differences in girls' physical activity groups (chi 2 = 20.663, p < or = .001) than in boys' (chi 2 = 7.662, p < or = .05). Furthermore, active girls chose more structured physical activities than their sedentary counterparts (18.8% vs. 83.3%). However, boys preferred unstructured activities regardless of physical activity group (83.7% vs. 58.5%; p < or = .05). It can be concluded that as age increased, organized sports activities became a relatively more important component of total weekly activity for both male and female participants.

  15. Phospho-Pon Binding-Mediated Fine-Tuning of Plk1 Activity.

    Science.gov (United States)

    Zhu, Kang; Shan, Zelin; Zhang, Lu; Wen, Wenyu

    2016-07-06

    In Drosophila neuroblasts (NBs), the asymmetrical localization and segregation of the cell-fate determinant Numb are regulated by its adaptor Partner of Numb (Pon) and the cell-cycle kinase Polo. Polo phosphorylates the Pon localization domain, thus leading to its basal distribution together with Numb, albeit through an unclear mechanism. Here, we find that Cdk1 phosphorylates Pon at Thr63, thus creating a docking site for the Polo-box domain (PBD) of Polo-like kinase 1 (Plk1). The crystal structure of the Plk1 PBD/phospho-Pon complex reveals that two phospho-Pon bound PBDs associate to form a dimer of dimers. We provide evidence that phospho-Pon binding-induced PBD dimerization relieves the autoinhibition of Plk1. Moreover, we demonstrate that the priming Cdk1 phosphorylation of Pon is important for sequential Plk1 phosphorylation. Our results not only provide structural insight into how phosphoprotein binding activates Plk1 but also suggest that binding to different phosphoproteins might mediate the fine-tuning of Plk1 activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Structure-activity studies of peptidomimetics based on kinase-inhibitory region of suppressors of cytokine signaling 1.

    Science.gov (United States)

    La Manna, Sara; Lopez-Sanz, Laura; Leone, Marilisa; Brandi, Paola; Scognamiglio, Pasqualina Liana; Morelli, Giancarlo; Novellino, Ettore; Gomez-Guerrero, Carmen; Marasco, Daniela

    2017-11-20

    Suppressors of Cytokine Signaling (SOCS) proteins are negative regulators of JAK proteins that are receptor-associated tyrosine kinases, which play key roles in the phosphorylation and subsequent activation of several transcription factors named STATs. Unlike the other SOCS proteins, SOCS1 and 3 show, in the N-terminal portion, a small kinase inhibitory region (KIR) involved in the inhibition of JAK kinases. Drug discovery processes of compounds based on KIR sequence demonstrated promising in functional in vitro and in inflammatory animal models and we recently developed a peptidomimetic called PS5, as lead compound. Here, we investigated the cellular ability of PS5 to mimic SOCS1 biological functions in vascular smooth muscle cells and simultaneously we set up a new binding assay for the screening and identification of JAK2 binders based on a SPR experiment that revealed more robust with respect to previous ELISAs. On this basis, we designed several peptidomimetics bearing new structural constraints that were analyzed in both affinities toward JAK2 and conformational features through Circular Dichroism and NMR spectroscopies. Introduced chemical modifications provided an enhancement of serum stabilities of new sequences that could aid the design of future mimetic molecules of SOCS1 as novel anti-inflammatory compounds. © 2017 Wiley Periodicals, Inc.

  17. Development of a low activation concrete shielding wall by multi-layered structure for a fusion reactor

    International Nuclear Information System (INIS)

    Sato, Satoshi; Maegawa, Toshio; Yoshimatsu, Kenji; Sato, Koichi; Nonaka, Akira; Takakura, Kosuke; Ochiai, Kentaro; Konno, Chikara

    2011-01-01

    A multi-layered concrete structure has been developed to reduce induced activity in the shielding for neutron generating facilities such as a fusion reactor. The multi-layered concrete structure is composed of: (1) an inner low activation concrete, (2) a boron-doped low activation concrete as the second layer, and (3) ordinary concrete as the outer layer of the neutron shield. With the multi-layered concrete structure the volume of boron is drastically decreased compared to a monolithic boron-doped concrete. A 14 MeV neutron shielding experiment with multi-layered concrete structure mockups was performed at FNS and several reaction rates and induced activity in the mockups were measured. This demonstrated that the multi-layered concrete effectively reduced low energy neutrons and induced activity.

  18. Structure-activity relationship (SAR) study and design strategies of nitrogen-containing heterocyclic moieties for their anticancer activities.

    Science.gov (United States)

    Akhtar, Jawaid; Khan, Ahsan Ahmed; Ali, Zulphikar; Haider, Rafi; Shahar Yar, M

    2017-01-05

    The present review article offers a detailed account of the design strategies employed for the synthesis of nitrogen-containing anticancer agents. The results of different studies describe the N-heterocyclic ring system is a core structure in many synthetic compounds exhibiting a broad range of biological activities. Benzimidazole, benzothiazole, indole, acridine, oxadiazole, imidazole, isoxazole, pyrazole, triazoles, quinolines and quinazolines including others drugs containing pyridazine, pyridine and pyrimidines are covered. The following studies of these compounds suggested that these compounds showed their antitumor activities through multiple mechanisms including inhibiting protein kinase (CDK, MK-2, PLK1, kinesin-like protein Eg5 and IKK), topoisomerase I and II, microtubule inhibition, and many others. Our concise representation exploits the design and anticancer potency of these compounds. The direct comparison of anticancer activities with the standard enables a systematic analysis of the structure-activity relationship among the series. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  19. Synthesis, Structural Characterization and Catalytic Activity of A Cu(II Coordination Polymer Constructed from 1,4-Phenylenediacetic Acid and 2,2’-Bipyridine

    Directory of Open Access Journals (Sweden)

    Wang Li-Hua

    2017-04-01

    Full Text Available In order to study the catalytic activity of Cu(II coordination polymer material, a novel 1D chained Cu(II coordination polymer material, [CuL(bipy(H2O5]n (A1 (H2L = 1,4-phenylenediacetic acid, bipy = 2,2’-bipyridine, has been prepared by the reaction of 1,4-phenylenediacetic acid, 2,2’-bipyridine, Cu(CH3COO2·H2O and NaOH. The composition of A1 was determined by elemental analysis, IR spectra and single crystal X-ray diffraction. The results of characterization show that each Cu(II atom adopts six-coordination and forms a distorted octahedral configuration. The catalytic activity and reusability of A1 catalyst for A3 coupling reaction of benzaldehyde, piperidine, and phenylacetylene have been investigated. And the results show that the Cu(II complex catalyst has good catalytic activity with a maximum yield of 54.3% and stability. Copyright © 2017 BCREC GROUP. All rights reserved Received: 21st October 2016; Revised: 17th November 2016; Accepted: 22nd November 2016 How to Cite: Li-Hua, W., Lei, L., Xin, W. (2017. Synthesis, Structural Characterization and Catalytic Activity of A Cu(II Coordination Polymer Constructed from 1,4-Phenylenediacetic Acid and 2,2’-Bipyridine. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (1: 113-118 (doi:10.9767/bcrec.12.1.735.113-118 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.12.1.735.113-118

  20. Studies of the electronic structure and biological activity of chosen 1,4-benzodiazepines by {sup 35}Cl NQR spectroscopy and DFT calculations

    Energy Technology Data Exchange (ETDEWEB)

    Bronisz, K. [Department of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan (Poland); Ostafin, M. [Department of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan (Poland)], E-mail: ostifnqr@amu.edu.pl; Poleshchuk, O. Kh. [Department of Chemistry, Tomsk Pedagogical University, Komsomolskii 75, 634041 Tomsk (Russian Federation); Mielcarek, J. [Faculty of Pharmacy, University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan (Poland); Nogaj, B. [Department of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan (Poland)

    2006-11-08

    Selected derivatives of 1,4-benzodiazepine: lorazepam, lormetazepam, oxazepam and temazepam, used as active substances in anxiolytic drugs, have been studied by {sup 35}Cl NQR method in order to find the correlation between electronic structure and biological activity. The {sup 35}Cl NQR resonance frequencies ({nu} {sub Q}) measured at 77 K have been correlated with the following parameters characterising their biological activity: biological half-life period (t {sub 0.5}), affinity to benzodiazepine receptor (IC{sub 50}) and mean dose equivalent. The results of experimental study of some benzodiazepine derivatives by nuclear quadrupole resonance of {sup 35}Cl nuclei are compared with theoretical results based on DFT calculations which were carried out by means of Gaussian'98 W software.

  1. Crystal Structure of a Eukaryotic GEN1 Resolving Enzyme Bound to DNA

    Directory of Open Access Journals (Sweden)

    Yijin Liu

    2015-12-01

    Full Text Available We present the crystal structure of the junction-resolving enzyme GEN1 bound to DNA at 2.5 Å resolution. The structure of the GEN1 protein reveals it to have an elaborated FEN-XPG family fold that is modified for its role in four-way junction resolution. The functional unit in the crystal is a monomer of active GEN1 bound to the product of resolution cleavage, with an extensive DNA binding interface for both helical arms. Within the crystal lattice, a GEN1 dimer interface juxtaposes two products, whereby they can be reconnected into a four-way junction, the structure of which agrees with that determined in solution. The reconnection requires some opening of the DNA structure at the center, in agreement with permanganate probing and 2-aminopurine fluorescence. The structure shows that a relaxation of the DNA structure accompanies cleavage, suggesting how second-strand cleavage is accelerated to ensure productive resolution of the junction.

  2. Development of an active structure flight experiment

    Science.gov (United States)

    Manning, R. A.; Wyse, R. E.; Schubert, S. R.

    1993-02-01

    The design and development of the Air Force and TRW's Advanced Control Technology Experiment (ACTEX) flight experiment is described in this paper. The overall objective of ACTEX is to provide an active structure trailblazer which will demonstrate the compatibility of active structures with operational spacecraft performance and lifetime measures. At the heart of the experiment is an active tripod driven by a digitally-programmable analog control electronics subsystem. Piezoceramic sensors and actuators embedded in a graphite epoxy host material provide the sensing and actuation mechanism for the active tripod. Low noise ground-programmable electronics provide a virtually unlimited number of control schemes that can be implemented in the space environment. The flight experiment program provides the opportunity to gather performance, reliability, adaptability, and lifetime performance data on vibration suppression hardware for the next generation of DoD and NASA spacecraft.

  3. Structure Determination of Mycobacterium tuberculosis Serine Protease Hip1 (Rv2224c)

    Energy Technology Data Exchange (ETDEWEB)

    Naffin-Olivos, Jacqueline L.; Daab, Andrew; White, Andre; Goldfarb, Nathan E.; Milne, Amy C.; Liu, Dali; Baikovitz, Jacqueline; Dunn, Ben M.; Rengarajan, Jyothi; Petsko, Gregory A.; Ringe, Dagmar

    2017-04-07

    The Mycobacterium tuberculosis (Mtb) serine protease Hip1 (hydrolase important for pathogenesis; Rv2224c) promotes tuberculosis (TB) pathogenesis by impairing host immune responses through proteolysis of a protein substrate, Mtb GroEL2. The cell surface localization of Hip1 and its immunomodulatory functions make Hip1 a good drug target for new adjunctive immune therapies for TB. Here, we report the crystal structure of Hip1 to a resolution of 2.6 Å and the kinetic studies of the enzyme against model substrates and the protein GroEL2. The structure shows a two-domain protein, one of which contains the catalytic residues that are the signature of a serine protease. Surprisingly, a threonine is located within the active site close enough to hydrogen bond with the catalytic residues Asp463 and His490. Mutation of this residue, Thr466, to alanine established its importance for function. Our studies provide insights into the structure of a member of a novel family of proteases. Knowledge of the Hip1 structure will aid in designing inhibitors that could block Hip1 activity

  4. Design, synthesis, and structure-activity relationship study of halogen containing 2-benzylidene-1-indanone derivatives for inhibition of LPS-stimulated ROS production in RAW 264.7 macrophages.

    Science.gov (United States)

    Shrestha, Aarajana; Jin Oh, Hye; Kim, Mi Jin; Pun, Nirmala Tilija; Magar, Til Bahadur Thapa; Bist, Ganesh; Choi, Hongseok; Park, Pil-Hoon; Lee, Eung-Seok

    2017-06-16

    As a continuous effort to discover new potential anti-inflammatory agents, we systematically designed and synthesized sixty-one 2-benzylidene-1-indanone derivatives with structural modification of chalcone, and evaluated their inhibitory activity on LPS-stimulated ROS production in RAW 264.7 macrophages. Systematic structure-activity relationship study revealed that hydroxyl group in C-5, C-6, or C-7 position of indanone moiety, and ortho-, meta-, or para-fluorine, trifluoromethyl, trifluoromethoxy, and bromine functionalities in phenyl ring are important for inhibition of ROS production in LPS-stimulated RAW 264.7 macrophages. Among all the tested compounds, 6-hydroxy-2-(2-(trifluoromethoxy) benzylidene)-2,3-dihydro-1H-inden-1-one (compound 44) showed the strongest inhibitory activity of ROS production. Further studies on the mode of action revealed that compound 44 potently suppressed LPS-stimulated ROS production via modulation of NADPH oxidase. The findings of this work could be useful to design 2-benzylidene-indanone based lead compounds as novel anti-inflammatory agents. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Structure of a bacterial toxin-activating acyltransferase.

    Science.gov (United States)

    Greene, Nicholas P; Crow, Allister; Hughes, Colin; Koronakis, Vassilis

    2015-06-09

    Secreted pore-forming toxins of pathogenic Gram-negative bacteria such as Escherichia coli hemolysin (HlyA) insert into host-cell membranes to subvert signal transduction and induce apoptosis and cell lysis. Unusually, these toxins are synthesized in an inactive form that requires posttranslational activation in the bacterial cytosol. We have previously shown that the activation mechanism is an acylation event directed by a specialized acyl-transferase that uses acyl carrier protein (ACP) to covalently link fatty acids, via an amide bond, to specific internal lysine residues of the protoxin. We now reveal the 2.15-Å resolution X-ray structure of the 172-aa ApxC, a toxin-activating acyl-transferase (TAAT) from pathogenic Actinobacillus pleuropneumoniae. This determination shows that bacterial TAATs are a structurally homologous family that, despite indiscernible sequence similarity, form a distinct branch of the Gcn5-like N-acetyl transferase (GNAT) superfamily of enzymes that typically use acyl-CoA to modify diverse bacterial, archaeal, and eukaryotic substrates. A combination of structural analysis, small angle X-ray scattering, mutagenesis, and cross-linking defined the solution state of TAATs, with intermonomer interactions mediated by an N-terminal α-helix. Superposition of ApxC with substrate-bound GNATs, and assay of toxin activation and binding of acyl-ACP and protoxin peptide substrates by mutated ApxC variants, indicates the enzyme active site to be a deep surface groove.

  6. Biological Activity and Molecular Structures of Bis(benzimidazole and Trithiocyanurate Complexes

    Directory of Open Access Journals (Sweden)

    Pavel Kopel

    2015-06-01

    Full Text Available 1-(1H-Benzimidazol-2-yl-N-(1H-benzimidazol-2-ylmethylmethanamine (abb and 2-(1H-benzimidazol-2-ylmethylsulfanylmethyl-1H-benzimidazole (tbb have been prepared and characterized by elemental analysis. These bis(benzimidazoles have been further used in combination with trithiocyanuric acid for the preparation of complexes. The crystal and molecular structures of two of them have been solved. Each nickel atom in the structure of trinuclear complex [Ni3(abb3(H2O3(μ-ttc](ClO43·3H2O·EtOH (1, where ttcH3 = trithiocyanuric acid, is coordinated with three N atoms of abb, the N,S donor set of ttc anion and an oxygen of a water molecule. The crystal of [(tbbH2(ttcH22(ttcH3(H2O] (2 is composed of a protonated bis(benzimidazole, two ttcH2 anions, ttcH3 and water. The structure is stabilized by a network of hydrogen bonds. These compounds were primarily synthesized for their potential antimicrobial activity and hence their possible use in the treatment of infections caused by bacteria or yeasts (fungi. The antimicrobial and antifungal activity of the prepared compounds have been evaluated on a wide spectrum of bacterial and yeast strains and clinical specimens isolated from patients with infectious wounds and the best antimicrobial properties were observed in strains after the use of ligand abb and complex 1, when at least 80% growth inhibition was achieved.

  7. Structure and pozzolanic activity of calcined coal gangue during the process of mechanical activation

    Energy Technology Data Exchange (ETDEWEB)

    Wei Guo; Dongxu Li; Jianhua Chen; Nanru Yang [Yancheng Institute of Technology, Yancheng (China). Department of Material Engineering

    2009-04-15

    On the basis of analyzing coal gangue's chemical and mineral compositions, the structure change of coal gangue during the mechanical activation was investigated by XRD, FTIR, NMR, and the mechanical strength of the cement doped coal gangue with various specific surface area was tested. The experimental results indicate that the lattice structure of metakaolin in coal gangue samples calcined at 700{sup o}C disorganizes gradually and becomes disordered, and the lattice structure of {alpha}-quartz is distorted slightly. The pozzolanic activity of the coal gangue increases obviously with its structural disorganization.

  8. Mode structure of active resonators

    NARCIS (Netherlands)

    Ernst, G.J.; Witteman, W.J.

    1973-01-01

    An analysis is made of the mode structure of lasers when the interaction with the active medium is taken into account. We consider the combined effect of gain and refractive-index variations for arbitrary mirror configurations. Using a dimensionless round-trip matrix for a medium with a quadratic

  9. From Structure to Activity: Using Centrality Measures to Predict Neuronal Activity.

    Science.gov (United States)

    Fletcher, Jack McKay; Wennekers, Thomas

    2018-03-01

    It is clear that the topological structure of a neural network somehow determines the activity of the neurons within it. In the present work, we ask to what extent it is possible to examine the structural features of a network and learn something about its activity? Specifically, we consider how the centrality (the importance of a node in a network) of a neuron correlates with its firing rate. To investigate, we apply an array of centrality measures, including In-Degree, Closeness, Betweenness, Eigenvector, Katz, PageRank, Hyperlink-Induced Topic Search (HITS) and NeuronRank to Leaky-Integrate and Fire neural networks with different connectivity schemes. We find that Katz centrality is the best predictor of firing rate given the network structure, with almost perfect correlation in all cases studied, which include purely excitatory and excitatory-inhibitory networks, with either homogeneous connections or a small-world structure. We identify the properties of a network which will cause this correlation to hold. We argue that the reason Katz centrality correlates so highly with neuronal activity compared to other centrality measures is because it nicely captures disinhibition in neural networks. In addition, we argue that these theoretical findings are applicable to neuroscientists who apply centrality measures to functional brain networks, as well as offer a neurophysiological justification to high level cognitive models which use certain centrality measures.

  10. Structure of the GH1 domain of guanylate kinase-associated protein from Rattus norvegicus

    International Nuclear Information System (INIS)

    Tong, Junsen; Yang, Huiseon; Eom, Soo Hyun; Chun, ChangJu; Im, Young Jun

    2014-01-01

    Graphical abstract: - Highlights: • The crystal structure of GKAP homology domain 1 (GH1) was determined. • GKAP GH1 is a three-helix bundle connected by short flexible loops. • The predicted helix α4 associates weakly with the helix α3, suggesting dynamic nature of the GH1 domain. - Abstract: Guanylate-kinase-associated protein (GKAP) is a scaffolding protein that links NMDA receptor-PSD-95 to Shank–Homer complexes by protein–protein interactions at the synaptic junction. GKAP family proteins are characterized by the presence of a C-terminal conserved GKAP homology domain 1 (GH1) of unknown structure and function. In this study, crystal structure of the GH1 domain of GKAP from Rattus norvegicus was determined in fusion with an N-terminal maltose-binding protein at 2.0 Å resolution. The structure of GKAP GH1 displays a three-helix bundle connected by short flexible loops. The predicted helix α4 which was not visible in the crystal structure associates weakly with the helix α3 suggesting dynamic nature of the GH1 domain. The strict conservation of GH1 domain across GKAP family members and the lack of a catalytic active site required for enzyme activity imply that the GH1 domain might serve as a protein–protein interaction module for the synaptic protein clustering

  11. Structure of the GH1 domain of guanylate kinase-associated protein from Rattus norvegicus

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Junsen; Yang, Huiseon [College of Pharmacy, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Eom, Soo Hyun [School of Life Sciences, Steitz Center for Structural Biology, and Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Chun, ChangJu, E-mail: cchun1130@jnu.ac.kr [College of Pharmacy, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Im, Young Jun, E-mail: imyoungjun@jnu.ac.kr [College of Pharmacy, Chonnam National University, Gwangju 500-757 (Korea, Republic of)

    2014-09-12

    Graphical abstract: - Highlights: • The crystal structure of GKAP homology domain 1 (GH1) was determined. • GKAP GH1 is a three-helix bundle connected by short flexible loops. • The predicted helix α4 associates weakly with the helix α3, suggesting dynamic nature of the GH1 domain. - Abstract: Guanylate-kinase-associated protein (GKAP) is a scaffolding protein that links NMDA receptor-PSD-95 to Shank–Homer complexes by protein–protein interactions at the synaptic junction. GKAP family proteins are characterized by the presence of a C-terminal conserved GKAP homology domain 1 (GH1) of unknown structure and function. In this study, crystal structure of the GH1 domain of GKAP from Rattus norvegicus was determined in fusion with an N-terminal maltose-binding protein at 2.0 Å resolution. The structure of GKAP GH1 displays a three-helix bundle connected by short flexible loops. The predicted helix α4 which was not visible in the crystal structure associates weakly with the helix α3 suggesting dynamic nature of the GH1 domain. The strict conservation of GH1 domain across GKAP family members and the lack of a catalytic active site required for enzyme activity imply that the GH1 domain might serve as a protein–protein interaction module for the synaptic protein clustering.

  12. Structure-activity of valencenoid derivatives and their repellence to the Formosan subterranean termite.

    Science.gov (United States)

    Zhu, Betty C R; Henderson, Gregg; Sauer, Anne M; Yu, Ying; Crowe, William; Laine, Roger A

    2003-12-01

    Eight valencenoid derivatives were evaluated for their repelling activity against Formosan subterranean termites, Coptotermes formosanus Shiraki. Among them, 1,10-dihydronootkatone was the strongest repellent, and valencene was the weakest. Results of the structure-repellency relationships indicated (1) reduction of the ketone group to the alcohol on position 2 of nootkatone curtailed the activity; (2) because of the low activity of valencene relative to nootkatone that the ketone group was essential for repellent activity; (3) reduction of the 1,10 double bond (1,10-dihydronootkatone and tetrahydronootkatone) produced compounds more repellent than nootkatone; (4) the isopropenyl group probably does not participate in binding as evidenced by no significant difference in the repellent activity among nootkatone (double bond between position 11 and 12), isonootkatone (double bond between position 7 and 11), and 11,12-dihydronootkatone.

  13. Structure-based design, synthesis, and biological evaluation of novel pyrrolyl aryl sulfones: HIV-1 non-nucleoside reverse transcriptase inhibitors active at nanomolar concentrations.

    Science.gov (United States)

    Artico, M; Silvestri, R; Pagnozzi, E; Bruno, B; Novellino, E; Greco, G; Massa, S; Ettorre, A; Loi, A G; Scintu, F; La Colla, P

    2000-05-04

    Pyrrolyl aryl sulfones (PASs) have been recently reported as a new class of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) inhibitors acting at the non-nucleoside binding site of this enzyme (Artico, M.; et al. J. Med. Chem. 1996, 39, 522-530). Compound 3, the most potent inhibitor within the series (EC(50) = 0.14 microM, IC(50) = 0.4 microM, and SI > 1429), was then selected as a lead compound for a synthetic project based on molecular modeling studies. Using the three-dimensional structure of RT cocrystallized with the alpha-APA derivative R95845, we derived a model of the RT/3 complex by taking into account previously developed structure-activity relationships. Inspection of this model and docking calculations on virtual compounds prompted the design of novel PAS derivatives and related analogues. Our computational approach proved to be effective in making qualitative predictions, that is in discriminating active versus inactive compounds. Among the compounds synthesized and tested, 20 was the most active one, with EC(50) = 0.045 microM, IC(50) = 0.05 microM, and SI = 5333. Compared with the lead 3, these values represent a 3- and 8-fold improvement in the cell-based and enzyme assays, respectively, together with the highest selectivity achieved so far in the PAS series.

  14. Three-dimensional structure and cyanobacterial activity within a desert biological soil crust.

    Science.gov (United States)

    Raanan, Hagai; Felde, Vincent J M N L; Peth, Stephan; Drahorad, Sylvie; Ionescu, Danny; Eshkol, Gil; Treves, Haim; Felix-Henningsen, Peter; Berkowicz, Simon M; Keren, Nir; Horn, Rainer; Hagemann, Martin; Kaplan, Aaron

    2016-02-01

    Desert biological soil crusts (BSCs) are formed by adhesion of soil particles to polysaccharides excreted by filamentous cyanobacteria, the pioneers and main producers in this habitat. Biological soil crust destruction is a central factor leading to land degradation and desertification. We study the effect of BSC structure on cyanobacterial activity. Micro-scale structural analysis using X-ray microtomography revealed a vesiculated layer 1.5-2.5 mm beneath the surface in close proximity to the cyanobacterial location. Light profiles showed attenuation with depth of 1%-5% of surface light within 1 mm but also revealed the presence of 'light pockets', coinciding with the vesiculated layer, where the irradiance was 10-fold higher than adjacent crust parts at the same depth. Maximal photosynthetic activity, examined by O2 concentration profiles, was observed 1 mm beneath the surface and another peak in association with the 'light pockets'. Thus, photosynthetic activity may not be visible to currently used remote sensing techniques, suggesting that BSCs' contribution to terrestrial productivity is underestimated. Exposure to irradiance higher than 10% full sunlight diminished chlorophyll fluorescence, whereas O2 evolution and CO2 uptake rose, indicating that fluorescence did not reflect cyanobacterial photosynthetic activity. Our data also indicate that although resistant to high illumination, the BSC-inhabiting cyanobacteria function as 'low-light adapted' organisms. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  15. Structure of genes for dermaseptins B, antimicrobial peptides from frog skin. Exon 1-encoded prepropeptide is conserved in genes for peptides of highly different structures and activities.

    Science.gov (United States)

    Vouille, V; Amiche, M; Nicolas, P

    1997-09-01

    We cloned the genes of two members of the dermaseptin family, broad-spectrum antimicrobial peptides isolated from the skin of the arboreal frog Phyllomedusa bicolor. The dermaseptin gene Drg2 has a 2-exon coding structure interrupted by a small 137-bp intron, wherein exon 1 encoded a 22-residue hydrophobic signal peptide and the first three amino acids of the acidic propiece; exon 2 contained the 18 additional acidic residues of the propiece plus a typical prohormone processing signal Lys-Arg and a 32-residue dermaseptin progenitor sequence. The dermaseptin genes Drg2 and Drg1g2 have conserved sequences at both untranslated ends and in the first and second coding exons. In contrast, Drg1g2 comprises a third coding exon for a short version of the acidic propiece and a second dermaseptin progenitor sequence. Structural conservation between the two genes suggests that Drg1g2 arose recently from an ancestral Drg2-like gene through amplification of part of the second coding exon and 3'-untranslated region. Analysis of the cDNAs coding precursors for several frog skin peptides of highly different structures and activities demonstrates that the signal peptides and part of the acidic propieces are encoded by conserved nucleotides encompassed by the first coding exon of the dermaseptin genes. The organization of the genes that belong to this family, with the signal peptide and the progenitor sequence on separate exons, permits strikingly different peptides to be directed into the secretory pathway. The recruitment of such a homologous 'secretory' exon by otherwise non-homologous genes may have been an early event in the evolution of amphibian.

  16. Synthesis, antifungal activity, and QSAR studies of 1,6-dihydropyrimidine derivatives

    Directory of Open Access Journals (Sweden)

    Chirag Rami

    2013-01-01

    Full Text Available Introduction: A practical synthesis of pyrimidinone would be very helpful for chemists because pyrimidinone is found in many bioactive natural products and exhibits a wide range of biological properties. The biological significance of pyrimidine derivatives has led us to the synthesis of substituted pyrimidine. Materials and Methods: With the aim of developing potential antimicrobials, new series of 5-cyano-6-oxo-1,6-dihydro-pyrimidine derivatives namely 2-(5-cyano-6-oxo-4-substituted (aryl-1,6-dihydropyrimidin-2-ylthio-N-substituted (phenyl acetamide (C1-C41 were synthesized and characterized by Fourier transform infrared spectroscopy (FTIR, mass analysis, and proton nuclear magnetic resonance ( 1 H NMR. All the compounds were screened for their antifungal activity against Candida albicans (MTCC, 227. Results and Discussion: Quantitative structure activity relationship (QSAR studies of a series of 1,6-dihydro-pyrimidine were carried out to study various structural requirements for fungal inhibition. Various lipophilic, electronic, geometric, and spatial descriptors were correlated with antifungal activity using genetic function approximation. Developed models were found predictive as indicated by their square of predictive regression values (r 2pred and their internal and external cross-validation. Study reveals that CHI_3_C, Molecular_SurfaceArea, and Jurs_DPSA_1 contributed significantly to the activity along with some electronic, geometric, and quantum mechanical descriptors. Conclusion: A careful analysis of the antifungal activity data of synthesized compounds revealed that electron withdrawing substitution on N-phenyl acetamide ring of 1,6-dihydropyrimidine moiety possess good activity.

  17. Structure-activity relationship studies of the aromatic positions in cyclopentapeptide CXCR4 antagonists

    DEFF Research Database (Denmark)

    Mungalpara, Jignesh; Zachariassen, Zack G; Thiele, Stefanie

    2013-01-01

    , and autoimmune diseases. While the structure-activity relationships for Arg(1), Arg(2), and Gly(4) are well established, less is understood about the roles of the aromatic residues 2-Nal(3) and D-Tyr(5). Here we report further structure-activity relationship studies of these two positions, which showed that (i......) the distal aromatic ring of the 2-Nal(3) side chain is required in order to maintain high potency and (ii) replacement of D-Tyr(5) with conformationally constrained analogues results in significantly reduced activity. However, a simplified analogue that contained Gly instead of D-Tyr(5) was only 13-fold less...

  18. Structural insights into substrate and inhibitor binding sites in human indoleamine 2,3-dioxygenase 1

    Energy Technology Data Exchange (ETDEWEB)

    Lewis-Ballester, Ariel; Pham, Khoa N.; Batabyal, Dipanwita; Karkashon, Shay; Bonanno, Jeffrey B.; Poulos, Thomas L.; Yeh, Syun-Ru (Einstein); (UCI)

    2017-11-22

    Human indoleamine 2,3-dioxygenase 1 (hIDO1) is an attractive cancer immunotherapeutic target owing to its role in promoting tumoral immune escape. However, drug development has been hindered by limited structural information. Here, we report the crystal structures of hIDO1 in complex with its substrate, Trp, an inhibitor, epacadostat, and/or an effector, indole ethanol (IDE). The data reveal structural features of the active site (Sa) critical for substrate activation; in addition, they disclose a new inhibitor-binding mode and a distinct small molecule binding site (Si). Structure-guided mutation of a critical residue, F270, to glycine perturbs the Si site, allowing structural determination of an inhibitory complex, where both the Sa and Si sites are occupied by Trp. The Si site offers a novel target site for allosteric inhibitors and a molecular explanation for the previously baffling substrate-inhibition behavior of the enzyme. Taken together, the data open exciting new avenues for structure-based drug design.

  19. A Quantitative Structure-Activity Relationships (QSAR Study of Piperine Based Derivatives with Leishmanicidal Activity

    Directory of Open Access Journals (Sweden)

    Edilson Beserra Alencar Filho

    2017-04-01

    Full Text Available Leishmaniasis is a parasitic disease which represents a serious public health problem in developing countries. It is considered a neglected tropical disease, for which there is little initiative in the search for therapeutic alternatives by pharmaceutical industry. Natural products remain a great source of inspiration for obtaining bioactive molecules. In 2010, Singh and co-workers published the synthesis and in vitro biological activity of piperoyl-aminoacid conjugates, as well as of piperine, against cellular cultures of Leishmania donovani. The piperine is an alkaloid isolated from Piper nigrum that has many activities described in the literature. In this work, we present a Quantitative Structure-Activity Study of piperine derivatives tested by Singh and co-workers, aiming to highlight important molecular features for leishmanicidal activity, obtaining a mathematical model to predict the activity of new analogs. Compounds were submitted to a geometry optimization computational procedure at semiempirical level of quantum theory. Molecular descriptors for the set of compounds were calculated by E-Dragon online plataform, followed by a variable selection procedure using Ordered Predictors Selection algorithm. Validation parameters obtained showed that a good QSAR model, based on multiple linear regression, was obtained (R2 = 0.85; Q2 = 0.69, and the following conclusions regarding the structure-activity relationship were elucidated: Compounds with electronegative atoms on different substituent groups of analogs, absence of unsaturation on lateral chain, presence of ester instead of carboxyl, and large volumes (due the presence of additional aromatic rings trends to increase the activity against promastigote forms of leishmania. DOI: http://dx.doi.org/10.17807/orbital.v9i1.893

  20. Structuring front-end innovation activities throughout strategic product planning

    Directory of Open Access Journals (Sweden)

    Thaisa Rodrigues

    Full Text Available Abstract Strategic product planning (SPP for new product development (NPD in the front-end of innovation (FEI is a great challenge for managers and practitioners. This article analyzes the structuring process of FEI activities during SPP. A research was carried out with 78 industries from both food and furniture in Brazil. Our study revealed that FEI activities are structured in an intricate network with a high level of complexity and interdependence. The large amount of activities and the complexity in structuring them denote that companies are concerned to reduce uncertainties and risks intensifying the planning phase.

  1. Many Activities, One Structure: Functional Plasticity of Ribozyme Folds

    Directory of Open Access Journals (Sweden)

    Matthew W.L. Lau

    2016-11-01

    Full Text Available Catalytic RNAs, or ribozymes, are involved in a number of essential biological processes, such as replication of RNA genomes and mobile genetic elements, RNA splicing, translation, and RNA degradation. The function of ribozymes requires the formation of active sites decorated with RNA functional groups within defined three-dimensional (3D structures. The genotype (sequence of RNAs ultimately determines what 3D structures they adopt (as a function of their environmental conditions. These 3D structures, in turn, give rise to biochemical activity, which can further elaborate them by catalytic rearrangements or association with other molecules. The fitness landscape of a non-periodic linear polymer, such as RNA, relates its primary structure to a phenotype. Two major challenges in the analysis of ribozymes is to map all possible genotypes to their corresponding catalytic activity (that is, to determine their fitness landscape experimentally, and to understand whether their genotypes and three-dimensional structures can support multiple different catalytic functions. Recently, the combined results of experiments that employ in vitro evolution methods, high-throughput sequencing and crystallographic structure determination have hinted at answers to these two questions: while the fitness landscape of ribozymes is rugged, meaning that their catalytic activity cannot be optimized by a smooth trajectory in sequence space, once an RNA achieves a stable three-dimensional fold, it can be endowed with distinctly different biochemical activities through small changes in genotype. This functional plasticity of highly structured RNAs may be particularly advantageous for the adaptation of organisms to drastic changes in selective pressure, or for the development of new biotechnological tools.

  2. Inhibition of transcriptional activity of c-JUN by SIRT1

    International Nuclear Information System (INIS)

    Gao Zhanguo; Ye Jianping

    2008-01-01

    c-JUN is a major component of heterodimer transcription factor AP-1 (Activator Protein-1) that activates gene transcription in cell proliferation, inflammation and stress responses. SIRT1 (Sirtuin 1) is a histone deacetylase that controls gene transcription through modification of chromatin structure. However, it is not clear if SIRT1 regulates c-JUN activity in the control of gene transcription. Here, we show that SIRT1 associated with c-JUN in co-immunoprecipitation of whole cell lysate, and inhibited the transcriptional activity of c-JUN in the mammalian two hybridization system. SIRT1 was found in the AP-1 response element in the matrix metalloproteinase-9 (MMP9) promoter DNA leading to inhibition of histone 3 acetylation as shown in a ChIP assay. The SIRT1 signal was reduced by the AP-1 activator PMA, and induced by the SIRT1 activator Resveratrol in the promoter DNA. SIRT1-mediaetd inhibition of AP-1 was demonstrated in the MMP9 gene expression at the gene promoter, mRNA and protein levels. In mouse embryonic fibroblast (MEF) with SIRT1 deficiency (SIRT1 -/- ), mRNA and protein of MMP9 were increased in the basal condition, and the inhibitory activity of Resveratrol was significantly attenuated. Glucose-induced MMP9 expression was also inhibited by SIRT1 in response to Resveratrol. These data consistently suggest that SIRT1 directly inhibits the transcriptional activity of AP-1 by targeting c-JUN

  3. Synthesis, characterization and antibacterial activity of some 5-aryl-1, 3-Diphenyl 1-4, 5-dihydro-1H-Pyrazoles

    International Nuclear Information System (INIS)

    Al-Bahtiti, Nawal Hassan

    2007-01-01

    The condensation of acetophenone (I) with arylaldehyde (II) was investigated and the resulting chalcones 2-Arylidene 1-Acetophenone (III) were reacted with phenyl hydrazine and acetic acid to produce substituted 5-aryl-1, 3-diphenyl-4, 5-dihydro-1H-Pyrazoles (IV). The structures of all products were studied by H-NMR, IR, thermal and elemental analysis. Thermo-gravimetric (TG) and differential thermal analysis (DTA) was applied to investigate the thermal behavior and structure of the synthesized compounds. 2-Pyrazolines (IV) exhibited moderate activity against Streptococcus faecalis ATCC 19433, Klebsiella pneumoniae ATCC 13883, Proteus vulgaris ATCC 25922, Shigella sonnei ATCC 25931 and Peseudom oaeruginosa ATCC 27853. (author)

  4. Spectroscopic study, antimicrobial activity and crystal structures of N-(2-hydroxy-5-nitrobenzalidene)4-aminomorpholine and N-(2-hydroxy-1-naphthylidene)4-aminomorpholine

    Science.gov (United States)

    Yıldız, Mustafa; Ünver, Hüseyin; Dülger, Başaran; Erdener, Diğdem; Ocak, Nazan; Erdönmez, Ahmet; Durlu, Tahsin Nuri

    2005-03-01

    Schiff bases N-(2-hydroxy-3-nitrobenzalidene)4-aminomorpholine ( 1) and N-(2-hydroxy-1-naphthylidene)4-aminomorpholine ( 2) were synthesized from the reaction of 4-aminomorpholine with 2-hydroxy-5-nitrobenzaldehyde and 2-hydroxy-1-naphthaldehyde. Compounds 1 and 2 were characterized by elemental analysis, IR, 1H NMR, 13C NMR and UV-Visible techniques. The UV-Visible spectra of the Schiff bases with OH group in ortho position to the imino group were studied in polar and nonpolar solvents in acidic and basic media. The structures of compounds 1 and 2 have been examined cyrstallographically, for two compounds exist as dominant form of enol-imines in both the solutions and solid state. The title compounds 1 and 2 crystallize in the monoclinic space group P2 1/ c and P2 1/ n with unit cell parameters: a=8.410(1) and 11.911(3), b=6.350(9) and 4.860(9), c=21.728(3) and 22.381(6) Å, β=90.190(1) and 95.6(2)°, V=1160.6(3) and 1289.5(5) Å 3, Dx=1.438 and 1.320 g cm -3, respectively. The crystal structures were solved by direct methods and refined by full-matrix least squares. The antimicrobial activities of compounds 1 and 2 have also been studied. The antimicrobial activities of the ligands have been screened in vitro against the organisms Escherichia coli ATCC 11230, Staphylococcus aureus ATCC 6538, Klebsiella pneumoniae UC57, Micrococcus luteus La 2971, Proteus vulgaris ATCC 8427, Pseudomonas aeruginosa ATCC 27853, Mycobacterium smegmatis CCM 2067, Bacillus cereus ATCC 7064, Listeria monocytogenes ATCC 15313, Candida albicans ATCC 10231, Kluyveromyces fragilis NRRL 2415, Rhodotorula rubra DSM 70403, Debaryomyces hansenii DSM 70238 and Hanseniaspora guilliermondii DSM 3432.

  5. A structural insight into the P1S1 binding mode of diaminoethylphosphonic and phosphinic acids, selective inhibitors of alanine aminopeptidases

    Energy Technology Data Exchange (ETDEWEB)

    Węglarz-Tomczak, Ewelina; Berlicki, Łukasz; Pawełczak, Małgorzata; Nocek, Bogusław; Joachimiak, Andrzej; Mucha, Artur

    2016-07-01

    N0 -substituted 1,2-diaminoethylphosphonic acids and 1,2-diaminoethylphosphinic dipeptides were explored to unveil the structural context of the unexpected selectivity of these inhibitors of M1 alanine aminopeptidases (APNs) versus M17 leucine aminopeptidase (LAP). The diaminophosphonic acids were obtained via aziridines in an improved synthetic procedure that was further expanded for the phosphinic pseudodipeptide system. The inhibitory activity, measured for three M1 and one M17 metalloaminopeptidases of different sources (bacterial, human and porcine), revealed several potent compounds (e.g., Ki ¼ 65 nM of 1u for HsAPN). Two structures of an M1 representative (APN from Neisseria meningitidis) in complex with N-benzyl-1,2-diaminoethylphosphonic acid and N-cyclohexyl-1,2- diaminoethylphosphonic acid were determined by the X-ray crystallography. The analysis of these structures and the models of the phosphonic acid complexes of the human ortholog provided an insight into the role of the additional amino group and the hydrophobic substituents of the ligands within the S1 active site region.

  6. Crystal structures of T. b. rhodesiense adenosine kinase complexed with inhibitor and activator: implications for catalysis and hyperactivation.

    Directory of Open Access Journals (Sweden)

    Sabine Kuettel

    2011-05-01

    Full Text Available BACKGROUND: The essential purine salvage pathway of Trypanosoma brucei bears interesting catalytic enzymes for chemotherapeutic intervention of Human African Trypanosomiasis. Unlike mammalian cells, trypanosomes lack de novo purine synthesis and completely rely on salvage from their hosts. One of the key enzymes is adenosine kinase which catalyzes the phosphorylation of ingested adenosine to form adenosine monophosphate (AMP utilizing adenosine triphosphate (ATP as the preferred phosphoryl donor. METHODS AND FINDINGS: Here, we present the first structures of Trypanosoma brucei rhodesiense adenosine kinase (TbrAK: the structure of TbrAK in complex with the bisubstrate inhibitor P(1,P(5-di(adenosine-5'-pentaphosphate (AP5A at 1.55 Å, and TbrAK complexed with the recently discovered activator 4-[5-(4-phenoxyphenyl-2H-pyrazol-3-yl]morpholine (compound 1 at 2.8 Å resolution. CONCLUSIONS: The structural details and their comparison give new insights into substrate and activator binding to TbrAK at the molecular level. Further structure-activity relationship analyses of a series of derivatives of compound 1 support the observed binding mode of the activator and provide a possible mechanism of action with respect to their activating effect towards TbrAK.

  7. Benzofuranyl Esters: Synthesis, Crystal Structure Determination, Antimicrobial and Antioxidant Activities

    Directory of Open Access Journals (Sweden)

    C. S. Chidan Kumar

    2015-09-01

    Full Text Available A series of five new 2‐(1‐benzofuran‐2‐yl‐2‐oxoethyl 4-(un/substitutedbenzoates 4(a–e, with the general formula of C8H5O(C=OCH2O(C=OC6H4X, X = H, Cl, CH3, OCH3 or NO2, was synthesized in high purity and good yield under mild conditions. The synthesized products 4(a–e were characterized by FTIR, 1H-, 13C- and 1H-13C HMQC NMR spectroscopic analysis and their 3D structures were confirmed by single-crystal X-ray diffraction studies. These compounds were screened for their antimicrobial and antioxidant activities. The tested compounds showed antimicrobial ability in the order of 4b < 4a < 4c < 4d < 4e and the highest potency with minimum inhibition concentration (MIC value of 125 µg/mL was observed for 4e. The results of antioxidant activities revealed the highest activity for compound 4e (32.62% ± 1.34% in diphenyl-2-picrylhydrazyl (DPPH radical scavenging, 4d (31.01% ± 4.35% in ferric reducing antioxidant power (FRAP assay and 4a (27.11% ± 1.06% in metal chelating (MC activity.

  8. Synthesis and fungicidal activity of pyrazole derivatives containing 1,2,3,4-tetrahydroquinoline.

    Science.gov (United States)

    Lei, Peng; Zhang, Xuebo; Xu, Yan; Xu, Gaofei; Liu, Xili; Yang, Xinling; Zhang, Xiaohe; Ling, Yun

    2016-01-01

    Take-all of wheat, caused by the soil-borne fungus Gaeumannomyces graminis var. tritici, is one of the most important and widespread root diseases. Given that take-all is still hard to control, it is necessary to develop new effective agrochemicals. Pyrazole derivatives have been often reported for their favorable bioactivities. In order to discover compounds with high fungicidal activity and simple structures, 1,2,3,4-tetrahydroquinoline, a biologically active group of natural products, was introduced to pyrazole structure. A series of pyrazole derivatives containing 1,2,3,4-tetrahydroquinoline were synthesized, and their fungicidal activities were evaluated. The bioassay results demonstrated that the title compounds displayed obvious fungicidal activities at a concentration of 50 μg/mL, especially against V. mali, S. sclerotiorum and G. graminis var. tritici. The inhibition rates of compounds 10d, 10e, 10h, 10i and 10j against G. graminis var. tritici were all above 90 %. Even at a lower concentration of 16.7 μg/mL, compounds 10d and 10e exhibited satisfied activities of 100 % and 94.0 %, respectively. It is comparable to that of the positive control pyraclostrobin with 100 % inhibition rate. A series of pyrazole derivatives containing 1,2,3,4-tetrahydroquinoline were synthesized and their structures were confirmed by (1)H NMR, (13)C NMR, IR spectrum and HRMS or elemental analysis. The crystal structure of compound 10g was confirmed by X-ray diffraction. Bioassay results indicated that all title compounds exhibited obvious fungicidal activities. In particular, compounds 10d and 10e showed comparable activities against G. graminis var. tritici with the commercial fungicide pyraclostrobin at the concentration of 16.7 μg/mL.Graphical abstractA series of pyrazole derivatives containing 1,2,3,4-tetrahydroquinoline were designed and synthesized. Bioassay results indicated that all these compounds exhibited obvious fungicidal activities.

  9. Structure activity study on the quinone/quinone methide chemistry of flavonoids

    NARCIS (Netherlands)

    Awad, H.M.; Boersma, M.G.; Boeren, S.; Bladeren, van P.J.; Vervoort, J.; Rietjens, I.M.C.M.

    2001-01-01

    A structure-activity study on the quinone/quinone methide chemistry of a series of 3',4'-dihydroxyflavonoids was performed. Using the glutathione trapping method followed by HPLC, 1H NMR, MALDI-TOF, and LC/MS analysis to identify the glutathionyl adducts, the chemical behavior of the

  10. Antifungal agents. 10. New derivatives of 1-[(aryl)[4-aryl-1H-pyrrol-3-yl]methyl]-1H-imidazole, synthesis, anti-candida activity, and quantitative structure-analysis relationship studies.

    Science.gov (United States)

    Tafi, Andrea; Costi, Roberta; Botta, Maurizio; Di Santo, Roberto; Corelli, Federico; Massa, Silvio; Ciacci, Andrea; Manetti, Fabrizio; Artico, Marino

    2002-06-20

    The synthesis, anti-Candida activity, and quantitative structure-activity relationship (QSAR) studies of a series of 2,4-dichlorobenzylimidazole derivatives having a phenylpyrrole moiety (related to the antibiotic pyrrolnitrin) in the alpha-position are reported. A number of substituents on the phenyl ring, ranging from hydrophobic (tert-butyl, phenyl, or 1-pyrrolyl moiety) to basic (NH(2)), polar (CF(3), CN, SCH(3), NO(2)), or hydrogen bond donors and acceptor (OH) groups, were chosen to better understand the interaction of these compounds with cytochrome P450 14-alpha-lanosterol demethylase (P450(14DM)). Finally, the triazole counterpart of one of the imidazole compounds was synthesized and tested to investigate influence of the heterocyclic ring on biological activity. The in vitro antifungal activities of the newly synthesized azoles 10p-v,x-c' were tested against Candida albicans and Candida spp. at pH 7.2 and pH 5.6. A CoMFA model, previously derived for a series of antifungal agents belonging to chemically diverse families related to bifonazole, was applied to the new products. Because the results produced by this approach were not encouraging, Catalyst software was chosen to perform a new 3D-QSAR study. Catalyst was preferred this time because of the possibility of considering each compound as a collection of energetically reasonable conformations and of considering alternative stereoisomers. The pharmacophore model developed by Catalyst, named HYPO1, showed good performances in predicting the biological activity data, although it did not exhibit an unequivocal preference for one enantiomeric series of inhibitors relative to the other. One aromatic nitrogen with a lone pair in the ring plane (mapped by all of the considered compounds) and three aromatic ring features were recognized to have pharmacophoric relevance, whereas neither hydrogen bond acceptor nor hydrophobic features were found. These findings confirmed that the key interaction of azole

  11. Studies on the syntheses, structural Characterization, antimicrobial of the CO-CRYSTAL 1,10-phenanthrolin-1-IUM(1,10-phenH+)-caffeine(caf)-hexafluorophosphate

    Science.gov (United States)

    El Hamdani, H.; El Amane, M.; Duhayon, C.

    2018-03-01

    Co-crystal of 1,10-phenanthrolin-1-ium-caffeine-hexafluorophosphate was synthesized, studied by FTIR, 1H, 13C NMR, DSC and X-ray structure and crystallized in the monoclinic space group C2/c. The unit cell parameters are a = 19.3761 (3), b = 17.9548 (3), c = 13.8074 (3) with β = 117.8132 (10). The final R value is 0.069 for 29,522 measured reflections. The co-crystal structure analysis indicate the 1,10-phenanthroline is protonated by one nitrogen atom and formed the 1,10-phenanthrolin-1-ium cation, which is stabilized by hydrogen bonds N+-H…Odbnd C interaction with carbonyl and imidazol ring in caffeine molecule. The intermolecular hydrogen bonds: Csbnd H...O, Csbnd H...N, Nsbnd H...O, Csbnd H...F and intramolecular hydrogen bond: C1sbnd H12...O14, together play a vital role in stabilizing the structure of co-crystal. The X-ray structural analysis confirm the assignments of the structure from infrared, 1H, 13C NMR, spectroscopic data DSC and molar conductivity analysis. The antimicrobial activity of the co-crystal was studied.

  12. Structure-activity relationships of bumetanide derivatives

    DEFF Research Database (Denmark)

    Pedersen, Kasper Lykke; Töllner, Kathrin; Römermann, Kerstin

    2015-01-01

    of diuretics such as bumetanide. Bumetanide was discovered by screening ∼5000 3-amino-5-sulfamoylbenzoic acid derivatives, long before NKCC2 was identified in the kidney. Therefore, structure-activity studies on effects of bumetanide derivatives on NKCC2 are not available. EXPERIMENTAL APPROACH: In this study......, the effect of a series of diuretically active bumetanide derivatives was investigated on human NKCC2 variant A (hNKCC2A) expressed in Xenopus laevis oocytes. KEY RESULTS: Bumetanide blocked hNKCC2A transport with an IC50 of 4 μM. There was good correlation between the diuretic potency of bumetanide and its...... of the structural requirements that determine relative potency of loop diuretics on human NKCC2 splice variants, and may lead to the discovery of novel high-ceiling diuretics....

  13. Novel enaminones as non-cytotoxic compounds with mild antibacterial activity: Synthesis and structure-activity correlations

    Science.gov (United States)

    Cindrić, Marina; Rubčić, Mirta; Hrenar, Tomica; Pisk, Jana; Cvijanović, Danijela; Lovrić, Jasna; Vrdoljak, Višnja

    2018-02-01

    Six non-symmetric enaminones 4-[(2-hydroxy-5-methylphenyl)amino]pent-3-en-2-one (H2L1), 4-[(2-hydroxy-4-methylphenyl)amino]pent-3-en-2-one (H2L2), 4-[(4-hydroxy-2-methylphenyl)amino)]pent-3-en-2-one (H2L3), 3-[(2-hydroxy-5-methylphenyl)amino]-1-phenylbut-2-en-1-one (H2L4), 3-[(2-hydroxy-4-methylphenyl)amino]-1-phenylbut-2-en-1-one (H2L5) and 3-[(4-hydroxy-2-methylphenyl)amino]-1-phenylbut-2-en-1-one (H2L6) have been prepared by solution based method. The enaminones were characterized by elemental and DSC analysis, NMR and IR spectroscopy. Crystal and molecular structures of H2L1, H2L2, H2L4 and H2L6 were determined via single crystal X-ray analysis. The prepared enaminones were screened against THP-1 and HepG2 cells, and Staphylococcus aureus, Enterococcus faecalis, Escherichia coli and Moraxella catarrhalis bacteria to assess their cytotoxic and antibacterial activity, respectively. All compounds proved to be non-cytotoxic and showed mild or no antibacterial activity. Quantum mechanical calculations suggest that the presence of hydroxy group in ortho position, combined with the methyl group on the same aromatic ring, has a significant impact on the biological activities.

  14. Synthesis, crystal structure, DFT studies, acid dissociation constant, and antimicrobial activity of methyl 2-(4-chlorophenyl)-7a-((4-chlorophenyl)carbamothioyl)-1-oxo-5,5-diphenyl-3-thioxo-hexahydro-1H-pyrrolo[1,2-e]imidazole-6-carboxylate

    Science.gov (United States)

    Nural, Yahya; Gemili, Muge; Seferoglu, Nurgul; Sahin, Ertan; Ulger, Mahmut; Sari, Hayati

    2018-05-01

    A novel bicyclic thiohydantoin fused to pyrrolidine compound, methyl 2-(4-chlorophenyl)-7a-((4-chlorophenyl)carbamothioyl)-1-oxo-5,5-diphenyl-3-thioxo-hexahydro-1H-pyrrolo[1,2-e]imidazole-6-carboxylate, was synthesized by the cyclization reaction of dimethyl 5,5-diphenylpyrrolidine-2,4-dicarboxylate and 4-chlorophenyl isothiocyanate in the presence of 4-(dimethylamino)pyridine to form methyl 2-(4-chlorophenyl)-1-oxo-5,5-diphenyl-3-thioxo-hexahydro-1H-pyrrolo[1,2-e]imidazole-6-carboxylate with concomitant addition reaction of the 4-chlorophenyl isothiocyanate in 79% yield. The structural characterization was performed by NMR, FT-IR, MS and HRMS techniques, and the stereochemistry of the compound was determined by single crystal X-ray diffraction study. In addition, the molecular structure and 1H and 13C NMR chemical shifts of the compound were obtained with the density functional theory and Hartree-Fock calculations. Acid dissociation constants of the compound were determined using potentiometric titration method in 25% (v/v) dimethyl sulfoxide-water hydroorganic solvent at 25 ± 0.1 °C, at an ionic background of 0.1 mol/L of NaCl using the HYPERQUAD computer program. Four acid dissociation constants were obtained for the compound, and we suggest that these acid dissociation constants are related to the NH, for two groups of enthiols and enol groups. Antimicrobial activity study was performed against S. aureus, B. subtilis, A. hydrophila, E. coli and A. baumannii as bacterial standard strains, and against M. tuberculosis H37Rv as mycobacterial strain. The compound exhibited antibacterial activity in the range of 31.25-62.5 μg/mL, and antimycobacterial activity with a MIC value of 40 μg/mL against the indicated strains.

  15. Evidence for a Common Mechanism of SIRT1 Regulation by Allosteric Activators

    Science.gov (United States)

    Hubbard, Basil P.; Gomes, Ana P.; Dai, Han; Li, Jun; Case, April W.; Considine, Thomas; Riera, Thomas V.; Lee, Jessica E.; Sook Yen, E; Lamming, Dudley W.; Pentelute, Bradley L.; Schuman, Eli R.; Stevens, Linda A.; Ling, Alvin J. Y.; Armour, Sean M.; Michan, Shaday; Zhao, Huizhen; Jiang, Yong; Sweitzer, Sharon M.; Blum, Charles A.; Disch, Jeremy S.; Ng, Pui Yee; Howitz, Konrad T.; Rolo, Anabela P.; Hamuro, Yoshitomo; Moss, Joel; Perni, Robert B.; Ellis, James L.; Vlasuk, George P.; Sinclair, David A.

    2013-01-01

    A molecule that treats multiple age-related diseases would have a major impact on global health and economics. The SIRT1 deacetylase has drawn attention in this regard as a target for drug design. Yet controversy exists around the mechanism of sirtuin-activating compounds (STACs). We found that specific hydrophobic motifs found in SIRT1 substrates such as PGC-1α and FOXO3a facilitate SIRT1 activation by STACs. A single amino acid in SIRT1, Glu230, located in a structured N-terminal domain, was critical for activation by all previously reported STAC scaffolds and a new class of chemically distinct activators. In primary cells reconstituted with activation-defective SIRT1, the metabolic effects of STACs were blocked. Thus, SIRT1 can be directly activated through an allosteric mechanism common to chemically diverse STACs. PMID:23471411

  16. Evidence for a common mechanism of SIRT1 regulation by allosteric activators.

    Science.gov (United States)

    Hubbard, Basil P; Gomes, Ana P; Dai, Han; Li, Jun; Case, April W; Considine, Thomas; Riera, Thomas V; Lee, Jessica E; E, Sook Yen; Lamming, Dudley W; Pentelute, Bradley L; Schuman, Eli R; Stevens, Linda A; Ling, Alvin J Y; Armour, Sean M; Michan, Shaday; Zhao, Huizhen; Jiang, Yong; Sweitzer, Sharon M; Blum, Charles A; Disch, Jeremy S; Ng, Pui Yee; Howitz, Konrad T; Rolo, Anabela P; Hamuro, Yoshitomo; Moss, Joel; Perni, Robert B; Ellis, James L; Vlasuk, George P; Sinclair, David A

    2013-03-08

    A molecule that treats multiple age-related diseases would have a major impact on global health and economics. The SIRT1 deacetylase has drawn attention in this regard as a target for drug design. Yet controversy exists around the mechanism of sirtuin-activating compounds (STACs). We found that specific hydrophobic motifs found in SIRT1 substrates such as PGC-1α and FOXO3a facilitate SIRT1 activation by STACs. A single amino acid in SIRT1, Glu(230), located in a structured N-terminal domain, was critical for activation by all previously reported STAC scaffolds and a new class of chemically distinct activators. In primary cells reconstituted with activation-defective SIRT1, the metabolic effects of STACs were blocked. Thus, SIRT1 can be directly activated through an allosteric mechanism common to chemically diverse STACs.

  17. Magnetic structure of an activated filament in a flaring active region

    Science.gov (United States)

    Sasso, C.; Lagg, A.; Solanki, S. K.

    2014-01-01

    Aims: While the magnetic field in quiescent prominences has been widely investigated, less is known about the field in activated prominences. We report observational results on the magnetic field structure of an activated filament in a flaring active region. In particular, we studied its magnetic structure and line-of-sight flows during its early activated phase, shortly before it displayed signs of rotation. Methods: We inverted the Stokes profiles of the chromospheric He i 10 830 Å triplet and the photospheric Si i 10 827 Å line observed in this filament by the Vacuum Tower Telescope on Tenerife. Using these inversion results, we present and interpret the first maps of the velocity and magnetic field obtained in an activated filament, both in the photosphere and the chromosphere. Results: Up to five different magnetic components are found in the chromospheric layers of the filament, while outside the filament a single component is sufficient to reproduce the observations. Magnetic components displaying an upflow are preferentially located towards the centre of the filament, while the downflows are concentrated along its periphery. Moreover, the upflowing gas is associated with an opposite-polarity magnetic configuration with respect to the photosphere, while the downflowing gas is associated with a same-polarity configuration. Conclusions: The activated filament has a very complex structure. Nonetheless, it is compatible with a flux rope, albeit a distorted one, in the normal configuration. The observations are best explained by a rising flux rope in which part of the filament material is still stably stored (upflowing material, rising with the field), while the rest is no longer stably stored and flows down along the field lines. The movie is available in electronic form at http://www.aanda.org

  18. Synthesis, Crystal Structure and Biological Activities of Novel Anthranilic(Isophthalic) Acid Esters

    Institute of Scientific and Technical Information of China (English)

    YAN Tao; YU Guan-ping; LIU Peng-fei; XIONG Li-xia; YU Shu-jing; LI Zheng-ming

    2012-01-01

    In search of environmentally benign insecticides with high activity,low toxicity and low resistance,a series of novel anthranilic(isophthalic) acid esters was designed and synthesized based on the structure of ryanodine modulating agent.All the compounds were characterized by 1H NMR spectra,elemental analysis or high resolution mass spectrometry(HRMS).The preliminary results of biological activity assessment indicate that some of the title compounds exhibit certain but unremarkable insecticidal activity against Mythimna separata Walker at 200 mg/L and fungicidal activities against five funguses at 50 mg/L.

  19. Structure-Based Design of Potent and Selective 3-Phosphoinositide-Dependent Kinase-1 (PDK1) Inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Medina, Jesus R.; Becker, Christopher J.; Blackledge, Charles W.; Duquenne, Celine; Feng, Yanhong; Grant, Seth W.; Heerding, Dirk; Li, William H.; Miller, William H.; Romeril, Stuart P.; Scherzer, Daryl; Shu, Arthur; Bobko, Mark A.; Chadderton, Antony R.; Dumble, Melissa; Gardiner, Christine M.; Gilbert, Seth; Liu, Qi; Rabindran, Sridhar K.; Sudakin, Valery; Xiang, Hong; Brady, Pat G.; Campobasso, Nino; Ward, Paris; Axten, Jeffrey M. (GSKPA)

    2014-10-02

    Phosphoinositide-dependent protein kinase-1(PDK1) is a master regulator of the AGC family of kinases and an integral component of the PI3K/AKT/mTOR pathway. As this pathway is among the most commonly deregulated across all cancers, a selective inhibitor of PDK1 might have utility as an anticancer agent. Herein we describe our lead optimization of compound 1 toward highly potent and selective PDK1 inhibitors via a structure-based design strategy. The most potent and selective inhibitors demonstrated submicromolar activity as measured by inhibition of phosphorylation of PDK1 substrates as well as antiproliferative activity against a subset of AML cell lines. In addition, reduction of phosphorylation of PDK1 substrates was demonstrated in vivo in mice bearing OCl-AML2 xenografts. These observations demonstrate the utility of these molecules as tools to further delineate the biology of PDK1 and the potential pharmacological uses of a PDK1 inhibitor.

  20. The R2R3-MYB-like regulatory factor EOBI, acting downstream of EOBII, regulates scent production by activating ODO1 and structural scent-related genes in petunia.

    Science.gov (United States)

    Spitzer-Rimon, Ben; Farhi, Moran; Albo, Boaz; Cna'ani, Alon; Ben Zvi, Michal Moyal; Masci, Tania; Edelbaum, Orit; Yu, Yixun; Shklarman, Elena; Ovadis, Marianna; Vainstein, Alexander

    2012-12-01

    Flower scent is a highly dynamic trait, under developmental, spatial, and diurnal regulation. The mechanism governing scent production is only beginning to be unraveled. In petunia (Petunia hybrida), EMISSION OF BENZENOIDS II (EOBII) controls transcription of both the shikimate pathway-regulating MYB factor ODORANT1 (ODO1) and phenylpropanoid scent-related structural genes. A promoter-activation screen identified an R2R3-MYB-like regulatory factor of phenylpropanoid volatile biosynthesis acting downstream of EOBII, designated EOBI. EOBI silencing led to downregulation of ODO1 and numerous structural scent-related genes from both the shikimate and phenylpropanoid pathways. The ability of EOBI to directly activate ODO1, as revealed by electrophoretic mobility shift assay and yeast one-hybrid analysis, place EOBI upstream of ODO1 in regulating substrate availability for volatile biosynthesis. Interestingly, ODO1-silenced transgenic petunia flowers accumulated higher EOBI transcript levels than controls, suggesting a complex feedback loop between these regulatory factors. The accumulation pattern of EOBI transcript relative to EOBII and ODO1, and the effect of up/downregulation of EOBII on transcript levels of EOBI and ODO1, further support these factors' hierarchical relationships. The dependence of scent production on EOBI expression and its direct interaction with both regulatory and structural genes provide evidence for EOBI's wide-ranging involvement in the production of floral volatiles.

  1. Shaping inhibition: activity dependent structural plasticity of GABAergic synapses

    Directory of Open Access Journals (Sweden)

    Carmen E Flores

    2014-10-01

    Full Text Available Inhibitory transmission through the neurotransmitter Ɣ-aminobutyric acid (GABA shapes network activity in the mammalian cerebral cortex by filtering synaptic incoming information and dictating the activity of principal cells. The incredibly diverse population of cortical neurons that use GABA as neurotransmitter shows an equally diverse range of mechanisms that regulate changes in the strength of GABAergic synaptic transmission and allow them to dynamically follow and command the activity of neuronal ensembles. Similarly to glutamatergic synaptic transmission, activity-dependent functional changes in inhibitory neurotransmission are accompanied by alterations in GABAergic synapse structure that range from morphological reorganization of postsynaptic density to de novo formation and elimination of inhibitory contacts. Here we review several aspects of structural plasticity of inhibitory synapses, including its induction by different forms of neuronal activity, behavioral and sensory experience and the molecular mechanisms and signaling pathways involved. We discuss the functional consequences of GABAergic synapse structural plasticity for information processing and memory formation in view of the heterogenous nature of the structural plasticity phenomena affecting inhibitory synapses impinging on somatic and dendritic compartments of cortical and hippocampal neurons.

  2. Structural and functional basis for RNA cleavage by Ire1

    Directory of Open Access Journals (Sweden)

    Stroud Robert M

    2011-07-01

    Full Text Available Abstract Background The unfolded protein response (UPR controls the protein folding capacity of the endoplasmic reticulum (ER. Central to this signaling pathway is the ER-resident bifunctional transmembrane kinase/endoribonuclease Ire1. The endoribonuclease (RNase domain of Ire1 initiates a non-conventional mRNA splicing reaction, leading to the production of a transcription factor that controls UPR target genes. The mRNA splicing reaction is an obligatory step of Ire1 signaling, yet its mechanism has remained poorly understood due to the absence of substrate-bound crystal structures of Ire1, the lack of structural similarity between Ire1 and other RNases, and a scarcity of quantitative enzymological data. Here, we experimentally define the active site of Ire1 RNase and quantitatively evaluate the contribution of the key active site residues to catalysis. Results This analysis and two new crystal structures suggest that Ire1 RNase uses histidine H1061 and tyrosine Y1043 as the general acid-general base pair contributing ≥ 7.6 kcal/mol and 1.4 kcal/mol to transition state stabilization, respectively, and asparagine N1057 and arginine R1056 for coordination of the scissile phosphate. Investigation of the stem-loop recognition revealed that additionally to the stem-loops derived from the classic Ire1 substrates HAC1 and Xbp1 mRNA, Ire1 can site-specifically and rapidly cleave anticodon stem-loop (ASL of unmodified tRNAPhe, extending known substrate specificity of Ire1 RNase. Conclusions Our data define the catalytic center of Ire1 RNase and suggest a mechanism of RNA cleavage: each RNase monomer apparently contains a separate catalytic apparatus for RNA cleavage, whereas two RNase subunits contribute to RNA stem-loop docking. Conservation of the key residues among Ire1 homologues suggests that the mechanism elucidated here for yeast Ire1 applies to Ire1 in metazoan cells, and to the only known Ire1 homologue RNase L.

  3. ERC hazard classification matrices for above ground structures and groundwater and soil remediation activities

    International Nuclear Information System (INIS)

    Curry, L.R.

    1997-01-01

    This document provides the status of the preliminary hazard classification (PHC) process for the Environmental Restoration Contractor (ERC) above ground structures and groundwater and soil remediation activities currently underway for planned for fiscal year (FY) 1997. This classification process is based on current US Department of Energy (DOE), Richland Operations Office (RL) guidance for the classification of facilities and activities containing radionuclide and nonradiological hazardous material inventories. The above ground structures presented in the matrices were drawn from the Bechtel Hanford, Inc. (BHI) Decontamination and Decommissioning (D and D) Project Facility List (DOE 1996), which identifies the facilities in the RL-Environmental Restoration baseline contract in 1997. This document contains the following two appendices: (1) Appendix A, which consists of a matrix identifying PHC documents that have been issued for BHI's above ground structures and groundwater and soil remediation activities underway or planned for FY 1997, and (2) Appendix B, which consists of a matrix showing anticipated PHCs for above ground structures, and groundwater and soil remediation activities underway or planned for FY 1997. Appendix B also shows the schedule for finalization of PHCs for above ground structures with an anticipated classification of Nuclear

  4. Structural Characterization and Antioxidative Activity of Low-Molecular-Weights Beta-1,3-Glucan from the Residue of Extracted Ganoderma lucidum Fruiting Bodies

    Directory of Open Access Journals (Sweden)

    Pai-Feng Kao

    2012-01-01

    Full Text Available The major cell wall constituent of Ganoderma lucidum (G. lucidum is β-1,3-glucan. This study examined the polysaccharide from the residues of alkaline-extracted fruiting bodies using high-performance anion-exchange chromatography (HPAEC, and it employed nuclear magnetic resonance (NMR and mass spectrometry (MS to confirm the structures. We have successfully isolated low-molecular-weight β-1,3-glucan (LMG, in high yields, from the waste residue of extracted fruiting bodies of G. lucidum. The 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyl tetrazolium bromide (MTT assay evaluated the capability of LMG to suppress H2O2-induced cell death in RAW264.7 cells, identifying that LMG protected cells from H2O2-induced damage. LMG treatment decreased H2O2-induced intracellular reactive oxygen species (ROS production. LMG also influenced sphingomyelinase (SMase activity, stimulated by cell death to induce ceramide formation, and then increase cell ROS production. Estimation of the activities of neutral and acid SMases in vitro showed that LMG suppressed the activities of both neutral and acid SMases in a concentration-dependent manner. These results suggest that LMG, a water-soluble β-1,3-glucan recycled from extracted residue of G. lucidum, possesses antioxidant capability against H2O2-induced cell death by attenuating intracellular ROS and inhibiting SMase activity.

  5. Modelling of three-dimensional structures of cytochromes P450 11B1 and 11B2.

    Science.gov (United States)

    Belkina, N V; Lisurek, M; Ivanov, A S; Bernhardt, R

    2001-12-15

    The final steps of the biosynthesis of glucocorticoids and mineralocorticoids in the adrenal cortex require the action of two different cytochromes P450--CYP11B1 and CYP11B2. Homology modelling of the three-dimensional structures of these cytochromes was performed based on crystallographic coordinates of two bacterial P450s, CYP102 (P450BM-3) and CYP108 (P450terp). Principal attention was given to the modelling of the active sites and a comparison of the active site structures of CYP11B1 and CYP11B2 was performed. It can be demonstrated that key residue contacts within the active site appear to depend on the orientation of the heme. The obtained 3D structures of CYP11B1 and CYP11B2 were used for investigation of structure-function relationships of these enzymes. Previously obtained results on naturally occurring mutants and on mutants obtained by site-directed mutagenesis are discussed.

  6. NMR structure of the glucose-dependent insulinotropic polypeptide fragment, GIP(1-30)amide

    International Nuclear Information System (INIS)

    Alana, Inigo; Hewage, Chandralal M.; G. Malthouse, J. Paul; Parker, Jeremy C.; Gault, Victor A.; O'Harte, Finbarr P.M.

    2004-01-01

    Glucose-dependent insulinotropic polypeptide is an incretin hormone that stimulates insulin secretion and reduces postprandial glycaemic excursions. The glucose-dependent action of GIP on pancreatic β-cells has attracted attention towards its exploitation as a potential drug for type 2 diabetes. Use of NMR or X-ray crystallography is vital to determine the three-dimensional structure of the peptide. Therefore, to understand the basic structural requirements for the biological activity of GIP, the solution structure of the major biologically active fragment, GIP(1-30)amide, was investigated by proton NMR spectroscopy and molecular modelling. The structure is characterised by a full length α-helical conformation between residues F 6 and A 28 . This structural information could play an important role in the design of therapeutic agents based upon GIP receptor agonists

  7. Structural and functional analyses of DNA-sensing and immune activation by human cGAS.

    Science.gov (United States)

    Kato, Kazuki; Ishii, Ryohei; Goto, Eiji; Ishitani, Ryuichiro; Tokunaga, Fuminori; Nureki, Osamu

    2013-01-01

    The detection of cytosolic DNA, derived from pathogens or host cells, by cytosolic receptors is essential for appropriate host immune responses. Cyclic GMP-AMP synthase (cGAS) is a newly identified cytosolic DNA receptor that produces cyclic GMP-AMP, which activates stimulator of interferon genes (STING), resulting in TBK1-IRF3 pathway activation followed by the production of type I interferons. Here we report the crystal structure of human cGAS. The structure revealed that a cluster of lysine and arginine residues forms the positively charged DNA binding surface of human cGAS, which is important for the STING-dependent immune activation. A structural comparison with other previously determined cGASs and our functional analyses suggested that a conserved zinc finger motif and a leucine residue on the DNA binding surface are crucial for the DNA-specific immune response of human cGAS, consistent with previous work. These structural features properly orient the DNA binding to cGAS, which is critical for DNA-induced cGAS activation and STING-dependent immune activation. Furthermore, we showed that the cGAS-induced activation of STING also involves the activation of the NF-κB and IRF3 pathways. Our results indicated that cGAS is a DNA sensor that efficiently activates the host immune system by inducing two distinct pathways.

  8. Structural and functional analyses of DNA-sensing and immune activation by human cGAS.

    Directory of Open Access Journals (Sweden)

    Kazuki Kato

    Full Text Available The detection of cytosolic DNA, derived from pathogens or host cells, by cytosolic receptors is essential for appropriate host immune responses. Cyclic GMP-AMP synthase (cGAS is a newly identified cytosolic DNA receptor that produces cyclic GMP-AMP, which activates stimulator of interferon genes (STING, resulting in TBK1-IRF3 pathway activation followed by the production of type I interferons. Here we report the crystal structure of human cGAS. The structure revealed that a cluster of lysine and arginine residues forms the positively charged DNA binding surface of human cGAS, which is important for the STING-dependent immune activation. A structural comparison with other previously determined cGASs and our functional analyses suggested that a conserved zinc finger motif and a leucine residue on the DNA binding surface are crucial for the DNA-specific immune response of human cGAS, consistent with previous work. These structural features properly orient the DNA binding to cGAS, which is critical for DNA-induced cGAS activation and STING-dependent immune activation. Furthermore, we showed that the cGAS-induced activation of STING also involves the activation of the NF-κB and IRF3 pathways. Our results indicated that cGAS is a DNA sensor that efficiently activates the host immune system by inducing two distinct pathways.

  9. Active and passive vibration control of structures

    CERN Document Server

    Spelsberg-Korspeter, Gottfried

    2014-01-01

    Active and Passive Vibration Control of Structures form an issue of very actual interest in many different fields of engineering, for example in the automotive and aerospace industry, in precision engineering (e.g. in large telescopes), and also in civil engineering. The papers in this volume bring together engineers of different background, and it fill gaps between structural mechanics, vibrations and modern control theory.  Also links between the different applications in structural control are shown.

  10. SAPIENS: Spreading Activation Processor for Information Encoded in Network Structures. Technical Report No. 296.

    Science.gov (United States)

    Ortony, Andrew; Radin, Dean I.

    The product of researchers' efforts to develop a computer processor which distinguishes between relevant and irrelevant information in the database, Spreading Activation Processor for Information Encoded in Network Structures (SAPIENS) exhibits (1) context sensitivity, (2) efficiency, (3) decreasing activation over time, (4) summation of…

  11. Quantitative structure-activity relationships of salicylamide neuroleptic agents.

    Science.gov (United States)

    Gupta, S P; Saha, R N; Singh, P

    1990-05-01

    The in vitro antidopamine activity of substituted N-[(1-alkyl-2-pyrrolidinyl)methyl]-6-methoxysalicylamides was found to be well correlated with the hydrophobic and electronic nature of substituents at the 3-position, and with the steric nature of groups replacing the hydrogen atom of the salicyl hydroxy group. In contrast, only the hydrophobic and steric characteristics were found to be important in the in vivo activity of these neuroleptics. This difference suggests that different mechanisms are probably involved in their in vitro and in vivo actions, and that the relevant receptors are slightly different in structure. The in vitro results suggest that electron donation by the 3-substituent strengthens the formation of a hydrogen bond between the carbonyl group of the amide moiety and a hydrogen of the receptor.

  12. Structural Studies of the SET Domain from RIZ1 Tumor Suppressor

    Energy Technology Data Exchange (ETDEWEB)

    Briknarova, Klara; Zhou, Xinliang; Satterthwait, Arnold C.; Hoyt, David W.; Ely, Kathryn R.; Huang, Shi

    2008-02-15

    Histone lysine methyltransferases (HKMTs) are involved in regulation of chromatin structure, and, as such, are important for longterm gene activation and repression that is associated with cell memory and establishment of cell-type specific transcriptional programs. Most HKMTs contain a SET domain, which is responsible for their catalytic activity. RIZ1 is a transcription regulator and tumor suppressor that catalyzes methylation of lysine 9 of histone H3 and contains a rather distinct SET domain. Similar SET domains, sometimes refererred to as PR (PRDI-BF1 and RIZ1 homology) domains, are also found in other proteins including Blimp-1/PRDI-BF1, MDS1-EVI1 and Meisetz. We determined the solution structure of the PR domain from RIZ1 and characterized its interaction with S-adenosyl homocysteine (SAH) and a peptide from histone H3. Despite low sequence identity with canonical SET domains, the PR domain displays a typical SET fold including a pseudo-knot at the C-terminus. The N-flanking sequence of RIZ1 PR domain adopts a novel conformation and interacts closely with the SET fold. The C-flanking sequence contains an α-helix that exhibits higher mobility than the SET fold and points away from the protein face that harbors active site in other SET domains. Residues that interact with the methylation cofactor in SET domains are not conserved in RIZ1 or other PR domains, and the SET fold of RIZ1 does not bind SAH. However, the PR domain of RIZ1 interacts specifically with a synthetic peptide comprising residues 1-20 of histone H3.

  13. Chemical engineering and structural and pharmacological characterization of the α-scorpion toxin OD1.

    Science.gov (United States)

    Durek, Thomas; Vetter, Irina; Wang, Ching-I Anderson; Motin, Leonid; Knapp, Oliver; Adams, David J; Lewis, Richard J; Alewood, Paul F

    2013-01-01

    Scorpion α-toxins are invaluable pharmacological tools for studying voltage-gated sodium channels, but few structure-function studies have been undertaken due to their challenging synthesis. To address this deficiency, we report a chemical engineering strategy based upon native chemical ligation. The chemical synthesis of α-toxin OD1 was achieved by chemical ligation of three unprotected peptide segments. A high resolution X-ray structure (1.8 Å) of synthetic OD1 showed the typical βαββ α-toxin fold and revealed important conformational differences in the pharmacophore region when compared with other α-toxin structures. Pharmacological analysis of synthetic OD1 revealed potent α-toxin activity (inhibition of fast inactivation) at Nav1.7, as well as Nav1.4 and Nav1.6. In addition, OD1 also produced potent β-toxin activity at Nav1.4 and Nav1.6 (shift of channel activation in the hyperpolarizing direction), indicating that OD1 might interact at more than one site with Nav1.4 and Nav1.6. Investigation of nine OD1 mutants revealed that three residues in the reverse turn contributed significantly to selectivity, with the triple OD1 mutant (D9K, D10P, K11H) being 40-fold more selective for Nav1.7 over Nav1.6, while OD1 K11V was 5-fold more selective for Nav1.6 than Nav1.7. This switch in selectivity highlights the importance of the reverse turn for engineering α-toxins with altered selectivity at Nav subtypes.

  14. Compound Structure-Independent Activity Prediction in High-Dimensional Target Space.

    Science.gov (United States)

    Balfer, Jenny; Hu, Ye; Bajorath, Jürgen

    2014-08-01

    Profiling of compound libraries against arrays of targets has become an important approach in pharmaceutical research. The prediction of multi-target compound activities also represents an attractive task for machine learning with potential for drug discovery applications. Herein, we have explored activity prediction in high-dimensional target space. Different types of models were derived to predict multi-target activities. The models included naïve Bayesian (NB) and support vector machine (SVM) classifiers based upon compound structure information and NB models derived on the basis of activity profiles, without considering compound structure. Because the latter approach can be applied to incomplete training data and principally depends on the feature independence assumption, SVM modeling was not applicable in this case. Furthermore, iterative hybrid NB models making use of both activity profiles and compound structure information were built. In high-dimensional target space, NB models utilizing activity profile data were found to yield more accurate activity predictions than structure-based NB and SVM models or hybrid models. An in-depth analysis of activity profile-based models revealed the presence of correlation effects across different targets and rationalized prediction accuracy. Taken together, the results indicate that activity profile information can be effectively used to predict the activity of test compounds against novel targets. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Chemistry and Structure-Activity Relationships of Psychedelics.

    Science.gov (United States)

    Nichols, David E

    2018-01-01

    This chapter will summarize structure-activity relationships (SAR) that are known for the classic serotonergic hallucinogens (aka psychedelics), focusing on the three chemical types: tryptamines, ergolines, and phenethylamines. In the brain, the serotonin 5-HT 2A receptor plays a key role in regulation of cortical function and cognition, and also appears to be the principal target for hallucinogenic/psychedelic drugs such as LSD. It is one of the most extensively studied of the 14 known types of serotonin receptors. Important structural features will be identified for activity and, where possible, those that the psychedelics have in common will be discussed. Because activation of the 5-HT 2A receptor is the principal mechanism of action for psychedelics, compounds with 5-HT 2A agonist activity generally are quickly discarded by the pharmaceutical industry. Thus, most of the research on psychedelics can be related to activation of 5-HT 2A receptors. Therefore, much of the discussion will include not only clinical or anecdotal studies, but also will consider data from animal models as well as a certain amount of molecular pharmacology where it is known.

  16. Quantitative structure-activity relationships (QSAR) of 4-amino-2,6-diarylpyrimidine-5-carbonitriles with anti-inflammatory activity

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Joao Bosco P. da; Ramos, Mozart N.; Barros Neto, Benicio de [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Quimica Fundamental]. E-mail: mramos@ufpe.br; Melo, Sebastiao Jose de [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Antibioticos]. E-mail: melosebastiao@yahoo.com.br; Falcao, Emerson Peter da Silva [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Centro Academico de Vitoria de Santo Antao; Catanho, Maria Teresa J. de Almeida [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Biofisica e Radiobiologia

    2008-07-01

    The experimental anti-inflammatory activities of eight 4-amino-2,6-diarylpyrimidine-5- carbonitriles were subjected to a QSAR analysis based on results from B3LYP/6-31G(d,p) and AM1 electronic structure calculations. Principal component analyses and regressions based on these data indicate that potentially more active compounds should have low dipole moment and partition coefficient values and also be affected by the values of the charges of the carbon atoms through which the two aromatic rings are bonded to the pyrimidinic ring. Two new molecules were predicted to be at least as active as those with the highest activities used in the model building stage. One of them, having a methoxy group attached to one of the aromatic rings, was predicted to have an anti-inflammatory activity value of 52.3%. This molecule was synthesized and its experimental activity was found to be 52.8%, in agreement with the AM1 theoretical prediction. This value is 5% higher than the largest value used for modeling. (author)

  17. Quantitative structure-activity relationships (QSAR) of 4-amino-2,6-diarylpyrimidine-5-carbonitriles with anti-inflammatory activity

    International Nuclear Information System (INIS)

    Silva, Joao Bosco P. da; Ramos, Mozart N.; Barros Neto, Benicio de; Melo, Sebastiao Jose de; Falcao, Emerson Peter da Silva; Catanho, Maria Teresa J. de Almeida

    2008-01-01

    The experimental anti-inflammatory activities of eight 4-amino-2,6-diarylpyrimidine-5- carbonitriles were subjected to a QSAR analysis based on results from B3LYP/6-31G(d,p) and AM1 electronic structure calculations. Principal component analyses and regressions based on these data indicate that potentially more active compounds should have low dipole moment and partition coefficient values and also be affected by the values of the charges of the carbon atoms through which the two aromatic rings are bonded to the pyrimidinic ring. Two new molecules were predicted to be at least as active as those with the highest activities used in the model building stage. One of them, having a methoxy group attached to one of the aromatic rings, was predicted to have an anti-inflammatory activity value of 52.3%. This molecule was synthesized and its experimental activity was found to be 52.8%, in agreement with the AM1 theoretical prediction. This value is 5% higher than the largest value used for modeling. (author)

  18. Structural studies of MFE-1: the 1.9 A crystal structure of the dehydrogenase part of rat peroxisomal MFE-1.

    Science.gov (United States)

    Taskinen, Jukka P; Kiema, Tiila R; Hiltunen, J Kalervo; Wierenga, Rik K

    2006-01-27

    The 1.9 A structure of the C-terminal dehydrogenase part of the rat peroxisomal monomeric multifunctional enzyme type 1 (MFE-1) has been determined. In this construct (residues 260-722 and referred to as MFE1-DH) the N-terminal hydratase part of MFE-1 has been deleted. The structure of MFE1-DH shows that it consists of an N-terminal helix, followed by a Rossmann-fold domain (domain C), followed by two tightly associated helical domains (domains D and E), which have similar topology. The structure of MFE1-DH is compared with the two known homologous structures: human mitochondrial 3-hydroxyacyl-CoA dehydrogenase (HAD; sequence identity is 33%) (which is dimeric and monofunctional) and with the dimeric multifunctional alpha-chain (alphaFOM; sequence identity is 28%) of the bacterial fatty acid beta-oxidation alpha2beta2-multienzyme complex. Like MFE-1, alphaFOM has an N-terminal hydratase part and a C-terminal dehydrogenase part, and the structure comparisons show that the N-terminal helix of MFE1-DH corresponds to the alphaFOM linker helix, located between its hydratase and dehydrogenase part. It is also shown that this helix corresponds to the C-terminal helix-10 of the hydratase/isomerase superfamily, suggesting that functionally it belongs to the N-terminal hydratase part of MFE-1.

  19. Structural studies of series HIV-1 nonnucleoside reverse transcriptase inhibitors 1-(2,6-difluorobenzyl)-2-(2,6-difluorophenyl)-benzimidazoles with different 4-substituents

    Science.gov (United States)

    Ziółkowska, Natasza E.; Michejda, Christopher J.; Bujacz, Grzegorz D.

    2010-03-01

    Over the past 10 years, several anti-viral drugs have become available to fight the HIV infection. Antiretroviral treatment reduces the mortality of AIDS. Nonnucleoside inhibitors of HIV-1 reverse transcriptase are specific and potentially nontoxic drugs against AIDS. The crystal structures of five nonnucleoside inhibitors of HIV-1 reverse transcriptase are presented here. The structural parameters, especially those describing the angular orientation of the π-electron systems and influencing biological activity, were determined for all of the investigated inhibitors. The chemical character and orientation of the substituent at C4 position of the benzimidazole moiety substantially influences the anti-viral activity. The structural data of the investigated inhibitors is a good basis for modeling enzyme-inhibitor interactions for structure-assisted drug design.

  20. Serum Paraoxonase 1 Activity Is Associated with Fatty Acid Composition of High Density Lipoprotein

    Directory of Open Access Journals (Sweden)

    Maryam Boshtam

    2013-01-01

    Full Text Available Introduction. Cardioprotective effect of high density lipoprotein (HDL is, in part, dependent on its related enzyme, paraoxonase 1 (PON1. Fatty acid composition of HDL could affect its size and structure. On the other hand, PON1 activity is directly related to the structure of HDL. This study was designed to investigate the association between serum PON1 activity and fatty acid composition of HDL in healthy men. Methods. One hundred and forty healthy men participated in this research. HDL was separated by sequential ultracentrifugation, and its fatty acid composition was analyzed by gas chromatography. PON1 activity was measured spectrophotometrically using paraxon as substrate. Results. Serum PON1 activity was directly correlated with the amount of stearic acid and dihomo-gamma-linolenic acid (DGLA. PON1/HDL-C was directly correlated with the amount of miristic acid, stearic acid, and DGLA and was inversely correlated with total amount of ω6 fatty acids of HDL. Conclusion. The fatty acid composition of HDL could affect the activity of its associated enzyme, PON1. As dietary fats are the major determinants of serum lipids and lipoprotein composition, consuming some special dietary fatty acids may improve the activity of PON1 and thereby have beneficial effects on health.

  1. Serum paraoxonase 1 activity is associated with fatty acid composition of high density lipoprotein.

    Science.gov (United States)

    Boshtam, Maryam; Razavi, Amirnader Emami; Pourfarzam, Morteza; Ani, Mohsen; Naderi, Gholam Ali; Basati, Gholam; Mansourian, Marjan; Dinani, Narges Jafari; Asgary, Seddigheh; Abdi, Soheila

    2013-01-01

    Cardioprotective effect of high density lipoprotein (HDL) is, in part, dependent on its related enzyme, paraoxonase 1 (PON1). Fatty acid composition of HDL could affect its size and structure. On the other hand, PON1 activity is directly related to the structure of HDL. This study was designed to investigate the association between serum PON1 activity and fatty acid composition of HDL in healthy men. One hundred and forty healthy men participated in this research. HDL was separated by sequential ultracentrifugation, and its fatty acid composition was analyzed by gas chromatography. PON1 activity was measured spectrophotometrically using paraxon as substrate. Serum PON1 activity was directly correlated with the amount of stearic acid and dihomo-gamma-linolenic acid (DGLA). PON1/HDL-C was directly correlated with the amount of miristic acid, stearic acid, and DGLA and was inversely correlated with total amount of ω 6 fatty acids of HDL. The fatty acid composition of HDL could affect the activity of its associated enzyme, PON1. As dietary fats are the major determinants of serum lipids and lipoprotein composition, consuming some special dietary fatty acids may improve the activity of PON1 and thereby have beneficial effects on health.

  2. Semi Active Control of Civil Structures, Analytical and Numerical Studies

    Science.gov (United States)

    Kerboua, M.; Benguediab, M.; Megnounif, A.; Benrahou, K. H.; Kaoulala, F.

    Structural control for civil structures was born out of a need to provide safer and more efficient designs with the reality of limited resources. The purpose of structural control is to absorb and to reflect the energy introduced by dynamic loads such as winds, waves, earthquakes, and traffic. Today, the protection of civil structures from severe dynamic loading is typically achieved by allowing the structures to be damaged. Semi-active control devices, also called "smart" control devices, assume the positive aspects of both the passive and active control devices. A semi-active control strategy is similar to the active control strategy. Only here, the control actuator does not directly apply force to the structure, but instead it is used to control the properties of a passive energy device, a controllable passive damper. Semi-active control strategies can be used in many of the same civil applications as passive and active control. One method of operating smart cable dampers is in a purely passive capacity, supplying the dampers with constant optimal voltage. The advantages to this strategy are the relative simplicity of implementing the control strategy as compared to a smart or active control strategy and that the dampers are more easily optimally tuned in- place, eliminating the need to have passive dampers with unique optimal damping coefficients. This research investigated semi-active control of civil structures for natural hazard mitigation. The research has two components, the seismic protection of buildings and the mitigation of wind-induced vibration in structures. An ideal semi-active motion equation of a composite beam that consists of a cantilever beam bonded with a PZT patch using Hamilton's principle and Galerkin's method was treated. A series R-L and a parallel R-L shunt circuits are coupled into the motion equation respectively by means of the constitutive relation of piezoelectric material and Kirchhoff's law to control the beam vibration. A

  3. Non-linear quantitative structure-activity relationship for adenine derivatives as competitive inhibitors of adenosine deaminase

    International Nuclear Information System (INIS)

    Sadat Hayatshahi, Sayyed Hamed; Abdolmaleki, Parviz; Safarian, Shahrokh; Khajeh, Khosro

    2005-01-01

    Logistic regression and artificial neural networks have been developed as two non-linear models to establish quantitative structure-activity relationships between structural descriptors and biochemical activity of adenosine based competitive inhibitors, toward adenosine deaminase. The training set included 24 compounds with known k i values. The models were trained to solve two-class problems. Unlike the previous work in which multiple linear regression was used, the highest of positive charge on the molecules was recognized to be in close relation with their inhibition activity, while the electric charge on atom N1 of adenosine was found to be a poor descriptor. Consequently, the previously developed equation was improved and the newly formed one could predict the class of 91.66% of compounds correctly. Also optimized 2-3-1 and 3-4-1 neural networks could increase this rate to 95.83%

  4. Structural and functional analysis of yeast Crh1 and Crh2 transglycosylases.

    Science.gov (United States)

    Blanco, Noelia; Sanz, Ana B; Rodríguez-Peña, Jose M; Nombela, César; Farkaš, Vladimír; Hurtado-Guerrero, Ramón; Arroyo, Javier

    2015-02-01

    Covalent cross-links between chitin and glucan at the yeast cell wall are created by the transglycosylase activity of redundant proteins Crh1 and Crh2, with cleavage of β-1,4 linkages of the chitin backbone and transfer of the generated molecule containing newly created reducing end onto the glucan acceptor. A three-dimensional structure of Crh1 was generated by homology modeling based on the crystal structure of bacterial 1,3-1,4-β-d-glucanase, followed by site-directed mutagenesis to obtain molecular insights into how these enzymes achieve catalysis. The residues of both proteins that are involved in their catalytic and binding activities have been characterized by measuring the ability of yeast cells expressing different versions of these proteins to transglycosylate oligosaccharides derived from β-1,3-glucan, β-1,6-glucan and chitin to the chitin at the cell wall. Within the catalytic site, residues E134 and E138 of Crh1, as well as E166 and E170 of Crh2, corresponding to the nucleophile and general acid/base, and also the auxiliary D136 and D168 of Crh1 and Crh2, respectively, are shown to be essential for catalysis. Mutations of aromatic residues F152, Y160 and W219, located within the carbohydrate-binding cleft of the Crh1 model, also affect the transglycosylase activity. Unlike Crh1, Crh2 contains a putative carbohydrate-binding module (CBM18) of unknown function. Modeling and functional analysis of site-directed mutant residues of this CBM identified essential amino acids for protein folding and stability, as well as residues that tune the catalytic activity of Crh2. © 2014 FEBS.

  5. KILOPARSEC-SCALE RADIO STRUCTURES IN NARROW-LINE SEYFERT 1 GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Doi, Akihiro; Kino, Motoki [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuou-ku, Sagamihara, Kanagawa 252-5210 (Japan); Nagira, Hiroshi [Graduate School of Science and Engineering, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, Yamaguchi 753-8512 (Japan); Kawakatu, Nozomu [Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571 (Japan); Nagai, Hiroshi [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Asada, Keiichi, E-mail: akihiro.doi@vsop.isas.jaxa.jp [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 10617, Taiwan (China)

    2012-11-20

    We report the finding of kiloparsec (kpc)-scale radio structures in three radio-loud narrow-line Seyfert 1 (NLS1) galaxies from the Faint Images of the Radio Sky at Twenty-centimeters of the Very Large Array, which increases the number of known radio-loud NLS1s with kpc-scale structures to six, including two {gamma}-ray-emitting NLS1s (PMN J0948+0022 and 1H 0323+342) detected by the Fermi Gamma-ray Space Telescope. The detection rate of extended radio emissions in NLS1s is lower than that in broad-line active galactic nuclei (AGNs) with a statistical significance. We found both core-dominated (blazar-like) and lobe-dominated (radio-galaxy-like) radio structures in these six NLS1s, which can be understood in the framework of the unified scheme of radio-loud AGNs that considers radio galaxies as non-beamed parent populations of blazars. Five of the six NLS1s have (1) extended radio luminosities suggesting jet kinetic powers of {approx}> 10{sup 44} erg s{sup -1}, which is sufficient to make jets escape from hosts' dense environments; (2) black holes of {approx}> 10{sup 7} M {sub Sun }, which can generate the necessary jet powers from near-Eddington mass accretion; and (3) two-sided radio structures at kpc scales, requiring expansion rates of {approx}0.01c-0.3c and kinematic ages of {approx}> 10{sup 7} years. On the other hand, most typical NLS1s would be driven by black holes of {approx}< 10{sup 7} M {sub Sun} in a limited lifetime of {approx}10{sup 7} years. Hence, the kpc-scale radio structures may originate in a small window of opportunity during the final stage of the NLS1 phase just before growing into broad-line AGNs.

  6. Synthesis and Structure-Activity Relationships of N-Dihydrocoptisine-8-ylidene Aromatic Amines and N-Dihydrocoptisine-8-ylidene Aliphatic Amides as Antiulcerative Colitis Agents Targeting XBP1.

    Science.gov (United States)

    Xie, Meng; Zhang, Hai-Jing; Deng, An-Jun; Wu, Lian-Qiu; Zhang, Zhi-Hui; Li, Zhi-Hong; Wang, Wen-Jie; Qin, Hai-Lin

    2016-04-22

    In this study, natural quaternary coptisine was used as a lead compound to design and synthesize structurally stable and actively potent coptisine analogues. Of the synthesized library, 13 N-dihydrocoptisine-8-ylidene amines/amides were found not only to be noncytotoxic toward intestinal epithelial cells (IECs), but they were also able to activate the transcription of X-box-binding protein 1 (XBP1) targets to varying extents in vitro. Antiulcerative colitis (UC) activity levels were assessed at the in vitro molecular level as well as in vivo in animals using multiple biomarkers as indices. In an in vitro XBP1 transcriptional activity assay, four compounds demonstrated good dose-effect relationships with EC50 values of 0.0708-0.0132 μM. Moreover, two compounds were confirmed to be more potent in vivo than a positive control, demonstrating a curative effect for UC in experimental animals. Thus, the findings of this study suggest that these coptisine analogues are promising candidates for the development of anti-UC drugs.

  7. Structural and adsorptive properties of activated carbons prepared by carbonization and activation of resins.

    Science.gov (United States)

    Leboda, R; Skubiszewska-Zieba, J; Tomaszewski, W; Gun'ko, V M

    2003-07-15

    Four activated carbons (S1-S4) possessing different structural characteristics were prepared by carbonization of commercial resins (used for ion exchange) and subsequent activation. Their textural parameters were determined on the basis of nitrogen adsorption-desorption at 77.4 K, analyzed by applying several local and overall adsorption isotherm equations. The nature of carbon surface functionalities was analyzed by FTIR spectroscopy. The GC and solid-phase extraction (SPE) techniques were applied to study the influence of the texture of carbonaceous materials on their adsorptive properties. The adsorption efficiency of synthesized carbons with respect to alkylhalides used as probe compounds in the GC measurements varied over a range from 28% (C(2)H(3)Cl(3)/S2) to 85% (CHBr(3)/S1) depending on the type of adsorbates and adsorbents. The concentrating efficiency of these carbons in SPE of explosive materials changed over a larger range from 12% (trinitroglycerin/S4) and 13% (trinitrotoluene/S2) up to 100% (octogen/S1). Active carbon prepared using Zerolite 225x8 as a precursor demonstrated better results than other carbons in two types of adsorption with average values of the efficiency of 75.4% for explosives and 60.8% for alkylhalides.

  8. Synthesis and Structure-Activity Relationships of a Series of Aporphine Derivatives with Antiarrhythmic Activities and Acute Toxicity

    Directory of Open Access Journals (Sweden)

    Hui Wang

    2016-11-01

    Full Text Available Some aporphine alkaloids, such as crebanine, were found to present arrhythmic activity and also higher toxicity. A series of derivatives were synthesized by using three kinds of aporphine alkaloids (crebanine, isocorydine, and stephanine as lead compounds. Chemical methods, including ring-opening reaction, bromination, methylation, acetylation, quaternization, and dehydrogenation, were adopted. Nineteen target derivatives were evaluated for their antiarrhythmic potential in the mouse model of ventricular fibrillation (VF, induced by CHCl3, and five of the derivatives were investigated further in the rat model of arrhythmia, induced by BaCl2. Meanwhile, preliminary structure-activity/toxicity relationship analyses were carried out. Significantly, N-acetamidesecocrebanine (1d, three bromo-substituted products of crebanine (2a, 2b, 2c, N-methylcrebanine (2d, and dehydrostephanine (4a displayed antiarrhythmic effects in the CHCl3-induced model. Among them, 7.5 mg/kg of 2b was able to significantly reduce the incidence of VF induced by CHCl3 (p < 0.05, increase the number of rats that resumed sinus rhythm from arrhythmia, induced by BaCl2 (p < 0.01, and the number of rats that maintained sinus rhythm for more than 20 min (p < 0.01. Therefore, 2b showed remarkably higher antiarrhythmic activity and a lower toxicity (LD50 = 59.62 mg/kg, mice, simultaneously, indicating that 2b could be considered as a promising candidate in the treatment of arrhythmia. Structural-activity analysis suggested that variationsin antiarrhythmic efficacy and toxicity of aporphines were related to the C-1,C-2-methylenedioxy group on ring A, restricted ring B structural conformation, N-quaternization of ring B, levoduction of 6a in ring C, and the 8-, 9-, 10-methoxy groups on ring D on the skeleton.

  9. The contact activation proteins: a structure/function overview

    NARCIS (Netherlands)

    Meijers, J. C.; McMullen, B. A.; Bouma, B. N.

    1992-01-01

    In recent years, extensive knowledge has been obtained on the structure/function relationships of blood coagulation proteins. In this overview, we present recent developments on the structure/function relationships of the contact activation proteins: factor XII, high molecular weight kininogen,

  10. Impacts of multiwalled carbon nanotubes on nutrient removal from wastewater and bacterial community structure in activated sludge.

    Directory of Open Access Journals (Sweden)

    Reti Hai

    Full Text Available BACKGROUND: The increasing use of multiwalled carbon nanotubes (MWCNTs will inevitably lead to the exposure of wastewater treatment facilities. However, knowledge of the impacts of MWCNTs on wastewater nutrient removal and bacterial community structure in the activated sludge process is sparse. AIMS: To investigate the effects of MWCNTs on wastewater nutrient removal, and bacterial community structure in activated sludge. METHODS: Three triplicate sequencing batch reactors (SBR were exposed to wastewater which contained 0, 1, and 20 mg/L MWCNTs. MiSeq sequencing was used to investigate the bacterial community structures in activated sludge samples which were exposed to different concentrations of MWCNTs. RESULTS: Exposure to 1 and 20 mg/L MWCNTs had no acute (1 day impact on nutrient removal from wastewater. After long-term (180 days exposure to 1 mg/L MWCNTs, the average total nitrogen (TN removal efficiency was not significantly affected. TN removal efficiency decreased from 84.0% to 71.9% after long-term effects of 20 mg/L MWCNTs. After long-term exposure to 1 and 20 mg/L MWCNTs, the total phosphorus removal efficiencies decreased from 96.8% to 52.3% and from 98.2% to 34.0% respectively. Further study revealed that long-term exposure to 20 mg/L MWCNTs inhibited activities of ammonia monooxygenase and nitrite oxidoreductase. Long-term exposure to 1 and 20 mg/L MWCNTs both inhibited activities of exopolyphosphatase and polyphosphate kinase. MiSeq sequencing data indicated that 20 mg/L MWCNTs significantly decreased the diversity of bacterial community in activated sludge. Long-term exposure to 1 and 20 mg/L MWCNTs differentially decreased the abundance of nitrifying bacteria, especially ammonia-oxidizing bacteria. The abundance of PAOs was decreased after long-term exposure to 20 mg/L MWCNTs. The abundance of glycogen accumulating organisms (GAOs was increased after long-term exposure to 1 mg/L MWCNTs. CONCLUSION: MWCNTs have adverse effects on

  11. The Drosophila melanogaster CHD1 chromatin remodeling factor modulates global chromosome structure and counteracts HP1a and H3K9me2.

    Science.gov (United States)

    Bugga, Lakshmi; McDaniel, Ivy E; Engie, Liana; Armstrong, Jennifer A

    2013-01-01

    CHD1 is a conserved chromatin remodeling factor that localizes to active genes and functions in nucleosome assembly and positioning as well as histone turnover. Mouse CHD1 is required for the maintenance of stem cell pluripotency while human CHD1 may function as a tumor suppressor. To investigate the action of CHD1 on higher order chromatin structure in differentiated cells, we examined the consequences of loss of CHD1 and over-expression of CHD1 on polytene chromosomes from salivary glands of third instar Drosophila melanogaster larvae. We observed that chromosome structure is sensitive to the amount of this remodeler. Loss of CHD1 resulted in alterations of chromosome structure and an increase in the heterochromatin protein HP1a, while over-expression of CHD1 disrupted higher order chromatin structure and caused a decrease in levels of HP1a. Over-expression of an ATPase inactive form of CHD1 did not result in severe chromosomal defects, suggesting that the ATPase activity is required for this in vivo phenotype. Interestingly, changes in CHD1 protein levels did not correlate with changes in the levels of the euchromatin mark H3K4me3 or elongating RNA Polymerase II. Thus, while CHD1 is localized to transcriptionally active regions of the genome, it can function to alter the levels of HP1a, perhaps through changes in methylation of H3K9.

  12. The Drosophila melanogaster CHD1 chromatin remodeling factor modulates global chromosome structure and counteracts HP1a and H3K9me2.

    Directory of Open Access Journals (Sweden)

    Lakshmi Bugga

    Full Text Available CHD1 is a conserved chromatin remodeling factor that localizes to active genes and functions in nucleosome assembly and positioning as well as histone turnover. Mouse CHD1 is required for the maintenance of stem cell pluripotency while human CHD1 may function as a tumor suppressor. To investigate the action of CHD1 on higher order chromatin structure in differentiated cells, we examined the consequences of loss of CHD1 and over-expression of CHD1 on polytene chromosomes from salivary glands of third instar Drosophila melanogaster larvae. We observed that chromosome structure is sensitive to the amount of this remodeler. Loss of CHD1 resulted in alterations of chromosome structure and an increase in the heterochromatin protein HP1a, while over-expression of CHD1 disrupted higher order chromatin structure and caused a decrease in levels of HP1a. Over-expression of an ATPase inactive form of CHD1 did not result in severe chromosomal defects, suggesting that the ATPase activity is required for this in vivo phenotype. Interestingly, changes in CHD1 protein levels did not correlate with changes in the levels of the euchromatin mark H3K4me3 or elongating RNA Polymerase II. Thus, while CHD1 is localized to transcriptionally active regions of the genome, it can function to alter the levels of HP1a, perhaps through changes in methylation of H3K9.

  13. Key structural features of nonsteroidal ligands for binding and activation of the androgen receptor.

    Science.gov (United States)

    Yin, Donghua; He, Yali; Perera, Minoli A; Hong, Seoung Soo; Marhefka, Craig; Stourman, Nina; Kirkovsky, Leonid; Miller, Duane D; Dalton, James T

    2003-01-01

    The purposes of the present studies were to examine the androgen receptor (AR) binding ability and in vitro functional activity of multiple series of nonsteroidal compounds derived from known antiandrogen pharmacophores and to investigate the structure-activity relationships (SARs) of these nonsteroidal compounds. The AR binding properties of sixty-five nonsteroidal compounds were assessed by a radioligand competitive binding assay with the use of cytosolic AR prepared from rat prostates. The AR agonist and antagonist activities of high-affinity ligands were determined by the ability of the ligand to regulate AR-mediated transcriptional activation in cultured CV-1 cells, using a cotransfection assay. Nonsteroidal compounds with diverse structural features demonstrated a wide range of binding affinity for the AR. Ten compounds, mainly from the bicalutamide-related series, showed a binding affinity superior to the structural pharmacophore from which they were derived. Several SARs regarding nonsteroidal AR binding were revealed from the binding data, including stereoisomeric conformation, steric effect, and electronic effect. The functional activity of high-affinity ligands ranged from antagonist to full agonist for the AR. Several structural features were found to be determinative of agonist and antagonist activities. The nonsteroidal AR agonists identified from the present studies provided a pool of candidates for further development of selective androgen receptor modulators (SARMs) for androgen therapy. Also, these studies uncovered or confirmed numerous important SARs governing AR binding and functional properties by nonsteroidal molecules, which would be valuable in the future structural optimization of SARMs.

  14. Electric field responsive origami structures using electrostriction-based active materials

    Science.gov (United States)

    Ahmed, Saad; Arrojado, Erika; Sigamani, Nirmal; Ounaies, Zoubeida

    2015-04-01

    The objective of origami engineering is to combine origami principles with advanced materials to yield active origami shapes, which fold and unfold in response to external stimuli. We are investigating the use of P(VDF-TrFE-CTFE), a relaxor ferroelectric terpolymer, to realize origami-inspired folding and unfolding of structures and to actuate so-called action origami structures. To accomplish these two objectives, we have explored different approaches to the P(VDF-TrFECTFE) polymer actuator construction, ranging from unimorph to multilayered stacks. Electromechanical characterization of the terpolymer-based actuators is conducted with a focus on free strain, force-displacement and blocked force. Moreover dynamic thickness strains of P(VDF-TrFE-CTFE) terpolymer at different frequencies ranging from 0.1Hz to 10Hz is also measured. Quantifying the performance of terpolymer-based actuators is important to the design of action origami structures. Following these studies, action origami prototypes based on catapult, flapping butterfly wings and barking fox are actuated and characterization of these prototypes are conducted by studying impact of various parameters such as electric field magnitude and frequency, number of active layers, and actuator dimensions.

  15. The Crystal Structure of Toxoplasma gondii Pyruvate Kinase 1

    Energy Technology Data Exchange (ETDEWEB)

    Bakszt, R.; Wernimont, A; Allali-Hassani, A; Mok, M; Hills, T; Hui, R; Pizarro, J

    2010-01-01

    Pyruvate kinase (PK), which catalyzes the final step in glycolysis converting phosphoenolpyruvate to pyruvate, is a central metabolic regulator in most organisms. Consequently PK represents an attractive therapeutic target in cancer and human pathogens, like Apicomplexans. The phylum Aplicomplexa, a group of exclusively parasitic organisms, includes the genera Plasmodium, Cryptosporidium and Toxoplasma, the etiological agents of malaria, cryptosporidiosis and toxoplasmosis respectively. Toxoplasma gondii infection causes a mild illness and is a very common infection affecting nearly one third of the world's population. We have determined the crystal structure of the PK1 enzyme from T. gondii, with the B domain in the open and closed conformations. We have also characterized its enzymatic activity and confirmed glucose-6-phosphate as its allosteric activator. This is the first description of a PK enzyme in a closed inactive conformation without any bound substrate. Comparison of the two tetrameric TgPK1 structures indicates a reorientation of the monomers with a concomitant change in the buried surface among adjacent monomers. The change in the buried surface was associated with significant B domain movements in one of the interacting monomers. We hypothesize that a loop in the interface between the A and B domains plays an important role linking the position of the B domain to the buried surface among monomers through two {alpha}-helices. The proposed model links the catalytic cycle of the enzyme with its domain movements and highlights the contribution of the interface between adjacent subunits. In addition, an unusual ordered conformation was observed in one of the allosteric binding domains and it is related to a specific apicomplexan insertion. The sequence and structural particularity would explain the atypical activation by a mono-phosphorylated sugar. The sum of peculiarities raises this enzyme as an emerging target for drug discovery.

  16. The crystal structure of Toxoplasma gondii pyruvate kinase 1.

    Directory of Open Access Journals (Sweden)

    Rebecca Bakszt

    2010-09-01

    Full Text Available Pyruvate kinase (PK, which catalyzes the final step in glycolysis converting phosphoenolpyruvate to pyruvate, is a central metabolic regulator in most organisms. Consequently PK represents an attractive therapeutic target in cancer and human pathogens, like Apicomplexans. The phylum Aplicomplexa, a group of exclusively parasitic organisms, includes the genera Plasmodium, Cryptosporidium and Toxoplasma, the etiological agents of malaria, cryptosporidiosis and toxoplasmosis respectively. Toxoplasma gondii infection causes a mild illness and is a very common infection affecting nearly one third of the world's population.We have determined the crystal structure of the PK1 enzyme from T. gondii, with the B domain in the open and closed conformations. We have also characterized its enzymatic activity and confirmed glucose-6-phosphate as its allosteric activator. This is the first description of a PK enzyme in a closed inactive conformation without any bound substrate. Comparison of the two tetrameric TgPK1 structures indicates a reorientation of the monomers with a concomitant change in the buried surface among adjacent monomers. The change in the buried surface was associated with significant B domain movements in one of the interacting monomers.We hypothesize that a loop in the interface between the A and B domains plays an important role linking the position of the B domain to the buried surface among monomers through two α-helices. The proposed model links the catalytic cycle of the enzyme with its domain movements and highlights the contribution of the interface between adjacent subunits. In addition, an unusual ordered conformation was observed in one of the allosteric binding domains and it is related to a specific apicomplexan insertion. The sequence and structural particularity would explain the atypical activation by a mono-phosphorylated sugar. The sum of peculiarities raises this enzyme as an emerging target for drug discovery.

  17. The crystal structure of Toxoplasma gondii pyruvate kinase 1.

    Science.gov (United States)

    Bakszt, Rebecca; Wernimont, Amy; Allali-Hassani, Abdellah; Mok, Man Wai; Hills, Tanya; Hui, Raymond; Pizarro, Juan C

    2010-09-14

    Pyruvate kinase (PK), which catalyzes the final step in glycolysis converting phosphoenolpyruvate to pyruvate, is a central metabolic regulator in most organisms. Consequently PK represents an attractive therapeutic target in cancer and human pathogens, like Apicomplexans. The phylum Aplicomplexa, a group of exclusively parasitic organisms, includes the genera Plasmodium, Cryptosporidium and Toxoplasma, the etiological agents of malaria, cryptosporidiosis and toxoplasmosis respectively. Toxoplasma gondii infection causes a mild illness and is a very common infection affecting nearly one third of the world's population. We have determined the crystal structure of the PK1 enzyme from T. gondii, with the B domain in the open and closed conformations. We have also characterized its enzymatic activity and confirmed glucose-6-phosphate as its allosteric activator. This is the first description of a PK enzyme in a closed inactive conformation without any bound substrate. Comparison of the two tetrameric TgPK1 structures indicates a reorientation of the monomers with a concomitant change in the buried surface among adjacent monomers. The change in the buried surface was associated with significant B domain movements in one of the interacting monomers. We hypothesize that a loop in the interface between the A and B domains plays an important role linking the position of the B domain to the buried surface among monomers through two α-helices. The proposed model links the catalytic cycle of the enzyme with its domain movements and highlights the contribution of the interface between adjacent subunits. In addition, an unusual ordered conformation was observed in one of the allosteric binding domains and it is related to a specific apicomplexan insertion. The sequence and structural particularity would explain the atypical activation by a mono-phosphorylated sugar. The sum of peculiarities raises this enzyme as an emerging target for drug discovery.

  18. SATB1 packages densely-looped, transciptionally-active chromatinfor coordinated expression of cytokine genes

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Shutao; Lee, Charles C.; Kohwi-Shigematsu, Terumi

    2006-05-23

    SATB1 is an important regulator of nuclear architecture that anchors specialized DNA sequences onto its cage-like network and recruits chromatin remodeling/modifying factors to control gene transcription. We studied the role of SATB1 in regulating the coordinated expression of Il5, Il4, and Il13 from the 200kb cytokine gene cluster region of mouse chromosome 11 during T-helper 2 (Th2)-cell activation. We show that upon cell activation, SATB1 is rapidly induced to form a unique transcriptionally-active chromatin structure that includes the cytokine gene region. Chromatin is folded into numerous small loops all anchored by SATB1, is histone H3 acetylated at lysine 9/14, and associated with Th2-specific factors, GATA3, STAT6, c-Maf, the chromatin-remodeling enzyme Brg-1, and RNA polymerase II across the 200kb region. Before activation, the chromatin displays some of these features, such as association with GATA3 and STAT6, but these were insufficient for cytokine gene expression. Using RNA interference (RNAi), we show that upon cell activation, SATB1 is not only required for chromatin folding into dense loops, but also for c-Maf induction and subsequently for Il4, Il5, and Il13 transcription. Our results show that SATB1 is an important determinant for chromatin architecture that constitutes a novel higher-order, transcriptionally-active chromatin structure upon Th2-cell activation.

  19. Structural interactions between lipids, water and S1-S4 voltage-sensing domains.

    Science.gov (United States)

    Krepkiy, Dmitriy; Gawrisch, Klaus; Swartz, Kenton J

    2012-11-02

    Membrane proteins serve crucial signaling and transport functions, yet relatively little is known about their structures in membrane environments or how lipids interact with these proteins. For voltage-activated ion channels, X-ray structures suggest that the mobile voltage-sensing S4 helix would be exposed to the membrane, and functional studies reveal that lipid modification can profoundly alter channel activity. Here, we use solid-state NMR to investigate structural interactions of lipids and water with S1-S4 voltage-sensing domains and to explore whether lipids influence the structure of the protein. Our results demonstrate that S1-S4 domains exhibit extensive interactions with lipids and that these domains are heavily hydrated when embedded in a membrane. We also find evidence for preferential interactions of anionic lipids with S1-S4 domains and that these interactions have lifetimes on the timescale of ≤ 10(-3)s. Arg residues within S1-S4 domains are well hydrated and are positioned in close proximity to lipids, exhibiting local interactions with both lipid headgroups and acyl chains. Comparative studies with a positively charged lipid lacking a phosphodiester group reveal that this lipid modification has only modest effects on the structure and hydration of S1-S4 domains. Taken together, our results demonstrate that Arg residues in S1-S4 voltage-sensing domains reside in close proximity to the hydrophobic interior of the membrane yet are well hydrated, a requirement for carrying charge and driving protein motions in response to changes in membrane voltage. Published by Elsevier Ltd.

  20. Porous structure and surface chemistry of phosphoric acid activated carbon from corncob

    Science.gov (United States)

    Sych, N. V.; Trofymenko, S. I.; Poddubnaya, O. I.; Tsyba, M. M.; Sapsay, V. I.; Klymchuk, D. O.; Puziy, A. M.

    2012-11-01

    Active carbons have been prepared from corncob using chemical activation with phosphoric acid at 400 °C using varied ratio of impregnation (RI). Porous structure of carbons was characterized by nitrogen adsorption and scanning electron microscopy. Surface chemistry was studied by IR and potentiometric titration method. It has been shown that porosity development was peaked at RI = 1.0 (SBET = 2081 m2/g, Vtot = 1.1 cm3/g), while maximum amount of acid surface groups was observed at RI = 1.25. Acid surface groups of phosphoric acid activated carbons from corncob includes phosphate and strongly acidic carboxylic (pK = 2.0-2.6), weakly acidic carboxylic (pK = 4.7-5.0), enol/lactone (pK = 6.7-7.4; 8.8-9.4) and phenol (pK = 10.1-10.7). Corncob derived carbons showed high adsorption capacity to copper, especially at low pH. Maximum adsorption of methylene blue and iodine was observed for carbon with most developed porosity (RI = 1.0).

  1. Application of cultured human mast cells (CHMC) for the design and structure-activity relationship of IgE-mediated mast cell activation inhibitors.

    Science.gov (United States)

    Argade, Ankush; Bhamidipati, Somasekhar; Li, Hui; Carroll, David; Clough, Jeffrey; Keim, Holger; Sylvain, Catherine; Rossi, Alexander B; Coquilla, Christina; Issakani, Sarkiz D; Masuda, Esteban S; Payan, Donald G; Singh, Rajinder

    2015-01-01

    Here we report the optimization of small molecule inhibitors of human mast cell degranulation via anti-IgE-mediated tryptase release following cross-linking and activation of IgE-loaded FcεR1 receptors. The compounds are selective upstream inhibitors of FcεR1-dependent human mast cell degranulation and proved to be devoid of activity in downstream ionomycin mediated degranulation. Structure-activity relationship (SAR) leading to compound 26 is outlined. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Structural basis for selective inhibition of Cyclooxygenase-1 (COX-1) by diarylisoxazoles mofezolac and 3-(5-chlorofuran-2-yl)-5-methyl-4-phenylisoxazole (P6).

    Science.gov (United States)

    Cingolani, Gino; Panella, Andrea; Perrone, Maria Grazia; Vitale, Paola; Di Mauro, Giuseppe; Fortuna, Cosimo G; Armen, Roger S; Ferorelli, Savina; Smith, William L; Scilimati, Antonio

    2017-09-29

    The diarylisoxazole molecular scaffold is found in several NSAIDs, especially those with high selectivity for COX-1. Here, we have determined the structural basis for COX-1 binding to two diarylisoxazoles: mofezolac, which is polar and ionizable, and 3-(5-chlorofuran-2-yl)-5-methyl-4-phenylisoxazole (P6) that has very low polarity. X-ray analysis of the crystal structures of COX-1 bound to mofezolac and 3-(5-chlorofuran-2-yl)-5-methyl-4-phenylisoxazole allowed the identification of specific binding determinants within the enzyme active site, relevant to generate structure/activity relationships for diarylisoxazole NSAIDs. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. Influence of WFIKKN1 on BMP1-mediated activation of latent myostatin.

    Science.gov (United States)

    Szláma, György; Vásárhelyi, Viktor; Trexler, Mária; Patthy, László

    2016-12-01

    The NTR domain of WFIKKN1 protein has been shown to have significant affinity for the prodomain regions of promyostatin and latent myostatin but the biological significance of these interactions remained unclear. In view of its role as a myostatin antagonist, we tested the assumption that WFIKKN1 inhibits the release of myostatin from promyostatin and/or latent myostatin. WFIKKN1 was found to have no effect on processing of promyostatin by furin, the rate of cleavage of latent myostatin by BMP1, however, was significantly enhanced in the presence of WFIKKN1 and this enhancer activity was superstimulated by heparin. Unexpectedly, WFIKKN1 was also cleaved by BMP1 and our studies have shown that the KKN1 fragment generated by BMP1-cleavage of WFIKKN1 contributes most significantly to the observed enhancer activity. Analysis of a pro-TGF-β -based homology model of homodimeric latent myostatin revealed that the BMP1-cleavage sites are buried and not readily accessible to BMP1. In view of this observation, the most plausible explanation for the BMP1-enhancer activity of the KKN1 fragment is that it shifts a conformational equilibrium of latent myostatin from the closed circular structure of the homodimer to a more open form, making the cleavage sites more accessible to BMP1. On the other hand, the observation that the enhancer activity of KKN1 is superstimulated in the presence of heparin is explained by the fact KKN1, latent myostatin, and BMP1 have affinity for heparin and these interactions with heparin increase the local concentrations of the reactants thereby facilitating the action of BMP1. Furin: EC 3.4.21.75; BMP1, bone morphogentic protein 1 or procollagen C-endopeptidase: EC 3.4.24.19. © 2016 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

  4. [Relationship between the anti-hemolysin activity and the structure of catechins and theaflavins].

    Science.gov (United States)

    Ikigai, H; Toda, M; Okubo, S; Hara, Y; Shimamura, T

    1990-11-01

    We examined the corresponding isomers of catechins and theaflavins for anti-hemolysin activities against Staphylococcus aureus alpha-toxin and Vibrio cholerae O1 hemolysin. Catechins and theaflavins showed anti-hemolysin activities in a dose-dependent manner. Among the catechins tested, (-)catechin gallate, (-)epicatechin gallate and (-)epigallocatechin gallate having galloyl groups in their molecules showed more potent anti-hemolysin activities against both toxins. On the other hand, free catechins, i. e. (-)catechin, (-)gallocatechin, (-) epicatechin and (-)epigallocatechin had low anti-hemolysin activities against alpha-toxin. Although (-)catechin or (-)gallocatechin had no effect on cholera hemolysin, (-) epicatechin and (-)epigallocatechin were slightly inhibitory. Among dextrocatechins, (+) epicatechin and (+)epigallocatechin proved to be more effective than (+)catechin and (+) gallocatechin. The anti-hemolysin activities of theaflavins against alpha-toxin and cholera hemolysin were dependent on the number of the galloyl group in their structure. These results suggest that the tertiary structure of the catechin or theaflavin and the active site of hemolysin, that affects the interaction between them, plays an important role in the anti-hemolysin activity.

  5. Structural Analysis of a Family 81 Glycoside Hydrolase Implicates Its Recognition of β-1,3-Glucan Quaternary Structure.

    Science.gov (United States)

    Pluvinage, Benjamin; Fillo, Alexander; Massel, Patricia; Boraston, Alisdair B

    2017-09-05

    Family 81 glycoside hydrolases (GHs), which are known to cleave β-1,3-glucans, are found in archaea, bacteria, eukaryotes, and viruses. Here we examine the structural and functional features of the GH81 catalytic module, BhGH81, from the Bacillus halodurans protein BH0236 to probe the molecular basis of β-1,3-glucan recognition and cleavage. BhGH81 displayed activity on laminarin, curdlan, and pachyman, but not scleroglucan; the enzyme also cleaved β-1,3-glucooligosaccharides as small as β-1,3-glucotriose. The crystal structures of BhGH81 in complex with various β-1,3-glucooligosaccharides revealed distorted sugars in the -1 catalytic subsite and an arrangement consistent with an inverting catalytic mechanism having a proposed conformational itinerary of 2 S 0 → 2,5 B ‡ → 5 S 1 . Notably, the architecture of the catalytic site, location of an adjacent ancillary β-1,3-glucan binding site, and the surface properties of the enzyme indicate the likely ability to recognize the double and/or triple-helical quaternary structures adopted by β-1,3-glucans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Discovery of core-structurally novel PTP1B inhibitors with specific selectivity containing oxindole-fused spirotetrahydrofurochroman by one-pot reaction.

    Science.gov (United States)

    Dong, Suzhen; Lei, Yubing; Jia, Shikun; Gao, Lixin; Li, Jia; Zhu, Tong; Liu, Shunying; Hu, Wenhao

    2017-02-15

    Protein tyrosine phosphatase 1B (PTP1B) has been proposed to be an ideal target for treatment of type II diabetes and obesity. However, no druggable PTP1B inhibitor has been established and there is still an urgent demand for the development of structurally novel PTPIB inhibitor. Herein, we reported core-structurally novel PTP1B inhibitors with low micromole-ranged inhibitory activity by one-pot reaction from simple starting materials. Further studies demonstrated some of these active compounds had a specific selectivity over other PTPs. The structure and activity relationship was also described. The best active and selective compound 5e inhibited PTP1B activity with an IC 50 of 4.53μM. Molecular docking analysis further demonstrated that compound 5e bound to the active pocket of PTP1B. The results might provide some insights for further development of new drugs for type II diabetes and obesity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Quantitative structure-activation barrier relationship modeling for Diels-Alder ligations utilizing quantum chemical structural descriptors.

    Science.gov (United States)

    Nandi, Sisir; Monesi, Alessandro; Drgan, Viktor; Merzel, Franci; Novič, Marjana

    2013-10-30

    In the present study, we show the correlation of quantum chemical structural descriptors with the activation barriers of the Diels-Alder ligations. A set of 72 non-catalysed Diels-Alder reactions were subjected to quantitative structure-activation barrier relationship (QSABR) under the framework of theoretical quantum chemical descriptors calculated solely from the structures of diene and dienophile reactants. Experimental activation barrier data were obtained from literature. Descriptors were computed using Hartree-Fock theory using 6-31G(d) basis set as implemented in Gaussian 09 software. Variable selection and model development were carried out by stepwise multiple linear regression methodology. Predictive performance of the quantitative structure-activation barrier relationship (QSABR) model was assessed by training and test set concept and by calculating leave-one-out cross-validated Q2 and predictive R2 values. The QSABR model can explain and predict 86.5% and 80% of the variances, respectively, in the activation energy barrier training data. Alternatively, a neural network model based on back propagation of errors was developed to assess the nonlinearity of the sought correlations between theoretical descriptors and experimental reaction barriers. A reasonable predictability for the activation barrier of the test set reactions was obtained, which enabled an exploration and interpretation of the significant variables responsible for Diels-Alder interaction between dienes and dienophiles. Thus, studies in the direction of QSABR modelling that provide efficient and fast prediction of activation barriers of the Diels-Alder reactions turn out to be a meaningful alternative to transition state theory based computation.

  8. Molecular design and structure--activity relationships leading to the potent, selective, and orally active thrombin active site inhibitor BMS-189664.

    Science.gov (United States)

    Das, Jagabandhu; Kimball, S David; Hall, Steven E; Han, Wen Ching; Iwanowicz, Edwin; Lin, James; Moquin, Robert V; Reid, Joyce A; Sack, John S; Malley, Mary F; Chang, Chiehying Y; Chong, Saeho; Wang-Iverson, David B; Roberts, Daniel G M; Seiler, Steven M; Schumacher, William A; Ogletree, Martin L

    2002-01-07

    A series of structurally novel small molecule inhibitors of human alpha-thrombin was prepared to elucidate their structure-activity relationships (SARs), selectivity and activity in vivo. BMS-189664 (3) is identified as a potent, selective, and orally active reversible inhibitor of human alpha-thrombin which is efficacious in vivo in a mouse lethality model, and at inhibiting both arterial and venous thrombosis in cynomolgus monkey models.

  9. Exploratory Topology Modelling of Form-Active Hybrid Structures

    DEFF Research Database (Denmark)

    Holden Deleuran, Anders; Pauly, Mark; Tamke, Martin

    2016-01-01

    The development of novel form-active hybrid structures (FAHS) is impeded by a lack of modelling tools that allow for exploratory topology modelling of shaped assemblies. We present a flexible and real-time computational design modelling pipeline developed for the exploratory modelling of FAHS...... that enables designers and engineers to iteratively construct and manipulate form-active hybrid assembly topology on the fly. The pipeline implements Kangaroo2's projection-based methods for modelling hybrid structures consisting of slender beams and cable networks. A selection of design modelling sketches...

  10. Distributing Correlation Coefficients of Linear Structure-Activity/Property Models

    Directory of Open Access Journals (Sweden)

    Sorana D. BOLBOACA

    2011-12-01

    Full Text Available Quantitative structure-activity/property relationships are mathematical relationships linking chemical structure and activity/property in a quantitative manner. These in silico approaches are frequently used to reduce animal testing and risk-assessment, as well as to increase time- and cost-effectiveness in characterization and identification of active compounds. The aim of our study was to investigate the pattern of correlation coefficients distribution associated to simple linear relationships linking the compounds structure with their activities. A set of the most common ordnance compounds found at naval facilities with a limited data set with a range of toxicities on aquatic ecosystem and a set of seven properties was studied. Statistically significant models were selected and investigated. The probability density function of the correlation coefficients was investigated using a series of possible continuous distribution laws. Almost 48% of the correlation coefficients proved fit Beta distribution, 40% fit Generalized Pareto distribution, and 12% fit Pert distribution.

  11. Transmutation and activation of fusion reactor wall and structural materials

    International Nuclear Information System (INIS)

    Jarvis, O.N.

    1979-01-01

    This report details the extent of the nuclear data needed for inclusion in a data library to be used for general assessments of fusion reactor structure activation and transmutation, describes the sources of data available, reviews the literature and explores the reliability of current calculations by providing an independent assessment of the activity inventory to be expected from five structural materials in a simple blanket design for comparison with the results of other workers. An indication of the nuclear reactions which make important contributions to the activity, transmutation and gas production rates for these structural materials is also presented. (author)

  12. Structure-activity relationship of new antimalarial 1-aryl-3-susbtituted propanol derivatives: Synthesis, preliminary toxicity profiling, parasite life cycle stage studies, target exploration, and targeted delivery.

    Science.gov (United States)

    Quiliano, Miguel; Pabón, Adriana; Moles, Ernest; Bonilla-Ramirez, Leonardo; Fabing, Isabelle; Fong, Kim Y; Nieto-Aco, Diego A; Wright, David W; Pizarro, Juan C; Vettorazzi, Ariane; López de Cerain, Adela; Deharo, Eric; Fernández-Busquets, Xavier; Garavito, Giovanny; Aldana, Ignacio; Galiano, Silvia

    2018-05-25

    Design, synthesis, structure-activity relationship, cytotoxicity studies, in silico drug-likeness, genotoxicity screening, and in vivo studies of new 1-aryl-3-substituted propanol derivatives led to the identification of nine compounds with promising in vitro (55, 56, 61, 64, 66, and 70-73) and in vivo (66 and 72) antimalarial profiles against Plasmodium falciparum and Plasmodium berghei. Compounds 55, 56, 61, 64, 66 and 70-73 exhibited potent antiplasmodial activity against chloroquine-resistant strain FCR-3 (IC 50 s activity in chloroquine-sensitive and multidrug-resistant strains (IC 50 s antimalarial compounds. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  13. Solution structure of the human signaling protein RACK1

    Directory of Open Access Journals (Sweden)

    Papa Priscila F

    2010-06-01

    Full Text Available Abstract Background The adaptor protein RACK1 (receptor of activated kinase 1 was originally identified as an anchoring protein for protein kinase C. RACK1 is a 36 kDa protein, and is composed of seven WD repeats which mediate its protein-protein interactions. RACK1 is ubiquitously expressed and has been implicated in diverse cellular processes involving: protein translation regulation, neuropathological processes, cellular stress, and tissue development. Results In this study we performed a biophysical analysis of human RACK1 with the aim of obtaining low resolution structural information. Small angle X-ray scattering (SAXS experiments demonstrated that human RACK1 is globular and monomeric in solution and its low resolution structure is strikingly similar to that of an homology model previously calculated by us and to the crystallographic structure of RACK1 isoform A from Arabidopsis thaliana. Both sedimentation velocity and sedimentation equilibrium analytical ultracentrifugation techniques showed that RACK1 is predominantly a monomer of around 37 kDa in solution, but also presents small amounts of oligomeric species. Moreover, hydrodynamic data suggested that RACK1 has a slightly asymmetric shape. The interaction of RACK1 and Ki-1/57 was tested by sedimentation equilibrium. The results suggested that the association between RACK1 and Ki-1/57(122-413 follows a stoichiometry of 1:1. The binding constant (KB observed for RACK1-Ki-1/57(122-413 interaction was of around (1.5 ± 0.2 × 106 M-1 and resulted in a dissociation constant (KD of (0.7 ± 0.1 × 10-6 M. Moreover, the fluorescence data also suggests that the interaction may occur in a cooperative fashion. Conclusion Our SAXS and analytical ultracentrifugation experiments indicated that RACK1 is predominantly a monomer in solution. RACK1 and Ki-1/57(122-413 interact strongly under the tested conditions.

  14. Structured Observation of School Administrator Work Activities: Methodological Limitations and Recommendations for Research, Part 1.

    Science.gov (United States)

    Pitner, Nancy J.; Russell, James S.

    1986-01-01

    This paper critically reviews studies of administrator work activities which follow the work of Henry Mintzberg (1973), concentrating on these shortcomings of the method: (1) procedural difficulties in coding; (2) design limitations of classifying activities; (3) inadequate testing of Mintzberg's hypotheses; and (4) failure to explore antecedents…

  15. Synthesis, structure and magnetic properties of distorted Y{sub x}La{sub 1-x}FeO{sub 3}: Effects of mechanochemical activation and composition

    Energy Technology Data Exchange (ETDEWEB)

    Cristobal, A.A. [Instituto de Investigaciones en Ciencia y Tecnologia de Materiales, INTEMA (CONICET-UNMdP), J.B. Justo 4302 B7608FDQ, Mar del Plata (Argentina); Botta, P.M., E-mail: pbotta@fi.mdp.edu.ar [Instituto de Investigaciones en Ciencia y Tecnologia de Materiales, INTEMA (CONICET-UNMdP), J.B. Justo 4302 B7608FDQ, Mar del Plata (Argentina); Aglietti, E.F.; Conconi, M.S. [Centro de Tecnologia de Recursos Minerales y Ceramica, CETMIC (CIC-CONICET), Camino P. Centenario y 506 B1897ZCA, Gonnet (Argentina); Bercoff, P.G. [Facultad de Matematica, Astronomia y Fisica, FaMAF UNC and IFEG (CONICET), Ciudad Universitaria (5000), Cordoba (Argentina); Porto Lopez, J.M. [Instituto de Investigaciones en Ciencia y Tecnologia de Materiales, INTEMA (CONICET-UNMdP), J.B. Justo 4302 B7608FDQ, Mar del Plata (Argentina)

    2011-11-01

    Highlights: {yields} Y{sub x}La{sub 1-x}FeO{sub 3} phases (0 {<=} x {<=} 1) were prepared at RT by mechanochemical treatment. {yields} The obtained materials showed an anisotropic distortion of its crystal structure. {yields} Combination of Y-doping and mechanochemistry produced weak ferromagnetic materials. {yields} Thermal treatments improved the structural order, leading to antiferromagnetic solids. {yields} Neel temperature decreased with x due to less stable magnetic structures. - Abstract: The influence of mechanochemical treatment on the synthesis and properties of Y{sub x}La{sub 1-x}FeO{sub 3} (0 {<=} x {<=} 1) orthoferrites is studied. Solid mixtures of the corresponding metal oxides were treated in a high-energy ball-mill. X-ray diffraction revealed that during the milling the disappearance of the reactants and a fast conversion to orthoferrite phase take place. Magnetic measurements showed a weak ferromagnetic behavior of the obtained materials, observing higher magnetization for larger x. The activated powders heated at 600 and 800 deg. C showed a progressive crystalline ordering together with a significant drop of magnetization. Thermal treatments at 1000 deg. C produced the formation of the phase Y{sub 3}Fe{sub 5}O{sub 12} for the samples richer in yttrium, increasing the magnetization. Rietveld refinements of the diffraction patterns and dynamical scanning calorimetry were used respectively to determine the lattice parameters and Neel temperatures for the formed orthoferrites. The effect of the composition on the structure and magnetic behavior is discussed.

  16. The HIV-1 transcriptional activator Tat has potent nucleic acid chaperoning activities in vitro.

    Science.gov (United States)

    Kuciak, Monika; Gabus, Caroline; Ivanyi-Nagy, Roland; Semrad, Katharina; Storchak, Roman; Chaloin, Olivier; Muller, Sylviane; Mély, Yves; Darlix, Jean-Luc

    2008-06-01

    The human immunodeficiency virus type 1 (HIV-1) is a primate lentivirus that causes the acquired immunodeficiency syndrome (AIDS). In addition to the virion structural proteins and enzyme precursors, that are Gag, Env and Pol, HIV-1 encodes several regulatory proteins, notably a small nuclear transcriptional activator named Tat. The Tat protein is absolutely required for virus replication since it controls proviral DNA transcription to generate the full-length viral mRNA. Tat can also regulate mRNA capping and splicing and was recently found to interfere with the cellular mi- and siRNA machinery. Because of its extensive interplay with nucleic acids, and its basic and disordered nature we speculated that Tat had nucleic acid-chaperoning properties. This prompted us to examine in vitro the nucleic acid-chaperoning activities of Tat and Tat peptides made by chemical synthesis. Here we report that Tat has potent nucleic acid-chaperoning activities according to the standard DNA annealing, DNA and RNA strand exchange, RNA ribozyme cleavage and trans-splicing assays. The active Tat(44-61) peptide identified here corresponds to the smallest known sequence with DNA/RNA chaperoning properties.

  17. Crystal structure of the human 4-1BB/4-1BBL complex.

    Science.gov (United States)

    Gilbreth, Ryan N; Oganesyan, Vaheh Y; Amdouni, Hamza; Novarra, Shabazz; Grinberg, Luba; Barnes, Arnita; Baca, Manuel

    2018-05-02

    4-1BBL is a member of the TNF superfamily and is the ligand for the TNFRsuperfamily receptor, 4-1BB. 4-1BB plays an immunomodulatory role in T cells and NK cells and agonists of this receptor have garnered strong attention as potentialimmunotherapy agents. Broadly speaking, the structural features of TNF superfamilymembers, their receptors and ligand/receptor complexes are similar. However, apublished crystal structure of human 4-1BBL suggests that it may be unique in thisregard, exhibiting a three-bladed propeller-like trimer assembly that is distinctly different from that observed in other family members. This unusual structure also suggests that the human 4-1BB/4-1BBL complex may be structurally unique within the TNF/TNFR superfamily, but to date no structural data have been reported. Here we report the crystal structure of the human 4-1BB/4-1BBL complex at 2.4 Å resolution. In this structure, 4-1BBL does not adopt the unusual trimer assembly previously reported, but instead forms a canonical bell-shaped trimer typical of other TNF superfamily members. The structure of 4-1BB is also largely canonical as is the 4-1BB/4-1BBL complex. Mutational data support the 4-1BBL structure reported here as being biologically relevant, suggesting that the previously reported structure is not. Together, the data presented here offer insight into structure/function relationships in the 4-1BB/4-1BBL system and improve our structural understanding of the TNF/TNFR superfamily more broadly. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  18. An MCDA approach for the selection of bike projects based on structuring and appraising activities

    DEFF Research Database (Denmark)

    Barfod, Michael Bruhn

    2012-01-01

    This paper presents an MCDA approach for the structuring and appraising activities of a large and complex decision problem. More specifically, the paper makes use of the three-step structuring process for decision analysis proposed by von Winterfeldt and Edwards: 1) identifying the problem; 2) se...

  19. Structure/activity of Pt{sup II}/N,N-disubstituted-N'-acylthiourea complexes: Anti-tumor and anti-mycobacterium tuberculosis activities

    Energy Technology Data Exchange (ETDEWEB)

    Plutín, Ana M.; Alvarez, Anislay; Mocelo, Raúl; Ramos, Raúl; Sánchez, Osmar C. [Laboratorio de Síntesis Orgánica, Facultad de Química, Universidad de La Habana (Cuba); Castellano, Euardo E. [Universidade de São Paulo (USP), São Carlos, SP (Brazil); Silva, Monize M. da; Villarreal, Wilmer; Colina-Vegas, Legna; Batista, Alzir A. [Universidade Federal de São Carlos (UFSCar), SP (Brazil); Pavan, Fernando R., E-mail: anap@fq.uh.cu, E-mail: daab@ufscar.br [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Araraquara, SP (Brazil). Faculdade de Ciências Farmacêuticas

    2018-05-01

    The syntheses, characterization, cytotoxicity against tumor cells and anti-Mycobacterium tuberculosis activity assays of Pt{sup II}/PPh{sub 3}/N,N-disubstituted-N'-acylthioureas complexes with general formulae [Pt(PPh{sub 3}){sub 2}(L)]PF{sub 6}, PPh{sub 3} = triphenylphosphine; L = N,N-disubstituted-N'-acylthiourea, are here reported. The complexes were characterized by elemental analysis, molar conductivity, infrared (IR), nuclear magnetic resonance (NMR) ({sup 1} H, {sup 13}C{1 H} and {sup 31}P{"1 H}) spectroscopy. The {sup 31}P{"1 H} NMR data are consistent with the presence of two PPh{sup 3} ligands cis to each other position, and one N,N-disubstituted-N'-acylthiourea coordinated to the metal through O and S, in a chelate form. The structures of the complexes were determined by X-ray crystallography, forming distorted square-planar structures. The complexes were tested in human cell lines carcinomas and also screened with respect to their anti-Mycobacterium tuberculosis activity (H37RvATCC 27294). It was found that complexes with N,N-disubstituted-N'-acylthiourea containing open and small chains as R2 groups show higher cytotoxic and higher anti-Mycobacterium tuberculosis activity than those containing rings in this position. (author)

  20. Active sensors for health monitoring of aging aerospace structures

    Science.gov (United States)

    Giurgiutiu, Victor; Redmond, James M.; Roach, Dennis P.; Rackow, Kirk

    2000-06-01

    A project to develop non-intrusive active sensors that can be applied on existing aging aerospace structures for monitoring the onset and progress of structural damage (fatigue cracks and corrosion) is presented. The state of the art in active sensors structural health monitoring and damage detection is reviewed. Methods based on (a) elastic wave propagation and (b) electro-mechanical (E/M) impedance technique are cited and briefly discussed. The instrumentation of these specimens with piezoelectric active sensors is illustrated. The main detection strategies (E/M impedance for local area detection and wave propagation for wide area interrogation) are discussed. The signal processing and damage interpretation algorithms are tuned to the specific structural interrogation method used. In the high frequency E/M impedance approach, pattern recognition methods are used to compare impedance signatures taken at various time intervals and to identify damage presence and progression from the change in these signatures. In the wave propagation approach, the acousto- ultrasonic methods identifying additional reflection generated from the damage site and changes in transmission velocity and phase are used. Both approaches benefit from the use of artificial intelligence neural networks algorithms that can extract damage features based on a learning process. Design and fabrication of a set of structural specimens representative of aging aerospace structures is presented. Three built-up specimens, (pristine, with cracks, and with corrosion damage) are used. The specimen instrumentation with active sensors fabricated at the University of South Carolina is illustrated. Preliminary results obtained with the E/M impedance method on pristine and cracked specimens are presented.

  1. The 1.25 Å resolution structure of phosphoribosyl-ATP pyrophosphohydrolase from Mycobacterium tuberculosis

    Energy Technology Data Exchange (ETDEWEB)

    Javid-Majd, Farah; Yang, Dong [Department of Biochemistry and Biophysics, Texas A& M University, College Station, Texas 77843-2128 (United States); Ioerger, Thomas R. [Department of Computer Science, Texas A& M University, College Station, Texas 77843-2128 (United States); Sacchettini, James C., E-mail: sacchett@tamu.edu [Department of Biochemistry and Biophysics, Texas A& M University, College Station, Texas 77843-2128 (United States)

    2008-06-01

    The crystal structure of M. tuberculosis phosphoribosyl-ATP pyrophosphohydrolase, the second enzyme in the histidine-biosynthetic pathway, is presented. The structural and inferred functional relationships between M. tuberculosis phosphoribosyl-ATP pyrophosphohydrolase and other members of the nucleoside-triphosphate pyrophosphatase-fold family are described. Phosphoribosyl-ATP pyrophosphohydrolase is the second enzyme in the histidine-biosynthetic pathway, irreversibly hydrolyzing phosphoribosyl-ATP to phosphoribosyl-AMP and pyrophosphate. It is encoded by the hisE gene, which is present as a separate gene in many bacteria and archaea but is fused to hisI in other bacteria, fungi and plants. Because of its essentiality for growth in vitro, HisE is a potential drug target for tuberculosis. The crystal structures of two native (uncomplexed) forms of HisE from Mycobacterium tuberculosis have been determined to resolutions of 1.25 and 1.79 Å. The structure of the apoenzyme reveals that the protein is composed of five α-helices with connecting loops and is a member of the α-helical nucleoside-triphosphate pyrophosphatase superfamily. The biological unit of the protein is a homodimer, with an active site on each subunit composed of residues exclusively from that subunit. A comparison with the Campylobacter jejuni dUTPase active site allowed the identification of putative metal- and substrate-binding sites in HisE, including four conserved glutamate and glutamine residues in the sequence that are consistent with a motif for pyrophosphohydrolase activity. However, significant differences between family members are observed in the loop region between α-helices H1 and H3. The crystal structure of M. tuberculosis HisE provides insights into possible mechanisms of substrate binding and the diversity of the nucleoside-triphosphate pyrophosphatase superfamily.

  2. Relationships between Th1 or Th2 iNKT cell activity and structures of CD1d-antigen complexes: meta-analysis of CD1d-glycolipids dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Xavier Laurent

    2014-11-01

    Full Text Available A number of potentially bioactive molecules can be found in nature. In particular, marine organisms are a valuable source of bioactive compounds. The activity of an α-galactosylceramide was first discovered in 1993 via screening of a Japanese marine sponge (Agelas mauritanius. Very rapidly, a synthetic glycololipid analogue of this natural molecule was discovered, called KRN7000. Associated with the CD1d protein, this α-galactosylceramide 1 (KRN7000 interacts with the T-cell antigen receptor to form a ternary complex that yields T helper (Th 1 and Th2 responses with opposing effects. In our work, we carried out molecular dynamics simulations (11.5 µs in total involving eight different ligands (conducted in triplicate in an effort to find out correlation at the molecular level, if any, between chemical modulation of 1 and the orientation of the known biological response, Th1 or Th2. Comparative investigations of human versus mouse and Th1 versus Th2 data have been carried out. A large set of analysis tools was employed including free energy landscapes. One major result is the identification of a specific conformational state of the sugar polar head, which could be correlated, in the present study, to the biological Th2 biased response. These theoretical tools provide a structural basis for predicting the very different dynamical behaviors of α-glycosphingolipids in CD1d and might aid in the future design of new analogues of 1.

  3. Active cells for redundant and configurable articulated structures

    International Nuclear Information System (INIS)

    Swensen, John P; Nawroj, Ahsan I; Pounds, Paul E I; Dollar, Aaron M

    2014-01-01

    The proposed research effort explores the development of active cells—simple contractile electro-mechanical units that can be used as the material basis for larger articulable structures. Each cell, which might be considered a ‘muscle unit,’ consists of a contractile Nitinol Shape Memory Alloy (SMA) core with conductive terminals. Large numbers of these cells might be combined and externally powered to change phase, contracting to either articulate with a large strain or increase the stiffness of the ensemble, depending on the cell design. Unlike traditional work in modular robotics, the approach presented here focuses on cells that have a simplistic design and function, are inexpensive to fabricate, and are eventually scalable to sub-millimeter sizes, working toward our vision of articulated and robotic structures that can be custom-fabricated from large numbers of general cell units, similar to biological structures. In this paper, we present the design of the active cells and demonstrate their usage with three articulated structures built with them. (paper)

  4. Quantitative Structure-Activity Relationship Analysis of the ...

    African Journals Online (AJOL)

    Erah

    Quantitative Structure-Activity Relationship Analysis of the Anticonvulsant ... Two types of molecular descriptors, including the 2D autocorrelation ..... It is based on the simulation of natural .... clustering anticonvulsant, antidepressant, and.

  5. 6-Nitrobenzimidazole derivatives: potential phosphodiesterase inhibitors: synthesis and structure-activity relationship.

    Science.gov (United States)

    Khan, K M; Shah, Zarbad; Ahmad, V U; Ambreen, N; Khan, M; Taha, M; Rahim, F; Noreen, S; Perveen, S; Choudhary, M I; Voelter, W

    2012-02-15

    6-Nitrobenzimidazole derivatives (1-30) synthesized and their phosphodiesterase inhibitory activities determined. Out of thirty tested compounds, ten showed a varying degrees of phosphodiesterase inhibition with IC(50) values between 1.5±0.043 and 294.0±16.7 μM. Compounds 30 (IC(50)=1.5±0.043 μM), 1 (IC(50)=2.4±0.049 μM), 11 (IC(50)=5.7±0.113 μM), 13 (IC(50)=6.4±0.148 μM), 14 (IC(50)=10.5±0.51 μM), 9 (IC(50)=11.49±0.08 μM), 3 (IC(50)=63.1±1.48 μM), 10 (IC(50)=120.0±4.47 μM), and 6 (IC(50)=153.2±5.6 μM) showed excellent phosphodiesterase inhibitory activity, much superior to the standard EDTA (IC(50)=274±0.007 μM), and thus are potential molecules for the development of a new class of phosphodiesterase inhibitors. A structure-activity relationship is evaluated. All compounds are characterized by spectroscopic parameters. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. RPA activates the XPF‐ERCC1 endonuclease to initiate processing of DNA interstrand crosslinks

    KAUST Repository

    Abdullah, Ummi B

    2017-06-13

    During replication‐coupled DNA interstrand crosslink (ICL) repair, the XPF‐ERCC1 endonuclease is required for the incisions that release, or “unhook”, ICLs, but the mechanism of ICL unhooking remains largely unknown. Incisions are triggered when the nascent leading strand of a replication fork strikes the ICL. Here, we report that while purified XPF‐ERCC1 incises simple ICL‐containing model replication fork structures, the presence of a nascent leading strand, modelling the effects of replication arrest, inhibits this activity. Strikingly, the addition of the single‐stranded DNA (ssDNA)‐binding replication protein A (RPA) selectively restores XPF‐ERCC1 endonuclease activity on this structure. The 5′–3′ exonuclease SNM1A can load from the XPF‐ERCC1‐RPA‐induced incisions and digest past the crosslink to quantitatively complete the unhooking reaction. We postulate that these collaborative activities of XPF‐ERCC1, RPA and SNM1A might explain how ICL unhooking is achieved in vivo.

  7. RPA activates the XPF‐ERCC1 endonuclease to initiate processing of DNA interstrand crosslinks

    KAUST Repository

    Abdullah, Ummi B; McGouran, Joanna F; Brolih, Sanja; Ptchelkine, Denis; El‐Sagheer, Afaf H; Brown, Tom; McHugh, Peter J

    2017-01-01

    During replication‐coupled DNA interstrand crosslink (ICL) repair, the XPF‐ERCC1 endonuclease is required for the incisions that release, or “unhook”, ICLs, but the mechanism of ICL unhooking remains largely unknown. Incisions are triggered when the nascent leading strand of a replication fork strikes the ICL. Here, we report that while purified XPF‐ERCC1 incises simple ICL‐containing model replication fork structures, the presence of a nascent leading strand, modelling the effects of replication arrest, inhibits this activity. Strikingly, the addition of the single‐stranded DNA (ssDNA)‐binding replication protein A (RPA) selectively restores XPF‐ERCC1 endonuclease activity on this structure. The 5′–3′ exonuclease SNM1A can load from the XPF‐ERCC1‐RPA‐induced incisions and digest past the crosslink to quantitatively complete the unhooking reaction. We postulate that these collaborative activities of XPF‐ERCC1, RPA and SNM1A might explain how ICL unhooking is achieved in vivo.

  8. Defining optimal tracer activities in pediatric oncologic whole-body "1"8F-FDG-PET/MRI

    International Nuclear Information System (INIS)

    Gatidis, Sergios; Schmidt, Holger; Nikolaou, Konstantin; Schwenzer, Nina F.; Schaefer, Juergen F.; La Fougere, Christian

    2016-01-01

    To explore the feasibility of reducing administered tracer activities and to assess optimal activities for combined "1"8F-FDG-PET/MRI in pediatric oncology. 30 "1"8F-FDG-PET/MRI examinations were performed on 24 patients with known or suspected solid tumors (10 girls, 14 boys, age 12 ± 5.6 [1-18] years; PET scan duration: 4 min per bed position). Low-activity PET images were retrospectively simulated from the originally acquired data sets using randomized undersampling of list mode data. PET data of different simulated administered activities (0.25-2.5 MBq/kg body weight) were reconstructed with or without point spread function (PSF) modeling. Mean and maximum standardized uptake values (SUV_m_e_a_n and SUV_m_a_x) as well as SUV variation (SUV_v_a_r) were measured in physiologic organs and focal FDG-avid lesions. Detectability of organ structures and of focal "1"8F-FDG-avid lesions as well as the occurrence of false-positive PET lesions were assessed at different simulated tracer activities. Subjective image quality steadily declined with decreasing tracer activities. Compared to the originally acquired data sets, mean relative deviations of SUV_m_e_a_n and SUV_m_a_x were below 5 % at "1"8F-FDG activities of 1.5 MBq/kg or higher. Over 95 % of anatomic structures and all pathologic focal lesions were detectable at 1.5 MBq/kg "1"8F-FDG. Detectability of anatomic structures and focal lesions was significantly improved using PSF. No false-positive focal lesions were observed at tracer activities of 1 MBq/kg "1"8F-FDG or higher. Administration of "1"8F-FDG activities of 1.5 MBq/kg is, thus, feasible without obvious diagnostic shortcomings, which is equivalent to a dose reduction of more than 50 % compared to current recommendations. Significant reduction in administered "1"8F-FDG tracer activities is feasible in pediatric oncologic PET/MRI. Appropriate activities of "1"8F-FDG or other tracers for specific clinical questions have to be further established in selected

  9. 7,8-secolignans from Schisandra neglecta and their anti-HIV-1 activities

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Xuemei; Mu, Huaixue; Hu, Qiufen, E-mail: huqiufena@yahoo.com.cn [Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan University of Nationalities (China); Wang, Ruirui; Yang, Liumeng; Zheng, Yongtang [Kunming Institute of Zoology, Chinese Academy of Sciences (China); Sun, Handong; Xiao, Weilie, E-mail: xwl@mail.kib.ac.cn [State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming (China)

    2012-10-15

    Four new 7,8-secolignans (neglectahenols A-D), together with two known 7,8-secolignans, were isolated from leaves and stems of Schisandra neglecta. The structures were elucidated by spectroscopic methods, including extensive one and two dimension NMR (nuclear magnetic resonance) techniques. 7,8-Secolignans and neglectahenols A-D were also tested for their anti-HIV-1 (human immunodeficiency virus type 1) activities, and all of them showed modest activities. (author)

  10. BART Inhibits Pancreatic Cancer Cell Invasion by Rac1 Inactivation through Direct Binding to Active Rac1

    Directory of Open Access Journals (Sweden)

    Keisuke Taniuchi

    2012-05-01

    Full Text Available We report that Binder of Arl Two (BART plays a role in inhibiting cell invasion by regulating the activity of the Rho small guanosine triphosphatase protein Rac1 in pancreatic cancer cells. BART was originally identified as a binding partner of ADP-ribosylation factor-like 2, a small G protein implicated as a regulator of microtubule dynamics and folding. BART interacts with active forms of Rac1, and the BART-Rac1 complex localizes at the leading edges of migrating cancer cells. Suppression of BART increases active Rac1, thereby increasing cell invasion. Treatment of pancreatic cancer cells in which BART is stably knocked down with a Rac1 inhibitor decreases invasiveness. Thus, BART-dependent inhibition of cell invasion is likely associated with decreased active Rac1. Suppression of BART induces membrane ruffling and lamellipodial protrusion and increases peripheral actin structures in membrane ruffles at the edges of lamellipodia. The Rac1 inhibitor inhibits the lamellipodia formation that is stimulated by suppression of BART. Our results imply that BART regulates actin-cytoskeleton rearrangements at membrane ruffles through modulation of the activity of Rac1, which, in turn, inhibits pancreatic cancer cell invasion.

  11. 1,4,2-Benzo/pyridodithiazine 1,1-dioxides structurally related to the ATP-sensitive potassium channel openers 1,2,4-Benzo/pyridothiadiazine 1,1-dioxides exert a myorelaxant activity linked to a distinct mechanism of action.

    Science.gov (United States)

    Pirotte, Bernard; de Tullio, Pascal; Florence, Xavier; Goffin, Eric; Somers, Fabian; Boverie, Stéphane; Lebrun, Philippe

    2013-04-25

    The synthesis of diversely substituted 3-alkyl/aralkyl/arylamino-1,4,2-benzodithiazine 1,1-dioxides and 3-alkylaminopyrido[4,3-e]-1,4,2-dithiazine 1,1-dioxides is described. Their biological activities on pancreatic β-cells and on smooth muscle cells were compared to those of the reference ATP-sensitive potassium channel (KATP channel) openers diazoxide and 7-chloro-3-isopropylamino-4H-1,2,4-benzothiadiazine 1,1-dioxide. The aim was to assess the impact on biological activities of the replacement of the 1,2,4-thiadiazine ring by an isosteric 1,4,2-dithiazine ring. Most of the dithiazine analogues were found to be inactive on the pancreatic tissue, although some compounds bearing a 1-phenylethylamino side chain at the 3-position exerted a marked myorelaxant activity. Such an effect did not appear to be related to the opening of KATP channels but rather reflected a mechanism of action similar to that of calcium channel blockers. Tightly related 3-(1-phenylethyl)sulfanyl-4H-1,2,4-benzothiadiazine 1,1-dioxides were also found to exert a pronounced myorelaxant activity, resulting from both a KATP channel activation and a calcium channel blocker mechanism. The present work highlights the critical importance of an intracyclic NH group at the 4-position, as well as an exocyclic NH group linked to the 3-position of the benzo- and pyridothiadiazine dioxides, for activity on KATP channels.

  12. Structure-activity relationship studies of 1,7-diheteroarylhepta-1,4,6-trien-3-ones with two different terminal rings in prostate epithelial cell models.

    Science.gov (United States)

    Wang, Rubing; Zhang, Xiaojie; Chen, Chengsheng; Chen, Guanglin; Sarabia, Cristian; Zhang, Qiang; Zheng, Shilong; Wang, Guangdi; Chen, Qiao-Hong

    2017-06-16

    To systematically investigate the structure-activity relationships of 1,7-diheteroarylhepta-1,4,6-trien-3-ones in three human prostate cancer cell models and one human prostate non-neoplastic epithelial cell model, thirty five 1,7-diarylhepta-1,4,6-trien-3-ones with different terminal heteroaromatic rings have been designed for evaluation of their anti-proliferative potency in vitro. These target compounds have been successfully synthesized through two sequential Horner-Wadsworth-Emmons reactions starting from the appropriate aldehydes and tetraethyl (2-oxopropane-1,3-diyl)bis(phosphonate). Their anti-proliferative potency against PC-3, DU-145 and LNCaP human prostate cancer cell lines can be significantly enhanced by the manipulation of the terminal heteroaromatic rings, further demonstrating the utility of 1,7-diarylhepta-1,4,6-trien-3-one as a potential scaffold for the development of anti-prostate cancer agents. The optimal analog 40 is 82-, 67-, and 39-fold more potent than curcumin toward the three prostate cancer cell lines, respectively. The experimental data also reveal that the trienones with two different terminal aromatic rings possess greater potency toward three prostate cancer cell lines, but also have greater capability of suppressing the proliferation of PWR-1E benign human prostate epithelial cells, as compared to the corresponding counterparts with two identical terminal rings and curcumin. The terminal aromatic rings also affect the cell apoptosis perturbation. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Low resolution solution structure of HAMLET and the importance of its alpha-domains in tumoricidal activity.

    Science.gov (United States)

    Ho, C S James; Rydstrom, Anna; Manimekalai, Malathy Sony Subramanian; Svanborg, Catharina; Grüber, Gerhard

    2012-01-01

    HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cells) is the first member in a new family of protein-lipid complexes with broad tumoricidal activity. Elucidating the molecular structure and the domains crucial for HAMLET formation is fundamental for understanding its tumoricidal function. Here we present the low-resolution solution structure of the complex of oleic acid bound HAMLET, derived from small angle X-ray scattering data. HAMLET shows a two-domain conformation with a large globular domain and an extended part of about 2.22 nm in length and 1.29 nm width. The structure has been superimposed into the related crystallographic structure of human α-lactalbumin, revealing that the major part of α-lactalbumin accommodates well in the shape of HAMLET. However, the C-terminal residues from L105 to L123 of the crystal structure of the human α-lactalbumin do not fit well into the HAMLET structure, resulting in an extended conformation in HAMLET, proposed to be required to form the tumoricidal active HAMLET complex with oleic acid. Consistent with this low resolution structure, we identified biologically active peptide epitopes in the globular as well as the extended domains of HAMLET. Peptides covering the alpha1 and alpha2 domains of the protein triggered rapid ion fluxes in the presence of sodium oleate and were internalized by tumor cells, causing rapid and sustained changes in cell morphology. The alpha peptide-oleate bound forms also triggered tumor cell death with comparable efficiency as HAMLET. In addition, shorter peptides corresponding to those domains are biologically active. These findings provide novel insights into the structural prerequisites for the dramatic effects of HAMLET on tumor cells.

  14. Designing complex systems - a structured activity

    NARCIS (Netherlands)

    van der Veer, Gerrit C.; van Vliet, Johannes C.; Lenting, Bert; Olson, Gary M.; Schuon, Sue

    1995-01-01

    This paper concerns the development of complex systems from the point of view of design as a structure of activities, related both to the clients and the users. Several modeling approaches will be adopted for different aspects of design, and several views on design will be integrated. The proposed

  15. Identification of the Regulator Gene Responsible for the Acetone-Responsive Expression of the Binuclear Iron Monooxygenase Gene Cluster in Mycobacteria ▿

    Science.gov (United States)

    Furuya, Toshiki; Hirose, Satomi; Semba, Hisashi; Kino, Kuniki

    2011-01-01

    The mimABCD gene cluster encodes the binuclear iron monooxygenase that oxidizes propane and phenol in Mycobacterium smegmatis strain MC2 155 and Mycobacterium goodii strain 12523. Interestingly, expression of the mimABCD gene cluster is induced by acetone. In this study, we investigated the regulator gene responsible for this acetone-responsive expression. In the genome sequence of M. smegmatis strain MC2 155, the mimABCD gene cluster is preceded by a gene designated mimR, which is divergently transcribed. Sequence analysis revealed that MimR exhibits amino acid similarity with the NtrC family of transcriptional activators, including AcxR and AcoR, which are involved in acetone and acetoin metabolism, respectively. Unexpectedly, many homologs of the mimR gene were also found in the sequenced genomes of actinomycetes. A plasmid carrying a transcriptional fusion of the intergenic region between the mimR and mimA genes with a promoterless green fluorescent protein (GFP) gene was constructed and introduced into M. smegmatis strain MC2 155. Using a GFP reporter system, we confirmed by deletion and complementation analyses that the mimR gene product is the positive regulator of the mimABCD gene cluster expression that is responsive to acetone. M. goodii strain 12523 also utilized the same regulatory system as M. smegmatis strain MC2 155. Although transcriptional activators of the NtrC family generally control transcription using the σ54 factor, a gene encoding the σ54 factor was absent from the genome sequence of M. smegmatis strain MC2 155. These results suggest the presence of a novel regulatory system in actinomycetes, including mycobacteria. PMID:21856847

  16. Crystal structure of the plexin A3 intracellular region reveals an autoinhibited conformation through active site sequestration

    Energy Technology Data Exchange (ETDEWEB)

    He, Huawei; Yang, Taehong; Terman, Jonathan R.; Zhang, Xuewu; (UTSMC)

    2010-01-20

    Plexin cell surface receptors bind to semaphorin ligands and transduce signals for regulating neuronal axon guidance. The intracellular region of plexins is essential for signaling and contains a R-Ras/M-Ras GTPase activating protein (GAP) domain that is divided into two segments by a Rho GTPase-binding domain (RBD). The regulation mechanisms for plexin remain elusive, although it is known that activation requires both binding of semaphorin to the extracellular region and a Rho-family GTPase (Rac1 or Rnd1) to the RBD. Here we report the crystal structure of the plexin A3 intracellular region. The structure shows that the N- and C-terminal portions of the GAP homologous regions together form a GAP domain with an overall fold similar to other Ras GAPs. However, the plexin GAP domain adopts a closed conformation and cannot accommodate R-Ras/M-Ras in its substrate-binding site, providing a structural basis for the autoinhibited state of plexins. A comparison with the plexin B1 RBD/Rnd1 complex structure suggests that Rnd1 binding alone does not induce a conformational change in plexin, explaining the requirement of both semaphorin and a Rho GTPase for activation. The structure also identifies an N-terminal segment that is important for regulation. Both the N-terminal segment and the RBD make extensive interactions with the GAP domain, suggesting the presence of an allosteric network connecting these three domains that integrates semaphorin and Rho GTPase signals to activate the GAP. The importance of these interactions in plexin signaling is shown by both cell-based and in vivo axon guidance assays.

  17. Porous structure and surface chemistry of phosphoric acid activated carbon from corncob

    International Nuclear Information System (INIS)

    Sych, N.V.; Trofymenko, S.I.; Poddubnaya, O.I.; Tsyba, M.M.; Sapsay, V.I.; Klymchuk, D.O.; Puziy, A.M.

    2012-01-01

    Highlights: ► Phosphoric acid activation results in formation of carbons with acidic surface groups. ► Maximum amount of surface groups is introduced at impregnation ratio 1.25. ► Phosphoric acid activated carbons show high capacity to copper. ► Phosphoric acid activated carbons are predominantly microporous. ► Maximum surface area and pore volume achieved at impregnation ratio 1.0. - Abstract: Active carbons have been prepared from corncob using chemical activation with phosphoric acid at 400 °C using varied ratio of impregnation (RI). Porous structure of carbons was characterized by nitrogen adsorption and scanning electron microscopy. Surface chemistry was studied by IR and potentiometric titration method. It has been shown that porosity development was peaked at RI = 1.0 (S BET = 2081 m 2 /g, V tot = 1.1 cm 3 /g), while maximum amount of acid surface groups was observed at RI = 1.25. Acid surface groups of phosphoric acid activated carbons from corncob includes phosphate and strongly acidic carboxylic (pK = 2.0–2.6), weakly acidic carboxylic (pK = 4.7–5.0), enol/lactone (pK = 6.7–7.4; 8.8–9.4) and phenol (pK = 10.1–10.7). Corncob derived carbons showed high adsorption capacity to copper, especially at low pH. Maximum adsorption of methylene blue and iodine was observed for carbon with most developed porosity (RI = 1.0).

  18. Porous structure and surface chemistry of phosphoric acid activated carbon from corncob

    Energy Technology Data Exchange (ETDEWEB)

    Sych, N.V.; Trofymenko, S.I.; Poddubnaya, O.I.; Tsyba, M.M. [Institute for Sorption and Endoecology Problems, National Academy of Sciences of Ukraine, 13 General Naumov St., 03164 Kyiv (Ukraine); Sapsay, V.I.; Klymchuk, D.O. [M.G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine, 2 Tereshchenkivska St., 01601 Kyiv (Ukraine); Puziy, A.M., E-mail: alexander.puziy@ispe.kiev.ua [Institute for Sorption and Endoecology Problems, National Academy of Sciences of Ukraine, 13 General Naumov St., 03164 Kyiv (Ukraine)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Phosphoric acid activation results in formation of carbons with acidic surface groups. Black-Right-Pointing-Pointer Maximum amount of surface groups is introduced at impregnation ratio 1.25. Black-Right-Pointing-Pointer Phosphoric acid activated carbons show high capacity to copper. Black-Right-Pointing-Pointer Phosphoric acid activated carbons are predominantly microporous. Black-Right-Pointing-Pointer Maximum surface area and pore volume achieved at impregnation ratio 1.0. - Abstract: Active carbons have been prepared from corncob using chemical activation with phosphoric acid at 400 Degree-Sign C using varied ratio of impregnation (RI). Porous structure of carbons was characterized by nitrogen adsorption and scanning electron microscopy. Surface chemistry was studied by IR and potentiometric titration method. It has been shown that porosity development was peaked at RI = 1.0 (S{sub BET} = 2081 m{sup 2}/g, V{sub tot} = 1.1 cm{sup 3}/g), while maximum amount of acid surface groups was observed at RI = 1.25. Acid surface groups of phosphoric acid activated carbons from corncob includes phosphate and strongly acidic carboxylic (pK = 2.0-2.6), weakly acidic carboxylic (pK = 4.7-5.0), enol/lactone (pK = 6.7-7.4; 8.8-9.4) and phenol (pK = 10.1-10.7). Corncob derived carbons showed high adsorption capacity to copper, especially at low pH. Maximum adsorption of methylene blue and iodine was observed for carbon with most developed porosity (RI = 1.0).

  19. PBDE: Structure-Activity Studies for the Inhibition of Hepatitis C Virus NS3 Helicase

    Directory of Open Access Journals (Sweden)

    Kazi Abdus Salam

    2014-04-01

    Full Text Available The helicase portion of the hepatitis C virus nonstructural protein 3 (NS3 is considered one of the most validated targets for developing direct acting antiviral agents. We isolated polybrominated diphenyl ether (PBDE 1 from a marine sponge as an NS3 helicase inhibitor. In this study, we evaluated the inhibitory effects of PBDE (1 on the essential activities of NS3 protein such as RNA helicase, ATPase, and RNA binding activities. The structure-activity relationship analysis of PBDE (1 against the HCV ATPase revealed that the biphenyl ring, bromine, and phenolic hydroxyl group on the benzene backbone might be a basic scaffold for the inhibitory potency.

  20. Flavonoids as Vasorelaxant Agents: Synthesis, Biological Evaluation and Quantitative Structure Activities Relationship (QSAR Studies

    Directory of Open Access Journals (Sweden)

    Yongzhou Hu

    2011-09-01

    Full Text Available A series of 2-(2-diethylamino-ethoxychalcone and 6-prenyl(or its isomers-flavanones 10a,b and 11a–g were synthesized and evaluated for their vasorelaxant activities against rat aorta rings pretreated with 1 μM phenylephrine (PE. Several compounds showed potent vasorelaxant activities. Compound 10a (EC50 = 7.6 μM, Emax = 93.1%, the most potent one, would be a promising structural template for development of novel and more efficient vasodilators. Further, 2D-QSAR analysis of compounds 10a,b and 11c-e as well as thirty previously synthesized flavonoids 1-3 and 12-38 using Enhanced Replacement Method-Multiple Linear Regression (ERM-MLR was further performed based on an optimal set of molecular descriptors (H5m, SIC2, DISPe, Mor03u and L3m, leading to a reliable model with good predictive ability (Rtrain2 = 0.839, Qloo2 = 0.733 and Rtest2 = 0.804. The results provide good insights into the structure- activity relationships of the target compounds.

  1. THE DEVELOPMENT OF SELF STRUCTURES AND ACTIVE COPING

    Directory of Open Access Journals (Sweden)

    J. Knežević

    2016-03-01

    Full Text Available In addition to cope with usual stressful circumstances at work, nowadays, it is important to examine what kind of mental capacities of medical staff are adaptive in respect of a new type of stress – job insecurity. Special focus is put upon self structures as personality determinants and the role they have in coping.. The aim of the study was to determine the role of the self structures in active coping with job insecurity. It was supposed that the increasing integration of self structures leads to increasing use of active coping strategies. Perceived job insecurity was measured by The job insecurity perception scale (Knežević and Majstorović, 2013. The Ego Functioning Questionnaire (Majstorović, Legault and Green-Demers, 2008 was used to evaluate types of ego-functioning; coping were assessed by the Cybernetic coping scale (Edwards and Baglioni, 1993. In order to test the hypothesis the multivariate regression analysis was developed with self-regulation as predictor and active coping strategy as a criterion. A significant model F(3, 306 = 26,73, p < 0,001, was obtained with all the predictors selected as significant. The prediction directions were as expected - Integrated and Ego-investing self were positive predictors (β = 0,35, p < 0,001, and β = 0,16, p < 0,01, respectively, while the impersonal self singled out as a negative predictor (β = –0,13, p < 0,05. The results have shown that the development of self structures is valid predictor for the active coping of medical staff when facing with job insecurity.

  2. Analysis of non-typeable Haemophilous influenzae VapC1 mutations reveals structural features required for toxicity and flexibility in the active site.

    Directory of Open Access Journals (Sweden)

    Brooke Hamilton

    Full Text Available Bacteria have evolved mechanisms that allow them to survive in the face of a variety of stresses including nutrient deprivation, antibiotic challenge and engulfment by predator cells. A switch to dormancy represents one strategy that reduces energy utilization and can render cells resistant to compounds that kill growing bacteria. These persister cells pose a problem during treatment of infections with antibiotics, and dormancy mechanisms may contribute to latent infections. Many bacteria encode toxin-antitoxin (TA gene pairs that play an important role in dormancy and the formation of persisters. VapBC gene pairs comprise the largest of the Type II TA systems in bacteria and they produce a VapC ribonuclease toxin whose activity is inhibited by the VapB antitoxin. Despite the importance of VapBC TA pairs in dormancy and persister formation, little information exists on the structural features of VapC proteins required for their toxic function in vivo. Studies reported here identified 17 single mutations that disrupt the function of VapC1 from non-typeable H. influenzae in vivo. 3-D modeling suggests that side chains affected by many of these mutations sit near the active site of the toxin protein. Phylogenetic comparisons and secondary mutagenesis indicate that VapC1 toxicity requires an alternative active site motif found in many proteobacteria. Expression of the antitoxin VapB1 counteracts the activity of VapC1 mutants partially defective for toxicity, indicating that the antitoxin binds these mutant proteins in vivo. These findings identify critical chemical features required for the biological function of VapC toxins and PIN-domain proteins.

  3. Aspartate and glutamate mimetic structures in biologically active compounds.

    Science.gov (United States)

    Stefanic, Peter; Dolenc, Marija Sollner

    2004-04-01

    Glutamate and aspartate are frequently recognized as key structural elements for the biological activity of natural peptides and synthetic compounds. The acidic side-chain functionality of both the amino acids provides the basis for the ionic interaction and subsequent molecular recognition by specific receptor sites that results in the regulation of physiological or pathophysiological processes in the organism. In the development of new biologically active compounds that possess the ability to modulate these processes, compounds offering the same type of interactions are being designed. Thus, using a peptidomimetic design approach, glutamate and aspartate mimetics are incorporated into the structure of final biologically active compounds. This review covers different bioisosteric replacements of carboxylic acid alone, as well as mimetics of the whole amino acid structure. Amino acid analogs presented include those with different distances between anionic moieties, and analogs with additional functional groups that result in conformational restriction or alternative interaction sites. The article also provides an overview of different cyclic structures, including various cycloalkane, bicyclic and heterocyclic analogs, that lead to conformational restriction. Higher di- and tripeptide mimetics in which carboxylic acid functionality is incorporated into larger molecules are also reviewed. In addition to the mimetic structures presented, emphasis in this article is placed on their steric and electronic properties. These mimetics constitute a useful pool of fragments in the design of new biologically active compounds, particularly in the field of RGD mimetics and excitatory amino acid agonists and antagonists.

  4. Structural basis for basal activity and autoactivation of abscisic acid (ABA) signaling SnRK2 kinases

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Ley-Moy; Soon, Fen-Fen; Zhou, X. Edward; West, Graham M.; Kovach, Amanda; Suino-Powell, Kelly M.; Chalmers, Michael J.; Li, Jun; Yong, Eu-Leong; Zhu, Jian-Kang; Griffin, Patrick R.; Melcher, Karsten; Xu, H. Eric (Van Andel); (Scripps); (Purdue); (NU Singapore)

    2014-10-02

    Abscisic acid (ABA) is an essential hormone that controls plant growth, development, and responses to abiotic stresses. Central for ABA signaling is the ABA-mediated autoactivation of three monomeric Snf1-related kinases (SnRK2.2, -2.3, and -2.6). In the absence of ABA, SnRK2s are kept in an inactive state by forming physical complexes with type 2C protein phosphatases (PP2Cs). Upon relief of this inhibition, SnRK2 kinases can autoactivate through unknown mechanisms. Here, we report the crystal structures of full-length Arabidopsis thaliana SnRK2.3 and SnRK2.6 at 1.9- and 2.3-{angstrom} resolution, respectively. The structures, in combination with biochemical studies, reveal a two-step mechanism of intramolecular kinase activation that resembles the intermolecular activation of cyclin-dependent kinases. First, release of inhibition by PP2C allows the SnRK2s to become partially active because of an intramolecular stabilization of the catalytic domain by a conserved helix in the kinase regulatory domain. This stabilization enables SnRK2s to gain full activity by activation loop autophosphorylation. Autophosphorylation is more efficient in SnRK2.6, which has higher stability than SnRK2.3 and has well-structured activation loop phosphate acceptor sites that are positioned next to the catalytic site. Together, these data provide a structural framework that links ABA-mediated release of PP2C inhibition to activation of SnRK2 kinases.

  5. Helical 1:1 α/Sulfono-γ-AA Heterogeneous Peptides with Antibacterial Activity

    Energy Technology Data Exchange (ETDEWEB)

    She, Fengyu; Nimmagadda, Alekhya; Teng, Peng; Su, Ma; Zuo, Xiaobing; Cai, Jianfeng

    2016-05-09

    As one of the greatest threats facing in 21st century, antibiotic resistance is now a major public health concern. Host-defense peptides (HDPs) offer an alternative approach to combat emerging multidrug-resistant bacteria. It is known that helical HDPs such as magainin 2 and its analogs adopt cationic amphipathic conformations upon interaction with bacterial membranes, leading to membrane disruption and subsequent bacterial cell death. We have previously shown that amphipathic sulfono-γ-AApeptides could mimic magainin 2 and exhibit bactericidal activity. In this article, we demonstrate for the first time that amphipathic helical 1:1 α/sulfono-γ-AA heterogeneous peptides, in which regular amino acids and sulfono-γ-AApeptide building blocks are alternatively present in a 1:1 pattern, display potent antibacterial activity against both Gram-positive and Gram-negative bacterial pathogens. Small Angle X-ray Scattering (SAXS) suggests that the lead sequences adopt defined helical structures. The subsequent studies including 2 fluorescence microscopy and time-kill experiments indicate that these hybrid peptides exert antimicrobial activity by mimicking the mechanism of HDPs. Our findings may lead to the development of HDP-mimicking antimicrobial peptidomimetics that combat drug-resistant bacterial pathogens. In addition, our results also demonstrate the effective design of a new class of helical foldamer, which could be employed to interrogate other important biological targets such as protein-protein interactions in the future.

  6. Structural mechanism of ligand activation in human calcium-sensing receptor

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Yong; Mosyak, Lidia; Kurinov, Igor; Zuo, Hao; Sturchler, Emmanuel; Cheng, Tat Cheung; Subramanyam, Prakash; Brown, Alice P.; Brennan, Sarah C.; Mun, Hee-chang; Bush, Martin; Chen, Yan; Nguyen, Trang X.; Cao, Baohua; Chang, Donald D.; Quick, Matthias; Conigrave, Arthur D.; Colecraft, Henry M.; McDonald, Patricia; Fan, Qing R.

    2016-07-19

    Human calcium-sensing receptor (CaSR) is a G-protein-coupled receptor (GPCR) that maintains extracellular Ca2+homeostasis through the regulation of parathyroid hormone secretion. It functions as a disulfide-tethered homodimer composed of three main domains, the Venus Flytrap module, cysteine-rich domain, and seven-helix transmembrane region. Here, we present the crystal structures of the entire extracellular domain of CaSR in the resting and active conformations. We provide direct evidence that L-amino acids are agonists of the receptor. In the active structure, L-Trp occupies the orthosteric agonist-binding site at the interdomain cleft and is primarily responsible for inducing extracellular domain closure to initiate receptor activation. Our structures reveal multiple binding sites for Ca2+and PO43-ions. Both ions are crucial for structural integrity of the receptor. While Ca2+ions stabilize the active state, PO43-ions reinforce the inactive conformation. The activation mechanism of CaSR involves the formation of a novel dimer interface between subunits.

  7. Structural Requirements of Alkylglyceryl-l-Ascorbic Acid Derivatives for Melanogenesis Inhibitory Activity.

    Science.gov (United States)

    Taira, Norihisa; Katsuyama, Yushi; Yoshioka, Masato; Muraoka, Osamu; Morikawa, Toshio

    2018-04-10

    l-Ascorbic acid has multifunctional benefits on skin aesthetics, including inhibition of melanin production, and is widely used in cosmetics. It, however, has low stability and poor skin penetration. We hypothesize that alkylglyceryl-l-ascorbic acid derivatives, highly stable vitamin C-alkylglycerol conjugates, would have similar anti-melanogenic activity with better stability and penetration. We test 28 alkylglyceryl-l-ascorbic acid derivatives ( 1 - 28 ) on theophylline-stimulated B16 melanoma 4A5 cells to determine if they inhibit melanogenesis and establish any structure-function relationships. Although not the most potent inhibitors, 3- O -(2,3-dihydroxypropyl)-2- O -hexyl-l-ascorbic acid ( 6 , IC 50 = 81.4 µM) and 2- O -(2,3-dihydroxypropyl)-3- O -hexyl-l-ascorbic acid ( 20 , IC 50 = 117 µM) are deemed the best candidate derivatives based on their inhibitory activities and low toxicities. These derivatives are also found to be more stable than l-ascorbic acid and to have favorable characteristics for skin penetration. The following structural requirements for inhibitory activity of alkylglyceryl-l-ascorbic acid derivatives are also determined: (i) alkylation of glyceryl-l-ascorbic acid is essential for inhibitory activity; (ii) the 3- O -alkyl-derivatives ( 2 - 14 ) exhibit stronger inhibitory activity than the corresponding 2- O -alkyl-derivatives ( 16 - 28 ); and (iii) derivatives with longer alkyl chains have stronger inhibitory activities. Mechanistically, our studies suggest that l-ascorbic acid derivatives exert their effects by suppressing the mRNA expression of tyrosinase and tyrosine-related protein-1.

  8. Glycan structure of Gc Protein-derived Macrophage Activating Factor as revealed by mass spectrometry.

    Science.gov (United States)

    Borges, Chad R; Rehder, Douglas S

    2016-09-15

    Disagreement exists regarding the O-glycan structure attached to human vitamin D binding protein (DBP). Previously reported evidence indicated that the O-glycan of the Gc1S allele product is the linear core 1 NeuNAc-Gal-GalNAc-Thr trisaccharide. Here, glycan structural evidence is provided from glycan linkage analysis and over 30 serial glycosidase-digestion experiments which were followed by analysis of the intact protein by electrospray ionization mass spectrometry (ESI-MS). Results demonstrate that the O-glycan from the Gc1F protein is the same linear trisaccharide found on the Gc1S protein and that the hexose residue is galactose. In addition, the putative anti-cancer derivative of DBP known as Gc Protein-derived Macrophage Activating Factor (GcMAF, which is formed by the combined action of β-galactosidase and neuraminidase upon DBP) was analyzed intact by ESI-MS, revealing that the activating E. coli β-galactosidase cleaves nothing from the protein-leaving the glycan structure of active GcMAF as a Gal-GalNAc-Thr disaccharide, regardless of the order in which β-galactosidase and neuraminidase are applied. Moreover, glycosidase digestion results show that α-N-Acetylgalactosamindase (nagalase) lacks endoglycosidic function and only cleaves the DBP O-glycan once it has been trimmed down to a GalNAc-Thr monosaccharide-precluding the possibility of this enzyme removing the O-glycan trisaccharide from cancer-patient DBP in vivo. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Zymogen Activation and Subcellular Activity of Subtilisin Kexin Isozyme 1/Site 1 Protease*

    Science.gov (United States)

    da Palma, Joel Ramos; Burri, Dominique Julien; Oppliger, Joël; Salamina, Marco; Cendron, Laura; de Laureto, Patrizia Polverino; Seidah, Nabil Georges; Kunz, Stefan; Pasquato, Antonella

    2014-01-01

    The proprotein convertase subtilisin kexin isozyme 1 (SKI-1)/site 1 protease (S1P) plays crucial roles in cellular homeostatic functions and is hijacked by pathogenic viruses for the processing of their envelope glycoproteins. Zymogen activation of SKI-1/S1P involves sequential autocatalytic processing of its N-terminal prodomain at sites B′/B followed by the herein newly identified C′/C sites. We found that SKI-1/S1P autoprocessing results in intermediates whose catalytic domain remains associated with prodomain fragments of different lengths. In contrast to other zymogen proprotein convertases, all incompletely matured intermediates of SKI-1/S1P showed full catalytic activity toward cellular substrates, whereas optimal cleavage of viral glycoproteins depended on B′/B processing. Incompletely matured forms of SKI-1/S1P further process cellular and viral substrates in distinct subcellular compartments. Using a cell-based sensor for SKI-1/S1P activity, we found that 9 amino acid residues at the cleavage site (P1–P8) and P1′ are necessary and sufficient to define the subcellular location of processing and to determine to what extent processing of a substrate depends on SKI-1/S1P maturation. In sum, our study reveals novel and unexpected features of SKI-1/S1P zymogen activation and subcellular specificity of activity toward cellular and pathogen-derived substrates. PMID:25378398

  10. Ring-substituted 4-Hydroxy-1H-quinolin-2-ones: Preparation and Biological Activity

    Directory of Open Access Journals (Sweden)

    Jiri Dohnal

    2009-03-01

    Full Text Available In the study, a series of twelve ring-substituted 4-hydroxy-1H-quinolin-2-one derivatives were prepared. The procedures for synthesis of the compounds are presented. The compounds were analyzed using RP-HPLC to determine lipophilicity and tested for their photosynthesis-inhibiting activity using spinach (Spinacia oleracea L. chloroplasts. All the synthesized compounds were also evaluated for antifungal activity using in vitro screening with eight fungal strains. For all the compounds, the relationships between the lipophilicity and the chemical structure of the studied compounds are discussed, as well as their structure-activity relationships (SAR.

  11. The R2R3-MYB–Like Regulatory Factor EOBI, Acting Downstream of EOBII, Regulates Scent Production by Activating ODO1 and Structural Scent-Related Genes in Petunia[C][W

    Science.gov (United States)

    Spitzer-Rimon, Ben; Farhi, Moran; Albo, Boaz; Cna’ani, Alon; Ben Zvi, Michal Moyal; Masci, Tania; Edelbaum, Orit; Yu, Yixun; Shklarman, Elena; Ovadis, Marianna; Vainstein, Alexander

    2012-01-01

    Flower scent is a highly dynamic trait, under developmental, spatial, and diurnal regulation. The mechanism governing scent production is only beginning to be unraveled. In petunia (Petunia hybrida), EMISSION OF BENZENOIDS II (EOBII) controls transcription of both the shikimate pathway-regulating MYB factor ODORANT1 (ODO1) and phenylpropanoid scent-related structural genes. A promoter-activation screen identified an R2R3-MYB–like regulatory factor of phenylpropanoid volatile biosynthesis acting downstream of EOBII, designated EOBI. EOBI silencing led to downregulation of ODO1 and numerous structural scent-related genes from both the shikimate and phenylpropanoid pathways. The ability of EOBI to directly activate ODO1, as revealed by electrophoretic mobility shift assay and yeast one-hybrid analysis, place EOBI upstream of ODO1 in regulating substrate availability for volatile biosynthesis. Interestingly, ODO1-silenced transgenic petunia flowers accumulated higher EOBI transcript levels than controls, suggesting a complex feedback loop between these regulatory factors. The accumulation pattern of EOBI transcript relative to EOBII and ODO1, and the effect of up/downregulation of EOBII on transcript levels of EOBI and ODO1, further support these factors' hierarchical relationships. The dependence of scent production on EOBI expression and its direct interaction with both regulatory and structural genes provide evidence for EOBI’s wide-ranging involvement in the production of floral volatiles. PMID:23275577

  12. Dynamic adsorption properties of xenon on activated carbons and their structure characterization

    International Nuclear Information System (INIS)

    Liu Suiqing; Liu Jing; Qian Yuan; Zeng Youshi; Du Lin; Pi Li; Liu Wei

    2013-01-01

    Background: In recent years, adsorption of radioactive xenon by activated carbon has been increasingly applied to the treatment of off-gas in nuclear power project. Though pore structure of activated carbon has a great impact on its dynamic adsorption coefficients for xenon, the concerned research is rare. Purpose: It is very necessary to figure out the relationship between the pore structure and the dynamic adsorption coefficients for the purpose of the selection and development of activated carbon. Methods: In this study, the dynamic adsorption coefficients of xenon on four kinds of activated carbons were measured on a dynamic adsorption platform under the condition of 25℃, OMPa (gauge pressure). And these four kinds of activated carbons were characterized by nitrogen adsorption and SEM. Results: The results show that the activated carbon of JH12-16 with the specific surface area of 991.9 m 2 ·g -1 has the largest xenon dynamic adsorption coefficient among these activated carbons. Conclusions: The dynamic adsorption coefficient of xenon on activated carbon doesn't increase with the specific surface area or the pore volume. The mesopore and macropore only play the role of passageway for xenon adsorption. The most suitable pore for xenon adsorption is the pore with the pore size ranged from 0.55 to 0.6 nm. (authors)

  13. Structure-activity relationships of rosiglitazone for peroxisome proliferator-activated receptor gamma transrepression.

    Science.gov (United States)

    Toyota, Yosuke; Nomura, Sayaka; Makishima, Makoto; Hashimoto, Yuichi; Ishikawa, Minoru

    2017-06-15

    Anti-inflammatory effects of peroxisome proliferator-activated receptor gamma (PPRAγ) ligands are thought to be largely due to PPARγ-mediated transrepression. Thus, transrepression-selective PPARγ ligands without agonistic activity or with only partial agonistic activity should exhibit anti-inflammatory properties with reduced side effects. Here, we investigated the structure-activity relationships (SARs) of PPARγ agonist rosiglitazone, focusing on transrepression activity. Alkenic analogs showed slightly more potent transrepression with reduced efficacy of transactivating agonistic activity. Removal of the alkyl group on the nitrogen atom improved selectivity for transrepression over transactivation. Among the synthesized compounds, 3l exhibited stronger transrepressional activity (IC 50 : 14μM) and weaker agonistic efficacy (11%) than rosiglitazone or pioglitazone. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Synthesis and antimicrobial activities of novel 1,4-benzothiazine derivatives

    Directory of Open Access Journals (Sweden)

    Vijay V. Dabholkar

    2016-09-01

    Full Text Available A series of 2H,4H-2-[3,5-dimethyl-4-(substituted phenyl azo pyrazol-1-yl] carbonyl methyl-3-oxo-1,4-benzothiazine derivatives have been synthesized by the reaction of 2H,4H-2-hydrazino carbonyl methyl-3-oxo-1,4-benzothiazine with acetyl acetone derivatives using ultrasound in lesser time with higher yields. All the synthesized compounds were investigated for their antibacterial activities. The result indicated that the compounds show convincing activities against Gram-positive bacteria (Bacillus subtilis and Streptococcus lactis when compared with standard drug (ampicillin trihydrate. These compounds were also synthesized by conventional method and their structures have been elucidated on the basis of spectral analyses and chemical reactions.

  15. Membrane-associated IL 1-like activity on rat dendritic cells

    International Nuclear Information System (INIS)

    Nagelkerken, L.M.; van Breda Vriesman, P.J.C.

    1986-01-01

    The secretion of interleukin 1 (IL 1) by rat dendritic cells (DC) was studied in relation to their ability to induce the production interleukin 2 (IL 2 ) and to induce IL 2 responsiveness. IL 1 (or IL 1-like activity) was measured by its capacity to enhance IL 2 production by EL4 cells. In contrast to peritoneal exudate cells (PEC) or splenic adherent cells, DC from thoracic duct lymph (TD-DC) or from spleen did not secrete detectable amounts of IL 1 on stimulation with LPS/Silica. However, TD-DC and splenic DC were able to enhance IL 2 production by EL4 cells directly, and were only two times less effective than PEC. By preventing cell-to-cell contact between stimulator cells and EL4 cells, it was demonstrated that most of the IL 2-inducing activity of TD-DC and PEC was associated with the cell membrane. Treatment with 1% paraformaldehyde (PFA) to abolish metabolic activity resulted in a 50% decrease (or inactivation) of IL 2-inducing activity of TD-DC in the EL4 assay. Moreover, UVB-irradiation (300 mJ/cm 2 ) of TD-DC, which has been described to inhibit the release of IL 1 by macrophages, caused a 70% decrease in IL 2-inducing activity. These results suggest that membrane-associated structures, that are identical to or mimic Il 1, are involved in the activation of T cells by DC

  16. Structural analysis and anticoagulant activities of two sulfated polysaccharides from the sea cucumber Holothuria coluber.

    Science.gov (United States)

    Yang, Wenjiao; Cai, Ying; Yin, Ronghua; Lin, Lisha; Li, Zhongkun; Wu, Mingyi; Zhao, Jinhua

    2018-05-01

    Sulfated polysaccharides such as fucosylated glycosaminoglycan and fucan sulfate from echinoderm possess complex chemical structure and various biological activities. The two sulfated polysaccharides were purified from the low-value sea cucumber Holothuria coluber. Their physicochemical properties and chemical structures were analyzed and characterized by chemical and instrumental methods. Structural analysis clarified that the sea cucumber fucosylated glycosaminoglycan contains a chondroitin sulfate-like backbone and fucosyl branches with four various sulfation patterns. The fucan sulfate with molecular weight of 64.6 kDa comprises a central core of regular α(1 → 4)-linked tetrasaccharide repeating units, each of which is linked by a 4-O-sulfated fucose residue. Anticoagulant assays indicated that these sulfated polysaccharides possessed strong APTT prolonging activities and intrinsic factor Xase inhibitory activities, both of which decreased with the reduction of their molecular weights. Our results expand knowledge on the structural types of sulfated polysaccharides from sea cucumbers and further illustrate their functionality. Copyright © 2018. Published by Elsevier B.V.

  17. Structure of the Mature Streptococcal Cysteine Protease Exotoxin mSpeB in Its Active Dimeric Form

    DEFF Research Database (Denmark)

    Olsen, Johan G; Dagil, Robert; Niclasen, Louise Meinert

    2009-01-01

    Invasive infections of Streptococcus pyogenes are dependent on the cysteine protease streptococcal pyrogenic exotoxin B. Previous structures of the enzyme have not disclosed the proper active-site configuration. Here, the crystal structure of the mature enzyme is presented to 1.55 A, disclosing...

  18. Preparation of activated carbon aerogels with hierarchically porous structures for electrical double layer capacitors

    International Nuclear Information System (INIS)

    Liu, Dong; Shen, Jun; Liu, Nianping; Yang, Huiyu; Du, Ai

    2013-01-01

    Activated carbon aerogels (ACAs) with hierarchically porous structures and high specific surface area have been prepared via CO 2 and KOH activation processes. The pore structures of ACAs are characterized by N 2 adsorption/desorption and scanning electron microscopy. The experimental results show that the ACAs contain three types of pores: micropores with diameters below 2 nm, small mesopores with diameters from 2 to 4 nm and large pores or channels with diameters over 30 nm. The typical sample ACAs-4, which possess pore volume of 2.73 cm 3 g −1 and specific surface area of 2119 m 2 g −1 , exhibits high specific capacitances of 250 F g −1 and 198 F g −1 at the current densities of 0.5 A g −1 and 20 A g −1 respectively in 6 M KOH aqueous solution. Furthermore, the resultant ACAs electrode materials also exhibit high power density, good cycling stability and long lifetime. With these features, ACAs are expected to be promising electrode materials for electrical double layer capacitors

  19. Near-IR MCD of the nonheme ferrous active site in naphthalene 1,2-dioxygenase: correlation to crystallography and structural insight into the mechanism of Rieske dioxygenases.

    Science.gov (United States)

    Ohta, Takehiro; Chakrabarty, Sarmistha; Lipscomb, John D; Solomon, Edward I

    2008-02-06

    Near-IR MCD and variable temperature, variable field (VTVH) MCD have been applied to naphthalene 1,2-dioxygenase (NDO) to describe the coordination geometry and electronic structure of the mononuclear nonheme ferrous catalytic site in the resting and substrate-bound forms with the Rieske 2Fe2S cluster oxidized and reduced. The structural results are correlated with the crystallographic studies of NDO and other related Rieske nonheme iron oxygenases to develop molecular level insights into the structure/function correlation for this class of enzymes. The MCD data for resting NDO with the Rieske center oxidized indicate the presence of a six-coordinate high-spin ferrous site with a weak axial ligand which becomes more tightly coordinated when the Rieske center is reduced. Binding of naphthalene to resting NDO (Rieske oxidized and reduced) converts the six-coordinate sites into five-coordinate (5c) sites with elimination of a water ligand. In the Rieske oxidized form the 5c sites are square pyramidal but transform to a 1:2 mixture of trigonal bipyramial/square pyramidal sites when the Rieske center is reduced. Thus the geometric and electronic structure of the catalytic site in the presence of substrate can be significantly affected by the redox state of the Rieske center. The catalytic ferrous site is primed for the O2 reaction when substrate is bound in the active site in the presence of the reduced Rieske site. These structural changes ensure that two electrons and the substrate are present before the binding and activation of O2, which avoids the uncontrolled formation and release of reactive oxygen species.

  20. Cryo-EM structures of the TMEM16A calcium-activated chloride channel.

    Science.gov (United States)

    Dang, Shangyu; Feng, Shengjie; Tien, Jason; Peters, Christian J; Bulkley, David; Lolicato, Marco; Zhao, Jianhua; Zuberbühler, Kathrin; Ye, Wenlei; Qi, Lijun; Chen, Tingxu; Craik, Charles S; Jan, Yuh Nung; Minor, Daniel L; Cheng, Yifan; Jan, Lily Yeh

    2017-12-21

    Calcium-activated chloride channels (CaCCs) encoded by TMEM16A control neuronal signalling, smooth muscle contraction, airway and exocrine gland secretion, and rhythmic movements of the gastrointestinal system. To understand how CaCCs mediate and control anion permeation to fulfil these physiological functions, knowledge of the mammalian TMEM16A structure and identification of its pore-lining residues are essential. TMEM16A forms a dimer with two pores. Previous CaCC structural analyses have relied on homology modelling of a homologue (nhTMEM16) from the fungus Nectria haematococca that functions primarily as a lipid scramblase, as well as subnanometre-resolution electron cryo-microscopy. Here we present de novo atomic structures of the transmembrane domains of mouse TMEM16A in nanodiscs and in lauryl maltose neopentyl glycol as determined by single-particle electron cryo-microscopy. These structures reveal the ion permeation pore and represent different functional states. The structure in lauryl maltose neopentyl glycol has one Ca 2+ ion resolved within each monomer with a constricted pore; this is likely to correspond to a closed state, because a CaCC with a single Ca 2+ occupancy requires membrane depolarization in order to open (C.J.P. et al., manuscript submitted). The structure in nanodiscs has two Ca 2+ ions per monomer and its pore is in a closed conformation; this probably reflects channel rundown, which is the gradual loss of channel activity that follows prolonged CaCC activation in 1 mM Ca 2+ . Our mutagenesis and electrophysiological studies, prompted by analyses of the structures, identified ten residues distributed along the pore that interact with permeant anions and affect anion selectivity, as well as seven pore-lining residues that cluster near pore constrictions and regulate channel gating. Together, these results clarify the basis of CaCC anion conduction.

  1. A structural view of ligand-dependent activation in thermoTRP channels

    Directory of Open Access Journals (Sweden)

    Ximena eSteinberg

    2014-05-01

    Full Text Available Transient Receptor Potential (TRP proteins are a large family of ion channels, grouped intoseven sub-families. Although great advances have been made regarding the activation andmodulation of TRP channel activity, detailed molecular mechanisms governing TRPchannel gating are still needed. Sensitive to electric, chemical, mechanical, and thermalcues, TRP channels are tightly associated with the detection and integration of sensoryinput, emerging as a model to study the polymodal activation of ion channel proteins.Among TRP channels, the temperature-activated kind constitute a subgroup by itself,formed by Vanilloid receptors 1-4, Melastatin receptors 2, 4, 5 and 8, TRPC5, and TRPA1.Some of the so-called thermoTRP channels participate in the detection of noxious stimulimaking them an interesting pharmacological target for the treatment of pain. However, thepoor specificity of the compounds available in the market represents an important obstacleto overcome. Understanding the molecular mechanics underlying ligand-dependentmodulation of TRP channels may help with the rational design of novel syntheticanalgesics. The present review focuses on the structural basis of ligand-dependentactivation of TRPV1 and TRPM8 channels. Special attention is drawn to the dissection ofligand-binding sites within TRPV1, PIP 2 -dependent modulation of TRP channels, and thestructure of natural and synthetic ligands.

  2. Recent activity of the regional geologic structures in western Slovenia

    Directory of Open Access Journals (Sweden)

    Miloš Bavec

    2007-06-01

    Full Text Available Several important geological structures in the western Slovenia were identifiedas active and their activity was quantified. Geologic interpretation is based on the analysis of repeated leveling line campaigns data along the Sečovlje–Bled polygon. Taking intoaccount the limitations of the method – only the vertical component of displacement is measured – the following structures were identified as active:a juvenile syncline between Strunjan and Koper, the Kras Imbricate Structure, the Diva~a fault, the Ra{a fault, the Southalpine Front and the Julian Alps thrust. Vertical movement rate is relative, calculated with respect to the benchmark in Sečovlje. The largest uplift rate difference between Sečovlje and Bled is 7 mm/a.Vertical Geodynamic Activity (VGA is introduced as a link between geologic interpretation of geodetic measurements on one side and possible applications on the other as well as a mean of comparison between tectonically active regions.

  3. Synthesis and Anticancer Activities of Novel 1,4-Disubstituted Phthalazines

    Directory of Open Access Journals (Sweden)

    Ping Gong

    2006-07-01

    Full Text Available A series of novel 1-anilino-4-(arylsulfanylmethylphthalazines were designed and synthesized. The structures of all the compounds were confirmed by IR, 1H-NMR, elemental analysis and MS. The analogues 1-(3-chloro-4-fluoroanilino-4-(3,4- difluorophenylthio-methylphthalazine (12 and 1-(4-fluoro-3-trifluoromethylanilino-4- (3,4-difluorophenyl-thiomethylphthalazine (13 showed higher activity than a cisplatin control when tested in vitro against two different cancer cell lines using the microculture tetrazolium method (MTT method.

  4. Microwave assisted synthesis and antimicrobial activity of novel 1-[1/2-(1-Benzyl-1H-[1,2,3]triazol-4-ylmethoxy-naphthalen-2/1-yl]-3-(1-phenyl-3-aryl-1H-pyrazol-4-yl-propenones

    Directory of Open Access Journals (Sweden)

    Dongamanti Ashok

    2015-06-01

    Full Text Available A series of novel 1-[1/2-(1-Benzyl-1H-[1,2,3]triazol-4-ylmethoxy-naphthalen-2/1-yl]-3-(1-phenyl-3-aryl-1H-pyrazol-4-yl-propenones were design and synthesized by Click reaction followed by Claisen-Schmidt condensation under microwave irradiation and conventional heating methods. The structures of newly synthesized compounds have been established on the basis of elemental analysis, IR, 1H & 13C NMR and mass spectral data. All the compounds were screened for their antimicrobial activity.

  5. Activation of structural alloys in fusion reactor magnets

    International Nuclear Information System (INIS)

    Mann, F.M.; Doran, D.G.

    1986-01-01

    Using the REAC2 code system, both short-term and long-term activation were calculated for possible structural and magnet materials at the shield-magnet interface. The flux was taken from the STARFIRE conceptual design and a 30-year lifetime was assumed. Short-term activation does not seem to be a problem. Only materials with large amounts of niobium appear to be a potential problem for long-term activation. 2 tabs

  6. Solution structures of α-conotoxin G1 determined by two-dimensional NMR spectroscopy

    International Nuclear Information System (INIS)

    Pardi, A.; Galdes, A.; Florance, J.; Maniconte, D.

    1989-01-01

    Two-dimensional NMR data have been used to generate solution structures of α-conotoxin G1, a potent peptide antagonist of the acetylcholine receptor. Structural information was obtained in the form of proton-proton internuclear distance constraints, and initial structures were produced with a distance geometry algorithm. Energetically more favorable structures were generated by using the distance geometry structures as input for a constrained energy minimization program. The results of both of these calculations indicate that the overall backbone conformation of the molecule is well-defined by the NMR data whereas the side-chain conformations are generally less well-defined. The main structural features derived from the NMR data were the presence of tight turns centered on residues Pro 5 and Arg 9 . The solution structures are compared with previous proposed models of conotoxin G1, and the NMR data are interpreted in conjunction with chemical modification studies and structural properties of other antagonists of the acetylcholine receptor to gain insight into structure-activity relationships in these peptide toxins

  7. Microwave assistant synthesis, crystal structure and biological activity of a 1,2,4-triazole compound

    International Nuclear Information System (INIS)

    Ke, W.; Sun, N.B.

    2013-01-01

    The title compound (C/sub 17/H/sub 14/F/sub 2/N/sub 4/SO) were synthesized and recrystallized from CH/sub 3/CN. The compound was characterized by 1h-nmr, ftir, ms, hrms and x-ray diffraction. the compound crystallized in the monoclinic space group c2/c with a = 27.532(6), b 8.9596(18), c 14.609(3) alpha = 90, beta = 112.59(3), lambda =90 degree, gamma = 3327.1(12) alpha 3, z = 8 and r = 0.0327 for 2596 observed reflections with 1 > 2 (i). x-ray analysis reveals that not only intermolecular N-H-N interactions, but also C-H Pie stacking interactions exist in the adjacent molecules. The biological activities results showed that it exhibited significant herbicidal activity towards brassica napus. (author)

  8. Synthesis and structure-activity relationship of the first nonpeptidergic inverse agonists for the human cytomegalovirus encoded chemokine receptor US28.

    Science.gov (United States)

    Hulshof, Janneke W; Casarosa, Paola; Menge, Wiro M P B; Kuusisto, Leena M S; van der Goot, Henk; Smit, Martine J; de Esch, Iwan J P; Leurs, Rob

    2005-10-06

    US28 is a human cytomegalovirus (HCMV) encoded G-protein-coupled receptor that signals in a constitutively active manner. Recently, we identified 1 [5-(4-(4-chlorophenyl)-4-hydroxypiperidin-1-yl)-2,2-diphenylpentanenitrile] as the first reported nonpeptidergic inverse agonist for a viral-encoded chemokine receptor. Interestingly, this compound is able to partially inhibit the viral entry of HIV-1. In this study we describe the synthesis of 1 and several of its analogues and unique structure-activity relationships for this first class of small-molecule ligands for the chemokine receptor US28. Moreover, the compounds have been pharmacologically characterized as inverse agonists on US28. By modification of lead structure 1, it is shown that a 4-phenylpiperidine moiety is essential for affinity and activity. Other structural features of 1 are shown to be of less importance. These compounds define the first SAR of ligands on a viral GPCR (US28) and may therefore serve as important tools to investigate the significance of US28-mediated constitutive activity during viral infection.

  9. Near equilibrium dynamics and one-dimensional spatial—temporal structures of polar active liquid crystals

    International Nuclear Information System (INIS)

    Yang Xiao-Gang; Wang Qi; Forest, M. Gregory

    2014-01-01

    We systematically explore near equilibrium, flow-driven, and flow-activity coupled dynamics of polar active liquid crystals using a continuum model. Firstly, we re-derive the hydrodynamic model to ensure the thermodynamic laws are obeyed and elastic stresses and forces are consistently accounted. We then carry out a linear stability analysis about constant steady states to study near equilibrium dynamics around the steady states, revealing long-wave instability inherent in this model system and how active parameters in the model affect the instability. We then study model predictions for one-dimensional (1D) spatial—temporal structures of active liquid crystals in a channel subject to physical boundary conditions. We discuss the model prediction in two selected regimes, one is the viscous stress dominated regime, also known as the flow-driven regime, while the other is the full regime, in which all active mechanisms are included. In the viscous stress dominated regime, the polarity vector is driven by the prescribed flow field. Dynamics depend sensitively on the physical boundary condition and the type of the driven flow field. Bulk-dominated temporal periodic states and spatially homogeneous states are possible under weak anchoring conditions while spatially inhomogeneous states exist under strong anchoring conditions. In the full model, flow-orientation interaction generates a host of planar as well as out-of-plane spatial—temporal structures related to the spontaneous flows due to the molecular self-propelled motion. These results provide contact with the recent literature on active nematic suspensions. In addition, symmetry breaking patterns emerge as the additional active viscous stress due to the polarity vector is included in the force balance. The inertia effect is found to limit the long-time survival of spatial structures to those with small wave numbers, i.e., an asymptotic coarsening to long wave structures. A rich set of mechanisms for generating

  10. Complex formation of EphB1/Nck/Caskin1 leads to tyrosine phosphorylation and structural changes of the Caskin1 SH3 domain

    Directory of Open Access Journals (Sweden)

    Pesti Szabolcs

    2012-11-01

    Full Text Available Abstract Background Scaffold proteins have an important role in the regulation of signal propagation. These proteins do not possess any enzymatic activity but can contribute to the formation of multiprotein complexes. Although scaffold proteins are present in all cell types, the nervous system contains them in the largest amount. Caskin proteins are typically present in neuronal cells, particularly, in the synapses. However, the signaling mechanisms by which Caskin proteins are regulated are largely unknown. Results Here we demonstrate that EphB1 receptor tyrosine kinase can recruit Caskin1 through the adaptor protein Nck. Upon activation of the receptor kinase, the SH2 domain of Nck binds to one of its tyrosine residues, while Nck SH3 domains interact with the proline-rich domain of Caskin1. Complex formation of the receptor, adaptor and scaffold proteins results in the tyrosine phosphorylation of Caskin1 on its SH3 domain. The phosphorylation sites were identified by mass-spectrometry as tyrosines 296 and 336. To reveal the structural consequence of this phosphorylation, CD spectroscopy was performed. This measurement suggests that upon tyrosine phosphorylation the structure of the Caskin1 SH3 domain changes significantly. Conclusion Taken together, we propose that the scaffold protein Caskin1 can form a complex with the EphB1 tyrosine kinase via the Nck protein as a linker. Complex formation results in tyrosine phosphorylation of the Caskin1 SH3 domain. Although we were not able to identify any physiological partner of the SH3 domain so far, we could demonstrate that phosphorylation on conserved tyrosine residues results in marked changes in the structure of the SH3 domain.

  11. Sphingosine 1-Phosphate (S1P) Receptors 1 and 2 Coordinately Induce Mesenchymal Cell Migration through S1P Activation of Complementary Kinase Pathways*

    Science.gov (United States)

    Quint, Patrick; Ruan, Ming; Pederson, Larry; Kassem, Moustapha; Westendorf, Jennifer J.; Khosla, Sundeep; Oursler, Merry Jo

    2013-01-01

    Normal bone turnover requires tight coupling of bone resorption and bone formation to preserve bone quantity and structure. With aging and during several pathological conditions, this coupling breaks down, leading to either net bone loss or excess bone formation. To preserve or restore normal bone metabolism, it is crucial to determine the mechanisms by which osteoclasts and osteoblast precursors interact and contribute to coupling. We showed that osteoclasts produce the chemokine sphingosine 1-phosphate (S1P), which stimulates osteoblast migration. Thus, osteoclast-derived S1P may recruit osteoblasts to sites of bone resorption as an initial step in replacing lost bone. In this study we investigated the mechanisms by which S1P stimulates mesenchymal (skeletal) cell chemotaxis. S1P treatment of mesenchymal (skeletal) cells activated RhoA GTPase, but this small G protein did not contribute to migration. Rather, two S1P receptors, S1PR1 and S1PR2, coordinately promoted migration through activation of the JAK/STAT3 and FAK/PI3K/AKT signaling pathways, respectively. These data demonstrate that the chemokine S1P couples bone formation to bone resorption through activation of kinase signaling pathways. PMID:23300082

  12. Synthesis and Antifungal Activities of 5-(o-Hydroxy phenyl-2-[4'aryl-3'chloro-2'azetidinon-1-yl]-1,3,4-thiadiazole

    Directory of Open Access Journals (Sweden)

    Shiv K. Gupta

    2011-01-01

    Full Text Available New series of 5-(o-hydroxy phenyl-2-[4'aryl-3'chloro-2'azetidinon-1-yl]-1,3,4-thiadiazole have been synthesized and the structures of the new compounds were established on the basis of IR, 1H NMR spectral data. In vitro antifungal activity (MIC activity was evaluated and compared with standard drugs of ketoconazole. Compounds 3c in the series has shown interesting antifungal activity against both C. albicans and A. niger fungus. In the gratifying result, most of the compounds were found to have moderate antifungal activity.

  13. RPA activates the XPF-ERCC1 endonuclease to initiate processing of DNA interstrand crosslinks.

    Science.gov (United States)

    Abdullah, Ummi B; McGouran, Joanna F; Brolih, Sanja; Ptchelkine, Denis; El-Sagheer, Afaf H; Brown, Tom; McHugh, Peter J

    2017-07-14

    During replication-coupled DNA interstrand crosslink (ICL) repair, the XPF-ERCC1 endonuclease is required for the incisions that release, or "unhook", ICLs, but the mechanism of ICL unhooking remains largely unknown. Incisions are triggered when the nascent leading strand of a replication fork strikes the ICL Here, we report that while purified XPF-ERCC1 incises simple ICL-containing model replication fork structures, the presence of a nascent leading strand, modelling the effects of replication arrest, inhibits this activity. Strikingly, the addition of the single-stranded DNA (ssDNA)-binding replication protein A (RPA) selectively restores XPF-ERCC1 endonuclease activity on this structure. The 5'-3' exonuclease SNM1A can load from the XPF-ERCC1-RPA-induced incisions and digest past the crosslink to quantitatively complete the unhooking reaction. We postulate that these collaborative activities of XPF-ERCC1, RPA and SNM1A might explain how ICL unhooking is achieved in vivo . © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  14. Structure and decoy-mediated inhibition of the SOX18/Prox1-DNA interaction.

    Science.gov (United States)

    Klaus, Miriam; Prokoph, Nina; Girbig, Mathias; Wang, Xuecong; Huang, Yong-Heng; Srivastava, Yogesh; Hou, Linlin; Narasimhan, Kamesh; Kolatkar, Prasanna R; Francois, Mathias; Jauch, Ralf

    2016-05-05

    The transcription factor (TF) SOX18 drives lymphatic vessel development in both embryogenesis and tumour-induced neo-lymphangiogenesis. Genetic disruption of Sox18 in a mouse model protects from tumour metastasis and established the SOX18 protein as a molecular target. Here, we report the crystal structure of the SOX18 DNA binding high-mobility group (HMG) box bound to a DNA element regulating Prox1 transcription. The crystals diffracted to 1.75Å presenting the highest resolution structure of a SOX/DNA complex presently available revealing water structure, structural adjustments at the DNA contact interface and non-canonical conformations of the DNA backbone. To explore alternatives to challenging small molecule approaches for targeting the DNA-binding activity of SOX18, we designed a set of five decoys based on modified Prox1-DNA. Four decoys potently inhibited DNA binding of SOX18 in vitro and did not interact with non-SOX TFs. Serum stability, nuclease resistance and thermal denaturation assays demonstrated that a decoy circularized with a hexaethylene glycol linker and terminal phosphorothioate modifications is most stable. This SOX decoy also interfered with the expression of a luciferase reporter under control of a SOX18-dependent VCAM1 promoter in COS7 cells. Collectively, we propose SOX decoys as potential strategy for inhibiting SOX18 activity to disrupt tumour-induced neo-lymphangiogenesis. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. CdWO4 polymorphs: Selective preparation, electronic structures, and photocatalytic activities

    International Nuclear Information System (INIS)

    Yan, Tingjiang; Li, Liping; Tong, Wenming; Zheng, Jing; Wang, Yunjian; Li, Guangshe

    2011-01-01

    This work explored the selective synthesis of polymorphs of CdWO 4 in either tetragonal or monoclinic phase by optimizing the experimental parameters. Systematic characterization indicated that both polymorphs possessed similar spherical morphologies but different structural building blocks. Electronic structures calculations for both polymorphs demonstrated the same constructions of conduction band or valence band, while the conduction band widths of both polymorphs were quite different. Both CdWO 4 polymorphs exhibited good photocatalytic activity for degradation of methyl orange under UV light irradiation. When comparing to some other well-known tungstate oxide materials, the photocatalytic activity was found to follow such a consequence, monoclinic CdWO 4 ∼monoclinic ZnWO 4 >tetragonal CdWO 4 >tetragonal CaWO 4 . The specific photocatalytic activity of monoclinic CdWO 4 was even higher than that of commercial TiO 2 photocatalyst (Degussa P25). The increased activity from the tetragonal CdWO 4 to the monoclinic was consistent with the trend of the decreased symmetry, and this could be explained in terms of the geometric structures and electronic structures for both polymorphs. -- Graphical abstract: Monoclinic CdWO 4 exhibited a much higher photocatalytic activity than the tetragonal form owing to the lower symmetry, more distorted geometric structure, and the dispersive band configuration. Display Omitted Research highlights: → Polymorphs of CdWO 4 in either tetragonal or monoclinic phase were selectively synthesized. → Both polymorphs possessed similar spherical morphologies, while the relevant structural building blocks were different. → Photocatalytic activities of CdWO 4 polymorphs depended strongly on the symmetry, geometric structure, as well as band configuration.

  16. Aberrant ERK 1/2 complex activation and localization in scrapie-infected GT1-1 cells

    Directory of Open Access Journals (Sweden)

    Didonna Alessandro

    2010-08-01

    Full Text Available Abstract Background Fatal neurodegenerative disorders such as Creutzfeldt-Jakob and Gerstmann-Sträussler-Scheinker diseases in humans, scrapie and bovine spongiform encephalopathy in animals, are characterized by the accumulation in the brain of a pathological form of the prion protein (PrP denominated PrPSc. The latter derives from the host cellular form, PrPC, through a process whereby portions of its α-helical and coil structures are refolded into β-sheet structures. Results In this work, the widely known in vitro model of prion replication, hypothalamic GT1-1 cell line, was used to investigate cellular and molecular responses to prion infection. The MAP kinase cascade was dissected to assess the phosphorylation levels of src, MEK 1/2 and ERK 1/2 signaling molecules, both before and after prion infection. Our findings suggest that prion replication leads to a hyper-activation of this pathway. Biochemical analysis was complemented with immunofluorescence studies to map the localization of the ERK complex within the different cellular compartments. We showed how the ERK complex relocates in the cytosol upon prion infection. We correlated these findings with an impairment of cell growth in prion-infected GT1-1 cells as probed by MTT assay. Furthermore, given the persistent urgency in finding compounds able to cure prion infected cells, we tested the effects on the ERK cascade of two molecules known to block prion replication in vitro, quinacrine and Fab D18. We were able to show that while these two compounds possess similar effects in curing prion infection, they affect the MAP kinase cascade differently. Conclusions Taken together, our results help shed light on the molecular events involved in neurodegeneration and neuronal loss in prion infection and replication. In particular, the combination of chronic activation and aberrant localization of the ERK complex may lead to a lack of essential neuroprotective and survival factors

  17. Nε-Acryloyllysine Piperazides as Irreversible Inhibitors of Transglutaminase 2: Synthesis, Structure-Activity Relationships, and Pharmacokinetic Profiling.

    Science.gov (United States)

    Wodtke, Robert; Hauser, Christoph; Ruiz-Gómez, Gloria; Jäckel, Elisabeth; Bauer, David; Lohse, Martin; Wong, Alan; Pufe, Johanna; Ludwig, Friedrich-Alexander; Fischer, Steffen; Hauser, Sandra; Greif, Dieter; Pisabarro, M Teresa; Pietzsch, Jens; Pietsch, Markus; Löser, Reik

    2018-05-24

    Transglutaminase 2 (TGase 2)-catalyzed transamidation represents an important post-translational mechanism for protein modification with implications in physiological and pathophysiological conditions, including fibrotic and neoplastic processes. Consequently, this enzyme is considered a promising target for the diagnosis of and therapy for these diseases. In this study, we report on the synthesis and kinetic characterization of N ε -acryloyllysine piperazides as irreversible inhibitors of TGase 2. Systematic structural modifications on 54 new compounds were performed with a major focus on fluorine-bearing substituents due to the potential of such compounds to serve as radiotracer candidates for positron emission tomography. The determined inhibitory activities ranged from 100 to 10 000 M -1 s -1 , which resulted in comprehensive structure-activity relationships. Structure-activity correlations using various substituent parameters accompanied by covalent docking studies provide an advanced understanding of the molecular recognition for this inhibitor class within the active site of TGase 2. Selectivity profiling of selected compounds for other transglutaminases demonstrated an excellent selectivity toward transglutaminase 2. Furthermore, an initial pharmacokinetic profiling of selected inhibitors was performed, including the assessment of potential membrane permeability and liver microsomal stability.

  18. Response of soil microbial activities and microbial community structure to vanadium stress.

    Science.gov (United States)

    Xiao, Xi-Yuan; Wang, Ming-Wei; Zhu, Hui-Wen; Guo, Zhao-Hui; Han, Xiao-Qing; Zeng, Peng

    2017-08-01

    High levels of vanadium (V) have long-term, hazardous impacts on soil ecosystems and biological processes. In the present study, the effects of V on soil enzymatic activities, basal respiration (BR), microbial biomass carbon (MBC), and the microbial community structure were investigated through 12-week greenhouse incubation experiments. The results showed that V content affected soil dehydrogenase activity (DHA), BR, and MBC, while urease activity (UA) was less sensitive to V stress. The average median effective concentration (EC 50 ) thresholds of V were predicted using a log-logistic dose-response model, and they were 362mgV/kg soil for BR and 417mgV/kg soil for DHA. BR and DHA were more sensitive to V addition and could be used as biological indicators for soil V pollution. According to a polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis, the structural diversity of the microbial community decreased for soil V contents ranged between 254 and 1104mg/kg after 1 week of incubation. As the incubation time increased, the diversity of the soil microbial community structure increased for V contents ranged between 354 and 1104mg/kg, indicating that some new V-tolerant bacterial species might have replicated under these conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Wireless sensor networks for active vibration control in automobile structures

    International Nuclear Information System (INIS)

    Mieyeville, Fabien; Navarro, David; Du, Wan; Ichchou, Mohamed; Scorletti, Gérard

    2012-01-01

    Wireless sensor networks (WSNs) are nowadays widely used in monitoring and tracking applications. This paper presents the feasibility of using WSNs in active vibration control strategies. The method employed here involves active-structural acoustic control using piezoelectric sensors distributed on a car structure. This system aims at being merged with a WSN whose head node collects data and processes control laws so as to command piezoelectric actuators wisely placed on the structure. We will study the feasibility of implementing WSNs in active vibration control and introduce a complete design methodology to optimize hardware/software and control law synergy in mechatronic systems. A design space exploration will be conducted so as to identify the best WSN platform and the resulting impact on control. (paper)

  20. STRUCTURAL INSIGHTS INTO SUBSTRATE BINDING AND STEREOSELECTIVITY OF GIARDIA FRUCTOSE-1,6-BISPHOSPHATE ALDOLASE*

    Science.gov (United States)

    Galkin, Andrey; Li, Zhimin; Li, Ling; Kulakova, Liudmila; Pal, Lipika R.; Dunaway-Mariano, Debra; Herzberg, Osnat

    2009-01-01

    Giardia lamblia fructose-1,6-bisphosphate aldolase (FBPA)1 is a member of the Class II zinc-dependent aldolase family that catalyzes the cleavage of D-fructose-1,6-bisphosphate (FBP) into dihydroxyacetone phosphate (DHAP) and D-glyceraldehyde-3-phosphate (G3P). In addition to the active site zinc, the catalytic apparatus of FBPA employs an aspartic acid, Asp83 in the G. lamblia enzyme, which when replaced by an alanine residue renders the enzyme inactive. A comparison of the crystal structures of the D83A FBPA in complex with FBP and of the wild-type FBPA in the unbound state revealed a substrate induced conformational transition of loops in the vicinity of the active site and a shift in the location of Zn2+. Upon FBP binding, the Zn2+ shifts up to 4.6 Å towards the catalytic Asp83, which brings the metal within coordination distance to the Asp83 carboxylate group. In addition, the structure of wild-type FBPA was determined in complex with the competitive inhibitor D-tagatose 1,6-bisphosphate (TBP), a FBP stereoisomer. In this structure, the zinc binds in a site close to that previously seen in the structure of FBPA in complex with phosphoglycolohydroxamate, an analog of the postulated DHAP ene-diolate intermediate. Together, the ensemble of structures suggests that the zinc mobility is necessary to orient the Asp83 side chain and to polarize the substrate for proton transfer from the FBP C(4) hydroxyl group to the Asp83 carboxyl group. In the absence of FBP, the alternative zinc position is too remote for coordinating the Asp83. We propose a modification of the catalytic mechanism that incorporates the novel features observed in the FBPA/FBP structure. The mechanism invokes coordination and co-planarity of the Zn2+ with the FBP’s O-C(3)-C(4)-O concomitant with coordination of Asp83 carboxylic group. Catalysis is accompanied by movement of Zn2+ to a site co-planar with the O-C(2)-C(3)-O of the DHAP. glFBPA exhibit strict substrate specificity towards FBP and

  1. Synthesis, Crystal Structure, DFT Study and Antifungal Activity of 4-(5-((4-Bromobenzyl thio-4-Phenyl-4H-1,2,4-Triazol-3-ylpyridine

    Directory of Open Access Journals (Sweden)

    Jin-Xia Mu

    2015-12-01

    Full Text Available The title compound 4-(5-((4-bromobenzylthio-4-phenyl-4H-1,2,4-triazol-3-ylpyridine (C20H15BrN4S was synthesized, and its structure was confirmed by 1H NMR, MS and elemental analyses and single-crystal X-ray structure determination. It crystallizes in the triclinic space group P-1 with a = 7.717(3, b = 9.210(3, c = 13.370(5 Å, α = 80.347(13, β = 77.471(13, γ = 89.899(16°, V = 913.9(6 Å3, Z = 2 and R = 0.0260 for 3145 observed reflections with I > 2σ(I. A Density functional theory (DFT (B3LYP/6-31G calculation of the title molecule was carried out. The full geometry optimization was carried out using a 6-31G basis set, and the frontier orbital energy. Atomic net charges are discussed. Calculated bond lengths and bond angles were found to differ from experimental values, and the compound exhibits moderate antifungal activity.

  2. Luteolin, a flavonoid, inhibits AP-1 activation by basophils

    International Nuclear Information System (INIS)

    Hirano, Toru; Higa, Shinji; Arimitsu, Junsuke; Naka, Tetsuji; Ogata, Atsushi; Shima, Yoshihito; Fujimoto, Minoru; Yamadori, Tomoki; Ohkawara, Tomoharu; Kuwabara, Yusuke; Kawai, Mari; Matsuda, Hisashi; Yoshikawa, Masayuki; Maezaki, Naoyoshi; Tanaka, Tetsuaki; Kawase, Ichiro; Tanaka, Toshio

    2006-01-01

    Flavonoids including luteolin, apigenin, and fisetin are inhibitors of IL-4 synthesis and CD40 ligand expression by basophils. This study was done to search for compounds with greater inhibitory activity of IL-4 expression and to clarify the molecular mechanisms through which flavonoids inhibit their expression. Of the 37 flavonoids and related compounds examined, ayanin, luteolin, and apigenin were the strongest inhibitors of IL-4 production by purified basophils in response to anti-IgE antibody plus IL-3. Luteolin did not suppress Syk or Lyn phosphorylation in basophils, nor did suppress p54/46 SAPK/JNK, p38 MAPK, and p44/42 MAPK activation by a basophilic cell line, KU812 cells, stimulated with A23187 and PMA. However, luteolin did inhibit phosphorylation of c-Jun and DNA binding activity of AP-1 in nuclear lysates from stimulated KU812 cells. These results provide a fundamental structure of flavonoids for IL-4 inhibition and demonstrate a novel action of flavonoids that suppresses the activation of AP-1

  3. Independent mobility, perceptions of the built environment and children's participation in play, active travel and structured exercise and sport: the PEACH Project

    Directory of Open Access Journals (Sweden)

    Griew Pippa

    2010-02-01

    Full Text Available Abstract Background Independent mobility (IM and perceptions of the built environment may relate differentially to children's participation in various physical activity contexts. This cross-sectional study investigated whether independent mobility and perceptions of the built environment in boys and girls were related to physical activity in three different contexts (outdoor play, structured exercise/sport, active commuting. Methods Thirteen hundred and seven 10-11 year old boys and girls from 23 schools in a large UK city completed a computerised questionnaire. Independent variables in logistic regression analyses were weekly self-reported frequency of participation in outdoor play, structured exercise/sport and mode of travel home from school. Dependent variables were perceptions of the environment (aesthetics, nuisance, safety, social norm, constraint, play space, accessibility, local and area independent mobility and linear distance from home to school. Analyses were adjusted for body mass index, minutes of daylight after school, level of neighbourhood deprivation and pubertal status. Results For boys, local independent mobility (Local-IM was related to an increased likelihood of everyday participation in play (OR 1.58: 95% CI 1.19-2.10, structured exercise/sport (OR 1.42: 1.06-1.89 and active commuting (OR 1.40: 1.07-1.87 but was only related to active commuting for girls (OR1.49: 1.07-2.07. Boys and girls were more likely to report playing out every day if they had higher scores for Social Norm (Boys: OR 1.63 (1.12-2.37; Girls: OR 1.53 (1.01-2.31 and, for girls only, more positive perceptions of traffic safety (OR 1.63: 1.14-2.34. Easy access to a range of destinations was the dominant predictor for taking part in structured exercise/sport everyday (Boys: OR 1.62 (1.01-2.66; Girls: OR 1.65 (1.07-2.53. Shorter distance from home to school (OR 0.99: 0.98-0.99 and, for boys only, greater perceived accessibility (OR 1.87: 1.04-3.36 were

  4. Asymmetric hydration structure around calcium ion restricted in micropores fabricated in activated carbons

    International Nuclear Information System (INIS)

    Ohkubo, Takahiro; Kusudo, Tomoko; Kuroda, Yasushige

    2016-01-01

    The adsorbed phase and hydration structure of an aqueous solution of Ca(NO 3 ) 2 restricted in micropores fabricated in activated carbons (ACs) having different average pore widths (0.63 and 1.1 nm) were investigated with the analysis of adsorption isotherms and x-ray absorption fine structure (XAFS) spectra on Ca K -edge. The adsorbed density of Ca 2+ per unit micropore volume in the narrower pore was higher than in the wider pore, while the adsorbed amount per unit mass of carbon with the narrower pore was half of the amount of ACs with the larger pore. On the other hand, variations in the bands assigned to double-electron ( KM I ) and 1s  →  3d excitations in XAFS spectra demonstrate the formation of a distorted hydration cluster around Ca 2+ in the micropore, although the structural parameters of hydrated Ca 2+ in the micropores were almost consistent with the bulk aqueous solution, as revealed by the analysis of extended XAFS (EXAFS) spectra. In contrast to the hydration structure of monovalent ions such as Rb + , which generally presents a dehydrated structure in smaller than 1 nm micropores in ACs, the present study clearly explains that the non-spherically-symmetric structure of hydrated Ca 2+ restricted in carbon micropores whose sizes are around 1 nm is experimentally revealed where any dehydration phenomena from the first hydration shell around Ca 2+ could not be observed. (paper)

  5. Structure-activity relationship of surfactant for preparing DMFC anodic catalyst

    International Nuclear Information System (INIS)

    Su Yi; Xue Xinzhong; Xu Weilin; Liu Changpeng; Xing Wei; Zhou Xiaochun; Tian Tian; Lu Tianhong

    2006-01-01

    Three kinds of surfactants as stabilizer were applied to the preparation of electrocatalysts for direct methanol fuel cell (DMFC). The catalysts have been characterized by examining their catalytic activities, morphologies and particle sizes by means of cyclic voltammetry, chronoamperometry, X-ray diffraction and transmission electron microscopy (TEM). It is found that the surfactants with different structures have a significantly influence on the catalyst shape and activity. The catalysts prepared with non-ionic surfactants as the stabilizer show higher activity for direct oxidation of methanol. The structure-activity relationship (SAR) analysis has been explored and the effect of hydrophile-lipophile balance (HLB value) has also been discussed

  6. Comprehensive analysis to explain reduced or increased SOD1 enzymatic activity in ALS patients and their relatives.

    Science.gov (United States)

    Keskin, Isil; Birve, Anna; Berdynski, Mariusz; Hjertkvist, Karin; Rofougaran, Reza; Nilsson, Torbjörn K; Glass, Jonathan D; Marklund, Stefan L; Andersen, Peter M

    2017-08-01

    To characterise stabilities in erythrocytes of mutant SOD1 proteins, compare SOD1 enzymatic activities between patients with different genetic causes of ALS and search for underlying causes of deviant SOD1 activities in individuals lacking SOD1 mutations. Blood samples from 4072 individuals, ALS patients with or without a SOD1 mutation, family members and controls were studied. Erythrocyte SOD1 enzymatic activities normalised to haemoglobin content were determined, and effects of haemoglobin disorders on dismutation assessed. Coding SOD1 sequences were analysed by Sanger sequencing, exon copy number variations by fragment length analysis and by TaqMan Assay. Of the 44 SOD1 mutations found, 75% caused severe destabilisation of the mutant protein but in 25% it was physically stable. Mutations producing structural changes caused halved erythrocyte SOD1 activities. There were no differences in SOD1 activities between patients without a SOD1 mutation and control individuals or carriers of TBK1 mutations and C9orf72 HRE . In the low and high SOD1 activity groups no deviations were found in exon copy numbers and intron gross structures. Thalassemias and iron deficiency were associated with increased SOD1 activity/haemoglobin ratios. Adjunct erythrocyte SOD1 activity analysis reliably signals destabilising SOD1 mutations including intronic mutations that are missed by exon sequencing.

  7. Novel preparation and photocatalytic activity of one-dimensional TiO2 hollow structures

    International Nuclear Information System (INIS)

    Yu Huogen; Yu Jiaguo; Cheng Bei; Liu Shengwei

    2007-01-01

    Usually, templated methods include two important steps: the coating of nanocrystals on the surface of the templates and the removal of the templates. In this study, one-dimensional TiO 2 hollow structures, based on the template-directed deposition and then in situ template-sacrificial reaction (or dissolution), were prepared by a one-step template method using vanadium oxide nanobelts as the templates and TiF 4 as the precursor at 60 deg. C. The coating of TiO 2 nanoparticles on the surface of the templates was accompanied with the dissolution of vanadium oxide nanobelts by HF produced during the hydrolysis of TiF 4 in the reaction solution. It was found that the prepared one-dimensional TiO 2 hollow structures with a mesoporous wall were composed of TiO 2 nanoparticles with a diameter of 10-55 nm, resulting in a large specific surface area (77.2 m 2 g -1 ) and high pore volume (0.13 cm 3 g -1 ), and the wall thickness of the TiO 2 hollow structures could be easily controlled by adjusting the precursor concentration of TiF 4 . The photocatalytic activity experiment indicated that the prepared one-dimensional TiO 2 hollow structures, which could be readily separated from a slurry system after photocatalytic reaction, exhibited obvious photocatalytic activity for the photocatalytic degradation of methyl orange aqueous solution

  8. Structure and Antitumor and Immunomodulatory Activities of a Water-Soluble Polysaccharide from Dimocarpus longan Pulp

    Science.gov (United States)

    Meng, Fa-Yan; Ning, Yuan-Ling; Qi, Jia; He, Zhou; Jie, Jiang; Lin, Juan-Juan; Huang, Yan-Jun; Li, Fu-Sen; Li, Xue-Hua

    2014-01-01

    A new water-soluble polysaccharide (longan polysaccharide 1 (LP1)) was extracted and successfully purified from Dimocarpus longan pulp via diethylaminoethyl (DEAE)-cellulose anion-exchange and Sephacryl S-300 HR gel chromatography. The chemical structure was determined using Infrared (IR), gas chromatography (GC) and nuclear magnetic resonance (NMR) analysis. The results indicated that the molecular weight of the sample was 1.1 × 105 Da. Monosaccharide composition analysis revealed that LP1 was composed of Glc, GalA, Ara and Gal in a molar ratio of 5.39:1.04:0.74:0.21. Structural analysis indicated that LP1 consisted of a backbone of →4)-α-d-Glcp-(1→4)-α-d-GalpA-(1→4)-α-d-Glcp-(1→4)-β-d-Glcp-(1→ units with poly saccharide side chains composed of →2)-β-d-Fruf-(1→2)-l-sorbose-(1→ attached to the O-6 position of the α-d-Glcp residues. In vitro experiments indicated that LP1 had significantly high antitumor activity against SKOV3 and HO8910 tumor cells, with inhibition percentages of 40% and 50%, respectively. In addition, LP1 significantly stimulated the production of the cytokine interferon-γ (IFN-γ), increased the activity of murine macrophages and enhanced B- and T-lymphocyte proliferation. The results of this study demonstrate that LP1 has potential applications as a natural antitumor agent with immunomodulatory activity. PMID:24663085

  9. Antibacterial and Herbicidal Activity of Ring-Substituted 2-Hydroxynaphthalene-1-carboxanilides

    Directory of Open Access Journals (Sweden)

    Katarina Kralova

    2013-08-01

    Full Text Available In this study, a series of twenty-two ring-substituted 2-hydroxynaphthalene-1‑carboxanilides were prepared and characterized. Primary in vitro screening of the synthesized compounds was performed against Staphylococcus aureus, three methicillin-resistant S. aureus strains, Mycobacterium marinum, M. kasasii, M. smegmatis. and M. avium paratuberculosis. The compounds were also tested for their activity related to inhibition of photosynthetic electron transport (PET in spinach (Spinacia oleracea L. chloroplasts. 2-Hydroxy-N-phenylnaphthalene-1-carboxanilide and 2-hydroxy-N-(3-trifluoromethylphenylnaphthalene-1-carboxamide (IC50 = 29 µmol/L were the most active PET inhibitors. Some of tested compounds showed the antibacterial and antimycobacterial activity against the tested strains comparable or higher than the standards ampicillin or isoniazid. Thus, for example, 2-hydroxy-N-(3-nitrophenylnaphthalene-1-carboxamide showed MIC = 26.0 µmol/L against methicillin-resistant S. aureus and MIC = 51.9 µmol/L against M. marinum, or 2-hydroxy-N-phenylnaphthalene-1-carboxamide demonstrated MIC = 15.2 µmol/L against M. kansasii. The structure-activity relationships for all compounds are discussed.

  10. Design, synthesis, and structure-activity relationships of 2-benzylidene-1-indanone derivatives as anti-inflammatory agents for treatment of acute lung injury.

    Science.gov (United States)

    Xiao, Siyang; Zhang, Wenxin; Chen, Hongjin; Fang, Bo; Qiu, Yinda; Chen, Xianxin; Chen, Lingfeng; Shu, Sheng; Zhang, Yali; Zhao, Yunjie; Liu, Zhiguo; Liang, Guang

    2018-01-01

    The purpose of this study was to design and synthesize novel 2-benzylidene-1-indanone derivatives for treatment of acute lung injury. A series of 39 novel 2-benzylidene-indanone structural derivatives were synthesized and evaluated for anti-inflammatory activity in lipopolysaccharide (LPS)-stimulated murine primary macrophages. Most of the obtained compounds effectively inhibited the LPS-induced expression of IL-6 and TNF-α. The most active compound, 8f , was found to significantly reduce LPS-induced pulmonary inflammation, as reflected by reductions in the concentration of total protein, inflammatory cell count, as well as the lung wet/dry ratio in bronchoalveolar lavage (BAL) fluid. Furthermore, 8f effectively inhibited mRNA expression of several inflammatory cytokines after LPS challenge in vitro and in vivo. Administration of 8f also blocked LPS-induced activation of the proinflammatory NF-κB/MAPK signaling pathway. The simple synthetic preparation and biological properties of these derivatives make these 2-benzylidene-indanone scaffolds promising new entities for the development of anti-inflammatory therapeutics for the treatment of acute lung injury.

  11. Structures of TorsinA and its disease-mutant complexed with an activator reveal the molecular basis for primary dystonia

    Energy Technology Data Exchange (ETDEWEB)

    Demircioglu, F. Esra; Sosa, Brian A.; Ingram, Jessica; Ploegh, Hidde L.; Schwartz, Thomas U.

    2016-08-04

    The most common cause of early onset primary dystonia, a neuromuscular disease, is a glutamate deletion (ΔE) at position 302/303 of TorsinA, a AAA+ ATPase that resides in the endoplasmic reticulum. While the function of TorsinA remains elusive, the ΔE mutation is known to diminish binding of two TorsinA ATPase activators: lamina-associated protein 1 (LAP1) and its paralog, luminal domain like LAP1 (LULL1). Using a nanobody as a crystallization chaperone, we obtained a 1.4 Å crystal structure of human TorsinA in complex with LULL1. This nanobody likewise stabilized the weakened TorsinAΔE-LULL1 interaction, which enabled us to solve its structure at 1.4 Å also. A comparison of these structures shows, in atomic detail, the subtle differences in activator interactions that separate the healthy from the diseased state. This information may provide a structural platform for drug development, as a small molecule that rescues TorsinAΔE could serve as a cure for primary dystonia.

  12. Crystal structure of the alkaline proteinase Savinase from Bacillus lentus at 1.4 A resolution.

    Science.gov (United States)

    Betzel, C; Klupsch, S; Papendorf, G; Hastrup, S; Branner, S; Wilson, K S

    1992-01-20

    Savinase (EC3.4.21.14) is secreted by the alkalophilic bacterium Bacillus lentus and is a representative of that subgroup of subtilisin enzymes with maximum stability in the pH range 7 to 10 and high activity in the range 8 to 12. It is therefore of major industrial importance for use in detergents. The crystal structure of the native form of Savinase has been refined using X-ray diffraction data to 1.4 A resolution. The starting model was that of subtilisin Carlsberg. A comparison to the structures of the closely related subtilisins Carlsberg and BPN' and to the more distant thermitase and proteinase K is presented. The structure of Savinase is very similar to those of homologous Bacillus subtilisins. There are two calcium ions in the structure, equivalent to the strong and the weak calcium-binding sites in subtilisin Carlsberg and subtilisin BPN', well known for their stabilizing effect on the subtilisins. The structure of Savinase shows novel features that can be related to its stability and activity. The relatively high number of salt bridges in Savinase is likely to contribute to its high thermal stability. The non-conservative substitutions and deletions in the hydrophobic binding pocket S1 result in the most significant structural differences from the other subtilisins. The different composition of the S1 binding loop as well as the more hydrophobic character of the substrate-binding region probably contribute to the alkaline activity profile of the enzyme. The model of Savinase contains 1880 protein atoms, 159 water molecules and two calcium ions. The crystallographic R-factor [formula; see text].

  13. Structure and Function of p97 and Pex1/6 Type II AAA+ Complexes.

    Science.gov (United States)

    Saffert, Paul; Enenkel, Cordula; Wendler, Petra

    2017-01-01

    Protein complexes of the Type II AAA+ (ATPases associated with diverse cellular activities) family are typically hexamers of 80-150 kDa protomers that harbor two AAA+ ATPase domains. They form double ring assemblies flanked by associated domains, which can be N-terminal, intercalated or C-terminal to the ATPase domains. Most prominent members of this family include NSF (N-ethyl-maleimide sensitive factor), p97/VCP (valosin-containing protein), the Pex1/Pex6 complex and Hsp104 in eukaryotes and ClpB in bacteria. Tremendous efforts have been undertaken to understand the conformational dynamics of protein remodeling type II AAA+ complexes. A uniform mode of action has not been derived from these works. This review focuses on p97/VCP and the Pex1/6 complex, which both structurally remodel ubiquitinated substrate proteins. P97/VCP plays a role in many processes, including ER- associated protein degradation, and the Pex1/Pex6 complex dislocates and recycles the transport receptor Pex5 from the peroxisomal membrane during peroxisomal protein import. We give an introduction into existing knowledge about the biochemical and cellular activities of the complexes before discussing structural information. We particularly emphasize recent electron microscopy structures of the two AAA+ complexes and summarize their structural differences.

  14. Structure and interactions of the human programmed cell death 1 receptor.

    Science.gov (United States)

    Cheng, Xiaoxiao; Veverka, Vaclav; Radhakrishnan, Anand; Waters, Lorna C; Muskett, Frederick W; Morgan, Sara H; Huo, Jiandong; Yu, Chao; Evans, Edward J; Leslie, Alasdair J; Griffiths, Meryn; Stubberfield, Colin; Griffin, Robert; Henry, Alistair J; Jansson, Andreas; Ladbury, John E; Ikemizu, Shinji; Carr, Mark D; Davis, Simon J

    2013-04-26

    PD-1, a receptor expressed by T cells, B cells, and monocytes, is a potent regulator of immune responses and a promising therapeutic target. The structure and interactions of human PD-1 are, however, incompletely characterized. We present the solution nuclear magnetic resonance (NMR)-based structure of the human PD-1 extracellular region and detailed analyses of its interactions with its ligands, PD-L1 and PD-L2. PD-1 has typical immunoglobulin superfamily topology but differs at the edge of the GFCC' sheet, which is flexible and completely lacks a C" strand. Changes in PD-1 backbone NMR signals induced by ligand binding suggest that, whereas binding is centered on the GFCC' sheet, PD-1 is engaged by its two ligands differently and in ways incompletely explained by crystal structures of mouse PD-1 · ligand complexes. The affinities of these interactions and that of PD-L1 with the costimulatory protein B7-1, measured using surface plasmon resonance, are significantly weaker than expected. The 3-4-fold greater affinity of PD-L2 versus PD-L1 for human PD-1 is principally due to the 3-fold smaller dissociation rate for PD-L2 binding. Isothermal titration calorimetry revealed that the PD-1/PD-L1 interaction is entropically driven, whereas PD-1/PD-L2 binding has a large enthalpic component. Mathematical simulations based on the biophysical data and quantitative expression data suggest an unexpectedly limited contribution of PD-L2 to PD-1 ligation during interactions of activated T cells with antigen-presenting cells. These findings provide a rigorous structural and biophysical framework for interpreting the important functions of PD-1 and reveal that potent inhibitory signaling can be initiated by weakly interacting receptors.

  15. Structural basis of transcriptional gene silencing mediated by Arabidopsis MOM1.

    Science.gov (United States)

    Nishimura, Taisuke; Molinard, Guillaume; Petty, Tom J; Broger, Larissa; Gabus, Caroline; Halazonetis, Thanos D; Thore, Stéphane; Paszkowski, Jerzy

    2012-02-01

    Shifts between epigenetic states of transcriptional activity are typically correlated with changes in epigenetic marks. However, exceptions to this rule suggest the existence of additional, as yet uncharacterized, layers of epigenetic regulation. MOM1, a protein of 2,001 amino acids that acts as a transcriptional silencer, represents such an exception. Here we define the 82 amino acid domain called CMM2 (Conserved MOM1 Motif 2) as a minimal MOM1 fragment capable of transcriptional regulation. As determined by X-ray crystallography, this motif folds into an unusual hendecad-based coiled-coil. Structure-based mutagenesis followed by transgenic complementation tests in plants demonstrate that CMM2 and its dimerization are effective for transcriptional suppression at chromosomal loci co-regulated by MOM1 and the siRNA pathway but not at loci controlled by MOM1 in an siRNA-independent fashion. These results reveal a surprising separation of epigenetic activities that enable the single, large MOM1 protein to coordinate cooperating mechanisms of epigenetic regulation.

  16. Active inflatable auxetic honeycomb structural concept for morphing wingtips

    International Nuclear Information System (INIS)

    Sun, Jian; Leng, Jinsong; Gao, Hongliang; Liu, Yanju; Scarpa, Fabrizio; Lira, Cristian

    2014-01-01

    This paper describes a new concept of an active honeycomb structure for morphing wingtip applications based on tubular inflatable systems and an auxetic cellular structure. A work-energy model to predict the output honeycomb displacement versus input pressure is developed together with a finite element formulation, and the results are compared with the data obtained from a small-scale example of an active honeycomb. An analysis of the hysteresis associated with multiple cyclic loading is also provided, and design considerations for a larger-scale wingtip demonstrator are made. (paper)

  17. Rac1 GTPase activates the WAVE regulatory complex through two distinct binding sites

    Science.gov (United States)

    Brautigam, Chad A; Xing, Wenmin; Yang, Sheng; Henry, Lisa; Doolittle, Lynda K; Walz, Thomas

    2017-01-01

    The Rho GTPase Rac1 activates the WAVE regulatory complex (WRC) to drive Arp2/3 complex-mediated actin polymerization, which underpins diverse cellular processes. Here we report the structure of a WRC-Rac1 complex determined by cryo-electron microscopy. Surprisingly, Rac1 is not located at the binding site on the Sra1 subunit of the WRC previously identified by mutagenesis and biochemical data. Rather, it binds to a distinct, conserved site on the opposite end of Sra1. Biophysical and biochemical data on WRC mutants confirm that Rac1 binds to both sites, with the newly identified site having higher affinity and both sites required for WRC activation. Our data reveal that the WRC is activated by simultaneous engagement of two Rac1 molecules, suggesting a mechanism by which cells may sense the density of active Rac1 at membranes to precisely control actin assembly. PMID:28949297

  18. Optimization strategy for actuator and sensor placement in active structural acoustic control

    NARCIS (Netherlands)

    Oude nijhuis, M.H.H.; de Boer, Andries

    2003-01-01

    In active structural acoustic control the goal is to reduce the sound radiation of a structure by means of changing the vibrational behaviour of that structure. The performance of such an active control system is to a large extent determined by the locations of the actuators and sensors. In this

  19. Structure-activity studies: in vitro antileishmanial and antimalarial activities of anthraquinones from Morinda lucida

    DEFF Research Database (Denmark)

    Sittie, A A; Lemmich, E; Olsen, C E

    1999-01-01

    Anthraquinones have been isolated by bioassay-guided fractionation from Morinda lucida. Structure-activity studies show that an aldehyde group at C-2 and a phenolic hydroxy group at C-3 enhance the activity of the anthraquinones against the growth of Plasmodium falciparum and promastigotes...

  20. Structure-Based Design of Novel HIV-1 Protease Inhibitors to Combat Drug Resistance

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh,A.; Sridhar, P.; Leshchenko, S.; Hussain, A.; Li, J.; Kovalevsky, A.; Walters, D.; Wedelind, J.; Grum-Tokars, V.; et al.

    2006-01-01

    Structure-based design and synthesis of novel HIV protease inhibitors are described. The inhibitors are designed specifically to interact with the backbone of HIV protease active site to combat drug resistance. Inhibitor 3 has exhibited exceedingly potent enzyme inhibitory and antiviral potency. Furthermore, this inhibitor maintains impressive potency against a wide spectrum of HIV including a variety of multi-PI-resistant clinical strains. The inhibitors incorporated a stereochemically defined 5-hexahydrocyclopenta[b]furanyl urethane as the P2-ligand into the (R)-(hydroxyethylamino)sulfonamide isostere. Optically active (3aS,5R,6aR)-5-hydroxy-hexahydrocyclopenta[b]furan was prepared by an enzymatic asymmetrization of meso-diacetate with acetyl cholinesterase, radical cyclization, and Lewis acid-catalyzed anomeric reduction as the key steps. A protein-ligand X-ray crystal structure of inhibitor 3-bound HIV-1 protease (1.35 Angstroms resolution) revealed extensive interactions in the HIV protease active site including strong hydrogen bonding interactions with the backbone. This design strategy may lead to novel inhibitors that can combat drug resistance.

  1. A bio-inspired, active morphing skin for camber morphing structures

    Science.gov (United States)

    Feng, Ning; Liu, Liwu; Liu, Yanju; Leng, Jinson

    2015-03-01

    In this study, one kind of developed morphing skin embedded with pneumatic muscle fibers (PMFs) was manufactured and was employed for camber morphing structures. The output force and contraction of PMF as well as the morphing skin were experimentally characterized at a series of discrete actuator pressures varying from 0.15 to 0.35 MPa. The active morphing skin test results show that the output force is 73.59 N and the contraction is 0.097 (9.7%) at 0.35 MPa. Due to these properties, this active morphing skin could be easily used for the morphing structures. Then the proper airfoil profile was chosen to manufacture the adaptive airfoil in this study. The chord-wise bending airfoil structure was achieved by employing this kind of active morphing skin. Finally the deformed shapes of this chord-wise bending airfoil structure were obtained by 3-dimensions scanning measurement. Meanwhile the camber morphing structures were analyzed through the finite element method (FEM) and the deformed shapes of the upper surface skins were obtained. The experimental result and FEM analysis result of deformed shapes of the upper surface skins were compared in this paper.

  2. A bio-inspired, active morphing skin for camber morphing structures

    International Nuclear Information System (INIS)

    Feng, Ning; Leng, Jinson; Liu, Liwu; Liu, Yanju

    2015-01-01

    In this study, one kind of developed morphing skin embedded with pneumatic muscle fibers (PMFs) was manufactured and was employed for camber morphing structures. The output force and contraction of PMF as well as the morphing skin were experimentally characterized at a series of discrete actuator pressures varying from 0.15 to 0.35 MPa. The active morphing skin test results show that the output force is 73.59 N and the contraction is 0.097 (9.7%) at 0.35 MPa. Due to these properties, this active morphing skin could be easily used for the morphing structures. Then the proper airfoil profile was chosen to manufacture the adaptive airfoil in this study. The chord-wise bending airfoil structure was achieved by employing this kind of active morphing skin. Finally the deformed shapes of this chord-wise bending airfoil structure were obtained by 3-dimensions scanning measurement. Meanwhile the camber morphing structures were analyzed through the finite element method (FEM) and the deformed shapes of the upper surface skins were obtained. The experimental result and FEM analysis result of deformed shapes of the upper surface skins were compared in this paper. (paper)

  3. A Histidine pH sensor regulates activation of the Ras-specific guanine nucleotide exchange factor RasGRP1.

    Science.gov (United States)

    Vercoulen, Yvonne; Kondo, Yasushi; Iwig, Jeffrey S; Janssen, Axel B; White, Katharine A; Amini, Mojtaba; Barber, Diane L; Kuriyan, John; Roose, Jeroen P

    2017-09-27

    RasGRPs are guanine nucleotide exchange factors that are specific for Ras or Rap, and are important regulators of cellular signaling. Aberrant expression or mutation of RasGRPs results in disease. An analysis of RasGRP1 SNP variants led to the conclusion that the charge of His 212 in RasGRP1 alters signaling activity and plasma membrane recruitment, indicating that His 212 is a pH sensor that alters the balance between the inactive and active forms of RasGRP1. To understand the structural basis for this effect we compared the structure of autoinhibited RasGRP1, determined previously, to those of active RasGRP4:H-Ras and RasGRP2:Rap1b complexes. The transition from the autoinhibited to the active form of RasGRP1 involves the rearrangement of an inter-domain linker that displaces inhibitory inter-domain interactions. His 212 is located at the fulcrum of these conformational changes, and structural features in its vicinity are consistent with its function as a pH-dependent switch.

  4. The structural pathway of interleukin 1 (IL-1 initiated signaling reveals mechanisms of oncogenic mutations and SNPs in inflammation and cancer.

    Directory of Open Access Journals (Sweden)

    Saliha Ece Acuner Ozbabacan

    2014-02-01

    Full Text Available Interleukin-1 (IL-1 is a large cytokine family closely related to innate immunity and inflammation. IL-1 proteins are key players in signaling pathways such as apoptosis, TLR, MAPK, NLR and NF-κB. The IL-1 pathway is also associated with cancer, and chronic inflammation increases the risk of tumor development via oncogenic mutations. Here we illustrate that the structures of interfaces between proteins in this pathway bearing the mutations may reveal how. Proteins are frequently regulated via their interactions, which can turn them ON or OFF. We show that oncogenic mutations are significantly at or adjoining interface regions, and can abolish (or enhance the protein-protein interaction, making the protein constitutively active (or inactive, if it is a repressor. We combine known structures of protein-protein complexes and those that we have predicted for the IL-1 pathway, and integrate them with literature information. In the reconstructed pathway there are 104 interactions between proteins whose three dimensional structures are experimentally identified; only 15 have experimentally-determined structures of the interacting complexes. By predicting the protein-protein complexes throughout the pathway via the PRISM algorithm, the structural coverage increases from 15% to 71%. In silico mutagenesis and comparison of the predicted binding energies reveal the mechanisms of how oncogenic and single nucleotide polymorphism (SNP mutations can abrogate the interactions or increase the binding affinity of the mutant to the native partner. Computational mapping of mutations on the interface of the predicted complexes may constitute a powerful strategy to explain the mechanisms of activation/inhibition. It can also help explain how an oncogenic mutation or SNP works.

  5. Radiological characterisation of V1 NPP technological systems and buildings - Activation

    International Nuclear Information System (INIS)

    Kristofova, Kristina; Rapant, Tibor; Svitek, Jaroslav

    2012-01-01

    V1 NPP at Jaslovske Bohunice site has been finally shutdown after 28 years of successful operation in 2006 (Unit 1) and 2008 (Unit 2). At present, both units are finally shutdown and since July 2011 under decommissioning license. The preparation of V1 NPP decommissioning has been supported and partly financed by the Bohunice International Decommissioning Support Fund (BIDSF), under the administration of the European Bank for Reconstruction and Development. From 06/2008 to 12/2011 AMEC Nuclear Slovakia, together with partners STM Power and EWN GmbH, carried out BIDSF B6.4 project - Decommissioning database development (DDB). The main purpose of the B6.4 project was to develop a physical and radiological inventory database to support V1 NPP decommissioning process planning and performance. One of the specific deliverable tasks within the B6.4 project was deliverable D12 - Characterization of activated equipment and civil structures based on measurement, sampling and analyses performed on the samples. The scope of deliverable services within D12 task consisted of: 1. Categorization of activated components ; 2. Development of single working programs for their radiological monitoring and sampling ; 3. Preparation of sampling device and revision of all handling equipment; 4. Dose rate monitoring and sampling of: - Civil structures from reactors shaft on both units ; - Components placed in HLW storage, (so called 'Mogilnik') - connection rods, absorbers ; of control rod assemblies and neutron flux measurement channels ; - Reactor pressure vessel and shielding assemblies at both units of V1 NPP, reactor; internals from Unit 2 of V1 NPP; 5. Analysis of samples ; 6. Determination of radiological inventory ; 7. Import of radiological data for activated components into DDB. During sampling, mainly remotely controlled sampling device and radiation resistant camera with LED lightening for visual checking of all performed activities was used. In total, 125 samples have been taken

  6. Biochemical and Structural Analyses of Two Cryptic Esterases in Bacteroides intestinalis and their Synergistic Activities with Cognate Xylanases.

    Science.gov (United States)

    Wefers, Daniel; Cavalcante, Janaina J V; Schendel, Rachel R; Deveryshetty, Jaigeeth; Wang, Kui; Wawrzak, Zdzislaw; Mackie, Roderick I; Koropatkin, Nicole M; Cann, Isaac

    2017-08-04

    Arabinoxylans are constituents of the human diet. Although not utilizable by the human host, they can be fermented by colonic bacteria. The arabinoxylan backbone is decorated with arabinose side chains that may be substituted with ferulic acid, thus limiting depolymerization to fermentable sugars. We investigated the polypeptides encoded by two genes upregulated during growth of the colonic bacterium Bacteroides intestinalis on wheat arabinoxylan. The recombinant proteins, designated BiFae1A and BiFae1B, were functionally assigned esterase activities. Both enzymes were active on acetylated substrates, although each showed a higher ferulic acid esterase activity on methyl-ferulate. BiFae1A showed a catalytic efficiency of 12mM s -1 on para-nitrophenyl-acetate, and on methyl-ferulate, the value was 27 times higher. BiFae1B showed low catalytic efficiencies for both substrates. Furthermore, the two enzymes released ferulic acid from various structural elements, and NMR spectroscopy indicated complete de-esterification of arabinoxylan oligosaccharides from wheat bran. BiFae1A is a tetramer based on the crystal structure, whereas BiFae1B is a dimer in solution based on size exclusion chromatography. The structure of BiFae1A was solved to 1.98Å resolution, and two tetramers were observed in the asymmetric unit. A flexible loop that may act as a hinge over the active site and likely coordinates critical interactions with the substrate was prominent in BiFae1A. Sequence alignments of the esterase domains in BiFae1B with the feruloyl esterase from Clostridium thermocellum suggest that both domains lack the flexible hinge in BiFae1A, an observation that may partly provide a molecular basis for the differences in activities in the two esterases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Crystal structure of THEP1 from the hyperthermophile Aquifex aeolicus: a variation of the RecA fold

    Directory of Open Access Journals (Sweden)

    Wittinghofer Alfred

    2005-03-01

    Full Text Available Abstract Background aaTHEP1, the gene product of aq_1292 from Aquifex aeolicus, shows sequence homology to proteins from most thermophiles, hyperthermophiles, and higher organisms such as man, mouse, and fly. In contrast, there are almost no homologous proteins in mesophilic unicellular microorganisms. aaTHEP1 is a thermophilic enzyme exhibiting both ATPase and GTPase activity in vitro. Although annotated as a nucleotide kinase, such an activity could not be confirmed for aaTHEP1 experimentally and the in vivo function of aaTHEP1 is still unknown. Results Here we report the crystal structure of selenomethionine substituted nucleotide-free aaTHEP1 at 1.4 Å resolution using a multiple anomalous dispersion phasing protocol. The protein is composed of a single domain that belongs to the family of 3-layer (α/β/α-structures consisting of nine central strands flanked by six helices. The closest structural homologue as determined by DALI is the RecA family. In contrast to the latter proteins, aaTHEP1 possesses an extension of the β-sheet consisting of four additional β-strands. Conclusion We conclude that the structure of aaTHEP1 represents a variation of the RecA fold. Although the catalytic function of aaTHEP1 remains unclear, structural details indicate that it does not belong to the group of GTPases, kinases or adenosyltransferases. A mainly positive electrostatic surface indicates that aaTHEP1 might be a DNA/RNA modifying enzyme. The resolved structure of aaTHEP1 can serve as paradigm for the complete THEP1 family.

  8. Structure-activity relationship of CART peptide fragments

    Czech Academy of Sciences Publication Activity Database

    Maletínská, Lenka; Maixnerová, Jana; Hlaváček, Jan; Blokešová, Darja; Elbert, Tomáš; Šanda, Miloslav; Slaninová, Jiřina; Železná, Blanka

    2007-01-01

    Roč. 88, č. 4 (2007), s. 565 ISSN 0006-3525. [American Peptide Society Symposium /20./. 26.06.2007-30.06.2007, Montreal] Institutional research plan: CEZ:AV0Z40550506 Keywords : cocaine and amphetamine regulated transcript peptide * structure * activity Subject RIV: CE - Biochemistry

  9. Providing Consumers with Web-Based Information on the Environmental Effects of Automobiles

    Energy Technology Data Exchange (ETDEWEB)

    Saulsbury, J.W.

    2003-08-25

    The Department of Energy (DOE) and the Environmental Protection Agency (EPA) provide consumers with web-based information on the environmental effects of automobiles so that individuals can make informed choices about the vehicles they use or may purchase. DOE and EPA maintain a web site (www.fueleconomy.gov) that provides users with information about fuel economy [as well as greenhouse gas (GHG) emissions and air pollution emissions] for the cars and trucks they use or may consider purchasing. EPA also maintains a separate web site (www.epa.gov/greenvehicles) that offers similar information, with the focus on air pollution emissions rather than fuel economy. The American Council for an Energy-Efficient Economy (ACEEE) (www.greenercars.com) and the California Air Resources Board (CARB) (www.arb.ca.gov/msprog/ccbg/ccbg.htm) also maintain web sites that provide consumers with information on the environmental effects of automobiles. Through the National Transportation Research Center (NTRC) at Oak Ridge National Laboratory, DOE has supported some initial qualitative research with people who are interested in purchasing a new or used vehicle and whose actions identify them as at least somewhat concerned about the environment. The purpose of this research was to explore and understand how these people respond to the different ratings and measurements of environmental effects provided by the four web sites. The goal of the research is to optimize the communication of information provided on the DOE/EPA web site (www.fueleconomy.gov). Working with a private marketing research firm (The Looking Glass Group of Knoxville, Tennessee), NTRC staff initiated this research by meeting with two focus groups in Knoxville on February 27, 2001. To obtain information for comparison, staff from the NTRC and the Looking Glass Group also met with two focus groups in Los Angeles, California, on August 13, 2001.

  10. Obscure phenomena in statistical analysis of quantitative structure-activity relationships. Part 1: Multicollinearity of physicochemical descriptors.

    Science.gov (United States)

    Mager, P P; Rothe, H

    1990-10-01

    Multicollinearity of physicochemical descriptors leads to serious consequences in quantitative structure-activity relationship (QSAR) analysis, such as incorrect estimators and test statistics of regression coefficients of the ordinary least-squares (OLS) model applied usually to QSARs. Beside the diagnosis of the known simple collinearity, principal component regression analysis (PCRA) also allows the diagnosis of various types of multicollinearity. Only if the absolute values of PCRA estimators are order statistics that decrease monotonically, the effects of multicollinearity can be circumvented. Otherwise, obscure phenomena may be observed, such as good data recognition but low predictive model power of a QSAR model.

  11. Structure of the Nanobody-Stabilized Active State of the Kappa Opioid Receptor.

    Science.gov (United States)

    Che, Tao; Majumdar, Susruta; Zaidi, Saheem A; Ondachi, Pauline; McCorvy, John D; Wang, Sheng; Mosier, Philip D; Uprety, Rajendra; Vardy, Eyal; Krumm, Brian E; Han, Gye Won; Lee, Ming-Yue; Pardon, Els; Steyaert, Jan; Huang, Xi-Ping; Strachan, Ryan T; Tribo, Alexandra R; Pasternak, Gavril W; Carroll, F Ivy; Stevens, Raymond C; Cherezov, Vadim; Katritch, Vsevolod; Wacker, Daniel; Roth, Bryan L

    2018-01-11

    The κ-opioid receptor (KOP) mediates the actions of opioids with hallucinogenic, dysphoric, and analgesic activities. The design of KOP analgesics devoid of hallucinatory and dysphoric effects has been hindered by an incomplete structural and mechanistic understanding of KOP agonist actions. Here, we provide a crystal structure of human KOP in complex with the potent epoxymorphinan opioid agonist MP1104 and an active-state-stabilizing nanobody. Comparisons between inactive- and active-state opioid receptor structures reveal substantial conformational changes in the binding pocket and intracellular and extracellular regions. Extensive structural analysis and experimental validation illuminate key residues that propagate larger-scale structural rearrangements and transducer binding that, collectively, elucidate the structural determinants of KOP pharmacology, function, and biased signaling. These molecular insights promise to accelerate the structure-guided design of safer and more effective κ-opioid receptor therapeutics. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Change in pore structure of coals by activation with KOH; KOH fukatsushita sekitan no saiko kozo

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, K.; Yoshizawa, N.; Ishikawa, E.; Kobayashi, M.; Toda, Y.; Yamada, Y.; Shiraishi, M. [National Institute for Resources and Environment, Tsukuba (Japan)

    1996-10-28

    Three typical Japanese coals of non-coking coal, coking coal and anthracite were heat-treated with KOH, and change in their pore structure was examined by absorption of N2, X-ray diffraction and TEM observation. In addition, the relation between a coal rank and pore structure was also studied by absorption experiment of N2. In experiment, the mixture of coal and KOH in a nickel holder was heat-treated in N2 gas flow at heating rate of 2{degree}C/min, and held at a fixed temperature for one hour. To clarify the pore structure, N2 absorption isotherms were measured at -196{degree}C under nearly 76cmHg using a commercially available full-automatic absorption measurement equipment. Based on the X-ray diffraction and TEM observation results on activated coals, the relation between the N2 absorption and pore structure was studied. The results are summarized as follows: (1) The yield and absorption ability of coals increase with a coal rank, (2) The specific surface area of coals reaches its peak at 800{degree}C in activation temperature regardless of a coal rank, and (3) The activation behavior of coals is dependent on a coal rank. 5 refs., 7 figs., 1 tab.

  13. High-resolution structure of TBP with TAF1 reveals anchoring patterns in transcriptional regulation.

    Science.gov (United States)

    Anandapadamanaban, Madhanagopal; Andresen, Cecilia; Helander, Sara; Ohyama, Yoshifumi; Siponen, Marina I; Lundström, Patrik; Kokubo, Tetsuro; Ikura, Mitsuhiko; Moche, Martin; Sunnerhagen, Maria

    2013-08-01

    The general transcription factor TFIID provides a regulatory platform for transcription initiation. Here we present the crystal structure (1.97 Å) and NMR analysis of yeast TAF1 N-terminal domains TAND1 and TAND2 bound to yeast TBP, together with mutational data. We find that yeast TAF1-TAND1, which in itself acts as a transcriptional activator, binds TBP's concave DNA-binding surface by presenting similar anchor residues to TBP as does Mot1 but from a distinct structural scaffold. Furthermore, we show how TAF1-TAND2 uses an aromatic and acidic anchoring pattern to bind a conserved TBP surface groove traversing the basic helix region, and we find highly similar TBP-binding motifs also presented by the structurally distinct TFIIA, Mot1 and Brf1 proteins. Our identification of these anchoring patterns, which can be easily disrupted or enhanced, provides insight into the competitive multiprotein TBP interplay critical to transcriptional regulation.

  14. Photospheric Velocity Structures during the Emergence of Small Active Regions on the Sun

    International Nuclear Information System (INIS)

    Khlystova, Anna; Toriumi, Shin

    2017-01-01

    We study the plasma flows in the solar photosphere during the emergence of two small active regions, NOAA 9021 and 10768. Using Solar and Heliospheric Observatory /Michelson Doppler Imager data, we find that the strong plasma upflows appear at the initial stage of active region formation, with maximum upflow velocities of −1650 and −1320 m s −1 . The structures with enhanced upflows have size ∼8 Mm in diameter, and they exist for 1–2 hr. The parameters of the enhanced upflows are consistent with those of the large active region NOAA 10488, which may suggest the possibility that the elementary emerging magnetic loops that appear at the earliest phase of active region formation have similar properties, irrespective of scales of active regions. Comparison between the observations and a numerical simulation of magnetic flux emergence shows a striking consistency. We find that the driving force of the plasma upflow is at first the gas pressure gradient and later the magnetic pressure gradient.

  15. Photospheric Velocity Structures during the Emergence of Small Active Regions on the Sun

    Energy Technology Data Exchange (ETDEWEB)

    Khlystova, Anna [Institute of Solar-Terrestrial Physics SB RAS, Lermontov St., 126a, 664033 Irkutsk (Russian Federation); Toriumi, Shin, E-mail: hlystova@iszf.irk.ru, E-mail: shin.toriumi@nao.ac.jp [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2017-04-10

    We study the plasma flows in the solar photosphere during the emergence of two small active regions, NOAA 9021 and 10768. Using Solar and Heliospheric Observatory /Michelson Doppler Imager data, we find that the strong plasma upflows appear at the initial stage of active region formation, with maximum upflow velocities of −1650 and −1320 m s{sup −1}. The structures with enhanced upflows have size ∼8 Mm in diameter, and they exist for 1–2 hr. The parameters of the enhanced upflows are consistent with those of the large active region NOAA 10488, which may suggest the possibility that the elementary emerging magnetic loops that appear at the earliest phase of active region formation have similar properties, irrespective of scales of active regions. Comparison between the observations and a numerical simulation of magnetic flux emergence shows a striking consistency. We find that the driving force of the plasma upflow is at first the gas pressure gradient and later the magnetic pressure gradient.

  16. Structural Investigation of Alkali Activated Clay Minerals for Application in Water Treatment Systems

    Science.gov (United States)

    Bumanis, G.; Bajare, D.; Dembovska, L.

    2015-11-01

    Alkali activation technology can be applied for a wide range of alumo-silicates to produce innovative materials with various areas of application. Most researches focuse on the application of alumo-silicate materials in building industry as cement binder replacement to produce mortar and concrete [1]. However, alkali activation technology offers high potential also in biotechnologies [2]. In the processes where certain pH level, especially alkaline environment, must be ensured, alkali activated materials can be applied. One of such fields is water treatment systems where high level pH (up to pH 10.5) ensures efficient removal of water pollutants such as manganese [3]. Previous investigations had shown that alkali activation technology can be applied to calcined clay powder and aluminium scrap recycling waste as a foam forming agent to create porous alkali activated materials. This investigation focuses on the structural investigation of calcined kaolin and illite clay alkali activation processes. Chemical and mineralogical composition of both clays were determined and structural investigation of alkali activated materials was made by using XRD, DTA, FTIR analysis; the microstructure of hardened specimens was observed by SEM. Physical properties of the obtained material were determined. Investigation indicates the essential role of chemical composition of the clay used in the alkali activation process, and potential use of the obtained material in water treatment systems.

  17. Structural and functional analysis of a platelet-activating lysophosphatidylcholine of Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    Felipe Gazos-Lopes

    2014-08-01

    Full Text Available Trypanosoma cruzi is the causative agent of the life-threatening Chagas disease, in which increased platelet aggregation related to myocarditis is observed. Platelet-activating factor (PAF is a potent intercellular lipid mediator and second messenger that exerts its activity through a PAF-specific receptor (PAFR. Previous data from our group suggested that T. cruzi synthesizes a phospholipid with PAF-like activity. The structure of T. cruzi PAF-like molecule, however, remains elusive.Here, we have purified and structurally characterized the putative T. cruzi PAF-like molecule by electrospray ionization-tandem mass spectrometry (ESI-MS/MS. Our ESI-MS/MS data demonstrated that the T. cruzi PAF-like molecule is actually a lysophosphatidylcholine (LPC, namely sn-1 C18:1(delta 9-LPC. Similar to PAF, the platelet-aggregating activity of C18:1-LPC was abrogated by the PAFR antagonist, WEB 2086. Other major LPC species, i.e., C16:0-, C18:0-, and C18:2-LPC, were also characterized in all T. cruzi stages. These LPC species, however, failed to induce platelet aggregation. Quantification of T. cruzi LPC species by ESI-MS revealed that intracellular amastigote and trypomastigote forms have much higher levels of C18:1-LPC than epimastigote and metacyclic trypomastigote forms. C18:1-LPC was also found to be secreted by the parasite in extracellular vesicles (EV and an EV-free fraction. A three-dimensional model of PAFR was constructed and a molecular docking study was performed to predict the interactions between the PAFR model and PAF, and each LPC species. Molecular docking data suggested that, contrary to other LPC species analyzed, C18:1-LPC is predicted to interact with the PAFR model in a fashion similar to PAF.Taken together, our data indicate that T. cruzi synthesizes a bioactive C18:1-LPC, which aggregates platelets via PAFR. We propose that C18:1-LPC might be an important lipid mediator in the progression of Chagas disease and its biosynthesis could

  18. p21-activated Kinase1(PAK1) can promote ERK activation in a kinase independent manner

    DEFF Research Database (Denmark)

    Wang, Zhipeng; Fu, Meng; Wang, Lifeng

    2013-01-01

    204) although phosphorylation of b-Raf (Ser445) and c-Raf (Ser 338) remained unchanged. Furthermore, increased activation of the PAK1 activator Rac1 induced the formation of a triple complex of Rac1, PAK1 and Mek1, independent of the kinase activity of PAK1. These data suggest that PAK1 can stimulate...... MEK activity in a kinase independent manner, probably by serving as a scaffold to facilitate interaction of c-Raf....

  19. Influence of alkali metal cations/type of activator on the structure of alkali-activated fly ash - ATR-FTIR studies

    Science.gov (United States)

    Król, M.; Rożek, P.; Chlebda, D.; Mozgawa, W.

    2018-06-01

    Coal fly ash as a secondary aluminosiliceous raw material that is commonly used in the so-called geopolymerization process has been activated with different alkali hydroxides solutions: LiOH, NaOH and KOH. Changes in the aluminosilicate structure of the material during alkali-activation have been analyzed in detail on the basis of ATR/FT-IR spectra. These changes mainly affect both the integral intensity and FWHM of bands in the range of 1200-950 cm-1, however dehydration and carbonation process can be also analyzed based on obtaining results.

  20. Transgenic Expression of Constitutively Active RAC1 Disrupts Mouse Rod Morphogenesis

    Science.gov (United States)

    Song, Hongman; Bush, Ronald A.; Vijayasarathy, Camasamudram; Fariss, Robert N.; Kjellstrom, Sten; Sieving, Paul A.

    2014-01-01

    Purpose. Dominant-active RAC1 rescues photoreceptor structure in Drosophila rhodopsin-null mutants, indicating an important role in morphogenesis. This report assesses the morphogenetic effect of activated RAC1 during mammalian rod photoreceptor development using transgenic mice that express constitutively active (CA) RAC1. Methods. Transgenic mice were generated by expressing CA RAC1 under control of the Rhodopsin promoter, and morphological features of the photoreceptors were evaluated by histology, immunohistochemistry, and transmission electron microscopy. Function was evaluated by electroretinography. Potential protein partners of CA RAC1 were identified by co-immunoprecipitation of retinal extracts. Results. Constitutively active RAC1 expression in differentiating rods disrupted outer retinal lamination as early as postnatal day (P)6, and many photoreceptor cell nuclei were displaced apically into the presumptive subretinal space. These photoreceptors did not develop normal inner and outer segments and had abnormal placement of synaptic elements. Some photoreceptor nuclei were also mislocalized into the inner nuclear layer. Extensive photoreceptor degeneration was subsequently observed in the adult animal. Constitutively active RAC1 formed a complex with the polarity protein PAR6 and with microtubule motor dynein in mouse retina. The normal localization of the PAR6 complex was disrupted in CA RAC1-expressing rod photoreceptors. Conclusions. Constitutively active RAC1 had a profound negative effect on mouse rod cell viability and development. Rod photoreceptors in the CA RAC1 retina exhibited a defect in polarity and migration. Constitutively active RAC1 disrupted rod morphogenesis and gave a phenotype resembling that found in the Crumbs mutant. PAR6 and dynein are two potential downstream effectors that may be involved in CA RAC1-mediated defective mouse photoreceptor morphogenesis. PMID:24651551

  1. Indoline Amide Glucosides from Portulaca oleracea: Isolation, Structure, and DPPH Radical Scavenging Activity.

    Science.gov (United States)

    Jiao, Ze-Zhao; Yue, Su; Sun, Hong-Xiang; Jin, Tian-Yun; Wang, Hai-Na; Zhu, Rong-Xiu; Xiang, Lan

    2015-11-25

    A polyamide column chromatography method using an aqueous ammonia mobile phase was developed for large-scale accumulation of water-soluble indoline amide glucosides from a medicinal plant, Portulaca oleracea. Ten new [oleraceins H, I, K, L, N, O, P, Q, R, S (1-10)] and four known [oleraceins A-D (11-14)] indoline amide glucosides were further purified and structurally characterized by various chromatographic and spectroscopic methods. The DPPH radical scavenging activities of oleraceins K (5) and L (6), with EC50 values of 15.30 and 16.13 μM, respectively, were twice that of a natural antioxidant, vitamin C; the EC50 values of the 12 other indoline amides, which ranged from 29.05 to 43.52 μM, were similar to that of vitamin C. Structure-activity relationships indicated that the DPPH radical scavenging activities of these indoline amides correlate with the numbers and positions of the phenolic hydroxy groups.

  2. Ozonation of 1,2-dihydroxybenzene in the presence of activated carbon.

    Science.gov (United States)

    Zaror, C; Soto, G; Valdés, H; Mansilla, H

    2001-01-01

    This work aims at obtaining experimental data on ozonation of 1,2-dihydroxybenzene (DHB) in the presence of activated carbon, with a view to assessing possible changes in its surface chemical structure and adsorption capacity. Experiments were conducted in a 0.5 L reactor, loaded with 2 g Filtrasorb 400 granular activated carbon, and 1-5 mM DHB aqueous solution at pH 2-8. Ozone gas was generated with an Ozocav generator, and fed into the reactor for a given exposure time, in the range 0.5-240 min, at 25 degrees C and 1 atm. After each run, liquid and activated carbon samples were taken for chemical assays. Soluble organic groups present on the active carbon surface were desorbed and analysed by GC-MS and HPLC. Activated carbon chemical surface properties were analysed using TPD, FT-IR, and XPS techniques. Reactions between ozone and adsorbed DHB were shown to be fast, leading to formation of C-6, C-4 and C-2 by-products. Oxygenated surface groups, particularly, COOH and C = O, increased as a result of ozonation.

  3. Innovation in Active Vibration Control Strategy of Intelligent Structures

    Directory of Open Access Journals (Sweden)

    A. Moutsopoulou

    2014-01-01

    Full Text Available Large amplitudes and attenuating vibration periods result in fatigue, instability, and poor structural performance. In light of past approaches in this field, this paper intends to discuss some innovative approaches in vibration control of intelligent structures, particularly in the case of structures with embedded piezoelectric materials. Control strategies are presented, such as the linear quadratic control theory, as well as more advanced theories, such as robust control theory. The paper presents sufficiently a recognizable advance in knowledge of active vibration control in intelligent structures.

  4. Crystal structure of histone demethylase LSD1 and tranylcypromine at 2.25 A

    International Nuclear Information System (INIS)

    Mimasu, Shinya; Sengoku, Toru; Fukuzawa, Seketsu; Umehara, Takashi; Yokoyama, Shigeyuki

    2008-01-01

    Transcriptional activity and chromatin structure accessibility are correlated with the methylation of specific histone residues. Lysine-specific demethylase 1 (LSD1) is the first discovered histone demethylase, which demethylates Lys4 or Lys9 of histone H3, using FAD. Among the known monoamine oxidase inhibitors, tranylcypromine (Parnate) showed the most potent inhibitory effect on LSD1. Recently, the crystal structure of LSD1 and tranylcypromine was solved at 2.75 A, revealing a five-membered ring fused to the flavin of LSD1. In this study, we refined the crystal structure of the LSD1-tranylcypromine complex to 2.25 A. The five-membered ring model did not fit completely with the electron density, giving R work /R free values of 0.226/0.254. On the other hand, the N(5) adduct gave the lowest R work /R free values of 0.218/0.248, among the tested models. These results imply that the LSD1-tranylcypromine complex is not completely composed of the five-membered adduct, but partially contains an intermediate, such as the N(5) adduct

  5. SAV1 promotes Hippo kinase activation through antagonizing the PP2A phosphatase STRIPAK

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Sung Jun [Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States; Ni, Lisheng [Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States; Osinski, Adam [Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States; Tomchick, Diana R. [Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States; Brautigam, Chad A. [Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States; Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, United States; Luo, Xuelian [Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States

    2017-10-24

    The Hippo pathway controls tissue growth and homeostasis through a central MST-LATS kinase cascade. The scaffold protein SAV1 promotes the activation of this kinase cascade, but the molecular mechanisms remain unknown. Here, we discover SAV1-mediated inhibition of the PP2A complex STRIPAKSLMAP as a key mechanism of MST1/2 activation. SLMAP binding to autophosphorylated MST2 linker recruits STRIPAK and promotes PP2A-mediated dephosphorylation of MST2 at the activation loop. Our structural and biochemical studies reveal that SAV1 and MST2 heterodimerize through their SARAH domains. Two SAV1–MST2 heterodimers further dimerize through SAV1 WW domains to form a heterotetramer, in which MST2 undergoes trans-autophosphorylation. SAV1 directly binds to STRIPAK and inhibits its phosphatase activity, protecting MST2 activation-loop phosphorylation. Genetic ablation of SLMAP in human cells leads to spontaneous activation of the Hippo pathway and alleviates the need for SAV1 in Hippo signaling. Thus, SAV1 promotes Hippo activation through counteracting the STRIPAKSLMAP PP2A phosphatase complex.

  6. Generation of structurally novel short carotenoids and study of their biological activity

    DEFF Research Database (Denmark)

    Kim, Se Hyeuk; Kim, Moon S.; Lee, Bun Y.

    2016-01-01

    Recent research interest in phytochemicals has consistently driven the efforts in the metabolic engineering field toward microbial production of various carotenoids. In spite of systematic studies, the possibility of using C30 carotenoids as biologically functional compounds has not been explored...... thus far. Here, we generated 13 novel structures of C30 carotenoids and one C35 carotenoid, including acyclic, monocyclic, and bicyclic structures, through directed evolution and combinatorial biosynthesis, in Escherichia coli. Measurement of radical scavenging activity of various C30 carotenoid...... structures revealed that acyclic C30 carotenoids showed higher radical scavenging activity than did DL-atocopherol. We could assume high potential biological activity of the novel structures of C30 carotenoids as well, based on the neuronal differentiation activity observed for the monocyclic C30 carotenoid...

  7. Synthesis, crystal structures, molecular docking, in vitro monoamine oxidase-B inhibitory activity of transition metal complexes with 2-{4-[bis (4-fluorophenyl)methyl]piperazin-1-yl} acetic acid

    Science.gov (United States)

    Yang, Dan-dan; Wang, Riu; Zhu, Jin-long; Cao, Qi-yue; Qin, Jie; Zhu, Hai-liang; Qian, Shao-song

    2017-01-01

    Three novel complexes, [Cu(L)2(H2O)](1), [Zn(L)2(H2O)2]·CH3OH·1.5H2O(2), and [Ni(L)2(H2O)1.8]·CH3OH·1.2H2O (3) (HL = 2-{4-[bis(4-fluorophenyl)methyl]pipera-zin-1-yl} acetic acid), were synthesized and structurally determined by single-crystal X-ray diffraction. Molecular docking study preliminarily revealed that complex 1 had potential Monoamine oxidase B inhibitory activity. All acquired compounds were tested against rat brain MAO-B in vitro. In accordance with the result of calculation, it showed complex 1 (IC50 = 1.85 ± 0.31 μM) have good inhibitory activity against MAO-B at the same micromolar concentrations with positive control Iproniazid Phosphate (IP, IC50 = 7.59 ± 1.17 μM). These results indicated that complex 1 was a potent MAO-B inhibitor.

  8. Structural and electrical properties of Na{sub 1/2}La{sub 1/2}TiO{sub 3} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Barik, S K; Mahapatra, P K [Vidyasagar University, Department of Physics and Technophysics, Midnapur, West Bengal (India); Choudhary, R N.P. [Department of Physics and Meteorology, I.I.T. Kharagpur (India)

    2006-11-15

    Na{sub 1/2}La{sub 1/2}TiO{sub 3} (NLT) ceramic was prepared by a high-temperature solid-state reaction technique. A preliminary structural analysis (XRD) suggested the formation of a single-phase orthorhombic structure. SEM micrograph of the material showed uniform grain distribution on the surface of the sample. The dielectric permittivity and the loss tangent of the sample were measured in a frequency range from 1 kHz to 1 MHz and a temperature range 28 C to 525 C. Electrical properties of the material were studied using an ac impedance spectroscopic technique. Detailed analysis of the impedance spectrum suggested that the electrical properties of the material are strongly temperature dependant. The Nyquist plots clearly showed the presence of both bulk and grain boundary effect in the compound. The activation energy was estimated to be 1.1 eV from the temperature variation of dc conductivity. The a.c. conductivity spectrum suggests a typical signature of ion conducting system. (orig.)

  9. Active Structural Acoustic Control in an Original A400M Aircraft Structure

    International Nuclear Information System (INIS)

    Koehne, C; Sachau, D; Renger, K

    2016-01-01

    Low frequency noise has always been a challenge in propeller driven aircraft. At low frequencies passive noise treatments are not as efficient as active noise reduction systems. The Helmut-Schmidt-University has built up a full-scale test rig with an original A400M aircraft structure. This provides a good opportunity to develop and test active noise reduction systems in a realistic environment. The currently installed system consists of mechanical actuators and acoustical sensors. The actuators are called TVAs (Tuneable Vibration Absorber) and contain two spring-mass systems whose natural frequencies are adjusted to the BPFs (Blade Passage Frequency) of the propellers. The TVAs are mounted to the frames and the force direction is normal to the skin. The sensors are condenser microphones which are attached to the primary structure of the airframe. The TVAs are equipped with signal processing devices. These components carry out Fourier transforms and signal amplification for the sensor data and actuator signals. The communication between the TVAs and the central control unit is implemented by the CAN Bus protocol and mainly consists of complex coefficients for the sensor and actuator data. This paper describes the basic structure of the system, the hardware set-up and function tests of the controller. (paper)

  10. Active Structural Acoustic Control in an Original A400M Aircraft Structure

    Science.gov (United States)

    Koehne, C.; Sachau, D.; Renger, K.

    2016-09-01

    Low frequency noise has always been a challenge in propeller driven aircraft. At low frequencies passive noise treatments are not as efficient as active noise reduction systems. The Helmut-Schmidt-University has built up a full-scale test rig with an original A400M aircraft structure. This provides a good opportunity to develop and test active noise reduction systems in a realistic environment. The currently installed system consists of mechanical actuators and acoustical sensors. The actuators are called TVAs (Tuneable Vibration Absorber) and contain two spring-mass systems whose natural frequencies are adjusted to the BPFs (Blade Passage Frequency) of the propellers. The TVAs are mounted to the frames and the force direction is normal to the skin. The sensors are condenser microphones which are attached to the primary structure of the airframe. The TVAs are equipped with signal processing devices. These components carry out Fourier transforms and signal amplification for the sensor data and actuator signals. The communication between the TVAs and the central control unit is implemented by the CAN Bus protocol and mainly consists of complex coefficients for the sensor and actuator data. This paper describes the basic structure of the system, the hardware set-up and function tests of the controller.

  11. Mutational and structural analyses of Caldanaerobius polysaccharolyticus Man5B reveal novel active site residues for family 5 glycoside hydrolases.

    Directory of Open Access Journals (Sweden)

    Takuji Oyama

    Full Text Available CpMan5B is a glycoside hydrolase (GH family 5 enzyme exhibiting both β-1,4-mannosidic and β-1,4-glucosidic cleavage activities. To provide insight into the amino acid residues that contribute to catalysis and substrate specificity, we solved the structure of CpMan5B at 1.6 Å resolution. The structure revealed several active site residues (Y12, N92 and R196 in CpMan5B that are not present in the active sites of other structurally resolved GH5 enzymes. Residue R196 in GH5 enzymes is thought to be strictly conserved as a histidine that participates in an electron relay network with the catalytic glutamates, but we show that an arginine fulfills a functionally equivalent role and is found at this position in every enzyme in subfamily GH5_36, which includes CpMan5B. Residue N92 is required for full enzymatic activity and forms a novel bridge over the active site that is absent in other family 5 structures. Our data also reveal a role of Y12 in establishing the substrate preference for CpMan5B. Using these molecular determinants as a probe allowed us to identify Man5D from Caldicellulosiruptor bescii as a mannanase with minor endo-glucanase activity.

  12. Mutational and structural analyses of Caldanaerobius polysaccharolyticus Man5B reveal novel active site residues for family 5 glycoside hydrolases.

    Science.gov (United States)

    Oyama, Takuji; Schmitz, George E; Dodd, Dylan; Han, Yejun; Burnett, Alanna; Nagasawa, Naoko; Mackie, Roderick I; Nakamura, Haruki; Morikawa, Kosuke; Cann, Isaac

    2013-01-01

    CpMan5B is a glycoside hydrolase (GH) family 5 enzyme exhibiting both β-1,4-mannosidic and β-1,4-glucosidic cleavage activities. To provide insight into the amino acid residues that contribute to catalysis and substrate specificity, we solved the structure of CpMan5B at 1.6 Å resolution. The structure revealed several active site residues (Y12, N92 and R196) in CpMan5B that are not present in the active sites of other structurally resolved GH5 enzymes. Residue R196 in GH5 enzymes is thought to be strictly conserved as a histidine that participates in an electron relay network with the catalytic glutamates, but we show that an arginine fulfills a functionally equivalent role and is found at this position in every enzyme in subfamily GH5_36, which includes CpMan5B. Residue N92 is required for full enzymatic activity and forms a novel bridge over the active site that is absent in other family 5 structures. Our data also reveal a role of Y12 in establishing the substrate preference for CpMan5B. Using these molecular determinants as a probe allowed us to identify Man5D from Caldicellulosiruptor bescii as a mannanase with minor endo-glucanase activity.

  13. Structure of 6-diazo-5-oxo-norleucine-bound human gamma-glutamyl transpeptidase 1, a novel mechanism of inactivation.

    Science.gov (United States)

    Terzyan, Simon S; Cook, Paul F; Heroux, Annie; Hanigan, Marie H

    2017-06-01

    Intense efforts are underway to identify inhibitors of the enzyme gamma-glutamyl transpeptidase 1 (GGT1) which cleaves extracellular gamma-glutamyl compounds and contributes to the pathology of asthma, reperfusion injury and cancer. The glutamate analog, 6-diazo-5-oxo-norleucine (DON), inhibits GGT1. DON also inhibits many essential glutamine metabolizing enzymes rendering it too toxic for use in the clinic as a GGT1 inhibitor. We investigated the molecular mechanism of human GGT1 (hGGT1) inhibition by DON to determine possible strategies for increasing its specificity for hGGT1. DON is an irreversible inhibitor of hGGT1. The second order rate constant of inactivation was 0.052 mM -1 min -1 and the K i was 2.7 ± 0.7 mM. The crystal structure of DON-inactivated hGGT1 contained a molecule of DON without the diazo-nitrogen atoms in the active site. The overall structure of the hGGT1-DON complex resembled the structure of the apo-enzyme; however, shifts were detected in the loop forming the oxyanion hole and elements of the main chain that form the entrance to the active site. The structure of hGGT1-DON complex revealed two covalent bonds between the enzyme and inhibitor which were part of a six membered ring. The ring included the OG atom of Thr381, the reactive nucleophile of hGGT1 and the α-amine of Thr381. The structure of DON-bound hGGT1 has led to the discovery of a new mechanism of inactivation by DON that differs from its inactivation of other glutamine metabolizing enzymes, and insight into the activation of the catalytic nucleophile that initiates the hGGT1 reaction. © 2017 The Protein Society.

  14. Generation of structurally novel short carotenoids and study of their biological activity.

    Science.gov (United States)

    Kim, Se H; Kim, Moon S; Lee, Bun Y; Lee, Pyung C

    2016-02-23

    Recent research interest in phytochemicals has consistently driven the efforts in the metabolic engineering field toward microbial production of various carotenoids. In spite of systematic studies, the possibility of using C30 carotenoids as biologically functional compounds has not been explored thus far. Here, we generated 13 novel structures of C30 carotenoids and one C35 carotenoid, including acyclic, monocyclic, and bicyclic structures, through directed evolution and combinatorial biosynthesis, in Escherichia coli. Measurement of radical scavenging activity of various C30 carotenoid structures revealed that acyclic C30 carotenoids showed higher radical scavenging activity than did DL-α-tocopherol. We could assume high potential biological activity of the novel structures of C30 carotenoids as well, based on the neuronal differentiation activity observed for the monocyclic C30 carotenoid 4,4'-diapotorulene on rat bone marrow mesenchymal stem cells. Our results demonstrate that a series of structurally novel carotenoids possessing biologically beneficial properties can be synthesized in E. coli.

  15. Polycyclic phloroglucinols as PTP1B inhibitors from Hypericum longistylum: Structures, PTP1B inhibitory activities, and interactions with PTP1B.

    Science.gov (United States)

    Cao, Xiangrong; Yang, Xueyuan; Wang, Peixia; Liang, Yue; Liu, Feng; Tuerhong, Muhetaer; Jin, Da-Qing; Xu, Jing; Lee, Dongho; Ohizumi, Yasushi; Guo, Yuanqiang

    2017-12-01

    Protein tyrosine phosphatase 1B (PTP1B) has been regarded asa target for the research and development of new drugs to treat type II diabetes and PTP1B inhibitors are potential lead compounds for this type of new drugs. A phytochemical investigation to obtain new PTP1B inhibitors resulted in the isolation of four new phloroglucinols, longistyliones A-D (1-4) from the aerial parts of Hypericum longistylum. The structures of 1-4 were elucidated on the basis of extensive 1D and 2D NMR spectroscopic data analysis, and the absolute configurations of these compounds were established by comparing their experimental electronic circular dichroism (ECD) spectra with those calculated by the time-dependent density functional theory method. Compounds 1-4 possess a rare polycyclic phloroglucinol skeleton. The following biological evaluation revealed that all of the compounds showed PTP1B inhibitory effects. The further molecular docking studies indicated the strong interactions between these bioactive compounds with the PTP1B protein, which revealed the possible mechanism of PTP1B inhibition of bioactive compounds. All of the results implied that these compounds are potentially useful for the treatment of type II diabetes. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Structural basis of evasion of cellular adaptive immunity by HIV-1 Nef

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Xiaofei; Singh, Rajendra; Homann, Stefanie; Yang, Haitao; Guatelli, John; Xiong, Yong (Yale); (VA); (UCSD)

    2012-10-24

    The HIV-1 protein Nef inhibits antigen presentation by class I major histocompatibility complex (MHC-I). We determined the mechanism of this activity by solving the crystal structure of a protein complex comprising Nef, the MHC-I cytoplasmic domain (MHC-I CD) and the {mu}1 subunit of the clathrin adaptor protein complex 1. A ternary, cooperative interaction clamps the MHC-I CD into a narrow binding groove at the Nef-{mu}1 interface, which encompasses the cargo-recognition site of {mu}1 and the proline-rich strand of Nef. The Nef C terminus induces a previously unobserved conformational change in {mu}1, whereas the N terminus binds the Nef core to position it optimally for complex formation. Positively charged patches on {mu}1 recognize acidic clusters in Nef and MHC-I. The structure shows how Nef functions as a clathrin-associated sorting protein to alter the specificity of host membrane trafficking and enable viral evasion of adaptive immunity.

  17. Structure of a PKA RIα Recurrent Acrodysostosis Mutant Explains Defective cAMP-Dependent Activation.

    Science.gov (United States)

    Bruystens, Jessica Gh; Wu, Jian; Fortezzo, Audrey; Del Rio, Jason; Nielsen, Cole; Blumenthal, Donald K; Rock, Ruth; Stefan, Eduard; Taylor, Susan S

    2016-12-04

    Most disease-related mutations that impair cAMP protein kinase A (PKA) signaling are present within the regulatory (R) PKA RI alpha-subunit (RIα). Although mutations in the PRKAR1A gene are linked to Carney complex (CNC) disease and, more recently, to acrodysostosis-1 (ACRDYS1), the two diseases show contrasting phenotypes. While CNC mutations cause increased PKA activity, ACRDYS1 mutations result in decreased PKA activity and cAMP resistant holoenzymes. Mapping the ACRDYS1 disease mutations reveals their localization to the second of two tandem cAMP-binding (CNB) domains (CNB-B), and here, we characterize a recurrent deletion mutant where the last 14 residues are missing. The crystal structure of a monomeric form of this mutant (RIα92-365) bound to the catalytic (C)-subunit reveals the dysfunctional regions of the RIα subunit. Beyond the missing residues, the entire capping motif is disordered (residues 357-379) and explains the disrupted cAMP binding. Moreover, the effects of the mutation extend far beyond the CNB-B domain and include the active site and N-lobe of the C-subunit, which is in a partially open conformation with the C-tail disordered. A key residue that contributes to this crosstalk, D267, is altered in our structure, and we confirmed its functional importance by mutagenesis. In particular, the D267 interaction with Arg241, a residue shown earlier to be important for allosteric regulation, is disrupted, thereby strengthening the interaction of D267 with the C-subunit residue Arg194 at the R:C interface. We see here how the switch between active (cAMP-bound) and inactive (holoenzyme) conformations is perturbed and how the dynamically controlled crosstalk between the helical domains of the two CNB domains is necessary for the functional regulation of PKA activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Structure-activity relationship of antiparasitic and cytotoxic indoloquinoline alkaloids, and their tricyclic and bicyclic analogues.

    Science.gov (United States)

    Van Baelen, Gitte; Hostyn, Steven; Dhooghe, Liene; Tapolcsányi, Pál; Mátyus, Péter; Lemière, Guy; Dommisse, Roger; Kaiser, Marcel; Brun, Reto; Cos, Paul; Maes, Louis; Hajós, György; Riedl, Zsuzsanna; Nagy, Ildikó; Maes, Bert U W; Pieters, Luc

    2009-10-15

    Based on the indoloquinoline alkaloids cryptolepine (1), neocryptolepine (2), isocryptolepine (3) and isoneocryptolepine (4), used as lead compounds for new antimalarial agents, a series of tricyclic and bicyclic analogues, including carbolines, azaindoles, pyrroloquinolines and pyrroloisoquinolines was synthesized and biologically evaluated. None of the bicyclic compounds was significantly active against the chloroquine-resistant strain Plasmodium falciparum K1, in contrast to the tricyclic derivatives. The tricyclic compound 2-methyl-2H-pyrido[3,4-b]indole (9), or 2-methyl-beta-carboline, showed the best in vitro activity, with an IC(50) value of 0.45 microM against P. falciparum K1, without apparent cytotoxicity against L6 cells (SI>1000). However, this compound was not active in the Plasmodium berghei mouse model. Structure-activity relationships are discussed and compared with related naturally occurring compounds.

  19. Endothelin-1 stimulates catalase activity through the PKCδ mediated phosphorylation of Serine 167

    Science.gov (United States)

    Rafikov, Ruslan; Kumar, Sanjiv; Aggarwal, Saurabh; Hou, Yali; Kangath, Archana; Pardo, Daniel; Fineman, Jeffrey R.; Black, Stephen M.

    2013-01-01

    Our previous studies have shown that endothelin-1 (ET-1) stimulates catalase activity in endothelial cells and lambs with acute increases in pulmonary blood flow (PBF), without altering gene expression. The purpose of this study was to investigate the molecular mechanism by which this occurs. Exposing pulmonary arterial endothelial cells (PAEC) to ET-1 increased catalase activity and decreased cellular hydrogen peroxide (H2O2) levels. These changes correlated with an increase in serine phosphorylated catalase. Using the inhibitory peptide δV1.1, this phosphorylation was shown to be PKCδ dependent. Mass spectrometry identified serine167 as the phosphorylation site. Site-directed mutagenesis was used to generate a phospho-mimic (S167D) catalase. Activity assays using recombinant protein purified from E.coli or transiently transfected COS-7 cells, demonstrated that S167D-catalase had an increased ability to degrade H2O2 compared to the wildtype enzyme. Using a phospho-specific antibody, we were able to verify that pS167 catalase levels are modulated in lambs with acute increases in PBF in the presence and absence of the ET receptor antagonist, tezosentan. S167 is being located on the dimeric interface suggesting it could be involved in regulating the formation of catalase tetramers. To evaluate this possibility we utilized analytical gel-filtration to examine the multimeric structure of recombinant wildtype- and S167D-catalase. We found that recombinant wildtype catalase was present as a mixture of monomers and dimers while S167D catalase was primarily tetrameric. Further, the incubation of wildtype catalase with PKCδ was sufficient to convert wildtype catalase into a tetrameric structure. In conclusion, this is the first report indicating that the phosphorylation of catalase regulates its multimeric structure and activity. PMID:24211614

  20. Study of the adsorption characteristics and pore structure of activated carbons

    Energy Technology Data Exchange (ETDEWEB)

    Kutics, K; Kotsis, L; Argyelan, J; Szolcsanyi, P

    1985-05-01

    Charcoal prepared by heating walnut shells at 500/sup 0/C in a nitrogen atmosphere was activated by CO/sub 2/ at various temperatures. The adsorption equilibrium and mass transfer characteristics of the activated carbon were studied. The structural properties were determined by means of additional measurements. A pore model is proposed to explain the variation of the pore structure with the activation process. The micropore sizes predicted by the model agree with the adsorption data.

  1. Structure and anticoagulant activity of a sulfated galactan from the red alga, Gelidium crinale. Is there a specific structural requirement for the anticoagulant action?

    Science.gov (United States)

    Pereira, Maria G; Benevides, Norma M B; Melo, Marcia R S; Valente, Ana Paula; Melo, Fábio R; Mourão, Paulo A S

    2005-09-05

    Marine red algae are an abundant source of sulfated galactans with potent anticoagulant activity. However, the specific structural motifs that confer biological activity remain to be elucidated. We have now isolated and purified a sulfated galactan from the marine red alga, Gellidium crinale. The structure of this polysaccharide was determined using NMR spectroscopy. It is composed of the repeating structure -4-alpha-Galp-(1-->3)-beta-Galp1--> but with a variable sulfation pattern. Clearly 15% of the total alpha-units are 2,3-di-sulfated and another 55% are 2-sulfated. No evidence for the occurrence of 3,6-anhydro alpha-galactose units was observed in the NMR spectra. We also compared the anticoagulant activity of this sulfated galactan with a polysaccharide from the species, Botryocladia occidentalis, with a similar saccharide chain but with higher amounts of 2,3-di-sulfated alpha-units. The sulfated galactan from G. crinale has a lower anticoagulant activity on a clotting assay when compared with the polysaccharide from B. occidentalis. When tested in assays using specific proteases and coagulation inhibitors, these two galactans showed significant differences in their activity. They do not differ in thrombin inhibition mediated by antithrombin, but in assays where heparin cofactor II replaces antithrombin, the sulfated galactan from G. crinale requires a significantly higher concentration to achieve the same inhibitory effect as the polysaccharide from B. occidentalis. In contrast, when factor Xa instead of thrombin is used as the target protease, the sulfated galactan from G. crinale is a more potent anticoagulant. These observations suggest that the proportion and/or the distribution of 2,3-di-sulfated alpha-units along the galactan chain may be a critical structural motif to promote the interaction of the protease with specific protease and coagulation inhibitors.

  2. Structure-activity study of macropin, a novel antimicrobial peptide from the venom of solitary bee Macropis fulvipes (Hymenoptera: Melittidae).

    Science.gov (United States)

    Monincová, Lenka; Veverka, Václav; Slaninová, Jiřina; Buděšínský, Miloš; Fučík, Vladimír; Bednárová, Lucie; Straka, Jakub; Ceřovský, Václav

    2014-06-01

    A novel antimicrobial peptide, designated macropin (MAC-1) with sequence Gly-Phe-Gly-Met-Ala-Leu-Lys-Leu-Leu-Lys-Lys-Val-Leu-NH2 , was isolated from the venom of the solitary bee Macropis fulvipes. MAC-1 exhibited antimicrobial activity against both Gram-positive and Gram-negative bacteria, antifungal activity, and moderate hemolytic activity against human red blood cells. A series of macropin analogs were prepared to further evaluate the effect of structural alterations on antimicrobial and hemolytic activities and stability in human serum. The antimicrobial activities of several analogs against pathogenic Pseudomonas aeruginosa were significantly increased while their toxicity against human red blood cells was decreased. The activity enhancement is related to the introduction of either l- or d-lysine in selected positions. Furthermore, all-d analog and analogs with d-amino acid residues introduced at the N-terminal part of the peptide chain exhibited better serum stability than did natural macropin. Data obtained by CD spectroscopy suggest a propensity of the peptide to adopt an amphipathic α-helical secondary structure in the presence of trifluoroethanol or membrane-mimicking sodium dodecyl sulfate. In addition, the study elucidates the structure-activity relationship for the effect of d-amino acid substitutions in MAC-1 using NMR spectroscopy. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.

  3. Crystal structure of glucagon-like peptide-1 in complex with the extracellular domain of the glucagon-like peptide-1 receptor.

    Science.gov (United States)

    Underwood, Christina Rye; Garibay, Patrick; Knudsen, Lotte Bjerre; Hastrup, Sven; Peters, Günther H; Rudolph, Rainer; Reedtz-Runge, Steffen

    2010-01-01

    GLP-1 (glucagon-like peptide-1) is an incretin released from intestinal L-cells in response to food intake. Activation of the GLP-1 receptor potentiates the synthesis and release of insulin from pancreatic beta-cells in a glucose-dependent manner. The GLP-1 receptor belongs to class B of the G-protein-coupled receptors, a subfamily characterized by a large N-terminal extracellular ligand binding domain. Exendin-4 and GLP-1 are 50% identical, and exendin-4 is a full agonist with similar affinity and potency for the GLP-1 receptor. We recently solved the crystal structure of the GLP-1 receptor extracellular domain in complex with the competitive antagonist exendin-4(9-39). Interestingly, the isolated extracellular domain binds exendin-4 with much higher affinity than the endogenous agonist GLP-1. Here, we have solved the crystal structure of the extracellular domain in complex with GLP-1 to 2.1 Aresolution. The structure shows that important hydrophobic ligand-receptor interactions are conserved in agonist- and antagonist-bound forms of the extracellular domain, but certain residues in the ligand-binding site adopt a GLP-1-specific conformation. GLP-1 is a kinked but continuous alpha-helix from Thr(13) to Val(33) when bound to the extracellular domain. We supplemented the crystal structure with site-directed mutagenesis to link the structural information of the isolated extracellular domain with the binding properties of the full-length receptor. The data support the existence of differences in the binding modes of GLP-1 and exendin-4 on the full-length GLP-1 receptor.

  4. Association between Family Structure and Physical Activity of Chinese Adolescents

    Directory of Open Access Journals (Sweden)

    Lijuan Wang

    2016-01-01

    Full Text Available Background. This study examines the association between family structure and moderate-to-vigorous physical activity (MVPA of adolescents in China. Methods. The participants included 612 adolescents (317 boys and 295 girls from Shanghai with ages ranging from 10 to 16 years. Accelerometers were used to measure the duration of MVPA of adolescents, and questionnaires on family structure were completed by the parents of these adolescents. Results. Findings suggested that family structure significantly increased the likelihood of adolescents engaging in physical activity (PA and explained 6% of MPVA variance. Adolescents living in single-parent households and step families were more physically active than those living in two-parent homes and with biological parents, respectively. However, adolescents residing with grandparents were less active than those living with neither grandparent. No significant difference was found in MVPA time between adolescents living with one sibling and those without siblings. Conclusion. Family environment may be considered in the development of PA interventions and policies, and adolescents living with their grandparents may be targeted in PA promotion.

  5. Crystal structure, spectral property, antimicrobial activity and DFT calculation of N-(coumarin-3-yl)-N‧-(2-amino-5-phenyl-1,3,4-thiadiazol-2-yl) urea

    Science.gov (United States)

    Zhang, Hong-Song; Zhang, Kong-Yan; Chen, Li-Chuan; Li, Yao-Xin; Chai, Lan-Qin

    2017-10-01

    N-(coumarin-3-yl)-N‧-(2-amino-5-phenyl-1,3,4-thiadiazol-2-yl) urea was synthesized and characterized by elemental analysis, IR, 1H NMR, 13C NMR, UV-Vis and emission spectroscopy, as well as by single-crystal X-ray diffraction. X-ray crystallographic analyses have indicated that the crystal structure consists of two dimethyl sulfoxide (DMSO) solvent molecules and the structural geometry of DMSO is a trigonal pyramid in shape. In the crystal structure, a self-assembling two-dimensional (2-D) layer supramolecular architecture is formed through intermolecular hydrogen bonds, Cdbnd O···π (thiadiazole ring) and π···π stacking interactions. The geometry of the compound has been optimized by the DFT method and the results are compared with the X-ray diffraction data. The electronic transitions and spectral features of the compound were carried out by using DFT/B3LYP method. In addition, the antimicrobial activity was also studied, and the highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO), and HOMO-LUMO gap were also calculated.

  6. STRUCTURES AND BIOLOGICAL ACTIVITY OF CUPROPHYLLINS

    Directory of Open Access Journals (Sweden)

    Martynov A.V.

    2017-06-01

    Full Text Available Chlorophylls (a, b are the porphyrin compounds and most common chemical in the plant’s world. In fact, these compounds are an obligatory intermediate product both in energy metabolism and in plant catabolism. At the same time, currently there are few pharmaceutical preparations on the pharmaceutical market based on chlorophylls. Dyes based on hydrolyzed chlorophyll are successfully used in the food industry. Commercial chlorophylline is a copper complex of hydrolyzed chlorophylls. As shown earlier in TLC, the chlorophyllin mixture contains a large number of different compounds. It is like water-soluble saponified derivatives in the form of sodium-magnesium complexes, and similar structures in the form of a complex with copper. The latter are more brightly colored, soluble in water and widely used as coloring agents in cooking. In this case, if the initial chlorophyll was not found to have a pronounced biological activity, the substituted derivatives in the form of copper complexes possessed a number of new unique biological properties. Non-hydrolyzed hydrophobic cuprophylline obtained from eucalyptus leaves possessed high antimicrobial activity to most strains of staphylococci, inclusion resistant to antimicrobials and multiresistant strains. This drug is called Chlorophyllipt, it is allowed to be used as a medicinal product and is one of the oldest antibacterial drugs from plants on the market. It is marketed as ethanoic and oily solutions for topical use, and as an alcohol solution for intravenous injections. Its main purpose is the fight against staphylococcal infections. Recently, found that the oral administration of chlorophyllipt activates cellular immunity and indirectly exhibits antiviral activity. Another compound of cuprophyllin is water-soluble chlorophyllin. Some authors show the variability of the structure and biological activity of cuprophyllins. Different derivatives of chlorophyll have different biological activity

  7. Saccharomyces cerevisiae Hrq1 requires a long 3′-tailed DNA substrate for helicase activity

    International Nuclear Information System (INIS)

    Kwon, Sung-Hun; Choi, Do-Hee; Lee, Rina; Bae, Sung-Ho

    2012-01-01

    Highlights: ► Hrq1 has intrinsic 3′–5′ helicase and DNA strand annealing activities. ► Hrq1 requires a long 3′-tail for efficient DNA unwinding. ► Helicase activity of Hrq1 is stimulated by a fork structure. ► Hrq1 is a moderately processive helicase. -- Abstract: RecQ helicases are well conserved proteins from bacteria to human and function in various DNA metabolism for maintenance of genome stability. Five RecQ helicases are found in humans, whereas only one RecQ helicase has been described in lower eukaryotes. However, recent studies predicted the presence of a second RecQ helicase, Hrq1, in fungal genomes and verified it as a functional gene in fission yeast. Here we show that 3′–5′ helicase activity is intrinsically associated with Hrq1 of Saccharomyces cerevisiae. We also determined several biochemical properties of Hrq1 helicase distinguishable from those of other RecQ helicase members. Hrq1 is able to unwind relatively long duplex DNA up to 120-bp and is significantly stimulated by a preexisting fork structure. Further, the most striking feature of Hrq1 is its absolute requirement for a long 3′-tail (⩾70-nt) for efficient unwinding of duplex DNA. We also found that Hrq1 has potent DNA strand annealing activity. Our results indicate that Hrq1 has vigorous helicase activity that deserves further characterization to expand our understanding of RecQ helicases.

  8. The role of glypicans in Wnt inhibitory factor-1 activity and the structural basis of Wif1's effects on Wnt and Hedgehog signaling.

    Directory of Open Access Journals (Sweden)

    Andrei Avanesov

    Full Text Available Proper assignment of cellular fates relies on correct interpretation of Wnt and Hedgehog (Hh signals. Members of the Wnt Inhibitory Factor-1 (WIF1 family are secreted modulators of these extracellular signaling pathways. Vertebrate WIF1 binds Wnts and inhibits their signaling, but its Drosophila melanogaster ortholog Shifted (Shf binds Hh and extends the range of Hh activity in the developing D. melanogaster wing. Shf activity is thought to depend on reinforcing interactions between Hh and glypican HSPGs. Using zebrafish embryos and the heterologous system provided by D. melanogaster wing, we report on the contribution of glypican HSPGs to the Wnt-inhibiting activity of zebrafish Wif1 and on the protein domains responsible for the differences in Wif1 and Shf specificity. We show that Wif1 strengthens interactions between Wnt and glypicans, modulating the biphasic action of glypicans towards Wnt inhibition; conversely, glypicans and the glypican-binding "EGF-like" domains of Wif1 are required for Wif1's full Wnt-inhibiting activity. Chimeric constructs between Wif1 and Shf were used to investigate their specificities for Wnt and Hh signaling. Full Wnt inhibition required the "WIF" domain of Wif1, and the HSPG-binding EGF-like domains of either Wif1 or Shf. Full promotion of Hh signaling requires both the EGF-like domains of Shf and the WIF domains of either Wif1 or Shf. That the Wif1 WIF domain can increase the Hh promoting activity of Shf's EGF domains suggests it is capable of interacting with Hh. In fact, full-length Wif1 affected distribution and signaling of Hh in D. melanogaster, albeit weakly, suggesting a possible role for Wif1 as a modulator of vertebrate Hh signaling.

  9. Structural complexities in the active layers of organic electronics.

    Science.gov (United States)

    Lee, Stephanie S; Loo, Yueh-Lin

    2010-01-01

    The field of organic electronics has progressed rapidly in recent years. However, understanding the direct structure-function relationships between the morphology in electrically active layers and the performance of devices composed of these materials has proven difficult. The morphology of active layers in organic electronics is inherently complex, with heterogeneities existing across multiple length scales, from subnanometer to micron and millimeter range. A major challenge still facing the organic electronics community is understanding how the morphology across all of the length scales in active layers collectively determines the device performance of organic electronics. In this review we highlight experiments that have contributed to the elucidation of structure-function relationships in organic electronics and also point to areas in which knowledge of such relationships is still lacking. Such knowledge will lead to the ability to select active materials on the basis of their inherent properties for the fabrication of devices with prespecified characteristics.

  10. Synthesis, crystal structure, Hirshfeld surfaces analysis and anti-ischemic activity of cinnamide derivatives

    Science.gov (United States)

    Zhong, Jian-gang; Han, Jia-pei; Li, Xiao-feng; Xu, Yi; Zhong, Yan; Wu, Bin

    2018-02-01

    Two cinnamide derivatives, namely, (E)-1-(4-(bis(4-methylphenyl)- methyl)piperazin-1-yl)-3-(3,4-diethoxyphenyl)prop-2-en-1-one (5) and (E)-1-(4-(bis- (4-fluorophenyl)methyl)piperazin-1-yl)-3-(4-methoxyphenyl)prop-2-en-1-one (6), have been synthesized and characterized by IR spectra, High resolution mass spectra, 1H NMR spectra, 13C NMR spectra. The compound 5 is a novel compound and has never been reported in the literature. Their crystal structures were studied by single-crystal X-ray diffraction. They all crystallize in the monoclinic system. The single-crystal X-ray revealed that compound 5 has infinite X-shaped 1-D polymeric chains structure and compound 6 has a layered 3-D structure by intermolecular interactions. Hirshfeld surface analysis demonstrated the presence of H⋯H, O⋯H, C⋯H, F⋯H, Csbnd H⋯π and π⋯π intermolecular interactions. In addition, the MTT assay results indicated that the compounds 5 and 6 display effective activities against neurotoxicity which is induced by glutamine in PC12 cells. The in vivo experiment indicated that the compound 6 has a good protective effect on cerebral infarction.

  11. Molecular structures of viruses from Raman optical activity

    DEFF Research Database (Denmark)

    Blanch, Ewan W.; Hecht, Lutz; Syme, Christopher D.

    2002-01-01

    A vibrational Raman optical activity (ROA) study of a range of different structural types of virus exemplified by filamentous bacteriophage fd, tobacco mosaic virus, satellite tobacco mosaic virus, bacteriophage MS2 and cowpea mosaic virus has revealed that, on account of its sensitivity to chira......A vibrational Raman optical activity (ROA) study of a range of different structural types of virus exemplified by filamentous bacteriophage fd, tobacco mosaic virus, satellite tobacco mosaic virus, bacteriophage MS2 and cowpea mosaic virus has revealed that, on account of its sensitivity...... (top component) of cowpea mosaic virus from those of the intact middle and bottom-upper components separated by means of a caesium chloride density gradient, the ROA spectrum of the viral RNA was obtained, which revealed that the RNA takes up an A-type single-stranded helical conformation...... and that the RNA conformations in the middle and bottom-upper components are very similar. This information is not available from the X-ray crystal structure of cowpea mosaic virus since no nucleic acid is visible....

  12. Biosynthesis and structure-activity relationships of the lipid a family of glycolipids.

    Science.gov (United States)

    Xiao, Xirui; Sankaranarayanan, Karthik; Khosla, Chaitan

    2017-10-01

    Lipopolysaccharide (LPS), a glycolipid found in the outer membrane of Gram-negative bacteria, is a potent elicitor of innate immune responses in mammals. A typical LPS molecule is composed of three different structural domains: a polysaccharide called the O-antigen, a core oligosaccharide, and Lipid A. Lipid A is the amphipathic glycolipid moiety of LPS. It stimulates the immune system by tightly binding to Toll-like receptor 4. More recently, Lipid A has also been shown to activate intracellular caspase-4 and caspase-5. An impressive diversity is observed in Lipid A structures from different Gram-negative bacteria, and it is well established that subtle changes in chemical structure can result in dramatically different immune activities. For example, Lipid A from Escherichia coli is highly toxic to humans, whereas a biosynthetic precursor called Lipid IV A blocks this toxic activity, and monophosphoryl Lipid A from Salmonella minnesota is a vaccine adjuvant. Thus, an understanding of structure-activity relationships in this glycolipid family could be used to design useful immunomodulatory agents. Here we review the biosynthesis, modification, and structure-activity relationships of Lipid A. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Linac 1, inner structure

    CERN Multimedia

    1968-01-01

    This photo shows the inner structure of Linac 1. As injector to the PS, and later to the Booster, Linac 1 accelerated protons to 50 MeV, but it has also accelerated heavier ions. Fitted with a 520 keV RFQ pre-injector (instead of the original Cockcroft-Walton generator), it delivered protons and heavy ions to LEAR, from 1982 to 1992. After 33 years of faithful service, Linac 1 was dismantled in 1992 to make room for Linac 3 (Pb ions).

  14. Synthesis, Characterization and Biological Activities of Novel (E)-3-(1-(Alkyloxyamino)ethylidene)-1-alkylpyrrolidine-2,4-dione Derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zhao Yong; Shi, Qing Ming; Han, Bao Feng; Wang, Xian Feng; Qiang, Sheng; Yang, Chun Long [Nanjing Agricultural University, Nanjing (China)

    2010-09-15

    Twenty novel tetramic acid derivatives (E)-3-(1-(alkyloxyamino)ethylidene)-1-alkylpyrrolidine-2,4-diones were synthesized by the reaction of 3-(1-hydroxyethylidene)pyrrolidine-2,4-diones with O-alkyl hydroxylamines. The title compounds were confirmed by IR, {sup 1}H NMR, MS and elemental analysis. The structure of compound 6r was further verified by X-ray diffraction crystallography. The bioassays showed that most of the title compounds exhibited noticeable herbicidal and fungicidal activities.

  15. Structure-activity relationship of a u-type antimicrobial microemulsion system.

    Directory of Open Access Journals (Sweden)

    Hui Zhang

    Full Text Available The structure-activity relationship of a U-type antimicrobial microemulsion system containing glycerol monolaurate and ethanol at a 11 mass ratio as oil phase and Tween 20 as surfactant were investigated along a water dilution line at a ratio of 80∶20 mass% surfactant/oil phase, based on a pseudo-ternary phase diagram. The differential scanning calorimetry results showed that in the region of up to 33% water, all water molecules are confined to the hydrophilic core of the reverse micelles, leading to the formation of w/o microemulsion. As the water content increases, the water gains mobility, and transforms into bicontinuous in the region of 33-39% water, and finally the microemulsion become o/w in the region of above 39% water. The microstructure characterization was confirmed by the dynamic light scattering measurements and freeze-fracture transmission electron microscope observation. The antimicrobial activity assay using kinetics of killing analysis demonstrated that the microemulsions in w/o regions exhibited relatively high antimicrobial activity against Escherichia coli and Staphylococcus aureus due to the antimicrobial oil phase as the continuous phase, while the antimicrobial activity started to decrease when the microemulsions entered the bicontinuous region, and decreased rapidly as the water content increased in the o/w region, as a result of the dilution of antimicrobial oil droplets in the aqueous continuous phase.

  16. Structure Modification of an Active Azo-Compound as a Route to New Antimicrobial Compounds

    Directory of Open Access Journals (Sweden)

    Simona Concilio

    2017-05-01

    Full Text Available Some novel (phenyl-diazenylphenols 3a–g were designed and synthesized to be evaluated for their antimicrobial activity. A previously synthesized molecule, active against bacteria and fungi, was used as lead for modifications and optimization of the structure, by introduction/removal or displacement of hydroxyl groups on the azobenzene rings. The aim of this work was to evaluate the consequent changes of the antimicrobial activity and to validate the hypothesis that, for these compounds, a plausible mechanism could involve an interaction with protein receptors, rather than an interaction with membrane. All newly synthesized compounds were analyzed by 1H-NMR, DSC thermal analysis and UV-Vis spectroscopy. The in vitro minimal inhibitory concentrations (MIC of each compound was determined against Gram-positive and Gram-negative bacteria and Candida albicans. Compounds 3b and 3g showed the highest activity against S. aureus and C. albicans, with remarkable MIC values of 10 µg/mL and 3 µg/mL, respectively. Structure-activity relationship studies were capable to rationalize the effect of different substitutions on the phenyl ring of the azobenzene on antimicrobial activity.

  17. New insight into the solution structures of wheat gluten proteins from Raman optical activity

    DEFF Research Database (Denmark)

    Blanch, E.W.; Kasarda, D.D.; Hecht, L.

    2003-01-01

    Vibrational Raman optical activity (ROA) spectra of the wheat proteins a-gliadin (A-gliadin), omega-liadin, and a 30 kDa peptide called T-A-1 from the high molecular weight glutenin subunit (HMW-GS) Dx5 were measured to obtain new information about their solution structures. The spectral data show...... that, under the conditions investigated, A-gliadin contains a considerable amount of hydrated alpha-helix, most of which probably lies within a relatively structured C-terminal domain. Smaller quantities of beta-structure and poly(L-proline) II (PPII) helix were also identified. Addition of methanol...

  18. Comprehensive Assessment of Integration Activity of Business Structures in Russian Regions

    Directory of Open Access Journals (Sweden)

    Mariya Gennad’evna Karelina

    2016-11-01

    Full Text Available In the context of economic sanctions and growing international isolation, the research into regional differences in integration development acquires special relevance for Russia; this fact determines the need for a comprehensive assessment of integration activity of business structures in Russian regions. The diversity of approaches to the study of problems and prospects of economic integration and the current debate about the role of integration processes in the development of regional economies determined a comprehensive approach to the concepts of “integration” and “integration activity” in order to create objective prerequisites for analyzing integration activity of business structures in the regions of Russia. The information base of the research is the data of Russian information and analytical agencies. The tools used in the research include methods for analyzing structural changes, methods for analyzing economic differentiation and concentration, nonparametric statistics methods, and econometric analysis methods. The first part of the paper shows that socio-economic development in constituent entities of Russia is closely connected with the operation of integrated business structures located on their territory. Having studied the structure and dynamics of integration activity, we reveal the growing heterogeneity of integration activity of business structures in Russian regions. The hypothesis about significant divergence of mergers and acquisitions for corporate structures in Russian regions was confirmed by high values of the Gini coefficient, the Herfindahl index and the decile differentiation coefficient. The second part of the paper contains a comparative analysis and proposes an econometric approach to the measurement of integration activity of business structures in subjects of the Russian Federation on the basis of integral synthetic categories. The approach we propose focuses on the development of a system of indicators

  19. Crystal structure of glutamate-1-semialdehyde-2,1-aminomutase from Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yingxian; Pu, Hua; Jiang, Tian; Zhang, Lixin; Ouyang, Min, E-mail: ouyangmin@ibcas.ac.cn [Chinese Academy of Sciences, Beijing 100093, People’s Republic of (China)

    2016-05-23

    A structural study of A. thaliana glutamate-1-semialdehyde-2,1-aminomutase (GSAM) has revealed asymmetry in cofactor binding as well as in the gating-loop orientation, which supports the previously proposed negative cooperativity between monomers of GSAM. Glutamate-1-semialdehyde-2,1-aminomutase (GSAM) catalyzes the isomerization of glutamate-1-semialdehyde (GSA) to 5-aminolevulinate (ALA) and is distributed in archaea, most bacteria and plants. Although structures of GSAM from archaea and bacteria have been resolved, a GSAM structure from a higher plant is not available, preventing further structure–function analysis. Here, the structure of GSAM from Arabidopsis thaliana (AtGSA1) obtained by X-ray crystallography is reported at 1.25 Å resolution. AtGSA1 forms an asymmetric dimer and displays asymmetry in cofactor binding as well as in the gating-loop orientation, which is consistent with previously reported Synechococcus GSAM structures. While one monomer binds PMP with the gating loop fixed in the open state, the other monomer binds either PMP or PLP and the gating loop is ready to close. The data also reveal the mobility of residues Gly163, Ser164 and Gly165, which are important for reorientation of the gating loop. Furthermore, the asymmetry of the AtGSA1 structure supports the previously proposed negative cooperativity between monomers of GSAM.

  20. Copper(II) complexes of alloferon 1 with point mutations (H1A) and (H9A) stability structure and biological activity.

    Science.gov (United States)

    Matusiak, Agnieszka; Kuczer, Mariola; Czarniewska, Elżbieta; Rosiński, Grzegorz; Kowalik-Jankowska, Teresa

    2014-09-01

    Mono- and polynuclear copper(II) complexes of the alloferon 1 with point mutations (H1A) A(1)GVSGH(6)GQH(9)GVH(12)G (Allo1A) and (H9A) H(1)GVSGH(6)GQA(9)GVH(12)G (Allo9A) have been studied by potentiometric, UV-visible, CD, EPR spectroscopic and mass spectrometry (MS) methods. To obtain a complete complex speciation different metal-to-ligand molar ratios ranging from 1:1 to 4:1 for Allo1A and to 3:1 for Allo9A were studied. The presence of the His residue in first position of the peptide chain changes the coordination abilities of the Allo9A peptide in comparison to that of the Allo1A. Imidazole-N3 atom of N-terminal His residue of the Allo9A peptide forms stable 6-membered chelate with the terminal amino group. Furthermore, the presence of two additional histidine residues in the Allo9A peptide (H(6),H(12)) leads to the formation of the CuL complex with 4N {NH2,NIm-H(1),NIm-H(6),NIm-H(12)} binding site in wide pH range (5-8). For the Cu(II)-Allo1A system, the results demonstrated that at physiological pH7.4 the predominant complex the CuH-1L consists of the 3N {NH2,N(-),CO,NIm} coordination mode. The inductions of phenoloxidase activity and apoptosis in vivo in Tenebrio molitor cells by the ligands and their copper(II) complexes at pH7.4 were studied. The Allo1A, Allo1K peptides and their copper(II) complexes displayed the lowest hemocytotoxic activity while the most active was the Cu(II)-Allo9A complex formed at pH7.4. The results may suggest that the N-terminal-His(1) and His(6) residues may be more important for their proapoptotic properties in insects than those at positions 9 and 12 in the peptide chain. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Virtual sensors for active noise control in acoustic-structural coupled enclosures using structural sensing: part II--Optimization of structural sensor placement.

    Science.gov (United States)

    Halim, Dunant; Cheng, Li; Su, Zhongqing

    2011-04-01

    The work proposed an optimization approach for structural sensor placement to improve the performance of vibro-acoustic virtual sensor for active noise control applications. The vibro-acoustic virtual sensor was designed to estimate the interior sound pressure of an acoustic-structural coupled enclosure using structural sensors. A spectral-spatial performance metric was proposed, which was used to quantify the averaged structural sensor output energy of a vibro-acoustic system excited by a spatially varying point source. It was shown that (i) the overall virtual sensing error energy was contributed additively by the modal virtual sensing error and the measurement noise energy; (ii) each of the modal virtual sensing error system was contributed by both the modal observability levels for the structural sensing and the target acoustic virtual sensing; and further (iii) the strength of each modal observability level was influenced by the modal coupling and resonance frequencies of the associated uncoupled structural/cavity modes. An optimal design of structural sensor placement was proposed to achieve sufficiently high modal observability levels for certain important panel- and cavity-controlled modes. Numerical analysis on a panel-cavity system demonstrated the importance of structural sensor placement on virtual sensing and active noise control performance, particularly for cavity-controlled modes.

  2. Discovery, characterization and structure-activity relationships of an inhibitor of inward rectifier potassium (Kir channels with preference for Kir2.3, Kir3.X and Kir7.1

    Directory of Open Access Journals (Sweden)

    Jerod S Denton

    2011-11-01

    Full Text Available The inward rectifier family of potassium (Kir channels is comprised of at least 16 family members exhibiting broad and often overlapping cellular, tissue or organ distributions. The discovery of disease-causing mutations in humans and experiments on knockout mice has underscored the importance of Kir channels in physiology and in some cases raised questions about their potential as drug targets. However, the paucity of potent and selective small-molecule modulators targeting specific family members has with few exceptions mired efforts to understand their physiology and assess their therapeutic potential. A growing body of evidence suggests that GIRK (G protein-regulated inward rectifier K channels of the Kir3.X subfamily may represent novel targets for the treatment of atrial fibrillation. In an effort to expand the molecular pharmacology of GIRK, we performed a thallium (Tl+ flux-based high-throughput screen (HTS of a Kir1.1 inhibitor library for modulators of GIRK. One compound, termed VU573, exhibited 10-fold selectivity for GIRK over Kir1.1 (IC50 = 1.9 M and 19 M, respectively and was therefore selected for further study. In electrophysiological experiments performed on Xenopus laevis oocytes and mammalian cells, VU573 inhibited Kir3.1/3.2 (neuronal GIRK and Kir3.1/3.4 (cardiac GIRK channels with equal potency and preferentially inhibited GIRK, Kir2.3 and Kir7.1 over Kir1.1 and Kir2.1. Tl+ flux assays were established for Kir2.3 and the M125R pore mutant of Kir7.1 to support medicinal chemistry efforts to develop more potent and selective analogs for these channels. The structure-activity relationships of VU573 revealed few analogs with improved potency, however two compounds retained most of their activity toward GIRK and Kir2.3 and lost activity toward Kir7.1. We anticipate that the VU573 series will be useful for exploring the physiology and structure-function relationships of these Kir channels.

  3. Quantitative structure activity relationship studies on the flavonoid mediated inhibition of multidrug resistance proteins 1 and 2

    NARCIS (Netherlands)

    Zanden, J.J. van; Wortelboer, H.M.; Bijlsma, S.; Punt, A.; Usta, M.; Bladeren, P.J.V.; Rietjens, I.M.C.M.; Cnubben, N.H.P.

    2005-01-01

    In the present study, the effects of a large series of flavonoids on multidrug resistance proteins (MRPs) were studied in MRP1 and MRP2 transfected MDCKII cells. The results were used to define the structural requirements of flavonoids necessary for potent inhibition of MRP1- and MRP2-mediated

  4. Synthesis and SAR studies of benzyl ether derivatives as potent orally active S1P₁ agonists.

    Science.gov (United States)

    Tsuji, Takashi; Suzuki, Keisuke; Nakamura, Tsuyoshi; Goto, Taiji; Sekiguchi, Yukiko; Ikeda, Takuya; Fukuda, Takeshi; Takemoto, Toshiyasu; Mizuno, Yumiko; Kimura, Takako; Kawase, Yumi; Nara, Futoshi; Kagari, Takashi; Shimozato, Takaichi; Yahara, Chizuko; Inaba, Shinichi; Honda, Tomohiro; Izumi, Takashi; Tamura, Masakazu; Nishi, Takahide

    2014-08-01

    We report herein the synthesis and structure-activity relationships (SAR) of a series of benzyl ether compounds as an S1P₁ receptor modulator. From our SAR studies, the installation of substituents onto the central benzene ring of 2a was revealed to potently influence the S1P₁ and S1P₃ agonistic activities, in particular, an ethyl group on the 2-position afforded satisfactory S1P₁/S1P₃ selectivity. These changes of the S1P₁ and S1P₃ agonistic activities caused by the alteration of substituents on the 2-position were reasonably explained by a docking study using an S1P₁ X-ray crystal structure and S1P₃ homology modeling. We found that compounds 2b and 2e had a potent in vivo immunosuppressive efficacy along with acceptable S1P₁/S1P₃ selectivity, and confirmed that these compounds had less in vivo bradycardia risk through the evaluation of heart rate change after oral administration of the compounds (30 mg/kg, p.o.) in rats. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. High-resolution NMR structures of the domains of Saccharomyces cerevisiae Tho1

    International Nuclear Information System (INIS)

    Jacobsen, Julian O. B.; Allen, Mark D.; Freund, Stefan M. V.; Bycroft, Mark

    2016-01-01

    In this study, high-resolution structures of both the N-terminal DNA-binding SAP domain and the C-terminal RNA-binding domain of S. cerevisiae Tho1 have been determined. THO is a multi-protein complex involved in the formation of messenger ribonuclear particles (mRNPs) by coupling transcription with mRNA processing and export. THO is thought to be formed from five subunits, Tho2p, Hpr1p, Tex1p, Mft1p and Thp2p, and recent work has determined a low-resolution structure of the complex [Poulsen et al. (2014 ▸), PLoS One, 9, e103470]. A number of additional proteins are thought to be involved in the formation of mRNP in yeast, including Tho1, which has been shown to bind RNA in vitro and is recruited to actively transcribed chromatin in vivo in a THO-complex and RNA-dependent manner. Tho1 is known to contain a SAP domain at the N-terminus, but the ability to suppress the expression defects of the hpr1Δ mutant of THO was shown to reside in the RNA-binding C-terminal region. In this study, high-resolution structures of both the N-terminal DNA-binding SAP domain and C-terminal RNA-binding domain have been determined

  6. High-resolution NMR structures of the domains of Saccharomyces cerevisiae Tho1

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, Julian O. B.; Allen, Mark D.; Freund, Stefan M. V.; Bycroft, Mark, E-mail: mxb@mrc-lmb.cam.ac.uk [MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH (United Kingdom)

    2016-05-23

    In this study, high-resolution structures of both the N-terminal DNA-binding SAP domain and the C-terminal RNA-binding domain of S. cerevisiae Tho1 have been determined. THO is a multi-protein complex involved in the formation of messenger ribonuclear particles (mRNPs) by coupling transcription with mRNA processing and export. THO is thought to be formed from five subunits, Tho2p, Hpr1p, Tex1p, Mft1p and Thp2p, and recent work has determined a low-resolution structure of the complex [Poulsen et al. (2014 ▸), PLoS One, 9, e103470]. A number of additional proteins are thought to be involved in the formation of mRNP in yeast, including Tho1, which has been shown to bind RNA in vitro and is recruited to actively transcribed chromatin in vivo in a THO-complex and RNA-dependent manner. Tho1 is known to contain a SAP domain at the N-terminus, but the ability to suppress the expression defects of the hpr1Δ mutant of THO was shown to reside in the RNA-binding C-terminal region. In this study, high-resolution structures of both the N-terminal DNA-binding SAP domain and C-terminal RNA-binding domain have been determined.

  7. 1-ethyl gallate-2-substituted phenoxymethyl benzimidazoles: synthesis, molecular structure, antimicrobial activities and complex with cr(iii)

    International Nuclear Information System (INIS)

    Zhao, L.; Wu, J.; Wu, J.; Wang, Z.; Gu, H.

    2017-01-01

    The design of gallate and benzimidazole containing derivatives is expected to produce new bioactive molecules with multiple applications. Here the synthesis of eight novel benzimidazole compounds containing ethyl gallate and substituted phenoxymethyl units are reported. Firstly, the ring closure reaction between o-phenylendiamine and substituted phenoxyacetic acids resulted in 2-substituted phenoxymethyl benzimidazoles that were then modified by the N-hydroxyethylation with 2-chloroethyl alcohol under a phase transfer catalysis condition. The obtained 1-hydroxyethyl-2-substituted phenoxymethyl benzimidazoles were finally translated into the target title compounds 8a-h by an indirect esterification method in which three O-H groups of gallic acid were first protected by acetyls and deprotected after the esterification reaction by adding hydrazine hydrate. The structures of the title products 8a-h were fully characterized and confirmed by elemental analysis, MS, IR, 1H-NMR, 13C-NMR and single crystal X-ray diffraction techniques. Antimicrobial tests by inhibition zones indicated that these compounds exhibited diverse inhibitory effects against the test bacteria and fungi, and the type and position of the substituent groups in the phenoxymethyl moieties had obvious influence on their antimicrobial activities. Furthermore, the Cr(III) complex of 8h was synthesized, and various spectral, elemental and thermal analysis results confirmed that the central Cr(III) atom coordinated with adjacent hydroxyl groups of two 8h ligands, nitrate and H2O, respectively. (author)

  8. 26 CFR 1.444-4 - Tiered structure.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 6 2010-04-01 2010-04-01 false Tiered structure. 1.444-4 Section 1.444-4 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Accounting Periods § 1.444-4 Tiered structure. (a) Electing small business trusts. For...

  9. 3-alkyl fentanyl analogues: Structure-activity-relationship study

    OpenAIRE

    Vučković, Sonja; Savić-Vujović, Katarina; Srebro, Dragana; Ivanović, Milovan; Došen-Mićović, Ljiljana; Stojanović, Radan; Prostran, Milica

    2012-01-01

    Introduction. Fentanyl belongs to 4-anilidopiperidine class of synthetic opioid analgesics. It is characterized by high potency, rapid onset and short duration of action. A large number of fentanyl analogues have been synthesized so far, both to establish the structure-activity-relationship (SAR) and to find novel, clinically useful analgesic drugs. Objective. In this study, newly synthesized 3-alkyl fentanyl analogues were examined for analgesic activity and compared with fentanyl. Methods. ...

  10. Induced activity in accelerator structures, air and water

    CERN Document Server

    Stevenson, Graham Roger

    2001-01-01

    A summary is given of several 'rules of thumb' which can be used to predict the formation and decay of radionuclides in the structure of accelerators together with the dose rates from the induced radioactivity. Models are also given for the activation of gases (air of the accelerator vault) and liquids (in particular cooling water), together with their transport front the activation region to the release point. (18 refs).

  11. Induced activity in accelerator structures, air and water

    International Nuclear Information System (INIS)

    Stevenson, G.R.

    2001-01-01

    A summary is given of several 'rules of thumb' which can be used to predict the formation and decay of radionuclides in the structure of accelerators together with the dose rates from the induced radioactivity. Models are also given for the activation of gases (air of the accelerator vault) and liquids (in particular cooling water), together with their transport from the activation region to the release point. (author)

  12. Crystal structure of Bacillus anthracis virulence regulator AtxA and effects of phosphorylated histidines on multimerization and activity.

    Science.gov (United States)

    Hammerstrom, Troy G; Horton, Lori B; Swick, Michelle C; Joachimiak, Andrzej; Osipiuk, Jerzy; Koehler, Theresa M

    2015-02-01

    The Bacillus anthracis virulence regulator AtxA controls transcription of the anthrax toxin genes and capsule biosynthetic operon. AtxA activity is elevated during growth in media containing glucose and CO(2)/bicarbonate, and there is a positive correlation between the CO(2)/bicarbonate signal, AtxA activity and homomultimerization. AtxA activity is also affected by phosphorylation at specific histidines. We show that AtxA crystallizes as a dimer. Distinct folds associated with predicted DNA-binding domains (HTH1 and HTH2) and phosphoenolpyruvate: carbohydrate phosphotransferase system-regulated domains (PRD1 and PRD2) are apparent. We tested AtxA variants containing single and double phosphomimetic (His→Asp) and phosphoablative (His→Ala) amino acid changes for activity in B. anthracis cultures and for protein-protein interactions in cell lysates. Reduced activity of AtxA H199A, lack of multimerization and activity of AtxAH379D variants, and predicted structural changes associated with phosphorylation support a model for control of AtxA function. We propose that (i) in the AtxA dimer, phosphorylation of H199 in PRD1 affects HTH2 positioning, influencing DNA-binding; and (ii) phosphorylation of H379 in PRD2 disrupts dimer formation. The AtxA structure is the first reported high-resolution full-length structure of a PRD-containing regulator, and can serve as a model for proteins of this family, especially those that link virulence to bacterial metabolism. © 2014 John Wiley & Sons Ltd.

  13. Structural Differences between the Streptococcus agalactiae Housekeeping and Pilus-Specific Sortases: SrtA and SrtC1

    Energy Technology Data Exchange (ETDEWEB)

    Khare, B.; Krishnan, V.; Rajashankar, K.R.; I-Hsiu, H.; Xin, M.; Ton-That, H.; Narayana, S.V. (Texas-HSC); (Cornell); (UAB)

    2011-10-21

    The assembly of pili on the cell wall of Gram-positive bacteria requires transpeptidase enzymes called sortases. In Streptococcus agalactiae, the PI-1 pilus island of strain 2603V/R encodes two pilus-specific sortases (SrtC1 and SrtC2) and three pilins (GBS80, GBS52 and GBS104). Although either pilus-specific sortase is sufficient for the polymerization of the major pilin, GBS80, incorporation of the minor pilins GBS52 and GBS104 into the pilus structure requires SrtC1 and SrtC2, respectively. The S. agalactiae housekeeping sortase, SrtA, whose gene is present at a different location and does not catalyze pilus polymerization, was shown to be involved in cell wall anchoring of pilus polymers. To understand the structural basis of sortases involved in such diverse functions, we determined the crystal structures of S. agalactiae SrtC1 and SrtA. Both enzymes are made of an eight-stranded beta-barrel core with variations in their active site architecture. SrtA exhibits a catalytic triad arrangement similar to that in Streptococcus pyogenes SrtA but different from that in Staphylococcus aureus SrtA. In contrast, the SrtC1 enzyme contains an N-terminal helical domain and a 'lid' in its putative active site, which is similar to that seen in Streptococcus pneumoniae pilus-specific sortases, although with subtle differences in positioning and composition. To understand the effect of such differences on substrate recognition, we have also determined the crystal structure of a SrtC1 mutant, in which the conserved DP(W/F/Y) motif was replaced with the sorting signal motif of GBS80, IPNTG. By comparing the structures of WT wild type SrtA and SrtC1 and the 'lid' mutant of SrtC1, we propose that structural elements within the active site and the lid may be important for defining the role of specific sortase in pili biogenesis.

  14. Structural differences between the Streptococcus agalactiae housekeeping and pilus-specific sortases: SrtA and SrtC1.

    Directory of Open Access Journals (Sweden)

    B Khare

    Full Text Available The assembly of pili on the cell wall of Gram-positive bacteria requires transpeptidase enzymes called sortases. In Streptococcus agalactiae, the PI-1 pilus island of strain 2603V/R encodes two pilus-specific sortases (SrtC1 and SrtC2 and three pilins (GBS80, GBS52 and GBS104. Although either pilus-specific sortase is sufficient for the polymerization of the major pilin, GBS80, incorporation of the minor pilins GBS52 and GBS104 into the pilus structure requires SrtC1 and SrtC2, respectively. The S. agalactiae housekeeping sortase, SrtA, whose gene is present at a different location and does not catalyze pilus polymerization, was shown to be involved in cell wall anchoring of pilus polymers. To understand the structural basis of sortases involved in such diverse functions, we determined the crystal structures of S. agalactiae SrtC1 and SrtA. Both enzymes are made of an eight-stranded beta-barrel core with variations in their active site architecture. SrtA exhibits a catalytic triad arrangement similar to that in Streptococcus pyogenes SrtA but different from that in Staphylococcus aureus SrtA. In contrast, the SrtC1 enzyme contains an N-terminal helical domain and a 'lid' in its putative active site, which is similar to that seen in Streptococcus pneumoniae pilus-specific sortases, although with subtle differences in positioning and composition. To understand the effect of such differences on substrate recognition, we have also determined the crystal structure of a SrtC1 mutant, in which the conserved DP(W/F/Y motif was replaced with the sorting signal motif of GBS80, IPNTG. By comparing the structures of WT wild type SrtA and SrtC1 and the 'lid' mutant of SrtC1, we propose that structural elements within the active site and the lid may be important for defining the role of specific sortase in pili biogenesis.

  15. Structural control by the use of piezoelectric active members

    Science.gov (United States)

    Fanson, J. L.; Chen, J.-C.

    1987-01-01

    Large Space Structures (LSS) exhibit characteristics which make the LSS control problem different form other control problems. LSS will most likely exhibit low frequency, densely spaced and lightly damped modes. In theory, the number of these modes is infinite. Because these structures are flexible, Vibration Suppression (VS) is an important aspect of LSS operation. In terms of VS, the control actuators should be as low mass as possible, have infinite bandwidth, and be electrically powered. It is proposed that actuators be built into the structure as dual purpose structural elements. A piezoelectric active member is proposed for the control of LSS. Such a device would consist of a piezoelectric actuator and sensor for measuring strain, and screwjack actuator in series for use in quasi-static shape control. An experiment simulates an active member using piezoelectric ceramic thin sheet material on a thin, uniform cantilever beam. The feasibility of using the piezoelectric materials for VS on LSS was demonstrated. Positive positive feedback as a VS control strategy was implemented. Multi-mode VS was achieved with dramatic reduction in dynamic response.

  16. Isolation and structure-function characterization of a signaling-active rhodopsin-G protein complex.

    Science.gov (United States)

    Gao, Yang; Westfield, Gerwin; Erickson, Jon W; Cerione, Richard A; Skiniotis, Georgios; Ramachandran, Sekar

    2017-08-25

    The visual photo-transduction cascade is a prototypical G protein-coupled receptor (GPCR) signaling system, in which light-activated rhodopsin (Rho*) is the GPCR catalyzing the exchange of GDP for GTP on the heterotrimeric G protein transducin (G T ). This results in the dissociation of G T into its component α T -GTP and β 1 γ 1 subunit complex. Structural information for the Rho*-G T complex will be essential for understanding the molecular mechanism of visual photo-transduction. Moreover, it will shed light on how GPCRs selectively couple to and activate their G protein signaling partners. Here, we report on the preparation of a stable detergent-solubilized complex between Rho* and a heterotrimer (G T *) comprising a Gα T /Gα i1 chimera (α T *) and β 1 γ 1 The complex was formed on native rod outer segment membranes upon light activation, solubilized in lauryl maltose neopentyl glycol, and purified with a combination of affinity and size-exclusion chromatography. We found that the complex is fully functional and that the stoichiometry of Rho* to Gα T * is 1:1. The molecular weight of the complex was calculated from small-angle X-ray scattering data and was in good agreement with a model consisting of one Rho* and one G T *. The complex was visualized by negative-stain electron microscopy, which revealed an architecture similar to that of the β 2 -adrenergic receptor-G S complex, including a flexible α T * helical domain. The stability and high yield of the purified complex should allow for further efforts toward obtaining a high-resolution structure of this important signaling complex. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Synthesis, crystal structures, computational studies and antimicrobial activity of new designed bis((5-aryl-1,3,4-oxadiazol-2-yl)thio)alkanes

    Science.gov (United States)

    Ahmed, Muhammad Naeem; Sadiq, Beenish; Al-Masoudi, Najim A.; Yasin, Khawaja Ansar; Hameed, Shahid; Mahmood, Tariq; Ayub, Khurshid; Tahir, Muhammad Nawaz

    2018-03-01

    A new series of bis((5-aryl-1,3,4-oxadiazol-2-yl)thio)alkanes 4-14 have been synthesized via nucleophilic substitution reaction of dihaloalkanes with respective 1,3,4-oxadiazole-2-thiols 3a-f, and characterized by spectroscopic techniques. The structures of 4 and 12 were unambiguously confirmed by single-crystal X-ray diffraction analysis. Density functional theory calculations at B3LYP/6-31 + G(d) level of theory were performed for comparison of X-ray geometric parameters, molecular electrostatic potential (MEP) and frontier molecular orbital analyses of synthesized compounds. MEP analysis revealed that these compounds are nucleophilic in nature. Frontier molecular orbitals (FMOs) analysis of 4-14 was performed for evaluation of kinetic stability. All synthesized compounds were screened in vitro for antimicrobial activity against three bacterial and three fungal strains and showed promising results.

  18. Disruption of Fyn SH3 domain interaction with a proline-rich motif in liver kinase B1 results in activation of AMP-activated protein kinase.

    Directory of Open Access Journals (Sweden)

    Eijiro Yamada

    Full Text Available Fyn-deficient mice display increased AMP-activated Protein Kinase (AMPK activity as a result of Fyn-dependent regulation of Liver Kinase B1 (LKB1 in skeletal muscle. Mutation of Fyn-specific tyrosine sites in LKB1 results in LKB1 export into the cytoplasm and increased AMPK activation site phosphorylation. This study characterizes the structural elements responsible for the physical interaction between Fyn and LKB1. Effects of point mutations in the Fyn SH2/SH3 domains and in the LKB1 proline-rich motif on 1 Fyn and LKB1 binding, 2 LKB1 subcellular localization and 3 AMPK phosphorylation were investigated in C2C12 muscle cells. Additionally, novel LKB1 proline-rich motif mimicking cell permeable peptides were generated to disrupt Fyn/LKB1 binding and investigate the consequences on AMPK activity in both C2C12 cells and mouse skeletal muscle. Mutation of either Fyn SH3 domain or the proline-rich motif of LKB1 resulted in the disruption of Fyn/LKB1 binding, re-localization of 70% of LKB1 signal in the cytoplasm and a 2-fold increase in AMPK phosphorylation. In vivo disruption of the Fyn/LKB1 interaction using LKB1 proline-rich motif mimicking cell permeable peptides recapitulated Fyn pharmacological inhibition. We have pinpointed the structural elements within Fyn and LKB1 that are responsible for their binding, demonstrating the functionality of this interaction in regulating AMPK activity.

  19. Structure of the CLC-1 chloride channel from Homo sapiens.

    Science.gov (United States)

    Park, Eunyong; MacKinnon, Roderick

    2018-05-29

    CLC channels mediate passive Cl - conduction, while CLC transporters mediate active Cl - transport coupled to H + transport in the opposite direction. The distinction between CLC-0/1/2 channels and CLC transporters seems undetectable by amino acid sequence. To understand why they are different functionally we determined the structure of the human CLC-1 channel. Its 'glutamate gate' residue, known to mediate proton transfer in CLC transporters, adopts a location in the structure that appears to preclude it from its transport function. Furthermore, smaller side chains produce a wider pore near the intracellular surface, potentially reducing a kinetic barrier for Cl - conduction. When the corresponding residues are mutated in a transporter, it is converted to a channel. Finally, Cl - at key sites in the pore appear to interact with reduced affinity compared to transporters. Thus, subtle differences in glutamate gate conformation, internal pore diameter and Cl - affinity distinguish CLC channels and transporters. © 2018, Park & MacKinnon.

  20. Structural basis of transcriptional gene silencing mediated by Arabidopsis MOM1.

    Directory of Open Access Journals (Sweden)

    Taisuke Nishimura

    2012-02-01

    Full Text Available Shifts between epigenetic states of transcriptional activity are typically correlated with changes in epigenetic marks. However, exceptions to this rule suggest the existence of additional, as yet uncharacterized, layers of epigenetic regulation. MOM1, a protein of 2,001 amino acids that acts as a transcriptional silencer, represents such an exception. Here we define the 82 amino acid domain called CMM2 (Conserved MOM1 Motif 2 as a minimal MOM1 fragment capable of transcriptional regulation. As determined by X-ray crystallography, this motif folds into an unusual hendecad-based coiled-coil. Structure-based mutagenesis followed by transgenic complementation tests in plants demonstrate that CMM2 and its dimerization are effective for transcriptional suppression at chromosomal loci co-regulated by MOM1 and the siRNA pathway but not at loci controlled by MOM1 in an siRNA-independent fashion. These results reveal a surprising separation of epigenetic activities that enable the single, large MOM1 protein to coordinate cooperating mechanisms of epigenetic regulation.