WorldWideScience

Sample records for activation-induced cytidine deaminase

  1. Biological function of activation-induced cytidine deaminase (AID

    Directory of Open Access Journals (Sweden)

    Ritu Kumar

    2014-10-01

    Full Text Available Activation-induced Cytidine Deaminase (AID is an essential regulator of B cell diversification, but its full range of action has until recently been an enigma. Based on homology, it was originally proposed to be an RNA-editing enzyme, but so far, no RNA substrates are known. Rather, it functions by deaminating cytidine, and in this manner, coupled with base-excision repair or mismatch repair machinery, it is a natural mutator. This allows it to play a central role in adaptive immunity, whereby it initiates the processes of class switch recombination and somatic hypermutation to help generate a diverse and high-affinity repertoire of immunoglobulin isotypes. More recently, it has been appreciated that methylated cytidine, already known as a key epigenetic mark on DNA controlling gene expression, can also be a target for AID modification. Coupled with repair machinery, this can facilitate the active removal of methylated DNA. This activity can impact the process of cellular reprogramming, including transition of a somatic cell to pluripotency, which requires major reshuffling of epigenetic memory. Thus, seemingly disparate roles for AID in controlling immune diversity and epigenetic memory have a common mechanistic basis. However, the very activity that is so useful for B cell diversity and cellular reprogramming is dangerous for the integrity of the genome. Thus, AID expression and activity is tightly regulated, and deregulation is associated with diseases including cancer. Here, we review the range of AID functions with a focus on its mechanisms of action and regulation. Major questions remain to be answered concerning how and when AID is targeted to specific loci and how this impacts development and disease.

  2. Biological function of activation-induced cytidine deaminase (AID).

    Science.gov (United States)

    Kumar, Ritu; DiMenna, Lauren J; Chaudhuri, Jayanta; Evans, Todd

    2014-01-01

    Activation-induced Cytidine Deaminase (AID) is an essential regulator of B cell diversification, but its full range of action has until recently been an enigma. Based on homology, it was originally proposed to be an RNA-editing enzyme, but so far, no RNA substrates are known. Rather, it functions by deaminating cytidine, and in this manner, coupled with base-excision repair or mismatch repair machinery, it is a natural mutator. This allows it to play a central role in adaptive immunity, whereby it initiates the processes of class switch recombination and somatic hypermutation to help generate a diverse and high-affinity repertoire of immunoglobulin isotypes. More recently, it has been appreciated that methylated cytidine, already known as a key epigenetic mark on DNA controlling gene expression, can also be a target for AID modification. Coupled with repair machinery, this can facilitate the active removal of methylated DNA. This activity can impact the process of cellular reprogramming, including transition of a somatic cell to pluripotency, which requires major reshuffling of epigenetic memory. Thus, seemingly disparate roles for AID in controlling immune diversity and epigenetic memory have a common mechanistic basis. However, the very activity that is so useful for B cell diversity and cellular reprogramming is dangerous for the integrity of the genome. Thus, AID expression and activity is tightly regulated, and deregulation is associated with diseases including cancer. Here, we review the range of AID functions with a focus on its mechanisms of action and regulation. Major questions remain to be answered concerning how and when AID is targeted to specific loci and how this impacts development and disease.

  3. Acquisition of Genetic Aberrations by Activation-Induced Cytidine Deaminase (AID) during Inflammation-Associated Carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Takai, Atsushi; Marusawa, Hiroyuki, E-mail: maru@kuhp.kyoto-u.ac.jp; Chiba, Tsutomu [Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507 (Japan)

    2011-06-22

    Genetic abnormalities such as nucleotide alterations and chromosomal disorders that accumulate in various tumor-related genes have an important role in cancer development. The precise mechanism of the acquisition of genetic aberrations, however, remains unclear. Activation-induced cytidine deaminase (AID), a nucleotide editing enzyme, is essential for the diversification of antibody production. AID is expressed only in activated B lymphocytes under physiologic conditions and induces somatic hypermutation and class switch recombination in immunoglobulin genes. Inflammation leads to aberrant AID expression in various gastrointestinal organs and increased AID expression contributes to cancer development by inducing genetic alterations in epithelial cells. Studies of how AID induces genetic disorders are expected to elucidate the mechanism of inflammation-associated carcinogenesis.

  4. Acquisition of Genetic Aberrations by Activation-Induced Cytidine Deaminase (AID during Inflammation-Associated Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Tsutomu Chiba

    2011-06-01

    Full Text Available Genetic abnormalities such as nucleotide alterations and chromosomal disorders that accumulate in various tumor-related genes have an important role in cancer development. The precise mechanism of the acquisition of genetic aberrations, however, remains unclear. Activation-induced cytidine deaminase (AID, a nucleotide editing enzyme, is essential for the diversification of antibody production. AID is expressed only in activated B lymphocytes under physiologic conditions and induces somatic hypermutation and class switch recombination in immunoglobulin genes. Inflammation leads to aberrant AID expression in various gastrointestinal organs and increased AID expression contributes to cancer development by inducing genetic alterations in epithelial cells. Studies of how AID induces genetic disorders are expected to elucidate the mechanism of inflammation-associated carcinogenesis.

  5. Nonimmunoglobulin target loci of activation-induced cytidine deaminase (AID) share unique features with immunoglobulin genes.

    Science.gov (United States)

    Kato, Lucia; Begum, Nasim A; Burroughs, A Maxwell; Doi, Tomomitsu; Kawai, Jun; Daub, Carsten O; Kawaguchi, Takahisa; Matsuda, Fumihiko; Hayashizaki, Yoshihide; Honjo, Tasuku

    2012-02-14

    Activation-induced cytidine deaminase (AID) is required for both somatic hypermutation and class-switch recombination in activated B cells. AID is also known to target nonimmunoglobulin genes and introduce mutations or chromosomal translocations, eventually causing tumors. To identify as-yet-unknown AID targets, we screened early AID-induced DNA breaks by using two independent genome-wide approaches. Along with known AID targets, this screen identified a set of unique genes (SNHG3, MALAT1, BCL7A, and CUX1) and confirmed that these loci accumulated mutations as frequently as Ig locus after AID activation. Moreover, these genes share three important characteristics with the Ig gene: translocations in tumors, repetitive sequences, and the epigenetic modification of chromatin by H3K4 trimethylation in the vicinity of cleavage sites.

  6. RNA editing of hepatitis B virus transcripts by activation-induced cytidine deaminase.

    Science.gov (United States)

    Liang, Guoxin; Kitamura, Kouichi; Wang, Zhe; Liu, Guangyan; Chowdhury, Sajeda; Fu, Weixin; Koura, Miki; Wakae, Kousho; Honjo, Tasuku; Muramatsu, Masamichi

    2013-02-01

    Activation-induced cytidine deaminase (AID) is essential for the somatic hypermutation (SHM) and class-switch recombination (CSR) of Ig genes. The mechanism by which AID triggers SHM and CSR has been explained by two distinct models. In the DNA deamination model, AID converts cytidine bases in DNA into uridine. The uridine is recognized by the DNA repair system, which produces DNA strand breakages and point mutations. In the alternative model, RNA edited by AID is responsible for triggering CSR and SHM. However, RNA deamination by AID has not been demonstrated. Here we found that C-to-T and G-to-A mutations accumulated in hepatitis B virus (HBV) nucleocapsid DNA when AID was expressed in HBV-replicating hepatic cell lines. AID expression caused C-to-T mutations in the nucleocapsid DNA of RNase H-defective HBV, which does not produce plus-strand viral DNA. Furthermore, the RT-PCR products of nucleocapsid viral RNA from AID-expressing cells exhibited significant C-to-T mutations, whereas viral RNAs outside the nucleocapsid did not accumulate C-to-U mutations. Moreover, AID was packaged within the nucleocapsid by forming a ribonucleoprotein complex with HBV RNA and the HBV polymerase protein. The encapsidation of the AID protein with viral RNA and DNA provides an efficient environment for evaluating AID's RNA and DNA deamination activities. A bona fide RNA-editing enzyme, apolipoprotein B mRNA editing catalytic polypeptide 1, induced a similar level of C-to-U mutations in nucleocapsid RNA as AID. Taken together, the results indicate that AID can deaminate the nucleocapsid RNA of HBV.

  7. Activation-induced cytidine deaminase (AID) is localized to subnuclear domains enriched in splicing factors

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Yi, E-mail: yihooyi@gmail.com; Ericsson, Ida, E-mail: ida.ericsson@ntnu.no; Doseth, Berit, E-mail: berit.doseth@ntnu.no; Liabakk, Nina B., E-mail: nina.beate.liabakk@ntnu.no; Krokan, Hans E., E-mail: hans.krokan@ntnu.no; Kavli, Bodil, E-mail: bodil.kavli@ntnu.no

    2014-03-10

    Activation-induced cytidine deaminase (AID) is the mutator enzyme in adaptive immunity. AID initiates the antibody diversification processes in activated B cells by deaminating cytosine to uracil in immunoglobulin genes. To some extent other genes are also targeted, which may lead to genome instability and B cell malignancy. Thus, it is crucial to understand its targeting and regulation mechanisms. AID is regulated at several levels including subcellular compartmentalization. However, the complex nuclear distribution and trafficking of AID has not been studied in detail previously. In this work, we examined the subnuclear localization of AID and its interaction partner CTNNBL1 and found that they associate with spliceosome-associated structures including Cajal bodies and nuclear speckles. Moreover, protein kinase A (PKA), which activates AID by phosphorylation at Ser38, is present together with AID in nuclear speckles. Importantly, we demonstrate that AID physically associates with the major spliceosome subunits (small nuclear ribonucleoproteins, snRNPs), as well as other essential splicing components, in addition to the transcription machinery. Based on our findings and the literature, we suggest a transcription-coupled splicing-associated model for AID targeting and activation. - Highlights: • AID and its interaction partner CTNNBL1 localize to Cajal bodies and nuclear speckles. • AID associates with its activating kinase PKA in nuclear speckles. • AID is linked to the splicing machinery in switching B-cells. • Our findings suggest a transcription-coupled splicing associated mechanism for AID targeting and activation.

  8. Activation-induced cytidine deaminase deficiency causes organ-specific autoimmune disease.

    Directory of Open Access Journals (Sweden)

    Koji Hase

    Full Text Available Activation-induced cytidine deaminase (AID expressed by germinal center B cells is a central regulator of somatic hypermutation (SHM and class switch recombination (CSR. Humans with AID mutations develop not only the autosomal recessive form of hyper-IgM syndrome (HIGM2 associated with B cell hyperplasia, but also autoimmune disorders by unknown mechanisms. We report here that AID-/- mice spontaneously develop tertiary lymphoid organs (TLOs in non-lymphoid tissues including the stomach at around 6 months of age. At a later stage, AID-/- mice develop a severe gastritis characterized by loss of gastric glands and epithelial hyperplasia. The disease development was not attenuated even under germ-free (GF conditions. Gastric autoantigen -specific serum IgM was elevated in AID-/- mice, and the serum levels correlated with the gastritis pathological score. Adoptive transfer experiments suggest that autoimmune CD4+ T cells mediate gastritis development as terminal effector cells. These results suggest that abnormal B-cell expansion due to AID deficiency can drive B-cell autoimmunity, and in turn promote TLO formation, which ultimately leads to the propagation of organ-specific autoimmune effector CD4+ T cells. Thus, AID plays an important role in the containment of autoimmune diseases by negative regulation of autoreactive B cells.

  9. Evolution of class switch recombination function in fish activation-induced cytidine deaminase, AID.

    Science.gov (United States)

    Wakae, Koshou; Magor, Brad G; Saunders, Holly; Nagaoka, Hitoshi; Kawamura, Akemi; Kinoshita, Kazuo; Honjo, Tasuku; Muramatsu, Masamichi

    2006-01-01

    Following activation of mammalian B cells, class switch recombination (CSR) and somatic hypermutation (SHM) of the Ig heavy chain (IgH) gene can improve the functions of the expressed antibodies. Activation-induced cytidine deaminase (AID) is the only known B cell-specific protein required for inducing CSR and SHM in mammals. Lower vertebrates have an AID homologue, and there is some evidence of SHM in vivo. However there is no evidence of CSR in the cartilaginous or bony fishes, and this may be due in part to a lack of cis-elements in the IgH gene that are the normal targets of AID-mediated recombination. We have tested whether bony fish (zebrafish and catfish) AID can mediate CSR and SHM in mammalian cells. As expected, ectopic expression of fish AID in mouse fibroblasts resulted in mutations in an introduced SHM reporter gene, indicating that fish AID can mediate SHM. Unexpectedly, expression of fish AID in mouse AID-/- B cells induced surface IgG expression as well as switched transcripts from Ig gene loci, clearly indicating that the fish AID protein can mediate CSR, at least in mouse cells. These results suggest that the AID protein acquired the ability to mediate CSR before the IgH locus evolved the additional exon clusters and switch regions that are the targets of recombination. We discuss how pleiotropic functions of specific domains within the AID protein may have facilitated the early evolution of CSR in lower vertebrates.

  10. Involvement of activation-induced cytidine deaminase in skin cancer development.

    Science.gov (United States)

    Nonaka, Taichiro; Toda, Yoshinobu; Hiai, Hiroshi; Uemura, Munehiro; Nakamura, Motonobu; Yamamoto, Norio; Asato, Ryo; Hattori, Yukari; Bessho, Kazuhisa; Minato, Nagahiro; Kinoshita, Kazuo

    2016-04-01

    Most skin cancers develop as the result of UV light-induced DNA damage; however, a substantial number of cases appear to occur independently of UV damage. A causal link between UV-independent skin cancers and chronic inflammation has been suspected, although the precise mechanism underlying this association is unclear. Here, we have proposed that activation-induced cytidine deaminase (AID, encoded by AICDA) links chronic inflammation and skin cancer. We demonstrated that Tg mice expressing AID in the skin spontaneously developed skin squamous cell carcinoma with Hras and Trp53 mutations. Furthermore, genetic deletion of Aicda reduced tumor incidence in a murine model of chemical-induced skin carcinogenesis. AID was expressed in human primary keratinocytes in an inflammatory stimulus-dependent manner and was detectable in human skin cancers. Together, the results of this study indicate that inflammation-induced AID expression promotes skin cancer development independently of UV damage and suggest AID as a potential target for skin cancer therapeutics.

  11. miR-181b negatively regulates activation-induced cytidine deaminase in B cells.

    Science.gov (United States)

    de Yébenes, Virginia G; Belver, Laura; Pisano, David G; González, Susana; Villasante, Aranzazu; Croce, Carlo; He, Lin; Ramiro, Almudena R

    2008-09-29

    Activated B cells reshape their primary antibody repertoire after antigen encounter by two molecular mechanisms: somatic hypermutation (SHM) and class switch recombination (CSR). SHM and CSR are initiated by activation-induced cytidine deaminase (AID) through the deamination of cytosine residues on the immunoglobulin loci, which leads to the generation of DNA mutations or double-strand break intermediates. As a bystander effect, endogenous AID levels can also promote the generation of chromosome translocations, suggesting that the fine tuning of AID expression may be critical to restrict B cell lymphomagenesis. To determine whether microRNAs (miRNAs) play a role in the regulation of AID expression, we performed a functional screening of an miRNA library and identified miRNAs that regulate CSR. One such miRNA, miR-181b, impairs CSR when expressed in activated B cells, and results in the down-regulation of AID mRNA and protein levels. We found that the AID 3' untranslated region contains multiple putative binding sequences for miR-181b and that these sequences can be directly targeted by miR-181b. Overall, our results provide evidence for a new regulatory mechanism that restricts AID activity and can therefore be relevant to prevent B cell malignant transformation.

  12. Activation-Induced Cytidine Deaminase Contributes to Pancreatic Tumorigenesis by Inducing Tumor-Related Gene Mutations.

    Science.gov (United States)

    Sawai, Yugo; Kodama, Yuzo; Shimizu, Takahiro; Ota, Yuji; Maruno, Takahisa; Eso, Yuji; Kurita, Akira; Shiokawa, Masahiro; Tsuji, Yoshihisa; Uza, Norimitsu; Matsumoto, Yuko; Masui, Toshihiko; Uemoto, Shinji; Marusawa, Hiroyuki; Chiba, Tsutomu

    2015-08-15

    Pancreatic ductal adenocarcinoma (PDAC) develops via an accumulation of various gene mutations. The mechanism underlying the mutations in PDAC development, however, is not fully understood. Recent insight into the close association between the mutation pattern of various cancers and specific mutagens led us to investigate the possible involvement of activation-induced cytidine deaminase (AID), a DNA editing enzyme, in pancreatic tumorigenesis. Our immunohistochemical findings revealed AID protein expression in human acinar ductal metaplasia, pancreatic intraepithelial neoplasia, and PDAC. Both the amount and intensity of the AID protein expression increased with the progression from precancerous to cancerous lesions in human PDAC tissues. To further assess the significance of ectopic epithelial AID expression in pancreatic tumorigenesis, we analyzed the phenotype of AID transgenic (AID Tg) mice. Consistent with our hypothesis that AID is involved in the mechanism of the mutations underlying pancreatic tumorigenesis, we found precancerous lesions developing in the pancreas of AID Tg mice. Using deep sequencing, we also detected Kras and c-Myc mutations in our analysis of the whole pancreas of AID Tg mice. In addition, Sanger sequencing confirmed the presence of Kras, c-Myc, and Smad4 mutations, with the typical mutational footprint of AID in precancerous lesions in AID Tg mice separated by laser capture microdissection. Taken together, our findings suggest that AID contributes to the development of pancreatic precancerous lesions by inducing tumor-related gene mutations. Our new mouse model without intentional manipulation of specific tumor-related genes provides a powerful system for analyzing the mutations involved in PDAC.

  13. A novel activation-induced cytidine deaminase (AID) mutation in Brazilian patients with hyper-IgM type 2 syndrome.

    Science.gov (United States)

    Caratão, Nadine; Cortesão, Catarina S; Reis, Pedro H; Freitas, Raquel F; Jacob, Cristina M A; Pastorino, Antonio C; Carneiro-Sampaio, Magda; Barreto, Vasco M

    2013-08-01

    Activation-induced cytidine deaminase (AID) is a DNA editing protein that plays an essential role in three major events of immunoglobulin (Ig) diversification: somatic hypermutation, class switch recombination and Ig gene conversion. Mutations in the AID gene (AICDA) have been found in patients with autosomal recessive Hyper-IgM (HIGM) syndrome type 2. Here, two 9- and 14-year-old Brazilian sisters, from a consanguineous family, were diagnosed with HIGM2 syndrome. Sequencing analysis of the exons from AICDA revealed that both patients are homozygous for a single C to G transversion in the third position of codon 15, which replaces a conserved Phenylalanine with a Leucine. To our knowledge, this is a new AICDA mutation found in HIGM2 patients. Functional studies confirm that the homologous murine mutation leads to a dysfunctional protein with diminished intrinsic cytidine deaminase activity and is unable to rescue CSR when introduced in Aicda(-/-)stimulated murine B cells. We briefly discuss the relevance of AICDA mutations found in patients for the biology of this molecule.

  14. Activation-Induced Cytidine Deaminase Expression in Human B Cell Precursors Is Essential for Central B Cell Tolerance.

    Science.gov (United States)

    Cantaert, Tineke; Schickel, Jean-Nicolas; Bannock, Jason M; Ng, Yen-Shing; Massad, Christopher; Oe, Tyler; Wu, Renee; Lavoie, Aubert; Walter, Jolan E; Notarangelo, Luigi D; Al-Herz, Waleed; Kilic, Sara Sebnem; Ochs, Hans D; Nonoyama, Shigeaki; Durandy, Anne; Meffre, Eric

    2015-11-17

    Activation-induced cytidine deaminase (AID), the enzyme-mediating class-switch recombination (CSR) and somatic hypermutation (SHM) of immunoglobulin genes, is essential for the removal of developing autoreactive B cells. How AID mediates central B cell tolerance remains unknown. We report that AID enzymes were produced in a discrete population of immature B cells that expressed recombination-activating gene 2 (RAG2), suggesting that they undergo secondary recombination to edit autoreactive antibodies. However, most AID+ immature B cells lacked anti-apoptotic MCL-1 and were deleted by apoptosis. AID inhibition using lentiviral-encoded short hairpin (sh)RNA in B cells developing in humanized mice resulted in a failure to remove autoreactive clones. Hence, B cell intrinsic AID expression mediates central B cell tolerance potentially through its RAG-coupled genotoxic activity in self-reactive immature B cells.

  15. Activation-induced cytidine deaminase induces reproducible DNA breaks at many non-Ig Loci in activated B cells.

    Science.gov (United States)

    Staszewski, Ori; Baker, Richard E; Ucher, Anna J; Martier, Raygene; Stavnezer, Janet; Guikema, Jeroen E J

    2011-01-21

    After immunization or infection, activation-induced cytidine deaminase (AID) initiates diversification of immunoglobulin (Ig) genes in B cells, introducing mutations within the antigen-binding V regions (somatic hypermutation, SHM) and double-strand DNA breaks (DSBs) into switch (S) regions, leading to antibody class switch recombination (CSR). We asked if, during B cell activation, AID also induces DNA breaks at genes other than IgH genes. Using a nonbiased genome-wide approach, we have identified hundreds of reproducible, AID-dependent DSBs in mouse splenic B cells shortly after induction of CSR in culture. Most interestingly, AID induces DSBs at sites syntenic with sites of translocations, deletions, and amplifications found in human B cell lymphomas, including within the oncogene B cell lymphoma11a (bcl11a)/evi9. Unlike AID-induced DSBs in Ig genes, genome-wide AID-dependent DSBs are not restricted to transcribed regions and frequently occur within repeated sequence elements, including CA repeats, non-CA tandem repeats, and SINEs.

  16. Repression of human activation induced cytidine deaminase by miR-93 and miR-155

    Directory of Open Access Journals (Sweden)

    Holton Nathaniel W

    2011-08-01

    Full Text Available Abstract Background Activation Induced cytidine Deaminase (AID targets the immunoglobulin genes of activated B cells, where it converts cytidine to uracil to induce mutagenesis and recombination. While essential for immunoglobulin gene diversification, AID misregulation can result in genomic instability and oncogenic transformation. This is classically illustrated in Burkitt's lymphoma, which is characterized by AID-induced mutation and reciprocal translocation of the c-MYC oncogene with the IgH loci. Originally thought to be B cell-specific, AID now appears to be misexpressed in several epithelial cancers, raising the specter that AID may also participate in non-B cell carcinogenesis. Methods The mutagenic potential of AID argues for the existence of cellular regulators capable of repressing inappropriate AID expression. MicroRNAs (miRs have this capacity, and we have examined the publically available human AID EST dataset for miR complementarities to the human AID 3'UTR. In this work, we have evaluated the capacity of two candidate miRs to repress human AID expression in MCF-7 breast carcinoma cells. Results We have discovered moderate miR-155 and pronounced miR-93 complementary target sites encoded within the human AID mRNA. Luciferase reporter assays indicate that both miR-93 and miR-155 can interact with the 3'UTR of AID to block expression. In addition, over-expression of either miR in MCF-7 cells reduces endogenous AID protein, but not mRNA, levels. Similarly indicative of AID translational regulation, depletion of either miR in MCF-7 cells increases AID protein levels without concurrent increases in AID mRNA. Conclusions Together, our findings demonstrate that miR-93 and miR-155 constitutively suppress AID translation in MCF-7 cells, suggesting widespread roles for these miRs in preventing genome cytidine deaminations, mutagenesis, and oncogenic transformation. In addition, our characterization of an obscured miR-93 target site located

  17. Activation-induced cytidine deaminase is dispensable for virus-mediated liver and skin tumor development in mouse models.

    Science.gov (United States)

    Nguyen, Tung; Xu, Jianliang; Chikuma, Shunsuke; Hiai, Hiroshi; Kinoshita, Kazuo; Moriya, Kyoji; Koike, Kazuhiko; Marcuzzi, Gian Paolo; Pfister, Herbert; Honjo, Tasuku; Kobayashi, Maki

    2014-07-01

    Activation-induced cytidine deaminase (AID) not only promotes immune diversity by initiating somatic hypermutation and class switch recombination in immunoglobulin genes but also provokes genomic instability by introducing translocations and mutations into non-immunoglobulin genes. To test whether AID is essential for virus-induced tumor development, we used two transgenic tumor models: mice expressing hepatitis C virus (HCV) core proteins (HCV-Tg), driven by the hepatitis B virus promoter, and mice expressing human papillomavirus type 8 proteins (HPV8-Tg), driven by the Keratin 14 promoter. Both strains were analyzed in the absence and presence of AID by crossing each with AID (-/-) mice. There was no difference in the liver tumor frequency between the HCV-Tg/AID (+/+) and HCV-Tg/AID (-/-) mice at 20 months of age although the AID (+/+) mice showed more severe histological findings and increased cytokine expression. Furthermore, a low level of AID transcript was detected in the HCV-Tg/AID (+/+) liver tissue that was not derived from hepatocytes themselves but from intra-hepatic immune cells. Although AID may not be the direct cause of HCV-induced oncogenesis, AID expressed in B cells, not in hepatocytes, may prolong steatosis and cause increased lymphocyte infiltration into HCV core protein-induced liver lesions. Similarly, there was no difference in the time course of skin tumor development between the HPV8-Tg/AID (-/-) and HPV8-Tg/AID (+/+) groups. In conclusion, AID does not appear to be required for tumor development in the two virus-induced tumor mouse models tested although AID expressed in infiltrating B cells may promote inflammatory reactions in HCV core protein-induced liver pathogenesis.

  18. Autosomal recessive hyper IgM syndrome associated with activation-induced cytidine deaminase gene in three Turkish siblings presented with tuberculosis lymphadenitis - Case report.

    Science.gov (United States)

    Patiroglu, Turkan; Akar, H Haluk; van der Burg, Mirjam; Unal, Ekrem

    2015-09-01

    The hyper-immunoglobulin M (HIGM) syndrome is a heterogeneous group of genetic disorders characterized by recurrent infections, decreased serum levels of immunoglobulin G (IgG) and IgA, and normal/increased serum levels of IgM. Herein, we describe three Turkish siblings with HIGM syndrome who had a homozygous missense mutation (c.70C>T, p.Arg24Trp) in the activation-induced cytidine deaminase gene which results in autosomal recessive HIGM syndrome. Two of the siblings, sibling 1 and sibling 3, presented with cervical deep abscess and cervical tuberculosis lymphadenitis, respectively.

  19. Delta Inulin Adjuvant Enhances Plasmablast Generation, Expression of Activation-Induced Cytidine Deaminase and B-Cell Affinity Maturation in Human Subjects Receiving Seasonal Influenza Vaccine.

    Directory of Open Access Journals (Sweden)

    Lei Li

    Full Text Available There is a major need for new adjuvants to improve the efficacy of seasonal and pandemic influenza vaccines. Advax is a novel polysaccharide adjuvant based on delta inulin that has been shown to enhance the immunogenicity of influenza vaccine in animal models and human clinical trials. To better understand the mechanism for this enhancement, we sought to assess its effect on the plasmablast response in human subjects. This pilot study utilised cryopreserved 7 day post-vaccination (7dpv peripheral blood mononuclear cell samples obtained from a subset of 25 adult subjects from the FLU006-12 trial who had been immunized intramuscularly with a standard dose of 2012 trivalent inactivated influenza vaccine (TIV alone (n=9 subjects or combined with 5mg (n=8 or 10mg (n=8 of Advax adjuvant. Subjects receiving Advax adjuvant had increased 7dpv plasmablasts, which in turn exhibited a 2-3 fold higher rate of non-silent mutations in the B-cell receptor CDR3 region associated with higher expression of activation-induced cytidine deaminase (AID, the major enzyme controlling BCR affinity maturation. Together, these data suggest that Advax adjuvant enhances influenza immunity in immunized subjects via multiple mechanisms including increased plasmablast generation, AID expression and CDR3 mutagenesis resulting in enhanced BCR affinity maturation and increased production of high avidity antibody. How Advax adjuvant achieves these beneficial effects on plasmablasts remains the subject of ongoing investigation.Australia New Zealand Clinical Trials Register ACTRN12612000709842 https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=362709.

  20. Activation-induced cytidine deaminase (AID-associated multigene signature to assess impact of AID in etiology of diseases with inflammatory component.

    Directory of Open Access Journals (Sweden)

    Diana Mechtcheriakova

    Full Text Available Activation-induced cytidine deaminase (AID is expressed in B cells within germinal centers and is critically involved in class switch recombination and somatic hypermutation of immunoglobulin loci. Functionally active AID can additionally be detected within ectopic follicular structures developed at sites of chronic inflammation. Furthermore, AID may target non-Ig genes in B- and non-B-cell background. Therefore, AID-associated effects are of increasing interest in disease areas such as allergy, inflammation, autoimmunity, and cancer.Pathway- or disease-relevant multigene signatures have attracted substantial attention for therapeutic target proposal, diagnostic tools, and monitoring of therapy response. To delineate the impact of AID in etiology of multifactorial diseases, we designed the AID-associated 25-gene signature. Chronic rhinosinusitis with nasal polyps was used as an inflammation-driven airway disease model; high levels of IgE have been previously shown to be present within polyp tissue. Expression levels of 16 genes were found to be modulated in polyps including AID, IgG and IgE mature transcripts which reflect AID activity; clustering algorithm revealed an AID-specific gene signature for the disease state with nasal polyp. Complementary, AID-positive ectopic lymphoid structures were detected within polyp tissues by in situ immunostaining. Our data demonstrate the class switch recombination and somatic hypermutation events likely taking place locally in the airways and in addition to the previously highlighted markers and/or targets as IL5 and IgE suggest novel candidate genes to be considered for treatment of nasal polyposis including among others IL13 and CD23. Thus, the algorithm presented herein including the multigene signature approach, analysis of co-regularities and creation of AID-associated functional network gives an integrated view of biological processes and might be further applied to assess role of altered AID

  1. Research progress of relationship between activation-induced cytidine deaminase and leukemia%活化诱导胞嘧啶核苷脱氨酶与白血病关系的研究进展

    Institute of Scientific and Technical Information of China (English)

    周光全; 顾伟英

    2016-01-01

    As an induced mutant of genes,activation-induced cytidine deaminase (AID) deaminates cytosine deoxyribonucleotide into uracil deoxyribonucleotide resulting in gene mutation.Literatures report that AID plays an important role in the development and progression of leukemia.In recent years,lots of progress of AID protein structure and its mechanism,pattern of expression,prognostic significance,and imatinib resistance in leukemia have been made.This article reviews literatures on aforementioned aspects of AID.%活化诱导胞嘧啶核苷脱氨酶(AID)作为基因的诱导突变体,将胞嘧啶脱氧核糖核苷酸脱氨转变为尿嘧啶脱氧核糖核苷酸,从而引起基因突变.相关文献报道,AID在白血病的发生、发展中起重要作用.近年,针对AID的蛋白结构及其在白血病中的作用机制、表达特点、预后意义,以及伊马替尼耐药等方面的研究取得了一定进展.笔者拟就AID的上述几个方面内容进行综述.

  2. Structure of human cytidine deaminase bound to a potent inhibitor.

    Science.gov (United States)

    Chung, Sang J; Fromme, J Christopher; Verdine, Gregory L

    2005-02-10

    Human cytidine deaminase (CDA) is an enzyme prominent for its role in catalyzing metabolic processing of nucleoside-type anticancer and antiviral agents. It is thus a promising target for the development of small molecule therapeutic adjuvants. We report the first crystal structure of human CDA as a complex with a tight-binding inhibitor, diazepinone riboside 1. The structure reveals that inhibitor 1 is able to establish a canonical pi/pi-interaction with a key active site residue, Phe 137.

  3. Beyond SHM and CSR: AID and related cytidine deaminases in the host response to viral infection.

    Science.gov (United States)

    Rosenberg, Brad R; Papavasiliou, F Nina

    2007-01-01

    As the primary effector of immunoglobulin somatic hypermutation (SHM) and class switch recombination (CSR), activation-induced cytidine deaminase (AID) serves an important function in the adaptive immune response. Recent advances have demonstrated that AID and a group of closely related cytidine deaminases, the APOBEC3 proteins, also act in the innate host response to viral infection. Antiviral activity was first attributed to APOBEC3G as a potent inhibitor of HIV. It is now apparent that the targets of the APOBEC3 proteins extend beyond HIV, with family members acting against a wide variety of viruses as well as host-encoded retrotransposable genetic elements. Although it appears to function through a different mechanism, AID also possesses antiviral properties. Independent of its antibody diversification functions, AID protects against transformation by Abelson murine leukemia virus (Ab-MLV), an oncogenic retrovirus. Additionally, AID has been implicated in the host response to other pathogenic viruses. These emerging roles for the AID/APOBEC cytidine deaminases in viral infection suggest an intriguing evolutionary connection of innate and adaptive immune mechanisms.

  4. Myeloprotection by Cytidine Deaminase Gene Transfer in Antileukemic Therapy

    Directory of Open Access Journals (Sweden)

    Nico Lachmann

    2013-03-01

    Full Text Available Gene transfer of drug resistance (CTX-R genes can be used to protect the hematopoietic system from the toxicity of anticancer chemotherapy and this concept recently has been proven by overexpression of a mutant O6-methylguaninemethyltransferase in the hematopoietic system of glioblastoma patients treated with temozolomide. Given its protection capacity against such relevant drugs as cytosine arabinoside (ara-C, gemcitabine, decitabine, or azacytidine and the highly hematopoiesis-specific toxicity profile of several of these agents, cytidine deaminase (CDD represents another interesting candidate CTX-R gene and our group recently has established the myeloprotective capacity of CDD gene transfer in a number of murine transplant studies. Clinically, CDD overexpression appears particularly suited to optimize treatment strategies for acute leukemias and myelodysplasias given the efficacy of ara-C (and to a lesser degree decitabine and azacytidine in these disease entities. This article will review the current state of the art with regard to CDD gene transfer and point out potential scenarios for a clinical application of this strategy. In addition, risks and potential side effects associated with this approach as well as strategies to overcome these problems will be highlighted.

  5. Intracellular localization of human cytidine deaminase. Identification of a functional nuclear localization signal.

    Science.gov (United States)

    Somasekaram, A; Jarmuz, A; How, A; Scott, J; Navaratnam, N

    1999-10-01

    The cytidine deaminases belong to the family of multisubunit enzymes that catalyze the hydrolytic deamination of their substrate to a corresponding uracil product. They play a major role in pyrimidine nucleoside and nucleotide salvage. The intracellular distribution of cytidine deaminase and related enzymes has previously been considered to be cytosolic. Here we show that human cytidine deaminase (HCDA) is present in the nucleus. A highly specific, affinity purified polyclonal antibody against HCDA was used to analyze the intracellular localization of native HCDA in a variety of mammalian cells by in situ immunochemistry. Native HCDA was found to be present in the nucleus as well as the cytoplasm in several cell types. Indirect immunofluorescence microscopy indicated a predominantly nuclear localization of FLAG-tagged HCDA overexpressed in these cells. We have identified an amino-terminal bipartite nuclear localization signal that is both necessary and sufficient to direct HCDA and a non-nuclear reporter protein to the nucleus. We also show HCDA binding to the nuclear import receptor, importin alpha. Similar putative bipartite nuclear localization sequences are found in other cytidine/deoxycytidylate deaminases. The results presented here suggest that the pyrimidine nucleotide salvage pathway may operate in the nucleus. This localization may have implications in the regulation of nucleoside and nucleotide metabolism and nucleic acid biosynthesis.

  6. Structural, kinetic, and mutational studies of the zinc ion environment in tetrameric cytidine deaminase

    DEFF Research Database (Denmark)

    Johansson, Eva; Neuhard, Jan; Willemoës, Martin

    2004-01-01

    The zinc-containing cytidine deaminase (CDA, EC 3.5.4.5) is a pyrimidine salvage enzyme catalyzing the hydrolytic deamination of cytidine and 2'-deoxycytidine forming uridine and 2'-deoxyuridine, respectively. Homodimeric CDA (D-CDA) and homotetrameric CDA (T-CDA) both contain one zinc ion per...... with the dipole moments from two alpha-helices partially neutralizes the additional negative charge in the active site, leading to a catalytic activity similar to D-CDA. Arg56 has been substituted by a glutamine (R56Q), the corresponding residue in D-CDA, an alanine (R56A), and an aspartate (R56D). Moreover, one...

  7. Complexes between nuclear factor-κB p65 and signal transducer and activator of transcription 3 are key actors in inducing activation-induced cytidine deaminase expression and immunoglobulin A production in CD40L plus interleukin-10-treated human blood B cells.

    Science.gov (United States)

    Lafarge, S; Hamzeh-Cognasse, H; Richard, Y; Pozzetto, B; Cogné, M; Cognasse, F; Garraud, O

    2011-11-01

    The signal transducer and activator of transcription 3 (STAT3) transcription factor pathway plays an important role in many biological phenomena. STAT3 transcription is triggered by cytokine-associated signals. Here, we use isolated human B cells to analyse the role of STAT3 in interleukin (IL)-10 induced terminal B cell differentiation and in immunoglobulin (Ig)A production as a characteristic readout of IL-10 signalling. We identified optimal conditions for inducing in-vitro IgA production by purified blood naive B cells using IL-10 and soluble CD40L. We show that soluble CD40L consistently induces the phosphorylation of nuclear factor (NF)-κB p65 but not of STAT3, while IL-10 induces the phosphorylation of STAT3 but not of NF-κB p65. Interestingly, while soluble CD40L and IL-10 were synergistic in driving the terminal maturation of B cells into IgA-producing plasma cells, they did not co-operate earlier in the pathway with regard to the transcription factors NF-κB p65 or STAT3. Blocking either NF-κB p65 or STAT3 profoundly altered the production of IgA and mRNA for activation-induced cytidine deaminase (AID), an enzyme strictly necessary for Ig heavy chain recombination. Finally, the STAT3 pathway was directly activated by IL-10, while IL-6, the main cytokine otherwise known for activating the STAT3 pathway, did not appear to be involved in IL-10-induced-STAT3 activation. Our results suggest that STAT3 and NF-κB pathways co-operate in IgA production, with soluble CD40L rapidly activating the NF-κB pathway, probably rendering STAT3 probably more reactive to IL-10 signalling. This novel role for STAT3 in B cell development reveals a potential therapeutic or vaccine target for eliciting IgA humoral responses at mucosal interfaces.

  8. Synthesis of conformationally locked carbocyclic 1,3-diazepinone nucleosides as inhibitors of cytidine deaminase.

    Science.gov (United States)

    Ludek, Olaf R; Schroeder, Gottfried K; Wolfenden, Richard; Marquez, Victor E

    2008-01-01

    We synthesized a series of carbocyclic nucleoside inhibitors of cytidine deaminase (CDA) based on a seven-membered 1,3-diazepin-2-one moiety. In the key step, the seven-membered ring was formed by a ring-closing-metathesis reaction. Therefore, the bis-allyl-urea moiety had to be protected by benzoylation in order to obtain an orientation suitable for ring closure. To our surprise, the analogue built on a flexible sugar template (4) showed a 100-fold stronger inhibition of CDA than the derivative with the preferred south-conformation.

  9. Synthesis of conformationally locked carbocyclic 1,3-diazepinone nucleosides as inhibitors of cytidine deaminase

    OpenAIRE

    Ludek, Olaf R.; Schroeder, Gottfried K.; Wolfenden, Richard; Marquez, Victor E.

    2008-01-01

    We synthesized a series of carbocyclic nucleoside inhibitors of cytidine deaminase (CDA) based on a seven-membered 1,3-diazepin-2-one moiety. In the key step, the seven-membered ring was formed by a ringclosing- metathesis reaction. Therefore, the bis-allylurea moiety had to be protected by benzoylation in order to obtain an orientation suitable for ring closure. To our surprise, the analogue built on a flexible sugar template (4) showed a 100-fold stronger inhibition of CDA than the derivati...

  10. Regulation of Activation Induced Deaminase (AID) by Estrogen.

    Science.gov (United States)

    Pauklin, Siim

    2016-01-01

    Regulation of Activation Induced Deaminase (AID) by the hormone estrogen has important implications for understanding adaptive immune responses as well as the involvement of AID in autoimmune diseases and tumorigenesis. This chapter describes the general laboratory techniques for analyzing AID expression and activity induced by estrogen, focusing on the isolation and preparation of cells for hormone treatment and the subsequent analysis of AID responsiveness to estrogen at the RNA level and for determining the regulation of AID activity via estrogen by analyzing Ig switch circle transcripts and mutations in switch region loci.

  11. Cloning, expression, and purification of cytidine deaminase from Arabidopsis thaliana

    DEFF Research Database (Denmark)

    Vincenzetti, Silvia; Cambi, Alessandra; Neuhard, Jan

    1999-01-01

    inEscherichia colifollowing induction with isopropyl 1-thio-ß- -galactopyranoside, showed high cytidine deaminase activity. The nucleotide sequence showed a 903-bp open reading frame encoding a polypeptide of 301 amino acids with a calculated molecular mass of 32,582. The deduced amino acid sequence...... preparation was >98% pure as judged by SDS-PAGE and showed a specific activity of 74 U/mg. The molecular mass of AT-CDA1 estimated by gel filtration was 63 kDa, indicating, in contrast to the other eukaryotic CDAs, that the enzyme is a dimer composed of two identical subunits. Inductively coupled plasma......-optical emission spectroscopy analysis indicated that the enzyme contains 1 mol of zinc atom per mole of subunit. The kinetic properties of AT-CDA1 both toward the natural substrates and with analogs indicated that the catalytic mechanism of the plant enzyme is probably very similar to that of the human the...

  12. Tetrahydrouridine inhibits cell proliferation through cell cycle regulation regardless of cytidine deaminase expression levels.

    Directory of Open Access Journals (Sweden)

    Naotake Funamizu

    Full Text Available Tetrahydrouridine (THU is a well characterized and potent inhibitor of cytidine deaminase (CDA. Highly expressed CDA catalyzes and inactivates cytidine analogues, ultimately contributing to increased gemcitabine resistance. Therefore, a combination therapy of THU and gemcitabine is considered to be a potential and promising treatment for tumors with highly expressed CDA. In this study, we found that THU has an alternative mechanism for inhibiting cell growth which is independent of CDA expression. Three different carcinoma cell lines (MIAPaCa-2, H441, and H1299 exhibited decreased cell proliferation after sole administration of THU, while being unaffected by knocking down CDA. To investigate the mechanism of THU-induced cell growth inhibition, cell cycle analysis using flow cytometry was performed. This analysis revealed that THU caused an increased rate of G1-phase occurrence while S-phase occurrence was diminished. Similarly, Ki-67 staining further supported that THU reduces cell proliferation. We also found that THU regulates cell cycle progression at the G1/S checkpoint by suppressing E2F1. As a result, a combination regimen of THU and gemcitabine might be a more effective therapy than previously believed for pancreatic carcinoma since THU works as a CDA inhibitor, as well as an inhibitor of cell growth in some types of pancreatic carcinoma cells.

  13. Synthesis of a bifunctional cytidine derivative and its conjugation to RNA for in vitro selection of a cytidine deaminase ribozyme.

    Science.gov (United States)

    Rublack, Nico; Müller, Sabine

    2014-01-01

    Over the past 20 years, the generation of functional RNAs by in vitro selection has become a standard technique. Apart from aptamers for simple binding of defined ligands, also RNAs for catalysis of chemical reactions have been selected. In the latter case, a key step often is the conjugation of one of the two reactants to the library, requiring suitable strategies for terminal or internal RNA functionalization. With the aim of selecting a ribozyme for deamination of cytidine, we have set up a selection scheme involving the attachment of the cytidine acting as deamination substrate to the 3'-terminus of the RNAs in the library, and library immobilization. Here, we report the synthesis of a bifunctional cytidine derivative suitable for conjugation to RNA and linkage of the conjugated library to a streptavidine-coated surface. Successful conjugation of the cytidine derivative to the 3'-terminus of a model RNA is demonstrated.

  14. Synthesis of a bifunctional cytidine derivative and its conjugation to RNA for in vitro selection of a cytidine deaminase ribozyme

    Directory of Open Access Journals (Sweden)

    Nico Rublack

    2014-08-01

    Full Text Available Over the past 20 years, the generation of functional RNAs by in vitro selection has become a standard technique. Apart from aptamers for simple binding of defined ligands, also RNAs for catalysis of chemical reactions have been selected. In the latter case, a key step often is the conjugation of one of the two reactants to the library, requiring suitable strategies for terminal or internal RNA functionalization. With the aim of selecting a ribozyme for deamination of cytidine, we have set up a selection scheme involving the attachment of the cytidine acting as deamination substrate to the 3'-terminus of the RNAs in the library, and library immobilization. Here, we report the synthesis of a bifunctional cytidine derivative suitable for conjugation to RNA and linkage of the conjugated library to a streptavidine-coated surface. Successful conjugation of the cytidine derivative to the 3'-terminus of a model RNA is demonstrated.

  15. Kinetic studies on 2',2'-difluorodeoxycytidine (Gemcitabine) with purified human deoxycytidine kinase and cytidine deaminase.

    Science.gov (United States)

    Bouffard, D Y; Laliberté, J; Momparler, R L

    1993-05-05

    Phosphorylation of cytosine analogs by deoxycytidine kinase (dCK) and deamination by cytidine deaminase (CDA) are two important processes in the activation and elimination of these drugs. We have investigated the kinetic parameters of 2',2'-difluorodeoxycytidine (dFdC) using purified enzymes from human cells. Deoxycytidine (CdR) and dFdC had Km values of 1.5 and 4.6 microM for dCK, respectively. Feedback inhibition of dCK by deoxycytidine 5'-triphosphate (dCTP) was also studied. Our results show that dCTP produced a greater inhibition of the phosphorylation of dFdC than CdR with concentrations of dCTP ranging from 1 to 25 microM. dFdC was a good substrate for CDA. Kinetic studies with this enzyme gave Km values for CdR and dFdC of 46.3 and 95.7 microM, respectively. The effect of competitive inhibitors of CDA on the deamination of dFdC was also investigated. Diazepinone riboside was a more potent inhibitor than tetrahydrouridine using either CdR or dFdC as the substrate. Inhibitors of CDA could be useful in clinical trials in patients with cancer to increase the chemotherapeutic effectiveness of dFdC.

  16. APOBEC3G is a single-stranded DNA cytidine deaminase and functions independently of HIV reverse transcriptase

    Science.gov (United States)

    Suspène, Rodolphe; Sommer, Peter; Henry, Michel; Ferris, Stéphane; Guétard, Denise; Pochet, Sylvie; Chester, Ann; Navaratnam, Naveenan; Wain-Hobson, Simon; Vartanian, Jean-Pierre

    2004-01-01

    In the absence of the viral vif gene, human immunodeficiency virus (HIV) may be restricted by the APOBEC3G gene on chromosome 22. The role of the HIV Vif protein is to exclude host cell APOBEC3G from the budding virion. As APOBEC3G shows sequence homology to cytidine deaminases, it is presumed that in the absence of Vif, cytidine residues in the cDNA are deaminated yielding uracil. It is not known if additional proteins mediate APOBEC3G function or if deamination occurs in concert with reverse transcription. This report describes an in vitro assay showing that Baculovirus derived APOBEC3G alone extensively deaminates cDNA independently of reverse transcriptase. It reproduces the dinucleotide context typical of G → A hypermutants derived from a Δvif virus. By using an RNaseH– form of reverse transcriptase, it was shown that the cDNA has to be free of its RNA template to allow deamination. APOBEC3G deamination of dC or dCTP was not detected. In short, APOBEC3G is a single-stranded DNA cytidine deaminase capable of restricting retroviral replication. PMID:15121899

  17. A facile synthetic route to diazepinone derivatives via ring closing metathesis and its application for human cytidine deaminase inhibitors.

    Science.gov (United States)

    Kim, Minkyoung; Gajulapati, Kondaji; Kim, Chorong; Jung, Hwa Young; Goo, Jail; Lee, Kyeong; Kaur, Navneet; Kang, Hyo Jin; Chung, Sang J; Choi, Yongseok

    2012-12-04

    A variety of diazepinone derivatives were prepared from α-amino acids and amino alcohols by a new synthetic methodology based on ring closing metathesis as a key step. The diazepinones were coupled with ribose derivatives to afford novel diazepinone nucleosides. Among them, (4R)-1-ribosyl-4-methyl-3,4-dihydro-1H-1,3-diazepin-2(7H)-one (3) showed a potent inhibitory effect (K(i) = 145.97 ± 4.87 nM) against human cytidine deaminase.

  18. Synthesis and Conformational Analysis of Locked Carbocyclic Analogues of 1,3-Diazepinone Riboside, a High-Affinity Cytidine Deaminase Inhibitor

    OpenAIRE

    Ludek, Olaf R.; Schroeder, Gottfried K.; Liao, Chenzhong; Russ, Pamela L.; Wolfenden, Richard; Marquez, Victor E.

    2009-01-01

    Cytidine deaminase (CDA) catalyzes the deamination of cytidine via a hydrated transition-state intermediate that results from the nucleophilic attack of zinc-bound water at the active site. Nucleoside analogues where the leaving NH3 group is replaced by a proton and prevent conversion of the transition state to product are very potent inhibitors of the enzyme. However, stable carbocyclic versions of these analogues are less effective as the role of the ribose in facilitating formation of hydr...

  19. Random mutagenesis MAPPIT analysis identifies binding sites for Vif and Gag in both cytidine deaminase domains of Apobec3G.

    Directory of Open Access Journals (Sweden)

    Isabel Uyttendaele

    Full Text Available The mammalian two-hybrid system MAPPIT allows the detection of protein-protein interactions in intact human cells. We developed a random mutagenesis screening strategy based on MAPPIT to detect mutations that disrupt the interaction of one protein with multiple protein interactors simultaneously. The strategy was used to detect residues of the human cytidine deaminase Apobec3G that are important for its homodimerization and its interaction with the HIV-1 Gag and Vif proteins. The strategy is able to identify the previously described head-to-head homodimerization interface in the N-terminal domain of Apobec3G. Our analysis further detects two new potential interaction surfaces in the N-and C-terminal domain of Apobec3G for interaction with Vif and Gag or for Apobec3G dimerization.

  20. Cytidine deaminases from B. subtilis and E. coli: compensating effects of changing zinc coordination and quaternary structure.

    Science.gov (United States)

    Carlow, D C; Carter, C W; Mejlhede, N; Neuhard, J; Wolfenden, R

    1999-09-21

    Cytidine deaminase from E. coli is a dimer of identical subunits (M(r) = 31 540), each containing a single zinc atom. Cytidine deaminase from B. subtilis is a tetramer of identical subunits (M(r) = 14 800). After purification from an overexpressing strain, the enzyme from B. subtilis is found to contain a single atom of zinc per enzyme subunit by flame atomic absorption spectroscopy. Fluorescence titration indicates that each of the four subunits contains a binding site for the transition state analogue inhibitor 5-fluoro-3,4-dihydrouridine. A region of amino acid sequence homology, containing residues that are involved in zinc coordination in the enzyme from E. coli, strongly suggests that in the enzyme from B. subtilis, zinc is coordinated by the thiolate side chains of three cysteine residues (Cys-53, Cys-86, and Cys-89) [Song, B. H., and Neuhard, J. (1989) Mol. Gen. Genet. 216, 462-468]. This pattern of zinc coordination appears to be novel for a hydrolytic enzyme, and might be expected to reduce the reactivity of the active site substantially compared with that of the enzyme from E. coli (His-102, Cys-129, and Cys-132). Instead, the B. subtilis and E. coli enzymes are found to be similar in their activities, and also in their relative binding affinities for a series of structurally related inhibitors with binding affinities that span a range of 6 orders of magnitude. In addition, the apparent pK(a) value of the active site is shifted upward by less than 1 unit. Sequence alignments, together with model building, suggest one possible mechanism of compensation.

  1. A functional single-nucleotide polymorphism in the human cytidine deaminase gene contributing to ara-C sensitivity.

    Science.gov (United States)

    Yue, Lijie; Saikawa, Yutaka; Ota, Kazuhisa; Tanaka, Motohiro; Nishimura, Ryosei; Uehara, Takahiro; Maeba, Hideaki; Ito, Takashi; Sasaki, Takuma; Koizumi, Shoichi

    2003-01-01

    To test the hypothesis that analyses of drug targets for polymorphism will help to establish gene-based information for the treatment of cancer patients, we investigated the functional single-nucleotide polymorphisms in the human cytidine deaminase (HDCA) gene. The cDNAs from 52 leukaemia/lymphoma samples and 169 control blood samples were direct-sequenced and analysed for the polymorphisms. Three different polymorphisms (A79C, G208A and T435C) were identified in the coding region of the HDCA gene and displayed allelic frequencies of 20.1%, 4.3% and 70.1%, respectively. No association with susceptibility to disease was observed. A novel polymorphism, G208A produced an alanine to threonine substitution (A70T) within the conserved catalytic domain. By introduction of the polymorphic HCDA genes into the yeast CDA-null mutants, the HCDA-70T showed 40% and 32% activity of prototype for cytidine and ara-C substrates, respectively (P HCDA-70T was 757 +/- 33 micromol and was significantly lower (P < 0.01) than that of prototype (941 +/- 58 micromol). This study demonstrated a population characterized with 208A genotype for, which potentially leads one more sensitive to ara-C treatment than prototype. Accumulation of polymorphisms in the genes responsible for drug metabolism and determination of polymorphism-induced biological variations could provide the additional therapeutic strategies in risk-stratified protocols for the treatment of childhood malignancies.

  2. Creation of zebularine-resistant human cytidine deaminase mutants to enhance the chemoprotection of hematopoietic stem cells.

    Science.gov (United States)

    Ruan, Hongmei; Qiu, Songbo; Beard, Brian C; Black, Margaret E

    2016-12-01

    Human cytidine deaminase (hCDA) is a biomedically important enzyme able to inactivate cytidine nucleoside analogs such as the antileukemic agent cytosine arabinoside (AraC) and thereby limit antineoplastic efficacy. Potent inhibitors of hCDA have been developed, e.g. zebularine, that when administered in combination with AraC enhance antineoplastic activity. Tandem hematopoietic stem cell (HSC) transplantation and combination chemotherapy (zebularine and AraC) could exhibit robust antineoplastic potency, but AraC-based chemotherapy regimens lead to pronounced myelosuppression due to relatively low hCDA activity in HSCs, and this approach could exacerbate this effect. To circumvent the pronounced myelosuppression of zebularine and AraC combination therapy while maintaining antineoplastic potency, zebularine-resistant hCDA variants could be used to gene-modify HSCs prior to transplantation. To achieve this, our approach was to isolate hCDA variants through random mutagenesis in conjunction with selection for hCDA activity and resistance to zebularine in an Escherichia coli genetic complementation system. Here, we report the identification of nine novel variants from a pool of 1.6 × 10(6) transformants that conferred significant zebularine resistance relative to wild-type hCDA2. Several variants revealed significantly higher Ki values toward zebularine when compared with wild-type hCDA values and, as such, are candidates for further exploration for gene-modified HSC transplantation approaches.

  3. Haploinsufficiency of activation-induced deaminase for antibody diversification and chromosome translocations both in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Isora V Sernández

    Full Text Available The humoral immune response critically relies on the secondary diversification of antibodies. This diversification takes places through somatic remodelling of the antibody genes by two molecular mechanisms, Class Switch Recombination (CSR and Somatic Hypermutation (SHM. The enzyme Activation Induced Cytidine Deaminase (AID initiates both SHM and CSR by deaminating cytosine residues on the DNA of immunoglobulin genes. While crucial for immunity, AID-catalysed deamination is also the triggering event for the generation of lymphomagenic chromosome translocations. To address whether restricting the levels of AID expression in vivo contributes to the regulation of its function, we analysed mice harbouring a single copy of the AID gene (AID(+/-. AID(+/- mice express roughly 50% of normal AID levels, and display a mild hyperplasia, reminiscent of AID deficient mice and humans. Moreover, we found that AID(+/- cells have an impaired competence for CSR and SHM, which indicates that AID gene dose is limiting for its physiologic function. We next evaluated the impact of AID reduction in AID(+/- mice on the generation of chromosome translocations. Our results show that the frequency of AID-promoted c-myc/IgH translocations is reduced in AID(+/- mice, both in vivo and in vitro. Therefore, AID is haploinsufficient for antibody diversification and chromosome translocations. These findings suggest that limiting the physiologic levels of AID expression can be a regulatory mechanism that ensures an optimal balance between immune proficiency and genome integrity.

  4. In a SLE mouse model the production of IgG autoantibody requires expression of activation-induced deaminase in early developing B cells

    Science.gov (United States)

    Umiker, Benjamin R.; McDonald, Gabrielle; Larbi, Amma; Medina, Carlos O.; Reth, Michael; Imanishi-Kari, Thereza

    2014-01-01

    Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the presence of pathogenic IgG anti-nuclear antibodies. Pathogenic IgG autoantibody production requires B-cell activation, leading to the production of activation-induced deaminase (AID) and class switching of IgM genes to IgG. To understand how and when B cells are activated to produce these IgG autoantibodies, we studied cells from 564Igi, a mouse model of SLE. 564Igi mice develop a disease profile closely resembling that found in human SLE patients, including the presence of IgG anti-nucleic acid antibodies. We have generated 564Igi mice that conditionally express an activation-induced cytidine deaminase transgene (Aicdatg), either in all B cells or only in mature B cells. Here we show that class-switched pathogenic IgG autoantibodies were produced only in 564Igi mice in which AID was functional in early developing B cells, resulting in loss of tolerance. Furthermore, we show that the absence of AID in early developing B cells also results in increased production of self-reactive IgM, indicating that AID, through somatic hypermutation (SHM), contributes to tolerance. Our results suggest that the pathophysiology of clinical SLE might also be dependent on AID expression in early developing B cells. PMID:25044405

  5. Molecular Analysis of Activation-Induced Cytidine Deaminase Gene in Immunoglobulin-E Deficient Patients

    Directory of Open Access Journals (Sweden)

    Sergio Roa

    2008-01-01

    Full Text Available Understanding how class switch recombination (CSR is regulated to produce immunoglobulin E (IgE has become fundamental because of the dramatic increase in the prevalence of IgE-mediated hypersensitivity reactions. CSR requires the induction of the enzyme AICDA in B cells. Mutations in AICDA have been linked to Hyper-IgM syndrome (HIGM2, which shows absence of switching to IgE as well as to IgG and IgA. Although isolated IgE deficiency is a rare entity, here we show some individuals with normal serum IgM, IgG, and IgA levels that had undetectable total serum IgE levels. We have analyzed the AICDA gene in these individuals to determine if there are mutations in AICDA that could lead to selective IgE deficiency. Conformational sensitive gel electrophoresis (CSGE and sequencing analysis of AICDA coding sequences demonstrated sequence heterogeneity due to 5923A/G and 7888C/T polymorphisms, but did not reveal any novel mutation that might explain the selective IgE deficit.

  6. Pyrimidine Pool Disequilibrium Induced by a Cytidine Deaminase Deficiency Inhibits PARP-1 Activity, Leading to the Under Replication of DNA.

    Directory of Open Access Journals (Sweden)

    Simon Gemble

    2015-07-01

    Full Text Available Genome stability is jeopardized by imbalances of the dNTP pool; such imbalances affect the rate of fork progression. For example, cytidine deaminase (CDA deficiency leads to an excess of dCTP, slowing the replication fork. We describe here a novel mechanism by which pyrimidine pool disequilibrium compromises the completion of replication and chromosome segregation: the intracellular accumulation of dCTP inhibits PARP-1 activity. CDA deficiency results in incomplete DNA replication when cells enter mitosis, leading to the formation of ultrafine anaphase bridges between sister-chromatids at "difficult-to-replicate" sites such as centromeres and fragile sites. Using molecular combing, electron microscopy and a sensitive assay involving cell imaging to quantify steady-state PAR levels, we found that DNA replication was unsuccessful due to the partial inhibition of basal PARP-1 activity, rather than slower fork speed. The stimulation of PARP-1 activity in CDA-deficient cells restores replication and, thus, chromosome segregation. Moreover, increasing intracellular dCTP levels generates under-replication-induced sister-chromatid bridges as efficiently as PARP-1 knockdown. These results have direct implications for Bloom syndrome (BS, a rare genetic disease combining susceptibility to cancer and genomic instability. BS results from mutation of the BLM gene, encoding BLM, a RecQ 3'-5' DNA helicase, a deficiency of which leads to CDA downregulation. BS cells thus have a CDA defect, resulting in a high frequency of ultrafine anaphase bridges due entirely to dCTP-dependent PARP-1 inhibition and independent of BLM status. Our study describes previously unknown pathological consequences of the distortion of dNTP pools and reveals an unexpected role for PARP-1 in preventing DNA under-replication and chromosome segregation defects.

  7. FFCD-1004 Clinical Trial: Impact of Cytidine Deaminase Activity on Clinical Outcome in Gemcitabine-Monotherapy Treated Patients.

    Directory of Open Access Journals (Sweden)

    Cindy Serdjebi

    Full Text Available Because cytidine deaminase (CDA is the key enzyme in gemcitabine metabolism, numerous studies have attempted to investigate impact of CDA status (i.e. genotype or phenotype on clinical outcome. To date, data are still controversial because none of these studies has fully investigated genotype-phenotype CDA status, pharmacokinetics and clinical outcome relationships in gemcitabine-treated patients. Besides, most patients were treated with gemcitabine associated with other drugs, thus adding a confounding factor. We performed a multicenter prospective clinical trial in gemcitabine-treated patients which aimed at investigating the link between CDA deficiency on the occurrence of severe toxicities and on pharmacokinetics, and studying CDA genotype-phenotype relationships.One hundred twenty patients with resected pancreatic adenocarcinoma eligible for adjuvant gemcitabine monotherapy were enrolled in this study promoted and managed by the Fédération Francophone de Cancérologie Digestive. Toxicities were graded according to National Cancer Institute's Common Terminology Criteria for Adverse Events Version 4. They were considered severe for grade ≥ 3, and early when occurring during the first eight weeks of treatment. CDA status was evaluated using a double approach: genotyping for 79A>C and functional testing. Therapeutic drug monitoring of gemcitabine and its metabolite were performed on the first course of gemcitabine.Five patients out of 120 (i.e., 4.6% were found to be CDA deficient (i.e., CDA activity <1.3 U/mg, and only one among them experienced early severe hematological toxicity. There was no statistically significant difference in CDA activity between patients experiencing hematological severe toxicities (28.44% and patients who tolerated the treatment (71.56%. CDA genetic analysis failed in evidencing an impact in terms of toxicities or in CDA activity. Regarding pharmacokinetics, a wide inter-individual variability has been observed

  8. DNA Mutagenic Activity and Capacity for HIV-1 Restriction of the Cytidine Deaminase APOBEC3G Depends on Whether DNA or RNA Binds to Tyrosine 315.

    Science.gov (United States)

    Polevoda, Bogdan; Joseph, Rebecca; Friedman, Alan E; Bennett, Ryan P; Greiner, Rebecca; De Zoysa, Thareendra; Stewart, Ryan A; Smith, Harold C

    2017-04-05

    APOBEC3G (A3G) belongs to the AID/APOBEC protein family of cytidine deaminases (CDA) that bind to nucleic acids. A3G mutates the HIV genome by deamination of dC to dU, leading to accumulation of virus-inactivating mutations. Binding to cellular RNAs inhibits A3G binding to substrate single-stranded (ss) DNA and CDA activity. RNA and ssDNA bind to the same three A3G tryptic peptides (amino acids 181-194, 314-320, and 345-374) that form parts of a continuously exposed protein surface extending from the catalytic domain in the C-terminus of A3G to its N-terminus. We show here that the A3G tyrosines 181 and 315 directly cross-link ssDNA. Binding experiments showed that a Y315A mutation alone significantly reduced A3G binding to both ssDNA and RNA, whereas Y181A and Y182A mutations only moderately affected A3G nucleic acid binding. Consistent with these findings, the Y315A mutant exhibited little to no deaminase activity in an E. coli DNA mutator reporter, while Y181A and Y182A mutants retained ~50% of wild-type A3G activity. The Y315A mutant also showed a markedly reduced ability to assemble into viral particles and had reduced antiviral activity. In uninfected cells, the impaired RNA-binding capacity of Y315A was evident by a shift of A3G from high-molecular-mass ribonucleoprotein complexes to low-molecular-mass complexes. We conclude that Y315 is essential for coordinating ssDNA interaction with or entry to the deaminase domain and hypothesize that RNA bound to Y315 may be sufficient to competitively inhibit ssDNA deaminase-dependent antiviral activity.

  9. The splicing regulator PTBP2 interacts with the cytidine deaminase AID and promotes binding of AID to switch-region DNA.

    Science.gov (United States)

    Nowak, Urszula; Matthews, Allysia J; Zheng, Simin; Chaudhuri, Jayanta

    2011-02-01

    During immunoglobulin class-switch recombination (CSR), the cytidine deaminase AID induces double-strand breaks into transcribed, repetitive DNA elements called switch sequences. The mechanism that promotes the binding of AID specifically to switch regions remains to be elucidated. Here we used a proteomic screen with in vivo biotinylation of AID to identify the splicing regulator PTBP2 as a protein that interacts with AID. Knockdown of PTBP2 mediated by short hairpin RNA in B cells led to a decrease in binding of AID to transcribed switch regions, which resulted in considerable impairment of CSR. PTBP2 is thus an effector of CSR that promotes the binding of AID to switch-region DNA.

  10. Synthesis and conformational analysis of locked carbocyclic analogues of 1,3-diazepinone riboside, a high-affinity cytidine deaminase inhibitor.

    Science.gov (United States)

    Ludek, Olaf R; Schroeder, Gottfried K; Liao, Chenzhong; Russ, Pamela L; Wolfenden, Richard; Marquez, Victor E

    2009-08-21

    Cytidine deaminase (CDA) catalyzes the deamination of cytidine via a hydrated transition-state intermediate that results from the nucleophilic attack of zinc-bound water at the active site. Nucleoside analogues where the leaving NH(3) group is replaced by a proton and prevent conversion of the transition state to product are very potent inhibitors of the enzyme. However, stable carbocyclic versions of these analogues are less effective as the role of the ribose in facilitating formation of hydrated species is abolished. The discovery that a 1,3-diazepinone riboside (4) operated as a tight-binding inhibitor of CDA independent of hydration provided the opportunity to study novel inhibitors built as conformationally locked, carbocyclic 1,3-diazepinone nucleosides to determine the enzyme's conformational preference for a specific form of sugar pucker. This work describes the synthesis of two target bicyclo[3.1.0]hexane nucleosides, locked as north (5) and south (6) conformers, as well as a flexible analogue (7) built with a cyclopentane ring. The seven-membered 1,3-diazepinone ring in all the three targets was built from the corresponding benzoyl-protected carbocyclic bis-allyl ureas by ring-closing metathesis. The results demonstrate CDA's binding preference for a south sugar pucker in agreement with the high-resolution crystal structures of other CDA inhibitors bound at the active site.

  11. Potent inhibitors for the deamination of cytosine arabinoside and 5-aza-2'-deoxycytidine by human cytidine deaminase.

    Science.gov (United States)

    Laliberté, J; Marquez, V E; Momparler, R L

    1992-01-01

    Deamination of the nucleoside analogues ARA-C and 5-AZA-CdR by CR deaminase results in a loss of antileukemic activity. To prevent the inactivation of these analogues, inhibitors of CR deaminase may prove to be useful agents. In the present study we investigated the effects of the deaminase inhibitors Zebularine, 5-F-Zebularine, and diazepinone riboside on the deamination of CR, ARA-C, and 5-AZA-CdR using highly purified human CR deaminase (EC 3.5.4.5). These inhibitors produced a competitive type of inhibition with each substrate, the potency of which followed the patterns diazepinone riboside greater than 5-F-Zebularine and THU greater than Zebularine. 5-AZA-CdR was more sensitive than ARA-C to the inhibition produced by these deaminase inhibitors. The inhibition constants for diazepinone riboside lay in the range of 5-15 nM, suggesting that this inhibitor could be an excellent candidate for use in combination chemotherapy with either ARA-C or 5-AZA-CdR in patients with leukemia.

  12. Target DNA sequence directly regulates the frequency of activation-induced deaminase-dependent mutations.

    Science.gov (United States)

    Chen, Zhangguo; Viboolsittiseri, Sawanee S; O'Connor, Brian P; Wang, Jing H

    2012-10-15

    Activation-induced deaminase (AID) catalyses class switch recombination (CSR) and somatic hypermutation (SHM) in B lymphocytes to enhance Ab diversity. CSR involves breaking and rejoining highly repetitive switch (S) regions in the IgH (Igh) locus. S regions appear to be preferential targets of AID. To determine whether S region sequence per se, independent of Igh cis regulatory elements, can influence AID targeting efficiency and mutation frequency, we established a knock-in mouse model by inserting a core Sγ1 region into the first intron of proto-oncogene Bcl6, which is a non-Ig target of SHM. We found that the mutation frequency of the inserted Sγ1 region was dramatically higher than that of the adjacent Bcl6 endogenous sequence. Mechanistically, S region-enhanced SHM was associated with increased recruitment of AID and RNA polymerase II, together with Spt5, albeit to a lesser extent. Our studies demonstrate that target DNA sequences influence mutation frequency via regulating AID recruitment. We propose that the nucleotide sequence preference may serve as an additional layer of AID regulation by restricting its mutagenic activity to specific sequences despite the observation that AID has the potential to access the genome widely.

  13. Role of Genetic Polymorphisms of Deoxycytidine Kinase and Cytidine Deaminase to Predict Risk of Death in Children with Acute Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Aurora Medina-Sanson

    2015-01-01

    Full Text Available Cytarabine is one of the most effective antineoplastic agents among those used for the treatment of acute myeloid leukemia. However, some patients develop resistance and/or severe side effects to the drug, which may interfere with the efficacy of the treatment. The polymorphisms of some Ara-C metabolizing enzymes seem to affect outcome and toxicity in AML patients receiving cytarabine. We conducted this study in a cohort of Mexican pediatric patients with AML to investigate whether the polymorphisms of the deoxycytidine kinase and cytidine deaminase enzymes are implicated in clinical response and toxicity. Bone marrow and/or peripheral blood samples obtained at diagnosis from 27 previously untreated pediatric patients with de novo AML were processed for genotyping and in vitro chemosensitivity assay, and we analyzed the impact of genotypes and in vitro sensitivity on disease outcome and toxicity. In the multivariate Cox regression analysis, we found that age at diagnosis, wild-type genotype of the CDA A79C polymorphism, and wild-type genotype of the dCK C360G polymorphism were the most significant prognostic factors for predicting the risk of death.

  14. 胞苷脱氨酶基因对小鼠大剂量化疗的保护作用%Protection of a cytidine deaminase gene gainst toxicity of high dose chemotherapy in mice

    Institute of Scientific and Technical Information of China (English)

    Bo Chen; Caigang Liu; Yang Lu; Ping Lu; Feng Jin; Fan Yao; Ruishan Zhang; Jinlong Liu; Shicheng Zhao

    2008-01-01

    Objective:To explore the feasibility of transfecting cytidine deaminase(CD)gene into mouse bone marrow cells in order to observe the drug resistance of high dose Ara-C and improve the tolerance of myelosuppression following combination chemotherapy.Methods:Human cytidine deaminase gene was transfected into mice bone marrow cells by retroviral vector.Resistant colony-forming unit granulocyte-macrophage(CFU-GM)assay was performed after the transfected mice bone marrow cells treated by the Ara-C.DNA was extracted from mice bone marrow cells.The drug resistant gene in mice bone marrow cells after transfection was detected by PCR.Results:Bone marrow cells of lhe donor mice cultured with lhe retroviral producer cells showed the drug resistant colonies and resistance to Ara-C,so did accept mice transplanted with the CD gene(CFU-GM of donor mice was 52%,X2=124.62,P<0.01:accept mice was 54%,X2=126.26.P<0.01,both compared with the contrast group).The animal survival rate was significantly higher in gene transfected group than that of the control(X2=7.42.P<0.01).CD gene of transfected bone marrow cells was confirmed by PCR.Conclusion:CD gene can be transfected into bone marrow cells of mice efficiently and increase the drug resistance to Ara-C.

  15. Paclitaxel alters the expression and specific activity of deoxycytidine kinase and cytidine deaminase in non-small cell lung cancer cell lines

    Directory of Open Access Journals (Sweden)

    Patel Shitalben R

    2009-06-01

    Full Text Available Abstract Background We observed that paclitaxel altered the pharmacokinetic properties of gemcitabine in patients with non-small cell lung cancer (NSCLC and limited the accumulation of gemcitabine and its metabolites in various primary and immortalized human cells. Therefore, we classified the drug-drug interaction and the effects of paclitaxel on deoxycytidine kinase (dCK and cytidine deaminase (CDA in three NSCLC cell lines. These enzymes are responsible for the metabolism of gemcitabine to its deaminated metabolite dFdU (80% of the parent drug and the phosphorylated metabolites dFdCMP, dFdCDP and dFdCTP. These metabolites appear to relate to sensitivity and tolerability of gemcitabine based on previous animal and laboratory studies. Methods Three immortalized human cells representative of the most common histological subtypes identified in patients with advanced NSCLC were exposed to the individual drugs or combinations to complete a multiple drug effect analysis. These same cell lines were exposed to vehicle-control or paclitaxel and the mRNA levels, protein expression and specific activity of dCK and CDA were compared. Comparisons were made using a two-tailed paired t-test or analysis of variance with a P value of Results The multiple drug effect analysis indicated synergy for H460, H520 and H838 cells independent of sequence. As anticipated, paclitaxel-gemcitabine increased the number of G2/M cells, whereas gemcitabine-paclitaxel increased the number of G0/G1 or S cells. Paclitaxel significantly decreased dCK and CDA mRNA levels in H460 and H520 cells (40% to 60%, P Conclusion In summary, paclitaxel altered the mRNA levels and specific activity of dCK and CDA and these effects could be dependent on histological subtype. More cell and animal studies are needed to further characterize the relationship between mRNA levels and the overall drug-drug interaction and the potential to use histological subtype as a predictive factor in the

  16. APOBEC deaminases-mutases with defensive roles for immunity

    Institute of Scientific and Technical Information of China (English)

    Courtney; PROCHNOW; Ronda; BRANSTEITTER

    2009-01-01

    In recent years, tremendous progress has been made in the elucidation of the biological roles and molecular mechanisms of the apolioprotein B mRNA-editing enzyme catalytic polypeptide (APOBEC) family of enzymes. The APOBEC family of cytidine deaminases has important functional roles within the adaptive and innate immune system. Activation induced cytidine deaminase (AID) plays a central role in the biochemical steps of somatic hypermutation and class switch recombination during antibody maturation, and the APOBEC 3 enzymes are able to inhibit the mobility of retroelements and the replication of retroviruses and DNA viruses, such as the human immunodeficiency virus type-1 and hepatitis B virus. Recent advances in structural and functional studies of the APOBEC enzymes provide new biochemical insights for how these enzymes carry out their biological roles. In this review, we provide an overview of these recent advances in the APOBEC field with a special emphasis on AID and APOBEC3G.

  17. S-S synapsis during class switch recombination is promoted by distantly located transcriptional elements and activation-induced deaminase.

    Science.gov (United States)

    Wuerffel, Robert; Wang, Lili; Grigera, Fernando; Manis, John; Selsing, Erik; Perlot, Thomas; Alt, Frederick W; Cogne, Michel; Pinaud, Eric; Kenter, Amy L

    2007-11-01

    Molecular mechanisms underlying synapsis of activation-induced deaminase (AID)-targeted S regions during class switch recombination (CSR) are poorly understood. By using chromosome conformation capture techniques, we found that in B cells, the Emicro and 3'Ealpha enhancers were in close spatial proximity, forming a unique chromosomal loop configuration. B cell activation led to recruitment of the germline transcript (GLT) promoters to the Emicro:3'Ealpha complex in a cytokine-dependent fashion. This structure facilitated S-S synapsis because Smicro was proximal to Emicro and a downstream S region was corecruited with the targeted GLT promoter to Emicro:3'Ealpha. We propose that GLT promoter association with the Emicro:3'Ealpha complex creates an architectural scaffolding that promotes S-S synapsis during CSR and that these interactions are stabilized by AID. Thus, the S-S synaptosome is formed as a result of the self-organizing transcription system that regulates GLT expression and may serve to guard against spurious chromosomal translocations.

  18. Relation of activation-induced deaminase (AID) expression with antibody response to A(H1N1)pdm09 vaccination in HIV-1 infected patients.

    Science.gov (United States)

    Cagigi, Alberto; Pensieroso, Simone; Ruffin, Nicolas; Sammicheli, Stefano; Thorstensson, Rigmor; Pan-Hammarström, Qiang; Hejdeman, Bo; Nilsson, Anna; Chiodi, Francesca

    2013-04-26

    The relevance of CD4+T-cells, viral load and age in the immunological response to influenza infection and vaccination in HIV-1 infected individuals has previously been pointed out. Our study aimed at assessing, in the setting of 2009 A(H1N1)pdm09 influenza vaccination, whether quantification of activation-induced deaminase (AID) expression in blood B-cells may provide additional indications for predicting antibody response to vaccination in HIV-1 infected patients with similar CD4+T-cell counts and age. Forty-seven healthy controls, 37 ART-treated and 17 treatment-naïve HIV-1 infected patients were enrolled in the study. Blood was collected prior to A(H1N1)pdm09 vaccination and at 1, 3 and 6 months after vaccination. Antibody titers to A(H1N1)pdm09 vaccine were measured by hemagglutination inhibition (HI) assay while the mRNA expression levels of AID were measured by quantitative real time PCR. Upon B-cell activation in vitro, AID increase correlated to antibody response to the A(H1N1)pdm09 vaccine at 1 month after vaccination in all individuals. In addition, the maximum expression levels of AID were significantly higher in those individuals who still carried protective levels of A(H1N1)pdm09 antibodies after 6 months from vaccination. No correlation was found between CD4+T-cell counts or age at vaccination or HIV-1 viral load and levels of A(H1N1)pdm09 antibodies. Assessing AID expression before vaccination may be an additional useful tool for defining a vaccination strategy in immune-compromised individuals at risk of immunization failure.

  19. Estrogen receptors bind to and activate the HOXC4/HoxC4 promoter to potentiate HoxC4-mediated activation-induced cytosine deaminase induction, immunoglobulin class switch DNA recombination, and somatic hypermutation.

    Science.gov (United States)

    Mai, Thach; Zan, Hong; Zhang, Jinsong; Hawkins, J Seth; Xu, Zhenming; Casali, Paolo

    2010-11-26

    Estrogen enhances antibody and autoantibody responses through yet to be defined mechanisms. It has been suggested that estrogen up-regulates the expression of activation-induced cytosine deaminase (AID), which is critical for antibody class switch DNA recombination (CSR) and somatic hypermutation (SHM), through direct activation of this gene. AID, as we have shown, is induced by the HoxC4 homeodomain transcription factor, which binds to a conserved HoxC4/Oct site in the AICDA/Aicda promoter. Here we show that estrogen-estrogen receptor (ER) complexes do not directly activate the AID gene promoter in B cells undergoing CSR. Rather, they bind to three evolutionarily conserved and cooperative estrogen response elements (EREs) we identified in the HOXC4/HoxC4 promoter. By binding to these EREs, ERs synergized with CD154 or LPS and IL-4 signaling to up-regulate HoxC4 expression, thereby inducing AID and CSR without affecting B cell proliferation or plasmacytoid differentiation. Estrogen administration in vivo significantly potentiated CSR and SHM in the specific antibody response to the 4-hydroxy-3-nitrophenylacetyl hapten conjugated with chicken γ-globulin. Ablation of HoxC4 (HoxC4(-/-)) abrogated the estrogen-mediated enhancement of AID gene expression and decreased CSR and SHM. Thus, estrogen enhances AID expression by activating the HOXC4/HoxC4 promoter and inducing the critical AID gene activator, HoxC4.

  20. Analysis of 6912 unselected somatic hypermutations in human VDJ rearrangements reveals lack of strand specificity and correlation between phase II substitution rates and distance to the nearest 3' activation-induced cytidine deaminase target

    DEFF Research Database (Denmark)

    Ohm-Laursen, Line; Barington, Torben

    2007-01-01

    -23*01) from blood B lymphocytes enriched for CD27-positive memory cells. Analyses of 6,912 unique, unselected substitutions showed that in vivo hot and cold spots for the SHM of C and G residues corresponded closely to the target preferences reported for AID in vitro. A detailed analysis of all possible four...

  1. Enhancement by cytidine of membrane phospholipid synthesis

    Science.gov (United States)

    G-Coviella, I. L.; Wurtman, R. J.

    1992-01-01

    Cytidine, as cytidine 5'-diphosphate choline, is a major precursor in the synthesis of phosphatidylcholine in cell membranes. In the present study, we examined the relationships between extracellular levels of cytidine, the conversion of [14C]choline to [14C]phosphatidylcholine, and the net syntheses of phosphatidylcholine and phosphatidylethanolamine by PC12 cells. The rate at which cytidine (as [3H]cytidine) was incorporated into the PC12 cells followed normal Michaelis-Menten kinetics (Km = 5 microM; Vmax = 12 x 10(-3) mmol/mg of protein/min) when the cytidine concentrations in the medium were below 50 microM; at higher concentrations, intracellular [3H]cytidine nucleotide levels increased linearly. Once inside the cell, cytidine was converted mainly into cytidine triphosphate. In pulse-chase experiments, addition of cytidine to the medium caused a time- and dose-dependent increase (by up to 30%) in the incorporation of [14C]choline into membrane [14C]-phosphatidylcholine. When the PC12 cells were supplemented with both cytidine and choline for 14 h, small but significant elevations (p less than 0.05) were observed in their absolute contents of membrane phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine, all increasing by 10-15% relative to their levels in cells incubated with choline alone. Exogenous cytidine, acting via cytidine triphosphate, can thus affect the synthesis and levels of cell membrane phospholipids.

  2. Structure of Staphylococcus aureus cytidine monophosphate kinase in complex with cytidine 5'-monophosphate.

    Science.gov (United States)

    Dhaliwal, Balvinder; Ren, Jingshan; Lockyer, Michael; Charles, Ian; Hawkins, Alastair R; Stammers, David K

    2006-08-01

    The crystal structure of Staphylococcus aureus cytidine monophosphate kinase (CMK) in complex with cytidine 5'-monophosphate (CMP) has been determined at 2.3 angstroms resolution. The active site reveals novel features when compared with two orthologues of known structure. Compared with the Streptococcus pneumoniae CMK solution structure of the enzyme alone, S. aureus CMK adopts a more closed conformation, with the NMP-binding domain rotating by approximately 16 degrees towards the central pocket of the molecule, thereby assembling the active site. Comparing Escherichia coli and S. aureus CMK-CMP complex structures reveals differences within the active site, including a previously unreported indirect interaction of CMP with Asp33, the replacement of a serine residue involved in the binding of CDP by Ala12 in S. aureus CMK and an additional sulfate ion in the E. coli CMK active site. The detailed understanding of the stereochemistry of CMP binding to CMK will assist in the design of novel inhibitors of the enzyme. Inhibitors are required to treat the widespread hospital infection methicillin-resistant S. aureus (MRSA), currently a major public health concern.

  3. Rescue of the Orphan Enzyme Isoguanine Deaminase

    Science.gov (United States)

    Hitchcock, Daniel S.; Fedorov, Alexander A.; Fedorov, Elena V.; Dangott, Lawrence J.; Almo, Steven C.; Raushel, Frank M.

    2011-01-01

    Cytosine deaminase (CDA) from Escherichia coli was shown to catalyze the deamination of isoguanine (2-oxoadenine) to xanthine. Isoguanine is an oxidation product of adenine in DNA that is mutagenic to the cell. The isoguanine deaminase activity in E. coli was partially purified by ammonium sulfate fractionation, gel filtration and anion exchange chromatography. The active protein was identified by peptide mass fingerprint analysis as cytosine deaminase. The kinetic constants for the deamination of isoguanine at pH 7.7 are kcat = 49 s-1, Km = 72 μM, and kcat/Km = 6.7 × 105 M-1 s-1. The kinetic constant for the deamination of cytosine are kcat = 45 s-1, Km = 302 μM, and kcat/Km = 1.5 × 105 M-1 s-1. Under these reaction conditions isoguanine is the better substrate for cytosine deaminase. The three dimensional structure of CDA was determined with isoguanine in the active site. PMID:21604715

  4. The Frequency of Cytidine Editing of Viral DNA Is Differentially Influenced by Vpx and Nucleosides during HIV-1 or SIVMAC Infection of Dendritic Cells.

    Directory of Open Access Journals (Sweden)

    Xuan-Nhi Nguyen

    Full Text Available Two cellular factors are currently known to modulate lentiviral infection specifically in myeloid cells: SAMHD1 and APOBEC3A (A3A. SAMHD1 is a deoxynucleoside triphosphohydrolase that interferes with viral infection mostly by limiting the intracellular concentrations of dNTPs, while A3A is a cytidine deaminase that has been described to edit incoming vDNA. The restrictive phenotype of myeloid cells can be alleviated through the direct degradation of SAMHD1 by the HIV-2/SIVSM Vpx protein or else, at least in the case of HIV-1, by the exogenous supplementation of nucleosides that artificially overcome the catabolic activity of SAMHD1 on dNTPs. Here, we have used Vpx and dNs to explore the relationship existing between vDNA cytidine deamination and SAMHD1 during HIV-1 or SIVMAC infection of primary dendritic cells. Our results reveal an interesting inverse correlation between conditions that promote efficient infection of DCs and the extent of vDNA editing that may reflect the different susceptibility of vDNA to cytoplasmic effectors during the infection of myeloid cells.

  5. [Adenosine deaminase in experimental trypanosomiasis: future implications].

    Science.gov (United States)

    Pérez-Aguilar, Mary Carmen; Rondón-Mercado, Rocío

    2015-09-01

    The adenosine deaminase represents a control point in the regulation of extracellular adenosine levels, thus playing a critical role in the modulation of purinergic responses to certain pathophysiological events. Several studies have shown that serum and plasma enzyme levels are elevated in some diseases caused by microorganisms, which may represent a compensatory mechanism due to the elevated levels of adenosine and the release of inflammatory mediators. Recent research indicates that adenosine deaminase activity decreases and affects hematological parameters of infected animals with Trypanosoma evansi, so that such alterations could have implications in the pathogenesis of the disease. In addition, the enzyme has been detected in this parasite; allowing the inference that it could be associated with the vital functions of the same, similar to what occurs in mammals. This knowledge may be useful in the association of chemotherapy with specific inhibitors of the enzyme in future studies.

  6. Primary adenosine monophosphate (AMP) deaminase deficiency in a hypotonic infant.

    Science.gov (United States)

    Castro-Gago, Manuel; Gómez-Lado, Carmen; Pérez-Gay, Laura; Eirís-Puñal, Jesús; Martínez, Elena Pintos; García-Consuegra, Inés; Martín, Miguel Angel

    2011-06-01

    The spectrum of the adenosine monophosphate (AMP) deaminase deficiency ranges from asymptomatic carriers to patients who manifest exercise-induced muscle pain, occasionally rhabdomyolysis, and idiopathic hyperCKemia. However, previous to the introduction of molecular techniques, rare cases with congenital weakness and hypotonia have also been reported. We report a 6-month-old girl with the association of congenital muscle weakness and hypotonia, muscle deficiency of adenosine monophosphate deaminase, and the homozygous C to T mutation at nucleotide 34 of the adenosine monophosphate deaminase-1 gene. This observation indicates the possible existence of a primary adenosine monophosphate deaminase deficiency manifested by congenital muscle weakness and hypotonia.

  7. Enhancement of cytidine production by coexpression of gnd, zwf, and prs genes in recombinant Escherichia coli CYT15.

    Science.gov (United States)

    Fang, Haitian; Xie, Xixian; Xu, Qingyang; Zhang, Chenglin; Chen, Ning

    2013-02-01

    Cytidine is a precursor of several antiviral drugs. The pentose phosphate pathway (PPP) is primarily responsible for NADPH and 5-phospho-α-D-ribose 1-diphosphate as an important precursor of cytidine biosynthesis in Escherichia coli. To enhance cytidine production, we obtained the recombinant E. coli CYT15-gnd-prs-zwf that co-expressed the prs, zwf, and gnd genes encoding phosphoribosylpyrophosphate synthetase, glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase (three key enzymes in PPP) respectively. In fermentation experiments, strain CYT15-gnd-prs-zwf produced 735 mg cytidine/l using glucose as substrate, which was approx. 128 % higher than the cytidine production by the parental strain (CYT15). Co-expression of zwf, gnd, and prs decreased growth (3.2 %) slightly and increased glucose uptake (72 %). This is the first study to report increased cytidine production by increasing metabolic flux through the PPP in E. coli.

  8. Two nucleoside uptake systems in Lactococcus lactis: Competition between purine nucleosides and cytidine allows for modulation of intracellular nucleotide pools

    DEFF Research Database (Denmark)

    Martinussen, Jan; Wadskov-Hansen, Steen Lyders Lerche; Hammer, Karin

    2003-01-01

    in Lactococcus lactis were investigated by measuring the uptake of radioactively labeled nucleosides. The K. for for inosine, cytidine, and uridine was determined to be in the micromolar range. Furthermore, it was found that cytidine and inosine are competitive inhibitors of each other, whereas no competition...

  9. [NIR-SERS Spectra Detection of Cytidine on Nano-Silver Films].

    Science.gov (United States)

    Zhang, De-qing; Liu, Ren-ming; Zhang, Guo-qiang; Zhang, Yan; Xiong, Yang; Zhang, Chuan-yun; Li, Lun; Si, Min-zhen

    2016-03-01

    The polyvinyl alcohol (PVA) protected silver glass-like nanostructure (PVA-Ag-GNS) with high surface-enhanced Raman scattering (SERS) activity was prepared and employed to detect the near-infrared surface enhanced Raman scattering (NIR-SERS) spectra of cytidine aqueous solution (10(-2)-10(-8) mol x L(-1)). In the work, the near-infrared laser beam (785 nm) was used as the excitation light source. The experiment results show that high-quality NIR-SERS spectra were obtained in the ranges of 300 to 2 000 cm(-1) and the detection limit of cytidine aqueous solution was down to 10(-7) mol x L(-1). Meanwhile, the PVA-Ag-GNS shows a high enhancement factor (EF) of -10(8). In order to test the optical reproducibility of PVA-Ag-GNS, ten samples of cytidine aqueous solution (10(-2)-10(-5) mol x L(-1)) had been dropped onto the surface of PVA-Ag-GNS respectively. Meanwhile, these samples were measured by the portable Raman spectrometer. As a result, the PVA-Ag-GNS demonstrated good optical reproducibility in the detection of cytidine aqueous solution. In addition, to explain the reason of enhancement effect, the ultraviolet-visible (UV-Vis) extinction spectrum and scanning electron microscope (SEM) of cytidine molecules adsorbed on the surface of PVA-Ag-GNS were measured. There is plasmon resonance band at 800 nm in the UV-Vis extinction Spectrum of the compound system. Therefore, when the near-infrared laser beam (785 nm) was used as excitation light source, the compound system may produce strongly surface plasmon resonance (SPR). According to the SEM of PVA-Ag-GNS, there are much interstitial between the silver nanoparticles. So NIR-SERS is mainly attributed to electromagnetic (EM) fields associated with strong surface plasmon resonance. At last, the geometry optimization and pre-Raman spectrum of cytidine for the ground states were performed with DFT, B3LYP functional and the 6-311G basis set, and the near-infrared laser with wavelength of 785 nm was employed in the pre

  10. Adenosine Deaminase Deficiency – More Than Just an Immunodeficiency

    OpenAIRE

    Kathryn Victoria Whitmore; Hubert Bobby Gaspar

    2016-01-01

    Adenosine deaminase (ADA) deficiency is best known as a form of severe combined immunodeficiency (SCID) which results from mutations in the gene encoding adenosine deaminase. Affected patients present with clinical and immunological manifestations typical of a severe combined immunodeficiency. Therapies are currently available that can that target these immunological disturbances and treated patients show varying degrees of clinical improvement. However, there is now a growing body of evidenc...

  11. The catalase activity of diiron adenine deaminase

    Energy Technology Data Exchange (ETDEWEB)

    Kamat S. S.; Swaminathan S.; Holmes-Hampton, G. P.; Bagaria, A.; Kumaran, D.; Tichy, S. E.; Gheyi, T.; Zheng, X.; Bain, K.; Groshong, C.; Emtage, S.; Sauder, J. M.; Burley, S. K.; Lindahl, P. A.; Raushel, F. M.

    2011-12-01

    Adenine deaminase (ADE) from the amidohydrolase superfamily (AHS) of enzymes catalyzes the conversion of adenine to hypoxanthine and ammonia. Enzyme isolated from Escherichia coli was largely inactive toward the deamination of adenine. Molecular weight determinations by mass spectrometry provided evidence that multiple histidine and methionine residues were oxygenated. When iron was sequestered with a metal chelator and the growth medium supplemented with Mn{sup 2+} before induction, the post-translational modifications disappeared. Enzyme expressed and purified under these conditions was substantially more active for adenine deamination. Apo-enzyme was prepared and reconstituted with two equivalents of FeSO{sub 4}. Inductively coupled plasma mass spectrometry and Moessbauer spectroscopy demonstrated that this protein contained two high-spin ferrous ions per monomer of ADE. In addition to the adenine deaminase activity, [Fe{sup II}/Fe{sup II}]-ADE catalyzed the conversion of H{sub 2}O{sub 2} to O{sub 2} and H{sub 2}O. The values of k{sub cat} and k{sub cat}/K{sub m} for the catalase activity are 200 s{sup -1} and 2.4 x 10{sup 4} M{sup -1} s{sup -1}, respectively. [Fe{sup II}/Fe{sup II}]-ADE underwent more than 100 turnovers with H{sub 2}O{sub 2} before the enzyme was inactivated due to oxygenation of histidine residues critical for metal binding. The iron in the inactive enzyme was high-spin ferric with g{sub ave} = 4.3 EPR signal and no evidence of anti-ferromagnetic spin-coupling. A model is proposed for the disproportionation of H{sub 2}O{sub 2} by [Fe{sup II}/Fe{sup II}]-ADE that involves the cycling of the binuclear metal center between the di-ferric and di-ferrous oxidation states. Oxygenation of active site residues occurs via release of hydroxyl radicals. These findings represent the first report of redox reaction catalysis by any member of the AHS.

  12. A novel HIV-1 restriction factor that is biologically distinct from APOBEC3 cytidine deaminases in a human T cell line CEM.NKR

    Directory of Open Access Journals (Sweden)

    Zhou Tao

    2009-04-01

    Full Text Available Abstract Background Isolation of novel retroviral restriction factors will open new avenues for anti-HIV/AIDS treatment. Although HIV-1 replication is restricted by APOBEC3G/APOBEC3F, TRIM5α, and CD317, none defend HIV-1 infection under natural conditions. Previously, we demonstrated a host factor from the human T cell line CEM.NKR that potently restricted wild-type HIV-1 replication. Interestingly, this restriction resembled the APOBEC3G/APOBEC3F pattern in that viral replication was inhibited from the second round of replication cycle at a post-entry step. Results Here, we further characterized this factor and found it distinguishable from the known anti-HIV APOBEC3 proteins. Although CEM.NKR cells expressed both APOBEC3G and APOBEC3F, their levels were at least 10 or 4-fold lower than those in H9 cells, and importantly, Vif effectively neutralized their activity. Among eight subclones isolated from CEM.NKR cells, one was relatively permissive, four were semi-permissive, and three were completely non-permissive for HIV-1 replication. When the levels of APOBEC3 expression were determined, all these clones retained similar low levels of APOBEC3DE, APOBEC3F, APOBEC3G and APOBEC3H expression, and no APOBEC3B expression was detected. Since the vif from SIVmac can effectively neutralize APOBEC3B and APOBEC3H, recombinant HIV-1 expressing this SIV gene were created. However, these viruses still failed to replicate in CEM.NKR cells. We also confirmed that HIV-1 restriction in CEM.NKR was not due to a loss of calnexin expression. Conclusion Taken together, these results not only demonstrate that all these aforementioned anti-HIV APOBEC3 proteins do not contribute to this HIV-1 restriction, but also shed light on a novel and potent HIV-1 inhibitor in CEM.NKR cells.

  13. Role of Genetic Polymorphisms of Deoxycytidine Kinase and Cytidine Deaminase to Predict Risk of Death in Children with Acute Myeloid Leukemia

    OpenAIRE

    2015-01-01

    Cytarabine is one of the most effective antineoplastic agents among those used for the treatment of acute myeloid leukemia. However, some patients develop resistance and/or severe side effects to the drug, which may interfere with the efficacy of the treatment. The polymorphisms of some Ara-C metabolizing enzymes seem to affect outcome and toxicity in AML patients receiving cytarabine. We conducted this study in a cohort of Mexican pediatric patients with AML to investigate whether the polymo...

  14. Unique properties of Plasmodium falciparum porphobilinogen deaminase.

    Science.gov (United States)

    Nagaraj, Viswanathan Arun; Arumugam, Rajavel; Gopalakrishnan, Bulusu; Jyothsna, Yeleswarapu Sri; Rangarajan, Pundi N; Padmanaban, Govindarajan

    2008-01-04

    The hybrid pathway for heme biosynthesis in the malarial parasite proposes the involvement of parasite genome-coded enzymes of the pathway localized in different compartments such as apicoplast, mitochondria, and cytosol. However, knowledge on the functionality and localization of many of these enzymes is not available. In this study, we demonstrate that porphobilinogen deaminase encoded by the Plasmodium falciparum genome (PfPBGD) has several unique biochemical properties. Studies carried out with PfPBGD partially purified from parasite membrane fraction, as well as recombinant PfPBGD lacking N-terminal 64 amino acids expressed and purified from Escherichia coli cells (DeltaPfPBGD), indicate that both the proteins are catalytically active. Surprisingly, PfPBGD catalyzes the conversion of porphobilinogen to uroporphyrinogen III (UROGEN III), indicating that it also possesses uroporphyrinogen III synthase (UROS) activity, catalyzing the next step. This obviates the necessity to have a separate gene for UROS that has not been so far annotated in the parasite genome. Interestingly, DeltaPfP-BGD gives rise to UROGEN III even after heat treatment, although UROS from other sources is known to be heat-sensitive. Based on the analysis of active site residues, a DeltaPfPBGDL116K mutant enzyme was created and the specific activity of this recombinant mutant enzyme is 5-fold higher than DeltaPfPBGD. More interestingly, DeltaPfPBGDL116K catalyzes the formation of uroporphyrinogen I (UROGEN I) in addition to UROGEN III, indicating that with increased PBGD activity the UROS activity of PBGD may perhaps become rate-limiting, thus leading to non-enzymatic cyclization of preuroporphyrinogen to UROGEN I. PfPBGD is localized to the apicoplast and is catalytically very inefficient compared with the host red cell enzyme.

  15. Antigen receptors and somatic hypermutation in B-cell chronic lymphocytic leukemia with Richter's transformation

    NARCIS (Netherlands)

    L.A. Smit; F. van Maldegem; A.W. Langerak; C.E. van der Schoot; M.J. de Wit; S. Bea; E. Campo; R.J. Bende; C.J.M. van Noesel

    2006-01-01

    Background and Objectives. Activation-induced cytidine deaminase is essential for somatic hypermutation and class switch recombination of the immunoglobulin genes in B cells. It has been proposed that aberrant targeting of the somatic hypermutation machinery is instrumental in initiation and progres

  16. InterProScan Result: FY031780 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available FY031780 FY031780_3_ORF2 6E299D9E5886A3C6 PANTHER PTHR11644:SF2 CYTIDINE DEAMINASE ...9.8e-40 T IPR006262 Cytidine deaminase, homotetrameric Molecular Function: cytidine deaminase activity (GO:0004126)|Biological Process: cytidine metabolic process (GO:0046087) ...

  17. InterProScan Result: FY038855 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available FY038855 FY038855_5_ORF2 2884DCDF6B9F1069 PANTHER PTHR11644:SF2 CYTIDINE DEAMINASE ...9e-48 T IPR006262 Cytidine deaminase, homotetrameric Molecular Function: cytidine deaminase activity (GO:0004126)|Biological Process: cytidine metabolic process (GO:0046087) ...

  18. Expression of human adenosine deaminase in murine hematopoietic cells.

    Science.gov (United States)

    Belmont, J W; MacGregor, G R; Wager-Smith, K; Fletcher, F A; Moore, K A; Hawkins, D; Villalon, D; Chang, S M; Caskey, C T

    1988-01-01

    Multiple replication-defective retrovirus vectors were tested for their ability to transfer and express human adenosine deaminase in vitro and in vivo in a mouse bone marrow transplantation model. High-titer virus production was obtained from vectors by using both a retrovirus long terminal repeat promoter and internal transcriptional units with human c-fos and herpes virus thymidine kinase promoters. After infection of primary murine bone marrow with one of these vectors, human adenosine deaminase was detected in 60 to 85% of spleen colony-forming units and in the blood of 14 of 14 syngeneic marrow transplant recipients. This system offers the opportunity to assess methods for increasing efficiency of gene transfer, for regulation of expression of foreign genes in hematopoietic progenitors, and for long-term measurement of the stability of expression in these cells. Images PMID:3072474

  19. Severe combined immunodeficiency due to adenosine deaminase deficiency.

    Science.gov (United States)

    Hussain, Waqar; Batool, Asma; Ahmed, Tahir Aziz; Bashir, Muhammad Mukarram

    2012-03-01

    Severe Combined Immunodeficiency is the term applied to a group of rare genetic disorders characterised by defective or absent T and B cell functions. Patients usually present in first 6 months of life with respiratory/gastrointestinal tract infections and failure to thrive. Among the various types of severe combined immunodeficiency, enzyme deficiencies are relatively less common. We report the case of a 6 years old girl having severe combined immunodeficiency due to adenosine deaminase deficiency.

  20. Inhibition of adenosine deaminase attenuates endotoxin-induced release of cytokines in vivo in rats.

    Science.gov (United States)

    Tofovic, S P; Zacharia, L; Carcillo, J A; Jackson, E K

    2001-09-01

    during endotoxemia. CGS 21680 completely inhibited endotoxin-induced release of TNFalpha, augmented sympathetic activity and PRA, and increased +dP/dtmax and +dP/dtmax/VPSP in the absence and presence of endotoxin. The present study provides strong evidence that inhibition of adenosine deaminase reduces cytokine release in vivo without producing significant hemodynamic and cardiac effects during the early phase of profound endotoxemia in rats. The augmented neurohumoral activation induced by caffeine is associated with decreased cytokine release induced by endotoxin. Further studies are warranted to determine the impact of these effects on cardiac function and hemodynamics in the late phase of endotoxemia.

  1. ACTIVATION OF A CRYPTIC D-SERINE DEAMINASE (DSD) GENE FROM PSEUDOMONAS CEPACIA 17616

    Science.gov (United States)

    D-serine inhibits growth of P. cepacia 17616; however, resistant mutants able to express an ordinarily cryptic D-serine deaminase (dsd) gene were isolated readily. The resistant strains formed high levels of a D-serine deaminase active on D-threonine as well as D-serine. IS eleme...

  2. New insights into 1-aminocyclopropane-1-carboxylate (ACC deaminase phylogeny, evolution and ecological significance.

    Directory of Open Access Journals (Sweden)

    Francisco X Nascimento

    Full Text Available The main objective of this work is the study of the phylogeny, evolution and ecological importance of the enzyme 1-aminocyclopropane-1-carboxylate (ACC deaminase, the activity of which represents one of the most important and studied mechanisms used by plant growth-promoting microorganisms. The ACC deaminase gene and its regulatory elements presence in completely sequenced organisms was verified by multiple searches in diverse databases, and based on the data obtained a comprehensive analysis was conducted. Strain habitat, origin and ACC deaminase activity were taken into account when analyzing the results. In order to unveil ACC deaminase origin, evolution and relationships with other closely related pyridoxal phosphate (PLP dependent enzymes a phylogenetic analysis was also performed. The data obtained show that ACC deaminase is mostly prevalent in some Bacteria, Fungi and members of Stramenopiles. Contrary to previous reports, we show that ACC deaminase genes are predominantly vertically inherited in various bacterial and fungal classes. Still, results suggest a considerable degree of horizontal gene transfer events, including interkingdom transfer events. A model for ACC deaminase origin and evolution is also proposed. This study also confirms the previous reports suggesting that the Lrp-like regulatory protein AcdR is a common mechanism regulating ACC deaminase expression in Proteobacteria, however, we also show that other regulatory mechanisms may be present in some Proteobacteria and other bacterial phyla. In this study we provide a more complete view of the role for ACC deaminase than was previously available. The results show that ACC deaminase may not only be related to plant growth promotion abilities, but may also play multiple roles in microorganism's developmental processes. Hence, exploring the origin and functioning of this enzyme may be the key in a variety of important agricultural and biotechnological applications.

  3. APOBEC3B-Mediated Cytidine Deamination Is Required for Estrogen Receptor Action in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Manikandan Periyasamy

    2015-10-01

    Full Text Available Estrogen receptor α (ERα is the key transcriptional driver in a large proportion of breast cancers. We report that APOBEC3B (A3B is required for regulation of gene expression by ER and acts by causing C-to-U deamination at ER binding regions. We show that these C-to-U changes lead to the generation of DNA strand breaks through activation of base excision repair (BER and to repair by non-homologous end-joining (NHEJ pathways. We provide evidence that transient cytidine deamination by A3B aids chromatin modification and remodelling at the regulatory regions of ER target genes that promotes their expression. A3B expression is associated with poor patient survival in ER+ breast cancer, reinforcing the physiological significance of A3B for ER action.

  4. Cytidine 5'-Diphosphocholine (Citicoline) in Glaucoma: Rationale of Its Use, Current Evidence and Future Perspectives.

    Science.gov (United States)

    Roberti, Gloria; Tanga, Lucia; Michelessi, Manuele; Quaranta, Luciano; Parisi, Vincenzo; Manni, Gianluca; Oddone, Francesco

    2015-11-30

    Cytidine 5'-diphosphocholine or citicoline is an endogenous compound that acts in the biosynthetic pathway of phospholipids of cell membranes, particularly phosphatidylcholine, and it is able to increase neurotrasmitters levels in the central nervous system. Citicoline has shown positive effects in Parkinson's disease and Alzheimer's disease, as well as in amblyopia. Glaucoma is a neurodegenerative disease currently considered a disease involving ocular and visual brain structures. Neuroprotection has been proposed as a valid therapeutic option for those patients progressing despite a well-controlled intraocular pressure, the main risk factor for the progression of the disease. The aim of this review is to critically summarize the current evidence about the effect of citicoline in glaucoma.

  5. Building a stable RNA U-turn with a protonated cytidine.

    Science.gov (United States)

    Gottstein-Schmidtke, Sina R; Duchardt-Ferner, Elke; Groher, Florian; Weigand, Julia E; Gottstein, Daniel; Suess, Beatrix; Wöhnert, Jens

    2014-08-01

    The U-turn is a classical three-dimensional RNA folding motif first identified in the anticodon and T-loops of tRNAs. It also occurs frequently as a building block in other functional RNA structures in many different sequence and structural contexts. U-turns induce sharp changes in the direction of the RNA backbone and often conform to the 3-nt consensus sequence 5'-UNR-3' (N = any nucleotide, R = purine). The canonical U-turn motif is stabilized by a hydrogen bond between the N3 imino group of the U residue and the 3' phosphate group of the R residue as well as a hydrogen bond between the 2'-hydroxyl group of the uridine and the N7 nitrogen of the R residue. Here, we demonstrate that a protonated cytidine can functionally and structurally replace the uridine at the first position of the canonical U-turn motif in the apical loop of the neomycin riboswitch. Using NMR spectroscopy, we directly show that the N3 imino group of the protonated cytidine forms a hydrogen bond with the backbone phosphate 3' from the third nucleotide of the U-turn analogously to the imino group of the uridine in the canonical motif. In addition, we compare the stability of the hydrogen bonds in the mutant U-turn motif to the wild type and describe the NMR signature of the C+-phosphate interaction. Our results have implications for the prediction of RNA structural motifs and suggest simple approaches for the experimental identification of hydrogen bonds between protonated C-imino groups and the phosphate backbone.

  6. Study the effect of bacterial 1-aminocyclopropane-1-carboxylate deaminase (ACC deaminase on resistance to salt stress in tomato plant

    Directory of Open Access Journals (Sweden)

    Maryam SADRNIA

    2011-11-01

    Full Text Available 1-aminocyclopropane-1-carboxylate deaminase (ACC deaminase produced by rhizobacteria could be remove theethylene precursor and stimulate plant growth. Aim of the work was investigation on effect of rhizosphere bacteria Pseudomonasmendocina containing plasmid carrying gene encoding ACC deaminase on resistance of tomato plant to salinity. Amplification ofacds gene in selected Pseudomonas was performed; the g e n e w a s c l o n e d i n Escherichia coli and was cloned subsequently in P.mendocina. Enzyme activity was determined in cloned Escherichia coli and cloned P. mendocina for confirmation of geneexpression. Effect of bacterial ACC deaminase on resistance of tomato plants to NaCl was studied in Pot and Greenhouse. In potexperiment, tomato plant treated by cloned P. mendocina was compared with plants treated by P. mendocina (without plasmid andcontrol group. Salinity were established by adding 172 and 207 mM of NaCl to irrigated water. Greenhouse experiments wereconducted in similar groups of bacteria in 207 mM of NaCl. Results obtained from pot experiment revealed that plants treated bycloned P. mendocina in 172 mM of NaCl was showed increasing content of growth than ones treated by P. mendocina and controlas 11%, 18.4% growth for the shoot, 16.6%, 3.7% for roots and 9.6%, 27.5% for wet weight after five weeks, respectively. In 207mM of NaCl, the results were as 14.9 %, 9.7% for shoot, 94.3%, 15.7% for roots and 96.4%, 50.6% for wet weight, respectively. Ingreenhouse experiment, results in same parameter in 207 mM of NaCl were revealed as 63.7%, 7 times for shoot, 2.8, 14 times forroots and 66.1%, 154 times for wet weight, respectively. We concluded that recombinant P. mendocina producing ACC deaminaseby reduction of ethylene content of tomato plant in high salt concentrations could result in improvement of plant resistance tosalinity.

  7. Adenosine Deaminase Deficiency - More Than Just an Immunodeficiency

    Directory of Open Access Journals (Sweden)

    Kathryn Victoria Whitmore

    2016-08-01

    Full Text Available Adenosine deaminase (ADA deficiency is best known as a form of severe combined immunodeficiency (SCID which results from mutations in the gene encoding adenosine deaminase. Affected patients present with clinical and immunological manifestations typical of a severe combined immunodeficiency. Therapies are currently available that can that target these immunological disturbances and treated patients show varying degrees of clinical improvement. However, there is now a growing body of evidence that deficiency of ADA has significant impact on non-immunological organ systems. This review will outline the impact of ADA deficiency on various organ systems, starting with the well understood immunological abnormalities. We will discuss possible pathogenic mechanisms and also highlight ways in which current treatments could be improved. In doing so, we aim to present ADA deficiency as more than an immunodeficiency and suggest that it should be recognized as a systemic metabolic disorder that affects multiple organ systems. Only by fully understanding ADA deficiency and its manifestations in all organ systems can we aim to deliver therapies that will correct all the clinical consequences.

  8. Adenine arabinoside inhibition of adenovirus replication enhanced by an adenosine deaminase inhibitor.

    Science.gov (United States)

    Wigand, R

    1979-01-01

    The inhibition of adenovirus multiplication by adenine arabinoside was determined by yield reduction in one-step multiplication cycle. Inhibition was greatly enhanced by an adenosine deaminase inhibitor (2-deoxycoformycin) in concentrations down to 10 ng/ml. Adenovirus types from four subgroups showed similar results. However, the enhancing effect of adenosine deaminase inhibitor was great in HeLa cells, moderate in human fibroblasts, and negligible in Vero cells. This difference could be explained by different concentrations of adenosine deaminase found in cell homogenates.

  9. Late-onset adenosine deaminase deficiency presenting with Heck's disease.

    Science.gov (United States)

    Artac, Hasibe; Göktürk, Bahar; Bozdemir, Sefika Elmas; Toy, Hatice; van der Burg, Mirjam; Santisteban, Ines; Hershfield, Michael; Reisli, Ismail

    2010-08-01

    Focal epithelial hyperplasia, also known as Heck's disease, is a rare but distinctive entity of viral etiology with characteristic clinical and histopathological features. It is a benign, asymptomatic disease of the oral mucosa caused by human papilloma viruses (HPV). Previous studies postulated an association between these lesions and immunodeficiency. Genetic deficiency of adenosine deaminase (ADA) results in varying degrees of immunodeficiency, including neonatal onset severe combined immunodeficiency (ADA-SCID), and milder, later onset immunodeficiency. We report a 12-year-old girl with the late onset-ADA deficiency presenting with Heck's disease. Our case report should draw attention to the possibility of immunodeficiency in patients with HPV-induced focal epithelial hyperplasia.

  10. Serum adenosine deaminase as oxidative stress marker in type 2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Shashikala Magadi Dasegowda

    2015-05-01

    Results: The study observed an increased level of serum adenosine deaminase, malondialdehyde and decreased levels of total antioxidant capacity in type 2 diabetes mellitus compared to controls. Serum adenosine deaminase levels in type 2 diabetics were 50.77 +/- 6.95 and in controls was 17.86 +/- 4.04. Serum Malondialdehyde levels in type 2 diabetics was 512.13 +/- 70.15 and in controls was 239.32 +/- 23.97. Serum total antioxidant levels in type 2 diabetics was 0.39+/-0.15 and in controls was 1.66+/-0.25. Positive correlation was seen between serum adenosine deaminase and malondialdehyde and it was statistically significant. Statistically significant negative correlation was seen between serum adenosine deaminase and total antioxidant capacity. Conclusion: Adenosine deaminase can be used as oxidative stress marker. Their increased levels indicate oxidative stress in type 2 diabetes mellitus. Therefore, estimation of serum adenosine deaminase levels help in early prediction and prevention of long term complications occurring due to oxidative stress in diabetics, thereby decreasing the mortality and morbidity in them. [Int J Res Med Sci 2015; 3(5.000: 1195-1198

  11. DNA-labelled cytidine assay for the quantification of CAG repeats.

    Science.gov (United States)

    Pérez-Bello, Dannelys; Xu, Z H; Higginson-Clarke, David; Rojas, Ana María Riverón; Le, Weidong; Rodríguez-Tanty, Chryslaine

    2008-03-30

    The sequencing procedure has been used to determine the size of the CAG repeat expansion for the diagnosis of genetic disorders. Likewise, standard polymerase chain reaction (PCR) and gel electrophoresis techniques are applied for screening large number of patients. The trinucleotide repeats (TNR) region amplification by means of the PCR procedure was initially performed using 32-P end-labelled primers and currently carried out with fluorescently end-labelled primers. The goal to obtain reliable TNR quantification assays, at low cost and short assay times, represents a challenge for the molecular diagnosis aimed at massive screening of affected populations. In the current work, we obtained preliminary results of a new methodology for the detection and size estimation of CAG expanded alleles. The assay was based on an indirect enzyme linked immunosorbent assay (ELISA) for quantifying the amount of labelled cytidines in DNA molecules. The label, 6-(p-bromobenzamido)caproyl radical, was introduced by the transamination and acylation reactions. A group of model sequences containing different numbers of CAG repeats, as well as the ATXN3 (ataxin 3) gene (from subjects suffering type 3 spinocerebellar ataxia SCA3) were used for assay standardization. The assay is simple, inexpensive, and easy to perform and differentiates distinct degrees of CAG expansions.

  12. Kinetic mechanism and energetics of binding of phosphoryl group acceptors to Mycobacterium tuberculosis cytidine monophosphate kinase.

    Science.gov (United States)

    Jaskulski, Léia; Rosado, Leonardo A; Rostirolla, Diana C; Timmers, Luis F S M; de Souza, Osmar N; Santos, Diogenes S; Basso, Luiz A

    2013-08-01

    Cytidine monophosphate kinase from Mycobacterium tuberculosis (MtCMK) likely plays a role in supplying precursors for nucleic acid synthesis. MtCMK catalyzes the ATP-dependent phosphoryl group transfer preferentially to CMP and dCMP. Initial velocity studies and Isothermal titration calorimetry (ITC) measurements showed that MtCMK follows a random-order mechanism of substrate (CMP and ATP) binding, and an ordered mechanism for product release, in which ADP is released first followed by CDP. The thermodynamic signatures of CMP and CDP binding to MtCMK showed favorable enthalpy and unfavorable entropy, and ATP binding was characterized by favorable changes in enthalpy and entropy. The contribution of linked protonation events to the energetics of MtCMK:phosphoryl group acceptor binary complex formation suggested a net gain of protons. Values for the pKa of a likely chemical group involved in proton exchange and for the intrinsic binding enthalpy were calculated. The Asp187 side chain of MtCMK is suggested as the likely candidate for the protonation event. Data on thermodynamics of binary complex formation were collected to evaluate the contribution of 2'-OH group to intermolecular interactions. The data are discussed in light of functional and structural comparisons between CMP/dCMP kinases and UMP/CMP ones.

  13. Effect of the cyclobutane cytidine dimer on the properties of Escherichia coli DNA photolyase.

    Science.gov (United States)

    Murphy, Anar K; Tammaro, Margaret; Cortazar, Frank; Gindt, Yvonne M; Schelvis, Johannes P M

    2008-11-27

    Cyclobutane pyrimidine dimer (CPD) photolyases are structure specific DNA-repair enzymes that specialize in the repair of CPDs, the major photoproducts that are formed upon irradiation of DNA with ultraviolet light. The purified enzyme binds a flavin adenine dinucleotide (FAD), which is in the neutral radical semiquinone (FADH(*)) form. The CPDs are repaired by a light-driven, electron transfer from the anionic hydroquinone (FADH(-)) singlet excited state to the CPD, which is followed by reductive cleavage of the cyclobutane ring and subsequent monomerization of the pyrimidine bases. CPDs formed between two adjacent thymidine bases (TT) are repaired with greater efficiency than those formed between two adjacent cytidine bases (CC). In this paper, we investigate the changes in Escherichia coli photolyase that are induced upon binding to DNA containing CC lesions using resonance Raman, UV-vis absorption, and transient absorption spectroscopies, spectroelectrochemistry, and computational chemistry. The binding of photolyase to a CC lesion modifies the energy levels of FADH(*), the rate of charge recombination between FADH(-) and Trp(306)(*), and protein-FADH(*) interactions differently than binding to a TT lesion. However, the reduction potential of the FADH(-)/FADH(*) couple is modified in the same way with both substrates. Our calculations show that the permanent electric dipole moment of CC is stronger (12.1 D) and oriented differently than that of TT (8.7 D). The possible role of the electric dipole moment of the CPD in modifying the physicochemical properties of photolyase as well as in affecting CPD repair will be discussed.

  14. Cytidine 5'-diphosphocholine (CDP-choline) adversely effects on pilocarpine seizure-induced hippocampal neuronal death.

    Science.gov (United States)

    Kim, Jin Hee; Lee, Dong Won; Choi, Bo Young; Sohn, Min; Lee, Song Hee; Choi, Hui Chul; Song, Hong Ki; Suh, Sang Won

    2015-01-21

    Citicoline (CDP-choline; cytidine 5'-diphosphocholine) is an important intermediate in the biosynthesis of cell membrane phospholipids. Citicoline serves as a choline donor in the biosynthetic pathways of acetylcholine and neuronal membrane phospholipids, mainly phosphatidylcholine. The ability of citicoline to reverse neuronal injury has been tested in animal models of cerebral ischemia and clinical trials have been performed in stroke patients. However, no studies have examined the effect of citicoline on seizure-induced neuronal death. To clarify the potential therapeutic effects of citicoline on seizure-induced neuronal death, we used an animal model of pilocarpine-induced epilepsy. Temporal lobe epilepsy (TLE) was induced by intraperitoneal injection of pilocarpine (25mg/kg) in adult male rats. Citicoline (100 or 300 mg/kg) was injected into the intraperitoneal space two hours after seizure onset and a second injection was performed 24h after the seizure. Citicoline was injected once per day for one week after pilocarpine- or kainate-induced seizure. Neuronal injury and microglial activation were evaluated at 1 week post-seizure. Surprisingly, rather than offering protection, citicoline treatment actually enhanced seizure-induced neuronal death and microglial activation in the hippocampus compared to vehicle treated controls. Citicoline administration after seizure-induction increased immunoglobulin leakage via BBB disruption in the hippocampus compared with the vehicle-only group. To clarify if this adverse effect of citicoline is generalizable across alternative seizure models, we induced seizure by kainate injection (10mg/kg, i.p.) and then injected citicoline as in pilocarpine-induced seizure. We found that citicoline did not modulate kainate seizure-induced neuronal death, BBB disruption or microglial activation. These results suggest that citicoline may not have neuroprotective effects after seizure and that clinical application of citicoline after

  15. The antihyperalgesic effect of cytidine-5'-diphosphate-choline in neuropathic and inflammatory pain models.

    Science.gov (United States)

    Bagdas, Deniz; Sonat, Fusun Ak; Hamurtekin, Emre; Sonal, Songul; Gurun, Mine Sibel

    2011-09-01

    This study was designed to test the effects of intracerebroventricularly (i.c.v.) administered CDP-choline (cytidine-5'-diphosphate-choline; citicoline) and its metabolites in rat models of inflammatory and neuropathic pain. The i.c.v. administration of CDP-choline (0.5, 1.0 and 2.0 µmol) produced a dose and time-dependent reversal of mechanical hyperalgesia in both carrageenan-induced inflammatory and chronic constriction injury-induced neuropathic pain models in rats. The antihyperalgesic effect of CDP-choline was similar to that observed with an equimolar dose of choline (1 µmol). The CDP-choline-induced antihyperalgesic effect was prevented by central administration of the neuronal high-affinity choline uptake inhibitor hemicholinium-3 (1 µg), the nonselective nicotinic receptor antagonist mecamylamine (50 µg), the α7-selective nicotinic ACh receptor antagonist, α-bungarotoxin (2 µg) and the γ-aminobutyric acid B receptor antagonist CGP-35348 (20 µg). In contrast, i.c.v. pretreatment with the nonselective opioid receptor antagonist naloxone (10 µg) only prevented the CDP-choline-induced antihyperalgesic effect in the neuropathic pain model while the nonselective muscarinic receptor antagonist atropine (10 µg) did not alter the antihyperalgesic effect in the two models. These results indicate that CDP-choline-elicited antihyperalgesic effect in different models of pain occurs through mechanisms that seem to involve an interaction with supraspinal α7-selective nicotinic ACh receptors, and γ-aminobutyric acid B receptors, whereas central opioid receptors have a role only in the neuropathic pain model.

  16. Three-Dimensional Structure and Catalytic Mechanism of Cytosine Deaminase

    Energy Technology Data Exchange (ETDEWEB)

    R Hall; A Fedorov; C Xu; E Fedorov; S Almo; F Raushel

    2011-12-31

    Cytosine deaminase (CDA) from E. coli is a member of the amidohydrolase superfamily. The structure of the zinc-activated enzyme was determined in the presence of phosphonocytosine, a mimic of the tetrahedral reaction intermediate. This compound inhibits the deamination of cytosine with a K{sub i} of 52 nM. The zinc- and iron-containing enzymes were characterized to determine the effect of the divalent cations on activation of the hydrolytic water. Fe-CDA loses activity at low pH with a kinetic pKa of 6.0, and Zn-CDA has a kinetic pKa of 7.3. Mutation of Gln-156 decreased the catalytic activity by more than 5 orders of magnitude, supporting its role in substrate binding. Mutation of Glu-217, Asp-313, and His-246 significantly decreased catalytic activity supporting the role of these three residues in activation of the hydrolytic water molecule and facilitation of proton transfer reactions. A library of potential substrates was used to probe the structural determinants responsible for catalytic activity. CDA was able to catalyze the deamination of isocytosine and the hydrolysis of 3-oxauracil. Large inverse solvent isotope effects were obtained on k{sub cat} and k{sub cat}/K{sub m}, consistent with the formation of a low-barrier hydrogen bond during the conversion of cytosine to uracil. A chemical mechanism for substrate deamination by CDA was proposed.

  17. [Protein kinase C activation induces platelet apoptosis].

    Science.gov (United States)

    Zhao, Li-Li; Chen, Meng-Xing; Zhang, Ming-Yi; Dai, Ke-Sheng

    2013-10-01

    Platelet apoptosis elucidated by either physical or chemical compound or platelet storage occurs wildly, which might play important roles in controlling the numbers and functions of circulated platelets, or in the development of some platelet-related diseases. However, up to now, a little is known about the regulatory mechanisms of platelet apoptosis. Protein kinase C (PKC) is highly expressed in platelets and plays central roles in regulating platelet functions. Although there is evidence indicating that PKC is involved in the regulation of apoptosis of nucleated cells, it is still unclear whether PKC plays a role in platelet apoptosis. The aim of this study was to investigate the role of PKC in platelet apoptosis. The effects of PKC on mitochondrial membrane potential (ΔΨm), phosphatidylserine (PS) exposure, and caspase-3 activation of platelets were analyzed by flow cytometry and Western blot. The results showed that the ΔΨm depolarization in platelets was induced by PKC activator in time-dependent manner, and the caspase-3 activation in platelets was induced by PKC in concentration-dependent manner. However, the platelets incubated with PKC inhibitor did not results in ΔΨm depolarization and PS exposure. It is concluded that the PKC activation induces platelet apoptosis through influencing the mitochondrial functions and activating caspase 3. The finds suggest a novel mechanism for PKC in regulating platelet numbers and functions, which has important pathophysiological implications for thrombosis and hemostasis.

  18. Structures of dCTP deaminase from Escherichia coli with bound substrate and product: reaction mechanism and determinants of mono- and bifunctionality for a family of enzymes

    DEFF Research Database (Denmark)

    Johansson, Eva; Fanø, Mathias; Bynck, Julie H;

    2005-01-01

    dCTP deaminase (EC 3.5.4.13) catalyzes the deamination of dCTP forming dUTP that via dUTPase is the main pathway providing substrate for thymidylate synthase in Escherichia coli and Salmonella typhimurium. dCTP deaminase is unique among nucleoside and nucleotide deaminases as it functions without...

  19. CSF ADENOSINE DEAMINASE (ADA ACTIVITY IN PATIENTS WITH MENINGITIS

    Directory of Open Access Journals (Sweden)

    Justin

    2016-05-01

    Full Text Available Meningitis is inflammation of the meninges (pia, arachnoid and dura mater covering the brain and the spinal cord. ADA is an enzyme in the purine salvage pathway which is found in abundance in active T-lymphocytes. Hence, an attempt was made to estimate the CSF ADA level in patients with suspected meningitis and throw light on its use in differentiating the various types of meningitis. AIMS AND OBJECTIVES To estimate the level of CSF adenosine deaminase level in different types of meningitis. To assess its usefulness in differentiating the various types (bacterial, viral and tuberculous of meningitis. MATERIALS AND METHODS The study was conducted at the medical wards of Govt. Rajaji Hospital, Madurai, a prospective analytical study from a period of April 2012 to September 2012. OBSERVATION AND RESULTS Tuberculous meningitis occurred more in the age group of 21–40 years. Bacterial meningitis was seen mainly in patients < 20 years of age. Viral meningitis was seen in all age groups. CSF ADA level was highest in tuberculous meningitis, the mean value being 24.5 U/L. The mean value of ADA in bacterial meningitis was 4.54 U/L and viral meningitis patients had lowest mean ADA value of 2.65 U/L. CONCLUSION In our study, 50 patients with meningitis admitted in Government Rajaji Hospital from April 2012 to September 2012 were evaluated. Meningitis predominantly affected people in the age group of 20-40 years in our study with a male: female ratio of 1.9:1. Cases of tuberculous meningitis constituted 48% of the study group and bacterial and viral meningitis were 26% each. CSF protein values were higher and sugar values lower in patients with tuberculous and bacterial meningitis. CSF cell counts were higher in patients with bacterial meningitis.

  20. Inhibition of AMP deaminase as therapeutic target in cardiovascular pathology.

    Science.gov (United States)

    Zabielska, Magdalena A; Borkowski, Tomasz; Slominska, Ewa M; Smolenski, Ryszard T

    2015-08-01

    AMP deaminase (AMPD; EC 3.5.4.6) catalyzes hydrolysis of the amino group from the adenine ring of AMP resulting in production of inosine 5'-monophosphate (IMP) and ammonia. This reaction helps to maintain healthy cellular energetics by removing excess AMP that accumulates in energy depleted cells. Furthermore, AMPD permits the synthesis of guanine nucleotides from the larger adenylate pool. This enzyme competes with cytosolic 5'-nucleotidases (c5NT) for AMP. Adenosine, a product of c5NT is a vasodilator, antagonizes inotropic effects of catecholamines and exerts anti-platelet, anti-inflammatory and immunosuppressive activities. The ratio of AMPD/c5NT defines the amount of adenosine produced in adenine nucleotide catabolic pathway. Inhibition of AMPD could alter this ratio resulting in increased adenosine production. Besides the potential effect on adenosine production, elevation of AMP due to inhibition of AMPD could also lead to activation of AMP regulated protein kinase (AMPK) with myriad of downstream events including enhanced energetic metabolism, mitochondrial biogenesis and cytoprotection. While the benefits of these processes are well appreciated in cells such as skeletal or cardiac myocytes its role in protection of endothelium could be even more important. Therapeutic use of AMPD inhibition has been limited due to difficulties with obtaining compounds with adequate characteristics. However, endothelium seems to be the easiest target as effective inhibition of AMPD could be achieved at much lower concentration than in the other types of cells. New generation of AMPD inhibitors has recently been established and its testing in context of endothelial and organ protection could provide important basic knowledge and potential therapeutic tools.

  1. Diagnostic Value of Adenosine Deaminase and Its Isoforms in Type II Diabetes Mellitus

    OpenAIRE

    Bagher Larijani; Ramin Heshmat; Mina Ebrahimi-Rad; Shohreh Khatami; Shirin Valadbeigi; Reza Saghiri

    2016-01-01

    Background and Aims. In the present study, we have investigated the activity of adenosine deaminase (ADA) as a diagnostic marker in type 2 (or II) diabetes mellitus (T2DM). Design and Methods. The deaminase activity of ADA1 and ADA2 was determined in serum from 33 patients with type 2 (or II) diabetes mellitus and 35 healthy controls. We also determined the proportion of glycated hemoglobin (HbA1c). Results. Our results showed significant differences between total serum ADA (tADA) and ADA2 ac...

  2. B cell repertoire expansion occurs in meningeal ectopic lymphoid tissue

    OpenAIRE

    Lehmann-Horn, Klaus; Wang, Sheng-zhi; Sagan, Sharon A.; Zamvil, Scott S.; von Büdingen, H.-Christian

    2016-01-01

    Ectopic lymphoid tissues (ELT) can be found in multiple sclerosis (MS) and other organ-specific inflammatory conditions. Whether ELT in the meninges of central nervous system (CNS) autoimmune disease exhibit local germinal center (GC) activity remains unknown. In an experimental autoimmune encephalomyelitis model of CNS autoimmunity, we found activation-induced cytidine deaminase, a GC-defining enzyme, in meningeal ELT (mELT) densely populated by B and T cells. To determine GC activity in mEL...

  3. Self-assembly of a chiral carbonate- and cytidine-containing dodecanuclear copper(II) complex: a multiarm-supplied globular capsule.

    Science.gov (United States)

    Armentano, Donatella; Marino, Nadia; Mastropietro, Teresa F; Martínez-Lillo, José; Cano, Joan; Julve, Miguel; Lloret, Francesc; De Munno, Giovanni

    2008-11-17

    A dodecanuclear copper(II) globular-shaped structure has been obtained with the cytidine nucleoside and the templating carbonate anion. It shows receptor properties through anion-cation and multiple anion-pi interactions toward ClO 4 (-) as well as an overall antiferromagnetic coupling.

  4. The Effect of Acute Exercise upon Adenosin Deaminase Oxidant and Antioxidant Activity

    Science.gov (United States)

    Kafkas, M. Emin; Karabulut, Aysun Bay; Sahin, Armagan; Otlu, Onder; Savas, Seyfi; Aytac, Aylin

    2012-01-01

    The purpose of this study was to determine the changes of MDA, glutation (GSH), Adenozine deaminase (ADA) and superoxidase dismutaze (SOD) levels with exercise training in obese middle-aged women (body mass index, MMI [greater than or equal to] 30.0). Twelve obese middle-aged women participated in this study. The descriptive statistics of some of…

  5. Improved cytotoxic effects of Salmonella-producing cytosine deaminase in tumour cells

    Science.gov (United States)

    Mesa-Pereira, Beatriz; Medina, Carlos; Camacho, Eva María; Flores, Amando; Santero, Eduardo

    2015-01-01

    In order to increase the cytotoxic activity of a Salmonella strain carrying a salicylate-inducible expression system that controls cytosine deaminase production, we have modified both, the vector and the producer bacterium. First, the translation rates of the expression module containing the Escherichia coli codA gene cloned under the control of the Pm promoter have been improved by using the T7 phage gene 10 ribosome binding site sequence and replacing the original GUG start codon by AUG. Second, to increase the time span in which cytosine deaminase may be produced by the bacteria in the presence of 5-fluorocytosine, a 5-fluorouracyl resistant Salmonella strain has been constructed by deleting its upp gene sequence. This new Salmonella strain shows increased cytosine deaminase activity and, after infecting tumour cell cultures, increased cytotoxic and bystander effects under standard induction conditions. In addition, we have generated a purD mutation in the producer strain to control its intracellular proliferation by the presence of adenine and avoid the intrinsic Salmonella cell death induction. This strategy allows the analysis and comparison of the cytotoxic effects of cytosine deaminase produced by different Salmonella strains in tumour cell cultures. PMID:25227763

  6. Outcome of hematopoietic stem cell transplantation for adenosine deaminase-deficient severe combined immunodeficiency

    NARCIS (Netherlands)

    Hassan, Amel; Booth, Claire; Brightwell, Alex; Allwood, Zoe; Veys, Paul; Rao, Kanchan; Hoenig, Manfred; Friedrich, Wilhelm; Gennery, Andrew; Slatter, Mary; Bredius, Robbert; Finocchi, Andrea; Cancrini, Caterina; Aiuti, Alessandro; Porta, Fulvio; Lanfranchi, Arnalda; Ridella, Michela; Steward, Colin; Filipovich, Alexandra; Marsh, Rebecca; Bordon, Victoria; Al-Muhsen, Saleh; Al-Mousa, Hamoud; Alsum, Zobaida; Al-Dhekri, Hasan; Al Ghonaium, Abdulaziz; Speckmann, Carsten; Fischer, Alain; Mahlaoui, Nizar; Nichols, Kim E.; Grunebaum, Eyal; Al Zahrani, Daifulah; Roifman, Chaim M.; Boelens, Jaap; Davies, E. Graham; Cavazzana-Calvo, Marina; Notarangelo, Luigi; Gaspar, H. Bobby

    2012-01-01

    Deficiency of the purine salvage enzyme adenosine deaminase leads to SCID (ADA-SCID). Hematopoietic cell transplantation (HCT) can lead to a permanent cure of SCID; however, little data are available on outcome of HCT for ADA-SCID in particular. In this multicenter retrospective study, we analyzed o

  7. B-cell development and functions and therapeutic options in adenosine deaminase-deficient patients

    NARCIS (Netherlands)

    I. Brigida (Immacolata); A.V. Sauer (Aisha); F. Ferrua (Francesca); S. Giannelli (Stefania); S. Scaramuzza (Samantha); V. Pistoia (Valentina); M.C. Castiello (Maria Carmina); B.H. Barendregt (Barbara); M.P. Cicalese (Maria Pia); F. Casiraghi (Federica); C. Brombin (Chiara); J. Puck (Jennifer); K. Muller (Karin); L.D. Notarangelo (Luigi Daniele); D. Montin (Davide); J.M. van Montfrans (Joris); M.G. Roncarolo (Maria Grazia); E. Traggiai (Elisabetta); J.J.M. van Dongen (Jacques); M. van der Burg (Mirjam); A. Aiuti (Alessandro)

    2014-01-01

    textabstractBackground Adenosine deaminase (ADA) deficiency causes severe cellular and humoral immune defects and dysregulation because of metabolic toxicity. Alterations in B-cell development and function have been poorly studied. Enzyme replacement therapy (ERT) and hematopoietic stem cell (HSC) g

  8. Lymphomagenesis-related gene expression in B cells from sustained virological responders with occult hepatitis C virus infection.

    Science.gov (United States)

    Roque Cuéllar, M C; García-Lozano, J R; Sánchez, B; Praena-Fernández, J M; Martínez Sierra, C; Núñez-Roldán, A; Aguilar-Reina, J

    2016-08-01

    The expression of activation-induced cytidine deaminase, B-aggressive lymphoma, cyclin D1 and serine/threonine kinase 15 genes, among others, is increased in B cells from patients with chronic hepatitis C virus (HCV) infection. It is unknown whether the level of expression of these genes in B cells is increased in patients with hepatitis C who have achieved a sustained virological response (SVR) but who have persistent, detectable HCV RNA, so-called occult infection. Eighty-three patients who achieved and SVR, 27 with detectable HCV and 56 without detectable HCV RNA, 28 chronic hepatitis C patients and 32 healthy controls were studied. RNA was extracted from B cells, and gene expression levels were measured by RT-PCR. Patients with chronic HCV and those who achieved an SVR (with and without persistent low-level HCV RNA) showed a statistically significant higher expression compared to healthy controls, of activation-induced cytidine deaminase (P = 0.004, P occult infection' had a statistically significantly higher expression level than patients with and SVR without 'occult infection' (P = 0.014). The higher expression levels found for activation-induced cytidine deaminase, together with other genes indicates that these B lymphomagenesis-related genes are upregulated following HCV therapy and this is more marked when HCV can be detected in PBMCs.

  9. Regulation of AID, the B-cell genome mutator.

    Science.gov (United States)

    Keim, Celia; Kazadi, David; Rothschild, Gerson; Basu, Uttiya

    2013-01-01

    The mechanisms by which B cells somatically engineer their genomes to generate the vast diversity of antibodies required to challenge the nearly infinite number of antigens that immune systems encounter are of tremendous clinical and academic interest. The DNA cytidine deaminase activation-induced deaminase (AID) catalyzes two of these mechanisms: class switch recombination (CSR) and somatic hypermutation (SHM). Recent discoveries indicate a significant promiscuous targeting of this B-cell mutator enzyme genome-wide. Here we discuss the various regulatory elements that control AID activity and prevent AID from inducing genomic instability and thereby initiating oncogenesis.

  10. Cytidine 5′-Diphosphocholine (Citicoline) in Glaucoma: Rationale of Its Use, Current Evidence and Future Perspectives

    Science.gov (United States)

    Roberti, Gloria; Tanga, Lucia; Michelessi, Manuele; Quaranta, Luciano; Parisi, Vincenzo; Manni, Gianluca; Oddone, Francesco

    2015-01-01

    Cytidine 5′-diphosphocholine or citicoline is an endogenous compound that acts in the biosynthetic pathway of phospholipids of cell membranes, particularly phosphatidylcholine, and it is able to increase neurotrasmitters levels in the central nervous system. Citicoline has shown positive effects in Parkinson’s disease and Alzheimer’s disease, as well as in amblyopia. Glaucoma is a neurodegenerative disease currently considered a disease involving ocular and visual brain structures. Neuroprotection has been proposed as a valid therapeutic option for those patients progressing despite a well-controlled intraocular pressure, the main risk factor for the progression of the disease. The aim of this review is to critically summarize the current evidence about the effect of citicoline in glaucoma. PMID:26633368

  11. Cytidine 5′-Diphosphocholine (Citicoline in Glaucoma: Rationale of Its Use, Current Evidence and Future Perspectives

    Directory of Open Access Journals (Sweden)

    Gloria Roberti

    2015-11-01

    Full Text Available Cytidine 5′-diphosphocholine or citicoline is an endogenous compound that acts in the biosynthetic pathway of phospholipids of cell membranes, particularly phosphatidylcholine, and it is able to increase neurotrasmitters levels in the central nervous system. Citicoline has shown positive effects in Parkinson’s disease and Alzheimer’s disease, as well as in amblyopia. Glaucoma is a neurodegenerative disease currently considered a disease involving ocular and visual brain structures. Neuroprotection has been proposed as a valid therapeutic option for those patients progressing despite a well-controlled intraocular pressure, the main risk factor for the progression of the disease. The aim of this review is to critically summarize the current evidence about the effect of citicoline in glaucoma.

  12. Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase.

    Science.gov (United States)

    Ali, Shimaila; Charles, Trevor C; Glick, Bernard R

    2014-07-01

    Plant growth and productivity is negatively affected by soil salinity. However, it is predicted that plant growth-promoting bacterial (PGPB) endophytes that contain 1-aminocyclopropane-1-carboxylate (ACC) deaminase (E.C. 4.1.99.4) can facilitate plant growth and development in the presence of a number of different stresses. In present study, the ability of ACC deaminase containing PGPB endophytes Pseudomonas fluorescens YsS6, Pseudomonas migulae 8R6, and their ACC deaminase deficient mutants to promote tomato plant growth in the absence of salt and under two different levels of salt stress (165 mM and 185 mM) was assessed. It was evidence that wild-type bacterial endophytes (P. fluorescens YsS6 and P. migulae 8R6) promoted tomato plant growth significantly even in the absence of stress (salinity). Plants pretreated with wild-type ACC deaminase containing endophytic strains were healthier and grew to a much larger size under high salinity stress compared to plants pretreated with the ACC deaminase deficient mutants or no bacterial treatment (control). The plants pretreated with ACC deaminase containing bacterial endophytes exhibit higher fresh and dry biomass, higher chlorophyll contents, and a greater number of flowers and buds than the other treatments. Since the only difference between wild-type and mutant bacterial endophytes was ACC deaminase activity, it is concluded that this enzyme is directly responsible for the different behavior of tomato plants in response to salt stress. The use of PGPB endophytes with ACC deaminase activity has the potential to facilitate plant growth on land that is not normally suitable for the majority of crops due to their high salt contents.

  13. SOYBEAN SEEDLING ROOT GROWTH PROMOTION BY 1-AMINOCYCLOPROPANE-1-CARBOXYLATE DEAMINASE-PRODUCING PSEUDOMONADS

    Directory of Open Access Journals (Sweden)

    Edi Husen

    2016-10-01

    Full Text Available Pseudomonad producing 1-aminocyclopropane-1-carboxylate (ACC deaminase (E.C.4.1.99.4 has been known to promote plant growth by lowering ethylene biosynthesis in higher plants, which can be induced by indole-3-acetic acid (IAA production. The objective of this study was to examine the ability of IAAproducing Pseudomonas isolated from local soil environment (rhizosphere of soybean grown in Plumbon's agricultural areain Cirebon, West Java, Indonesia to promote soybean root growth in relation to their ACC deaminase activities. The experiments were conducted in growth room and Laboratory of Soil Biology Research, Indonesian Soil Research Institute, Bogor, from January to August 2008. Soybean seeds were inoculated by immersing the seeds for 1 hour in bacterial cell suspension containing approximately 108-109 cells ml-1. The seeds were then germinatedfor 2 days before planting in growth pouches containing sterilized distilled water. All treated and untreated seeds were grown for 7 days in growth room at 24°C with 1300 lux of light intensity for 12-hour followed by a 12-hour dark period at 22°C. ACC deaminase activity of the isolates was assayed based on their ability to grow in Dworkin-Foster’s salt minimal medium containing ammonium sulfate or ACC as a source of nitrogen. Thirteen out of 81 isolates tested significantly increased soybean root length and weight, up to 50% from untreated plants. Of 13 isolates, 11 demonstrated ACC deaminase activities. Two isolates that did not show ACC deaminase activities had lower capacity to produce IAA. The results suggest that the effectiveness of IAA producing Pseudomonas in promoting the growth of the soybean seedlings is associated with their ACC deaminase activities or they produce IAA at low levels.

  14. Mutational analysis of the nucleotide binding site of Escherichia coli dCTP deaminase

    DEFF Research Database (Denmark)

    Thymark, Majbritt; Johansson, Eva; Larsen, Sine;

    2007-01-01

    In Escherichia coli and Salmonella typhimurium about 80% of the dUMP used for dTMP synthesis is derived from deamination of dCTP. The dCTP deaminase produces dUTP that subsequently is hydrolyzed by dUTPase to dUMP and diphosphate. The dCTP deaminase is regulated by dTTP that inhibits the enzyme...... of E138D in complex with dUTP showed a hydrogen bonding network in the active site similar to wild-type enzyme. However, changes in the hydrogen bond lengths between the carboxylate and a catalytic water molecule as well as a slightly different orientation of the pyrimidine ring of the bound nucleotide...

  15. A Case of Hypogammaglobulinemia with Enteroviral Meningoencephalitis, Associated with Increased Adenosine Deaminase in Cerebrospinal Fluid

    Directory of Open Access Journals (Sweden)

    Alborizi Abdolvahab

    2009-06-01

    Full Text Available We describe the development of enterovirus meningoencephalitis associated with increased adenosine deaminase in cerebrospinal fluid of a 12-year-old boy, a known case of hypogamaglobulinemia despite monthly replacement of IVIg.The patient was referred to our center with fever, headache and vomiting for 10 days. CSF analysis was compatible with aseptic meningoencephalitis but high CSF protein (>200mg/dl and high level of adenosine deaminase in CSF (30IU/L were against the diagnosis of simple viral meningoencephalitis. Nested PCR of CSF for entrovirus was positive. Treatment with daily high-dose IVIg was commenced, with significant clinical improvement. For patients with increased ADA and lymphocytic pleocytosis in CSF, differential diagnoses should include enteroviral meningitis. Antibodies, although crucial, cannot on their own prevent enteroviral infection in some hypogamaglbulinemic patients.

  16. Development of gene therapy: potential in severe combined immunodeficiency due to adenosine deaminase deficiency.

    OpenAIRE

    Montiel-Equihua, C. A.; Thrasher, A. J.; Gaspar, H B

    2009-01-01

    The history of stem cell gene therapy is strongly linked to the development of gene therapy for severe combined immunodeficiencies (SCID) and especially adenosine deaminase (ADA)-deficient SCID. Here we discuss the developments achieved in over two decades of clinical and laboratory research that led to the establishment of a protocol for the autologous transplant of retroviral vector-mediated gene-modified hematopoietic stem cells, which has proved to be both successful and, to date, safe. P...

  17. Gene therapy for severe combined immunodeficiency due to adenosine deaminase deficiency.

    Science.gov (United States)

    Montiel-Equihua, Claudia A; Thrasher, Adrian J; Gaspar, H Bobby

    2012-02-01

    The severe combined immunodeficiency caused by the absence of adenosine deaminase (SCID-ADA) was the first monogenic disorder for which gene therapy was developed. Over 30 patients have been treated worldwide using the current protocols, and most of them have experienced clinical benefit; importantly, in the absence of any vector-related complications. In this document, we review the progress made so far in the development and establishment of gene therapy as an alternative form of treatment for ADA-SCID patients.

  18. Involvement of the histaminergic system in cytidine 5'-diphosphocholine-induced reversal of critical haemorrhagic hypotension in rats.

    Science.gov (United States)

    Jochem, J; Savci, V; Filiz, N; Rybus-Kalinowska, B; Fogel, W A; Yalcin, M

    2010-02-01

    Cytidine 5'-diphosphocholine (CDP-choline) is an endogenously synthesized mononucleotide which exerts a variety of physiological effects by altering central cholinergic transmission. Administered intracerebroventricularly (i.c.v.) or intravenously, it reverses haemorrhagic hypotension in rats, apparently by the activation of central cholinergic receptors. The study was undertaken to investigate the involvement of the central histaminergic system in CDP-choline-mediated reversal of haemorrhagic hypotension. Experiments were carried out in male ketamine/xylazine-anaesthetised Wistar rats subjected to haemorrhagic hypotension of 20-26 mmHg. CDP-choline (2 micromol; i.c.v.) administered at 5 min of critical hypotension produced a long-lasting pressor effect with increases in mean arterial pressure (MAP), heart rate (HR), and renal, hindquarters and mesenteric blood flows, resulting in a 100% survival at 2 h. The action was accompanied by approximately a 26% increase in extracellular histamine concentration at the posterior hypothalamus, as measured by microdialysis. Cardiovascular effects mediated by CDP-choline were almost completely blocked by pretreatment with H(1) receptor antagonist chlorpheniramine (50 nmol; i.c.v.), but not with H(2) receptor blocker ranitidine (25 nmol; icv) or H(3)/H(4) receptor antagonist thioperamide (50 nmol; i.c.v.). In conclusion, the present results show that he central histaminergic system, through the activation of H(1) histaminergic receptors, is involved in CDP-choline-induced resuscitating effect in haemorrhage-shocked rats.

  19. Synthesis, hybridization characteristics, and fluorescence properties of oligonucleotides modified with nucleobase-functionalized locked nucleic acid adenosine and cytidine monomers.

    Science.gov (United States)

    Kaura, Mamta; Kumar, Pawan; Hrdlicka, Patrick J

    2014-07-03

    Conformationally restricted nucleotides such as locked nucleic acid (LNA) are very popular as affinity-, specificity-, and stability-enhancing modifications in oligonucleotide chemistry to produce probes for nucleic acid targeting applications in molecular biology, biotechnology, and medicinal chemistry. Considerable efforts have been devoted in recent years to optimize the biophysical properties of LNA through additional modification of the sugar skeleton. We recently introduced C5-functionalization of LNA uridines as an alternative and synthetically more straightforward approach to improve the biophysical properties of LNA. In the present work, we set out to test the generality of this concept by studying the characteristics of oligonucleotides modified with four different C5-functionalized LNA cytidine and C8-functionalized LNA adenosine monomers. The results strongly suggest that C5-functionalization of LNA pyrimidines is indeed a viable approach for improving the binding affinity, target specificity, and/or enzymatic stability of LNA-modified ONs, whereas C8-functionalization of LNA adenosines is detrimental to binding affinity and specificity. These insights will impact the future design of conformationally restricted nucleotides for nucleic acid targeting applications.

  20. Isolation and characterization of ACC deaminase-producing fluorescent pseudomonads, to alleviate salinity stress on canola (Brassica napus L.) growth.

    Science.gov (United States)

    Jalili, Farzad; Khavazi, Kazem; Pazira, Ebrahim; Nejati, Alireza; Rahmani, Hadi Asadi; Sadaghiani, Hasan Rasuli; Miransari, Mohammad

    2009-04-01

    Salinity stress is of great importance in arid and semi-arid areas of the world due to its impact in reducing crop yield. Under salinity stress, the amount of 1-aminocyclopropane-1-carboxylate (ACC), a precursor for ethylene production in plants, increases. Here, we conducted research under the hypothesis that isolated ACC deaminase-producing Pseudomonas fluorescens and Pseudomonas putida can alleviate the stressful effects of salinity on canola (Brassica napus L.) growth. The experiments were conducted in the Soil and Water Research Institute, Tehran, Iran. Seven experimental stages were conducted to isolate and characterize ACC deaminase-producing Pseudomonas fluorescens strains and to determine factors enhancing their growth and, consequently, their effects on the germination of canola seeds. Under salinity stress, in 14% of the isolates, ACC deaminase activity was observed, indicating that they were able to utilize ACC as the sole N-source. Bacterial strains differed in their ability to synthesize auxin and hydrogen cyanide compounds, as well as in their ACC deaminase activity. Under salinity stress, the rate of germinating seeds inoculated with the strains of ACC deaminase-producing Pseudomonas fluorescens and Pseudomonas putida, and seedling growth was significantly higher. These results indicate the significance of soil biological activities, including the activities of plant growth-promoting bacteria, in the alleviation of soil stresses such as salinity on plant growth.

  1. Screening of Rhizosphere Bacteria From Rice Fields in The Coastal Area as Acc-Deaminase and Auxin Producer

    Directory of Open Access Journals (Sweden)

    Annisyia Zarina Putri

    2015-02-01

    Full Text Available Salinity and drought stress results in the production of ethylene. Rhizosphere bacterial activity suppresses the production of ethylene through the activity of 1-aminocycopropane-1-carboxylate (ACC deaminase. In this study,a sampel of rhizosphere bacteria from coastal rice plant area was tested. The method used was acc deaminase activity test performed on Dworkin - Foster (DF media and PCR acdS gene using specific primers of ACC and a quantitative analysis of the production of auxin (IAA. Of 47 isolatees obtained, 8 were positively have acdS activity. The positive result was indicated by the presence of 1080 bp amplicon. Quantitative analysisshowed the highest yield of 10.6 ppm of auxin. The results prove that there are some bacteria originated from coastal rice plant area which have acc deaminase activity.

  2. Magnetically assisted fluorescence ratiometric assays for adenosine deaminase using water-soluble conjusated polymers

    Institute of Scientific and Technical Information of China (English)

    HE Fang; YU MingHui; WANG Shu

    2009-01-01

    A magnetically assisted fluorescence ratiometric technique has been developed for adenosine deami-nase assays with high sensitivity using water-soluble cationic conjugated polymers (CCPs).The assay contains three elements:a biotin-labeled aptamer of adenosine (biotin-aptamer),a signaling probe single-stranded DNA-tagged fiuorescein at terminus (ssDNA-FI) and a CCP.The specific binding of adenosine to biotin-aptamer makes biotin-aptamer and ssDNA-FI unhybridized,and the ssDNA-FI is washed out after streptavidin-coated magnetic beads are added and separated from the assay solution under magnetic field.In this case,after the addition of CCP to the magnetic beads solution,the fluo-rescence resonance energy transfer (FRET) from CCP to fluorescein is inefficient.Upon adding adenosine deaminase,the adenosine is converted into inosine,and the biotin-aptamer is hybridized with ssDNA-FI to form doubled stranded DNA (biotin-dsDNA-FI).The ssONA-FI is attached to the mag-netic beads at the separation step,and the addition of CCP to the magnetic beads solution leads to efficient FRET from CCP to fluorescein.Thus the adenosine deaminase activity can be monitored by fluorescence spectra in view of the intensity decrease of CCP emission or the increase of fluorescein emission in aqueous solutions.The assay integrates surface-functionalized magnetic particles with significant amplification of detection signal of water-soluble cationic conjugated polymers.

  3. Biochemistry and Genetics of ACC deaminase: A weapon to 'stress ethylene' produced in plants

    Directory of Open Access Journals (Sweden)

    Rajnish Prakash Singh

    2015-09-01

    Full Text Available 1-aminocyclopropane-1-carboxylate deaminase (ACCD, a pyridoxal phosphate dependent enzyme, is widespread in diverse bacterial and fungal species. Owing to ACCD activity, certain plant associated bacteria help plant to grow under biotic and abiotic stresses by decreasing level of 'stress ethylene' which is inhibitory to plant growth. ACCD breaks down ACC, an immediate precursor of ethylene, to ammonia and α-ketobutyrate which can be further metabolized by bacteria for their growth. ACC deaminase is an inducible enzyme whose synthesis is induced in presence of its substrate ACC. This enzyme, encoded by gene AcdS, is under tight regulation and regulated differentilly under different environmental conditions. Regulatory elements of gene AcdS are comprised of regulatory gene encoding LRP protein and other regulator elements which are activated differentially under aerobic and anaerobic conditions. Role of some additional regulatory genes such as AcdB or LysR may also be required for expression of AcdS. Phylogenetic analysis of AcdS has revealed that distribution of this gene among different bacteria might have resulted from vertical gene transfer with occasional horizontal gene transfer. Application of bacterial AcdS gene has been extended by developing transgenic plants with ACCD gene which showed increased tolerance to biotic and abiotic stresses in plants. Moreover, distribution of ACCD gene or its homologs in wide range of species belonging to all three domains indicate alternative role of ACCD in physiology of an organism. Therefore, this review is an attempt to explore current knowledge of bacterial ACC deaminase mediated physiological effects in plants, mode of enzyme action, genetics, and distribution in different species and ecological role of ACCD and, future research avenues to develop transgenic plants expressing foreign AcdS gene to cope with biotic and abiotic stressors. Systemic identification of regulatory circuits would be highly

  4. Significance of the D-serine-deaminase and D-serine metabolism of Staphylococcus saprophyticus for virulence.

    Science.gov (United States)

    Korte-Berwanger, Miriam; Sakinc, Türkan; Kline, Kimberly; Nielsen, Hailyn V; Hultgren, Scott; Gatermann, Sören G

    2013-12-01

    Staphylococcus saprophyticus is the only species of Staphylococcus that is typically uropathogenic and possesses a gene coding for a D-serine-deaminase (DsdA). As D-serine is prevalent in urine and toxic or bacteriostatic to many bacteria, it is not surprising that the D-serine-deaminase gene is found in the genome of uropathogens. It has been suggested that D-serine-deaminase or the ability to respond to or to metabolize D-serine is important for virulence. For uropathogenic Escherichia coli (UPEC), a high intracellular D-serine concentration affects expression of virulence factors. S. saprophyticus is able to grow in the presence of high D-serine concentrations; however, its D-serine metabolism has not been described. The activity of the D-serine-deaminase was verified by analyzing the formation of pyruvate from D-serine in different strains with and without D-serine-deaminase. Cocultivation experiments were performed to show that D-serine-deaminase confers a growth advantage to S. saprophyticus in the presence of D-serine. Furthermore, in vivo coinfection experiments showed a disadvantage for the ΔdsdA mutant during urinary tract infection. Expression analysis of known virulence factors by reverse transcription-quantitative PCR (RT-qPCR) showed that the surface-associated lipase Ssp is upregulated in the presence of D-serine. In addition, we show that S. saprophyticus is able to use D-serine as the sole carbon source, but interestingly, D-serine had a negative effect on growth when glucose was also present. Taken together, D-serine metabolism is associated with virulence in S. saprophyticus, as at least one known virulence factor is upregulated in the presence of D-serine and a ΔdsdA mutant was attenuated in virulence murine model of urinary tract infection.

  5. Modification of the biosynthesis and composition of polyglycerophosphatides in outer and inner mitochondrial membranes by cytidine liponucleotides

    Energy Technology Data Exchange (ETDEWEB)

    Stuhne-Sekalec, L.; Stanacev, N.Z. (Univ. of Toronto (Canada))

    1989-01-01

    The biosynthesis of (3H)polyglycerophosphatides ((3H)phosphatidylglycerophosphate and (3H)phosphatidylglycerol) in mitochondrial and submitochondrial (outer and inner) membranes isolated from guinea pig liver was examined. Experimental results have established that the amount of biosynthesized (3H)polyglycerophosphatides and the relative amounts of biosynthesized (3H)phosphatidylglycerol and (3H)phosphatidylglycerolphosphate can be influenced by varying the composition of fatty acids in CDP-diglycerides and by altering the incubation time of the mixture containing CDP-diglycerides (obligatory precursor), sn-(2-3H)glycerol-3-phosphate and mitochondria or submitochondrial membranes. The changes thus obtained in respect to the amount and composition of biosynthesized (3H)polyglycerophosphatides are different in mitochondria and submitochondrial membranes. The highest amount of biosynthesized (3H)polyglycerophosphatides was obtained with CDP-didecanoin and inner mitochondrial membranes. The greatest accumulation of (3H)phosphatidylglycerol with CDP-didecanoin was obtained in mitochondria and outer mitochondrial membranes, while in inner mitochondrial membranes the amounts of (3H)phosphatidylglycerol and (3H)phosphatidylglycerolphosphate accumulated were approximately the same. In general, prolongation of the incubation time decreased the relative amounts of (3H)phosphatidylglycerolphosphate and increased the amount of accumulated (3H)phosphatidylglycerol, but the absolute amounts of these (3H)polyglycerophosphatides were more dependent on fatty acid composition of CDP-diglycerides tested. The following cytidine liponucleotides were tested: CDP-didecanoin, CDP-dipalmitin, CDP-diolein, and CDP-diglycerides containing saturated and unsaturated fatty acids similar to those in egg yolk lecithin.

  6. Cytidine 5′-diphosphocholine administration prevents peripheral neuropathic pain after sciatic nerve crush injury in rats

    Science.gov (United States)

    Emril, Dessy R; Wibowo, Samekto; Meliala, Lucas; Susilowati, Rina

    2016-01-01

    Background Cytidine 5′-diphosphocholine (citicoline) has been shown to have beneficial effects in central nervous system injury as well as in motoric functional recovery after peripheral nerve injury. This study aimed to examine the effect of citicoline on prevention of neuropathic pain in a rat model of sciatic nerve crush injury. Methods Forty experimental rats were divided into four groups. In three groups, the right sciatic nerves were crushed in the mid-thigh region, and a gelatin sponge moistened with 0.4 or 0.8 mL of 100 µmol/L citicoline, or saline 0.4 mL in the control group, was applied. The fourth group of rats was sham-operated, ie the sciatic nerve was exposed with no crush. Functional assessments were performed 4 weeks after crush injury. von Frey filaments (100 g threshold) were used to assess neuropathic pain. In addition, the sciatic functional index and extensor postural thrust (EPT) tests were used to assess motoric function. Results The crush/citicoline 0.4 mL group had a lower percentage of pain (23.53%, n=17) compared with the crush/saline group (53.33%, n=15, Pciticoline 0.4 mL group also showed better motoric recovery, as seen in stronger EPT results (Pciticoline 0.8 mL group showed a higher percentage of pain (66.67%, n=18) and less EPT recovery. These results may be explained by more severe nerve injury due to compression with a larger administered volume. Conclusion In situ administration of 0.4 mL of 100 µmol/L citicoline prevents the occurrence of neuropathic pain and induces motoric recovery, evaluated by EPT test, 4 weeks after sciatic nerve injury. PMID:27284264

  7. Adenosine Deaminase Inhibition Prevents Clostridium difficile Toxin A-Induced Enteritis in Mice ▿

    Science.gov (United States)

    de Araújo Junqueira, Ana Flávia Torquato; Dias, Adriana Abalen Martins; Vale, Mariana Lima; Spilborghs, Graziela Machado Gruner Turco; Bossa, Aline Siqueira; Lima, Bruno Bezerra; Carvalho, Alex Fiorini; Guerrant, Richard Littleton; Ribeiro, Ronaldo Albuquerque; Brito, Gerly Anne

    2011-01-01

    Toxin A (TxA) is able to induce most of the classical features of Clostridium difficile-associated disease in animal models. The objective of this study was to determine the effect of an inhibitor of adenosine deaminase, EHNA [erythro-9-(2-hydroxy-3-nonyl)-adenine], on TxA-induced enteritis in C57BL6 mice and on the gene expression of adenosine receptors. EHNA (90 μmol/kg) or phosphate-buffered saline (PBS) was injected intraperitoneally (i.p.) 30 min prior to TxA (50 μg) or PBS injection into the ileal loop. A2A adenosine receptor agonist (ATL313; 5 nM) was injected in the ileal loop immediately before TxA (50 μg) in mice pretreated with EHNA. The animals were euthanized 3 h later. The changes in the tissue were assessed by the evaluation of ileal loop weight/length and secretion volume/length ratios, histological analysis, myeloperoxidase assay (MPO), the local expression of inducible nitric oxide synthase (NOS2), pentraxin 3 (PTX3), NF-κB, tumor necrosis factor alpha (TNF-α), and interleukin-1β (IL-1β) by immunohistochemistry and/or quantitative reverse transcription-PCR (qRT-PCR). The gene expression profiles of A1, A2A, A2B, and A3 adenosine receptors also were evaluated by qRT-PCR. Adenosine deaminase inhibition, by EHNA, reduced tissue injury, neutrophil infiltration, and the levels of proinflammatory cytokines (TNF-α and IL-1β) as well as the expression of NOS2, NF-κB, and PTX3 in the ileum of mice injected with TxA. ATL313 had no additional effect on EHNA action. TxA increased the gene expression of A1 and A2A adenosine receptors. Our findings show that the inhibition of adenosine deaminase by EHNA can prevent Clostridium difficile TxA-induced damage and inflammation possibly through the A2A adenosine receptor, suggesting that the modulation of adenosine/adenosine deaminase represents an important tool in the management of C. difficile-induced disease. PMID:21115723

  8. An STS in the human adenosine deaminase gene (located 20q12-q13. 11)

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, B.C.; States, J.C. (Wayne State Univ., Detroit, MI (United States))

    1991-09-25

    The human adenosine deaminase gene has been characterized in detail. The adenosine gene product, as part of the purine catabolic pathway, catalyzes the irreversible deamination of adenosine and deoxyadenosine. Deficiency of this activity in humans is associated with an autosomal recessive form of severe combined immunodeficiency disease. Recently, this genetic deficiency disease has been targeted for the first attempts at gene therapy in humans. Using the polymerase chain reaction (PCR), a fragment of the expected size (160 bp) was amplified from human genomic DNA.

  9. How We Manage Adenosine Deaminase-Deficient Severe Combined Immune Deficiency (ADA SCID).

    Science.gov (United States)

    Kohn, Donald B; Gaspar, H Bobby

    2017-02-14

    Adenosine deaminase-deficient severe combined immune deficiency (ADA SCID) accounts for 10-15% of cases of human SCID. From what was once a uniformly fatal disease, the prognosis for infants with ADA SCID has improved greatly based on the development of multiple therapeutic options, coupled with more frequent early diagnosis due to implementation of newborn screening for SCID. We review the various treatment approaches for ADA SCID including allogeneic hematopoietic stem cell transplantation (HSCT) from a human leukocyte antigen-matched sibling or family member or from a matched unrelated donor or a haplo-identical donor, autologous HSCT with gene correction of the hematopoietic stem cells (gene therapy-GT), and enzyme replacement therapy (ERT) with polyethylene glycol-conjugated adenosine deaminase. Based on growing evidence of safety and efficacy from GT, we propose a treatment algorithm for patients with ADA SCID that recommends HSCT from a matched family donor, when available, as a first choice, followed by GT as the next option, with allogeneic HSCT from an unrelated or haplo-identical donor or long-term ERT as other options.

  10. Ecto- and cytosolic 5'-nucleotidases in normal and AMP deaminase-deficient human skeletal muscle

    DEFF Research Database (Denmark)

    Hanisch, Frank; Hellsten, Ylva; Zierz, Stephan

    2006-01-01

    AMPD1 genotypes [homozygotes for C34T mutation (TT); heterozygotes for C34T mutation (CT); and homozygotes for wild type (CC): diseased controls CC; and normal controls CC]. AMP deaminase activity showed genotype-dependent differences. Total cN activity in normal controls accounted for 57...... homogenate 5'-nucleotidase and ectoN, or in cN-I expression on Western blots. No correlation for age, fibre type distribution and AMPD1 genotype was found for whole homogenate nucleotidase, total cN and cN-I using multiple linear regression analysis. There was no gender-specific difference in the activities...... of whole homogenate nucleotidase, total cN and cN-I. The results indicate no changes in the relative expression or catalytic behaviour of cN-I in AMP deaminase-deficient human skeletal muscle, but suggest that increased turnover of AMP by cN-I in working skeletal muscle is due to higher substrate...

  11. Discovery of a cAMP deaminase that quenches cyclic AMP-dependent regulation.

    Science.gov (United States)

    Goble, Alissa M; Feng, Youjun; Raushel, Frank M; Cronan, John E

    2013-12-20

    An enzyme of unknown function within the amidohydrolase superfamily was discovered to catalyze the hydrolysis of the universal second messenger, cyclic-3',5'-adenosine monophosphate (cAMP). The enzyme, which we have named CadD, is encoded by the human pathogenic bacterium Leptospira interrogans. Although CadD is annotated as an adenosine deaminase, the protein specifically deaminates cAMP to cyclic-3',5'-inosine monophosphate (cIMP) with a kcat/Km of 2.7 ± 0.4 × 10(5) M(-1) s(-1) and has no activity on adenosine, adenine, or 5'-adenosine monophosphate (AMP). This is the first identification of a deaminase specific for cAMP. Expression of CadD in Escherichia coli mimics the loss of adenylate cyclase in that it blocks growth on carbon sources that require the cAMP-CRP transcriptional activator complex for expression of the cognate genes. The cIMP reaction product cannot replace cAMP as the ligand for CRP binding to DNA in vitro and cIMP is a very poor competitor of cAMP activation of CRP for DNA binding. Transcriptional analyses indicate that CadD expression represses expression of several cAMP-CRP dependent genes. CadD adds a new activity to the cAMP metabolic network and may be a useful tool in intracellular study of cAMP-dependent processes.

  12. Development of gene therapy: potential in severe combined immunodeficiency due to adenosine deaminase deficiency

    Directory of Open Access Journals (Sweden)

    Claudia A Montiel-Equihua

    2009-12-01

    Full Text Available Claudia A Montiel-Equihua, Adrian J Thrasher, H Bobby GasparCentre for Immunodeficiency, Molecular Immunology Unit, UCL Institute of Child Health, London, UKAbstract: The history of stem cell gene therapy is strongly linked to the development of gene therapy for severe combined immunodeficiencies (SCID and especially adenosine deaminase (ADA-deficient SCID. Here we discuss the developments achieved in over two decades of clinical and laboratory research that led to the establishment of a protocol for the autologous transplant of retroviral vector-mediated gene-modified hematopoietic stem cells, which has proved to be both successful and, to date, safe. Patients in trials in three different countries have shown long-term immunological and metabolic correction. Nevertheless, improvements to the safety profile of viral vectors are underway and will undoubtedly reinforce the position of stem cell gene therapy as a treatment option for ADA-SCID.Keywords: adenosine deaminase, severe combined immunodeficiency, gene therapy, hematopoietic stem cell, retrovirus, clinical trial

  13. Rhizobacteria containing ACC-deaminase confer salt tolerance in maize grown on salt-affected fields.

    Science.gov (United States)

    Nadeem, Sajid Mahmood; Zahir, Zahir Ahmad; Naveed, Muhammad; Arshad, Muhammad

    2009-11-01

    Salt stress is one of the major constraints hampering agricultural production owing to its impact on ethylene production and nutritional imbalance. A check on the accelerated ethylene production in plants could be helpful in minimizing the negative effect of salt stress on plant growth and development. Four Pseudomonas, 1 Flavobacterium, and 1 Enterobacter strain of plant growth promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate (ACC)-deaminase were selected and their effects on growth and yield of maize were investigated to improve the salt tolerance of maize grown on salt-affected fields. The selected rhizobacterial isolates reduced or eliminated the classical "triple" response, indicating their ability to reduce stress-induced ethylene levels. Results showed that rhizobacterial strains, particularly Pseudomonas and Enterobacter spp., significantly promoted the growth and yield of maize compared with the non-inoculated control. Pseudomonas fluorescens increased plant height, biomass, cob yield, grain yield, 1000 grain mass, and straw yield of maize up to 29%, 127%, 67%, 60%, 17%, and 166%, respectively, over the control. Under stress conditions, more N, P, and K uptake and high K+-Na+ ratios were recorded in inoculated plants compared with the control. The results imply that inoculation with plant growth promoting rhizobacteria containing ACC-deaminase could be a useful approach for improving growth and yield of maize under salt-stressed conditions.

  14. The usefulness of adenosine deaminase in the diagnosis of tuberculous pericarditis O uso da adenosina deaminase no diagnóstico da tuberculose pericárdica

    Directory of Open Access Journals (Sweden)

    Felipe Francisco Tuon

    2007-06-01

    Full Text Available The objective of this study was to evaluate the adenosine deaminase (ADA activity usefulness in the diagnosis of tuberculous pericarditis (TP, comparing its value with pericardial effusions (PE caused by other pericardial diseases. A retrospective case-control study was conducted with nine cases of TP and 39 other than TP diseases (12 neoplastic, 11 septic and 16 unknown origin. Every patient included in this study had PE samples submitted to ADA activity measures and microbiological analysis, and then had pericardial tissue samples submitted to microbiological and histopathological examination. Considering the value of 40 U/L as the cut-off for the diagnosis of TP, the specificity and sensitivity were respectively of 72% and 89%. The specificity of ADA activity for the TP was best applied in the differential diagnosis from PE of unknown origin. The present study demonstrates the clinical value of the measurement of ADA activity in PE in the diagnosis of TP.O objetivo deste estudo foi avaliar a atividade da adenosina deaminase (ADA como auxiliar no diagnóstico da tuberculose pericárdica (TP, comparando o seu valor no derrame pericárdico com outras doenças pericárdicas. Um estudo retrospectivo tipo caso-controle foi conduzido com nove casos de TP e 39 pacientes com outras doenças pericárdicas (12 neoplasias, 11 pericardites bacterianas e 16 pericardites de etiologia indeterminada. Cada paciente incluído no estudo teve sua amostra de tecido pericárdico encaminhada para estudo microbiológico e histopatológico. Considerando o valor de 40 U/L como corte para o diagnóstico de TP, a especificidade e sensibilidade foram respectivamente 72 e 89%. A especificidade da atividade de ADA para a TP foi melhor aplicada no diagnóstico diferencial entre derrame pericárdico de origem indeterminada. O presente estudo demonstrou o valor clínico da mensuração da atividade de ADA no diagnóstico de TP.

  15. Characterization of 1-Aminocyclopropane-1-Carboxylate (ACC) Deaminase-Containing Pseudomonas spp. in the Rhizosphere of Salt-Stressed Canola

    NARCIS (Netherlands)

    Akhgar, A.; Arzanlou, M.; Bakker, Peter; Hamidpour, M.

    2014-01-01

    When exposed to biotic or abiotic stress conditions, plants produce ethylene from its immediate precursor 1-aminocyclopropane-1- carboxylate (ACC), leading to retarded root growth and senescence. Many plant growth-promoting rhizobacteria contain the enzyme ACC deaminase and this enzyme can cleave AC

  16. Mechanish of dTTP Inhibition of the Bifunctional dCTP Deaminase:dUTPase Encoded by Mycobacterium tuberculosis

    DEFF Research Database (Denmark)

    Helt, Signe Smedegaard; Thymark, Majbritt; Harris, Pernille;

    2008-01-01

    to be characterised and provides evidence for bifunctionality of dCTP deaminase occurring outside the Archaea kingdom. A steady-state kinetic analysis revealed that the affinity for dCTP and deoxyuridine triphosphate as substrates for the synthesis of deoxyuridine monophosphate were very similar, a result...

  17. Isolation and properties of AMP deaminase from jumbo squid (Dosidicus gigas) mantle muscle from the Gulf of California, Mexico.

    Science.gov (United States)

    Marquez-Rios, E; Pacheco-Aguilar, R; Castillo-Yañez, F J; Figueroa-Soto, C G; Ezquerra-Brauer, J M; Gollas-Galvan, T

    2008-09-01

    Adenosine monophosphate (AMP) deaminase was purified from jumbo squid mantle muscle by chromatography in cellulose phosphate, Q-Fast and 5'-AMP sepharose. Specific activity of 2.5U/mg protein, 4.5% recovery and 133.68 purification fold were obtained at the end of the experiment. SDS-PAGE showed a single band with 87kDa molecular mass, native PAGE proved a band of 178kDa, whereas gel filtration detected a 180kDa protein, suggesting the homodimeric nature of this enzyme, in which subunits are not linked by covalent forces. Isoelectric focusing of this enzyme showed a pI of 5.76, which agrees with pI values of AMP deaminase from other invertebrate organisms. AMP deaminase presented a kinetic sigmoidal plot with Vmax of 1.16μM/min/mg, Km of 13mM, Kcat of 3.48μM.s(-1) and a Kcat/Km of 267 (mol/L)(-1).s(-1). The apparent relative low catalytic activity of jumbo squid muscle AMP deaminase in the absence of positive effectors is similar to that reported for homologous enzymes in other invertebrate organisms.

  18. Comparison of interferon-gamma release assays and adenosine deaminase of pleural fluid for the diagnosis of pleural tuberculosis

    Institute of Scientific and Technical Information of China (English)

    刘菲

    2014-01-01

    Objective To compare the diagnostic performance of interferon gamma releasing assays(T-SPOT.TB)and adenosine deaminase(ADA)in pleural tuberculosis,and therefore to evaluate the value of T-SPOT.TB in a high tuberculosis burden country.Methods From June 2011to November 2012,111 patients with pleural fluid in Beijing Chest Hospital,Capital Medical University were

  19. Determination of serum adenosine deaminase and xanthine oxidase levels in patients with crimean-congo hemorrhagic fever

    Directory of Open Access Journals (Sweden)

    V. Kenan Celik

    2010-01-01

    Full Text Available OBJECTIVE: Crimean-Congo hemorrhagic fever is an acute viral hemorrhagic fever with a high mortality rate. Despite increasing knowledge about hemorrhagic fever viruses, little is known about the pathogenesis of Crimean-Congo hemorrhagic fever. In this study, we measured serum adenosine deaminase and xanthine oxidase levels in Crimean-Congo hemorrhagic fever patients. METHODS: Serum adenosine deaminase levels were measured with a sensitive colorimetric method described by Giusti and xanthine oxidase levels by the method of Worthington in 30 consecutive hospitalized patients (mean age 42.6 ± 21.0. Laboratory tests confirmed their diagnoses of Crimean-Congo hemorrhagic fever. Thirty-five subjects (mean age 42.9 ± 19.1 served as the control group. RESULTS: There was a significant difference in adenosine deaminase and xanthine oxidase levels between cases and controls (p0.05. CONCLUSION: Adenosine deaminase and xanthine oxidase levels were increased in patients with Crimean-Congo hemorrhagic fever. Elevated serum xanthine oxidase activity in patients with Crimean-Congo hemorrhagic fever may be associated with reactive oxygen species generated by the xanthine/xanthine oxidase system during inflammatory responses. In addition, elevated lipid peroxidation may contribute to cell damage and hemorrhage. The association of cell damage and hemorrhage with xanthine oxidase activity should be further investigated in large-scale studies.

  20. 1-Aminocyclopropane-1-carboxylate (ACC) deaminases from Methylobacterium radiotolerans and Methylobacterium nodulans with higher specificity for ACC.

    Science.gov (United States)

    Fedorov, Dmitry N; Ekimova, Galina A; Doronina, Nina V; Trotsenko, Yuri A

    2013-06-01

    The 1-aminocyclopropane-1-carboxylate (ACC) deaminases (EC 3.4.99.7), the key enzymes of degradation of the precursor of the phytohormone ethylene, have not been well studied despite their great importance for plant-bacterial interactions. Using blast, the open reading frames encoding ACC deaminases were found in the genomes of epiphytic methylotroph Methylobacterium radiotolerans JCM2831 and nodule-forming endosymbiont Methylobacterium nodulans ORS2060. These genes were named acdS and cloned; recombinant proteins were expressed and purified from Escherichia coli. The enzyme from M. nodulans displayed the highest substrate specificity among all of the characterized ACC deaminases (Km 0.80 ± 0.04 mM), whereas the enzyme from M. radiotolerans had Km 1.8 ± 0.3 mM. The kcat values were 111.8 ± 0.2 and 65.8 ± 2.8 min(-1) for the enzymes of M. nodulans and M. radiotolerans, respectively. Both enzymes are homotetramers with a molecular mass of 144 kDa, as was demonstrated by size exclusion chromatography and native PAGE. The purified enzymes displayed the maximum activity at 45-50 °C and pH 8.0. Thus, the priority data have been obtained, extending the knowledge of biochemical properties of bacterial ACC deaminases.

  1. Cytidine 5’-diphosphocholine administration prevents peripheral neuropathic pain after sciatic nerve crush injury in rats

    Directory of Open Access Journals (Sweden)

    Emril DR

    2016-05-01

    Full Text Available Dessy R Emril,1 Samekto Wibowo,2 Lucas Meliala,2 Rina Susilowati3 1Department of Neurology, Faculty of Medicine, Syiah Kuala University, Banda Aceh, 2Department of Neurology, 3Department of Histology and Cell Biology, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, IndonesiaBackground: Cytidine 5’-diphosphocholine (citicoline has been shown to have beneficial effects in central nervous system injury as well as in motoric functional recovery after peripheral nerve injury. This study aimed to examine the effect of citicoline on prevention of neuropathic pain in a rat model of sciatic nerve crush injury.Methods: Forty experimental rats were divided into four groups. In three groups, the right sciatic nerves were crushed in the mid-thigh region, and a gelatin sponge moistened with 0.4 or 0.8 mL of 100 µmol/L citicoline, or saline 0.4 mL in the control group, was applied. The fourth group of rats was sham-operated, ie the sciatic nerve was exposed with no crush. Functional assessments were performed 4 weeks after crush injury. von Frey filaments (100 g threshold were used to assess neuropathic pain. In addition, the sciatic functional index and extensor postural thrust (EPT tests were used to assess motoric function.Results: The crush/citicoline 0.4 mL group had a lower percentage of pain (23.53%, n=17 compared with the crush/saline group (53.33%, n=15, P<0.005. The crush/citicoline 0.4 mL group also showed better motoric recovery, as seen in stronger EPT results (P<0.001. However, the sciatic functional index analysis did not show significant differences between groups (P=0.35. The crush/citicoline 0.8 mL group showed a higher percentage of pain (66.67%, n=18 and less EPT recovery. These results may be explained by more severe nerve injury due to compression with a larger administered volume.Conclusion: In situ administration of 0.4 mL of 100 μmol/L citicoline prevents the occurrence of neuropathic pain and induces motoric recovery

  2. Activation-Induced Cell Death in T Cells and Autoimmunity

    Institute of Scientific and Technical Information of China (English)

    Jian Zhang; Xuemei Xu; Yong Liu

    2004-01-01

    Activation-induced cell death (AICD), which results from the interaction between Fas and Fas ligand, is responsible for maintaining tolerance to self-antigen. A defect in AICD may lead to development of autoimmunity. During the last several years, much progress has been made in understanding the mechanism(s) of AICD and its potential role in the pathogenesis of autoimmune diseases. In this review, we summarize the most recent progress on the regulation of the susceptibility of T cells to AICD and its possible involvement in autoimmune diseases.

  3. Studies of 1-Amino-2,2-difluorocyclopropane-1-carboxylic Acid: Mechanism of Decomposition and Inhibition of 1-Aminocyclopropane-1-carboxylic Acid Deaminase.

    Science.gov (United States)

    Liu, Cheng-Hao; Wang, Shao-An; Ruszczycky, Mark W; Chen, Huawei; Li, Keqiang; Murakami, Kazuo; Liu, Hung-wen

    2015-07-02

    1-Amino-2,2-difluorocyclopropane-1-carboxylic acid (DFACC) is of interest in the study of 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase due to the increased reactivity of its cyclopropyl functionality. It is shown that DFACC is unstable under near-physiological conditions where it primarily decomposes via specific-base catalysis to 3-fluoro-2-oxobut-3-enoic acid with a rate constant of 0.18 ± 0.01 min(-1). Upon incubation with ACC deaminase, DFACC is found to be a slow-dissociating inhibitor of ACC deaminase with submicromolar affinity.

  4. Efficient retrovirus-mediated transfer and expression of a human adenosine deaminase gene in diploid skin fibroblasts from an adenosine deaminase-deficient human

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, T.D.; Hock, R.A.; Osborne, W.R.A.; Miller, A.D.

    1987-02-01

    Skin fibroblasts might be considered suitable recipients for therapeutic genes to cure several human genetic diseases; however, these cells are resistant to gene transfer by most methods. The authors studied the ability of retroviral vectors to transfer genes into normal human diploid skin fibroblasts. Retroviruses carrying genes for neomycin or hygromycin B resistance conferred drug resistance to greater than 50% of the human fibroblasts after a single exposure to virus-containing medium. This represents at least a 500-fold increase in efficiency over other methods. Transfer was achieved in the absence of helper virus by using amphotropic retrovirus-packaging cells. A retrovirus vector containing a human adenosine deaminase (ADA) cDNA was constructed and used to infect ADA/sup -/ fibroblasts from a patient with ADA deficiency. The infected cells produced 12-fold more ADA enzyme than fibroblasts from normal individuals and were able to rapidly metabolize exogenous deoxyadenosine and adenosine, metabolites that accumulate in plasma in ADA-deficient patients and are responsible for the severe combined immunodeficiency in these patients. These experiments indicate the potential of retrovirus-mediated gene transfer into human fibroblasts for gene therapy.

  5. Relevance of adenosine deaminase as a marker for tubercu-lous pleural effusion in developing countries

    Institute of Scientific and Technical Information of China (English)

    Rishad A; Patil BS; Das KK

    2009-01-01

    Objective:Relevance of estimation of pleural adenosine deaminase (PADA)and serum adenosine deaminase (SADA)levels in pleural effusion especially in cases of lymphocytic predominant exudative tubercular effu-sions.Methods:Fifty patients (33 male and 17 female;age:44.12 ±11.51 years)with pleural effusions were selected to assay adenosine deaminase (ADA)activity in pleural fluid and serum in adjunct to pleural fluid analysis.Effusions were individually classified as transudates or exudates after careful evaluation of all the biochemical parameters of pleural fluid and serum of patients and on the basis of Light's criteria.Cutoff val-ue for PADA was taken as 60U /L and that for pleural /serum ADA ratio (P/S ADA)was 1.8.Results:Four-ty-three patients had exudative effusions among which 38 patients had tuberculous pleural effusions and 5 had nontubercular effusions.7 cases were transudates.Mean PADA levels in tubercular group (78.95 ±25.32 U /L)were found to be much higher P =0.000 0)than nontubercular (23.00 ±5.22 U /L)group.SADA levels in tubercular group (31.05 ±6.42 U /L)were significantly higher (P =0.000 0)as compared to nontubercu-lar group (15.58 ±8.35 U /L).PADA cutoff at 60 U /L yielded sensitivity and specificity of 81.5% and 100% respectively,whereas P/S ADA ratio at 1.8 gave sensitivity and specificity of 84.2% and 75% respec-tively.A positive correlation (r =0.507,P =0.001 1)between PADA and SADA was found in tubercular group but no such correlation (r =0.302,P =0.340 7)was observed in nontubercular group.Conclusion:The measurement of ADA in tubercular pleural effusions has not only relevance but also a high diagnostic utility when other clinical and laboratory tests are either negative or confusing.

  6. Does adenosine deaminase activity play a role in the early diagnosis of ectopic pregnancy?

    Science.gov (United States)

    Turkmen, G G; Karçaaltıncaba, D; Isık, H; Fidancı, V; Kaayalp, D; Tımur, H; Batıoglu, S

    2016-01-01

    Early diagnosis of ectopic pregnancy (EP) is important due to life-threatening consequences in the first trimester of pregnancy. In this study we aimed to investigate the role of adenosine deaminase (ADA) activity in the prediction of EP. Forty-one patients with unruptured ectopic pregnancy comprised the case group and forty-two first trimester pregnant women with shown foetal heart beating in ultrasound comprised the control group. The mean ADA level in EP (10.9 ± 3.0 IU/L) was higher than that in control group (9.2 ± 3.6 IU/L) (p = 0.018). Receiver operating characteristics or ROC curve identified ADA value of 10.95 IU/L as optimal threshold for the prediction of EP with 56% sensitivity and 67% specificity. High ADA levels are valuable in the early diagnosis of EP. However more comprehensive studies are required.

  7. Hematopoietic stem cell gene therapy for adenosine deaminase deficient-SCID.

    Science.gov (United States)

    Aiuti, Alessandro; Brigida, Immacolata; Ferrua, Francesca; Cappelli, Barbara; Chiesa, Robert; Marktel, Sarah; Roncarolo, Maria-Grazia

    2009-01-01

    Gene therapy is a highly attractive strategy for many types of inherited disorders of the immune system. Adenosine deaminase (ADA) deficient-severe combined immunodeficiency (SCID) has been the target of several clinical trials based on the use of hematopoietic stem/progenitor cells engineered with retroviral vectors. The introduction of a low intensity conditioning regimen has been a crucial factor in achieving stable engrafment of hematopoietic stem cells and therapeutic levels of ADA-expressing cells. Recent studies have demonstrated that gene therapy for ADA-SCID has favorable safety profile and is effective in restoring normal purine metabolism and immune functions. Stem cell gene therapy combined with appropriate conditioning regimens might be extended to other genetic disorders of the hematopoietic system.

  8. Platelet aggregation and serum adenosine deaminase (ADA) activity in pregnancy associated with diabetes, hypertension and HIV.

    Science.gov (United States)

    Leal, Claudio A M; Leal, Daniela B R; Adefegha, Stephen A; Morsch, Vera M; da Silva, José E P; Rezer, João F P; Schrekker, Clarissa M L; Abdalla, Faida H; Schetinger, Maria R C

    2016-07-01

    Platelet aggregation and adenosine deaminase (ADA) activity were evaluated in pregnant women living with some disease conditions including hypertension, diabetes mellitus and human immunodeficiency virus infection. The subject population is consisted of 15 non-pregnant healthy women [control group (CG)], 15 women with normal pregnancy (NP), 7 women with hypertensive pregnancy (HP), 10 women with gestational diabetes mellitus (GDM) and 12 women with human immunodeficiency virus-infected pregnancy (HIP) groups. The aggregation of platelets was checked using an optical aggregometer, and serum ADA activity was determined using the colorimetric method. After the addition of 5 µM of agonist adenosine diphosphate, the percentage of platelet aggregation was significantly (p pregnancy and pregnancy-associated diseases suggest that platelet aggregation and ADA activity could serve as peripheral markers for the development of effective therapy in the maintenance of homeostasis and some inflammatory process in these pathophysiological conditions. Copyright © 2016 John Wiley & Sons, Ltd.

  9. Development of gene therapy: potential in severe combined immunodeficiency due to adenosine deaminase deficiency

    Science.gov (United States)

    Montiel-Equihua, Claudia A; Thrasher, Adrian J; Gaspar, H Bobby

    2010-01-01

    The history of stem cell gene therapy is strongly linked to the development of gene therapy for severe combined immunodeficiencies (SCID) and especially adenosine deaminase (ADA)-deficient SCID. Here we discuss the developments achieved in over two decades of clinical and laboratory research that led to the establishment of a protocol for the autologous transplant of retroviral vector-mediated gene-modified hematopoietic stem cells, which has proved to be both successful and, to date, safe. Patients in trials in three different countries have shown long-term immunological and metabolic correction. Nevertheless, improvements to the safety profile of viral vectors are underway and will undoubtedly reinforce the position of stem cell gene therapy as a treatment option for ADA-SCID. PMID:24198507

  10. Non-infectious lung disease in patients with adenosine deaminase deficient severe combined immunodeficiency.

    Science.gov (United States)

    Booth, C; Algar, V E; Xu-Bayford, J; Fairbanks, L; Owens, C; Gaspar, H B

    2012-06-01

    Adenosine deaminase deficiency is a disorder of purine metabolism manifesting severe combined immunodeficiency (ADA-SCID) and systemic abnormalities. Increased levels of the substrate deoxyadenosine triphosphate (dATP) lead to immunodeficiency and are associated in a murine model with pulmonary insufficiency. We compared a cohort of patients with ADA-SCID and X-linked SCID and found that despite similar radiological and respiratory findings, positive microbiology is significantly less frequent in ADA-SCID patients (p < 0.0005), suggesting a metabolic pathogenesis for the lung disease. Clinicians should be aware of this possibility and correct metabolic abnormalities either through enzyme replacement or haematopoietic stem cell transplant, in addition to treating infectious complications.

  11. Serum Adenosine deaminase activity and C-reactive protein levels in unstable angina

    Directory of Open Access Journals (Sweden)

    Rani Surekha

    2003-01-01

    Full Text Available In unstable angina (USA patients, immunological responses contributing to inflammation play a vital role in plaque rupture and thrombosis causing stroke. In the present study an attempt is made to estimate the levels of adenosine deaminase activity, an immunoenzyme marker and C-reactive protein, a marker of inflammation in USA patients. 45 patients presenting USA and 50 age and sex matched healthy controls were included in the study. Serum ADA activity was measured spectrophotometrically at 630nm and serum C-reactive protein was detected using Avitex CRP kit, which is a rapid latex agglutination test. The Mean ADA levels were 41.15 ± 11.04 in patients and 20.71±5.63 in controls and 66.6% of patients and none of the controls were positive to CRP. The present study observed the importance of ADA as a serum marker in addition to CRP for assessing the immune response in USA patients.

  12. Expression of human adenosine deaminase in mice reconstituted with retrovirus-transduced hematopoietic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, J.M.; Danos, O.; Grossman, M.; Raulet, D.H.; Mulligan, R.C. (Massachusetts Institute of Technology, Cambridge (USA))

    1990-01-01

    Recombinant retroviruses encoding human adenosine deaminase have been used to infect murine hematopoietic stem cells. In bone marrow transplant recipients reconstituted with the genetically modified cells, human ADA was detected in peripheral blood mononuclear cells of the recipients for at least 6 months after transplantation. In animals analyzed in detail 4 months after transplantation, human ADA and proviral sequences were detected in all hematopoietic lineages; in several cases, human ADA activity exceeded the endogenous activity. These studies demonstrate the feasibility of introducing a functional human ADA gene into hematopoietic stem cells and obtaining expression in multiple hematopoietic lineages long after transplantation. This approach should be helpful in designing effective gene therapies for severe combined immunodeficiency syndromes in humans.

  13. Dispersed sites of HIV Vif-dependent polyubiquitination in the DNA deaminase APOBEC3F.

    Science.gov (United States)

    Albin, John S; Anderson, John S; Johnson, Jeffrey R; Harjes, Elena; Matsuo, Hiroshi; Krogan, Nevan J; Harris, Reuben S

    2013-04-12

    APOBEC3F (A3F) and APOBEC3G (A3G) are DNA cytosine deaminases that potently restrict human immunodeficiency virus type 1 replication when the virus is deprived of its accessory protein Vif (virion infectivity factor). Vif counteracts these restriction factors by recruiting A3F and A3G to an E3 ubiquitin (Ub) ligase complex that mediates their polyubiquitination (polyUb) and proteasomal degradation. While previous efforts have identified single amino acid residues in APOBEC3 proteins required for Vif recognition, less is known about the downstream Ub acceptor sites that are targeted. One prior report identified a cluster of polyubiquitinated residues in A3G and proposed an antiparallel model of A3G interaction with the Vif-E3 Ub ligase complex wherein Vif binding at one terminus of A3G orients the opposite terminus for polyUb [Iwatani et al. (2009). Proc. Natl. Acad. Sci. USA, 106, 19539-19544]. To test the generalizability of this model, we carried out a complete mutagenesis of the lysine residues in A3F and used a complementary, unbiased proteomic approach to identify Ub acceptor sites targeted by Vif. Our data indicate that internal lysines are the dominant Ub acceptor sites in both A3F and A3G. In contrast with the proposed antiparallel model, however, we find that the Vif-dependent polyUb of A3F and A3G can occur at multiple acceptor sites dispersed along predicted lysine-enriched surfaces of both the N- and C-terminal deaminase domains. These data suggest an alternative model for binding of APOBEC3 proteins to the Vif-E3 Ub ligase complex and diminish enthusiasm for the amenability of APOBEC3 Ub acceptor sites to therapeutic intervention.

  14. Effects of an induced adenosine deaminase deficiency on T-cell differentiation in the rat

    Energy Technology Data Exchange (ETDEWEB)

    Barton, R.W.

    1985-10-15

    Inherited deficiency of the enzyme adenosine deaminase (ADA) has been found in a significant proportion of patients with severe combined immunodeficiency disease and inherited defect generally characterized by a deficiency of both B and T cells. Two questions are central to understanding the pathophysiology of this disease: (1) at what stage or stages in lymphocyte development are the effects of the enzyme deficiency manifested; (2) what are the biochemical mechanisms responsible for the selective pathogenicity of the lymphoid system. We have examined the stage or stages of rat T-cell development in vivo which are affected by an induced adenosine deaminase deficiency using the ADA inhibitors, erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA) and 2'-deoxycoformycin (DCF). In normal rats given daily administration of an ADA inhibitor, cortical thymocytes were markedly depleted; peripheral lymphocytes and pluripotent hemopoietic stem cells (CFU-S) all were relatively unaffected. Since a deficiency of ADA affects lymphocyte development, the regeneration of cortical and medullary thymocytes and their precursors after sublethal irradiation was used as a model of lymphoid development. By Day 5 after irradiation the thymus was reduced to 0.10-0.5% of its normal size; whereas at Days 9 and 14 the thymus was 20-40% and 60-80% regenerated, respectively. When irradiated rats were given daily parenteral injections of the ADA inhibitor plus adenosine or deoxyadenosine, thymus regeneration at Days 9 and 14 was markedly inhibited, whereas the regeneration of thymocyte precursors was essentially unaffected. Thymus regeneration was at least 40-fold lower than in rats given adenosine or deoxyadenosine alone. Virtually identical results were obtained with both ADA inhibitors, EHNA and DCF.

  15. Activation-induced cell death in B lymphocytes

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Upon encountering the antigen (Ag), the immune system can either develop a specific immune response or enter a specific state of unresponsiveness, tolerance. The response of B cells to their specific Ag can be activation and proliferation, leading to the immune response, or anergy and activation-induced cell death (AICD), leading to tolerance. AICD in B lymphocytes is a highly regulated event initiated by crosslinking of the B cell receptor (BCR). BCR engagement initiates several signaling events such as activation of PLCγ, Ras, and PI3K, which generally speaking, lead to survival However, in the absence of survival signals (CD40 or IL-4R engagement), BCR crosslinking can also promote apoptotic signal transduction pathways such as activation of effector caspases, expression of pro-apoptotic genes, and inhibition of pro-survival genes. The complex interplay between survival and death signals determines the B cell fate and, consequently, the immune response.

  16. Characterization and optimization of 1-Aminocyclopropane-1-Carboxylate Deaminase (ACCD activity in different rhizospheric PGPR along with Microbacterium sp. strain ECI-12A

    Directory of Open Access Journals (Sweden)

    Ashok Kumar

    2013-03-01

    Full Text Available A total of nine strains of plant growth promoting rhizobacteria were analyzed for ACC deaminase activity, where highest ACC deaminase activity was found in Klebsiella sp strain ECI-10A (539.1 nmol α-keto butyrate/ mg protein/ h and lowest in Microbacterium sp strain ECI-12A (122.0 nmol α-keto butyrate/ mg protein/ h. Although Microbacterium sp strain ECI-12A showed lowest level of ACC deaminase activity, but, the species of Microbacterium isolated from rhizosphere is the first report. Microbacterium sp strain ECI-12A was also analyzed under varying conditions of time, amount of 1-Aminocyclopropane-1- carboxylate (ACC, and temperature for optimization of the ACC deaminase activity. The optimum activity was recorded with the supplementation of 5mM ACC at 30oC temperature after 24h of culture growth. All the nine strains showed acdS gene in the PCR amplification of that gene. No any rhizospheric Microbacterium species showing ACC deaminase activity have been reported earlier, therefore, we report here ACC deaminase activity in Microbacterium sp ECI-12A isolated from rice rhizosphere is a novel finding.

  17. Protein preparation and preliminary X-ray crystallographic analysis of a putative glucosamine 6-phosphate deaminase from Streptococcus mutants

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Guan-Jing; Li, Lan-Fen; Li, Dan; Liu, Cong [National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871 (China); Wei, Shi-Cheng, E-mail: kqsc-wei@bjmu.edu.cn [Peking University School of Stomatology, Beijing 100081 (China); Liang, Yu-He, E-mail: kqsc-wei@bjmu.edu.cn; Su, Xiao-Dong [National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871 (China)

    2007-09-01

    A glucosamine 6-phosphate deaminase homologue from S. mutans was expressed, purified and crystallized. Diffraction data have been collected to 2.4 Å resolution. The SMU.636 protein from Streptococcus mutans is a putative glucosamine 6-phosphate deaminase with 233 residues. The smu.636 gene was PCR-amplified from S. mutans genomic DNA and cloned into the expression vector pET-28a(+). The resultant His-tagged fusion protein was expressed in Escherichia coli and purified to homogeneity in two steps. Crystals of the fusion protein were obtained by the hanging-drop vapour-diffusion method. The crystals diffracted to 2.4 Å resolution and belong to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 53.83, b = 82.13, c = 134.70 Å.

  18. Sequence-specific binding of a hormonally regulated mRNA binding protein to cytidine-rich sequences in the lutropin receptor open reading frame.

    Science.gov (United States)

    Kash, J C; Menon, K M

    1999-12-21

    In previous studies, a lutropin receptor mRNA binding protein implicated in the hormonal regulation of lutropin receptor mRNA stability was identified. This protein, termed LRBP-1, was shown by RNA gel electrophoretic mobility shift assay to specifically interact with lutropin receptor RNA sequences. The present studies have examined the specificity of lutropin receptor mRNA recognition by LRBP-1 and mapped the contact site by RNA footprinting and by site-directed mutagenesis. LRBP-1 was partially purified by cation-exchange chromatography, and the mRNA binding properties of the partially purified LRBP-1 were examined by RNA gel electrophoretic mobility shift assay and hydroxyl-radical RNA footprinting. These data showed that the LRBP-1 binding site is located between nucleotides 203 and 220 of the receptor open reading frame, and consists of the bipartite polypyrimidine sequence 5'-UCUC-X(7)-UCUCCCU-3'. Competition RNA gel electrophoretic mobility shift assays demonstrated that homoribopolymers of poly(rC) were effective RNA binding competitors, while poly(rA), poly(rG), and poly(rU) showed no effect. Mutagenesis of the cytidine residues contained within the LRBP-1 binding site demonstrated that all the cytidines in the bipartite sequence contribute to LRBP-1 binding specificity. Additionally, RNA gel electrophoretic mobility supershift analysis showed that LRBP-1 was not recognized by antibodies against two well-characterized poly(rC) RNA binding proteins, alphaCP-1 and alphaCP-2, implicated in the regulation of RNA stability of alpha-globin and tyrosine hydroxylase mRNAs. In summary, we show that partially purified LRBP-1 binds to a polypyrimidine sequence within nucleotides 203 and 220 of lutropin receptor mRNA with a high degree of specificity which is indicative of its role in posttranscriptional control of lutropin receptor expression.

  19. NTP pattern of avian embryonic red cells: role of RNA degradation and AMP deaminase/5'-nucleotidase activity.

    Science.gov (United States)

    Baumann, Rosemarie; Gotz, Robert; Dragon, Stefanie

    2003-03-01

    During terminal erythroid differentiation, degradation of RNA is a potential source for nucleotide triphosphates (NTPs) that act as allosteric effectors of hemoglobin. In this investigation, we assessed the developmental profile of RNA and purine/pyrimidine trinucleotides in circulating embryonic chick red blood cells (RBC). Extensive changes of the NTP pattern are observed which differ significantly from what is observed for adult RBC. The biochemical mechanisms have not been identified yet. Therefore, we studied the role of AMP deaminase and IMP/GMP 5'-nucleotidase, which are key enzymes for the regulation of the purine nucleotide pool. Finally, we tested the effect of major NTPs on the oxygen affinity of embryonic/adult hemoglobin. The results are as follows. 1) Together with ATP, UTP and CTP serve as allosteric effectors of hemoglobin. 2) Degradation of erythroid RNA is apparently a major source for NTPs. 3) Developmental changes of nucleotide content depend on the activities of key enzymes (AMP deaminase, IMP/GMP 5'-nucleotidase, and pyrimidine 5'-nucleotidase). 4) Oxygen-dependent hormonal regulation of AMP deaminase adjusts the red cell ATP concentration and therefore the hemoglobin oxygen affinity.

  20. Neuronal activity-induced regulation of Lingo-1.

    Science.gov (United States)

    Trifunovski, Alexandra; Josephson, Anna; Ringman, Andreas; Brené, Stefan; Spenger, Christian; Olson, Lars

    2004-10-25

    Axonal regeneration after injury can be limited in the adult CNS by the presence of inhibitory proteins such as Nogo. Nogo binds to a receptor complex that consists of Nogo receptor (NgR), p75NTR, and Lingo-1. Nogo binding activates RhoA, which inhibits axonal outgrowth. Here we assessed Lingo-1 and NgR mRNA levels after delivery of BDNF into the rat hippocampal formation, Lingo-1 mRNA levels in rats subjected to kainic acid (KA) and running in running wheels. Lingo-1 mRNA was not changed by running. However, we found that Lingo-1 mRNA was strongly up-regulated while NgR mRNA was down-regulated in the dentate gyrus in both the BDNF and the KA experiments. Our data demonstrate inverse regulation of NgR and Lingo-1 in these situations, suggesting that Lingo-1 up-regulation is one characteristic of activity-induced neural plasticity responses.

  1. The investigation of Adenosine Deaminase activity in patients with Mycosis Fungoides

    Directory of Open Access Journals (Sweden)

    Yılmaz Ulaş

    2013-12-01

    Full Text Available Aim: Mycosis fungoides (MF is a cutaneous T cell lymphoma. The clinical and histophological diagnosis of early mycosis fungoides is usually diffucult. There is no special laboratory method for the diagnosis of MF disease and this is the most important problem in diagnosis and also follow up the effectiveness of treatment. Adenosine deaminase (ADA activity is a non-specific marker of T cell activation. In the present study, we aimed to investigate the levels of plasma and tissue ADA in patients with mycosis fungoides and to determine if ADA is an activation criteria for this disease. Materials and Medhods: The levels of ADA activities in both plasma and tissues were spectrophotometrically measured in 40 patients with MF and compared to those of 33 healthy subjects. Moreover, a subgroup analysis regarding ADA activities was performed in 17 patients who achieved complete remission after different kinds of treatments. Results: Patients with MF had more significantly elevated plasma and tissue ADA activity levels than those of control groups (respectively p0.05; MF patients in remission were found to have higher plasma levels of ADA activities than those of controls (p<0.001. Conclusion: These findings of the current study may provide an important clinical support for showing the roles of plasma and tissue ADA activity levels to predict disease activity in MF patients. In addition, levels of ADA activity measurements might be a marker to follow up in MF patients.

  2. Adenosine deaminase acting on RNA-1 (ADAR1 inhibits HIV-1 replication in human alveolar macrophages.

    Directory of Open Access Journals (Sweden)

    Michael D Weiden

    Full Text Available While exploring the effects of aerosol IFN-γ treatment in HIV-1/tuberculosis co-infected patients, we observed A to G mutations in HIV-1 envelope sequences derived from bronchoalveolar lavage (BAL of aerosol IFN-γ-treated patients and induction of adenosine deaminase acting on RNA 1 (ADAR1 in the BAL cells. IFN-γ induced ADAR1 expression in monocyte-derived macrophages (MDM but not T cells. ADAR1 siRNA knockdown induced HIV-1 expression in BAL cells of four HIV-1 infected patients on antiretroviral therapy. Similar results were obtained in MDM that were HIV-1 infected in vitro. Over-expression of ADAR1 in transformed macrophages inhibited HIV-1 viral replication but not viral transcription measured by nuclear run-on, suggesting that ADAR1 acts post-transcriptionally. The A to G hyper-mutation pattern observed in ADAR1 over-expressing cells in vitro was similar to that found in the lungs of HIV-1 infected patients treated with aerosol IFN-γ suggesting the model accurately represented alveolar macrophages. Together, these results indicate that ADAR1 restricts HIV-1 replication post-transcriptionally in macrophages harboring HIV-1 provirus. ADAR1 may therefore contribute to viral latency in macrophages.

  3. Degradation of the cancer genomic DNA deaminase APOBEC3B by SIV Vif.

    Science.gov (United States)

    Land, Allison M; Wang, Jiayi; Law, Emily K; Aberle, Ryan; Kirmaier, Andrea; Krupp, Annabel; Johnson, Welkin E; Harris, Reuben S

    2015-11-24

    APOBEC3B is a newly identified source of mutation in many cancers, including breast, head/neck, lung, bladder, cervical, and ovarian. APOBEC3B is a member of the APOBEC3 family of enzymes that deaminate DNA cytosine to produce the pro-mutagenic lesion, uracil. Several APOBEC3 family members function to restrict virus replication. For instance, APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H combine to restrict HIV-1 in human lymphocytes. HIV-1 counteracts these APOBEC3s with the viral protein Vif, which targets the relevant APOBEC3s for proteasomal degradation. While APOBEC3B does not restrict HIV-1 and is not targeted by HIV-1 Vif in CD4-positive T cells, we asked whether related lentiviral Vif proteins could degrade APOBEC3B. Interestingly, several SIV Vif proteins are capable of promoting APOBEC3B degradation, with SIVmac239 Vif proving the most potent. This likely occurs through the canonical polyubiquitination mechanism as APOBEC3B protein levels are restored by MG132 treatment and by altering a conserved E3 ligase-binding motif. We further show that SIVmac239 Vif can prevent APOBEC3B mediated geno/cytotoxicity and degrade endogenous APOBEC3B in several cancer cell lines. Our data indicate that the APOBEC3B degradation potential of SIV Vif is an effective tool for neutralizing the cancer genomic DNA deaminase APOBEC3B. Further optimization of this natural APOBEC3 antagonist may benefit cancer therapy.

  4. Correlation study of adenosine deaminase and its isoenzymes in type 2 diabetes mellitus

    Science.gov (United States)

    Sapkota, Lokendra Bahadur; Thapa, Sangita; Subedi, Nuwadatta

    2017-01-01

    Objective Adenosine deaminase (ADA) plays an important role in cell-mediated immunity and modulation of insulin activity. Its clinical and diagnostic significance in Nepalese type 2 diabetes is not yet characterized. So, this study's objective was to determine the isoenzymatic activities of ADA (ADA1, ADA2, and total ADA) and show its correlation with demographic, anthropometric, and biochemical characteristics of type 2 Nepalese subjects with diabetes. Research design and methods This is a hospital-based cross-sectional study including 80 type 2 diabetes mellitus (DM) patients and same number of age-matched and sex-matched healthy controls. Data were collected using preformed set of questionnaires and biochemical data were obtained from the laboratory analysis of the patient's blood samples. Statistical analysis was performed with SPSS V.20. Results A significantly higher (pdiabetic cases compared with controls. Serum ADA activities were significantly higher in cases compared with controls (pdiabetes. Conclusions Serum ADA activities were significantly higher in type 2 diabetic patients compared with controls having significant positive correlation with glycemic parameters. Serum ADA and its isoenzymes could be used as biomarkers for assessing glycemic status in patients with type 2 DM.

  5. Diagnostic value of interferon gamma and adenosine deaminase for tuberculous pleural effusion

    Institute of Scientific and Technical Information of China (English)

    Hou-rongCai; Chen-hongSun; Lin-juenDai; Zai-rongCheng

    2001-01-01

    To explore the significance of interferon gamma(IFN-γ) and adenosine deaminase (ADA)in differential diagnosis of pleural effusions. Methods: Levels of IFN-γ was measured by enzyme-linked immunosorbent assay, ADA activity was measured by colorimetric method. 37 patients with tuberculous pleural effusion and 36 patients with non-tuberculous pleurai effusions including 25 patients with malignant pleural effusions and 8 patients with pleural transudates were studied. Results: The levels of IFN-γ in patients with tuberculous pleural effusions(490.83±384.67 pg.mL-1) were higher than those with malignant pleural effusions(36.40±90.85 pg. mL-1) and pleural transudates(14.87±5.96 pg. mL-1) (P<0.01). Mean ADA activity was 52.69±17.78 U. L-1 in tuberculous pleural effusion; 19.53±13.59 in malignant pleural effusions; 9.43±4.06 inpleural transudates. The difference is significant (P<0.001). The diagnostic sensitivity of IFN-γ for tuberculous pleural effusions is 81%, specifity is 97%, the over accuracy is 90.4%. The diagnostic efficiency of ADA as following: sensitivity 89%, specifity 97%, and the over accuracy 94.5%. Conclusions: Assessments of IFN-γ and ADA in pleural effusions are of clinically diagnostic value in distinguishing tuberculous from non-tuberculous pleural effusions.

  6. Adenosine deaminase activity in serum and lymphocytes of rats infected with Sporothrix schenckii.

    Science.gov (United States)

    Castro, Verônica S P; Pimentel, Victor C; Da Silva, Aleksandro S; Thomé, Gustavo R; Wolkmer, Patrícia; Castro, Jorge L C; Costa, Márcio M; da Silva, Cássia B; Oliveira, Daniele C; Alves, Sydney H; Schetinger, Maria R C; Lopes, Sonia T A; Mazzanti, Cinthia M

    2012-07-01

    Sporotrichosis is a fungal infection of subcutaneous or chronic evolution, inflammatory lesions characterized by their pyogranulomatous aspect, caused by the dimorphic fungus Sporothrix schenckii. Adenosine deaminase (ADA) is a "key" enzyme in the purine metabolism, promoting the deamination of adenosine, an important anti-inflammatory molecule. The increase in ADA activity has been demonstrated in several inflammatory conditions; however, there are no data in the literature associated with this fungal infection. The objective of this study was to evaluate the activity of serum ADA (S-ADA) and lymphocytes (L-ADA) of rats infected with S. schenckii. We used seventy-eight rats divided into two groups. In the first experiment, rats were infected subcutaneously and in the second experiment, infected intraperitoneally. Blood samples for hematologic evaluation and activities of S-ADA and L-ADA were performed at days 15, 30, and 40 post-infection (PI) to assess disease progression. In the second experiment, it was observed an acute decrease in activity of S-ADA and L-ADA (P schenckii alters the activities of S-ADA in experimentally infected rats, demonstrating the involvement of this enzyme in the pathogenesis of sporotrichosis.

  7. Elevated erythrocyte adenosine deaminase activity in a patient with primary acquired sideroblastic anemia.

    Science.gov (United States)

    Kanno, H; Fujii, H; Tani, K; Morisaki, T; Takahashi, K; Horiuchi, N; Kizaki, M; Ogawa, T; Miwa, S

    1988-03-01

    We report a case of primary acquired sideroblastic anemia (PASA) associated with elevated erythrocyte adenosine deaminase (ADA) activity. The patient was an 85-year-old Japanese male. Analysis of the peripheral blood revealed pancytopenia, and the bone marrow findings showed marked ringed sideroblasts and chromosomal deletion (46XY, 11q-). The erythrocyte ADA activity was 17 times higher than that of normal control, the leukocyte ADA activity was within the normal range, and the plasma ADA activity was 2 times higher than the normal mean. The adenine nucleotides in the patient's erythrocytes were within normal range. According to starch gel electrophoresis, ADA isozyme of the patient was ADA 1. Western blotting showed an increased amount of ADA protein in the patient's erythrocytes. Southern blotting revealed no gene amplification or large structural change. Dot blot analysis of the reticulocyte mRNA showed no increase in the amount of ADA mRNA in the patient's reticulocytes compared with those of reticulocyte-rich controls. We considered that the mechanism of elevated ADA activity in this acquired defect was similar to that found in hereditary hemolytic anemia associated with ADA overproduction.

  8. Structural insights into E. coli porphobilinogen deaminase during synthesis and exit of 1-hydroxymethylbilane.

    Directory of Open Access Journals (Sweden)

    Navneet Bung

    2014-03-01

    Full Text Available Porphobilinogen deaminase (PBGD catalyzes the formation of 1-hydroxymethylbilane (HMB, a crucial intermediate in tetrapyrrole biosynthesis, through a step-wise polymerization of four molecules of porphobilinogen (PBG, using a unique dipyrromethane (DPM cofactor. Structural and biochemical studies have suggested residues with catalytic importance, but their specific role in the mechanism and the dynamic behavior of the protein with respect to the growing pyrrole chain remains unknown. Molecular dynamics simulations of the protein through the different stages of pyrrole chain elongation suggested that the compactness of the overall protein decreases progressively with addition of each pyrrole ring. Essential dynamics showed that domains move apart while the cofactor turn region moves towards the second domain, thus creating space for the pyrrole rings added at each stage. Residues of the flexible active site loop play a significant role in its modulation. Steered molecular dynamics was performed to predict the exit mechanism of HMB from PBGD at the end of the catalytic cycle. Based on the force profile and minimal structural changes the proposed path for the exit of HMB is through the space between the domains flanking the active site loop. Residues reported as catalytically important, also play an important role in the exit of HMB. Further, upon removal of HMB, the structure of PBGD gradually relaxes to resemble its initial stage structure, indicating its readiness to resume a new catalytic cycle.

  9. Modulatory effect of iron chelators on adenosine deaminase activity and gene expression in Trichomonas vaginalis.

    Science.gov (United States)

    Primon-Barros, Muriel; Rigo, Graziela Vargas; Frasson, Amanda Piccoli; Santos, Odelta dos; Smiderle, Lisiane; Almeida, Silvana; Macedo, Alexandre José; Tasca, Tiana

    2015-11-01

    Trichomonas vaginalis is a flagellate protozoan that parasitises the urogenital human tract and causes trichomoniasis. During the infection, the acquisition of nutrients, such as iron and purine and pyrimidine nucleosides, is essential for the survival of the parasite. The enzymes for purinergic signalling, including adenosine deaminase (ADA), which degrades adenosine to inosine, have been characterised in T. vaginalis. In the evaluation of the ADA profile in different T. vaginalis isolates treated with different iron sources or with limited iron availability, a decrease in activity and an increase in ADA gene expression after iron limitation by 2,2-bipyridyl and ferrozine chelators were observed. This supported the hypothesis that iron can modulate the activity of the enzymes involved in purinergic signalling. Under bovine serum limitation conditions, no significant differences were observed. The results obtained in this study allow for the assessment of important aspects of ADA and contribute to a better understanding of the purinergic system in T. vaginalis and the role of iron in establishing infection and parasite survival.

  10. AMP deaminase histochemical activity and immunofluorescent isozyme localization in rat skeletal muscle

    Science.gov (United States)

    Thompson, J. L.; Sabina, R. L.; Ogasawara, N.; Riley, D. A.

    1992-01-01

    The cellular distribution of AMP deaminase (AMPda) isozymes was documented for rat soleus and plantaris muscles, utilizing immunofluorescence microscopy and immunoprecipitation methods. AMPda is a ubiquitous enzyme existing as three distinct isozymes, A, B and C, which were initially purified from skeletal muscle, liver (and kidney), and heart, respectively. AMPda-A is primarily concentrated subsarcolemmally and intermyofibrillarly within muscle cells, while isozymes B and C are concentrated within non-myofiber elements of muscle tissue. AMPda-B is principally associated with connective tissues surrounding neural elements and the muscle spindle capsule, and AMPda-C is predominantly associated with circulatory elements, such as arterial and venous walls, capillary endothelium, and red blood cells. These specific localizations, combined with documented differences in kinetic properties, suggest multiple functional roles for the AMPda isozymes or temporal segregation of similar AMPda functions. Linkage of the AMPda substrate with adenosine production pathways at the AMP level and the localization of isozyme-C in vascular tissue suggest a regulatory role in the microcirculation.

  11. ADENOSINE DEAMINASE ACTIVITY AND SERUM C-REACTIVE PROTEIN AS PROGNOSTIC MARKERS OF CHAGAS DISEASE SEVERITY

    Directory of Open Access Journals (Sweden)

    Iván Darío BRAVO-TOBAR

    2015-10-01

    Full Text Available SUMMARY Chagas disease is a public health problem worldwide. The availability of diagnostic tools to predict the development of chronic Chagas cardiomyopathy is crucial to reduce morbidity and mortality. Here we analyze the prognostic value of adenosine deaminase serum activity (ADA and C-reactive protein serum levels (CRP in chagasic individuals. One hundred and ten individuals, 28 healthy and 82 chagasic patients were divided according to disease severity in phase I (n = 35, II (n = 29, and III (n = 18. A complete medical history, 12-lead electrocardiogram, chest X-ray, and M-mode echocardiogram were performed on each individual. Diagnosis of Chagas disease was confirmed by ELISA and MABA using recombinant antigens; ADA was determined spectrophotometrically and CRP by ELISA. The results have shown that CRP and ADA increased linearly in relation to disease phase, CRP being significantly higher in phase III and ADA at all phases. Also, CRP and ADA were positively correlated with echocardiographic parameters of cardiac remodeling and with electrocardiographic abnormalities, and negatively with ejection fraction. CRP and ADA were higher in patients with cardiothoracic index ≥ 50%, while ADA was higher in patients with ventricular repolarization disturbances. Finally, CRP was positively correlated with ADA. In conclusion, ADA and CRP are prognostic markers of cardiac dysfunction and remodeling in Chagas disease.

  12. Adaptive evolution of threonine deaminase in plant defense against insect herbivores

    Energy Technology Data Exchange (ETDEWEB)

    Gonzales-Vigil, Eliana; Bianchetti, Christopher M.; Phillips, Jr., George N.; Howe, Gregg A. (MSU); (UW)

    2011-11-07

    Gene duplication is a major source of plant chemical diversity that mediates plant-herbivore interactions. There is little direct evidence, however, that novel chemical traits arising from gene duplication reduce herbivory. Higher plants use threonine deaminase (TD) to catalyze the dehydration of threonine (Thr) to {alpha}-ketobutyrate and ammonia as the committed step in the biosynthesis of isoleucine (Ile). Cultivated tomato and related Solanum species contain a duplicated TD paralog (TD2) that is coexpressed with a suite of genes involved in herbivore resistance. Analysis of TD2-deficient tomato lines showed that TD2 has a defensive function related to Thr catabolism in the gut of lepidopteran herbivores. During herbivory, the regulatory domain of TD2 is removed by proteolysis to generate a truncated protein (pTD2) that efficiently degrades Thr without being inhibited by Ile. We show that this proteolytic activation step occurs in the gut of lepidopteran but not coleopteran herbivores, and is catalyzed by a chymotrypsin-like protease of insect origin. Analysis of purified recombinant enzymes showed that TD2 is remarkably more resistant to proteolysis and high temperature than the ancestral TD1 isoform. The crystal structure of pTD2 provided evidence that electrostatic interactions constitute a stabilizing feature associated with adaptation of TD2 to the extreme environment of the lepidopteran gut. These findings demonstrate a role for gene duplication in the evolution of a plant defense that targets and co-opts herbivore digestive physiology.

  13. Influence of hemodialysis on the plasma concentration of adenosine deaminase in patients with chronic kidney disease

    Directory of Open Access Journals (Sweden)

    Eduardo O. Chielle

    2015-06-01

    Full Text Available ABSTRACT Introduction: Over the past years there has been a significant increase in hospitalizations and treatments due to kidney complications that eventually resulted in the increased number of patients on dialysis. The adenosine deaminase (ADA enzyme mediates the formation of some defense cells of the organism and is therefore a marker of inflammation. Objective: The objective of this study was to evaluate biomarkers of renal function and serum ADA of hemodialysis patients. Materials and methods: Blood samples were collected from 80 patients – 40 women and 40 men – between 19 and 60 years old, before and after the completion of hemodialysis. Results: There was a significant difference in levels of creatinine, urea and ADA in pre- and post-hemodialysis periods (p < 0.0001. There was a significant increase in post-dialysis ADA regardless of sex; however there was a significantly greater increase in men. Conclusion: The results showed a reduction in urea and creatinine parameters, evidencing the main purpose of hemodialysis. This study suggests that the determination of ADA activity could be used to monitor inflammation in hemodialysis patients, however wider and more specific studies are needed to show the effectiveness of serum ADA activity as an inflammatory marker in patients with chronic kidney disease.

  14. Diagnostic value of pleural fluid adenosine deaminase activity in tuberculosis pleurisy

    Directory of Open Access Journals (Sweden)

    Abbas ali Niazi

    2009-09-01

    Full Text Available Background: Diagnosis of tuberculosis pleurisies is difficult because of its nonspecific clinical presentation and insufficient traditional diagnostic methods. We investigated the use of adenosine deaminase (ADA activity in tuberculosis pleurisies. Methods: A number of 85 patients were analyzed with exudative pleural effusions. Using the ROC curve, we determined the optimal cutoff for TB pleurisy. Results: A number of 58 exudative samples were nontuberculous (non-TB and 27 were tuberculosis (TB. There was statistically significant difference (p<0.0001 between the means of pleural fluid ADA levels among the TB and non-TB populations. The prevalence of TB pleurisy in the studied population was 31%. Using the cutoff point equal to 35 for diagnosing TB effusions the sensitivity and specificity 70.3% and 91.3%, respectively. The positive predictive value (PPV was 79.1% and the negative predictive value (NPV was 86.8%. A pleural fluid ADA value <19 IU/L suggests that a tuberculosis effusion is highly unlikely. Conclusion: Pleural fluid total ADA assay is a sensitive and specific test suitable for rapid diagnosis of TB pleurisy.

  15. The Role of Histidine-Proline-Rich Glycoprotein as Zinc Chaperone for Skeletal Muscle AMP Deaminase

    Directory of Open Access Journals (Sweden)

    Maria Ranieri-Raggi

    2014-05-01

    Full Text Available Metallochaperones function as intracellular shuttles for metal ions. At present, no evidence for the existence of any eukaryotic zinc-chaperone has been provided although metallochaperones could be critical for the physiological functions of Zn2+ metalloenzymes. We propose that the complex formed in skeletal muscle by the Zn2+ metalloenzyme AMP deaminase (AMPD and the metal binding protein histidine-proline-rich glycoprotein (HPRG acts in this manner. HPRG is a major plasma protein. Recent investigations have reported that skeletal muscle cells do not synthesize HPRG but instead actively internalize plasma HPRG. X-ray absorption spectroscopy (XAS performed on fresh preparations of rabbit skeletal muscle AMPD provided evidence for a dinuclear zinc site in the enzyme compatible with a (μ-aqua(μ-carboxylatodizinc(II core with two histidine residues at each metal site. XAS on HPRG isolated from the AMPD complex showed that zinc is bound to the protein in a dinuclear cluster where each Zn2+ ion is coordinated by three histidine and one heavier ligand, likely sulfur from cysteine. We describe the existence in mammalian HPRG of a specific zinc binding site distinct from the His-Pro-rich region. The participation of HPRG in the assembly and maintenance of skeletal muscle AMPD by acting as a zinc chaperone is also demonstrated.

  16. Fine mapping and functional activity of the adenosine deaminase origin in murine embryonic fibroblasts.

    Science.gov (United States)

    Sibani, Sahar; Rampakakis, Emmanouil; Di Paola, Domenic; Zannis-Hadjopoulos, Maria

    2008-06-01

    DNA replication initiates at origins within the genome. The late-firing murine adenosine deaminase (mAdA) origin is located within a 2 kb fragment of DNA, making it difficult to examine by realtime technology. In this study, fine mapping of the mAdA region by measuring the abundance of nascent strand DNA identified two origins, mAdA-1 and mAdA-C, located 397 bp apart from each other. Both origins conferred autonomous replication to plasmids transfected in murine embryonic fibroblasts (MEFs), and exhibited similar activities in vivo and in vitro. Furthermore, both were able to recruit the DNA replication initiator proteins Cdc6 and Ku in vitro, similar to other bona fide replication origins. When tested in a murine Ku80(-/-) cell line, both origins exhibited replication activities comparable to those observed in wildtype cells, as did the hypoxanthine-guanine phosphoribosyltransferase (HPRT) and c-myc origins. This contrasts with previously published studies using Ku80-deficient human cells lines and suggests differences in the mechanism of initiation of DNA replication between the murine and human systems.

  17. Camouflage Patterning in Maize Leaves Results from a Defect in Porphobilinogen Deaminase

    Institute of Scientific and Technical Information of China (English)

    Mingshu Huang; Thomas L.Slewinski; R.Frank Baker; Diane Janick-Buckner; Brent Buckner; Gurmukh S.Johal; David M.Braun

    2009-01-01

    Maize leaves are produced from polarized cell divisions that result in clonal cell lineages arrayed along the long axis of the leaf.We utilized this stereotypical division pattern to identify a collection of mutants that form chloroplast pigmentation sectors that violate the clonal cell lineages.Here,we describe the camouflage1 (cf1) mutant,which develops nonclonal,yellow-green sectors in its leaves.We cloned the cf1 gene by transposon tagging and determined that it encodes porphobilinogen deaminase (PBGD),an enzyme that functions early in chlorophyll and heme biosynthesis.While PBGD has been characterized biochemically,no viable mutations in this gene have been reported in plants.To investigate the in vivo function of PBGD,we characterized the cf1 mutant.Histological analyses revealed that of 1 yellow sectors display the novel phenotype of bundle sheath cell-specific death.Light-shift experiments determined that constant light suppressed cf1 sector formation,a dark/light transition is required to induce yellow sectors,and that sectors form only during a limited time of leaf development.Biochemical experiments determined that cf1 mutant leaves have decreased PBGD activity and increased levels of the enzyme substrate in both green and yellow regions.Furthermore,the cf1 yellow regions displayed a reduction in catalase activity.A threshold model is hypothesized to explain the cf1 variegation and incorporates photosynthetic cell differentiation,reactive oxygen species scavenging,and PBGD function.

  18. ADENOSINE DEAMINASE ACTIVITY AND SERUM C-REACTIVE PROTEIN AS PROGNOSTIC MARKERS OF CHAGAS DISEASE SEVERITY

    Science.gov (United States)

    BRAVO-TOBAR, Iván Darío; NELLO-PÉREZ, Carlota; FERNÁNDEZ, Alí; MOGOLLÓN, Nora; PÉREZ, Mary Carmen; VERDE, Juan; CONCEPCIÓN, Juan Luis; RODRIGUEZ-BONFANTE, Claudina; BONFANTE-CABARCAS, Rafael

    2015-01-01

    SUMMARY Chagas disease is a public health problem worldwide. The availability of diagnostic tools to predict the development of chronic Chagas cardiomyopathy is crucial to reduce morbidity and mortality. Here we analyze the prognostic value of adenosine deaminase serum activity (ADA) and C-reactive protein serum levels (CRP) in chagasic individuals. One hundred and ten individuals, 28 healthy and 82 chagasic patients were divided according to disease severity in phase I (n = 35), II (n = 29), and III (n = 18). A complete medical history, 12-lead electrocardiogram, chest X-ray, and M-mode echocardiogram were performed on each individual. Diagnosis of Chagas disease was confirmed by ELISA and MABA using recombinant antigens; ADA was determined spectrophotometrically and CRP by ELISA. The results have shown that CRP and ADA increased linearly in relation to disease phase, CRP being significantly higher in phase III and ADA at all phases. Also, CRP and ADA were positively correlated with echocardiographic parameters of cardiac remodeling and with electrocardiographic abnormalities, and negatively with ejection fraction. CRP and ADA were higher in patients with cardiothoracic index ≥ 50%, while ADA was higher in patients with ventricular repolarization disturbances. Finally, CRP was positively correlated with ADA. In conclusion, ADA and CRP are prognostic markers of cardiac dysfunction and remodeling in Chagas disease. PMID:26603224

  19. Glucose metabolism during fasting is altered in experimental porphobilinogen deaminase deficiency.

    Science.gov (United States)

    Collantes, María; Serrano-Mendioroz, Irantzu; Benito, Marina; Molinet-Dronda, Francisco; Delgado, Mercedes; Vinaixa, María; Sampedro, Ana; Enríquez de Salamanca, Rafael; Prieto, Elena; Pozo, Miguel A; Peñuelas, Iván; Corrales, Fernando J; Barajas, Miguel; Fontanellas, Antonio

    2016-04-01

    Porphobilinogen deaminase (PBGD) haploinsufficiency (acute intermittent porphyria, AIP) is characterized by neurovisceral attacks when hepatic heme synthesis is activated by endogenous or environmental factors including fasting. While the molecular mechanisms underlying the nutritional regulation of hepatic heme synthesis have been described, glucose homeostasis during fasting is poorly understood in porphyria. Our study aimed to analyse glucose homeostasis and hepatic carbohydrate metabolism during fasting in PBGD-deficient mice. To determine the contribution of hepatic PBGD deficiency to carbohydrate metabolism, AIP mice injected with a PBGD-liver gene delivery vector were included. After a 14 h fasting period, serum and liver metabolomics analyses showed that wild-type mice stimulated hepatic glycogen degradation to maintain glucose homeostasis while AIP livers activated gluconeogenesis and ketogenesis due to their inability to use stored glycogen. The serum of fasted AIP mice showed increased concentrations of insulin and reduced glucagon levels. Specific over-expression of the PBGD protein in the liver tended to normalize circulating insulin and glucagon levels, stimulated hepatic glycogen catabolism and blocked ketone body production. Reduced glucose uptake was observed in the primary somatosensorial brain cortex of fasted AIP mice, which could be reversed by PBGD-liver gene delivery. In conclusion, AIP mice showed a different response to fasting as measured by altered carbohydrate metabolism in the liver and modified glucose consumption in the brain cortex. Glucose homeostasis in fasted AIP mice was efficiently normalized after restoration of PBGD gene expression in the liver.

  20. Site-directed mutagenesis and bacterial expression of human adenosine deaminase

    Energy Technology Data Exchange (ETDEWEB)

    Danton, M.J.; Leonardo, J.; Riley, L.; Coleman, M.S.

    1987-05-01

    Adenosine deaminase (ADA) is a purine salvage pathway enzyme, the absence of which is associated with severe combined immunodeficiency disease. Time-resolved fluorescence studies, in the presence of enzyme inhibitors, indicate that at least one of the four tryptophans present in the protein molecule is close to (or in) the active site. To investigate the role of these tryptophan residues in enzyme function, they have cloned ADA cDNA into a vector in which expression is directed by the lambda P/sub R/ promoter. E. coli cells deficient in ADA were transformed with the vector construct and were shown to synthesize catalytically active human ADA. Site directed mutagenesis, coupled with a uracil selection technique for generating mutants with high efficiency, was used to construct mutant alleles of the cloned ADA. Eight mutants were obtained with base substitutions converting each of the four tryptophans to arginine or glycine. The correlation between these specific mutations and the functional expression of ADA has been examined in the ADA deficient bacterial host.

  1. Outcome of hematopoietic stem cell transplantation for adenosine deaminase-deficient severe combined immunodeficiency.

    Science.gov (United States)

    Hassan, Amel; Booth, Claire; Brightwell, Alex; Allwood, Zoe; Veys, Paul; Rao, Kanchan; Hönig, Manfred; Friedrich, Wilhelm; Gennery, Andrew; Slatter, Mary; Bredius, Robbert; Finocchi, Andrea; Cancrini, Caterina; Aiuti, Alessandro; Porta, Fulvio; Lanfranchi, Arnalda; Ridella, Michela; Steward, Colin; Filipovich, Alexandra; Marsh, Rebecca; Bordon, Victoria; Al-Muhsen, Saleh; Al-Mousa, Hamoud; Alsum, Zobaida; Al-Dhekri, Hasan; Al Ghonaium, Abdulaziz; Speckmann, Carsten; Fischer, Alain; Mahlaoui, Nizar; Nichols, Kim E; Grunebaum, Eyal; Al Zahrani, Daifulah; Roifman, Chaim M; Boelens, Jaap; Davies, E Graham; Cavazzana-Calvo, Marina; Notarangelo, Luigi; Gaspar, H Bobby

    2012-10-25

    Deficiency of the purine salvage enzyme adenosine deaminase leads to SCID (ADA-SCID). Hematopoietic cell transplantation (HCT) can lead to a permanent cure of SCID; however, little data are available on outcome of HCT for ADA-SCID in particular. In this multicenter retrospective study, we analyzed outcome of HCT in 106 patients with ADA-SCID who received a total of 119 transplants. HCT from matched sibling and family donors (MSDs, MFDs) had significantly better overall survival (86% and 81%) in comparison with HCT from matched unrelated (66%; P < .05) and haploidentical donors (43%; P < .001). Superior overall survival was also seen in patients who received unconditioned transplants in comparison with myeloablative procedures (81% vs 54%; P < .003), although in unconditioned haploidentical donor HCT, nonengraftment was a major problem. Long-term immune recovery showed that regardless of transplant type, overall T-cell numbers were similar, although a faster rate of T-cell recovery was observed after MSD/MFD HCT. Humoral immunity and donor B-cell engraftment was achieved in nearly all evaluable surviving patients and was seen even after unconditioned HCT. These data detail for the first time the outcomes of HCT for ADA-SCID and show that, if patients survive HCT, long-term cellular and humoral immune recovery is achieved.

  2. Expression of Drosophila adenosine deaminase in immune cells during inflammatory response.

    Science.gov (United States)

    Novakova, Milena; Dolezal, Tomas

    2011-03-11

    Extra-cellular adenosine is an important regulator of inflammatory responses. It is generated from released ATP by a cascade of ectoenzymes and degraded by adenosine deaminase (ADA). There are two types of enzymes with ADA activity: ADA1 and ADGF/ADA2. ADA2 activity originates from macrophages and dendritic cells and is associated with inflammatory responses in humans and rats. Drosophila possesses a family of six ADGF proteins with ADGF-A being the main regulator of extra-cellular adenosine during larval stages. Herein we present the generation of a GFP reporter for ADGF-A expression by a precise replacement of the ADGF-A coding sequence with GFP using homologous recombination. We show that the reporter is specifically expressed in aggregating hemocytes (Drosophila immune cells) forming melanotic capsules; a characteristic of inflammatory response. Our vital reporter thus confirms ADA expression in sites of inflammation in vivo and demonstrates that the requirement for ADA activity during inflammatory response is evolutionary conserved from insects to vertebrates. Our results also suggest that ADA activity is achieved specifically within sites of inflammation by an uncharacterized post-transcriptional regulation based mechanism. Utilizing various mutants that induce melanotic capsule formation and also a real immune challenge provided by parasitic wasps, we show that the acute expression of the ADGF-A protein is not driven by one specific signaling cascade but is rather associated with the behavior of immune cells during the general inflammatory response. Connecting the exclusive expression of ADGF-A within sites of inflammation, as presented here, with the release of energy stores when the ADGF-A activity is absent, suggests that extra-cellular adenosine may function as a signal for energy allocation during immune response and that ADGF-A/ADA2 expression in such sites of inflammation may regulate this role.

  3. Mutation Processes in 293-Based Clones Overexpressing the DNA Cytosine Deaminase APOBEC3B.

    Directory of Open Access Journals (Sweden)

    Monica K Akre

    Full Text Available Molecular, cellular, and clinical studies have combined to demonstrate a contribution from the DNA cytosine deaminase APOBEC3B (A3B to the overall mutation load in breast, head/neck, lung, bladder, cervical, ovarian, and other cancer types. However, the complete landscape of mutations attributable to this enzyme has yet to be determined in a controlled human cell system. We report a conditional and isogenic system for A3B induction, genomic DNA deamination, and mutagenesis. Human 293-derived cells were engineered to express doxycycline-inducible A3B-eGFP or eGFP constructs. Cells were subjected to 10 rounds of A3B-eGFP exposure that each caused 80-90% cell death. Control pools were subjected to parallel rounds of non-toxic eGFP exposure, and dilutions were done each round to mimic A3B-eGFP induced population fluctuations. Targeted sequencing of portions of TP53 and MYC demonstrated greater mutation accumulation in the A3B-eGFP exposed pools. Clones were generated and microarray analyses were used to identify those with the greatest number of SNP alterations for whole genome sequencing. A3B-eGFP exposed clones showed global increases in C-to-T transition mutations, enrichments for cytosine mutations within A3B-preferred trinucleotide motifs, and more copy number aberrations. Surprisingly, both control and A3B-eGFP clones also elicited strong mutator phenotypes characteristic of defective mismatch repair. Despite this additional mutational process, the 293-based system characterized here still yielded a genome-wide view of A3B-catalyzed mutagenesis in human cells and a system for additional studies on the compounded effects of simultaneous mutation mechanisms in cancer cells.

  4. Evaluation of adenosine deaminase seric activity in the diagnosis of bovine tuberculosis

    Directory of Open Access Journals (Sweden)

    Márcio Roberto Silva

    2006-06-01

    Full Text Available Determination of seric levels of adenosine deaminase (ADA, an enzyme produced by monocytes/macrophages and lymphocytes, has been used in the diagnosis of human tuberculosis (TB. In the present study, ADA seric activity was evaluated comparatively to the comparative tuberculin test in the diagnosis of bovine tuberculosis. Two hundred fifty-six cattle were classified by origin and by the comparative tuberculin test as TB-positive animals (n = 52, from herds where the Mycobacterium bovis had previously been isolated, and TB-negative animals (n = 204, TB-free herds. The mean ADA seric value from the TB-positive group (4.45 ± 2.33 U/L was significantly lower (p = 0.008 than that observed in sera from the TB-negative group (6.12 ± 4.47 U/L. When animals from a herd with clinical cases of enzootic bovine leukosis of TB-negative group were withdrawn from analysis, the mean ADA seric values of TB-negative group (5.12 ± 3.75 U/L was not significantly different anymore from that of the TB-positive group (p = 0.28. There was no agreement in the diagnosis of bovine TB between comparative tuberculin test and determination of ADA seric values, using two different cutoff points, being 6.12 U/L and 15.0 U/L, (kappa = -0.086 and kappa = -0.082, respectively. In conclusion, the determination of ADA seric activity was not a good auxiliary test for bovine TB, because it was not able to distinguish between TB-positive and TB-negative animals.

  5. Adenosine deaminase polymorphism affects sleep EEG spectral power in a large epidemiological sample.

    Directory of Open Access Journals (Sweden)

    Diego Robles Mazzotti

    Full Text Available Slow wave oscillations in the electroencephalogram (EEG during sleep may reflect both sleep need and intensity, which are implied in homeostatic regulation. Adenosine is strongly implicated in sleep homeostasis, and a single nucleotide polymorphism in the adenosine deaminase gene (ADA G22A has been associated with deeper and more efficient sleep. The present study verified the association between the ADA G22A polymorphism and changes in sleep EEG spectral power (from C3-A2, C4-A1, O1-A2, and O2-A1 derivations in the Epidemiologic Sleep Study (EPISONO sample from São Paulo, Brazil. Eight-hundred individuals were subjected to full-night polysomnography and ADA G22A genotyping. Spectral analysis of the EEG was carried out in all individuals using fast Fourier transformation of the signals from each EEG electrode. The genotype groups were compared in the whole sample and in a subsample of 120 individuals matched according to ADA genotype for age, gender, body mass index, caffeine intake status, presence of sleep disturbance, and sleep-disturbing medication. When compared with homozygous GG genotype carriers, A allele carriers showed higher delta spectral power in Stage 1 and Stages 3+4 of sleep, and increased theta spectral power in Stages 1, 2 and REM sleep. These changes were seen both in the whole sample and in the matched subset. The higher EEG spectral power indicates that the sleep of individuals carrying the A allele may be more intense. Therefore, this polymorphism may be an important source of variation in sleep homeostasis in humans, through modulation of specific components of the sleep EEG.

  6. Autoimmune dysregulation and purine metabolism in adenosine deaminase (ADA-deficiency

    Directory of Open Access Journals (Sweden)

    Aisha Vanessa Sauer

    2012-08-01

    Full Text Available Genetic defects in the adenosine deaminase (ADA gene are among the most common causes for severe combined immunodeficiency (SCID. ADA-SCID patients suffer from lymphopenia, severely impaired cellular and humoral immunity, failure to thrive and recurrent infections. Currently available therapeutic options for this otherwise fatal disorder include bone marrow transplantation (BMT, enzyme replacement therapy with bovine ADA (PEG-ADA or hematopoietic stem cell gene therapy (HSC-GT. Although varying degrees of immune reconstitution can be achieved by these treatments, breakdown of tolerance is a major concern in ADA-SCID. Immune dysregulation such as autoimmune hypothyroidism, diabetes mellitus, hemolytic anemia, and immune thrombocytopenia are frequently observed in milder forms of the disease. However, several reports document similar complications also in patients on long-term PEG-ADA and after BMT or GT treatment.A skewed repertoire and decreased immune functions have been implicated in autoimmunity observed in certain B-cell and/or T-cell immunodeficiencies, but it remains unclear to what extent specific mechanisms of tolerance are affected in ADA deficiency. Herein we provide an overview about ADA-SCID and the autoimmune manifestations reported in these patients before and after treatment. We also assess the value of the ADA-deficient mouse model as a useful tool to study both immune and metabolic disease mechanisms. With focus on regulatory T and B cells we discuss the lymphocyte subpopulations particularly prone to contribute to the loss of self-tolerance and onset of autoimmunity in ADA deficiency. Moreover we address which aspects of immune dysregulation are specifically related to alterations in purine metabolism caused by the lack of ADA and the subsequent accumulation of metabolites with immunomodulatory properties.

  7. Preliminary investigations on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC deaminase activity.

    Science.gov (United States)

    Nadeem, Sajid Mahmood; Zahir, Zahir Ahmad; Naveed, Muhammad; Arshad, Muhammad

    2007-10-01

    Twenty rhizobacterial strains containing 1-aminocyclopropane-1-carboxylate deaminase were isolated from the rhizosphere of salt-affected maize fields. They were screened for their growth-promoting activities under axenic conditions at 1, 4, 8, and 12 dS x m-1 salinity levels. Based upon the data of the axenic study, the 6 most effective strains were selected to conduct pot trials in the wire house. Besides one original salinity level (1.6 dS x m-1), 3 other salinity levels (4, 8, and 12 dS x m-1) were maintained in pots and maize seeds inoculated with selected strains of plant growth-promoting rhizobacteria, as well as uninoculated controls were sown. Results showed that the increase in salinity level decreased the growth of maize seedlings. However, inoculation with rhizobacterial strains reduced this depression effect and improved the growth and yield at all the salinity levels tested. Selected strains significantly increased plant height, root length, total biomass, cob mass, and grain yield up to 82%, 93%, 51%, 40%, and 50%, respectively, over respective uninoculated controls at the electrical conductivity of 12 dS x m-1. Among various plant growth-promoting rhizobacterial strains, S5 (Pseudomonas syringae), S14 (Enterobacter aerogenes), and S20 (Pseudomonas fluorescens) were the most effective strains for promoting the growth and yield of maize, even at high salt stress. The relatively better salt tolerance of inoculated plants was associated with a high K+/Na+ ratio as well as high relative water and chlorophyll and low proline contents.

  8. Adenosine deaminase in CSF and pleural fluid for diagnosis of tubercular meningitis and pulmonary tuberculosis.

    Science.gov (United States)

    Nepal, A K; Gyawali, N; Poudel, B; Mahato, R V; Lamsal, M; Gurung, R; Baral, N; Majhi, S

    2012-12-01

    Tuberculosis (TB) is one of the most common infectious diseases in developing countries including Nepal. Delay in diagnosis and treatment of tuberculosis results in poor prognosis of the disease. This study was conducted to estimate diagnostic cut off values of Adenosine Deaminase (ADA) in cerebrospinal fluid (CSF) and pleural fluid and to evaluate the sensitivity, specificity, positive and negative predictive values ofADA in pleural fluid and CSF from patients with tuberculous and non-tuberculous disease. A total of 98 body fluid (CSF: 24, Pleural fluid: 74) specimens were received for the estimation of ADA. ADA activity was measured at 37 degrees C by spectrophotometric method of Guisti and Galanti, 1984 at 625nm wavelength. Among the patients enrolled for the study subjects for which CSF were received (n = 24) included 8 tuberculous meningitis (TBM), and 16 non-tubercular meningitis (NTM). Pleural fluid samples (n = 74) were received from 19 pulmonary TB with pleural effusion, 17 PTB without pleural effusion and 37 of non-tuberculous disease patients. CSF ADA activity were (11. 1 +/- 2.03 IU/L) and (5.3 +/- +1.89 IU/L) (p <00001) in TM and non-NTM groups and Pleural fluid ADA activity were (10 +/- 22.18 IU/L) and (23.79 +/- 11.62 IU/L) (p < 0.001) in PTB and non-TB groups respectively. ADA test in body fluids, which is simple, cost-effective and sensitive, specific for the tubercular disease is recommended to perform before forwarding the cumbersome and expensive procedures like culture and PCR for TB diagnosis.

  9. Cerebrospinal fluid adenosine deaminase activity: A complimentary tool in the early diagnosis of tuberculous meningitis

    Directory of Open Access Journals (Sweden)

    Taori Girdhar M

    2006-03-01

    Full Text Available Abstract Background Tuberculous meningitis (TBM is the commonest form of neurotuberculosis caused by Mycobacterium tuberculosis bacilli (MTB. The diagnosis of TBM is often difficult. A reliable, cost-effective and rapid diagnostic test, which can be performed in any standard pathology laboratory, could be of help in the diagnosis of TBM. In the present study we measured the adenosine deaminase (ADA activity in cerebrospinal fluid (CSF of TBM and non-TBM patients. Method ADA activity in CSF was determined according to a method based on the Berthlot reaction, which is the formation of a colored indophenol complex from ammonia liberated from adenosine, and quantified spectrophotometrically. Results The CSF ADA activity from TBM patients was compared with CSF ADA from non-TBM infectious meningitis patients, and from patients with non-infectious neurological disorders. The mean CSF ADA activity was found to be significantly higher in CSF of TBM patients, 14.31 ± 3.87 (2.99–26.94, mean ± SD with range, than in the CSF from non-TBM infectious meningitis, 9.25 ± 2.14 (4.99–13.96 and from the non-infectious neurological disorders group, 2.71 ± 1.96 (0.00–7.68, P Conclusion This study demonstrated that ADA activity in the CSF of TBM patients, using a cut-off value 11.39 U/L/min, can be useful for the early differential diagnosis of TBM. This test can be performed in any pathology laboratory where more sophisticated methods are not available.

  10. Dual targeting of tumor angiogenesis and chemotherapy by endostatin-cytosine deaminase-uracil phosphoribosyltransferase.

    Science.gov (United States)

    Chen, Chun-Te; Yamaguchi, Hirohito; Lee, Hong-Jen; Du, Yi; Lee, Heng-Huan; Xia, Weiya; Yu, Wen-Hsuan; Hsu, Jennifer L; Yen, Chia-Jui; Sun, Hui-Lung; Wang, Yan; Yeh, Edward T H; Hortobagyi, Gabriel N; Hung, Mien-Chie

    2011-08-01

    Several antiangiogenic drugs targeting VEGF/VEGF receptor (VEGFR) that were approved by the Food and Drug Administration for many cancer types, including colorectal and lung cancer, can effectively reduce tumor growth. However, targeting the VEGF signaling pathway will probably influence the normal function of endothelial cells in maintaining homeostasis and can cause unwanted adverse effects. Indeed, emerging experimental evidence suggests that VEGF-targeting therapy induced less tumor cell-specific cytotoxicity, allowing residual cells to become more resistant and eventually develop a more malignant phenotype. We report an antitumor therapeutic EndoCD fusion protein developed by linking endostatin (Endo) to cytosine deaminase and uracil phosphoribosyltransferase (CD). Specifically, Endo possesses tumor antiangiogenesis activity that targets tumor endothelial cells, followed by CD, which converts the nontoxic prodrug 5-fluorocytosine (5-FC) to the cytotoxic antitumor drug 5-fluorouracil (5-FU) in the local tumor area. Moreover, selective targeting of tumor sites allows an increasing local intratumoral concentration of 5-FU, thus providing high levels of cytotoxic activity. We showed that treatment with EndoCD plus 5-FC, compared with bevacizumab plus 5-FU treatment, significantly increased the 5-FU concentration around tumor sites and suppressed tumor growth and metastasis in human breast and colorectal orthotropic animal models. In addition, in contrast to treatment with bevacizumab/5-FU, EndoCD/5-FC did not induce cardiotoxicity leading to heart failure in mice after long-term treatment. Our results showed that, compared with currently used antiangiogenic drugs, EndoCD possesses potent anticancer activity with virtually no toxic effects and does not increase tumor invasion or metastasis. Together, these findings suggest that EndoCD/5-FC could become an alternative option for future antiangiogenesis therapy.

  11. Mutation of Escherichia coli cytosine deaminase significantly enhances molecular chemotherapy of human glioma.

    Science.gov (United States)

    Kaliberov, S A; Market, J M; Gillespie, G Y; Krendelchtchikova, V; Della Manna, D; Sellers, J C; Kaliberova, L N; Black, M E; Buchsbaum, D J

    2007-07-01

    Combined treatment using adenoviral (Ad)-directed enzyme/prodrug therapy and radiation therapy has the potential to become a powerful method of cancer therapy. We have developed an Ad vector encoding a mutant bacterial cytosine deaminase (bCD) gene (AdbCD-D314A), which has a higher affinity for cytosine than wild-type bCD (bCDwt). The purpose of this study was to evaluate cytotoxicity in vitro and therapeutic efficacy in vivo of the combination of AdbCD-D314A with the prodrug 5-fluorocytosine (5-FC) and ionizing radiation against human glioma. The present study demonstrates that AdbCD-D314A infection resulted in increased 5-FC-mediated cell killing, compared with AdbCDwt. Furthermore, a significant increase in cytotoxicity following AdbCD-D314A and radiation treatment of glioma cells in vitro was demonstrated as compared to AdbCDwt. Animal studies showed significant inhibition of subcutaneous or intracranial tumor growth of D54MG glioma xenografts by the combination of AdbCD-D314A/5-FC with ionizing radiation as compared with either agent alone, and with AdbCDwt/5-FC plus radiation. The results suggest that the combination of AdbCD-D314A/5-FC with radiation produces markedly increased cytotoxic effects in cancer cells in vitro and in vivo. These data indicate that combined treatment with this novel mutant enzyme/prodrug therapy and radiotherapy provides a promising approach for cancer therapy.

  12. Mutations in the human adenosine deaminase gene that affect protein structure and RNA splicing

    Energy Technology Data Exchange (ETDEWEB)

    Akeson, A.L.; Wiginton, D.A.; States, C.J.; Perme, C.M.; Dusing, M.R.; Hutton, J.J.

    1987-08-01

    Adenosine deaminase deficiency is one cause of the genetic disease severe combined immunodeficiency. To identify mutations responsible for ADA deficiency, the authors synthesized cDNAs to ADA mRNAs from two cell lines, GM2756 and GM2825A, derived from ADA-deficient immunodeficient patients. Sequence analysis of GM2756 cDNA clones revealed a different point mutation in each allele that causes amino acid changes of alanine to valine and arginine to histidine. One allele of GM2825A also has a point mutation that causes an alanine to valine substitution. The other allele of GM2825A was found to produce an mRNA in which exon 4 had been spliced out but had no other detrimental mutations. S1 nuclease mapping of GM2825A mRNA showed equal abundance of the full-length ADA mRNA and the ADA mRNA that was missing exon 4. Several of the ADA cDNA clones extended 5' of the major initiation start site, indicating multiple start sites for ADA transcription. The point mutations in GM2756 and GM2825A and the absence of exon 4 in GM2825A appear to be directly responsible for the ADA deficiency. Comparison of a number of normal and mutant ADA cDNA sequences showed a number of changes in the third base of codons. These change do not affect the amino acid sequence. Analyses of ADA cDNAs from different cell lines detected aberrant RNA species that either included intron 7 or excluded exon 7. Their presence is a result of aberrant splicing of pre-mRNAs and is not related to mutations that cause ADA deficiency.

  13. Adenosine deaminase activity in serum, erythrocytes and lymphocytes of rats infected with Leptospira icterohaemorrhagiae.

    Science.gov (United States)

    Tonin, Alexandre A; Pimentel, Victor C; da Silva, Aleksandro S; de Azevedo, Maria Isabel; Souza, Viviane C G; Wolkmer, Patrícia; Rezer, João F P; Badke, Manoel R T; Leal, Daniela B R; Schetinger, Maria Rosa C; Monteiro, Silvia G; Lopes, Sonia T A

    2012-04-01

    Leptospirosis is a systemic disease of humans and domestic animals, mainly dogs, cattle and swine. The course of human leptospirosis varies from mild to severe fatal forms and the most severe form of human leptospirosis is principally caused by Leptospira interrogans serovar icterohaemorrhagiae (L. icterohaemorrhagiae). The enzyme adenosine deaminase (ADA) plays an important role in the production and differentiation of blood cells. The aim of this study was to evaluate the activity of ADA in serum, erythrocytes and lymphocytes of rats infected with L. icterohaemorrhagiae, as compared with non-infected rats. Twenty-four adult rats, divided into two uniform groups (A and B) were used for the enzymatic assays. The animals in Group B were inoculated intraperitoneally with 2×10(8) leptospires/rat, and the rodents in Group A (control) were not-inoculated. Blood collection was performed on days 5 and 15 post-infection (PI) and the blood used to assess the ADA activity. The infection by L.icterohaemorrhagiae altered erythrocyte count, hemoglobin concentration and hematocrit, causing a decrease in all these parameters on day 15 PI. Lymphocytes decreased significantly on day 15 PI, and ADA activity in serum was inhibited in infected rats on days 5 and 15 PI and its activity in erythrocytes were increased on day 5 PI. On day 5 PI, we found an increase in ADA activity in erythrocytes of infected rats. No correlation was observed between hematocrit and erythrocyte ADA activity on days 5 and 15 PI. The ADA activity was inhibited in rats infected on day 15 PI. A positive correlation (r(2)=60) was also observed between the number of lymphocytes and ADA activity in lymphocytes on day 15 PI (Perythrocytes in experimental infection by L.icterohaemorrhagiae in rats, concomitantly with hematological parameters.

  14. Hyperbilirubinemia and rapid fatal hepatic failure in severe combined immunodeficiency caused by adenosine deaminase deficiency (ADA-SCID).

    Science.gov (United States)

    Kühl, J S; Schwarz, K; Münch, A; Schmugge, M; Pekrun, A; Meisel, C; Wahn, V; Ebell, W; von Bernuth, H

    2011-03-01

    Adenosin deaminase (ADA) deficiency is the cause for Severe Combined Immunodeficiency (SCID) in about 15% of patients with SCID, often presenting as T (-)B (-)NK (-)SCID. Treatment options for ADA-SCID are enzyme replacement, bone marrow transplantation or gene therapy. We here describe the first patient with ADA-SCID and fatal hepatic failure despite bone marrow transplantation from a 10/10 HLA identical related donor. As patients with ADA-SCID may be at yet underestimated increased risk for rapid hepatic failure we speculate whether hepatitis in ADA-SCID should lead to the immediate treatment with enzyme replacement by pegylated ADA.

  15. Solubility of disodium cytidine 5′-monophosphate in different binary mixtures from 288.15 K to 313.15 K

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Jin [College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing (China); National Engineering Technique Research Center for Biotechnology, Nanjing (China); Ma, Tianle; Li, An [National Engineering Technique Research Center for Biotechnology, Nanjing (China); State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing (China); Chen, Xiaochun; Chen, Yong; Xie, Jingjing [College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing (China); National Engineering Technique Research Center for Biotechnology, Nanjing (China); Wu, Jinglan, E-mail: yinghanjie@njut.edu.cn [College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing (China); National Engineering Technique Research Center for Biotechnology, Nanjing (China); Ying, Hanjie [College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing (China); National Engineering Technique Research Center for Biotechnology, Nanjing (China); State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing (China)

    2013-08-10

    Highlights: • Solubility of 5′-CMPNa{sub 2} in different systems was measured the first time. • Experimental data were correlated by CNIBS/Redlich–Kister model and Apelblat model. • Good agreement has been observed between the calculated and the experimental data. • Enthalpy and entropy were calculated by the van’t Hoff equation and Gibbs equation. - Abstract: The solubility of disodium cytidine 5′-monophosphate (5′-CMPNa{sub 2}) in methanol + water and ethanol + water binary mixtures was measured experimentally at the temperatures ranging from 288.15 to 313.15 K. The results showed that the solubility of 5′-CMPNa{sub 2} increased with the increasing of temperature and the mole fraction of water in different binary mixtures. The (CNIBS)/Redlich–Kister model and the semi-empirical Apelblat model were applied for the prediction of the experimental data. Both models could give satisfactory simulation results. In addition, the thermodynamic properties of the dissolution process such as Gibbs energy, enthalpy, and entropy were calculated using the van’t Hoff equation and the Gibbs equation. The results indicated that the dissolution process was endothermic.

  16. Production of α1,3-galactosyltransferase and cytidine monophosphate-N-acetylneuraminic acid hydroxylase gene double-deficient pigs by CRISPR/Cas9 and handmade cloning

    Science.gov (United States)

    GAO, Hanchao; ZHAO, Chengjiang; XIANG, Xi; LI, Yong; ZHAO, Yanli; LI, Zesong; PAN, Dengke; DAI, Yifan; HARA, Hidetaka; COOPER, David K.C.; CAI, Zhiming; MOU, Lisha

    2016-01-01

    Gene-knockout pigs hold great promise as a solution to the shortage of organs from donor animals for xenotransplantation. Several groups have generated gene-knockout pigs via clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) and somatic cell nuclear transfer (SCNT). Herein, we adopted a simple and micromanipulator-free method, handmade cloning (HMC) instead of SCNT, to generate double gene-knockout pigs. First, we applied the CRISPR/Cas9 system to target α1,3-galactosyltransferase (GGTA1) and cytidine monophosphate-N-acetylneuraminic acid hydroxylase (CMAH) genes simultaneously in porcine fetal fibroblast cells (PFFs), which were derived from wild-type Chinese domestic miniature Wuzhishan pigs. Cell colonies were obtained by screening and were identified by Surveyor assay and sequencing. Next, we chose the GGTA1/CMAH double-knockout (DKO) cells for HMC to produce piglets. As a result, we obtained 11 live bi-allelic GGTA1/CMAH DKO piglets with the identical phenotype. Compared to cells from GGTA1-knockout pigs, human antibody binding and antibody-mediated complement-dependent cytotoxicity were significantly reduced in cells from GGTA1/CMAH DKO pigs, which demonstrated that our pigs would exhibit reduced humoral rejection in xenotransplantation. These data suggested that the combination of CRISPR/Cas9 and HMC technology provided an efficient and new strategy for producing pigs with multiple genetic modifications. PMID:27725344

  17. Electrophysiological assessment of glaucomatous visual dysfunction during treatment with cytidine-5'-diphosphocholine (citicoline): a study of 8 years of follow-up.

    Science.gov (United States)

    Parisi, Vincenzo

    2005-01-01

    In this study we assessed, by simultaneous recordings of visual evoked potentials (VEPs) and pattern-electroretinograms (PERGs), the effects cytidine-5'-diphosphocholine (citicoline) on retinal function and/or visual cortical responses in glaucoma patients. Thirty glaucoma patients were randomly divided into two age-matched groups: patients in group GC (15 patients) were treated with citicoline (1,000 mg/die intramuscularly) for 2 months; patients in group GP (15 patients) were treated with placebo for 2 months. After 4 months of wash-out (month 6), GC patients underwent a further 2-month period of citicoline treatment (months 7-8) followed by another 4-month period of wash-out (months 9-12). In GP patients the wash-out was extended for a further 6 months (months 7-12). During the following 13-96 months, GC patients received additional 2-month periods of treatment with citicoline (each period followed by 4 months of wash-out) for a total of 16 periods in 8 years. GP patients were also examined at months 24, 26, 48, 60, 72, 84 and 96. In GC patients the first two treatments with citicoline induced a significant (p citicoline treatment in GC patients during the subsequent 13-96 months induced a greater (p citicoline significantly improves retinal and cortical bioelectrical responses in glaucoma patients, suggesting a potential use of this substance in the medical treatment of glaucoma, as a complement to hypotensive therapy.

  18. Single- and repeated-dose oral toxicity studies of citicoline free-base (choline cytidine 5'-pyrophosphate) in Sprague-Dawley rats.

    Science.gov (United States)

    Schauss, A G; Somfai-Relle, S; Financsek, I; Glavits, R; Parent, S C; Endres, J R; Varga, T; Szücs, Z; Clewell, A

    2009-01-01

    The dietary supplement Citicoline free-base (choline cytidine 5'-pyrophosphate) was toxicologically evaluated in Sprague-Dawley rats using oral gavage. In an acute 14-day study, 2000 mg/kg was well tolerated. In a 90-day study, 100, 350, and 1000 mg/kg/day doses resulted in no mortality. In males, slight significant increases in serum creatinine (350 and 1000 mg/kg/day), and decreases in urine volume (all treated groups) were observed. In females, slight significant increases in total white blood cell and absolute lymphocyte counts (1000 mg/kg/day), and blood urea nitrogen (BUN) (100 and 350, but not 1000 mg/kg/day) were noted. A dose-related increase in renal tubular mineralization, without degenerative or inflammatory reaction, was found in females (all treated groups) and two males (1000 mg/kg/day). Renal mineralization in rats (especially females) is influenced by calcium:phosphorus ratios in the diet. A high level of citicoline consumption resulted in increased phosphorus intake in the rats, and likely explains this result.

  19. Expression of the 1-Aminocyclopropane-1-Carboxylic Acid Deaminase Gene Requires Symbiotic Nitrogen-Fixing Regulator Gene nifA2 in Mesorhizobium loti MAFF303099

    OpenAIRE

    Nukui, Noriyuki; MINAMISAWA, KIWAMU; Ayabe, Shin-Ichi; Aoki, Toshio

    2006-01-01

    Many soil bacteria contain 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, which degrades ACC, a precursor of the phytohormone ethylene. In order to examine the regulation of the acdS gene encoding ACC deaminase in Mesorhizobium loti MAFF303099 during symbiosis with the host legume Lotus japonicus, we introduced the β-glucuronidase (GUS) gene into acdS so that GUS was expressed under control of the acdS promoter, and we also generated disruption mutants with mutations in a nitrogen fix...

  20. Pleural effusion adenosine deaminase: a candidate biomarker to discriminate between Gram-negative and Gram-positive bacterial infections of the pleural space

    Directory of Open Access Journals (Sweden)

    Ruolin Li

    2016-05-01

    Full Text Available OBJECTIVES: Delay in the treatment of pleural infection may contribute to its high mortality. In this retrospective study, we aimed to evaluate the diagnostic accuracy of pleural adenosine deaminase in discrimination between Gram-negative and Gram-positive bacterial infections of the pleural space prior to selecting antibiotics. METHODS: A total of 76 patients were enrolled and grouped into subgroups according to Gram staining: 1 patients with Gram-negative bacterial infections, aged 53.2±18.6 years old, of whom 44.7% had empyemas and 2 patients with Gram-positive bacterial infections, aged 53.5±21.5 years old, of whom 63.1% had empyemas. The pleural effusion was sampled by thoracocentesis and then sent for adenosine deaminase testing, biochemical testing and microbiological culture. The Mann-Whitney U test was used to examine the differences in adenosine deaminase levels between the groups. Correlations between adenosine deaminase and specified variables were also quantified using Spearman’s correlation coefficient. Moreover, receiver operator characteristic analysis was performed to evaluate the diagnostic accuracy of pleural effusion adenosine deaminase. RESULTS: Mean pleural adenosine deaminase levels differed significantly between Gram-negative and Gram-positive bacterial infections of the pleural space (191.8±32.1 U/L vs 81.0±16.9 U/L, p<0.01. The area under the receiver operator characteristic curve was 0.689 (95% confidence interval: 0.570, 0.792, p<0.01 at the cutoff value of 86 U/L. Additionally, pleural adenosine deaminase had a sensitivity of 63.2% (46.0-78.2%; a specificity of 73.7% (56.9-86.6%; positive and negative likelihood ratios of 2.18 and 0.50, respectively; and positive and negative predictive values of 70.6% and 66.7%, respectively. CONCLUSIONS: Pleural effusion adenosine deaminase is a helpful alternative biomarker for early and quick discrimination of Gram-negative from Gram-positive bacterial infections of the

  1. DNA Methylation Dynamics of Germinal Center B Cells Are Mediated by AID.

    Science.gov (United States)

    Dominguez, Pilar M; Teater, Matt; Chambwe, Nyasha; Kormaksson, Matthias; Redmond, David; Ishii, Jennifer; Vuong, Bao; Chaudhuri, Jayanta; Melnick, Ari; Vasanthakumar, Aparna; Godley, Lucy A; Papavasiliou, F Nina; Elemento, Olivier; Shaknovich, Rita

    2015-09-29

    Changes in DNA methylation are required for the formation of germinal centers (GCs), but the mechanisms of such changes are poorly understood. Activation-induced cytidine deaminase (AID) has been recently implicated in DNA demethylation through its deaminase activity coupled with DNA repair. We investigated the epigenetic function of AID in vivo in germinal center B cells (GCBs) isolated from wild-type (WT) and AID-deficient (Aicda(-/-)) mice. We determined that the transit of B cells through the GC is associated with marked locus-specific loss of methylation and increased methylation diversity, both of which are lost in Aicda(-/-) animals. Differentially methylated cytosines (DMCs) between GCBs and naive B cells (NBs) are enriched in genes that are targeted for somatic hypermutation (SHM) by AID, and these genes form networks required for B cell development and proliferation. Finally, we observed significant conservation of AID-dependent epigenetic reprogramming between mouse and human B cells.

  2. Regulating infidelity: RNA-mediated recruitment of AID to DNA during class switch recombination.

    Science.gov (United States)

    DiMenna, Lauren J; Chaudhuri, Jayanta

    2016-03-01

    The mechanism by which the DNA deaminase activation-induced cytidine deaminase (AID) is specifically recruited to repetitive switch region DNA during class switch recombination is still poorly understood. Work over the past decade has revealed a strong link between transcription and RNA polymerase-associated factors in AID recruitment, yet none of these processes satisfactorily explain how AID specificity is affected. Here, we review a recent finding wherein AID is guided to switch regions not by a protein factor but by an RNA moiety, and especially one associated with a noncoding RNA that has been long thought of as being inert. This work explains the long-standing requirement of splicing of noncoding transcripts during class switching, and has implications in both B cell-mediated immunity as well as the underlying pathological syndromes associated with the recombination reaction.

  3. First-In-Class Small Molecule Inhibitors of the Single-Strand DNA Cytosine Deaminase APOBEC3G

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ming; Shandilya, Shivender M.D.; Carpenter, Michael A.; Rathore, Anurag; Brown, William L.; Perkins, Angela L.; Harki, Daniel A.; Solberg, Jonathan; Hook, Derek J.; Pandey, Krishan K.; Parniak, Michael A.; Johnson, Jeffrey R.; Krogan, Nevan J.; Somasundaran, Mohan; Ali, Akbar; Schiffer, Celia A.; Harris, Reuben S. (Pitt); (UMASS, MED); (SLUHSC); (UCSF); (UMM)

    2012-04-04

    APOBEC3G is a single-stranded DNA cytosine deaminase that comprises part of the innate immune response to viruses and transposons. Although APOBEC3G is the prototype for understanding the larger mammalian polynucleotide deaminase family, no specific chemical inhibitors exist to modulate its activity. High-throughput screening identified 34 compounds that inhibit APOBEC3G catalytic activity. Twenty of 34 small molecules contained catechol moieties, which are known to be sulfhydryl reactive following oxidation to the orthoquinone. Located proximal to the active site, C321 was identified as the binding site for the inhibitors by a combination of mutational screening, structural analysis, and mass spectrometry. Bulkier substitutions C321-to-L, F, Y, or W mimicked chemical inhibition. A strong specificity for APOBEC3G was evident, as most compounds failed to inhibit the related APOBEC3A enzyme or the unrelated enzymes E. coli uracil DNA glycosylase, HIV-1 RNase H, or HIV-1 integrase. Partial, but not complete, sensitivity could be conferred to APOBEC3A by introducing the entire C321 loop from APOBEC3G. Thus, a structural model is presented in which the mechanism of inhibition is both specific and competitive, by binding a pocket adjacent to the APOBEC3G active site, reacting with C321, and blocking access to substrate DNA cytosines.

  4. Killing effect of adenoviral mediated cytosine deaminase gene on human pancreatic cancer cell line PaTu 8988

    Institute of Scientific and Technical Information of China (English)

    PAN Xue; LI Zhao-shen; XU Guo-ming; CUI Long; ZHANG Su-zhen; GONG Yan-fang; TU Zhen-xing

    2001-01-01

    Objective: To evaluate the in vitro killing effects of cytosine deaminase gene mediated by adenovirus vector on human pancreatic carcinoma. Methods: Cytosine Deaminase (CD) gene was cloned into pAdTrack-CMV-CD, pAdTrack-CMV-CD and pAdEasy-1 were recombined in bacteria, and the products containing green fluorescent protein (GFP)were propagated in 293 cells and purified by cesium chloride gradient centrifugation. Human pancreatic carcinoma cell line 8988 were infected with this virus, then 5-FC was added; XTT assay was used to estimate the relative numbers of viable cells. Results: The positive clones were confirmed by using endonuclease digestion, and the titer of the virus containing CD gene was 2 × 1011 pfu/ml. It was found that 5-FC possessed significant cytotoxic activities for CD gene transfected 8988cell line, but had little effects on non-transfected pancreatic carcinoma cells. Conclusion: CD gene mediated by adenovirus has a high infectivity and is efficient for killing cultured pancreatic carcinoma cells, indicating suicide gene may be effective for pancreatic cancer in furure.

  5. Selection of efficient salt-tolerant bacteria containing ACC deaminase for promotion of tomato growth under salinity stress

    Directory of Open Access Journals (Sweden)

    Kannika Chookietwattana* and Kedsukon Maneewan

    2012-05-01

    Full Text Available For successful application of plant growth promoting bacteria (PGPB in salt-affected soil, bioinoculant with salt-tolerant property is required in order to provide better survival and perform well in the field. The present study aimed to select the most efficient salt-tolerant bacterium containing 1-aminocyclopropane-1-carboxylic acid (ACC deaminase from eighty four bacterial strains and to investigate the effects of the selected bacterium on the germination and growth of tomato (Licopersicon esculentum Mill. cv. Seeda under saline conditions. The Bacillus licheniformis B2r was selected for its ability to utilize ACC as a sole nitrogen source under salinity stress. It also showed a high ACC deaminase activity at 0.6 M NaCl salinity. Tomato plants inoculated with the selected bacterium under various saline conditions (0, 30, 60, 90 and 120 mM NaCl revealed a significant increase in the germination percentage, germination index, root length, and seedling dry weight especially at salinity levels ranging from 30-90 mM NaCl. The work described in this report is an important step in developing an efficient salt-tolerant bioinoculant to facilitate plant growth in saline soil.

  6. Crystallization and preliminary X-ray crystallographic analysis of the tRNA-specific adenosine deaminase from Streptococcus pyogenes

    Energy Technology Data Exchange (ETDEWEB)

    Ku, Min-Je [Functional Proteomics Center, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Lee, Won-Ho [Functional Proteomics Center, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Biotechnology and Genetic Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Nam, Ki-hyun; Rhee, Kyeong-hee [Biomedical Research Center, Life Science Division, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Lee, Ki-Seog [Biotechnology and Genetic Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Kim, Eunice EunKyung [Biomedical Research Center, Life Science Division, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Yu, Myung-Hee [Functional Proteomics Center, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Hwang, Kwang Yeon, E-mail: hwangky@kist.re.kr [Biomedical Research Center, Life Science Division, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Functional Proteomics Center, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, Seongbuk-gu, Seoul 136-791 (Korea, Republic of)

    2005-04-01

    The tRNA-specific adenosine deaminase from the pathogenic bacteria S. pyogenes has been overexpressed and crystallized. The tRNA-specific adenosine deaminase from the pathogenic bacteria Streptococcus pyogenes (spTAD) has been overexpressed in Escherichia coli and crystallized in the presence of Zn{sup 2+} ion at 295 K using ammonium sulfate as a precipitant. Flash-cooled crystals of spTAD diffracted to 2.0 Å using 30%(v/v) glycerol as a cryoprotectant. X-ray diffraction data have been collected to 2.0 Å using synchrotron radiation. The crystal belongs to the tetragonal space group P4{sub 2}2{sub 1}2, with unit-cell parameters a = b = 81.042, c = 81.270 Å. The asymmetric unit contains one subunit of spTAD, with a corresponding crystal volume per protein weight (V{sub M}) of 3.3 Å{sup 3} Da{sup −1} and a solvent content of 62.7%.

  7. Sensitization of prostate cancer cell lines to 5-fluorocytosine induced by a replication incompetent adenoviral vector carrying a cytosine deaminase transcription unit

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    AIM: To investigate the efficiency of cytosine deaminase adenoviral/5-fluorocytosine system on prostate cancer cell lines. METHODS: Cell culture, infectivity test and sensitivity test, observing the bystander effect and animal model experiment were carried out. RESULTS: All the established prostate cancer cell lines were eventually infectable, but ratio of vector/cell and time of exposed at which infection occurs was dependent on the cell lines. The expression of transfered cytosine deaminase gene peaked at different days, but persisted beyond 11 days. The prostate cell lines were sensitized to the 5-fluorocytosine by infection with the cytosine deaminase gene adenoviral vector, and only 5% of the LNCap and 10% of the RM-1 cells infected were required for 100% cell death. In the animal model, there was significant eradiation of tumor growth at the ratio of 400 vector particles/cell and with the systematic treatment of 5-fluorocytosine. CONCLUSION: The adenoviral vector carrying a cytosine deaminase transcription unit can sensitize the prostate cancer cell lines to 5-fluorocytosine, and the system can significantly inhibit the growth of prostatic tumor in mice.

  8. AN ESCHERICHIA-COLI STRAIN DEFICIENT FOR BOTH EXONUCLEASE-V AND DEOXYCYTIDINE TRIPHOSPHATE DEAMINASE SHOWS ENHANCED SENSITIVITY TO IONIZING-RADIATION

    NARCIS (Netherlands)

    ESTEVENON, AM; KOOISTRA, J; SICARD, N

    1995-01-01

    An Escherichia coli mutant lacking deoxycytidine triphosphate deaminase (Dcd) activity and an unknown function encoded by a gene designated ior exhibits sensitivity to ionizing radiation whereas dcd mutants themselves are not sensitive. A DNA fragment from an E. coli genomic library that restores th

  9. The cloned 1-aminocyclopropane-1-carboxylate (ACC) deaminase gene from Sinorhizobium sp. strain BL3 in Rhizobium sp. strain TAL1145 promotes nodulation and growth of Leucaena leucocephala.

    Science.gov (United States)

    Tittabutr, Panlada; Awaya, Jonathan D; Li, Qing X; Borthakur, Dulal

    2008-06-01

    The objective of this study was to determine the role of 1-aminocyclopropane-1-carboxylate (ACC) deaminase of symbionts in nodulation and growth of Leucaena leucocephala. The acdS genes encoding ACC deaminase were cloned from Rhizobium sp. strain TAL1145 and Sinorhizobium sp. BL3 in multicopy plasmids, and transferred to TAL1145. The BL3-acdS gene greatly enhanced ACC deaminase activity in TAL1145 compared to the native acdS gene. The transconjugants of TAL1145 containing the native or BL3 acdS gene could grow in minimal media containing 1.5mM ACC, whereas BL3 could tolerate up to 3mM ACC. The TAL1145 acdS gene was inducible by mimosine and not by ACC, while the BL3 acdS gene was highly inducible by ACC and not by mimosine. The transconjugants of TAL1145 containing the native- and BL3-acdS genes formed nodules with greater number and sizes, and produced higher root mass on L. leucocephala than by TAL1145. This study shows that the introduction of multiple copies of the acdS gene increased ACC deaminase activities of TAL1145 and enhanced its symbiotic efficiency on L. leucocephala.

  10. DENATURING GRADIENT GEL-ELECTROPHORESIS FOR RAPID DETECTION OF LATENT CARRIERS OF A SUBTYPE OF ACUTE INTERMITTENT PORPHYRIA WITH NORMAL ERYTHROCYTE PORPHOBILINOGEN DEAMINASE ACTIVITY

    NARCIS (Netherlands)

    BOURGEOIS, F; GU, XF; DEYBACH, JC; VELDE, MPT; DEROOIJ, F; NORDMANN, Y; GRANDCHAMP, B

    1992-01-01

    Acute intermittent porphyria is an autosomal dominant disorder defined by a partial deficiency of porphobilinogen deaminase (EC 4.3.1.8). Clinical manifestations of the disease are characterized by acute attacks of neurological dysfunction often linked to environmental factors. Early diagnosis of ge

  11. Characterization of ACC deaminase-producing endophytic bacteria isolated from copper-tolerant plants and their potential in promoting the growth and copper accumulation of Brassica napus.

    Science.gov (United States)

    Zhang, Yan-Feng; He, Lin-Yan; Chen, Zhao-Jin; Wang, Qing-Ya; Qian, Meng; Sheng, Xia-Fang

    2011-03-01

    One hundred Cu-resistant-endophytic bacteria were isolated from Cu-tolerant plants grown on Cu mine wasteland, of which, eight Cu-resistant and 1-aminocyclopropane-1-carboxylate (ACC) deaminase-producing endophytic bacteria were obtained based on the ACC deaminase activity of the bacteria and characterized with respect to metal resistance, production of ACC deaminase, indole-3-acetic acid (IAA) as well as siderophores and mineral phosphate solubilization. Ralstonia sp. J1-22-2, Pantoea agglomerans Jp3-3, and Pseudomonas thivervalensis Y1-3-9 with higher ACC deaminase activity (ranging from 213 to 370 μM α-ketobutyrate mg(-1)h(-1)) were evaluated for promoting plant growth and Cu uptake of rape grown in quartz sand containing 0, 2.5, and 5 mg kg(-1) of Cu in pot experiments. The eight bacteria were found to exhibit different multiple heavy metal resistance characteristics, to show different levels of ACC deaminase activity and to produce indole acetic acid. Seven bacteria produced siderophores and solubilized inorganic phosphate. Pot experiments showed that inoculation with the strains (J1-22-2, Jp3-3, and Y1-3-9) was found to increase the biomass of rape. Increases in above-ground tissue Cu contents of rape cultivated in 2.5 and 5 mg kg(-1) of Cu-contaminated substrates varied from 9% to 31% and from 3 to 4-fold respectively in inoculated-rape plants compared to the uninoculated control. The maximum Cu uptake of rape was observed after inoculation with P. agglomerans Jp3-3. The results show that metal-resistant and plant growth promoting endophytic bacteria play an important role in plant growth and Cu uptake which may provide a new endophytic bacterial-assisted phytoremediation of Cu-contaminated environment.

  12. Killing effect of coexpressing cytosine deaminase and thymidine kinase on rat vascular smooth muscle cells

    Institute of Scientific and Technical Information of China (English)

    曹慧青; 孟宪敏; 刘冬青; 赵秀文; 丁金凤

    2004-01-01

    Background Vascular smooth muscle cell (VSMC) proliferation following arterial injury plays a critical role in a variety of vascular proliferative disorders, such as atherosclerosis and restenosis after balloon angioplasty. Herpes simplex virus-thymidine kinase (HSV-TK)/ganciclovir (GCV) and E.coli cytosine deaminase (CD)/5-fluorocytosine (5-Fc) suicide gene systems have been successfully employed in cardiovascular gene therapy, respectively. We reasoned that coexpression of both HSV-TK with CD suicide genes would lead to increased cell killing. To test this imagine, the adenoviral vectors expressing TK and/or CD genes were developed and tested on vascular smooth muscle cells. Methods Adenoviral vectors, including Ad-EF1α-CD-cytomegolovirus (CMV)-TK coexpressing both CD and TK double suicide genes, Ad-EF1α-CD and Ad-CMV-TK expressing CD and TK respectively, and control vector Ad-CMV-LacZ, were constructed and prepared with homologous recombination in RecA+E.coli cells. Integration and expression of CD and/or TK gene were identified by PCR and Western blot. Primary cultured VSMCs were infected at a multiplicity of infection (MOI) of 20 with exposure to their matching prodrugs 5-Fc and GCV. Cell mortality was measured by methyl thiazolyl tetrazolium (MTT) assays. Flow cytometry analysis was used to detect cell death. Apoptotic cells were analyzed using Hoechst 33342 fluorescence dye as a DNA probe. Genomic DNA cleavage of apoptotic VSMCs was tested by agarose gel electrophoresis. Results Recombinant adenovirus expressing CD and/or TK suicide genes were successfully constructed. Both single and double suicide genes could be integrated into adenoviral genome and expressed. Cytotoxic effects of Ad-EF1α-CD-CMV-TK double suicide genes combined with 5-Fc and GCV were higher than those of Ad-CMV-TK and Ad-EF1α-CD single gene groups. The rate of cell survival was only (9±3)% in the Ad-EF1α-CD-CMV-TK group, but (37±3)% in the Ad-CMV-TK and (46±4)% in the Ad-EF1

  13. Crystal structure of the DNA cytosine deaminase APOBEC3F: the catalytically active and HIV-1 Vif-binding domain.

    Science.gov (United States)

    Bohn, Markus-Frederik; Shandilya, Shivender M D; Albin, John S; Kouno, Takahide; Anderson, Brett D; McDougle, Rebecca M; Carpenter, Michael A; Rathore, Anurag; Evans, Leah; Davis, Ahkillah N; Zhang, Jingying; Lu, Yongjian; Somasundaran, Mohan; Matsuo, Hiroshi; Harris, Reuben S; Schiffer, Celia A

    2013-06-04

    Human APOBEC3F is an antiretroviral single-strand DNA cytosine deaminase, susceptible to degradation by the HIV-1 protein Vif. In this study the crystal structure of the HIV Vif binding, catalytically active, C-terminal domain of APOBEC3F (A3F-CTD) was determined. The A3F-CTD shares structural motifs with portions of APOBEC3G-CTD, APOBEC3C, and APOBEC2. Residues identified to be critical for Vif-dependent degradation of APOBEC3F all fit within a predominantly negatively charged contiguous region on the surface of A3F-CTD. Specific sequence motifs, previously shown to play a role in Vif susceptibility and virion encapsidation, are conserved across APOBEC3s and between APOBEC3s and HIV-1 Vif. In this structure these motifs pack against each other at intermolecular interfaces, providing potential insights both into APOBEC3 oligomerization and Vif interactions.

  14. Cryptococcal pleuritis containing a high level of adenosine deaminase in a patient with AIDS: a case report.

    Science.gov (United States)

    Yoshino, Yusuke; Kitazawa, Takatoshi; Tatsuno, Keita; Ota, Yasuo; Koike, Kazuhiko

    2010-01-01

    Cryptococcal infection is the 4th most common opportunistic infection in patients with acquired immune deficiency syndrome (AIDS). Although pleural effusion alone is an unusual presentation, we present a case of cryptococcal pleuritis in an AIDS patient which was initially difficult to discriminate from tuberculous pleuritis because of the high level of pleural adenosine deaminase (ADA). Cryptococcus neoformans was detected in the culture of the pleural effusion after the initiation of antituberculous treatment. High levels of ADA in the pleural fluid can be observed in patients with cryptococcal pleuritis, and longer incubation of pleural fluid should be performed in all patients who present with pleuritis associated with a high ADA level as the only significant finding.

  15. Genome-wide mutation avalanches induced in diploid yeast cells by a base analog or an APOBEC deaminase.

    Directory of Open Access Journals (Sweden)

    Artem G Lada

    Full Text Available Genetic information should be accurately transmitted from cell to cell; conversely, the adaptation in evolution and disease is fueled by mutations. In the case of cancer development, multiple genetic changes happen in somatic diploid cells. Most classic studies of the molecular mechanisms of mutagenesis have been performed in haploids. We demonstrate that the parameters of the mutation process are different in diploid cell populations. The genomes of drug-resistant mutants induced in yeast diploids by base analog 6-hydroxylaminopurine (HAP or AID/APOBEC cytosine deaminase PmCDA1 from lamprey carried a stunning load of thousands of unselected mutations. Haploid mutants contained almost an order of magnitude fewer mutations. To explain this, we propose that the distribution of induced mutation rates in the cell population is uneven. The mutants in diploids with coincidental mutations in the two copies of the reporter gene arise from a fraction of cells that are transiently hypersensitive to the mutagenic action of a given mutagen. The progeny of such cells were never recovered in haploids due to the lethality caused by the inactivation of single-copy essential genes in cells with too many induced mutations. In diploid cells, the progeny of hypersensitive cells survived, but their genomes were saturated by heterozygous mutations. The reason for the hypermutability of cells could be transient faults of the mutation prevention pathways, like sanitization of nucleotide pools for HAP or an elevated expression of the PmCDA1 gene or the temporary inability of the destruction of the deaminase. The hypothesis on spikes of mutability may explain the sudden acquisition of multiple mutational changes during evolution and carcinogenesis.

  16. Piracetam prevents scopolamine-induced memory impairment and decrease of NTPDase, 5'-nucleotidase and adenosine deaminase activities.

    Science.gov (United States)

    Marisco, Patricia C; Carvalho, Fabiano B; Rosa, Michelle M; Girardi, Bruna A; Gutierres, Jessié M; Jaques, Jeandre A S; Salla, Ana P S; Pimentel, Víctor C; Schetinger, Maria Rosa C; Leal, Daniela B R; Mello, Carlos F; Rubin, Maribel A

    2013-08-01

    Piracetam improves cognitive function in animals and in human beings, but its mechanism of action is still not completely known. In the present study, we investigated whether enzymes involved in extracellular adenine nucleotide metabolism, adenosine triphosphate diphosphohydrolase (NTPDase), 5'-nucleotidase and adenosine deaminase (ADA) are affected by piracetam in the hippocampus and cerebral cortex of animals subjected to scopolamine-induced memory impairment. Piracetam (0.02 μmol/5 μL, intracerebroventricular, 60 min pre-training) prevented memory impairment induced by scopolamine (1 mg/kg, intraperitoneal, immediately post-training) in the inhibitory avoidance learning and in the object recognition task. Scopolamine reduced the activity of NTPDase in hippocampus (53 % for ATP and 53 % for ADP hydrolysis) and cerebral cortex (28 % for ATP hydrolysis). Scopolamine also decreased the activity of 5'-nucleotidase (43 %) and ADA (91 %) in hippocampus. The same effect was observed in the cerebral cortex for 5'-nucleotidase (38 %) and ADA (68 %) activities. Piracetam fully prevented scopolamine-induced memory impairment and decrease of NTPDase, 5'-nucleotidase and adenosine deaminase activities in synaptosomes from cerebral cortex and hippocampus. In vitro experiments show that piracetam and scopolamine did not alter enzymatic activity in cerebral cortex synaptosomes. Moreover, piracetam prevented scopolamine-induced increase of TBARS levels in hippocampus and cerebral cortex. These results suggest that piracetam-induced improvement of memory is associated with protection against oxidative stress and maintenance of NTPDase, 5'-nucleotidase and ADA activities, and suggest the purinergic system as a putative target of piracetam.

  17. The genetics of feto-placental development: A study of acid phosphatase locus 1 and adenosine deaminase polymorphisms in a consecutive series of newborn infants

    Directory of Open Access Journals (Sweden)

    Bergamaschi Antonio

    2008-09-01

    Full Text Available Abstract Background Acid phosphatase locus 1 and adenosine deaminase locus 1 polymorphisms show cooperative effects on glucose metabolism and immunological functions. The recent observation of cooperation between the two systems on susceptibility to repeated spontaneous miscarriage prompted us to search for possible interactional effects between these genes and the correlation between birth weight and placental weight. Deviation from a balanced development of the feto-placental unit has been found to be associated with perinatal morbidity and mortality and with cardiovascular diseases in adulthood. Methods We examined 400 consecutive newborns from the Caucasian population of Rome. Birth weight, placental weight, and gestational length were registered. Acid phosphatase locus 1 and adenosine deaminase locus 1 phenotypes were determined by starch gel electrophoresis and correlation analysis was performed by SPSS programs. Informed verbal consent to participate in the study was obtained from the mothers. Results Highly significant differences in birth weight-placental weight correlations were observed among acid phosphatase locus 1 phenotypes (p = 0.005. The correlation between birth weight and placental weight was markedly elevated in subjects carrying acid phosphatase locus 1 phenotypes with medium-low F isoform concentration (A, CA and CB phenotypes compared to those carrying acid phosphatase locus 1 phenotypes with medium-high F isoform concentration (BA and B phenotypes (p = 0.002. Environmental and developmental variables were found to exert a significant effect on birth weight-placental weight correlation in subjects with medium-high F isoform concentrations, but only a marginal effect was observed in those with medium-low F isoform concentrations. The correlation between birth weight and placental weight is higher among carriers of the adenosine deaminase locus 1 allele*2, which is associated with low activity, than in homozygous adenosine

  18. Scientific Opinion on the substantiation of a health claim related to cytidine 5-diphosphocholine and maintenance of normal vision pursuant to Article 13(5 of Regulation (EC No 1924/2006

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA

    2014-02-01

    Full Text Available Following an application from Omikron Italia S.r.l. submitted for authorisation of a health claim pursuant to Article 13(5 of Regulation (EC No 1924/2006 via the Competent Authority of Italy, the EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA was asked to deliver an opinion on the scientific substantiation of a health claim related to cytidine 5-diphosphocholine and maintenance of normal vision. The Panel considers that the food constituent cytidine 5-diphosphocholine (CDP-choline or citicoline, which is the subject of the health claim, is sufficiently characterised. The claimed effect, maintenance of normal vision, is a beneficial physiological effect. The Panel considers that no conclusions can be drawn from the three narrative reviews and the eight human intervention studies provided by the applicant for the scientific substantiation of the claim. The Panel concludes that a cause and effect relationship has not been established between the consumption of CDP-choline and maintenance of normal vision.

  19. The Effects of Ischemia on the Ectopic Activity Induced by EADs. Computer Simulation

    Science.gov (United States)

    2007-11-02

    THE EFFECTS OF ISCHEMIA ON THE ECTOPIC ACTIVITY INDUCED BY EADs. COMPUTER SIMULATION. E. Colomar, J. Saiz, J.M. Ferrero (Jr) Laboratorio Integrado de...Number Task Number Work Unit Number Performing Organization Name(s) and Address(es) Laboratorio Integrado de Bioingeniería, Universidad Politécnica de

  20. Novel Rhizosphere Soil Alleles for the Enzyme 1-Aminocyclopropane-1-Carboxylate Deaminase Queried for Function with an In Vivo Competition Assay.

    Science.gov (United States)

    Jin, Zhao; Di Rienzi, Sara C; Janzon, Anders; Werner, Jeff J; Angenent, Largus T; Dangl, Jeffrey L; Fowler, Douglas M; Ley, Ruth E

    2015-12-04

    Metagenomes derived from environmental microbiota encode a vast diversity of protein homologs. How this diversity impacts protein function can be explored through selection assays aimed to optimize function. While artificially generated gene sequence pools are typically used in selection assays, their usage may be limited because of technical or ethical reasons. Here, we investigate an alternative strategy, the use of soil microbial DNA as a starting point. We demonstrate this approach by optimizing the function of a widely occurring soil bacterial enzyme, 1-aminocyclopropane-1-carboxylate (ACC) deaminase. We identified a specific ACC deaminase domain region (ACCD-DR) that, when PCR amplified from the soil, produced a variant pool that we could swap into functional plasmids carrying ACC deaminase-encoding genes. Functional clones of ACC deaminase were selected for in a competition assay based on their capacity to provide nitrogen to Escherichia coli in vitro. The most successful ACCD-DR variants were identified after multiple rounds of selection by sequence analysis. We observed that previously identified essential active-site residues were fixed in the original unselected library and that additional residues went to fixation after selection. We identified a divergent essential residue whose presence hints at the possible use of alternative substrates and a cluster of neutral residues that did not influence ACCD performance. Using an artificial ACCD-DR variant library generated by DNA oligomer synthesis, we validated the same fixation patterns. Our study demonstrates that soil metagenomes are useful starting pools of protein-coding-gene diversity that can be utilized for protein optimization and functional characterization when synthetic libraries are not appropriate.

  1. Partial resolution of bone lesions. A child with severe combined immunodeficiency disease and adenosine deaminase deficiency after enzyme-replacement therapy

    Energy Technology Data Exchange (ETDEWEB)

    Yulish, B.S.; Stern, R.C.; Polmar, S.H.

    1980-01-01

    A child with severe combined immunodeficiency disease and adenosine deaminase deficiency, with characteristic bone dysplasia, was treated with transfusions of frozen irradiated RBCs as a means of enzyme replacement. This therapy resulted in restoration of immunologic competence and partial resolution of the bone lesions. Although the natural history of these lesions without therapy is not known, enzyme-replacement therapy may have played a role in the resolution of this patient's bone lesions.

  2. A CORRELATIVE STUDY OF ADENOSINE DEAMINASE ACTIVITY & T.B. IgG IN SERUM IN CASES OF TUBERCULOSIS

    Directory of Open Access Journals (Sweden)

    Ajay

    2012-11-01

    Full Text Available ABSTRACT: INTRODUCTION: Tuberculosis is major cause of morbidity and mort ality in India as well in other parts of world. It is caused by myc obacterium tuberculosis which primarily affects lung and cause pulmonary tuberculosis. Diag nosis of tuberculosis rests upon a positive history of contact, clinical symptoms, x-ray chest, sputum positivity and AFB culture. Adenosine deaminase (ADA is an enzyme which catalyzes the de amination of adenosine into inosine and ammonia. ADA level is found to be elevated in tuber culosis and typhoid fever where cell mediated immunity is elevated. The ADA level is sig nificantly elevated in tuberculosis and helps to differentiate between tubercular and non tubercu lar diseases. The ADA level is also found to be elevated in serum and pleural fluid in patients of tubercular pleural effusion, tubercular ascitis and tubercular pericardial effusion. METHODS : Routine hemogram, Montoux test, X-ray chest, FNAC of lymph nodes, biopsy of lymph node whene ver required, estimation of serum ADA level and T.B.IgG studies were performed in each cas e. RESULTS: In the present study a total of 45 cases were selected for the study. There are 30 cases of pulmonary tuberculosis and 15 controls. The values of serum ADA and tubercular Ig G in pulmonary tubercular group are significantly higher as compared to those of control s. None of the control for ADA showed significant ratio of positivity (≥1.7. One of the 1 5 cases showed remarkable ratio of positivity (>1.2-1.6 and 14 (93.3% cases showed insignifican t ratio of positivity. Only 2 (13.33% of the 15 cases showed positivity for TB IgG and rest 13 (8 6.66% were regarded negative. CONCLUSIONS: Thus it can be concluded that determination of ser um adenosine deaminase levels can effectively diagnose tuberculosis with s ensitivity of 96.66% and specificity of 93.33% as compared to TBIgG showing sensitivity of 90% and specificity of 86.6%. Also cost of ADA estimation is remarkably

  3. 胞二磷胆碱联合治疗急性脑卒中临床观察%Efficacy of Cytidine Diphosphate Choline Combination Therapy in Acute Cerebral Infarction

    Institute of Scientific and Technical Information of China (English)

    陈瑞红

    2015-01-01

    目的:评价疏血通联合胞二磷胆碱注射液治疗急性脑卒中的临床疗效。方法选择急性脑卒中且不宜溶栓患者42例,随机分为治疗组和对照组,在常规抗血小板聚集、降血压、降血脂等治疗基础上,治疗组以疏血通和胞二磷胆碱注射液静滴14 d;对照组予以丹参注射液和吡拉西坦氯化钠注射液静滴l4 d;观察两组的临床疗效及Glasgow评分、MMSE评分等变化。结果治疗组总有效率95.4%,高于对照组80.0%(P<0.05)。结论疏血通联合胞二磷胆碱注射液治疗急性脑卒中临床疗效肯定,能改善患者意识、智能及预后。%Objective To evaluate the clinical curative effect of shuxietong joint cytidine diphosphate choline injection in treatment of acute cerebral infarction. Methods Forty patients with acute cerebral infarction were randomly divided into treatment group and control group,in conventional antiplatelet aggregation,fal blood pressure,fal hematic fat,such as treatment of foundation,the treatment group with shuxietong and cytidine diphosphate choline injection static drops of 14 days,the control group and salvia miltiorrhiza injection and pyrazole raschig and sodium chloride injection static drops of l4 days,observed the clinical effects of two groups,glasgow score,MMSE score changes,etc.Results Total effectiveness in treatment group(95.4%)was significantly higher than the control group(80.0%)(P< 0.05).Conclusion Shuxietong cytidine diphosphate choline injection in treatment of acute cerebral infarction clinical curative effect,can significantly improve the patients' consciousness,inteligence and prognosis.

  4. A double-blind, randomized, comparative study of the use of a combination of uridine triphosphate trisodium, cytidine monophosphate disodium, and hydroxocobalamin, versus isolated treatment with hydroxocobalamin, in patients presenting with compressive neuralgias

    Directory of Open Access Journals (Sweden)

    Goldberg H

    2017-02-01

    Full Text Available Henrique Goldberg,1 Marco Antonio Mibielli,2 Carlos Pereira Nunes,2 Stephanie Wrobel Goldberg,3 Luiz Buchman,4 Spyros GE Mezitis,5 Helio Rzetelna,6 Lisa Oliveira,2 Mauro Geller,2 Fernanda Wajnsztajn7 1UERJ Medical School, Rio de Janeiro, Brazil; 2UNIFESO Medical School, Teresópolis, Brazil; 3Washington University School of Medicine, St Louis, MO, USA; 4Instituto de Pós-Graduação Médica Carlos Chagas (ICC, Rio de Janeiro, Brazil; 5New York-Presbyterian Hospital/Weill-Cornell Medical Center, New York, NY, USA; 6Santa Casa da Misericórdia do Rio de Janeiro, Rio de Janeiro, Brazil; 7New York-Presbyterian Hospital/Columbia University Medical Center, Neurology, New York, NY, USA Context: This paper reports on the results of treatment of compressive neuralgia using a combination of nucleotides (uridine triphosphate trisodium [UTP] and cytidine monophosphate disodium [CMP] and vitamin B12.Objectives: To assess the safety and efficacy of the combination of nucleotides (UTP and CMP and vitamin B12 in patients presenting with neuralgia arising from neural compression associated with degenerative orthopedic alterations and trauma, and to compare these effects with isolated administration of vitamin B12. Methods: A randomized, double-blind, controlled trial, consisting of a 30-day oral treatment period: Group A (n=200 receiving nucleotides + vitamin B12, and Group B (n=200 receiving vitamin B12 alone. The primary study endpoint was the percentage of subjects presenting pain visual analog scale (VAS scores ≤20 at end of study treatment period. Secondary study endpoints included the percentage of subjects presenting improvement ≥5 points on the patient functionality questionnaire (PFQ; percentage of subjects presenting pain reduction (reduction in VAS scores at study end in relation to pretreatment; and number of subjects presenting adverse events. Results: The results of this study showed a more expressive improvement in efficacy evaluations among

  5. ACC deaminase activity of rhizobia associated with Acacia melanoxylon%黑木相思根瘤菌ACC脱氨酶活性的研究

    Institute of Scientific and Technical Information of China (English)

    窦雅静; 康丽华; 陆俊锟; 侯俊杰; 朱亚杰

    2014-01-01

    Rhizobia can catalyze the ACC deaminase by using-aminocyclopropane-1-carboxylate (ACC) deaminase, thereby reducing the ethylene content in the plants that inhibits the growth of rhizobia and promoting plant growth. The tested bacterial strains were mensurated and their acdS gene’s phylogenetic development were analyzed. The results show that among the isolated 174 isolates, 151 strains showed ACC deaminase activity, but there were rather differences in enzyme activity;however, the acdS gene of 121 strains were detected which were conserved in Mesorhizobium genus;the phylogeny of acdS genes was signiifcantly correlated with geographical origin. A further research on the correlation between the level of ACC deaminase activity and the prevalence of acdS genes is urgently needed. The test method of ACC deaminase will provide a reliable theoretical foundation for rapidly culling high efifcient rhizobia strains.%根瘤菌能够利用1-氨基环丙烷-1羧酸(ACC)脱氨酶催化ACC脱氨基,从而降低植物体内抑制其生长的乙烯含量,促进植物生长。本研究采用茚三酮比色法测定菌株的ACC脱氨酶活性并对其acdS基因进行了系统发育分析。结果表明,扩增174株供试菌株中,151株检测出ACC 脱氨酶活性,但酶活性差异较大。121株扩增出acdS基因,菌株的系统发育关系与地理来源具有相关性,中慢生根瘤菌属菌株的acdS基因具有明显的保守性。菌株ACC脱氨酶活性的高低与acdS基因存在与否的相关性有待进一步研究。ACC脱氨酶活性的检测方法将为快速筛选高效根瘤菌菌株提供可靠的理论依据。

  6. Antitumor effects and radiosensitization of cytosine deaminase and thymidine kinase fusion suicide gene on colorectal carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    De-Hua Wu; Li Liu; Long-Hua Chen

    2005-01-01

    AIM: To investigate the killing effect and radiosensitization of double suicide gene mediated by adenovirus on colorectal carcinoma cells.METHODS: Colorectal carcinoma cell line SW480 was transfected with adenovirus expression vector containing cytosine deaminase (CD) and thymidine kinase (Tk) fusion gene. The expression of CD-TK fusion gene was detected by reverse transcriptase-polymerase chain reaction. The toxic effect of ganciclovir (GCV) and 5-fiuorocytosine (5FC) on infected cells was determined by MTT assay. The radiosensitization of double suicide gene was evaluated by clonogenic assay.RESULTS: After prodrugs were used, the survival rate of colorectal carcinoma cells was markedly decreased. When GCV and 5-FC were used in combination, the cytotoxicity and bystandereffect were markedly superior to a single prodrug (x2 = 30.371, P<0.01). Both GCV and 5-FC could sensitize colorectal carcinoma cells to the toxic effect of radiation, and greater radiosensitization was achieved when both prodrug were used in combination. CONCLUSION: CD-TK double suicide gene can kill and radiosensitize colorectal carcinoma cells.

  7. Effects of aqueous extract from Silybum marianum on adenosine deaminase activity in cancerous and noncancerous human gastric and colon tissues

    Directory of Open Access Journals (Sweden)

    Bahadır Öztürk

    2015-01-01

    Full Text Available Objective: Investigation of possible effects of Silybum marianum extract (SME on adenosine deaminase (ADA activity in cancerous and noncancerous human gastric and colon tissues to obtain information about possible mechanism of anticancer action of S. marianum. Materials and Methods: Cancerous and noncancerous human gastric and colon tissues removed from patients by surgical operations were used in the studies. The extract was prepared in distilled water. Before and after treatment with the extract, ADA activities in the samples were measured. Results: ADA activity was found to be lowered significantly in cancerous gastric tissues but not in noncancerous gastric tissues after treatment with the SME. In the colon tissues, ADA activities were however found to increase after the treatment of SME. Conclusion: Our results suggest that the aqueous extract from S. marianum inhibits ADA activity in cancerous gastric tissues significantly. It is suggested that in addition to other proposed mechanisms, accumulated adenosine due to the inhibition of ADA might also play a part in the anticancer properties of the S. marianum.

  8. DNA-templated silver nanoclusters based label-free fluorescent molecular beacon for the detection of adenosine deaminase.

    Science.gov (United States)

    Zhang, Kai; Wang, Ke; Xie, Minhao; Zhu, Xue; Xu, Lan; Yang, Runlin; Huang, Biao; Zhu, Xiaoli

    2014-02-15

    A general and reliable fluorescent molecular beacon is proposed in this work utilizing DNA-templated silver nanoclusters (AgNCs). The fluorescent molecular beacon has been employed for sensitive determination of the concentration of adenosine deaminase (ADA) and its inhibition. A well-designed oligonucleotide containing three functional regions (an aptamer region for adenosine assembly, a sequence complementary to the region of the adenosine aptamer, and an inserted six bases cytosine-loop) is adopted as the core element in the strategy. The enzymatic reaction of adenosine catalyzed by ADA plays a key role as well in the regulation of the synthesis of the DNA-templated AgNCs, i.e. the signal indicator. The intensity of the fluorescence signal may thereby determine the concentration of the enzyme and its inhibitor. The detection limit of the ADA can be lowered to 0.05 UL(-1). Also, 100 fM of a known inhibitor erythro-9-(2-hydroxy-3-nonyl) adenine hydrochloride (EHNA) is enough to present distinguishable fluorescence emission. Moreover, since the fluorescent signal indicator is not required to be bound with the oligonucleotide, this fluorescent molecular beacon may integrate the advantages of both the label-free and signal-on strategies.

  9. Circulating type 1 vaccine-derived poliovirus may evolve under the pressure of adenosine deaminases acting on RNA.

    Science.gov (United States)

    Liu, Yanhan; Ma, Tengfei; Liu, Jianzhu; Zhao, Xiaona; Cheng, Ziqiang; Guo, Huijun; Xu, Ruixue; Wang, Shujing

    2015-01-01

    Poliovirus, the causative agent of poliomyelitis, is a human enterovirus and member of the Picornaviridae family. An effective live-attenuated poliovirus vaccine strain (Sabin 1) has been developed and has protected humans from polio. However, a few cases of vaccine virulence reversion have been documented in several countries. For instance, circulating type 1 vaccine-derived poliovirus is a highly pathogenic poliovirus that evolved from an avirulent strain, but the mechanism by which vaccine strains undergo reversion remains unclear. In this study, vaccine strains exhibited A to G/U to C and G to A/C to U hypermutations in the reversed evolution of Sabin 1. Furthermore, the mutation ratios of U to C and C to U were higher than those of other mutation types. Dinucleotide editing context was then analyzed. Results showed that A to G and U to C mutations exhibited preferences similar to adenosine deaminases acting on RNA (ADAR). Hence, ADARs may participate in poliovirus vaccine evolution.

  10. Effects of PUVA and Narrowband UVB on Tissue and Serum Adenosine Deaminase Levels of Patients with Psoriasis

    Directory of Open Access Journals (Sweden)

    Sinem Öztürk

    2013-12-01

    Full Text Available Objective: Adenosine deaminase (ADA, which is accepted as a non-specific marker of T cell activation in psoriasis, has been shown to have an important role in determining activity of disease and efficacy of treatments. This is the first study investigating the levels of ADA in lesional skins of patients with psoriasis. Methods: Thirty-four patients; 26 with chronic plaque type and eight with guttate psoriasis were enrolled in this study. Patients were treated with PUVA or narrowband UVB. Contol group consisted of 25 patients who had an amputation of any extremity because of trauma. In this study, ADA activities were measured in plasma and tissue samples of patients and control group. Psoriasis Area and Severity Index (PASI scores of patients were determined. Results: Plasma and tissue ADA levels of patients with psoriasis were higher than control group (p0.05. Conclusion: These results support the immunological mechanisms showing activation of T cell acts in the pathogenesis of psoriasis and also this study suggests that the levels of plasma and tissue ADA are reliable laboratory parameters in follow-up of the disease.

  11. Rutin restores adenosine deaminase activity in serum and the liver and improves biochemical parameters in streptozotocin-induced diabetic rats

    Directory of Open Access Journals (Sweden)

    E.O. CHIELLE

    2016-01-01

    Full Text Available ABSTRACT denosine deaminase (ADA is a critical control point in the regulation of adenosine levels. This study aimed to investigate the effects of a polyphenolic flavonoid, rutin, on the activity of ADA in serum, the cerebral cortex, liver, kidney, and biochemical parameters in diabetic rats. The animals were divided into four groups (n=6 for the following treatments: control; diabetic (streptozotocin 55 mg/kg; diabetic with rutin (100 mg/kg/day; diabetic with glibenclamide (10 mg/kg/day. After 30 days, ADA activity and biochemical parameters were analyzed. The ADA activity in the serum was significantly elevated in the diabetic group compared to the control group (p<0.01. The treatment with rutin prevented the increase in ADA activity in the STZ-induced rats when compared to control group. Our data showed that rutin reduced glucose, LDL levels, and hepatic enzymes in comparison with the control group. These results demonstrate that the increase of ADA activity observed in diabetic rats may be an important indicator of the immunopathogenesis of hyperglycemic disorders and suggest that rutin is important for regulating the enzymatic activities associated with immune, hyperglycemic, and inflammatory response in diabetes mellitus.

  12. STUDY OF ADENOSINE DEAMINASE AND LYMPHOCYTE/NEUTROPHIL RATIO IN COMBINATION AS DIAGNOSTIC TOOL FOR TUBERCULAR PLEURAL EFFUSION

    Directory of Open Access Journals (Sweden)

    Md. Faizur

    2015-10-01

    Full Text Available Adenosine deaminase, considered one of the key enzyme of purine metabolism, has been used in work up of lymphocytic pleural effusion. Low level of ADA 50IU/L specially when combined with Lymphocytic/neutrophil ratio >0.75 in pleural fluid is useful test in the diagnosis of tubercular pleurisy. AIM AND OBJECTIVE: To suggest a better diagnostic tool in the diagnosis of pleural effusion of tubercular origin by estimating the activity of ADA along with L/N ratio in pleural effusion. METHOD: Biochemical, cytological and microbiology studies were done by obtaining pleural fluid by thoracocentesis in 100 patients after excluding pleural effusion cases of malignancy, transudative effusion. RESULT: 84 cases were tubercular and had high level of ADA in comparison to rest of 16 non-tubercular cases. At level of 50 IU/L of ADA activity test had sensitivity of 97.6%, specificity 87.5%, positive predictive value 97.6%, negative predictive value 87.5%which increased to 100% and 92.8%, 98.6%, and 100% respectively in combination with test of Lymphocytic/Neutrophilic ratio >0.75. CONCLUSION: ADA level with L/N ratio can be important investigation in diagnosis of tubercular pleural effusion cases.

  13. Role of CD59 in T cell activation induced by non-lethal complement attack

    Institute of Scientific and Technical Information of China (English)

    HAN Gen-cheng; BAI Yun; JIANG Man; LI Wan-ling; ZHU Xi-hua

    2001-01-01

    To study the mechanism ofT-cell activation induced by non-lethal complement attack and the role of CD59 in this process. Methods: Human CD59 and its transmembrane counterpart CD59TM cDNA were transfected into murine thymoma EL-4 cells. Activation and proliferation of EL-4 transfectants were observed with MTT assay.Results: Both CD59 and CD59 TM cDNA expressed on EL-4 cells effectively inhibited complement-mediated membrane damage. Cross-linking of CD59 with antibody induced activation of CD59/EL-4 cells but not CD59TM/EL-4cells. This effect was inhibited by Herbimycin A, a special protein tyrosine kinase (PTK) inhibitor. Non-lethal complement attack induced CD59/EL-4 but not CD59TM/EL-4 cell to proliferate, and this reaction was not blocked by Herbimycin A. Conclusion: CD59 takes part in T cell activation induced by non-lethal complement attack. The mechanisms of T cell activation induced by non-lethal complement attack are different from those by cross-linking of CD59.

  14. A double-blind, randomized, comparative study of the use of a combination of uridine triphosphate trisodium, cytidine monophosphate disodium, and hydroxocobalamin, versus isolated treatment with hydroxocobalamin, in patients presenting with compressive neuralgias

    Science.gov (United States)

    Goldberg, Henrique; Mibielli, Marco Antonio; Nunes, Carlos Pereira; Goldberg, Stephanie Wrobel; Buchman, Luiz; Mezitis, Spyros GE; Rzetelna, Helio; Oliveira, Lisa; Geller, Mauro; Wajnsztajn, Fernanda

    2017-01-01

    Context This paper reports on the results of treatment of compressive neuralgia using a combination of nucleotides (uridine triphosphate trisodium [UTP] and cytidine monophosphate disodium [CMP]) and vitamin B12. Objectives To assess the safety and efficacy of the combination of nucleotides (UTP and CMP) and vitamin B12 in patients presenting with neuralgia arising from neural compression associated with degenerative orthopedic alterations and trauma, and to compare these effects with isolated administration of vitamin B12. Methods A randomized, double-blind, controlled trial, consisting of a 30-day oral treatment period: Group A (n=200) receiving nucleotides + vitamin B12, and Group B (n=200) receiving vitamin B12 alone. The primary study endpoint was the percentage of subjects presenting pain visual analog scale (VAS) scores ≤20 at end of study treatment period. Secondary study endpoints included the percentage of subjects presenting improvement ≥5 points on the patient functionality questionnaire (PFQ); percentage of subjects presenting pain reduction (reduction in VAS scores at study end in relation to pretreatment); and number of subjects presenting adverse events. Results The results of this study showed a more expressive improvement in efficacy evaluations among subjects treated with the combination of nucleotides + vitamin B12, with a statistically significant superiority of the combination in pain reduction (evidenced by VAS scores). There were adverse events in both treatment groups, but these were transitory and no severe adverse event was recorded during the study period. Safety parameters were maintained throughout the study in both treatment groups. Conclusion The combination of uridine, cytidine, and vitamin B12 was safe and effective in the treatment of neuralgias arising from neural compression associated with degenerative orthopedic alterations and trauma. PMID:28243144

  15. Protein (Cyanobacteria): 102416 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available ZP_07973273.1 1117:1951 1118:346 1129:3351 232348:1114 cytidine/deoxycytidylate deam...inase family protein Synechococcus sp. CB0101 MLKAEAMDLEPAEHILWMQRLLRRAEAVGCEGEIPVAAVVLDAQGRAVGWGSNRRERDQQP

  16. Powerful methods to establish chromosomal markers in Lactococcus lactis: an analysis of pyrimidine salvage pathway mutants obtained by positive selections

    DEFF Research Database (Denmark)

    Martinussen, Jan; Hammer, Karin

    1995-01-01

    phosphoribosyltransferase (upp), uridindcytidine kinase (udk), pyrimidine nucleoside phosphorylase (pdp), cytidine/deoxycytidine deaminase (dd), thymidine kinase (tdk) and purine nucleoride phosphorylase (pup). Based on an analysis of the mutants obtained, the pathways by which L. lactis metabolizes uracil...

  17. Novel deletion and a new missense mutation (Glu 217 Lys) at the catalytic site in two adenosine deaminase alleles of a patient with neonatal onset adenosine deaminase severe combined immunodeficiency

    Energy Technology Data Exchange (ETDEWEB)

    Hirschhorn, R.; Nicknam, M.N.; Eng, F.; Yang, D.R.; Borkowsky, W. (New York Univ. Medical School of Medicine, NY (United States))

    1992-11-01

    Mutations at the adenosine deaminase (ADA) locus result in a spectrum of disorders, encompassing a fulminant neonatal onset severe combined immunodeficiency (SCID) and childhood onset immunodeficiency, as well as apparently normal immune function. The extent of accumulation of the toxic metabolite, deoxyATP, correlates directly with severity of disease. The authors have now determined the mutations on both alleles of a child with fulminant, neonatal onset ADA SCID and accumulation of extremely high concentrations of deoxyATP. The genotype was consistent with the severely affected phenotype. One allele carried a large deletion that arose by non-homologous recombination and included the first five exons and promoter region. The second allele carried a missense mutation (G[sup 649]A) resulting in replacement of Glu[sup 217], an amino acid involved in the catalytic site, by Lys and predicting a major alteration in charge. Expression of the mutant cDNA on Cos cells confirmed that the mutation abolished enzyme activity. The authors have previously reported that a missense mutation at the preceding codon is similarly associated with neonatal onset ADA SCID and accumulation of extremely high deoxyATP. These findings suggest that genotype-phenotype correlations may be apparent for ADA SCID, despite the role that random variation in exposure to environmental pathogens may play in the initial phenotype. Such genotype-phenotype correlations may be important to consider in evaluating results of ongoing trials of [open quotes]gene[close quotes] and enzyme replacement therapy. 50 refs., 5 figs., 2 tabs.

  18. Inoculation with Pseudomonas spp.containing ACC-deaminase partially eliminates the effects of drought stress on growth,yield,and ripening of pea (Pisum sativum L.)

    Institute of Scientific and Technical Information of China (English)

    M.ARSHAD; B.SHAHAROONA; T.MAHMOOD

    2008-01-01

    Two preselected plant growth promoting rhizobacteria (PGPR) containing 1-aminocyelopropane-1-carboxylate (ACC)deaminase (EC 4.1.99.4) were used to investigate their potential to ameliorate the effects of drought stress on growth,yield,and ripening of pea (Pisum sativum L.).Inoculated and uninoculated (control) seeds of pea cultivar 2000 were sown in pots (four seeds pot-1) and placed in a wire house.The plants were exposed to drought stress at different stages of growth (vegetative,flowering,and pod formation) by skipping the respective irrigation.Results revealed that inoculation of peas with PGPR containing ACC-deaminase significantly decreased the "drought stress imposed effects" on the growth and yield of peas.Exposure of plants to drought stress at vegetative growth stage significantly decreased shoot growth by 41% in the ease of uninoculated plants,whereas,by only 18% in the case of inoculated plants compared to nonstressed unlnoculated controlGrain yield was decreased when plants were exposed to drought stress at the flowering and pod formation stage,but inoculation resulted in better grain yield (up to 62% and 40% higher,respectively) than the respective uninoculated nonstressed control.Ripening of pods was also delayed in plants inoculated with PGPR,which may imply decreased endogenous ethylene production in inoculated plants.This premise is further supported by the observation that inoculation with PGPR reduced the intensity of classical "triple" response in etiolated pea seedlings,caused by externally applied ACC.It is very probable that the drought stress induced inhibitory effects of ethylene could be partially or completely eliminated by inoculation with PGPR containing ACC-deaminase.

  19. Seed specific expression and analysis of recombinant human adenosine deaminase (hADA) in three host plant species.

    Science.gov (United States)

    Doshi, Ketan M; Loukanina, Natalia N; Polowick, Patricia L; Holbrook, Larry A

    2016-10-01

    The plant seed is a leading platform amongst plant-based storage systems for the production of recombinant proteins. In this study, we compared the activity of human adenosine deaminase (hADA) expressed in transgenic seeds of three different plant species: pea (Pisum sativum L.), Nicotiana benthamiana L. and tarwi (Lupinus mutabilis Sweet). All three species were transformed with the same expression vector containing the hADA gene driven by the seed-specific promoter LegA2 with an apoplast targeting pinII signal peptide. During the study, several independent transgenic lines were generated and screened from each plant species and only lines with a single copy of the gene of interest were used for hADA expression analysis. A stable transgenic canola line expressing the ADA protein, under the control of 35S constitutive promoter was used as both as a positive control and for comparative study with the seed specific promoter. Significant differences were detected in the expression of hADA. The highest activity of the hADA enzyme (Units/g seed) was reported in tarwi (4.26 U/g) followed by pea (3.23 U/g) and Nicotiana benthamiana (1.69 U/g). The expression of mouse ADA in canola was very low in both seed and leaf tissue compared to other host plants, confirming higher activity of seed specific promoter. Altogether, these results suggest that tarwi could be an excellent candidate for the production of valuable recombinant proteins.

  20. Generation and characterization of a human single-chain fragment variable (scFv antibody against cytosine deaminase from Yeast

    Directory of Open Access Journals (Sweden)

    Tombesi Marina

    2008-09-01

    Full Text Available Abstract Background The ability of cytosine deaminase (CD to convert the antifungal agent 5-fluorocytosine (5-FC into one of the most potent and largely used anticancer compound such as 5-fluorouracil (5-FU raised considerable interest in this enzyme to model gene or antibody – directed enzyme-prodrug therapy (GDEPT/ADEPT aiming to improve the therapeutic ratio (benefit versus toxic side-effects of cancer chemotherapy. The selection and characterization of a human monoclonal antibody in single chain fragment (scFv format represents a powerful reagent to allow in in vitro and in vivo detection of CD expression in GDEPT/ADEPT studies. Results An enzymatic active recombinant CD from yeast (yCD was expressed in E. coli system and used as antigen for biopanning approach of the large semi-synthetic ETH-2 antibody phage library. Several scFvs were isolated and specificity towards yCD was confirmed by Western blot and ELISA. Further, biochemical and functional investigations demonstrated that the binding of specific scFv with yCD did not interfere with the activity of the enzyme in converting 5-FC into 5-FU. Conclusion The construction of libraries of recombinant antibody fragments that are displayed on the surface of filamentous phage, and the selection of phage antibodies against target antigens, have become an important biotechnological tool in generating new monoclonal antibodies for research and clinical applications. The scFvH5 generated by this method is the first human antibody which is able to detect yCD in routinary laboratory techniques without interfering with its enzymatic function.

  1. Opposing activity changes in AMP deaminase and AMP-activated protein kinase in the hibernating ground squirrel.

    Directory of Open Access Journals (Sweden)

    Miguel A Lanaspa

    Full Text Available Hibernating animals develop fatty liver when active in summertime and undergo a switch to a fat oxidation state in the winter. We hypothesized that this switch might be determined by AMP and the dominance of opposing effects: metabolism through AMP deaminase (AMPD2 (summer and activation of AMP-activated protein kinase (AMPK (winter. Liver samples were obtained from 13-lined ground squirrels at different times during the year, including summer and multiples stages of winter hibernation, and fat synthesis and β-fatty acid oxidation were evaluated. Changes in fat metabolism were correlated with changes in AMPD2 activity and intrahepatic uric acid (downstream product of AMPD2, as well as changes in AMPK and intrahepatic β-hydroxybutyrate (a marker of fat oxidation. Hepatic fat accumulation occurred during the summer with relatively increased enzymes associated with fat synthesis (FAS, ACL and ACC and decreased enoyl CoA hydratase (ECH1 and carnitine palmitoyltransferase 1A (CPT1A, rate limiting enzymes of fat oxidation. In summer, AMPD2 activity and intrahepatic uric acid levels were high and hepatic AMPK activity was low. In contrast, the active phosphorylated form of AMPK and β-hydroxybutyrate both increased during winter hibernation. Therefore, changes in AMPD2 and AMPK activity were paralleled with changes in fat synthesis and fat oxidation rates during the summer-winter cycle. These data illuminate the opposing forces of metabolism of AMP by AMPD2 and its availability to activate AMPK as a switch that governs fat metabolism in the liver of hibernating ground squirrel.

  2. Potential benefits of combining cytosine deaminase/5-fluorocytosine gene therapy and irradiation for prostate cancer. Experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Hiroaki; Koshida, Kiyoshi; Yokoyama, Kunihiko; Mizokami, Atsushi; Namiki, Mikio [Kanazawa Univ. (Japan). School of Medicine

    2002-10-01

    The purpose of this study was to investigate the potential of combining cytosine deaminase/5-fluorocytosine (CD/5-FC) gene therapy and radiation therapy (either external beam radiation or radioimmunotherapy [RIT]), for the treatment of prostate cancer. Tumor xenografts of CD-transduced LNCaP cells grown in the testes of severe combined immunodeficiency (SCID) mice were used to evaluate antitumor effect. The mice were injected intraperitoneally with 500 mg/kg of 5-FC, or with 5, 15 or 30 mg/kg of 5-fluorouracil (5-FU), for 9 days. The tumors were treated with fractionated radiation at a dose of 1 or 3 Gy/day for 3 days, or I-131 labelled anti-prostate specific antigen (anti-PSA) monoclonal antibody (mAb) administration at a subtherapeutic dose of 20 or 80 {mu}Ci. Intratumoral and serum concentrations of 5-FU were measured using high performance liquid chromatography. Mice treated with CD/5-FC gene therapy presented a significant tumor growth inhibition comparable to that obtained with 15 mg/kg, 5-FU systemic administration without marked weight loss. Treatment with CD/5-FC gene therapy resulted in higher tumor but lower serum concentrations of 5-FU than treatment with systemic 5-FU chemotherapy. An additive antitumor effect was obtained when CD/5-FC therapy was combined with 1 Gy irradiation, which by itself did not produce a significant antitumor effect. However, the efficacy of CD/5-FC therapy was not enhanced when combined with RIT, probably due to poor accumulation of the mAb as the tumor/blood ratio never exceeded 1. These findings indicate that CD/5-FC gene therapy for prostate cancer may function with enhanced antitumor effect when combined with external beam radiation. However, combining CD/5-FC gene therapy and RIT using an anti-PSA mAb may not be effective because of insufficient accumulation of the mAb at the target tumors. (author)

  3. Utility of adenosine deaminase (ADA, PCR & thoracoscopy in differentiating tuberculous & non-tuberculous pleural effusion complicating chronic kidney disease

    Directory of Open Access Journals (Sweden)

    Sravan Kumar

    2015-01-01

    Full Text Available Background & objectives: Pleural effusion is a common occurrence in patients with late-stage chronic kidney disease (CKD. In developing countries, many effusions remain undiagnosed after pleural fluid analysis (PFA and patients are empirically treated with antitubercular therapy. The aim of this study was to evaluate the role of adenosine deaminase (ADA, nucleic acid amplification tests (NAAT and medical thoracoscopy in distinguishing tubercular and non-tubercular aetiologies in exudative pleural effusions complicating CKD. Methods: Consecutive stage 4 and 5 CKD patients with pleural effusions underwent PFA including ADA and PCR [65 kDa gene; multiplex (IS6110, protein antigen b, MPB64]. Patients with exudative pleural effusion undiagnosed after PFA underwent medical thoracoscopy. Results: All 107 patients underwent thoracocentesis with 45 and 62 patients diagnosed as transudative and exudative pleural effusions, respectively. Twenty six of the 62 patients underwent medical thoracoscopy. Tuberculous pleurisy was diagnosed in six while uraemic pleuritis was diagnosed in 20 subjects. The sensitivity and specificity of pleural fluid ADA, 65 kDa gene PCR, and multiplex PCR were 66.7 and 90 per cent, 100 and 50 per cent, and 100 and 100 per cent, respectively. Thoracoscopy was associated with five complications in three patients. Interpretation & conclusions: Uraemia remains the most common cause of pleural effusion in CKD even in high TB prevalence country. Multiplex PCR and thoracoscopy are useful investigations in the diagnostic work-up of pleural effusions complicating CKD while the sensitivity and/or specificity of ADA and 65 kDa gene PCR is poor.

  4. Diagnostic value of serum adenosine deaminase levels in sputum smear negative pulmonary tuberculosis patients in Nepalese population

    Institute of Scientific and Technical Information of China (English)

    Anil Chander; Chandrika Devi Shrestha

    2012-01-01

    Objective: To assess the levels of adenosine deaminase (ADA) in serum in patients with sputum smear negative pulmonary tuberculosis (SNPTB) and to compare it with serum ADA levels in patients with non-tuberculous pulmonary disease - chronic obstructive pulmonary disease (COPD) and with healthy control group and to explore its validity as a diagnostic marker in serum in SNPTB patients.Methods:Three groups of study populations were made. Group I: SNPTB - 142 cases, Group II:non-tubercular pulmonary disease - COPD - 40 cases, Group III: healthy controls - 80 cases. Serum samples were collected and ADA assay was done by the method of Guisti and Galanti. Results: ADA levels (Mean±SD, U/L) in the three groups were as follows: Group I: 42.26±21.22, Group II: 23.31±8.22, Group III: 18.88±6.67. Difference between Group I and Group III was statistically significant (P < 0.0001). The test showed a high specificity 91.25% (95% confidence interval - CI 83.00 - 95.7) and a sensitivity of 83.10% (95% CI 76.08-88.37) in Group I. Positive predictive value, negative predictive value, positive likelihood ratio, negative likelihood ratio and accuracy in Group I were 94.00%, 69.52%, 9.49, 0.18 and 82.43% respectively.Conclusions: Overall assessment of the use of serum ADA levels as a diagnostic biochemical marker in smear-negative pulmonary tuberculosis patients showed promising results. Studies with a larger population group are required to validate its use as a routine diagnostic test in these cases.

  5. Serum activities of adenosine deaminase, dipeptidyl peptidase IV and prolyl endopeptidase in patients with fibromyalgia: diagnostic implications.

    Science.gov (United States)

    Čulić, Ognjen; Cordero, Mario D; Žanić-Grubišić, Tihana; Somborac-Bačura, Anita; Pučar, Lara Batičić; Detel, Dijana; Varljen, Jadranka; Barišić, Karmela

    2016-10-01

    Fibromyalgia (FM) is a chronic pain syndrome with number of symptoms that present challenge in terms of diagnosis and treatment. Patients with FM show abnormal profile of purines in plasma. In this work, we measured serum activities of enzymes involved in purine metabolism, namely total adenosine deaminase (ADE) and its isoforms (ADE1 and ADE2), ecto-ATPase, and 5'-nucleotidase (5'-NT). We also measured activity of dipeptidyl peptidase IV (DPPIV) and prolyl endopeptidase (PEP). Spectrophotometric and fluorometric methods were used for enzyme activity determinations. Enzyme activities were measured in sera of 24 patients with FM that were not undergoing pharmacological treatment during the study. Control group comprised 32 healthy control subjects. Significantly higher activities of total ADE (P = 0.025) and ADE2 (P = 0.011) were observed in FM patients, while no significant differences in ADE1, ecto-ATPase, and 5'-NT activities (P > 0.05) were found when compared to healthy controls. Moreover, increase in the activity of DPPIV (P = 0.015) and lower activity of PEP (P = 0.011) were also found in the FM group. ROC analysis pointed to different diagnostic sensitivities/specificities for individual enzyme activities measured as follows: ADE (50.0/87.5), ADE2 (41.7/90.6), DPPIV (62.5/71.9), and PEP (83.3/62.5). ADE2 and PEP were shown to be independent predictors of FM, while combination of the two gives AUC of 0.786 (95 % confidence interval of 0.656-0.885, P < 0.05). Our results are showing that serum activities of ADE2 and PEP could be useful as biomarkers for FM diagnosis. However, relatively low diagnostic sensitivity of ADE2 and specificity of PEP must be taken into account.

  6. Mycobacterium tuberculosis ESAT6 and CPF10 Induce Adenosine Deaminase 2 mRNA Expression in Monocyte-Derived Macrophages

    Science.gov (United States)

    Bae, Mi Jung; Ryu, Suyeon; Kim, Ha-Jeong; Cha, Seung Ick

    2017-01-01

    Background Delayed hypersensitivity plays a large role in the pathogenesis of tuberculous pleural effusion (TPE). Macrophages infected with live Mycobacterium tuberculosis (MTB) increase the levels of adenosine deaminase2 (ADA2) in the pleural fluid of TPE patients. However, it is as yet unclear whether ADA2 can be produced by macrophages when challenged with MTB antigens alone. This study therefore evaluated the levels of ADA2 mRNA expression, using monocyte-derived macrophages (MDMs) stimulated with MTB antigens. Methods Purified monocytes from the peripheral blood mononuclear cells of healthy volunteers were differentiated into macrophages using granulocyte-macrophage colony-stimulating factor (GM-CSF) or macrophage colony-stimulating factor (M-CSF). The MDMs were stimulated with early secretory antigenic target protein 6 (ESAT6) and culture filtrate protein 10 (CFP10). The mRNA expression levels for the cat eye syndrome chromosome region, candidate 1 (CECR1) gene encoding ADA2 were then measured. Results CECR1 mRNA expression levels were significantly higher in MDMs stimulated with ESAT6 and CFP10, than in the unstimulated MDMs. When stimulated with ESAT6, M-CSF-treated MDMs showed more pronounced CECR1 mRNA expression than GM-CSF-treated MDMs. Interferon-γ decreased the ESAT6- and CFP10-induced CECR1 mRNA expression in MDMs. CECR1 mRNA expression levels were positively correlated with mRNA expression of tumor necrosis factor α and interleukin 10, respectively. Conclusion ADA2 mRNA expression increased when MDMs were stimulated with MTB antigens alone. This partly indicates that pleural fluid ADA levels could increase in patients with culture-negative TPE. Our results may be helpful in improving the understanding of TPE pathogenesis.

  7. Antitumor effect of cytosine deaminase/5-fluorocytosine suicide gene therapy system mediated by Bifidobacterium infantis on melanoma

    Institute of Scientific and Technical Information of China (English)

    Cheng YI; Ying HUANG; Zhi-ying GUO; Shu-ren WANG

    2005-01-01

    Aim: To construct a Bifidobacterium infantis/CD targeting gene therapy system and observe the antitumor effect of cytosine deaminase/5-fluorocytosine (CD/5-FC) suicide gene therapy system mediated by Bifidobacterium infantis on melanoma in vitro and in vivo. Methods: A recombinant CD/pGEX- 1LamdaT plasmid was transfected into Bifidobacterium infantis by electroporation. Bifidobac terium infantis transfected by recombinant CD/pGEX-1LamdaT plasmid was in cubated with 5-FC anaerobically. Then the supernatant fluid was collected and added to melanoma B16-F10 cells to observe the killing effect for B16-F10 cells.Mice were inoculated with melanoma B 16-F10 cells to establish animal models.The mice were then injected with 5-FC and Bifidobacterium infantis transfected by recombinant CD/pGEX-1LamdaT plasmid. Results:Two segments of approxi mate 4.9 kb and 1.3 kb were extracted from the 6.2 kb recombinant plasmid, which were equal to the size of the pGEX-1LamdaT plasmid and CD gene, respectively.Sequencing results showed that the full length and sequence of nucleotide acid of the inserted gene in extracted recombinant plasmid was completely identical to the CD gene. In vitro, B 16-F10 cells treated by supernatant fluid were remarkably damaged morphologically, and the cell growth was significantly inhibited. Experi ments on the mice melanoma model showed that after treatment with a combination of transfected Bifidobacterium infantis and 5-FC, the tumor volume was significantly inhibited compared with controls. Conclusion: The foreign gene,CD gene, was correctly inserted into pGEX-1LambdaT plasmid and transferred into Bifidobacterium infantis. CD/5-FC suicide gene therapy system mediated by Bifidobacterium infantis demonstrated a good antitumor effect on melanoma in vitro and in vivo.

  8. Inoculation of soil with plant growth promoting bacteria producing 1-aminocyclopropane-1-carboxylate deaminase or expression the corresponding acdS gene in transgenic plants increases salinity tolerance in Camelina sativa.

    Directory of Open Access Journals (Sweden)

    Zohreh Heydarian

    2016-12-01

    Full Text Available Camelina sativa (camelina is an oilseed crop touted for use on marginal lands; however, it is no more tolerant of soil salinity than traditional crops, such as canola. Plant growth-promoting bacteria (PGPB that produce 1-aminocyclopropane-1-carboxylate deaminase (ACC deaminase facilitate plant growth in the presence of abiotic stresses by reducing stress ethylene. Rhizospheric and endophytic PGPB and the corresponding acdS- mutants of the latter were examined for their ability to enhance tolerance to salt in camelina. Stimulation of growth and tolerance to salt was correlated with ACC deaminase production. Inoculation of soil with wild-type PGPB led to increased shoot length in the absence of salt, and increased seed production by approximately 30-50 percent under moderately saline conditions. The effect of ACC deaminase was further examined in transgenic camelina expressing a bacterial gene encoding ACC deaminase (acdS under the regulation of the CaMV 35S promoter or the root-specific rolD promoter. Lines expressing acdS, in particular those using the rolD promoter, showed less decline in root length and weight, increased seed production, better seed quality and higher levels of seed oil production under salt stress. This study clearly demonstrates the potential benefit of using either PGPB that produce ACC deaminase or transgenic plants expressing the acdS gene under the control of a root-specific promoter to facilitate plant growth, seed production and seed quality on land that is not normally suitable for the majority of crops due to high salt content.

  9. Inoculation of Soil with Plant Growth Promoting Bacteria Producing 1-Aminocyclopropane-1-Carboxylate Deaminase or Expression of the Corresponding acdS Gene in Transgenic Plants Increases Salinity Tolerance in Camelina sativa.

    Science.gov (United States)

    Heydarian, Zohreh; Yu, Min; Gruber, Margaret; Glick, Bernard R; Zhou, Rong; Hegedus, Dwayne D

    2016-01-01

    Camelina sativa (camelina) is an oilseed crop touted for use on marginal lands; however, it is no more tolerant of soil salinity than traditional crops, such as canola. Plant growth-promoting bacteria (PGPB) that produce 1-aminocyclopropane-1-carboxylate deaminase (ACC deaminase) facilitate plant growth in the presence of abiotic stresses by reducing stress ethylene. Rhizospheric and endophytic PGPB and the corresponding acdS- mutants of the latter were examined for their ability to enhance tolerance to salt in camelina. Stimulation of growth and tolerance to salt was correlated with ACC deaminase production. Inoculation of soil with wild-type PGPB led to increased shoot length in the absence of salt, and increased seed production by approximately 30-50% under moderately saline conditions. The effect of ACC deaminase was further examined in transgenic camelina expressing a bacterial gene encoding ACC deaminase (acdS) under the regulation of the CaMV 35S promoter or the root-specific rolD promoter. Lines expressing acdS, in particular those using the rolD promoter, showed less decline in root length and weight, increased seed production, better seed quality and higher levels of seed oil production under salt stress. This study clearly demonstrates the potential benefit of using either PGPB that produce ACC deaminase or transgenic plants expressing the acdS gene under the control of a root-specific promoter to facilitate plant growth, seed production and seed quality on land that is not normally suitable for the majority of crops due to high salt content.

  10. Inoculation of Soil with Plant Growth Promoting Bacteria Producing 1-Aminocyclopropane-1-Carboxylate Deaminase or Expression of the Corresponding acdS Gene in Transgenic Plants Increases Salinity Tolerance in Camelina sativa

    Science.gov (United States)

    Heydarian, Zohreh; Yu, Min; Gruber, Margaret; Glick, Bernard R.; Zhou, Rong; Hegedus, Dwayne D.

    2016-01-01

    Camelina sativa (camelina) is an oilseed crop touted for use on marginal lands; however, it is no more tolerant of soil salinity than traditional crops, such as canola. Plant growth-promoting bacteria (PGPB) that produce 1-aminocyclopropane-1-carboxylate deaminase (ACC deaminase) facilitate plant growth in the presence of abiotic stresses by reducing stress ethylene. Rhizospheric and endophytic PGPB and the corresponding acdS- mutants of the latter were examined for their ability to enhance tolerance to salt in camelina. Stimulation of growth and tolerance to salt was correlated with ACC deaminase production. Inoculation of soil with wild-type PGPB led to increased shoot length in the absence of salt, and increased seed production by approximately 30–50% under moderately saline conditions. The effect of ACC deaminase was further examined in transgenic camelina expressing a bacterial gene encoding ACC deaminase (acdS) under the regulation of the CaMV 35S promoter or the root-specific rolD promoter. Lines expressing acdS, in particular those using the rolD promoter, showed less decline in root length and weight, increased seed production, better seed quality and higher levels of seed oil production under salt stress. This study clearly demonstrates the potential benefit of using either PGPB that produce ACC deaminase or transgenic plants expressing the acdS gene under the control of a root-specific promoter to facilitate plant growth, seed production and seed quality on land that is not normally suitable for the majority of crops due to high salt content. PMID:28018305

  11. Targeted cytosine deaminase-uracil phosphoribosyl transferase suicide gene therapy induces small cell lung cancer-specific cytotoxicity and tumor growth delay

    DEFF Research Database (Denmark)

    Christensen, Camilla L; Gjetting, Torben; Poulsen, Thomas Tuxen

    2010-01-01

    Small cell lung cancer (SCLC) is a highly malignant cancer for which there is no curable treatment. Novel therapies are therefore in great demand. In the present study we investigated the therapeutic effect of transcriptionally targeted suicide gene therapy for SCLC based on the yeast cytosine...... deaminase (YCD) gene alone or fused with the yeast uracil phosphoribosyl transferase (YUPRT) gene followed by administration of 5-fluorocytosine (5-FC) prodrug. Experimental design: The YCD gene or the YCD-YUPRT gene was placed under regulation of the SCLC-specific promoter insulinoma-associated 1 (INSM1...

  12. Asparagine deprivation mediated by Salmonella asparaginase causes suppression of activation-induced T cell metabolic reprogramming.

    Science.gov (United States)

    Torres, AnnMarie; Luke, Joanna D; Kullas, Amy L; Kapilashrami, Kanishk; Botbol, Yair; Koller, Antonius; Tonge, Peter J; Chen, Emily I; Macian, Fernando; van der Velden, Adrianus W M

    2016-02-01

    Salmonellae are pathogenic bacteria that induce immunosuppression by mechanisms that remain largely unknown. Previously, we showed that a putative type II l-asparaginase produced by Salmonella Typhimurium inhibits T cell responses and mediates virulence in a murine model of infection. Here, we report that this putative L-asparaginase exhibits L-asparagine hydrolase activity required for Salmonella Typhimurium to inhibit T cells. We show that L-asparagine is a nutrient important for T cell activation and that L-asparagine deprivation, such as that mediated by the Salmonella Typhimurium L-asparaginase, causes suppression of activation-induced mammalian target of rapamycin signaling, autophagy, Myc expression, and L-lactate secretion. We also show that L-asparagine deprivation mediated by the Salmonella Typhimurium L-asparaginase causes suppression of cellular processes and pathways involved in protein synthesis, metabolism, and immune response. Our results advance knowledge of a mechanism used by Salmonella Typhimurium to inhibit T cell responses and mediate virulence, and provide new insights into the prerequisites of T cell activation. We propose a model in which l-asparagine deprivation inhibits T cell exit from quiescence by causing suppression of activation-induced metabolic reprogramming.

  13. Feed-Forward Inhibition of CD73 and Upregulation of Adenosine Deaminase Contribute to the Loss of Adenosine Neuromodulation in Postinflammatory Ileitis

    Directory of Open Access Journals (Sweden)

    Cátia Vieira

    2014-01-01

    Full Text Available Purinergic signalling is remarkably plastic during gastrointestinal inflammation. Thus, selective drugs targeting the “purinome” may be helpful for inflammatory gastrointestinal diseases. The myenteric neuromuscular transmission of healthy individuals is fine-tuned and controlled by adenosine acting on A2A excitatory receptors. Here, we investigated the neuromodulatory role of adenosine in TNBS-inflamed longitudinal muscle-myenteric plexus of the rat ileum. Seven-day postinflammation ileitis lacks adenosine neuromodulation, which may contribute to acceleration of gastrointestinal transit. The loss of adenosine neuromodulation results from deficient accumulation of the nucleoside at the myenteric synapse despite the fact that the increases in ATP release were observed. Disparity between ATP outflow and adenosine deficit in postinflammatory ileitis is ascribed to feed-forward inhibition of ecto-5′-nucleotidase/CD73 by high extracellular ATP and/or ADP. Redistribution of NTPDase2, but not of NTPDase3, from ganglion cell bodies to myenteric nerve terminals leads to preferential ADP accumulation from released ATP, thus contributing to the prolonged inhibition of muscle-bound ecto-5′-nucleotidase/CD73 and to the delay of adenosine formation at the inflamed neuromuscular synapse. On the other hand, depression of endogenous adenosine accumulation may also occur due to enhancement of adenosine deaminase activity. Both membrane-bound and soluble forms of ecto-5′-nucleotidase/CD73 and adenosine deaminase were detected in the inflamed myenteric plexus. These findings provide novel therapeutic targets for inflammatory gut motility disorders.

  14. Characterization of a gene coding for a putative adenosine deaminase-related growth factor by RNA interference in the basidiomycete Flammulina velutipes.

    Science.gov (United States)

    Sekiya, Shuichi; Yamada, Masato; Shibata, Kou; Okuhara, Toru; Yoshida, Masumi; Inatomi, Satoshi; Taguchi, Goro; Shimosaka, Makoto

    2013-04-01

    A full-length cDNA coding for a putative adenosine deaminase (Fv-ada) was isolated from the basidiomycete Flammulina velutipes. Fv-ada encodes a polypeptide consisting of 537 amino acid residues, which has a consensus sequence conserved among adenosine deaminase-related growth factors (ADGF) found in several metazoa, including chordates and insects. Fv-ada transcript was detected at all stages of growth in dikaryotic F. velutipes cells, with a peak at the primordial stage. Heterologous expression of Fv-ada in the yeast Pichia pastoris produced recombinant Fv-ADA that catalyzed the conversion of adenosine to inosine. Dikaryotic mycelia from F. velutipes were transformed with the binary plasmid pFungiway-Fv-ada, which was designed to suppress the expression of Fv-ada through RNA interference. The growth rates of the resulting transformants were retarded in response to the degree of suppression, indicating that Fv-ada plays an important role in the mycelial growth of F. velutipes. These results suggested that ADGF could function as growth factors in fungi, as is seen in other eukaryotes.

  15. Crystallization and preliminary X-ray crystallographic analysis of adenosine 5′-monophosphate deaminase (AMPD) from Arabidopsis thaliana in complex with coformycin 5′-phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Han, Byung Woo [Department of Biochemistry, University of Wisconsin-Madison, WI 53706-1544 (United States); Center for Eukaryotic Structural Genomics (CESG), University of Wisconsin-Madison, WI 53706-1549 (United States); Bingman, Craig A. [Center for Eukaryotic Structural Genomics (CESG), University of Wisconsin-Madison, WI 53706-1549 (United States); Mahnke, Donna K.; Sabina, Richard L. [Department of Biochemistry, The Medical College of Wisconsin, Milwaukee, WI 53226-4801 (United States); Phillips, George N. Jr, E-mail: phillips@biochem.wisc.edu [Department of Biochemistry, University of Wisconsin-Madison, WI 53706-1544 (United States); Center for Eukaryotic Structural Genomics (CESG), University of Wisconsin-Madison, WI 53706-1549 (United States)

    2005-08-01

    Adenosine 5′-monophosphate deaminase from A. thaliana has been crystallized in complex with coformycin 5′-phosphate. Diffraction data have been collected to 3.34 Å resolution. Adenosine 5′-monophosphate deaminase (AMPD) is a eukaryotic enzyme that converts adenosine 5′-monophosphate (AMP) to inosine 5′-monophosphate (IMP) and ammonia. AMPD from Arabidopsis thaliana (AtAMPD) was cloned into the baculoviral transfer vector p2Bac and co-transfected along with a modified baculoviral genome into Spodoptera frugiperda (Sf9) cells. The resulting recombinant baculovirus were plaque-purified, amplified and used to overexpress recombinant AtAMPD. Crystals of purified AtAMPD have been obtained to which coformycin 5′-phosphate, a transition-state inhibitor, is bound. Crystals belong to space group P6{sub 2}22, with unit-cell parameters a = b = 131.325, c = 208.254 Å, α = β = 90, γ = 120°. Diffraction data were collected to 3.34 Å resolution from a crystal in complex with coformycin 5′-phosphate and to 4.05 Å resolution from a crystal of a mercury derivative.

  16. Role and Regulation of ACC Deaminase Gene in Sinorhizobium meliloti: Is It a Symbiotic, Rhizospheric or Endophytic Gene?

    Science.gov (United States)

    Checcucci, Alice; Azzarello, Elisa; Bazzicalupo, Marco; De Carlo, Anna; Emiliani, Giovanni; Mancuso, Stefano; Spini, Giulia; Viti, Carlo; Mengoni, Alessio

    2017-01-01

    Plant-associated bacteria exhibit a number of different strategies and specific genes allow bacteria to communicate and metabolically interact with plant tissues. Among the genes found in the genomes of plant-associated bacteria, the gene encoding the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase (acdS) is one of the most diffused. This gene is supposed to be involved in the cleaving of plant-produced ACC, the precursor of the plant stress-hormone ethylene toning down the plant response to infection. However, few reports are present on the actual role in rhizobia, one of the most investigated groups of plant-associated bacteria. In particular, still unclear is the origin and the role of acdS in symbiotic competitiveness and on the selective benefit it may confer to plant symbiotic rhizobia. Here we present a phylogenetic and functional analysis of acdS orthologs in the rhizobium model-species Sinorhizobium meliloti. Results showed that acdS orthologs present in S. meliloti pangenome have polyphyletic origin and likely spread through horizontal gene transfer, mediated by mobile genetic elements. When acdS ortholog from AK83 strain was cloned and assayed in S. meliloti 1021 (lacking acdS), no modulation of plant ethylene levels was detected, as well as no increase in fitness for nodule occupancy was found in the acdS-derivative strain compared to the parental one. Surprisingly, AcdS was shown to confer the ability to utilize formamide and some dipeptides as sole nitrogen source. Finally, acdS was shown to be negatively regulated by a putative leucine-responsive regulator (LrpL) located upstream to acdS sequence (acdR). acdS expression was induced by root exudates of both legumes and non-leguminous plants. We conclude that acdS in S. meliloti is not directly related to symbiotic interaction, but it could likely be involved in the rhizospheric colonization or in the endophytic behavior.

  17. Role and Regulation of ACC Deaminase Gene in Sinorhizobium meliloti: Is It a Symbiotic, Rhizospheric or Endophytic Gene?

    Science.gov (United States)

    Checcucci, Alice; Azzarello, Elisa; Bazzicalupo, Marco; De Carlo, Anna; Emiliani, Giovanni; Mancuso, Stefano; Spini, Giulia; Viti, Carlo; Mengoni, Alessio

    2017-01-01

    Plant-associated bacteria exhibit a number of different strategies and specific genes allow bacteria to communicate and metabolically interact with plant tissues. Among the genes found in the genomes of plant-associated bacteria, the gene encoding the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase (acdS) is one of the most diffused. This gene is supposed to be involved in the cleaving of plant-produced ACC, the precursor of the plant stress-hormone ethylene toning down the plant response to infection. However, few reports are present on the actual role in rhizobia, one of the most investigated groups of plant-associated bacteria. In particular, still unclear is the origin and the role of acdS in symbiotic competitiveness and on the selective benefit it may confer to plant symbiotic rhizobia. Here we present a phylogenetic and functional analysis of acdS orthologs in the rhizobium model-species Sinorhizobium meliloti. Results showed that acdS orthologs present in S. meliloti pangenome have polyphyletic origin and likely spread through horizontal gene transfer, mediated by mobile genetic elements. When acdS ortholog from AK83 strain was cloned and assayed in S. meliloti 1021 (lacking acdS), no modulation of plant ethylene levels was detected, as well as no increase in fitness for nodule occupancy was found in the acdS-derivative strain compared to the parental one. Surprisingly, AcdS was shown to confer the ability to utilize formamide and some dipeptides as sole nitrogen source. Finally, acdS was shown to be negatively regulated by a putative leucine-responsive regulator (LrpL) located upstream to acdS sequence (acdR). acdS expression was induced by root exudates of both legumes and non-leguminous plants. We conclude that acdS in S. meliloti is not directly related to symbiotic interaction, but it could likely be involved in the rhizospheric colonization or in the endophytic behavior. PMID:28194158

  18. Lycopene, quercetin and tyrosol prevent macrophage activation induced by gliadin and IFN-gamma.

    Science.gov (United States)

    De Stefano, Daniela; Maiuri, Maria Chiara; Simeon, Vittorio; Grassia, Gianluca; Soscia, Antonio; Cinelli, Maria Pia; Carnuccio, Rosa

    2007-07-02

    Oxidative stress plays an important role in inflammatory process of celiac disease. We have studied the effect of the lycopene, quercetin and tyrosol natural antioxidants on the inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) gene expression in RAW 264.7 macrophages stimulated by gliadin in association with IFN-gamma. The IFN-gamma plus gliadin combination treatment was capable of enhancing iNOS and COX-2 gene expression and nuclear factor-kappaB (NF-kappaB), interferon regulatory factor-1 (IRF-1) and signal transducer and activator of transcription-1alpha (STAT-1alpha) activation induced by reactive oxygen species generation at 24 h. Lycopene, quercetin and tyrosol inhibited all these effects. The results here reported suggest that these compounds may represent non toxic agents for the control of pro-inflammatory genes involved in celiac disease.

  19. Mechanism of platelet activation induced by endocannabinoids in blood and plasma.

    Science.gov (United States)

    Brantl, S Annette; Khandoga, Anna L; Siess, Wolfgang

    2014-01-01

    Platelets play a central role in atherosclerosis and atherothrombosis, and circulating endocannabinoids might modulate platelet function. Previous studies concerning effects of anandamide (N-arachidonylethanolamide) and 2-arachidonoylglycerol (2-AG) on platelets, mainly performed on isolated cells, provided conflicting results. We therefore investigated the action of three main endocannabinoids [anandamide, 2-AG and virodhamine (arachidonoylethanolamine)] on human platelets in blood and platelet-rich plasma (PRP). 2-AG and virodhamine induced platelet aggregation in blood, and shape change, aggregation and adenosine triphosphate (ATP) secretion in PRP. The EC50 of 2-AG and virodhamine for platelet aggregation in blood was 97 and 160 µM, respectively. Lower concentrations of 2-AG (20 µM) and virodhamine (50 µM) synergistically induced aggregation with other platelet stimuli. Platelet activation induced by 2-AG and virodhamine resembled arachidonic acid (AA)-induced aggregation: shape change, the first platelet response, ATP secretion and aggregation induced by 2-AG and virodhamine were all blocked by acetylsalicylic acid (ASA) or the specific thromboxane A2 (TXA2) antagonist daltroban. In addition, platelet activation induced by 2-AG and virodhamine in blood and PRP were inhibited by JZL184, a selective inhibitor of monoacylglycerol lipase (MAGL). In contrast to 2-AG and virodhamine, anandamide, a substrate of fatty acid amidohydrolase, was inactive. Synthetic cannabinoid receptor subtype 1 (CB1) and 2 (CB2) agonists lacked stimulatory as well as inhibitory platelet activity. We conclude that 2-AG and virodhamine stimulate platelets in blood and PRP by a MAGL-triggered mechanism leading to free AA and its metabolism by platelet cyclooxygenase-1/thromboxane synthase to TXA2. CB1, CB2 or non-CB1/CB2 receptors are not involved. Our results imply that ASA and MAGL inhibitors will protect platelets from activation by high endocannabinoid levels, and that

  20. Anti-apoptotic BFL-1 is the major effector in activation-induced human mast cell survival.

    Directory of Open Access Journals (Sweden)

    Maria Ekoff

    Full Text Available Mast cells are best known for their role in allergic reactions, where aggregation of FcεRI leads to the release of mast cell mediators causing allergic symptoms. The activation also induces a survival program in the cells, i.e., activation-induced mast cell survival. The aim of the present study was to investigate how the activation-induced survival is mediated. Cord blood-derived mast cells and the mast cell line LAD-2 were activated through FcεRI crosslinking, with or without addition of chemicals that inhibit the activity or expression of selected Bcl-2 family members (ABT-737; roscovitine. Cell viability was assessed using staining and flow cytometry. The expression and function of Bcl-2 family members BFL-1 and MCL-1 were investigated using real-time quantitative PCR and siRNA treatment. The mast cell expression of Bfl-1 was investigated in skin biopsies. FcεRI crosslinking promotes activation-induced survival of human mast cells and this is associated with an upregulation of the anti-apoptotic Bcl-2 family member Bfl-1. ABT-737 alone or in combination with roscovitine decreases viability of human mast cells although activation-induced survival is sustained, indicating a minor role for Bcl-X(L, Bcl-2, Bcl-w and Mcl-1. Reducing BFL-1 but not MCL-1 levels by siRNA inhibited activation-induced mast cell survival. We also demonstrate that mast cell expression of Bfl-1 is elevated in birch-pollen-provocated skin and in lesions of atopic dermatitis and psoriasis patients. Taken together, our results highlight Bfl-1 as a major effector in activation-induced human mast cell survival.

  1. PARP activation promotes nuclear AID accumulation in lymphoma cells.

    Science.gov (United States)

    Tepper, Sandra; Jeschke, Julia; Böttcher, Katrin; Schmidt, Angelika; Davari, Kathrin; Müller, Peter; Kremmer, Elisabeth; Hemmerich, Peter; Pfeil, Ines; Jungnickel, Berit

    2016-03-15

    Activation-induced cytidine deaminase (AID) initiates immunoglobulin diversification in germinal center B cells by targeted introduction of DNA damage. As aberrant nuclear AID action contributes to the generation of B cell lymphoma, the protein's activity is tightly regulated, e.g. by nuclear/cytoplasmic shuttling and nuclear degradation. In the present study, we asked whether DNA damage may affect regulation of the AID protein. We show that exogenous DNA damage that mainly activates base excision repair leads to prevention of proteasomal degradation of AID and hence its nuclear accumulation. Inhibitor as well as knockout studies indicate that activation of poly (ADP-ribose) polymerase (PARP) by DNA damaging agents promotes both phenomena. These findings suggest that PARP inhibitors influence DNA damage dependent AID regulation, with interesting implications for the regulation of AID function and chemotherapy of lymphoma.

  2. Mice carrying a knock-in mutation of Aicda resulting in a defect in somatic hypermutation have impaired gut homeostasis and compromised mucosal defense.

    Science.gov (United States)

    Wei, Min; Shinkura, Reiko; Doi, Yasuko; Maruya, Mikako; Fagarasan, Sidonia; Honjo, Tasuku

    2011-03-01

    To elucidate the specific role of somatic hypermutation (SHM) in mucosal immunity, we generated mice carrying a knock-in point mutation in Aicda, which encodes activation-induced cytidine deaminase (AID), an enzyme essential to SHM and class-switch recombination (CSR). These mutant AID(G23S) mice had much less SHM but had normal amounts of immunoglobulin in both serum and intestinal secretions. AID(G23S) mice developed hyperplasia of germinal center B cells in gut-associated lymphoid tissues, accompanied by expansion of microflora in the small intestine. Moreover, AID(G23S) mice had more translocation of Yersinia enterocolitica into mesenteric lymph nodes and were more susceptible than wild-type mice to oral challenge with cholera toxin. Together our results indicate that SHM is critical in maintaining intestinal homeostasis and efficient mucosal defense.

  3. Targeting of AID-mediated sequence diversification to immunoglobulin genes.

    Science.gov (United States)

    Kothapalli, Naga Rama; Fugmann, Sebastian D

    2011-04-01

    Activation-induced cytidine deaminase (AID) is a key enzyme for antibody-mediated immune responses. Antibodies are encoded by the immunoglobulin genes and AID acts as a transcription-dependent DNA mutator on these genes to improve antibody affinity and effector functions. An emerging theme in field is that many transcribed genes are potential targets of AID, presenting an obvious danger to genomic integrity. Thus there are mechanisms in place to ensure that mutagenic outcomes of AID activity are specifically restricted to the immunoglobulin loci. Cis-regulatory targeting elements mediate this effect and their mode of action is probably a combination of immunoglobulin gene specific activation of AID and a perversion of faithful DNA repair towards error-prone outcomes.

  4. A cis-acting diversification activator both necessary and sufficient for AID-mediated hypermutation.

    Directory of Open Access Journals (Sweden)

    Artem Blagodatski

    2009-01-01

    Full Text Available Hypermutation of the immunoglobulin (Ig genes requires Activation Induced cytidine Deaminase (AID and transcription, but it remains unclear why other transcribed genes of B cells do not mutate. We describe a reporter transgene crippled by hypermutation when inserted into or near the Ig light chain (IgL locus of the DT40 B cell line yet stably expressed when inserted into other chromosomal positions. Step-wise deletions of the IgL locus revealed that a sequence extending for 9.8 kilobases downstream of the IgL transcription start site confers the hypermutation activity. This sequence, named DIVAC for diversification activator, efficiently activates hypermutation when inserted at non-Ig loci. The results significantly extend previously reported findings on AID-mediated gene diversification. They show by both deletion and insertion analyses that cis-acting sequences predispose neighboring transcription units to hypermutation.

  5. DNA Replication Origins in Immunoglobulin Switch Regions Regulate Class Switch Recombination in an R-Loop-Dependent Manner.

    Science.gov (United States)

    Wiedemann, Eva-Maria; Peycheva, Mihaela; Pavri, Rushad

    2016-12-13

    Class switch recombination (CSR) at the immunoglobulin heavy chain (IgH) locus generates antibody isotypes. CSR depends on double-strand breaks (DSBs) induced by activation-induced cytidine deaminase (AID). Although DSB formation and repair machineries are active in G1 phase, efficient CSR is dependent on cell proliferation and S phase entry; however, the underlying mechanisms are obscure. Here, we show that efficient CSR requires the replicative helicase, the Mcm complex. Mcm proteins are enriched at IgH switch regions during CSR, leading to assembly of facultative replication origins that require Mcm helicase function for productive CSR. Assembly of CSR-associated origins is facilitated by R loops and promotes the physical proximity (synapsis) of recombining switch regions, which is reduced by R loop inhibition or Mcm complex depletion. Thus, R loops contribute to replication origin specification that promotes DSB resolution in CSR. This suggests a mechanism for the dependence of CSR on S phase and cell division.

  6. Epigenetics of the antibody response.

    Science.gov (United States)

    Li, Guideng; Zan, Hong; Xu, Zhenming; Casali, Paolo

    2013-09-01

    Epigenetic marks, such as DNA methylation, histone post-translational modifications and miRNAs, are induced in B cells by the same stimuli that drive the antibody response. They play major roles in regulating somatic hypermutation (SHM), class switch DNA recombination (CSR), and differentiation to plasma cells or long-lived memory B cells. Histone modifications target the CSR and, possibly, SHM machinery to the immunoglobulin locus; they together with DNA methylation and miRNAs modulate the expression of critical elements of that machinery, such as activation-induced cytidine deaminase (AID), as well as factors central to plasma cell differentiation, such as B lymphocyte-induced maturation protein-1 (Blimp-1). These inducible B cell-intrinsic epigenetic marks instruct the maturation of antibody responses. Their dysregulation plays an important role in aberrant antibody responses to foreign antigens, such as those of microbial pathogens, and self-antigens, such as those targeted in autoimmunity, and B cell neoplasia.

  7. Close proximity to Igh is a contributing factor to AID-mediated translocations.

    Science.gov (United States)

    Rocha, Pedro P; Micsinai, Mariann; Kim, JungHyun Rachel; Hewitt, Susannah L; Souza, Patricia P; Trimarchi, Thomas; Strino, Francesco; Parisi, Fabio; Kluger, Yuval; Skok, Jane A

    2012-09-28

    Class switch recombination (CSR) has the potential to generate genomic instability in B cells as activation-induced cytidine deaminase (AID), which mediates this process, is known to target many sites outside Igh. Nonetheless we do not fully understand what factors influence AID targeting genome-wide. Given that errors in CSR can lead to dangerous, oncogenic chromosomal translocations it is important to identify the elements that determine which genes are at risk of being "hit" and could be involved in aberrant rearrangements. Here we have investigated the influence of nuclear organization in determining "off-target" activity and the choice of fusion partners. Our studies indicate that the vast majority of known AID-mediated Igh translocation partners are found in chromosomal domains that contact this locus during class switching. Further, these interaction domains can be used to identify other genes that are hit by AID.

  8. Modelling mutational landscapes of human cancers in vitro

    Science.gov (United States)

    Olivier, Magali; Weninger, Annette; Ardin, Maude; Huskova, Hana; Castells, Xavier; Vallée, Maxime P.; McKay, James; Nedelko, Tatiana; Muehlbauer, Karl-Rudolf; Marusawa, Hiroyuki; Alexander, John; Hazelwood, Lee; Byrnes, Graham; Hollstein, Monica; Zavadil, Jiri

    2014-03-01

    Experimental models that recapitulate mutational landscapes of human cancers are needed to decipher the rapidly expanding data on human somatic mutations. We demonstrate that mutation patterns in immortalised cell lines derived from primary murine embryonic fibroblasts (MEFs) exposed in vitro to carcinogens recapitulate key features of mutational signatures observed in human cancers. In experiments with several cancer-causing agents we obtained high genome-wide concordance between human tumour mutation data and in vitro data with respect to predominant substitution types, strand bias and sequence context. Moreover, we found signature mutations in well-studied human cancer driver genes. To explore endogenous mutagenesis, we used MEFs ectopically expressing activation-induced cytidine deaminase (AID) and observed an excess of AID signature mutations in immortalised cell lines compared to their non-transgenic counterparts. MEF immortalisation is thus a simple and powerful strategy for modelling cancer mutation landscapes that facilitates the interpretation of human tumour genome-wide sequencing data.

  9. Analysis of cellular phenotype during in vitro immunization of murine splenocytes for generating antigen-specific immunoglobulin.

    Science.gov (United States)

    Inagaki, Takashi; Yoshimi, Tatsunari; Kobayashi, Satoshi; Kawahara, Masahiro; Nagamune, Teruyuki

    2013-03-01

    Although various in vitro immunization methods to generate antigen-specific antibodies have been described, a highly effective method that can generate high-affinity immunoglobulins has not yet been reported. Herein, we analyzed a cellular phenotype during in vitro immunization of murine splenocytes for generating antigen-specific immunoglobulins. We identified a combination of T cell-dependent stimuli (IL-4, IL-5, anti-CD38 and anti-CD40 antibodies) plus lipopolysaccharides (LPS) that stimulates antigen-exposed splenocytes in vitro, followed by induction of the cells phenotypically equivalent to germinal center B cells. We also observed that LPS induced high expression levels of mRNA for activation-induced cytidine deaminase. We stimulated antigen-exposed splenocytes, followed by the accumulation of mutations in immunoglobulin genes. From the immunized splenocytes, hybridoma clones secreting antigen-specific immunoglobulins were obtained.

  10. The AID-induced DNA damage response in chromatin

    DEFF Research Database (Denmark)

    Daniel, Jeremy A; Nussenzweig, André

    2013-01-01

    with somatic hypermutation and class switch recombination, chromatin must be made accessible for activation-induced cytidine deaminase (AID)-mediated deamination of cytosines in DNA. These lesions are recognized and removed by various DNA repair pathways but, if not handled properly, can lead to formation......Chemical modifications to the DNA and histone protein components of chromatin can modulate gene expression and genome stability. Understanding the physiological impact of changes in chromatin structure remains an important question in biology. As one example, in order to generate antibody diversity...... of oncogenic chromosomal translocations. In this review, we focus the discussion on how chromatin-modifying activities and -binding proteins contribute to the native chromatin environment in which AID-induced DNA damage is targeted and repaired. Outstanding questions remain regarding the direct roles...

  11. Spectroscopy and computational studies on the interaction of octyl, dodecyl, and hexadecyl derivatives of anionic and cationic surfactants with adenosine deaminase.

    Science.gov (United States)

    Ajloo, Davood; Mahmoodabadi, Najmeh; Ghadamgahi, Maryam; Saboury, Ali Akbar

    2016-07-01

    Effects of sodium (octyl, dodecyl, hexadecyl) sulfate and their cationic analogous on the structure of adenosine deaminase (ADA) were investigated by fluorescence and circular dichroism spectroscopy as well as molecular dynamics simulation and docking calculation. Root-mean-square derivations, radius of gyration, solvent accessible surface area, and radial distribution function were obtained. The results showed that anionic and cationic surfactants reduce protein stability. Cationic surfactants have more effect on the ADA structure in comparison with anionic surfactants. More concentration and longer surfactants are parallel to higher denaturation. Furthermore, aggregation in the presence of anionic surfactants is more than cationic surfactants. Docking data showed that longer surfactants have more interaction energy and smaller ones bound to the active site.

  12. Pseudouridine synthases: four families of enzymes containing a putative uridine-binding motif also conserved in dUTPases and dCTP deaminases.

    Science.gov (United States)

    Koonin, E V

    1996-06-15

    Using a combination of several methods for protein sequence comparison and motif analysis, it is shown that the four recently described pseudouridine syntheses with different specificities belong to four distinct families. Three of these families share two conserved motifs that are likely to be directly involved in catalysis. One of these motifs is detected also in two other families of enzymes that specifically bind uridine, namely deoxycitidine triphosphate deaminases and deoxyuridine triphosphatases. It is proposed that this motif is an essential part of the uridine-binding site. Two of the pseudouridine syntheses, one of which modifies the anticodon arm of tRNAs and the other is predicted to modify a portion of the large ribosomal subunit RNA belonging to the peptidyltransferase center, are encoded in all extensively sequenced genomes, including the 'minimal' genome of Mycoplasma genitalium. These particular RNA modifications and the respective enzymes are likely to be essential for the functioning of any cell.

  13. Study and reengineering of the binding sites and allosteric regulation of biosynthetic threonine deaminase by isoleucine and valine in Escherichia coli.

    Science.gov (United States)

    Chen, Lin; Chen, Zhen; Zheng, Ping; Sun, Jibin; Zeng, An-Ping

    2013-04-01

    Biosynthetic threonine deaminase (TD) is a key enzyme for the synthesis of isoleucine which is allosterically inhibited and activated by Ile and Val, respectively. The binding sites of Ile and Val and the mechanism of their regulations in TD are not clear, but essential for a rational design of efficient productive strain(s) for Ile and related amino acids. In this study, structure-based computational approach and site-directed mutagenesis were combined to identify the potential binding sites of Ile and Val in Escherichia coli TD. Our results demonstrated that each regulatory domain of the TD monomer possesses two nonequivalent effector-binding sites. The residues R362, E442, G445, A446, Y369, I460, and S461 only interact with Ile while E347, G350, and F352 are involved not only in the Ile binding but also in the Val binding. By further considering enzyme kinetic data, we propose a concentration-dependent mechanism of the allosteric regulation of TD by Ile and Val. For the construction of Ile overproducing strain, a novel TD mutant with double mutation of F352A/R362F was also created, which showed both higher activity and much stronger resistance to Ile inhibition comparing to those of wild-type enzyme. Overexpression of this mutant TD in E. coli JW3591 significantly increased the production of ketobutyrate and Ile in comparison to the reference strains overexpressing wild-type TD or the catabolic threonine deaminase (TdcB). This work builds a solid basis for the reengineering of TD and related microorganisms for Ile production.

  14. Gene conversion-like events in the diversification of human rearranged IGHV3-23*01 gene sequences

    Directory of Open Access Journals (Sweden)

    Bhargavi eDuvvuri

    2012-06-01

    Full Text Available Gene conversion (GCV as a mechanism of immunoglobulin diversification is well established in a few species. However, definitive evidence of GCV-like events in human immunoglobulin genes is scarce. GCV is mediated by activation-induced cytidine deaminase (AID. The lack of evidence of GCV in human rearranged immunoglobulin gene sequences is puzzling given the presence of highly similar germline donors and all the enzymatic machinery required for GCV. In this study, we undertook a computational analysis of rearranged IGHV3-23*01 gene sequences from common variable immunodeficiency (CVID patients and healthy individuals to survey ‘GCV-like’ activities. Our search identified strong evidence of GCV-like patterns. Germline VH sequences were identified as potential donors for clustered mutations in rearranged IGHV3-23*01 gene sequences. We identified minimum and maximum sequence identities between donor and recipient sequences that can serve as targets for GCV and our findings are consistent with those reported in literature. We observed that GCV-like tracts are flanked by activation-induced cytidine deaminase (AID hotspot motifs. Structural modeling of IGHV3-23*01 gene sequence revealed that hypermutable bases flanking GCV-like tracts, are in the single stranded DNA (ssDNA of stable stem-loop structures (SLSs. SsDNA is inherently fragile and also an optimal target for AID. We speculate that GCV could have been initiated by the targeting of hypermutable bases in ssDNA state in stable SLSs, plausibly by AID. We have observed that the frequency of GCV-like events is significantly higher in rearranged IGHV323-*01 sequences from healthy individuals compared to that of CVID patients. GCV, unlike SHM, can result in multiple base substitutions that can alter many amino acids. The extensive changes in antibody affinity by GCV-like events, as identified in this study would be instrumental in protecting humans against pathogens that diversify their genome by

  15. Comparison of identical and functional Igh alleles reveals a nonessential role for Eμ in somatic hypermutation and class-switch recombination.

    Science.gov (United States)

    Li, Fubin; Yan, Yi; Pieretti, Joyce; Feldman, Danielle A; Eckhardt, Laurel A

    2010-11-15

    Somatic hypermutation (SHM), coupled with Ag selection, provides a mechanism for generating Abs with high affinity for invading pathogens. Class-switch recombination (CSR) ensures that these Abs attain pathogen-appropriate effector functions. Although the enzyme critical to both processes, activation-induced cytidine deaminase, has been identified, it remains unclear which cis-elements within the Ig loci are responsible for recruiting activation-induced cytidine deaminase and promoting its activity. Studies showed that Ig gene-transcription levels are positively correlated with the frequency of SHM and CSR, making the intronic, transcriptional enhancer Eμ a likely contributor to both processes. Tests of this hypothesis yielded mixed results arising, in part, from the difficulty in studying B cell function in mice devoid of Eμ. In Eμ's absence, V(H) gene assembly is dramatically impaired, arresting B cell development. The current study circumvented this problem by modifying the murine Igh locus through simultaneous insertion of a fully assembled V(H) gene and deletion of Eμ. The behavior of this allele was compared with that of a matched allele carrying the same V(H) gene but with Eμ intact. Although IgH transcription was as great or greater on the Eμ-deficient allele, CSR and SHM were consistently, but modestly, reduced relative to the allele in which Eμ remained intact. We conclude that Eμ contributes to, but is not essential for, these complex processes and that its contribution is not as a transcriptional enhancer but, rather, is at the level of recruitment and/or activation of the SHM/CSR machinery.

  16. Activation-induced apoptosis in peripheral blood mononuclear cells during hepatosplenic Schistosoma mansoni infections.

    Science.gov (United States)

    Ghoneim, H M; Demian, S R; Heshmat, M G; Ismail, N S; El-Sayed, Laila H

    2008-01-01

    It is well established that programmed cell death (apoptosis) is an important regulator of host responses during infection with a variety of intra- and extra-cellular pathogens. The present work aimed at assessment of in vitro spontaneous and phytohemagglutinin (PHA)-induced apoptosis in mononuclear cells isolated from patients with hepatosplenic form of S. mansoni infections. Cell death data were correlated to the degree of lymphoproliferative responses to PHA as well as to the serum anti-schistosomal antibody titers. A markedly significant increase in PHA-induced apoptosis in lymphocytes isolated from S. mansoni-infected patients was seen when compared to the corresponding healthy controls. However, a slight difference was recorded between the two studied groups regarding the spontaneous apoptosis. This was accompanied with a significant impairment of in vitro PHA-induced lymphoproliferation of T cells from S. mansoni patients. Data of the present study supports the hypothesis that activation-induced cell death (AICD) is a potentially contributing factor in T helper (Th) cell regulation during chronic stages of schistosomiasis, which represents a critically determinant factor in the host-parasite interaction and might influence the destiny of parasitic infections either towards establishment of chronic infection or towards host death.

  17. Positive inotropic activity induced by a dehydroisoandrosterone derivative in isolated rat heart model.

    Science.gov (United States)

    Figueroa-Valverde, L; Díaz-Cedillo, F; García-Cervera, E; Pool Gómez, E; López-Ramos, M; Rosas-Nexticapa, M; Martinez-Camacho, R

    2013-10-01

    Experimental studies indicate that some steroid derivatives have inotropic activity; nevertheless, there is scarce information about the effects of the dehydroisoandrosterone and its derivatives at cardiovascular level. In addition, to date the cellular site and mechanism of action of dehydroisoandrosterone at cardiovascular level is very confusing. In order, to clarify those phenomena in this study, a dehydroisoandrosterone derivative was synthesized with the objective of to evaluate its activity on perfusion pressure and coronary resistance and compare this phenomenon with the effect exerted by dehydroisoandrosterone. The Langendorff technique was used to measure changes on perfusion pressure and coronary resistance in an isolated rat heart model in absence or presence of dehydroisoandrosterone and its derivative. Additionally, to characterize the molecular mechanism involved in the inotropic activity induced by dehydroisoandrosterone derivative was evaluated by measuring left ventricular pressure in absence or presence of following compounds; flutamide, prazosin, metoprolol and nifedipine. The results showed that dehydroisoandrosterone derivative significantly increased the perfusion pressure and coronary resistance in comparison with the control conditions and dehydroisoandrosterone. Additionally, other data indicate that dehydroisoandrosterone derivative increase left ventricular pressure in a dose-dependent manner [1 × 10(-9)-1 × 10(-4) mmol]; nevertheless, this phenomenon was significantly inhibited by nifedipine at a dose of 1 × 10(-6) mmol. In conclusion, these data suggest that dehydroisoandrosterone derivative induces positive inotropic activity through of activation the L-type calcium channel.

  18. Independent complexity patterns in single neuron activity induced by static magnetic field.

    Science.gov (United States)

    Spasić, S; Nikolić, Lj; Mutavdžić, D; Saponjić, J

    2011-11-01

    We applied a combination of fractal analysis and Independent Component Analysis (ICA) method to detect the sources of fractal complexity in snail Br neuron activity induced by static magnetic field of 2.7 mT. The fractal complexity of Br neuron activity was analyzed before (Control), during (MF), and after (AMF) exposure to the static magnetic field in six experimental animals. We estimated the fractal dimension (FD) of electrophysiological signals using Higuchi's algorithm, and empirical FD distributions. By using the Principal Component Analysis (PCA) and FastICA algorithm we determined the number of components, and defined the statistically independent components (ICs) in the fractal complexity of signal waveforms. We have isolated two independent components of the empirical FD distributions for each of three groups of data by using FastICA algorithm. ICs represent the sources of fractal waveforms complexity of Br neuron activity in particular experimental conditions. Our main results have shown that there could be two opposite intrinsic mechanisms in single snail Br neuron response to static magnetic field stimulation. We named identified ICs that correspond to those mechanisms - the component of plasticity and the component of elasticity. We have shown that combination of fractal analysis with ICA method could be very useful for the decomposition and identification of the sources of fractal complexity of bursting neuronal activity waveforms.

  19. PAR1 activation induces rapid changes in glutamate uptake and astrocyte morphology

    Science.gov (United States)

    Sweeney, Amanda M.; Fleming, Kelsey E.; McCauley, John P.; Rodriguez, Marvin F.; Martin, Elliot T.; Sousa, Alioscka A.; Leapman, Richard D.; Scimemi, Annalisa

    2017-01-01

    The G-protein coupled, protease-activated receptor 1 (PAR1) is a membrane protein expressed in astrocytes. Fine astrocytic processes are in tight contact with neurons and blood vessels and shape excitatory synaptic transmission due to their abundant expression of glutamate transporters. PAR1 is proteolytically-activated by bloodstream serine proteases also involved in the formation of blood clots. PAR1 activation has been suggested to play a key role in pathological states like thrombosis, hemostasis and inflammation. What remains unclear is whether PAR1 activation also regulates glutamate uptake in astrocytes and how this shapes excitatory synaptic transmission among neurons. Here we show that, in the mouse hippocampus, PAR1 activation induces a rapid structural re-organization of the neuropil surrounding glutamatergic synapses, which is associated with faster clearance of synaptically-released glutamate from the extracellular space. This effect can be recapitulated using realistic 3D Monte Carlo reaction-diffusion simulations, based on axial scanning transmission electron microscopy (STEM) tomography reconstructions of excitatory synapses. The faster glutamate clearance induced by PAR1 activation leads to short- and long-term changes in excitatory synaptic transmission. Together, these findings identify PAR1 as an important regulator of glutamatergic signaling in the hippocampus and a possible target molecule to limit brain damage during hemorrhagic stroke. PMID:28256580

  20. PKC activation induces inflammatory response and cell death in human bronchial epithelial cells.

    Directory of Open Access Journals (Sweden)

    Hyunhee Kim

    Full Text Available A variety of airborne pathogens can induce inflammatory responses in airway epithelial cells, which is a crucial component of host defence. However, excessive inflammatory responses and chronic inflammation also contribute to different diseases of the respiratory system. We hypothesized that the activation of protein kinase C (PKC is one of the essential mechanisms of inflammatory response in airway epithelial cells. In the present study, we stimulated human bronchial lung epithelial (BEAS-2B cells with the phorbol ester Phorbol 12, 13-dibutyrate (PDBu, and examined gene expression profile using microarrays. Microarray analysis suggests that PKC activation induced dramatic changes in gene expression related to multiple cellular functions. The top two interaction networks generated from these changes were centered on NFκB and TNF-α, which are two commonly known pathways for cell death and inflammation. Subsequent tests confirmed the decrease in cell viability and an increase in the production of various cytokines. Interestingly, each of the increased cytokines was differentially regulated at mRNA and/or protein levels by different sub-classes of PKC isozymes. We conclude that pathological cell death and cytokine production in airway epithelial cells in various situations may be mediated through PKC related signaling pathways. These findings suggest that PKCs can be new targets for treatment of lung diseases.

  1. Ouabain exacerbates activation-induced cell death in human peripheral blood lymphocytes

    Directory of Open Access Journals (Sweden)

    Mabel B. Esteves

    2005-06-01

    Full Text Available Lymphocytes activated by mitogenic lectins display changes in transmembrane potential, an elevation in the cytoplasmic Ca2+ concentrations, proliferation and/or activation induced cell death. Low concentrations of ouabain (an inhibitor of Na+,K+-ATPase suppress mitogen-induced proliferation and increases cell death. To understand the mechanisms involved, a number of parameters were analyzed using fluorescent probes and flow cytometry. The addition of 100nM ouabain to cultures of peripheral blood lymphocytes activated with 5µg/ml phytohemagglutinin (PHA did not modify the increased expression of the Fas receptor or its ligand FasL induced by the mitogen. However, treatment with ouabain potentiated apoptosis induced by an anti-Fas agonist antibody. A synergy between ouabain and PHA was also observed with regard to plasma membrane depolarization. PHA per se did not induce dissipation of mitochondrial membrane potential but when cells were also exposed to ouabain a marked depolarization could be observed, and this was a late event. It is possible that the inhibitory effect of ouabain on activated peripheral blood lymphocytes involves the potentiation of some of the steps of the apoptotic process and reflects an exacerbation of the mechanism of activation-induced cell death.Quando linfócitos são ativados por lectinas mitogênicas apresentam mudanças do potencial de membrana, elevação das concentrações citoplasmáticas de cálcio, proliferação e/ou morte celular induzida por ativação (AICD. Concentrações baixas de ouabaína (um inibidor da Na,K-ATPase suprimem a proliferação induzida por mitógenos e aumentam a morte celular. Para entender os mecanismos envolvidos, uma série de parâmetros foram avaliados usando sondas fluorescentes e citometria de fluxo. A adição de 100nM de ouabaína para culturas de linfócitos de sangue periférico ativadas por fitohemaglutinina (PHA não modificou o aumento de expressão do receptor Fas ou de

  2. Treadmill exercise ameliorates symptoms of Alzheimer disease through suppressing microglial activation-induced apoptosis in rats

    Science.gov (United States)

    Baek, Seung-Soo; Kim, Sang-Hoon

    2016-01-01

    Alzheimer disease (AD) is a most common form of dementia and eventually causes impairments of learning ability and memory function. In the present study, we investigated the effects of treadmill exercise on the symptoms of AD focusing on the microglial activation-induced apoptosis. AD was made by bilateral intracerebroventricular injection of streptozotocin. The rats in the exercise groups were made to run on a treadmill once a day for 30 min during 4 weeks. The distance and latency in the Morris water maze task and the latency in the step-down avoidance task were increased in the AD rats, in contrast, treadmill exercise shortened these parameters. The numbers of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling-positive and caspase-3-positive cells in the hippocampal dentate gyrus were decreased in the AD rats, in contrast, treadmill exercise suppressed these numbers. Expressions of glial fibrillary acidic protein (GFAP) and cluster of differentiation molecule 11B (CD11b) in the hippocampal dentate gyrus were increased in the AD rats, in contrast, treadmill exercise suppressed GFAP and CD11b expressions. Bax expression was increased and Bcl-2 expression was decreased in the hippocampus of AD rats, in contrast, treadmill exercise decreased Bax expression and increased Bcl-2 expression. The present results demonstrated that treadmill exercise ameliorated AD-induced impairments of spatial learning ability and short-term memory through suppressing apoptosis. The antiapoptotic effect of treadmill exercise might be ascribed to the inhibitory effect of treadmill exercise on microglial activation. PMID:28119873

  3. Actively induced platelet-bound IgG associated with thrombocytopenia in the marmoset

    Energy Technology Data Exchange (ETDEWEB)

    Gengozian, N.; McLaughlin, C.L.

    1978-06-01

    Interspecies platelet immunizations among marmosets lead to antibody formation to the donor platelets and a profound thrombocytopenia, which when associated with anemia may result in death of the animal. This actively induced immonologic thrombocytopenia closely resembles two clinical disease entities manifesting autoimmune thrombocytopenia, posttransfusion purpura and idiopathic thrombocytopenic purpura. Although antibody to donor-type platelets could be demonstrated readily, antihost activity was most often nondetectable or, when present, was in very low titer. A consistent finding was the appearance of IgG on the host's platelets shortly after immunization and concomitant with the appearance of antidonor platelet antibody. In 3 of 13 immunized animals thromoocytopenia did not occur even though antibody was formed and the host's platelets became IgG positive. In those animals that recovered from the induced thrombocytopenia IgG-positive platelets were found for periods ranging from 30 to greater than 100 days. Splenectomy before or after immunization did not alter the sequential development of antibody formation, appearance of IgG-positive platelets, and thrombocytopenia. Eluates prepared from IgG-positive platelets contained IgG and platelet antigens; the eluted IgG could attach nonspecifically to platelets of host or donor (immunizing) type, in contrast to the species specificity demonstrated for IgG eluted from platelets that had been reacted in vitro with specific antibody. Platelets in a few normal, nonimmunized marmosets were found to have signficant amounts of IgG on their surface, comparable to that observed in the immunized animal; interestingly, such IgG-positive platelets were found among imported but not laboratory-bred marmosets.

  4. Low-dose effect of ethanol on locomotor activity induced by activation of the mesolimbic system.

    Science.gov (United States)

    Milton, G V; Randall, P K; Erickson, C K

    1995-06-01

    Four experiments were designed to study the ability of 0.5 g/kg ethanol (EtOH) intraperitoneally to modify locomotor activity induced by drugs that interact with different sites in the mesolimbic system (MLS) of male Sprague-Dawley rats. Locomotor activity was measured in a doughnut-shaped circular arena after various treatments. EtOH alone did not alter locomotor activity in any of the experiments. Amphetamine (AMP, intraperitoneally or intraaccumbens) increased locomotor activity in a dose-dependent manner, and the presence of EtOH attenuated AMP-induced locomotor activity. Bilateral infusion of GABAA antagonist picrotoxin (PIC) into the ventral tegmental area also increased locomotor activity in a dose-dependent manner, and the presence of EtOH attenuated PIC-induced locomotor activity. On the other hand, the interaction between bilateral infusion of mu-receptor agonist Tyr-D-Ala-Gly-NMe-Phe-Gly-ol (DAGO) and EtOH on locomotor activity is complex. The highest dose of DAGO that significantly increased locomotor activity was not affected by the presence of EtOH. But, with lower doses of DAGO that either had no effect or a small increase in locomotor activity, the combination of EtOH and DAGO increased and attenuated locomotor activity, respectively. Results from this study support our hypothesis that a low dose of EtOH that does not modify behavior can interact with neurotransmitter systems in the brain and modify drug-induced locomotor activity. Modification of this drug-induced locomotor activity by a low dose of EtOH is dependent on the rate of ongoing locomotor behavior induced by drug and the neurotransmitter substrate that the drug modified to induce locomotor behavior.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Value of adenosine deaminase activity to diagnosing tuberculous pleural effusion and malignant effusion%腺苷脱氨酶诊断结核性和恶性胸腔积液价值

    Institute of Scientific and Technical Information of China (English)

    唐学义; 林香花; 朱敏

    2011-01-01

    Objective To investigate the clinical value of pleural effusion adenosine deaminase activity to differentiating tuberculous pleural effusion from malignant effusion.Methods A total of 80 inpatients with pleural effusion received thoracoscopy and biopsy of pleura and were diagnosed tuberculous pleuritis (42 cases) and malignant pleural effusion (38 cases).The pleural effusion and adenosine deaminase activity were detected in these two groups.The optimal cutoff for tuberculous pleural effusion was determined with the ROC curve.Results The pleural effusion adenosine deaminase activity and the ratio of pleural fluid to serum adenosine deaminase were (48±25)u/L and 4.2±3.0 in tuberculous pleural effusion patients, significantly higher than those in malignant pleural effusion patients (20±9)u/L and 1.7±1.0 respectively( P<0.01).The serum adenosine deaminase activities were (15±6)u/L and (12±5)u/L in tuberculous pleuritis patients and malignant pleural effusion,which showed no significant difference(P>0.05).The cutoff value of pleural adenosine deaminase determined with ROC curve was 30.7 u/L, the sensitivity was 70.5% and the specificity was 92.2%.Conclusion The pleural effusion adenosine deaminase activity but not the serum adenosine deaminase activity can be used to differentiate tuberculous from malignant pleural effusion.%目的:探讨胸腔积液和血清中腺苷脱氨酶鉴别诊断结核性胸膜炎及恶性胸腔积液的价值.方法:因胸腔积液住院,经胸腔镜检查和胸膜活检病理确诊为结核性胸腹炎患者(结核组)42例和恶性胸腔积液患者(恶性组)38例,分别检测2组胸腔积液及血清中腺苷脱氨酶活性,应用ROC曲线确定结核性胸膜炎患者胸腔积液腺苷脱氨酶的最佳临界值.结果:结核组胸腔积液腺苷脱氨酶活性、胸腔积液腺苷脱氨酶与血清腺苷脱氨酶比值分别为(48±25)u/L和4.2±3.0,高于恶性组的(20±9)u/L和1.7±1.0.差异均有统计学意义(P<0

  6. Cytosine deaminase adenoviral vector and 5-fluorocytosine selectively reduce breast cancer cells 1 million-fold when they contaminate hematopoietic cells: a potential purging method for autologous transplantation.

    Science.gov (United States)

    Garcia-Sanchez, F; Pizzorno, G; Fu, S Q; Nanakorn, T; Krause, D S; Liang, J; Adams, E; Leffert, J J; Yin, L H; Cooperberg, M R; Hanania, E; Wang, W L; Won, J H; Peng, X Y; Cote, R; Brown, R; Burtness, B; Giles, R; Crystal, R; Deisseroth, A B

    1998-07-15

    Ad.CMV-CD is a replication incompetent adenoviral vector carrying a cytomegalovirus (CMV)-driven transcription unit of the cytosine deaminase (CD) gene. The CD transcription unit in this vector catalyzes the deamination of the nontoxic pro-drug, 5-fluorocytosine (5-FC), thus converting it to the cytotoxic drug 5-fluorouracil (5-FU). This adenoviral vector prodrug activation system has been proposed for use in selectively sensitizing breast cancer cells, which may contaminate collections of autologous stem cells products from breast cancer patients, to the toxic effects of 5-FC, without damaging the reconstitutive capability of the normal hematopoietic cells. This system could conceivably kill even the nondividing breast cancer cells, because the levels of 5-FU generated by this system are 10 to 30 times that associated with systemic administration of 5-FU. The incorporation of 5-FU into mRNA at these high levels is sufficient to disrupt mRNA processing and protein synthesis so that even nondividing cells die of protein starvation. To test if the CD adenoviral vector sensitizes breast cancer cells to 5-FC, we exposed primary explants of normal human mammary epithelial cells (HMECs) and the established breast cancer cell (BCC) lines MCF-7 and MDA-MB-453 to the Ad.CMV-CD for 90 minutes. This produced a 100-fold sensitization of these epithelial cells to the effects of 48 hours of exposure to 5-FC. We next tested the selectivity of this system for BCC. When peripheral blood mononuclear cells (PBMCs), collected from cancer patients during the recovery phase from conventional dose chemotherapy-induced myelosuppression, were exposed to the Ad.CMV-CD for 90 minutes in serum-free conditions, little or no detectable conversion of 5-FC into 5-FU was seen even after 48 hours of exposure to high doses of 5-FC. In contrast, 70% of 5-FC was converted into the cytotoxic agent 5-FU when MCF-7 breast cancer cells (BCCs) were exposed to the same Ad.CMV-CD vector followed by 5-FC for

  7. Mixed inhibition of adenosine deaminase activity by 1,3-dinitrobenzene: a model for understanding cell-selective neurotoxicity in chemically-induced energy deprivation syndromes in brain.

    Science.gov (United States)

    Wang, Yipei; Liu, Xin; Schneider, Brandon; Zverina, Elaina A; Russ, Kristen; Wijeyesakere, Sanjeeva J; Fierke, Carol A; Richardson, Rudy J; Philbert, Martin A

    2012-02-01

    Astrocytes are acutely sensitive to 1,3-dinitrobenzene (1,3-DNB) while adjacent neurons are relatively unaffected, consistent with other chemically-induced energy deprivation syndromes. Previous studies have investigated the role of astrocytes in protecting neurons from hypoxia and chemical injury via adenosine release. Adenosine is considered neuroprotective, but it is rapidly removed by extracellular deaminases such as adenosine deaminase (ADA). The present study tested the hypothesis that ADA is inhibited by 1,3-DNB as a substrate mimic, thereby preventing adenosine catabolism. ADA was inhibited by 1,3-DNB with an IC(50) of 284 μM, Hill slope, n = 4.8 ± 0.4. Native gel electrophoresis showed that 1,3-DNB did not denature ADA. Furthermore, adding Triton X-100 (0.01-0.05%, wt/vol), Nonidet P-40 (0.0015-0.0036%, wt/vol), or bovine serum albumin (0.05 mg/ml or changing [ADA] (0.2 and 2 nM) did not substantially alter the 1,3-DNB IC(50) value. Likewise, dynamic light scattering showed no particle formation over a (1,3-DNB) range of 149-1043 μM. Kinetics revealed mixed inhibition with 1,3-DNB binding to ADA (K(I) = 520 ± 100 μM, n = 1 ± 0.6) and the ADA-adenosine complex (K(IS) = 262 ± 7 μM, n = 6 ± 0.6, indicating positive cooperativity). In accord with the kinetics, docking predicted binding of 1,3-DNB to the active site and three peripheral sites. In addition, exposure of DI TNC-1 astrocytes to 10-500 μM 1,3-DNB produced concentration-dependent increases in extracellular adenosine at 24 h. Overall, the results demonstrate that 1,3-DNB is a mixed inhibitor of ADA and may thus lead to increases in extracellular adenosine. The finding may provide insights to guide future work on chemically-induced energy deprivation.

  8. Molecular characterization of adenosine 5'-monophosphate deaminase--the key enzyme responsible for the umami taste of nori (Porphyra yezoensis Ueda, Rhodophyta).

    Science.gov (United States)

    Minami, Seiko; Sato, Minoru; Shiraiwa, Yoshihiro; Iwamoto, Koji

    2011-12-01

    The enzyme adenosine 5'-monophosphate deaminase (AMPD, EC 3.5.4.6) catalyzes the conversion of adenosine 5'-monophosphate to inosine 5'-mononucleotide (IMP). IMP is generally known as the compound responsible for the umami taste of the edible red alga Porphyra yezoensis Ueda that is known in Japan as nori. Therefore, we suspect that AMPD plays a key role in providing a favorable nori taste. In this study, we undertake the molecular characterization of nori-derived AMPD. The nori AMPD protein has a molecular mass of 55 kDa as estimated from both gel filtration and sodium dodecyl sulfate polyacrylamide gel electrophoresis. The calculated molecular mass from the amino acid sequence deduced from cDNA is 57.1 kDa. The isoelectric point is 5.71. The coding region of AMPD consists of 1,566 bp encoding 522 amino acids and possesses a transmembrane domain and two N-glycosylation sites. The sequence identity of nori AMPD in human and yeast AMPDs was found to be less than 50% and 20% in DNA and amino acid sequences, respectively. Proline in the conserved motif of [SA]-[LIVM]-[NGS]-[STA]-D-D-P was found to be converted to glutamate. These results indicate that nori AMPD is a novel type of AMPD.

  9. Treatment of colon cancer cells using the cytosine deaminase/5-fluorocytosine suicide system induces apoptosis, modulation of the proteome, and Hsp90beta phosphorylation.

    Science.gov (United States)

    Negroni, Luc; Samson, Michel; Guigonis, Jean-Marie; Rossi, Bernard; Pierrefite-Carle, Valérie; Baudoin, Christian

    2007-10-01

    The bacterial cytosine deaminase (CD) gene, associated with the 5-fluorocytosine (5FC) prodrug, is one of the most widely used suicide systems in gene therapy. Introduction of the CD gene within a tumor induces, after 5FC treatment of the animal, a local production of 5-fluorouracil resulting in intratumor chemotherapy. Destruction of the gene-modified tumor is then followed by the triggering of an antitumor immune reaction resulting in the regression of distant wild-type metastasis. The global effects of 5FC on colorectal adenocarcinoma cells expressing the CD gene were analyzed using the proteomic method. Application of 5FC induced apoptosis and 19 proteins showed a significant change in 5FC-treated cells compared with control cells. The up-regulated and down-regulated proteins include cytoskeletal proteins, chaperones, and proteins involved in protein synthesis, the antioxidative network, and detoxification. Most of these proteins are involved in resistance to anticancer drugs and resistance to apoptosis. In addition, we show that the heat shock protein Hsp90beta is phosphorylated on serine 254 upon 5FC treatment. Our results suggest that activation of Hsp90beta by phosphorylation might contribute to tumor regression and tumor immunogenicity. Our findings bring new insights into the mechanism of the anticancer effects induced by CD/5FC treatment.

  10. Ethylene emission and PR protein synthesis in ACC deaminase producing Methylobacterium spp. inoculated tomato plants (Lycopersicon esculentum Mill.) challenged with Ralstonia solanacearum under greenhouse conditions.

    Science.gov (United States)

    Yim, Woojong; Seshadri, Sundaram; Kim, Kiyoon; Lee, Gillseung; Sa, Tongmin

    2013-06-01

    Bacteria of genus Methylobacterium have been found to promote plant growth and regulate the level of ethylene in crop plants. This work is aimed to test the induction of defense responses in tomato against bacterial wilt by stress ethylene level reduction mediated by the ACC deaminase activity of Methylobacterium strains. Under greenhouse conditions, the disease index value in Methylobacterium sp. inoculated tomato plants was lower than control plants. Plants treated with Methylobacterium sp. challenge inoculated with Ralstonia solanacearum (RS) showed significantly reduced disease symptoms and lowered ethylene emission under greenhouse condition. The ACC and ACO (1-aminocyclopropane-1-carboxylate oxidase) accumulation in tomato leaves were significantly reduced with Methylobacterium strains inoculation. While ACC oxidase gene expression was found higher in plants treated with R. solanacearum than Methylobacterium sp. treatment, PR proteins related to induced systemic resistance like β-1,3-glucanase, PAL, PO and PPO were increased in Methylobacterium sp. inoculated plants. A significant increase in β-1,3-glucanase and PAL gene expression was found in all the Methylobacterium spp. treatments compared to the R. solanacearum treatment. This study confirms the activity of Methylobacterium sp. in increasing the defense enzymes by modulating the ethylene biosynthesis pathway and suggests the use of methylotrophic bacteria as potential biocontrol agents in tomato cultivation.

  11. G22A Polymorphism of Adenosine Deaminase and its Association with Biochemical Characteristics of Gestational Diabetes Mellitus in an Iranian Population

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Takhshid

    2015-03-01

    Full Text Available Adenosine deaminase (ADA is an important regulator of insulin action. The single nucleotide polymorphism (SNP G22A in the ADA gene decreases enzymatic activity of ADA. The aim of this study was to investigate the relationship between the SNP G22A and blood glycemic control, insulin resistance, and obesity of gestational diabetes mellitus (GDM patients in an Iranian population. SNP G22A was determined in women with GDM (N=70 and healthy pregnant women (control, N=70 using polymerase chain reaction-restriction fragment length polymorphism. Fasting plasma glucose (FPG, hemoglobin A1C (HbA1c, plasma insulin levels and plasma lipids were measured using commercial kits. Homeostasis model of assessment for insulin resistance (HOMA-IR was calculated. The distribution of genotypes and alleles among GDM patients was similar to that of the control group. FPG and HbA1c were significantly higher in GDM patients with GG genotype compared with GDM patients with GA+AA genotype and non-GDM patients. The frequency of GG genotype was significantly higher in obese GDM patients compared to lean GDM patients. The SNP G22A in the ADA gene was not associated with the risk of GDM in our population. GG genotype was associated with poor glycemic control and obesity in GDM patients.

  12. High-sensitivity capillary electrophoresis method for monitoring purine nucleoside phosphorylase and adenosine deaminase reactions by a reversed electrode polarity switching mode.

    Science.gov (United States)

    Iqbal, Jamshed; Müller, Christa E

    2011-07-22

    A simple, efficient, and highly sensitive in-line CE method was developed for the characterization and for inhibition studies of the nucleoside-metabolizing enzymes purine nucleoside phosphorylase (PNP) and adenosine deaminase (ADA) present in membrane preparations of human 1539 melanoma cells. After filling the running buffer (50 mM borate buffer, 100 mM SDS, pH 9.10) into a fused-silica capillary (50 cm effective length × 75 μm), a large sample volume was loaded by hydrodynamic injection (5 psi, 36 s), followed by the removal of the large plug of sample matrix from the capillary using polarity switching (-20 kV). The current was monitored and the polarity was reversed when 95% of the current had been recovered. The separation of the neutral analytes (nucleosides and nucleobases) was performed by applying a voltage of 15 kV. An about 10-fold improvement of sensitivity for the five investigated analytes (adenosine, inosine, adenine, hypoxanthine, xanthine) was achieved by large-volume stacking with polarity switching when compared with CE without stacking. For inosine and adenine detection limits as low as 60 nM were achieved. To the best of our knowledge, this represents the highest sensitivity for nucleoside and nucleobase analysis using CE with UV detection reported so far. The Michaelis-Menten constants (K(m)) for PNP and ADA and the inhibition constants (K(i)) for standard inhibitors determined with the new method were consistent with literature data.

  13. Structure-Function Relationships in l-Amino Acid Deaminase, a Flavoprotein Belonging to a Novel Class of Biotechnologically Relevant Enzymes.

    Science.gov (United States)

    Motta, Paolo; Molla, Gianluca; Pollegioni, Loredano; Nardini, Marco

    2016-05-13

    l-Amino acid deaminase from Proteus myxofaciens (PmaLAAD) is a membrane flavoenzyme that catalyzes the deamination of neutral and aromatic l-amino acids into α-keto acids and ammonia. PmaLAAD does not use dioxygen to re-oxidize reduced FADH2 and thus does not produce hydrogen peroxide; instead, it uses a cytochrome b-like protein as an electron acceptor. Although the overall fold of this enzyme resembles that of known amine or amino acid oxidases, it shows the following specific structural features: an additional novel α+β subdomain placed close to the putative transmembrane α-helix and to the active-site entrance; an FAD isoalloxazine ring exposed to solvent; and a large and accessible active site suitable to bind large hydrophobic substrates. In addition, PmaLAAD requires substrate-induced conformational changes of part of the active site, particularly in Arg-316 and Phe-318, to achieve the correct geometry for catalysis. These studies are expected to pave the way for rationally improving the versatility of this flavoenzyme, which is critical for biocatalysis of enantiomerically pure amino acids.

  14. Evidence that muscle cells do not express the histidine-rich glycoprotein associated with AMP deaminase but can internalise the plasma protein

    Directory of Open Access Journals (Sweden)

    A.R.M. Sabbatini

    2011-02-01

    Full Text Available Histidine-rich glycoprotein (HRG is synthesized by liver and is present at relatively high concentration in the plasma of vertebrates. We have previously described the association of a HRG-like molecule to purified rabbit skeletal muscle AMP deaminase (AMPD. We also provided the first evidence for the presence of a HRG-like protein in human skeletal muscle where a positive correlation between HRG content and total determined AMPD activity has been shown. In the present paper we investigate the origin of skeletal muscle HRG. The screening of a human skeletal muscle cDNA expression library using an anti-HRG antibody failed to reveal any positive clone. The RT-PCR analysis, performed on human skeletal muscle RNA as well as on RNA from the rhabdomyosarcoma (RD cell line, failed to show any mRNA specific for the plasma HRG or for the putative muscle variant. When the RD cells were incubated with human plasma HRG, a time-dependent increase of the HRG immunoreactivity was detected both at the plasma membrane level and intracellularly. The internalisation of HRG was inhibited by the addition of heparin. The above data strongly suggest that skeletal muscle cells do not synthesize the muscle variant of HRG but instead can actively internalise it from plasma.

  15. Activity of cholinesterases, pyruvate kinase and adenosine deaminase in rats experimentally infected by Fasciola hepatica: Influences of these enzymes on inflammatory response and pathological findings.

    Science.gov (United States)

    Baldissera, Matheus D; Bottari, Nathieli B; Mendes, Ricardo E; Schwertz, Claiton I; Lucca, Neuber J; Dalenogare, Diessica; Bochi, Guilherme V; Moresco, Rafael N; Morsch, Vera M; Schetinger, Maria R C; Rech, Virginia C; Jaques, Jeandre A; Da Silva, Aleksandro S

    2015-11-01

    The aim of this study was to investigate acetylcholinesterase (AChE) in total blood and liver tissue; butyrylcholinesterase (BChE) in serum and liver tissue; adenosine deaminase (ADA) in serum and liver tissue; and pyruvate kinase (PK) in liver tissue of rats experimentally infected by Fasciola hepatica. Animals were divided into two groups with 12 animals each, as follows: group A (uninfected) and group B (infected). Samples were collected at 20 (A1 and B1;n=6 each) and 150 (A2 and B2; n=6 each) days post-infection (PI). Infected animals showed an increase in AChE activity in whole blood and a decrease in AChE activity in liver homogenates (P<0.05) at 20 and 150 days PI. BChE and PK activities were decreased (P<0.05) in serum and liver homogenates of infected animals at 150 days PI. ADA activity was decreased in serum at 20 and 150 days PI, while in liver homogenates it was only decreased at 150 days PI (P<0.05). Aspartate aminotransferase and alanine aminotransferase activities in serum were increased (P<0.05), while concentrations of total protein and albumin were decreased (P<0.05) when compared to control. The histological analysis revealed fibrous perihepatitis and necrosis. Therefore, we conclude that the liver fluke is associated with cholinergic and purinergic dysfunctions, which in turn may influence the pathogenesis of the disease.

  16. Hematopoietic stem cell gene therapy for adenosine deaminase-deficient severe combined immunodeficiency leads to long-term immunological recovery and metabolic correction.

    Science.gov (United States)

    Gaspar, H Bobby; Cooray, Samantha; Gilmour, Kimberly C; Parsley, Kathryn L; Zhang, Fang; Adams, Stuart; Bjorkegren, Emma; Bayford, Jinhua; Brown, Lucinda; Davies, E Graham; Veys, Paul; Fairbanks, Lynette; Bordon, Victoria; Petropoulou, Theoni; Petropolou, Theoni; Kinnon, Christine; Thrasher, Adrian J

    2011-08-24

    Genetic defects in the purine salvage enzyme adenosine deaminase (ADA) lead to severe combined immunodeficiency (SCID) with profound depletion of T, B, and natural killer cell lineages. Human leukocyte antigen-matched allogeneic hematopoietic stem cell transplantation (HSCT) offers a successful treatment option. However, individuals who lack a matched donor must receive mismatched transplants, which are associated with considerable morbidity and mortality. Enzyme replacement therapy (ERT) for ADA-SCID is available, but the associated suboptimal correction of immunological defects leaves patients susceptible to infection. Here, six children were treated with autologous CD34-positive hematopoietic bone marrow stem and progenitor cells transduced with a conventional gammaretroviral vector encoding the human ADA gene. All patients stopped ERT and received mild chemotherapy before infusion of gene-modified cells. All patients survived, with a median follow-up of 43 months (range, 24 to 84 months). Four of the six patients recovered immune function as a result of engraftment of gene-corrected cells. In two patients, treatment failed because of disease-specific and technical reasons: Both restarted ERT and remain well. Of the four reconstituted patients, three remained off enzyme replacement. Moreover, three of these four patients discontinued immunoglobulin replacement, and all showed effective metabolic detoxification. All patients remained free of infection, and two cleared problematic persistent cytomegalovirus infection. There were no adverse leukemic side effects. Thus, gene therapy for ADA-SCID is safe, with effective immunological and metabolic correction, and may offer a viable alternative to conventional unrelated donor HSCT.

  17. Effector and Naturally Occurring Regulatory T Cells Display No Abnormalities in Activation Induced Cell Death in NOD Mice

    OpenAIRE

    Ayelet Kaminitz; Esma S Yolcu; Askenasy, Enosh M.; Jerry Stein; Isaac Yaniv; Haval Shirwan; Nadir Askenasy

    2011-01-01

    BACKGROUND: Disturbed peripheral negative regulation might contribute to evolution of autoimmune insulitis in type 1 diabetes. This study evaluates the sensitivity of naïve/effector (Teff) and regulatory T cells (Treg) to activation-induced cell death mediated by Fas cross-linking in NOD and wild-type mice. PRINCIPAL FINDINGS: Both effector (CD25(-), FoxP3(-)) and suppressor (CD25(+), FoxP3(+)) CD4(+) T cells are negatively regulated by Fas cross-linking in mixed splenocyte populations of NOD...

  18. XANTATINA INHIBE LA ACTIVACIÓN DE MASTOCITOS INDUCIDA POR NEUROPÉPTIDOS PRO-INFLAMATORIOS. XANTHATIN INHIBITS MAST CELL ACTIVATION INDUCED BY PRO-INFLAMMATORY NEUROPEPTIDES

    OpenAIRE

    Carlos E. Tonn; Alicia B. Penissi; Teresa H Fogal; Elia Martino; Patricia M Vargas

    2010-01-01

    Mast cells are connective tissue cells involved in the genesis and modulation of inflammatory responses. We have previously shown that xanthatin (xanthanolide sesquiterpene isolated from Xanthium cavanillesii Schouw) inhibits mast cell activation induced by experimental secretagogues. However, the effect of xanthatin on mast cell activation induced by pathophysiological stimuli remains unknown. These stimuli include, among others, the pro-inflammatory neuropeptide substance P and neurotensin,...

  19. Novel role for mitochondria: protein kinase Ctheta-dependent oxidative signaling organelles in activation-induced T-cell death.

    Science.gov (United States)

    Kaminski, Marcin; Kiessling, Michael; Süss, Dorothee; Krammer, Peter H; Gülow, Karsten

    2007-05-01

    Reactive oxygen species (ROS) play a key role in regulation of activation-induced T-cell death (AICD) by induction of CD95L expression. However, the molecular source and the signaling steps necessary for ROS production are largely unknown. Here, we show that the proximal T-cell receptor-signaling machinery, including ZAP70 (zeta chain-associated protein kinase 70), LAT (linker of activated T cells), SLP76 (SH2 domain-containing leukocyte protein of 76 kDa), PLCgamma1 (phospholipase Cgamma1), and PKCtheta (protein kinase Ctheta), are crucial for ROS production. PKCtheta is translocated to the mitochondria. By using cells depleted of mitochondrial DNA, we identified the mitochondria as the source of activation-induced ROS. Inhibition of mitochondrial electron transport complex I assembly by small interfering RNA (siRNA)-mediated knockdown of the chaperone NDUFAF1 resulted in a block of ROS production. Complex I-derived ROS are converted into a hydrogen peroxide signal by the mitochondrial superoxide dismutase. This signal is essential for CD95L expression, as inhibition of complex I assembly by NDUFAF1-specific siRNA prevents AICD. Similar results were obtained when metformin, an antidiabetic drug and mild complex I inhibitor, was used. Thus, we demonstrate for the first time that PKCtheta-dependent ROS generation by mitochondrial complex I is essential for AICD.

  20. Repetitive systemic morphine alters activity-dependent plasticity of Schaffer-collateral-CA1 pyramidal cell synapses: involvement of adenosine A1 receptors and adenosine deaminase.

    Science.gov (United States)

    Sadegh, Mehdi; Fathollahi, Yaghoub

    2014-10-01

    The effectiveness of O-pulse stimulation (TPS) for the reversal of O-pattern primed bursts (PB)-induced long-term potentiation (LTP) were examined at the Schaffer-collateral-CA1 pyramidal cell synapses of hippocampal slices derived from rats chronically treated with morphine (M-T). The results showed that slices derived from both control and M-T rats had normal field excitatory postsynaptic potential (fEPSP)-LTP, whereas PS-LTP in slices from M-T rats was significantly greater than that from control slices. When morphine was applied in vitro to slices derived from rats chronically treated with morphine, the augmentation of PS-LTP was not seen. TPS given 30 min after LTP induction failed to reverse the fEPSP- or PS-LTP in both groups of slices. However, TPS delivered in the presence of long-term in vitro morphine caused the PS-LTP reversal. This effect was blocked by the adenosine A1 receptor (A1R) antagonist CPX (200 nM) and furthermore was enhanced by the adenosine deaminase (ADA) inhibitor EHNA (10 μM). Interestingly, TPS given 30 min after LTP induction in the presence of EHNA (10 μM) can reverse LTP in morphine-exposed control slices in vitro. These results suggest adaptive changes in the hippocampus area CA1 in particular in adenosine system following repetitive systemic morphine. Chronic in vivo morphine increases A1R and reduces ADA activity in the hippocampus. Consequently, adenosine can accumulate because of a stimulus train-induced activity pattern in CA1 area and takes the opportunity to work as an inhibitory neuromodulator and also to enable CA1 to cope with chronic morphine. In addition, adaptive mechanisms are differentially working in the dendrite layer rather than the somatic layer of hippocampal CA1.

  1. Cytosine deaminase as a negative selectable marker for the microalgal chloroplast: a strategy for the isolation of nuclear mutations that affect chloroplast gene expression.

    Science.gov (United States)

    Young, Rosanna E B; Purton, Saul

    2014-12-01

    Negative selectable markers are useful tools for forward-genetic screens aimed at identifying trans-acting factors that are required for expression of specific genes. Transgenic lines harbouring the marker fused to a gene element, such as a promoter, may be mutagenized to isolate loss-of-function mutants able to survive under selection. Such a strategy allows the molecular dissection of factors that are essential for expression of the gene. Expression of individual chloroplast genes in plants and algae typically requires one or more nuclear-encoded factors that act at the post-transcriptional level, often through interaction with the 5' UTR of the mRNA. To study such nuclear control further, we have developed the Escherichia coli cytosine deaminase gene codA as a conditional negative selectable marker for use in the model green alga Chlamydomonas reinhardtii. We show that a codon-optimized variant of codA with three amino acid substitutions confers sensitivity to 5-fluorocytosine (5-FC) when expressed in the chloroplast under the control of endogenous promoter/5' UTR elements from the photosynthetic genes psaA or petA. UV mutagenesis of the psaA transgenic line allowed recovery of 5-FC-resistant, photosynthetically deficient lines harbouring mutations in the nuclear gene for the factor TAA1 that is required for psaA translation. Similarly, the petA line was used to isolate mutants of the petA mRNA stability factor MCA1 and the translation factor TCA1. The codA marker may be used to identify critical residues in known nuclear factors and to aid the discovery of additional factors required for expression of chloroplast genes.

  2. One-step production of α-ketoglutaric acid from glutamic acid with an engineered L-amino acid deaminase from Proteus mirabilis.

    Science.gov (United States)

    Liu, Long; Hossain, Gazi Sakir; Shin, Hyun-dong; Li, Jianghua; Du, Guocheng; Chen, Jian

    2013-03-10

    Currently, α-ketoglutaric acid (α-KG) is industrially produced by multi-step chemical synthesis, which can cause heavy environmental pollution. Here we reported a simple one-step approach for the production of α-KG by transforming l-glutamic acid with an engineered l-amino acid deaminase (l-AAD) from Proteus mirabilis. First, to facilitate the purification of membrane-bound l-AAD, one N-terminal transmembrane region (from 21 to 87th nucleotide) was removed from l-AAD to block the binding of l-AAD with membrane, and the relatively low-usage codons were replaced by high-usage codons in Escherichia coli to improve the expression level. However, inclusion bodies formed when expressing the ΔN-LAAD in E. coli BL 21, and then the soluble and active ΔN-LAAD was obtained by the solubilization and renaturation of ΔN-LAAD. Furthermore, the biochemical properties of the refolded ΔN-LAAD were characterized and compared with those of full-length l-AAD. Finally, the ΔN-LAAD was used to synthesize α-KG and the maximal formation rate of α-KG reached 12.6% (w/w) at 6h under the following conditions: 12g/L l-glutamic acid, 0.1g/L ΔN-LAAD, 5mM MgCl2, temperature 45°C and pH 8.0. Compared with the multi-step chemical synthesis, the transformation approach has less environmental pollution and has a great potential for α-KG production.

  3. The value of adenosine deaminase, interferon-gamma, and interferon-gamma induced protein of 10kD in the diagnosis of tuberculous pleuritis

    Directory of Open Access Journals (Sweden)

    Ya-kun DONG

    2015-07-01

    Full Text Available Objective To explore the value of adenosine deaminase (ADA activity, interferon-gamma (IFN-γ and IFN-γ induced protein of 10kD (IP-10 levels in pleural effusion for the diagnosis of tuberculous pleuritis. Methods ADA activity, IFN-γ and IP-10 levels in pleural effusion were determined in sixty-three patients with tuberculous pleuritis and 50 patients with malignant pleural effusion. Results The mean levels of ADA, IFN-γ and IP-10 in the tuberculous pleural effusion were significantly higher than those in malignant pleural effusion (P<0.01. When 45U/L was regarded as cut off value for ADA, the sensitivity, specificity and diagnostic odds ratio in the diagnosis of tuberculous pleurisy were 71.4%, 94.0% and 39.17 respectively. When 138.5pg/ml was regarded as cut off value for IFN-γ in tuberculous pleural effusion, the sensitivity, specificity and diagnostic odds ratio were 93.7%, 82.0% and 67.19 respectively. When 9.21μg/ml was regarded as cut off value for IP-10 in tuberculous pleural effusion, the sensitivity, specificity and diagnostic odds ratio were 85.7%, 90.0% and 54.00 respectively. The combined determination of the three markers for the diagnosis of tuberculous pleurisy had a sensitivity of 95.2%, specificity of 96.0% and diagnostic odds ratio of 72.16. Conclusion The accuracy of diagnosis for tuberculous pleurisy can be improved by combined determination of ADA, IFN-γ and IP-10. DOI: 10.11855/j.issn.0577-7402.2015.06.07

  4. Adenosine deaminase activity is a sensitive marker for the diagnosis of tuberculous pleuritis in patients with very low CD4 counts.

    Directory of Open Access Journals (Sweden)

    Kamaldeen Baba

    Full Text Available BACKGROUND: Adenosine Deaminase Activity (ADA is a commonly used marker for the diagnosis of tuberculous pleural effusion. There has been concern about its usefulness in immunocompromised patients, especially HIV positive patients with very low CD4 counts. The objective of this study was to evaluate the sensitivity of ADA in pleural fluid in patients with low CD4 counts. MATERIALS AND METHODS: This was a retrospective case control study. Medical files of patients with tuberculous pleuritis and non-tuberculous pleuritis were reviewed. Clinical characteristics, CD4 cell counts in blood and biochemical markers in pleural fluid, including ADA were recorded. RESULTS: One ninety seven tuberculous pleuritis and 40 non-tuberculous pleuritis patients were evaluated. Using the cut-off value of 30 U/L, the overall sensitivity, specificity, positive likelihood ratio, and negative likelihood ratio of ADA was 94%, 95%, 19, and 0.06 respectively. The mean CD4 cell counts among TB pleuritis patients was 29 and 153 cells/microL in patients with CD4 50 cells/microL, (p0.5. There was no correlation between ADA values and CD4 cell counts (r = -0.120, p = 0.369. CONCLUSION: ADA analysis is a sensitive marker of tuberculous pleuritis even in HIV patients with very low CD4 counts in a high TB endemic region. The ADA assay is inexpensive, rapid, and simple to perform and is of great value for the immediate diagnosis of tuberculous pleuritis while waiting for culture result and this has a positive impact on patient outcome.

  5. Combination of phenylpyruvic acid (PPA) pathway engineering and molecular engineering of L-amino acid deaminase improves PPA production with an Escherichia coli whole-cell biocatalyst.

    Science.gov (United States)

    Hou, Ying; Hossain, Gazi Sakir; Li, Jianghua; Shin, Hyun-Dong; Du, Guocheng; Liu, Long

    2016-03-01

    In our previous study, we produced phenylpyruvic acid (PPA) in one step from L-phenylalanine by using an Escherichia coli whole-cell biocatalyst expressing an L-amino acid deaminase (L-AAD) from Proteus mirabilis KCTC2566. However, the PPA titer was low due to the degradation of PPA and low substrate specificity of L-AAD. In this study, metabolic engineering of the L-phenylalanine degradation pathway in E. coli and protein engineering of L-AAD from P. mirabilis were performed to improve the PPA titer. First, three aminotransferase genes were knocked out to block PPA degradation, which increased the PPA titer from 3.3 ± 0.2 to 3.9 ± 0.1 g/L and the substrate conversion ratio to 97.5 %. Next, L-AAD was engineered via error-prone polymerase chain reaction, followed by site-saturation mutation to improve its catalytic performance. The triple mutant D165K/F263M/L336M produced the highest PPA titer of 10.0 ± 0.4 g/L, with a substrate conversion ratio of 100 %, which was 3.0 times that of wild-type L-AAD. Comparative kinetics analysis showed that compared with wild-type L-AAD, the triple mutant had higher substrate-binding affinity and catalytic efficiency. Finally, an optimal fed-batch biotransformation process was developed to achieve a maximal PPA titer of 21 ± 1.8 g/L within 8 h. This study developed a robust whole-cell E. coli biocatalyst for PPA production by integrating metabolic and protein engineering, strategies that may be useful for the construction of other biotransformation biocatalysts.

  6. Synergistic effect of therapeutic stem cells expressing cytosine deaminase and interferon-beta via apoptotic pathway in the metastatic mouse model of breast cancer.

    Science.gov (United States)

    Yi, Bo-Rim; Kim, Seung U; Choi, Kyung-Chul

    2016-02-01

    As an approach to improve treatment of breast cancer metastasis to the brain, we employed genetically engineered stem cells (GESTECs, HB1.F3 cells) consisting of neural stem cells (NSCs) expressing cytosine deaminase and the interferon-beta genes, HB1.F3.CD and HB1.F3.CD.IFN-β. In this model, MDA-MB-231/Luc breast cancer cells were implanted in the right hemisphere of the mouse brain, while pre-stained GESTECs with redfluorescence were implanted in the contralateral brain. Two days after stem cells injection, 5-fluorocytosine (5-FC) was administrated via intraperitoneal injection. Histological analysis of extracted brain confirmed the therapeutic efficacy of GESTECs in the presence of 5-FC based on reductions in density and aggressive tendency of breast cancer cells, as well as pyknosis, karyorrhexis, and karyolysis relative to a negative control. Additionally, expression of PCNA decreased in the stem cells treated group. Treatment of breast cancer cells with 5-fluorouracil (5-FU) increased the expression of pro-apoptotic and anti-proliferative factor, BAX and p21 protein through phosphorylation of p53 and p38. Moreover, analysis of stem cell migratory ability revealed that MDA-MB-231 cells endogenously secreted VEGF, and stem cells expressed their receptor (VEGFR2). To confirm the role of VEGF/VEGFR2 signaling in tumor tropism of stem cells, samples were treated with the VEGFR2 inhibitor, KRN633. The number of migrated stem cells decreased significantly in response to KRN633 due to Erk1/2 activation and PI3K/Akt inhibition. Taken together, these results indicate that treatment with GESTECs, particularly HB1.F3.CD.IFN-β co-expressing CD.IFN-β, may be a useful strategy for treating breast cancer metastasis to the brain in the presence of a prodrug.

  7. Dihydropyrimidine Dehydrogenase Is a Prognostic Marker for Mesenchymal Stem Cell-Mediated Cytosine Deaminase Gene and 5-Fluorocytosine Prodrug Therapy for the Treatment of Recurrent Gliomas.

    Science.gov (United States)

    Chung, Taemoon; Na, Juri; Kim, Young-Il; Chang, Da-Young; Kim, Young Il; Kim, Hyeonjin; Moon, Ho Eun; Kang, Keon Wook; Lee, Dong Soo; Chung, June-Key; Kim, Sung-Soo; Suh-Kim, Haeyoung; Paek, Sun Ha; Youn, Hyewon

    2016-01-01

    We investigated a therapeutic strategy for recurrent malignant gliomas using mesenchymal stem cells (MSC), expressing cytosine deaminase (CD), and prodrug 5-Fluorocytosine (5-FC) as a more specific and less toxic option. MSCs are emerging as a novel cell therapeutic agent with a cancer-targeting property, and CD is considered a promising enzyme in cancer gene therapy which can convert non-toxic 5-FC to toxic 5-Fluorouracil (5-FU). Therefore, use of prodrug 5-FC can minimize normal cell toxicity. Analyses of microarrays revealed that targeting DNA damage and its repair is a selectable option for gliomas after the standard chemo/radio-therapy. 5-FU is the most frequently used anti-cancer drug, which induces DNA breaks. Because dihydropyrimidine dehydrogenase (DPD) was reported to be involved in 5-FU metabolism to block DNA damage, we compared the survival rate with 5-FU treatment and the level of DPD expression in 15 different glioma cell lines. DPD-deficient cells showed higher sensitivity to 5-FU, and the regulation of DPD level by either siRNA or overexpression was directly related to the 5-FU sensitivity. For MSC/CD with 5-FC therapy, DPD-deficient cells such as U87MG, GBM28, and GBM37 showed higher sensitivity compared to DPD-high U373 cells. Effective inhibition of tumor growth was also observed in an orthotopic mouse model using DPD- deficient U87MG, indicating that DPD gene expression is indeed closely related to the efficacy of MSC/CD-mediated 5-FC therapy. Our results suggested that DPD can be used as a biomarker for selecting glioma patients who may possibly benefit from this therapy.

  8. A combination of the QuantiFERON-TB Gold In-Tube assay and the detection of adenosine deaminase improves the diagnosis of tuberculous pleural effusion.

    Science.gov (United States)

    Liu, Yuanyuan; Ou, Qinfang; Zheng, Jian; Shen, Lei; Zhang, Bingyan; Weng, Xinhua; Shao, Lingyun; Gao, Yan; Zhang, Wenhong

    2016-08-03

    The differential diagnosis of tuberculous pleural effusion (TPE) and malignant pleural effusion (MPE) remains difficult despite the availability of numerous diagnostic tools. The current study aimed to evaluate the performance of the whole blood QuantiFERON-TB Gold In-Tube (QFT-GIT) assay and conventional laboratory biomarkers in differential diagnosis of TPE and MPE in high tuberculosis prevalence areas. A total of 117 patients with pleural effusions were recruited, including 91 with TPE and 26 with MPE. All of the patients were tested with QFT-GIT, and the conventional biomarkers in both blood and pleural effusion were detected. The level of antigen-stimulated QFT-GIT in the whole blood of TPE patients was significantly higher than that of MPE (2.89 vs 0.33 IU/mL, Pdiagnosis of TPE were 93.0% and 60.0%, respectively. Among the biomarkers in blood and pleural effusion, pleural adenosine deaminase (ADA) was the most prominent biomarker, with a cutoff value of 15.35 IU/L. The sensitivity and specificity for the diagnosis of TPE were 93.4% and 96.2%, respectively. The diagnostic classification tree from the combination of these two biomarkers was 97.8% sensitive and 92.3% specific. Ultimately, the combination of whole blood QFT-GIT with pleural ADA improved both the specificity and positive predictive value to 100%. Thus, QFT-GIT is not superior to pleural ADA in the differential diagnosis of TPE and MPE. Combined whole blood QFT-GIT and pleural ADA detection can improve the diagnosis of TPE.

  9. Bioconversion of l-glutamic acid to α-ketoglutaric acid by an immobilized whole-cell biocatalyst expressing l-amino acid deaminase from Proteus mirabilis.

    Science.gov (United States)

    Hossain, Gazi Sakir; Li, Jianghua; Shin, Hyun-dong; Chen, Rachel R; Du, Guocheng; Liu, Long; Chen, Jian

    2014-01-01

    The goal of this work was to develop an immobilized whole-cell biocatalytic process for the environment-friendly synthesis of α-ketoglutaric acid (α-KG) from l-glutamic acid. We compared the suitability of Escherichia coli and Bacillus subtilis strains overexpressing Proteus mirabilisl-amino acid deaminase (l-AAD) as potential biocatalysts. Although both recombinant strains were biocatalytically active, the performance of B. subtilis was superior to that of E. coli. With l-glutamic acid as the substrate, α-KG production levels by membranes isolated from B. subtilis and E. coli were 55.3±1.73 and 21.7±0.39μg/mg protein/min, respectively. The maximal conversion ratio of l-glutamic acid to α-KG was 31% (w/w) under the following optimal conditions: 15g/L l-glutamic acid, 20g/L whole-cell biocatalyst, 5mM MgCl2, 40°C, pH 8.0, and 24-h incubation. Immobilization of whole cells with alginate increased the recyclability by an average of 23.33% per cycle. This work established an efficient one-step biotransformation process for the production of α-KG using immobilized whole B. subtilis overexpressing P. mirabilisl-AAD. Compared with traditional multistep chemical synthesis, the biocatalytic process described here has the advantage of reducing environmental pollution and thus has great potential for the large-scale production of α-KG.

  10. The influence of age and gender to adenosine deaminase value%年龄及性别对腺苷脱氨酶(ADA)测定值的影响

    Institute of Scientific and Technical Information of China (English)

    池继敏; 邹明

    2011-01-01

    目的 探讨年龄及性别因素对腺苷脱氨酶测定值的影响.方法 收集我院近3年来共计24163例腺苷脱氨酶检测数据,分别统计其在不同年龄段和不同性别条件下的均值和标准差,并对结果进行统计分析.结果 腺苷脱氨酶测定值与年龄具有线性相关性(P<0.05),且同一年龄段男女测定值比较差异有统计学意义(P<0.05).结论 腺苷脱氨酶测定值受年龄的影响:30岁前为负相关,30岁后为正相关;同时受性别的影响:儿童期基本无差异,中青年期男性高于女性,老年期女性高于男性.%Objective To investigate the influence of age and gender to adenosine deaminase value. Methods The adenosine deaminase values of 24 163 cases for the past three years were collected in our hospital. Mean values and standard deviations were calculated according to the ages and the sex individually. The statistical analysis of the results was performed using the software. Results The adenosine deaminase values and the age showed the linear relationship ( P < 0. 05 ). The values of male and female in the same age section were different, which was significant ( P < 0. 05 ). Conclusion Adenosine deaminase values were influenced by the ages. There was a negative correlation between the two before 30 years old. There was a positive correlation after 30 years old. At the same time, the values were related with the gender. The values had no difference during childhood. The male's were higher than the female's during the adolescence and the middle age. While the female's were higher than male's during the old age.

  11. PATTERNS AND TOURIST ACTIVITIES INDUCED BY THE UNDERGROUND RIVERS AND LAKES IN THE ARIEŞ BASIN UPSTREAM OF BURU

    Directory of Open Access Journals (Sweden)

    Marius CIGHER

    2011-11-01

    Full Text Available Patterns and tourist activities induced by the underground rivers and lakes in the Arieş basin upstream of Buru – The presence of carbonate deposits in the Arieş basin, upstream of Buru induced certain organization of groundwater resources. Depending on local genetic factors – geological, climatic, biotic, temporal, etc – the extension and characteristics of karst aquifers engenders exploitable hydro units in terms of tourism: underground rivers and lakes. Identification and analysis of morphometrical, morphological, quantitative, qualitative, dynamic and biotic characteristics have provided the approach to ranking the hydro entities. Forms and tourism activities are subsumed to the established typological categories: recreational and pleasure tourism and multipurpose tourism.

  12. The tertiary origin of the allosteric activation of E. coli glucosamine-6-phosphate deaminase studied by sol-gel nanoencapsulation of its T conformer.

    Directory of Open Access Journals (Sweden)

    Sergio Zonszein

    Full Text Available The role of tertiary conformational changes associated to ligand binding was explored using the allosteric enzyme glucosamine-6-phosphate (GlcN6P deaminase from Escherichia coli (EcGNPDA as an experimental model. This is an enzyme of amino sugar catabolism that deaminates GlcN6P, giving fructose 6-phosphate and ammonia, and is allosterically activated by N-acetylglucosamine 6-phosphate (GlcNAc6P. We resorted to the nanoencapsulation of this enzyme in wet silica sol-gels for studying the role of intrasubunit local mobility in its allosteric activation under the suppression of quaternary transition. The gel-trapped enzyme lost its characteristic homotropic cooperativity while keeping its catalytic properties and the allosteric activation by GlcNAc6P. The nanoencapsulation keeps the enzyme in the T quaternary conformation, making possible the study of its allosteric activation under a condition that is not possible to attain in a soluble phase. The involved local transition was slowed down by nanoencapsulation, thus easing the fluorometric analysis of its relaxation kinetics, which revealed an induced-fit mechanism. The absence of cooperativity produced allosterically activated transitory states displaying velocity against substrate concentration curves with apparent negative cooperativity, due to the simultaneous presence of subunits with different substrate affinities. Reaction kinetics experiments performed at different tertiary conformational relaxation times also reveal the sequential nature of the allosteric activation. We assumed as a minimal model the existence of two tertiary states, t and r, of low and high affinity, respectively, for the substrate and the activator. By fitting the velocity-substrate curves as a linear combination of two hyperbolic functions with Kt and Kr as KM values, we obtained comparable values to those reported for the quaternary conformers in solution fitted to MWC model. These results are discussed in the

  13. Correct splicing despite mutation of the invariant first nucleotide of a 5[prime] splice site: A possible basis for disparate clinical phenotypes in siblings with adenosine deaminase deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Arredondo-Vega, F.X.; Santisteban, I.; Kelly, S.; Hershfield, M.S. (Duke Univ. Medical Center, Durham, NC (United States)); Umetsu, D.T. (Stanford Univ., CA (United States)); Schlossman, C.M.

    1994-05-01

    Adenosine deaminase (ADA) deficiency usually causes severe combined immune deficiency in infancy. Milder phenotypes also occur and are associated with less severely impaired deoxyadenosine (dAdo) catabolism. The authors have characterized the mutations responsible for ADA deficiency in siblings with disparity in clinical phenotype. Erythrocyte dAdo nucleotide pool size, which reflects total residual ADA activity, was lower in the older, more mildly affected sib (RG) than in her younger, more severely affected sister (EG). Cultured T cells, fibroblasts, and B lymphoblasts of RG had detectable residual ADA activity, while cells of EG did not. ADA mRNA was undetectable by northern analysis in cells of both patients. Both sibs were found to be compound heterozygotes for the following novel splicing defects: (1) a G[sup +1][yields]A substitution at the 5' splice site of IVS 2 and (2) a complex 17-bp rearrangement of the 3' splice site of IVS 8, which inserted a run of seven purines into the polypyrimidine tract and altered the reading frame of exon 9. PCR-amplified ADA cDNA clones with premature translation stop codons arising from aberrant pre-mRNA splicing were identified, which were consistent with these mutations. However, some cDNA clones from T cells of both patients and from fibroblasts and Epstein-Barr virus (EBV)-transformed B cells of RG, were normally spliced at both the exon 2/3 and exon 8/9 junctions. A normal coding sequence was documented for clones from both sibs. The normal cDNA clones did not appear to arise from either contamination or PCR artifact, and mosaicism seems unlikely to have been involved. These findings suggest (1) that a low level of normal pre-mRNA splicing may occur despite mutation of the invariant first nucleotide of the 5' splice sequence and (2) that differences in efficiency of such splicing may account for the difference in residual ADA activity, immune dysfunction, and clinical severity in these siblings. 66 refs

  14. Production of phenylpyruvic acid from L-phenylalanine using an L-amino acid deaminase from Proteus mirabilis: comparison of enzymatic and whole-cell biotransformation approaches.

    Science.gov (United States)

    Hou, Ying; Hossain, Gazi Sakir; Li, Jianghua; Shin, Hyun-Dong; Liu, Long; Du, Guocheng

    2015-10-01

    Phenylpyruvic acid (PPA) is an important organic acid that has a wide range of applications. In this study, the membrane-bound L-amino acid deaminase (L-AAD) gene from Proteus mirabilis KCTC 2566 was expressed in Escherichia coli BL21(DE3) and then the L-AAD was purified. After that, we used the purified enzyme and the recombinant E. coli whole-cell biocatalyst to produce PPA via a one-step biotransformation from L-phenylalanine. L-AAD was solubilized from the membrane and purified 52-fold with an overall yield of 13 %, which corresponded to a specific activity of 0.94 ± 0.01 μmol PPA min(-1)·mg(-1). Then, the biotransformation conditions for the pure enzyme and the whole-cell biocatalyst were optimized. The maximal production was 2.6 ± 0.1 g·L(-1) (specific activity of 1.02 ± 0.02 μmol PPA min(-1)·mg(-1) protein, 86.7 ± 5 % mass conversion rate, and 1.04 g·L(-1)·h(-1) productivity) and 3.3 ± 0.2 g L(-1) (specific activity of 0.013 ± 0.003 μmol PPA min(-1)·mg(-1) protein, 82.5 ± 4 % mass conversion rate, and 0.55 g·L(-1)·h(-1) productivity) for the pure enzyme and whole-cell biocatalyst, respectively. Comparative studies of the enzymatic and whole-cell biotransformation were performed in terms of specific activity, production, conversion, productivity, stability, need of external cofactors, and recycling. We have developed two eco-friendly and efficient approaches for PPA production. The strategy described herein may aid the biotransformational synthesis of other α-keto acids from their corresponding amino acids.

  15. A Ser29Leu substitution in the cytosine deaminase Fca1p is responsible for clade-specific flucytosine resistance in Candida dubliniensis.

    LENUS (Irish Health Repository)

    McManus, Brenda A

    2009-11-01

    The population structure of the opportunistic yeast pathogen Candida dubliniensis is composed of three main multilocus sequence typing clades (clades C1 to C3), and clade C3 predominantly consists of isolates from the Middle East that exhibit high-level resistance (MIC(50) > or = 128 microg\\/ml) to the fungicidal agent flucytosine (5FC). The close relative of C. dubliniensis, C. albicans, also exhibits clade-specific resistance to 5FC, and resistance is most commonly mediated by an Arg101Cys substitution in the FUR1 gene encoding uracil phosphoribosyltransferase. Broth microdilution assays with fluorouracil (5FU), the toxic deaminated form of 5FC, showed that both 5FC-resistant and 5FC-susceptible C. dubliniensis isolates exhibited similar 5FU MICs, suggesting that the C. dubliniensis cytosine deaminase (Fca1p) encoded by C. dubliniensis FCA1 (CdFCA1) may play a role in mediating C. dubliniensis clade-specific 5FC resistance. Amino acid sequence analysis of the CdFCA1 open reading frame (ORF) identified a homozygous Ser29Leu substitution in all 12 5FC-resistant isolates investigated which was not present in any of the 9 5FC-susceptible isolates examined. The tetracycline-inducible expression of the CdFCA1 ORF from a 5FC-susceptible C. dubliniensis isolate in two separate 5FC-resistant clade C3 isolates restored susceptibility to 5FC, demonstrating that the Ser29Leu substitution was responsible for the clade-specific 5FC resistance and that the 5FC resistance encoded by FCA1 genes with the Ser29Leu transition is recessive. Quantitative real-time PCR analysis showed no significant difference in CdFCA1 expression between 5FC-susceptible and 5FC-resistant isolates in either the presence or the absence of subinhibitory concentrations of 5FC, suggesting that the Ser29Leu substitution in the CdFCA1 ORF is the sole cause of 5FC resistance in clade C3 C. dubliniensis isolates.

  16. Dosagem sérica de adenosina deaminase em lúpus eritematoso sistêmico: ausência de associação com atividade de doença Levels of serum adenosine deaminase in systemic lupus erythematosus: lack of association with disease activity

    Directory of Open Access Journals (Sweden)

    Isabella Lima

    2005-10-01

    Full Text Available O lúpus eritematoso sistêmico (LES é uma doença inflamatória auto-imune, que evolui intercalando períodos de atividade e remissão. OBJETIVO: avaliar a associação da dosagem sérica de adenosina deaminase (ADA e atividade do LES, segundo os critérios do SLEDAI 2K - Systemic lupus erythematosus disease activity index. MÉTODOS: avaliou-se 82 pacientes com LES atendidos em um hospital de referência para o tratamento do LES em Salvador, BA, Brasil. A atividade de doença foi determinada pelo SLEDAI 2K e a dosagem sérica da ADA realizada por colorimetria. RESULTADOS: oitenta e uma pacientes (98,78% eram do sexo feminino e a idade média foi de 35,07±11,73 anos. O escore de SLEDAI médio foi de 11,66±5,89; a média de ADA sérica foi de 38,24±13,61U/l; C3 de 91,93±27,39 mg/dl; C4 de 15,17±5,77 mg/dl e a pesquisa de anticorpos anti-DNA nativo (aDNAn foi positiva em 31 casos (37,8%. Não houve correlação entre os níveis séricos de ADA e escore do SLEDAI. A ADA sérica correlacionou-se inversamente com C4 (r=-0,336 e p=0,001. CONCLUSÕES: no presente estudo a dosagem sérica de ADA não se associou a atividade de doença segundo os critérios do SLEDAI 2K, sugerindo que esse teste não deve ser utilizado como marcador de atividade de doença em LES. Esse resultado diverge da maioria dos trabalhos publicados, o que pode ser explicado pela dificuldade de padronização da técnica de dosagem da ADA ou por diferença nas diversas populações estudadas.Systemic lupus erythematosus (SLE is an autoimmune inflammatory disease, with a variable course and characterized by periods of remissions and exacerbations. OBJECTIVE: To evaluate the association between serum adenosine deaminase (ADA levels and disease activity in SLE. METHODS: Eighty two SLE patients seen at Santa Izabel Hospital in Salvador, BA, Brazil, were studied. Disease activity was measured by SLEDAI 2K- Systemic Lupus Erythematosus Disease Activity Index, and serum ADA was

  17. Bicuculline, a GABAA-receptor antagonist, blocked HPA axis activation induced by ghrelin under an acute stress.

    Science.gov (United States)

    Gastón, M S; Cid, M P; Salvatierra, N A

    2017-03-01

    Ghrelin is a peptide of 28 amino acids with a homology between species, which acts on the central nervous system to regulate different actions, including the control of growth hormone secretion and metabolic regulation. It has been suggested that central ghrelin is a mediator of behavior linked to stress responses and induces anxiety in rodents and birds. Previously, we observed that the anxiogenic-like behavior induced by ghrelin injected into the intermediate medial mesopallium (IMM) of the forebrain was blocked by bicuculline (a GABAA receptor competitive antagonist) but not by diazepam (a GABAA receptor allosteric agonist) in neonatal meat-type chicks (Cobb). Numerous studies have indicated that hypothalamic-pituitary-adrenal (HPA) axis activation mediates the response to stress in mammals and birds. However, it is still unclear whether this effect of ghrelin is associated with HPA activation. Therefore, we investigated whether anxiety behavior induced by intra-IMM ghrelin and mediated through GABAA receptors could be associated with HPA axis activation in the neonatal chick. In the present study, in an Open Field test, intraperitoneal bicuculline methiodide blocked anxiogenic-like behavior as well as the increase in plasma ACTH and corticosterone levels induced by ghrelin (30pmol) in neonatal chicks. Moreover, we showed for the first time that a competitive antagonist of GABAA receptor suppressed the HPA axis activation induced by an anxiogenic dose of ghrelin. These results show that the anxiogenic ghrelin action involves the activation of the HPA axis, with a complex functional interaction with the GABAA receptor.

  18. Activity-induced long-term potentiation of excitatory synapses in developing zebrafish retina in vivo.

    Science.gov (United States)

    Wei, Hong-ping; Yao, Yuan-yuan; Zhang, Rong-wei; Zhao, Xiao-feng; Du, Jiu-lin

    2012-08-09

    Neural activity-induced long-term potentiation (LTP) of synaptic transmission is believed to be one of the cellular mechanisms underlying experience-dependent developmental refinement of neural circuits. Although it is well established that visual experience and neural activity are critical for the refinement of retinal circuits, whether and how LTP occurs in the retina remain unknown. Using in vivo perforated whole-cell recording and two-photon calcium imaging, we find that both repeated electrical and visual stimulations can induce LTP at excitatory synapses formed by bipolar cells on retinal ganglion cells in larval but not juvenile zebrafish. LTP induction requires the activation of postsynaptic N-methyl-D-aspartate receptors, and its expression involves arachidonic acid-dependent presynaptic changes in calcium dynamics and neurotransmitter release. Physiologically, both electrical and visual stimulation-induced LTP can enhance visual responses of retinal ganglion cells. Thus, LTP exists in developing retinae with a presynaptic locus and may serve for visual experience-dependent refinement of retinal circuits.

  19. Summary of the Effort to Use Active-induced Time Correlation Techniques to Measure the Enrichment of HEU

    Energy Technology Data Exchange (ETDEWEB)

    McConchie, Seth M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Crye, Jason Michael [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States); Pena, Kirsten [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States); Sword, Eric [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mihalczo, John T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-30

    This document summarizes the effort to use active-induced time correlation techniques to measure the enrichment of bulk quantities of enriched uranium. In summary, these techniques use an external source to initiate fission chains, and the time distribution of the detected fission chain neutrons is sensitive to the fissile material enrichment. The number of neutrons emitted from a chain is driven by the multiplication of the item, and the enrichment is closely coupled to the multiplication of the item. As the enrichment increases (decreases), the multiplication increases (decreases) if the geometry is held constant. The time distribution of fission chain neutrons is a complex function of the enrichment and material configuration. The enrichment contributes to the probability of a subsequent fission in a chain via the likelihood of fissioning on an even-numbered isotope versus an odd-numbered isotope. The material configuration contributes to the same probability via solid angle effects for neutrons inducing subsequent fissions and the presence of any moderating material. To simplify the ability to accurately measure the enrichment, an associated particle imaging (API) D-T neutron generator and an array of plastic scintillators are used to simultaneously image the item and detect the fission chain neutrons. The image is used to significantly limit the space of enrichment and material configuration and enable the enrichment to be determined unambiguously.

  20. T-Cell Activation induces Dynamic Changes in miRNA Expression Patterns in CD4 and CD8 T-Cell Subsets

    NARCIS (Netherlands)

    Teteloshvili, Nato; Smigielska-Czepiel, Katarzyna; Kroesen, Bart-Jan; Brouwer, Elisabeth; Kluiver, Joost; van den Berg, Anke; Boots, Anna

    2015-01-01

    T-cell activation affects microRNA (miRNA) expression in T-cell subsets. However, little is known about the kinetics of miRNA regulation and possible differences between CD4 and CD8 T cells. In this study we set out to analyze the kinetics of activation-induced expression regulation of twelve pre-se

  1. Ectopic Epithelial Deaminase in IBD

    Science.gov (United States)

    2014-05-01

    guide a better understanding of host-commensal microbiota interactions in intestinal inflammation. Mucosal Immunol. 2011;4:127-32. PMID: 21248723...Chitinase 3-like-1 exacerbates intestinal inflammation by enhancing bacterial adhesion and invasion in colonic epithelial cells. Gastroenterology. 2006;130:398-411. PMID: 16472595 APPENDICES: None

  2. Preliminary assessment of Hedychium coronarium essential oil on fibrinogenolytic and coagulant activity induced by Bothrops and Lachesis snake venoms

    Science.gov (United States)

    2014-01-01

    Background The search for new inhibitors of snake venom toxins is essential to complement or even replace traditional antivenom therapy, especially in relation to compounds that neutralize the local effects of envenomations. Besides their possible use as alternative to traditional antivenom therapy, some plant species possess bioactive secondary metabolites including essential oils, which can be extracted from weeds that are considered substantial problems for agriculture, such as Hedychium coronarium. Methods The essential oils of leaves and rhizomes from H. coronarium were extracted by hydrodistillation, and their potential inhibitory effects on the coagulant and fibrinogenolytic activities induced by the venoms of Lachesis muta, Bothrops atrox and Bothrops moojeni were analyzed. Citrated human plasma was used to evaluate the clotting time whereas changes in fibrinogen molecules were visualized by electrophoresis in polyacrylamide gel. The experimental design used for testing coagulation inhibition was randomized in a 3 × 2 factorial arrangement (concentration × essential oils), with three replications. The essential oils were compared since they were extracted from different organs of the same botanical species, H. coronarium. Results The results suggest that the oils interact with venom proteases and plasma constituents, since all oils evaluated, when previously incubated with venoms, were able to inhibit the clotting effect, with less inhibition when oils and plasma were preincubated prior to the addition of venoms. Conclusions Thus, after extensive characterization of their pharmacological and toxicological effects, the essential oils can be used as an alternative to complement serum therapy, especially considering that these plant metabolites generally do not require specific formulations and may be used topically immediately after extraction. PMID:26413083

  3. Preclinical Evidence of Anti-Tumor Activity Induced by EZH2 Inhibition in Human Models of Synovial Sarcoma.

    Directory of Open Access Journals (Sweden)

    Satoshi Kawano

    Full Text Available The catalytic activities of covalent and ATP-dependent chromatin remodeling are central to regulating the conformational state of chromatin and the resultant transcriptional output. The enzymes that catalyze these activities are often contained within multiprotein complexes in nature. Two such multiprotein complexes, the polycomb repressive complex 2 (PRC2 methyltransferase and the SWItch/Sucrose Non-Fermentable (SWI/SNF chromatin remodeler have been reported to act in opposition to each other during development and homeostasis. An imbalance in their activities induced by mutations/deletions in complex members (e.g. SMARCB1 has been suggested to be a pathogenic mechanism in certain human cancers. Here we show that preclinical models of synovial sarcoma-a cancer characterized by functional SMARCB1 loss via its displacement from the SWI/SNF complex through the pathognomonic SS18-SSX fusion protein-display sensitivity to pharmacologic inhibition of EZH2, the catalytic subunit of PRC2. Treatment with tazemetostat, a clinical-stage, selective and orally bioavailable small-molecule inhibitor of EZH2 enzymatic activity reverses a subset of synovial sarcoma gene expression and results in concentration-dependent cell growth inhibition and cell death specifically in SS18-SSX fusion-positive cells in vitro. Treatment of mice bearing either a cell line or two patient-derived xenograft models of synovial sarcoma leads to dose-dependent tumor growth inhibition with correlative inhibition of trimethylation levels of the EZH2-specific substrate, lysine 27 on histone H3. These data demonstrate a dependency of SS18-SSX-positive, SMARCB1-deficient synovial sarcomas on EZH2 enzymatic activity and suggests the potential utility of EZH2-targeted drugs in these genetically defined cancers.

  4. Effector and naturally occurring regulatory T cells display no abnormalities in activation induced cell death in NOD mice.

    Directory of Open Access Journals (Sweden)

    Ayelet Kaminitz

    Full Text Available BACKGROUND: Disturbed peripheral negative regulation might contribute to evolution of autoimmune insulitis in type 1 diabetes. This study evaluates the sensitivity of naïve/effector (Teff and regulatory T cells (Treg to activation-induced cell death mediated by Fas cross-linking in NOD and wild-type mice. PRINCIPAL FINDINGS: Both effector (CD25(-, FoxP3(- and suppressor (CD25(+, FoxP3(+ CD4(+ T cells are negatively regulated by Fas cross-linking in mixed splenocyte populations of NOD, wild type mice and FoxP3-GFP trangeneess. Proliferation rates and sensitivity to Fas cross-linking are dissociated in Treg cells: fast cycling induced by IL-2 and CD3/CD28 stimulation improve Treg resistance to Fas-ligand (FasL in both strains. The effector and suppressor CD4(+ subsets display balanced sensitivity to negative regulation under baseline conditions, IL-2 and CD3/CD28 stimulation, indicating that stimulation does not perturb immune homeostasis in NOD mice. Effective autocrine apoptosis of diabetogenic cells was evident from delayed onset and reduced incidence of adoptive disease transfer into NOD.SCID by CD4(+CD25(- T cells decorated with FasL protein. Treg resistant to Fas-mediated apoptosis retain suppressive activity in vitro. The only detectable differential response was reduced Teff proliferation and upregulation of CD25 following CD3-activation in NOD mice. CONCLUSION: These data document negative regulation of effector and suppressor cells by Fas cross-linking and dissociation between sensitivity to apoptosis and proliferation in stimulated Treg. There is no evidence that perturbed AICD in NOD mice initiates or promotes autoimmune insulitis.

  5. Isolation of Wheat Endophytic Diazotrophs and Determination of 1-Aminocyclopropane-1-Carboxylate Deaminase%小麦内生固氮菌分离及其ACC脱氨酶测定

    Institute of Scientific and Technical Information of China (English)

    秦宝军; 罗琼; 高淼; 胡海燕; 徐晶; 周义清; 孙建光

    2012-01-01

    [Objective ] The objective of this study is to determine the ammount of wheat endophytic diazotrophs and screen for ACC (1-aminocyclopropane-l-carboxylate) deaminase activity from the diazotrophs, determine the phylogenetic and classiflc position of selected strains and prepare strains for microbial fertilizer production. [ Method] Surface sterilization and nitrogen-free medium were used to isolate diazotroph and ACC was used as sole nitrogen source to screen strains with ACC deaminase activity. Nitrogenase activity was determined with acetylene reduction assay. 16S rDNA was amplified with PCR and analysed with MEGA software. Strain identification was carried out based on the morphology, physiology, biochemical test results and 16S rDNA analysis. [Result] The ammount of endophytic diazotrophs at jointing stage of wheat was (O.2-17.8)xlO* cfu-g"1 fresh weight Sixty endophytic diazotrophs with nitrogenase activity ranging 1-36 nmol QHt/h-mg protein were isolated from wheat. Nine of the 60 endophytic diazotrophs were ACC deaminase positive, the range of enzyme activity is 0.87-9.32 nmol a-ketobutryric acid/hmg protein. New isolate 9136 with nitrogenase activity 1.82 nmol C2Ei/h-mg protein and ACC deaminase activity 9.32 umol a-ketobutryric acid/h-mg protein was identified as Pseudomonas sp.. [Conclusion] About 10s cfu-g'1 (fresh weight) endophytic diazotrophs naturally colonized field grown wheat, some of these endophytic diazotrophs could produce ACC deaminase. A few strains showed relatively high ACC deaminase activity, and they might play a role in crop resistance to enviromental stress.%[目的]了解小麦内生固氮菌数量,筛选具有ACC(1-aminocyclopropane-1-carboxylate,1-氨基环丙烷-1-羧酸)脱氨酶活性的小麦内生固氮菌,确定筛选菌株的系统发育地位与分类地位,为微生物肥料生产收集菌种资源.[方法]样品表面灭菌后采用无氮培养法筛选内生固氮菌,乙炔还原法测定菌株固氮酶活性;采用ACC

  6. Sympathetic activity induced by naloxone-precipitated morphine withdrawal is blocked in genetically engineered mice lacking functional CRF1 receptor

    Energy Technology Data Exchange (ETDEWEB)

    García-Carmona, Juan-Antonio; Martínez-Laorden, Elena; Milanés, María-Victoria; Laorden, María-Luisa

    2015-02-15

    -precipitated morphine withdrawal increases PKA expression in the heart. • CRF1 receptor is implicated in the sympathetic activity induced by morphine withdrawal.

  7. 腺苷脱氨酶2与血管炎的相关性研究进展%Research Progress of Correlation between Adenosine Deaminase 2 (ADA2) and Vasculitis

    Institute of Scientific and Technical Information of China (English)

    鞠俊; 邹丽萍

    2014-01-01

    血管炎性病变临床表现多样,病因复杂。新近研究发现,部分血管炎性病变可能与猫眼综合征染色体候选基因1(cat eye syndrome chromosome region,candidate 1,CECR1)突变导致CECR1基因编码的腺苷脱氨酶2(adenosine deaminase 2,ADA2)功能缺陷相关。多项研究在结节性多动脉炎和不能明确诊断的血管炎性疾病患者中发现了相同的突变位点,并证实了存在ADA2蛋白功能缺陷。作为腺嘌呤核苷代谢过程中的腺苷脱氨酶(adenosine deaminase,ADA)亚型之一的ADA2不论在早期胚胎发育,还是在特异性免疫系统中都发挥了作用,但目前对于ADA2的功能研究较少。推测ADA2缺陷可能通过增加腺苷水平和破坏血管内皮的完整性从而导致血管炎症的发生,机制尚待进一步研究。总之, ADA2缺陷可能揭示了ADA在人类疾病中的作用,为血管炎性疾病提供了诊断和治疗策略,现对其与血管炎的相关性研究做一综述,以期从遗传学角度探讨血管炎的病因。%The manifestations of vasculitis and vasculopathy are highly varied and have complicated etiology. Recent studies found that part of patients with vasculitis and vasculopathy may be associated with carrying recessively inherited gene mutation inCECR1 (cat eye syndrome chromosome region, candidate 1), encoding adenosine deaminase 2 (ADA2), which resulted in loss of function. The same mutations inCECR1 were found in patients with polyarteritis and vasculitis without being speciifcally deifned in different research, and deifciency of ADA2 was conifrmed. As one of adenosine deaminases (ADA), ADA2 functions in adenosine metabolism, and plays an important role both in early embryonic development and in immune system, but at present there is little study in function of ADA2. It is speculated that ADA2 deifciency induces vasculitis through adenosine increase and destruction of vascular endothelial integrity. The

  8. Avaliação da adenosina desaminase no diagnóstico da tuberculose pleural: uma metanálise brasileira Evaluation of adenosine deaminase in the diagnosis of pleural tuberculosis: a Brazilian meta-analysis

    Directory of Open Access Journals (Sweden)

    Patrizio Morisson

    2008-04-01

    Full Text Available OBJETIVO: Avaliar trabalhos brasileiros resumindo a acurácia da adenosina desaminase no diagnóstico da tuberculose pleural, com o intuito de contribuir para a concretização do exame como rotina na investigação dos derrames pleurais. MÉTODOS: Depois de realizada uma busca por trabalhos brasileiros referentes à dosagem da adenosina desaminase no líquido pleural, estes foram avaliados e incluídos no estudo. A análise dos dados foi feita por meio da curva summary receiver operating characteristic (SROC que possibilitou a reunião dos estudos quanto a acurácia para o diagnóstico. Com os valores globais de sensibilidade e especificidade foi aplicado o teorema de Bayes para calcular as probabilidades pós-teste em diferentes prevalências da doença. RESULTADOS: Entre 1987 e 2005 foram encontrados 25 estudos contendo informações suficientes que poderiam ser utilizadas na metanálise. Após avaliação, foram incluídos nove estudos, totalizando 1.674 pacientes. De acordo com a curva SROC, foi encontrada uma sensibilidade de 91,8% (IC95%: 89,8-93,6% e uma especificidade de 88,4% (IC95%: 86,0-90,5%, com uma área abaixo da curva de 0,969. O odds ratio global foi de 112,0 (IC95%: 51,6-243,2. Considerando uma prevalência da tuberculose pleural de 50% (considerada neutra, a probabilidade do diagnóstico pós-teste positivo é de 88,7% e sua exclusão após resultado negativo de 91,5%. CONCLUSÕES: Apesar das diferenças encontradas entre os estudos, é possível concluir que a adenosina desaminase possui alta acurácia no diagnóstico da tuberculose pleural, devendo ser utilizada de rotina em sua investigação.OBJECTIVE: To evaluate Brazilian studies by summarizing the accuracy of adenosine deaminase in the diagnosis of pleural tuberculosis, with the objective of lending support to the movement to make the test part of the routine investigation of pleural effusions. METHODS: A search for Brazilian studies related to the determination of

  9. Effects of overexpression glucosamine deaminase on glucosamine synthesis and central carbon metabolism in Escherichia coli%过表达氨基葡萄糖脱氨酶对大肠杆菌氨基葡萄糖合成及中心碳代谢的影响

    Institute of Scientific and Technical Information of China (English)

    王珊珊; 高璐; 严明; 许琳

    2013-01-01

    The effects on glucosamine synthesis and central carbon metabolism in E.coli by overexpression glucosamine deaminase were investigated.The results showed that overexpression glucosamine deaminase nagB could improved the content of glucosamine by two times of that of Rosetta,under the conditions of 36 g/L glucose,pH 9.0,after 24 h fermentation.The content of pyruvate was 1.48 times,acetic acid was 1.74 times,citric acid was 2.99 times,α-ketoglutaric acid was 2.73 times of that of Rosetta,respectirely.Lactic acid content of recombinant was 2.53 g/L.Lactic acid content of the original bacteria was not detected.These preliminary findings showed that,overexpression of the glucosamine deaminase promoted the accumulation of glucosamine in E.coli,overexpression of the glucosamine deaminase also made the accumulation of pyruvate,acetic acid and lactic acid.Overexpression of the glucosamine deaminase has great impact on the TCA cycle,high level of the citric acid and α-ketoglutaric acid were detected.%考察过表达氨基葡萄糖脱氨酶对氨基葡萄糖合成及大肠杆菌(Escherichia coli中心碳代谢的影响.实验结果表明:过表达氨基葡萄糖脱氨酶使得在36 g/L葡萄糖,pH为9.0的发酵条件下,发酵24 h后,重组菌发酵液中氨基葡萄糖、丙酮酸和乙酸的量分别是对照菌Rosetta的2.1、1.48和1.74倍;而乳酸的量为2.53 g/L,对照菌Rosetta发酵液中的乳酸含量未检测到,重组菌发酵液中柠檬酸及α-酮戊二酸的含量分别是Rosetta的2.99和2.73倍.

  10. Effect of the Anti-depressant Sertraline, the Novel Anti-seizure Drug Vinpocetine and Several Conventional Antiepileptic Drugs on the Epileptiform EEG Activity Induced by 4-Aminopyridine.

    Science.gov (United States)

    Sitges, Maria; Aldana, Blanca Irene; Reed, Ronald Charles

    2016-06-01

    Seizures are accompanied by an exacerbated activation of cerebral ion channels. 4-aminopyridine (4-AP) is a pro-convulsive agent which mechanism of action involves activation of Na(+) and Ca(2+) channels, and several antiepileptic drugs control seizures by reducing these channels permeability. The antidepressant, sertraline, and the anti-seizure drug vinpocetine are effective inhibitors of cerebral presynaptic Na(+) channels. Here the effectiveness of these compounds to prevent the epileptiform EEG activity induced by 4-AP was compared with the effectiveness of seven conventional antiepileptic drugs. For this purpose, EEG recordings before and at three intervals within the next 30 min following 4-AP (2.5 mg/kg, i.p.) were taken in anesthetized animals; and the EEG-highest peak amplitude values (HPAV) calculated. In control animals, the marked increase in the EEG-HPAV observed near 20 min following 4-AP reached its maximum at 30 min. Results show that this epileptiform EEG activity induced by 4-AP is prevented by sertraline and vinpocetine at a dose of 2.5 mg/kg, and by carbamazepine, phenytoin, lamotrigine and oxcarbazepine at a higher dose (25 mg/kg). In contrast, topiramate (25 mg/kg), valproate (100 mg/kg) and levetiracetam (100 mg/kg) failed to prevent the epileptiform EEG activity induced by 4-AP. It is concluded that 4-AP is a useful tool to elicit the mechanism of action of anti-seizure drugs at clinical meaningful doses. The particular efficacy of sertraline and vinpocetine to prevent seizures induced by 4-AP is explained by their high effectiveness to reduce brain presynaptic Na(+) and Ca(2+) channels permeability.

  11. T lymphocytes from chronic HCV-infected patients are primed for activation-induced apoptosis and express unique pro-apoptotic gene signature.

    Directory of Open Access Journals (Sweden)

    Bin-Bin Zhao

    Full Text Available Although extensive studies have demonstrated the functional impairment of antigen-specific CD4(+ and CD8(+ T-cells during chronic hepatitis C virus (HCV infection, the functional status of global CD4(+ and CD8(+ T-cells remains unclear. In this report, we recruited 42 long-term (~20 years treatment-naïve chronic HCV (CHC patients and 15 healthy donors (HDs to investigate differences in global CD4(+ and CD8(+ T-cells function. We show that CD4(+ and CD8(+ T-cells from CHC patients underwent increased apoptosis after TCR stimulation. Furthermore, IFN-γ, IL-9 and IP-10 were elevated in CHC patients' plasma and promoted activation-induced T-cells death. Global CD4(+ and CD8(+ T-cells also showed unique transcriptional profiles in the expression of apoptosis-related genes. We identified BCL2, PMAIP1, and CASP1 in CD4(+ T-cells and IER3 and BCL2A1 in CD8(+ T-cells from CHC patients as HCV-specific gene signatures. Importantly, the gene expression patterns of CD4(+ and CD8(+ T-cells from CHC patients differ from those in CD4(+ and CD8(+ T-cells from human immunodeficiency virus type 1 (HIV-1 or hepatitis B virus (HBV infected individuals. Our results indicate that chronic HCV infection causes a systemic change in cytokine levels that primes T-cells for activation-induced apoptosis. Furthermore, HCV infection programs unique apoptosis-related gene expression profiles in CD4(+ and CD8(+ T-cells, leading to their enhanced activation-induced apoptosis. These results provide novel insights to the pathogenesis of chronic HCV infection.

  12. Neutrons formed by heavy ions and activation induced in different materials; Neutrons crees par ions lourds et activation induite dans divers materiaux

    Energy Technology Data Exchange (ETDEWEB)

    Clapier, F.; Pauwels, N.; Proust, J.

    1995-12-31

    This work deals with the Spiral project and more particularly with the neutrons flux formed by heavy ions and the activation induced in different materials. Indeed, the beams power suggests the interest of different materials behaviour study for allowing a possible selection to optimize radioprotection. Moreover, it is important to establish the activation mechanisms in order to be able to extrapolate the measures realized at 400 W (actual GANIL) to those of the future running taking into account the radioisotopes real mixtures formed during the reaction and their daughter products. A best knowledge of energizing and angular neutrons distributions is searched too. (O.L.). 11 refs., 23 figs., 9 tabs.

  13. A self-inactivating retrovector incorporating the IL-2 promoter for activation-induced transgene expression in genetically engineered T-cells

    Directory of Open Access Journals (Sweden)

    Lejeune Laurence

    2006-11-01

    Full Text Available Abstract Background T-cell activation leads to signaling pathways that ultimately result in induction of gene transcription from the interleukin-2 (IL-2 promoter. We hypothesized that the IL-2 promoter or its synthetic derivatives can lead to T-cell specific, activation-induced transgene expression. Our objective was to develop a retroviral vector for stable and activation-induced transgene expression in T-lymphocytes. Results First, we compared the transcriptional potency of the full-length IL-2 promoter with that of a synthetic promoter composed of 3 repeats of the Nuclear Factor of Activated T-Cells (NFAT element following activation of transfected Jurkat T-cells expressing the large SV40 T antigen (Jurkat TAg. Although the NFAT3 promoter resulted in a stronger induction of luciferase reporter expression post stimulation, the basal levels of the IL-2 promoter-driven reporter expression were much lower indicating that the IL-2 promoter can serve as a more stringent activation-dependent promoter in T-cells. Based on this data, we generated a self-inactivating retroviral vector with the full-length human IL-2 promoter, namely SINIL-2pr that incorporated the enhanced green fluorescent protein (EGFP fused to herpes simplex virus thymidine kinase as a reporter/suicide "bifunctional" gene. Subsequently, Vesicular Stomatitis Virus-G Protein pseudotyped retroparticles were generated for SINIL-2pr and used to transduce the Jurkat T-cell line and the ZAP-70-deficient P116 cell line. Flow cytometry analysis showed that EGFP expression was markedly enhanced post co-stimulation of the gene-modified cells with 1 μM ionomycin and 10 ng/ml phorbol 12-myristate 13-acetate (PMA. This activation-induced expression was abrogated when the cells were pretreated with 300 nM cyclosporin A. Conclusion These results demonstrate that the SINIL-2pr retrovector leads to activation-inducible transgene expression in Jurkat T-cell lines. We propose that this design can be

  14. An enriched environment reduces the stress level and locomotor activity induced by acute morphine treatment and by saline after chronic morphine treatment in mice.

    Science.gov (United States)

    Xu, Jia; Sun, Jinling; Xue, Zhaoxia; Li, Xinwang

    2014-06-18

    This study investigated the relationships among an enriched environment, stress levels, and drug addiction. Mice were divided randomly into four treatment groups (n=12 each): enriched environment without restraint stress (EN), standard environment without restraint stress (SN), enriched environment with restraint stress (ES), and standard environment with restraint stress (SS). Mice were reared in the respective environment for 45 days. Then, the ES and SS groups were subjected to restraint stress daily (2 h/day) for 14 days, whereas the EN and SN groups were not subjected to restraint stress during this stage. The stress levels of all mice were tested in the elevated plus maze immediately after exposure to restraint stress. After the 2-week stress testing period, mice were administered acute or chronic morphine (5 mg/kg) treatment for 7 days. Then, after a 7-day withdrawal period, the mice were injected with saline (1 ml/kg) or morphine (5 mg/kg) daily for 2 days to observe locomotor activity. The results indicated that the enriched environment reduced the stress and locomotor activity induced by acute morphine administration or saline after chronic morphine treatment. However, the enriched environment did not significantly inhibit locomotor activity induced by morphine challenge. In addition, the stress level did not mediate the effect of the enriched environment on drug-induced locomotor activity after acute or chronic morphine treatment.

  15. Local sequence targeting in the AID/APOBEC family differentially impacts retroviral restriction and antibody diversification.

    Science.gov (United States)

    Kohli, Rahul M; Maul, Robert W; Guminski, Amy F; McClure, Rhonda L; Gajula, Kiran S; Saribasak, Huseyin; McMahon, Moira A; Siliciano, Robert F; Gearhart, Patricia J; Stivers, James T

    2010-12-24

    Nucleic acid cytidine deaminases of the activation-induced deaminase (AID)/APOBEC family are critical players in active and innate immune responses, playing roles as target-directed, purposeful mutators. AID specifically deaminates the host immunoglobulin (Ig) locus to evolve antibody specificity, whereas its close relative, APOBEC3G (A3G), lethally mutates the genomes of retroviral pathogens such as HIV. Understanding the basis for the target-specific action of these enzymes is essential, as mistargeting poses significant risks, potentially promoting oncogenesis (AID) or fostering drug resistance (A3G). AID prefers to deaminate cytosine in WRC (W = A/T, R = A/G) motifs, whereas A3G favors deamination of CCC motifs. This specificity is largely dictated by a single, divergent protein loop in the enzyme family that recognizes the DNA sequence. Through grafting of this substrate-recognition loop, we have created enzyme variants of A3G and AID with altered local targeting to directly evaluate the role of sequence specificity on immune function. We find that grafted loops placed in the A3G scaffold all produced efficient restriction of HIV but that foreign loops in the AID scaffold compromised hypermutation and class switch recombination. Local targeting, therefore, appears alterable for innate defense against retroviruses by A3G but important for adaptive antibody maturation catalyzed by AID. Notably, AID targeting within the Ig locus is proportionally correlated to its in vitro ability to target WRC sequences rather than non-WRC sequences. Although other mechanisms may also contribute, our results suggest that local sequence targeting by AID/APOBEC3 enzymes represents an elegant example of co-evolution of enzyme specificity with its target DNA sequence.

  16. Histone H3.3 promotes IgV gene diversification by enhancing formation of AID-accessible single-stranded DNA.

    Science.gov (United States)

    Romanello, Marina; Schiavone, Davide; Frey, Alexander; Sale, Julian E

    2016-07-01

    Immunoglobulin diversification is driven by activation-induced deaminase (AID), which converts cytidine to uracil within the Ig variable (IgV) regions. Central to the recruitment of AID to the IgV genes are factors that regulate the generation of single-stranded DNA (ssDNA), the enzymatic substrate of AID Here, we report that chicken DT40 cells lacking variant histone H3.3 exhibit reduced IgV sequence diversification. We show that this results from impairment of the ability of AID to access the IgV genes due to reduced formation of ssDNA during IgV transcription. Loss of H3.3 also diminishes IgV R-loop formation. However, reducing IgV R-loops by RNase HI overexpression in wild-type cells does not affect IgV diversification, showing that these structures are not necessary intermediates for AID access. Importantly, the reduction in the formation of AID-accessible ssDNA in cells lacking H3.3 is independent of any effect on the level of transcription or the kinetics of RNAPII elongation, suggesting the presence of H3.3 in the nucleosomes of the IgV genes increases the chances of the IgV DNA becoming single-stranded, thereby creating an effective AID substrate.

  17. Mimicking the germinal center reaction in hybridoma cells to isolate temperature-selective anti-PEG antibodies.

    Science.gov (United States)

    Su, Yu-Cheng; Al-Qaisi, Talal S; Tung, Hsin-Yi; Cheng, Tian-Lu; Chuang, Kuo-Hsiang; Chen, Bing-Mae; Roffler, Steve R

    2014-01-01

    Modification of antibody class and binding properties typically requires cloning of antibody genes, antibody library construction, phage or yeast display and recombinant antibody expression. Here, we describe an alternative "cloning-free" approach to generate antibodies with altered antigen-binding and heavy chain isotype by mimicking the germinal center reaction in antibody-secreting hybridoma cells. This was accomplished by lentiviral transduction and controllable expression of activation-induced cytidine deaminase (AID) to generate somatic hypermutation and class switch recombination in antibody genes coupled with high-throughput fluorescence-activated cell sorting (FACS) of hybridoma cells to detect altered antibody binding properties. Starting from a single established hybridoma clone, we isolated mutated antibodies that bind to a low-temperature structure of polyethylene glycol (PEG), a polymer widely used in nanotechnology, biotechnology and pharmaceuticals. FACS of AID-infected hybridoma cells also facilitated rapid identification of class switched variants of monoclonal IgM to monoclonal IgG. Mimicking the germinal center reaction in hybridoma cells may offer a general method to identify and isolate antibodies with altered binding properties and class-switched heavy chains without the need to carry out DNA library construction, antibody engineering and recombinant protein expression.

  18. Transgenic mouse model of IgM+ lymphoproliferative disease mimicking Waldenström macroglobulinemia

    Science.gov (United States)

    Tompkins, V S; Sompallae, R; Rosean, T R; Walsh, S; Acevedo, M; Kovalchuk, A L; Han, S-S; Jing, X; Holman, C; Rehg, J E; Herms, S; Sunderland, J S; Morse, H C; Janz, S

    2016-01-01

    Waldenström macroglobulinemia (WM) is a low-grade incurable immunoglobulin M+ (IgM+) lymphoplasmacytic lymphoma for which a genetically engineered mouse model of de novo tumor development is lacking. On the basis of evidence that the pro-inflammatory cytokine, interleukin 6 (IL6), and the survival-enhancing oncoprotein, B cell leukemia 2 (BCL2), have critical roles in the natural history of WM, we hypothesized that the enforced expression of IL6 and BCL2 in mice unable to perform immunoglobulin class switch recombination may result in a lymphoproliferative disease that mimics WM. To evaluate this possibility, we generated compound transgenic BALB/c mice that harbored the human BCL2 and IL6 transgenes, EμSV-BCL2-22 and H2-Ld-hIL6, on the genetic background of activation-induced cytidine deaminase (AID) deficiency. We designated these mice BCL2+IL6+AID− and found that they developed—with full genetic penetrance (100% incidence) and suitably short latency (93 days median survival)—a severe IgM+ lymphoproliferative disorder that recapitulated important features of human WM. However, the BCL2+IL6+AID− model also exhibited shortcomings, such as low serum IgM levels and histopathological changes not seen in patients with WM, collectively indicating that further refinements of the model are required to achieve better correlations with disease characteristics of WM. PMID:27813533

  19. CtIP promotes microhomology-mediated alternative end joining during class-switch recombination.

    Science.gov (United States)

    Lee-Theilen, Mieun; Matthews, Allysia J; Kelly, Dierdre; Zheng, Simin; Chaudhuri, Jayanta

    2011-01-01

    Immunoglobulin heavy chain (Igh locus) class-switch recombination (CSR) requires targeted introduction of DNA double strand breaks (DSBs) into repetitive 'switch'-region DNA elements in the Igh locus and subsequent ligation between distal DSBs. Both canonical nonhomologous end joining (C-NHEJ) that seals DNA ends with little or no homology and a poorly defined alternative end joining (A-NHEJ, also known as alt-NHEJ) process that requires microhomology ends for ligation have been implicated in CSR. Here, we show that the DNA end-processing factor CtIP is required for microhomology-directed A-NHEJ during CSR. Additionally, we demonstrate that microhomology joins that are enriched upon depletion of the C-NHEJ component Ku70 require CtIP. Finally, we show that CtIP binds to switch-region DNA in a fashion dependent on activation-induced cytidine deaminase. Our results establish CtIP as a bona fide component of microhomology-dependent A-NHEJ and unmask a hitherto unrecognized physiological role of microhomology-mediated end joining in a C-NHEJ-proficient environment.

  20. Oncogenic events triggered by AID, the adverse effect of antibody diversification.

    Science.gov (United States)

    Pérez-Durán, Pablo; de Yebenes, Virginia G; Ramiro, Almudena R

    2007-12-01

    The generation of an efficient immune response depends on highly refined mechanisms of antibody diversification. Two of these mechanisms, somatic hypermutation (SHM) and class switch recombination (CSR), are initiated by activation-induced cytidine deaminase (AID) upon antigen stimulation of mature B cells. AID deaminates cytosines on the DNA of Ig genes thereby generating a lesion that can be processed into a mutation (SHM) or a DNA double-strand break followed by a recombination reaction (CSR). A number of mechanisms are probably responsible for regulating AID function, such as transcriptional regulation, subcellular localization, post-transcriptional modifications and target specificity, but the issue remains of how unwanted DNA damage is fully prevented. Most lymphocyte neoplasias are originated from mature B cells and harbour hallmark chromosome translocations of lymphomagenic potential, such as the c-myc/IgH translocations found in Burkitt lymphomas. It has been recently shown that such translocations are initiated by AID and that ataxia-telangiectasia mutated, p53 and ARF provide surveillance mechanisms to prevent these aberrations. In addition, evidence is accumulating that AID expression can be induced in B cells independently of the germinal centre environment, such as in response to some viral infections, and occasionally in non-B cells, at least in certain inflammation-associated neoplasic situations. The most recent findings on AID expression and function and their relevance to the generation of oncogenic lesions will be discussed.

  1. Transplantation of human spleen into immunodeficient NOD/SCID IL2Rγ(null) mice generates humanized mice that improve functional B cell development.

    Science.gov (United States)

    Chung, Yun Shin; Son, Jin Kyung; Choi, Bongkum; Park, Jae Berm; Chang, Jun; Kim, Sung Joo

    2015-12-01

    We previously generated humanized TB34N mice that received human fetal thymus (T), bone tissue (B) and fetal liver-derived (FL)-CD34(+) cells (34) in immunodeficient, NOD/SCID IL2Rγ(null) (N) mice. Although humanized TB34N mice had excellent hematopoiesis, here, we sought to further improve this model by additional transplantation of human spleen tissue (S) as a secondary hematopoietic tissue (TBS34N). The human spleen grafts were enlarged and differentiated into a similar morphology of adult humans, including follicular lymphoid structures with T- and B-cells. The TBS34N mice mimicked mature human immune system (HIS): mature T- and B-cells and follicular dendritic cells; activated germinal center B-cells expressing CD71, BR3(+) cells, memory B-cells and activation-induced cytidine deaminase(+) B-cells; CD138(+) plasma cells were enriched in the mouse spleen. HBsAg-specific hIgG antibodies were secreted into the sera of all TBS34N mice upon immunization with HBsAg. Taken together, the humanized TBS34N mice improved mature HIS and achieved adaptive antibody responses.

  2. Hyper IgM syndrome presenting as chronic suppurative lung disease

    Directory of Open Access Journals (Sweden)

    Montella Silvia

    2012-09-01

    Full Text Available Abstract The Hyper-immunoglobulin M syndromes (HIGM are a heterogeneous group of genetic disorders resulting in defects of immunoglobulin class switch recombination. Affected patients show humoral immunodeficiency and high susceptibility to opportunistic infections. Elevated serum IgM levels are the hallmark of the disease, even though in few rare cases they may be in the normal range. Hyper IgM is associated with low to undetectable levels of serum IgG, IgA, and IgE. In some cases, alterations in different genes may be identified. Mutations in five genes have so far been associated to the disease, which can be inherited with an X-linked (CD40 ligand, and nuclear factor-kB essential modulator defects or an autosomal recessive (CD40, activation-induced cytidine deaminase, and uracil-DNA glycosylase mutation pattern. The patient herein described presented with recurrent upper and lower respiratory infections and evidence of suppurative lung disease at the conventional chest imaging. The presence of low serum IgG and IgA levels, elevated IgM levels, and a marked reduction of in vivo switched memory B cells led to a clinical and functional diagnosis of HIGM although the genetic cause was not identified.

  3. Expression of Immunoglobulin Receptors with Distinctive Features Indicating Antigen Selection by Marginal Zone B Cells from Human Spleen

    Science.gov (United States)

    Colombo, Monica; Cutrona, Giovanna; Reverberi, Daniele; Bruno, Silvia; Ghiotto, Fabio; Tenca, Claudya; Stamatopoulos, Kostas; Hadzidimitriou, Anastasia; Ceccarelli, Jenny; Salvi, Sandra; Boccardo, Simona; Calevo, Maria Grazia; De Santanna, Amleto; Truini, Mauro; Fais, Franco; Ferrarini, Manlio

    2013-01-01

    Marginal zone (MZ) B cells, identified as surface (s)IgMhighsIgDlowCD23low/−CD21+CD38− B cells, were purified from human spleens, and the features of their V(D)J gene rearrangements were investigated and compared with those of germinal center (GC), follicular mantle (FM) and switched memory (SM) B cells. Most MZ B cells were CD27+ and exhibited somatic hypermutations (SHM), although to a lower extent than SM B cells. Moreover, among MZ B-cell rearrangements, recurrent sequences were observed, some of which displayed intraclonal diversification. The same diversifying sequences were detected in very low numbers in GC and FM B cells and only when a highly sensitive, gene-specific polymerase chain reaction was used. This result indicates that MZ B cells could expand and diversify in situ and also suggested the presence of a number of activation-induced cytidine deaminase (AID)-expressing B cells in the MZ. The notion of antigen-driven expansion/selection in situ is further supported by the VH CDR3 features of MZ B cells with highly conserved amino acids at specific positions and by the finding of shared (“stereotyped”) sequences in two different spleens. Collectively, the data are consistent with the notion that MZ B cells are a special subset selected by in situ antigenic stimuli. PMID:23877718

  4. Polymorphisms of IL-4, IL-4Rα, and AICDA Genes in Adult Allergic Asthma

    Institute of Scientific and Technical Information of China (English)

    崔天盆; 王琳; 吴健民; 胡丽华; 谢俊刚

    2003-01-01

    Summary: The relationship between 3 polymorphisms sites [interleulin-4 (IL-4), IL-4 receptor (IL-4R) α chain and activation-induced cytidine deaminase (AICDA)] and adult allergic asthma in Chinawas studied. By using case-control method, DNA and clinical data were obtained from allergic asth-matic patients and compared with those in the control subjects. The subjects were genotyped for theIL-4 C-589T promoter polymorphism, the IL-4R α chain Q576R and the AICDA C8408T by poly-merase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. The resultsshowed that the IL-4 C-589T was not associated with adult allergic asthma in China. However, theIL-4R α chain 576R/R and AICDA 8408T/T frequency was significantly increased in allergic asthmagroup as compared with that in the control group [odd ratio (OR)= 3. 797 and 9. 127, respectively;P<0.01)] and was correlated with the increased plasma total IgE. These data suggested that theIL-4R α chain 576R/R and AICDA 8408T/T genotypes confer genetic susceptibility to adult allergicasthma in China.

  5. Mutation mismatch repair gene deletions in diffuse large B-cell lymphoma.

    Science.gov (United States)

    Couronné, Lucile; Ruminy, Philippe; Waultier-Rascalou, Agathe; Rainville, Vinciane; Cornic, Marie; Picquenot, Jean-Michel; Figeac, Martin; Bastard, Christian; Tilly, Hervé; Jardin, Fabrice

    2013-05-01

    To further unravel the molecular pathogenesis of diffuse large B-cell lymphoma (DLBCL), we performed high-resolution comparative genomic hybridization on lymph node biopsies from 70 patients. With this strategy, we identified microdeletions of genes involved in the mutation mismatch repair (MMR) pathway in two samples. The first patient presented with a homozygous deletion of MSH2-MSH6 due to duplication of an unbalanced pericentric inversion of chromosome 2. The other case showed a PMS2 heterozygous deletion. PMS2 and MSH2-MSH6 abnormalities, respectively, resulted in a decrease and complete loss of gene expression. However, unlike tumors associated with the hereditary non-polyposis colorectal cancer syndrome or immunodeficiency-related lymphomas, no microsatellite instability was detected. Mutational profiles revealed especially in one patient an aberrant hypermutation without a clear activation-induced cytidine deaminase signature, indicating a breakdown of the high-fidelity repair in favor of the error-prone repair pathway. Our findings suggest that in a rare subset of patients, inactivation of the genes of the MMR pathway is likely an important step in the molecular pathogenesis of DLBCL and does not involve the same molecular mechanisms as other common neoplasms with MMR deficiency.

  6. BCR and Endosomal TLR Signals Synergize to Increase AID Expression and Establish Central B Cell Tolerance.

    Science.gov (United States)

    Kuraoka, Masayuki; Snowden, Pilar B; Nojima, Takuya; Verkoczy, Laurent; Haynes, Barton F; Kitamura, Daisuke; Kelsoe, Garnett

    2017-02-14

    Activation-induced cytidine deaminase (AID) is required to purge autoreactive immature and transitional-1 (immature/T1) B cells at the first tolerance checkpoint, but how AID selectively removes self-reactive B cells is unclear. We now show that B cell antigen receptor (BCR) and endosomal Toll-like receptor (TLR) signals synergize to elicit high levels of AID expression in immature/T1 B cells. This synergy is restricted to ligands for endocytic TLR and requires phospholipase-D activation, endosomal acidification, and MyD88. The first checkpoint is significantly impaired in AID- or MyD88-deficient mice and in mice doubly heterozygous for AID and MyD88, suggesting interaction of these factors in central B cell tolerance. Moreover, administration of chloroquine, an inhibitor of endosomal acidification, results in a failure to remove autoreactive immature/T1 B cells in mice. We propose that a BCR/TLR pathway coordinately establishes central tolerance by hyper-activating AID in immature/T1 B cells that bind ligands for endosomal TLRs.

  7. The evolution of adaptive immunity in vertebrates.

    Science.gov (United States)

    Hirano, Masayuki; Das, Sabyasachi; Guo, Peng; Cooper, Max D

    2011-01-01

    Approximately 500 million years ago, two types of recombinatorial adaptive immune systems (AISs) arose in vertebrates. The jawed vertebrates diversify their repertoire of immunoglobulin domain-based T and B cell antigen receptors mainly through the rearrangement of V(D)J gene segments and somatic hypermutation, but none of the fundamental AIS recognition elements in jawed vertebrates have been found in jawless vertebrates. Instead, the AIS of jawless vertebrates is based on variable lymphocyte receptors (VLRs) that are generated through recombinatorial usage of a large panel of highly diverse leucine-rich-repeat (LRR) sequences. Whereas the appearance of transposon-like, recombination-activating genes contributed uniquely to the origin of the AIS in jawed vertebrates, the use of activation-induced cytidine deaminase for receptor diversification is common to both the jawed and jawless vertebrates. Despite these differences in anticipatory receptor construction, the basic AIS design featuring two interactive T and B lymphocyte arms apparently evolved in an ancestor of jawed and jawless vertebrates within the context of preexisting innate immunity and has been maintained since as a consequence of powerful and enduring selection, most probably for pathogen defense purposes.

  8. Control of Toll-like receptor-mediated T cell-independent type 1 antibody responses by the inducible nuclear protein IκB-ζ.

    Science.gov (United States)

    Hanihara-Tatsuzawa, Fumito; Miura, Hanae; Kobayashi, Shuhei; Isagawa, Takayuki; Okuma, Atsushi; Manabe, Ichiro; MaruYama, Takashi

    2014-11-07

    Antibody responses have been classified as being either T cell-dependent or T cell-independent (TI). TI antibody responses are further classified as being either type 1 (TI-1) or type 2 (TI-2), depending on their requirement for B cell-mediated antigen receptor signaling. Although the mechanistic basis of antibody responses has been studied extensively, it remains unclear whether different antibody responses share similarities in their transcriptional regulation. Here, we show that mice deficient in IκB-ζ, specifically in their B cells, have impaired TI-1 antibody responses but normal T cell-dependent and TI-2 antibody responses. The absence of IκB-ζ in B cells also impaired proliferation triggered by Toll-like receptor (TLR) activation, plasma cell differentiation, and class switch recombination (CSR). Mechanistically, IκB-ζ-deficient B cells could not induce TLR-mediated induction of activation-induced cytidine deaminase (AID), a class-switch DNA recombinase. Retroviral transduction of AID in IκB-ζ-deficient B cells restored CSR activity. Furthermore, acetylation of histone H3 in the vicinity of the transcription start site of the gene that encodes AID was reduced in IκB-ζ-deficient B cells relative to IκB-ζ-expressing B cells. These results indicate that IκB-ζ regulates TLR-mediated CSR by inducing AID. Moreover, IκB-ζ defines differences in the transcriptional regulation of different antibody responses.

  9. APE1 is dispensable for S-region cleavage but required for its repair in class switch recombination.

    Science.gov (United States)

    Xu, Jianliang; Husain, Afzal; Hu, Wenjun; Honjo, Tasuku; Kobayashi, Maki

    2014-12-02

    Activation-induced cytidine deaminase (AID) is essential for antibody diversification, namely somatic hypermutation (SHM) and class switch recombination (CSR). The deficiency of apurinic/apyrimidinic endonuclease 1 (Ape1) in CH12F3-2A B cells reduces CSR to ∼20% of wild-type cells, whereas the effect of APE1 loss on SHM has not been examined. Here we show that, although APE1's endonuclease activity is important for CSR, it is dispensable for SHM as well as IgH/c-myc translocation. Importantly, APE1 deficiency did not show any defect in AID-induced S-region break formation, but blocked both the recruitment of repair protein Ku80 to the S region and the synapse formation between Sμ and Sα. Knockdown of end-processing factors such as meiotic recombination 11 homolog (MRE11) and carboxy-terminal binding protein (CtBP)-interacting protein (CtIP) further reduced the remaining CSR in Ape1-null CH12F3-2A cells. Together, our results show that APE1 is dispensable for SHM and AID-induced DNA breaks and may function as a DNA end-processing enzyme to facilitate the joining of broken ends during CSR.

  10. Direct phenotypical and functional dysregulation of primary human B cells by human immunodeficiency virus (HIV type 1 in vitro.

    Directory of Open Access Journals (Sweden)

    Ana Judith Perisé-Barrios

    Full Text Available BACKGROUND: Human immunodeficiency virus type 1 (HIV-1 induces a general dysregulation of immune system. Dysregulation of B cell compartment is generally thought to be induced by HIV-related immune activation and lymphopenia. However, a direct influence of HIV-1 particles on B cells was recently proposed as the third pathway of B cells dysregulation. METHODS/PRINCIPAL FINDINGS: We evaluated the direct and specific consequences of HIV-1 contact on activation, survival, proliferation and phenotype of primary B cells in vitro. Moreover, we examined expression of activation-induced cytidine deaminase (AID mRNA that is responsible for class switch recombination (CSR and somatic hypermutation (SHM. Here, we report that changes observed in cellular proliferation, phenotypes and activation of B cells could be caused by direct contact between HIV-1 particles and primary B cells in vitro. Finally, direct HIV-1-derived B cells activation led to the increase of AID mRNA expression and its subsequent CSR function was detected in vitro. CONCLUSION/SIGNIFICANCE: We showed that HIV-1 could directly induce primary B cells dysregulation triggering phenotypical and functional abilities of B cells in vitro that could explain in some extent early B-cell abnormalities in HIV disease.

  11. A splenic marginal zone-like peripheral blood CD27+B220- B cell population is preferentially depleted in HIV type 1-infected individuals.

    Science.gov (United States)

    Morrow, Matthew; Valentin, Antonio; Little, Richard; Yarchoan, Robert; Pavlakis, George N

    2008-04-01

    Peripheral blood CD27(+) B cells are reduced in HIV-1-infected individuals. In healthy individuals, the human peripheral blood CD27(+) B cell pool consists of two subsets defined by the expression, or lack thereof, of the CD45 isoform B220. We investigated the presence of circulating B220(+) and B220(-) memory B cells in HIV(+) individuals and found that the reduction in CD27(+) memory B cells occurs primarily among CD27(+)B220(-) B cells. Studies conducted using healthy controls indicate that CD27(+)B220(-) B cells have a splenic marginal zone like the immunophenotype IgM(hi)IgD(lo)CD21(+)CD23(-), express TLR9, and proliferate and secrete IgG and IgM in response to B cell-specific ODN. CD27(+)B220(+) B cells have the immunophenotype IgM(lo)IgD(hi)CD21(+)CD23(+), express activation-induced cytidine deaminase, and proliferate in response to SAC but do not secrete immunoglobulin. The AICD expression, along with CD86 expression, by CD27(+)B220(+) suggests these cells are of germinal center origin. The preferential depletion of CD27(+)B220(-) B cells mirrors alterations in spleen morphology and resident B cell populations due to HIV infection reported by other investigators and may play an important role in the defective B cell immunity against T-independent pathogens such as pneumococcus observed in HIV-1-infected individuals.

  12. Class-Switch Recombination in the Absence of the IgH 3' Regulatory Region.

    Science.gov (United States)

    Kim, Ahrom; Han, Li; Santiago, Gabriel E; Verdun, Ramiro E; Yu, Kefei

    2016-10-01

    The ∼28-kb 3' regulatory region (3'RR), which is located at the most distal 3' region of the Ig H chain locus, has multiple regulatory functions that control IgH expression, class-switch recombination (CSR), and somatic hypermutation. In this article, we report that deletion of the entire 3'RR in a mouse B cell line that is capable of robust cytokine-dependent CSR to IgA results in reduced, but not abolished, CSR. These data suggest that 3'RR is not absolutely required for CSR and, thus, is not essential for targeting activation-induced cytidine deaminase to S regions, as was suggested. Moreover, replacing 3'RR with a DNA fragment including only its four DNase I hypersensitive sites (lacking the large spacer regions) restores CSR to a level equivalent to or even higher than in wild-type cells, suggesting that the four hypersensitive sites contain most of the CSR-promoting functions of 3'RR. Stimulated cells express abundant germline transcripts, with the presence or absence of 3'RR, providing evidence that 3'RR has a role in promoting CSR that is unique from enhancing S region transcription.

  13. p21 is dispensable for AID-mediated class switch recombination and mutagenesis of immunoglobulin genes during somatic hypermutation.

    Science.gov (United States)

    Shansab, Maryam; Selsing, Erik

    2011-03-01

    In B cells, activation-induced cytidine deaminase (AID) induces somatic hypermutation (SHM) at rearranged immunoglobulin (Ig) variable (V) regions. Previous studies have shown that both monoubiquitination of proliferating cell nuclear antigen (PCNA) and translesional DNA polymerase activity are important for inducing mutagenesis during SHM. Regulation of PCNA ubiquitination by p21, also known as Cdkn1a and p21(Cip1/Waf1), is an important mechanism that controls mutation loads in mammalian cells. In this study, we have assessed whether p21 has an in vivo function in regulating mutagenesis in B cells by analyzing SHM frequency in p21-deficient mice. Our results show that p21 is dispensable for SHM. This suggests that, during SHM of Ig genes, p21 does not act to regulate mutagenesis load. We also show that p21 transcript levels are the same in both wildtype and AID-deficient B cells during B cell activation, and that AID-mediated class switch recombination (CSR) is not affected by p21 deficiency; thereby indicating that p21 regulation in B cells is not altered by AID-induced DNA damage and that p21 has no affect on AID-dependent Ig gene diversification. Our results suggest that regulation of p21 in activated B cells is probably more important for maintaining proper cell cycle progression as opposed to promoting SHM of Ig genes.

  14. In vivo analysis of Aicda gene regulation: a critical balance between upstream enhancers and intronic silencers governs appropriate expression.

    Directory of Open Access Journals (Sweden)

    Le Thi Huong

    Full Text Available The Aicda gene encodes activation-induced cytidine deaminase (AID. Aicda is strongly transcribed in activated B cells to diversify immunoglobulin genes, but expressed at low levels in various other cells in response to physiological or pathological stimuli. AID's mutagenic nature has been shown to be involved in tumor development. Here, we used a transgenic strategy with bacterial artificial chromosomes (BACs to examine the in vivo functions of Aicda regulatory elements, which cluster in two regions: in the first intron (region 2, and approximately 8-kb upstream of the transcription start site (region 4. Deleting either of these regions completely abolished the expression of Aicda-BAC reporters, demonstrating these elements' critical roles. Furthermore, we found that selectively deleting two C/EBP-binding sites in region 4 inactivated the enhancer activity of the region despite the presence of intact NF-κB-, STAT6- and Smad-binding sites. On the other hand, selectively deleting E2F- and c-Myb-binding sites in region 2 increased the frequency of germinal-center B cells in which the Aicda promoter was active, indicating that E2F and c-Myb act as silencers in vivo. Interestingly, the silencer deletion did not cause ectopic activation of the Aicda promoter, indicating that Aicda activation requires enhancer-specific stimulation. In summary, precise regulation of the Aicda promoter appears to depend on a coordinated balance of activities between enhancer and silencer elements.

  15. AID expression in peripheral blood of children living in a malaria endemic region is associated with changes in B cell subsets and Epstein-Barr virus

    Science.gov (United States)

    Wilmore, Joel R; Asito, Amolo S; Wei, Chungwen; Piriou, Erwan; Sumba, P. Odada; Sanz, Iñaki

    2015-01-01

    The development of endemic Burkitt's lymphoma (eBL) is closely associated with EBV infection and holoendemic malaria infections. The role of EBV in the development of malignancy has been studied in depth, but there is still little known about the mechanisms by which malaria affects Burkitt's lymphomagenesis. Activation induced cytidine deaminase (AID) expression is necessary for the introduction of c-myc translocations that are characteristic of BL, but a link between AID and EBV or malaria is unclear. To determine if frequency of malaria exposure leads to increased AID expression in peripheral blood mononuclear cells (PBMC) we examined two cohorts of children in western Kenya with endemic and sporadic malaria transmission dynamics. High frequency of malaria exposure led to increased expression of AID, which coincided with decreases in the IgM+ memory B cells. In the children from the malaria endemic region, the presence of a detectible EBV viral load was associated with higher AID expression compared to children with undetectable EBV, but this effect was not seen in children with sporadic exposure to malaria. This study demonstrates that intensity of malaria transmission correlates with AID expression levels in the presence of EBV suggesting that malaria and EBV infection have a synergistic effect on the development of c-myc translocations and BL. PMID:25099163

  16. AID expression in peripheral blood of children living in a malaria holoendemic region is associated with changes in B cell subsets and Epstein-Barr virus.

    Science.gov (United States)

    Wilmore, Joel R; Asito, Amolo S; Wei, Chungwen; Piriou, Erwan; Sumba, P Odada; Sanz, Iñaki; Rochford, Rosemary

    2015-03-15

    The development of endemic Burkitt's lymphoma (eBL) is closely associated with Epstein-Barr virus (EBV) infection and holoendemic malaria infections. The role of EBV in the development of malignancy has been studied in depth, but there is still little known about the mechanisms by which malaria affects Burkitt's lymphomagenesis. Activation induced cytidine deaminase (AID) expression is necessary for the introduction of c-myc translocations that are characteristic of BL, but a link between AID and EBV or malaria is unclear. To determine whether frequency of malaria exposure leads to increased AID expression in peripheral blood mononuclear cells (PBMC) we examined two cohorts of children in western Kenya with endemic and sporadic malaria transmission dynamics. High frequency of malaria exposure led to increased expression of AID, which coincided with decreases in the IgM(+) memory B cells. In the children from the malaria endemic region, the presence of a detectible EBV viral load was associated with higher AID expression compared to children with undetectable EBV, but this effect was not seen in children with sporadic exposure to malaria. This study demonstrates that intensity of malaria transmission correlates with AID expression levels in the presence of EBV suggesting that malaria and EBV infection have a synergistic effect on the development of c-myc translocations and BL.

  17. Impaired class switch recombination (CSR) in Waldenstrom macroglobulinemia (WM) despite apparently normal CSR machinery.

    Science.gov (United States)

    Kriangkum, Jitra; Taylor, Brian J; Strachan, Erin; Mant, Michael J; Reiman, Tony; Belch, Andrew R; Pilarski, Linda M

    2006-04-01

    Analysis of clonotypic isotype class switching (CSR) in Waldenström macroglobulinemia (WM) and IgM monoclonal gammopathy of undetermined significance (MGUS) reveals a normal initial phase of B-cell activation as determined by constitutive and inducible expression of activation-induced cytidine deaminase (AID). Switch mu (Smu) analysis shows that large deletions are not common in WM or IgM MGUS. In CD40L/IL-4-stimulated WM cultures from 2 patients, we observed clonotypic IgG exhibiting intraclonal homogeneity associated with multiple hybrid Smu/Sgamma junctions. This suggests CSR had occurred within WM cells. Nevertheless, the estimated IgG/IgM-cell frequency was relatively low (1/1600 cells). Thus, for the majority of WM B cells, CSR does not occur even when stimulated in vitro, suggesting that the WM cell is constitutively unable to or being prevented from carrying out CSR. In contrast to WM, the majority of IgM MGUS clones exhibit intraclonal heterogeneity of IgH VDJ. Furthermore, most IgM MGUS accumulate more mutations in the upstream Smu region than do WM, making them unlikely WM progenitors. These observations suggest that switch sequence analysis may identify the subset of patients with IgM MGUS who are at risk of progression to WM.

  18. Hepatitis C virus induces a mutator phenotype: enhanced mutations of immunoglobulin and protooncogenes.

    Science.gov (United States)

    Machida, Keigo; Cheng, Kevin T-N; Sung, Vicky M-H; Shimodaira, Shigetaka; Lindsay, Karen L; Levine, Alexandra M; Lai, Ming-Yang; Lai, Michael M C

    2004-03-23

    Hepatitis C virus (HCV) is a nonretroviral oncogenic RNA virus, which is frequently associated with hepatocellular carcinoma (HCC) and B cell lymphoma. We demonstrated here that acute and chronic HCV infection caused a 5- to 10-fold increase in mutation frequency in Ig heavy chain, BCL-6, p53, and beta-catenin genes of in vitro HCV-infected B cell lines and HCV-associated peripheral blood mononuclear cells, lymphomas, and HCCs. The nucleotide-substitution pattern of p53 and beta-catenin was different from that of Ig heavy chain in HCV-infected cells, suggesting two different mechanisms of mutation. In addition, the mutated protooncogenes were amplified in HCV-associated lymphomas and HCCs, but not in lymphomas of nonviral origin or HBV-associated HCC. HCV induced error-prone DNA polymerase zeta, polymerase iota, and activation-induced cytidine deaminase, which together, contributed to the enhancement of mutation frequency, as demonstrated by the RNA interference experiments. These results indicate that HCV induces a mutator phenotype and may transform cells by a hit-and-run mechanism. This finding provides a mechanism of oncogenesis for an RNA virus.

  19. Efficient AID targeting of switch regions is not sufficient for optimal class switch recombination.

    Science.gov (United States)

    Bonaud, Amélie; Lechouane, Fabien; Le Noir, Sandrine; Monestier, Olivier; Cogné, Michel; Sirac, Christophe

    2015-07-06

    Antibody affinity maturation relies on activation-induced cytidine deaminase (AID)-dependent somatic hypermutation (SHM) of immunoglobulin (Ig) loci. Class switch recombination (CSR) can in parallel occur between AID-targeted, transcribed, spliced and repetitive switch (S) regions. AID thus initiates not only mutations but also double-strand breaks (DSBs). What governs the choice between those two outcomes remains uncertain. Here we explore whether insertion of transcribed intronic S regions in a locus (Igκ) strongly recruiting AID is sufficient for efficient CSR. Although strongly targeted by AID and carrying internal deletions, the knocked-in S regions only undergo rare CSR-like events. This model confirms S regions as exquisite SHM targets, extending AID activity far from transcription initiation sites, and shows that such spliced and repetitive AID targets are not sufficient by themselves for CSR. Beyond transcription and AID recruitment, additional IgH elements are thus needed for CSR, restricting this hazardous gene remodelling to IgH loci.

  20. Regulation of epsilon germline transcription and switch region mutations by IgH locus 3' enhancers in transgenic mice.

    Science.gov (United States)

    Laurencikiene, Jurga; Tamosiunas, Vytas; Severinson, Eva

    2007-01-01

    Germline (GL) transcription is regulated by specific promoters and immunoglobulin heavy chain (IgH) 3' locus enhancers and is necessary for Ig class-switch recombination (CSR). We have generated different transgenic lines containing the GL epsilon promoter, switch (S) epsilon region, and constant (C) epsilon region with or without the DNase I-sensitive regions (HS) 3A-HS1,2 or HS3B-HS4 3' IgH enhancer pairs. The enhancerless construct was expressed in B cells activated by interleukin (IL)-4 and CD40, thus resembling regulation of the endogenous gene. Both enhancer-containing transgenes efficiently increased expression in B cells and were strongly up-regulated by stimuli. In addition, Sepsilon regions of the transgene containing HS3B-HS4 were mutated in activated, sorted B cells. Such mutations are known to precede CSR and are dependent on activation-induced cytidine deaminase (AID). Our findings show that all elements necessary for recruitment of the recombination machinery are present in the transgene containing HS3 and HS4. These enhancers probably provide something more specific than mere increased accessibility of switch regions. We propose that transcription factors binding the enhancers help to target the recombination machinery to the switch regions.

  1. 53BP1 regulates DNA resection and the choice between classical and alternative end joining during class switch recombination.

    Science.gov (United States)

    Bothmer, Anne; Robbiani, Davide F; Feldhahn, Niklas; Gazumyan, Anna; Nussenzweig, Andre; Nussenzweig, Michel C

    2010-04-12

    Class switch recombination (CSR) diversifies antibodies by joining highly repetitive DNA elements, which are separated by 60-200 kbp. CSR is initiated by activation-induced cytidine deaminase, an enzyme that produces multiple DNA double-strand breaks (DSBs) in switch regions. Switch regions are joined by a mechanism that requires an intact DNA damage response and classical or alternative nonhomologous end joining (A-NHEJ). Among the DNA damage response factors, 53BP1 has the most profound effect on CSR. We explore the role of 53BP1 in intrachromosomal DNA repair using I-SceI to introduce paired DSBs in the IgH locus. We find that the absence of 53BP1 results in an ataxia telangiectasia mutated-dependent increase in DNA end resection and that resected DNA is preferentially repaired by microhomology-mediated A-NHEJ. We propose that 53BP1 favors long-range CSR in part by protecting DNA ends against resection, which prevents A-NHEJ-dependent short-range rejoining of intra-switch region DSBs.

  2. Mediator facilitates transcriptional activation and dynamic long-range contacts at the IgH locus during class switch recombination

    Science.gov (United States)

    Thomas-Claudepierre, Anne-Sophie; Robert, Isabelle; Rocha, Pedro P.; Raviram, Ramya; Schiavo, Ebe; Heyer, Vincent; Bonneau, Richard; Luo, Vincent M.; Reddy, Janardan K.; Borggrefe, Tilman; Skok, Jane A.

    2016-01-01

    Immunoglobulin (Ig) class switch recombination (CSR) is initiated by the transcription-coupled recruitment of activation-induced cytidine deaminase (AID) to Ig switch regions (S regions). During CSR, the IgH locus undergoes dynamic three-dimensional structural changes in which promoters, enhancers, and S regions are brought to close proximity. Nevertheless, little is known about the underlying mechanisms. In this study, we show that Med1 and Med12, two subunits of the mediator complex implicated in transcription initiation and long-range enhancer/promoter loop formation, are dynamically recruited to the IgH locus enhancers and the acceptor regions during CSR and that their knockdown in CH12 cells results in impaired CSR. Furthermore, we show that conditional inactivation of Med1 in B cells results in defective CSR and reduced acceptor S region transcription. Finally, we show that in B cells undergoing CSR, the dynamic long-range contacts between the IgH enhancers and the acceptor regions correlate with Med1 and Med12 binding and that they happen at a reduced frequency in Med1-deficient B cells. Our results implicate the mediator complex in the mechanism of CSR and are consistent with a model in which mediator facilitates the long-range contacts between S regions and the IgH locus enhancers during CSR and their transcriptional activation. PMID:26903242

  3. Genome-wide translocation sequencing reveals mechanisms of chromosome breaks and rearrangements in B cells.

    Science.gov (United States)

    Chiarle, Roberto; Zhang, Yu; Frock, Richard L; Lewis, Susanna M; Molinie, Benoit; Ho, Yu-Jui; Myers, Darienne R; Choi, Vivian W; Compagno, Mara; Malkin, Daniel J; Neuberg, Donna; Monti, Stefano; Giallourakis, Cosmas C; Gostissa, Monica; Alt, Frederick W

    2011-09-30

    Whereas chromosomal translocations are common pathogenetic events in cancer, mechanisms that promote them are poorly understood. To elucidate translocation mechanisms in mammalian cells, we developed high-throughput, genome-wide translocation sequencing (HTGTS). We employed HTGTS to identify tens of thousands of independent translocation junctions involving fixed I-SceI meganuclease-generated DNA double-strand breaks (DSBs) within the c-myc oncogene or IgH locus of B lymphocytes induced for activation-induced cytidine deaminase (AID)-dependent IgH class switching. DSBs translocated widely across the genome but were preferentially targeted to transcribed chromosomal regions. Additionally, numerous AID-dependent and AID-independent hot spots were targeted, with the latter comprising mainly cryptic I-SceI targets. Comparison of translocation junctions with genome-wide nuclear run-ons revealed a marked association between transcription start sites and translocation targeting. The majority of translocation junctions were formed via end-joining with short microhomologies. Our findings have implications for diverse fields, including gene therapy and cancer genomics.

  4. Mediator facilitates transcriptional activation and dynamic long-range contacts at the IgH locus during class switch recombination.

    Science.gov (United States)

    Thomas-Claudepierre, Anne-Sophie; Robert, Isabelle; Rocha, Pedro P; Raviram, Ramya; Schiavo, Ebe; Heyer, Vincent; Bonneau, Richard; Luo, Vincent M; Reddy, Janardan K; Borggrefe, Tilman; Skok, Jane A; Reina-San-Martin, Bernardo

    2016-03-07

    Immunoglobulin (Ig) class switch recombination (CSR) is initiated by the transcription-coupled recruitment of activation-induced cytidine deaminase (AID) to Ig switch regions (S regions). During CSR, the IgH locus undergoes dynamic three-dimensional structural changes in which promoters, enhancers, and S regions are brought to close proximity. Nevertheless, little is known about the underlying mechanisms. In this study, we show that Med1 and Med12, two subunits of the mediator complex implicated in transcription initiation and long-range enhancer/promoter loop formation, are dynamically recruited to the IgH locus enhancers and the acceptor regions during CSR and that their knockdown in CH12 cells results in impaired CSR. Furthermore, we show that conditional inactivation of Med1 in B cells results in defective CSR and reduced acceptor S region transcription. Finally, we show that in B cells undergoing CSR, the dynamic long-range contacts between the IgH enhancers and the acceptor regions correlate with Med1 and Med12 binding and that they happen at a reduced frequency in Med1-deficient B cells. Our results implicate the mediator complex in the mechanism of CSR and are consistent with a model in which mediator facilitates the long-range contacts between S regions and the IgH locus enhancers during CSR and their transcriptional activation.

  5. Immunoglobulin class-switch recombination deficiencies.

    Science.gov (United States)

    Durandy, Anne; Kracker, Sven

    2012-07-30

    Immunoglobulin class-switch recombination deficiencies (Ig-CSR-Ds) are rare primary immunodeficiencies characterized by defective switched isotype (IgG/IgA/IgE) production. Depending on the molecular defect in question, the Ig-CSR-D may be combined with an impairment in somatic hypermutation (SHM). Some of the mechanisms underlying Ig-CSR and SHM have been described by studying natural mutants in humans. This approach has revealed that T cell-B cell interaction (resulting in CD40-mediated signaling), intrinsic B-cell mechanisms (activation-induced cytidine deaminase-induced DNA damage), and complex DNA repair machineries (including uracil-N-glycosylase and mismatch repair pathways) are all involved in class-switch recombination and SHM. However, several of the mechanisms required for full antibody maturation have yet to be defined. Elucidation of the molecular defects underlying the diverse set of Ig-CSR-Ds is essential for understanding Ig diversification and has prompted better definition of the clinical spectrum of diseases and the development of increasingly accurate diagnostic and therapeutic approaches.

  6. High resolution analysis of the chromatin landscape of the IgE switch region in human B cells.

    Directory of Open Access Journals (Sweden)

    Sandeep Dayal

    Full Text Available Antibodies are assembled by a highly orchestrated series of recombination events during B cell development. One of these events, class switch recombination, is required to produce the IgG, IgE and IgA antibody isotypes characteristic of a secondary immune response. The action of the enzyme activation induced cytidine deaminase is now known to be essential for the initiation of this recombination event. Previous studies have demonstrated that the immunoglobulin switch regions acquire distinct histone modifications prior to recombination. We now present a high resolution analysis of these histone modifications across the IgE switch region prior to the initiation of class switch recombination in primary human B cells and the human CL-01 B cell line. These data show that upon stimulation with IL-4 and an anti-CD40 antibody that mimics T cell help, the nucleosomes of the switch regions are highly modified on histone H3, accumulating acetylation marks and tri-methylation of lysine 4. Distinct peaks of modified histones are found across the switch region, most notably at the 5' splice donor site of the germline (I exon, which also accumulates AID. These data suggest that acetylation and K4 tri-methylation of histone H3 may represent marks of recombinationally active chromatin and further implicates splicing in the regulation of AID action.

  7. Generation and characterization of induced pluripotent stem cells from Aid-deficient mice.

    Directory of Open Access Journals (Sweden)

    Ren Shimamoto

    Full Text Available It has been shown that DNA demethylation plays a pivotal role in the generation of induced pluripotent stem (iPS cells. However, the underlying mechanism of this action is still unclear. Previous reports indicated that activation-induced cytidine deaminase (Aid, also known as Aicda is involved in DNA demethylation in several developmental processes, as well as cell fusion-mediated reprogramming. Based on these reports, we hypothesized that Aid may be involved in the DNA demethylation that occurs during the generation of iPS cells. In this study, we examined the function of Aid in iPS cell generation using Aid knockout (Aid⁻/⁻ mice expressing a GFP reporter under the control of a pluripotent stem cell marker, Nanog. By introducing Oct3/4, Sox2, Klf4 and c-Myc, Nanog-GFP-positive iPS cells could be generated from the fibroblasts and primary B cells of Aid⁻/⁻ mice. Their induction efficiency was similar to that of wild-type (Aid⁺/⁺ iPS cells. The Aid⁻/⁻ iPS cells showed normal proliferation and gave rise to chimeras, indicating their capacity for self-renewal and pluripotency. A comprehensive DNA methylation analysis showed only a few differences between Aid⁺/⁺ and Aid⁻/⁻ iPS cells. These data suggest that Aid does not have crucial functions in DNA demethylation during iPS cell generation.

  8. Preventing AID, a physiological mutator, from deleterious activation: regulation of the genomic instability that is associated with antibody diversity.

    Science.gov (United States)

    Nagaoka, Hitoshi; Tran, Thinh Huy; Kobayashi, Maki; Aida, Masatoshi; Honjo, Tasuku

    2010-04-01

    Activation-induced cytidine deaminase (AID) is essential and sufficient to accomplish class-switch recombination and somatic hypermutation, which are two genetic events required for the generation of antibody-mediated memory responses. However, AID can also introduce genomic instability, giving rise to chromosomal translocation and/or mutations in proto-oncogenes. It is therefore important for cells to suppress AID expression unless B lymphocytes are stimulated by pathogens. The mechanisms for avoiding the accidental activation of AID and thereby avoiding genomic instability can be classified into three types: (i) transcriptional regulation, (ii) post-transcriptional regulation and (iii) target specificity. This review summarizes the recently elucidated comprehensive transcriptional regulation mechanisms of the AID gene and the post-transcriptional regulation that may be critical for preventing excess AID activity. Finally, we discuss why AID targets not only Igs but also other proto-oncogenes. AID targets many genes but it is not totally promiscuous and the criteria that specify its targets are unclear. A recent finding that a non-B DNA structure forms upon a decrease in topoisomerase 1 expression may explain this paradoxical target specificity determination. Evolution has chosen AID as a mutator of Ig genes because of its efficient DNA cleavage activity, even though its presence increases the risk of genomic instability. This is probably because immediate protection against pathogens is more critical for species survival than complete protection from the slower acting consequences of genomic instability, such as tumor formation.

  9. The clinical characteristics and prognostic significance of AID, miR-181b, and miR-155 expression in adult patients with de novo B-cell acute lymphoblastic leukemia.

    Science.gov (United States)

    Zhou, Guangquan; Cao, Yang; Dong, Weimin; Lin, Yan; Wang, Qi; Wu, Wei; Hua, Xiaoying; Ling, Yun; Xie, Xiaobao; Hu, Shaoyan; Cen, Jiannong; Gu, Weiying

    2017-01-31

    This study aimed to investigate clinical characteristics and prognostic significance of activation-induced cytidine deaminase (AID) gene, miR-181b and miR-155 expression in de novo adult B-cell acute lymphoblastic leukemia (B-ALL) patients. Results showed that AID and miR-155 expression were higher in B-ALL patients than healthy controls, while miR-181b expression was lower in B-ALL patients. In addition, Ph(+) B-ALLs had higher AID expression than Ph(-) B-ALLs, and its high expression was associated with BCR-ABL. Moreover, B-ALL patients with AID(high) or miR-181b(low) expression had a shorter overall survival (OS). AID(high) with miR-181b(low), AID(high) with miR-155(low), miR-181b(low), miR-155(low), AID(high) with miR-181b(low) and miR-155(low) expression were associated with shorter OS. Combination of the three molecules are more accurate predictors for unfavorable OS compared with univariate group. Therefore, AID, miR-181b and miR-155 provide clinical prognosis of adult de novo B-ALL patients and may refine their molecular risk classification.

  10. Classical Mus musculus Igκ enhancers support transcription but not high level somatic hypermutation from a V-lambda promoter in chicken DT40 cells.

    Directory of Open Access Journals (Sweden)

    Naga Rama Kothapalli

    Full Text Available Somatic hypermutation (SHM of immunoglobulin genes is initiated by activation-induced cytidine deaminase (AID in activated B cells. This process is strictly dependent on transcription. Hence, cis-acting transcriptional control elements have been proposed to target SHM to immunoglobulin loci. The Mus musculus Igκ locus is regulated by the intronic enhancer (iE/MAR and the 3' enhancer (3'E, and multiple studies using transgenic and knock-out approaches in mice and cell lines have reported somewhat contradictory results about the function of these enhancers in AID-mediated sequence diversification. Here we show that the M. musculus iE/MAR and 3'E elements are active solely as transcriptional enhancer when placed in the context of the IGL locus in Gallus gallus DT40 cells, but they are very inefficient in targeting AID-mediated mutation events to this locus. This suggests that either key components of the cis-regulatory targeting elements reside outside the murine Igκ transcriptional enhancer sequences, or that the targeting of AID activity to Ig loci occurs by largely species-specific mechanisms.

  11. Clinical observation of cytidine disodium triphosphate combined with mouse nerve growth factor in treatment of neonatal hypoxic ischemic encephalopathy%三磷酸胞苷二钠联合鼠神经生长因子治疗新生儿缺氧缺血性脑病的疗效观察

    Institute of Scientific and Technical Information of China (English)

    丁玉红; 闫俊梅; 闫静

    2015-01-01

    目的:探讨三磷酸胞苷二钠联合鼠神经生长因子治疗新生儿缺氧缺血性脑病的临床疗效。方法选择2013年1月—2014年1月徐州市妇幼保健院新生儿科收治的缺氧缺血性脑病患儿80例,随机分为对照组和治疗组,每组各40例。对照组在基本治疗的基础上,在患儿出生后6 h内肌肉注射注射用鼠神经生长因子,30μg/次,1次/d。治疗组在对照组的治疗基础上静脉滴注注射用三磷酸胞苷二钠,100 mg/次加入到5%葡萄糖溶液30 mL中,1次/d。中度患儿治疗14 d,重度患儿治疗21 d。观察两组的临床疗效,同时比较两组患儿症状与体征改善时间、行为神经测试(NBNA)评分、智能发育量表(CDCC)测试结果。结果治疗后,对照组和治疗组的总有效率分别为72.5%、92.5%,两组比较差异有统计学意义(P<0.05)。治疗组意识障碍恢复时间、惊厥停止时间、原始反射正常时间和肌张力正常时间均显著短于对照组,两组比较差异有统计学意义(P<0.05)。治疗后,两组患儿行为能力评分、被动肌张力评分、一般评估评分、总分均显著升高,治疗组主动肌张力评分、原始反射评分显著升高,同组治疗前后差异具有统计学意义(P<0.05);且治疗组这些观察指标的改善程度优于对照组,两组比较差异具有统计学意义(P<0.05)。两组患儿出生后6、12个月CDCC检测显示治疗组智能发育指数(MDI)、运动发育指数(PDI)均明显高于对照组,两组比较差异均具有统计学意义(P<0.05)。结论三磷酸胞苷二钠联合鼠神经生长因子治疗新生儿缺氧缺血性脑病具有较好的临床疗效,可改善患儿神经功能和生存质量,具有一定的临床推广应用价值。%Objective To observe the clinical efficacy of cytidine disodium triphosphate combined with mouse nerve growth factor in treatment of neonatal

  12. 腺苷脱氨酶在儿童结核性胸膜炎的诊断意义%Clinical significance of adenosine deaminase in tuberculosis pleuritis in children

    Institute of Scientific and Technical Information of China (English)

    王维; 彭小霞; 崔虹艳; 刘辉; 杨海明; 赵顺英

    2015-01-01

    Objective To explore the clinical significance of adenosine deaminase ( ADA) in pleural ef-fusion for diagnosis of tuberculosis pleuritis in children. Methods The level of ADA in pleural effusion was ret-rospectively analyzed in 28 cases with purulent pleuritis,thirty-four cases with mycoplasma pneumoniae pleuri-tis,forty-five cases with tuberculosis pleuritis from July 2011 to January 2014 in Beijing Children′s Hospital Af-filiated to Capital Medical University. Results The level of ADA in three groups was expressed by median (range interquartile). ADA in the purulent pleuritis group [126. 35 (76. 80,178. 13)U/L]was higher than the group of mycoplasma pneumoniae pleuritis [ 55. 55 ( 42. 80, 79. 03 ) U/L ] and tuberculosis pleuritis [ 26. 50 (22. 05,50. 95)U/L]. The difference was statistically significant (P< 0. 01). The cut-off value of pleural effu-sion ADA for diagnosis of tuberculosis pleuritis is not available by application of ROC curve. Conclusion Higher ADA value is not only the characteristic of tuberculosis pleuritis,but also purulent pleuritis and mycoplas-ma pneumoniae pleuritis. ADA has no clinical value in diagnosis of tuberculosis pleuritis in children.%目的:探讨胸腔积液中腺苷脱氨酶( adenosine deaminase,ADA)在儿童结核性胸膜炎的诊断意义。方法回顾性分析2011年7月至2014年1月在首都医科大学附属北京儿童医院呼吸科住院治疗、临床诊断明确的28例化脓性胸膜炎、34例肺炎支原体性胸膜炎及45例结核性胸膜炎患儿胸腔积液中ADA检测值。结果三组的ADA检测值用中位数(四分位间距)表示,化脓性胸膜炎组为126.35(76.80,178.13)U/L,高于肺炎支原体性胸膜炎组55.55(42.80,79.03)U/L 和结核性胸膜炎组26.50(22.05,50.95)U/L。三组比较差异有统计学意义(P<0.01)。应用ROC曲线未能得出ADA诊断结核性胸膜炎的最佳临界值。结论胸腔积液中ADA检测值升高并不是

  13. Carrier frequency of a nonsense mutation in the adenosine deaminase (ADA) gene implies a high incidence of ADA-deficient severe combined immunodeficiency (SCID) in Somalia and a single, common haplotype indicates common ancestry.

    Science.gov (United States)

    Sanchez, Juan J; Monaghan, Gemma; Børsting, Claus; Norbury, Gail; Morling, Niels; Gaspar, H Bobby

    2007-05-01

    Inherited adenosine deaminase (ADA) deficiency is a rare metabolic disorder that causes immunodeficiency, varying from severe combined immunodeficiency (SCID) in the majority of cases to a less severe form in a small minority of patients. Five patients of Somali origin from four unrelated families, with severe ADA-SCID, were registered in the Greater London area. Patients and their parents were investigated for the nonsense mutation Q3X (ADA c7C>T), two missense mutations K80R (ADA c239A>G) and R142Q (ADA c425G>A), and a TAAA repeat located at the 3' end of an Alu element (AluVpA) positioned 1.1 kb upstream of the ADA transcription start site. All patients were homozygous for the haplotype ADA-7T/ADA-239G/ADA-425G/AluVpA7. Among 207 Somali immigrants to Denmark, the frequency of ADA c7C>T and the maximum likelihood estimate of the frequency of the haplotype ADA-7T/ADA-239G/ADA-425G/AluVpA7 were both 0.012 (carrier frequency 2.4%). Based on the analysis of AluVpA alleles, the ADA c7C/T mutation was estimated to be approximately 7,100 years old. Approximately 1 out of 5 - 10000 Somali children will be born with ADA deficiency due to an ADA c7C/T mutation, although within certain clans the frequency may be significantly higher. ADA-SCID may be a frequent immunodeficiency disorder in Somalia, but will be underdiagnosed due to the prevailing socioeconomic and nutritional deprivation.

  14. Human Sulfatase-1 Improves the Effectiveness of Cytosine Deaminase Suicide Gene Therapy with 5-Fluorocytosine Treatment on Hepatocellular Carcinoma Cell Line HepG2 In Vitro and In Vivo

    Institute of Scientific and Technical Information of China (English)

    Xiao-Ping Yang; Ling Liu; Ping Wang; Sheng-Lin Ma

    2015-01-01

    Background:Human sulfatase-1 (Hsulf-l) is an endosulfatase that selectively removes sulfate groups from heparan sulfate proteoglycans (HSPGs),altering the binding of several growth factors and cytokines to HSPG to regulate cell proliferation,cell motility,and apoptosis.We investigated the role of combined cancer gene therapy with Hsulf-l and cytosine deaminase/5-fluorocytosine (CD/5-FC) suicide gene on a hepatocellular carcinoma (HCC) cell line,HepG2,in vitro and in vivo.Methods:Reverse transcription polymerase chain reaction and immunohistochemistry were used to determine the expression of Hsulf-1 in HCC.Cell apoptosis was observed through flow cytometry instrument and mechanism of Hsulf-1 to enhance the cytotoxicity of 5-FC against HCC was analyzed in HCC by confocal microscopy.We also establish a nude mice model of HCC to address the effect of Hsulf-1 expression on the CD/5-FC suicide gene therapy in vivo.Results:A significant decrease in HepG2 cell proliferation and an increase in HepG2 cell apoptosis were observed when Hsulf-1 expression was combined with the CD/5-FC gene suicide system.A noticeable bystander effect was observed when the Hsulf-1 and CD genes were co-expressed.Intracellular calcium was also increased after HepG2 cells were infected with the Hsulf-1 gene.In vivo studies showed that the suppression of tumor growth was more pronounced in animals treated with the Hsulf-1 plus CD than those treated with either gene therapy alone,and the combined treatment resulted in a significant increase in survival.Conclusions:Hsulf-1 expression combined with the CD/5-FC gene suicide system could be an effective treatment approach for HCC.

  15. Reduction of conventional dendritic cells during Plasmodium infection is dependent on activation induced cell death by type I and II interferons.

    Science.gov (United States)

    Tamura, Takahiko; Kimura, Kazumi; Yui, Katsuyuki; Yoshida, Shigeto

    2015-12-01

    Dendritic cells (DCs) play critical roles in innate and adaptive immunity and in pathogenesis during the blood stage of malaria infection. The mechanisms underlying DC homeostasis during malaria infection are not well understood. In this study, the numbers of conventional DCs (cDCs) and plasmacytoid DCs (pDCs) in the spleens after lethal rodent malaria infection were examined, and were found to be significantly reduced. Concomitant with up-regulation of maturation-associated molecules, activation of caspase-3 was significantly increased, suggesting induction of cell death. Studies using neutralizing antibody and gene-deficient mice showed that type I and II interferons were critically involved in activation induced cell death of cDCs during malaria infection. These results demonstrate that DCs rapidly disappeared following IFN-mediated DC activation, and that homeostasis of DCs was significantly impaired during malaria infection.

  16. Experimental allergic orchitis in mice. V. Resistance to actively induced disease in BALB/cJ substrain mice is mediated by CD4+ T cells

    Energy Technology Data Exchange (ETDEWEB)

    Teuscher, C.; Hickey, W.F.; Korngold, R. (Univ. of Pennsylvania, Philadelphia (USA))

    1990-01-01

    Previous studies have shown that differential susceptibility to actively induced experimental allergic orchitis (EAO) exists among various BALB/c substrains. Of 13 substrains studied, BALB/cJ mice consistently exhibit greater resistance to disease induction. Such resistance is associated with a single recessive genotypic difference in an immunoregulatory locus which is unlinked to any of the known alleles distinguishing the BALB/cJ substrain. In this study, gene complementation protocols were used to study the genetics of susceptibility and resistance to EAO. The results indicate that resistance in BALB/cJ mice is not due to a mutation in the H-2Dd linked gene which governs the phenotypic expression of autoimmune orchitis. The mechanistic basis for disease resistance was examined using reciprocal bone marrow radiation chimeras generated between the disease-susceptible BALB/cByJ (ByJ) substrain and BALB/cJ (Jax) mice. All constructs, including Jax----Jax and Jax----ByJ, developed severe EAO following inoculation with mouse testicular homogenate (MTH) and adjuvants whereas control chimeras immunized with adjuvants alone did not. These results suggest that an active immunoregulatory mechanism rather than a passive one, such as the lack of T cells and/or B cells with receptors for the aspermatogenic autoantigens relevant in the induction of EAO, is responsible for disease resistance in BALB/cJ mice. The role of immunoregulatory cells was examined by pretreating BALB/cJ mice with either cyclophosphamide (20 mg/kg) or low-dose whole body or total lymphoid irradiation (350 rads) 2 days prior to inoculation. BALB/cJ mice immunized with MTH plus adjuvants generate immunoregulatory spleen cells (SpCs) that, when transferred to naive BALB/cByJ recipients, significantly reduce the severity of autoimmune orchitis observed during actively induced EAO.

  17. XANTATINA INHIBE LA ACTIVACIÓN DE MASTOCITOS INDUCIDA POR NEUROPÉPTIDOS PRO-INFLAMATORIOS. XANTHATIN INHIBITS MAST CELL ACTIVATION INDUCED BY PRO-INFLAMMATORY NEUROPEPTIDES

    Directory of Open Access Journals (Sweden)

    Carlos E Tonn

    2010-03-01

    Full Text Available Mast cells are connective tissue cells involved in the genesis and modulation of inflammatory responses. We have previously shown that xanthatin (xanthanolide sesquiterpene isolated from Xanthium cavanillesii Schouw inhibits mast cell activation induced by experimental secretagogues. However, the effect of xanthatin on mast cell activation induced by pathophysiological stimuli remains unknown. These stimuli include, among others, the pro-inflammatory neuropeptide substance P and neurotensin, responsible for one of the main pathways of neurogenic inflammation. The present study was designed to examine the effects of xanthatin on mast cell activation induced by pro-inflammatory peptides, such as substance P and neurotensin. Rat peritoneal mast cells were incubated with: 1 PBS (basal; 2 substance P (100 µm; 3 neurotensin (50 µm; 4 xanthatin (8-320 µm+substance P; 5 xanthatin (8-320 µm+neurotensin. Concentration-response studies of mast cell serotonin release evoked by pro-inflammatory neuropeptides, evaluation of mast cell viability and morphology by light and electron microscopy, and drug stability analysis by thin layer chromatography were performed. Serotonin release studies, carried out together with morphological studies, showed the effectiveness of xanthatin to stabilize mast cells. The present study provides the first strong evidence in favour of the hypothesis that xanthatin inhibits substance P - and neurotensin-induced serotonin release from peritoneal mast cells. Our findings may provide an insight into the design of novel pharmacological agents which may be used to regulate the mast cell response in neurogenic inflammation.Los mastocitos son células del tejido conectivo que participan en la génesis y modulación de las respuestas inflamatorias. Previamente hemos demos-trado que xanthatina (xanthanólido sesquiterpeno aislado de Xanthium cavanillesii Schouw inhibe la activación de mastocitos inducida por secretagogos

  18. Anti-cancer effects of p21WAF1/CIP1 transcriptional activation induced by dsRNAs in human hepatocellular carcinoma cell lines

    Institute of Scientific and Technical Information of China (English)

    Zhi-ming WU; Gang CHEN; Chun DAI; Ying HUANG; Cui-fang ZHENG; Qiong-zhu DONG; Guan WANG; Xiao-wen LI; Xiao-fei ZHANG; Bin LI

    2011-01-01

    Aim: To investigate the anti-cancer effects of p21WAF1/CIP1 transcriptional activation induced by dsRNAs in hepatocellular carcinoma (HCC) cell lines.Methods: HCC cell lines BEL7402, SMMC-7721, MHCC97L, MHCC97H, and MHCCLM3 were used. HCC ceils were treated with dsP21322 (50 nmol/L), dsControl (50 nmol/L), siP21 (50 nmol/L), or mock transfection. The expression of p21 was detected using quantitative PCR and Western blot. The effects of RNA activation on HCC cells were determined using cell viability assays, apoptosis analyses and clonogenic survival assays. Western blot was also conducted to detect the expression of Bcl-xL, survivin, cleaved caspase-3,cleaved caspase-9 and cleaved PARP.Results: At 72 to 120 h following the transfection, dsP21-322 markedly inhibited the viability of HCC cells and clone formation. At the same times, dsP21-322 caused a significant increase in HCC cell apoptosis, as demonstrated with cytometric analysis. The phenomena were correlated with decreased expression levels of the anti-apoptotic proteins Bcl-xL, surviving, and increased expression of cleaved caspase-3, cleaved caspase-9 and cleaved PARP.Conclusion: RNA-induced activation of p21 gene expression may have significant therapeutic potential for the treatment of hepatocellular carcinoma and other cancers.

  19. GD2-specific CAR T Cells Undergo Potent Activation and Deletion Following Antigen Encounter but can be Protected From Activation-induced Cell Death by PD-1 Blockade.

    Science.gov (United States)

    Gargett, Tessa; Yu, Wenbo; Dotti, Gianpietro; Yvon, Eric S; Christo, Susan N; Hayball, John D; Lewis, Ian D; Brenner, Malcolm K; Brown, Michael P

    2016-06-01

    Chimeric antigen receptor (CAR) T cells have shown great promise in the treatment of hematologic malignancies but more variable results in the treatment of solid tumors and the persistence and expansion of CAR T cells within patients has been identified as a key correlate of antitumor efficacy. Lack of immunological "space", functional exhaustion, and deletion have all been proposed as mechanisms that hamper CAR T-cell persistence. Here we describe the events following activation of third-generation CAR T cells specific for GD2. CAR T cells had highly potent immediate effector functions without evidence of functional exhaustion in vitro, although reduced cytokine production reversible by PD-1 blockade was observed after longer-term culture. Significant activation-induced cell death (AICD) of CAR T cells was observed after repeated antigen stimulation, and PD-1 blockade enhanced both CAR T-cell survival and promoted killing of PD-L1(+) tumor cell lines. Finally, we assessed CAR T-cell persistence in patients enrolled in the CARPETS phase 1 clinical trial of GD2-specific CAR T cells in the treatment of metastatic melanoma. Together, these data suggest that deletion also occurs in vivo and that PD-1-targeted combination therapy approaches may be useful to augment CAR T-cell efficacy and persistence in patients.

  20. Cannabinoid receptor type 2 activation induces a microglial anti-inflammatory phenotype and reduces migration via MKP induction and ERK dephosphorylation

    Directory of Open Access Journals (Sweden)

    Landry Russell P

    2009-05-01

    Full Text Available Abstract Background Cannabinoid receptor type 2 (CBR2 inhibits microglial reactivity through a molecular mechanism yet to be elucidated. We hypothesized that CBR2 activation induces an anti-inflammatory phenotype in microglia by inhibiting extracellular signal-regulated kinase (ERK pathway, via mitogen-activated protein kinase-phosphatase (MKP induction. MKPs regulate mitogen activated protein kinases, but their role in the modulation of microglial phenotype is not fully understood. Results JWH015 (a CBR2 agonist increased MKP-1 and MKP-3 expression, which in turn reduced p-ERK1/2 in LPS-stimulated primary microglia. These effects resulted in a significant reduction of tumor necrosis factor-α (TNF expression and microglial migration. We confirmed the causative link of these findings by using MKP inhibitors. We found that the selective inhibition of MKP-1 by Ro-31-8220 and PSI2106, did not affect p-ERK expression in LPS+JWH015-treated microglia. However, the inhibition of both MKP-1 and MKP-3 by triptolide induced an increase in p-ERK expression and in microglial migration using LPS+JWH015-treated microglia. Conclusion Our results uncover a cellular microglial pathway triggered by CBR2 activation. These data suggest that the reduction of pro-inflammatory factors and microglial migration via MKP-3 induction is part of the mechanism of action of CBR2 agonists. These findings may have clinical implications for further drug development.

  1. Effect of glycine site/NMDA receptor antagonist MRZ2/576 on the conditioned place preference and locomotor activity induced by morphine in mice

    Institute of Scientific and Technical Information of China (English)

    ZHU Yong-ping; LONG Zai-hao; ZHENG Ming-lan; BINSACK Ralf

    2006-01-01

    Objective: To study the effect of glycine site/NMDA (N-methyl-D-aspartate) receptor antagonist MRZ2/576 on the conditioned place preference (CPP) and locomotor activity induced by morphine in mice. Methods: Different doses (1.25, 2.5 and 5 mg/kg, i.p.) of MRZ2/576 were used to evaluate the effect of MRZ2/576 on the acquisition and expression of CPP induced by morphine (5 mg/kg) in mice. In addition, we examined the locomotor activity of mice in conditioning and testing phase of CPP paradigm. Results: MRZ2/576 alone could not establish place preference, but a 5 mg/kg dose of MRZ2/576 could block both acquisition and expression of morphine-induced CPP. In testing phase of CPP, there was no statistical difference for locomotor activity between the groups; injection of MRZ2/576 showed a dose-dependent decrease of locomotor activity on both control and morphine-treated mice, especially 5 mg/kg of MRZ2/576 significantly suppressed the locomotor activity of mice. Conclusion:Based on the present results, we assume that MRZ2/576 can antagonize the rewarding effect of morphine, suggesting that this glycine site/NMDA receptor antagonist could be used to treat addictions due to its light side effect profile.

  2. Lower activation-induced T-cell apoptosis is related to the pathological immune response in secondary infection with hetero-serotype dengue virus.

    Science.gov (United States)

    Yang, Wang; Yan, Huacheng; Ma, Yuling; Yu, Tiantian; Guo, Hongxia; Kuang, Yuchan; Ren, Ruiwen; Li, Jintao

    2016-03-01

    The available evidence suggests that dengue virus-specific T lymphocytes and cytokine storm play a pivotal role in the immunopathogenesis of plasma leakage. Investigations are underway to identify the immune profiles associated with increased or decreased risk for severe disease. In this study, CD14+ cells from the peripheral blood mononuclear cells (PBMCs) of patients who recovered from DENV-1 infection were infected with DENV-1 or DENV-2 and co-cultured with memory T cells. We found that secondary infection with DENV-2 suppresses the cell reproductive capacity but forms more cell clones and more functional cells to produce more proinflammatory factors (IFN-γ, TNF-α, IL-6, IL-8, IL-12 and IL-17) and less regulatory cytokines (IL-10, TGF-β) which results in higher viral replication compared to secondary infection with DENV-1. Memory dengue virus-specific T cells which are induced in a primary dengue virus infection are reactivated by the heterologous serotype of dengue virus and antigen-presenting cells (APCs) during a secondary infection. Dramatically, less apoptosis and more continuous activation of T cells in secondary infection with hetero-serotype DENV were observed. This discovery which has not been reported previously may be the reasonable and vital interpretation for the cytokine storm and severe symptoms observed in secondary infection with DENV. In summary, secondary infection with hetero-serotype DENV elicits the relatively pathological immune response while secondary infection with homologous-serotype DENV induces the relatively protective immune response by activation-induced cell death (AICD) of T cells.

  3. Joint detection of adenosine deaminase activity and IFN-γ in the application of the identification diagnosis on tuberculous pleurisy%腺苷脱氨酶和干扰素-γ联合检测在结核性胸膜炎鉴别诊断中的应用

    Institute of Scientific and Technical Information of China (English)

    刘莉敏; 李玉磊; 谢艳丽; 王以炳; 李琪

    2012-01-01

    目的 研究腺苷脱氨酶(ADA)和干扰素-γ联合检测对结核性胸膜炎诊断价值.方法 检测60例呼吸内科患者胸腔积液中ADA活性和干扰素-γ水平.并绘制ADA活性和干扰素-γ水平两者单项指标的ROC曲线.结果结核性胸液组的ADA和干扰素-γ高于恶性胸液组(P<0.001);ROC曲线显示两项指标均具有较高的敏感性和特异性,ADA的诊断价值高于IFN-γ;ADA和干扰素-γ联合检测优于单项.结论 ADA检测可作为结核性胸膜炎的重要指标,ADA和IFN-γ联合检测可以提高诊断试验的效率.%Objective To research the identification and diagnosis value of the joint detection of adenosine deaminase activity and IFN-γ on tuberculous pleurisy. Methods ADA activity and IFN-γ were detected in 60 respiration medicine patients' pleural effusion and the ROC curve of single index between ADA activity and IFN--γ was draw. Results The pleural fluid levels of adenosine deaminase and IFN-γ were significantly higher in the tuberculous pleufitis group than that in the malignant pleuritis group ( P < 0. 001 ). ROC curve showed that two indexes both had the character of sensibility and specificity. The diagnosis value of ADA was higher than that of IFN-γ and joint detection was better than the single index. Conclusion Detection of ADA in pleural fluid can be regarded as one important index to diagnose tuberculous pleurisy. Joint detection of adenosine deaminase activity and interleron-γ in tuberculous pleural effusions can improve the efficiency of diagnostic tests.

  4. The Hunt for 8-Oxoguanine Deaminase

    Energy Technology Data Exchange (ETDEWEB)

    Hall, R.; Fedorov, A; Marti-Arbona, R; Fedorov, E; Kolb, P; Sauder, J; Burley, S; Shoichet, B; Almo, S; et. al.

    2010-01-01

    An enzyme from Pseudomonas aeruginosa, Pa0142 (gi|9945972), that is able to catalyze the deamination of 8-oxoguanine (8-oxoG) to uric acid has been identified for the first time. 8-Oxoguanine is formed by the oxidation of guanine residues within DNA by reactive oxygen species, and this lesion results in G:C to T:A transversions. The value of k{sub cat}/K{sub m} for the deamination of 8-oxoG by Pa0142 at pH 8.0 and 30 C is 2.0 x 10{sup 4} M{sup -1} s{sup -1}. This enzyme can also catalyze the deamination of isocystosine and guanine at rates that are approximately an order of magnitude lower. The three-dimensional structure of a homologous enzyme (gi|44264246) from the Sargasso Sea has been determined by X-ray diffraction methods to a resolution of 2.2 {angstrom} (PDB entry ). The enzyme folds as a ({beta}/{alpha}){sub 8} barrel and is a member of the amidohydrolase superfamily with a single zinc in the active site. This enzyme catalyzes the deamination of 8-oxoG with a k{sub cat}/K{sub m} value of 2.7 x 10{sup 5} M{sup -1} s{sup -1}. Computational docking of potential high-energy intermediates for the deamination reaction to the X-ray crystal structure suggests that active-site binding of 8-oxoG is facilitated by hydrogen-bond interactions from a conserved glutamine that follows {beta}-strand 1 with the carbonyl group at C6, a conserved tyrosine that follows {beta}-strand 2 with N7, and a conserved cysteine residue that follows {beta}-strand 4 with the carbonyl group at C8. A bioinformatic analysis of available protein sequences suggests that {approx}200 other bacteria possess an enzyme capable of catalyzing the deamination of 8-oxoG.

  5. Genetics Home Reference: adenosine deaminase deficiency

    Science.gov (United States)

    ... disorder that damages the immune system and causes severe combined immunodeficiency (SCID). People with SCID lack virtually all immune ... Management Formal Diagnostic Criteria (1 link) ACT Sheet: Severe Combined Immunodeficiency (SCID) and Conditions Associated with T Cell Lymphoneia ( ...

  6. Genetics Home Reference: adenosine deaminase 2 deficiency

    Science.gov (United States)

    ... Zeligson S, Marek-Yagel D, Strom TM, Shohat M, Singer A, Rubinow A, Pras E, Winkelmann J, Tekin ... Punaro M, Pascual V, Verbsky JW, Torgerson TR, Singer NG, Gershon TR, Ozen S, Karadag O, Fleisher TA, ...

  7. Diagnostic Role of Adenosine Deaminase for Tuberculous Pericarditis:A Meta-analysis%腺苷脱氨酶对结核性心包炎诊断价值的Meta分析

    Institute of Scientific and Technical Information of China (English)

    余华香; 刘云芳; 向雪莉

    2013-01-01

    Objective:To investigate the overall diagnostic role of adenosine deaminase(ADA)measurement for tuberculous pericarditis. Method:A systematic literature search was conducted in Pubmed,Embase,China National Knowledge Infrastructure databases,VIP Information, and WanFang Data to identify studies on evaluation of ADA in the diagnosis of tuberculous pericarditis.The methodological quality of included studies was evaluated by QUADAS tool. Data were retrieved and analyzed by using Meta-Disc 1.4 software. Sensitivity,specificity,and other measures of the accuracy of ADA in the diagnosis of tuberculous pericarditis were pooled. Summary receiver operating characteristic(SROC)curve was used to summarize the overall test performance. Result:Eight studies involving 716 subjects were included in the present meta-analysis. The summary estimates for ADA measurement in the diagnosis of tuberculous pericarditis were:sensitivity 0.88,specificity 0.87,positive likelihood ratio 5.94,negative likelihood ratio 0.13,diagnostic odds ratio 41.43,and the area under the SROC curve was 0.91. Conclusion:ADA measurement plays a valuable role in the diagnosis of tuberculous pericarditis.%目的:评估腺苷脱氨酶(ADA)对结核性心包炎的诊断价值。方法:检索Pubmed、Embase、CNKI、维普、万方等数据库,查找利用检测心包积液中ADA诊断结核性心包炎的文献。QUADAS工具评价纳入文献的质量。提取数据并利用Meta-Disc 1.4软件合并数据,计算纳入研究的合并敏感性、特异性等指标,绘制汇总受试者工作特征(SROC)曲线,综合评价ADA对结核性心包炎的诊断价值。结果:共有8篇文献共计716例研究对象纳入本次研究,meta分析显示ADA对结核性心包炎的合并诊断价值分别为:敏感度为0.88,特异度为0.87,阳性似然比为5.94,阴性似然比为0.13,诊断优势比为41.43。SROC曲线下面积为0.91。结论:检测心包积液中ADA对结核性心包

  8. 脑脊液腺苷脱氨酶检测在结核性脑膜炎诊断中的应用研究%Application research of Cerebrospinal fluid adenosine deaminase in tuberculous meningitis diagnosis

    Institute of Scientific and Technical Information of China (English)

    牛俊梅; 张冬杰

    2012-01-01

    OBJECTIVE To discuss application value of cerebrospinal fluid adenosine deaminase (CSF-ADA) for tuberculous meningitis diagnosis. METHODS We retrospectively summarized 80 cases who were diagnosed as tuberculus meningitis in our department from 2005-2010. At the same time, 76 cases with other nervous system diseases were selected in same period in our hospital. CSF-ADA of the two groups were compared and analyzed at the time of 7 days, 14 days, 21 days, 30 days and recovery after 3 months, while CSF-ADA of 5 patients with simply pulmonary tuberculosis were also compared with patients with tuberculous meningitis. (P < 0.05 for statistical significance). RESULTS 7 days after the onset, CSF-ADA levels reached the peak, and then began to decline at the time of 14 days. With the treatment progress and course of development, the CSF-ADA level began to decrease. There were statistically significant difference (P < 0.05) of ADA level in each time points, and also showed significant difference between the two groups (P < 0.05). CONCLUSION CSF-ADA have high accuracy, sensitivity and specificity as an diagnosis index for tuberculous meningitis.%目的 探讨脑脊液腺苷脱氨酶检测在结核性脑膜炎诊断中的应用价值.方法 回顾性总结2005年6月~2010年6月间,某科收治的明确诊断为结核性脑膜炎的病例80例,同时选择同期在该科住院的非结脑性病人76例,对两组患者发病7d、14 d、21 d、30 d及恢复后3个月脑脊液ADA水平进行比较分析,同时与单纯肺结核患者进行比较分析,应用卡方检验,以P<0.05为差异有统计学意义.结果 结核性脑膜炎组,发病后7d左右,脑脊液ADA水平达到峰值,14 d左右即开始下降,随着治疗的进展及病程的发展,脑脊液ADA水平整体成下降趋势.各个时间点之间的ADA水平差异有统计学意义(P<0.05),与对照组患者ADA水平亦差异有统计学意义(P<0.05).结论 脑脊液ADA水平作为结核性脑膜炎诊断指

  9. 结核性脑膜炎患儿脑脊髓液中腺苷脱氨酶活性测定的临床意义%Clinical Significance of Cerebrospinal Fluid Adenosine Deaminase of Children with Tuberculous Meningitis

    Institute of Scientific and Technical Information of China (English)

    程金玲

    2012-01-01

      目的:评价结核性脑膜炎患儿脑脊髓液中腺苷脱氨酶(CSF-ADA)活性对临床诊断意义及疗效判断价值.方法:选择122例住院患儿为研究对象,56例结核性脑膜炎患者为A组;66例非结核性脑膜炎患者为对照组,其中细菌性脑膜炎32例为B组,病毒性脑膜炎34例为C组,采用酶耦联Trinder法测定患儿治疗前CSF-ADA活性,56例结核性脑膜炎患儿于抗结核治疗后2周和6周时分别检测CSF-ADA.结果:A组CSF-ADA活性为(11.8±4.4)U/L,B组为(6.1±2.8)U/L,C组为(4.9±3.1)U/L,与A组比较差异有统计学意义(F=45.150, P=0.000).取CSF-ADA≥8 U/L作为临界值时鉴别结核性脑膜炎与非结核性脑膜炎价值最高,灵敏度为87.72%,特异度为90.77%.随着患儿病情好转,CSF-ADA活性逐渐降低.结论:CSF-ADA活性≥8U/L可作为诊断结核性脑膜炎的一项辅助诊断指标,抗结核治疗后CSF-ADA活性可作为疗效判断的参考指标.%  Objective: Evaluation of tuberculous meningitis with cerebrospinal fluid of adenosine deaminase(CSF-ADA)activity to clinical diagnosis significance and effect of value judgment. Method: To choose 122 cases hospitalized children as the research object,56 cases of tuberculous meningitis was the case group(group A). 66 cases of meningitis of n/med tuberculosis sex as control group,including bacterial meningitis 32 cases(group B),and viral meningitis 34 cases(C group),using enzyme coupling Trinder spectrometry to analyze CSF-ADA activity before treatment. 56 cases of tuberculous meningitis in antitubercular treatment children after 2 weeks and six weeks respectively detection CSF-ADA. Result:The CSF-ADA activity of group A was(11.8±4.4)U/L,compared with group B(6.1±2.8)U/L,group C(4.9±3.1)U/L,there was a significant difference meaning(F=45.150,P=0.000). Taking the CSF-ADA ≥ 8 U/L as critical value in identification of tuberculous meningitis had the highest value,and sensitivity was 87.72% and specificity was 90

  10. YY1 Control of AID-Dependent Lymphomagenesis

    Science.gov (United States)

    2015-07-01

    Approximately 40% of all B cell lymphomas are derived from germinal center B cells and nearly half of patients with germinal center-derived diffuse large B...induced cytidine deaminase (AID) is the mutagenic enzyme directly involved in germinal center B cell lymphomagenesis. Any factor that elevates...clear if its expression is necessary for generation of germinal center-derived B cell lymphoma. We will assess the requirement for YY1 in

  11. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) induces Fas-dependent activation-induced cell death in superantigen-primed T cells

    Energy Technology Data Exchange (ETDEWEB)

    Camacho, Iris A.; Nagarkatti, Mitzi [Department of Microbiology and Immunology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298 (United States); Nagarkatti, Prakash S. [Department of Pharmacology and Toxicology, PO Box 980613, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298-0613 (United States)

    2002-10-01

    Immune response against a foreign antigen is characterized by a growth phase, in which antigen-specific T cells clonally expand, followed by a decline phase in which the activated T cells undergo apoptosis, a process termed activation-induced cell death (AICD). In the current study, we have investigated the phase at which 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) acts to downregulate the antigen-specific T cell response. To this end, C57BL/6 +/+ mice were injected with staphylococcal enterotoxin A (SEA) into the footpads (10 {mu}g/footpad), and simultaneously treated with TCDD (10 or 50 {mu}g/kg intraperitoneally). At various time points, the draining lymph node (LN) cells were analyzed for SEA-activated T cells. The data demonstrated that in C57BL/6 +/+ mice, TCDD treatment did not alter the growth phase but facilitated the decline phase of SEA-reactive T cells. TCDD caused a significant decrease in the percentage and absolute numbers of CD4{sup +} and CD8{sup +} SEA-responsive T cells expressing V{beta}3{sup +} and V{beta}11{sup +} but did not affect SEA-nonresponsive V{beta}8{sup +} T cells. Upon in vitro culture, TCDD-exposed SEA-immunized LN cells exhibited increased levels of apoptosis when compared with the vehicle controls. When Fas-deficient (C57BL/6 lpr/lpr) or Fas ligand defective (C57BL/6 gld/gld) mice were treated with TCDD, they failed to exhibit a decrease in percentage and cellularity of SEA-reactive T cells, thereby suggesting a role of Fas-Fas ligand interactions in the TCDD-induced downregulation of SEA-reactive T cell response. The resistance to TCDD-induced decrease in T cell responsiveness to SEA seen in Fas- and FasL-mutant mice was neither due to decreased aryl hydrocabon receptor (AhR) expression nor to altered T cell responsiveness to SEA. The current study demonstrates that TCDD does not prevent T cell activation, but prematurely induces Fas-based AICD, which may contribute to the deletion of antigen-primed T cells. (orig.)

  12. Investigation on the diagnosis significance of C reactive protein and adenosine deaminase in cerebrospinal fluid among children with meningitis%脑脊液C反应蛋白和腺苷脱氨酶检测在小儿脑膜炎中的诊断价值探讨

    Institute of Scientific and Technical Information of China (English)

    徐仁荣; 张慧华; 朱华丽

    2015-01-01

    Objective To determine C reactive protein and adenosine deaminase in cerebrospinal fluid,and to investigate the clinical diagnosis significance for tuberculosis meningitis,purulent meningitis and viral meningitis. Methods A total of 31 5 children with meningitis (1 02 cases of tuberculosis meningitis,1 08 cases of purulent meningitis and 1 05 cases of viral meningitis)were enrolled,96 children undergoing operation without meningitis were enrolled as control group,and their cerebrospinal fluid samples were collected.The levels of C reactive protein and adenosine deaminase were determined,and the results were compared.Results C reactive protein and adenosine deaminase in control and viral meningitis groups were significantly lower than those in tuberculosis and purulent meningitis groups (P 0.05 ).C reactive protein in purulent meningitis group was higher than that in tuberculosis meningitis group(P <0.05 ),and adenosine deaminase was lower than that in tuberculosis meningitis group (P <0.05).C reactive protein in purulent meningitis group was positive,and the positive rate was 1 00%.There were 63 positive cases in tuberculosis meningitis group,and the positive rate was 61 .76%.That in viral meningtis was negative.Conclusions In cerebrospinal fluid,C reactive protein and adenosine deaminase determinations have important reference significance for the differential diagnosis of bacterial meningitis (purulent meningitis and tuberculosis meningitis)and viral meningitis.Adenosine deaminase may be a good indicator for the diagnosis of tuberculosis meningitis,in order to provide the reference for the early diagnosis of various types of meningitis.%目的:探讨小儿脑脊液C反应蛋白和腺苷脱氨酶在结核性脑膜炎、化脓性脑膜炎和病毒性脑膜炎早期诊断中的临床意义。方法分别检测315例小儿脑膜炎患儿(包括结核性脑膜炎102例、化脓性脑膜炎108例、病毒性脑膜炎105例)及96例非脑膜炎外科手术

  13. The Activation-Induced Assembly of an RNA/Protein Interactome Centered on the Splicing Factor U2AF2 Regulates Gene Expression in Human CD4 T Cells.

    Science.gov (United States)

    Whisenant, Thomas C; Peralta, Eigen R; Aarreberg, Lauren D; Gao, Nina J; Head, Steven R; Ordoukhanian, Phillip; Williamson, Jamie R; Salomon, Daniel R

    2015-01-01

    Activation of CD4 T cells is a reaction to challenges such as microbial pathogens, cancer and toxins that defines adaptive immune responses. The roles of T cell receptor crosslinking, intracellular signaling, and transcription factor activation are well described, but the importance of post-transcriptional regulation by RNA-binding proteins (RBPs) has not been considered in depth. We describe a new model expanding and activating primary human CD4 T cells and applied this to characterizing activation-induced assembly of splicing factors centered on U2AF2. We immunoprecipitated U2AF2 to identify what mRNA transcripts were bound as a function of activation by TCR crosslinking and costimulation. In parallel, mass spectrometry revealed the proteins incorporated into the U2AF2-centered RNA/protein interactome. Molecules that retained interaction with the U2AF2 complex after RNAse treatment were designated as "central" interactome members (CIMs). Mass spectrometry also identified a second class of activation-induced proteins, "peripheral" interactome members (PIMs), that bound to the same transcripts but were not in physical association with U2AF2 or its partners. siRNA knockdown of two CIMs and two PIMs caused changes in activation marker expression, cytokine secretion, and gene expression that were unique to each protein and mapped to pathways associated with key aspects of T cell activation. While knocking down the PIM, SYNCRIP, impacts a limited but immunologically important set of U2AF2-bound transcripts, knockdown of U2AF1 significantly impairs assembly of the majority of protein and mRNA components in the activation-induced interactome. These results demonstrated that CIMs and PIMs, either directly or indirectly through RNA, assembled into activation-induced U2AF2 complexes and play roles in post-transcriptional regulation of genes related to cytokine secretion. These data suggest an additional layer of regulation mediated by the activation-induced assembly of RNA

  14. AID and APOBECs span the gap between innate and adaptive immunity

    Directory of Open Access Journals (Sweden)

    Arnaud eMoris

    2014-10-01

    Full Text Available The AID/APOBEC cytidine deaminases participate in a diversity of biological processes from the regulation of protein expression to embryonic development and host defenses. In its classical role, AID mutates germline-encoded sequences of B cell receptors, a key aspect of adaptive immunity, and APOBEC1, mutates apoprotein B pre-mRNA, yielding two isoforms important for cellular function and plasma lipid metabolism. Investigations over the last ten years have uncovered a role of the APOBEC superfamily in intrinsic immunity against viruses and innate immunity against viral infection by deamination and mutation of viral genomes. Further, discovery in the area of HIV infection revealed that the HIV viral infectivity factor (Vif protein interacted with APOBEC3G, targeting it for proteosomal degradation, overriding its antiviral function. More recently, our and others’ work have uncovered that the AID and APOBEC cytidine deaminase family members have an even more direct link between activity against viral infection and induction and shaping of adaptive immunity than previous thought, including that of antigen processing for cytotoxic T lymphocyte (CTL activity and natural killer (NK cell activation. Newly ascribed functions of these cytodine deaminases will be discussed, including their newly identified roles in adaptive immunity, epigenetic regulation, and cell differentiation. Herein this review we discuss AID and APOBEC cytodine deaminases as a link between innate and adaptive immunity uncovered by recent studies.

  15. Lower frequency of the low activity adenosine deaminase allelic variant (ADA1*2 in schizophrenic patients Diminuição da frequência da variante alélica de baixa atividade da adenosina desaminase (ADA1*2 em pacientes esquizofrênicos

    Directory of Open Access Journals (Sweden)

    Gustavo Pimentel Dutra

    2010-09-01

    Full Text Available OBJECTIVE: Adenosine may play a role in the pathophysiology of schizophrenia, since it modulates the release of several neurotransmitters such as glutamate, dopamine, serotonin and acetylcholine, decreases neuronal activity by pos-synaptic hyperpolarization and inhibits dopaminergic activity. Adenosine deaminase participates in purine metabolism by converting adenosine into inosine. The most frequent functional polymorphism of adenosine deaminase (22G→A (ADA1*2 exhibits 20-30% lower enzymatic activity in individuals with the G/A genotype than individuals with the G/G genotype. The aim of this study was to evaluate the ADA polymorphism 22G→A (ADA1*2 in schizophrenic patients and healthy controls. METHOD: The genotypes of the ADA 22G→A were identified with allele-specific PCR strategy in 152 schizophrenic patients and 111 healthy individuals. RESULTS: A significant decrease in the frequency of the G/A genotype was seen in schizophrenic patients (7/152 - 4.6% relative to controls (13/111 - 11.7%, p = 0.032, OR = 2.6. CONCLUSION: These results suggest that the G/A genotype associated with low adenosine deaminase activity and, supposingly, with higher adenosine levels is less frequent among schizophrenic patients.OBJETIVO: A adenosina pode ter um papel importante na fisiopatologia da esquizofrenia, uma vez que modula a liberação de vários neurotransmissores, tais como glutamato, dopamina, serotonina e acetilcolina, diminui a atividade neuronal por hiperpolarização pós-sináptica e inibe a atividade dopaminérgica. A adenosina desaminase participa do metabolismo das purinas pela conversão de adenosina em inosina. O mais frequente polimorfismo funcional da adenosina desaminase (22G →A (ADA1*2 exibe uma diminuição de 20-30% da atividade funcional em indivíduos com genótipo G/A quando comparados com indivíduos com o genótipo G/G. O objetivo deste estudo foi avaliar o polimorfismo 22G→A (ADA1*2 em pacientes esquizofrênicos e em

  16. 应用1-氨基环丙烷-1-羧酸脱氨酶产生菌提高双孢蘑菇产量%Application of 1-aminocyclopropane-1-carboxylic Acid Deaminase Producing Bacterium for Increasing the Yield of the Button Mushroom

    Institute of Scientific and Technical Information of China (English)

    程雁; 王景冒; 张岩; 杨潜龙; 邱立友

    2015-01-01

    比较了6种覆土处理对双孢蘑菇产量的影响. 6种覆土处理分别是常规覆土、常规覆土+恶臭假单胞菌UW4菌剂(用量为覆土干重的2%)、灭菌常规覆土、灭菌常规覆土+UW4菌剂(用量为覆土干重的2%)、灭菌蛭石和灭菌蛭石+UW4菌剂(用量为蛭石干重的2%). UW4是常用的植物根际促生细菌1-氨基环丙烷-1-羧酸(ACC)脱氨酶产生菌. 结果表明,灭菌蛭石+UW4菌剂处理出菇最早,产量最高,无杂菌污染,出菇比其他处理提早1~8 d,比常规覆土提早3 d,第一潮和第二潮菇产量之和比其他处理提高19.8%~115%,比常规覆土提高35.1%. 采收二潮菇后,不同处理覆土材料中细菌和ACC脱氨酶产生菌的数量均与菇产量呈显著的正相关. 本研究结果提示,灭菌蛭石中添加ACC脱氨酶产生菌剂替代传统覆土是实现双孢蘑菇绿色、高效生产的有效方式.%In this study,the effects of the six casing treatments on the yield of the button mushroom were compared. The six casing treatments were that soil casing,soil+Pseudomonas putida UW4 bacterial agent(2%of the soil dry weight),sterilized soil,sterilized soil+UW4 bacterial agent(2% of the soil dry weight),sterilized vermiculite,and sterilized vermiculite+UW4 bacterial agent(2% of the vermiculite dry weight),respectively. Pseudomonas putida UW4 is commonly used as plant growth-promoting rhizobacteria and 1-aminocyclopropane-1-carboxylic acid(ACC)deaminase producing bacteria. The results showed that the fruiting bodies emerged earliest (the duration from casing to primordium initiation was earlier 1-8 d)and the yield of the first and second crops was the highest(higher 19.8%to 115%)with not any contamination by casing sterilized vermiculite+UW4 compared to the other casing treatments. In details,casing of sterilized vermiculite+UW4 the fruiting bodies emerged earlier 3 d and the yield of the first and second crops was higher 35.1%than that of soil casing. The number of bacteria

  17. Effect of Endophytic Bacteria with ACC Deaminase Activity inKosteletzkya pentacarpos on Wheat Salt Tolerance%具有ACC脱氨酶活性的海滨锦葵(Kosteletzkya pentacarpos)内生细菌对小麦耐盐性的影响

    Institute of Scientific and Technical Information of China (English)

    韩坤; 田曾元; 刘珂; 张佳夜; 常银银; 郭予琦

    2015-01-01

    从盐生植物海滨锦葵块根中分离内生细菌43株,经形态学特征和16S rDNA序列相结合的方法鉴定,分属10个种属,其中芽孢杆菌属是优势属,其次是假单胞菌属和农杆菌属,蜡样芽孢杆菌(Bacillus cereus)和地衣芽孢杆菌(Bacillus licheni-formis)是优势种。对海滨锦葵内生细菌ACC脱氨酶活性的测定显示,其中5种菌明显具有ACC脱氨酶活性。用筛选到的5种细菌接种盐胁迫下小麦根系并测定其对于小麦耐盐性的影响。结果表明,蜡样芽孢杆菌、巨大芽孢杆菌(Bacillus mega-terium)、短小芽孢杆菌(Bacillus pumilus)、地衣芽孢杆菌四种芽孢杆菌均能显著提高盐胁迫下小麦幼苗的干物质重和叶绿素含量,并能显著提高保护酶(SOD、POD、CAT)活性,对盐胁迫的毒害有一定的缓解作用。绿针假单胞菌(Pseudomonas chlororaphis)对小麦幼苗株高、根长、鲜重、干重、叶绿素含量和保护酶活性的提高也具有一定的作用。上述分析表明从海滨锦葵块根中分离出的5株具有ACC脱氨酶活性的内生细菌均能提高小麦幼苗的耐盐性。%43 endophytic bacteria strains, isolated from roots of the halophyteKosteletzkya pentacarpos, belong to ten genus by 16S rDNA sequencing and the identiifcation of morphological features. Among them,Bacillus is the advantage genus, and then isPseudomonas andAgrobacterium.Bacillus cereus andBacillus licheniformis are the advantage species. ACC deaminase activity of endophytic bacteria inKosteletzkya pentacarposhas been determined. Results revealed that ifve strains could produce obvious ACC deaminase activity. These ifve kinds of bacteria were used to inoculate wheat roots under salt stress to determine their effects on the salt resistance of wheat. Data showed that four strains, includingBacillus cereus,Bacillus megaterium,Bacillus pumilusand Bacillus licheniformis,could not only promote the wheat fresh weight, dry weigh and

  18. Nbs1 ChIP-Seq Identifies Off-Target DNA Double-Strand Breaks Induced by AID in Activated Splenic B Cells.

    Directory of Open Access Journals (Sweden)

    Lyne Khair

    2015-08-01

    Full Text Available Activation-induced cytidine deaminase (AID is required for initiation of Ig class switch recombination (CSR and somatic hypermutation (SHM of antibody genes during immune responses. AID has also been shown to induce chromosomal translocations, mutations, and DNA double-strand breaks (DSBs involving non-Ig genes in activated B cells. To determine what makes a DNA site a target for AID-induced DSBs, we identify off-target DSBs induced by AID by performing chromatin immunoprecipitation (ChIP for Nbs1, a protein that binds DSBs, followed by deep sequencing (ChIP-Seq. We detect and characterize hundreds of off-target AID-dependent DSBs. Two types of tandem repeats are highly enriched within the Nbs1-binding sites: long CA repeats, which can form Z-DNA, and tandem pentamers containing the AID target hotspot WGCW. These tandem repeats are not nearly as enriched at AID-independent DSBs, which we also identified. Msh2, a component of the mismatch repair pathway and important for genome stability, increases off-target DSBs, similar to its effect on Ig switch region DSBs, which are required intermediates during CSR. Most of the off-target DSBs are two-ended, consistent with generation during G1 phase, similar to DSBs in Ig switch regions. However, a minority are one-ended, presumably due to conversion of single-strand breaks to DSBs during replication. One-ended DSBs are repaired by processes involving homologous recombination, including break-induced replication repair, which can lead to genome instability. Off-target DSBs, especially those present during S phase, can lead to chromosomal translocations, deletions and gene amplifications, resulting in the high frequency of B cell lymphomas derived from cells that express or have expressed AID.

  19. CD25(+) Bcl6(low) T follicular helper cells provide help to maturing B cells in germinal centers of human tonsil.

    Science.gov (United States)

    Li, Haishan; Pauza, C David

    2015-01-01

    The majority of CXCR5(+) PD1(+) CD4(+) T follicular helper (Tfh) cells (>90%) are CD25(-) Bcl6(hi) , while a small subpopulation (<10%) are CD25(+) Bcl6(low) but do not express FoxP3 and are not T regulatory cells. We purified T:B-cell conjugates from tonsils and found they were enriched for the CD25(+) Bcl6(low) Tfh-cell subpopulation. In response to IL-2, these CD25(+) Tfh cells increased expression of costimulatory molecules ICOS or OX40, upregulated transcription factor cMaf, produced cytokines IL-21, IL-17, and IL-10, and raised the levels of antiapoptotic protein Bcl2. Conjugates formed with CD25(+) BCl6(low) Tfh cells included B cells expressing higher levels of activation-induced cytidine deaminase (AID), memory marker CD45RO, surface IgG or IgA, and MHC class II compared to B-cell conjugates including CD25(-) Bcl6(hi) Tfh cells. While IL-2 suppresses early Tfh-cell differentiation, Tfh-cell recognition of antigen-presenting B cells and signaling through the T-cell receptor likely triggers expression of the high-affinity IL-2 receptor and responses to IL-2 including downregulation of Bcl6. CD25 expression on Tfh cells and local production of IL-2 in tonsil or lymph node may support B helper T-cell function during later stages of B-cell maturation and the development of immune memory.

  20. Differential expression of APE1 and APE2 in germinal centers promotes error-prone repair and A:T mutations during somatic hypermutation.

    Science.gov (United States)

    Stavnezer, Janet; Linehan, Erin K; Thompson, Mikayla R; Habboub, Ghaith; Ucher, Anna J; Kadungure, Tatenda; Tsuchimoto, Daisuke; Nakabeppu, Yusaku; Schrader, Carol E

    2014-06-24

    Somatic hypermutation (SHM) of antibody variable region genes is initiated in germinal center B cells during an immune response by activation-induced cytidine deaminase (AID), which converts cytosines to uracils. During accurate repair in nonmutating cells, uracil is excised by uracil DNA glycosylase (UNG), leaving abasic sites that are incised by AP endonuclease (APE) to create single-strand breaks, and the correct nucleotide is reinserted by DNA polymerase β. During SHM, for unknown reasons, repair is error prone. There are two APE homologs in mammals and, surprisingly, APE1, in contrast to its high expression in both resting and in vitro-activated splenic B cells, is expressed at very low levels in mouse germinal center B cells where SHM occurs, and APE1 haploinsufficiency has very little effect on SHM. In contrast, the less efficient homolog, APE2, is highly expressed and contributes not only to the frequency of mutations, but also to the generation of mutations at A:T base pair (bp), insertions, and deletions. In the absence of both UNG and APE2, mutations at A:T bp are dramatically reduced. Single-strand breaks generated by APE2 could provide entry points for exonuclease recruited by the mismatch repair proteins Msh2-Msh6, and the known association of APE2 with proliferating cell nuclear antigen could recruit translesion polymerases to create mutations at AID-induced lesions and also at A:T bp. Our data provide new insight into error-prone repair of AID-induced lesions, which we propose is facilitated by down-regulation of APE1 and up-regulation of APE2 expression in germinal center B cells.

  1. A regulatory role for NBS1 in strand-specific mutagenesis during somatic hypermutation.

    Directory of Open Access Journals (Sweden)

    Likun Du

    Full Text Available Activation-induced cytidine deaminase (AID is believed to initiate somatic hypermutation (SHM by deamination of deoxycytidines to deoxyuridines within the immunoglobulin variable regions genes. The deaminated bases can subsequently be replicated over, processed by base excision repair or mismatch repair, leading to introduction of different types of point mutations (G/C transitions, G/C transversions and A/T mutations. It is evident that the base excision repair pathway is largely dependent on uracil-DNA glycosylase (UNG through its uracil excision activity. It is not known, however, which endonuclease acts in the step immediately downstream of UNG, i.e. that cleaves at the abasic sites generated by the latter. Two candidates have been proposed, an apurinic/apyrimidinic endonuclease (APE and the Mre11-Rad50-NBS1 complex. The latter is intriguing as this might explain how the mutagenic pathway is primed during SHM. We have investigated the latter possibility by studying the in vivo SHM pattern in B cells from ataxia-telangiectasia-like disorder (Mre11 deficient and Nijmegen breakage syndrome (NBS1 deficient patients. Our results show that, although the pattern of mutations in the variable heavy chain (V(H genes was altered in NBS1 deficient patients, with a significantly increased number of G (but not C transversions occurring in the SHM and/or AID targeting hotspots, the general pattern of mutations in the V(H genes in Mre11 deficient patients was only slightly altered, with an increased frequency of A to C transversions. The Mre11-Rad50-NBS1 complex is thus unlikely to be the major nuclease involved in cleavage of the abasic sites during SHM, whereas NBS1 might have a specific role in regulating the strand-biased repair during phase Ib mutagenesis.

  2. Immunology of neuromyelitis optica during pregnancy

    Science.gov (United States)

    Davoudi, Vahid; Keyhanian, Kiandokht; Bove, Riley M.

    2016-01-01

    Anti–aquaporin-4 (AQP4) autoantibody plays a key role in the pathogenesis of neuromyelitis optica (NMO). Studies have shown increased relapse rates in patients with NMO during pregnancy and postpartum. High estrogen levels during pregnancy can increase activation-induced cytidine deaminase expression, which is responsible for immunoglobulin production. Additionally, sex hormones may influence antibody glycosylation, with effects on antibody function. Estrogen decreases apoptosis of self-reactive B cells, through upregulation of antiapoptotic molecules. Furthermore, high estrogen levels during pregnancy can boost B-cell activating factor and type 1 interferon (IFN) production, facilitating development of self-reactive peripheral B cells in association with increased disease activity. Elevated levels of estrogen during pregnancy decrease IFN-γ generation, which causes a shift toward T helper (Th) 2 immunity, thereby propagating NMO pathogenesis. Women with NMO have an elevated rate of pregnancy complications including miscarriage and preeclampsia, which are associated with increased Th17 cells and reduction of T-regulatory cells. These in turn can enhance inflammation in NMO. Increased regulatory natural killer cells (CD56−) during pregnancy can enhance Th2-mediated immunity, thereby increasing inflammation. In the placenta, trophoblasts express AQP4 antigen and are exposed to maternal blood containing anti-AQP4 antibodies. Animal models have shown that anti-AQP4 antibodies can bind to AQP4 antigen in placenta leading to complement deposition and placental necrosis. Reduction of regulatory complements has been associated with placental insufficiency, and it is unclear whether these are altered in NMO. Further studies are required to elucidate the specific mechanisms of disease worsening, as well as the increased rate of complications during pregnancy in women with NMO. PMID:27761482

  3. CD27− B-Cells Produce Class Switched and Somatically Hyper-Mutated Antibodies during Chronic HIV-1 Infection

    Science.gov (United States)

    Cagigi, Alberto; Du, Likun; Dang, Linh Vu Phuong; Grutzmeier, Sven; Atlas, Ann; Chiodi, Francesca

    2009-01-01

    Class switch recombination and somatic hypermutation occur in mature B-cells in response to antigen stimulation. These processes are crucial for the generation of functional antibodies. During HIV-1 infection, loss of memory B-cells, together with an altered differentiation of naïve B-cells result in production of low quality antibodies, which may be due to impaired immunoglobulin affinity maturation. In the current study, we evaluated the effect of HIV-1 infection on class switch recombination and somatic hypermutation by studying the expression of activation-induced cytidine deaminase (AID) in peripheral B-cells from a cohort of chronically HIV-1 infected patients as compared to a group of healthy controls. In parallel, we also characterized the phenotype of B-cells and their ability to produce immunoglobulins in vitro. Cells from HIV-1 infected patients showed higher baseline levels of AID expression and increased IgA production measured ex-vivo and upon CD40 and TLR9 stimulation in vitro. Moreover, the percentage of CD27−IgA+ and CD27−IgG+ B-cells in blood was significantly increased in HIV-1 infected patients as compared to controls. Interestingly, our results showed a significantly increased number of somatic hypermutations in the VH genes in CD27− cells from patients. Taken together, these results show that during HIV-1 infection, CD27− B-cells can also produce class switched and somatically hypermutated antibodies. Our data add important information for the understanding of the mechanisms underlying the loss of specific antibody production observed during HIV-1 infection. PMID:19412542

  4. CD27(- B-cells produce class switched and somatically hyper-mutated antibodies during chronic HIV-1 infection.

    Directory of Open Access Journals (Sweden)

    Alberto Cagigi

    Full Text Available Class switch recombination and somatic hypermutation occur in mature B-cells in response to antigen stimulation. These processes are crucial for the generation of functional antibodies. During HIV-1 infection, loss of memory B-cells, together with an altered differentiation of naïve B-cells result in production of low quality antibodies, which may be due to impaired immunoglobulin affinity maturation. In the current study, we evaluated the effect of HIV-1 infection on class switch recombination and somatic hypermutation by studying the expression of activation-induced cytidine deaminase (AID in peripheral B-cells from a cohort of chronically HIV-1 infected patients as compared to a group of healthy controls. In parallel, we also characterized the phenotype of B-cells and their ability to produce immunoglobulins in vitro. Cells from HIV-1 infected patients showed higher baseline levels of AID expression and increased IgA production measured ex-vivo and upon CD40 and TLR9 stimulation in vitro. Moreover, the percentage of CD27(-IgA+ and CD27(-IgG+ B-cells in blood was significantly increased in HIV-1 infected patients as compared to controls. Interestingly, our results showed a significantly increased number of somatic hypermutations in the VH genes in CD27(- cells from patients. Taken together, these results show that during HIV-1 infection, CD27(- B-cells can also produce class switched and somatically hypermutated antibodies. Our data add important information for the understanding of the mechanisms underlying the loss of specific antibody production observed during HIV-1 infection.

  5. Identification of chromosomal translocation hotspots via scan statistics

    Science.gov (United States)

    Silva, Israel T.; Rosales, Rafael A.; Holanda, Adriano J.; Nussenzweig, Michel C.; Jankovic, Mila

    2014-01-01

    Motivation: The detection of genomic regions unusually rich in a given pattern is an important undertaking in the analysis of next-generation sequencing data. Recent studies of chromosomal translocations in activated B lymphocytes have identified regions that are frequently translocated to c-myc oncogene. A quantitative method for the identification of translocation hotspots was crucial to this study. Here we improve this analysis by using a simple probabilistic model and the framework provided by scan statistics to define the number and location of translocation breakpoint hotspots. A key feature of our method is that it provides a global chromosome-wide nominal control level to clustering, as opposed to previous methods based on local criteria. While being motivated by a specific application, the detection of unusual clusters is a widespread problem in bioinformatics. We expect our method to be useful in the analysis of data from other experimental approaches such as of ChIP-seq and 4C-seq. Results: The analysis of translocations from B lymphocytes with the method described here reveals the presence of longer hotspots when compared with those defined previously. Further, we show that the hotspot size changes substantially in the absence of DNA repair protein 53BP1. When 53BP1 deficiency is combined with overexpression of activation-induced cytidine deaminase, the hotspot length increases even further. These changes are not detected by previous methods that use local significance criteria for clustering. Our method is also able to identify several exclusive translocation hotspots located in genes of known tumor supressors. Availability and implementation: The detection of translocation hotspots is done with hot_scan, a program implemented in R and Perl. Source code and documentation are freely available for download at https://github.com/itojal/hot_scan. Contact: isilva@rockefeller.edu Supplementary information: Supplementary data are available at Bioinformatics

  6. Oral-nasopharyngeal dendritic cells mediate T cell-independent IgA class switching on B-1 B cells.

    Directory of Open Access Journals (Sweden)

    Kosuke Kataoka

    Full Text Available Native cholera toxin (nCT as a nasal adjuvant was shown to elicit increased levels of T-independent S-IgA antibody (Ab responses through IL-5- IL-5 receptor interactions between CD4+ T cells and IgA+ B-1 B cells in murine submandibular glands (SMGs and nasal passages (NPs. Here, we further investigate whether oral-nasopharyngeal dendritic cells (DCs play a central role in the induction of B-1 B cell IgA class switch recombination (CSR for the enhancement of T cell-independent (TI mucosal S-IgA Ab responses. High expression levels of activation-induced cytidine deaminase, Iα-Cμ circulation transcripts and Iμ-Cα transcripts were seen on B-1 B cells purified from SMGs and NPs of both TCRβ⁻/⁻ mice and wild-type mice given nasal trinitrophenyl (TNP-LPS plus nCT, than in the same tissues of mice given nCT or TNP-LPS alone. Further, DCs from SMGs, NPs and NALT of mice given nasal TNP-LPS plus nCT expressed significantly higher levels of a proliferation-inducing ligand (APRIL than those in mice given TNP-LPS or nCT alone, whereas the B-1 B cells in SMGs and NPs showed elevated levels of transmembrane activator and calcium modulator cyclophilin ligand interactor (TACI expression. Interestingly, high frequencies of IgA+ B-1 B cells were induced when peritoneal IgA⁻ IgM+ B cells were stimulated with mucosal DCs from mice given nasal TNP-LPS plus nCT. Taken together, these findings show that nasal nCT plays a key role in the enhancement of mucosal DC-mediated TI IgA CSR by B-1 B cells through their interactions with APRIL and TACI.

  7. AID induces double-strand breaks at immunoglobulin switch regions and c-MYC causing chromosomal translocations in yeast THO mutants.

    Science.gov (United States)

    Ruiz, José F; Gómez-González, Belén; Aguilera, Andrés

    2011-02-01

    Transcription of the switch (S) regions of immunoglobulin genes in B cells generates stable R-loops that are targeted by Activation Induced Cytidine Deaminase (AID), triggering class switch recombination (CSR), as well as translocations with c-MYC responsible for Burkitt's lymphomas. In Saccharomyces cerevisiae, stable R-loops are formed co-transcriptionally in mutants of THO, a conserved nuclear complex involved in mRNP biogenesis. Such R-loops trigger genome instability and facilitate deamination by human AID. To understand the mechanisms that generate genome instability mediated by mRNP biogenesis impairment and by AID, we devised a yeast chromosomal system based on different segments of mammalian S regions and c-MYC for the analysis of chromosomal rearrangements in both wild-type and THO mutants. We demonstrate that AID acts in yeast at heterologous S and c-MYC transcribed sequences leading to double-strand breaks (DSBs) which in turn cause chromosomal translocations via Non-Homologous End Joining (NHEJ). AID-induced translocations were strongly enhanced in yeast THO null mutants, consistent with the idea that AID-mediated DSBs depend on R-loop formation. Our study not only provides new clues to understand the role of mRNP biogenesis in preventing genome rearrangements and the mechanism of AID-mediated genome instability, but also shows that, once uracil residues are produced by AID-mediated deamination, these are processed into DSBs and chromosomal rearrangements by the general and conserved DNA repair functions present from yeast to human cells.

  8. Individual substitution mutations in the AID C terminus that ablate IgH class switch recombination.

    Science.gov (United States)

    Kadungure, Tatenda; Ucher, Anna J; Linehan, Erin K; Schrader, Carol E; Stavnezer, Janet

    2015-01-01

    Activation-induced cytidine deaminase (AID) is essential for class switch recombination (CSR) and somatic hypermutation (SHM) of Ig genes. The C terminus of AID is required for CSR but not for SHM, but the reason for this is not entirely clear. By retroviral transduction of mutant AID proteins into aid-/- mouse splenic B cells, we show that 4 amino acids within the C terminus of mouse AID, when individually mutated to specific amino acids (R190K, A192K, L196S, F198S), reduce CSR about as much or more than deletion of the entire C terminal 10 amino acids. Similar to ΔAID, the substitutions reduce binding of UNG to Ig Sμ regions and some reduce binding of Msh2, both of which are important for introducing S region DNA breaks. Junctions between the IgH donor switch (S)μ and acceptor Sα regions from cells expressing ΔAID or the L196S mutant show increased microhomology compared to junctions in cells expressing wild-type AID, consistent with problems during CSR and the use of alternative end-joining, rather than non-homologous end-joining (NHEJ). Unlike deletion of the AID C terminus, 3 of the substitution mutants reduce DNA double-strand breaks (DSBs) detected within the Sμ region in splenic B cells undergoing CSR. Cells expressing these 3 substitution mutants also have greatly reduced mutations within unrearranged Sμ regions, and they decrease with time after activation. These results might be explained by increased error-free repair, but as the C terminus has been shown to be important for recruitment of NHEJ proteins, this appears unlikely. We hypothesize that Sμ DNA breaks in cells expressing these C terminus substitution mutants are poorly repaired, resulting in destruction of Sμ segments that are deaminated by these mutants. This could explain why these mutants cannot undergo CSR.

  9. Individual substitution mutations in the AID C terminus that ablate IgH class switch recombination.

    Directory of Open Access Journals (Sweden)

    Tatenda Kadungure

    Full Text Available Activation-induced cytidine deaminase (AID is essential for class switch recombination (CSR and somatic hypermutation (SHM of Ig genes. The C terminus of AID is required for CSR but not for SHM, but the reason for this is not entirely clear. By retroviral transduction of mutant AID proteins into aid-/- mouse splenic B cells, we show that 4 amino acids within the C terminus of mouse AID, when individually mutated to specific amino acids (R190K, A192K, L196S, F198S, reduce CSR about as much or more than deletion of the entire C terminal 10 amino acids. Similar to ΔAID, the substitutions reduce binding of UNG to Ig Sμ regions and some reduce binding of Msh2, both of which are important for introducing S region DNA breaks. Junctions between the IgH donor switch (Sμ and acceptor Sα regions from cells expressing ΔAID or the L196S mutant show increased microhomology compared to junctions in cells expressing wild-type AID, consistent with problems during CSR and the use of alternative end-joining, rather than non-homologous end-joining (NHEJ. Unlike deletion of the AID C terminus, 3 of the substitution mutants reduce DNA double-strand breaks (DSBs detected within the Sμ region in splenic B cells undergoing CSR. Cells expressing these 3 substitution mutants also have greatly reduced mutations within unrearranged Sμ regions, and they decrease with time after activation. These results might be explained by increased error-free repair, but as the C terminus has been shown to be important for recruitment of NHEJ proteins, this appears unlikely. We hypothesize that Sμ DNA breaks in cells expressing these C terminus substitution mutants are poorly repaired, resulting in destruction of Sμ segments that are deaminated by these mutants. This could explain why these mutants cannot undergo CSR.

  10. AID induces double-strand breaks at immunoglobulin switch regions and c-MYC causing chromosomal translocations in yeast THO mutants.

    Directory of Open Access Journals (Sweden)

    José F Ruiz

    2011-02-01

    Full Text Available Transcription of the switch (S regions of immunoglobulin genes in B cells generates stable R-loops that are targeted by Activation Induced Cytidine Deaminase (AID, triggering class switch recombination (CSR, as well as translocations with c-MYC responsible for Burkitt's lymphomas. In Saccharomyces cerevisiae, stable R-loops are formed co-transcriptionally in mutants of THO, a conserved nuclear complex involved in mRNP biogenesis. Such R-loops trigger genome instability and facilitate deamination by human AID. To understand the mechanisms that generate genome instability mediated by mRNP biogenesis impairment and by AID, we devised a yeast chromosomal system based on different segments of mammalian S regions and c-MYC for the analysis of chromosomal rearrangements in both wild-type and THO mutants. We demonstrate that AID acts in yeast at heterologous S and c-MYC transcribed sequences leading to double-strand breaks (DSBs which in turn cause chromosomal translocations via Non-Homologous End Joining (NHEJ. AID-induced translocations were strongly enhanced in yeast THO null mutants, consistent with the idea that AID-mediated DSBs depend on R-loop formation. Our study not only provides new clues to understand the role of mRNP biogenesis in preventing genome rearrangements and the mechanism of AID-mediated genome instability, but also shows that, once uracil residues are produced by AID-mediated deamination, these are processed into DSBs and chromosomal rearrangements by the general and conserved DNA repair functions present from yeast to human cells.

  11. Oral-nasopharyngeal dendritic cells mediate T cell-independent IgA class switching on B-1 B cells.

    Science.gov (United States)

    Kataoka, Kosuke; Fujihashi, Keiko; Terao, Yutaka; Gilbert, Rebekah S; Sekine, Shinichi; Kobayashi, Ryoki; Fukuyama, Yoshiko; Kawabata, Shigetada; Fujihashi, Kohtaro

    2011-01-01

    Native cholera toxin (nCT) as a nasal adjuvant was shown to elicit increased levels of T-independent S-IgA antibody (Ab) responses through IL-5- IL-5 receptor interactions between CD4+ T cells and IgA+ B-1 B cells in murine submandibular glands (SMGs) and nasal passages (NPs). Here, we further investigate whether oral-nasopharyngeal dendritic cells (DCs) play a central role in the induction of B-1 B cell IgA class switch recombination (CSR) for the enhancement of T cell-independent (TI) mucosal S-IgA Ab responses. High expression levels of activation-induced cytidine deaminase, Iα-Cμ circulation transcripts and Iμ-Cα transcripts were seen on B-1 B cells purified from SMGs and NPs of both TCRβ⁻/⁻ mice and wild-type mice given nasal trinitrophenyl (TNP)-LPS plus nCT, than in the same tissues of mice given nCT or TNP-LPS alone. Further, DCs from SMGs, NPs and NALT of mice given nasal TNP-LPS plus nCT expressed significantly higher levels of a proliferation-inducing ligand (APRIL) than those in mice given TNP-LPS or nCT alone, whereas the B-1 B cells in SMGs and NPs showed elevated levels of transmembrane activator and calcium modulator cyclophilin ligand interactor (TACI) expression. Interestingly, high frequencies of IgA+ B-1 B cells were induced when peritoneal IgA⁻ IgM+ B cells were stimulated with mucosal DCs from mice given nasal TNP-LPS plus nCT. Taken together, these findings show that nasal nCT plays a key role in the enhancement of mucosal DC-mediated TI IgA CSR by B-1 B cells through their interactions with APRIL and TACI.

  12. Differential requirements of MyD88 and TRIF pathways in TLR4-mediated immune responses in murine B cells.

    Science.gov (United States)

    Yanagibashi, Tsutomu; Nagai, Yoshinori; Watanabe, Yasuharu; Ikutani, Masashi; Hirai, Yoshikatsu; Takatsu, Kiyoshi

    2015-01-01

    LPS stimulates the TLR4/Myeloid differentiation protein-2 (MD-2) complex and promotes a variety of immune responses in B cells. TLR4 has two main signaling pathways, MyD88 and Toll/IL-1R (TIR)-domain-containing adaptor-inducing interferon-β (TRIF) pathways, but relatively few studies have examined these pathways in B cells. In this study, we investigated MyD88- or TRIF-dependent LPS responses in B cells by utilizing their knockout mice. Compared with wild-type (WT) B cells, MyD88(-/-) B cells were markedly impaired in up-regulation of CD86 and proliferation induced by lipid A moiety of LPS. TRIF(-/-) B cells were also impaired in these responses compared with WT B cells, but showed better responses than MyD88(-/-) B cells. Regarding class switch recombination (CSR) elicited by lipid A plus IL-4, MyD88(-/-) B cells showed similar patterns of CSR to WT B cells. However, TRIF(-/-) B cells showed the impaired in the CSR. Compared with WT and MyD88(-/-) B cells, TRIF(-/-) B cells exhibited reduced cell division, fewer IgG1(+) cells per division, and decreased activation-induced cytidine deaminase (Aicda) mRNA expression in response to lipid A plus IL-4. Finally, IgG1 production to trinitrophenyl (TNP)-LPS immunization was impaired in TRIF(-/-) mice, while MyD88(-/-) mice exhibited increased IgG1 production. Thus, MyD88 and TRIF pathways differently regulate TLR4-induced immune responses in B cells.

  13. B cell-specific deficiencies in mTOR limit humoral immune responses.

    Science.gov (United States)

    Zhang, Shuling; Pruitt, Margaret; Tran, Dena; Du Bois, Wendy; Zhang, Ke; Patel, Rushi; Hoover, Shelley; Simpson, R Mark; Simmons, John; Gary, Joy; Snapper, Clifford M; Casellas, Rafael; Mock, Beverly A

    2013-08-15

    Generation of high-affinity Abs in response to Ags/infectious agents is essential for developing long-lasting immune responses. B cell maturation and Ab responses to Ag stimulation require Ig somatic hypermutation (SHM) and class-switch recombination (CSR) for high-affinity responses. Upon immunization with either the model Ag 4-hydroxy-3-nitrophenylacetyl hapten (NP) conjugated to chicken γ globulin lysine (NP-CGG) or heat-killed Streptococcus pneumoniae capsular type 14 protein (Pn14), knock-in (KI) mice hypomorphic for mTOR function had a decreased ability to form germinal centers, develop high-affinity anti-NP-specific or anti-Pn14-specific Abs, and perform SHM/CSR. Hypomorphic mTOR mice also had a high mortality (40%) compared with wild-type (WT) (0%) littermates and had lower pneumococcal surface protein A-specific Ab titers when immunized and challenged with live S. pneumoniae infection. Mice with mTOR deleted in their B cell lineage (knockout [KO]) also produced fewer splenic germinal centers and decreased high-affinity Ab responses to NP-CGG than did their WT littermates. CSR rates were lower in mTOR KI and KO mice, and pharmacologic inhibition of mTOR in WT B cells resulted in decreased rates of ex vivo CSR. RNA and protein levels of activation-induced cytidine deaminase (AID), a protein essential for SHM and CSR, were lower in B cells from both KI and B cell-specific KO mice, concomitant with increases in phosphorylated AKT and FOXO1. Rescue experiments increasing AID expression in KI B cells restored CSR levels to those in WT B cells. Thus, mTOR plays an important immunoregulatory role in the germinal center, at least partially through AID signaling, in generating high-affinity Abs.

  14. Mismatch-mediated error prone repair at the immunoglobulin genes.

    Science.gov (United States)

    Chahwan, Richard; Edelmann, Winfried; Scharff, Matthew D; Roa, Sergio

    2011-12-01

    The generation of effective antibodies depends upon somatic hypermutation (SHM) and class-switch recombination (CSR) of antibody genes by activation induced cytidine deaminase (AID) and the subsequent recruitment of error prone base excision and mismatch repair. While AID initiates and is required for SHM, more than half of the base changes that accumulate in V regions are not due to the direct deamination of dC to dU by AID, but rather arise through the recruitment of the mismatch repair complex (MMR) to the U:G mismatch created by AID and the subsequent perversion of mismatch repair from a high fidelity process to one that is very error prone. In addition, the generation of double-strand breaks (DSBs) is essential during CSR, and the resolution of AID-generated mismatches by MMR to promote such DSBs is critical for the efficiency of the process. While a great deal has been learned about how AID and MMR cause hypermutations and DSBs, it is still unclear how the error prone aspect of these processes is largely restricted to antibody genes. The use of knockout models and mice expressing mismatch repair proteins with separation-of-function point mutations have been decisive in gaining a better understanding of the roles of each of the major MMR proteins and providing further insight into how mutation and repair are coordinated. Here, we review the cascade of MMR factors and repair signals that are diverted from their canonical error free role and hijacked by B cells to promote genetic diversification of the Ig locus. This error prone process involves AID as the inducer of enzymatically-mediated DNA mismatches, and a plethora of downstream MMR factors acting as sensors, adaptors and effectors of a complex and tightly regulated process from much of which is not yet well understood.

  15. Gene conversion in human rearranged immunoglobulin genes.

    Science.gov (United States)

    Darlow, John M; Stott, David I

    2006-07-01

    Over the past 20 years, many DNA sequences have been published suggesting that all or part of the V(H) segment of a rearranged immunoglobulin gene may be replaced in vivo. Two different mechanisms appear to be operating. One of these is very similar to primary V(D)J recombination, involving the RAG proteins acting upon recombination signal sequences, and this has recently been proven to occur. Other sequences, many of which show partial V(H) replacements with no addition of untemplated nucleotides at the V(H)-V(H) joint, have been proposed to occur by an unusual RAG-mediated recombination with the formation of hybrid (coding-to-signal) joints. These appear to occur in cells already undergoing somatic hypermutation in which, some authors are convinced, RAG genes are silenced. We recently proposed that the latter type of V(H) replacement might occur by homologous recombination initiated by the activity of AID (activation-induced cytidine deaminase), which is essential for somatic hypermutation and gene conversion. The latter has been observed in other species, but not in human Ig genes, so far. In this paper, we present a new analysis of sequences published as examples of the second type of rearrangement. This not only shows that AID recognition motifs occur in recombination regions but also that some sequences show replacement of central sections by a sequence from another gene, similar to gene conversion in the immunoglobulin genes of other species. These observations support the proposal that this type of rearrangement is likely to be AID-mediated rather than RAG-mediated and is consistent with gene conversion.

  16. Enrichment of rare variants in population isolates: single AICDA mutation responsible for hyper-IgM syndrome type 2 in Finland

    Science.gov (United States)

    Trotta, Luca; Hautala, Timo; Hämäläinen, Sari; Syrjänen, Jaana; Viskari, Hanna; Almusa, Henrikki; Lepisto, Maija; Kaustio, Meri; Porkka, Kimmo; Palotie, Aarno; Seppänen, Mikko; Saarela, Janna

    2016-01-01

    Antibody class-switch recombination and somatic hypermutation critically depend on the function of activation-induced cytidine deaminase (AID). Rare variants in its gene AICDA have been reported to cause autosomal recessive AID deficiency (autosomal recessive hyper-IgM syndrome type 2 (HIGM2)). Exome sequencing of a multicase Finnish family with an HIGM2 phenotype identified a rare, homozygous, variant (c.416T>C, p.(Met139Thr)) in the AICDA gene, found to be significantly enriched in the Finnish population compared with other populations of European origin (38.56-fold, P<0.001). The population history of Finland, characterized by a restricted number of founders, isolation and several population bottlenecks, has caused enrichment of certain rare disease-causing variants and losses of others, as part of a phenomenon called the Finnish Disease Heritage. Accordingly, rare founder mutations cause the majority of observed Finnish cases in these mostly autosomal recessive disorders that consequently are more frequent in Finland than elsewhere. Screening of all currently known Finnish patients with an HIGM2 phenotype showed them to be homozygous for p.(Met139Thr). All the Finnish p.(Met139Thr) carriers with available data on their geographic descent originated from the eastern and northeastern parts of Finland. They were observed to share more of their genome identity by descent (IBD) than Finns in general (P<0.001), and they all carried a 207.5-kb ancestral haplotype containing the variant. In conclusion, the identified p.(Met139Thr) variant is significantly enriched in Finns and explains all thus far found AID deficiencies in Finland. PMID:27142677

  17. Ongoing in vivo immunoglobulin class switch DNA recombination in chronic lymphocytic leukemia B cells.

    Science.gov (United States)

    Cerutti, Andrea; Zan, Hong; Kim, Edmund C; Shah, Shefali; Schattner, Elaine J; Schaffer, András; Casali, Paolo

    2002-12-01

    Chronic lymphocytic leukemia (CLL) results from the expansion of malignant CD5(+) B cells that usually express IgD and IgM. These leukemic cells can give rise in vivo to clonally related IgG(+) or IgA(+) elements. The requirements and modalities of this process remain elusive. Here we show that leukemic B cells from 14 of 20 CLLs contain the hallmarks of ongoing Ig class switch DNA recombination (CSR), including extrachromosomal switch circular DNAs and circle transcripts generated by direct S micro -->Sgamma, S micro -->Salpha, and S micro -->Sepsilon as well as sequential Sgamma-->Salpha and Sgamma-->Sepsilon CSR. Similar CLL B cells express transcripts for activation-induced cytidine deaminase, a critical component of the CSR machinery, and contain germline I(H)-C(H) and mature V(H)DJ(H)-C(H) transcripts encoded by multiple Cgamma, Calpha, and Cepsilon genes. Ongoing CSR occurs in only a fraction of the CLL clone, as only small proportions of CD5(+)CD19(+) cells express surface IgG or IgA and lack IgM and IgD. In vivo class-switching CLL B cells down-regulate switch circles and circle transcripts in vitro unless exposed to exogenous CD40 ligand and IL-4. In addition, CLL B cells that do not class switch in vivo activate the CSR machinery and secrete IgG, IgA, or IgE upon in vitro exposure to CD40 ligand and IL-4. These findings indicate that in CLL at least some members of the malignant clone actively differentiate in vivo along a pathway that induces CSR. They also suggest that this process is elicited by external stimuli, including CD40 ligand and IL-4, provided by bystander immune cells.

  18. AID activity in B cells strongly correlates with polyclonal antibody affinity maturation in-vivo following pandemic 2009-H1N1 vaccination in humans.

    Science.gov (United States)

    Khurana, Surender; Frasca, Daniela; Blomberg, Bonnie; Golding, Hana

    2012-09-01

    The role of Activation-Induced Cytidine Deaminase (AID) in somatic hypermutation and polyclonal antibody affinity maturation has not been shown for polyclonal responses in humans. We investigated whether AID induction in human B cells following H1N1pdm09 vaccination correlated with in-vivo antibody affinity maturation against hemagglutinin domains in plasma of young and elderly individuals. AID was measured by qPCR in B cells from individuals of different ages immunized with the H1N1pdm09 influenza vaccine. Polyclonal antibody affinity in human plasma for the HA1 and HA2 domains of the H1N1pdm09 hemagglutinin was measured by antibody-antigen complex dissociation rates using real time kinetics in Surface Plasmon Resonance. Results show an age-related decrease in AID induction in B cells following H1N1pdm09 vaccination. Levels of AID mRNA before vaccination and fold-increase of AID mRNA expression after H1N1pdm09 vaccination directly correlated with increase in polyclonal antibody affinity to the HA1 globular domain (but not to the conserved HA2 stalk). In the younger population, significant affinity maturation to the HA1 globular domain was observed, which associated with initial levels of AID and fold-increase in AID after vaccination. In some older individuals (>65 yr), higher affinity to the HA1 domain was observed before vaccination and H1N1pdm09 vaccination resulted in minimal change in antibody affinity, which correlated with low AID induction in this age group. These findings demonstrate for the first time a strong correlation between AID induction and in-vivo antibody affinity maturation in humans. The ability to generate high affinity antibodies could have significant impact on the elucidation of age-specific antibody responses following vaccination and eventual clinical efficacy and disease outcome.

  19. Pathophysiology of B-cell intrinsic immunoglobulin class switch recombination deficiencies.

    Science.gov (United States)

    Durandy, Anne; Taubenheim, Nadine; Peron, Sophie; Fischer, Alain

    2007-01-01

    B-cell intrinsic immunoglobulin class switch recombination (Ig-CSR) deficiencies, previously termed hyper-IgM syndromes, are genetically determined conditions characterized by normal or elevated serum IgM levels and an absence or very low levels of IgG, IgA, and IgE. As a function of the molecular mechanism, the defective CSR is variably associated to a defect in the generation of somatic hypermutations (SHMs) in the Ig variable region. The study of Ig-CSR deficiencies contributed to a better delineation of the mechanisms underlying CSR and SHM, the major events of antigen-triggered antibody maturation. Four Ig-CSR deficiency phenotypes have been so far reported: the description of the activation-induced cytidine deaminase (AID) deficiency (Ig-CSR deficiency 1), caused by recessive mutations of AICDA gene, characterized by a defect in CSR and SHM, clearly established the role of AID in the induction of the Ig gene rearrangements underlying CSR and SHM. A CSR-specific function of AID has, however, been detected by the observation of a selective CSR defect caused by mutations affecting the C-terminus of AID. Ig-CSR deficiency 2 is the consequence of uracil-N-glycosylase (UNG) deficiency. Because UNG, a molecule of the base excision repair machinery, removes uracils from DNA and AID deaminates cytosines into uracils, that observation indicates that the AID-UNG pathway directly targets DNA of switch regions from the Ig heavy-chain locus to induce the CSR process. Ig-CSR deficiencies 3 and 4 are characterized by a selective CSR defect resulting from blocks at distinct steps of CSR. A further understanding of the CSR machinery is expected from their molecular definition.

  20. A Rapid Embryonic Stem Cell-Based Mouse Model for B-cell Lymphomas Driven by Epstein-Barr Virus Protein LMP1

    Science.gov (United States)

    Ba, Zhaoqing; Meng, Fei-Long; Gostissa, Monica; Huang, Pei-Yi; Ke, Qiang; Wang, Zhe; Dao, Mai N.; Fujiwara, Yuko; Rajewsky, Klaus; Baochun, Zhang; Alt, Frederick W.

    2015-01-01

    The Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) contributes to oncogenic human B-cell transformation. Mouse B cells conditionally expressing LMP1 are not predisposed to B-cell malignancies, as LMP1-expressing B cells are eliminated by T cells. However, mice with conditional B-cell LMP1 expression and genetic elimination of α/β and γ/δ T cells (“CLT” mice) die early in association with B-cell lymphoproliferation and lymphomagenesis. Generation of CLT mice involves in-breeding multiple independently segregating alleles. Thus, while introduction of additional activating or knock-out mutations into the CLT model is desirable for further B-cell expansion and immunosurveillance studies, doing such experiments by germline breeding is time-consuming, expensive and sometimes unfeasible. To generate a more tractable model, we generated clonal CLT ES cells from CLT embryos and injected them into RAG2-deficient blastocysts to generate chimeric mice, which like germline CLT mice harbor splenic CLT B cells and lack T cells. CLT chimeric mice generated by this RAG2-deficient blastocyst complementation (“RDBC”) approach die rapidly in association with B-cell lymphoproliferation and lymphoma. As CLT lymphomas routinely express the Activation-Induced Cytidine Deaminase (AID) antibody diversifier, we tested potential AID roles by eliminating the AID gene in CLT ES cells and testing them via RDBC. We found that CLT and AID-deficient CLT ES chimeras had indistinguishable phenotypes, showing that AID is not essential for LMP1-induced lymphomagenesis. Beyond expanding accessibility and utility of CLT mice as a cancer immunotherapy model, our studies provide a new approach for facilitating generation of genetically complex mouse cancer models. PMID:25934172

  1. 阻断氯通道对人喉癌Hep-2细胞增殖及其RNA编辑酶1表达的影响%Effects of Blocking Chloride Channel on Proliferation and Expression of RNA-dependent Adenosine Deaminase 1 for Human Larynx Cancer Hep-2 Cell

    Institute of Scientific and Technical Information of China (English)

    余文发; 赵玉林; 董明敏

    2008-01-01

    目的 研究氯离子通道阻断荆5-硝基-2-(3-苯丙氨基)苯甲酸(NPPB)对人喉癌细胞系Hep-2细胞增殖及其RNA编辑酶1(RNA-dependent adenosine deaminase 1,ADARI)表达的影响.方法 以HeD-2细胞为研究对象,采用四甲基偶氮唑蓝(MTT)比色法检测NPPB对Hep-2细胞增殖的影响;用逆转录一聚合酶链反应(RT-PCR)检测氯通道阻断前后Hep-2细胞ADARI mRNA表达的变化.结果 NPPB浓度依赖性地抑制Hep-2细胞增殖,NPPB阻断Hep-2氯通道前后ADARl mRNA表达量存在显著性差异.结论 阻断Hep-2细胞氯通道,可抑制Hep-2细胞增殖;Hep-2细胞RNA编辑酶1的表达可能和氯通道密切相关.

  2. AKT/SGK-sensitive phosphorylation of GSK3 in the regulation of L-selectin and perforin expression as well as activation induced cell death of T-lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Bhavsar, Shefalee K.; Merches, Katja; Bobbala, Diwakar [Department of Physiology, University of Tuebingen (Germany); Lang, Florian, E-mail: florian.lang@uni-tuebingen.de [Department of Physiology, University of Tuebingen (Germany)

    2012-08-17

    Highlights: Black-Right-Pointing-Pointer Akt/SGK dependent phosphorylation of GSK3{alpha},{beta} regulates T lymphocytes. Black-Right-Pointing-Pointer T cells from mice expressing Akt/SGK insensitive GSK3{alpha},{beta} (gsk3{sup KI}) release less IL-2. Black-Right-Pointing-Pointer CD4{sup +} cells from gsk3{sup KI} mice express less CD62L. Black-Right-Pointing-Pointer CD8{sup +} cells from gsk3{sup KI} mice are relatively resistant to activation induced cell death. Black-Right-Pointing-Pointer Perforin expression is enhanced in gsk3{sup KI} T cells. -- Abstract: Survival and function of T-lymphocytes critically depends on phosphoinositide (PI) 3 kinase. PI3 kinase signaling includes the PKB/Akt and SGK dependent phosphorylation and thus inhibition of glycogen synthase kinase GSK3{alpha},{beta}. Lithium, a known unspecific GSK3 inhibitor protects against experimental autoimmune encephalomyelitis. The present study explored, whether Akt/SGK-dependent regulation of GSK3 activity is a determinant of T cell survival and function. Experiments were performed in mutant mice in which Akt/SGK-dependent GSK3{alpha},{beta} inhibition was disrupted by replacement of the serine residue in the respective SGK/Akt-phosphorylation consensus sequence by alanine (gsk3{sup KI}). T cells from gsk3{sup KI} mice were compared to T cells from corresponding wild type mice (gsk3{sup WT}). As a result, in gsk3{sup KI} CD4{sup +} cells surface CD62L (L-selectin) was significantly less abundant than in gsk3{sup WT} CD4{sup +} cells. Upon activation in vitro T cells from gsk3{sup KI} mice reacted with enhanced perforin production and reduced activation induced cell death. Cytokine production was rather reduced in gsk3{sup KI} T cells, suggesting that GSK3 induces effector function in CD8{sup +} T cells. In conclusion, PKB/Akt and SGK sensitive phosphorylation of GSK3{alpha},{beta} is a potent regulator of perforin expression and activation induced cell death in T lymphocytes.

  3. Natural variation in Vif: differential impact on APOBEC3G/3F and a potential role in HIV-1 diversification.

    Directory of Open Access Journals (Sweden)

    Viviana Simon

    2005-09-01

    Full Text Available The HIV-1 Vif protein counteracts the antiviral activity exhibited by the host cytidine deaminases APOBEC3G and APOBEC3F. Here, we show that defective vif alleles can readily be found in HIV-1 isolates and infected patients. Single residue changes in the Vif protein sequence are sufficient to cause the loss of Vif-induced APOBEC3 neutralization. Interestingly, not all the detected defects lead to a complete inactivation of Vif function since some mutants retained selective neutralizing activity against APOBEC3F but not APOBEC3G or vice versa. Concordantly, independently hypermutated proviruses with distinguishable patterns of G-to-A substitution attributable to cytidine deamination induced by APOBEC3G, APOBEC3F, or both enzymes were present in individuals carrying proviruses with completely or partly defective Vif variants. Natural variation in Vif function may result in selective and partial neutralization of cytidine deaminases and thereby promote viral sequence diversification within HIV-1 infected individuals.

  4. Natural Variation in Vif: Differential Impact on APOBEC3G/3F and a Potential Role in HIV-1 Diversification.

    Directory of Open Access Journals (Sweden)

    2005-09-01

    Full Text Available The HIV-1 Vif protein counteracts the antiviral activity exhibited by the host cytidine deaminases APOBEC3G and APOBEC3F. Here, we show that defective vif alleles can readily be found in HIV-1 isolates and infected patients. Single residue changes in the Vif protein sequence are sufficient to cause the loss of Vif-induced APOBEC3 neutralization. Interestingly, not all the detected defects lead to a complete inactivation of Vif function since some mutants retained selective neutralizing activity against APOBEC3F but not APOBEC3G or vice versa. Concordantly, independently hypermutated proviruses with distinguishable patterns of G-to-A substitution attributable to cytidine deamination induced by APOBEC3G, APOBEC3F, or both enzymes were present in individuals carrying proviruses with completely or partly defective Vif variants. Natural variation in Vif function may result in selective and partial neutralization of cytidine deaminases and thereby promote viral sequence diversification within HIV-1 infected individuals.

  5. Experimental study of possible involvement of some apoptosis mechanisms in pathogenesis of the HIV infection: 2. The CD4+ T lymphocytes depletion in the HIV infection occurs through activation-induced apoptosis.

    Science.gov (United States)

    Topârceanu, F; Bârnaure, F; Iucu, C T; Spulbăr, E; Pătru, C

    1999-01-01

    The present work is a part of a complex experimental study aimed at the demonstration of the two previously published hypotheses regarding the involvement of apoptosis in general in the viral infection and especially in HIV infection (1). Our researches have shown that the significant lowering of the number of peripheral CD4+ T lymphocytes in HIV-infected children is associated with a marked increase of the soluble interleukin 2-receptor (sIL2-R)# concentration, in comparison with HIV-negative, healthy or acute infections exhibiting controls. As sIL-2R is a circulating marker of cell activation, we investigated the role of monocytes (antigen-presenting cells) in the viability of peripheral lymphocytes isolated from HIV-infected children in comparison with the controls. Lymphocytes cultivation in the absence and in the presence of autologous monocytes led to the following conclusions: 1) freshly isolated lymphocytes from HIV-positive individuals undergo an accelerated spontaneous apoptosis in comparison with that of lymphocytes isolated from HIV-negative individuals: 2) the normal antiapoptotic effect of monocytes on lymphocytes diminishes gradually in the HIV infection, changing into a proapoptotic effect, corresponding to the sIL-2R augmentation to increasingly higher values. Our results show that peripheral CD4+ T-lymphocyte depletion in HIV infection occurs through apoptosis and the activation-induced cell death is one of the possible apoptosis mechanisms.

  6. Interactions between HIV-1 Vif and human ElonginB-ElonginC are important for CBF-β binding to Vif

    OpenAIRE

    Wang, Xiaodan; Wang, Xiaoying; Zhang, Haihong; Lv, Mingyu; Zuo, Tao; Wu, Hui; Wang, Jiawen; Liu, Donglai; Wang, Chu; ZHANG, Jingyao; Li, Xu; Wu, Jiaxin; Yu, Bin; Kong, Wei; Yu, Xianghui

    2013-01-01

    Background The HIV-1 accessory factor Vif is necessary for efficient viral infection in non-permissive cells. Vif antagonizes the antiviral activity of human cytidine deaminase APOBEC3 proteins that confer the non-permissive phenotype by tethering them (APOBEC3DE/3F/3G) to the Vif-CBF-β-ElonginB-ElonginC-Cullin5-Rbx (Vif-CBF-β-EloB-EloC-Cul5-Rbx) E3 complex to induce their proteasomal degradation. EloB and EloC were initially reported as positive regulatory subunits of the Elongin (SIII) comp...

  7. Hydrodynamic and Functional Analysis of HIV-1 Vif Oligomerization

    OpenAIRE

    Stephen M Techtmann; Ghirlando, Rodolfo; Kao, Sandra; Strebel, Klaus; Maynard, Ernest L.

    2012-01-01

    HIV-1 Vif is an accessory protein that induces the proteasomal degradation of the host restriction factor, apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G (APOBEC3G). The N-terminal half of Vif binds to APOBEC3G and the C-terminal half binds to subunits of a cullin-5-based ubiquitin ligase. This Vif-directed ubiquitin ligase induces the degradation of APOBEC3G (a cytidine deaminase), and thereby protects the viral genome from mutation. A conserved PPLP motif near the C term...

  8. HIV-1 accessory proteins: Vpu and Vif.

    Science.gov (United States)

    Andrew, Amy; Strebel, Klaus

    2014-01-01

    HIV-1 Vif and Vpu are accessory factors involved in late stages of viral replication. Vif regulates viral infectivity by preventing virion incorporation of APOBEC3G and other members of the family of cytidine deaminases, while Vpu causes degradation of CD4 and promotes virus release by functionally inactivating the host factor BST-2. This chapter described techniques used for the characterization of Vif and Vpu and their functional interaction with host factors. Many of the techniques are, however, applicable to the functional analysis of other viral proteins.

  9. Distinct determinants in HIV-1 Vif and human APOBEC3 proteins are required for the suppression of diverse host anti-viral proteins.

    Directory of Open Access Journals (Sweden)

    Wenyan Zhang

    Full Text Available BACKGROUND: APOBEC3G (A3G and related cytidine deaminases of the APOBEC3 family of proteins are potent inhibitors of many retroviruses, including HIV-1. Formation of infectious HIV-1 requires the suppression of multiple cytidine deaminases by Vif. HIV-1 Vif suppresses various APOBEC3 proteins through the common mechanism of recruiting the Cullin5-ElonginB-ElonginC E3 ubiquitin ligase to induce target protein polyubiquitination and proteasome-mediated degradation. The domains in Vif and various APOBEC3 proteins required for APOBEC3 recognition and degradation have not been fully characterized. METHODS AND FINDINGS: In the present study, we have demonstrated that the regions of APOBEC3F (A3F that are required for its HIV-1-mediated binding and degradation are distinct from those reported for A3G. We found that the C-terminal cytidine deaminase domain (C-CDD of A3F alone is sufficient for its interaction with HIV-1 Vif and its Vif-mediated degradation. We also observed that the domains of HIV-1 Vif that are uniquely required for its functional interaction with full-length A3F are also required for the degradation of the C-CDD of A3F; in contrast, those Vif domains that are uniquely required for functional interaction with A3G are not required for the degradation of the C-CDD of A3F. Interestingly, the HIV-1 Vif domains required for the degradation of A3F are also required for the degradation of A3C and A3DE. On the other hand, the Vif domains uniquely required for the degradation of A3G are dispensable for the degradation of cytidine deaminases A3C and A3DE. CONCLUSIONS: Our data suggest that distinct regions of A3F and A3G are targeted by HIV-1 Vif molecules. However, HIV-1 Vif suppresses A3F, A3C, and A3DE through similar recognition determinants, which are conserved among Vif molecules from diverse HIV-1 strains. Mapping these determinants may be useful for the design of novel anti-HIV inhibitors.

  10. APOBEC3 proteins can copackage and comutate HIV-1 genomes

    OpenAIRE

    Desimmie, Belete A.; Burdick, Ryan C.; Izumi, Taisuke; Doi, Hibiki; Shao, Wei; Alvord, W. Gregory; Sato, Kei; Koyanagi, Yoshio; Jones, Sara; Wilson, Eleanor; Hill, Shawn; Maldarelli, Frank; Hu, Wei-Shau; Pathak, Vinay K.

    2016-01-01

    Although APOBEC3 cytidine deaminases A3G, A3F, A3D and A3H are packaged into virions and inhibit viral replication by inducing G-to-A hypermutation, it is not known whether they are copackaged and whether they can act additively or synergistically to inhibit HIV-1 replication. Here, we showed that APOBEC3 proteins can be copackaged by visualization of fluorescently-tagged APOBEC3 proteins using single-virion fluorescence microscopy. We further determined that viruses produced in the presence ...

  11. Host Restriction of Lentiviruses and Viral Countermeasures: APOBEC3 and Vif

    Directory of Open Access Journals (Sweden)

    Valgerdur Andrésdóttir

    2013-07-01

    Full Text Available It is becoming increasingly clear that organisms have developed a variety of mechanisms to fight against viral infection. The viruses have developed means of counteracting these defences in various ways. The APOBEC3 proteins are a mammalian-specific family of nucleic acid cytidine deaminases that block retroviral infection. These inhibitors are counteracted by the Vif proteins encoded by most lentiviruses. In this paper, we will review the interaction of the lentiviral Vif proteins with the APOBEC3 proteins, with an emphasis on sheep APOBEC3 and maedi-visna virus (MVV Vif.

  12. Cloning and verification of the Lactococcus lactis pyrG gene and characterization of the gene product, CTP synthase

    DEFF Research Database (Denmark)

    Wadskov-Hansen, Steen Lyders Lerche; Willemoës, M.; Martinussen, Jan

    2001-01-01

    The pyrG gene of Lactococcus lactis subsp. cremoris, encoding CTP synthase, has been cloned and sequenced. It is flanked upstream by an open reading frame showing homology to several aminotransferases and downstream by an open reading frame of unknown function. L. lactis strains harboring disrupted...... of a functional cdd gene encoding cytidine deaminase. A characterization of the enzyme revealed similar properties as found for CTP synthases from other organisms. However, unlike the majority of CTP synthases the lactococcal enzyme can convert dUTP to dCTP, although a half saturation concentration of 0.6 m...

  13. A-to-I editing of protein coding and noncoding RNAs.

    Science.gov (United States)

    Mallela, Arka; Nishikura, Kazuko

    2012-01-01

    Adenosine deaminase acting on RNA (ADAR) catalyzes the hydrolytic deamination of adenosine to inosine in double-stranded RNA (dsRNA) substrates. Inosine pairs preferentially with cytidine, as opposed to uridine; therefore, ADAR editing alters the sequence and base pairing properties of both protein-coding and non-coding RNA. Editing can directly alter the sequence of protein-coding transcripts and modify splicing, or affect a variety of non-coding targets, including microRNA, small interfering RNA, viral transcripts, and repeat elements such as Alu and LINE. Such editing has a wide range of physiological effects, including modification of targets in the brain and in disease states.

  14. Activity and immunohistochemical localization of porphobilinogen deaminase in rat tissues

    DEFF Research Database (Denmark)

    Jørgensen, P E; Erlandsen, E J; Poulsen, Steen Seier

    2000-01-01

    the PBGD activity becomes insufficient as a result of an increased synthesis of heme in the liver. How this affects the nervous tissue is still unknown. It may well be that a reduced activity of PBGD in other tissues than the liver is of importance too. The aim of the present study was to examine...

  15. Evaluating of Serum Adenosine Deaminase Isoenzymes in Lung Contusion

    Directory of Open Access Journals (Sweden)

    Berrak Güven

    2013-05-01

    Full Text Available       Aim: We aimed to investigate the activity of ADA isoenzymes in serum of rats with lung contusion Material and Method: Lung contusion was induced in twelve male wistar albino rats by dropping a cylindrical weight from a height of 50 cm with a mobile platform positioned over the thorax. Rats were killed at 24 hour (n=6 and 72 hour (n=6 after contusion. ADA isoenzymes were measured in serum traumatic and control (n=6 (uninjured rats. Results: Our results indicated that serum total ADA activities were significantly decreased at 72 h after contusion. There was a significant decreased in ADA1 activity at 24 and 72 h after contusion when compared with controls. On the other hand, the increase in the ADA2 activity at 24 h and 72 h was not statistically significant. Discussion: In conclusion, serum ADA2 became predominant isozyme because of the inflammatory response in the lung contusion. However, further studies are needed to elucidate the regulatory mechanisms that effect the activity of serum ADA1.

  16. Evaluating of Serum Adenosine Deaminase Isoenzymes in Lung Contusion

    OpenAIRE

    2013-01-01

          Aim: We aimed to investigate the activity of ADA isoenzymes in serum of rats with lung contusion Material and Method: Lung contusion was induced in twelve male wistar albino rats by dropping a cylindrical weight from a height of 50 cm with a mobile platform positioned over the thorax. Rats were killed at 24 hour (n=6) and 72 hour (n=6) after contusion. ADA isoenzymes were measured in serum traumatic and control (n=6) (uninjured) rats. Results: Our results indica...

  17. Analysis of cerebrospinal fluid adenosine deaminase levels in meningitis

    Directory of Open Access Journals (Sweden)

    Vyankatesh T. Anchinmane

    2016-09-01

    Results: The mean ADA levels in CSF were highest in TBM patients as compared to PM and AM. The sensitivity, specificity and accuracy of ADA were 96.15%, 92% and 94.11% respectively for detection TBM cases from non-tuberculous meningitis cases. Conclusions: Since ADA test is simple, rapid and inexpensive, it can be used as rapid diagnostic test for differential diagnosis of CSF and confirmation of TBM cases. [Int J Res Med Sci 2016; 4(9.000: 3855-3857

  18. Maintaining Genome Stability: The Role of Helicases and Deaminases

    Science.gov (United States)

    2008-07-01

    and recovery. Trends Cell Biol. 16: 285–292. Keogh, M. C., T. A. Mennella, C. Sawa , S. Berthelet, N. J. Krogan et al., 2006 The Saccharomyces cerevisiae... Ishii , J. M. Sun, M. J. Pazin, J. R. Davie et al., 2006 Histone H4–K16 acetylation controls chromatin structure and protein interactions. Science 311

  19. Significance of serum adenosine deaminase and liver fibrosis associated biomarkers in patients with hepatitis B%乙型肝炎患者血清腺苷酸脱氨酶与肝纤维化血清标志物测定的意义

    Institute of Scientific and Technical Information of China (English)

    蔡坤; 王福利

    2014-01-01

    目的:探讨乙型肝炎患者血清腺苷酸脱氨酶( ADA)与肝纤维化血清标志物透明质酸( HA)、层黏蛋白( LN)、IV型胶原( C IV)及Ⅲ型前胶原( PC Ⅲ)检测的意义。方法:选择2011年8月至2012年12月海南省人民医院收治的30例乙型肝炎住院患者作为观察组,同期38例健康体检者为正常对照组,分别检测两组血清ADA活性,HA、LN、C 1V、PC Ⅲ水平。结果:观察组患者血清ADA活性,HA、LN、C IV、PC Ⅲ水平明显高于正常对照组,两组比较,差异有统计学意义( P<0.01)。结论:测定乙型肝炎患者血清ADA的活性与HA、LN、C IV、PCⅢ水平的变化,既能了解乙型肝炎患者肝脏损伤程度,又能反映肝纤维化趋势,对乙型肝炎患者肝纤维化早期进行诊断、治疗,减少肝硬化的发生及预后判断有着重要的临床意义。%Objective:To investigate the clinical significance of serum adenosine deaminase ( ADA ) and liver fibrosis associated biomarkers, including hyaluronic acid ( HA) . Laminin ( LN) , type IV collagen ( C IV) and type Ⅲ pre collagen ( PC Ⅲ) in patients with hepatitis B. Methods: Between August 2011 and December 2012, we recruited 30 patients with hepatitis B ( observation group) and 38 healthy subjects ( control group) who underwent health check up in Hainan People’ s Hospital. The levels of serum ADA, HA, LN, C 1V and PCⅢwere assayed. Results:The observation group yielded markedly higher levels of serum ADA activity, HA, LN, C IV and PC Ⅲ ( all P<0.01) compared with control group. Conclusion:The assay of serum ADA activity and changes in the levels of HA, LN, C IV and PC Ⅲ may help determine the magnitude of hepatic injury and the trends towards liver fibrosis in patients with hepatitis B. These measurements should be considered as worthwhile for early diagnosis and treatment of liver fibrosis in hepatitis B and may be associated with reduced incidence rate of liver cirrhosis and improved prognosis.

  20. Adenosine deaminase deficiency associated severe combined immunodeficiency with disseminated varicella infection after vaccination: a case report%腺苷脱氨酶缺陷重症联合免疫缺陷伴疫苗接种后播散性水痘感染一例

    Institute of Scientific and Technical Information of China (English)

    张维溪; 赵伟

    2008-01-01

    Objective To enhance the knowledge of adenosine deaminase (ADA) deficiency associated severe combined immunodeficiency (SCID) with disseminated varicella infection after vaccination.Methods With case report and review of literature,the background knowledge,clinical and laboratory findings,diagnosis and treatment of ADA-deficient SCID were discussed.Results The patient had the condition with failure to thrive.The main complaint was more than three weeks of fever and rash.He had received the live attenuated Oka strain varicella vaccination approximately two weeks before the onset of rash.Varicella infection was confirmed with direct immunofluorescence assay. The patient had mild leukoponia,with 3% lymphocytes.The initial immunologic workup included decreased IgG,IgM and IgA,abnormal expanded lymphocyte enumeration which confirmed the reduction of CD3,CD4,CD8,CD19 and CD56.Enzyme testing for ADA activity showed remarkably low level in the hemolysate,as well as increased levels of deoxyadenosine nucleotides.Conclusion ADA-deficient SCID has some characteristic clinical and laboratory findings. Management options for ADA-deficient SCID include hematopoietic stem cell transplantation,enzyme replacement therapy and gene therapy.Immunodeficiency should be considered in children with severe failure-w-thrive. Live"vaccine administration should be avoided in patients with immunodeficiency.%目的 提高对腺苷脱氨酶(ADA)缺陷重症联合免疫缺陷(SCID)及疫苗接种后播散性水痘感染的认识.方法 结合1例ADA缺陷SCID伴疫苗接种后播散性水痘感染的临床资料和文献复习,探讨ADA缺陷SCID背景知识、临床表现、诊断和治疗.结果 患儿存在生长停滞情况,以发热、皮疹3周余入院,出皮疹前两周曾接种水痘疫苗,水痘直接免疫荧光试验阳性,血液常规检查淋巴细胞比例和绝对值(105×106/L)明显降低,IgG(1520 ms/L)、IgM(250 mg/L)和IgA(102 ms/L)显著降低,淋巴细胞亚群CD3、CD4

  1. The correlation study of hydrothorax adenosine deaminase activity and age of patients with tuberculous pleuritis%结核性胸膜炎胸腔积液腺苷脱氨酶活性与年龄的相关性研究

    Institute of Scientific and Technical Information of China (English)

    邹兴武; 陈园园; 金春

    2015-01-01

    目的 研究结核性胸膜炎胸腔积液腺苷脱氨酶(adenosine deaminase,ADA)活性与年龄的相关性,为临床诊断提供参考.方法 选取2008年3月1日至2013年3年31日本院诊治的结核性胸膜炎患者248例为研究对象,按年龄段分组,分别测定各组患者胸腔积液ADA活性,分析其与年龄的相关性.结果 20~29岁、30~39岁、40~49岁、50~59岁、60~69岁、70~79岁、≥80岁组患者胸腔积液ADA活性分别为(64.0±18.4)、(62.0±19.0)、(59.0±17.6)、(50.0±14.5)、(52.8±14.0)、(39.1±12.0)、(41.9±32.8) U/L,年龄相差越大,胸腔积液ADA活性差别越大(F=24.381,P=0.000);≥50岁以上组患者的胸腔积液ADA活性与20~29岁组相比均具有显著差异(P< 0.05);年龄与胸腔积液ADA活性呈负相关(r=-0.942);胸腔积液ADA活性>45U/L为诊断结核性胸膜炎的临界值,20~29岁、30~39岁、40~49岁、50~59岁、60~69岁、70~79岁、≥80岁组的诊断灵敏度分别为91.59%、93.18%、90.63%、82.61%、66.67%、53.85和45.45%,组间差异显著(P<0.05).结论 结核性胸膜炎胸腔积液ADA活性与年龄呈负相关,年龄是ADA活性的影响因素之一,对不同年龄段的患者选取不同的ADA临界值来诊断结核胸膜炎可降低漏诊率和误诊率.

  2. Diagnostic Value of Adenosine Deaminase and Tuberculosis Antibody Detection in Diabetes Complicated with Pulmonary Tuberculosis%腺苷脱氨酶及结核抗体在糖尿病合并肺结核诊断中的价值

    Institute of Scientific and Technical Information of China (English)

    夏家安; 陈兆辉; 吴美容; 陈华

    2011-01-01

    目的 评价腺苷脱氨酶和结核抗体检测用于辅助诊断糖尿病合并肺结核的价值.方法 对116例糖尿病合并肺结核患者、133例糖尿病合并非结核肺部感染患者以及120例健康人群的血清腺苷脱氨酶(ADA)、结核抗体(TB-Ab)进行检测并分析.结果 糖尿病合并肺结核患者血清ADA水平(22.7±7.3 u/L)和阳性率(70.3%)明显高于其它两组,均有显著性差异(P<0.01).糖尿病合并肺结核患者TB-Ab阳性率(71.5%)较糖尿病合并非结核肺部感染患者(8.5%)和健康人群对照组(7.5%)有显著性差异(P<0.01).结论 ADA和TB-Ab联合检测对于辅助诊断糖尿病合并肺结核特别是结核症状不典型的病例有一定价值.%Object To Evaluate value of adenosine deaminase (ADA) and tuberculosis antibody (TB-Ab) detection in diagnosis of diabetes complicated with pulmonary tuberculosis. Methods Serum ADA, TB-Ab were detected among 116 patients with diabetes complicated with pulmonary tuberculosis, 133 patients with diabetes without tuberculosis pneumonia and 120 health control. Results ADA level( 10. 7 ± 3.3u/L) and positive ratio (20. 3% ) in diabetes without tuberculosis l pneumonia is higher (P < 0. 05 ) than normal controls (5.2 ± i. 6u/L and 1.7% ), and even higher (P <0. 01 ) in diabetes complicated with pulmonary tuberculosis (22. 7 ±7. 3u/L and 70. 3% ). They are significantly differ from each other. TB-Ab positive ratio in diabetes complicated with pulmonary tuberculosis (71.5%) is significant higher (P <0. 01 ) than individual without tuberculosis (7. 5% in normal control and 8. 5% in diabetes). And Serum ADA, TB-Ab both detected positive among patients with diabetes complicated with pulmonary tuberculosis, ADA level is 25.95 ± 10. 9 u/L. Conclusion Simultaneous detection of ADA and TB-Ab is valuable for diagnosis of diabetes complicated with tuberculosis, especially those with no classic tuberculosis.

  3. 胞嘧啶脱氨酶/5-氟胞嘧啶自杀基因治疗系统对恶性脑胶质瘤荷瘤裸鼠的抗肿瘤作用%Antitumor efficacy of cytosine deaminase/5-fluorocytosine suicide gene therapy system against Inalignant gliomas in nude mice

    Institute of Scientific and Technical Information of China (English)

    吕胜青; 张克斌; 刘学强; 尹昌林; 邱克军; Eric E.ZHANG; 杨辉

    2008-01-01

    Objective To explore the anfitumor efficacy of cytosine deaminase/5-fluoroeytosine (CD/5-FC) suicide gene therapy system against malignant gliomas. Methods CD gene was transferred into U251 malignant glioma cell line using Lipofeetamine20OOTM-mediated method. The U251 and U251/ CD cells were seeded into the subcutaneous flank of the nude mice. After tumors appeared,5-FC (500 rag/ kg · day) was subsequently intraperitoneally injected for 10 days. The mice were sacrificed after 8 weeks, the volume and weight of tumors were evaluated. At the same time, the pathological features were analyzed for the tumor samples. Results The CD gene was successfully transferred into the U251 ceils. The in vivo animal data showed that the volume and weight of these implanted tumors were dramatically decreased from ( 1.81± 0.77) cm3 to (0.09± 0.03 )cm3, and from ( 1.63 ± 0.80) g to (0.28±0.11 ) g, respectively. Morphological observation found cell apoptosis and tumor necrosis in the transfected group. Coudusion These results indicate that the CD/5-FC suicide gene therapy system may serve as one of the main adjuvant strategies in the treatment of malignant gliomas in the future.%目的 评判胞嘧啶脱氨酶/5-氟胞嘧啶(CD/5-FC)自杀基因治疗系统对恶性脑胶质瘤的抗肿瘤效果.方法 采用Lipofectamine2000TM脂质体介导方法将CD基因转染17251恶性胶质瘤细胞系,并接种于裸鼠前臂皮下,成瘤后腹腔注射5-FC(每13500mg/kg体重)10 d,观察荷瘤鼠肿瘤的生长情况,8周后比较转染组与对照组肿瘤的体积与重量,并进行病理形态学分析.结果 U251细胞获得CD基因的成功转染,5-FC用于不同组别荷瘤裸鼠,8周后转染组肿瘤体积(0.09±0.03)cm3和重量(0.28±0.11)g明显小于对照组(1.81±0.77)cm3和(1.63±0.80)g;形态学揭示转染组肿瘤细胞出现明显的凋亡与坏死.结论 裸鼠在体实验研究表明:CD/5-FC自杀基因治疗系统是治疗恶性脑胶质瘤行之有效的手段之一.

  4. Crystal structure of the anti-viral APOBEC3G catalytic domain and functional implications

    Energy Technology Data Exchange (ETDEWEB)

    Holden, Lauren G.; Prochnow, Courtney; Chang, Y. Paul; Bransteitter, Ronda; Chelico, Linda; Sen, Udayaditya; Stevens, Raymond C.; Goodman, Myron F.; Chen, Xiaojiang S. (USC); (Scripps)

    2009-04-07

    The APOBEC family members are involved in diverse biological functions. APOBEC3G restricts the replication of human immunodeficiency virus (HIV), hepatitis B virus and retroelements by cytidine deamination on single-stranded DNA or by RNA binding. Here we report the high-resolution crystal structure of the carboxy-terminal deaminase domain of APOBEC3G (APOBEC3G-CD2) purified from Escherichia coli. The APOBEC3G-CD2 structure has a five-stranded {beta}-sheet core that is common to all known deaminase structures and closely resembles the structure of another APOBEC protein, APOBEC2. A comparison of APOBEC3G-CD2 with other deaminase structures shows a structural conservation of the active-site loops that are directly involved in substrate binding. In the X-ray structure, these APOBEC3G active-site loops form a continuous 'substrate groove' around the active centre. The orientation of this putative substrate groove differs markedly (by 90 degrees) from the groove predicted by the NMR structure. We have introduced mutations around the groove, and have identified residues involved in substrate specificity, single-stranded DNA binding and deaminase activity. These results provide a basis for understanding the underlying mechanisms of substrate specificity for the APOBEC family.

  5. Study on the cytosine deaminases expression in human immunodeficiency virus-1 infected patients%人类免疫缺陷病毒-1感染者胞嘧啶脱氨基酶家族表达水平分析

    Institute of Scientific and Technical Information of China (English)

    王珍燕; 江雪艳; 张云智; 卢洪洲

    2010-01-01

    Objective To quantitatively investigate the expression levels of the cytosine deaminases,hA3B,hA3F and hA3G in peripheral blood mononuclear cell(PBMC)of human immunodeficiency virus(HIV)infected patients and to analyze the correlation between cytosine deaminases expression and CD4~+ T lymphocyte counts. Methods Peripheral blood samples were collected from 21 HIV-infected subjects who didn't take antiretroviral therapy(ART-),21 HIV-infected subjects receiving ART(ART+),and 10 HIV-uninfected subjects. PBMC were isolated by Ficoll density gradient centrifugation, followed by RNA extraction and cDNA synthesis.hA3B,hA3F and hA3G mRNA levels were determined by real-time fluorescent quantitative polymerase chain reaction(PCR).CD4~+ T lymphocyte counts were determined using flow cytometry. Data were analyzed by t test, t' test or Wilcoxon rank sum test. Results In HIV-infected subjects without or with ART,HIV-uninfected subjects, the levels of hA3B mRNA were 208.4,365.2 and 563.6,hA3F mRNA were 245.5,316.6 and 442.9,hA3G mRNA were 404.6,360.8 and 638.6,respectively.hA3G mRNA level in HIV-infected subjects was lower than that in HIV-uninfected controls(P=0.0131),but there was no statistical difference between ART+ and ART-groups(P=0.7342).There were no correlations between hA3B,hA3F and hA3G mRNA levels and CD4+ T lymphocyte counts in either ART-or ART+HIV-infected subjects(ART-:r=-0.0104,r=-0.0545,r=0.1623,all P>0.05;ART+:r=0.3220,r=0.2193,r=0.1455,all P>0.05).In addition,hA3B,hA3F and hA3G mRNA levels were positively correlated with one another in ART-HIV-infected subjects and HIV-uninfected controls(P<0.05),but not in ART-HIV-infected subjects(P>0.05).Conclusions hA3B,hA3F and hA3G expression levels do not directly correlate with CD4~+ T lymphocyte counts in HIV-1-infected patients,hA3B,hA3F and hA3G expression levels in PBMCs tend to he decreased after HIV-1 infection, and ART may increase hA3B and hA3F mRNA expression.%目的 定量研究HIV-1感染者外周

  6. Genomic uracil and human disease

    DEFF Research Database (Denmark)

    Hagen, Lars; Pena Diaz, Javier; Kavli, Bodil;

    2006-01-01

    , mutations resulting from uracil in DNA are prevented by error-free base excision repair. However, in B-cells uracil in DNA is also a physiological intermediate in acquired immunity. Here, activation-induced cytosine deaminase (AID) introduces template uracils that give GC to AT transition mutations...

  7. Immunoglobulin genes: generating diversity with AID and UNG.

    Science.gov (United States)

    Storb, Ursula; Stavnezer, Janet

    2002-10-29

    Somatic hypermutation and switch recombination of immunoglobulin genes require the activity of the activation-induced deaminase, AID. Recent studies of mice deficient for the uracil-DNA glycosylase UNG, which removes U from DNA, suggest that AID catalyses the deamination of dC to dU during antibody diversification.

  8. Non-canonical uracil processing in DNA gives rise to double-strand breaks and deletions

    DEFF Research Database (Denmark)

    Bregenhorn, Stephanie; Kallenberger, Lia; Artola-Borán, Mariela;

    2016-01-01

    During class switch recombination (CSR), antigen-stimulated B-cells rearrange their immunoglobulin constant heavy chain (CH) loci to generate antibodies with different effector functions. CSR is initiated by activation-induced deaminase (AID), which converts cytosines in switch (S) regions, repet...... choice in DSB repair. Given its amenability to manipulation, our system represents a powerful tool for the molecular dissection of CSR....

  9. HIV-1 Vif, APOBEC, and Intrinsic Immunity

    Directory of Open Access Journals (Sweden)

    Strebel Klaus

    2008-06-01

    Full Text Available Abstract Members of the APOBEC family of cellular cytidine deaminases represent a recently identified group of proteins that provide immunity to infection by retroviruses and protect the cell from endogenous mobile retroelements. Yet, HIV-1 is largely immune to the intrinsic antiviral effects of APOBEC proteins because it encodes Vif (viral infectivity factor, an accessory protein that is critical for in vivo replication of HIV-1. In the absence of Vif, APOBEC proteins are encapsidated by budding virus particles and either cause extensive cytidine to uridine editing of negative sense single-stranded DNA during reverse transcription or restrict virus replication through deaminase-independent mechanisms. Thus, the primary function of Vif is to prevent encapsidation of APOBEC proteins into viral particles. This is in part accomplished by the ability of Vif to induce the ubiquitin-dependent degradation of some of the APOBEC proteins. However, Vif is also able to prevent encapsidation of APOBEC3G and APOBEC3F through degradation-independent mechanism(s. The goal of this review is to recapitulate current knowledge of the functional interaction of HIV-1 and its Vif protein with the APOBEC3 subfamily of proteins and to summarize our present understanding of the mechanism of APOBEC3-dependent retrovirus restriction.

  10. Enzyme catalysis by entropy without Circe effect.

    Science.gov (United States)

    Kazemi, Masoud; Himo, Fahmi; Åqvist, Johan

    2016-03-01

    Entropic effects have often been invoked to explain the extraordinary catalytic power of enzymes. In particular, the hypothesis that enzymes can use part of the substrate-binding free energy to reduce the entropic penalty associated with the subsequent chemical transformation has been very influential. The enzymatic reaction of cytidine deaminase appears to be a distinct example. Here, substrate binding is associated with a significant entropy loss that closely matches the activation entropy penalty for the uncatalyzed reaction in water, whereas the activation entropy for the rate-limiting catalytic step in the enzyme is close to zero. Herein, we report extensive computer simulations of the cytidine deaminase reaction and its temperature dependence. The energetics of the catalytic reaction is first evaluated by density functional theory calculations. These results are then used to parametrize an empirical valence bond description of the reaction, which allows efficient sampling by molecular dynamics simulations and computation of Arrhenius plots. The thermodynamic activation parameters calculated by this approach are in excellent agreement with experimental data and indeed show an activation entropy close to zero for the rate-limiting transition state. However, the origin of this effect is a change of reaction mechanism compared the uncatalyzed reaction. The enzyme operates by hydroxide ion attack, which is intrinsically associated with a favorable activation entropy. Hence, this has little to do with utilization of binding free energy to pay the entropic penalty but rather reflects how a preorganized active site can stabilize a reaction path that is not operational in solution.

  11. Focused examination of the intestinal lamina propria yields greater molecular insight into mechanisms underlying SIV induced immune dysfunction.

    Directory of Open Access Journals (Sweden)

    Mahesh Mohan

    Full Text Available BACKGROUND: The Gastrointestinal (GI tract is critical to AIDS pathogenesis as it is the primary site for viral transmission and a major site of viral replication and CD4(+ T cell destruction. Consequently GI disease, a major complication of HIV/SIV infection can facilitate translocation of lumenal bacterial products causing localized/systemic immune activation leading to AIDS progression. METHODOLOGY/PRINCIPAL FINDINGS: To better understand the molecular mechanisms underlying GI disease we analyzed global gene expression profiles sequentially in the intestine of the same animals prior to and at 21 and 90d post SIV infection (PI. More importantly we maximized information gathering by examining distinct mucosal components (intraepithelial lymphocytes, lamina propria leukocytes [LPL], epithelium and fibrovascular stroma separately. The use of sequential intestinal resections combined with focused examination of distinct mucosal compartments represents novel approaches not previously attempted. Here we report data pertaining to the LPL. A significant increase (±1.7-fold in immune defense/inflammation, cell adhesion/migration, cell signaling, transcription and cell division/differentiation genes were observed at 21 and 90d PI. Genes associated with the JAK-STAT pathway (IL21, IL12R, STAT5A, IL10, SOCS1 and T-cell activation (NFATc1, CDK6, Gelsolin, Moesin were notably upregulated at 21d PI. Markedly downregulated genes at 21d PI included IL17D/IL27 and IL28B/IFNγ3 (anti-HIV/viral, activation induced cytidine deaminase (B-cell function and approximately 57 genes regulating oxidative phosphorylation, a critical metabolic shift associated with T-cell activation. The 90d transcriptome revealed further augmentation of inflammation (CXCL11, chitinase-1, JNK3, immune activation (CD38, semaphorin7A, CD109, B-cell dysfunction (CD70, intestinal microbial translocation (Lipopolysaccharide binding protein and mitochondrial antiviral signaling (NLRX1 genes

  12. Developmental propagation of V(D)J recombination-associated DNA breaks and translocations in mature B cells via dicentric chromosomes.

    Science.gov (United States)

    Hu, Jiazhi; Tepsuporn, Suprawee; Meyers, Robin M; Gostissa, Monica; Alt, Frederick W

    2014-07-15

    Mature IgM(+) B-cell lymphomas that arise in certain ataxia telangiectasia-mutated (ATM)-deficient compound mutant mice harbor translocations that fuse V(D)J recombination-initiated IgH double-strand breaks (DSBs) on chromosome 12 to sequences downstream of c-myc on chromosome 15, generating dicentric chromosomes and c-myc amplification via a breakage-fusion-bridge mechanism. As V(D)J recombination DSBs occur in developing progenitor B cells in the bone marrow, we sought to elucidate a mechanism by which such DSBs contribute to oncogenic translocations/amplifications in mature B cells. For this purpose, we applied high-throughput genome-wide translocation sequencing to study the fate of introduced c-myc DSBs in splenic IgM(+) B cells stimulated for activation-induced cytidine deaminase (AID)-dependent IgH class switch recombination (CSR). We found frequent translocations of c-myc DSBs to AID-initiated DSBs in IgH switch regions in wild-type and ATM-deficient B cells. However, c-myc also translocated frequently to newly generated DSBs within a 35-Mb region downstream of IgH in ATM-deficient, but not wild-type, CSR-activated B cells. Moreover, we found such DSBs and translocations in activated B cells that did not express AID or undergo CSR. Our findings indicate that ATM deficiency leads to formation of chromosome 12 dicentrics via recombination-activating gene-initiated IgH DSBs in progenitor B cells and that these dicentrics can be propagated developmentally into mature B cells where they generate new DSBs downstream of IgH via breakage-fusion-bridge cycles. We propose that dicentrics formed by joining V(D)J recombination-associated IgH DSBs to DSBs downstream of c-myc in ATM-deficient B lineage cells similarly contribute to c-myc amplification and mature B-cell lymphomas.

  13. Scaffold functions of 14-3-3 adaptors in B cell immunoglobulin class switch DNA recombination.

    Science.gov (United States)

    Lam, Tonika; Thomas, Lisa M; White, Clayton A; Li, Guideng; Pone, Egest J; Xu, Zhenming; Casali, Paolo

    2013-01-01

    Class switch DNA recombination (CSR) of the immunoglobulin heavy chain (IgH) locus crucially diversifies antibody biological effector functions. CSR involves the induction of activation-induced cytidine deaminase (AID) expression and AID targeting to switch (S) regions by 14-3-3 adaptors. 14-3-3 adaptors specifically bind to 5'-AGCT-3' repeats, which make up for the core of all IgH locus S regions. They selectively target the upstream and downstream S regions that are set to undergo S-S DNA recombination. We hypothesized that 14-3-3 adaptors function as scaffolds to stabilize CSR enzymatic elements on S regions. Here we demonstrate that all seven 14-3-3β, 14-3-3ε, 14-3-3γ, 14-3-3η, 14-3-3σ, 14-3-3τ and 14-3-3ζ adaptors directly interacted with AID, PKA-Cα (catalytic subunit) and PKA-RIα (regulatory inhibitory subunit) and uracil DNA glycosylase (Ung). 14-3-3 adaptors, however, did not interact with AID C-terminal truncation mutant AIDΔ(180-198) or AIDF193A and AIDL196A point-mutants (which have been shown not to bind to S region DNA and fail to mediate CSR). 14-3-3 adaptors colocalized with AID and replication protein A (RPA) in B cells undergoing CSR. 14-3-3 and AID binding to S region DNA was disrupted by viral protein R (Vpr), an accessory protein of human immunodeficiency virus type-1 (HIV-1), which inhibited CSR without altering AID expression or germline IH-CH transcription. Accordingly, we demonstrated that 14-3-3 directly interact with Vpr, which in turn, also interact with AID, PKA-Cα and Ung. Altogether, our findings suggest that 14-3-3 adaptors play important scaffold functions and nucleate the assembly of multiple CSR factors on S regions. They also show that such assembly can be disrupted by a viral protein, thereby allowing us to hypothesize that small molecule compounds that specifically block 14-3-3 interactions with AID, PKA and/or Ung can be used to inhibit unwanted CSR.

  14. Assessing somatic hypermutation in Ramos B cells after overexpression or knockdown of specific genes.

    Science.gov (United States)

    Upton, Dana C; Unniraman, Shyam

    2011-11-01

    B cells start their life with low affinity antibodies generated by V(D)J recombination. However, upon detecting a pathogen, the variable (V) region of an immunoglobulin (Ig) gene is mutated approximately 100,000-fold more than the rest of the genome through somatic hypermutation (SHM), resulting in high affinity antibodies. In addition, class switch recombination (CSR) produces antibodies with different effector functions depending on the kind of immune response that is needed for a particular pathogen. Both CSR and SHM are initiated by activation-induced cytidine deaminase (AID), which deaminates cytosine residues in DNA to produce uracils. These uracils are processed by error-prone forms of repair pathways, eventually leading to mutations and recombination. Our current understanding of the molecular details of SHM and CSR come from a combination of studies in mice, primary cells, cell lines, and cell-free experiments. Mouse models remain the gold standard with genetic knockouts showing critical roles for many repair factors (e.g. Ung, Msh2, Msh6, Exo1, and polymerase η). However, not all genes are amenable for knockout studies. For example, knockouts of several double-strand break repair proteins are embryonically lethal or impair B-cell development. Moreover, sometimes the specific function of a protein in SHM or CSR may be masked by more global defects caused by the knockout. In addition, since experiments in mice can be lengthy, altering expression of individual genes in cell lines has become an increasingly popular first step to identifying and characterizing candidate genes. Ramos - a Burkitt lymphoma cell line that constitutively undergoes SHM - has been a popular cell-line model to study SHM. One advantage of Ramos cells is that they have a built-in convenient semi-quantitative measure of SHM. Wild type cells express IgM and, as they pick up mutations, some of the mutations knock out IgM expression. Therefore, assaying IgM loss by fluorescence

  15. Scaffold functions of 14-3-3 adaptors in B cell immunoglobulin class switch DNA recombination.

    Directory of Open Access Journals (Sweden)

    Tonika Lam

    Full Text Available Class switch DNA recombination (CSR of the immunoglobulin heavy chain (IgH locus crucially diversifies antibody biological effector functions. CSR involves the induction of activation-induced cytidine deaminase (AID expression and AID targeting to switch (S regions by 14-3-3 adaptors. 14-3-3 adaptors specifically bind to 5'-AGCT-3' repeats, which make up for the core of all IgH locus S regions. They selectively target the upstream and downstream S regions that are set to undergo S-S DNA recombination. We hypothesized that 14-3-3 adaptors function as scaffolds to stabilize CSR enzymatic elements on S regions. Here we demonstrate that all seven 14-3-3β, 14-3-3ε, 14-3-3γ, 14-3-3η, 14-3-3σ, 14-3-3τ and 14-3-3ζ adaptors directly interacted with AID, PKA-Cα (catalytic subunit and PKA-RIα (regulatory inhibitory subunit and uracil DNA glycosylase (Ung. 14-3-3 adaptors, however, did not interact with AID C-terminal truncation mutant AIDΔ(180-198 or AIDF193A and AIDL196A point-mutants (which have been shown not to bind to S region DNA and fail to mediate CSR. 14-3-3 adaptors colocalized with AID and replication protein A (RPA in B cells undergoing CSR. 14-3-3 and AID binding to S region DNA was disrupted by viral protein R (Vpr, an accessory protein of human immunodeficiency virus type-1 (HIV-1, which inhibited CSR without altering AID expression or germline IH-CH transcription. Accordingly, we demonstrated that 14-3-3 directly interact with Vpr, which in turn, also interact with AID, PKA-Cα and Ung. Altogether, our findings suggest that 14-3-3 adaptors play important scaffold functions and nucleate the assembly of multiple CSR factors on S regions. They also show that such assembly can be disrupted by a viral protein, thereby allowing us to hypothesize that small molecule compounds that specifically block 14-3-3 interactions with AID, PKA and/or Ung can be used to inhibit unwanted CSR.

  16. B cells and ectopic follicular structures: novel players in anti-tumor programming with prognostic power for patients with metastatic colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Anastasia Meshcheryakova

    Full Text Available Remarkably limited information is available about biological mechanisms that determine the disease entity of metastatic colorectal cancer in the liver (CRCLM with no good clinical parameters to estimate prognosis. For the last few years, understanding the relationship between tumor characteristics and local immune response has gained increasing attention. Given the multifaceted roles of B-cell-driven responses, we aimed to elucidate the immunological imprint of B lymphocytes at the metastatic site, the interrelation with macrophages, and their prognostic relevance. Here we present novel algorithm allowing to assess a link between the local patient-specific immunological capacity and clinical outcome. The microscopy-based imaging platform was used for automated scanning of large-scale tissue sections and subsequent qualitative and quantitative analyses of immune cell subtypes using lineage markers and single-cell recognition strategy. Results indicate massive infiltration of CD45-positive leukocytes confined to the metastatic border. We report for the first time the accumulation of CD20-positive B lymphocytes at the tumor-liver interface comprising the major population within the large CD45-positive aggregates. Strikingly, functionally active, activation-induced cytidine deaminase (AID-positive ectopic lymphoid structures were found to be assembled within the metastatic margin. Furthermore, the CD20-based data set revealed a strong prognostic power: patients with high CD20 content and/or ectopic follicles had significantly lower risk for disease recurrence as revealed by univariate analysis (p<0.001 for both and in models adjusted for clinicopathological variables (p<0.001 and p = 0.01, respectively, and showed prolonged overall survival. In contrast, CD68 staining-derived data set did not show an association with clinical outcome. Taken together, we nominate the magnitude of B lymphocytes, including those organized in ectopic follicles, as

  17. Long-range oncogenic activation of Igh-c-myc translocations by the Igh 3' regulatory region.

    Science.gov (United States)

    Gostissa, Monica; Yan, Catherine T; Bianco, Julia M; Cogné, Michel; Pinaud, Eric; Alt, Frederick W

    2009-12-10

    B-cell malignancies, such as human Burkitt's lymphoma, often contain translocations that link c-myc or other proto-oncogenes to the immunoglobulin heavy chain locus (IgH, encoded by Igh). The nature of elements that activate oncogenes within such translocations has been a long-standing question. Translocations within Igh involve DNA double-strand breaks initiated either by the RAG1/2 endonuclease during variable, diversity and joining gene segment (V(D)J) recombination, or by activation-induced cytidine deaminase (AID, also known as AICDA) during class switch recombination (CSR). V(D)J recombination in progenitor B (pro-B) cells assembles Igh variable region exons upstream of mu constant region (Cmu) exons, which are the first of several sets of C(H) exons ('C(H) genes') within a C(H) locus that span several hundred kilobases (kb). In mature B cells, CSR deletes Cmu and replaces it with a downstream C(H) gene. An intronic enhancer (iEmu) between the variable region exons and Cmu promotes V(D)J recombination in developing B cells. Furthermore, the Igh 3' regulatory region (Igh3'RR) lies downstream of the C(H) locus and modulates CSR by long-range transcriptional enhancement of C(H) genes. Transgenic mice bearing iEmu or Igh3'RR sequences fused to c-myc are predisposed to B lymphomas, demonstrating that such elements can confer oncogenic c-myc expression. However, in many B-cell lymphomas, Igh-c-myc translocations delete iEmu and place c-myc up to 200 kb upstream of the Igh3'RR. Here we address the oncogenic role of the Igh3'RR by inactivating it in two distinct mouse models for B-cell lymphoma with Igh-c-myc translocations. We show that the Igh3'RR is dispensable for pro-B-cell lymphomas with V(D)J recombination-initiated translocations, but is required for peripheral B-cell lymphomas with CSR-associated translocations. As the Igh3'RR is not required for CSR-associated Igh breaks or Igh-c-myc translocations in peripheral B-cell lymphoma progenitors, we conclude that

  18. Histone deacetylase inhibitors upregulate B cell microRNAs that silence AID and Blimp-1 expression for epigenetic modulation of antibody and autoantibody responses.

    Science.gov (United States)

    White, Clayton A; Pone, Egest J; Lam, Tonika; Tat, Connie; Hayama, Ken L; Li, Guideng; Zan, Hong; Casali, Paolo

    2014-12-15

    Class-switch DNA recombination (CSR) and somatic hypermutation (SHM), which require activation-induced cytidine deaminase (AID), and plasma cell differentiation, which requires B lymphocyte-induced maturation protein-1 (Blimp-1), are critical for the generation of class-switched and hypermutated (mature) Ab and autoantibody responses. We show that histone deacetylase inhibitors valproic acid and butyrate dampened AICDA/Aicda (AID) and PRDM1/Prdm1 (Blimp-1) mRNAs by upregulating miR-155, miR-181b, and miR-361 to silence AICDA/Aicda, and miR-23b, miR-30a, and miR-125b to silence PRDM1/Prdm1, in human and mouse B cells. This led to downregulation of AID, Blimp-1, and X-box binding protein 1, thereby inhibiting CSR, SHM, and plasma cell differentiation without altering B cell viability or proliferation. The selectivity of histone deacetylase inhibitor-mediated silencing of AICDA/Aicda and PRDM1/Prdm1 was emphasized by unchanged expression of HoxC4 and Irf4 (important inducers/modulators of AICDA/Aicda), Rev1 and Ung (central elements for CSR/SHM), and Bcl6, Bach2, or Pax5 (repressors of PRDM1/Prdm1 expression), as well as unchanged expression of miR-19a/b, miR-20a, and miR-25, which are not known to regulate AICDA/Aicda or PRDM1/Prdm1. Through these B cell-intrinsic epigenetic mechanisms, valproic acid blunted class-switched and hypermutated T-dependent and T-independent Ab responses in C57BL/6 mice. In addition, it decreased class-switched and hypermutated autoantibodies, ameliorated disease, and extended survival in lupus MRL/Fas(lpr/lpr) mice. Our findings outline epigenetic mechanisms that modulate expression of an enzyme (AID) and transcription factors (Blimp-1 and X-box binding protein 1) that are critical to the B cell differentiation processes that underpin Ab and autoantibody responses. They also provide therapeutic proof-of-principle in autoantibody-mediated autoimmunity.

  19. The DNA Ligase IV Syndrome R278H Mutation Impairs B Lymphopoiesis via Error-Prone Nonhomologous End-Joining.

    Science.gov (United States)

    Park, Jihye; Welner, Robert S; Chan, Mei-Yee; Troppito, Logan; Staber, Philipp B; Tenen, Daniel G; Yan, Catherine T

    2016-01-01

    Hypomorphic mutations in the nonhomologous end-joining (NHEJ) DNA repair protein DNA ligase IV (LIG4) lead to immunodeficiency with varying severity. In this study, using a murine knock-in model, we investigated the mechanisms underlying abnormalities in class switch recombination (CSR) associated with the human homozygous Lig4 R278H mutation. Previously, we found that despite the near absence of Lig4 end-ligation activity and severely reduced mature B cell numbers, Lig4(R278H/R278H) (Lig4(R/R)) mice exhibit only a partial CSR block, producing near normal IgG1 and IgE but substantially reduced IgG3, IgG2b, and IgA serum levels. In this study, to address the cause of these abnormalities, we assayed CSR in Lig4(R/R) B cells generated via preassembled IgH and IgK V region exons (HL). This revealed that Lig4(R278H) protein levels while intact exhibited a higher turnover rate during activation of switching to IgG3 and IgG2b, as well as delays in CSR kinetics associated with defective proliferation during activation of switching to IgG1 and IgE. Activated Lig4(R/R)HL B cells consistently accumulated high frequencies of activation-induced cytidine deaminase-dependent IgH locus chromosomal breaks and translocations and were more prone to apoptosis, effects that appeared to be p53-independent, as p53 deficiency did not markedly influence these events. Importantly, NHEJ instead of alternative end-joining (A-EJ) was revealed as the predominant mechanism catalyzing robust CSR. Defective CSR was linked to failed NHEJ and residual A-EJ access to unrepaired double-strand breaks. These data firmly demonstrate that Lig4(R278H) activity renders NHEJ to be more error-prone, and they predict increased error-prone NHEJ activity and A-EJ suppression as the cause of the defective B lymphopoiesis in Lig4 patients.

  20. 脑脊液腺苷脱氨酶在AIDS合并结核性脑膜炎诊断及疗效评估中的价值%Value of adenosine deaminase in cerebrospinal fluid for diagnosis and efficacy evaluation of AIDS complicated with tuberculous meningitis

    Institute of Scientific and Technical Information of China (English)

    陈跃华; 陆宁; 林艳荣; 刘升; 兰江

    2015-01-01

    目的:探讨脑脊液腺苷脱氨酶( ADA)测定对AIDS合并结核性脑膜炎的诊断及疗效评估价值。方法回顾性分析该院收治的AIDS合并结核性脑膜炎30例(结核性脑膜炎组)的临床资料,其中CD4+T淋巴细胞>200个/μl者14例;CD4+T淋巴细胞≤200个/μl者16例,于入院1周内治疗前、治疗后2周、4周、6周检测其脑脊液的ADA值。选择同期AIDS合并新型隐球菌性脑膜炎26例(隐球菌性脑膜炎组),AIDS合并弓形虫脑炎12例(弓形虫脑炎组),检测其入院治疗前脑脊液ADA。结果结核性脑膜炎组患者治疗前脑脊液ADA水平均高于其他两组( P<0.05);不同CD4+T淋巴细胞水平的AIDS合并结核性脑膜炎患者脑脊液ADA水平比较,差异无统计学意义(P>0.05);AIDS合并结核性脑膜炎患者治疗后2周、治疗后4周及治疗后6周的ADA水平均低于入院时ADA水平(P<0.05),治疗后4周的ADA水平低于治疗后2周( P<0.05),治疗后6周的ADA水平亦低于治疗后4周(P<0.05)。结论脑脊液ADA在AIDS合并结核性脑膜炎的早期诊断及疗效评估中具有重要意义。%Objective To investigate the value of detecting denosine deaminase ( ADA) in cerebrospinal fluid for the diagnosis and efficacy evaluation of AIDS complicated with tuberculous meningitis .Methods The clinical data of 30 patients with AIDS complicated with tuberculosis meningitis ( tuberculous meningitis group ) were retrospectively analyzed .The 30 cases included 14 cases of CD4 +T lymphocytes >200/μl and 16 cases of CD4 +T lymphocytes ≤200/μl.And the levels of ADA in cerebrospinal fluid were detected in 30 patients before treatment and within one week after admission,2,4 and 6 weeks after treatment.Twenty-six cases of AIDS complicated with novel cryptococcal meningitis ( cryptococcal meningitis group ) and 12 of AIDS complicated with toxoplasmic encephalitis ( toxoplasmic

  1. 脑脊液腺苷脱氨酶对结核性脑膜炎患者病情程度和疾病预后的预测价值%Predictive value of cerebrospinal fluid adenosine deaminase for degree of illness and disease prognosis of patients with tuberculous meningitis

    Institute of Scientific and Technical Information of China (English)

    吴素芳; 彭素珍; 郑淑芳; 黄镇丰

    2014-01-01

    目的:探讨脑脊液腺苷脱氨酶(ADA)对结核性脑膜炎患者病情程度和疾病预后的预测作用。方法选取135例脑膜炎患者,其中结核性脑膜炎(结核组)50例,病毒性脑膜炎(病毒组)45例,细菌性脑膜炎(细菌组)40例,同期选取50例健康体检者(对照组)。全部研究对象采用酶显色检测法检测ADA水平,并进行比较。结核组患者根据全身性炎症反应程度进行分组,分为未合并败血症组、合并轻度败血症组和合并重症败血症组,比较三组ADA水平,分析脑脊液ADA在结核性脑膜炎患者病情、预后评估中的价值。结果结核组脑脊液ADA水平明显高于病毒组、细菌组和对照组,组间比较差异有统计学意义(P<0.05),合并重症败血症组ADA水平明显高于未合并败血症组和合并轻度败血症组,组间比较差异有统计学意义(P<0.05),治疗后3、6、9周ADA水平显著低于入院时,差异有统计学意义(P<0.05),且预后不良组ADA水平明显高于预后良好组(P<0.05)。结论脑脊液ADA在结核性脑膜炎的诊断中具有重要的意义,在病情和疾病预后的预测方面具有可靠的价值。%Objective To investigate the predictive effect of cerebrospinal fluid (CSF) adenosine deaminase (ADA) for tubercular meningitis patients severity and prognosis of the disease. Methods 135 cases of meningitis were selected, and included 50 cases of tubercular meningitis (the tuberculosis group), 45 cases of viral meningitis (the virus group), 40 cases of bacterial meningitis (the bacterial group). 50 healthy subjects were selected as the control group in the same period. The ADA levels of all research objects were detected by enzyme color detection and were compared. TB patients grouped according to systemic inflammatory reaction degree, who were divided into the unincorporated sepsis groups, the mild sepsis group and the combining severe sepsis group, the ADA levels of the three

  2. Observation on the activities of alpha-L-fucosidase,alkaline phosphatase and adenosine deaminase in pregnant women%妊娠女性α-L-岩藻糖苷酶、碱性磷酸酶和腺苷脱氨酶活性观察

    Institute of Scientific and Technical Information of China (English)

    王玮玮; 孙伟才; 周惠玉

    2014-01-01

    目的:妊娠期女性观察血清α-L-岩藻糖苷酶(AFU)、碱性磷酸酶(ALP)及腺苷脱氨酶(ADA)活性的变化及其与妊娠周期的相关性。方法分别检测352例体检正常的不同妊娠期女性(妊娠组,其中早期妊娠210例、晚期妊娠142例)及322例因不孕就诊且尚未妊娠的体检正常的女性(非妊娠组)血清 AFU、ALP、ADA 活性。对所有对象均进行动态监测(早期妊娠组于妊娠第14、22、30及38周分别检测,晚期妊娠组于妊娠第38及40周检测,非妊娠组于就诊时、就诊后第8及24周检测)并做比较。结果妊娠组血清 ALP、AFU 活性明显高于非妊娠组(P =0.000),ADA 活性则低于非妊娠组(P =0.000)。晚期妊娠组血清 ALP、AFU 活性明显高于早期妊娠组(P =0.000),但 ADA 活性两组间差异无统计学意义(P >0.05)。对早期妊娠组的动态监测显示,随着妊娠周期的增加,AFU 及 ALP 活性逐渐升高,但 ADA 基本无变化。晚期妊娠组第38周及第40周血清 AFU、ALP、ADA 活性差异均无统计学意义(P >0.05)。对非妊娠组的动态监测显示,与就诊时比较,就诊后第8周 ALP、ADA 活性差异有统计学意义(P =0.000),就诊后第24周 ADA 活性差异有统计学意义;与就诊后第8周比较,就诊后第24周 ALP、AFU、ADA 活性差异均有统计学意义(P <0.05)。结论妊娠期女性血清 AFU 及 ALP 活性明显升高,且随孕周的增加,升高趋势越明显。%Objective To observe the activity changes of alpha-L-fucosidase (AFU),alkaline phosphatase (ALP) and adenosine deaminase (ADA)in pregnant women and their correlations with pregnant period.Methods The activities of AFU,ALP and ADA were determined in 352 pregnant women (210 cases with early-stage pregnancy and 142 cases with late-stage pregnancy)and 322 unpregnant women.Dynamic monitoring was performed (early-stage pregnancy

  3. Effects of tissue specific cytosine deaminase/5-fluorocytosine thermotherapy on hepatic metastasis of colonic carcinoma in nude mice%组织特异性胞嘧啶脱氨酶和5-氟胞嘧啶热化疗对裸鼠结肠癌肝脏转移的影响

    Institute of Scientific and Technical Information of China (English)

    黎成金; 王羊; 王烈; 涂小煌; 王瑜; 张宝明

    2009-01-01

    目的 探讨组织特异性胞嘧啶脱氨酶/5-氟胞嘧啶(CD/5-FC)系统热化疗对裸鼠结肠癌肝脏转移的影响.方法 将45只裸鼠按随机数字表法分为3组:对照组、非热疗组、热疗组,每组15只.门静脉注射法建立结肠癌肝脏转移动物模型,3组分别给予不同的治疗方法.采用χ2检验和单因素方差分析3组肝脏肿瘤转移率、转移数目;观察各组病理学变化、肿瘤细胞凋亡指数;荧光定量RT-PCR和Westernblot检测肿瘤组织中CD基因的表达情况.结果 对照组、非热疗组、热疗组肝脏平均转移癌结节数目和转移率分别为(4.6±1.3)、(2.2±1.0)、(0.5±0.8)个和100.0%、60.0%、13.3%,3组比较差异有统计学意义(F=25.898,χ2=5.208,19.548,5.168,P<0.05);肿瘤细胞凋亡指数平均为4.6%、9.9%和17.4%.热疗组可见大量细胞空泡变性、坏死、溶解现象,有较多的凋亡小体形成.3组均可以检测到CD基因的表达.结论 组织特异性CD/5-FC系统热化疗对转CD基因结肠癌LoVo细胞裸鼠肝脏转移有明显的抑制作用.%Objective To investigate the effects of tissue specific cytosine deaminase/5-fluorocytosine (CD/5-FC) thermotherapy on hepatic metastasis of colonic carcinoma in nude mice. Methods Forty-five nude mice were randomly divided into control group, 5-FC group and 5-FC thermotherapy group according to the random number table (15 mice in each group). Mice models of hepatic metastasis of colonic carcinoma were established by portal vein injection of LoVo/CEACD cells. The hepatic metastasis rate and number of metastatic nodules of the 3 groups were compared by ehi-square test and one-way ANOVA. The pathological changes in tumor tissues and apoptotic index of tumor cells were observed. The expression of the CD gene in tumor tissues was detected by fluorescent quantitative RT-PCR and Western blot. Results The number of metastatic nodules and liver metas-tasis rate were 4.6±1.3 and 100.0% in control group, 2.2±1

  4. 脑脊液免疫球蛋白、乳酸脱氢酶及腺苷脱氨酶检测在成人颅内感染鉴别诊断中的临床意义%Clinical significance of immunoglobulins, lactatedehydrogenase ,and adenosine deaminase detection in differential diagnosis of intracranial infections in adults

    Institute of Scientific and Technical Information of China (English)

    张丽琴

    2012-01-01

    OBJECTIVE To investigate the changes of immunoglobulin (Ig), lactate dehydrogenase(LDH), and adenosine deaminase(ADA) in cerebrospinal fluid (CSF)of the adults with intracranial infections and explore the clinical significance.METHODS Totally 17 patients with tuberculous meningitis, 19 patients with purulent meningitis, and 21 patients with viral meningitis were recruited in this study.The levels of LDH, ADA, and Ig in CSF from.each patient were measured and compared with the control group.RESULTS The concentrations of LDH, ADA, IgM, IgG.and IgA in CSF of the patients with purulent meningitis were(85.60±18.11)U/L,(2.59 ±0.52)U/L,(63.85±13.44)mg/L,(92.55±35.18)mg/L,and (20.60±8.75)mg/L,respectively ; the levels of LDA, ADA, IgM, IgG, and IgA in CSF of the patients with tuberculous meningitis were(78.80±22.38)U/L, (11.83±2.65)U/L, (18.90±8.62)mg/L, (180.69±42.28)mg/L, and(41.63±ll.42)mg/L, respectively) the levels of LDA, ADA, IgM, IgG, and IgA in CSF of the patients with viral meningitis were(22.43±9.56)U/L, (2.66±0.64)U/L, (5.83±1.34)mg/L,(20.90±10.35)mg/L,and(7.20±2.30)mg/L, respectively; of the three groups of adults with intracranial infectious diseases, the levels of IgM, IgG, IgA, and LDH in CSF of the patients with tuberculous meningitis or purulent meningitis were significantly higher than those in the patients with viral meningitis(P<0.01), the levels of IgG and IgA in CSF of the patients with tuberculous meningitis increased most significantly, the level of IgM in CSF of the patients with purulent meningitis increased most significantly, the activity of ADA of the tuberculous meningitis group was significantly higher than control group and other two groups(P<0.01 ); no statistical significance was found when between the indexes of viral meningitis group and control group.CONCLUSION The blood brain barriers of adult patients have been injured in varying degreest the detection of Ig, LDH in CSF is helpful to clinical diagnosis and

  5. Clinical significance of detecting tumour necrosis factor-α, immtme globnlin and adenosine deaminase in cerebrospinal fluid of patients with intracranial infection%颅内感染性疾病脑脊液中肿瘤坏死因子-α、免疫球蛋白及腺苷脱氨酶检测的临床意义

    Institute of Scientific and Technical Information of China (English)

    王彦斌; 张新娜; 郭榕; 古颖春

    2008-01-01

    Objective To investigate the diversify and clinical significance of tumour necrosis factor-alpha (TNF-α), immune globulin (Ig), adenosine deaminase (ADA) in cercbrospinal fluid (CSF) of patients with intracranial infection. Method The levels of TNF-α,Ig and ADA in CSF of 25 cases of purulent meningitis ,30 eases of cerebral tuberculosis ,28 cases of virus meningitis and 24 cases of controls were detected by ELISA, immunity velocity scattering nepbelometry and enzyme coupling method respectively. Results The levels of IgA, IgM, IgG, ADA, TNF-α were (41.72±11.31) mg/L(18.11± 2.62)mg/L, (181.60±41.19)mg/L, (13.41±3.42)U/L, (418.62±43.16)ng/L in cerebral tuberculosis patients. The levels of IgA, IgM, IgG, ADA and TNF-αwere (20.65±8.85)mg/L, (93.20±4.30)mg/L, (92.77±35.09)mg/L, (3.32±2.41) U/L, (476.93±45.16) ng/L in purulent meningitis patients, and those were (7.11±2.23)rag/L,(5.81±1.19)mg/L,(20.71±10. 54)mg/L,(2. 36±0. 44)U/L,(375.06±45.21) ng/L in virus meningitis patients. The levels of IgM,IgG and IgA in cerebral tuberculosis patients and purulent meningitis patients were significantly higher than those in virus meningitis patients and controls (P< 0.01). The levels of IgG,IgA heightened most markedly in cerebral tuberculosis patients. The activity of ADA in cerebra] tuberculosis patients was higher markedly than that in controls and the other patients(P< 0.01). The levels of TNF-α in purulent meningitis patients were higher than those in controls and virus meningitis patients(P< 0.05). The levels of TNF-α in purulent meningitis patients were the highest, and the next was in cerebral tuberculosis patients. But there was no significant difference of each index between viral meningitis patients and controls. Conclusions Detecting the activity of ADA in CSF is the most valuable in diagnosing cerebral tuberculosis. Synchronized detection of TNF-α,Ig, ADA may be have better clinical application in diagnosing intracranial infection.%目的 探讨

  6. APOBEC3G-mediated G-to-A hypermutation of the HIV-1 genome: the missing link in antiviral molecular mechanisms

    Directory of Open Access Journals (Sweden)

    Ayaka Okada

    2016-12-01

    Full Text Available APOBEC3G (A3G is a member of the cellular polynucleotide cytidine deaminases, which catalyze the deamination of cytosine (dC to uracil (dU in single-stranded DNA. These enzymes potently inhibit the replication of a variety of retroviruses and retrotransposons, including HIV-1. A3G is incorporated into vif-deficient HIV-1 virions and targets viral reverse transcripts, particularly minus-stranded DNA products, in newly infected cells. It is well established that the enzymatic activity of A3G is closely correlated with the potential to greatly inhibit HIV-1 replication in the absence of Vif. However, the details of the underlying molecular mechanisms are not fully understood. One potential mechanism of A3G antiviral activity is that the A3G-dependent deamination may trigger degradation of the dU-containing reverse transcripts by cellular uracil DNA glycosylases (UDGs. More recently, another mechanism has been suggested, in which the virion-incorporated A3G generates lethal levels of the G-to-A hypermutation in the viral DNA genome, thus potentially driving the viruses into error catastrophe mode. In this mini review article, we summarize the deaminase-dependent and deaminase-independent molecular mechanisms of A3G and discuss how A3G-mediated deamination is linked to antiviral mechanisms.

  7. GP130 activation induces myeloma and collaborates with MYC

    Science.gov (United States)

    Dechow, Tobias; Steidle, Sabine; Götze, Katharina S.; Rudelius, Martina; Behnke, Kerstin; Pechloff, Konstanze; Kratzat, Susanne; Bullinger, Lars; Fend, Falko; Soberon, Valeria; Mitova, Nadya; Li, Zhoulei; Thaler, Markus; Bauer, Jan; Pietschmann, Elke; Albers, Corinna; Grundler, Rebekka; Schmidt-Supprian, Marc; Ruland, Jürgen; Peschel, Christian; Duyster, Justus; Rose-John, Stefan; Bassermann, Florian; Keller, Ulrich

    2014-01-01

    Multiple myeloma (MM) is a plasma cell neoplasm that results from clonal expansion of an Ig-secreting terminally differentiated B cell. Advanced MM is characterized by tissue damage that involves bone, kidney, and other organs and is typically associated with recurrent genetic abnormalities. IL-6 signaling via the IL-6 signal transducer GP130 has been implicated as an important driver of MM pathogenesis. Here, we demonstrated that ectopic expression of constitutively active GP130 (L-GP130) in a murine retroviral transduction-transplantation model induces rapid MM development of high penetrance. L-GP130–expressing mice recapitulated all of the characteristics of human disease, including monoclonal gammopathy, BM infiltration with lytic bone lesions, and protein deposition in the kidney. Moreover, the disease was easily transplantable and allowed different therapeutic options to be evaluated in vitro and in vivo. Using this model, we determined that GP130 signaling collaborated with MYC to induce MM and was responsible and sufficient for directing the plasma cell phenotype. Accordingly, we identified Myc aberrations in the L-GP130 MM model. Evaluation of human MM samples revealed recurrent activation of STAT3, a downstream target of GP130 signaling. Together, our results indicate that deregulated GP130 activity contributes to MM pathogenesis and that pathways downstream of GP130 activity have potential as therapeutic targets in MM. PMID:25384216

  8. Calciumreleasing activity induced by nuclei of mouse fertilized early embryos

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    At fertilization, repetitive transient rises of intracellular calcium concentration occur in all mammals studied so far. It has been shown that calcium rises could be induced when mouse fertilized 1-, 2-cell nuclei were transplanted into unfertilized eggs and that the reconstituted embryo could be activated. However, whether the capability of inducing calcium rises occurs in all stages of mammalian embryos remains unknown. In this study, by using the nuclear transplantation technique and measurement of intracellular calcium rises in living cells, we showed that only the nuclei from mouse fertilized 1-cell and 2-cell embryos, neither the nuclei from 4-, 8-cell and ethanol activated parthenogenetic embryos nor 2 or 3 nuclei of electrofused 4-cell stage syncytium, have calcium-releasing activity when they were transferred into unfertilized mature oocytes. Our results indicate that the calcium-releasing activity in nuclei of 1-, 2-cell embryos is produced during fertilization and exists at the special stage of fertilized early embryos. These suggested that the capacity of inducing calcium release activity in fertilized early embryos is important for normal embryonic development.

  9. Irregular persistent activity induced by synaptic excitatory feedback

    Directory of Open Access Journals (Sweden)

    Francesca Barbieri

    2007-11-01

    Full Text Available Neurophysiological experiments on monkeys have reported highly irregular persistent activity during the performance of an oculomotor delayed-response task. These experiments show that during the delay period the coefficient of variation (CV of interspike intervals (ISI of prefrontal neurons is above 1, on average, and larger than during the fixation period. In the present paper, we show that this feature can be reproduced in a network in which persistent activity is induced by excitatory feedback, provided that (i the post-spike reset is close enough to threshold , (ii synaptic efficacies are a non-linear function of the pre-synaptic firing rate. Non-linearity between presynaptic rate and effective synaptic strength is implemented by a standard short-term depression mechanism (STD. First, we consider the simplest possible network with excitatory feedback: a fully connected homogeneous network of excitatory leaky integrate-and-fire neurons, using both numerical simulations and analytical techniques. The results are then confirmed in a network with selective excitatory neurons and inhibition. In both the cases there is a large range of values of the synaptic efficacies for which the statistics of firing of single cells is similar to experimental data.

  10. Resonant Activation Induced by Four-Value Noise

    Institute of Scientific and Technical Information of China (English)

    LIU Hui; HAN Yin-Xia; HOU De-Fu; LI Jing-Hui; LI Jia-Rong

    2008-01-01

    The phenomenon of the resonant activation (RA) of a particle over a fluctuating potential barrier with a four-value noise is investigated. It is shown that the mean first passage time (MFPT) displays six minima as the function of the transition rates γ1, γ2, γ3, γ4,γ5, and γ6 of the four-value noise, respectively. In addition, the effect of other parameters of the system, such as the noise strength D of the additive Gaussian white noise and the parameter value a,b, c, and d of the four-value noise, on the RAs is also investigated.

  11. Reduced PKC α Activity Induces Senescent Phenotype in Erythrocytes

    Directory of Open Access Journals (Sweden)

    Rukmini B. Govekar

    2012-01-01

    Full Text Available The molecular mechanism mediating expression of senescent cell antigen-aggregated or cleaved band 3 and externalized phosphatidylserine (PS on the surface of aged erythrocytes and their premature expression in certain anemias is not completely elucidated. The erythrocytes with these surface modifications undergo macrophage-mediated phagocytosis. In this study, the role of protein kinase C (PKC isoforms in the expression of these surface modifications was investigated. Inhibition of PKC α by 30 μM rottlerin (R30 and 2.3 nM Gö 6976 caused expression of both the senescent cell marker-externalized PS measured by FACS analysis and aggregated band 3 detected by western blotting. In contrast to this observation, but in keeping with literature, PKC activation by phorbol-12-myristate-13-acetate (PMA also led to the expression of senescence markers. We explain this antithesis by demonstrating that PMA-treated cells show reduction in the activity of PKC α, thereby simulating inhibition. The reduction in PKC α activity may be attributed to the known downregulation of PMA-activated PKC α, caused by its membrane translocation and proteolysis. We demonstrate membrane translocation of PKC α in PMA-treated cells to substantiate this inference. Thus loss of PKC α activity either by inhibition or downregulation can cause surface modifications which can trigger erythrophagocytosis.

    <