WorldWideScience

Sample records for activation steels welding

  1. Activated flux tungsten inert gas welding of 8 mm-thick AISI 304 austenitic stainless steel

    Institute of Scientific and Technical Information of China (English)

    刘观辉; 刘美华; 易耀勇; 张宇鹏; 罗子艺; 许磊

    2015-01-01

    AISI 304 stainless steel plates were welded with activated flux tungsten inert gas (A-TIG) method by utilizing self-developed activated flux. It is indicated from the experimental results that for 8 mm-thick AISI 304 stainless steel plate, weld joint of full penetration and one-side welding with good weld appearance can be obtained in a single pass without groove preparation by utilizing A-TIG welding. Moreover, activated flux powders do not cause significant effect on the microstructure of TIG weld and the mechanical properties of A-TIG weld joints are also superior to those of C-TIG (conventional TIG) welding.

  2. Activating Flux Design for Laser Welding of Ferritic Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    马立; 胡绳荪; 胡宝; 申俊琦; 王勇慧

    2014-01-01

    The behaviors of YAG laser welding process of ferritic stainless steel with activating fluxes were investi-gated in this study. Some conventional oxides, halides and carbonates were applied in laser welding. The results showed that the effect of oxides on the penetration depth was more remarkable. Most activating fluxes improved the penetration more effectively at low power than that at high power. The uniform design was adopted to arrange the formula of multicomponent activating fluxes, showing that the optimal formula can make the penetration depth up to 2.23 times as large as that without flux, including 50%ZrO2, 12.09%CaCO3, 10.43%CaO and 27.48%MgO. Through the high-speed photographs of welding process, CaF2 can minimize the plasma volume but slightly improve the pene-tration capability.

  3. Structural and mechanical properties of welded joints of reduced activation martensitic steels

    Energy Technology Data Exchange (ETDEWEB)

    Filacchioni, G. E-mail: gianni.filacchioni@casaccia.enea.it; Montanari, R.; Tata, M.E.; Pilloni, L

    2002-12-01

    Gas tungsten arc welding and electron beam welding methods were used to realise welding pools on plates of reduced activation martensitic steels. Structural and mechanical features of these simulated joints have been investigated in as-welded and post-welding heat-treated conditions. The research allowed to assess how each welding technique affects the original mechanical properties of materials and to find suitable post-welding heat treatments. This paper reports results from experimental activities on BATMAN II and F82H mod. steels carried out in the frame of the European Blanket Project - Structural Materials Program.

  4. HEAT INPUT AND POST WELD HEAT TREATMENT EFFECTS ON REDUCED-ACTIVATION FERRITIC/MARTENSITIC STEEL FRICTION STIR WELDS

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Wei [ORNL; Chen, Gaoqiang [ORNL; Chen, Jian [ORNL; Yu, Xinghua [ORNL; Frederick, David Alan [ORNL; Feng, Zhili [ORNL

    2015-01-01

    Reduced-activation ferritic/martensitic (RAFM) steels are an important class of structural materials for fusion reactor internals developed in recent years because of their improved irradiation resistance. However, they can suffer from welding induced property degradations. In this paper, a solid phase joining technology friction stir welding (FSW) was adopted to join a RAFM steel Eurofer 97 and different FSW parameters/heat input were chosen to produce welds. FSW response parameters, joint microstructures and microhardness were investigated to reveal relationships among welding heat input, weld structure characterization and mechanical properties. In general, FSW heat input results in high hardness inside the stir zone mostly due to a martensitic transformation. It is possible to produce friction stir welds similar to but not with exactly the same base metal hardness when using low power input because of other hardening mechanisms. Further, post weld heat treatment (PWHT) is a very effective way to reduce FSW stir zone hardness values.

  5. Active flux tungsten inert gas welding of austenitic stainless steel AISI 304

    Directory of Open Access Journals (Sweden)

    D. Klobčar

    2016-10-01

    Full Text Available The paper presents the effects of flux assisted tungsten inert gas (A-TIG welding of 4 (10 mm thick austenitic stainless steel EN X5CrNi1810 (AISI 304 in the butt joint. The sample dimensions were 300 ´ 50 mm, and commercially available active flux QuickTIG was used for testing. In the planned study the influence of welding position and weld groove shape was analysed based on the penetration depth. A comparison of microstructure formation, grain size and ferrit number between TIG welding and A-TIG welding was done. The A-TIG welds were subjected to bending test. A comparative study of TIG and A-TIG welding shows that A-TIG welding increases the weld penetration depth.

  6. Delta ferrite in the weld metal of reduced activation ferritic martensitic steel

    Science.gov (United States)

    Sam, Shiju; Das, C. R.; Ramasubbu, V.; Albert, S. K.; Bhaduri, A. K.; Jayakumar, T.; Rajendra Kumar, E.

    2014-12-01

    Formation of delta(δ)-ferrite in the weld metal, during autogenous bead-on-plate welding of Reduced Activation Ferritic Martensitic (RAFM) steel using Gas Tungsten Arc Welding (GTAW) process, has been studied. Composition of the alloy is such that delta-ferrite is not expected in the alloy; but examination of the weld metal revealed presence of delta-ferrite in the weld metal. Volume fraction of delta-ferrite is found to be higher in the weld interface than in the rest of the fusion zone. Decrease in the volume fraction of delta-ferrite, with an increase in preheat temperature or with an increase in heat input, is observed. Results indicate that the cooling rate experienced during welding affects the volume fraction of delta-ferrite retained in the weld metal and variation in the delta-ferrite content with cooling rate is explained with variation in the time that the weld metal spends in various temperature regimes in which delta-ferrite is stable for the alloy during its cooling from the liquid metal to the ambient temperature. This manuscript will discuss the effect of welding parameters on formation of delta-ferrite and its retention in the weld metal of RAFM steel.

  7. Active flux tungsten inert gas welding of austenitic stainless steel AISI 304

    OpenAIRE

    Klobčar, D.; J. Tušek; Bizjak, M.; S. Simončič; V. Lešer

    2016-01-01

    The paper presents the effects of flux assisted tungsten inert gas (A-TIG) welding of 4 (10) mm thick austenitic stainless steel EN X5CrNi1810 (AISI 304) in the butt joint. The sample dimensions were 300 ´ 50 mm, and commercially available active flux QuickTIG was used for testing. In the planned study the influence of welding position and weld groove shape was analysed based on the penetration depth. A comparison of microstructure formation, grain size and ferrit number between TIG welding a...

  8. Underwater explosive welding of tungsten to reduced-activation ferritic steel F82H

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Daichi [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Kasada, Ryuta, E-mail: r-kasada@iae.kyoto-u.ac.jp [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Konishi, Satoshi [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Morizono, Yasuhiro [Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555 (Japan); Hokamoto, Kazuyuki [Institute of Pulsed Power Science, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555 (Japan)

    2014-10-15

    Highlights: • The underwater explosive welding was successfully applied in the joining of tungsten to F82H reduced activation ferritic steel. • Microstructure of the interface showed the formation of a wave-like interface with a thin mixed layer of tungsten and F82H. • Nanoindentation hardness results exhibited a gradual change away from the welded interface without hardened layer. • Small punch tests on the welded specimens resulted in the cracking at a center of tungsten followed by the interfacial cracking. - Abstract: The present study reports the underwater explosive welding of commercially pure tungsten onto the surface of a reduced-activation ferritic steel F82H plate. Cross-sectional observation revealed the formation of a wave-like interface, consisting of a thin mixed layer of W and F82H. The results of nanoindentation hardness testing identified a gradual progressive change in the interface, with no hardened or brittle layer being observed. Small punch tests on the welded specimens resulted in cracking at the center of the tungsten, followed by crack propagation toward both the tungsten surface and the tungsten/steel interface.

  9. Weldability of reduced activation ferritic/martensitic steel under ultra power density fiber laser welding

    Energy Technology Data Exchange (ETDEWEB)

    Serizawa, H.; Kawahito, Y.; Katayama, S. [Osaka Univ., Joining and Welding research Institute, Ibaraki (Japan); Ogiwara, H.; Tanigawa, H. [Japan Atomic Energy Agency, Ibaraki-ken (Japan)

    2007-07-01

    Full text of publication follows: Reduced activation ferritic/martensitic steels (RAFMs) are recognized as the primary candidate structural materials for fusion blanket systems as it has been developed based on massive industrial experience of ferritic/martensitic steel replacing Mo and Nb of high chromium heat resistant martensitic steels (such as modified 9Cr-1Mo) with W and Ta, respectively. As one of RAFMS, F82H, which has been developed and studied in Japan, is designed with emphasis on high temperature property and weldablility, and was provided and evaluated in various countries as a part of the collaboration of IEA fusion materials development. Although F82H is the well perceived RAFM as ITER Test Blanket Module (TBM) structural material, the weldability was proved though TIG, EB and YAG laser weld tests using only 15 and 25 mm thickness plate. In order to reduce the welding distortion, the residual stress and the area of the heat affected zone, it is necessary to decrease the total heat input under the welding. Recently, as a result of R and D efforts about the sources of laser beam, a high-power fiber laser beam has been developed as one of the desirable heat sources for high-speed and deep-penetration welding. Since the power density of the fiber laser beam is very large, it is possible to increase the welding speed more than 10 m/min. So, in this study, the weldability of 1.5 mm thickness F82H plate and pipe was examined by using a ultra power density fiber laser, in order to reveal the excellent weldability of F82H. As a basic study of the butt welding between 1.5 mm plate and 1.5 mm thickness pipe with 11 mm outer diameter, the focus position, the beam position and the laser power were varied using 25 mm square plate and 25 mm length pipe. Then, by using the fiber laser with 1.1 MW/mm{sup 2} peak power density under the appropriate welding condition obtained from the basic study, a full penetrated weld bead with narrow width was formed in the butt

  10. Microstructural characterization of weld joints of 9Cr reduced activation ferritic martensitic steel fabricated by different joining methods

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Paul, V.; Saroja, S.; Albert, S.K.; Jayakumar, T.; Rajendra Kumar, E., E-mail: vtp@igcar.gov.in

    2014-10-15

    This paper presents a detailed electron microscopy study on the microstructure of various regions of weldment fabricated by three welding methods namely tungsten inert gas welding, electron beam welding and laser beam welding in an indigenously developed 9Cr reduced activation ferritic/martensitic steel. Electron back scatter diffraction studies showed a random micro-texture in all the three welds. Microstructural changes during thermal exposures were studied and corroborated with hardness and optimized conditions for the post weld heat treatment have been identified for this steel. Hollomon–Jaffe parameter has been used to estimate the extent of tempering. The activation energy for the tempering process has been evaluated and found to be corresponding to interstitial diffusion of carbon in ferrite matrix. The type and microchemistry of secondary phases in different regions of the weldment have been identified by analytical transmission electron microscopy. - Highlights: • Comparison of microstructural parameters in TIG, electron beam and laser welds of RAFM steel • EBSD studies to illustrate the absence of preferred orientation and identification of prior austenite grain size using phase identification map • Optimization of PWHT conditions for indigenous RAFM steel • Study of kinetics of tempering and estimation of apparent activation energy of the process.

  11. Mechanical properties of 9Cr–1W reduced activation ferritic martensitic steel weldment prepared by electron beam welding process

    Energy Technology Data Exchange (ETDEWEB)

    Das, C.R., E-mail: chitta@igcar.gov.in [Indira Gandhi Center for Atomic Research, Kalpakkam 603102 (India); Albert, S.K. [Indira Gandhi Center for Atomic Research, Kalpakkam 603102 (India); Sam, Shiju [Institute for Plasma Research, Gandhinagar (India); Mastanaiah, P. [Defense Research and Development Laboratory, Hyderabad (India); Chaitanya, G.M.S.K.; Bhaduri, A.K.; Jayakumar, T. [Indira Gandhi Center for Atomic Research, Kalpakkam 603102 (India); Murthy, C.V.S. [Defense Research and Development Laboratory, Hyderabad (India); Kumar, E. Rajendra [Institute for Plasma Research, Gandhinagar (India)

    2014-11-15

    Highlights: • Width of HAZ is smaller in the 9Cr–1W RAFM weldment prepared by EB process compared to that reported for TIG weldments in literature. • Weld joint is stronger than that of the base metal. • Toughness of weld metal prepared by EB welding process is comparable to that (in PWHT condition) prepared by TIG process. • DBTT of as-welded 9Cr–1W RAFM weldment prepared by EB process is comparable to that reported for TIG weld metal in PWHT condition. - Abstract: Microstructure and mechanical properties of the weldments prepared from 9Cr–1W reduced activation ferritic martensitic (RAFM) steel using electron beam welding (EBW) process were studied. Microstructure consists of tempered lath martensite where precipitates decorating the boundaries in post weld heat treated (PWHT) condition. Lath and precipitate sizes were found to be finer in the weld metal than in base metal. Accordingly, hardness of the weld metal was found to be higher than the base metal. Tensile strength of the cross weldment specimen was 684 MPa, which was comparable with the base metal tensile strength of 670 MPa. On the other hand, DBTT of 9Cr–1W weld metal in as-welded condition is similar to that reported for TIG weld metal in PWHT condition.

  12. Low activation steels welding with PWHT and coating for ITER test blanket modules and DEMO

    Science.gov (United States)

    Aubert, P.; Tavassoli, F.; Rieth, M.; Diegele, E.; Poitevin, Y.

    2011-02-01

    EUROFER weldability is investigated in support of the European material properties database and TBM manufacturing. Electron Beam, Hybrid, laser and narrow gap TIG processes have been carried out on the EUROFER-97 steel (thickness up to 40 mm), a reduced activation ferritic-martensitic steel developed in Europe. These welding processes produce similar welding results with high joint coefficients and are well adapted for minimizing residual distortions. The fusion zones are typically composed of martensite laths, with small grain sizes. In the heat-affected zones, martensite grains contain carbide precipitates. High hardness values are measured in all these zones that if not tempered would degrade toughness and creep resistance. PWHT developments have driven to a one-step PWHT (750 °C/3 h), successfully applied to joints restoring good material performances. It will produce less distortion levels than a full austenitization PWHT process, not really applicable to a complex welded structure such as the TBM. Different tungsten coatings have been successfully processed on EUROFER material. It has shown no really effect on the EUROFER base material microstructure.

  13. Differences between Laser and Arc Welding of HSS Steels

    Science.gov (United States)

    Němeček, Stanislav; Mužík, Tomáš; Míšek, Michal

    Conventional welding processes often fail to provide adequate joints in high strength steels with multiphase microstructures. One of the promising techniques is laser beam welding: working without filler metal and with sufficient capacity for automotive and transportation industry (where the amount of AHSS steels increases each year, as well as the length of laser welds). The paper compares microstructures and properties of HSS (high strength steel) joints made by MAG (Metal Active Gas) and laser welding. The effects of main welding parameters (heat input, welding speed and others) are studied on multiphase TRIP 900 steel tubes and martensitic sheets DOCOL 1200, advanced materials for seat frames and other automotive components. Whereas the strength of conventional welds is significantly impaired, laser welding leaves strength of the base material nearly unaffected. As the nature of fracture changes during loading and depending on the welding method, failure mechanisms upon cross tension tests have been studied as well.

  14. Weld bonding of stainless steel

    DEFF Research Database (Denmark)

    Santos, I. O.; Zhang, Wenqi; Goncalves, V.M.

    2004-01-01

    This paper presents a comprehensive theoretical and experimental investigation of the weld bonding process with the purpose of evaluating its relative performance in case of joining stainless steel parts, against alternative solutions based on structural adhesives or conventional spot...

  15. Effects of thermal aging on microstructure and hardness of China low activation martensitic steel welded joint

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; Zhang, Junyu [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); University of Science and Technology of China, Hefei, Anhui (China); Xu, Gang, E-mail: gang.xu@fds.org.cn [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China)

    2016-08-15

    Highlights: • The hardness of HAZ and WM decreases obviously after aging. • The precipitation of the Laves-phase in BM is similar to that in HAZ. • M{sub 23}C{sub 6} particles are conducive to the nucleation of Laves-phase. • Ta may have a role to retard the early precipitation of the Laves-phase. - Abstract: The aim of this paper is to investigate the microstructure evolution and the change in hardness distribution of China low activation martensitic steel welded joints after thermal aging at 550 °C for 6000 h. The joint was processed by electron beam welding. Compared to the base metal (BM) and heat affected zone (HAZ), Laves-phase was not formed in weld metal (WM) in the as-aged condition due to the higher tantalum content and less precipitation in WM before aging. The dislocation density decreased in HAZ and WM after aging for 6000 h. The property results showed that hardness of WM and HAZ was decreased significantly after aging for 6000 h due to the weakening of solution strengthening and dislocations strengthening. However, the change in the hardness of the base metal by aging remained at a minor level.

  16. Effect of Active Gas on Weld Shape and Microstructure of Advanced A-TIG-Welded Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    Reza Nakhaei; Alireza Khodabandeh; Hamidreza Najafi

    2016-01-01

    Advanced A-TIG method was conducted to increase the weld penetration and compared with the conventional TIG welding process.A two-pipeline setup was designed to apply Ar + CO2 mixed gas as the outer layer,while pure argon was applied as the inner layer to prevent any consumption of the tungsten electrode.The results indicate that the presence of active gas in the molten pool led to the change in the temperature coefficient of surface tension so that the Marangoni convection turns inward and forms a deep weld zone.The increase in gas flow rate causes a decrease in the weld efficiency which is attributed to the increase in oxygen content in the weld pool and the formation of a thicker oxide layer on the weld surface.Moreover,the stir and the temperature fluctuation,led by double shielding gas,create more homogeneous nucleation sites in the molten pool so that a fine grain microstructure was obtained.

  17. Corrosion Behavior of Metal Active Gas Welded Joints of a High-Strength Steel for Automotive Application

    Science.gov (United States)

    Garcia, Mainã Portella; Mantovani, Gerson Luiz; Vasant Kumar, R.; Antunes, Renato Altobelli

    2017-09-01

    In this work, the corrosion behavior of metal active gas-welded joints of a high-strength steel with tensile yield strength of 900 MPa was investigated. The welded joints were obtained using two different heat inputs. The corrosion behavior has been studied in a 3.5 wt.% NaCl aqueous solution using electrochemical impedance spectroscopy and potentiodynamic polarization tests. Optical microscopy images, scanning electron microscopy and transmission electron microscopy with energy-dispersive x-ray revealed different microstructural features in the heat-affected zone (HAZ) and the weld metal (WM). Before and after the corrosion process, the sample was evaluated by confocal laser scanning microscopy to measure the depth difference between HAZ and WM. The results showed that the heat input did not play an important role on corrosion behavior of HSLA steel. The anodic and cathodic areas of the welded joints could be associated with depth differences. The HAZ was found to be the anodic area, while the WM was cathodic with respect to the HAZ. The corrosion behavior was related to the amount and orientation nature of carbides in the HAZ. The microstructure of the HAZ consisted of martensite and bainite, whereas acicular ferrite was observed in the weld metal.

  18. Laser welding of advanced high strength steels

    OpenAIRE

    Ahmed, Essam Ahmed Ali

    2011-01-01

    This research work focuses on characterization of CO2 laser beam welding (LBW) of dual phase (DP) and transformation induced plasticity (TRIP) steel sheets based on experimental, numerical simulation and statistical modeling approaches. The experimental work aimed to investigate the welding induced-microstructures, hardness, tensile properties and formability limit of laser welding butt joints of DP/DP, TRIP/TRIP and DP/TRIP steel sheets under different welding speeds. The effects of shieldin...

  19. Research on low carbon steel activating flux CMT welding%活性剂CMT焊接的研究

    Institute of Scientific and Technical Information of China (English)

    周方明; 宋辉

    2013-01-01

    The CO2 gas shielded welding has big spatter,and this will pollute the environment and affect the staff health.In this paper, we will study the activating flux CMT welding under the CO2 gas protection, to research a green and efficient welding technology.Through the active agent of low carbon steel CMT welding test,the results show that,CMT welding with active agent,you can make a higher degree of penetration increases, increasing 20% or more proportion.With the different active agent ingredients, the degree of weld penetration increases in different.In activating flux CMT welding,the active agent has an important impact on both the physical process of the arc electrode gas ionization and electron emission, and the active substance reduces the accession of ionization voltage to make the arc stability .The activating flux CMT welding make the penetration increase result of arc compression and surface tension.Especially, the B2O3 and SiO2 make the weld penetration increasing significantly, because of the two elements of B and Si have large resistively.%CO2气体保护焊飞溅较大,污染环境,影响人员健康.研究了CO2气体保护下的活性剂CMT焊接,旨在研究一种绿色高效的焊接技术.通过进行低碳钢的活性剂CMT焊接试验,研究结果表明:CMT焊接采用活性剂后,可以较大程度增加熔深,增加比例在20%以上.活性剂成分不同,焊缝熔深增加程度也不同.在活性剂CMT焊接中,活性剂对电弧气体电离和电极发射电子都产生重要影响,活性物质的加入使得电离电压降低,电弧稳定.活性剂CMT焊接使熔深增加是电弧压缩和表面张力共同作用的结果.其中B2O3和SiO2使焊缝熔深增加明显,与B和Si两元素具有较大的的电阻率有关.

  20. Effect of A-TIG Welding Process on the Weld Attributes of Type 304LN and 316LN Stainless Steels

    Science.gov (United States)

    Vasudevan, M.

    2017-03-01

    The specific activated flux has been developed for enhancing the penetration performance of TIG welding process for autogenous welding of type 304LN and 316LN stainless steels through systematic study. Initially single-component fluxes were used to study their effect on depth of penetration and tensile properties. Then multi-component activated flux was developed which was found to produce a significant increase in penetration of 10-12 mm in single-pass TIG welding of type 304LN and 316LN stainless steels. The significant improvement in penetration achieved using the activated flux developed in the present work has been attributed to the constriction of the arc and as well as reversal of Marangoni flow in the molten weld pool. The use of activated flux has been found to overcome the variable weld penetration observed in 316LN stainless steel with welds compared to that of the welds produced by conventional TIG welding on the contrary the transverse strength properties of the 304LN and 316LN stainless steel welds produced by A-TIG welding exceeded the minimum specified strength values of the base metals. Improvement in toughness values were observed in 316LN stainless steel produced by A-TIG welding due to refinement in the weld microstructure in the region close to the weld center. Thus, activated flux developed in the present work has greater potential for use during the TIG welding of structural components made of type 304LN and 316LN stainless steels.

  1. Effect of A-TIG Welding Process on the Weld Attributes of Type 304LN and 316LN Stainless Steels

    Science.gov (United States)

    Vasudevan, M.

    2017-02-01

    The specific activated flux has been developed for enhancing the penetration performance of TIG welding process for autogenous welding of type 304LN and 316LN stainless steels through systematic study. Initially single-component fluxes were used to study their effect on depth of penetration and tensile properties. Then multi-component activated flux was developed which was found to produce a significant increase in penetration of 10-12 mm in single-pass TIG welding of type 304LN and 316LN stainless steels. The significant improvement in penetration achieved using the activated flux developed in the present work has been attributed to the constriction of the arc and as well as reversal of Marangoni flow in the molten weld pool. The use of activated flux has been found to overcome the variable weld penetration observed in 316LN stainless steel with welds compared to that of the welds produced by conventional TIG welding on the contrary the transverse strength properties of the 304LN and 316LN stainless steel welds produced by A-TIG welding exceeded the minimum specified strength values of the base metals. Improvement in toughness values were observed in 316LN stainless steel produced by A-TIG welding due to refinement in the weld microstructure in the region close to the weld center. Thus, activated flux developed in the present work has greater potential for use during the TIG welding of structural components made of type 304LN and 316LN stainless steels.

  2. Corrosion Properties of Laser Welded Stainless Steel

    DEFF Research Database (Denmark)

    Weldingh, Jakob; Olsen, Flemmming Ove

    1997-01-01

    In this paper the corrosion properties of laser welded AISI 316L stainless steel are examined. A number of different welds has been performed to test the influence of the weld parameters of the resulting corrosion properties. It has been chosen to use the potential independent critical pitting...... temperature (CPT) test as corrosion test. The following welding parameters are varied: Welding speed, lsser power, focus point position and laser operation mode (CW or pulsed)....

  3. Occupational rhinitis due to steel welding fumes.

    Science.gov (United States)

    Castano, Roberto; Suarthana, Eva

    2014-12-01

    Exposure to welding fumes is a recognized respiratory hazard. Occupational asthma but not occupational rhinitis has been documented in workers exposed to steel welding fumes. We report a 26-year-old male with work-related rhinitis symptoms as well as lower airways symptoms suggestive of occupational asthma and metal fume fever associated with exposure to steel welding fumes. The diagnosis of occupational rhinitis was confirmed by specific inhalation challenge.

  4. Microstructural Variations Across a Dissimilar 316L Austenitic: 9Cr Reduced Activation Ferritic Martensitic Steel Weld Joint

    Science.gov (United States)

    Thomas Paul, V.; Karthikeyan, T.; Dasgupta, Arup; Sudha, C.; Hajra, R. N.; Albert, S. K.; Saroja, S.; Jayakumar, T.

    2016-03-01

    This paper discuss the microstructural variations across a dissimilar weld joint between SS316 and 9Cr-RAFM steel and its modifications on post weld heat treatments (PWHT). Detailed characterization showed a mixed microstructure of austenite and martensite in the weld which is in agreement with the phases predicted using Schaeffler diagram based on composition measurements. The presence of very low volume fraction of δ-ferrite in SS316L has been identified employing state of the art electron back-scattered diffraction technique. PWHT of the ferritic steel did not reduce the hardness in the weld metal. Thermal exposure at 973 K (700 °C) showed a progressive reduction in hardness of weld joint with duration of treatment except in austenitic base metal. However, diffusion annealing at 1073 K (800 °C) for 100 hours resulted in an unexpected increase in hardness of weld metal, which is a manifestation of the dilution effects and enrichment of Ni on the transformation characteristics of the weld zone. Migration of carbon from ferritic steel aided the precipitation of fine carbides in the austenitic base metal on annealing at 973 K (700 °C); but enhanced diffusion at 1073 K (880 °C) resulted in coarsening of carbides and thereby reduction of hardness.

  5. Friction Stir Welding of ODS and RAFM Steels

    Science.gov (United States)

    Yu, Zhenzhen; Feng, Zhili; Hoelzer, David; Tan, Lizhen; Sokolov, Mikhail A.

    2015-09-01

    Advanced structural materials such as oxide dispersion strengthened steels and reduced-activation ferritic/martensitic steels are desired in fusion reactors as primary candidate materials for first wall and blanket structures, due to their excellent radiation and high-temperature creep resistance. However, their poor fusion weldability has been the major technical challenge limiting practical applications. For this reason, solid-state friction stir welding (FSW) has been considered for such applications. In this work, the effect of FSW parameters on joining similar and dissimilar advanced structural steels was investigated. Scanning electron microscopy and electron backscatter diffraction methods were used to reveal the effects of FSW on grain size, micro-texture distribution, and phase stability. Hardness mapping was performed to evaluate mechanical properties. Post weld heat treatment was also performed to tailor the microstructure in the welds in order to match the weld zone mechanical properties to the base material.

  6. Microstructural Development during Welding of TRIP steels

    OpenAIRE

    Amirthalingam, M.

    2010-01-01

    The Advanced High Strength Steels (AHSS) are promising solutions for the production of lighter automobiles which reduce fuel consumption and increase passenger safety by improving crash-worthiness. Transformation Induced Plasticity Steel (TRIP) are part of the advanced high strength steels which offers a high strength and toughness combination with excellent uniform elongation. However, the higher alloying content of these steel limits their weldability and the thermal cycle of a welding proc...

  7. Optimization of process parameters of the activated tungsten inert gas welding for aspect ratio of UNS S32205 duplex stainless steel welds

    OpenAIRE

    G. Magudeeswaran; Sreehari R. Nair; Sundar, L.; N. Harikannan

    2014-01-01

    The activated TIG (ATIG) welding process mainly focuses on increasing the depth of penetration and the reduction in the width of weld bead has not been paid much attention. The shape of a weld in terms of its width-to-depth ratio known as aspect ratio has a marked influence on its solidification cracking tendency. The major influencing ATIG welding parameters, such as electrode gap, travel speed, current and voltage, that aid in controlling the aspect ratio of DSS joints, must be optimized to...

  8. Transformation and Precipitation Reactions by Metal Active Gas Pulsed Welded Joints from X2CrNiMoN22-5-3 Duplex Stainless Steels

    Directory of Open Access Journals (Sweden)

    Ion-Dragos Utu

    2016-07-01

    Full Text Available The high alloying degree of Duplex stainless steels makes them susceptible to the formation of intermetallic phases during their exposure to high temperatures. Precipitation of these phases can lead to a decreasing of the corrosion resistance and sometimes of the toughness. Starting from the advantages of the synergic Metal Active Gas (MAG pulsed welding process, this paper analyses the structure formation particularities of homogeneous welded joints from Duplex stainless steel. The effect of linear welding energy on the structure morphology of the welded joints was revealed by macro- and micrographic examinations, X-ray energy dispersion analyses, measurements of ferrite proportion and X-ray diffraction analysis. The results obtained showed that the transformation of ferrite into austenite is associated with the chromium, nickel, molybdenum and nitrogen distribution between these two phases and their redistribution degree is closely linked to the overall heat cycle of the welding process. The adequate control of the energy inserted in the welded components provides an optimal balance between the two microstructural constituents (Austenite and Ferrite and avoids the formation of undesirable intermetallic phases.

  9. Influence of Oxides on Microstructures and Mechanical Properties of High-Strength Steel Weld Joint

    Science.gov (United States)

    Cai, Yangchuan; Luo, Zhen; Huang, Zunyue; Zeng, Yida

    2016-11-01

    A comprehensive investigation was conducted into the effect of oxides on penetrations, microstructures and mechanical properties of BS700MC super steel weld bead. Boron oxide changed the penetration of weld bead by changing the Marangoni convection in the weld pool and contracting the welding arc. Chromium oxide only changed the Marangoni convection in the weld pool to increase the penetration of super steel. Thus, the super steel weld bead has higher penetration coated with flux boron oxide than that coated with chromium oxide. In other words, the activating flux TIG (A-TIG) welding with flux boron oxide has less welding heat input than the A-TIG welding with flux chromium oxide. As a result, on the one hand, there existed more fine and homogeneous acicular ferrites in the microstructure of welding heat-affected zone when the super steel was welded by A-TIG with flux boron oxide. Thus, the weld beads have higher value of low-temperature impact toughness. On the other hand, the softening degree of welding heat-affected zone, welded by A-TIG with flux boron oxide, will be decreased for the minimum value of welding heat input.

  10. Development of narrow gap welding technology for extremely thick steel

    Science.gov (United States)

    Imai, K.; Saito, T.; Okumura, M.

    In the field of extremely thick steel, various narrow gap welding methods were developed on the basis of former welding methods and are used in practice. It is important to develop and improve automatic narrow gap welding, J edge preparation by gas cutting, the prevention of welding defects, wires for narrow gap welding and so on in order to expand the scope of application of the method. Narrow gap welding technologies are described, based on new concepts developed by Nippon Steel Corporation.

  11. Effect of activating fluxes on weld mechanical properties in TIG welding

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Activating TIG (A-TIG) welding has received many attentions worldwide since the end of 1990s. Compared with conventional TIG welding A-TIG welding can greatly improve the welding productivity and reduce the welding cost without altering the equipments under the same welding procedures and is considered as a innovative variant of conventional TIG welding. The materials applied by A-TIG welding have ranged from original titanium alloy to stainless steel, carbon steel, high temperature alloy steel and so forth. The effects of activating fluxes with single component on weld mechanical properties such as tensile strength, hardness and elastics during A-TIG welding of stainless steel are discussed in this paper. The experimental results show that different fluxes have different effects on the weld mechanical properties. Among these fluxes the flux SiO2 is the best in the performance of tensile strength and ductility, while flux Cr2O3 is the best in the performance of weld hardness compared with conventional TIG welding. These experiments provide the foundation for selecting the most suitable fluxes for stainless steel in practical welding production.

  12. Corrosion of an austenite and ferrite stainless steel weld

    Directory of Open Access Journals (Sweden)

    BRANIMIR N. GRGUR

    2011-07-01

    Full Text Available Dissimilar metal connections are prone to frequent failures. These failures are attributed to the difference in the mechanical properties across the weld, the coefficients of thermal expansion of the two types of steels and the resulting creep at the interface. For the weld analyzed in this research, it was shown that corrosion measurements can be used for a proper evaluation of the quality of weld material and for the prediction of whether or not the material, after the applied welding process, can be in service without failures. It was found that the corrosion of the weld analyzed in this research resulted from the simultaneous activity of different types of corrosion. In this study, electrochemical techniques including polarization and metallographic analysis were used to analyze the corrosion of a weld material of ferrite and austenitic stainless steels. Based on surface, chemical and electrochemical analyses, it was concluded that corrosion occurrence was the result of the simultaneous activity of contact corrosion (ferrite and austenitic material conjuction, stress corrosion (originating from deformed ferrite structure and inter-granular corrosion (due to chromium carbide precipitation. The value of corrosion potential of –0.53 V shows that this weld, after the thermal treatment, is not able to repassivate a protective oxide film.

  13. Embrittlement of austenitic stainless steel welds

    Energy Technology Data Exchange (ETDEWEB)

    David, S.A.; Vitek, J.M. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.

    1997-12-31

    The microstructure of type-308 austenitic stainless steel weld metal containing {gamma} and {delta} and ferrite is shown. Typical composition of the weld metal is Cr-20.2, Ni-9.4, Mn-1.7, Si-0.5, C-0.05, N-0.06 and balance Fe (in wt %). Exposure of austenitic stainless steel welds to elevated temperatures can lead to extensive changes in the microstructural features of the weld metal. On exposure to elevated temperatures over a long period of time, a continuous network of M{sub 23}C{sub 6} carbide forms at the austenite/ferrite interface. Upon aging at temperatures between 550--850 C, ferrite in the weld has been found to be unstable and transforms to sigma phase. These changes have been found to influence mechanical behavior of the weld metal, in particular the creep-rupture properties. For aging temperatures below 550 C the ferrite decomposes spinodally into {alpha} and {alpha}{prime} phases. In addition, precipitation of G-phase occurs within the decomposed ferrite. These transformations at temperatures below 550 C lead to embrittlement of the weld metal as revealed by the Charpy impact properties.

  14. Comparison of Welding Residual Stresses of Hybrid Laser-Arc Welding and Submerged Arc Welding in Offshore Steel Structures

    DEFF Research Database (Denmark)

    Andreassen, Michael Joachim; Yu, Zhenzhen; Liu, Stephen

    2016-01-01

    induced residual stresses. It is also investigated whether the assumption of residual stresses up to yield strength magnitude are present in welded structures as stated in the design guidelines. The fatigue strength for welded joints is based on this assumption. The two welding methods investigated...... are hybrid laser-arc welding (HLAW) and submerged arc welding (SAW). Both welding methods are applied for a full penetration butt-weld of 10 mm thick plates made of thermomechanically hot-rolled, low-carbon, fine-grain S355ML grade steel used in offshore steel structures. The welding residual stress state...

  15. Optimization of process parameters of the activated tungsten inert gas welding for aspect ratio of UNS S32205 duplex stainless steel welds

    Directory of Open Access Journals (Sweden)

    G. Magudeeswaran

    2014-09-01

    Full Text Available The activated TIG (ATIG welding process mainly focuses on increasing the depth of penetration and the reduction in the width of weld bead has not been paid much attention. The shape of a weld in terms of its width-to-depth ratio known as aspect ratio has a marked influence on its solidification cracking tendency. The major influencing ATIG welding parameters, such as electrode gap, travel speed, current and voltage, that aid in controlling the aspect ratio of DSS joints, must be optimized to obtain desirable aspect ratio for DSS joints. Hence in this study, the above parameters of ATIG welding for aspect ratio of ASTM/UNS S32205 DSS welds are optimized by using Taguchi orthogonal array (OA experimental design and other statistical tools such as Analysis of Variance (ANOVA and Pooled ANOVA techniques. The optimum process parameters are found to be 1 mm electrode gap, 130 mm/min travel speed, 140 A current and 12 V voltage. The aspect ratio and the ferrite content for the DSS joints fabricated using the optimized ATIG parameters are found to be well within the acceptable range and there is no macroscopically evident solidification cracking.

  16. Optimization of process parameters of the activated tungsten inert gas welding for aspect ratio of UNS S32205 duplex stainless steel welds

    Institute of Scientific and Technical Information of China (English)

    G. MAGUDEESWARAN; Sreehari R. NAIR; L. SUNDAR; N. HARIKANNAN

    2014-01-01

    The activated TIG (ATIG) welding process mainly focuses on increasing the depth of penetration and the reduction in the width of weld bead has not been paid much attention. The shape of a weld in terms of its width-to-depth ratio known as aspect ratio has a marked influence on its solidification cracking tendency. The major influencing ATIG welding parameters, such as electrode gap, travel speed, current and voltage, that aid in controlling the aspect ratio of DSS joints, must be optimized to obtain desirable aspect ratio for DSS joints. Hence in this study, the above parameters of ATIG welding for aspect ratio of ASTM/UNS S32205 DSS welds are optimized by using Taguchi orthogonal array (OA) experimental design and other statistical tools such as Analysis of Variance (ANOVA) and Pooled ANOVA techniques. The optimum process parameters are found to be 1 mm electrode gap, 130 mm/min travel speed, 140 A current and 12 V voltage. The aspect ratio and the ferrite content for the DSS joints fabricated using the optimized ATIG parameters are found to be well within the acceptable range and there is no macroscopically evident solidification cracking.

  17. Friction Stir Spot Welding of Advanced High Strength Steels

    Energy Technology Data Exchange (ETDEWEB)

    Hovanski, Yuri; Grant, Glenn J.; Santella, M. L.

    2009-11-13

    Friction stir spot welding techniques were developed to successfully join several advanced high strength steels. Two distinct tool materials were evaluated to determine the effect of tool materials on the process parameters and joint properties. Welds were characterized primarily via lap shear, microhardness, and optical microscopy. Friction stir spot welds were compared to the resistance spot welds in similar strength alloys by using the AWS standard for resistance spot welding high strength steels. As further comparison, a primitive cost comparison between the two joining processes was developed, which included an evaluation of the future cost prospects of friction stir spot welding in advanced high strength steels.

  18. Calculation of AF transformation kinetics in HSLA steel weld

    Institute of Scientific and Technical Information of China (English)

    张国栋; 潘春旭; 黄安国; 李志远; 余圣甫; 市川和利

    2004-01-01

    It is of great importance for obtaining the perfect welding properties to control the acicular ferrite (AF) transformation behavior reasonably in steel weld. AF continuous transformation kinetics in the HSLA steel weld was calculated and modeled based on the direct growth on the inclusions inert interface. The simulation results are coincident with the experimental value well.

  19. Microgalvanic corrosion of laser-welded HSLA steels

    NARCIS (Netherlands)

    Looi, Y.-M.

    2008-01-01

    Laser welding of galvanized high strength low alloy (HSLA) steels leads to the evaporation of zinc at the weld and the formation of a heat-affected-zone (HAZ). High heat input due to welding generates macro galvanic coupling between the weld and the parent metal as well as micro galvanic corrosion a

  20. Microgalvanic corrosion of laser-welded HSLA steels

    NARCIS (Netherlands)

    Looi, Y.-M.

    2008-01-01

    Laser welding of galvanized high strength low alloy (HSLA) steels leads to the evaporation of zinc at the weld and the formation of a heat-affected-zone (HAZ). High heat input due to welding generates macro galvanic coupling between the weld and the parent metal as well as micro galvanic corrosion

  1. Plasma spot welding of ferritic stainless steels

    Directory of Open Access Journals (Sweden)

    Lešnjak, A.

    2002-06-01

    Full Text Available Plasma spot welding of ferritic stainless steels is studied. The study was focused on welding parameters, plasma and shielding gases and the optimum welding equipment. Plasma-spot welded overlap joints on a 0.8 mm thick ferritic stainless steel sheet were subjected to a visual examination and mechanical testing in terms of tension-shear strength. Several macro specimens were prepared. Plasma spot welding is suitable to use the same gas as shielding gas and as plasma gas, i.e., a 98 % Ar/2 % H 2 gas mixture. Tension-shear strength of plasma-spot welded joints was compared to that of resistance-spot welded joints. It was found that the resistance welded joints withstand a somewhat stronger load than the plasma welded joints due to a larger weld spot diameter of the former. Strength of both types of welded joints is approximately the same.

    El artículo describe el proceso de soldeo de aceros inoxidables ferríticos por puntos con plasma. La investigación se centró en el establecimiento de los parámetros óptimos de la soldadura, la definición del gas de plasma y de protección más adecuado, así como del equipo óptimo para la realización de la soldadura. Las uniones de láminas de aceros inoxidables ferríticos de 0,8 mm de espesor, soldadas a solape por puntos con plasma, se inspeccionaron visualmente y se ensayaron mecánicamente mediante el ensayo de cizalladura por tracción. Se realizaron macro pulidos. Los resultados de la investigación demostraron que la solución más adecuada para el soldeo por puntos con plasma es elegir el mismo gas de plasma que de protección. Es decir, una mezcla de 98 % de argón y 2 % de hidrógeno. La resistencia a la cizalladura por tracción de las uniones soldadas por puntos con plasma fue comparada con la resistencia de las uniones soldadas por resistencia por puntos. Se llegó a la conclusión de que las uniones soldadas por resistencia soportan una carga algo mayor que la uniones

  2. Effect of weld reinforcement on axial plastic buckling of welded steel cylindrical shells

    Institute of Scientific and Technical Information of China (English)

    Chu-lin YU; Zhi-ping CHEN; Ji WANG; Shun-juan YAN; Li-cai YANG

    2012-01-01

    The effect of weld reinforcement on axial plastic buckling of welded steel cylindrical shells is investigated through experimental and numerical buckling analysis using six welded steel cylindrical shell specimens.The relationship between the amplitude of weld reinforcement and the axial plastic buckling critical load is explored.The effect of the material yield strength and the number of circumferential welds on the axial plastic buckling is studied.Results show that circumferential weld reinforcement represents a severe imperfect form of axially compressed welded steel cylindrical shells and the axial plastic buckling critical load decreases with the increment of the mean amplitude of circumferential weld reinforcement.The material yield strength and the number of circumferential welds are found to have no significant effect on buckling waveforms; however,the axial plastic buckling critical load can be decreased to some extent with the increase of the number of circumferential welds.

  3. Welding Behavior of Free Machining Stainless Steel

    Energy Technology Data Exchange (ETDEWEB)

    BROOKS,JOHN A.; ROBINO,CHARLES V.; HEADLEY,THOMAS J.; MICHAEL,JOSEPH R.

    2000-07-24

    The weld solidification and cracking behavior of sulfur bearing free machining austenitic stainless steel was investigated for both gas-tungsten arc (GTA) and pulsed laser beam weld processes. The GTA weld solidification was consistent with those predicted with existing solidification diagrams and the cracking response was controlled primarily by solidification mode. The solidification behavior of the pulsed laser welds was complex, and often contained regions of primary ferrite and primary austenite solidification, although in all cases the welds were found to be completely austenite at room temperature. Electron backscattered diffraction (EBSD) pattern analysis indicated that the nature of the base metal at the time of solidification plays a primary role in initial solidification. The solid state transformation of austenite to ferrite at the fusion zone boundary, and ferrite to austenite on cooling may both be massive in nature. A range of alloy compositions that exhibited good resistance to solidification cracking and was compatible with both welding processes was identified. The compositional range is bounded by laser weldability at lower Cr{sub eq}/Ni{sub eq} ratios and by the GTA weldability at higher ratios. It was found with both processes that the limiting ratios were somewhat dependent upon sulfur content.

  4. Explosive welding technique for joining aluminum and steel tubes

    Science.gov (United States)

    Wakefield, M. E.

    1975-01-01

    Silver sheet is wrapped around aluminum portion of joint. Mylar powder box is wrapped over silver sheet. Explosion welds silver to aluminum. Stainless-steel tube is placed over silver-aluminum interface. Mylar powder box, covered with Mylar tape, is wrapped around steel member. Explosion welds steel to silver-aluminum interface.

  5. Friction Stir Spot Welding of Advanced High Strength Steels

    Energy Technology Data Exchange (ETDEWEB)

    Santella, M. L.; Hovanski, Yuri; Grant, Glenn J.; Carpenter, Joseph A.; Warren, C. D.; Smith, Mark T.

    2008-12-28

    Experiments are continuing to evaluate the feasibility of friction stir spot welding advanced high-strength steels including, DP780, martensitic hot-stamp boron steel, and TRIP steels. Spot weld lap-shear strengths can exceed those required by industry standards such as AWS D8.1.

  6. Optimal welding technology of high strength steel S690QL

    Directory of Open Access Journals (Sweden)

    Dusan Arsic

    2015-02-01

    Full Text Available In this paper is presented the detailed procedure for defining the optimal technology for welding the structures made of the high strength steel S690QL. That steel belongs into a group of steels with exceptional mechanical properties. The most prominent properties are the high tensile strength and impact toughness, at room and at elevated temperatures, as well. However, this steel has a negative characteristic - proneness to appearance of cold cracks.  That impedes welding and makes as an imperative to study different aspects of this steel's properties as well as those of eventual filler metal. Selection and defining of the optimal welding technology of this high strength steel is done for the purpose of preserving the favorable mechanical properties once the welded joint is realized; properties of the welded metal and the melting zone, as well as in the heat affected zone, which is the most critical zone of the welded joint.

  7. Mechanical behavior study of laser welded joints for DP steel

    Science.gov (United States)

    Yan, Qi

    2008-03-01

    Advanced High Strength Steels (AHSS) are gaining considerable market shares in the automotive industry. The development and application of Dual Phase (DP) steel is just a consistent step towards high-strength steel grades with improved mechanical behavior. Tailor welded blanks with DP steel are promoted in the application of Body-In-White (BIW) structure by the automotive industry. A tailor welded blank consists of several flat sheets that are laser welded together before stamping. Applied cases of tailor welded blanks of high strength steels on the automotive structural parts are investigated in this paper. The mechanical behavior of laser welded joints for DP steel is studied. Microstructure of laser welded joints for DP steel was observed by SEM. Martensite in the weld seam explains the higher strength of welded joints than the base metal. Results show that the strain safety tolerance of laser welded seam for high strength steel can meet the requirement of automobile parts for stamping if the location of laser welded seam is designed reasonably.

  8. Pulsed Magnetic Welding for Advanced Core and Cladding Steel

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Guoping [Univ. of Wisconsin, Madison, WI (United States); Yang, Yong [Univ. of Florida, Gainesville, FL (United States)

    2013-12-19

    To investigate a solid-state joining method, pulsed magnetic welding (PMW), for welding the advanced core and cladding steels to be used in Generation IV systems, with a specific application for fuel pin end-plug welding. As another alternative solid state welding technique, pulsed magnetic welding (PMW) has not been extensively explored on the advanced steels. The resultant weld can be free from microstructure defects (pores, non-metallic inclusions, segregation of alloying elements). More specifically, the following objectives are to be achieved: 1. To design a suitable welding apparatus fixture, and optimize welding parameters for repeatable and acceptable joining of the fuel pin end-plug. The welding will be evaluated using tensile tests for lap joint weldments and helium leak tests for the fuel pin end-plug; 2 Investigate the microstructural and mechanical properties changes in PMW weldments of proposed advanced core and cladding alloys; 3. Simulate the irradiation effects on the PWM weldments using ion irradiation.

  9. Laser welding and post weld treatment of modified 9Cr-1MoVNb steel.

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Z. (Nuclear Engineering Division)

    2012-04-03

    Laser welding and post weld laser treatment of modified 9Cr-1MoVNb steels (Grade P91) were performed in this preliminary study to investigate the feasibility of using laser welding process as a potential alternative to arc welding methods for solving the Type IV cracking problem in P91 steel welds. The mechanical and metallurgical testing of the pulsed Nd:YAG laser-welded samples shows the following conclusions: (1) both bead-on-plate and circumferential butt welds made by a pulsed Nd:YAG laser show good welds that are free of microcracks and porosity. The narrow heat affected zone has a homogeneous grain structure without conventional soft hardness zone where the Type IV cracking occurs in conventional arc welds. (2) The laser weld tests also show that the same laser welder has the potential to be used as a multi-function tool for weld surface remelting, glazing or post weld tempering to reduce the weld surface defects and to increase the cracking resistance and toughness of the welds. (3) The Vicker hardness of laser welds in the weld and heat affected zone was 420-500 HV with peak hardness in the HAZ compared to 240 HV of base metal. Post weld laser treatment was able to slightly reduce the peak hardness and smooth the hardness profile, but failed to bring the hardness down to below 300 HV due to insufficient time at temperature and too fast cooling rate after the time. Though optimal hardness of weld made by laser is to be determined for best weld strength, methods to achieve the post weld laser treatment temperature, time at the temperature and slow cooling rate need to be developed. (4) Mechanical testing of the laser weld and post weld laser treated samples need to be performed to evaluate the effects of laser post treatments such as surface remelting, glazing, re-hardening, or tempering on the strength of the welds.

  10. Thermal and mechanical response of steel sheets welded by laser process: Preanalysis made by ABAQUS code

    Energy Technology Data Exchange (ETDEWEB)

    Carmignani, B.; Daneri, A.; Giambuzzi, S.; Toselli, G. [ENEA, Bologna (Italy). Centro Ricerche Energia `E. Clementel` - Area Energetica

    1994-11-01

    In this work, the conclusive report on the activity, developed in the frame of the european project EUREKA-FASP (EU353), concerning the numerical simulation of the thermal and mechanical response of steel sheets, welded by a laser welding process, is presented. This type of welding process is of interest in the shipyard field. ABAQUS code, in its implicit version, has been used. Besides the description of the studies concerning more directly the laser welding, simulations of traditional welding processes, executed in order to single out particular aspects and calculation strategies to be utilized for the simulation of the process object of the study made, are presented and discussed.

  11. Microstructure Evolution during Friction Stir Spot Welding of TRIP Steel

    DEFF Research Database (Denmark)

    Lomholt, Trine Colding; Pantleon, Karen; Somers, Marcel A. J.

    2010-01-01

    In this study, the feasibility of friction stir spot welding of TRIP steel is investigated. In addition to manufacturing successful welds, the present study aims at a fundamental understanding of the mechanisms occurring at the (sub)micron scale during friction stir spot welding. As one of the main...

  12. Laser welding of maraging steel rocket motor casing

    CSIR Research Space (South Africa)

    Van Rooyen, C

    2009-11-01

    Full Text Available This presentation looks at the experimental procedure and results of laser welding of maraging steel rocker motor casing. It concludes that a fracture occurred in weld metal of autogenous welding and that a fracture occurred in base material when...

  13. Boundary effects in welded steel moment connections

    Science.gov (United States)

    Lee, Kyoung-Hyeog

    Unprecedented widespread failure of welded moment connections in steel frames caused by the 1994 Northridge and the 1995 Kobe earthquakes have alarmed the engineering communities throughout the world. Welded moment connections in steel frames have been traditionally designed by using the classical beam theory which leads to assumptions that the flanges transfer moment while the web connection primarily resists the shear force. However, this study shows that the magnitude and direction of the principal stresses in the connection region are better approximated by using truss analogy rather than the classical beam theory. Accordingly, both the bending moment and the shear force are transferred across the connection near the beam flanges through diagonal strut action. Thus, the beam flange region of the traditionally designed connection is overloaded. This conclusion explains, to a large extent, the recently observed steel moment connection failures. In this study, detailed finite element analyses were carried out for a representative beam-to-column subassemblage with fully welded connection. The stress distribution in the beam web and flanges in the vicinity of the connection were closely studied. The factors responsible for stress redistribution and concentration were identified by using fundamental principles of mechanics. It was concluded that peak resultant stresses can exceed the values used in simple design calculations by large margins. Using the finite element analysis results and the truss analogy to establish a realistic load path in the connection, a practical and more rational analysis and design procedure was developed. The proposed design procedure and the new connection details were successfully validated through cyclic load testing of a nearly full size specimen. The truss model represented the force transmission around the beam-to-column moment connection region very well. Results of the finite element analyses and the laboratory testing showed

  14. Laser Welding of Ultra-Fine Grained Steel SS400

    Institute of Scientific and Technical Information of China (English)

    PENG Yun; TIAN Zhi-ling; CHEN Wu-zhu; WANG Cheng; BAO Gang

    2003-01-01

    The effects of laser welding on microstructure and mechanical properties of ultra-fine grained steel SS400 were studied. The plasma arc welding and MAG welding were conducted to make a comparison between these weldings and laser welding. The coarse grain heat-affected zone (HAZ) of laser welding was simulated using thermomechanical simulation machine, and the impact toughness was tested. The deep penetration laser welding produces weld of large depth and narrow width. The weld metal and HAZ of laser welding was heated and then cooled rapidly. The prior austenite grain size of coarse grain HAZ is 1/10 of that for arc welding. For laser welding, the toughness of weld metal is higher than that of base metal, and the toughness of the coarse grain HAZ of laser welding is on a level with that of base metal. Matching lower laser power with lower welding speed, the hardening tendency of the weld metal and the coarse grain HAZ can be decreased. There is no softened zone. The tensile strength of welded joint formed by laser is higher than that of base metal. The joint has good bending ductility.

  15. Friction Stir Welding of Shipbuilding Steel with Primer

    Directory of Open Access Journals (Sweden)

    José Azevedo

    2016-03-01

    Full Text Available Abstract Friction Stir Welding has proven its merits for welding of aluminium alloys and is focused in expanding its material database to steel and titanium and also to assess new joint configurations. The use of welded structures in shipbuilding industry has a long tradition and continuously seeks for innovation in terms of materials and processes maintaining, or even, reducing costs. Several studies have been performed in the past years on FSW of steel. However, just recently were reported defect-free welds, free of martensite with stable parameters in steel without Primer. FSW of steel with primer has not been addressed. This work aims to fulfil a knowledge gap related to the use of friction stir for welding shipbuilding steel by analysing the effect of welding parameters on the metallurgical characteristics and mechanical properties of welds obtained with an innovative FSW tool in joining steel plates with a primer. Welds were performed in 4mm thick GL-A36 steel plates painted with a zinc based primer followed by a detailed microscopic, chemical and mechanical analysis. The results that matching fatigue properties are obtained using this technique, in FSW of shipbuilding steel with Primer.

  16. Effect of weld on design of steel moment-resisting connection reinforced with steel plates

    Institute of Scientific and Technical Information of China (English)

    CHEN Peng; LI Yong

    2005-01-01

    The foreign experimental and FEM research of steel moment-resisting connection reinforced with steel plates are introduced. The effect of weld on the connection design is studied in two ways including weld detail and geometrical detail of steel plates contrast to the reference drawing of connection design in China. The research shows that the weld plays an important role in the design of connections. The welds connecting reinforced plates and beam/ column flange and the plate geometry have direct influence on the performance of the connections reinforced with plates. The study is helpful to the application of design of steel moment-resisting connection with steel plates.

  17. HIGH FREQUENCY INDUCTION WELDING OF HIGH SILICON STEEL TUBES

    Directory of Open Access Journals (Sweden)

    Ricardo Miranda Alé

    2012-06-01

    Full Text Available High-Si steel is a low cost alternative for the fabrication of tubular structures resistant to atmospheric corrosion. However, the literature has often pointed out that steels presenting a higher Si content and/or a lower Mn/Si ratio have higher susceptibility to defects at the weld bond line during HFIW (High Frequency Induction Welding process, which has been widely used for manufacturing small diameter tubes. In this study the effect of the HFIW conditions on the quality of steel tubes with high-Si content and low Mn/Si ratio is investigated. The quality of welded tubes was determined by flare test and the defects in the bond line were identified by SEM. It has been found that higher welding speeds, V-convergence angles and power input should be applied in welding of high-Si steel, when compared to similar strength C-Mn steel.

  18. The Influence of Modes of Deposition of Coatings on the Corrosion Resistance of Welded Joints of Steels in Acidic Media;

    Science.gov (United States)

    Saraev, Yu N.; Bezborodov, V. P.; Selivanov, Y. V.

    2016-08-01

    In this work, effect of welding on corrosion of welded joints of austenitic steel 12KH18N10T. It is shown that the use of pulsed - arc welding steel 12KH18N10T allows you to create a protective coating with dispersed structure with less thermal impact on the zone of the welded joint. Coating is of such structure allows 1.5 to 6 times to reduce the corrosion rate of welded joints of steel 12KH18N10T in active chemical environments. Pulse the process of deposition of coatings on welded joint of steels can be effectively used for the protection against corrosion in the repair of equipment of chemical industry. The results obtained can be recommended for use when welding a protective corrosion - resistant coatings on working surfaces of equipment of chemical productions.

  19. Hybrid Friction Stir Welding of High-carbon Steel

    Institute of Scientific and Technical Information of China (English)

    Don-Hyun Choi; Seung-Boo Jung; Chang-Yong Lee; Byung-Wook Ahn; Jung-Hyun Choi; Yun-Mo Yeon; Keun Song; Seung-Gab Hong; Won-Bae Lee; Ki-Bong Kang

    2011-01-01

    A high-carbon steel joint, SK5 (0.84 wt% C), was successfully welded by friction stir welding (FSW), both without and with a gas torch, in order to control the cooling rate during welding. After welding, the weld zone comprised gray and black regions, corresponding to microstructural variation: a martensite structure and a duplex structure of ferrite and cementite, respectively. The volume fraction of the martensite structure and the Vickers hardness in the welds were decreased with the using of the gas torch, which was related with the lower cooling rate.

  20. Numerical simulation and experimental validation of arc welding of DMR-249A steel

    OpenAIRE

    2016-01-01

    The thermo-mechanical attributes of DMR-249A steel weld joints manufactured by shielded metal arc welding (SMAW) and activated gas tungsten arc welding (A-GTAW) processes were studied using Finite Element Model (FEM) simulation. The thermal gradients and residual stresses were analyzed with SYSWELD software using double ellipsoidal heat source distribution model. The numerically estimated temperature distribution was validated with online temperature measurements using thermocouples. The pred...

  1. High Strength Steel Welding Research

    Science.gov (United States)

    2007-11-02

    Heat Input in Structural Steels," ISIJ International, vol. 36, no. 11, pp. 1406-1412, 1996. 116. N.P. Allen, W.P. Rees, B.E. Hopkins, and H.R. Tipler ...h’ 1c ifui c hy rgnoecc onoaýttthth u sth pobcontent :of the w•eldmnt wut houts-he prob f 4c sectintc Adusin~g: the+ height of Sstandard AWS/ANSi A4.3...hhE. L4-0 ~) 0 I3 CU ci)U CD ’ L. ) C-S E < 21 ofE co I 0 CLo x 1C . I a x .JCk 0 C o + 0+ 0 o+ 0 z or• mur ’’ s-0 U Qý 0 E- II CU -U Q 𔃾- m C U 0 a

  2. The ultrasonic testing of the spot welded different steel sheets

    Directory of Open Access Journals (Sweden)

    M. Vural

    2006-08-01

    Full Text Available Purpose: Purpose of this paper is to investigate the applicability of spot welded different steel sheets toultrasonic testing, because resistance spot welding of the steel sheets is widely used in the car bodies andtransport fields and ultrasonic testing is a good way to evaluate the fatique life of the spot welds.Design/methodology/approach: Methodology of this paper is that two different steel sheets (AISI 304 typeaustenitic stainless steel sheet and Galvanized steel sheet were welded to each other by using resistance spotwelding. Some pre-welding tests were made to obtain suitable and optimum weld nugget diameter; and thewelding current vs. nugget diameter curve were obtained. By using this curve and kepting constant weldingparameters such as current, electrode pressure, weld time, etch., fully identical four spot welded specimenshaving 5 mm (±0.2 nugget diameter were obtained. The specimens and nugget diameters were tested by usinga special ultrasonic test apparatus which is designed for spot welded joints.Findings: Findings are that after the first ultrasonic tests, the four identical spot welded sheets which have AISI304 – Galvanized steel sheet combination were subjected to the fatigue test in four different number of cycles.There is no any rupture or fracture in spot welded joints after fatigue tests. The spot welded specimens subjectedto fatigue test were tested in ultrasonic test apparatus to observe the variation in the weld nugget and joint. Theultrasonic test results before fatigue and after fatigue were compared with each other; and the decreasing of theweld nugget diameter were observed while increasing the number of cycles. The results were shown in figuresand discussed.Research limitations/implications: Spot welding of different steel sheets forms different microstructures whichrespond different values to ultrasonic testing. Evaluation of these responses are quiet difficult.Practical implications: Only a few spot welds can be

  3. Characteristics of Welding Crack Defects and Failure Mode in Resistance Spot Welding of DP780 Steel

    Institute of Scientific and Technical Information of China (English)

    Xiao-pei WANG; Yong-qiang ZHANG; Jian-bin JU; Jian-qiang ZHANG; Jian-wei YANG

    2016-01-01

    The mechanical properties of welded joints in resistance spot welding of DP780 steel were tested,and three dif-ferent types of welding cracks in welded joints were investigated by optical microscopy,scanning electron microscopy and electron back-scattered diffraction.Finally,the failure mode of the welded joints in shear tensile test was dis-cussed.It is found the shear tensile strength of welded joints can be greatly improved by adding preheating current or tempering current.The surface crack in welded joint is intergranular fracture,while the inner crack in welded joint is transgranular fracture,and the surface crack on the edge of the electrode imprint can be improved by adding prehea-ting current or tempering current.The traditional failure mode criterion advised by American Welding Society is no longer suitable for DP780 spot welds and the critical nugget size suggested by Pouranvari is overestimated.

  4. Weld Decay Recovery by Laser Beam Surfacing of Austenitic Stainless Steel Welded Joints

    OpenAIRE

    Isao, MASUMOTO; Takeshi, SHINODA; Toshimasa, HIRATE; Nagoya University, currently at Gifu Vocational Training College; Faculty of Engineering, Nagoya University; Nagoya University, currently at Toshiba Co. Ltd.

    1990-01-01

    This study is an attempt to improve corrosion resistance by laser beam surface treatment. AISI 304 type stainless steel welds were surface treated by laser and the effectivenesses of various treatment conditions were evaluated by acidic corrosion tests and metallurgical observation. It was found that laser treatment changed the morphology of carbide precipitates in the heat affected zone of AISI 304 austenitic steel MIG welded joints, and that it is possible to effect revovery from weld decay...

  5. Optimization of Friction Welding Process Parameters for Joining Carbon Steel and Stainless Steel%Optimization of Friction Welding Process Parameters for Joining Carbon Steel and Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    R Paventhan; P R Lakshminarayanan; V Balasubramanian

    2012-01-01

    Friction weIding is a solid state joining process used extensively currently owing to its advantages such as low heat input, high production efficiency, ease of manufacture, and environment friendliness. Materials difficult to be welded by fusion welding processes can be successfully welded by friction welding. An attempt was made to develop an empirical relationship to predict the tensile strength of friction welded AISI 1040 grade medium carbon steel and AISI 304 austenitic stainless steel, incorporating the process parameters such as friction pressure, forging pressure, friction time and forging time, which have great influence on strength of the joints. Response surface methodology was applied to optimize the friction welding process parameters to attain maximum tensile strength of the joint. The maximum tensile strength of 543 MPa could be obtained for the joints fabricated under the welding conditions of friction pressure of 90 MPa, forging pressure of 90 MPa, friction time of 6 s and forging time of 6 s.

  6. Effect of process parameters on optimum welding condition of DP590 steel by friction stir welding

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Gon; Kim, Ji Sun; Kim, In Ju [Korea Institute of Industrial Technology, Gwangju (Korea, Republic of)

    2014-12-15

    In the automotive industry, vehicle weight reduction techniques have been actively studied to improve the rate of fuel consumption and to cope with the regulation restricting exhaust gas. For this reason, advanced high-strength steel (AHSS) is preferred in the automobile industry as its tensile strength is 590 MPa and over. In this study, to obtain the optimum welding condition, the friction stir welding (FSW) process applied to AHSS was considered. The FSW experiment was performed on a stir plate using a Si{sub 3}N{sub 4} tool and a 1.4-mm thick DP590 steel sheet manufactured by cold rolling. In addition, to investigate the temperature distribution of the advancing and retreating sides in the welding state, the tool rotation speed of 800 rpm, and the welding speed of 180 mm/min, a K-type thermocouple was inserted in the backing plate, and the peak temperature was evaluated at each point. Especially, the correlation between the heat input per unit length and the formation of the FSW zone was minutely analyzed.

  7. Effects of the Process Parameters on Austenitic Stainless Steel by TIG-Flux Welding

    Institute of Scientific and Technical Information of China (English)

    Heryueh HUANG; Shengwen SHYU; Kuanghung TSENG; Changpin CHOU

    2006-01-01

    The effects of the process parameters of TIG (tungsten inset gas)-flux welding on the welds morphology,angular distortion, ferrite content and hot cracking in austenitic stainless steel were investigated. Autogenous TIG welding process was applied to the type 304 stainless steel through a thin layer of activating flux to produce a bead on plate welded joint. TiO2, SiO2, Fe2O3, Cr2O3, ZnO and MnO2 were used as the activating fluxes. The experimental results indicated that the TIG-flux welding can increase the weld depth/width ratio and reduce the HAZ (heat affected zone) range, and therefore the angular distortion of the weldment can be reduced. It was also found that the retained ferrite content within the TIG-flux welds is increased, and has a beneficial effect in reducing hot cracking tendency for stainless steels of the austenitic type weld metals. A plasma column constriction increases the current density at the anode spot and then a substantial increase in penetration of the TIG-flux welds can be obtained.

  8. Inhibition of the formation of intermetallic compounds in aluminum-steel welded joints by friction stir welding

    OpenAIRE

    Torres López, Edwar A.; Ramirez, Antonio J

    2015-01-01

    Formation of deleterious phases during welding of aluminum and steel is a challenge of the welding processes, for decades. Friction Stir Welding (FSW) has been used in an attempt to reduce formation of intermetallic compounds trough reducing the heat input. In this research, dissimilar joint of 6063-T5 aluminum alloy and AISI-SAE 1020 steel were welded using this technique. The temperature of welded joints was measured during the process. The interface of the welded joints was characterized u...

  9. TIG-dressing of High Strength Steel Butt Welded Connections. Part 1: Weld Toe Geometry and Local Hardness

    NARCIS (Netherlands)

    Van Es, S.H.J.; Kolstein, M.H.; Pijpers, R.J.M.; Bijlaard, F.S.K.

    2014-01-01

    This paper presents the results of extensive measurements on weld toe geometry of as-welded and TIG-dressed butt welded connections in high strength steels S460, S690 and very high strength steels S890 and S1100. Descriptions of the measurement techniques and data analysis are presented. Four weld t

  10. TIG-dressing of high strength steel butt welded connections - Part 1: weld toe geometry and local hardness

    NARCIS (Netherlands)

    Es, S.H.J. van; Kolstein, M.H.; Pijpers, R.J.M.; Bijlaard, F.S.K.

    2013-01-01

    This paper presents the results of extensive measurements on weld toe geometry of as-welded and TIG-dressed butt welded connections in high strength steels S460, S690 and very high strength steels S890 and S1100. Descriptions of the measurement techniques and data analysis are presented. Four weld t

  11. Multilayered titanium-steel composite produced by explosive welding

    Science.gov (United States)

    Malyutina, Yu. N.; Skorohod, K. A.; Shevtsova, K. E.; Chesnokova, A. V.

    2015-10-01

    Multilayered titanium-steel composite consisting of alternating high-strength and ductile metallic materials were produced by explosive welding. Different types of weld joints formed in the composite were recognized by methods of microstructural analysis. Wave-shaped and flat geometry of welds are typical of steel and titanium layers, respectively. Structural features such as lack of penetration, shear bands, recrystallized metals and martensitic structure were detected in the vortex and weld-adjacent zones of impacted materials. The impact strength of the layered composite was 65% higher as compared to that of VT23 titanium alloy. A favorable role of interlayers in the multilayered composite has been confirmed by toughness tests.

  12. Investigation of aluminum-steel joint formed by explosion welding

    Science.gov (United States)

    Kovacs-Coskun, T.; Volgyi, B.; Sikari-Nagl, I.

    2015-04-01

    Explosion welding is a solid state welding process that is used for the metallurgical joining of metals. Explosion cladding can be used to join a wide variety of dissimilar or similar metals [1]. This process uses the controlled detonation of explosives to accelerate one or both of the constituent metals into each other in such a manner as to cause the collision to fuse them together [2]. In this study, bonding ability of aluminum and steel with explosion welding was investigated. Experimental studies, microscopy, microhardness, tensile and bend test showed out that, aluminum and steel could be bonded with a good quality of bonding properties with explosion welding.

  13. Phase transformations and microstructure development in low alloy steel welds

    Energy Technology Data Exchange (ETDEWEB)

    Babu, S.S.; David, S.A.; Vitek, J.M. [and others

    1995-07-01

    Microstructure development in low alloy steel welds depends on various phase transformations that are a function of weld heating and cooling. The phase changes include non-metallic oxide inclusion formation in the liquid state, weld pool solidification, and solid state transformations. In this paper the mechanism of inclusion formation during low alloy steel welding is considered and the model predictions are compared with published results. The effect of inclusions on the austenite to ferrite transformation kinetics is measured and the mechanisms of transformation are discussed. The austenite gain development is related to the driving force for transformation of {delta} ferrite to austenite.

  14. Influence of weld structure on cross-weld creep behavior in P23 steel

    Energy Technology Data Exchange (ETDEWEB)

    Allen, D.J.; Degnan, C.C. [E.ON Engineering (United Kingdom); Brett, S.J. [RWE npower (United Kingdom); Buchanan, L.W. [Doosan Babcock (United Kingdom)

    2010-07-01

    A thick section pipe weld in low alloy steel P23 has been characterised by cross-weld creep rupture testing at a range of stresses, together with all-weld-metal and parent material testing, under the auspices of the UK High Temperature Power Plant Forum. The results generally show that the weld metal can be weak when tested in the transverse (cross-weld) orientation, and can fail with limited overall ductility by cracking in the zone of refined weld metal beneath the fusion boundary of the superposed weld bead. However, one specimen showed a much superior performance, which could be understood in terms of its locally more creep resistant weld macrostructure. The implications for P23 performance and weld manufacture are discussed. (orig.)

  15. Weldability and SAW welding wire of X80 pipeline steel

    Institute of Scientific and Technical Information of China (English)

    Huang Zhijun; Hu Lunji; Miao Kai; Zhang Xiaofeng; Chen Fu

    2006-01-01

    Weldability test was carried out on the newly developed fine grain, low sulphur, high strength and high toughness pipeline steel of X80 and its matching SA W wire. Test of maximum hardness in welding heat-affected zone and test of Y groove cracking show that X80 steel features low hardenability and good cracking resistance. The submerged arc welding joint made with the newly developed low carbon and multi-alloyed SA W wire of WGX2 exhibits a little higher strength than the base metal, qualified bending performance, under maximum limitation hardness and good impact toughness, which can completely meet the technical requirement of X80 steel. Despite somewhat coarsening the grain size in welding heat-affected zone is still much finer than that of traditional steels, and the microstructure in weld metal is almost full acicular ferrite. The results show that X80 steel and WGX2 wire are of great weldability.

  16. Numerical simulation and experimental validation of arc welding of DMR-249A steel

    Directory of Open Access Journals (Sweden)

    Rishi Pamnani

    2016-08-01

    Full Text Available The thermo-mechanical attributes of DMR-249A steel weld joints manufactured by shielded metal arc welding (SMAW and activated gas tungsten arc welding (A-GTAW processes were studied using Finite Element Model (FEM simulation. The thermal gradients and residual stresses were analyzed with SYSWELD software using double ellipsoidal heat source distribution model. The numerically estimated temperature distribution was validated with online temperature measurements using thermocouples. The predicted residual stresses profile across the weld joints was compared with the values experimentally measured using non-destructive techniques. The measured and predicted thermal cycles and residual stress profile was observed to be comparable. The residual stress developed in double sided A-GTAW joint were marginally higher in comparison to five pass SMAW joint due to phase transformation associated with high heat input per weld pass for A-GTAW process. The present investigations suggest the applicability of numerical modeling as an effective approach for predicting the thermo-mechanical properties influenced by welding techniques for DMR-249A steel weld joints. The tensile, impact and micro-hardness tests were carried to compare the welds. Considering benefits of high productivity and savings of labor and cost associated with A-GTAW compared to SMAW process, the minor variation in residual stress build up of A-GTAW joint can be neglected to develop A-GTAW as qualified alternative welding technique for DMR-249A steel.

  17. Laser Welding of Large Scale Stainless Steel Aircraft Structures

    Science.gov (United States)

    Reitemeyer, D.; Schultz, V.; Syassen, F.; Seefeld, T.; Vollertsen, F.

    In this paper a welding process for large scale stainless steel structures is presented. The process was developed according to the requirements of an aircraft application. Therefore, stringers are welded on a skin sheet in a t-joint configuration. The 0.6 mm thickness parts are welded with a thin disc laser, seam length up to 1920 mm are demonstrated. The welding process causes angular distortions of the skin sheet which are compensated by a subsequent laser straightening process. Based on a model straightening process parameters matching the induced welding distortion are predicted. The process combination is successfully applied to stringer stiffened specimens.

  18. Weld Metallurgy and Mechanical Properties of High Manganese Ultra-high Strength Steel Dissimilar Welds

    Science.gov (United States)

    Dahmen, Martin; Lindner, Stefan; Monfort, Damien; Petring, Dirk

    The increasing demand for ultra-high strength steels in vehicle manufacturing leads to the application of new alloys. This poses a challenge on joining especially by fusion welding. A stainless high manganese steel sheet with excellent strength and deformation properties stands in the centre of the development. Similar and dissimilar welds with a metastable austenitic steel and a hot formed martensitic stainless steel were performed. An investigation of the mixing effects on the local microstructure and the hardness delivers the metallurgical features of the welds. Despite of carbon contents above 0.4 wt.% none of the welds have shown cracks. Mechanical properties drawn from tensile tests deliver high breaking forces enabling a high stiffness of the joints. The results show the potential for the application of laser beam welding for joining in assembly of structural parts.

  19. UNS S31603 Stainless Steel Tungsten Inert Gas Welds Made with Microparticle and Nanoparticle Oxides

    Directory of Open Access Journals (Sweden)

    Kuang-Hung Tseng

    2014-06-01

    Full Text Available The purpose of this study was to investigate the difference between tungsten inert gas (TIG welding of austenitic stainless steel assisted by microparticle oxides and that assisted by nanoparticle oxides. SiO2 and Al2O3 were used to investigate the effects of the thermal stability and the particle size of the activated compounds on the surface appearance, geometric shape, angular distortion, delta ferrite content and Vickers hardness of the UNS S31603 stainless steel TIG weld. The results show that the use of SiO2 leads to a satisfactory surface appearance compared to that of the TIG weld made with Al2O3. The surface appearance of the TIG weld made with nanoparticle oxide has less flux slag compared with the one made with microparticle oxide of the same type. Compared with microparticle SiO2, the TIG welding with nanoparticle SiO2 has the potential benefits of high joint penetration and less angular distortion in the resulting weldment. The TIG welding with nanoparticle Al2O3 does not result in a significant increase in the penetration or reduction of distortion. The TIG welding with microparticle or nanoparticle SiO2 uses a heat source with higher power density, resulting in a higher ferrite content and hardness of the stainless steel weld metal. In contrast, microparticle or nanoparticle Al2O3 results in no significant difference in metallurgical properties compared to that of the C-TIG weld metal. Compared with oxide particle size, the thermal stability of the oxide plays a significant role in enhancing the joint penetration capability of the weld, for the UNS S31603 stainless steel TIG welds made with activated oxides.

  20. Finite element thermal analysis of the fusion welding of a P92 steel pipe

    Directory of Open Access Journals (Sweden)

    A. H. Yaghi

    2012-05-01

    Full Text Available Fusion welding is common in steel pipeline construction in fossil-fuel power generation plants. Steel pipes in service carry steam at high temperature and pressure, undergoing creep during years of service; their integrity is critical for the safe operation of a plant. The high-grade martensitic P92 steel is suitable for plant pipes for its enhanced creep strength. P92 steel pipes are usually joined together with a similar weld metal. Martensitic pipes are sometimes joined to austenitic steel pipes using nickel based weld consumables. Welding involves severe thermal cycles, inducing residual stresses in the welded structure, which, without post weld heat treatment (PWHT, can be detrimental to the integrity of the pipes. Welding residual stresses can be numerically simulated by applying the finite element (FE method in Abaqus. The simulation consists of a thermal analysis, determining the temperature history of the FE model, followed by a sequentially-coupled structural analysis, predicting residual stresses from the temperature history.

    In this paper, the FE thermal analysis of the arc welding of a typical P92 pipe is presented. The two parts of the P92 steel pipe are joined together using a dissimilar material, made of Inconel weld consumables, producing a multi-pass butt weld from 36 circumferential weld beads. Following the generation of the FE model, the FE mesh is controlled using Model Change in Abaqus to activate the weld elements for each bead at a time corresponding to weld deposition. The thermal analysis is simulated by applying a distributed heat flux to the model, the accuracy of which is judged by considering the fusion zones in both the parent pipe as well as the deposited weld metal. For realistic fusion zones, the heat flux must be prescribed in the deposited weld pass and also the adjacent pipe elements. The FE thermal results are validated by comparing experimental temperatures measured by five thermocouples on the

  1. Oxide Evolution in ODS Steel Resulting From Friction Stir Welding

    Science.gov (United States)

    2014-06-01

    Metal Arc Welding GTAW Gas Tungsten Arc Welding HAZ Heat Affected Zone HI Heat Index IPM Inches Per Minute LBW Laser Beam Welding LLNL...by modern day reactors causes hardening of the structural materials (embrittlement), loss of fracture toughness, loss of strain ductility...embrittlement. RAFM steels also provide high fracture toughness, thermal creep strength and a strong resistance to low temperature 2 embrittlement [4

  2. Acoustic emission detection of 316L stainless steel welded joints during intergranular corrosion

    Institute of Scientific and Technical Information of China (English)

    Meng-yu Chai; Quan Duan; Wen-jie Bai; Zao-xiao Zhang; Xu-meng Xie

    2015-01-01

    This study analyzes acoustic emission (AE) signals during the intergranular corrosion (IGC) process of 316L stainless steel welded joints under different welding currents in boiling nitric acid. IGC generates several AE signals with high AE activity. The AE tech-nique could hardly distinguish IGC in stainless steel welded joints with different welding heat inputs. However, AE signals can effectively distinguish IGC characteristics in different corrosion stages. The IGC resistance of a heat-affected zone is lower than that of a weld zone. The initiation and rapid corrosion stages can be distinguished using AE results and microstructural analysis. Moreover, energy count rate and am-plitude are considered to be ideal parameters for characterizing different IGC processes. Two types of signals are detected in the rapid corro-sion stage. It can be concluded that grain boundary corrosion and grain separation are the AE sources of type 1 and type 2, respectively.

  3. Assessment of Hot Crack Properties of Laser Welded Stainless Steel

    DEFF Research Database (Denmark)

    Juhl, Thomas Winther; Olsen, Flemming Ove

    2003-01-01

    Crack testing concerning small and fast solidifying laser welds in austenitic stainless steel has been studied. A set of methods has been applied to investigate alloy properties, including (1) Application of known information to predict solidification phases, (2) Weld metal solidification rate...

  4. Linear friction welding of AISI 316L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Bhamji, Imran, E-mail: imran.bhamji@postgrad.manchester.ac.uk [Manchester Materials Science Centre, University of Manchester, Grosvenor Street, M1 7HS (United Kingdom); Preuss, Michael [Manchester Materials Science Centre, University of Manchester, Grosvenor Street, M1 7HS (United Kingdom); Threadgill, Philip L. [Formerly with TWI Ltd., Cambridge, UK (now retired) (United Kingdom); Moat, Richard J. [Manchester Materials Science Centre, University of Manchester, Grosvenor Street, M1 7HS (United Kingdom); Addison, Adrian C. [TWI Ltd., Cambridge (United Kingdom); Peel, Matthew J. [University of Bristol, Queens Building, University Walk, Bristol BS8 1TR (United Kingdom)

    2010-12-15

    Research highlights: {yields} Linear friction welding is a feasible process for joining AISI316L. {yields} Most welds had tensile strengths superior to the parent material. {yields} Welding parameters had a significant impact on weld microstructure. {yields} Control of microstructure by controlling welding parameters is a process benefit. - Abstract: Linear friction welding is a solid state joining process established as a niche technology for the joining of aeroengine bladed disks. However, the process is not limited to this application, and therefore the feasibility of joining a common engineering austenitic steel, AISI 316L, has been explored. It was found that mechanically sound linear friction welds could be produced in 316L, with tensile properties in most welds exceeding those of the parent material. The mechanical properties of the welds were also found to be insensitive to relatively large changes in welding parameters. Texture was investigated in one weld using high energy synchrotron X-ray diffraction. Results showed a strong {l_brace}1 1 1{r_brace}< 1 1 2 > type texture at the centre of the weld, which is a typical shear texture in face centre cubic materials. Variations in welding parameters were seen to have a significant impact on the microstructures of welds. This was particularly evident in the variation of the fraction of delta ferrite, in the thermo-mechanically affected zone of the welds, with different process parameters. Analysis of the variation in delta ferrite, with different welding parameters, has produced some interesting insights into heat generation and dissipation during the process. It is hoped that a greater understanding of the process could help to make the parameter optimisation process, when welding 316L as well as other materials, more efficient.

  5. Characterization of duplex stainless steel weld metals obtained by hybrid plasma-gas metal arc welding

    Directory of Open Access Journals (Sweden)

    Koray Yurtisik

    2013-09-01

    Full Text Available Despite its high efficiency, autogenous keyhole welding is not well-accepted for duplex stainless steels because it causes excessive ferrite in as-welded duplex microstructure, which leads to a degradation in toughness and corrosion properties of the material. Combining the deep penetration characteristics of plasma arc welding in keyhole mode and metal deposition capability of gas metal arc welding, hybrid plasma - gas metal arc welding process has considered for providing a proper duplex microstructure without compromising the welding efficiency. 11.1 mm-thick standard duplex stainless steel plates were joined in a single-pass using this novel technique. Same plates were also subjected to conventional gas metal arc and plasma arc welding processes, providing benchmarks for the investigation of the weldability of the material. In the first place, the hybrid welding process enabled us to achieve less heat input compared to gas metal arc welding. Consequently, the precipitation of secondary phases, which are known to be detrimental to the toughness and corrosion resistance of duplex stainless steels, was significantly suppressed in both fusion and heat affected zones. Secondly, contrary to other keyhole techniques, proper cooling time and weld metal chemistry were achieved during the process, facilitating sufficient reconstructive transformation of austenite in the ferrite phase.

  6. Resistance spot welding and weldbonding of advanced high strength steels

    Energy Technology Data Exchange (ETDEWEB)

    Weber, G.; Gaul, H.; Rethmeier, M. [BAM Federal Institute for Materials Research and Testing, Berlin (Germany). Div. V.5 ' ' Safety of Joined Components' ' ; Thommes, H.; Hahn, O. [Paderborn Univ. (Germany). Fakultaet fuer Maschinenbau

    2010-11-15

    The resistance spot welding procedure is one of the most important joining techniques in lightweight car body shell mass production. Especially for newly developed high strength multiphase steels, also called advanced high strength steels (AHSS), and ultra high strength steels (UHSS), this joining technique has more advantages than other thermal and mechanical joining procedures for thin steel sheets. Additionally, the technique of adhesive bonding and its combination with the technique of resistance spot welding called weldbonding becomes more and more important. One of the targets of the contribution is to show the influence of joined advanced high strength steels on the process reliability for both the resistance spot welding process and the weldbonding process. Based on welding current ranges and on results of electrode wear tests, statements concerning the resistance spot weldability of some special AHSS will be given. The mechanical behaviour of spot welded and weldbonded joints for different AHSS will be studied. Furthermore, some statements regarding the fracture behaviour, the hardness and the fatigue behaviour of both spot welded and weldbonded joints for different AHSS will be given. Finally, some results on the mechanical properties of spot welded and weldbounded joints under corrosive attacks with be discussed. (orig.)

  7. Welding of Aluminum Alloys to Steels: An Overview

    Science.gov (United States)

    2013-08-01

    alloy /Ag interlayer/steel non-centered electron beam welded joints, Transaction of non- Ferrous Metals Society of China 21 (2011) 2592-2596. [53] K.-J...UNCLASSIFIED: Distribution Statement A. Approved for public release. 1 UNCLASSIFIED Welding of aluminum alloys to steels: an overview M. Mazar...different materials, iron-based alloys and aluminum-based alloys are among the most significant materials that are finding applications on the various

  8. Cladding of High Mn Steel on Low C Steel by Explosive Welding

    OpenAIRE

    ACARER, Mustafa

    2014-01-01

    High Mn steel containing about 16% Mn was cladded to a low C steel by explosive welding. The experimental results showed that the bonding interface has a wavy morphology; the welding interface has the characteristics of both sharp transition and local melted zones between 2 metals. Hardness increased near the welding interface due to excess plastic deformation in the explosion area and phase transformation from g (f.c.c.) to a (b.c.c.).

  9. Microstructural characterization in dissimilar friction stir welding between 304 stainless steel and st37 steel

    Energy Technology Data Exchange (ETDEWEB)

    Jafarzadegan, M. [Department of Materials Eng., Tarbiat Modares University, P.O. Box: 14115-143, Tehran (Iran, Islamic Republic of); State Key Laboratory of Advanced Welding Production Technology, School of Materials Science and Eng., Harbin Institute of Technology, P.O. Box: 150001, Harbin (China); Feng, A.H. [State Key Laboratory of Advanced Welding Production Technology, School of Materials Science and Eng., Harbin Institute of Technology, P.O. Box: 150001, Harbin (China); Abdollah-zadeh, A., E-mail: zadeh@modares.ac.ir [Department of Materials Eng., Tarbiat Modares University, P.O. Box: 14115-143, Tehran (Iran, Islamic Republic of); Saeid, T. [Advanced Materials Research Center, Sahand University of Technology, P.O. Box: 51335-1996, Tabriz (Iran, Islamic Republic of); Shen, J. [State Key Laboratory of Advanced Welding Production Technology, School of Materials Science and Eng., Harbin Institute of Technology, P.O. Box: 150001, Harbin (China); Assadi, H. [Department of Materials Eng., Tarbiat Modares University, P.O. Box: 14115-143, Tehran (Iran, Islamic Republic of)

    2012-12-15

    In the present study, 3 mm-thick plates of 304 stainless steel and st37 steel were welded together by friction stir welding at a welding speed of 50 mm/min and tool rotational speed of 400 and 800 rpm. X-ray diffraction test was carried out to study the phases which might be formed in the welds. Metallographic examinations, and tensile and microhardness tests were used to analyze the microstructure and mechanical properties of the joint. Four different zones were found in the weld area except the base metals. In the stir zone of the 304 stainless steel, a refined grain structure with some features of dynamic recrystallization was evidenced. A thermomechanically-affected zone was characterized on the 304 steel side with features of dynamic recovery. In the other side of the stir zone, the hot deformation of the st37 steel in the austenite region produced small austenite grains and these grains transformed to fine ferrite and pearlite and some products of displacive transformations such as Widmanstatten ferrite and martensite by cooling the material after friction stir welding. The heat-affected zone in the st37 steel side showed partially and fully refined microstructures like fusion welding processes. The recrystallization in the 304 steel and the transformations in the st37 steel enhanced the hardness of the weld area and therefore, improved the tensile properties of the joint. - Highlights: Black-Right-Pointing-Pointer FSW produced sound welds between st37 low carbon steel and 304 stainless steel. Black-Right-Pointing-Pointer The SZ of the st37 steel contained some products of allotropic transformation. Black-Right-Pointing-Pointer The material in the SZ of the 304 steel showed features of dynamic recrystallization. Black-Right-Pointing-Pointer The finer microstructure in the SZ increased the hardness and tensile strength.

  10. Low temperature friction stir welding of P91 steel

    Directory of Open Access Journals (Sweden)

    Prasad Rao Kalvala

    2016-08-01

    Full Text Available Bead-on-plate friction stir welds were made on P91 alloy with low and high rotational speeds (100 and 1000 RPM to study their effects on weld microstructural changes and impression creep behavior. Temperatures experienced by the stir zone were recorded at the weld tool tip. Different zones of welds were characterized for their microstructural changes, hardness and creep behavior (by impression creep tests. The results were compared with submerged arc fusion weld. Studies revealed that the stir zone temperature with 100 RPM was well below Ac1 temperature of P91 steel while it was above Ac3 with 1000 RPM. The results suggest that the microstructural degradation in P91 welds can be controlled by low temperature friction stir welding technique.

  11. Dissimilar Arc Welding of Advanced High-Strength Car-Body Steel Sheets

    Science.gov (United States)

    Russo Spena, P.; D'Aiuto, F.; Matteis, P.; Scavino, G.

    2014-11-01

    A widespread usage of new advanced TWIP steel grades for the fabrication of car-body parts is conditional on the employment of appropriate welding methods, especially if dissimilar welding must be performed with other automotive steel grades. Therefore, the microstructural features and the mechanical response of dissimilar butt weld seams of TWIP and 22MnB5 steel sheets after metal-active-gas arc welding are examined. The microstructural and mechanical characterization of the welded joints was carried out by optical metallography, microhardness and tensile testing, and fractographic examination. The heat-affected zone on the TWIP side was fully austenitic and the only detectable effect was grain coarsening, while on the 22MnB5 side it exhibited newly formed martensite and tempered martensite. The welded tensile specimens exhibited a much larger deformation on the TWIP steel side than on the 22MnB5. The fracture generally occurred at the interface between the fusion zone and the heat-affected zones, with the fractures surfaces being predominantly ductile. The ultimate tensile strength of the butt joints was about 25% lower than that of the TWIP steel.

  12. High Power Laser Beam Welding of Thick-walled Ferromagnetic Steels with Electromagnetic Weld Pool Support

    Science.gov (United States)

    Fritzsche, André; Avilov, Vjaceslav; Gumenyuk, Andrey; Hilgenberg, Kai; Rethmeier, Michael

    The development of modern high power laser systems allows single pass welding of thick-walled components with minimal distortion. Besides the high demands on the joint preparation, the hydrostatic pressure in the melt pool increases with higher plate thicknesses. Reaching or exceeding the Laplace pressure, drop-out or melt sagging are caused. A contactless electromagnetic weld support system was used for laser beam welding of thick ferromagnetic steel plates compensating these effects. An oscillating magnetic field induces eddy currents in the weld pool which generate Lorentz forces counteracting the gravity forces. Hysteresis effects of ferromagnetic steels are considered as well as the loss of magnetization in zones exceeding the Curie temperature. These phenomena reduce the effective Lorentz forces within the weld pool. The successful compensation of the hydrostatic pressure was demonstrated on up to 20 mm thick plates of duplex and mild steel by a variation of the electromagnetic power level and the oscillation frequency.

  13. Mechanical characteristics of welded joints between different stainless steels grades

    Science.gov (United States)

    Topolska, S.; Łabanowski, J.

    2017-08-01

    Investigation of mechanical characteristics of welded joints is one of the most important tasks that allow determining their functional properties. Due to the very high, still rising, cost of some stainless steels it is justified, on economic grounds, welding austenitic stainless steel with steels that are corrosion-resistant like duplex ones. According to forecasts the price of corrosion resistant steels stil can increase by 26 ÷ 30%. For technical reasons welded joints require appropriate mechanical properties such as: tensile strength, bending, ductility, toughness, and resistance to aggressive media. Such joints are applied in the construction of chemical tankers, apparatus and chemical plants and power steam stations. Using the proper binder makes possible the welds directly between the elements of austenitic stainless steels and duplex ones. It causes that such joits behave satisfactorily in service in such areas like maritime constructions and steam and chemical plants. These steels have high mechanical properties such as: the yield strength, the tensile strength and the ductility as well as the resistance to general corrosion media. They are resistant to both pitting and stress corrosions. The relatively low cost of production of duplex steels, in comparison with standard austenitic steels, is inter alia, the result of a reduced amount of scarce and expensive Nickel, which is seen as a further advantage of these steels.

  14. Role of welding parameters on interfacial bonding in dissimilar steel/aluminum friction stir welds

    Directory of Open Access Journals (Sweden)

    Z. Shen

    2015-06-01

    Full Text Available In this study, lap welds between Al5754 to DP600 steel (aluminum plate top, and steel plate bottom were manufactured by friction stir welding (FSW. The effects of welding parameters (i.e. travel speeds and penetration depth into lower steel sheet on the interfacial bonding, tensile strength, and failure mechanism were investigated. The results show that intermetallic compound of Fe4Al13 was detected at the Al/Fe interface. The weld strength increases significantly by increasing the penetration depth into the lower steel substrate at all travel speeds. The failure mode under overlap shear loadings is premature failure through the aluminum substrate when the penetration depth is more than 0.17 mm, and shear fracture when the penetration depth is less than 0.17 mm.

  15. Friction Stir Spot Welding of Advanced High Strength Steels

    Energy Technology Data Exchange (ETDEWEB)

    Hovanski, Yuri; Santella, M. L.; Grant, Glenn J.

    2009-12-28

    Friction stir spot welding was used to join two advanced high-strength steels using polycrystalline cubic boron nitride tooling. Numerous tool designs were employed to study the influence of tool geometry on weld joints produced in both DP780 and a hot-stamp boron steel. Tool designs included conventional, concave shouldered pin tools with several pin configurations; a number of shoulderless designs; and a convex, scrolled shoulder tool. Weld quality was assessed based on lap shear strength, microstructure, microhardness, and bonded area. Mechanical properties were functionally related to bonded area and joint microstructure, demonstrating the necessity to characterize processing windows based on tool geometry.

  16. Microstructure development of welding joints in high Cr ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Kubushiro, Keiji; Takahashi, Satoshi; Morishima, Keiko [IHI Corporation (Japan). Research Lab.

    2010-07-01

    Creep failure in high Cr ferritic steels welding joints are Type IV failure. Type IV-failure was ruptured in fine grained region of heat affected zone, microstructure and phase transformation process at welding in fine grained region were very important to clarify. Microstructure difference of heat affected zone was investigated in Gr.91, Gr.92, Gr.122 welding joint. The fraction of 60 degree block boundary, packet boundary, random boundary (including prior gamma boundary) length was compared in three ferritic steels by EBSP(Electron Backscatter Diffraction Pattern) analysis. HAZ was almost fully martensite phase in Gr.122 weld joint. On the other hand, HAZ in Gr.91 welding joint were some equiaxial grain and martensite structure. (orig.)

  17. Laser Welding Of Thin Sheet Of AISI 301 Stainless Steel

    Science.gov (United States)

    Vilar, R.; Miranda, R. M.

    1989-01-01

    Preliminary results of an investigation on laser welding of AISI 301 stainless steel thin sheet are presented. Welds were made with a CO2 continuous wave laser, varying power density and welding speed. The welds were studied by optical and electron scanning microscopy, X-ray diffraction and hardness tests. Experimental results show that under appropriate conditions, sound welds are obtained, with a negligeable heat affected zoneanda fine microstructure in the fusion zone. The fusion zone shows a cellular - dendritic microstructure, with austenite and ferrite as the major constituents. Ferrite, whose content is 5 to 7%, is predominantly intradendritic with both vermicular and acicular morphologies. However some interdendritic ferrite may also be present. The characteristics of the structure suggest that the solidification mode of AISI 301 stainless steel is essentially ferritic.

  18. Study of Mechanical Properties and Characterization of Pipe Steel welded by Hybrid (Friction Stir Weld + Root Arc Weld) Approach

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Yong Chae [ORNL; Sanderson, Samuel [MegaStir Technologies LLC; Mahoney, Murray [Consultant; Wasson, Andrew J [ExxonMobil, Upstream Research Company (URC); Fairchild, Doug P [ExxonMobil, Upstream Research Company (URC); Wang, Yanli [ORNL; Feng, Zhili [ORNL

    2015-01-01

    Friction stir welding (FSW) has recently attracted attention as an alternative construction process for gas/oil transportation applications due to advantages compared to fusion welding techniques. A significant advantage is the ability of FSW to weld the entire or nearly the entire wall thickness in a single pass, while fusion welding requires multiple passes. However, when FSW is applied to a pipe or tube geometry, an internal back support anvil is required to resist the plunging forces exerted during FSW. Unfortunately, it may not be convenient or economical to use internal backing support due to limited access for some applications. To overcome this issue, ExxonMobil recently developed a new concept, combining root arc welding and FSW. That is, a root arc weld is made prior to FSW that supports the normal loads associated with FSW. In the present work, mechanical properties of a FSW + root arc welded pipe steel are reported including microstructure and microhardness.

  19. Effect of welding parameters on the mechanical properties of GMA-welded HY-80 steels

    Energy Technology Data Exchange (ETDEWEB)

    Durmusoglu, Senol [Gazi Univ., Ankara (Turkey); Tuerker, Mehmet [RWTH Aachen Univ. (Germany). ISF - Welding and Joining Inst.; Tosun, Murat [Gedik Univ., Istanbul (Turkey)

    2015-07-01

    In this publication, investigations of HY-80 steels joined by gas metal arc welding by using different welding parameters are described. Different samples obtained from the welded joints were subjected to mechanical testing by means of tensile, hardness and impact toughness tests. The tensile test results showed that the strength of weld metal and heat affected zone were higher than of base metal. Similar Charpy impact toughness test results were obtained for weld metal and heat affected zone. Weld metal hardness was almost similar to the base metal hardness, nevertheless, the heat affected zone indicated higher values. The base metal has ferritic-perlitic structure with fine grains. Martensite needles and bainite are seen in the heat affected zone. Weld metal has martensite needles, partial bainite and residual austenite.

  20. ARC welding method for bonding steel with aluminum

    Institute of Scientific and Technical Information of China (English)

    Zhenyang LU; Pengfei HUANG; Wenning GAO; Yan LI; Hanpeng ZHANG; Shuyan YIN

    2009-01-01

    When welding steel with aluminum, the appearance of intermetallic compounds of Fe and A1 will decrease tenacity and increase rigidity, which leads to bad joint performance. A new type of low energy input (LEI) welding technology is introduced which can be used to weld steel with aluminum. Using the technology, brazing was located on the steel side and arc fusion welding on the aluminum side. The less heat input reduces the thickness of intermetallic compounds to 3-4 μm. Tensile strength tests prove that the joint breaks at the heat-affected zone and the strength is higher than 70% of the aluminum's. Thus, the method can lead to a good performance joint.

  1. Welding of titanium and stainless steel using the composite insert

    Science.gov (United States)

    Cherepanov, A. N.; Mali, V. I.; Orishich, A. M.; Malikov, A. G.; Drozdov, V. O.; Malyutina, Y. N.

    2016-11-01

    The paper concerns the possibility of obtaining a lasting permanent joint of dissimilar metals: technically pure titanium and stainless steel using laser welding and an intermediate composite insert. The insert was a four-layer composition of plates of steel, copper, niobium, and titanium welded by explosion. The material layers used in the insert prevented the molten steel and titanium from mixing, which excluded the formation of brittle intermetallic compounds, such as FeTi and Fe2Ti. The optimization of explosion welding parameters provided a high quality of the four-layer composition and the absence of defects in the area of the joint of insert plates. The results of strength tests showed that values of the ultimate strength and yield of the permanent joint with the composite insert welded by explosion are comparable to the strength characteristics of titanium.

  2. Numerical evaluation of multipass welding temperature field in API 5L X80 steel welded joints

    Directory of Open Access Journals (Sweden)

    J Nóbrega

    2016-10-01

    Full Text Available Many are the metallurgical changes suffered by materials when subjected to welding thermal cycle, promoting a considerable influence on the welded structures thermo mechanical properties. In project phase, one alternative for evaluating the welding cycle variable, would be the employment of computational methods through simulation. So, this paper presents an evaluation of the temperature field in a multipass welding of API 5L X80 steel used for oil and gas transportation, using the ABAQUS ® software, based on Finite Elements Method (FEM. During the simulation complex phenomena are considerable including: Variation in physical and mechanical properties of materials as a function of temperature, welding speed and the different mechanisms of heat exchange with the environment (convection and radiation were used. These considerations allow a more robust mathematical modeling for the welding process. An analytical heat source proposed by Goldak, to model the heat input in order to characterize the multipass welding through the GTAW (Gas Tungsten Arc Welding process on root and the SMAW (Shielded Metal Arc Welding process for the filling passes were used. So, it was possible to evaluate the effect of each welding pass on the welded joint temperature field, through the temperature peaks and cooling rates values during the welding process.

  3. Corrosion behavior of a welded stainless-steel orthopedic implant.

    Science.gov (United States)

    Reclaru, L; Lerf, R; Eschler, P Y; Meyer, J M

    2001-02-01

    The corrosion behavior of combinations of materials used in an orthopedic implant: the spherical part (forged or forged and annealed) constituting the head, the weld (tungsten inert gas (TIG) or electron beam (EB) techniques), and the cylindrical part (annealed) constituting the shaft of a femoral prosthesis - has been investigated. Open-circuit potentials, potentiodynamic curves, Tafel slope, mixed potential theory and susceptibility to intergranular attack are electrochemical and chemical procedures selected for this work. Electrochemical measurements using a microelectrode have been made in the following zones: spherical part, cylindrical part, weld, and weld/sphere, and weld/shaft interfaces. To detect intergranular attack, the Strauss test has been used. At the interfaces, corrosion currents, measured (Icorr) and predicted (Icouple) are low, in the order of the pico- to nanoampere. The electrochemical behavior of the electron beam (EB) weld is better than that of the tungsten inert gas (TIG). Welds at interfaces can behave either anodically or cathodically. It is better if welds, which are sensitive parts of the femoral prosthesis, behave cathodically. In this way, the risk of starting localized corrosion (pitting, crevice or intergranular corrosion) from a galvanic couple, remains low. From this point of view, the sample with the EB weld offers the best behavior. All the other samples containing a TIG type of weld exhibit a less favorable behavior. The mechanical treatments (forged, and forged and annealed) of the steel sphere did not show any difference in the corrosion behavior. No intergranular corrosion has been observed at the weld/steel interface for unsensitized samples. With sensitized samples, however, a TIG sample has exhibited some localized intergranular corrosion at a distance of 500 microm along the weld/stainless steel (sphere) interface.

  4. Assessment of Hot Crack Properties of Laser Welded Stainless Steel

    DEFF Research Database (Denmark)

    Juhl, Thomas Winther; Olsen, Flemming Ove

    2003-01-01

    Crack testing concerning small and fast solidifying laser welds in austenitic stainless steel has been studied. A set of methods has been applied to investigate alloy properties, including (1) Application of known information to predict solidification phases, (2) Weld metal solidification rate...... are given. Results from the solidification rate measurements had high variations. They do not show an expected correlation between the crack resistance and the solidification rate. The employment of pulsed seam welds is assessed not to be usable in the present measurement method. From evaluation of several...... crack tests, the Weeter spot weld test has been chosen to form a basis for the development of a practicable method to select specific alloys for welding applications. A new test, the Groove weld test was developed, which has reduced the time consumption and lightened the analysis effort considerably...

  5. Mechanical and Microstructural Evaluation of DMAG Welding of Structural Steel

    Directory of Open Access Journals (Sweden)

    Tolga Mert

    2015-01-01

    Full Text Available Double channel torch, which allows concentric flow of two different shielding gases, was designed and manufactured in order to pursue double channel torch gas metal arc welding of unalloyed structural steel S235JR (EN 10025-2 with fourteen passes. Tensile and Charpy V-notch tests were realized and the results were compared with those of conventional gas metal arc welding. In order to evaluate mechanical testing results, microstructural analyses were conducted. It was found that the increase with double channel gas metal arc welding process in yield and tensile strengths as well as in toughness tests, especially in subzero temperatures, compared with conventional gas metal arc welding was due to longer columnar grains and finer tempered zone grain structure between passes and due to solidification and less dendritic structure formation in all-weld metal in double channel gas metal arc welding.

  6. FINITE DIFFERENCE SIMULATION OF LOW CARBON STEEL MANUAL ARC WELDING

    Directory of Open Access Journals (Sweden)

    Laith S Al-Khafagy

    2011-01-01

    Full Text Available This study discusses the evaluation and simulation of angular distortion in welding joints, and the ways of controlling and treating them, while welding plates of (low carbon steel type (A-283-Gr-C through using shielded metal arc welding. The value of this distortion is measured experimentally and the results are compared with the suggested finite difference method computer program. Time dependent temperature distributions are obtained using finite difference method. This distribution is used to obtain the shrinkage that causes the distortions accompanied with structural forces that act to modify these distortions. Results are compared with simple empirical models and experimental results. Different thickness of plates and welding parameters is manifested to illustrate its effect on angular distortions. Results revealed the more accurate results of finite difference method that match experimental results in comparison with empirical formulas. Welding parameters include number of passes, current, electrode type and geometry of the welding process.

  7. Mathematical Modeling of Metal Active Gas (MAG) Arc Welding

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In the present paper, a numerical model for MAG (metal active gas) arc welding of thin plate has been developed. In MAG arc welding, the electrode wire is melted and supplied into the molten pool intermittently. Accordingly, it is assumed on the modeling that the thermal energy enters the base-plates through two following mechanisms, i.e., direct heating from arc plasma and “indirect” heating from the deposited metal. In the second part of the paper, MAG arc welding process is numerically analyzed by using the model, and the calculated weld bead dimension and surface profile have been compared with the experimental MAG welds on steel plate. As the result, it is made clear that the model is capable of predicting the bead profile of thin-plate MAG arc welding , including weld bead with undercutting.

  8. Friction stir welding of F82H steel for fusion applications

    Science.gov (United States)

    Noh, Sanghoon; Ando, Masami; Tanigawa, Hiroyasu; Fujii, Hidetoshi; Kimura, Akihiko

    2016-09-01

    In the present study, friction stir welding was employed to join F82H steels and develop a potential joining technique for a reduced activation ferritic/martensitic steel. The microstructures and mechanical properties on the joint region were investigated to evaluate the applicability of friction stir welding. F82H steel sheets were successfully butt-joined with various welding parameters. In welding conditions, 100 rpm and 100 mm/min, the stirred zone represented a comparable hardness distribution with a base metal. Stirred zone induced by 100 rpm reserved uniformly distributed precipitates and very fine ferritic grains, whereas the base metal showed a typical tempered martensite with precipitates on the prior austenite grain boundary and lath boundary. Although the tensile strength was decreased at 550 °C, the stirred zone treated at 100 rpm showed comparable tensile behavior with base metal up to 500 °C. Therefore, friction stir welding is considered a potential welding method to preserve the precipitates of F82H steel.

  9. Research on the properties of laser welded joints of aluminum killed cold rolled steel

    Institute of Scientific and Technical Information of China (English)

    阎启; 曹能; 俞宁峰

    2002-01-01

    Aluminum killed cold rolled steel used for automobiles was welded shows that high quality of welding can be realized at welding speed of laser welded joints for aluminum killed cold rolled steel increased compared to those of the base metal while the formability decreased. Forming limit diagram of joint material indicated that the laser weld seam should avoid the maximum deformation area of automobile parts during the designing period for the position of weld seam.

  10. Risk of lung cancer according to mild steel and stainless steel welding

    DEFF Research Database (Denmark)

    Sørensen, Anita Rath; Thulstrup, Ane Marie; Hansen, Johnni

    2007-01-01

    to welding fume particulates. METHODS: Male metal workers employed at least 1 year at one or more Danish stainless or mild steel industrial companies from 1964 through 1984 were enrolled in a cohort. Data on occupational and smoking history were obtained by questionnaire in 1986. Welders in the cohort who.......06-1.70)]. Among the stainless steel welders, the risk increased significantly with increasing accumulative welding particulate exposure, while no exposure-response relation was found for mild steel welders, even after adjustment for tobacco smoking and asbestos exposure. CONCLUSIONS: The study corroborates...... earlier findings that welders have an increased risk of lung cancer. While exposure-response relations indicate carcinogenic effects related to stainless steel welding, it is still unresolved whether the mild steel welding process carries a carcinogenic risk....

  11. Dissimilar material welding of rapidly solidified foil and stainless steel plate using underwater explosive welding technique

    Energy Technology Data Exchange (ETDEWEB)

    Hokamoto, Kazuyuki [Shock Wave and Condensed Matter Research Center, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555 (Japan)], E-mail: hokamoto@mech.kumamoto-u.ac.jp; Nakata, Kazuhiro [Joining and Welding Research Institute, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Mori, Akihisa [Shock Wave and Condensed Matter Research Center, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555 (Japan); Tsuda, Shota [Graduate School of Science and Technology, Kumamoto University (Japan); Tsumura, Takuya [Joining and Welding Research Institute, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Inoue, Akihisa [Tohoku University, Sendai 980-8577 (Japan)

    2009-03-20

    Rapidly solidified amorphous and metallic glass thin foils clad on a stainless steel base plate is attempted by employing underwater shock wave assembly. The conditions of the explosive welding are numerically analyzed and discussed based on the earlier welding limits. The thin foils successfully welded along the length of 50 mm show clear waves typically found in explosively welded interface. The interfacial microstructure characterized through optical and scanning electron microscopes shows evidence of excessive melting generated due to the trapping of metal jet in limited area.

  12. Effect of weld line shape on material flow during friction stir welding of aluminum and steel

    Science.gov (United States)

    Yasui, Toshiaki; Ando, Naoyuki; Morinaka, Shinpei; Mizushima, Hiroki; Fukumoto, Masahiro

    2014-08-01

    The effect of weld line shape on material flow during the friction stir welding of aluminum and steel was investigated. The material flow velocity was evaluated with simulated experiments using plasticine as the simulant material. The validity of the simulated experiments was verified by the marker material experiments on aluminum. The circumferential velocity of material around the probe increased with the depth from the weld surface. The effect is significant in cases where the advancing side is located on the outside of curve and those with higher curvature. Thus, there is an influence of weld line shape on material flow.

  13. IMPACT STRENGTH AND FAILURE ANALYSIS OF WELDED DAMASCUS STEEL

    Directory of Open Access Journals (Sweden)

    Rastislav Mintách

    2012-01-01

    Full Text Available The aim of this work was the experimental research of damascus steel from point of view of the structural analyze, impact strength and failure analyzes. The damascus steel was produced by method of forged welding from STN 41 4260 spring steel and STN 41 9312 tool steel. The damascus steel consisted of both 84 and 168 layers. The impact strength was experimentally determined for original steels and damascus steels after heat treatment in dependence on temperature in the range from -60 to 160 °C. It has been found that the impact strength of experimental steels decreased with decreasing temperature behind with correlated change of damage mode. In the case of experimental tests performed at high temperature ductile fracture was revealed and with decreasing temperature proportion of cleavage facets increased. Only the STN 41 9312 steel did not show considerable difference in values of the impact strength with changing temperature.

  14. Overview on the welding technologies of CLAM steel and the DFLL TBM fabrication

    Directory of Open Access Journals (Sweden)

    Junyu Zhang

    2016-12-01

    Full Text Available Dual Functional Lithium Lead (DFLL blanket was proposed for its advantages of high energy exchange efficiency and on-line tritium extraction, and it was selected as the candidate test blanket module (TBM for China Fusion Engineering Test Reactor (CFETR and the blanket for Fusion Design Study (FDS series fusion reactors. Considering the influence of high energy fusion neutron irradiation and high heat flux thermal load on the blanket, China Low Activation Martensitic (CLAM steel was selected as the structural material for DFLL blanket. The structure of the blanket and the cooling internal components were pretty complicated. Meanwhile, high precision and reliability were required in the blanket fabrication. Therefore, several welding techniques, such as hot isostatic pressing diffusion bonding, tungsten inner gas welding, electron beam welding and laser beam welding were developed for the fabrication of cooling internals and the assembly of the blanket. In this work, the weldability on CLAM steel by different welding methods and the properties of as-welded and post-weld heat-treated joints were investigated. Meanwhile, the welding schemes and the assembly strategy for TBM fabrication were raised. Many tests and research efforts on scheme feasibility, process standardization, component qualification and blanket assembly were reviewed.

  15. Comparison of Post Weld Treatment of High Strength Steel Welded Joints in Medium Cycle Fatigue

    DEFF Research Database (Denmark)

    Pedersen, Mikkel Melters; Mouritsen, Ole Ø.; Hansen, Michael Rygaard

    2010-01-01

    the stress range can exceed the yield-strength of ordinary structural steel, especially when considering positive stress ratios (R > 0). Fatigue experiments and qualitative evaluation of the different post-weld treatments leads to the selection of TIG dressing. The process of implementing TIG dressing......This paper presents a comparison of three post-weld treatments for fatigue life improvement of welded joints. The objective is to determine the most suitable post-weld treatment for implementation in mass production of certain crane components manufactured from very high-strength steel....... The processes investigated are: burr grinding, TIG dressing and ultrasonic impact treatment. The focus of this investigation is on the so-called medium cycle area, i.e. 10 000-500 000 cycles and very high stress ranges. In this area of fatigue design, the use of very high strength steel becomes necessary, since...

  16. Effect of welding process on the microstructure and properties of dissimilar weld joints between low alloy steel and duplex stainless steel

    Science.gov (United States)

    Wang, Jing; Lu, Min-xu; Zhang, Lei; Chang, Wei; Xu, Li-ning; Hu, Li-hua

    2012-06-01

    To obtain high-quality dissimilar weld joints, the processes of metal inert gas (MIG) welding and tungsten inert gas (TIG) welding for duplex stainless steel (DSS) and low alloy steel were compared in this paper. The microstructure and corrosion morphology of dissimilar weld joints were observed by scanning electron microscopy (SEM); the chemical compositions in different zones were detected by energy-dispersive spectroscopy (EDS); the mechanical properties were measured by microhardness test, tensile test, and impact test; the corrosion behavior was evaluated by polarization curves. Obvious concentration gradients of Ni and Cr exist between the fusion boundary and the type II boundary, where the hardness is much higher. The impact toughness of weld metal by MIG welding is higher than that by TIG welding. The corrosion current density of TIG weld metal is higher than that of MIG weld metal in a 3.5wt% NaCl solution. Galvanic corrosion happens between low alloy steel and weld metal, revealing the weakness of low alloy steel in industrial service. The quality of joints produced by MIG welding is better than that by TIG welding in mechanical performance and corrosion resistance. MIG welding with the filler metal ER2009 is the suitable welding process for dissimilar metals jointing between UNS S31803 duplex stainless steel and low alloy steel in practical application.

  17. Microstructure and high temperature properties of the dissimilar weld between ferritic stainless steel and carbon steel

    Science.gov (United States)

    Kim, Jeong Kil; Hong, Seung Gab; Kang, Ki Bong; Kang, Chung Yun

    2009-10-01

    Dissimilar joints between STS441, a ferritic stainless steel, and SS400, a carbon steel, were welded by GMAW (Gas Metal Arc Welding) using STS430LNb as a welding wire. The fracture behavior of the dissimilar weld was analyzed by a microstructural observation and thermo-mechanical tests. Martensite was formed at the region between SS400 and the weld metal because the Cr and Nb content in this region decreased due to the dilution of SS400 carbon steel during welding. According to results from a high temperature tensile test with a specimen aged at 900 °C, it was found that the tensile strength of the dissimilar weld at high temperature was equal to that of STS441 base metal and the formation of martensite had little influence on tensile strength of the dissimilar weld at high temperature. However, in the case of thermal fatigue resistance, the dissimilar weld had an inferior thermal fatigue life to STS441 because of the presence of martensite and the softened region around the interface between the dissimilar weld metal and SS400.

  18. Laser welding of stainless steel weld filler metals at high cooling rates

    Energy Technology Data Exchange (ETDEWEB)

    Vitek, J.M.; David, S.A.

    1988-01-01

    Several stainless steels were laser welded under conditions resulting in high cooling rates of the welds. Significant changes in the microstructures, compared to those produced by conventional welding techniques, were found. For alloys 304, 308, 309, 316 and 347, a general decrease in ferrite content with increasing cooling rate was found. For three alloys (304, 308, 347), a fully austenitic structure was obtained at the highest cooling rates. For alloys 312 and 446, the high cooling rates retarded the formation of austenite, resulting in higher ferrite contents and fully ferritic structures at the highest cooling rates. Only for alloy 310 was the microstructure after laser welding comparable to that found after conventional welding. The results are discussed in terms of their impact on the Schaeffler diagram and its applicability to laser welding. 11 refs., 7 figs.

  19. 46 CFR 54.25-25 - Welding of quenched and tempered steels (modifies UHT-82).

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Welding of quenched and tempered steels (modifies UHT-82... ENGINEERING PRESSURE VESSELS Construction With Carbon, Alloy, and Heat Treated Steels § 54.25-25 Welding of quenched and tempered steels (modifies UHT-82). (a) The qualification of welding procedures, welders,...

  20. 77 FR 60478 - Control of Ferrite Content in Stainless Steel Weld Metal

    Science.gov (United States)

    2012-10-03

    ... COMMISSION Control of Ferrite Content in Stainless Steel Weld Metal AGENCY: Nuclear Regulatory Commission... Ferrite Content in Stainless Steel Weld Metal.'' This guide describes a method that the NRC staff considers acceptable for controlling ferrite content in stainless steel weld metal. Revision 4 updates...

  1. 78 FR 63517 - Control of Ferrite Content in Stainless Steel Weld Metal

    Science.gov (United States)

    2013-10-24

    ... COMMISSION Control of Ferrite Content in Stainless Steel Weld Metal AGENCY: Nuclear Regulatory Commission... revision to Regulatory Guide (RG) 1.31, ``Control of Ferrite Content in Stainless Steel Weld Metal.'' This... content in stainless steel weld metal. It updates the guide to remove references to outdated standards...

  2. Microstructure characterization of Friction Stir Spot Welded TRIP steel

    DEFF Research Database (Denmark)

    Lomholt, Trine Colding; Adachi, Yoshitaka; Peterson, Jeremy

    2012-01-01

    Transformation Induced Plasticity (TRIP) steels have not yet been successfully joined by any welding technique. It is desirable to search for a suitable welding technique that opens up for full usability of TRIP steels. In this study, the potential of joining TRIP steel with Friction Stir Spot......-mechanically affected zones (TMAZ), and two heat-affected zones (HAZ). The dual behavior of the microstructure in the zones is related to the two transition temperatures in steel: A1 and A3. In parts of the TMAZ the microstructure contains ultra fine-grained ferrite. This finding parallels the observation in thermo......-mechanically processed steels, where severe deformation at elevated temperatures is used to produce ultra fine-grained microstructures. Several possible transformation mechanisms could in principle explain the development of ultra fine-grained ferrite, e.g. dynamic recrystallization, strain-induced ferrite...

  3. Effects of mechanical force on grain structures of friction stir welded oxide dispersion strengthened ferritic steel

    Energy Technology Data Exchange (ETDEWEB)

    Han, Wentuo, E-mail: hanwentuo@hotmail.com [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Kimura, Akihiko [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Tsuda, Naoto [Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Serizawa, Hisashi [Joining and Welding Research Institute, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Chen, Dongsheng [Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Je, Hwanil [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Fujii, Hidetoshi [Joining and Welding Research Institute, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Ha, Yoosung [Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Morisada, Yoshiaki [Joining and Welding Research Institute, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Noto, Hiroyuki [Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)

    2014-12-15

    The weldability of oxide dispersion strengthened (ODS) ferritic steels is a critical obstructive in the development and use of these steels. Friction stir welding has been considered to be a promising way to solve this problem. The main purpose of this work was to reveal the effects of mechanical force on grain structures of friction stir welded ODS ferritic steel. The grain appearances and the misorientation angles of grain boundaries in different welded zones were investigated by the electron backscatter diffraction (EBSD). Results showed that the mechanical force imposed by the stir tool can activate and promote the recrystallization characterized by the transformation of boundaries from LABs to HABs, and contribute to the grain refinement. The type of recrystallization in the stir zone can be classified as the continuous dynamic recrystallization (CDRX)

  4. Measurement of local creep properties in stainless steel welds

    OpenAIRE

    Sakanashi, Y.; Gungor, S; Bouchard, J.

    2012-01-01

    A high temperature measurement system for creep deformation based on the digital image correlation (DIC) technique is described. The new system is applied to study the behaviour of a multi-pass welded joint in a high temperature tensile test and a load controlled creep test at 545°C. Spatially resolved tensile properties and time dependent creep deformation properties across a thick section type 316 stainless steel multi-pass welded joint are presented and discussed. Significantly lower creep...

  5. Feasibility of underwater friction stir welding of HY-80 steel

    OpenAIRE

    Stewart, William Chad

    2011-01-01

    Approved for public release; distribution is unlimited. The purpose of this thesis is to determine the feasibility of underwater friction stir welding (FSW) of high-strength; quench and temper low carbon steels that are susceptible to hydrogen-assisted cracking (HAC). The specific benefits of underwater FSW would be weld repairs of ship and submarine control surfaces and hulls without the need for drydocking and extensive environmental control procedures. A single tool of polycrystallin...

  6. Microstructural Aspects of Bifocal Laser Welding of Trip Steels

    Directory of Open Access Journals (Sweden)

    Grajcar A.

    2017-06-01

    Full Text Available This work is concerned with comparative tests involving single-spot and twin-spot laser welding of thermomechanically rolled TRIP steel. The welding tests were carried out using keyhole welding and a solid state laser. In the case of twin-spot laser beam welding, the power distribution of beams was 50%:50%. The changes in macro- and microstructures were investigated using light and scanning electron microscopy. Three main zones subjected to the tests included the fusion zone, the heat affected zone and the intercritical heat affected zone (transition zone between the base material and the HAZ. Special attention was paid to the effect of various thermal cycles on the microstructure of each zone and on martensite morphology. The tests involved hardness measurements carried out in order to investigate the effect of different microstructures on mechanical properties of welds.

  7. Accurate modelling of anisotropic effects in austenitic stainless steel welds

    Science.gov (United States)

    Nowers, O. D.; Duxbury, D. J.; Drinkwater, B. W.

    2014-02-01

    The ultrasonic inspection of austenitic steel welds is challenging due to the formation of highly anisotropic and heterogeneous structures post-welding. This is due to the intrinsic crystallographic structure of austenitic steel, driving the formation of dendritic grain structures on cooling. The anisotropy is manifested as both a `steering' of the ultrasonic beam and the back-scatter of energy due to the macroscopic granular structure of the weld. However, the quantitative effects and relative impacts of these phenomena are not well-understood. A semi-analytical simulation framework has been developed to allow the study of anisotropic effects in austenitic stainless steel welds. Frequency-dependent scatterers are allocated to a weld-region to approximate the coarse grain-structures observed within austenitic welds and imaged using a simulated array. The simulated A-scans are compared against an equivalent experimental setup demonstrating excellent agreement of the Signal to Noise (S/N) ratio. Comparison of images of the simulated and experimental data generated using the Total Focusing Method (TFM) indicate a prominent layered effect in the simulated data. A superior grain allocation routine is required to improve upon this.

  8. Microstructural Characterization of Friction Stir Welded Aluminum-Steel Joints

    Science.gov (United States)

    Patterson, Erin E.; Hovanski, Yuri; Field, David P.

    2016-06-01

    This work focuses on the microstructural characterization of aluminum to steel friction stir welded joints. Lap weld configuration coupled with scribe technology used for the weld tool have produced joints of adequate quality, despite the significant differences in hardness and melting temperatures of the alloys. Common to friction stir processes, especially those of dissimilar alloys, are microstructural gradients including grain size, crystallographic texture, and precipitation of intermetallic compounds. Because of the significant influence that intermetallic compound formation has on mechanical and ballistic behavior, the characterization of the specific intermetallic phases and the degree to which they are formed in the weld microstructure is critical to predicting weld performance. This study used electron backscatter diffraction, energy dispersive spectroscopy, scanning electron microscopy, and Vickers micro-hardness indentation to explore and characterize the microstructures of lap friction stir welds between an applique 6061-T6 aluminum armor plate alloy and a RHA homogeneous armor plate steel alloy. Macroscopic defects such as micro-cracks were observed in the cross-sectional samples, and binary intermetallic compound layers were found to exist at the aluminum-steel interfaces of the steel particles stirred into the aluminum weld matrix and across the interfaces of the weld joints. Energy dispersive spectroscopy chemical analysis identified the intermetallic layer as monoclinic Al3Fe. Dramatic decreases in grain size in the thermo-mechanically affected zones and weld zones that evidenced grain refinement through plastic deformation and recrystallization. Crystallographic grain orientation and texture were examined using electron backscatter diffraction. Striated regions in the orientations of the aluminum alloy were determined to be the result of the severe deformation induced by the complex weld tool geometry. Many of the textures observed in the weld

  9. Solidification cracking in austenitic stainless steel welds

    Indian Academy of Sciences (India)

    V Shankar; T P S Gill; S L Mannan; S Sundaresan

    2003-06-01

    Solidification cracking is a significant problem during the welding of austenitic stainless steels, particularly in fully austenitic and stabilized compositions. Hot cracking in stainless steel welds is caused by low-melting eutectics containing impurities such as S, P and alloy elements such as Ti, Nb. The WRC-92 diagram can be used as a general guide to maintain a desirable solidification mode during welding. Nitrogen has complex effects on weld-metal microstructure and cracking. In stabilized stainless steels, Ti and Nb react with S, N and C to form low-melting eutectics. Nitrogen picked up during welding significantly enhances cracking, which is reduced by minimizing the ratio of Ti or Nb to that of C and N present. The metallurgical propensity to solidification cracking is determined by elemental segregation, which manifests itself as a brittleness temperature range or BTR, that can be determined using the varestraint test. Total crack length (TCL), used extensively in hot cracking assessment, exhibits greater variability due to extraneous factors as compared to BTR. In austenitic stainless steels, segregation plays an overwhelming role in determining cracking susceptibility.

  10. Studies of Hot Crack Properties of Laser Welded Stainless Steel

    DEFF Research Database (Denmark)

    Juhl, Thomas Winther

    During the present work crack testing concerning small and fast solidifying laser welds in austenitic stainless steel has been studied. A set of methods has been applied to investigate alloy properties, including ·Application of known information to predict solidification phases from the alloy...... investigated and recommendations are given. From studies of literature it is found that the austenitic stainless steels have lowest crack susceptibility by a solidification course leaving approximately 15% rest ferrite in the weld metal. The alloys properties and the solidification rate determines the amount...

  11. Evaluation of welding by MIG in martensitic stainless steel; Avaliacao da soldagem pelo processo MIG em aco inoxidavel martensitico

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, M.A. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil); Mariano, N.A.; Marinho, D.H.C. Marinho, E-mail: neideaparecidamariano@gmail.co [Universidade Federal de Alfenas (UNIFAL), Pocos de Caldas, MG (Brazil)

    2010-07-01

    This work evaluated structure's characterization and mechanical properties after the welding process of the stainless steel CA6NM. The employed welding process was the metal active gas with tubular wire. The control of the thermal cycle in the welding process has fundamental importance regarding the properties of the welded joint, particularly in the thermally affected zone. The mechanical properties were appraised through impact resistance tests and the hardness and microstructure through metallographic characterization and Ray-X diffraction. The parameters and the process of welding used promoted the hardness and toughness appropriate to the applications of the steel. Welding energy's control becomes an essential factor that can affect the temperature of carbide precipitation and the nucleation of the retained austenite in the in the region of the in the thermally affected zone. (author)

  12. Probing Pulsed Current Gas Metal Arc Welding for Modified 9Cr-1Mo Steel

    Science.gov (United States)

    Krishnan, S.; Kulkarni, D. V.; De, A.

    2015-04-01

    Modified 9Cr-1Mo steels are commonly welded using gas tungsten arc welding process for its superior control over the rate of heat input and vaporization loss of the key alloying elements although the rate electrode deposition remains restricted. Recent developments in pulsed current gas metal arc welding have significantly improved its ability to enhance the rate of electrode deposition with a controlled heat input rate while its application for welding of modified 9Cr-1Mo steels is scarce. The present work reports a detailed experimental study on the pulsed current gas metal arc welding of modified 9Cr-1Mo steels. The effect of the shielding gas, welding current, and speed on the weld bead profile, microstructure and mechanical properties are examined. The results show that the pulsed current gas metal arc welding with appropriate welding conditions can provide acceptable bead profile and mechanical properties in welds of modified 9Cr-1Mo steels.

  13. Mechanical property variation within Inconel 82/182 dissimilar metal weld between low alloy steel and 316 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Changheui [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)], E-mail: chjang@kaist.ac.kr; Lee, Jounghoon [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Sung Kim, Jong; Eun Jin, Tae [Korea Power Engineering Company, 360-9 Mabuk-ri, Guseong-eup, Yongin-si, Gyeonggi-do 449-713 (Korea, Republic of)

    2008-09-15

    In several locations of pressurized water reactors, dissimilar metal welds using Inconel welding wires are used to join the low alloy steel components to stainless-steel pipes. Because of the existence of different materials and chemistry variation within welds, mechanical properties, such as tensile and fracture properties, are expected to show spatial variation. For design and integrity assessment of the dissimilar welds, these variations should be evaluated. In this study, dissimilar metal welds composed of low alloy steel, Inconel 82/182 weld, and stainless steel were prepared by gas tungsten arc welding and shielded metal arc welding techniques. Microstructures were observed using optical and electron microscopes. Typical dendrite structures were observed in Inconel 82/182 welds. Tensile tests using standard and mini-sized specimens and micro-hardness tests were conducted to measure the variation in strength along the thickness of the weld as well as across the weld. In addition, fracture toughness specimens were taken at the bottom, middle, and top of the welds and tested to evaluate the spatial variation along the thickness. It was found that while the strength is about 50-70 MPa greater at the bottom of the weld than at the top of the weld, fracture toughness values at the top of the weld are about 70% greater than those at the bottom of the weld.

  14. FLUXES FOR MECHANIZED ELECTRIC WELDING,

    Science.gov (United States)

    WELDING FLUXES, WELDING ), (* WELDING , WELDING FLUXES), ARC WELDING , WELDS, STABILITY, POROSITY, WELDING RODS, STEEL, CERAMIC MATERIALS, FLUXES(FUSION), TITANIUM ALLOYS, ALUMINUM ALLOYS, COPPER ALLOYS, ELECTRODEPOSITION

  15. Welding of AA1050 aluminum with AISI 304 stainless steel by rotary friction welding process

    OpenAIRE

    Chen Ying An; Francisco Piorino Neto; Eder Paduan Alves

    2010-01-01

    The purpose of this work was to assess the development of solid state joints of dissimilar material AA1050 aluminum and AISI 304 stainless steel, which can be used in pipes of tanks of liquid propellants and other components of the Satellite Launch Vehicle. The joints were obtained by rotary friction welding process (RFW), which combines the heat generated from friction between two surfaces and plastic deformation. Tests were conducted with different welding process parameters. The results we...

  16. Characteristics comparison of weld metal zones welded to cast and forged steels for piston crown material

    Science.gov (United States)

    Moon, Kyung-Man; Kim, Yun-Hae; Lee, Myeong-Hoon; Baek, Tae-Sil

    2015-03-01

    An optimum repair welding for the piston crown which is one of the engine parts exposed to the combustion chamber is considered to be very important to prolong the engine lifetime from an economical point of view. In this study, two types of filler metals such as 1.25Cr-0.5Mo, 0.5Mo were welded with SMAW method and the other two types of filler metals such as Inconel 625 and 718 were welded with GTAW method, respectively, and the used base metals were the cast and forged steels of the piston crown material. The weld metal zones welded with Inconel 625 and 718 filler metals exhibited higher corrosion resistance compared to 1.25Cr-0.5Mo and 0.5Mo filler metals. In particular, the weld metal zone welded with Inconel 718 and 0.5Mo, filler metals indicated the best and worst corrosion resistance, respectively. Consequently, it is suggested that the corrosion resistance of the weld metal zone surely depends on the chemical components of each filler metal and welding method irrespective of the types of piston crown material.

  17. Weldpool flow visualization studies during gas tungsten arc welding of steel and aluminum.

    OpenAIRE

    Schupp, Peter E.

    1992-01-01

    Approved for public release; distribution is unlimited. A flow visualization study of current distribution effects on weld pool stirring in GTA steel welds is presented using a pulsed ultraviolet laser vision system. Weld pool stirring is almost eliminated in HY-80 steel by the use of symmetric current flow path within the weld samples. Periodic radial surface pulses are observed at low currents in stationary welds while flows of turbulent nature are observed at higher cu...

  18. Development of Weld Metal Microstructures in Pulsed Laser Welding of Duplex Stainless Steel

    Science.gov (United States)

    Mirakhorli, F.; Malek Ghaini, F.; Torkamany, M. J.

    2012-10-01

    The microstructure of the weld metal of a duplex stainless steel made with Nd:YAG pulsed laser is investigated at different travel speeds and pulse frequencies. In terms of the solidification pattern, the weld microstructure is shown to be composed of two distinct zones. The presence of two competing heat transfer channels to the relatively cooler base metal and the relatively hotter previous weld spot is proposed to develop two zones. At high overlapping factors, an array of continuous axial grains at the weld centerline is formed. At low overlapping factors, in the zone of higher cooling rate, a higher percentage of ferrite is transformed to austenite. This is shown to be because with extreme cooling rates involved in pulsed laser welding with low overlapping, the ferrite-to-austenite transformation can be limited only to the grain boundaries.

  19. Numerical simulation and experimental investigation of laser dissimilar welding of carbon steel and austenitic stainless steel

    Science.gov (United States)

    Nekouie Esfahani, M. R.; Coupland, J.; Marimuthu, S.

    2015-07-01

    This study reports an experimental and numerical investigation on controlling the microstructure and brittle phase formation during laser dissimilar welding of carbon steel to austenitic stainless steel. The significance of alloying composition and cooling rate were experimentally investigated. The investigation revealed that above a certain specific point energy the material within the melt pool is well mixed and the laser beam position can be used to control the mechanical properties of the joint. The heat-affected zone within the high-carbon steel has significantly higher hardness than the weld area, which severely undermines the weld quality. A sequentially coupled thermo-metallurgical model was developed to investigate various heat-treatment methodology and subsequently control the microstructure of the HAZ. Strategies to control the composition leading to dramatic changes in hardness, microstructure and service performance of the dissimilar laser welded fusion zone are discussed.

  20. Threshold Corrosion Fatigue of Welded Shipbuilding Steels.

    Science.gov (United States)

    1992-01-01

    of a deposit composition equivalent to the. L-TEC 95 solid electrode produced welds of similar tensile properties but of lower weld metal impact...toughness for welds produced with the powder-cored electrode of a deposit composition equivalent to the L-TEC 95 solid electrode was improved...consisting of a 5N H2SO 4 acid with 0.25 mg/i of arsenite (As2O3 ). Shims were placed in the electrospark discharge machined face-grooves and the

  1. Friction Stir Welding of Stainless Steel to Al Alloy: Effect of Thermal Condition on Weld Nugget Microstructure

    Science.gov (United States)

    Ghosh, M.; Gupta, R. K.; Husain, M. M.

    2014-02-01

    Joining of dissimilar materials is always a global challenge. Sometimes it is unavoidable to execute multifarious activities by a single component. In the present investigation, 6061 aluminum alloy and 304 stainless steel were joined by friction stir welding (FSW) at different tool rotational rates. Welded joints were characterized in optical and scanning electron microscopes. Reaction products in the stirring zone (SZ) were confirmed through X-ray diffraction. Joint strength was evaluated by tensile testing. It was found that the increment in average heat input and temperature at the weld nugget (WN) facilitated iron enrichment near the interface. Enhancement in the concentration of iron shifted the nature of intermetallics from the Fe2Al5 to Fe-rich end of the Fe-Al binary phase diagram. The peak microhardness and ultimate tensile strength were found to be maxima at the intermediate tool rotational rate, where Fe3Al and FeAl2 appeared along with Fe2Al5.

  2. Microstructural evolutions of friction stir welded F82H steel for fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Sang Hoon; Shim, Jae Won; Kim, Tae Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Tani Gawa, Hiro Yasu [JAEA, Rokasho (Japan); Fujii, Hideto Shi [Osaka Univ., Osaka (Japan); Kim Ura, Aki Hiko [Kyoto Univ., Kyoto (Japan)

    2012-10-15

    A blanket is the most important component functionalized as plasma confining, tritium breeding, heat exchanging, and irradiation shielding from severe thermo neutron loads in a fusion reactor. Its structure consists of first walls, side walls, a back board, and coolant channels mainly made of reduced activation ferritic/martensitic (RAFM) steel, which is the most promising candidate as a structural material for fusion reactors. To fabricate this blanket structure, some welding and joining methods have being carefully applied. However, when fusion welding, such as tungsten inert gas (TIG) welding, electron beam, and laser welding was performed between F82H and itself, the strength of welds significantly deteriorated due to the development of {delta} ferrite and precipitate dissolution. Post welding heat treatment (PWHT) should be followed to restore the initial microstructure. Nevertheless, microstructural discontinuity inevitably occurs between the weld metal, heat affected zone and base metal and this seriously degrades the entire structural stability under pulsed operation at high temperature in test blanket module (TBM). A phase transformation can also be an issue to be solved, which leads to a difficult replacement of the blanket module. Therefore, a reliable and field applicable joining technique should be developed not to accompany with PWHT after the joining process. Friction stir welding (FSW) is one of the solid state processes that does not create a molten zone at the joining area, so the degradation of the featured microstructures may be avoided or minimized. In this study, FSW was employed to join F82H steels to develop a potential joining technique for RAFM steel. The microstructural features on the joint region were investigated to evaluate the applicability of the FSW.

  3. Studies of Hot Crack Properties of Laser Welded Stainless Steel

    DEFF Research Database (Denmark)

    Juhl, Thomas Winther

    During the present work crack testing concerning small and fast solidifying laser welds in austenitic stainless steel has been studied. A set of methods has been applied to investigate alloy properties, including ·Application of known information to predict solidification phases from the alloy...... composition. ·Weld metal solidification rate measurements for prediction of phases. ·Various crack tests to assess the crack susceptibility of alloys. ·A combination of the above for selection of suitable, weldable alloys. The possibility of using such specific methods for alloys and applications has been...... investigated and recommendations are given. From studies of literature it is found that the austenitic stainless steels have lowest crack susceptibility by a solidification course leaving approximately 15% rest ferrite in the weld metal. The alloys properties and the solidification rate determines the amount...

  4. Research on overlaying welding rod of high hardness maraging steel

    Institute of Scientific and Technical Information of China (English)

    PAN Yong-ming; CHEN Shao-wei

    2006-01-01

    The development of new maraging steel overlaying welding rod,which contains Co,Mo,W and V alloy,solved the problems of poor homogeneity of hardness and mechanical process, prolonged the service life of wear-resistant components and increased the productive efficiency of repairing,greatly benefiting the national economy.

  5. Weld Properties of a Free Machining Stainless Steel

    Energy Technology Data Exchange (ETDEWEB)

    J. A. Brooks; S. H. Goods; C. V. Robino

    2000-08-01

    The all weld metal tensile properties from gas tungsten arc and electron beam welds in free machining austenitic stainless steels have been determined. Ten heats with sulfur contents from 0.04 to 0.4 wt.% and a wide range in Creq/Nieq ratios were studied. Tensile properties of welds with both processes were related to alloy composition and solidification microstructure. The yield and ultimate tensile strengths increased with increasing Creq/Nieq ratios and ferrite content, whereas the ductility measured by RA at fracture decreased with sulfur content. Nevertheless, a range in alloy compositions was identified that provided a good combination of both strength and ductility. The solidification cracking response for the same large range of compositions are discussed, and compositions identified that would be expected to provide good performance in welded applications.

  6. Research on Welding Test of Grey Cast Iron and Low-Carbon Steel

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Grey cast iron's welding itself is a complex proble m.So proper welding materials must be selected,complex welding techniques such as preheating before weldingslow cooling after welding etc,should be taken. However the carbon component in low-carbon steel is comparatively low,the carbo n of welded joint will diffuse to the low-carbon steel when it is welded with gr ey cast iron,which will cause the component of carbon greatly increased at the low-carbon steel side in HAZ,high carbon martensite and cracks ...

  7. Inclusions in steel coated electrodes welds of car body

    Directory of Open Access Journals (Sweden)

    Tomasz WĘGRZYN

    2007-01-01

    Full Text Available The goal of this project (BK-284/RT1/2007 is to chose the proper method of car body welding. SMAW could be treated as the main method used in the transport industry. Properties of metal weld deposits depend on many conditions. This paper attempts to study first of all the role of oxide inclusion sites on the transformation austenite->acicular ferrite in steel weld metal deposits and their toughness. Properties of metal weld deposits depend on the amount of acicular ferrite in them. For good toughness over a range of temperatures, metal weld deposits should have a high amount of acicularferrite. Different basic and rutile electrodes were used in order to obtain different asdeposited weld compositions. Impact toughness tests of various deposits were carried out. The microstructure of the welds with different oxygen levels, the inclusion size distribution and approximate chemical composition of inclusions are characterized. Mostobservations and measurements were done with a scanning electron microscope equipped with an energy-dispersive X-ray spectrometer. The result of the present study implies that it is advantageous to keep oxygen contents in basic and rutile deposits as low as possiblewhen well-developed microstructures of acicular ferrite are desired.

  8. Process Optimization for Friction-Stir-Welded Martensitic Steel

    Science.gov (United States)

    Ghosh, M.; Kumar, K.; Mishra, R. S.

    2012-06-01

    Advanced high-strength M190 steel sheets were joined by friction-stir welding under different tool rotational and traversing speeds. The optical microstructure of the joints exhibited complete martensite and partial martensite at the weld nugget depending on the cooling rate during welding. The first heat-affected zone outside of the weld nugget revealed ferrite-pearlite phase aggregate, and the second heat-affected zone showed a tempered martensitic structure. The interplay of process variables in terms of peak temperature and cooling rate was studied to observe their effect on joint efficiency under shear testing. The peak hardness at weld nugget was close to the parent alloy at an intermediate cooling rate of 294 to 313 K/s. The lowest hardness was observed at the first heat-affected zone for all welded joints. Joint efficiency was dependent on relative quantity of ferrite-pearlite at first heat-affected zone. In that respect, the intermediate temperature to the tune of ~1193 K to 1273 K (~920 °C to 1000 °C) at the weld nugget was found to be beneficial for obtaining an adequate quantity of pearlite at the first heat-affected zone to provide joint efficiency of more than 50 pct of that of parent alloy.

  9. 49 CFR 178.61 - Specification 4BW welded steel cylinders with electric-arc welded longitudinal seam.

    Science.gov (United States)

    2010-10-01

    .... Cylinders closed in by spinning process are not authorized. (b) Authorized steel. Steel used in the... § 171.7 of this subchapter). (e) Welding of attachments. The attachment to the tops and bottoms only of... the top or bottom of cylinders and properly heat treated, provided such subsequent welding or brazing...

  10. Cold Cracking Of Underwater Wet Welded S355G10+N High Strength Steel

    Directory of Open Access Journals (Sweden)

    Fydrych D.

    2015-09-01

    Full Text Available Water as the welding environment determines some essential problems influencing steel weldability. Underwater welding of high strength steel joints causes increase susceptibility to cold cracking, which is an effect of much faster heat transfer from the weld area and presence of diffusible hydrogen causing increased metal fragility. The paper evaluates the susceptibility to cold cracking of the high strength S355G10+N steel used, among others, for ocean engineering and hydrotechnical structures, which require underwater welding. It has been found from the CTS test results that the investigated steel is susceptible to cold cracking in the wet welding process.

  11. Microstructural Development during Welding of TRIP steels

    NARCIS (Netherlands)

    Amirthalingam, M.

    2010-01-01

    The Advanced High Strength Steels (AHSS) are promising solutions for the production of lighter automobiles which reduce fuel consumption and increase passenger safety by improving crash-worthiness. Transformation Induced Plasticity Steel (TRIP) are part of the advanced high strength steels which

  12. Microstructural Development during Welding of TRIP steels

    NARCIS (Netherlands)

    Amirthalingam, M.

    2010-01-01

    The Advanced High Strength Steels (AHSS) are promising solutions for the production of lighter automobiles which reduce fuel consumption and increase passenger safety by improving crash-worthiness. Transformation Induced Plasticity Steel (TRIP) are part of the advanced high strength steels which off

  13. Weldability prediction of high strength steel S960QL after weld thermal cycle simulation

    Directory of Open Access Journals (Sweden)

    M. Dunđer

    2014-10-01

    Full Text Available This paper presents weld thermal cycle simulation of high strength steel S960QL, and describes influence of cooling time t8/5 on hardness and impact toughness of weld thermal cycle simulated specimens. Furthermore, it presents analysis of characteristic fractions done by electron scanning microscope which can contribute to determination of welding parameters for S960QL steel.

  14. Resistance spot welding of a complicated joint in new advanced high strength steel

    NARCIS (Netherlands)

    Nick den Uijl; Joop Pauwelussen

    2015-01-01

    The goal of this article is to investigate resistance spot welding of a complicated welding configuration of three sheets of dissimilar steel sheet materials with shunt welds, using simulations. The configuration used resembles a case study of actual welds in automotive applications. One of the

  15. Resistance spot welding of a complicated joint in new advanced high strength steel

    NARCIS (Netherlands)

    Uijl, Nick den; Pauwelussen, Joop

    2015-01-01

    The goal of this article is to investigate resistance spot welding of a complicated welding configuration of three sheets of dissimilar steel sheet materials with shunt welds, using simulations. The configuration used resembles a case study of actual welds in automotive applications. One of the stee

  16. Effect of Stress Relief Annealing on Microstructure & Mechanical Properties of Welded Joints Between Low Alloy Carbon Steel and Stainless Steel

    Science.gov (United States)

    Nivas, R.; Das, G.; Das, S. K.; Mahato, B.; Kumar, S.; Sivaprasad, K.; Singh, P. K.; Ghosh, M.

    2017-01-01

    Two types of welded joints were prepared using low alloy carbon steel and austenitic stainless steel as base materials. In one variety, buttering material and weld metal were Inconel 82. In another type, buttering material and weld metal were Inconel 182. In case of Inconel 82, method of welding was GTAW. For Inconel 182, welding was done by SMAW technique. For one set of each joints after buttering, stress relief annealing was done at 923 K (650 °C) for 90 minutes before further joining with weld metal. Microstructural investigation and sub-size in situ tensile testing in scanning electron microscope were carried out for buttered-welded and buttered-stress relieved-welded specimens. Adjacent to fusion boundary, heat-affected zone of low alloy steel consisted of ferrite-pearlite phase combination. Immediately after fusion boundary in low alloy steel side, there was increase in matrix grain size. Same trend was observed in the region of austenitic stainless steel that was close to fusion boundary between weld metal-stainless steel. Close to interface between low alloy steel-buttering material, the region contained martensite, Type-I boundary and Type-II boundary. Peak hardness was obtained close to fusion boundary between low alloy steel and buttering material. In this respect, a minimum hardness was observed within buttering material. The peak hardness was shifted toward buttering material after stress relief annealing. During tensile testing no deformation occurred within low alloy steel and failure was completely through buttering material. Crack initiated near fusion boundary between low alloy steel-buttering material for welded specimens and the same shifted away from fusion boundary for stress relieved annealed specimens. This observation was at par with the characteristics of microhardness profile. In as welded condition, joints fabricated with Inconel 82 exhibited superior bond strength than the weld produced with Inconel 182. Stress relief annealing

  17. Research on CMT welding of nickel-based alloy with stainless steel

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Cold Metal Transfer (CMT) welding technique is a new welding technique introduced by Fronius company. CMT welding of nickel-based alloy with stainless steel was carried out using CuSi3 filler wire in this paper. Effects of welding parameters, including welding current, welding speed, etc, on weld surface appearance were tested. Microstructure and mechanical properties of CMT weld were studied. The results show that the thickness of interface reaction layer of the nickel-based alloy is 14.3μm, which is only 4.33% of base material. The weld is made up of two phases,α-copper and iron-based solid solution. Rupture occurs initially at the welded seam near the edge of stainless steel in shear test. The maximum shear strength of the CuSi3 welded joint is 184.9MPa.

  18. Exploring the electrodes alignment and mushrooming effects on weld geometry of dissimilar steels during the spot welding process

    Indian Academy of Sciences (India)

    Nachimani Charde

    2014-12-01

    The class two of RWMA electrode caps has very common applicationpurpose for the welding of steels and withstand for high thermal application on wrought cast. It has been experimentally used to weld carbon and stainless steels up to 900 weld attempts using AC waveform, C-type JPC 75 kVA, Japanese made spot welder. So the electrode alignments and resulting mushrooming effects are finally analysed in this research as well as the weld geometry of dissimilar (carbon and stainless) steels. When considering such weld joints, the heat imbalances are very interesting factors on spot welding research and therefore I have simulated the dissimilar weld joints using Ansys 14. Initially, it was simulated and later those results are compared with real welded samples. The common welded regions such as: fusion zones, heat affected zones, heat extended zones and base metals are all well-noticed for carbon steel sides but not for stainless steel sides. Besides, the electrode mushrooming effect on both sides of electrodes are not parallel deterioration and it has some demerits on internal structure indeed. Some of the dissimilar welded samples and electrode caps are eventually underwent metallurgical test to identify the improper alignment.

  19. Investigation of the Welding Performance of 1Cr18Mn8Ni5N Stainless Steel with A-TIG Welding%奥氏体不锈钢A-TIG焊焊接性能研究

    Institute of Scientific and Technical Information of China (English)

    魏钰; 许静远; 刘爱阳; 王海燕

    2012-01-01

    研究了1Cr18Mn8Ni5N不锈钢薄板A-TIG焊与常规TIG焊和填丝TIG焊的焊接规范和焊接接头性能.结果表明:与常规TIG焊相比,A-TIG焊焊缝宽度减小,焊缝组织中晶粒细化,焊接接头的抗拉强度显著提高,且高于母材的抗拉强度;与填丝TIG焊相比,A-TIG只需小电流且不需要填丝即可达到相同的焊接性能,同时可以降低成本,提高生产效率.%The welding specification and welding joint property of the activating flux TIG welding (A-TIG welding) , conventional TIG welding and filler metal TIG welding in the welding experiments of thin plates of lCrl8Mn8Ni5N stainless steel are investigated. The results show that compared with conventional TIG welding, A-TIG welding can decrease the weld width, refine the grains of the welding bead microstructure and improve the tensile strength of the welding joint; A-TIG welding only needs small welding current and no filler metal for achieving the same welding performance as filler metal TIG welding, which reduces cost and improves the production efficiency.

  20. New explosive welding technique to weld aluminum alloy and stainless steel plates using a stainless steel intermediate plate

    Energy Technology Data Exchange (ETDEWEB)

    Hokamoto, K.; Fujita, M. (Kumamoto Univ. (Japan). Dept. of Mechanical Engineering); Izuma, T. (Asahi Chemical Industry Co., Ltd., Siga (Japan))

    1993-10-01

    Various aluminum alloys and stainless steel were explosively welded using a thin stainless steel intermediate plate inserted between the aluminum alloy driver and stainless steel base plates. At first. the velocity change of the driver plate with flying distance is calculated using finite-difference analysis. Since the kinetic energy lost by collision affects the amount of the fused layer generated at the interface between the aluminum alloy and stainless steel, the use of a thin stainless steel intermediate plate is effective for decreasing the energy dissipated by the collision. The interfacial zone at the welded interface is composed of a fine eutectic structure of aluminum and Fe[sub 4]Al[sub 13], and the explosive welding, process of this metal combination proceeds mainly by intensive deformation of the aluminum alloy. The weldable region for various aluminum alloys is decided by the change in collision velocity and kinetic energy lost by collision, and the weldable region is decreased with the increase in the strength of the aluminum alloy.

  1. Characteristics of Extra Narrow Gap Weld of HSLA Steel Welded by Single-Seam per Layer Pulse Current GMA Weld Deposition

    Science.gov (United States)

    Agrawal, B. P.; Ghosh, P. K.

    2017-03-01

    Butt weld joints are produced using pulse current gas metal arc welding process by employing the technique of centrally laid multi-pass single-seam per layer weld deposition in extra narrow groove of thick HSLA steel plates. The weld joints are prepared by using different combination of pulse parameters. The selection of parameter of pulse current gas metal arc welding is done considering a summarized influence of simultaneously interacting pulse parameters defined by a dimensionless hypothetical factor ϕ. The effect of diverse pulse parameters on the characteristics of weld has been studied. Weld joint is also prepared by using commonly used multi-pass multi-seam per layer weld deposition in conventional groove. The extra narrow gap weld joints have been found much superior to the weld joint prepared by multi-pass multi-seam per layer deposition in conventional groove with respect to its metallurgical characteristics and mechanical properties.

  2. Technology of Welding Joints Mixed with Duplex Steel

    OpenAIRE

    Słania J.; Krawczyk R.; Masłoń D.

    2016-01-01

    Results of the examinations of sample plates of mixed joints with the duplex steel were discussed. Examinations were taken on the sample plates of mixed joints of sheet plates type P355NL1 and X2CrNiMoN22-5-3 welded by the flux-cored wire DW-329A by the Kobelco company of the following category T 22 9 3 NL RC/M3 in the gas shroud M21 (Ar+18%CO2) (plate no.1), and nickel covered electrodes E Ni 6082 by the Böhler company (plate no. 2). Results of the side bend test of welded joint, transverse ...

  3. Modeling the damage of welded steel, using the GTN model

    Directory of Open Access Journals (Sweden)

    El-Ahmar Kadi

    2014-11-01

    Full Text Available The aim of our work is the modeling of the damage in the weld metal according to the finite element method and the concepts of fracture mechanics based on local approaches using the code ABAQUS calculates. The use of the Gurson-Tvergaard-Needleman model axisymmetric specimens AE type to three different zones (Base metal, molten metal and heat affected Zone with four levels of triaxiality (AE2, AE4, AE10 and AE80, we have used to model the behavior of damage to welded steel, which is described as being due to the growth and coalescence of cavities with high rates of triaxiality

  4. Electrochemical Corrosion Behavior ofthe Laser Continuous Heat Treatment Welded Joints of 2205 Duplex Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    LIU Heping; JIN Xuejun

    2011-01-01

    The electrochemical corrosion behaviors of the welded joints of 2205 duplex stainless steel with the laser continuous heat treatment were investigated.The secondary austenite formation is the outcome of thermodynamic equilibrium breach of the alloy during heat treatment and the result of the continuous heat treatment which has the most important effect on the weld material.The partitioning behaviors of chromium and molybdenum as well as the volume fraction of ferrite and austenite have a remarkable influence on the composition of the individual phase.Mechanical examination of the laser trated weld demonstrates that the tensile strength and yield strength increase with increasing the amount of the secondary austenite.It is shown that the ultimate tensile strength of the 6 kW laser-treated weld is higher about 20 MPa than no heat treatment weld and the ductility can be further improved without compromising strength.The results indicate that the welding alters the corrosion behavior because of different post heat treatment power and the broad active peak is not identified which is attributed to the dissolution of the secondary austenitic in the ferrite phase.It is indicated that pitting resistance equivalent (PRE) values of base metal and 6 kW weld are higher than that of other welds; base metal is 33.7,6 kW weld 33.3,no treatment 32.4,4 kW weld 32.8,8 kW weld 32.5.The extent of corrosion resistance improvement after reheating treatment is mainly caused by the removal of nitrogen from ferritic regions,which occurred as a consequence of secondary austenite growth.

  5. Cold Cracking of Flux Cored Arc Welded Armour Grade High Strength Steel Weldments

    Institute of Scientific and Technical Information of China (English)

    G.Magudeeswaran; V.Balasubramanian; G.Madhusudhan Reddy

    2009-01-01

    In this investigation, an attempt has been made to study the influence of welding consumables on the factors that influence cold cracking of armour grade quenched and tempered (Q&T) steel welds. Flux cored arc welding (FCAW) process were used making welds using austenitic stainless steel (ASS) and low hydrogen ferritic steel (LHF) consumables. The diffusible hydrogen levels in the weld metal of the ASS and LHF consumables were determined by mercury method. Residual stresses were evaluated using X-ray stress analyzer and implant test was carried out to study the cold cracking of the welds. Results indicate that ASS welds offer a greater resistance to cold cracking of armour grade Q&T steel welds.

  6. Weld solidification cracking in 304 to 204L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Hochanadel, Patrick W [Los Alamos National Laboratory; Lienert, Thomas J [Los Alamos National Laboratory; Martinez, Jesse N [Los Alamos National Laboratory; Johnson, Matthew Q [Los Alamos National Laboratory

    2010-09-15

    A series of annulus welds were made between 304 and 304L stainless steel coaxial tubes using both pulsed laser beam welding (LBW) and pulsed gas tungsten arc welding (GTAW). In this application, a change in process from pulsed LBW to pulsed gas tungsten arc welding was proposed to limit the possibility of weld solidification cracking since weldability diagrams developed for GTAW display a greater range of compositions that are not crack susceptible relative to those developed for pulsed LBW. Contrary to the predictions of the GTAW weldability diagram, cracking was found.This result was rationalized in terms of the more rapid solidification rate of the pulsed gas tungsten arc welds. In addition, for the pulsed LBW conditions, the material compositions were predicted to be, by themselves, 'weldable' according to the pulsed LBW weldability diagram. However, the composition range along the tie line connecting the two compositions passed through the crack susceptible range. Microstructurally, the primary solidification mode (PSM) of the material processed with higher power LBW was determined to be austenite (A), while solidification mode of the materials processed with lower power LBW apparently exhibited a dual PSM of both austenite (A) and ferrite-austenite (FA) within the same weld. The materials processed by pulsed GTAW showed mostly primary austenite solidification, with some regions of either primary austenite-second phase ferrite (AF) solidification or primary ferrite-second phase austenite (FA) solidification. This work demonstrates that variations in crack susceptibility may be realized when welding different heats of 'weldable' materials together, and that slight variations in processing can also contribute to crack susceptibility.

  7. Weld solidification cracking in 304 to 304L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Hochanadel, Patrick W [Los Alamos National Laboratory; Lienert, Thomas J [Los Alamos National Laboratory; Martinez, Jesse N [Los Alamos National Laboratory; Martinez, Raymond J [Los Alamos National Laboratory; Johnson, Matthew Q [Los Alamos National Laboratory

    2010-01-01

    A series of annulus welds were made between 304 and 304L stainless steel coaxial tubes using both pulsed laser beam welding (LBW) and pulsed gas tungsten arc welding (GTAW). In this application, a change in process from pulsed LBW to pulsed gas tungsten arc welding was proposed to limit the possibility of weld solidification cracking since weldability diagrams developed for GTAW display a greater range of compositions that are not crack susceptible relative to those developed for pulsed LBW. Contrary to the predictions of the GTAW weldability diagram, cracking was found. This result was rationalized in terms of the more rapid solidification rate of the pulsed gas tungsten arc welds. In addition, for the pulsed LBW conditions, the material compositions were predicted to be, by themselves, 'weldable' according to the pulsed LBW weldability diagram. However, the composition range along the tie line connecting the two compositions passed through the crack susceptible range. Microstructurally, the primary solidification mode (PSM) of the material processed with higher power LBW was determined to be austenite (A), while solidification mode of the materials processed with lower power LBW apparently exhibited a dual PSM of both austenite (A) and ferrite-austenite (FA) within the same weld. The materials processed by pulsed GT A W showed mostly primary austenite solidification, with some regions of either primary austenite-second phase ferrite (AF) solidification or primary ferrite-second phase austenite (FA) solidification. This work demonstrates that variations in crack susceptibility may be realized when welding different heats of 'weldable' materials together, and that slight variations in processing can also contribute to crack susceptibility.

  8. Finite element analysis of residual stress in the welded zone of a high strength steel

    Indian Academy of Sciences (India)

    Li Yajiang; Wang Juan; Chen Maoai; Shen Xiaoqin

    2004-04-01

    The distribution of the residual stress in the weld joint of HQ130 grade high strength steel was investigated by means of finite element method (FEM) using ANSYS software. Welding was carried out using gas shielded arc welding with a heat input of 16 kJ/cm. The FEM analysis on the weld joint reveals that there is a stress gradient around the fusion zone of weld joint. The instantaneous residual stress on the weld surface goes up to 800 ∼ 1000 MPa and it is 500 ∼ 600 MPa, below the weld. The stress gradient near the fusion zone is higher than any other location in the surrounding area. This is attributed as one of the significant reasons for the development of cold cracks at the fusion zone in the high strength steel. In order to avoid such welding cracks, the thermal stress in the weld joint has to be minimized by controlling the weld heat input.

  9. The effect of activating fluxes in TIG welding by using Anova for SS 321

    Directory of Open Access Journals (Sweden)

    Akash.B.Patel

    2014-05-01

    Full Text Available Gas tungsten arc welding is fundamental in those industries where it is important to control the weld bead shape and its metallurgical characteristics. However, compared to the other arc welding process, the shallow penetration of the TIG welding restricts its ability to weld thick structures in a single pass (~ 2 mm for stainless steels, thus its productivity is relativity low. This is why there have been several trials to improve the productivity of the TIG welding. The use of activating flux in TIG welding process is one of such attempts. In this study, first, the effect of each TIG welding parameters on the weld’s joint strength was shown and then, the optimal parameters were determined using the Taguchi method with L9 (9 orthogonal array. SiO2 and TiO2 oxide powders were used to investigate the effect of activating flux on the TIG weld mechanical properties of 321austenitic stainless steel. The experimental results showed that activating flux aided TIG welding has increased the weld penetration, tending to reduce the width of the weld bead. The SiO2 flux produced the most noticeable effect. Furthermore, the welded joint presented better tensile strength and hardness.

  10. Effects of surface treatments of galvanized steels on projection welding procedure

    Institute of Scientific and Technical Information of China (English)

    王敏; 王宸煜

    2003-01-01

    A group of projection welding experiments and joints tension-shear tests are carried out for cold-rolled steel sheets, galvanized steel sheets (GSS) without treatment, GSS with phosphating and GSS with surface greasing, respectively. The experimental results are regressively analyzed on the computers, then the projection welded joint tension-shear strength curve and the perfect welding currents range of each material are obtained. The results show that surface treatments of galvanized steels have effects on their spot weldabilities. Among the four kinds of materials, GSS with surface greasing have the worst spot weldability, for they need higher welding current and have a narrow welding current range.

  11. Welding of the steel grade S890QL: Varjenje jekla kvalitete S890QL:

    OpenAIRE

    Bernetič, Jure; Celin, Roman; Skobir Balantič, Danijela Anica

    2014-01-01

    Quenched and tempered high-strength steels are widely used in the construction of steel structures. However, because of their properties, care must be taken in order to determine suitable welding parameters. One way is to use the weld-heat-flow theory with the use of the weld-bead cooling time t8/5 and the recommendations of the standard EN 1011-2. The chosen weld parent material was high-strength S890QL steel with the filler welding wire G Mn4Ni1.5CrMo, which were used to produce a sound but...

  12. Laser Welding Of Finned Tubes Made Of Austenitic Steels

    Directory of Open Access Journals (Sweden)

    Stolecki M.

    2015-09-01

    Full Text Available This paper describes the technology of welding of finned tubes made of the X5CrNi1810 (1.4301 austenitic steel, developed at Energoinstal SA, allowing one to get high quality joints that meet the requirements of the classification societies (PN-EN 15614, and at the same time to significantly reduce the manufacturing costs. The authors described an automatic technological line equipped with a Trumph disc laser and a tube production technological process. To assess the quality of the joints, one performed metallographic examinations, hardness measurements and a technological attempt to rupture the fin. Analysis of the results proved that the laser-welded finned tubes were performed correctly and that the welded joints had shown no imperfections.

  13. Friction Welding of Aluminium and Aluminium Alloys with Steel

    Directory of Open Access Journals (Sweden)

    Andrzej Ambroziak

    2014-01-01

    Full Text Available The paper presents our actual knowledge and experience in joining dissimilar materials with the use of friction welding method. The joints of aluminium and aluminium alloys with the different types of steel were studied. The structural effects occurring during the welding process were described. The mechanical properties using, for example, (i microhardness measurements, (ii tensile tests, (iii bending tests, and (iv shearing tests were determined. In order to obtain high-quality joints the influence of different configurations of the process such as (i changing the geometry of bonding surface, (ii using the interlayer, or (iii heat treatment was analyzed. Finally, the issues related to the selection of optimal parameters of friction welding process were also investigated.

  14. Elemental distribution inside a heat treated stainless steel weld.

    CERN Multimedia

    2017-01-01

    The video shows the elemental distribution of Molybdenum (red), Manganese (green) and Chromium (blue) within a 20 μm × 20 μm × 20 μm region of a heat treated stainless steel weld. This data has been collected using 3D Focused Ion Beam Milling and Energy Dispersive X-ray Spectroscopy, an elemental characterisation analysis technique. High resolution (75 nm voxel size) mapping is necessary to gain insight into the distribution of regions with distinct elemental composition (phases), which are shown in purple (sigma) and yellow (delta ferrite) in the video. These features have important implications for the toughness and the magnetic properties of the weld, especially at cryogenic temperatures. The video shows the individual slices which were collected in a direction perpendicular to the weld bead direction, followed by a 3D representation of the gauge volume.

  15. Technology of Welding Joints Mixed with Duplex Steel

    Directory of Open Access Journals (Sweden)

    Słania J.

    2016-03-01

    Full Text Available Results of the examinations of sample plates of mixed joints with the duplex steel were discussed. Examinations were taken on the sample plates of mixed joints of sheet plates type P355NL1 and X2CrNiMoN22-5-3 welded by the flux-cored wire DW-329A by the Kobelco company of the following category T 22 9 3 NL RC/M3 in the gas shroud M21 (Ar+18%CO2 (plate no.1, and nickel covered electrodes E Ni 6082 by the Böhler company (plate no. 2. Results of the side bend test of welded joint, transverse tensile test, stretching of the weld metal, impact strength, micro and macroscopic metallographic examinations, and measurements of the delta ferrite content were presented.

  16. Temperature Histories of Structural Steel Laser and Hybrid Laser-GMA Welds Calculated Using Multiple Constraints

    Science.gov (United States)

    2015-12-10

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6390--15-9665 Temperature Histories of Structural Steel Laser and Hybrid Laser-GMA Welds...NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Temperature Histories of Structural Steel Laser and Hybrid Laser-GMA Welds Calculated Using Multiple...202) 767-2601 Inverse thermal analyses of structural steel deep-penetration welds are presented. These analyses employ a methodology that is in terms of

  17. Fibre Laser Welding of HY-80 Steel: Procedure Development and Testing

    Science.gov (United States)

    2010-09-01

    2 Welding The material used in this study was quenched and tempered martensitic HY80 steel which conforms to MIL-S-1621 [2]. The testing...Canada Fibre Laser Welding of HY-80 Steel Proceedure Development and Testing Christopher Bayley DLP Neil Aucoin DLP Xinjin Cao NRC IAR AMTC Technical...Memorandum DRDC Atlantic TM 2009-187 September 2010 This page intentionally left blank. Fibre Laser Welding of HY-80 Steel Procedure

  18. Non vacuum electron beam welding of zinc coated high-strength steels

    Energy Technology Data Exchange (ETDEWEB)

    Bach, F.W.; Beniyash, A.; Lau, K.; Versemann, R. [Hannover Univ. (Germany). Inst. of Materials Science

    2005-07-01

    Due to the requirement of conservation of nature and natural resources, today more and more high-strength steels are applied for modern concepts of lightweight construction in auto body manufacturing. For a better corrosion protection mainly hot-dip galvanized sheets or electrolytically coated sheets are used. Non Vacuum Electron Beam Welding (NVEBW) offers several technological and economical advantages for joining zinc coated sheets, which are presented in this paper. The results are based on extensive welding investigations that were performed with the 175 kV-NVEBW machine at Institute of Materials Science, University of Hanover. Different zinc coated steels (microalloyed steel, dualphase steel, residualaustenite steel, complexphase steel, martensitic steel) with sheet thicknesses between 0.8-2.0 mm were welded. A main focus of the work is to investigate the influence of the zinc coating on the welding behaviour at different seam geometries (butt joint, edge-raised seam, lap joint, fillet weld, tailored blank). Up to welding speeds of 10 m/min welds with good properties were obtained. In some cases (lap joints, edge raised seams) it is necessary to weld with a weld gap for zinc evaporation. But it turned out that NVEBW has a wide tolerance concerning the gap width. Furthermore, the presentation shows the results of extensive mechanical tests to NVEBW-welded high-strength steels, especially to hardness tests, tensile tests and forming investigations. (orig.)

  19. Dissimilar Joining of ODS and F/M Steel Tube by Friction Stir Welding

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Suk Hoon; Noh, Sanghoon; Kim, Jun Hwan; Kim, Tae Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Oxide Dispersion strengthened (ODS) steels, it is well known that uniform nano-oxide dispersoids act as pinning points to obstruct dislocation and grain boundary motion, however, those advantages will be disappeared while the material is subjected to the high temperature of conventional fusion welding. Rotary friction welding, also referred to as friction stir welding (FSW), has shown great promise as a method for welding traditionally difficult to weld materials such as aluminum alloys. This relatively new technology has more recently been applied to higher melting temperature alloys such as steels, nickel-based and titanium alloys. Friction stir processing (FSP) is a method of changing the properties of a metal through intense, localized plastic deformation. FSW is the precursor of the FSP technique. When ideally implemented, this process mixes the material without changing the phase and creates a microstructure with fine, equiaxed grains. This homogeneous grain structure, separated by high-angle boundaries, allows some alloys to take on superplastic properties. In this study, FSW is used as a substitutive welding process between FMS tube and ODS parts. The dimension of tube is 7.0 OD, 0.5 T. During the FSW, dynamic-recrystallized grains are developed; the uniform oxides Dispersion is preserved in the metal matrix. The microstructure and microtexture of the material near the stir zone is found to be influenced by the rotational behavior of the tool. The additive effect from FSP on sample surface is considered. Since the mechanical alloying (MA) and FSP commonly apply extreme shear deformation on materials, the Dispersion of oxide particle in ODS steels is very active during both processes. Friction stir welding appears to be a very promising technique for the welding of FMS and ODS steels in the form of sheet and tube. FSW could successfully produce defect-free welds on FMS tubes and ODS ring assembly. FSW produces a fine grain structure consisting of ferrite and

  20. Phase analysis of fume during arc weld brazing of steel sheets with protective coatings

    Directory of Open Access Journals (Sweden)

    J. Matusiak

    2016-04-01

    Full Text Available The article presents the results of research of the phase identification and of the quantitative phase analysis of fume generated during Cold Metal Transfer (CMT, ColdArc and Metal Inert Gas / Metal Active Gas (MIG / MAG weld brazing. Investigations were conducted for hot - dip coated steel sheets with zinc (Zn and zinc-iron (Zn - Fe alloy coatings. Arc shielding gases applied during the research-related tests were Ar + O2, Ar + CO2, Ar + H2 and Ar + CO2 + H2 gas mixtures. The analysis of the results covers the influence of the chemical composition of shielding gas on the chemical composition of welding fume.

  1. YAG laser welding with surface activating flux

    Institute of Scientific and Technical Information of China (English)

    樊丁; 张瑞华; 田中学; 中田一博; 牛尾诚夫

    2003-01-01

    YAG laser welding with surface activating flux has been investigated, and the influencing factors and mechanism are discussed. The results show that both surface activating flux and surface active element S have fantastic effects on the YAG laser weld shape, that is to obviously increase the weld penetration and D/W ratio in various welding conditions. The mechanism is thought to be the change of weld pool surface tension temperature coefficient, thus, the change of fluid flow pattern in weld pool due to the flux.

  2. Microstructures and Toughness of Weld Metal of Ultrafine Grained Ferritic Steel by Laser Welding

    Institute of Scientific and Technical Information of China (English)

    Xudong ZHANG; Wuzhu CHEN; Cheng WANG; Lin ZHAO; Yun PENG; Zhiling TIAN

    2004-01-01

    3 mm thick 400 MPa grade ultrafine grained ferritic steel plates were bead-on-plate welded by CO2 laser with heat input of 120~480 J/mm. The microstructures of the weld metal mainly consist of bainite, which form is lower bainite plates or polygonal ferrite containing quantities of dispersed cementite particles, mixed with a few of low carbon martensite laths or ferrite, depending on the heat input. The hardness and the tensile strength of the weld metal are higher than those of the base metal, and monotonously increase as the heat input decreases. No softened zone exists inheat affected zone (HAZ). Compared with the base metal, although the grains of laser weld are much larger, the toughness of the weld metal is higher within a large range of heat input. Furthermore, as the heat input increases, the toughness of the weld metal rises to a maximum value, at which point the percentage of lower bainite is the highest, and then drops.

  3. Feasibility of Underwater Friction Stir Welding of HY-80 Steel

    Science.gov (United States)

    2011-03-01

    control procedures. A single tool of polycrystalline cubic boron nitride (PCBN) in a Tungsten -Rhenium binder was used to conduct three bead-on-plate FSW... Tungsten -Rhenium binder was used to conduct three bead-on-plate FSW traverses, approximately 40 inches in length on 0.25 inch HY-80 steel. The...the processing of nickel aluminum bronze propellers used on Navy ships and submarines. Friction stir welding is accomplished by using a cylindrical

  4. Microstructural Characterization of Friction Stir Welded Aluminum-Steel Joints

    Science.gov (United States)

    2013-08-01

    increase diffusion of the zinc atoms into the steel. Specific compositions of these alloys were not available. The weld direction (WD) was...0.25 - Nitrogen 0.03 - Titanium 0.10 - UNCLASSIFIED UNCLASSIFIED 19 Zirconium 0.10 - Aluminum 0.10 - Lead 0.10 - Tin 0.02 - Antimony 0.02...were washed ultrasonically with anhydrous alcohol between each polishing step. 2.4 Methods of analysis 2.4.1 Optical Microscopy and Scanning

  5. The Effect of Welding Current and Composition of Stainless steel on the Panetration in GTAW

    Directory of Open Access Journals (Sweden)

    Ramazan Yılmaz

    2012-06-01

    Full Text Available In this study, welding was performed on the plates of two different types of AISI 316 and AISI 316Ti austenitic stainless steels by GTAW (Gas Tungsten Arc Welding without using welding consumable in flat position. Automatic GTAW welding machine was used to control and obtain the exact values. The effects of welding currents used in welding process and the compositions of the stainless steels materials on the penetration were investigated. Weld bead size and shape such as bead width and dept were important considerations for penetration. Welding process was performed using various welding current values. The study showed that both welding parameters and composition of the stainless steels has influence on the penetration and It is increased with increasing of welding current. Besides, P/W rate of the weldments were influenced by the current and hardness values of the weld metal decrease with increasing welding current. The microstructure of the weld metal was also changed by variation of welding current.

  6. Quasi-Rayleigh waves in butt-welded thick steel plate

    Science.gov (United States)

    Kamas, Tuncay; Giurgiutiu, Victor; Lin, Bin

    2015-03-01

    This paper discusses theoretical and experimental analyses of weld guided surface acoustic waves (SAW) through the guided wave propagation (GWP) analyses. The GWP analyses have been carried out by utilizing piezoelectric wafer active sensors (PWAS) for in situ structural inspection of a thick steel plate with butt weld as the weld bead is ground flush. Ultrasonic techniques are commonly used for validation of welded structures in many in-situ monitoring applications, e.g. in off-shore structures, in nuclear and pressure vessel industries and in a range of naval applications. PWAS is recently employed in such ultrasonic applications as a resonator as well as a transducer. Quasi-Rayleigh waves a.k.a. SAW can be generated in relatively thick isotropic elastic plate having the same phase velocity as Rayleigh waves whereas Rayleigh waves are a high frequency approximation of the first symmetric (S0) and anti-symmetric (A0) Lamb wave modes. As the frequency becomes very high the S0 and the A0 wave speeds coalesce, and both have the same value. This value is exactly the Rayleigh wave speed and becomes constant along the frequency i.e. Rayleigh waves are non-dispersive guided surface acoustic waves. The study is followed with weld-GWP tests through the pitch-catch method along the butt weld line. The tuning curves of quasi-Rayleigh wave are determined to show the tuning and trapping effect of the weld bead that has higher thickness than the adjacent plates on producing a dominant quasi-Rayleigh wave mode. The significant usage of the weld tuned and guided quasi-Rayleigh wave mode is essentially discussed for the applications in the in-situ inspection of relatively thick structures with butt weld such as naval offshore structures. The paper ends with summary, conclusions and suggestions for future work.

  7. Quasi-Rayleigh waves in butt-welded thick steel plate

    Energy Technology Data Exchange (ETDEWEB)

    Kamas, Tuncay, E-mail: kamas@email.sc.edu, E-mail: victorg@sc.edu, E-mail: linbin@cec.sc.edu; Giurgiutiu, Victor, E-mail: kamas@email.sc.edu, E-mail: victorg@sc.edu, E-mail: linbin@cec.sc.edu; Lin, Bin, E-mail: kamas@email.sc.edu, E-mail: victorg@sc.edu, E-mail: linbin@cec.sc.edu [Mechanical Engineering University of South Carolina, 300 Main Str., Columbia, SC 29208 (United States)

    2015-03-31

    This paper discusses theoretical and experimental analyses of weld guided surface acoustic waves (SAW) through the guided wave propagation (GWP) analyses. The GWP analyses have been carried out by utilizing piezoelectric wafer active sensors (PWAS) for in situ structural inspection of a thick steel plate with butt weld as the weld bead is ground flush. Ultrasonic techniques are commonly used for validation of welded structures in many in-situ monitoring applications, e.g. in off-shore structures, in nuclear and pressure vessel industries and in a range of naval applications. PWAS is recently employed in such ultrasonic applications as a resonator as well as a transducer. Quasi-Rayleigh waves a.k.a. SAW can be generated in relatively thick isotropic elastic plate having the same phase velocity as Rayleigh waves whereas Rayleigh waves are a high frequency approximation of the first symmetric (S0) and anti-symmetric (A0) Lamb wave modes. As the frequency becomes very high the S0 and the A0 wave speeds coalesce, and both have the same value. This value is exactly the Rayleigh wave speed and becomes constant along the frequency i.e. Rayleigh waves are non-dispersive guided surface acoustic waves. The study is followed with weld-GWP tests through the pitch-catch method along the butt weld line. The tuning curves of quasi-Rayleigh wave are determined to show the tuning and trapping effect of the weld bead that has higher thickness than the adjacent plates on producing a dominant quasi-Rayleigh wave mode. The significant usage of the weld tuned and guided quasi-Rayleigh wave mode is essentially discussed for the applications in the in-situ inspection of relatively thick structures with butt weld such as naval offshore structures. The paper ends with summary, conclusions and suggestions for future work.

  8. Influence of shielding gas composition on weld profile in pulsed Nd:YAG laser welding of low carbon steel

    Directory of Open Access Journals (Sweden)

    M Jokar

    2014-12-01

    Full Text Available Weld area and weld depth/width ratio can be considered to be of the most important geometrical factors in pulsed laser welding. The effects of carbon dioxide and oxygen additions to the argon shielding gas on the weld properties in pulsed laser welding of low carbon steel is investigated. Presence of carbon dioxide and oxygen up to 10 and 15 percent respectively decreases the weld geometrical factors. But, at higher levels of additions, the weld geometrical factors will increase. It is observed that the plasma plume temperature decreases from 6000K to 5500K with the addition of 15% carbon dioxide but increases to 7700K with 25% carbon dioxide addition. Increase in laser absorption coefficient, laser energy absorption, formation of oxide layer on the work-piece surface, exothermic reactions and their competitive effects can be considered as the competing phenomena involved in such a behavior in the weld profile

  9. Weld-bead profile and costs optimisation of the CO 2 dissimilar laser welding process of low carbon steel and austenitic steel AISI316

    Science.gov (United States)

    Ruggiero, A.; Tricarico, L.; Olabi, A. G.; Benyounis, K. Y.

    2011-02-01

    The dissimilar full depth laser-butt welding of low carbon steel and austenitic steel AISI 316 was investigated using CW 1.5 kW CO 2 laser. The effect of laser power (1.1-1.43 kW), welding speed (25-75 cm/min) and focal point position (-0.8 to -0.2 mm) on the weld-bead geometry (i.e. weld-bead area, A; upper width, Wu; lower width, Wl and middle width, Wm) and on the operating cost C was investigated using response surface methodology (RSM). The experimental plan was based on Box-Behnken design; linear and quadratic polynomial equations for predicting the weld-bead widthness references were developed. The results indicate that the proposed models predict the responses adequately within the limits of welding parameters being used. The regression equations were used to find optimum welding conditions for the desired geometric criteria.

  10. Ultrasonic Nondestructive Testing of Superplastic Solid-State Welding Joint for Different Steels

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Based on quantitative microscopic examinations of welds and welding rate for different steels (40Cr and T10A) joint, which possess the ultra-fine microstructure after high frequency hardening (HFH) and salt-bath cyclic quenching (SCQ), the suitable defect grey scale threshold value was determined, and the welding rate of superplastic solid-state welding of different steels (40Cr and T10A steel) was systematically inspected and analyzed by means of self-made ultrasonic imaging inspection system. The experimental results showed that the superplastic solid-state weld of different steels can be inspected more accurately, reliably and quickly by this system, and the results were in good accordance with that of metallographic observation. The welding rate of superplastic welding is in linear relation with tensile strength of joint.

  11. Microstructures and Plane Energy Spectra of X80 Pipeline Steel Welded Joints by Submerged Arc Automatic Welding

    Institute of Scientific and Technical Information of China (English)

    KONG Dejun; YE Cundong; GUO Wei; WU Yongzhong; LONG Dan

    2014-01-01

    X80 pipeline steel was welded with submerged arc automatic welding, the microstructures, cavity sizes, fusion depths and plane scanning of chemical elements in the welded zone, fusion zone, heat affected zone and base steel were observed with OM (optical microscope) and SEM (scanning electron microscope), respectively. The experimental results show that there is main acicular ferrite in the base steel and welded zone, the microscopic structure of fusion zone is a blocked bainite, and the heat affected zone is composed of multilateral ferrite and pearlite. M-A unit of the welded zone is the main factor to strengthen the welded zone, composed of acicular ferrites. The percentage of cavities in the welded joint is less than that in the base steel, which is beneficial to increasing its mechanical performance and corrosion resistance. The fusion depth in the fusion zone and welded zone is 101.13μm and 115.85μm, respectively, and the distribution of chemical elements in the welded zone is uniform, no enrichment phenomena.

  12. Strength analysis of laser welded lap joint for ultra high strength steel

    Science.gov (United States)

    Jeong, Young Cheol; Kim, Cheol Hee; Cho, Young Tae; Jung, Yoon Gyo

    2013-12-01

    Several industries including the automotive industry have recently applied the process of welding high strength steel. High strength steel is steel that is harder than normal high strength steel, making it much stronger and stiffer. HSS can be formed in pieces that can be up to 10 to 15 percent thinner than normal steel without sacrificing strength, which enables weight reduction and improved fuel economy. Furthermore, HSS can be formed into complex shapes that can be welded into structural areas. This study is based on previous experiments and is aimed at establishing the stress distribution for laser welded high strength steel. Research on the stress distribution for laser welded high strength steel is conducted by using Solid Works, a program that analyzes the stress of a virtual model. In conclusion, we found that the stress distribution is changed depending on the shape of welded lap joint. In addition, the Influence of the stress distribution on welded high strength steel can be used to standard for high energy welding of high strength steel, and we can also predict the region in welded high strength steel that may cracked.

  13. Sulfur Content Precision Control Technology for CO2-Shielded Welding Wire Steel

    Science.gov (United States)

    Chaofa, Zhang; Huaqiang, Hao; Youbing, Xiang; Shanxi, Liu

    As a kind of impurity and displaying with FeS and MnS form in steel, Sulfur can make the disadvantage effect on the performance of hot-working, welding and corrosion resistance. The high content sulfur in steel can cause the hot brittle phenomenon for the steel. For the welding steel, when the sulfur content is higher, the drawing performance of wire rod become worst and the yield of wire rod decrease. When the sulfur is lower, the automatic wire feeding performance for the gas shielded welding become worst and the weld seam is not smooth. According to the results of welding expert research, 0.010%≤ S≤ 0.020% in CO2-shielded welding wire steel is reasonable.

  14. Research on overall assembling and welding process of steel box girder tuyere blocks of Taizhou Bridge

    Institute of Scientific and Technical Information of China (English)

    Yan Shiguang; Li Hongtao; Wang Chao

    2012-01-01

    This article presents in detail the assembling and welding process technique of the steel box girder tuyere blocks of Taizhou Bridge. The application of this process technique effectively solves the problem of welding stress release in tuyere block assembling and welding without increasing the number of turns of the blocks and overhead welding, thus avoiding possible structural deformation due to excessive accumulation of internal welding stress, greatly reducing the repeated deformation and correction work during assembling and welding, and ensuring the weld seam quality and overall dimensions of tuvere blocks of Taizhou Bridze.

  15. Mechanical properties of type 316L stainless steel welded joint for ITER vacuum vessel (1). Experiment of unirradiated welded joint

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Shigeru; Fukaya, Kiyoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Ishiyama, Shintaro [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Takahashi, Hiroyuki; Koizumi, Kouichi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    2001-01-01

    In design activity of ITER, the vacuum vessel (VV) is ranked as one of the most important components in core reactor from the view point of first barrier to tritium release from the reactor. The VV of ITER is designed as double walled structure so that some parts of them are not qualified in the conventional design standards. So it is necessary to prepare the new design standards to be applied them. JAERI has executed the preparation activity of the new design standards and the technical data to support them. In this study, the results of metallographic observation and mechanical properties of unirradiated type 316L stainless steel welded joint were reported. (author)

  16. Influence of Spot Welding on Welding Fatigue Properties of CR340 Steel Joints

    Institute of Scientific and Technical Information of China (English)

    Rui-bin GOU; Wen-jiao DAN; Wei-gang ZHANG

    2016-01-01

    Total 72 lapped specimens including six different kinds of CR340 steel structures were prepared to study the influence of the spot welding technology on their fatigue characteristics.Fatigue test and group method were em-ployed and performed on each sample to obtain the fatigue experimental data of each structure under four stress lev-els.The results show that the spot welding technology had a notable impact on the fatigue performance of both the shear and tensile joints.It can significantly improve the fatigue strength of the structure,the consistency and repeat-ability of experimental data,as well as the stability and reliability of the structure under dynamic load environment. The shear spot welding structure demonstrates the best fatigue performance which is very important for wide appli-cation in engineering of this method.

  17. High Power Laser Welding. [of stainless steel and titanium alloy structures

    Science.gov (United States)

    Banas, C. M.

    1972-01-01

    A review of recent developments in high power, carbon dixoide laser welding is presented. Deep penetration welding in stainless steel to 0.5-in. thick, high speed welding in thin gage rimmed steel and gas shielded welding in Ti-6Al-4V alloy are described. The effects of laser power, power density, focusing optics, gas-shielding techniques, material properties and weld speed on weld quality and penetration are discussed. It is shown that laser welding performance in thin materials is comparable to that of electron beams. It is further shown that high quality welds, as evidenced by NDT, mechanical and metal-lographic tests, can be achieved. The potential of the laser for industrial welding applications is indicated.

  18. Multi objective Taguchi optimization approach for resistance spot welding of cold rolled TWIP steel sheets

    Science.gov (United States)

    Tutar, Mumin; Aydin, Hakan; Bayram, Ali

    2017-08-01

    Formability and energy absorption capability of a steel sheet are highly desirable properties in manufacturing components for automotive applications. TWinning Induced Plastisity (TWIP) steels are, new generation high Mn alloyed steels, attractive for the automotive industry due to its outstanding elongation (%40-45) and tensile strength (~1000MPa). So, TWIP steels provide excellent formability and energy absorption capability. Another required property from the steel sheets is suitability for manufacturing methods such as welding. The use of the steel sheets in the automotive applications inevitably involves welding. Considering that there are 3000-5000 welded spots on a vehicle, it can be interpreted that one of the most important manufacturing method is Resistance Spot Welding (RSW) for the automotive industry. In this study; firstly, TWIP steel sheet were cold rolled to 15% reduction in thickness. Then, the cold rolled TWIP steel sheets were welded with RSW method. The welding parameters (welding current, welding time and electrode force) were optimized for maximizing the peak tensile shear load and minimizing the indentation of the joints using a Taguchi L9 orthogonal array. The effect of welding parameters was also evaluated by examining the signal-to-noise ratio and analysis of variance (ANOVA) results.

  19. 78 FR 21105 - Circular Welded Carbon Steel Pipes and Tubes From Thailand: Preliminary Results of Antidumping...

    Science.gov (United States)

    2013-04-09

    ... Carbon Steel Pipes and Tubes from Thailand: 2011- 2012 Administrative Review,'' dated concurrently with... International Trade Administration Circular Welded Carbon Steel Pipes and Tubes From Thailand: Preliminary Results of Antidumping Duty Administrative Review; 2011- 2012 AGENCY: Import Administration,...

  20. Three-Sheet Spot Welding of Advanced High-Strength Steels

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Friis, Kasper Storgaard; Zhang, W.

    2011-01-01

    The automotive industry has introduced the three-layer weld configuration, which represents new challenges compared to normal two-sheet lap welds. The process is further complicated by introducing high-strength steels in the joint. The present article investigates the weldability of thin, low....... The weld mechanisms are analyzed numerically and compared with metallographic analyses showing how the primary bonding mechanism between the thin, low-carbon steel sheet and the thicker sheet of high-strength steel is solid-state bonding, whereas the two high-strength steels are joined by melting, forming...... a weld nugget at their mutual interface. Despite the absence of the typical fusion nugget through the interface between the low-carbon steel and high-strength steel, the weld strengths obtained are acceptable. The failure mechanism in destructive testing is ductile fracture with plug failure....

  1. Mechanical Properties and Microstructure of Dissimilar Friction Stir Welds of 11Cr-Ferritic/Martensitic Steel to 316 Stainless Steel

    Science.gov (United States)

    Sato, Yutaka S.; Kokawa, Hiroyuki; Fujii, Hiromichi T.; Yano, Yasuhide; Sekio, Yoshihiro

    2015-12-01

    Dissimilar joints between ferritic and austenitic steels are of interest for selected applications in next generation fast reactors. In this study, dissimilar friction-stir welding of an 11 pct Cr ferritic/martensitic steel to a 316 austenitic stainless steel was attempted and the mechanical properties and microstructure of the resulting welds were examined. Friction-stir welding produces a stir zone without macroscopic weld-defects, but the two dissimilar steels are not intermixed. The two dissimilar steels are interleaved along a sharp zigzagging interface in the stir zone. During small-sized tensile testing of the stir zone, this sharp interface did not act as a fracture site. Furthermore, the microstructure of the stir zone was refined in both the ferritic/martensitic steel and the 316 stainless steel resulting in improved mechanical properties over the adjacent base material regions. This study demonstrates that friction-stir welding can produce welds between dissimilar steels that contain no macroscopic weld-defects and display suitable mechanical properties.

  2. Influence of M-TIG and A-TIG Welding Process on Microstructure and Mechanical Behavior of 409 Ferritic Stainless Steel

    Science.gov (United States)

    Vidyarthy, R. S.; Dwivedi, D. K.; Vasudevan, M.

    2017-03-01

    The current study investigates the effects of activating flux tungsten inert gas welding (A-TIG) and multipass tungsten inert gas welding (M-TIG) on the weld morphology, angular distortion, microstructures and mechanical properties when welding 8-mm-thick 409 ferritic stainless steel (FSS). SiO2 was used as activating flux for A-TIG welding, while SUPERTIG ER309L was used as filler for M-TIG welding. Bead-on-plate weld trials were carried out to obtain the full penetration by using different combinations of flux coating density, welding speed and welding current. An optical microscope, field emission scanning microscope (FESEM), and x-ray diffractometer were used for the metallurgical characterizations. Vickers hardness, tensile test, Charpy toughness test, and creep behavior test were carried out to evaluate the mechanical properties of the base and weld metals. Experimental results indicate that the A-TIG process can increase the joint penetration and tends to reduce the angular distortion of the 409 FSS weldment. The A-TIG welded joint also exhibited greater mechanical strength. However, a critically low Charpy toughness was measured for the A-TIG weld fusion zone, which was later sufficiently improved after post weld heat treatment (PWHT). It was concluded that PWHT is mandatory for A-TIG welded 409 FSS.

  3. Influence of M-TIG and A-TIG Welding Process on Microstructure and Mechanical Behavior of 409 Ferritic Stainless Steel

    Science.gov (United States)

    Vidyarthy, R. S.; Dwivedi, D. K.; Vasudevan, M.

    2017-02-01

    The current study investigates the effects of activating flux tungsten inert gas welding (A-TIG) and multipass tungsten inert gas welding (M-TIG) on the weld morphology, angular distortion, microstructures and mechanical properties when welding 8-mm-thick 409 ferritic stainless steel (FSS). SiO2 was used as activating flux for A-TIG welding, while SUPERTIG ER309L was used as filler for M-TIG welding. Bead-on-plate weld trials were carried out to obtain the full penetration by using different combinations of flux coating density, welding speed and welding current. An optical microscope, field emission scanning microscope (FESEM), and x-ray diffractometer were used for the metallurgical characterizations. Vickers hardness, tensile test, Charpy toughness test, and creep behavior test were carried out to evaluate the mechanical properties of the base and weld metals. Experimental results indicate that the A-TIG process can increase the joint penetration and tends to reduce the angular distortion of the 409 FSS weldment. The A-TIG welded joint also exhibited greater mechanical strength. However, a critically low Charpy toughness was measured for the A-TIG weld fusion zone, which was later sufficiently improved after post weld heat treatment (PWHT). It was concluded that PWHT is mandatory for A-TIG welded 409 FSS.

  4. Dissimilar Al/steel friction stir welding lap joints for automotive applications

    Science.gov (United States)

    Campanella, D.; Spena, P. Russo; Buffa, G.; Fratini, L.

    2016-10-01

    A widespread usage of aluminum alloys for the fabrication of car-body parts is conditional on the employment of appropriate welding methods, especially if dissimilar welding must be performed with automotive steel grades. Dissimilar welding of aluminum alloys and steel grades poses some issues concerning the formation of brittle intermetallic compounds, difference in physical and chemical properties of the parent metals, and poor wetting behavior of aluminum. Friction stir welding is considered to be a reasonable solution to obtain sound aluminum/steel joints. A study on the join quality of dissimilar lap joints of steel and aluminum alloy sheets after friction stir welding is proposed here. A low carbon steel is joined with AA6016 aluminum alloy to study preliminarily the feasibility to assembly car-body parts. The joints, welded with tool rotation and feed rate varying in a wide range, have been studied from a visual examination and microstructural point of view. Optical microscopy has been used to characterize the microstructure of the examined sheets in as-received and welded conditions. Micro-hardness measurements have been carried out to quantitatively analyze the local hardness of the welded joints. Set welding process parameters are identified to assemble without the presence of macroscopic defects the examined steel and aluminum welded parts.

  5. Truck frame welding reparation by steel covered electrodes with varied amount of Ni and Mo

    Directory of Open Access Journals (Sweden)

    Tomasz WĘGRZYN

    2010-01-01

    Full Text Available This paper attempts to study safety and exploitation conditions of weld steel structure reparation of car body truck frames. Car (auto body is the name given to the portion of an automobile which gives it shape. The work is a theoretical investigation and concentrates on structural integrity and vehicle safety after the reparation welding of truck frames. To study the effects of the frame flexibility and resistance, the truck frame has been welded by steel electrodes with varied amount of Ni and Mo. The most significant of factors influencing that conditions are connected with material choice, welding technology, state of stress and temperature. Because of that a good selection of steel and welding method is crucial to obtain proper steel structure. Shielded metal arc welding (SMAW is a very popular method of welding used for car body reparation. Car body elements of higher durability are made of low carbon and low alloy steel, very often with small amount of carbon and the amount of alloy elements such as Ni, Mn, Mo, Cr, Ti, Al, V in low alloy steel and their welds. In the paper only the influence of the variable amounts of nickel, molybdenum on impact and fatigue properties of low alloy metal weld deposit was tested. The results show that there is good agreement between proper chemical composition of weld metal deposit (WMD and truck structure properties.

  6. Metallographic Characteristics of Stainless Steel Overlay Weld with Resistance to Hydrogen-Induced Disbonding : Study on a Stainless Steel Overlay Welding Process for Superior Resistance to Disbonding (Report 3)

    OpenAIRE

    Akiyoshi, FUJI; Etsuo, KUDO; Tomoyuki, TAKAHASHI; The Japan Steel Works, Ltd., Muroran Plant

    1986-01-01

    The metallographic characteristics of the disbanding resistant stainless steel overlay weld were studied and compared with those of the conventional overlay weld. It was found that the first layer overlay weld metal of the disbanding resistant overlay weld consisted of austenite and martensite after regular post-weld heat treatment. A coarse planar grain, which strongly affects the disbanding resistance of over-lay welds, scarcely existed in the disbanding resistant overlay weld. A higher wel...

  7. Residual stress distributions in a P91 steel-pipe girth weld before and after post weld heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Paddea, S., E-mail: s.paddea@open.ac.uk [Materials Engineering, Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Francis, J.A. [School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL (United Kingdom); Paradowska, A.M. [ISIS Facility, Rutherford-Appleton Laboratory, Didcot OX11 0QX, Oxon (United Kingdom); Bouchard, P.J. [Materials Engineering, Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Shibli, I.A. [European Technology Development Ltd., Leatherhead KT22 7RD, Surrey (United Kingdom)

    2012-02-01

    Highlights: Black-Right-Pointing-Pointer Residual stresses in a pipe girth weld in P91 steel have been measured in both the as-welded and PWHT conditions. Black-Right-Pointing-Pointer The highest tensile residual stresses coincided with the HAZ boundary and the microstructural region that is prone to type IV cracking. Black-Right-Pointing-Pointer Compressive residual stresses were measured in the weld metal, in a location corresponding to the final weld pass. Black-Right-Pointing-Pointer The location of the peak compressive stresses can be explained by the effect of solid-state phase transformation. - Abstract: In this study the residual stresses in a pipe girth weld in a ferritic-martensitic power plant steel were measured by neutron diffraction and compared with the corresponding metallurgical zones in the weld region. It was found that, in both the as-welded and post-weld heat treated condition, the highest tensile stresses resided near the outer boundary of the heat-affected zone (HAZ), and towards the weld root region. Substantial tensile direct and hydrostatic stresses existed across the HAZ, including the fine-grained and intercritically annealed regions, where premature type IV creep failures manifest in 9-12 Cr steel welds. Compressive stresses were found in the weld metal coinciding with the last weld bead to be deposited. Constrained cooling tests on test coupons illustrated that these compressive stresses can be explained in terms of the influence that solid-state phase transformations have on the accumulation of stress in welds.

  8. Possibility of Inducing Compressive Residual Stresses in Welded Joints of SS400 Steels

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Since the welded constructions produce easily stress corrosion cracking (SCC) or fatigue disruption in corrosive medium or under ripple load, two methods inducing compressive stress on structural surfaces by anti-welding-heating treatment (AWHT) and explosion treatment (ET) are presented. The results show that they are good ways to resisting SCC on the welded SS400 steel or other components.

  9. Evaluation of cold crack susceptibility on HSLA steel welded joints

    Directory of Open Access Journals (Sweden)

    Silverio-Freire Júnior, R. C.

    2003-04-01

    Full Text Available The present study addresses an evaluation of the effect of several welding parameters on cold cracking formation in welded joints of High Strength and Low Alloy steels, as well as the resulting microstructures and hardness values. The main parameters studied include the variation of the preheating temperature, drying time of the electrode, chemical composition and thickness of the base metal. The presence of cold cracking in the joints was analyzed from Tekken tests using steel plates made of SAR 80 T, 100 T and 120 T with of various thickness. The plates were welded by Shielded Metal Arc Welding either with or without pre-heating. Different preheating temperatures were studied, i.e., 375, 455 and 525 K. AWS E 12018 G and 11018 G electrodes were used under different conditions, i.e., not dried or dried up to 2, 3 and 4 h at 515 K. The results indicated the presence of cracks in the welded metals with the combination of hardness values above 230 HV and the formation of high contents of acicular ferrite (above 93 % in the welds without preheating. Higher crack susceptibility was also observed in the thick welded metal plates.

    Este trabajo evalúa la influencia de la variación de temperatura de precalentamiento, del tiempo de secado del electrodo, de la composición química y del espesor del metal base sobre la formación de fisuras en frío, inducidas por el hidrógeno en juntas soldadas de aceros de alta resistencia y baja aleación y su relación con la microestructura y dureza resultante. Para esto, se analizó la presencia de fisuras en frío en probetas para ensayos Tekken, fabricadas a partir de chapas de aceros SAR 80 T, 100 T y 120 T, con diferentes espesores y soldados por proceso de arco eléctrico con electrodo revestido, sin precalentamiento y con precalentamiento, a 375, 455 y 525 K, empleando electrodos AWS E 12018 G y 11018 G no secados y secados durante 2, 3 y 4 h. Los resultados obtenidos indicaron la presencia de fisuras

  10. Shielding gas effect on weld characteristics in arc-augmented laser welding process of super austenitic stainless steel

    Science.gov (United States)

    Sathiya, P.; Kumar Mishra, Mahendra; Soundararajan, R.; Shanmugarajan, B.

    2013-02-01

    A series of hybrid welding (gas metal arc welding-CO2 laser beam welding) experiments were conducted on AISI 904L super austenitic stainless steel sheet of 5 mm thickness. A detailed study of CO2 Laser-GMAW hybrid welding experiments with different shielding gas mixtures (100% He, 50% He+50% Ar, 50%He+45% Ar+5% O2, and 45% He+45% Ar+10% N2) were carried out and the results are presented. The resultant welds were subjected to detailed mechanical and microstructural characterization. Hardness testing revealed that the hardness values in the fusion zone were higher than the base material irrespective of the parameters. Transverse tensile testing showed that the joint efficiency is 100% with all the shielding gas experimented. Impact energy values of the welds were also found to be higher than the base material and the fractrograph taken in scanning electron microscope (SEM) has shown that the welds exhibited dimple fracture similar to the base material.

  11. 76 FR 31940 - Circular Welded Non-Alloy Steel Pipe From Taiwan: Notice of Rescission of Antidumping Duty...

    Science.gov (United States)

    2011-06-02

    ... International Trade Administration Circular Welded Non-Alloy Steel Pipe From Taiwan: Notice of Rescission of... welded non-alloy steel pipe from Taiwan. The period of review is November 1, 2009, through October 31... circular welded non-alloy steel pipe from Taiwan. See Antidumping or Countervailing Duty Order, Finding,...

  12. 76 FR 49437 - Certain Circular Welded Non-Alloy Steel Pipe From Mexico: Preliminary Results of Antidumping Duty...

    Science.gov (United States)

    2011-08-10

    ... International Trade Administration Certain Circular Welded Non-Alloy Steel Pipe From Mexico: Preliminary Results... circular welded non-alloy steel pipe from Mexico. This administrative review covers mandatory respondents... Circumstances Review: Certain Circular Welded Non-Alloy Steel Pipe From Mexico, 75 FR 82374 (December 30,...

  13. 75 FR 77838 - Circular Welded Non-Alloy Steel Pipe From the Republic of Korea: Preliminary Results of the...

    Science.gov (United States)

    2010-12-14

    ... International Trade Administration Circular Welded Non-Alloy Steel Pipe From the Republic of Korea: Preliminary... on circular welded non-alloy steel pipe (``CWP'') from the Republic of Korea (``Korea''). The period... Antidumping Duty Orders: Certain Circular Welded Non-Alloy Steel Pipe from Brazil, the Republic of...

  14. 77 FR 8808 - Circular Welded Non-Alloy Steel Pipe From the Republic of Korea: Extension of the Final Results...

    Science.gov (United States)

    2012-02-15

    ... International Trade Administration Circular Welded Non-Alloy Steel Pipe From the Republic of Korea: Extension of... antidumping duty administrative review of circular welded non-alloy steel pipe from the Republic of Korea, covering the period November 1, 2009, through October 31, 2010. See Circular Welded Non-Alloy Steel...

  15. 75 FR 78216 - Certain Circular Welded Non-Alloy Steel Pipe From Mexico: Preliminary Results of Antidumping Duty...

    Science.gov (United States)

    2010-12-15

    ... International Trade Administration Certain Circular Welded Non-Alloy Steel Pipe From Mexico: Preliminary Results... circular welded non-alloy steel pipe from Mexico. This administrative review covers mandatory respondents... Antidumping Duty Changed Circumstances Review: Certain Circular Welded Non-Alloy Steel Pipe and Tube...

  16. 76 FR 36089 - Circular Welded Non-Alloy Steel Pipe From the Republic of Korea: Final Results of the Antidumping...

    Science.gov (United States)

    2011-06-21

    ... International Trade Administration Circular Welded Non-Alloy Steel Pipe From the Republic of Korea: Final... circular welded non-alloy steel pipe (``CWP'') from the Republic of Korea (``Korea''), covering the period.... SUPPLEMENTARY INFORMATION: Background Following publication of Circular Welded Non-Alloy Steel Pipe From...

  17. 77 FR 73015 - Circular Welded Non-Alloy Steel Pipe From the Republic of Korea: Preliminary Results of...

    Science.gov (United States)

    2012-12-07

    ... International Trade Administration Circular Welded Non-Alloy Steel Pipe From the Republic of Korea: Preliminary... conducting an administrative review of the antidumping duty order on circular welded non-alloy steel pipe... merchandise subject to the order is circular welded non-alloy steel pipe and tube. The product is...

  18. 77 FR 34344 - Circular Welded Non-Alloy Steel Pipe From the Republic of Korea: Final Results of the Antidumping...

    Science.gov (United States)

    2012-06-11

    ... International Trade Administration Circular Welded Non-Alloy Steel Pipe From the Republic of Korea: Final... circular welded non-alloy steel pipe (``CWP'') from the Republic of Korea (``Korea''). The review covers...: Background Following Circular Welded Non-Alloy Steel Pipe From the Republic of Korea: Preliminary Results...

  19. 78 FR 35248 - Circular Welded Non-Alloy Steel Pipe From the Republic of Korea: Final Results of Antidumping...

    Science.gov (United States)

    2013-06-12

    ... International Trade Administration Circular Welded Non-Alloy Steel Pipe From the Republic of Korea: Final... order on circular welded non-alloy steel pipe (CWP) from the Republic of Korea (Korea) for the period... has been sold at less than normal value. \\1\\ See Circular Welded Non-Alloy Steel Pipe From...

  20. 76 FR 15941 - Circular Welded Non-Alloy Steel Pipe From the Republic of Korea: Extension of the Final Results...

    Science.gov (United States)

    2011-03-22

    ... International Trade Administration Circular Welded Non-Alloy Steel Pipe From the Republic of Korea: Extension of... antidumping duty administrative review of circular welded non-alloy steel pipe from the Republic of Korea, covering the period November 1, 2008, through October 31, 2009. See Circular Welded Non-Alloy Steel...

  1. 78 FR 34342 - Certain Circular Welded Non-Alloy Steel Pipe From Mexico: Final Results and Partial Rescission of...

    Science.gov (United States)

    2013-06-07

    ... International Trade Administration Certain Circular Welded Non-Alloy Steel Pipe From Mexico: Final Results and... duty order on certain circular welded non- alloy steel pipe from Mexico.\\1\\ This administrative review.... \\1\\ See Certain Circular Welded Non-Alloy Steel Pipe From Mexico: Preliminary Results and...

  2. 76 FR 78614 - Welded ASTM A-312 Stainless Steel Pipe From South Korea and Taiwan: Continuation of Antidumping...

    Science.gov (United States)

    2011-12-19

    ... International Trade Administration Welded ASTM A-312 Stainless Steel Pipe From South Korea and Taiwan... welded ASTM A-312 stainless steel pipe from South Korea (Korea) and Taiwan would likely lead to... published the antidumping duty orders on welded ASTM A-312 stainless steel pipe from Korea and Taiwan.\\1\\...

  3. 76 FR 66899 - Certain Circular Welded Non-Alloy Steel Pipe From Brazil, Mexico, the Republic of Korea, and...

    Science.gov (United States)

    2011-10-28

    ... pipe from Brazil, Mexico, the Republic of Korea, and Taiwan; and certain circular welded carbon steel... Steel Pipe from Brazil, Mexico, the Republic of Korea, and Taiwan; and Certain Circular Welded Carbon... International Trade Administration Certain Circular Welded Non-Alloy Steel Pipe From Brazil, Mexico,...

  4. Laser power coupling efficiency in conduction and keyhole welding of austenitic stainless steel

    Indian Academy of Sciences (India)

    A K Nath; R Sridhar; P Ganesh; R Kaul

    2002-06-01

    Laser welding of thin sheets of AISI 304 stainless steel was carried out with high power CW CO2 laser. The laser power utilized in the welding process was estimated using the experimental results and the dimensionless parameter model for laser welding; and also the energy balance equation model. Variation of laser welding efficiency with welding speed and mode of welding was studied. Welding efficiency was high for high-speed conduction welding of thin sheets and also in keyhole welding process at high laser powers. Effect of pre-oxidization of the surface and powder as filler material on laser power coupling is also reported. The paper also discusses effect of microstructure on the cracking susceptibility of laser welds.

  5. On-line evaluating on quality of mild steel joints in resistance spot welding

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A method was developed to realize quality evaluation on every weld-spot in resistance spot welding based on information processing of artificial intelligent. Firstly, the signals of welding current and welding voltage, as information source, were synchronously collected. Input power and dynamic resistance were selected as monitoring waveforms. Eight characteristic parameters relating to weld quality were extracted from the monitoring waveforms. Secondly, tensile-shear strength of the spot-welded joint was employed as evaluating target of weld quality. Through correlation analysis between every two parameters of characteristic vector, five characteristic parameters were reasonably selected to found a mapping model of weld quality estimation. At last, the model was realized by means of the algorithms of Radial Basic Function neural network and sample matrixes. The results showed validations by a satisfaction in evaluating weld quality of mild steel joint on-line in spot welding process.

  6. Parametric optimization of seam welding of stainless steel (SS 304) sheets

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, Muthuraman Pandi; Sait, Abdullah Naveen; Ravichandran, Manickam [Chendhuran College of Engineering and Technology, Pudukkottai, Tamilnadu (India)

    2015-06-01

    In the present study, seam welding process parameters were optimized for joining 306 stainless steel plates. Welding pressure, welding speed and welding temperature combinations were carefully selected with the objective of producing a weld joint with maximum impact strength and hardness. Taguchi technique was applied for optimizing the selected welding parameters. The factors used in this study consisted of pressure, welding speed and welding temperature, each of which had three levels in the study. L{sub 27} orthogonal array and corresponding levels were selected according to the aforementioned factors and experimental tests were performed. Signal-to-noise (S/N) ratio was used to evaluate the experimental results. The results indicate that the welding speed has the greatest influence on impact strength, followed by welding pressure and temperature. Experiments have also been conducted to validate the optimized parameters.

  7. Study on laser welding of stainless steel/copper dissimilar materials

    Science.gov (United States)

    Besnea, D.; Dontu, O.; Avram, M.; Spânu, A.; Rizescu, C.; Pascu, T.

    2016-08-01

    In this paper stainless steel/copper laser welding was investigated by controlling the processing parameters like welding speed and laser power. Welding the dissimilar materials of stainless steel and copper presents a series of problems. Differences in the physical properties of the two metals, including the melting point, thermal conductivity and thermal dilatation are the main reasons for obtaining an inappropriate laser welding bead. Particularly, the laser welding process of copper is complex because of the very high reflectivity of cooper and in almost situations it requires a specific surface pre-treatment. The main objective of the study conducted in this work was to laser weld a structure used in pressure measuring and control equipments. In order to satisfy the conditions imposed by the sensor manufacturer, the difficulty of obtaining flawless joints was represented by the very small dimensions of the parts to be welded especially of the elastic spiral thickness made of steel.

  8. Structural Changes of Surface Layers of Steel Plates in the Process of Explosive Welding

    Science.gov (United States)

    Bataev, I. A.; Bataev, A. A.; Mali, V. I.; Bataev, V. A.; Balaganskii, I. A.

    2014-01-01

    Structural changes developing in surface layers of plates from steel 20 in the process of explosive welding are studied with the help of light metallography and scanning and transmission electron microscopy. Mathematical simulation is used to compute the depth of the action of severe plastic deformation due to explosive welding of steel plates on the structure of their surface layers.

  9. Occupational asthma due to gas metal arc welding on mild steel.

    OpenAIRE

    Vandenplas, O.; Dargent, F; Auverdin, J. J.; Boulanger, J.; Bossiroy, J. M.; Roosels, D.; Vande Weyer, R.

    1995-01-01

    Occupational asthma has been documented in electric arc welders exposed to manual metal arc welding on stainless steel. A subject is described who developed late and dual asthmatic reactions after occupational-type challenge exposure to gas metal arc welding on uncoated mild steel.

  10. 75 FR 76025 - Stainless Steel Butt-Weld Pipe Fittings From Japan, Korea, and Taiwan

    Science.gov (United States)

    2010-12-07

    ... party responded to the sunset review notice of initiation by the applicable deadline * * *'' (75 FR... COMMISSION Stainless Steel Butt-Weld Pipe Fittings From Japan, Korea, and Taiwan AGENCY: United States... stainless steel butt-weld pipe fittings from Japan, Korea, and Taiwan would be likely to lead...

  11. 75 FR 53714 - Stainless Steel Butt-Weld Pipe Fittings From Japan, Korea, and Taiwan

    Science.gov (United States)

    2010-09-01

    ... imports of stainless steel butt-weld pipe fittings from Japan (53 FR 9787). On February 23, 1993, Commerce... on imports of stainless steel butt-weld pipe fittings from Japan, Korea, and Taiwan (65 FR 11766... Japan, Korea, and Taiwan (70 FR 61119). The Commission is now conducting third reviews to...

  12. 78 FR 45271 - Welded Stainless Steel Pressure Pipe From Malaysia, Thailand, and Vietnam

    Science.gov (United States)

    2013-07-26

    ... COMMISSION Welded Stainless Steel Pressure Pipe From Malaysia, Thailand, and Vietnam Determination On the... injured by reason of imports from Malaysia, Thailand, and Vietnam of welded stainless steel pressure pipe... pipe from Malaysia, Thailand, and Vietnam. Accordingly, effective May 16, 2013, the...

  13. Quantitative Analysis of Microstructural Constituents in Welded Transformation-Induced-Plasticity Steels

    NARCIS (Netherlands)

    Amirthalingam, M.; Hermans, M.J.M.; Zhao, L.; Richardson, I.M.

    2009-01-01

    A quantitative analysis of retained austenite and nonmetallic inclusions in gas tungsten arc (GTA)–welded aluminum-containing transformation-induced-plasticity (TRIP) steels is presented. The amount of retained austenite in the heat-affected and fusion zones of welded aluminum-containing TRIP steel

  14. Microstructure and Hardness Distribution of Resistance Welded Advanced High Strength Steels

    DEFF Research Database (Denmark)

    Pedersen, Kim Richardt; Harthøj, Anders; Friis, Kasper Leth

    2008-01-01

    In this work a low carbon steel and two high strength steels (DP600 and TRIP700) have been resistance lap welded and the hardness profiles were measured by micro hardness indentation of cross sections of the joint. The resulting microstructure of the weld zone of the DP-DP and TRIP-TRIP joints were...

  15. Microstructure and mechanical properties of weld-bonded and resistance spot welded magnesium-to-steel dissimilar joints

    Energy Technology Data Exchange (ETDEWEB)

    Xu, W. [Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3 (Canada); Chen, D.L., E-mail: dchen@ryerson.ca [Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3 (Canada); Liu, L.; Mori, H.; Zhou, Y. [Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1 (Canada)

    2012-03-01

    Highlights: Black-Right-Pointing-Pointer Adhesive reduces shrinkage porosity and stress concentration around the weld nugget. Black-Right-Pointing-Pointer Adhesive promotes the formation of intermetallic compounds during weld bonding. Black-Right-Pointing-Pointer In Mg/steel joints fusion zone appears only at the Mg side with dendritic structures. Black-Right-Pointing-Pointer Weld-bonded Mg/steel joints are considerably stronger than RSW Mg/steel joints. Black-Right-Pointing-Pointer Fatigue strength is three-fold higher for weld-bonded joints than for RSW joints. - Abstract: The aim of this study was to evaluate microstructures, tensile and fatigue properties of weld-bonded (WB) magnesium-to-magnesium (Mg/Mg) similar joints and magnesium-to-steel (Mg/steel) dissimilar joints, in comparison with resistance spot welded (RSW) Mg/steel dissimilar joints. In the WB Mg/Mg joints, equiaxed dendritic and divorced eutectic structures formed in the fusion zone (FZ). In the dissimilar joints of RSW and WB Mg/steel, FZ appeared only at Mg side with equiaxed and columnar dendrites. At steel side no microstructure changed in the WB Mg/steel joints, while the microstructure in the RSW Mg/steel joints consisted of lath martensite, bainite, pearlite and retained austenite leading to an increased microhardness. The relatively low cooling rate suppressed the formation of shrinkage porosity but promoted the formation of MgZn{sub 2} and Mg{sub 7}Zn{sub 3} in the WB Mg/steel joints. The added adhesive layer diminished stress concentration around the weld nugget. Both WB Mg/Mg and Mg/steel joints were significantly stronger than RSW Mg/steel joints in terms of the maximum tensile shear load and energy absorption, which also increased with increasing strain rate. Fatigue strength was three-fold higher for WB Mg/Mg and Mg/steel joints than for RSW Mg/steel joints. Fatigue failure in the RSW Mg/steel joints occurred from the heat-affected zone near the notch root at lower load levels, and

  16. Friction Welding For Cladding Applications: Processing, Microstructure and Mechanical Properties of Inertia Friction Welds of Stainless Steel to Low Carbon Steel and Evaluation of Wrought and Welded Austenitic Stainless Steels for Cladding Applications in Acidchloride Service

    Science.gov (United States)

    Switzner, Nathan

    Friction welding, a solid-state joining method, is presented as a novel alternative process step for lining mild steel pipe and forged components internally with a corrosion resistant (CR) metal alloy for petrochemical applications. Currently, fusion welding is commonly used for stainless steel overlay cladding, but this method is costly, time-consuming, and can lead to disbonding in service due to a hard martensite layer that forms at the interface due to partial mixing at the interface between the stainless steel CR metal and the mild steel base. Firstly, the process parameter space was explored for inertia friction butt welding using AISI type 304L stainless steel and AISI 1018 steel to determine the microstructure and mechanical properties effects. A conceptual model for heat flux density versus radial location at the faying surface was developed with consideration for non-uniform pressure distribution due to frictional forces. An existing 1 D analytical model for longitudinal transient temperature distribution was modified for the dissimilar metals case and to account for material lost to the flash. Microstructural results from the experimental dissimilar friction welds of 304L stainless steel to 1018 steel were used to discuss model validity. Secondly, the microstructure and mechanical property implications were considered for replacing the current fusion weld cladding processes with friction welding. The nominal friction weld exhibited a smaller heat softened zone in the 1018 steel than the fusion cladding. As determined by longitudinal tensile tests across the bond line, the nominal friction weld had higher strength, but lower apparent ductility, than the fusion welds due to the geometric requirements for neck formation adjacent to a rigid interface. Martensite was identified at the dissimilar friction weld interface, but the thickness was smaller than that of the fusion welds, and the morphology was discontinuous due to formation by a mechanism of solid

  17. Experimental study of mechanical properties of friction welded AISI 1021 steels

    Indian Academy of Sciences (India)

    Amit Handa; Vikas Chawla

    2013-12-01

    Friction welding is widely used as a mass production method in various industries. In the present study, an experimental set-up was designed in order to achieve friction welding of plastically deformed AISI 1021 steels. In this study, low alloy steel (AISI 1021) was welded under different welding parameters and afterwards the mechanical properties such as tensile strength, impact strength and hardness were experimentally determined. On the basis of the results obtained from the experimentation, the graphs were plotted. It is the strength of welded joints, which is fundamental property to the service reliability of the weldments and hence present work was undertaken to study the influence of axial pressure and rotational speed in friction welded joints. Axial pressure and rotational speed are the two major parameters which can influence the strength and hence the mechanical properties of the friction welded joints. Thus the axial pressure and rotational speed were taken as welding parameters, which reflect the mechanical properties.

  18. Quantitative Analysis of Microstructural Constituents in Welded Transformation-Induced-Plasticity Steels

    OpenAIRE

    Amirthalingam, M.; Hermans, M.J.M.; L. Zhao; Richardson, I. M.

    2009-01-01

    A quantitative analysis of retained austenite and nonmetallic inclusions in gas tungsten arc (GTA)–welded aluminum-containing transformation-induced-plasticity (TRIP) steels is presented. The amount of retained austenite in the heat-affected and fusion zones of welded aluminum-containing TRIP steel with different base metal austenite fractions has been measured by magnetic saturation measurements, to study the effect of weld thermal cycles on the stabilization of austenite. It is found that f...

  19. Study on the microstructure and hardness of in-service welded joint of X70 pipeline steel

    Institute of Scientific and Technical Information of China (English)

    Chen Yuhua; Wang Yong; Liu Geping

    2007-01-01

    Hydrogen induced cracking (HIC) is one of the main problems of in-service welding onto active pipeline. Microstructure and hardness of welded joint have a vital effect on hydrogen induced cracking. The microstructure and hardness of welded joint of X70 pipeline steel were studied using simulation in-service welding device. The results show that the main microstructures of in-service welded seam are grain boundary ferrite, intracrystalline acicular ferrite, as well as small amount of widmanstatten structure. The main microstructures of coarse grain heat-affected zone (CGHAZ) are coarse granular bainite, lath ferrite and martensite. Metastable phases such as martensite and lath ferrite are found in CGHAZ because of the too quick cooling velocity and the hardness of the CGHAZ is high.

  20. Hybrid/Tandem Laser-Arc Welding of Thick Low Carbon Martensitic Stainless Steel Plates =

    Science.gov (United States)

    Mirakhorli, Fatemeh

    High efficiency and long-term life of hydraulic turbines and their assemblies are of utmost importance for the hydropower industry. Usually, hydroelectric turbine components are made of thick-walled low carbon martensitic stainless steels. The assembly of large hydroelectric turbine components has been a great challenge. The use of conventional welding processes involves typical large groove design and multi-pass welding to fill the groove which exposes the weld to a high heat input creating relatively large fusion zone and heat affected zone. The newly-developed hybrid/tandem laser-arc welding technique is believed to offer a highly competitive solution to improve the overall hydro-turbine performance by combining the high energy density and fast welding speed of the laser welding technology with the good gap bridging and feeding ability of the gas metal arc welding process to increase the productivity and reduce the consumable material. The main objective of this research work is to understand different challenges appearing during hybrid laser-arc welding (HLAW) of thick gauge assemblies of low carbon 13%Cr- 4%Ni martensitic stainless steel and find a practical solution by adapting and optimizing this relatively new welding process in order to reduce the number of welding passes necessary to fill the groove gap. The joint integrity was evaluated in terms of microstructure, defects and mechanical properties in both as-welded and post-welded conditions. A special focus was given to the hybrid and tandem laser-arc welding technique for the root pass. Based on the thickness of the low carbon martensitic stainless steel plates, this work is mainly focused on the following two tasks: • Single pass hybrid laser-arc welding of 10-mm thick low carbon martensitic stainless steel. • Multi-pass hybrid/tandem laser-arc welding of 25-mm thick martensitic stainless steel.

  1. Residual formability of preformed and subsequently welded advanced high strength steels (Reform): Final Report

    OpenAIRE

    Standfuß, Jens; Jahn, Axel; Weber, P; Neges, J.; Wischmann, S.; Höfemann, M.; Sierlinger, R.; Cretteur, L.; Veldt, T. van der; Veit, R.; Trattnig, G.; Pickett, A.; D Aiuto, F.

    2014-01-01

    The research project Reform was situated within the scope of research and technological development of steel and its utilisation. The central point of investigation was the determination of the load capability of preformed and subsequently welded parts made of high-strength steels. In order to cover a wide spectrum of automotive steel applications and with respect to the current development of modern high-strength steels, - two dual phase steels (HCT780X, HCT980X), - one trip steel (HCT690T),...

  2. Microstructure and Properties of Superplastic Welding between 4OCr and CrWMn Steels

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Superplastic welding of tool steel and structural steel was investigated. The welding between 40Cr and CrWMn steels was carried out under the conditions of temperature 750~780°C, strain rate 2×10-4 s-1, compressive stress 50~90 MPa for 3~5 min. The joints show similar strength to that of 40Cr steel and the good metallurgical joining is formed. The structural change occurring during superplastic welding was analyzed by metallography and distribution of carbon content in the vicinity of the welding joint was also determined. The mechanism of superplastic welding for steels is proposed to be the disappearance of original bond interfaces caused by atomic diffusion and the grain sliding.

  3. Interfacial microstructure and properties of copper clad steel produced using friction stir welding versus gas metal arc welding

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Z.; Chen, Y. [Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo (Canada); Haghshenas, M., E-mail: mhaghshe@uwaterloo.ca [Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo (Canada); Nguyen, T. [Mechanical Systems Engineering, Conestoga College, Kitchener (Canada); Galloway, J. [Welding Engineering Technology, Conestoga College, Kitchener (Canada); Gerlich, A.P. [Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo (Canada)

    2015-06-15

    A preliminary study compares the feasibility and microstructures of pure copper claddings produced on a pressure vessel A516 Gr. 70 steel plate, using friction stir welding versus gas metal arc welding. A combination of optical and scanning electron microscopy is used to characterize the grain structures in both the copper cladding and heat affected zone in the steel near the fusion line. The friction stir welding technique produces copper cladding with a grain size of around 25 μm, and no evidence of liquid copper penetration into the steel. The gas metal arc welding of copper cladding exhibits grain sizes over 1 mm, and with surface microcracks as well as penetration of liquid copper up to 50 μm into the steel substrate. Transmission electron microscopy reveals that metallurgical bonding is produced in both processes. Increased diffusion of Mn and Si into the copper cladding occurs when using gas metal arc welding, although some nano-pores were detected in the FSW joint interface. - Highlights: • Cladding of steel with pure copper is possible using either FSW or GMAW. • The FSW yielded a finer grain structure in the copper, with no evidence of cracking. • The FSW joint contains some evidence of nano-pores at the interface of the steel/copper. • Copper cladding by GMAW contained surface cracks attributed to high thermal stresses. • The steel adjacent to the fusion line maintained a hardness value below 248 HV.

  4. Effects of welding wire composition and welding process on the weld metal toughness of submerged arc welded pipeline steel

    Institute of Scientific and Technical Information of China (English)

    De-liang Ren; Fu-ren Xiao; Peng Tian; Xu Wang; Bo Liao

    2009-01-01

    The effects of alloying elements in welding wires and submerged arc welding process on the microstructures and low-temperature impact toughness of weld metals have been investigated.The results indicate that the optimal contents of alloying elements in welding wires can improve the low-temperature impact toughness of weld metals because the proentectoid ferrite and bainite formations can be suppressed,and the fraction of acicular ferrite increases.However,the contents of alloying elements need to vary along with the welding heat input.With the increase in welding heat input,the contents of alloying elements in welding wires need to be increased accordingly.The microstructures mainly consisting of acicular ferrite can be obtained in weld metals after four-wire submerged arc welding using the wires with a low carbon content and appropriate contents of Mn,Mo,Ti-B,Cu,Ni,and RE,resulting in the high low-temperature impact toughness of weld metals.

  5. Influence of PWHT on Toughness of High Chromium and Nickel Containing Martensitic Stainless Steel Weld Metals

    Science.gov (United States)

    Divya, M.; Das, Chitta Ranjan; Mahadevan, S.; Albert, S. K.; Pandian, R.; Kar, Sujoy Kumar; Bhaduri, A. K.; Jayakumar, T.

    2015-06-01

    Commonly used 12.5Cr-5Ni consumable specified for welding of martensitic stainless steels is compared with newly designed 14.5Cr-5Ni consumable in terms of their suitability for repair welding of 410 and 414 stainless steels by gas tungsten arc welding process. Changes in microstructure and austenite evolution were investigated using optical, scanning electron microscopy, X-ray diffraction techniques and Thermo-Calc studies. Microstructure of as-welded 12.5Cr-5Ni weld metal revealed only lath martensite, whereas as-welded 14.5Cr-5Ni weld metal revealed delta-ferrite, retained austenite, and lath martensite. Toughness value of as-welded 12.5Cr-5Ni weld metal is found to be significantly higher (216 J) than that of the 14.5Cr-5Ni weld metal (15 J). The welds were subjected to different PWHTs: one at 923 K (650 °C) for 1, 2, 4 hours (single-stage PWHT) and another one at 923 K (650 °C)/4 h followed by 873 K (600 °C)/2 h or 873 K (600 °C)/4 h (two-stage heat treatment). Hardness and impact toughness of the weld metals were measured for these weld metals and correlated with the microstructure. The study demonstrates the importance of avoiding formation of delta-ferrite in the weld metal.

  6. Study of Laser Welding of HCT600X Dual Phase Steels

    Directory of Open Access Journals (Sweden)

    Švec Pavol

    2014-12-01

    Full Text Available The effects of beam power and welding speed on microstructure, microhardnes and tensile strength of HCT600X laser welded steel sheets were evaluated. The welding parameters influenced both the width and the microstructure of the fusion zone and heat affected zone. The welding process has no effect on tensile strength of joints which achieved the strength of base metal and all joints fractured in the base metal.

  7. Introduction and Validation of Chromium-Free Consumables for Welding Stainless Steels. Version 2

    Science.gov (United States)

    2015-04-14

    and ER308LSi consumables . The corresponding welding procedures are provided in Appendix E. Figure 5.8 shows the welding process involved in the...based welding consumable with high alloying content of Cu. Similar behavior would be expected in GMAW with other Ni-based consumables . The source of Ni... CONSUMABLES FOR WELDING STAINLESS STEELS Project Engineer: Kathleen Paulson, NAVFAC Engineering and Expeditionary Warfare Center Contractor: Dr. Boian

  8. CO2 laser-micro plasma arc hybrid welding for galvanized steel sheets

    Institute of Scientific and Technical Information of China (English)

    C. H. KIM; Y. N. AHN; J. H. KIM

    2011-01-01

    A laser lap welding process for zinc-coated steel has a well-known unsolved problem-porosity formation. The boiling temperature of coated zinc is lower than the melting temperature of the base metal. which is steel. In the autogenous laser welding,the zinc vapor generates from the lapped surfaces expels the molten pool and the expulsion causes numerous weld defects, such as spatters and blow holes on the weld surface and porosity inside the welds. The laser-arc hybrid welding was suggested as an alternative method for the laser lap welding because the arc can preheat or post-heat the weldment according to the arrangement of the laser beam and the arc. CO2 laser-micro plasma hybrid welding was applied to the lap welding of zinc-coated steel with zero-gap.The relationships among the weld quality and process parameters of the laser-arc arrangement, and the laser-arc interspacing distance and arc current were investigated using a full-factorial experimental design. The effect of laser-arc arrangement is dominant because the leading plasma arc partially melts the upper steel sheets and vaporizes or oxidizes the coated zinc on the lapped surfaces.Compared with the result from the laser-TIG hybrid welding, the heat input from arc can be reduced by 40%.

  9. Material properties of a dissimilar metal weld Inconel 600/ Inconel 82 weld filler/ Carbon Steel (Gr.106 B)

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, S. [Univ. of Ottawa, Ottawa, Ontario (Canada); Duan, X. [CANDU Energy Inc., Mississauga, Ontario (Canada); Weck, A., E-mail: aweck@uottawa.ca [Univ. of Ottawa, Ottawa, Ontario (Canada)

    2012-07-01

    Inconel 600 pipes welded to Carbon-Steel are used in CANDU nuclear reactors. Fracture of these welded pipes has important consequences in term of safety, and therefore their mechanical properties need to be better understood. In this study, the weld region was analyzed at various length-scales using optical microscopy, micro hardness testing, small and large scale tensile testing, and Digital Image Correlation (DIC). Micro-hardness profiles showed variations across the weld and through thickness and were justified in terms of residual stresses. Local stress-strain curves were built using DIC and showed good agreement with stress-strain curves obtained from miniature tensile samples. (author)

  10. Experimental study on activating welding for aluminum alloys

    Institute of Scientific and Technical Information of China (English)

    Huang Yong; Fan Ding

    2005-01-01

    TIG welding and EB welding for aluminum alloy 3003 were carried out to study the effects of activating flux on weld penetration of activating welding for aluminum alloys. SiO2 was used as the activating flux. It is found that, SiO2 can increase the weld penetration and decrease the weld width of FBTIG when the flux gap is small. For A-TIG welding and EB welding with focused mode, the weld penetrations and the weld widths increase simultaneously. SiO2 has little effect on the weld penetration and weld width of EB welding with defocused mode. It is believed that, change of surface tension temperature gradient is not the main mechanism of SiO2 improving weld penetration of activating welding for aluminum alloys.

  11. Principle of Mangling Correction of Plate-welding Section Steel and its Application

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Thanks to the fantastic development of power, transportation, chemical engineering, architecture and other fields, there has been an increasing demand for new type of section steel with large sections used for construction frame, such as type-H, type-T, and type-C section steel. New types of section steel usually are long and with large cross section. Therefore, for the sake of the cost, steel plate welding structure is used home and abroad. During the welding process, welding distortion seems unavoidable. ...

  12. Laser Welding Of Finned Tubes Made Of Austenitic Steels

    OpenAIRE

    Stolecki M.; Bijok H.; Kowal Ł.; Adamiec J.

    2015-01-01

    This paper describes the technology of welding of finned tubes made of the X5CrNi1810 (1.4301) austenitic steel, developed at Energoinstal SA, allowing one to get high quality joints that meet the requirements of the classification societies (PN-EN 15614), and at the same time to significantly reduce the manufacturing costs. The authors described an automatic technological line equipped with a Trumph disc laser and a tube production technological process. To assess the quality of the joints, ...

  13. Creep rupture behavior of welded Grade 91 steel

    Energy Technology Data Exchange (ETDEWEB)

    Shrestha, Triratna [Department of Chemical and Materials Engineering, University of Idaho, Moscow, ID 83844 (United States); Basirat, Mehdi [Department of Mechanical Engineering, University of Idaho, Moscow, ID 83844 (United States); Alsagabi, Sultan; Sittiho, Anumat [Department of Chemical and Materials Engineering, University of Idaho, Moscow, ID 83844 (United States); Charit, Indrajit, E-mail: icharit@uidaho.edu [Department of Chemical and Materials Engineering, University of Idaho, Moscow, ID 83844 (United States); Potirniche, Gabriel P. [Department of Mechanical Engineering, University of Idaho, Moscow, ID 83844 (United States)

    2016-07-04

    Creep rupture behavior of fusion welded Grade 91 steel was studied in the temperature range of 600 – 700 °C and at stresses of 50–200 MPa. The creep data were analyzed in terms of the Monkman-Grant relation and Larson-Miller parameter. The creep damage tolerance factor was used to identify the origin of creep damage. The creep damage was identified as the void growth in combination with microstructural degradation. The fracture surface morphology of the ruptured specimens was studied by scanning electron microscopy and deformed microstructure examined by transmission electron microscopy, to further elucidate the rupture mechanisms.

  14. Effect of Structural Heterogeneity on In Situ Deformation of Dissimilar Weld Between Ferritic and Austenitic Steel

    Science.gov (United States)

    Ghosh, M.; Santosh, R.; Das, S. K.; Das, G.; Mahato, B.; Korody, J.; Kumar, S.; Singh, P. K.

    2015-08-01

    Low-alloy steel and 304LN austenitic stainless steel were welded using two types of buttering material, namely 309L stainless steel and IN 182. Weld metals were 308L stainless steel and IN 182, respectively, for two different joints. Cross-sectional microstructure of welded assemblies was investigated. Microhardness profile was determined perpendicular to fusion boundary. In situ tensile test was performed in scanning electron microscope keeping low-alloy steel-buttering material interface at the center of gage length. Adjacent to fusion boundary, low-alloy steel exhibited carbon-depleted region and coarsening of matrix grains. Between coarse grain and base material structure, low-alloy steel contained fine grain ferrite-pearlite aggregate. Adjacent to fusion boundary, buttering material consisted of Type-I and Type-II boundaries. Within buttering material close to fusion boundary, thin cluster of martensite was formed. Fusion boundary between buttering material-weld metal and weld metal-304LN stainless steel revealed unmixed zone. All joints failed within buttering material during in situ tensile testing. The fracture location was different for various joints with respect to fusion boundary, depending on variation in local microstructure. Highest bond strength with adequate ductility was obtained for the joint produced with 309L stainless steel-buttering material. High strength of this weld might be attributed to better extent of solid solution strengthening by alloying elements, diffused from low-alloy steel to buttering material.

  15. Effect of welding heat input on HAZ character in ultra-fine grain steel welding

    Institute of Scientific and Technical Information of China (English)

    张富巨; 许卫刚; 王玉涛; 王燕; 张学刚; 廖永平

    2003-01-01

    In this essay, we studied how heat input affected the microstructure, hardness, grain size and heat-affected zone(HAZ) dimension of WCX355 ultra-fine grain steel which was welded respectively by the ultra narrow-gap welding (UNGW) process and the overlaying process with CO2 as protective atmosphere and laser welding process. The experimental results show when the heat input changed from 1.65kJ/cm to 5.93kJ/cm, the width of its HAZ ranged from 0.6mm to 2.1mm.The average grain size grew up from 2~5μm of base metal to 20~70μm and found no obvious soften phenomenon in overheated zone. The width of normalized zone was generally wide as 2/3 as that of the whole HAZ, and the grain size in this zone is smaller than that in base metal. Under the circumstance of equal heat input, the HAZ width of UNGW is narrower than that of the laser welding.

  16. Application of lap laser welding technology on stainless steel railway vehicles

    Science.gov (United States)

    Wang, Hongxiao; Wang, Chunsheng; He, Guangzhong; Li, Wei; Liu, Liguo

    2016-10-01

    Stainless steel railway vehicles with so many advantages, such as lightweight, antirust, low cost of maintenance and simple manufacturing process, so the production of high level stainless steel railway vehicles has become the development strategy of European, American and other developed nations. The current stainless steel railway vehicles body and structure are usually assembled by resistance spot welding process. The weak points of this process are the poor surface quality and bad airtight due to the pressure of electrodes. In this study, the partial penetration lap laser welding process was investigated to resolve the problems, by controlling the laser to stop at the second plate in the appropriate penetration. The lap laser welding joint of stainless steel railway vehicle car body with partial penetration has higher strength and surface quality than those of resistance spot welding joint. The biggest problem of lap laser welding technology is to find the balance of the strength and surface quality with different penetrations. The mechanism of overlap laser welding of stainless steel, mechanical tests, microstructure analysis, the optimization of welding parameters, analysis of fatigue performance, the design of laser welding stainless steel railway vehicles structure and the development of non-destructive testing technology were systematically studied before lap laser welding process to be applied in manufacture of railway vehicles. The results of the experiments and study show that high-quality surface state and higher fatigue strength can be achieved by the partial penetration overlap laser welding of the side panel structure, and the structure strength of the car body can be higher than the requirements of En12663, the standard of structural requirements of railway vehicles bodies. Our company has produced the stainless steel subway and high way railway vehicles by using overlap laser welding technology. The application of lap laser welding will be a big

  17. Elucidation of high-power fibre laser welding phenomena of stainless steel and effect of factors on weld geometry

    Energy Technology Data Exchange (ETDEWEB)

    Kawahito, Yousuke; Mizutani, Masami; Katayama, Seiji [Joining and Welding Research Institute (JWRI), Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan)

    2007-10-07

    The fibre laser has been receiving great attention due to its advantages of high efficiency, high power and high beam quality, and is expected to be one of the most desirable heat sources for high-speed and deep-penetration welding. In this study, therefore, in bead-on-plate welding of Type 304 stainless steel plates with 6 kW fibre laser, the effects of laser power, power density and welding speed on the formation of sound welds were investigated with four laser beams of 130, 200, 360 and 560 {mu}m in spot diameter, and their welding phenomena were clarified with high-speed video cameras and an x-ray transmission real-time imaging system. The weld beads showed a keyhole type of penetration at any diameter, and the maximum penetration of 11 mm in depth was obtained at 130 {mu}m spot diameter and 0.6 m min{sup -1} welding speed. It was found that the laser power density exerted a remarkable effect on the increase in weld penetration at higher welding speeds, and sound partially penetrated welds without welding defects such as porosity, underfilling or humping could be produced at wide process windows of welding speeds between 4.5 and 10 m min{sup -1} with fibre laser beams of 360 {mu}m or 560 {mu}m in spot diameter. The high-speed video observation pictures and the x-ray images of the welding phenomena at 6 m min{sup -1} welding speed and 360 {mu}m spot diameter show that a sound weld bead was formed owing to a long molten pool suppressing and accommodating spattering and a stable keyhole generating no bubbles from the tip, respectively.

  18. Elucidation of high-power fibre laser welding phenomena of stainless steel and effect of factors on weld geometry

    Science.gov (United States)

    Kawahito, Yousuke; Mizutani, Masami; Katayama, Seiji

    2007-10-01

    The fibre laser has been receiving great attention due to its advantages of high efficiency, high power and high beam quality, and is expected to be one of the most desirable heat sources for high-speed and deep-penetration welding. In this study, therefore, in bead-on-plate welding of Type 304 stainless steel plates with 6 kW fibre laser, the effects of laser power, power density and welding speed on the formation of sound welds were investigated with four laser beams of 130, 200, 360 and 560 µm in spot diameter, and their welding phenomena were clarified with high-speed video cameras and an x-ray transmission real-time imaging system. The weld beads showed a keyhole type of penetration at any diameter, and the maximum penetration of 11 mm in depth was obtained at 130 µm spot diameter and 0.6 m min-1 welding speed. It was found that the laser power density exerted a remarkable effect on the increase in weld penetration at higher welding speeds, and sound partially penetrated welds without welding defects such as porosity, underfilling or humping could be produced at wide process windows of welding speeds between 4.5 and 10 m min-1 with fibre laser beams of 360 µm or 560 µm in spot diameter. The high-speed video observation pictures and the x-ray images of the welding phenomena at 6 m min-1 welding speed and 360 µm spot diameter show that a sound weld bead was formed owing to a long molten pool suppressing and accommodating spattering and a stable keyhole generating no bubbles from the tip, respectively.

  19. Microstructure Evolution during Friction Stir Spot Welding of TRIP steel

    DEFF Research Database (Denmark)

    Lomholt, Trine Colding

    Transformation Induced Plasticity (TRIP) steels have been developed for automotive applications due to the excellent high strength and formability. The microstructure of TRIP steels is a complex mixture of various microstructural constituents; ferrite, bainite, martensite and retained austenite....... The TRIP effect is activated under the influence of an external load, thereby leading to a martensitic transformation of the retained austenite. This transformation induced plasticity contributes to the excellent mechanical properties of this class of steels and provides high tensile strength without...... and thereby reduced weight of the vehicles. One of the limitations for the wide application of TRIP steel is associated with joining, since so far no method has succeeded in joining TRIP steel, without comprising the steel properties. In this study, the potential of joining TRIP steel with Friction Stir Spot...

  20. Microstructure and corrosion behaviour of gas tungsten arc welds of maraging steel

    Institute of Scientific and Technical Information of China (English)

    G. MADHUSUDHAN REDDY; K. SRINIVASA RAO

    2015-01-01

    Superior properties of maraging steels make them suitable for the fabrication of components used for military applications like missile covering, rocket motor casing and ship hulls. Welding is the main process for fabrication of these components, while the maraging steels can be fusion welded using gas tungsten arc welding (GTAW) process. All these fabricated components require longer storage life and a major problem in welds is susceptible to stress corrosion cracking (SCC). The present study is aimed at studying the SCC behaviour of MDN 250 (18%Ni) steel and its welds with respect to microstructural changes. In the present study, 5.2 mm thick sheets made of MDN 250 steel in the solution annealed condition was welded using GTAW process. Post-weld heat treatments of direct ageing (480 ?C for 3 h), solutionizing (815 ?C for 1 h) followed by ageing and homogenizing (1150 ?C for 1 h) followed by ageing were carried out. A mixture of martensite and austenite was observed in the microstructure of the fusion zone of solutionized and direct aged welds and only martensite in as-welded condition. Homogenization and ageing treatment have eliminated reverted austenite and elemental segregation. Homogenized welds also exhibited a marginal improvement in the corrosion resistance compared to those in the as-welded, solutionized and aged condition. Constant load SCC test data clearly revealed that the failure time of homogenized weld is much longer compared to other post weld treatments, and the homogenization treatment is recommended to improve the SCC life of GTA welds of MDN 250 Maraging steel.

  1. Microstructure and corrosion behaviour of gas tungsten arc welds of maraging steel

    Directory of Open Access Journals (Sweden)

    G. Madhusudhan Reddy

    2015-03-01

    Full Text Available Superior properties of maraging steels make them suitable for the fabrication of components used for military applications like missile covering, rocket motor casing and ship hulls. Welding is the main process for fabrication of these components, while the maraging steels can be fusion welded using gas tungsten arc welding (GTAW process. All these fabricated components require longer storage life and a major problem in welds is susceptible to stress corrosion cracking (SCC. The present study is aimed at studying the SCC behaviour of MDN 250 (18% Ni steel and its welds with respect to microstructural changes. In the present study, 5.2 mm thick sheets made of MDN 250 steel in the solution annealed condition was welded using GTAW process. Post-weld heat treatments of direct ageing (480 °C for 3 h, solutionizing (815 °C for 1 h followed by ageing and homogenizing (1150 °C for 1 h followed by ageing were carried out. A mixture of martensite and austenite was observed in the microstructure of the fusion zone of solutionized and direct aged welds and only martensite in as-welded condition. Homogenization and ageing treatment have eliminated reverted austenite and elemental segregation. Homogenized welds also exhibited a marginal improvement in the corrosion resistance compared to those in the as-welded, solutionized and aged condition. Constant load SCC test data clearly revealed that the failure time of homogenized weld is much longer compared to other post weld treatments, and the homogenization treatment is recommended to improve the SCC life of GTA welds of MDN 250 Maraging steel.

  2. Welding of nickel free high nitrogen stainless steel: Microstructure and mechanical properties

    Directory of Open Access Journals (Sweden)

    Raffi Mohammed

    2017-04-01

    Full Text Available High nitrogen stainless steel (HNS is a nickel free austenitic stainless steel that is used as a structural component in defence applications for manufacturing battle tanks as a replacement of the existing armour grade steel owing to its low cost, excellent mechanical properties and better corrosion resistance. Conventional fusion welding causes problems like nitrogen desorption, solidification cracking in weld zone, liquation cracking in heat affected zone, nitrogen induced porosity and poor mechanical properties. The above problems can be overcome by proper selection and procedure of joining process. In the present work, an attempt has been made to correlate the microstructural changes with mechanical properties of fusion and solid state welds of high nitrogen steel. Shielded metal arc welding (SMAW, gas tungsten arc welding (GTAW, electron beam welding (EBW and friction stir welding (FSW processes were used in the present work. Optical microscopy, scanning electron microscopy and electron backscatter diffraction were used to characterize microstructural changes. Hardness, tensile and bend tests were performed to evaluate the mechanical properties of welds. The results of the present investigation established that fully austenitic dendritic structure was found in welds of SMAW. Reverted austenite pools in the martensite matrix in weld zone and unmixed zones near the fusion boundary were observed in GTA welds. Discontinuous ferrite network in austenite matrix was observed in electron beam welds. Fine recrystallized austenite grain structure was observed in the nugget zone of friction stir welds. Improved mechanical properties are obtained in friction stir welds when compared to fusion welds. This is attributed to the refined microstructure consisting of equiaxed and homogenous austenite grains.

  3. Electrical-thermal interaction simulation for resistance spot welding nugget process of mild steel and stainless steel

    Institute of Scientific and Technical Information of China (English)

    王春生; 韩凤武; 陆培德; 赵熹华; 陈勇; 邱冬生

    2002-01-01

    A three-dimensional finite difference electrical-thermal model for resistance spot welding nugget process of mild steel and stainless steel is introduced. A simulation method of the interaction of electrical and thermal factors is presented. Meanwhile, calculation method of contact resistance and treatment method of heater structure is provided. The influence of the temperature dependent material properties and various cooling boundary conditions on welding process was also taken into account in the model. A method for improving the mild steel and stainless steel joint was analyzed in numerical simulation process. Experimental verification shows that the model prediction agrees well with the practice. The model provides a useful theoretic tool for the analysis of the process of resistance spot welding of mild steel and stainless steel.

  4. Numerical analysis of thermal stresses in welded joint smade of steels X20 and X22

    OpenAIRE

    Mladenović Saša M.; Šijački-Zeravčić Vera M.; Bakić Gordana M.; Lozanović-Šajić Jasmina V.; Rakin Marko P.; Đurđević Andrijana A.; Đukić Miloš B.

    2014-01-01

    Stress calculation of steam pipeline is presented, focused on the welded joint. Numerical calculation was performed using the finite element method to obtain stress distribution in the welded joint made while replacing the valve chamber. Dissimilar materials were used, namely steel 10CrMoV9-10 according to EN 10216-2 for the valve chamber, the rest of steam pipeline was steel X20, whereas the transition piece material was steel X22. Residual stresses were c...

  5. Investigation of the Failure of Advanced High Strength Steels Heterogeneous Spot Welds

    OpenAIRE

    Thibaut Huin; Sylvain Dancette; Damien Fabrègue; Thomas Dupuy

    2016-01-01

    Nowadays, environmental regulation encourages carmakers to reduce the global vehicle weight. Steelmakers develop grades with high performance (Advanced High Strength Steels, AHSS) and fine steel sheet assemblies are used in car body structures, with an optimized thickness in each part. However, unusual fracture modes are sometimes observed during the mechanical tests of heterogeneous AHSS welds, made of dissimilar steel grades and sheet thicknesses. Weld fractures can occur with a strength lo...

  6. Effect of welding processes and consumables on fatigue crack growth behaviour of armour grade quenched and tempered steel joints

    Directory of Open Access Journals (Sweden)

    G. Magudeeswaran

    2014-03-01

    Full Text Available Quenched and Tempered (Q&T steels are widely used in the construction of military vehicles due to its high strength to weight ratio and high hardness. These steels are prone to hydrogen induced cracking (HIC in the heat affected zone (HAZ after welding. The use of austenitic stainless steel (ASS consumables to weld the above steel was the only available remedy because of higher solubility for hydrogen in austenitic phase. The use of stainless steel consumables for a non-stainless steel base metal is not economical. Hence, alternate consumables for welding Q&T steels and their vulnerability to HIC need to be explored. Recent studies proved that low hydrogen ferritic steel (LHF consumables can be used to weld Q&T steels, which can give very low hydrogen levels in the weld deposits. The use of ASS and LHF consumables will lead to distinct microstructures in their respective welds. This microstructural heterogeneity will have a drastic influence in the fatigue crack growth resistance of armour grade Q&T steel welds. Hence, in this investigation an attempt has been made to study the influence of welding consumables and welding processes on fatigue crack growth behaviour of armour grade Q&T Steel joints. Shielded metal arc welding (SMAW and Flux cored arc welding (FCAW were used for fabrication of joints using ASS and LHF consumables. The joints fabricated by SMAW process using LHF consumable exhibited superior fatigue crack growth resistance than all other joints.

  7. Effect of welding processes and consumables on fatigue crack growth behaviour of armour grade quenched and tempered steel joints

    Institute of Scientific and Technical Information of China (English)

    G. MAGUDEESWARAN; V. BALASUBRAMANIAN; G. MADHUSUDHAN REDDY

    2014-01-01

    Quenched and Tempered (Q&T) steels are widely used in the construction of military vehicles due to its high strength to weight ratio and high hardness. These steels are prone to hydrogen induced cracking (HIC) in the heat affected zone (HAZ) after welding. The use of austenitic stainless steel (ASS) consumables to weld the above steel was the only available remedy because of higher solubility for hydrogen in austenitic phase. The use of stainless steel consumables for a non-stainless steel base metal is not economical. Hence, alternate consumables for welding Q&T steels and their vulnerability to HIC need to be explored. Recent studies proved that low hydrogen ferritic steel (LHF) consumables can be used to weld Q&T steels, which can give very low hydrogen levels in the weld deposits. The use of ASS and LHF consumables will lead to distinct microstructures in their respective welds. This microstructural heterogeneity will have a drastic influence in the fatigue crack growth resistance of armour grade Q&T steel welds. Hence, in this investigation an attempt has been made to study the influence of welding con-sumables and welding processes on fatigue crack growth behaviour of armour grade Q&T Steel joints. Shielded metal arc welding (SMAW) and Flux cored arc welding (FCAW) were used for fabrication of joints using ASS and LHF consumables. The joints fabricated by SMAW process using LHF consumable exhibited superior fatigue crack growth resistance than all other joints.

  8. Mechanism of laser welding on dissimilar metals between stainless steel and W-Cu alloy

    Institute of Scientific and Technical Information of China (English)

    Kai Chen; Zhiyong Wang; Rongshi Xiao; Tiechuan Zuo

    2006-01-01

    @@ CO2 laser is employed to join a piece of powder metallurgical material (PMM) to a stainless steel in butt joint welding mode. The powder Ni35, as a filler powder, is used. The weld metal comes from three parts of stainless steel, powder Ni35, and Cu in W-Cu PMM. It is indicated that some parts of the W-Cu base metal are heated by laser and the metal Cu at the width of 0.06-0.12 mm from the edge is melted into the melting pool in the laser welding process. The formation of firm weld joint is just because that the melting liquid metal could fill the position occupied by metal Cu and surround the metal W granules fully. The analysis results indicate that the mechanism of the laser welding for stainless steel and W-Cu alloy is a special mode of fusion-brazing welding.

  9. Precipitation in CF-8M duplex stainless steel welds

    Science.gov (United States)

    Ritter, Ann M.; Cieslak, Michael J.; Savage, Warren F.

    1983-01-01

    Welds of CF-8M, a cast 316-type stainless steel which normally solidifies as primary delta-ferrite, were induced to solidify as primary austenite by the addition of nitrogen to the shielding gas used during gas tungsten arc welding. Those welds which experienced a shift in solidification mode formed eutectic ferrite during the terminal transient stage of solidification. Primary delta-ferrite and eutectic ferrite are differentiated by their location in the dendritic microstructure. The shape of the ferrite/austenite interface tends to be rounded for primary delta-ferrite and more angular for eutectic ferrite. Elemental profiles were plotted from STEM/EDS measurements across the two types of ferrite, and showed differences between the composition of the austenite immediately adjacent to the primary delta-ferrite, as opposed to the eutectic ferrite. In addition, while the primary delta-ferrite/austenite interfaces are largely devoid of precipitation, the eutectic ferrite/austenite interfaces are densely covered with small precipitates of x-phase. The mean stoichiometry of this phase has been calculated from STEM/EDS data on extraction replicas, and approximates Fe50Cr32Mo13Ni5. Intragranular inclusions were also examined and found to be complex, with most of them containing varying quantities of Mn, Si, and S.

  10. Factors affecting the strength of multipass low-alloy steel weld metal

    Science.gov (United States)

    Krantz, B. M.

    1972-01-01

    The mechanical properties of multipass high-strength steel weld metals depend upon several factors, among the most important being: (1) The interaction between the alloy composition and weld metal cooling rate which determines the as-deposited microstructure; and (2) the thermal effects of subsequent passes on each underlying pass which alter the original microstructure. The bulk properties of a multipass weld are therefore governed by both the initial microstructure of each weld pass and its subsequent thermal history. Data obtained for a high strength low alloy steel weld metal confirmed that a simple correlation exists between mechanical properties and welding conditions if the latter are in turn correlated as weld cooling rate.

  11. Simulation of hydrogen diffusion in welded joint of X80 pipeline steel

    Institute of Scientific and Technical Information of China (English)

    严春妍; 刘翠英; 张根元

    2014-01-01

    Hydrogen diffusion coefficients of different regions in the welded joint of X80 pipeline steel were measured using the electro-chemical permeation technique. Using ABAQUS software, hydrogen diffusion in X80 pipeline steel welded joint was studied in consideration of the inhomogeneity of the welding zone, and temperature-dependent thermo-physical and mechanical properties of the metals. A three dimensional finite element model was developed and a coupled thermo-mechanical-diffusion analysis was performed. Hydrogen concentration distribution across the welded joint was obtained. It is found that the postweld residual hydrogen exhibits a non-uniform distribution across the welded joint. A maximum equivalent stress occurs in the immediate vicinity of the weld metal. The heat affected zone has the highest hydrogen concentration level, followed by the weld zone and the base metal. Simulation results are well consistent with theoretical analysis.

  12. Characterization of Microstructure and Mechanical Properties of Resistance Spot Welded DP600 Steel

    Directory of Open Access Journals (Sweden)

    Ali Ramazani

    2015-09-01

    Full Text Available Resistance spot welding (RSW as a predominant welding technique used for joining steels in automotive applications needs to be studied carefully in order to improve the mechanical properties of the spot welds. The objectives of the present work are to characterize the resistance spot weldment of DP600 sheet steels. The mechanical properties of the welded joints were evaluated using tensile-shear and cross-tensile tests. The time-temperature evolution during the welding cycle was measured. The microstructures observed in different sites of the welds were correlated to thermal history recorded by thermocouples in the corresponding areas. It was found that cracks initiated in the periphery region of weld nuggets with a martensitic microstructure and a pull-out failure mode was observed. It was also concluded that tempering during RSW was the main reason for hardness decrease in HAZ.

  13. Microstructure and Failure Analysis of Flash Butt Welded HSLA 590CL Steel Joints in Wheel Rims

    Science.gov (United States)

    Lu, Ping; Xu, Zhixin; Shu, Yang; Ma, Feng

    2016-11-01

    The aim of the present investigation was to evaluate the microstructures, mechanical properties and failure behavior of flash butt welded high strength low alloy 590CL steel joints. Acicular ferrite, Widmanstatten ferrite and granular bainite were observed in the weld. The micro-hardness values of the welded joints varied between 250 HV and 310 HV. The tensile strength of the welded joints met the strength standard of the wheel steel. The Charpy V-notch impact absorbing energy of the welded joints was higher than the base metal, and the impact fracture of the welded joints was composed of shearing and equiaxed dimples. The fracture mode of the wheel rim in the flaring and expanding process was brittle fracture and ductile fracture, respectively. A limited deviation was found in the terminal of the crack for the wheel in the flaring process. A transition from the weld to the Heat Affected Zone was observed for the wheel in the expanding process.

  14. Hybrid Laser-arc Welding of 17-4 PH Martensitic Stainless Steel

    Science.gov (United States)

    Liu, Wei; Ma, Junjie; Atabaki, Mehdi Mazar; Pillai, Raju; Kumar, Biju; Vasudevan, Unnikrishnan; Sreshta, Harold; Kovacevic, Radovan

    2015-06-01

    17-4 PH stainless steel has wide applications in severe working conditions due to its combination of good corrosion resistance and high strength. The weldability of 17-4 PH stainless steel is challenging. In this work, hybrid laser-arc welding was developed to weld 17-4 PH stainless steel. This method was chosen based on its advantages, such as deep weld penetration, less filler materials, and high welding speed. The 17-4 PH stainless steel plates with a thickness of 19 mm were successfully welded in a single pass. During the hybrid welding, the 17-4 PH stainless steel was immensely susceptible to porosity and solidification cracking. The porosity was avoided by using nitrogen as the shielding gas. The nitrogen stabilized the keyhole and inhibited the formation of bubbles during welding. Solidification cracking easily occurred along the weld centerline at the root of the hybrid laser-arc welds. The microstructural evolution and the cracking susceptibility of 17-4 PH stainless steel were investigated to remove these centerline cracks. The results showed that the solidification mode of the material changed due to high cooling rate at the root of the weld. The rapid cooling rate caused the transformation from ferrite to austenite during the solidification stage. The solidification cracking was likely formed as a result of this cracking-susceptible microstructure and a high depth/width ratio that led to a high tensile stress concentration. Furthermore, the solidification cracking was prevented by preheating the base metal. It was found that the preheating slowed the cooling rate at the root of the weld, and the ferrite-to-austenite transformation during the solidification stage was suppressed. Delta ferrite formation was observed in the weld bead as well no solidification cracking occurred by optimizing the preheating temperature.

  15. Initiation and growth of microcracks in high strength steel butt welds

    Science.gov (United States)

    Olsen, Edward

    1993-05-01

    Early tests such as the explosion bulge test created a preference for overmatched welds (welds which are stronger than the base metal) which eventually became codified for many structural applications. While an overmatched system offers advantages such as the shedding of strain to the base plate, it requires the use of expensive fabrication procedures to avoid cracking. Undermatched welding of some high strength steels may offer reductions in welding costs with little sacrifice in weld performance or low cycle fatigue integrity. An experimental study was carried out to observe microcrack initiation and growth of overmatched and undermatched butt welded high strength steel samples using globally elastic low cycle fatigue testing. First, 1 inch thick HY-80 and HY-100 base plates were multipass, spray gas metal arc welded (GMAW) with overmatching and undermatching filler metal using a semiautomatic welding machine. Second, 1/4 inch thick MIL-A-46100 high hardness armor plates (HHA) were manually, two pass spray GMAW welded with two grades of undermatching consumables. Weld reinforcements were removed from all HY specimens and six HHA specimens. All specimens had a crack initiator slit machined in the test section. The specimens were fatigue tested by transverse tensile loading with a 12 to 13 Hz tension-tension profile. The loading range was from 10% to 85% of the tensile strength of the HY steel base plate and HHA weld metal respectively. Crack initiation and propagation was observed in situ using a confocal scanning laser microscope.

  16. Mechanical Properties of Stainless Steel Overlay Weld with Resistance to Hydrogen-Induced Disbonding : Study on a Stainless Steel Overlay Welding Process for Superior Resistance to Disbonding (Report 2)

    OpenAIRE

    Akiyoshi, FUJI; Etsuo, KUDO; Tomoyuki, TAKAHASHI; Kazuaki, MANO; The Japan Steel Works, Ltd., Muroran Plant

    1986-01-01

    The mechanical properties of the disbanding resistant stainless steel overlay weld were studied and compared with those of the conventional overlay weld. It was found that the mechanical properties of the disbanding resistant overlay weld were almost equal to those of the conventional overlay weld, whereas the residual sites in through-thickness direction at the bond between the first layer weld metal and the base metal was smaller than t/.al of the conventional overlay weld. This low residua...

  17. Welding Stainless Steels and Refractory Metals Using Diode-Pumped Continuous Wave Nd:YAG Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, T A; Elmer, J W; Pong, R; Gauthier, M D

    2004-09-27

    This report provides an overview of a series of developmental welding studies performed on a 2.2 kW Rofin Sinar DY-022 Diode Pumped Continuous Wave (CW) Nd:YAG welder at Lawrence Livermore National Laboratory (LLNL). Several materials systems, ranging from refractory metals, such as commercially pure tantalum and vanadium, to austenitic stainless steels, including both 304L and 21-6-9 grades, are examined. Power input and travel speed are systematically varied during the welding of each materials system, and the width, depth, and cross sectional area of the resulting weld fusion zones are measured. These individual studies are undertaken in order to characterize the response of the welder to changes in these welding parameters for a range of materials and to determine the maximum depth of penetration of which this welder is capable in each materials system. The maximum weld depths, which are on the order of 5.4 mm, are observed in the 21-6-9 austenitic stainless steel at the maximum laser power setting (2200 W) and a slow travel speed (6.4 mm/sec). The next highest weld depth is observed in the 304L stainless steel, followed by that observed in the vanadium and, finally, in the tantalum. Porosity, which is attributed to the collapse of the keyhole during welding, is also observed in the welds produced in tantalum, vanadium, and 304L stainless steel. Only the 21-6-9 austenitic stainless steel welds displayed little or no porosity over the range of welding parameters. Comparisons with similar laser welding systems are also made for several of these same materials systems. When compared with the welds produced by these other systems, the LLNL system typically produces welds of an equivalent or slightly higher depth.

  18. Effect of Heat Input During Disk Laser Bead-On-Plate Welding of Thermomechanically Rolled Steel on Penetration Characteristics and Porosity Formation in the Weld Metal

    Directory of Open Access Journals (Sweden)

    Lisiecki A.

    2016-03-01

    Full Text Available The paper presents a detailed analysis of the influence of heat input during laser bead-on-plate welding of 5.0 mm thick plates of S700MC steel by modern Disk laser on the mechanism of steel penetration, shape and depth of penetration, and also on tendency to weld porosity formation. Based on the investigations performed in a wide range of laser welding parameters the relationship between laser power and welding speed, thus heat input, required for full penetration was determined. Additionally the relationship between the laser welding parameters and weld quality was determined.

  19. Heat sink welding of austenitic stainless steel pipes to control distortion and residual stress

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, H.; Albert, S.K.; Bhaduri, A.K. [Materials Technology Div., Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2007-07-01

    Construction of India's Prototype Fast Breeder Reactor (PFBR) involves extensive welding of austenitic stainless steels pipes of different dimensions. Due to high thermal expansion coefficient and poor thermal conductivity of this class of steels, welding can result in significant distortion of these pipes. Attempts to arrest this distortion can lead to high levels of residual stresses in the welded parts. Heat sink welding is one of the techniques often employed to minimize distortion and residual stress in austenitic stainless steel pipe welding. This technique has also been employed to repair welding of the piping of the Boiling Water Reactors (BWRs) subjected to radiation induced intergranular stress corrosion cracking (IGSCC). In the present study, a comparison of the distortion in two pipe welds, one made with heat sink welding and another a normal welds. Pipes of dimensions 350{phi} x 250(L) x 8(t) mm was fabricated from 316LN plates of dimensions 1100 x 250 x 8 mm by bending and long seam (L-seam) welding by SMAW process. Two fit ups with a root gap of 2 mm, land height of 1mm and a groove angle of 70 were prepared using these pipes for circumferential seam (C-seam) welding. Dimensions at predetermined points in the fit up were made before and after welding to check the variation in radius, circumference and and ovality of the pipes. Root pass for both the pipe fit up were carried out using conventional GTAW process with 1.6 mm AWS ER 16-8-2 as consumables. Welding of one of the pipe fit ups were completed using conventions GTAW process while the other was completed using heat sink welding. For second and subsequent layers of welding using this process, water was sprayed at the root side of the joint while welding was in progress. Flow rate of the water was {proportional_to}6 1/minute. Welding parameters employed were same as those used for the other pipe weld. Results of the dimensional measurements showed that there is no circumferential shrinkage in

  20. Analysis of the Mechanism of Longitudinal Bending Deformation Due to Welding in a Steel Plate by Using a Numerical Model

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Rae; Yan, Jieshen; Kim, Jae-Woong [Yeungnam Univ., Gyeongsan (Korea, Republic of); Song, Gyu Yeong [Gyeongbuk Hybrid Technology Institute, Yeongcheon (Korea, Republic of)

    2017-01-15

    Welding deformation is a permanent deformation that is caused in structures by welding heat. Welding distortion is the primary cause of reduced productivity, due to welded structural strength degradation, low dimensional accuracy, and appearance. As a result, research and numerous experiments are being carried out to control welding deformation. The aim of this study is to analyze the mechanism of longitudinal bending deformation due to welding. Welding experiments and numerical analyses were performed for this study. The welding experiments were performed on 4 mm and 8.5 mm thickness steel plates, and the numerical analysis was conducted on the welding deformation using the FE software MSC.marc.

  1. Synthetically Focused Imaging Techniques in Simulated Austenitic Steel Welds Using AN Ultrasonic Phased Array

    Science.gov (United States)

    Connolly, G. D.; Lowe, M. J. S.; Rokhlin, S. I.; Temple, J. A. G.

    2010-02-01

    In austenitic steel welds employed in safety-critical applications, detection of defects that may propagate during service or may have occurred during welding is particularly important. In this study, synthetically focused imaging techniques are applied to the echoes received by phased arrays in order to reconstruct images of the interior of a simulated austenitic steel weld, with application to sizing and location of simplified defects. Using a ray-tracing approach through a previously developed weld model, we briefly describe and then apply three focusing techniques. Results generated via both ray-tracing theory and finite element simulations will be shown.

  2. Persistence of deposited metals in the lungs after stainless steel and mild steel welding fume inhalation in rats.

    Science.gov (United States)

    Antonini, James M; Roberts, Jenny R; Stone, Samuel; Chen, Bean T; Schwegler-Berry, Diane; Chapman, Rebecca; Zeidler-Erdely, Patti C; Andrews, Ronnee N; Frazer, David G

    2011-05-01

    Welding generates complex metal fumes that vary in composition. The objectives of this study were to compare the persistence of deposited metals and the inflammatory potential of stainless and mild steel welding fumes, the two most common fumes used in US industry. Sprague-Dawley rats were exposed to 40 mg/m(3) of stainless or mild steel welding fumes for 3 h/day for 3 days. Controls were exposed to filtered air. Generated fume was collected, and particle size and elemental composition were determined. Bronchoalveolar lavage was done on days 0, 8, 21, and 42 after the last exposure to assess lung injury/inflammation and to recover lung phagocytes. Non-lavaged lung samples were analyzed for total and specific metal content as a measure of metal persistence. Both welding fumes were similar in particle morphology and size. Following was the chemical composition of the fumes-stainless steel: 57% Fe, 20% Cr, 14% Mn, and 9% Ni; mild steel: 83% Fe and 15% Mn. There was no effect of the mild steel fume on lung injury/inflammation at any time point compared to air control. Lung injury and inflammation were significantly elevated at 8 and 21 days after exposure to the stainless steel fume compared to control. Stainless steel fume exposure was associated with greater recovery of welding fume-laden macrophages from the lungs at all time points compared with the mild steel fume. A higher concentration of total metal was observed in the lungs of the stainless steel welding fume at all time points compared with the mild steel fume. The specific metals present in the two fumes were cleared from the lungs at different rates. The potentially more toxic metals (e.g., Mn, Cr) present in the stainless steel fume were cleared from the lungs more quickly than Fe, likely increasing their translocation from the respiratory system to other organs.

  3. Gas tungsten arc welding and friction stir welding of ultrafine grained AISI 304L stainless steel: Microstructural and mechanical behavior characterization

    Energy Technology Data Exchange (ETDEWEB)

    Sabooni, S., E-mail: s.sabooni@ma.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, 84156-83111 Isfahan (Iran, Islamic Republic of); Karimzadeh, F.; Enayati, M.H. [Department of Materials Engineering, Isfahan University of Technology, 84156-83111 Isfahan (Iran, Islamic Republic of); Ngan, A.H.W. [Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (China); Jabbari, H. [Department of Materials Engineering, Isfahan University of Technology, 84156-83111 Isfahan (Iran, Islamic Republic of)

    2015-11-15

    In the present study, an ultrafine grained (UFG) AISI 304L stainless steel with the average grain size of 650 nm was successfully welded by both gas tungsten arc welding (GTAW) and friction stir welding (FSW). GTAW was applied without any filler metal. FSW was also performed at a constant rotational speed of 630 rpm and different welding speeds from 20 to 80 mm/min. Microstructural characterization was carried out by High Resolution Scanning Electron Microscopy (HRSEM) with Electron Backscattered Diffraction (EBSD) and Transmission Electron Microscopy (TEM). Nanoindentation, microhardness measurements and tensile tests were also performed to study the mechanical properties of the base metal and weldments. The results showed that the solidification mode in the GTAW welded sample is FA (ferrite–austenite) type with the microstructure consisting of an austenite matrix embedded with lath type and skeletal type ferrite. The nugget zone microstructure in the FSW welded samples consisted of equiaxed dynamically recrystallized austenite grains with some amount of elongated delta ferrite. Sigma phase precipitates were formed in the region ahead the rotating tool during the heating cycle of FSW, which were finally fragmented into nanometric particles and distributed in the weld nugget. Also there is a high possibility that the existing delta ferrite in the microstructure rapidly transforms into sigma phase particles during the short thermal cycle of FSW. These suggest that high strain and deformation during FSW can promote sigma phase formation. The final austenite grain size in the nugget zone was found to decrease with increasing Zener–Hollomon parameter, which was obtained quantitatively by measuring the peak temperature, calculating the strain rate during FSW and exact examination of hot deformation activation energy by considering the actual grain size before the occurrence of dynamic recrystallization. Mechanical properties observations showed that the welding

  4. Effect of Interfacial Reaction on the Mechanical Performance of Steel to Aluminum Dissimilar Ultrasonic Spot Welds

    Science.gov (United States)

    Xu, Lei; Wang, Li; Chen, Ying-Chun; Robson, Joe D.; Prangnell, Philip B.

    2016-01-01

    The early stages of formation of intermetallic compounds (IMC) have been investigated in dissimilar aluminum to steel welds, manufactured by high power (2.5 kW) ultrasonic spot welding (USW). To better understand the influence of alloy composition, welds were produced between a low-carbon steel (DC04) and two different aluminum alloys (6111 and 7055). The joint strengths were measured in lap shear tests and the formation and growth behavior of IMCs at the weld interface were characterized by electron microscopy, for welding times from 0.2 to 2.4 seconds. With the material combinations studied, the η (Fe2Al5) intermetallic phase was found to form first, very rapidly in the initial stage of welding, with a discontinuous island morphology. Continuous layers of η and then θ (FeAl3) phase were subsequently seen to develop on extending the welding time to greater than 0.7 second. The IMC layer formed in the DC04-AA7055 combination grew thicker than for the DC04-AA6111 welds, despite both weld sets having near identical thermal histories. Zinc was also found to be dissolved in the IMC phases when welding with the AA7055 alloy. After post-weld aging of the aluminum alloy, fracture in the lap shear tests always occurred along the joint interface; however, the DC04-AA6111 welds had higher fracture energy than the DC04-AA7055 combination.

  5. Optimization and Prediction of Ultimate Tensile Strength in Metal Active Gas Welding.

    Science.gov (United States)

    Ampaiboon, Anusit; Lasunon, On-Uma; Bubphachot, Bopit

    2015-01-01

    We investigated the effect of welding parameters on ultimate tensile strength of structural steel, ST37-2, welded by Metal Active Gas welding. A fractional factorial design was used for determining the significance of six parameters: wire feed rate, welding voltage, welding speed, travel angle, tip-to-work distance, and shielded gas flow rate. A regression model to predict ultimate tensile strength was developed. Finally, we verified optimization of the process parameters experimentally. We achieved an optimum tensile strength (558 MPa) and wire feed rate, 19 m/min, had the greatest effect, followed by tip-to-work distance, 7 mm, welding speed, 200 mm/min, welding voltage, 30 V, and travel angle, 60°. Shield gas flow rate, 10 L/min, was slightly better but had little effect in the 10-20 L/min range. Tests showed that our regression model was able to predict the ultimate tensile strength within 4%.

  6. Numerical analysis of thermal stresses in welded joint smade of steels X20 and X22

    Directory of Open Access Journals (Sweden)

    Mladenović Saša M.

    2014-01-01

    Full Text Available Stress calculation of steam pipeline is presented, focused on the welded joint. Numerical calculation was performed using the finite element method to obtain stress distribution in the welded joint made while replacing the valve chamber. Dissimilar materials were used, namely steel 10CrMoV9-10 according to EN 10216-2 for the valve chamber, the rest of steam pipeline was steel X20, whereas the transition piece material was steel X22. Residual stresses were calculated, in addition to design stresses, indicating critical regions and necessity for post-weld heat treatment.

  7. Reliable Welding of HSLA Steels by Square Wave Pulsing Using an Advanced Sensing (EDAP) Technique.

    Science.gov (United States)

    1986-04-30

    situation is the result of welding on A710 steel . (A similar effect on welding on HY80 ?) The following is offered by Woods and Milner (Ref. 12): "The...AD-R69 762 RELIABLE MELDING OF HSLA STEELS BY SQUARE MAVE PULSING 1/2 USING AN ADV NCED.. (U) APPLIED FUSION TECHNOLOGIES INC FORT COLLINS CO C...6 p . 0 Report 0001 AZ AD-A 168 762 I "RELIABLE WELDING OF HSLA STEELS BY SQUARE WAVE PULSING USING AN ADVANCED SENSING (EDAP) TECHNIQUE- Preliminary

  8. Comparing Properties of Adhesive Bonding, Resistance Spot Welding, and Adhesive Weld Bonding of Coated and Uncoated DP 600 Steel%Comparing Properties of Adhesive Bonding, Resistance Spot Welding, and Adhesive Weld Bonding of Coated and Uncoated DP 600 Steel

    Institute of Scientific and Technical Information of China (English)

    Fatih Hayat

    2011-01-01

    Zinc coated dual phase 600 steel (DP 600 grade) was investigated, utilisation of which has gradually increased with each passing day in the automotive industry. The adhesive bonding (AB), resistance spot welding (RSW), and adhesive weld bonding (AWB) ioints of the zinc coated DP 600 steel were investigated. Additionally, the zinc coating was removed using HCL acid in order to investigate the effect of the coating. The microstructure, tensile shear strengths, and fracture properties of adhesive bonding (AB), resistance spot welding (RSW), and adhesive weld bonding (AWB) joints of the coated and uncoated DP 600 steel were compared. In addition, a mechani cal-electrical-thermal coupled model in a finite element analysis environment was utilised. The thermal profile phe nomenon was calculated by simulating this process. The results of the tensile shear test indicated that the tensile load bearing capacity (TLBC) values of the coated specimens among the three welding methods were higher than those of the uncoated specimens. Additionally, the tensile strength of the AWB joints of the coated and uncoated specimens was higher than that of the AB and RSW joints. It was determined that the fracture behaviours and the deformation caused were different for the three welding methods.

  9. Effects on the efficiency of activated carbon on exposure to welding fumes

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, D. [Southern Company Services, Inc., Birmingham, AL (United States)

    1995-02-01

    It is the intention of this paper to document that certain types of welding fumes have little or no effect on the effectiveness of the carbon filter air filtration efficiency when directly exposed to a controlled amount of welding fumes for a short-term period. The welding processes studied were restricted to shielded metal arc welding (SMAW), flux cored arc welding (FCAW), gas tungsten arc welding (GTAW) and gas metal arc welding (GMAW) processes. Contrary to the SMAW and FCAW processes, the GTAW (or TIG) and the GMAW (or MIG) welding processes do not require the use of flux as part of the overall process. Credit was taken for these processes occurring in inert gas environments and producing minimal amount of smoke. It was concluded that a study involving the SMAW process would also envelop the effects of the TIG and MIG welding processes. The quantity of welding fumes generated during the arc welding process is a function of the particular process, the size and type of electrode, welding machine amperage, and operator proficiency. For this study, the amount of welding for specific testing was equated to the amount of welding normally conducted during plant unit outages. Different welding electrodes were also evaluated, and the subsequent testing was limited to an E7018 electrode which was judged to be representative of all carbon and stainless steel electrodes commonly used at the site. The effect of welding fumes on activated charcoal was tested using a filtration unit complete with prefilters, upstream and downstream high efficiency particulate air (HEPA) filters, and a carbon adsorber section. The complete system was field tested in accordance with ANSI N510 standards prior to exposing the filters and the adsorber bed to welding fumes. The carbon samples were tested at an established laboratory using ASTM D3803-1989 standards.

  10. Problems in repair-welding of duplex-treated tool steels

    Directory of Open Access Journals (Sweden)

    T. Muhič

    2009-01-01

    Full Text Available The present paper addresses problems in laser welding of die-cast tools used for aluminum pressure die-castings and plastic moulds. To extend life cycle of tools various surface improvements are used. These surface improvements significantly reduce weldability of the material. This paper presents development of defects in repair welding of duplex-treated tool steel. The procedure is aimed at reduction of defects by the newly developed repair laser welding techniques. Effects of different repair welding process parameters and techniques are considered. A microstructural analysis is conducted to detect defect formation and reveal the best laser welding method for duplex-treated tools.

  11. Prediction of HAZ grain size in welding of ultra fine grained steel with different parameters

    Institute of Scientific and Technical Information of China (English)

    Zhao Hongyun; Zhang Hongtao; Li Dongqing; Wang Guodong

    2010-01-01

    The temperature field and thermal cycling curve in the heat-affected zone during welding 400 MPa ultra fine grained steel by plasma arc were simulated using finite element method.The principle of grain growth kinetics was used to predict the grain size in the heat-affected zone under different welding parameters.The simulation results show that the growing tendency of HAZ grain could be controlled by adjusting the welding parameters,but the growth of HAZ grain could not be eliminated at all.The HAZ grain size became small with increasing of the cooling rate and added with increasing of welding current,arc voltage and welding speed.

  12. Welding of AA1050 aluminum with AISI 304 stainless steel by rotary friction welding process

    Directory of Open Access Journals (Sweden)

    Chen Ying An

    2010-09-01

    Full Text Available The purpose of this work was to assess the development of solid state joints of dissimilar material AA1050 aluminum and AISI 304 stainless steel, which can be used in pipes of tanks of liquid propellants and other components of the Satellite Launch Vehicle. The joints were obtained by rotary friction welding process (RFW, which combines the heat generated from friction between two surfaces and plastic deformation. Tests were conducted with different welding process parameters. The results were analyzed by means of tensile tests, Vickers microhardness, metallographic tests and SEM-EDX. The strength of the joints varied with increasing friction time and the use of different pressure values. Joints were obtained with superior mechanical properties of the AA1050 aluminum, with fracture occurring in the aluminum away from the bonding interface. The analysis by EDX at the interface of the junction showed that interdiffusion occurs between the main chemical components of the materials involved. The RFW proves to be a great method for obtaining joints between dissimilar materials, which is not possible by fusion welding processes.

  13. 76 FR 52636 - Circular Welded Non-Alloy Steel Pipe From the Republic of Korea: Partial Rescission of...

    Science.gov (United States)

    2011-08-23

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE International Trade Administration Circular Welded Non-Alloy Steel Pipe From the Republic of Korea: Partial... the antidumping duty order on certain circular welded non-alloy steel pipe (``circular welded...

  14. 76 FR 67673 - Welded ASTM A-312 Stainless Steel Pipe From South Korea and Taiwan: Final Results of Expedited...

    Science.gov (United States)

    2011-11-02

    ... International Trade Administration Welded ASTM A-312 Stainless Steel Pipe From South Korea and Taiwan: Final... (the Department) initiated sunset reviews of the antidumping duty orders on welded ASTM A-312 stainless... the antidumping duty orders on welded ASTM A-312 stainless steel pipe from South Korea and...

  15. Analysis Microstructure of Weld Metal for HQ130+QJ63 High Strength Steel

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The microstructure in the weld metals for HQ130+QJ63 high strength steels, which are welded by Ar-CO2 gas shielded metal arc welding, was analyzed by means of microscope and scan electron microscope (SEM). The relative content of different microstructure was evaluated with XQF-2000 micro-image analyzer. The effect of acicular ferrite content on the impact toughness was also studied. The test results indicated that the main microstructure in the weld metals of HQ130+QJ63 high strength steels is acicular ferrite and a few pro-eutectic ferrite on the boundary of original austenite grain. Near the fusion zone there are columnar grains whose direction coefficient (X) is 3.22, but the microstructure in the center of the weld metal is isometric grain, whose direction coefficient X=1. In order to avoid welding crack and improve welding technology the weld heat input should be strictly controlled in 10-16 kJ/cm. Thus, the main microstructure in the weld metals is fine acicular ferrite and the content of pro-eutectic ferrite is limited. The impact toughness in the weld metals of HQ130+QJ63 steels can be ensured and can meet the requirements for application in engineering and machinery.

  16. Friction Stir Spot Welding (FSSW) of Advanced High Strength Steel (AHSS)

    Energy Technology Data Exchange (ETDEWEB)

    Santella, M. L.; Hovanski, Yuri; Pan, Tsung-Yu

    2012-04-16

    Friction stir spot welding (FSSW) is applied to join advanced high strength steels (AHSS): galvannealed dual phase 780 MPa steel (DP780GA), transformation induced plasticity 780 MPa steel (TRIP780), and hot-stamped boron steel (HSBS). A low-cost Si3N4 ceramic tool was developed and used for making welds in this study instead of polycrystalline cubic boron nitride (PCBN) material used in earlier studies. FSSW has the advantages of solid-state, low-temperature process, and the ability of joining dissimilar grade of steels and thicknesses. Two different tool shoulder geometries, concave with smooth surface and convex with spiral pattern, were used in the study. Welds were made by a 2-step displacement control process with weld time of 4, 6, and 10 seconds. Static tensile lap-shear strength achieved 16.4 kN for DP780GA-HSBS and 13.2kN for TRIP780-HSBS, above the spot weld strength requirements by AWS. Nugget pull-out was the failure mode of the joint. The joining mechanism was illustrated from the cross-section micrographs. Microhardness measurement showed hardening in the upper sheet steel (DP780GA or TRIP780) in the weld, but softening of HSBS in the heat-affect zone (HAZ). The study demonstrated the feasibility of making high-strength AHSS spot welds with low-cost tools.

  17. Dissimilar steel welding and overlay covering with nickel based alloys using SWAM (Shielded Metal Arc Welding) and GTAW (Gas Tungsten Arc Welding) processes in the nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    Arce Chilque, Angel Rafael [Centro Tecnico de Engenharia e Inovacao Empresarial Ltda., Belo Horizonte, MG (Brazil); Bracarense, Alexander Queiroz; Lima, Luciana Iglesias Lourenco [Federal University of Minas Gerais (UFMG), Belo Horizonte, MG (Brazil); Quinan, Marco Antonio Dutra; Schvartzman, Monica Maria de Abreu Mendonca [Nuclear Technology Development Centre (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Marconi, Guilherme [Federal Center of Technological Education (CEFET-MG), Belo Horizonte, MG (Brazil)

    2009-07-01

    This work presents the welding of dissimilar ferritic steel type A508 class 3 and austenitic stainless steel type AISI 316 L using Inconel{sup R} 600 (A182 and A82) and overlay covering with Inconel{sup R} 690 (A52) as filler metal. Dissimilar welds with these materials without defects and weldability problems such as hot, cold, reheat cracking and Ductility Dip Crack were obtained. Comparables mechanical properties to those of the base metal were found and signalized the efficiency of the welding procedure and thermal treatment selected and used. This study evidences the importance of meeting compromised properties between heat affected zone of the ferritic steel and the others regions presents in the dissimilar joint, to elaborate the dissimilar metal welding procedure specification and weld overlay. Metallographic studies with optical microscopy and Vickers microhardness were carried out to justified and support the results, showing the efficiency of the technique of elaboration of dissimilar metal welding procedure and overlay. The results are comparables and coherent with the results found by others. Some alternatives of welding procedures are proposed to attain the efficacy. Further studies are proposed like as metallographic studies of the fine microstructure, making use, for example, of scanning electron microscope (SEM adapted with an EDS) to explain looking to increase the resistance to primary water stress corrosion (PWSCC) in nuclear equipment. (author)

  18. Microstructure and Property Relationships in Resistance Spot Weld between 7114 Interstitial Free Steel and 304 Austenitic Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    Ahmet Hasanba(s)o(g)lu; Ramazan Ka(c)ar

    2006-01-01

    Due to the differences in physical, chemical and mechanical properties of the base metals, the resistance spot welding of dissimilar materials is generally more challenging than that of similar materials. The influence of the primary welding parameters affecting the heat input such as peak current on the morphology, microhardness,and tensile shear load bearing capacity of dissimilar welds between 304 grades austenitic and 7114 grade interstitial free steel has been investigated in this study. The optimum welding parameters producing maximum joint strength were established at a peak current of 9 kA, where the electrode force is kept 6×10-5 Pa and weld time is kept constant 17 cycles, respectively. The primary cause of weakening the weldment is identified as the excessive grain growing region of heat affected zone (HAZ) in case of 7114 grade interstitial free steel.

  19. Macrostructural and microstructural features of 1 000 MPa grade TRIP steel joint by CO2 laser welding

    Institute of Scientific and Technical Information of China (English)

    Wang Wenquan; Sun Daqian; Kang Chungyun

    2008-01-01

    Bead-on-plate CO2 laser welding of 1 000 MPa grade transformation induced plasticity (TRIP) steel was conducted under different welding powers, welding speeds and shield gases. The macrostructural and microstructural features of the welded joint were investigated. The increase of welding speed reduced the width of the weld bead and the porosities in the weld bead resulting from the different flow mode of melted metal in weld pool. The decrease of welding power or use of shield gas of helium also contributed to the reduction of porosity in the weld bead due to the alleviation of induced plasma formation, thus stabilizing the keyhole. The porosity formation intimately correlated with the evaporation of alloy element Mn in the base metal. The laser welded metal had same martensite microstructure as that of water-quenched base metal. The welding parameters which increased cooling rate all led to fine microstructures of the weld bead.

  20. Corrosion resistance of ERW (Electric Resistance Welded) seam welds as compared to metal base in API 5L steel pipes

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Velasquez, Jorge L.; Godinez Salcedo, Jesus G.; Lopez Fajardo, Pedro [Instituto Politecnico Nacional (IPN), Mexico D.F. (Mexico). Escuela Superior de Ingenieria Quimica e Industrias Extractivas (ESIQIE). Dept. de Ingenieria Metalurgica

    2009-07-01

    The corrosion resistance of ERW seam welds and the base metal in API 5L X70 steel pipes was evaluated by Tafel tests. The procedure was according to ASTM G3 standard. The study was completed with metallographic and chemical characterization of the tested zones, that is, the welded zone and the base metal away of the weld. All tests were made on the internal surface of the pipe in order to assess the internal corrosion of an in-service pipeline made of the API 5L X70 steel. The test solution was acid brine prepared according to NACE Publications 1D182 and 1D196. The results showed that the ERW seam weld corrodes as much as three times faster than the base material. This behavior is attributed to a more heterogeneous microstructure with higher internal energy in the ERW seam weld zone, as compared to the base metal, which is basically a ferrite pearlite microstructure in a normalized condition. This result also indicates that pipeline segments made of ERW steel pipe where the seam weld is located near or at the bottom of the pipe are prone to a highly localized attack that may form channels of metal loss if there is water accumulation at the bottom of the pipeline. (author)

  1. Adhesion of Salmonella Enteritidis and Listeria monocytogenes on stainless steel welds.

    Science.gov (United States)

    Casarin, Letícia Sopeña; Brandelli, Adriano; de Oliveira Casarin, Fabrício; Soave, Paulo Azevedo; Wanke, Cesar Henrique; Tondo, Eduardo Cesar

    2014-11-17

    Pathogenic microorganisms are able to adhere on equipment surfaces, being possible to contaminate food during processing. Salmonella spp. and Listeria monocytogenes are important pathogens that can be transmitted by food, causing severe foodborne diseases. Most surfaces of food processing industry are made of stainless steel joined by welds. However currently, there are few studies evaluating the influence of welds in the microorganism's adhesion. Therefore the purpose of the present study was to investigate the adhesion of Salmonella Enteritidis and L. monocytogenes on surface of metal inert gas (MIG), and tungsten inert gas (TIG) welding, as well as to evaluate the cell and surface hydrophobicities. Results demonstrated that both bacteria adhered to the surface of welds and stainless steel at same levels. Despite this, bacteria and surfaces demonstrated different levels of hydrophobicity/hydrophilicity, results indicated that there was no correlation between adhesion to welds and stainless steel and the hydrophobicity.

  2. Root causes for failures in flattening test in high frequency induction welded steel pipe mill

    Energy Technology Data Exchange (ETDEWEB)

    Babakri, Khalid Ali [Saudi Steel Pipe Company, Dammam, (Saudi Arabia)

    2010-07-01

    The flattening test is used to test weld integrity in high frequency induction welded (HFIW) steel pipe mills. The flattening test failures happen mostly with the formation of oxides in the weld area during HFIZ process. This study investigated the root causes for failure in flattening test due to improper process control in the HFIW steel pipe mill. Several flattening tests have been carried out on API 5L X60 steel pipes with various chemical compositions and various procedures (height of the ductility test). A microstructure analysis was also established (EDAX analysis). Based on the experimental data, it is found that the mills can improve flattening test performance by applying various policies. It is proposed that the acceptance criteria in the international specifications related to the test of weld ductility be modified. The reasonable height for measuring weld ductility is usually at two thirds of the specified outside diameter of the pipe.

  3. Analysis of Sensitization Profile in Medium Chromium Ferritic Stainless Steel (FSS Welds

    Directory of Open Access Journals (Sweden)

    Muhammed Olawale Hakeem Amuda

    2011-09-01

    Full Text Available The sensitization features in FSS welds are discussed in the present work. The welds were produced on a 1.5mm thick plate of 16wt%Cr ferritic stainless steel conforming to AISI 430 commercial steel grade, using TIG torch in argon environment at a heat flux between 1008W and 1584W and speed between 2.5mm/s and 3.5mm/s. The sensitization was evaluated by electrolytic etching of the weld cross sections in 10% oxalic acid. The characterization of the weld section for sensitization indicates that the size of the sensitized zone increases in direct proportion to the quantum of the heat input (combination of heat flux and welding speed. Microstructural analysis suggests that sensitization is promoted in the welds when the processing conditions (heat flux and welding speed restricts the transformation occurring during cooling through the dual phase region, i.e. the welding conditions that promote transformation of delta ferrite (δ to austenite (γ during cooling cycle can prevent sensitization in the FSS welds and such conditions found in this investigation correspond to welding with a heat flux in the range 1008W to 1296W  and speed 3mm/s to 3.5mm/s. These conditions of heat fluxes and welding speeds correspond to heat inputs in the range 288-432J/mm.

  4. Tensile and Impact Properties of Shielded Metal Arc Welded AISI 409M Ferritic Stainless Steel Joints

    Institute of Scientific and Technical Information of China (English)

    K.Shanmugam; A.K.Lakshminarayanan; V.Balasubramanian

    2009-01-01

    The present study is concerned with the effect of filler metals such as austenitic stainless steel, ferritic stainless steel and duplex stainless steel on tensile and impact properties of the ferritic stainless steel conforming to AISI 409M grade. Rolled plates of 4 mm thickness were used as the base material for preparing single pass butt welded joints. Tensile and impact properties, microhardness, microstructure and fracture surface morphology of the joints fabricated by austenitic stainless steel, ferritic stainless steel and duplex stainless steel filler metals were evaluated and the results were reported. From this investigation, it is found that the joints fabricated by duplex stainless steel filler metal showed higher tensile strength and hardness compared to the joints fabricated by austenitic and ferritic stainless steel filler metals. Joints fabricated by austenitic stainless steel filler metal exhibited higher ductility and impact toughness compared with the joints fabricated by ferritic stainless steel and duplex stainless steel filler metals.

  5. Multiphysical Modeling of Transport Phenomena During Laser Welding of Dissimilar Steels

    Science.gov (United States)

    Métais, A.; Matteï, S.; Tomashchuk, I.; Gaied, S.

    The success of new high-strength steels allows attaining equivalent performances with lower thicknesses and significant weight reduction. The welding of new couples of steel grades requires development and control of joining processes. Thanks to high precision and good flexibility, laser welding became one of the most used processes for joining of dissimilar welded blanks. The prediction of the local chemical composition in the weld formed between dissimilar steels in function of the welding parameters is essential because the dilution rate and the distribution of alloying elements in the melted zone determines the final tensile strength of the weld. The goal of the present study is to create and to validate a multiphysical numerical model studying the mixing of dissimilar steels in laser weld pool. A 3D modelling of heat transfer, turbulent flow and transport of species provides a better understanding of diffusion and convective mixing in laser weld pool. The present model allows predicting the weld geometry and element distribution. The model has been developed based on steady keyhole approximation and solved in quasi-stationary form in order to reduce the computation time. Turbulent flow formulation was applied to calculate velocity field. Fick law for diluted species was used to simulate the transport of alloying elements in the weld pool. To validate the model, a number of experiments have been performed: tests using pure 100 μm thick Ni foils like tracer and weld between a rich and poor manganese steels. SEM-EDX analysis of chemical composition has been carried out to obtain quantitative mapping of Ni and Mn distributions in the melted zone. The results of simulations have been found in good agreement with experimental data.

  6. Microstructure and Mechanical Properties of a Dissimilar Friction Stir Weld between Austenitic Stainless Steel and Low Carbon Steel

    Institute of Scientific and Technical Information of China (English)

    M.Jafarzadegan; A.Abdollah-zadeh; A.H.Feng; T.Saeid; J.Shen; H.Assadi

    2013-01-01

    Dissimilar fusion welding of austenitic stainless steels to carbon steels has some metallurgical and technical problems.It was suggested that the solid-state nature of friction stir welding (FSW) can overcome these problems and produce a sound weld with reliable mechanical properties.In this study,plates of 304 stainless steel and st37 steel were welded together by FSW at tool rotational speed of 600 r/min and welding speed of 50 mm/min.In the stir zone (SZ) of 304 stainless steel,the results showed a refined grain structure with some features of metadynamic recrystallization.In the SZ of st37 steel,the hot deformation of material in the austenite region produced small austenite grains.These grains transformed to fine ferrite and pearlite by cooling the material after FSW.The production of fine grains increased the hardness and tensile strength in the SZ of both sides with respect to their base metals (BMs).

  7. 77 FR 32539 - Circular Welded Carbon-Quality Steel Pipe From the United Arab Emirates: Preliminary...

    Science.gov (United States)

    2012-06-01

    .... \\14\\ See SeAH Vina comments dated December 5, 2011; see also Certain Circular Welded Non-Alloy Steel..., 1340 (Fed. Cir. 2009). \\36\\ See Narrow Woven Ribbons With Woven Selvedge From the People's Republic...

  8. Mechanical Properties and Microstructural Evolution of Welded Eglin Steel

    Science.gov (United States)

    Leister, Brett M.

    Eglin steel is a new ultra-high strength steel that has been developed at Eglin Air Force Base in the early 2000s. This steel could be subjected to a variety of processing steps during fabrication, each with its own thermal history. This article presents a continuous cooling transformation diagram developed for Eglin steel to be used as a guideline during processing. Dilatometry techniques performed on a Gleeble thermo-mechanical simulator were combined with microhardness results and microstructural characterization to develop the diagram. The results show that four distinct microstructures form within Eglin steel depending on the cooling rate. At cooling rates above about 1 °C/s, a predominately martensitic microstructure is formed with hardness of ˜520 HV. Intermediate cooling rates of 1 °C/s to 0.2 °C/s produce a mixed martensitic/bainitic microstructure with a hardness that ranges from 520 - 420 HV. Slower cooling rates of 0.1 °C/s to 0.03 °C/s lead to the formation of a bainitic microstructure with a hardness of ˜420 HV. The slowest cooling rate of 0.01 °C/s formed a bainitic microstructure with pearlite at the prior austenite grain boundaries. A comprehensive study was performed to correlate the mechanical properties and the microstructural evolution in the heat affected zone of thermally simulated Eglin steel. A Gleeble 3500 thermo-mechanical simulator was used to resistively heat samples of wrought Eglin steel according to calculated thermal cycles with different peak temperatures at a heat input of 1500 J/mm. These samples underwent mechanical testing to determine strength and toughness, in both the `as-simulated' condition and also following post-weld heat treatments. Mechanical testing has shown that the inter-critical heat affected zone (HAZ) has the lowest strength following thermal simulation, and the fine-grain and coarse-grain heat affected zone having an increased strength when compared to the inter-critical HAZ. The toughness of the heat

  9. Stainless steel submerged arc weld fusion line toughness

    Energy Technology Data Exchange (ETDEWEB)

    Rosenfield, A.R.; Held, P.R.; Wilkowski, G.M. [Battelle, Columbus, OH (United States)

    1995-04-01

    This effort evaluated the fracture toughness of austenitic steel submerged-arc weld (SAW) fusion lines. The incentive was to explain why cracks grow into the fusion line in many pipe tests conducted with cracks initially centered in SAWS. The concern was that the fusion line may have a lower toughness than the SAW. It was found that the fusion line, Ji. was greater than the SAW toughness but much less than the base metal. Of greater importance may be that the crack growth resistance (JD-R) of the fusion line appeared to reach a steady-state value, while the SAW had a continually increasing JD-R curve. This explains why the cracks eventually turn to the fusion line in the pipe experiments. A method of incorporating these results would be to use the weld metal J-R curve up to the fusion-line steady-state J value. These results may be more important to LBB analyses than the ASME flaw evaluation procedures, since there is more crack growth with through-wall cracks in LBB analyses than for surface cracks in pipe flaw evaluations.

  10. 78 FR 31574 - Welded Stainless Steel Pressure Pipe From Malaysia, Thailand, and Vietnam; Institution of...

    Science.gov (United States)

    2013-05-24

    ... the Commission's Handbook on Filing Procedures, 76 FR 62092 (Oct. 6, 2011), available on the... COMMISSION Welded Stainless Steel Pressure Pipe From Malaysia, Thailand, and Vietnam; Institution of... materially retarded, by reason of imports from Malaysia, Thailand, and Vietnam of welded stainless...

  11. X-Ray diffraction technique applied to study of residual stresses after welding of duplex stainless steel plates

    Energy Technology Data Exchange (ETDEWEB)

    Monin, Vladimir Ivanovitch; Assis, Joaquim Teixeira de [Instituto Politecnico do Rio e Janeiro (IPRJ), Nova Friburgo, RJ (Brazil); Lopes, Ricardo Tadeu; Turibus, Sergio Noleto; Payao Filho, Joao C., E-mail: sturibus@nuclear.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil)

    2014-08-15

    Duplex stainless steel is an example of composite material with approximately equal amounts of austenite and ferrite phases. Difference of physical and mechanical properties of component is additional factor that contributes appearance of residual stresses after welding of duplex steel plates. Measurements of stress distributions in weld region were made by X-ray diffraction method both in ferrite and austenite phases. Duplex Steel plates were joined by GTAW (Gas Tungsten Arc Welding) technology. There were studied longitudinal and transverse stress components in welded butt joint, in heat affected zone (HAZ) and in points of base metal 10 mm from the weld. Residual stresses measured in duplex steel plates jointed by welding are caused by temperature gradients between weld zone and base metal and by difference of thermal expansion coefficients of ferrite and austenite phases. Proposed analytical model allows evaluating of residual stress distribution over the cross section in the weld region. (author)

  12. Practical experience with welding new generation steel PB2 assigned for power industry

    Energy Technology Data Exchange (ETDEWEB)

    Kwiecinski, Krzysztof; Lomozik, Miroslaw [Instytut Spawalnictwa, Gliwice (Poland); Urzynicok, Michal [Boiler Elements Factory ' ZELKOT' , Koszecin (Poland)

    2010-07-01

    This paper presents a new generation steel PB2 assigned for the power industry. In this article the authors present the results of non-destructive (VT, PT, RT) and destructive (tensile test, bending test, hardness measurements, impact strength, macro- and micrograph, fractography) tests. The major objective of the examinations was to verify properties of welded joints made of PB2 steel. Investigation of welded joints made of PB2 steel was performed in Instytut Spawalnictwa in Gliwice and it brings one of the first positive results for this type of steel in the world. (orig.)

  13. Investigation on dissimilar laser welding of advanced high strength steel sheets for the automotive industry

    Energy Technology Data Exchange (ETDEWEB)

    Rossini, M., E-mail: matteo.rossini@unibz.it [Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano (Italy); Spena, P. Russo, E-mail: pasquale.russospena@unibz.it [Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano (Italy); Cortese, L., E-mail: luca.cortese@unibz.it [Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano (Italy); Matteis, P., E-mail: paolo.matteis@polito.it [Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Firrao, D., E-mail: donato.firrao@polito.it [Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy)

    2015-03-25

    To support the use of advanced high strength steels in car body design and fabrication, an investigation was carried out on dissimilar butt laser welding between TWinning Induced Plasticity (TWIP) steels, Dual Phase (DP) steels, hot stamping boron (22MnB5) steels, and TRansformation Induced Plasticity (TRIP) steels. The base materials and the weldments were fully characterized by means of metallography, microhardness, and tensile tests. Digital image analysis was also used to provide additional information on the local strain field in the joint during the tensile tests. Fractographic examination was finally performed on the fracture surfaces of the tensile samples. The dissimilar joints between the DP, 22MnB5, and TRIP steels exhibit good resistance properties. On the contrary, the dissimilar joints encompassing the TWIP steel exhibit poor mechanical strength and fail along the weld seam by intergranular fracture, probably due to presence of Mn segregations. Therefore, the laser welding of TWIP steel with other advanced high strength steels is not recommended without the use of proper metal fillers. Dissimilar laser welding of DP, TRIP and 22MnB5 combinations, on the contrary, can be a solution to assemble car body parts made of these steel grades.

  14. Multi Objective Optimization of Weld Parameters of Boiler Steel Using Fuzzy Based Desirability Function

    Directory of Open Access Journals (Sweden)

    M. Satheesh

    2014-01-01

    Full Text Available The high pressure differential across the wall of pressure vessels is potentially dangerous and has caused many fatal accidents in the history of their development and operation. For this reason the structural integrity of weldments is critical to the performance of pressure vessels. In recent years much research has been conducted to the study of variations in welding parameters and consumables on the mechanical properties of pressure vessel steel weldments to optimize weld integrity and ensure pressure vessels are safe. The quality of weld is a very important working aspect for the manufacturing and construction industries. Because of high quality and reliability, Submerged Arc Welding (SAW is one of the chief metal joining processes employed in industry. This paper addresses the application of desirability function approach combined with fuzzy logic analysis to optimize the multiple quality characteristics (bead reinforcement, bead width, bead penetration and dilution of submerged arc welding process parameters of SA 516 Grade 70 steels(boiler steel. Experiments were conducted using Taguchi’s L27 orthogonal array with varying the weld parameters of welding current, arc voltage, welding speed and electrode stickout. By analyzing the response table and response graph of the fuzzy reasoning grade, optimal parameters were obtained. Solutions from this method can be useful for pressure vessel manufacturers and operators to search an optimal solution of welding condition.

  15. Tension fracture behaviors of welded joints in X70 steel pipeline

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The surface of welded joints in X70 steel pipeline was processed by laser shock wave, its mechanical behaviors of tension fracture were analyzed with tension test,and the fracture morphologies and the distributions of chemical element were observed with scanning electron microscope and energy dispersive spectrum,respectively.The experimental results show that the phenomenon of grain refinement occurs in the surface of welded joints in X70 steel pipeline after the laser shock processing,and compressive re...

  16. Investigation of the Weld Properties of Dissimilar S32205 Duplex Stainless Steel with AISI 304 Steel Joints Produced by Arc Stud Welding

    Directory of Open Access Journals (Sweden)

    Aziz Barış Başyiğit

    2017-03-01

    Full Text Available UNS S32205 duplex stainless steel plates with a thickness of 3 mm are arc stud welded by M8 × 40 mm AISI 304 austenitic stainless steel studs with constant stud lifts in order to investigate the effects of welding arc voltages on mechanical and microstructural behaviors of the joints. As the welding arc voltage increases starting from 140 V, the tensile strength of the weldment also increases but the higher arc values results in more spatters around the weld seam up to 180 V. Conversely, the lower arc voltages causes poor tensile strength values to weldments. Tensile tests proved that all of the samples are split from each other in the welding zone but deformation occurs in duplex plates during the tensile testing of weldments so that the elongation values are not practically notable. The satisfactory tensile strength and bending values are determined by applying 180 volts of welding arc voltage according to ISO 14555 standard. Peak values of micro hardness occurred in weld metal most probably as a consequence of increasing heat input decreasing the delta ferrite ratios. As the arc voltage increases, the width of the heat affected zone increases. Coarsening of delta-ferrite and austenite grains was observed in the weld metal peak temperature zone but it especially becomes visible closer to the duplex side in all samples. The large voids and unwelded zones up to approximately 1 mm by length are observed by macro-structure inspections. Besides visual tests and micro-structural surveys; bending and microhardness tests with radiographic inspection were applied to samples for maintaining the correct welding parameters in obtaining well-qualified weldments of these two distinct groups of stainless steel materials.

  17. Effect of Groove Design and Post-Weld Heat Treatment on Microstructure and Mechanical Properties of P91 Steel Weld

    Science.gov (United States)

    Pandey, C.; Mahapatra, M. M.

    2016-07-01

    The martensitic creep-resistant steel designated as ASTM A335 for plate and as P91 for pipe is primarily used for high-temperature and high-pressure applications in steam power plants due to its excellent high-temperature properties such as high creep strength, high thermal conductivity, low thermal expansion, and so on. However, in the case of welded joints of such steels, the presence of an inter-critical heat-affected zone (IC-HAZ) can cause the joint to have lower creep strength than the base metal. In the present study, the effect of post-welding heat treatment (PWHT) and weld groove designs on the overall microstructure and mechanical properties of P91 steel pipe welds produced by the gas tungsten arc welding process was studied. Various regions of welded joints were characterized in detail for hardness and metallographic and tensile properties. Sub-size tensile samples were also tested to evaluate the mechanical properties of the weld metal and heat-affected zone (HAZ) with respect to PWHT. After PWHT, a homogenous microstructure was observed in the HAZ and tensile test fracture samples revealed shifting of the fracture location from the IC-HAZ to the fine-grained heat-affected zone. Before PWHT, the conventional V-grooved welded joints exhibited higher tensile strength compared to the narrow-grooved joints. However, after PWHT, both narrow- and V-grooved joints exhibited similar strength. Fractography of the samples indicates the presence of carbide precipitates such as Cr23C6, VC, and NbC on the fracture surface.

  18. Keyhole depth instability in case of CW CO2 laser beam welding of mild steel

    Indian Academy of Sciences (India)

    N Kumar; S Dash; A K Tyagi; Baldev Raj

    2010-10-01

    The study of keyhole (KH) instability in deep penetration laser beam welding (LBW) is essential to understand welding process and appearance of weld seam defects. The main cause of keyhole collapse is the instability in KH dynamics during the LBW process. This is mainly due to the surface tension forces associated with the KH collapse and the stabilizing action of vapour pressure. A deep penetration high power CW CO2 laser was used to generate KH in mild steel (MS) in two different welding conditions i.e. ambient atmospheric welding (AAW) and under water welding (UWW). KH, formed in case of under water welding, was deeper and narrower than keyhole formed in ambient and atmospheric condition. The number and dimensions of irregular humps increased in case of ambient and under water condition due to larger and rapid keyhole collapse also studied. The thermocapillary convection is considered to explain KH instability, which in turn gives rise to irregular humps.

  19. Processing-Microstructure Relationships in Friction Stir Welding of MA956 Oxide Dispersion Strengthened Steel

    Science.gov (United States)

    Baker, Bradford W.; Menon, E. Sarath K.; McNelley, Terry R.; Brewer, Luke N.; El-Dasher, Bassem; Farmer, Joseph C.; Torres, Sharon G.; Mahoney, Murray W.; Sanderson, Samuel

    2014-12-01

    A comprehensive set of processing-microstructure relationships is presented for friction stir welded oxide dispersion strengthened MA956 steel. Eight rotational speed/traverse speed combinations were used to produce friction stir welds on MA956 plates using a polycrystalline cubic boron nitride tool. Weld conditions with high thermal input produced defect-free, full-penetration welds. Electron backscatter diffraction results showed a significant increase in grain size, a persistent body centered cubic torsional texture in the stir zone, and a sharp transition in grain size across the thermo-mechanically affected zone sensitive to weld parameters. Micro-indentation showed an asymmetric reduction in hardness across a transverse section of the weld. This gradient in hardness was greatly increased with higher heat inputs. The decrease in hardness after welding correlates directly with the increase in grain size and may be explained with a Hall-Petch type relationship.

  20. Microstructure-property relationship in microalloyed high-strength steel welds

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lei

    2017-04-01

    High-strength steels are favoured materials in the industry for production of safe and sustainable structures. The main technology used for joining the components of such steel is fusion welding. Steel alloy design concepts combined with advanced processing technologies have been extensively investigated during the development of High-Strength Low-Alloy (HSLA) steels. However, very few studies have addressed the issue of how various alloy designs, even with limited microalloy addition, can influence the properties of high-strength steel welds. In high-strength steel welding practices, the challenges regarding microstructure evolution and the resulting mechanical properties variation, are of great interest. The main focus is the debate regarding the role of microalloy elements on phase transformation and weld performance. Limited Heat Affected Zone (HAZ) softening and limited austenite grain coarsening are significant design essentials, but the primary goal is to ensure excellent toughness and tensile properties in the steel weld. To achieve this purpose, microalloy elements such as Ti, Nb, or V were intentionally added to modern high-strength steels. The focus of this work was to understand the mechanical properties of HSLA steels resulting from differences in alloy design after joining by modern welding processes. To begin, three microalloyed S690QL steels (Nb, Ti, and Ti+V addition) were investigated. Optical microscopy confirmed that similar mixtures of tempered bainite and martensite predominated the parent microstructure in the three steels, different types of coarse microalloy precipitates were also visible. These precipitates were analysed by using a thermodynamic-based software and then identified by Transmission Electron Microscopy (TEM). Results of mechanical testing revealed that all three steels performed above the standard toughness and tensile strength values, but with varied yielding phenomena. During the welding operation, each of the three steels

  1. Influence of Welding Current and Joint Design on the Tensile Properties of SMAW Welded Mild Steel Joints Prof. Rohit Jha1 , Dr. A.K. Jha

    Directory of Open Access Journals (Sweden)

    Prof. Rohit Jha

    2014-06-01

    Full Text Available Present study includes welding characteristics of weldment with respect to different types of weld design and welding current. Mild steel plates of 6mm were welded using different joint designs. Single V, Double V and Flat surfaces were joined by Shielded Metal Arc Welding process. Welding current was varied in all the cases. Mechanical properties such as ultimate tensile strength, yield strength and percentage elongation were evaluated. Results indicated that the single V joint design depict maximum UTS in comparison to other welding joints and also weld properties of joints (weldment increases to some extent up-to a particular current level, after which the strength decreases. Welding current also affect the welding speed.

  2. Characterization of Residual Stress as a Function of Friction Stir Welding Parameters in ODS Steel MA956

    Science.gov (United States)

    2013-06-01

    OF RESIDUAL STRESS AS A FUNCTION OF FRICTION STIR WELDING PARAMETERS IN ODS STEEL MA956 by Martin S. Bennett June 2013 Thesis Advisor...characterizes the residual stresses generated by friction stir welding of ODS steel MA956 as a function of heat index. The heat index of a weld is used to...determine relative heat input among different friction stir welding conditions. It depends on a combination of the rotational speed and traverse, or

  3. Effect of Welding Current and Time on the Microstructure, Mechanical Characterizations, and Fracture Studies of Resistance Spot Welding Joints of AISI 316L Austenitic Stainless Steel

    Science.gov (United States)

    Kianersi, Danial; Mostafaei, Amir; Mohammadi, Javad

    2014-09-01

    This article aims at investigating the effect of welding parameters, namely, welding current and welding time, on resistance spot welding (RSW) of the AISI 316L austenitic stainless steel sheets. The influence of welding current and welding time on the weld properties including the weld nugget diameter or fusion zone, tensile-shear load-bearing capacity of welded materials, failure modes, energy absorption, and microstructure of welded nuggets was precisely considered. Microstructural studies and mechanical properties showed that the region between interfacial to pullout mode transition and expulsion limit is defined as the optimum welding condition. Electron microscopic studies indicated different types of delta ferrite in welded nuggets including skeletal, acicular, and lathy delta ferrite morphologies as a result of nonequilibrium phases, which can be attributed to a fast cooling rate in the RSW process. These morphologies were explained based on Shaeffler, WRC-1992, and pseudo-binary phase diagrams. The optimum microstructure and mechanical properties were achieved with 8-kA welding current and 4-cycle welding time in which maximum tensile-shear load-bearing capacity or peak load of the welded materials was obtained at 8070 N, and the failure mode took place as button pullout with tearing from the base metal. Finally, fracture surface studies indicated that elongated dimples appeared on the surface as a result of ductile fracture in the sample welded in the optimum welding condition.

  4. Microstructure and Mechanical Properties of Resistance Spot Welding Joints of Carbonitrided Low-Carbon Steels

    Science.gov (United States)

    Taweejun, Nipon; Poapongsakorn, Piyamon; Kanchanomai, Chaosuan

    2017-04-01

    Carbonitrided low-carbon steels are resistance welded in various engineering components. However, there are no reports on the microstructure and mechanical properties of their resistance spot welding (RSW) joints. Therefore, various carbonitridings were performed on the low-carbon steel sheets, and then various RSWs were applied to these carbonitrided sheets. The metallurgical and mechanical properties of the welding joint were investigated and discussed. The peak load and failure energy increased with the increases of welding current and fusion zone (FZ) size. At 11 kA welding current, the carbonitrided steel joint had the failure energy of 16 J, i.e., approximately 84 pct of untreated steel joint. FZ of carbonitrided steel joint consisted of ferrite, Widmanstatten ferrite, and untempered martensite, i.e., the solid-state transformation products, while the microstructure at the outer surfaces consisted of untempered martensite and retained austenite. The surface hardening of carbonitrided steel after RSW could be maintained, i.e., approximately 810 HV. The results can be applied to carbonitriding and RSW to achieve a good welding joint.

  5. The influence of the corrosion product layer generated on the high strength low-alloy steels welded by underwater wet welding with stainless steel electrodes in seawater

    Science.gov (United States)

    Bai, Qiang; Zou, Yan; Kong, Xiangfeng; Gao, Yang; Dong, Sheng; Zhang, Wei

    2017-02-01

    The high strength low-alloy steels are welded by underwater wet welding with stainless steel electrodes. The micro-structural and electrochemical corrosion study of base metal (BM), weld zone (WZ) and heat affected zone (HAZ) are carried out to understand the influence of the corrosion product layer generated on the high strength low-alloy steels welded by underwater wet welding with stainless steel electrodes, methods used including, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and scanning electron microscope (SEM). The results indicate that the WZ acts as a cathode and there is no corrosion product on it throughout the immersion period in seawater. The HAZ and BM acts as anodes. The corrosion rates of the HAZ and BM change with the immersion time increasing. In the initial immersion period, the HAZ has the highest corrosion rate because it has a coarse tempered martensite structure and the BM exhibites a microstructure with very fine grains of ferrite and pearlite. After a period of immersion, the BM has the highest corrosion rate. The reason is that the corrosion product layer on the HAZ is dense and has a better protective property while that on the BM is loose and can not inhibit the diffusion of oxygen.

  6. The Influence of Post Weld Heat Treatment in Alloy 82/182 Dissimilar Metal Weld between Low Alloy Steel and 316L Stainless Steel

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sunghoon; Hong, Jong-Dae; Jang, Changheui [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Lee, Kyoung Soo [KHNP-CRI, Daejeon (Korea, Republic of)

    2014-10-15

    Dissimilar metal welds (DMWs) using an Alloy 82/182 are widely used to join low alloy steel components and stainless steel pipes in pressurized water reactors (PWRs). It has been reported that tensile residual stress would be generated within DMWs during the welding processes. It is thought as main reason for primary water stress corrosion cracking (PWSCC) resulting in deterioration of long-term integrity. The application of post weld heat treatment (PWHT) has been considered to reduce the tensile residual stress after welding process. Meanwhile, the PWHT could affect the changes in microstructure, mechanical properties, and corrosion resistance. Therefore, in this study, the effects of PWHT on the microstructure, mechanical properties and corrosion behaviors of base metals of low alloy steel and stainless steel and welding materials of Alloy 82/182 are evaluated. The influence of PWHT in DMW has been investigated. SA 508 and 316L SS exhibited tempered bainite and austenitic grains with a few residual stringer type ferrite. Grain boundary carbides are not precipitated owing to low carbon and insufficient exposure time in 316L SS. The change of mechanicals properties in base metals is not observed. In case of Alloy 182, after PWHT, grain boundaries are covered with film-like continuous Cr-rich carbides.

  7. INVESTIGATING SPOT WELD GROWTH ON 304 AUSTENITIC STAINLESS STEEL (2 mm SHEETS

    Directory of Open Access Journals (Sweden)

    NACHIMANI CHARDE

    2013-02-01

    Full Text Available Resistance spot welding (RSW has revolutionized automotive industries since early 1970s for its mechanical assemblies. To date one mechanical assembly out five is welded using spot welding technology in various industries and stainless steel became very popular among common materials. As such this research paper analyses the spot weld growth on 304 austenitic stainless steels with 2mm sample sheets. The growth of a spot weld is primarily determined by its parameters such as current, weld time, electrode tip and force. However other factors such as electrode deformations, corrosions, dissimilar materials and material properties are also affect the weld growth. This paper is intended to analyze only the effects of nuggets growth due to the current and weld time increment with constant force and unchanged electrode tips. A JPC 75kVA spot welder was used to accomplish it and the welded samples were undergone tensile test, hardness test and metallurgical test to characterize the formation of weld nuggets.

  8. Compressive Strength of Steel Frames after Welding with Micro-Jet Cooling

    Directory of Open Access Journals (Sweden)

    Hadryś D.

    2016-03-01

    Full Text Available Low carbon steel weld structures generally exhibit a very linear stress-strain relationship. In the study of strength of materials, the compressive strength is the capacity of a material or structure to withstand loads tending to reduce size of structure. It is mainly measured by plotting applied force against deformation in a testing machine. Compressive strength is a main key value for design of welded structures.The main goal of that paper was analysing of plastic properties of frame welds which were made with various parameters of micro-jet cooling. New technology of micro-jet welding could be regarded as a new way to improve plastic properties of welds. It allows to obtain welds with better mechanical properties in comparison to ordinary welding method. Furthermore it is possible to steering of weld structure and properties of the weld. There were given main information about influence of various micro-jet gases on metallographic and properties of structure steel welds.

  9. Electron microscopy and microanalysis of steel weld joints after long time exposures at high temperatures

    Science.gov (United States)

    Jandová, D.; Kasl, J.; Rek, A.

    2010-02-01

    The structural changes of three trial weld joints of creep resistant modified 9Cr-1Mo steels and low alloyed chromium steel after post-weld heat treatment and long-term creep tests were investigated. Smooth cross-weld specimens ruptured in different zones of the weld joints as a result of different structural changes taking place during creep exposures. The microstructure of the weld joint is heterogeneous and consequently microstructural development can be different in the weld metal, the heat affected zone, and the base material. Precipitation reactions, nucleation and growth of some particles and dissolution of others, affect the strengthening of the matrix, recovery at high temperatures, and the resulting creep resistance. Therefore, a detailed study of secondary phase's development in individual zones of weld joints can elucidate mechanism of cracks propagation in specific regions and the causes of creep failure. Type I and II fractures in the weld metal and Type IV fractures in the fine prior austenite grain heat affected zones occurred after creep tests at temperatures ranging from 525 to 625 °C and under stresses from 40 to 240 MPa. An extended metallographic study of the weld joints was carried out using scanning and transmission electron microscopy, energy-dispersive and wave-dispersive X-ray microanalysis. Carbon extraction replicas and thin foils were prepared from individual weld joint regions and quantitative evaluation of dislocation substructure and particles of secondary phases has been performed.

  10. The influence of electric ARC activation on the speed of heating and the structure of metal in welds

    Directory of Open Access Journals (Sweden)

    Savytsky Oleksandr M.

    2016-01-01

    Full Text Available This paper presents the results of a research related to the impact of electric arc activation onto drive welding energy and metal weld heating speed. It is confirmed that ATIG and AMIG methods, depending on metal thickness, single pass weldability and chemical composition of activating flux, enable the reduction of welding energy by 2-6 times when compared to conventional welding methods. Additionally, these procedures create conditions to increase metal weld heating speed up to 1,500-5,500°C/s-1. Steel which can be rapidly heated, allows for a hardened structure to form (with carbon content up to 0.4%, together with a released martensitic structure or a mixture of bainitic-martensitic structures. Results of the research of effectiveness of ATIG and AMIG welding showed that increase in the penetration capability of electric arc, which increases welding productivity, is the visible side of ATIG and AMIG welding capabilities.

  11. Role of ferrite and phosphorus plus sulphur in the crack sensitivity of autogenously welded type 309 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, Jr., F. J.

    1976-07-01

    A study on autogenous welding of Type 309 thin stainless steel sheet was made after experiencing cracking difficulties on several commercial heats. A relationship exists between the sum of the phosphorus plus sulfur, the ferrite control of the weld metal, and the crack sensitivity of autogenously made welds. A new simple weld test for thin-gage sheet is utilized for studying the susceptibility to cracking. A chemistry modification is suggested to alleviate possible weld cracking when autogenously welding this grade. The principles of crack sensitivity prediction could apply to other austenitic stainless steel types where chemistry limits are such that ferrite is possible.

  12. Hardening characteristics of CO2 laser welds in advanced high strength steel

    Science.gov (United States)

    Han, Tae-Kyo; Park, Bong-Gyu; Kang, Chung-Yun

    2012-06-01

    When the CO2 laser welder with 6 kW output was used to weld 4 TRIP steels, 2 DP steels and a precipitation-hardened steel, which have the tensile strength in the range of 600-1000 MPa, the effect of welding speed on hardening characteristics was investigated. In the weld of TRIP steels and DP steels, the maximum hardness was shown in the fusion zone and the HAZ near the bond line, and the hardness was decreased from the HAZ to the base metal. Only in the PH600 steel, the maximum hardness was shown in the fusion zone and the hardness was decreased from bond line to the base metal. The maximum hardness value was not changed due to the variation of the welding speed within a given range of the welding speed. When the correlation with maximum hardness value using 6 known carbon equivalents was examined, those of CEL (=C+Si/50+Mn/25+P/2+Cr/25) and PL (=C+Mn/22+14B) were 0.96 and 0.95 respectively, and CEL was better because it could reflect the contribution of Si and Cr added to AHSS. The maximum hardness value could be calculated by the equation "Hmax=701CEL+281". The phase transformation analysis indicated that only martensitic transformation was expected in the given range of the welding conditions. Therefore, the maximum hardness of the weld was the same as that of water cooled steel and not changed with the variation of the welding speed

  13. The Ductile to Brittle Transition Behavior of the Modified 9Cr-1Mo Steel and Its Laser Welds

    Institute of Scientific and Technical Information of China (English)

    H.C. Wu; R.K. Shiue; C. Chen

    2004-01-01

    The ductile to brittle transition temperature (DBTT) of the modified 9Cr-1Mo steel and its laser welds was studied. The increase in grain size of the weld structure ascended the DBTT of the steel significantly. The transformation of retained austenite at martensite interlath boundaries into untempered and/or twinned martensite could also contribute to increased DBTTs of the steel and its welds tempered at 540℃.

  14. Microstructure in the Weld Metal of Austenitic-Pearlitic Dissimilar Steels and Diffusion of Element in the Fusion Zone

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Microstructure and alloy element distribution in the welded joint between austenitic stainless steel(1Cr18Ni9Ti)and pearlitic heat-resistant steel (1Cr5Mo)were researched by means of light microscopy, scanning electron microscopy(SEM)and electron probe microanalysis(EPMA).Microstructure, divisions of the fusion zone and elemental diffusion distributions in the welded joints were investigated. Furthermore, solidification microstructure and δ-ferrite distribution in the weld metal of these steels are also discussed.

  15. Creep Strength of Dissimilar Welded Joints Using High B-9Cr Steel for Advanced USC Boiler

    Science.gov (United States)

    Tabuchi, Masaaki; Hongo, Hiromichi; Abe, Fujio

    2014-10-01

    The commercialization of a 973 K (700 °C) class pulverized coal power system, advanced ultra-supercritical (A-USC) pressure power generation, is the target of an ongoing research project initiated in Japan in 2008. In the A-USC boiler, Ni or Ni-Fe base alloys are used for high-temperature parts at 923 K to 973 K (650 °C to 700 °C), and advanced high-Cr ferritic steels are planned to be used at temperatures lower than 923 K (650 °C). In the dissimilar welds between Ni base alloys and high-Cr ferritic steels, Type IV failure in the heat-affected zone (HAZ) is a concern. Thus, the high B-9Cr steel developed at the National Institute for Materials Science, which has improved creep strength in weldments, is a candidate material for the Japanese A-USC boiler. In the present study, creep tests were conducted on the dissimilar welded joints between Ni base alloys and high B-9Cr steels. Microstructures and creep damage in the dissimilar welded joints were investigated. In the HAZ of the high B-9Cr steels, fine-grained microstructures were not formed and the grain size of the base metal was retained. Consequently, the creep rupture life of the dissimilar welded joints using high B-9Cr steel was 5 to 10 times longer than that of the conventional 9Cr steel welded joints at 923 K (650 °C).

  16. Failure of Stainless Steel Welds Due to Microstructural Damage Prevented by In Situ Metallography

    Directory of Open Access Journals (Sweden)

    Juan Manuel Salgado Lopez

    Full Text Available Abstract In stainless steels, microstructural damage is caused by precipitation of chromium carbides or sigma phase. These microconstituents are detrimental in stainless steel welds because they lead to weld decay. Nevertheless, they are prone to appear in the heat affected zone (HAZ microstructure of stainless steel welds. This is particularly important for repairs of industrial components made of austenitic stainless steel. Non-destructive metallography can be applied in welding repairs of AISI 304 stainless steel components where it is difficult to ensure that no detrimental phase is present in the HAZ microstructure. The need of microstructural inspection in repairs of AISI 304 is caused because it is not possible to manufacture coupons for destructive metallography, with which the microstructure can be analyzed. In this work, it is proposed to apply in situ metallography as non-destructive testing in order to identify microstructural damage in the microstructure of AISI 304 stainless steel welds. The results of this study showed that the external surface micrographs of the weldment are representative of HAZ microstructure of the stainless steel component; because they show the presence of precipitated metallic carbides in the grain boundaries or sigma phase in the microstructure of the HAZ.

  17. Evaluation of weld defects in stainless steel 316L pipe using guided wave

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joon Hyun [School of Mechanical Engineering, Pusan National University, Busan (Korea, Republic of); Lee, Jin Kyung [Dept. of Mechanical Engineering, Dongeui University, Busan (Korea, Republic of)

    2015-02-15

    Stainless steel is a popular structural materials for liquid-hydrogen storage containers and piping components for transporting high-temperature fluids because of its superior material properties such as high strength and high corrosion resistance at elevated temperatures. In general, tungsten inert gas (TIG) arc welding is used for bonding stainless steel. However, it is often reported that the thermal fatigue cracks or initial defects in stainless steel after welding decreases the reliability of the material. The objective of this paper is to clarify the characteristics of ultrasonic guided wave propagation in relation to a change in the initial crack length in the welding zone of stainless steel. For this purpose, three specimens with different artificial defects of 5 mm, 10 mm, and 20 mm in stainless steel welds were prepared. By considering the thickness of s stainless steel pipe, special attention was given to both the L(0,1) mode and L(0,2) mode in this study. It was clearly found that the L(0,2) mode was more sensitive to defects than the L(0,1) mode. Based on the results of the L(0,1) and L(0,2) mode analyses, the magnitude ratio of the two modes was more effective than studying each mode when evaluating defects near the welded zone of stainless steel because of its linear relationship with the length of the artificial defect.

  18. Laser-welded Dissimilar Steel-aluminum Seams for Automotive Lightweight Construction

    Science.gov (United States)

    Schimek, M.; Springer, A.; Kaierle, S.; Kracht, D.; Wesling, V.

    By reducing vehicle weight, a significant increase in fuel efficiency and consequently a reduction in CO 2 emissions can be achieved. Currently a high interest in the production of hybrid weld seams between steel and aluminum exists. Previous methods as laser brazing are possible only by using fluxes and additional materials. Laser welding can be used to join steel and aluminum without the use of additives. With a low penetration depth increases in tensile strength can be achieved. Recent results from laser welded overlap seams show that there is no compromise in strength by decreasing penetration depth in the aluminum.

  19. Growth of lamellar pearlite in the weld zone between dissimilar steels

    Science.gov (United States)

    Nikulina, A. A.; Smirnov, A. I.; Bataev, I. A.; Bataev, A. A.; Popelyukh, A. I.

    2016-01-01

    Transmission electron microscopy is used to study the welds between high-carbon pearlitic and chromium-nickel austenitic steel workpieces performed by flash butt welding. It has been established that lamellar pearlite colonies alloyed with chromium and nickel are formed in the weld zones between dissimilar steels. Thin austenite interlayers have been detected in the center of ferrite plates. The structure formed presents the C-F-A-F-C-F-A-F (and so on) sequence of three plate-shaped phases. The ferrite-cementite structure in alloyed-pearlite colonies is finer than that in unalloyed pearlite.

  20. Microstructure evaluation in low alloy steel weld metal from convective heat transfer calculations in three dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Mundra, K.; DebRoy, T.; Babu, S.S. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Materials Science and Engineering; David, S.A. [Oak Ridge National Lab., TN (United States)

    1995-12-31

    Heat transfer and fluid flow during manual metal arc welding of low alloy steels were investigated by solving the equations of conservation of mass, momentum, and energy in three dimensions. Cooling rates were calculated at various locations in the weldment. Calculated cooling rates were coupled with an existing phase transformation model to predict percentages of acicular, allotriomorphic, and Widmanstaetten ferrites in various low alloy steel welds containing different concentration of V and Mn. Computed microstructures were in good agreement with experiment, indicating promise for predicting weld metal microstructure from the fundamentals of transport phenomena.

  1. Effect of Welding Processes and Consumables on Tensile and Impact Properties of High Strength Quenched and Tempered Steel Joints

    Institute of Scientific and Technical Information of China (English)

    G Magudeeswaran; V Balasubramanian; G Madhusudhan Reddy; T S Balasubramanian

    2008-01-01

    Quenched and tempered steels are prone to hydrogen induced cracking in the heat affected gone after welding.The use of austenitic stainless steel consumables to weld the above steel was the only available remedy because of higher solubility for hydrogen in austenitic phase.In this investigation,an attempt was made to determine a suitable consumable to replace expensive austenitic consumables.Two different consumables,namely,austenitic stainless steel and lOW hydrogen ferritic steel,were used to fabricate the joints by shielded metal arc welding(SMAW)and flux cored arc welding(FCAW)processes.The joints fabricated by using low hydrogen ferritic steel consumables showed superior transverse tensile properties,whereas joints fabricated by using austenitic stainless steel consumables exhibited better impact toughness,irrespective of the welding process used.The SMAW joints exhibited superior mechanical and impact properties,irrespective of the consumables used,than their FCAW counterparts.

  2. A Plasma Control and Gas Protection System for Laser Welding of Stainless Steel

    DEFF Research Database (Denmark)

    Juhl, Thomas Winther; Olsen, Flemming Ove

    1997-01-01

    A prototype shield gas box with different plasma control nozzles have been investigated for laser welding of stainless steel (AISI 316). Different gases for plasma control and gas protection of the weld seam have been used. The gas types, welding speed and gas flows show the impact on process...... stability and protection against oxidation. Also oxidation related to special conditions at the starting edge has been investigated. The interaction between coaxial and plasma gas flow show that the coaxial flow widens the band in which the plasma gas flow suppresses the metal plasma. In this band the welds...

  3. Effect of Initial Hardness on Interfacial Features in Underwater Explosive Welding of Tool Steel SKS3

    Science.gov (United States)

    Sun, Wei; Li, Xiaojie; Yan, Honghao; Hokamoto, Kazuyuki

    2013-11-01

    This paper aims at investigating effects of initial hardness on interfacial features for identical compositional materials under identical welding conditions. Two underwater explosive welding experiments on tool steel SKS3 with copper foil were carried out: one as-received and the other heat-treated. The welding process was simulated using the commercially available software package LS-DYNA. Numerical simulation gave deformation of the flyer/base plate and pressure distribution during the welding process. Microstructure and hardness at interface of the welded metals were evaluated. The results indicate that decreasing impact energy is accompanied by a shift from wavy to linear interface. Moreover, a comparison of the two experiments allows the conclusion that high initial hardness results in a decrease of wavelength and amplitude under identical welding conditions. Hardness profiles of as-received tool steel-copper welding reveal the hardening effect of impact in the vicinity of the interface. However, of interest is that a decrease in hardness was seen in the case of heat-treated martensitic tool steel with copper, fundamentally differing from previous explosive welding research; phase transition is proposed to discuss the relation between the effects of impact and heat, and those of work hardening and softening.

  4. Temperature Histories of Structural Steel Welds Calculated Using Solidification-Boundary Constraints

    Science.gov (United States)

    Lambrakos, S. G.

    2016-09-01

    Temperature histories of structural steel deep-penetration welds are presented, which are calculated using numerical-analytical basis functions and solidification-boundary constraints. These weld temperature histories can be adopted as input data to various types of computational procedures, which include numerical models for prediction of solid-state phase transformations and mechanical response. In addition, these temperature histories can be used parametrically for inverse thermal analysis of welds corresponding to other welding processes whose process conditions are within similar regimes. The present study applies an inverse thermal analysis procedure that uses three-dimensional constraint conditions whose two-dimensional projections are mapped within transverse cross sections of experimentally measured solidification boundaries. In addition, the present study uses experimentally measured estimates of the heat effect zone edge to examine the consistency of calculated temperature histories for steel welds.

  5. Microstructural and electrochemical characterization of a thin-section dissimilar stainless steel weld joint

    Energy Technology Data Exchange (ETDEWEB)

    Bala Srinivasan, P. [Institute of Materials Research, GKSS-Forschungszentrum Geesthacht GmbH, D 21502, Geesthacht (Germany)], E-mail: bala.srinivasan@gkss.de; Satish Kumar, M.P. [Mabani Steel, Ras Al Khaimah (United Arab Emirates)

    2009-05-15

    A dissimilar weld joint consisting of an austenitic stainless steel (ASS) and a martensitic stainless steel (MSS) was obtained under optimized welding conditions by autogenous gas tungsten arc welding technique. The weld metal was found to be dual-phased, and was constituted with an austenite matrix containing interdendritic ferrite of about 3-8 EFN, with over-matching mechanical properties. Electrochemical behaviour assessment of the composite zone comprising the weld metal, HAZ of both ASS and MSS showed different general corrosion behaviour in neutral and acidic chloride solutions. However, in both the electrolytes, the pitting susceptibility of this region was the highest, and the MSSHAZ of this composite zone was the observed to be more vulnerable to localized damage.

  6. Effect of Autogenous Arc Welding Processes on Tensile and Impact Properties of Ferritic Stainless Steel Joints

    Institute of Scientific and Technical Information of China (English)

    A K Lakshminarayanan; K Shanmugam; V Balasubramanian

    2009-01-01

    The effect of autogeneous arc welding processes on tensile and impact properties of ferritic stainless steel conformed to AISI 409M grade is studied.Rolled plates of 4 mm thickness have been used as the base material for preparing single pass butt welded jointa.Tensile and impact properties,microhardness,microstructure,and fracture surface morphology of continuous current gas tungsten arc welding (CCGTAW),pulsed current gas tungsten arc welding (PCGTAW),and plasma arc welding (PAW) joints are evaluated and the results are compared.It is found that the PAW joints of ferritic stainless steel show superior tensile and impact properties when compared with CCGTAW and PCGTAW joints,and this is mainly due to lower heat input,finer fusion zone grain diameter,and higher fusion zone hardness.

  7. Influence of Material Model on Prediction Accuracy of Welding Residual Stress in an Austenitic Stainless Steel Multi-pass Butt-Welded Joint

    Science.gov (United States)

    Deng, Dean; Zhang, Chaohua; Pu, Xiaowei; Liang, Wei

    2017-03-01

    Both experimental method and numerical simulation technology were employed to investigate welding residual stress distribution in a SUS304 steel multi-pass butt-welded joint in the current study. The main objective is to clarify the influence of strain hardening model and the yield strength of weld metal on prediction accuracy of welding residual stress. In the experiment, a SUS304 steel butt-welded joint with 17 passes was fabricated, and the welding residual stresses on both the upper and bottom surfaces of the middle cross section were measured. Meanwhile, based on ABAQUS Code, an advanced computational approach considering different plastic models as well as annealing effect was developed to simulate welding residual stress. In the simulations, the perfect plastic model, the isotropic strain hardening model, the kinematic strain hardening model and the mixed isotropic-kinematic strain hardening model were employed to calculate the welding residual stress distributions in the multi-pass butt-welded joint. In all plastic models with the consideration of strain hardening, the annealing effect was also taken into account. In addition, the influence of the yield strength of weld metal on the simulation result of residual stress was also investigated numerically. The conclusions drawn by this work will be helpful in predicting welding residual stresses of austenitic stainless steel welded structures used in nuclear power plants.

  8. Explosive welding of a near-equiatomic nickel-titanium alloy to low-carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerly, C.A. (Materials and Metallurgical Engineering Department, New Mexico Institute of Mining and Technology, Socorro, NM 87801 (United States)); Inal, O.T. (Materials and Metallurgical Engineering Department, New Mexico Institute of Mining and Technology, Socorro, NM 87801 (United States)); Richman, R.H. (Daedalus Associates, Inc., Mountain View, CA 94043 (United States))

    1994-11-30

    Equiatomic and near-equiatomic NiTi alloys are very resistant to cavitation erosion compared with the alloys commonly used to construct pumps and hydroturbines. Thin layers (0.4-1.0 mm) of a near-equiatomic NiTi alloy were explosively welded to low-carbon steel substrates to fabricate high-strength, bimetallic tandems in which the NiTi provided resistance to cavitation damage and the low-carbon steel provided structural strength. Tensile lap-shear tests on the welded material revealed bond strength of up to 387 MPa. As-welded NiTi/steel tandems were less resistant to cavitation erosion than annealed, unwelded samples; however, a post-weld heat treatment at 500 C recovered most of the lost resistance. ((orig.))

  9. Effect of molybdenum addition on microstructure and mechanical properties of plain carbon steel weld

    Directory of Open Access Journals (Sweden)

    Jyoti Menghani

    2016-12-01

    Full Text Available The present investigation has two main objectives; first is optimization of welding process parameters of submerged arc welding (SAW using Taguchi philosophy and second is to improve the mechanical properties such as strength and microhardness of weld joint by alloying with varying amounts of molybdenum. For optimization of welding process, parameters Taguchi philosophy have been applied on a mild steel plate (AISI C- 1020 of 10 mm thickness with 60o groove angle with arc voltage and welding speed as variables and bead width as output variables. A mathematical relationship between bead width, arc voltage and welding speed has also been found using multiple regression analysis for the present base metal plate geometry. After optimizing welding parameters, molybdenum has been added individually to the welding area in varying percentages. The properties of alloyed and unalloyed weld metal bead are compared. The mechanical characterization of weld has been done in terms of microhardness, tensile strength, whereas microstructural characterization has been performed using optical microscopy, XRD and EDS. The presence of molybdenum resulted in bainite structure in weld bead having a refined grain structure, enhancement in tensile strength and microhardness. The XRD results showed the formation of molybdenum carbides justifying the increase in microhardness value.

  10. Metallurgical and mechanical properties of laser welded high strength low alloy steel.

    Science.gov (United States)

    Oyyaravelu, Ramachandran; Kuppan, Palaniyandi; Arivazhagan, Natarajan

    2016-05-01

    The study aimed at investigating the microstructure and mechanical properties of Neodymium-Doped Yttrium Aluminum Garnet (Nd:YAG) laser welded high strength low alloy (HSLA) SA516 grade 70 boiler steel. The weld joint for a 4 mm thick plate was successfully produced using minimum laser power of 2 kW by employing a single pass without any weld preheat treatment. The micrographs revealed the presence of martensite phase in the weld fusion zone which could be due to faster cooling rate of the laser weldment. A good correlation was found between the microstructural features of the weld joints and their mechanical properties. The highest hardness was found to be in the fusion zone of cap region due to formation of martensite and also enrichment of carbon. The hardness results also showed a narrow soft zone at the heat affected zone (HAZ) adjacent to the weld interface, which has no effect on the weld tensile strength. The yield strength and ultimate tensile strength of the welded joints were 338 MPa and 549 MPa, respectively, which were higher than the candidate metal. These tensile results suggested that the laser welding process had improved the weld strength even without any weld preheat treatment and also the fractography of the tensile fractured samples showed the ductile mode of failure.

  11. Prediction of Weld Penetration in FCAW of HSLA steel using Artificial Neural Networks

    Science.gov (United States)

    Asl, Y. Dadgar; Mostafa, N. B.; Panahizadeh R., V.; Seyedkashi, S. M. H.

    2011-01-01

    Flux-cored arc welding (FCAW) is a semiautomatic or automatic arc welding process that requires a continuously-fed consumable tubular electrode containing a flux. The main FCAW process parameters affecting the depth of penetration are welding current, arc voltage, nozzle-to-work distance, torch angle and welding speed. Shallow depth of penetration may contribute to failure of a welded structure since penetration determines the stress-carrying capacity of a welded joint. To avoid such occurrences; the welding process parameters influencing the weld penetration must be properly selected to obtain an acceptable weld penetration and hence a high quality joint. Artificial neural networks (ANN), also called neural networks (NN), are computational models used to express complex non-linear relationships between input and output data. In this paper, artificial neural network (ANN) method is used to predict the effects of welding current, arc voltage, nozzle-to-work distance, torch angle and welding speed on weld penetration depth in gas shielded FCAW of a grade of high strength low alloy steel. 32 experimental runs were carried out using the bead-on-plate welding technique. Weld penetrations were measured and on the basis of these 32 sets of experimental data, a feed-forward back-propagation neural network was created. 28 sets of the experiments were used as the training data and the remaining 4 sets were used for the testing phase of the network. The ANN has one hidden layer with eight neurons and is trained after 840 iterations. The comparison between the experimental results and ANN results showed that the trained network could predict the effects of the FCAW process parameters on weld penetration adequately.

  12. Effect of welding processes on mechanical and microstructural characteristics of high strength low alloy naval grade steel joints

    Directory of Open Access Journals (Sweden)

    S. Ragu Nathan

    2015-09-01

    Full Text Available Naval grade high strength low alloy (HSLA steels can be easily welded by all types of fusion welding processes. However, fusion welding of these steels leads to the problems such as cold cracking, residual stress, distortion and fatigue damage. These problems can be eliminated by solid state welding process such as friction stir welding (FSW. In this investigation, a comparative evaluation of mechanical (tensile, impact, hardness properties and microstructural features of shielded metal arc (SMA, gas metal arc (GMA and friction stir welded (FSW naval grade HSLA steel joints was carried out. It was found that the use of FSW process eliminated the problems related to fusion welding processes and also resulted in the superior mechanical properties compared to GMA and SMA welded joints.

  13. A temperature dependent slip factor based thermal model for friction stir welding of stainless steel

    Indian Academy of Sciences (India)

    M Selvaraj

    2013-12-01

    This paper proposes a new slip factor based three-dimensional thermal model to predict the temperature distribution during friction stir welding of 304L stainless steel plates. The proposed model employs temperature and radius dependent heat source to study the thermal cycle, temperature distribution, power required, the effect of process parameters on heat generation per mm length of the weld and peak temperature during the friction stir welding process. Simulations of friction stir welding process were carried out on 304L stainless steel workpieces for various rotational and welding speeds. The predicted thermal cycle, power required and temperature distributions were found to be in good agreement with the experimental results. The heat generation per mm length of weld and peak temperature were found to be directly proportional to rotational speed and inversely proportional to welding speed. The rate of increase in heat generation per mm length of the weld and peak temperature are found to be higher at lower rotational speeds and lower at higher rotational speed. The heat generation during friction stir welding was found to be 80.8 % at shoulder, 16.1 % at pin side and 3.1 % at the bottom of the pin.

  14. Microstructure and Mechanical Properties of 21-6-9 Stainless Steel Electron Beam Welds

    Science.gov (United States)

    Elmer, John W.; Ellsworth, G. Fred; Florando, Jeffrey N.; Golosker, Ilya V.; Mulay, Rupalee P.

    2017-04-01

    Welds can either be stronger or weaker than the base metals that they join depending on the microstructures that form in the fusion and heat-affected zones of the weld. In this paper, weld strengthening in the fusion zone of annealed 21-6-9 stainless steel is investigated using cross-weld tensile samples, hardness testing, and microstructural characterization. Due to the stronger nature of the weld, the cross-weld tensile tests failed in the base metal and were not able to generate true fusion zone mechanical properties. Nanoindentation with a spherical indenter was instead used to predict the tensile behavior for the weld metal. Extrapolation of the nanoindentation results to higher strains was performed using the Steinberg-Guinan and Johnson-Cook strength models, and the results can be used for weld strength modeling purposes. The results illustrate how microstructural refinement and residual ferrite formation in the weld fusion zone can be an effective strengthener for 21-6-9 stainless steel.

  15. Mechanical Properties of Welded Deformed Reinforcing Steel Bars

    Directory of Open Access Journals (Sweden)

    Ghafur H. Ahmed

    2015-05-01

    Full Text Available Reinforcement strength, ductility and bendability properties are important components in design of reinforced concrete members, as the strength of any member comes mainly from reinforcement. Strain compatibility and plastic behaviors are mainly depending on reinforcement ductility. In construction practice, often welding of the bars is required. Welding of reinforcement is an instant solution in many cases, whereas welding is not a routine connection process. Welding will cause deficiencies in reinforcement bars, metallurgical changes and re-crystallization of microstructure of particles. Weld metal toughness is extremely sensitive to the welding heat input that decreases both of its strength and ductility. For determining the effects of welding in reinforcement properties, 48 specimens were tested with 5 different bar diameters, divided into six groups. Investigated parameters were: properties of un-welded bars; strength, ductility and density of weld metal; strength and ductility reduction due to heat input for bundled bars and transverse bars; welding effect on bars’ bending properties; behavior of different joint types; properties of three weld groove shapes also the locations and types of failures sections. Results show that, strength and elongation of the welded bars decreased by (10-40% and (30-60% respectively. Cold bending of welded bars and groove welds shall be prevented.

  16. 49 CFR 178.56 - Specification 4AA480 welded steel cylinders.

    Science.gov (United States)

    2010-10-01

    ... by spinning process not permitted. (b) Steel. The limiting chemical composition of steel authorized... the tops and bottoms of cylinders is authorized. Provided that such attachments are made of weldable... material which have been previously welded to the top or bottom of cylinders and properly heat treated...

  17. Fatigue strength of welded connections made of very high strength cast and rolled steels

    NARCIS (Netherlands)

    Pijpers, R.J.M.

    2011-01-01

    Although Very High Strength Steels (VHSS) with nominal strengths up to 1100 MPa have been available on the market for many years, the use of these steels in the civil engineering industry is still uncommon. The main objective of the research is the determination of the fatigue strength of welded con

  18. The possibility of tribopair lifetime extending by welding of quenched and tempered stainless steel with quenched and tempered carbon steel

    Directory of Open Access Journals (Sweden)

    V. Marušić

    2015-04-01

    Full Text Available In the conditions of tribocorrosion wear, extending of parts lifetime could be achieved by using stainless steel,which is hardened to sufficiently high hardness. In the tribosystem bolt/ bushing shell/link plate of the bucket elevator transporter conveyor machine, the previously quenched and tempered martensitic stainless steel for bolts is hardened at ≈47 HRC and welded with the quenched and tempered high yield carbon steel for bolts. Additional material, based on Cr-Ni-Mo (18/8/6 is used. The microstructure and hardness of welded samples are tested. On the tensile tester, resistance of the welded joint is tested with a simulated experiment. Dimensional control of worn tribosystem elements was performed after six months of service.

  19. Study on the resistance spot welding technology of 22MnMoB hot stamping quenched steel

    Institute of Scientific and Technical Information of China (English)

    Feng Yi; Ma Mingtu; Hua Fuan; Zhang Junping; Song Leifeng; Jin Qingsheng

    2014-01-01

    In this paper,the spot welding technology of a new kind of 22MnMoB hot stamping quenched steel sheet was systematically studied by power frequency spot welder. Through a series of technology and test exper-iments,we have obtained the optimal spot welding technological parameter condition. According to the results, the relations among spot welding technological parameter,welding nugget,mechanical property and fracture mode were discussed. The effects of all the welding parameters such as welding current,welding time and elec-trode force on the quality of joint can be boiled down to one thing-the diameter of welding nugget. The experi-mental results showed that welding nugget diameter determines the mechanical property of spot welding joint and the relation between welding nugget diameter and the mechanical property of joint presents a kind of linear mathematic representation. There are two typical fracture models of 22MnMoB hot stamping quenched steel sheet,i.e.,interfacial fracture and nugget pullout. Other than mild steel or normal high strength steel,in the shearing tensile test,hot stamping quenched steel has a great tendency to fail in interfacial mode due to the ef-fects of high strength matrix structure,welding soft zone and the porosity level of fusion zone.

  20. Finite element modeling and analysis of electro-magnetic pulse welding of aluminium tubes to steel bars

    Science.gov (United States)

    Kumar, Ramesh; Doley, Jyoti; Kore, Sachine

    2016-10-01

    Magnetic pulse welding is a high-speed, solid-state welding process that is applicable to sheets or tube-to-tube or tube-to-bar configurations. In this article we discuss about the MPW process modeling and simulation for welding Al tubes to steel bars. Finite element simulation was done to weld 6061 Al tubes of 1.65 mm wall thickness to 1010 steel bars of a 47.6 mm nominal diameter. Simulation results indicate that Al tubes can be successfully welded to steel bars using MPW. It is found that the standoff distance between the Al tube and the steel bar i.e. gap between inner diameter of Al tube and diameter of steel bar is a dominant factor for achieving a sound weld. The addition of receding angles to the bars can promote MPW weldability window.

  1. Thermocapillary and arc phenomena in stainless steel welds

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, S.W.

    1993-10-01

    Goal was to study effect of power level and distribution on thermocapiilary-induced weld shape and of arc factors on weld shape. Thermocapillarity was apparent in both conduction mode EB welds and GTA welds, particularly in the former. A non-Gaussian arc distribution is suggested for accounting for the differences between the twoss processes. At higher current levels (200--300 A), plasma shear force also contributes to weld shape development. Evidence suggests that thermocapillary flow reversal is not a factor in normal GTA welds; EDB flow reversal occurs only at high power density levels where the keyhole mode is present.

  2. Investigation of the Failure of Advanced High Strength Steels Heterogeneous Spot Welds

    Directory of Open Access Journals (Sweden)

    Thibaut Huin

    2016-05-01

    Full Text Available Nowadays, environmental regulation encourages carmakers to reduce the global vehicle weight. Steelmakers develop grades with high performance (Advanced High Strength Steels, AHSS and fine steel sheet assemblies are used in car body structures, with an optimized thickness in each part. However, unusual fracture modes are sometimes observed during the mechanical tests of heterogeneous AHSS welds, made of dissimilar steel grades and sheet thicknesses. Weld fractures can occur with a strength lower than expected. This study aims at understanding these fracture mechanisms and focuses on two common steel grades joined by Resistance Spot Welding (RSW: DP600 (a dual phase steel and Usibor®1500 (a martensitic steel. The parameters affecting the failure modes and load bearing capacity are investigated during two common types of tests: the Cross Tension and Tensile Shear tests. The positive effects of heterogeneous welding with respect to the corresponding homogeneous configurations are discussed, as well as the consequences of a so-called Dome failure occurring at the weld nugget boundary.

  3. Heterogeneities in local plastic flow behavior in a dissimilar weld between low-alloy steel and stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Mas, Fanny [Université Grenoble Alpes, SIMAP, 38000 Grenoble (France); CNRS, SIMAP, 38000 Grenoble (France); Martin, Guilhem, E-mail: guilhem.martin@simap.grenoble-inp.fr [Université Grenoble Alpes, SIMAP, 38000 Grenoble (France); CNRS, SIMAP, 38000 Grenoble (France); Lhuissier, Pierre; Bréchet, Yves; Tassin, Catherine [Université Grenoble Alpes, SIMAP, 38000 Grenoble (France); CNRS, SIMAP, 38000 Grenoble (France); Roch, François [Areva NP, Tour Areva, 92084 Paris La Défense (France); Todeschini, Patrick [EDF R& D, Avenue des Renardières, 77250 Moret-sur-Loing (France); Simar, Aude [Institute of Mechanics, Materials and Civil Engineering (iMMC), Université catholique de Louvain, 1348 Louvain-la-Neuve (Belgium)

    2016-06-14

    In dissimilar welds between low-alloy steel and stainless steel, the post-weld heat-treatment results in a high variety of microstructures coexisting around the fusion line, due to carbon diffusion and carbides dissolution/precipitation. The local constitutive laws in the vicinity of the fusion zone were identified by micro tensile specimens for the sub-millimeter sized zones, equivalent bulk materials representing the decarburized layer using both wet H{sub 2} atmosphere and diffusion couple, and nano-indentation for the carburized regions (i.e. the martensitic band and the austenitic region). The decarburized zone presents only 50% of the yield strength of the low-alloy steel heat affected zone and a ductility doubled. The carburized zones have a yield strength 3–5 times higher than that of the low-alloy steel heat affected zone and have almost no strain hardening capacity. These properties result in heterogeneous plastic deformation happening over only millimeters when the weld is loaded perpendicularly to the weld line, affecting its overall behavior. The constitutive laws experimentally identified were introduced as inputs into a finite elements model of the transverse tensile test performed on the whole dissimilar weld. A good agreement between experiments and simulations was achieved on the global stress-strain curve. The model also well predicts the local strain field measured by microscale DIC. A large out-of-plane deformation due to the hard carburized regions has also been identified.

  4. Heat transfer and fluid flow during laser spot welding of 304 stainless steel

    CERN Document Server

    He, X; Debroy, T

    2003-01-01

    The evolution of temperature and velocity fields during laser spot welding of 304 stainless steel was studied using a transient, heat transfer and fluid flow model based on the solution of the equations of conservation of mass, momentum and energy in the weld pool. The weld pool geometry, weld thermal cycles and various solidification parameters were calculated. The fusion zone geometry, calculated from the transient heat transfer and fluid flow model, was in good agreement with the corresponding experimentally measured values for various welding conditions. Dimensional analysis was used to understand the importance of heat transfer by conduction and convection and the roles of various driving forces for convection in the weld pool. During solidification, the mushy zone grew at a rapid rate and the maximum size of the mushy zone was reached when the pure liquid region vanished. The solidification rate of the mushy zone/liquid interface was shown to increase while the temperature gradient in the liquid zone at...

  5. Influence of heat input on weld bead geometry using duplex stainless steel wire electrode on low alloy steel specimens

    Directory of Open Access Journals (Sweden)

    Ajit Mondal

    2016-12-01

    Full Text Available Gas metal arc welding cladding becomes a popular surfacing technique in many modern industries as it enhances effectively corrosion resistance property and wear resistance property of structural members. Quality of weld cladding may be enhanced by controlling process parameters. If bead formation is found acceptable, cladding is also expected to be good. Weld bead characteristics are often assessed by bead geometry, and it is mainly influenced by heat input. In this paper, duplex stainless steel E2209 T01 is deposited on E250 low alloy steel specimens with 100% CO2 gas as shielding medium with different heats. Weld bead width, height of reinforcement and depth of penetration are measured. Regression analysis is done on the basis of experimental data. Results reveal that within the range of bead-on-plate welding experiments done, parameters of welding geometry are on the whole linearly related with heat input. A condition corresponding to 0.744 kJ/mm heat input is recommended to be used for weld cladding in practice.

  6. Structure and properties of explosion-welded composite from steels 12Kh18N10T and 20

    Science.gov (United States)

    Gladkovskii, S. V.; Trunina, T. A.; Kokovikhin, E. A.; Vichuzhanin, D. I.; Golubkova, I. A.

    2009-09-01

    Special features of structure formation, mechanical properties, and microstructure of fractures of "austenitic steel 12Kh18N10T + low-carbon steel 20" composite after explosive welding and subsequent cold rolling are studied.

  7. Nickel-based alloy/austenitic stainless steel dissimilar weld properties prediction on asymmetric distribution of laser energy

    Science.gov (United States)

    Zhou, Siyu; Ma, Guangyi; Chai, Dongsheng; Niu, Fangyong; Dong, Jinfei; Wu, Dongjiang; Zou, Helin

    2016-07-01

    A properties prediction method of Nickel-based alloy (C-276)/austenitic stainless steel (304) dissimilar weld was proposed and validated based on the asymmetric distribution of laser energy. Via the dilution level DC-276 (the ratio of the melted C-276 alloy), the relations between the weld properties and the energy offset ratio EC-276 (the ratio of the irradiated energy on the C-276 alloy) were built, and the effects of EC-276 on the microstructure, mechanical properties and corrosion resistance of dissimilar welds were analyzed. The element distribution Cweld and EC-276 accorded with the lever rule due to the strong convention of the molten pool. Based on the lever rule, it could be predicted that the microstructure mostly consists of γ phase in each weld, the δ-ferrite phase formation was inhibited and the intermetallic phase (P, μ) formation was promoted with the increase of EC-276. The ultimate tensile strength σb of the weld joint could be predicted by the monotonically increasing cubic polynomial model stemming from the strengthening of elements Mo and W. The corrosion potential U, corrosion current density I in the active region and EC-276 also met the cubic polynomial equations, and the corrosion resistance of the dissimilar weld was enhanced with the increasing EC-276, mainly because the element Mo could help form a steady passive film which will resist the Cl- ingress.

  8. Microstructure and pitting corrosion of shielded metal arc welded high nitrogen stainless steel

    Directory of Open Access Journals (Sweden)

    Raffi Mohammed

    2015-09-01

    Full Text Available The present work is aimed at studying the microstructure and pitting corrosion behaviour of shielded metal arc welded high nitrogen steel made of Cromang-N electrode. Basis for selecting this electrode is to increase the solubility of nitrogen in weld metal due to high chromium and manganese content. Microscopic studies were carried out using optical microscopy (OM and field emission scanning electron microscopy (FESEM. Energy back scattered diffraction (EBSD method was used to determine the phase analysis, grain size and orientation image mapping. Potentio-dynamic polarization testing was carried out to study the pitting corrosion resistance in aerated 3.5% NaCl environment using a GillAC electrochemical system. The investigation results showed that the selected Cr–Mn–N type electrode resulted in a maximum reduction in delta-ferrite and improvement in pitting corrosion resistance of the weld zone was attributed to the coarse austenite grains owing to the reduction in active sites of the austenite/delta ferrite interface and the decrease in galvanic interaction between austenite and delta-ferrite.

  9. Prediction of solidification and phase transformation in weld metals for welding of high performance stainless steels; Kotaishoku kotainetsu stainless koyo yosetsu kinzoku no gyoko hentai no yosoku gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Koseki, T.; Inoue, H.; Morimoto, H.; Okita, S. [Nippon Steel Corp., Tokyo (Japan)

    1995-02-28

    Prediction technology is introduced on the solidification and transformation of weld metals used for high performance stainless steel. A model has been developed which uses Thermo Calc, a multiple balanced calculation program, as a means to analyze the solidification of multi-component alloys including the polyphase solidification such as eutectic and peritectic. Verification has been in progress concerning the adequacy of this model and the adaptability as a practical steel. The following are the prediction technologies for solidification and transformation which have been derived from experiments and applied to welding techniques: the effects of nitrogen on the solidification mode and residual {gamma}quantity of a welding metal that is required for controlling the welding/solidification of high nitrogen content {gamma}system stainless steel; the structural control of weld metal for high corrosion resistance high Mo stainless steel, in which high Ni and high Mo contents are indispensable for attaining the optimum structure; the structural control of weld metal for two-phase stainless steel containing Mo and N, in which it is essential to secure a high nitrogen content and a {delta}/{gamma}phase balance in a weld metal; and the precipitation prediction of intermetallic compound in a high alloy weld metal for a high alloy stainless steel, for which an explanation is there by Cieslak et al. based on the phase stability theory. 22 refs., 16 figs.

  10. Consumable Guide Electroslag Welding of 4 to 24 Inch Thick Carbon Steel Castings (The National Shipbuilding Research Program)

    Science.gov (United States)

    1986-08-01

    ENGLISH SERBOCROAT SUBMERGED ARC, MANUAL METAL ARC, METAL INERT GAS AND CONSUMABLE GUIDE WELDS IN HY80 STEEL WERE PREPARED USING COMMERCIALLY AVAILABLE...JOINTS IN THICK PLATES OF MILD STEEL , QUENCHED AND TEMPERED LOW ALLOY STEELS QT35 AND HY80 AND 2-1/4 PER CENT CR-1 PER CENT MO STEEL ARE RECORDED. IT IS...THICKNESSES FROM 3/8 TO 24 IN. CAN BE WELDED, DEPENDING ON THE MACHINE CHOSEN. ONE MACHINE CAN WELD HY90, HY80 , AUSTENITIC STAINLESS AND HIGH-C STEELS , MONEL

  11. An Approach to Maximize Weld Penetration During TIG Welding of P91 Steel Plates by Utilizing Image Processing and Taguchi Orthogonal Array

    Science.gov (United States)

    Singh, Akhilesh Kumar; Debnath, Tapas; Dey, Vidyut; Rai, Ram Naresh

    2016-06-01

    P-91 is modified 9Cr-1Mo steel. Fabricated structures and components of P-91 has a lot of application in power and chemical industry owing to its excellent properties like high temperature stress corrosion resistance, less susceptibility to thermal fatigue at high operating temperatures. The weld quality and surface finish of fabricated structure of P91 is very good when welded by Tungsten Inert Gas welding (TIG). However, the process has its limitation regarding weld penetration. The success of a welding process lies in fabricating with such a combination of parameters that gives maximum weld penetration and minimum weld width. To carry out an investigation on the effect of the autogenous TIG welding parameters on weld penetration and weld width, bead-on-plate welds were carried on P91 plates of thickness 6 mm in accordance to a Taguchi L9 design. Welding current, welding speed and gas flow rate were the three control variables in the investigation. After autogenous (TIG) welding, the dimension of the weld width, weld penetration and weld area were successfully measured by an image analysis technique developed for the study. The maximum error for the measured dimensions of the weld width, penetration and area with the developed image analysis technique was only 2 % compared to the measurements of Leica-Q-Win-V3 software installed in optical microscope. The measurements with the developed software, unlike the measurements under a microscope, required least human intervention. An Analysis of Variance (ANOVA) confirms the significance of the selected parameters. Thereafter, Taguchi's method was successfully used to trade-off between maximum penetration and minimum weld width while keeping the weld area at a minimum.

  12. Optimization of hybrid laser - TIG welding of 316LN steel using response surface methodology (RSM)

    Science.gov (United States)

    Ragavendran, M.; Chandrasekhar, N.; Ravikumar, R.; Saxena, Rajesh; Vasudevan, M.; Bhaduri, A. K.

    2017-07-01

    In the present study, the hybrid laser - TIG welding parameters for welding of 316LN austenitic stainless steel have been investigated by combining a pulsed laser beam with a TIG welding heat source at the weld pool. Laser power, pulse frequency, pulse duration, TIG current were presumed as the welding process parameters whereas weld bead width, weld cross-sectional area and depth of penetration (DOP) were considered as the process responses. Central composite design was used to complete the design matrix and welding experiments were conducted based on the design matrix. Weld bead measurements were then carried out to generate the dataset. Multiple regression models correlating the process parameters with the responses have been developed. The accuracy of the models were found to be good. Then, the desirability approach optimization technique was employed for determining the optimum process parameters to obtain the desired weld bead profile. Validation experiments were then carried out from the determined optimum process parameters. There was good agreement between the predicted and measured values.

  13. Friction Stir Welding of Steel: Heat Input, Microstructure, and Mechanical Property Co-relation

    Science.gov (United States)

    Husain, Md. M.; Sarkar, R.; Pal, T. K.; Prabhu, N.; Ghosh, M.

    2015-09-01

    Friction stir welding was performed to join carbon steel plates at tool rotational rate of 800-1400 rpm. Microstructure and microhardness of welded specimens were evaluated across weld centerline. Torque base index, peak temperature, cooling rate, strain, strain rate, volumetric material flow rate, and width of extruded zone at weld nugget were calculated. Peak temperature at weld nugget was ~1300-1360 K. At this temperature, ferrite transformed to austenite during welding. Austenite was decomposed in to ferrite and bainite at cooling rate of ~4-7.5 K/s. The presence of bainite was endorsed by increment in microhardness with respect to base material. Ferrite grain size at weld nugget was finer in comparison to as-received alloy. With the increment in tool rotational rate strain, strain rate, total heat input, and peak temperature at weld nugget were increased. High temperature at weld nugget promoted increment in ferrite grain size and reduction in area fraction of bainite. Heat-affected zone also experienced phase transformation and exhibited enhancement in ferrite grain size in comparison to base alloy at all welding parameters with marginal drop in microhardness. Maximum joint strength was obtained at the tool rotational rate of 1000 rpm. Increment in tool rational rate reduced the joint efficiency owing to increment in ferrite grain size and reduction in pearlite area fraction at heat-affected zone.

  14. Investigations on bending condition for welded carbon steel pipe by high frequency induction heating

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Toshimi; Matsumoto, Teruo; Tamai, Yasumasa

    1987-08-01

    The induction heating bent pipes of carbon steel welded pipes are used for the piping in nuclear power plants, in place of elbows. This application is useful to suppress the radiation exposure at in-service inspection. The quality of the bent pipes are controlled on the technical standards of welding for electrical equipments. However, the influence of the bending condition has not been yet sufficiently understood on the mechanical properties of the bent pipes. The purpose of this investigation is to establish the appropriate bending condition for the carbon steel weld pipe which corresponds to the carbon steel pipe STPT 42 in JIS G 3456, in relation to the transformation of the structures of the base metal and the weld metal during bending. The results are summarized as follows: (1) The maximum heating temperature should be set in the range from 900 deg C to 1000 deg C, in order to assure the high Charpy impact properties. (2) The maximum heating temperature which is lower than 900 deg C causes the imperfect transformation of the base metal and the weld metal, then is likely to spoil the Charpy impact properties. (3) Higher heating rate causes the increase of A/sub c1/ point, remarkably for the base metal which has higher carbon content than weld metal. (4) Higher cooling rate causes hardening of the base metal and weld metal, however, the transformation temperature does not change remarkably, except for the Ar/sub 1/ point of base metal.

  15. Intergranular stress corrosion cracking of welded ferritic stainless steels in high temperature aqueous environments

    Energy Technology Data Exchange (ETDEWEB)

    Fukuzuka, Toshio; Shimogori, Kazutoshi; Fujiwara, Kazuo; Tomari, Haruo (Kobe Steel Ltd. (Japan). Central Research and Development Lab.); Kanda, Masao

    1982-07-01

    In considering the application of ferritic stainless steels to heat exchanger tubing materials for moisture separator-reheaters in LWRs, the effects of environmental conditions (temperature, chloride, dissolved oxygen, pH), thermal history, and steel composition (content of C, N, Cr and Ti) on the Inter-Granular Stress Corrosion Cracking (IGSCC) in high temperature aqueous environments, were studied. The IGSCC was proved to depend on steel composition and thermal history rather than environment. From these results, a steel was designed to prevent IGSCC of the welding HAZ for 18Cr and 13Cr steels.

  16. Acoustic emisson and ultrasonic wave characteristics in TIG-welded 316 stainless steel

    Science.gov (United States)

    Lee, Jin Kyung; Lee, Joon Hyun; Lee, Sang Pill; Son, In Su; Bae, Dong Su

    2014-05-01

    A TIG welded 316 stainless steel materials will have a large impact on the design and the maintenance of invessel components including pipes used in a nuclear power plant, and it is important to clear the dynamic behavior in the weld part of stainless steel. Therefore, nondestructive techniques of acoustic emission (AE) and ultrasonic wave were applied to investigate the damage behavior of welded stainless steel. The velocity and attenuation ratio of the ultrasonic wave at each zone were measured, and a 10 MHz sensor was used. We investigated the relationship between dynamic behavior and AE parameters analysis and derived the optimum parameters to evaluate the damage degree of the specimen. By measuring the velocity and the attenuation of an ultrasonic wave propagating each zone of the welded stainless steel, the relation of the ultrasonic wave and metal structure at the base metal, heat affected zone (HAZ) metal and weld metal is also discussed. The generating tendency of cumulated counts is similar to that of the load curve. The attenuation ratios from the ultrasonic test results were 0.2 dB/mm at the base zone, and 0.52 dB/mm and 0.61 dB/mm at the HAZ zone and weld zone, respectively.

  17. Effects of post weld heat treatments on the microstructure and mechanical properties of dissimilar weld of supermartensític stainless steel

    OpenAIRE

    Tavares,Sérgio Souto Maior; Rodrigues,Clóvis Ribeiro; Pardal,Juan Manuel; Barbosa,Edvan da Silva; Abreu,Hamilton Ferreira Gomes de

    2014-01-01

    A supermartensitic stainless steel with composition 12.2%Cr-5.8%Ni-1.90%Mo-0.028%C (%wt.) was welded by gas tungsten arc welding (GTAW) with superduplex stainless steel filler metal. Post weld heat treatments (PWHT) at 650 ºC for different periods of time were performed in order to decrease the hardness in the heat affected zone (HAZ). This paper deals with the effect of these heat treatments on the microstructure and mechanical properties of the joint. Mechanical strength of the weld jo...

  18. Effect of the purging gas on properties of Ti stabilized AISI 321 stainless steel TIG welds

    Energy Technology Data Exchange (ETDEWEB)

    Taban, Emel; Kaluc, Erdinc; Aykan, T. Serkan [Kocaeli Univ. (Turkey). Dept. of Mechanical Engineering

    2014-07-01

    Gas purging is necessary to provide a high quality of stainless steel pipe welding in order to prevent oxidation of the weld zone inside the pipe. AISI 321 stabilized austenitic stainless steel pipes commonly preferred in refinery applications have been welded by the TIG welding process both with and without the use of purging gas. As purging gases, Ar, N{sub 2}, Ar + N{sub 2} and N{sub 2} + 10% H{sub 2} were used, respectively. The aim of this investigation is to detect the effect of purging gas on the weld joint properties such as microstructure, corrosion, strength and impact toughness. Macro sections and microstructures of the welds were investigated. Chemical composition analysis to obtain the nitrogen, oxygen and hydrogen content of the weld root was done by Leco analysis. Ferrite content of the beads including root and cap passes were measured by a ferritscope. Vickers hardness (HV10) values were obtained. Intergranular and pitting corrosion tests were applied to determine the corrosion resistance of all welds. Type of the purging gas affected pitting corrosion properties as well as the ferrite content and nitrogen, oxygen and hydrogen contents at the roots of the welds. Any hot cracking problems are not predicted as the weld still solidifies with ferrite in the primary phase as confirmed by microstructural and ferrite content analysis. Mechanical testing showed no significant change according to the purge gas. AISI 321 steel and 347 consumable compositions would permit use of nitrogen rich gases for root shielding without a risk of hot cracking.

  19. EFFECTS OF ELECTRODE DEFORMATION OF RESISTANCE SPOT WELDING ON 304 AUSTENITIC STAINLESS STEEL WELD GEOMETRY

    Directory of Open Access Journals (Sweden)

    Nachimani Charde

    2012-12-01

    Full Text Available The resistance spot welding process is accomplished by forcing huge amounts of current flow from the upper electrode tip through the base metals to the lower electrode tip, or vice versa or in both directions. A weld joint is established between the metal sheets through fusion, resulting in a strong bond between the sheets without occupying additional space. The growth of the weld nugget (bond between sheets is therefore determined from the welding current density; sufficient time for current delivery; reasonable electrode pressing force; and the area provided for current delivery (electrode tip. The welding current and weld time control the root penetration, while the electrode pressing force and electrode tips successfully accomplish the connection during the welding process. Although the welding current and weld time cause the heat generation at the areas concerned (electrode tip area, the electrode tips’ diameter and electrode pressing forces also directly influence the welding process. In this research truncated-electrode deformation and mushrooming effects are observed, which result in the welded areas being inconsistent due to the expulsion. The copper to chromium ratio is varied from the tip to the end of the electrode whilst the welding process is repeated. The welding heat affects the electrode and the electrode itself influences the shape of the weld geometry.

  20. Microstructure characterization in the weld metals of HQ130 + QJ63 high strength steels

    Indian Academy of Sciences (India)

    Wang Juan; Li Yajiang

    2003-04-01

    Microstructural characterization of the weld metals of HQ130 + QJ63 high strength steels, welded under 80% Ar + 20% CO2 gas shielded metal arc welding and different weld heat inputs, was carried out by means of scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The relative contents of acicular ferrite (AF) and pro-eutectic ferrites (PF) in the weld metals were evaluated by means of XQF-2000 micro-image analyser. The experimental results indicate that there is acicular ferrite in the grain and some pro-eutectic ferrite on the boundary of original austenite grains when the weld heat input is small ( = 9.6 kJ/cm), but the main microstructure is ferrite side plate (FSP) when the heat input is larger ( = 22.3 kJ/cm). So the weld heat input should be strictly controlled in the range 10 ∼ 20 kJ/cm and then the content of pro-eutectic ferrite is limited to $\\lt$ 25%. Thus weld metals of HQ130 + QJ63 high strength steels with high toughness and excellent resistance to cracking can be ensured.

  1. Effect of Laser Heat Treatment on Microstructures of 1Cr5Mo Steel Welded Joint

    Directory of Open Access Journals (Sweden)

    GUO Wei

    2017-01-01

    Full Text Available The surface of 1Cr5Mo heat-resistant steel welded joint was treated with CO2 laser,the microstructure and grain size grades of welded joints before and after laser heat treatment (LHT were analyzed with 4XC type optical microscope (OM,and the distribution of residual stress and retained austenite content in the surface of the welded joints were measured with X-ray diffraction (XRD stress tester.The results show that the grains of 1Cr5Mo steel welded joints are refined by LHT,and the microstructure uniformity improves significantly,the grain levels of welded zone,fusion zone,overheated zone and normalized zone increase from level 9,level 9.8,level 8 and level 10.7 to level 10,level 10.2,level 8.5 and level 11 respectively,the mechanical weak areas reduce from overheated zone,welded zone and fusion zone to the overheated zone.The tensile residual stress in the welded joint surface is eliminated by LHT and a layer of compressive residual stress with thickness of about 0.28mm is formed.The residual austenite content in the welded joint surface increases after LHT,of which the distribution is more uniform and conducive to the improvement of mechanical properties.

  2. Hydrogen Cracking in Gas Tungsten Arc Welding of an AISI Type 321 Stainless Steel

    Science.gov (United States)

    Rozenak, P.; Unigovski, Ya.; Shneck, R.

    The effects of in situ cathodic charging on the tensile properties and susceptibility to cracking of an AISI type 321 stainless steel, welded by the gas tungsten arc welding (GTAW) process, was studied by various treatments. Appearance of delta-ferrite phase in the as-welded steels in our tested conditions was observed with discontinuous grain boundaries (M23C6) and a dense distribution of metal carbides MC ((Ti, Nb)C), which precipitated in the matrix. Shielding gas rates changes the mechanical properties of the welds. Ultimate tensile strength and ductility are increases with the resistance to the environments related the increase of the supplied shielding inert gas rates. Charged specimens, caused mainly in decreases in the ductility of welded specimens. However, more severe decrease in ductility was obtained after post weld heat treatment (PWHT). The fracture of sensitized specimens was predominantly intergranular, whereas the as-welded specimens exhibited massive transgranular regions. Both types of specimen demonstrated narrow brittle zones at the sides of the fracture surface and ductile micro-void coalescences in the middle. Ferrite δ was form after welding with high density of dislocation structures and stacking faults formation and the thin stacking fault plates with e-martensite phase were typically found in the austenitic matrix after the cathodical charging process.

  3. Weldability and Monitoring of Resistance Spot Welding of Q&P and TRIP Steels

    Directory of Open Access Journals (Sweden)

    Pasquale Russo Spena

    2016-11-01

    Full Text Available This work aims at investigating the spot weldability of a new advanced Quenching and Partitioning (Q&P steel and a Transformation Induced Plasticity (TRIP steel for automotive applications by evaluating the effects of the main welding parameters on the mechanical performance of their dissimilar spot welds. The welding current, the electrode tip voltage and the electrical resistance of sheet stack were monitored in order to detect any metal expulsion and to evaluate its severity, as well as to clarify its effect on spot strength. The joint strength was assessed by means of shear and cross tension tests. The corresponding fracture modes were determined through optical microscopy. The welding current is the main process parameter that affects the weld strength, followed by the clamping force and welding time. Metal expulsion can occur through a single large expulsion or multiple expulsions, whose effects on the shear and cross tension strength have been assessed. Longer welding times can limit the negative effect of an expulsion if it occurs in the first part of the joining process. The spot welds exhibit different fracture modes according to their strengths. Overall, a proper weldability window for the selected process parameters has been determined to obtain sound joints.

  4. Characterization of 2.25Cr1Mo welded ferritic steel plate by using diffractometric and ultrasonic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Cernuschi, F.; Ghia, S. [Ente Nazionale per l`Energia Elettrica, Milan (Italy); Albertini, G.; Ceretti, M.; Rustichelli, F. [Ancona Univ. (Italy). Ist. di Fisica Medica; Castelnuovo, A.; Depero, L. [Univ. degli studi, Brescia.Fac. di ingegneria, dip. di ingegneria meccanica (Italy); Giamboni, S.; Gori, M. [Centro Elettrotecnico Sperimentale Italiano (CESI), Milan (Italy)

    1995-12-01

    Four different techniques (X-ray and neutron diffraction, ultrasonic birefringence and incremental hole drilling method) were applied for evaluating residual stress in a butt-welded ferritic steel palte. Measurements were carried out both before and after welding. Effects of post-welding heat treatment is also considered. A comparison between results obtained by using four different techniques is done.

  5. Prediction of Weld Quality of A Tungsten Inertr Gas Welded Mild Steel Pipe Joint Using Response Surface Methodology (Rsm

    Directory of Open Access Journals (Sweden)

    I.U. Abhulimen

    2014-08-01

    Full Text Available The weld quality of tungsten inert gas (TIG welded joint has been investigated to identify the most economical weld parameters that will bring about optimum properties. Response surface methodology has been used in the optimization of the tungsten inert gas weld of mild steel pipes. Response surface methodology, based on the central composite face centered design was generated for the purpose of optimization of the weld quality.All the process parameters have desirability of 1. Tensile strength response for this solution have a desirability of 0.910595 and the yield strength of 0.59. Result showed that minimizing current and voltage an average tensile strength of 535.452MPa and yield strength of up to 408.74MPa can be achieved, while keeping gas flow rate and electrode diameter within the range of test. It was also deduced that tensile elongation of the TIG weld is not influenced by the process parameters selected for the purpose of this study.

  6. Effect of explosive characteristics on the explosive welding of stainless steel to carbon steel in cylindrical configuration

    OpenAIRE

    Mendes, R; Ribeiro, J. B.; Loureiro, A.

    2013-01-01

    The aim of this research is to study the influence of explosive characteristics on the weld interfaces of stainless steel AISI 304L to low alloy steel 51CrV4 in a cylindrical configuration. The effect of ammonium nitrate-based emulsion, sensitized with different quantities and types of sensitizing agents (hollow glass microballoons or expanded polystyrene spheres) and Ammonium Nitrate Fuel Oil (ANFO) explosives on the interface characteristics is analyzed. Research showed that the type of exp...

  7. An Analysis of the Joints’ Properties of Fine-Grained Steel Welded by the MAG and SAW Methods

    Directory of Open Access Journals (Sweden)

    Krawczyk R.

    2016-09-01

    Full Text Available The article presents an analysis of properties of welded joints of fine-grained steel of P460NH type used more and more often in the modern constructions. A process of examining a technology of welding has been carried out on the thick-walled butt joints of sheet metal by two methods of welding namely MAG – 135 and SAW – 121. The article deals with a topic of optimizing a process of welding thick-walled welded joints of fine-grained steel due to their mechanicalproperties and efficiency.

  8. 75 FR 13729 - Circular Welded Non-Alloy Steel Pipe from the Republic of Korea: Extension of Time Limit for the...

    Science.gov (United States)

    2010-03-23

    ... International Trade Administration Circular Welded Non-Alloy Steel Pipe from the Republic of Korea: Extension of... circular welded non-alloy steel pipe from the Republic of Korea, covering the period November 1, 2007 through October 31, 2008. See Circular Welded Non-Alloy Steel Pipe from the Republic of Korea:...

  9. Stress Engineering of Multi-pass Welds of Structural Steel to Enhance Structural Integrity

    Science.gov (United States)

    Ganguly, Supriyo; Sule, Jibrin; Yakubu, Mustapha Y.

    2016-08-01

    In multi-pass welding, the weld metal and the associated heat-affected zone are subjected to repeated thermal cycling from successive deposition of filler metals. The thermal straining results into multi-mode deformation of the weld metal which causes a variably distributed residual stress field through the thickness and across the weld of a multi-pass weldment. In addition to this, the as-welded fusion zone microstructure shows dendritic formation of grains and segregation of alloying element. This may result in formation of micro-corrosion cells and the problem would aggravate in case of highly alloyed materials. Local mechanical tensioning is an effective way of elimination of the weld tensile residual stress. It has been shown that application of cold rolling is capable not only of removing the residual stress, but depending on its magnitude it may also form beneficial compressive stress state. Multi-pass structural steel welds used as structural alloy in general engineering and structural applications. Such alloys are subjected to severe in-service degradation mechanisms e.g., corrosion and stress corrosion cracking. Welds and the locked-in residual stress in the welded area often initiate the defect which finally results in failure. In the present study, a multi-pass structural steel weld metal was first subjected to post-weld cold rolling which was followed by controlled heating by a fiber laser. Cold straining resulted in redistribution of the internal stress through the thickness and controlled laser processing helps in reforming of the grain structure. However, even with controlled laser, processing the residual stress is reinstated. Therefore, a strategy has been adopted to roll the metal post-laser processing so as to obtain a complete stress-free and recrystallized microstructure.

  10. Experimental Development of Dual Phase Steel Laser-arc Hybrid Welding and its Comparison to Laser and Gas Metal Arc Welding

    Directory of Open Access Journals (Sweden)

    Wagner Duarte Antunes

    Full Text Available Abstract Dual phase DP600 steels have been used in many automobile structures and laser welding has been the standard method for the joining of different sections. This work proposed a comparison between laser welding with arc welding (GMAW and with hybrid laser-arc welding in order to access the microstructures and the mechanical behavior. The laser and hybrid welds are competitive in terms of microstructure and mechanical behavior, presenting both acceptable and tough welds. The maximum ductility of the laser and hybrid welds are very similar, around 14%, and near to the values observed in the base material. The GMAW presents low ductility due to the softening caused by tampering of the martensite, and thus is unacceptable as the welding procedure.

  11. 75 FR 44763 - Certain Circular Welded Non-Alloy Steel Pipe From Mexico; Extension of Time Limit for Preliminary...

    Science.gov (United States)

    2010-07-29

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE International Trade Administration Certain Circular Welded Non-Alloy Steel Pipe From Mexico; Extension of Time... welded non- alloy steel pipe from Mexico. We also received review requests on November 30, 2009,...

  12. 77 FR 5240 - Light-Walled Welded Rectangular Carbon Steel Tubing From Taiwan: Continuation of Antidumping Duty...

    Science.gov (United States)

    2012-02-02

    ... should the order be revoked. See Light-Walled Welded Rectangular Carbon Steel Tubing From Taiwan: Final... within a reasonably foreseeable time. See Light-Walled Rectangular Pipe and Tube From Taiwan, 77 FR 3497... International Trade Administration Light-Walled Welded Rectangular Carbon Steel Tubing From Taiwan:...

  13. 77 FR 42697 - Stainless Steel Butt-Weld Pipe Fittings From Italy, Malaysia, and the Philippines: Continuation...

    Science.gov (United States)

    2012-07-20

    ... Orders: Stainless Steel Butt-Weld Pipe Fittings From Italy, Malaysia, and the Philippines, 66 FR 11257 (February 23, 2001). \\2\\ See Initiation of Five-Year (``Sunset'') Review, 76 FR 67412 (November 1, 2011... Steel Butt-Weld Pipe Fittings From Italy, Malaysia, and the Philippines, 77 FR 39735 (July 5, 2012),...

  14. 77 FR 73617 - Certain Circular Welded Non-Alloy Steel Pipe From Mexico: Preliminary Results and Partial...

    Science.gov (United States)

    2012-12-11

    ... Value: Circular Welded Non-Alloy Steel Pipe From Mexico, 57 FR 42953 (September 17, 1992). Notification... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE International Trade Administration Certain Circular Welded Non-Alloy Steel Pipe From Mexico: Preliminary...

  15. 76 FR 78313 - Circular Welded Carbon-Quality Steel Pipe From India, Oman, the United Arab Emirates, and Vietnam

    Science.gov (United States)

    2011-12-16

    ... COMMISSION Circular Welded Carbon-Quality Steel Pipe From India, Oman, the United Arab Emirates, and Vietnam... United Arab Emirates, and Vietnam of circular welded carbon- quality steel pipe, provided for in... of India, Oman, the United Arab Emirates, and Vietnam.\\2\\ \\1\\ The record is defined in sec....

  16. Microstructure and Hardness Distribution of Resistance Welded Advanced High Strength Steels

    DEFF Research Database (Denmark)

    Pedersen, Kim Richardt; Harthøj, Anders; Friis, Kasper Leth

    2008-01-01

    simulated numerically and together with the material carbon equivalent, austenization temperatures and the thermal history the simulations were used to estimate the resulting post weld hardness using the commercial FE code SORPAS. The hardness of the welds of dissimilar materials was estimated......In this work a low carbon steel and two high strength steels (DP600 and TRIP700) have been resistance lap welded and the hardness profiles were measured by micro hardness indentation of cross sections of the joint. The resulting microstructure of the weld zone of the DP-DP and TRIP-TRIP joints were...... found to consist of a martensitic structure with a significant increase in hardness. Joints of dissimilar materials mixed completely in the melted region forming a new alloy with a hardness profile lying in between the hardness measured in joints of the similar materials. Furthermore the joints were...

  17. Finite Element Modeling of the Inertia Friction Welding of Dissimilar High-Strength Steels

    Science.gov (United States)

    Bennett, C. J.; Attallah, M. M.; Preuss, M.; Shipway, P. H.; Hyde, T. H.; Bray, S.

    2013-11-01

    Finite element (FE) process modeling of inertia friction welding between dissimilar high-strength steels, AerMet® 100 and SCMV, has been carried out using the DEFORM™-2D (v10.0) software. This model was validated against experimental data collected for a test weld performed between the materials; this included process data such as upset and rotational velocities as well as thermal data collected during the process using embedded thermocouples. The as-welded hoop residual stress from the FE model was also compared with experimental measurements taken on the welded component using synchrotron X-ray and neutron diffraction techniques. The modeling work considered the solid-state phase transformations which occur in the steels, and the trends in the residual stress data were well replicated by the model.

  18. ARc Welding (Industrial Processing Series).

    Science.gov (United States)

    ARC WELDING , *BIBLIOGRAPHIES), (*ARC WELDS, BIBLIOGRAPHIES), ALUMINUM ALLOYS, TITANIUM ALLOYS, CHROMIUM ALLOYS, METAL PLATES, SPOT WELDING , STEEL...INERT GAS WELDING , MARAGING STEELS, MICROSTRUCTURE, HEAT RESISTANT ALLOYS, HEAT RESISTANT METALS, WELDABILITY, MECHANICAL PROPERTIES, MOLYBDENUM ALLOYS, NICKEL ALLOYS, RESISTANCE WELDING

  19. Dissimilar metals TIG welding-brazing of aluminum alloy to galvanized steel

    Institute of Scientific and Technical Information of China (English)

    San-bao LIN; Jian-ling SONG; Guang-chao MA; Chun-li YANG

    2009-01-01

    Dissimilar metals TIG welding-brazing of aluminum alloy to galvanized steel was investigated, and the wettability and spreadability of aluminum filler metal on the steel surface were analyzed. The resultant joint was characterized in order to determine the brittle intermetallic compound (IMC) in the interfacial layer, and the mechan-ical property of the joint was tested. The results show that the zinc coated layer can improve the wettability and spreadability of liquid aluminum filler metal on the surface of the steel, and the wetting angle can reach less than 20°. The lap joint has a dual characteristic and can be divided into a welding part on the aluminum side and a brazing part on the steel side. The interfacial IMC layer in the steel side is about 9.0 μm in thickness, which transfers from (α-Al + FeAl3) in the welded seam side to (Fe2Al5+ FeAl2) and (FeAl2+ FeAl) in the steel side. The crystal grain of the welded seam is obviously larger in size in the aluminum side. The local incomplete brazing is found at the root of the lap joint, which weakens the property of the joint. The fracture of the joint occurs at the root and the average tensile strength reaches 90 MPa.

  20. Dissimilar Friction Stir Welding Between UNS S31603 Austenitic Stainless Steel and UNS S32750 Superduplex Stainless Steel

    Science.gov (United States)

    Theodoro, Maria Claudia; Pereira, Victor Ferrinho; Mei, Paulo Roberto; Ramirez, Antonio Jose

    2015-02-01

    In order to verify the viability of dissimilar UNS S31603 austenitic and UNS S32750 superduplex stainless steels joined by friction stir welding, 6-mm-thick plates were welded using a PCBN-WRe tool. The welded joints were performed in position control mode at rotational speeds of 100 to 300 rpm and a feed rate of 100 mm/min. The joints performed with 150 and 200 rpm showed good appearance and no defects. The metallographic analysis of both joints showed no internal defects and that the material flow pattern is visible only in the stirred zone (SZ) of the superduplex steel. On the SZ top, these patterns are made of regions of different phases (ferrite and austenite), and on the bottom and central part of the SZ, these patterns are formed by alternated regions of different grain sizes. The ferrite grains in the superduplex steel are larger than those in the austenitic ones along the SZ and thermo-mechanically affected zone, explained by the difference between austenite and ferrite recrystallization kinetics. The amount of ferrite islands present on the austenitic steel base metal decreased near the SZ interface, caused by the dissolving of the ferrite in austenitic matrix. No other phases were found in both joints. The best weld parameters were found to be 200 rpm rotation speed, 100 mm/min feed rate, and tool position control.

  1. Structure and Properties of `Steel 08kp + ChNMSh Iron' Bimetal Obtained by Explosion Welding

    Science.gov (United States)

    Denisov, I. V.

    2017-05-01

    The structure of a bimetal from structural steel 08kp and low-alloy iron ChNMSh obtained by explosion welding is studied. The effect of different heat treatments on the structure and properties of the bimetal is determined, and expedient modes of heat treatment for reliving the internal stresses in the zone of joining, which do not worsen the operating properties of the welded materials, are suggested.

  2. Microstructure and pitting corrosion of shielded metal arc welded high nitrogen stainless steel

    OpenAIRE

    Raffi Mohammed; G. Madhusudhan Reddy; K. Srinivasa Rao

    2015-01-01

    The present work is aimed at studying the microstructure and pitting corrosion behaviour of shielded metal arc welded high nitrogen steel made of Cromang-N electrode. Basis for selecting this electrode is to increase the solubility of nitrogen in weld metal due to high chromium and manganese content. Microscopic studies were carried out using optical microscopy (OM) and field emission scanning electron microscopy (FESEM). Energy back scattered diffraction (EBSD) method was used to determine t...

  3. Influence of filler wire composition on weld microstructures of a 444 ferritic stainless steel grade

    OpenAIRE

    Villaret, Vincent; Deschaux-Beaume, Frédéric; Bordreuil, Cyril; Rouquette, Sébastien; Chovet, Corinne

    2013-01-01

    International audience; Seven compositions of metal cored filler wires for Gas Metal Arc Welding (GMAW), containing the same weight percent of chromium (Cr) and molybdenum (Mo) as 444 steel, but with different titanium (Ti) and niobium (Nb) contents were investigated. Experimental results pointed out that the filler wire Ti content required to be twice time more than the amount expected in the deposited metal. This was due to the low Ti transfer ratio during arc welding. Moreover, Ti increase...

  4. Modelling grain-scattered ultrasound in austenitic stainless-steel welds: A hybrid model

    Science.gov (United States)

    Nowers, O.; Duxbury, D. J.; Velichko, A.; Drinkwater, B. W.

    2015-03-01

    The ultrasonic inspection of austenitic stainless steel welds can be challenging due to their coarse grain structure, charaterised by preferentially oriented, elongated grains. The anisotropy of the weld is manifested as both a `steering' of the beam and the back-scatter of energy due to the macroscopic granular structure of the weld. However, the influence of weld properties, such as mean grain size and orientation distribution, on the magnitude of scattered ultrasound is not well understood. A hybrid model has been developed to allow the study of grain-scatter effects in austenitic welds. An efficient 2D Finite Element (FE) method is used to calculate the complete scattering response from a single elliptical austenitic grain of arbitrary length and width as a function of the specific inspection frequency. A grain allocation model of the weld is presented to approximate the characteristic structures observed in austenitic welds and the complete scattering behaviour of each grain calculated. This model is incorporated into a semi-analytical framework for a single-element inspection of a typical weld in immersion. Experimental validation evidence is demonstrated indicating excellent qualitative agreement of SNR as a function of frequency and a minimum SNR difference of 2 dB at a centre frequency of 2.25 MHz. Additionally, an example Monte-Carlo study is presented detailing the variation of SNR as a function of the anisotropy distribution of the weld, and the application of confidence analysis to inform inspection development.

  5. Effects of stop-start features on residual stresses in a multipass austenitic stainless steel weld

    Energy Technology Data Exchange (ETDEWEB)

    Turski, M., E-mail: Mark.Turski@magnesium-elektron.com [School of Materials, University of Manchester, Grosvenor Street, Manchester M1 7HS (United Kingdom); Francis, J.A. [School of Materials, University of Manchester, Grosvenor Street, Manchester M1 7HS (United Kingdom)] [Materials Engineering, Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Hurrell, P.R. [Rolls-Royce Plc., Raynesway, Derby DE21 7XX (United Kingdom); Bate, S.K. [Serco Technical Services, Birchwood Park, Warrington, Cheshire WA3 6GA (United Kingdom); Hiller, S. [Materials Engineering, Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Withers, P.J. [School of Materials, University of Manchester, Grosvenor Street, Manchester M1 7HS (United Kingdom)

    2012-01-15

    In this article we describe experiments that characterise and quantify the localised perturbations in residual stress associated with both ramped and abrupt stop-start features in a multipass weld. Residual stress distributions in AISI Grade 304L/308L stainless steel groove-welded specimens, containing weld interruptions that were introduced in a controlled manner, have been characterised using both neutron diffraction and the incremental deep hole drilling method. The extent to which the localised stresses associated with the interruptions were annealed by overlayed passes was also assessed. The results suggest that, regardless of the type of interruption, there can be significant localised increases in residual stress if the stop-start feature is left exposed. If further weld passes are deposited, then the localised increases in stress are likely to persist if the interruption was abrupt, whereas for a ramped interruption they may be dissipated. - Highlights: Black-Right-Pointing-Pointer In this study the residual stress-field surrounding weld interruptions was measured. Black-Right-Pointing-Pointer Localised stresses were found to increase at weld interruptions. Black-Right-Pointing-Pointer Both ramped and abrupt weld interruptions were investigated. Black-Right-Pointing-Pointer After subsequent weld passes, localised stresses persisted for abrupt interruptions. Black-Right-Pointing-Pointer After subsequent weld passes, localised stresses dissipated for ramped interruptions.

  6. Microstructure and Mechanical Properties of Laser Beam Welds of 15CDV6 Steel

    Directory of Open Access Journals (Sweden)

    M.V.L Ramesh

    2015-07-01

    Full Text Available The present study is concerned with laser beam welding of 15CDV6 steel, that is in the hardened (quenched and tempered condition before welding. Autogenously butt-welded joints are made using carbon dioxide laser with a maximum output of 3.5 kw in the continuous wave mode. Weld microstructure, microhardness measurement across the weldment, transverse tensile properties, and room temperature impact properties of the weldment have been evaluated. The fusion zone exhibits a epitaxial grain growth. The microstrutural features of heat-affected zone and fusion zone vary, due to different thermal cycles for which these were subjected during welding. The average weld metal hardness was 480 Hv. The observed hardness distribution across the welds were correlated with the microstructures. The welds exhibited lower toughness of 50 joules as compared to parent metal of 55 joules and the tensile strength values of the welded specimens are close to that obtained for sheet specimens.Defence Science Journal, Vol. 65, No. 4, July 2015, pp. 339-342, DOI: http://dx.doi.org/10.14429/dsj.65.8749

  7. Relation between hardness and ultrasonic velocity on pipeline steel welded joints

    Science.gov (United States)

    Carreón, H.; Barrera, G.; Natividad, C.; Salazar, M.; Contreras, A.

    2016-04-01

    In general, the ultrasonic techniques have been used to determine the mechanical properties of materials based on their relationship with metallurgical characteristics. In this research work, the relationship between ultrasonic wave velocity, hardness and the microstructure of steel pipeline welded joints is investigated. Measurements of ultrasonic wave velocity were made as a function of the location across the weld. Hardness measurements were performed in an attempt to correlate with ultrasonic response. In addition, the coarse and dendritic grain structure of the weld material is extreme and unpredictably anisotropic. Thus, due to the acoustic anisotropy of the crystal, weld material of studied joints is anisotropic too. Such structure is no longer direction-independent to the ultrasonic wave propagation; therefore, the ultrasonic beam deflects and redirects and the wave front becomes distorted. Thus, the use of conventional ultrasonic testing techniques using fixed beam angles is very limited and the application of conventional ultrasonic phased array techniques becomes desirable. This technique is proposed to assist pipeline operators in estimating the hardness through ultrasonic measures to evaluate the susceptibility to stress sulphide cracking and hydrogen-induced cracking due to hard spots in steel pipeline welded joints in service. Sound wave velocity and hardness measurements have been carried out on a steel welded joint. For each section of the welding, weld bead, fusion zone, heat affected zone and base metal were found to correspond particular values of the ultrasound velocity. These results were correlated with electron microscopy observations of the microstructure and sectorial scan view of welded joints by ultrasonic phased array.

  8. Joining of Low-Carbon Steel Sheets with Al-Based Weld

    Directory of Open Access Journals (Sweden)

    Boczkal G.

    2016-03-01

    Full Text Available The analysis of the connection steel/Al/steel made by resistance welding was performed. The used low-carbon steel had low content of carbon and other elements, aluminum was of 99.997 wt.% Al purity. Formation of various FeAl intermetallic phases found in the phase diagram depending on the duration of the process was analyzed. Two distinctively different types of structure depending on time of welding were observed: 1 hypoeutectic structure for samples processed for 5 s, and 2 eutectic structure for samples processed for 10 s and more. The shear test showed increase of mechanical properties of the connection for the samples welded 10 s.

  9. MICROSTRUCTURE AND PROPERTIES OF DEEP CROGENIC TREATMENT ELECTRODES FOR SPOT WELDING HOT DIP GALVANIZED STEEL

    Institute of Scientific and Technical Information of China (English)

    Wu Zhisheng; Liu Cuirong; Wang Jiuhai; Shan Ping; Hu Shengsun; Lian Jinrui

    2005-01-01

    The microstructure and elements distribution of the deep cryogenic treatment electrodes and non-cryogenic treatment electrodes for spot welding hot dip galvanized steel are observed by a scanning electrical microscope. The grain sizes, the resistivity and the hardness of the electrodes before and after deep cryogenic treatment are measured by X-ray diffraction, the DC double arms bridge and the Brinell hardness testing unit respectively. The spot welding process performance of hot dip galvanized steel plate is tested and the relationship between microstructure and physical properties of deep cryogenic treatment electrodes is analyzed. The experimental results show that deep cryogenic treatment makes Cr, Zr in deep cryogenic treatment electrodes emanate dispersedly and makes the grain of deep cryogenic treatment electrodes smaller than non-cryogenic treatment ones so that the electrical conductivity and the thermal conductivity of deep cryogenic treatment electrodes are improved very much, which make spot welding process performance of the hot dip galvanized steel be improved.

  10. Superplastic Solid-Phase Welding of 40 Cr-T10A Steel

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The microstructure of 40Cr and T10A steel sample and its surface to be welded is ultra-fined through salt-bath cyclic quenching and high frequency hardening, then the surface is cleaned. Under non-vacuum and no shielded gas, the welding parameter of isothermal superplastic solidphase welding and the effect of surface microstructure prior to pressure welding on the quality of joint are studied. At the temperature of 730~750°C and at initial strain rate of (2~4) × 10-4 s-1,the strength of the joint is up to or close to that of 40Cr base metal in 3~5 min pressure welding.

  11. Plasma Control and Gas Protection System for Laser Welding of Stainless Steel

    DEFF Research Database (Denmark)

    Juhl, Thomas Winther; Olsen, Flemming Ove; Petersen, Kaj

    1997-01-01

    An integrated plasma nozzle and a shield gas box have been investigated for laser welding of 2 mm stainless steel sheets. Different gases for plasma control and gas protection of the weld seam have been used. The gas types, welding speed and coaxial and plasma flow show the impact on process...... stability and protection against oxidation. Also oxidation related to special conditions at the starting edge has been investigated. The interaction between coaxial and plasma gas flow show that the coaxial flow widens the band in which the plasma gas flow suppresses the metal plasma. In this band the welds...... are oxide free. With 2.7 kW power welds have been performed at 3000 mm/min with Ar / He (70%/30%) as coaxial, plasma and shield gas....

  12. A Plasma Control and Gas Protection System for Laser Welding of Stainless Steel

    DEFF Research Database (Denmark)

    Juhl, Thomas Winther; Olsen, Flemming Ove

    1997-01-01

    A prototype shield gas box with different plasma control nozzles have been investigated for laser welding of stainless steel (AISI 316). Different gases for plasma control and gas protection of the weld seam have been used. The gas types, welding speed and gas flows show the impact on process...... stability and protection against oxidation. Also oxidation related to special conditions at the starting edge has been investigated. The interaction between coaxial and plasma gas flow show that the coaxial flow widens the band in which the plasma gas flow suppresses the metal plasma. In this band the welds...... are oxide free. With 2.7 kW power welds have been performed at 4000 mm/min with Ar / He (70%/30%) as coaxial, plasma and shield gas....

  13. Effect of Electrode Types on the Solidification Cracking Susceptibility of Austenitic Stainless Steel Weld Metal

    Directory of Open Access Journals (Sweden)

    J. U. Anaele

    2015-01-01

    Full Text Available The effect of electrode types on the solidification cracking susceptibility of austenitic stainless steel weld metal was studied. Manual metal arc welding method was used to produce the joints with the tungsten inert gas welding serving as the control. Metallographic and chemical analyses of the fusion zones of the joints were conducted. Results indicate that weldments produced from E 308-16 (rutile coated, E 308-16(lime-titania coated electrodes, and TIG welded joints fall within the range of 1.5≤Creq./Nieq.≤1.9 and solidified with a duplex mode and were found to be resistant to solidification cracking. The E 308-16 weld metal had the greatest resistance to solidification cracking. Joints produced from E 310-16 had Creq./Nieq. ratio 1.9 and solidified with ferrite mode. It had a low resistance to solidification cracking.

  14. Residual stresses in laser welded ASTM A387 Grade 91 steel plates

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Santosh, E-mail: santosh@barc.gov.in [Bhabha Atomic Research Centre, Mumbai, Maharashtra 400094 (India); Kundu, A. [Materials Engineering, The Open University, Milton Keynes, MK7 6AA (United Kingdom); Venkata, K.A. [Department of Mechanical Engineering, University of Bristol, Bristol, BS8 1TR (United Kingdom); Evans, A. [Institut Laue Langevin, Grenoble (France); Truman, C.E. [Department of Mechanical Engineering, University of Bristol, Bristol, BS8 1TR (United Kingdom); Francis, J.A. [University of Manchester, Manchester, M13 9PL (United Kingdom); Bhanumurthy, K. [Bhabha Atomic Research Centre, Mumbai, Maharashtra 400094 (India); Bouchard, P.J. [Materials Engineering, The Open University, Milton Keynes, MK7 6AA (United Kingdom); Dey, G.K. [Bhabha Atomic Research Centre, Mumbai, Maharashtra 400094 (India)

    2013-07-15

    Residual stresses in 9 mm thick ASTM A387 Grade 91 steel plates, joined using constant power (8 kW) low and high heat input laser welding processes, are characterised using neutron diffraction. The measured longitudinal and normal components of residual stress show a bimodal distribution across the welded joint with a low tensile or compressive trough at the weld centre flanked by high magnitude tensile peaks in parent metal adjacent to the heat affected zone boundaries. The width of the central trough and spread of the outboard tensile zones are significantly greater for the high heat input weld. In both cases, the stress distributions can be explained by the strains associated with the austenite to martensite solid-state transformation as the joint cools after welding.

  15. Mechanical Characteristics of 9% Ni Steel Welded Joint for Lng Storage Tank at Cryogenic

    Science.gov (United States)

    Yoon, Yong-Keun; Kim, Jae-Hoon; Shim, Kyu-Taek; Kim, Young-Kyun

    To confirm the safety performance of LNG storage tank, the change in fatigue crack growth rate and fracture toughness within X-grooved weld heat-affected zone (HAZ) of newly developed 9% Ni steel, which was SMAW welded, was investigated. These materials were produced by QT (quenching, tempering) heat treatment. The weld metal specimens were prepared by taking the same weld procedure applied in actual inner shell of LNG storage tank. All tests were performed in the temperature ranging from R.T. and -162°C. The fatigue crack growth behavior was carried out using CT specimen. Investigation has been carried out to study the influence of temperature and weld effect on fatigue crack growth behavior. Also, Fracture surfaces after tests were observe by scanning electron microscope (SEM).

  16. A comparative evaluation of microstructural and mechanical behavior of fiber laser beam and tungsten inert gas dissimilar ultra high strength steel welds

    Directory of Open Access Journals (Sweden)

    Jaiteerth R. Joshi

    2016-12-01

    Full Text Available The influence of different welding processes on the mechanical properties and the corresponding variation in the microstructural features have been investigated for the dissimilar weldments of 18% Ni maraging steel 250 and AISI 4130 steel. The weld joints are realized through two different fusion welding processes, tungsten inert arc welding (TIG and laser beam welding (LBW, in this study. The dissimilar steel welds were characterized through optical microstructures, microhardness survey across the weldment and evaluation of tensile properties. The fiber laser beam welds have demonstrated superior mechanical properties and reduced heat affected zone as compared to the TIG weldments.

  17. Research of Technological Properties of Steel X6CRNITI18-10 Welded Joints Exploited in Nitric Acid Medium

    Directory of Open Access Journals (Sweden)

    Gediminas Mikalauskas

    2016-04-01

    Full Text Available The repair of chemical industry equipments often requires to replace long time operated pipes or welded inserts with the simi-lar chemical composition. During the study the joints from corro-sion resistant steel X6CrNiTi18-10 were welded by manual metal arc welding with covered electrodes (MMA process 111 and tungsten inert gas welding (TIG process 141 at different welding parameters. The visual, radiographic, penetrant control and ferrite content analysis were carried out. The transverse tensile and bending samples were produced from welded samples; also the macroscopic and microscopic analyse were carried out.

  18. Autogeneous Laser and Hybrid Laser Arc Welding of T-joint Low Alloy Steel with Fiber Laser Systems

    Science.gov (United States)

    Unt, A.; Lappalainen, E.; Salminen, A.

    This paper is focused on the welding of low alloy steels S355 and AH36 in thicknesses 6, 8 and 10 mm in T-joint configuration using either autogeneous laser welding or laser-arc hybrid welding (HLAW) with high power fiber lasers. The aim was to obtain understanding of the factors influencing the size of the fillet and weld geometry through methodologically studying effects of laser power, welding speed, beam alignment relative to surface, air gap, focal point position and order of processes (in case of HLAW) and to get a B quality class welds in all thicknesses after parameter optimization.

  19. Microstructure and mechanical properties of laser welded DP600 steel joints

    Energy Technology Data Exchange (ETDEWEB)

    Farabi, N. [Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3 (Canada); Chen, D.L., E-mail: dchen@ryerson.ca [Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3 (Canada); Li, J.; Zhou, Y. [Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1 (Canada); Dong, S.J. [School of Mechanical Engineering, Hubei University of Technology, Wuhan, Hubei (China)

    2010-02-15

    To reduce fuel consumption and greenhouse gas emissions, dual phase (DP) steels have been considered for automotive applications due to their higher tensile strength, better initial work hardening along with larger elongation compared to conventional grade of steels. In such applications welding and joining have to be involved, which would lead to a localized alteration of materials and create potential safety and reliability issues under cyclic loading. The aim of this investigation was to evaluate microstructural change after laser welding and its effect on the tensile and fatigue properties in DP600 steel. The welding resulted in a significant increase of hardness in the fusion zone, but also the formation of a soft zone in the outer heat-affected zone (HAZ). While the ductility decreased after welding, the yield strength increased and the ultimate tensile strength remained almost unchanged. Fatigue life at higher stress amplitudes was almost the same between the base metal and welded joints despite slightly lower fatigue limit after welding. Tensile fracture and fatigue failure at higher stress amplitudes occurred at the outer HAZ. Fatigue crack initiation was observed to occur from the specimen surface and crack propagation was characterized by the characteristic mechanism of striation formation. Dimples and deformation bands were observed in the fast propagation area.

  20. Numerical simulation on temperature field for resistance spot welding of non-equal thickness stainless steel

    Institute of Scientific and Technical Information of China (English)

    王春生; 陈勇; 韩凤武; 陆培德; 姜中辉

    2003-01-01

    An axisymmetric finite element model is developed to simulate the temperature field of resistant spot welding according to the process characters of nugget formation of non-equal stainless steel sheets. A simulation method of the interaction of electrical and thermal factors is presented. The spot welding process of nugget formation is simulated using hard and soft welding technique norms. The heating characters of soft and hard norms determine the differences in the process of nugget formation and determine the finally shape and offset of nugget. Experimental verification shows that the model prediction agrees well with the practical.

  1. Combined Cycle Fatigue Testing with Ultrasonic Frequency Component of S350 Steel Welded Joint

    Institute of Scientific and Technical Information of China (English)

    柳阳; 王东坡; 邓彩艳; 吴良晨; 尹丹青; 龚宝明

    2014-01-01

    A combined cycle fatigue (CCF) testing system with ultrasonic frequency component was developed to evaluate the CCF properties of S350 steel welded joints in this study. The fatigue testing results indicated that the S-N curves of CCF did not have fatigue limit, which agreed with those of pure high frequency fatigue of welded joints. The S-N curves showed that the CCF strength of welded joints dropped greatly with the increasing interaction between high and low frequency fatigue loading. An approximation design method of CCF was presented using amplitude envelope as the stress range.

  2. Hydrogen Embrittlement of Welded Joint Made of Supermartensitic Stainless Steel in Environment Containing Sulfane

    Directory of Open Access Journals (Sweden)

    Jonšta P.

    2016-06-01

    Full Text Available The work is focused on evaluation of resistance of the welded joint made of supermartensitic 13Cr6Ni2.5Mo stainless steel to sulfide stress cracking. Testing method A and solution B in accordance with NACE TM 0177 were used. All the testing samples were ruptured in a very short time interval but welded joint samples were fractured primarily in the weld metal or in heat affected zone and not in the basic material. Material analysis of samples were made with use of a ZEISS NEOPHOT 32 light microscope and a JEOL 6490LV scanning electron microscope.

  3. Porosity in millimeter-scale welds of stainless steel : three-dimensional characterization.

    Energy Technology Data Exchange (ETDEWEB)

    Aagesen, Larry K. (University of Michigan, Ann Arbor, MI); Madison, Jonathan D.

    2012-05-01

    A variety of edge joints utilizing a continuous wave Nd:YAG laser have been produced and examined in a 304-L stainless steel to advance fundamental understanding of the linkage between processing and resultant microstructure in high-rate solidification events. Acquisition of three-dimensional reconstructions via micro-computed tomography combined with traditional metallography has allowed for qualitative and quantitative characterization of weld joints in a material system of wide use and broad applicability. The presence, variability and distribution of porosity, has been examined for average values, spatial distributions and morphology and then related back to fundamental processing parameters such as weld speed, weld power and laser focal length.

  4. The effects of dynamic load on behaviour of welded joint A-387 Gr. 11 alloyed steel

    Directory of Open Access Journals (Sweden)

    O. Popović

    2013-01-01

    Full Text Available The in-service behaviour of alloyed steel A-387 Gr. 11 Class 1, for pressure vessels, used for high temperature applications, depends on the properties of its welded joint, with parent metal (BM, heat-affected-zone (HAZ and weld metal (WM, as constituents. Charpy testing of BM, WM and HAZ, together with, determination of the parameters of fatigue-crack growth and fatigue threshold ΔKth was used, in order to understand, how heterogeneity of structure and different mechanical properties of welded joint constituents affect on crack initiation and propagation.

  5. Optimization of Filler Metals Consumption in the Production of Welded Steel Structures

    Directory of Open Access Journals (Sweden)

    Pańcikiewicz K.

    2016-03-01

    Full Text Available The paper presents the some aspects of the optimization of filler metals consumption in the production of welded steel structures. Correct choice of beveling method can allow to decrease cost of production and increase quality. The review of calculation methods of filler metal consumption at the design stage was carried out. Moreover, the practical examples of amount of filler metals calculation were presented and analyzed. The article also contain examples of mobile apps which are makes it easy to see welding costs in just a few seconds. Apps as well as simple excel spreadsheets with correct mathematic equations allows to optimize welding process.

  6. Effect of Post Weld Heat Treatment on Mechanical and Corrosion Behaviors of NiTi and Stainless Steel Laser-Welded Wires

    Science.gov (United States)

    Mirshekari, G. R.; Saatchi, A.; Kermanpur, A.; Sadrnezhaad, S. K.

    2016-06-01

    Effects of post weld heat treatment (PWHT) on mechanical properties and corrosion behavior of NiTi shape memory wire, laser welded to the 304 stainless steel wire were investigated. The results showed that PWHT at 200 °C increased corrosion resistance and tensile strength of the joint up to ~1.8 times that of the as-weld joint, with no heat treatment. On the contrary, precipitation of neoteric intermetallic compounds like Fe2Ti, Cr2Ti, FeNi, Ni3Ti, and Ti2Ni in the welded region deteriorated these properties, when PWHT was conducted at 400 °C. Due to the vital effects of the PWHT performed after the laser welding, careful control of the PWHT temperature was found to be a prerequisite for achievement of desirable properties in the dissimilar NiTi-304 stainless steel laser-welded wires.

  7. Prediction of microsegregation and pitting corrosion resistance of austenitic stainless steel welds by modelling

    Energy Technology Data Exchange (ETDEWEB)

    Vilpas, M. [VTT Manufacturing Technology, Espoo (Finland). Materials and Structural Integrity

    1999-07-01

    The present study focuses on the ability of several computer models to accurately predict the solidification, microsegregation and pitting corrosion resistance of austenitic stainless steel weld metals. Emphasis was given to modelling the effect of welding speed on solute redistribution and ultimately to the prediction of weld pitting corrosion resistance. Calculations were experimentally verified by applying autogenous GTA- and laser processes over the welding speed range of 0.1 to 5 m/min for several austenitic stainless steel grades. Analytical and computer aided models were applied and linked together for modelling the solidification behaviour of welds. The combined use of macroscopic and microscopic modelling is a unique feature of this work. This procedure made it possible to demonstrate the effect of weld pool shape and the resulting solidification parameters on microsegregation and pitting corrosion resistance. Microscopic models were also used separately to study the role of welding speed and solidification mode in the development of microsegregation and pitting corrosion resistance. These investigations demonstrate that the macroscopic model can be implemented to predict solidification parameters that agree well with experimentally measured values. The linked macro-micro modelling was also able to accurately predict segregation profiles and CPT-temperatures obtained from experiments. The macro-micro simulations clearly showed the major roles of weld composition and welding speed in determining segregation and pitting corrosion resistance while the effect of weld shape variations remained negligible. The microscopic dendrite tip and interdendritic models were applied to welds with good agreement with measured segregation profiles. Simulations predicted that weld inhomogeneity can be substantially decreased with increasing welding speed resulting in a corresponding improvement in the weld pitting corrosion resistance. In the case of primary austenitic

  8. Effect of welding processes and consumables on fatigue crack growth behaviour of armour grade quenched and tempered steel joints

    OpenAIRE

    G. Magudeeswaran; Balasubramanian, V.; G. Madhusudhan Reddy

    2014-01-01

    Quenched and Tempered (Q&T) steels are widely used in the construction of military vehicles due to its high strength to weight ratio and high hardness. These steels are prone to hydrogen induced cracking (HIC) in the heat affected zone (HAZ) after welding. The use of austenitic stainless steel (ASS) consumables to weld the above steel was the only available remedy because of higher solubility for hydrogen in austenitic phase. The use of stainless steel consumables for a non-stainless steel ba...

  9. Friction Stir Spot Welding of DP780 and Hot-Stamp Boron Steels

    Energy Technology Data Exchange (ETDEWEB)

    Santella, Michael L.; Frederick, Alan; Hovanski, Yuri; Grant, Glenn J.

    2008-05-16

    Friction stir spot welds were made in two high-strength steels: DP780, and a hot-stamp-boron steel with tensile strength of 1500 MPa. The spot welds were made at either 800 or 1600 rpm using either of two polycrystalline boron nitride tools. One stir tool, BN77, had the relatively common pin-tool shape. The second tool, BN46, had a convex rather than a concave shoulder profile and a much wider and shorter pin. The tools were plunged to preprogrammed depths either at a continuous rate (1-step schedule) or in two segments consisting of a relatively high rate followed by a slower rate. In all cases, the welds were completed in 4s. The range of lap-shear values were compared to values required for resistance spot welds on the same steels. The minimum value of 10.3 kN was exceeded for friction stir spot welding of DP780 using a 2-step schedule and either the BN77- or the BN46-type stir tool. The respective minimum value of 12 kN was also exceeded for the HSB steel using the 2-step process and the BN46 stir tool.

  10. Explosive welding of Ti--6Al--4V to mild-steel substrates

    Energy Technology Data Exchange (ETDEWEB)

    Inal, O.T.; Szecket, A.; Vigueras, D.J.; Pak, H.

    1985-11-01

    Ti--6Al--4V sheets were explosively welded to mild steel base plates with an attachment zone that approximates a straight, waveless interface devoid of vorticity and thus the attendant formation of the Fe--Ti intermetallics. The welded interface is seen to be harder than either of the bi-alloys joined and the attachment strength, measured in terms of shear stress required for fracture of the weld zone, is seen to be stronger than the weaker of the materials (mild steel) joined. Stress relief treatments given at 525 /sup 0/C is seen to induce ductility to the brittle interface without the introduction of recrystallization and/or the formation of Fe--Ti intermetallics at the weld zone. Approximate energy calculations indicate that explosively induced welds that comprise a nearly straight interface make efficient use of the detonation introduced energy, and thus the plastic straining of the alloys adjacent to the weld are minimal as confirmed by the microhardness and tensile test data obtained on the as-welded and stress relieved samples.

  11. Characterization on strength and toughness of welded joint for Q550 steel

    Indian Academy of Sciences (India)

    Jiang Qinglei; Li Yajiang; Wang Juan; Zhang Lei

    2011-02-01

    Q550 high strength steel was welded using gas shielded arc welding and three different welding wires without pre- or post-heat treatments. The paper investigates the influence of welding wire on the microstructure, tensile strength and impact toughness of Q550 steel weld joints. Results showed that the microstructure of the weld metal of joints produced using ER50-6 wire was a mixture of acicular ferrite and grain boundary ferrite including pro-eutectoid ferrite and ferrite side plate. Acicular ferrite was mainly obtained in the weld metal of the joints produced using MK.G60-1 wire. Pro-eutectoid ferrite was present along the boundary of prior austenite. Crack initiation occurred easily at pro-eutectoid ferrite when the joint was subjected to tensile. Tensile strength and impact toughness were promoted with increasing acicular ferrite. Tensile strength of the joint fabricated using MK.G60-1 wire was close to that of base metal. And tensile samples fractured at location of the fusion zone, which had lower toughness and thus became the weak region in the joint. Impact absorbing energy was the highest in the heat affected zone. Fibrous region in fracture surfaces of impact specimens was characterized as transgranular fracture with the mechanism of micro-void coalescence. Acicular ferrite microstructure region corresponded to relatively large dimples while boundary ferrite microstructure corresponded to small dimples.

  12. Bulging Behavior of Thin-walled Welded Low Carbon Steel Tubes

    Directory of Open Access Journals (Sweden)

    XIE Wen-cai

    2017-01-01

    Full Text Available In order to investigate the deformation behaviour of welded tubes during hydraulic bulging process,the hydraulic bulging tests of thin-walled welded low carbon steel tubes (STKM11A were conducted on the tube hydroformability testing unit.The thickness distribution,profiles of bulging area and the strain distribution were all obtained.Results show that the thickness reduction of weld zone is just 2.4%-5.5% while its effective strain is just 0.05-0.10,which is very small and negligible compared with the parent material and means that just the geometric position of weld zone is changed with the continuous bulging.The thinnest points are located on the both sides of weld seam symmetrically and the angle between the thinnest point and weld seam is about 30°,at which the necking has been occurred.When the length of bulging area increases,the fracture pressure,the thickness reduction and the ultimate expansion ratio all decrease,and the profile of the bulging area gradually steps away from the elliptical model which is powerless for the ratio of length to diameter up to 2.0.Moreover,the strain state of the tube is transformed from biaxial tension to plane strain state with the increasing length of bulging area,on the basis of this the forming limit diagram of welded STKM11A steel tubes can be established.

  13. Microstructure-properties correlation in fiber laser welding of dual-phase and HSLA steels

    Energy Technology Data Exchange (ETDEWEB)

    Saha, D.C., E-mail: dcsaha@uwaterloo.ca [Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1 (Canada); Westerbaan, D.; Nayak, S.S. [Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1 (Canada); Biro, E. [ArcelorMittal Global Research, 1390 Burlington Street East, Hamilton, ON, Canada L8N 3J5 (Canada); Gerlich, A.P.; Zhou, Y. [Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1 (Canada)

    2014-06-01

    Similar and dissimilar welds of dual-phase (DP) and high strength low alloy (HSLA) steels were made by fiber laser welding (FLW). The welds were characterized with respect to microstructure, micro- and nano-hardness, and tensile properties. The fusion zone (FZ) in the DP welds consisted of fully martensitic structure; whereas HSLA and dissimilar weld FZ microstructure were mixture of martensite and bainite. Analytical transmission electron microscopy (TEM) confirmed bainite structures containing bainitic ferrite laths with intralath and interlath cementite. Precipitation of single variant carbides inside the bainitic ferrite laths were confirmed by measuring the interplanar spacing. The cooling rate in the FZ, estimated using Rosenthal equation, and continuous-cooling-transformation diagrams corroborated the microstructure formed. Nanoindentation was used to verify the hardness of these individual microconstituents, since a much lower nano-hardness for bainite (4.11 GPa) was observed compared to martensite (6.57 GPa) phase. Tensile failure occurred in the tempered area of the heat affected zone (HAZ) in the DP steel welded, which was confirmed by typical cup-like dimple fracture; likewise failure in the HSLA base metal, which occurred in dissimilar and HSLA welds, indicated distinctive dimple and shear dimple ductile morphology.

  14. Nanosecond pulsed laser welding of high carbon steels

    Science.gov (United States)

    Ascari, Alessandro; Fortunato, Alessandro

    2014-03-01

    The present paper deals with the possibility to exploit low-cost, near infra-red, nanosecond pulsed laser sources in welding of high carbon content thin sheets. The exploitation of these very common sources allows to achieve sound weld beads with a good depth-to-width ratio and very small heat affected zones when the proper process parameters are involved. In particular the role of pulse frequency, pulse duration, peak power and welding speed on the characteristics of the weld beads is studied and the advantage of the application of short-pulse laser sources over traditional long-pulse or continuous wave one is assessed.

  15. Quantitative Acoustic Emission Fatigue Crack Characterization in Structural Steel and Weld

    Directory of Open Access Journals (Sweden)

    Adutwum Marfo

    2013-01-01

    Full Text Available The fatigue crack growth characteristics of structural steel and weld connections are analyzed using quantitative acoustic emission (AE technique. This was experimentally investigated by three-point bending testing of specimens under low cycle constant amplitude loading using the wavelet packet analysis. The crack growth sequence, that is, initiation, crack propagation, and fracture, is extracted from their corresponding frequency feature bands, respectively. The results obtained proved to be superior to qualitative AE analysis and the traditional linear elastic fracture mechanics for fatigue crack characterization in structural steel and welds.

  16. NUMERICAL SIMULATION OF TEMPERATURE FIELD ON FLASH BUTT WELDING FOR HIGH MANGANESE STEELS

    Institute of Scientific and Technical Information of China (English)

    B.D. Yu; W.D. Song; F.C. Zhang

    2005-01-01

    An axial symmetry finite element model coupled with electricity-thermal effect was developed to study the temperature field distribution in process of the flash butt welding (FBW) of frog highmanganese steel. The influence of temperature dependent material properties and the contact resistance were taken into account in FEMsimulation. Meanwhile, the lost materials due to splutter was resolved by using birth and death element. The result of analyzing data shows that the model in the FBW flashing is reasonable and feasible, and can exactly simulate the temperature field distribution. The modeling provides reference for analysis of welding technologies on the temperature field of high-manganese steel in FBW.

  17. NDE of explosion welded copper stainless steel first wall mock-up

    Energy Technology Data Exchange (ETDEWEB)

    Taehtinen, S.; Kauppinen, P.; Jeskanen, H.; Lahdenperae, K.; Ehrnsten, U. [VTT Manufacturing Technology, Espoo (Finland). Materials and Structural Integrity

    1997-04-01

    The study showed that reflection type C-mode scanning acoustic microscope (C-SAM) and internal ultrasonic inspection (IRIS) equipment can be applied for ultrasonic examination of copper stainless steel compound structures of ITER first wall mock-ups. Explosive welding can be applied to manufacture fully bonded copper stainless steel compound plates. However, explosives can be applied only for mechanical tightening of stainless steel cooling tubes within copper plate. If metallurgical bonding between stainless steel tubes and copper plate is required Hot Isostatic Pressing (HIP) method can be applied. (orig.)

  18. The Impact of Corrosion on the Mechanical Behavior of Welded Splices of Reinforcing Steel S400 and B500c

    Science.gov (United States)

    Apostolopoulos, Ch. Alk.; Michalopoulos, D.; Dimitrov, L.

    2008-02-01

    The reinforcing steel, used in concrete structures, when corroded causes reduction of the strength properties and especially drastic reduction of ductility. Steel corrosion constitutes an important factor of progressive devaluation of its mechanical properties and serious reduction of the integrity of structures. The problem becomes more evident specifically for structures near coastal areas where salt corrosion is predominant. Reinforced concrete columns and beams are quite often extended by welding new steel reinforcement to the already corroded existing steel. In the present article the impact of corrosion on the mechanical properties of welded splices of reinforcing Steel S400 and B500c is examined. An experimental investigation was conducted and tensile and compressive results are presented for welded precorroded S400 and noncorroded B500c steel splices. The mechanical behavior of welded splices in tension are different in compression and depend strongly on the level of corrosion of the S400 bars.

  19. Study of austenitic stainless steel welded with low alloy steel filler metal. [tensile and impact strength tests

    Science.gov (United States)

    Burns, F. A.; Dyke, R. A., Jr.

    1979-01-01

    The tensile and impact strength properties of 316L stainless steel plate welded with low alloy steel filler metal were determined. Tests were conducted at room temperature and -100 F on standard test specimens machined from as-welded panels of various chemical compositions. No significant differences were found as the result of variations in percentage chemical composition on the impact and tensile test results. The weldments containing lower chromium and nickel as the result of dilution of parent metal from the use of the low alloy steel filler metal corroded more severely in a marine environment. The use of a protective finish, i.e., a nitrile-based paint containing aluminum powder, prevented the corrosive attack.

  20. Corrosion rate of parent and weld materials of F82H and JPCA steels under LBE flow with active oxygen control at 450 and 500 deg. C

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Kenji [Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan)], E-mail: kikuchi.kenji21@jaea.go.jp; Kamata, Kinya; Ono, Mikinori; Kitano, Teruaki; Hayashi, Kenichi [Mitsui Engineering and Ship-building Co., Ltd., 5-6-4 Tsukiji, Chuo-ku, Tokyo 104-8439 (Japan); Oigawa, Hiroyuki [Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan)

    2008-06-30

    Corrosion behavior of parent and weld materials of F82H and JPCA was studied in the circulating LBE loop under impinging flow. These are candidate materials for Japanese Accelerator Driven System (ADS) beam windows. Maximum temperatures were kept to 450 and 500 deg. C with 100 deg. C constant temperature difference. Main flow velocity was 0.4-0.6 m/s in every case. Oxygen concentration was controlled to 2-4 x 10{sup -5} mass% although there was one exception. Testing time durations were 500-3000 h. Round bar type specimens were put in the circular tube of the loop. An electron beam weld in the middle of specimens was also studied. Optical microscopy, electron microscopy, X-ray element analyses and X-ray diffraction were used to investigate corrosion in these materials. Consequently corrosion depth and stability of those oxide layers were characterized based on the analyses. For a long-term behavior a linear law is recommended to predict corrosion in the ADS target design.

  1. Double Fillet Welding of Carbon Steel T-Joint by Double Channel Shielding Gas Metal Arc Welding Method Using Metal Cored Wire

    Directory of Open Access Journals (Sweden)

    Mert T.

    2017-06-01

    Full Text Available Low carbon steel material and T-joints are frequently used in ship building and steel constructions. Advantages such as high deposition rates, high quality and smooth weld metals and easy automation make cored wires preferable in these industries. In this study, low carbon steel materials with web and flange thicknesses of 6 mm, 8 mm and 10 mm were welded with conventional GMAW and double channel shielding gas metal arc welding (DMAG method to form double fillet T-joints using metal cored wire. The difference between these two methods were characterized by measurements of mean welding parameters, Vickers hardness profiles, weld bead and HAZ geometry of the joints and thermal camera temperature measurements. When weld bead and HAZ geometries are focused, it was seen filler metal molten area increased and base metal molten area decreased in DMAG of low carbon steel. When compared with traditional GMAW, finer and acicular structures in weld metal and more homogenous and smaller grains in HAZ are obtained with double channel shielding gas metal arc welding.

  2. Inhibition of the formation of intermetallic compounds in aluminum-steel welded joints by friction stir welding

    Directory of Open Access Journals (Sweden)

    Torres López, Edwar A.

    2015-12-01

    Full Text Available Formation of deleterious phases during welding of aluminum and steel is a challenge of the welding processes, for decades. Friction Stir Welding (FSW has been used in an attempt to reduce formation of intermetallic compounds trough reducing the heat input. In this research, dissimilar joint of 6063-T5 aluminum alloy and AISI-SAE 1020 steel were welded using this technique. The temperature of welded joints was measured during the process. The interface of the welded joints was characterized using optical microscopy, scanning and transmission electron microscopy. Additionally, composition measurements were carried out by X-EDS and DRX. The experimental results revealed that the maximum temperature on the joint studied is less than 360 °C. The microstructural characterization in the aluminum-steel interface showed the absence of intermetallic compounds, which is a condition attributed to the use of welding with low thermal input parameters.La unión de juntas aluminio-acero, sin la formación de fases deletéreas del tipo FexAly, ha sido, por décadas, un desafío para los procesos de soldadura. La soldadura por fricción-agitación ha sido empleada para intentar reducir el aporte térmico y evitar la formación de compuestos intermetálicos. Usando esta técnica fueron soldadas juntas disimilares de aluminio 6063-T5 y acero AISI-SAE 1020. La soldadura fue acompañada de medidas de temperatura durante su ejecución. La interfase de las juntas soldadas fue caracterizada utilizando microscopía óptica, electrónica de barrido y electrónica de transmisión. Adicionalmente fueron realizadas medidas puntuales X-EDS y DRX. Los resultados experimentales revelan que la temperatura máxima en la junta es inferior a 360 °C. La caracterización microestructural en la interfase aluminio-acero demostró la ausencia de compuestos intermetálicos, condición atribuida al uso de parámetros de soldadura con bajo aporte térmico.

  3. Research on Ultrasonic Flaw Detection of Steel Weld in Spatial Grid Structure

    Science.gov (United States)

    Du, Tao; Sun, Jiandong; Fu, Shengguang; Zhang, Changquan; Gao, Qing

    2017-06-01

    The welding quality of spatial grid member is an important link in quality control of steel structure. The paper analyzed the reasons that the welding seam of small-bore pipe with thin wall grid structure is difficult to be detected by ultrasonic wave from the theoretical and practical aspects. A series of feasible detection methods was also proposed by improving probe and operation approaches in this paper, and the detection methods were verified by project cases. Over the years, the spatial grid structure is widely used the engineering by virtue of its several outstanding characteristics such as reasonable structure type, standard member, excellent space integrity and quick installation. The wide application of spatial grid structure brings higher requirements on nondestructive test of grid structure. The implementation of new Code for Construction Quality Acceptance of Steel Structure Work GB50205-2001 strengthens the site inspection of steel structure, especially the site inspection of ultrasonic flaw detection in steel weld. The detection for spatial grid member structured by small-bore and thin-walled pipes is difficult due to the irregular influence of sound pressure in near-field region of sound field, sound beam diffusion generated by small bore pipe and reduction of sensitivity. Therefore, it is quite significant to select correct detecting conditions. The spatial grid structure of welding ball and bolt ball is statically determinate structure with high-order axial force which is connected by member bars and joints. It is welded by shrouding or conehead of member bars and of member bar and bolt-node sphere. It is obvious that to ensure the quality of these welding positions is critical to the quality of overall grid structure. However, the complexity of weld structure and limitation of ultrasonic detection method cause many difficulties in detection. No satisfactory results will be obtained by the conventional detection technology, so some special

  4. Influence of welding parameters on nitrogen content in welding metal of 32Mn-7Cr-1Mo-0.3N austenitic steel

    Institute of Scientific and Technical Information of China (English)

    FU Rui-dong; QIU Liang; WANG Cun-yu; WANG Qing-feng; ZHENG Yang-zeng

    2005-01-01

    The transfer behavior of nitrogen into the welding metal during gas tungsten arc welding process of 32Mn-7Cr-1Mo-0.3N steel was investigated. The effects of gas tungsten arc welding process variables, such as the volume fraction of nitrogen in shielding gas, arc holding time and arc current on the nitrogen content in the welding metal were also evaluated. The results show that the volume fraction of nitrogen in gas mixture plays a major role in controlling the nitrogen content in the welding metal. It seems that there exhibits a maximum nitrogen content depending on the arc current and arc holding time. The optimum volume fraction of nitrogen in shielding gas is 4% or so. The role of gas tungsten arc welding processing parameters in controlling the transfer of nitrogen is further confirmed by the experimental results of gas tungsten arc welding process with feeding metal.

  5. Weld pool temperatures of steel S235 while applying a controlled short-circuit gas metal arc welding process and various shielding gases

    Science.gov (United States)

    Kozakov, R.; Schöpp, H.; Gött, G.; Sperl, A.; Wilhelm, G.; Uhrlandt, D.

    2013-11-01

    The temperature determination of liquid metals is difficult and depends strongly on the emissivity. However, the surface temperature distribution of the weld pool is an important characteristic of an arc weld process. As an example, short-arc welding of steel with a cold metal transfer (CMT) process is considered. With optical emission spectroscopy in the spectral region between 660 and 840 nm and absolute calibrated high-speed camera images the relation between temperature and emissivity of the weld pool is determined. This method is used to obtain two-dimensional temperature profiles in the pictures. Results are presented for welding materials (wire G3Si1 on base material S235) using different welding CMT processes with CO2 (100%), Corgon 18 (18% CO2 + 82% Ar), VarigonH6 (93.5% Ar + 6.5% H2) and He (100%) as shielding gases. The different gases are used to study their influence on the weld pool temperature.

  6. Low Cycle Fatigue behavior of SMAW welded Alloy28 superaustenitic stainless steel at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kchaou, Y., E-mail: yacinekchaou@yahoo.fr [Institut Pprime, Département Physique et Mécanique des Matériaux, UPR 3346 CNRS ISAE-ENSMA Université de Poitiers, Téléport 2, 1, avenue Clément Ader, BP 40109, F – 86961 Futuroscope Chasseneuil Cedex (France); Laboratoire de Génie des Matériaux et Environnement (LGME), ENIS, BPW 1173, Sfax (Tunisia); Pelosin, V.; Hénaff, G. [Institut Pprime, Département Physique et Mécanique des Matériaux, UPR 3346 CNRS ISAE-ENSMA Université de Poitiers, Téléport 2, 1, avenue Clément Ader, BP 40109, F – 86961 Futuroscope Chasseneuil Cedex (France); Haddar, N.; Elleuch, K. [Laboratoire de Génie des Matériaux et Environnement (LGME), ENIS, BPW 1173, Sfax (Tunisia)

    2016-01-10

    This paper focused on the study of Low Cycle Fatigue of welded joints of superaustenitic (Alloy28) stainless steels. Chemical composition and microstructure investigation of Base Metal (BM) and Weld Metal (WM) were identified. The results showed that both of composition is fully austenitic with a dendritic microstructure in the WM. Low cycle fatigue tests at different strain levels were performed on Base Metal (BM) and Welded Joint (WJ) specimens with a strain ratio R{sub ε}=−1. The results indicated that the fatigue life of welded joints is lower than the base metal. This is mainly due to the low ductility of the Welded Metal (WM) and the presence of welding defects. Simultaneously, Scanning Electron Microscope (SEM) observations of fractured specimens show that WJ have brittle behavior compared to BM with the presence of several welding defects especially in the crack initiation site. An estimation of the crack growth rate during LCF tests of BM and WJ was performed using distance between striations. The results showed that the crack initiation stage is shorter in the case of WJ compared to BM because of the presence of welding defects in WJ specimens.

  7. Optimization of hybrid laser arc welding of 42CrMo steel to suppress pore formation

    Science.gov (United States)

    Zhang, Yan; Chen, Genyu; Mao, Shuai; Zhou, Cong; Chen, Fei

    2017-06-01

    The hybrid laser arc welding (HLAW) of 42CrMo quenched and tempered steel was conducted. The effect of the processing parameters, such as the relative positions of the laser and the arc, the shielding gas flow rate, the defocusing distance, the laser power, the wire feed rate and the welding speed, on the pore formation was analyzed, the morphological characteristics of the pores were analyzed using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The results showed that the majority of the pores were invasive. The pores formed at the leading a laser (LA) welding process were fewer than those at the leading a arc (AL) welding process. Increasing the shielding gas flow rate could also facilitate the reduction of pores. The laser power and the welding speed were two key process parameters to reduce the pores. The flow of the molten pool, the weld cooling rate and the pore escaping rate as a result of different parameters could all affect pore formation. An ideal pore-free weld was obtained for the optimal welding process parameters.

  8. Joint strength in high speed friction stir spot welded DP 980 steel

    Energy Technology Data Exchange (ETDEWEB)

    Saunders, Nathan; Miles, Michael; Hartman, Trent; Hovanski, Yuri; Hong, Sung Tae; Steel, Russell

    2014-05-01

    High speed friction stir spot welding was applied to 1.2 mm thick DP 980 steel sheets under different welding conditions, using PCBN tools. The range of vertical feed rates used during welding was 2.5 mm – 102 mm per minute, while the range of spindle speeds was 2500 – 6000 rpm. Extended testing was carried out for five different sets of welding conditions, until tool failure. These welding conditions resulted in vertical welding loads of 3.6 – 8.2 kN and lap shear tension failure loads of 8.9 – 11.1 kN. PCBN tools were shown, in the best case, to provide lap shear tension fracture loads at or above 9 kN for 900 spot welds, after which tool failure caused a rapid drop in joint strength. Joint strength was shown to be strongly correlated to bond area, which was measured from weld cross sections. Failure modes of the tested joints were a function of bond area and softening that occurred in the heat-affected zone.

  9. Fatigue strength of hybrid VHSS-Cast steel welded plates.

    NARCIS (Netherlands)

    Pijpers, R.J.M.; Kolstein, M.H.; Romeijn, A.; Bijlaard, F.S.K.

    2009-01-01

    Very high strength steels (VHSS) have been made available by the steel industry for many years. In a fatigue loaded VHSS structure absolute and relative stress variation will be higher compared to stresses in structures made of lower grade steels. Cast steel, also available up to yield strength of 1

  10. Defocusing Techniques for Multi-pass Laser Welding of Austenitic Stainless Steel

    Science.gov (United States)

    Karhu, Miikka; Kujanpää, Veli

    This study introduces an experimental work carried out in multi-pass laser welding with cold filler wire and laser-arc hybrid welding of thick section austenitic stainless steel. As it has been demonstrated earlier, hybrid and cold wire welding with a keyhole-mode can offer very efficient way to produce multi-pass welds in narrow gap thick section joints. However, when multi-pass welding is applied to one pass per layer method without e.g. scanning or defocusing, the used groove width needs to be very narrow in order to ensure the proper melting of groove side walls and thus to avoid lack of fusion/cold-run defects. As a consequence of the narrow groove, particularly in thick section joints, the accessibility of an arc torch or a wire nozzle into the very bottom of a groove in root pass welding can be considerably restricted. In an alternative approach described in this paper, a power density of a laser beam spot was purposely dispersed by using a defocusing technique. In groove filling experiments, a power density of defocused laser beam was kept in the range, which led the welding process towards to conduction limited regime and thus enabled to achieve broader weld cross-sections. The object was to study the feasibility of defocusing as a way to fill and bridge wider groove geometries than what can be welded with focused keyhole-mode welding with filler addition. The paper covers the results of multi-pass welding of up to 60 mm thick joints with single side preparations.

  11. Study on laser welding of austenitic stainless steel by varying incident angle of pulsed laser beam

    Science.gov (United States)

    Kumar, Nikhil; Mukherjee, Manidipto; Bandyopadhyay, Asish

    2017-09-01

    In the present work, AISI 304 stainless steel sheets are laser welded in butt joint configuration using a robotic control 600 W pulsed Nd:YAG laser system. The objective of the work is of twofold. Firstly, the study aims to find out the effect of incident angle on the weld pool geometry, microstructure and tensile property of the welded joints. Secondly, a set of experiments are conducted, according to response surface design, to investigate the effects of process parameters, namely, incident angle of laser beam, laser power and welding speed, on ultimate tensile strength by developing a second order polynomial equation. Study with three different incident angle of laser beam 89.7 deg, 85.5 deg and 83 deg has been presented in this work. It is observed that the weld pool geometry has been significantly altered with the deviation in incident angle. The weld pool shape at the top surface has been altered from semispherical or nearly spherical shape to tear drop shape with decrease in incident angle. Simultaneously, planer, fine columnar dendritic and coarse columnar dendritic structures have been observed at 89.7 deg, 85.5 deg and 83 deg incident angle respectively. Weld metals with 85.5 deg incident angle has higher fraction of carbide and δ-ferrite precipitation in the austenitic matrix compared to other weld conditions. Hence, weld metal of 85.5 deg incident angle achieved higher micro-hardness of ∼280 HV and tensile strength of 579.26 MPa followed by 89.7 deg and 83 deg incident angle welds. Furthermore, the predicted maximum value of ultimate tensile strength of 580.50 MPa has been achieved for 85.95 deg incident angle using the developed equation where other two optimum parameter settings have been obtained as laser power of 455.52 W and welding speed of 4.95 mm/s. This observation has been satisfactorily validated by three confirmatory tests.

  12. Narrow groove gas tungsten arc welding of ASTM A508 Class 4 steel for improved toughness properties

    Energy Technology Data Exchange (ETDEWEB)

    Penik, M.A. Jr. [Rensselaer Polytechnic Inst., Troy, NY (United States)

    1997-04-01

    Welding of heavy section steel has traditionally used the automatic submerged arc welding (ASAW) process because of the high deposition rates achievable. However, the properties, particularly fracture toughness, of the weld are often inferior when compared to base material. This project evaluated the use of narrow groove gas tungsten arc welding (GTAW) to improve weld material properties. The welding procedures were developed for ASTM A508 Class 4 base material using a 1% Ni filler material complying to AWS Specification A.23-90-EF3-F3-N. A narrow groove joint preparation was used in conjunction with the GTAW process so competitive fabrication rates could be achieved when compared to the ASAW process. Weld procedures were developed to refine weld substructure to achieve better mechanical properties. Two heaters of weld wire were used to examine the effects of minor filler metal chemistry differences on weld mechanical properties. Extensive metallographic evaluations showed excellent weld quality with a refined microstructure. Chemical analysis of the weld metal showed minimal weld dilution by the base metal. Mechanical testing included bend and tensile tests to ensure weld quality and strength. A Charpy impact energy curve versus temperature and fracture toughness curve versus temperature were developed for each weld wire heat. Results of fracture toughness and Charpy impact testing indicated an improved transition temperature closer to that of the base material properties.

  13. Dynamic simulation of resistance spot welding of zinc-coated steels

    Institute of Scientific and Technical Information of China (English)

    Wang Lu; Wang Min; Lu Fenggui

    2006-01-01

    A model was developed to simulate the temperature distribution and nugget formation during resistance spot welding ( RSW) of zinc-coated steels. It employs a coupled thermal-electrical-mechanical analysis simulating the dynamic RSW process. Temperature-dependent thermal-electrical-mechanical material properties were considered including contact-resistance.The contact area was determined from a coupled thermal-mechanical analysis. A layer of transition elements was used to represent the change of contact area by killing or activating elements. The heat generation and temperature field were computed in a coupled thermal-electrical model. All these analyses were solved using the commercial finite element method ( FEM) based on ANSYS code, and some advanced functions were used by writing a paragraph of codes by the authors.Compared with the results from only coupled thermal-electrical model in which contact area was uniform during the whole process, the result matches better to the experimental results.

  14. Initial Testing for the Recommendation of Improved Gas Metal Arc Welding Procedures for HY-80 Steel Plate Butt Joints at Norfolk Naval Shipyard

    Science.gov (United States)

    2015-12-01

    FOR THE RECOMMENDATION OF IMPROVED GAS METAL ARC WELDING PROCEDURES FOR HY-80 STEEL PLATE BUTT JOINTS AT NORFOLK NAVAL SHIPYARD by Veronika J...FOR THE RECOMMENDATION OF IMPROVED GAS METAL ARC WELDING PROCEDURES FOR HY-80 STEEL PLATE BUTT JOINTS AT NORFOLK NAVAL SHIPYARD 5. FUNDING NUMBERS 6...gas metal arc welding, submarine, hull cut, butt joint, weld, shielding gas, HY-80 steel , plate 15. NUMBER OF PAGES 53 16. PRICE CODE 17

  15. Dependence of the mechanical properties of joints welded according to the parameters of the metal active gas (MAG welding regime

    Directory of Open Access Journals (Sweden)

    D. Dobrotă

    2015-10-01

    Full Text Available The main objective followed in the realization of welded structures is to obtain superior mechanical characteristics for these structures. The research aimed at setting ranges of values for the welding voltage (Uw, respectively for the welding current (Iw so as to obtain superior mechanical features for welded constructions. The research was carried out using E 36-4 steel as base material and SG2 wire as filler material, whereas the applied welding process was MAG. The optimization was done with the help of a number of 31 test bars considering various welding procedures for each test bar, and the experimental data were processed using the STATISTCA program.

  16. Hybrid laser-arc welding of galvanized high-strength steels in a gap-free lap-joint configuration

    Science.gov (United States)

    Yang, Shanglu

    In order to meet the industry demands for increased fuel efficiency and enhanced mechanical and structural performance of vehicles as well as provided excellent corrosion resistance, more and more galvanized advanced high-strength steels (AHSS) have been used to fabricate automobile parts such as panels, bumpers, and front rails. The automotive industry has shown tremendous interest in using laser welding to join galvanized dual phase steels because of lower heat input and higher welding speed. However, the laser welding process tends to become dramatically unstable in the presence of highly pressurized zinc vapor because of the low boiling point of zinc, around 906°C, compared to higher melting point of steel, over 1500°C. A large number of spatters are produced by expelling the liquid metal from the molten pool by the pressurized zinc vapor. Different weld defects such as blowholes and porosities appear in the welds. So far, limited information has been reported on welding of galvanized high strength dual-phase steels in a gap-free lap joint configuration. There is no open literature on the successful attainment of defect-free welds from the laser or hybrid welding of galvanized high-strength steels. To address the significant industry demand, in this study, different welding techniques and monitoring methods are used to study the features of the welding process of galvanized DP steels in a gap-free lap joint configuration. The current research covers: (i) a feasibility study on the welding of galvanized DP 980 steels in a lap joint configuration using gas tungsten arc welding (GTAW), laser welding, hybrid laser/arc welding with the common molten pool, laser welding with the assistance of GTAW preheating source and hybrid laser-variable polarity gas tungsten arc welding (Laser-VPGTAW) techniques (Chapter 2-4); (ii) a welding process monitoring of the welding techniques including the use of machine vision and acoustic emission technique (Chapter 5); (iii

  17. Formability Analysis of Diode-Laser-Welded Tailored Blanks of Advanced High-Strength Steel Sheets

    Science.gov (United States)

    Panda, S. K.; Baltazar Hernandez, V. H.; Kuntz, M. L.; Zhou, Y.

    2009-08-01

    Currently, advances due to tailored blanking can be enhanced by the development of new grades of advanced high-strength steels (HSSs), for the further weight reduction and structural improvement of automotive components. In the present work, diode laser welds of three different grades of advanced high-strength dual-phase (DP) steel sheets (with tensile strengths of 980, 800, and 450 MPa) to high-strength low-alloy (HSLA) material were fabricated by applying the proper welding parameters. Formability in terms of Hecker’s limiting dome height (LDH), the strain distribution on the hemispherical dome surface, the weld line movement during deformation, and the load-bearing capacity during the stretch forming of these different laser-welded blanks were compared. Finite element (FE) analysis of the LDH tests of both the parent metals and laser-welded blanks was done using the commercially available software package LS-DYNA (Livermore Software Technology Corporation, Livermore, CA); the results compared well with the experimental data. It was also found that the LDH was not affected by the soft zone or weld zone properties; it decreased, however, with an increase in a nondimensional parameter, the “strength ratio” (SR). The weld line movement during stretch forming is an indication of nonuniform deformation resulting in a decrease in the LDH. In all the dissimilar weldments, fracture took place on the HSLA side, but the fracture location shifted to near the weld line (at the pole) in tailor-welded blanks (TWBs) of a higher strength ratio.

  18. Characterization of HAZ of API X70 Microalloyed Steel Welded by Cold-Wire Tandem Submerged Arc Welding

    Science.gov (United States)

    Mohammadijoo, Mohsen; Kenny, Stephen; Collins, Laurie; Henein, Hani; Ivey, Douglas G.

    2017-03-01

    High-strength low-carbon microalloyed steels may be adversely affected by the high-heat input and thermal cycle that they experience during tandem submerged arc welding. The heat-affected zone (HAZ), particularly the coarse-grained heat-affected zone (CGHAZ), i.e., the region adjacent to the fusion line, has been known to show lower fracture toughness compared with the rest of the steel. The deterioration in toughness of the CGHAZ is attributed to the formation of martensite-austenite (M-A) constituents, local brittle zones, and large prior austenite grains (PAG). In the present work, the influence of the addition of a cold wire at various wire feed rates in cold-wire tandem submerged arc welding, a recently developed welding process for pipeline manufacturing, on the microstructure and mechanical properties of the HAZ of a microalloyed steel has been studied. The cold wire moderates the heat input of welding by consuming the heat of the trail electrode. Macrostructural analysis showed a decrease in the CGHAZ size by addition of a cold wire. Microstructural evaluation, using both tint etching optical microscopy and scanning electron microscopy, indicated the formation of finer PAGs and less fraction of M-A constituents with refined morphology within the CGHAZ when the cold wire was fed at 25.4 cm/min. This resulted in an improvement in the HAZ impact fracture toughness. These improvements are attributed to lower actual heat introduced to the weldment and lower peak temperature in the CGHAZ by cold-wire addition. However, a faster feed rate of the cold wire at 76.2 cm/min adversely affected the toughness due to the formation of slender M-A constituents caused by the relatively faster cooling rate in the CGHAZ.

  19. Cold metal transfer spot plug welding of AA6061-T6-to-galvanized steel for automotive applications

    Energy Technology Data Exchange (ETDEWEB)

    Cao, R., E-mail: caorui@lut.cn; Huang, Q.; Chen, J.H., E-mail: zchen@lut.cn; Wang, Pei-Chung

    2014-02-05

    Highlights: • Two Al-to-galvanized steel spot plug welding joints were studied by CMT method. • The optimum process variables for the two joints were gotten by orthogonal test. • Connection mechanism of the two joints were discussed. -- Abstract: In this study, cold metal transfer (CMT) spot plug joining of 1 mm thick Al AA6061-T6 to 1 mm thick galvanized steel (i.e., Q235) was studied. Welding variables were optimized for a plug weld in the center of a 25 mm overlap region with aluminum 4043 wire and 100% argon shielding gas. Microstructures and elemental distributions were characterized by scanning electron microscopy with energy dispersive X-ray spectrometer. Mechanical testing of CMT spot plug welded joints was conducted. It was found that it is feasible to join Al AA6061T6-to-galvanized steel by CMT spot plug welding method. The process variables for two joints with Al AA6061T6-to-galvanized mild steel and galvanized mild steel-to-Al AA6061T6 are optimized. The strength of CMT spot welded Al AA6061T6-to-galvanized mild steel is determined primarily by the strength and area of the brazed interface. While, the strength of the galvanized mild steel-to-Al AA6061T6 joint is mainly dependent upon the area of the weld metal.

  20. Study of sulphate-reducing bacteria corrosion in the weld joint for API X-70 steel

    Energy Technology Data Exchange (ETDEWEB)

    Flores, J. E.; Patino-Carachure, C.; Alfonso, I.; Rodriguez, J. A.; Rosas, G.

    2012-11-01

    The corrosion behavior originated by sulfate-reducing bacteria (SRB) was studied in two regions of welded API X-70 steel pipeline. The studies were focused on base material (BM) and heat affected zone (HAZ), from the internal region of the pipe. SRB were extracted from oil and grown in a Postgate medium. Corrosion was evaluated at 60 degree centigrade for times between 5 and 64 days. Potentiodynamic polarization curves, obtained by electrochemical techniques, indicated surface activation at short times. Structural and morphological characterizations were carried out by scanning electron microscopy (SEM) and optical microscopy (OM). H{sub 2}S concentration and pH were also measured. Results showed an important increase in the corrosion damage up to 20 days, influenced by the SRB activity, which lead to a maximum of H{sub 2}S (pH minimum). It was found a localized corrosion attack in the HAZ in a higher quantity compared to BM; and the formation of a thin film on the steel surface, originated by corrosion products and bacterial activity. (Author) 15 refs.

  1. Corrosion Behavior of MIG Brazed and MIG Welded Joints of Automotive DP600-GI Steel Sheet

    Science.gov (United States)

    Basak, Sushovan; Das, Hrishikesh; Pal, Tapan Kumar; Shome, Mahadev

    2016-12-01

    Galvanized dual-phase steel sheets are extensively used by the auto industry for their corrosion resistance property. Welding by the metal inert gas (MIG) process causes degradation of the steel in the vicinity of the joint due to excessive zinc evaporation. In order to minimize Zn loss, the MIG brazing process has been tried out in lap joint configuration over a heat input range of 136-204 J mm-1. The amount of zinc loss, intermetallic formation and corrosion properties in the joint area has been evaluated for both MIG brazing and MIG welding. Corrosion rate of 21 mm year-1 has been reduced to 2 mm year-1 by adopting MIGB in place MIGW. Impedance study has shown that the corrosion mechanism in base metal, MIG brazed and MIG welded joints is dominated by charge transfer, diffusion and mixed mode control processes, respectively.

  2. Using Phased Array Ultrasonic Testing in Lieu of Radiography for Acceptance of Carbon Steel Piping Welds

    Energy Technology Data Exchange (ETDEWEB)

    Moran, Traci L.; Anderson, Michael T.; Cinson, Anthony D.; Crawford, Susan L.; Nove, Carol A.

    2014-08-01

    The Pacific Northwest National Laboratory (PNNL) is conducting studies for the U.S. Nuclear Regulatory Commission (NRC) to assess the capability, effectiveness, and reliability of ultrasonic testing (UT) as a replacement method for radiographic testing (RT) for volumetric examination of nuclear power plant (NPP) components. This particular study focused on evaluating the use of UT on carbon steel plate welds. Welding fabrication flaws included a combination of planar and volumetric types, e.g., incomplete fusion, lack of penetration, cracks, porosity, and slag inclusions. The examinations were conducted using phased-array (PA) UT techniques applied primarily for detection and flaw type characterization. This paper will discuss the results of using UT in lieu of RT for detection and classification of fabrication flaws in carbon steel plate welds.

  3. High-power Laser Welding of Thick Steel-aluminum Dissimilar Joints

    Science.gov (United States)

    Lahdo, Rabi; Springer, André; Pfeifer, Ronny; Kaierle, Stefan; Overmeyer, Ludger

    According to the Intergovernmental Panel on Climate Change (IPCC), a worldwide reduction of CO2-emissions is indispensable to avoid global warming. Besides the automotive sector, lightweight construction is also of high interest for the maritime industry in order to minimize CO2-emissions. Using aluminum, the weight of ships can be reduced, ensuring lower fuel consumption. Therefore, hybrid joints of steel and aluminum are of great interest to the maritime industry. In order to provide an efficient lap joining process, high-power laser welding of thick steel plates (S355, t = 5 mm) and aluminum plates (EN AW-6082, t = 8 mm) is investigated. As the weld seam quality greatly depends on the amount of intermetallic phases within the joint, optimized process parameters and control are crucial. Using high-power laser welding, a tensile strength of 10 kN was achieved. Based on metallographic analysis, hardness tests, and tensile tests the potential of this joining method is presented.

  4. Optimum Design and Development of High Strength and Toughness Welding Wire for Pipeline Steel

    Science.gov (United States)

    Chen, Cuixin; Xue, Haitao; Yin, Fuxing; Peng, Huifen; Zhi, Lei; Wang, Sixu

    Pipeline steel with higher strength(>800MPa) has been gradually used in recent years, so how to achieve good match of base metal and weld deposit is very important for its practical application. Based on the alloy system of 0.02-0.04%C, 2.0%Mn and 0.5%Si, four different kinds of welding wires were designed and produced. The effects of alloy elements on phase transformation and mechanical properties were analyzed. Experimental results show that the designed steels with the addition of 2-4% Ni+Cr+Mo and 800MPa) and good elongation (>15%). The microstructure of deposits metal is mainly composed of granular bainite and M-A constituents with the mean size of 0.2-07μm are dispersed on ferritic matrix. The deposited metals have good match of strength (>800MPa) and impact toughness (>130J) which well meet the requirement of pipeline welding.

  5. Development of 30Cr06A, a high strength cast steel and its welding ability

    Institute of Scientific and Technical Information of China (English)

    GAO You-jin

    2008-01-01

    High performance hydraulic supports have a high requirement in strength, toughness and welding ability of socket ma- terial. Targeting this problem, we analyzed the properties of the high strength socket material 30Cr06, used in high performance hydraulic supports both at home and abroad and developed a new kind of high strength cast steel 30Cr06A, by making use of an orthogonal experiment, which provided the design conditions for its optimal composition. The result shows that the strength and toughness of the newly developed high strength cast steel 30Cr06A is much better than that of 30Cr06. Theoretical calculations, mechanical property tests and hardness distribution tests of welded joints were carried out for a study of the welding ability of the new material, which is proved to be very good. Therefore, this 30Cr06A material has been successfully used in the socket of high performance hydraulic support.

  6. Development of a welding system for 3D steel rapid prototyping process

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Metal device rapid prototyping with welding is one of the research interests at present. A controlled inertial droplet transfer MAG welding (CIDTMAGW) process was developed for the 3D steel device rapid prototyping with metal deposition. In this process, by using a special designed wire feeder, a controlled inertia is imposed on the droplet formed on the wire tip and combines with the arc force to make it detached. Thus, according to the requirements of rapid prototyping, the arc heat and the droplet detaching force can be separately controlled to attain a stable and satisfactory metal deposition process. A CIDTMAGW system and a testing manipulator for the 3D steel device rapid prototyping are presented. The required software is completed as well. The experiments proved that the geometric formation of the rapid prototyping device with welding deposition is well agreed the data of the device CAD modeling. The surface of the deposited device is comparatively smooth.

  7. Control of Hydrogen Embrittlement in High Strength Steel Using Special Designed Welding Wire

    Science.gov (United States)

    2016-03-01

    Hydrogen can diffuses into steel at high temperatures ( liquid state), in amount that exceeds the solid – solubility at low temperature. – At low...the weld – Add austenite stabilizing alloy element (e.g. Ni, Cu) to promote retained austenite formation (to trap hydrogen and slowdown diffusion

  8. Experimental Investigation and Stochastic Modelling of the Fatigue Behaviour of Welded Steel Joints

    DEFF Research Database (Denmark)

    Lassen, Tom

    The present report describes the fatigue behaviour of surface cracks in welded steel joints. Emphasis is laid on fracture mechanics modelling and the stochastic nature of the fatigue process. Various sources which may contribute to the observed scatter in time to crack initiation and time spent...

  9. 77 FR 39735 - Stainless Steel Butt-Weld Pipe Fittings From Italy, Malaysia, and the Philippines

    Science.gov (United States)

    2012-07-05

    ...)] Stainless Steel Butt-Weld Pipe Fittings From Italy, Malaysia, and the Philippines Determination On the basis..., Malaysia, and the Philippines would be likely to lead to continuation or recurrence of material injury to... Pipe Fittings from Italy, Malaysia, and the Philippines: Inv. Nos. 731-TA-865-867 (Second...

  10. Laser Welding of Zinc Coated Steel Without a Pre-set gap

    NARCIS (Netherlands)

    Pan, Y.

    2011-01-01

    The major problem during laser welding of zinc coated sheet steel in an overlap configuration is the zinc vapour produced at the interface between two sheets. The vapour tends to evacuate through the keyhole and melt pool, particularly when no gap is present between the overlapped sheets. This cause

  11. Evaluation of microstructure and creep damage in high-Cr ferritic steel welds

    Institute of Scientific and Technical Information of China (English)

    Masaaki TABUCHI; Hiromichi HONGO

    2011-01-01

    11Cr-0.4Mo-2W-CuVNb steel (ASME Gr.122) is used for boiler components in ultrasupercritical (USC) thermal power plants. The creep strength of high-Cr steel welds decreases due to the formation of Type Ⅳ creep damage in the heat-affected zone (HAZ) during long-term use at high temperatures. In the present study, the processes and mechanisms of Type Ⅳ creep damage were elucidated by investigating the long-term creep strength, microstructure and damage behavior of Gr.122 steel welds.Creep tests using thick welded joints were interrupted at several time steps, and the initiation, evolution and distribution of creep damage were measured. It was found that the formation and growth of creep damage was suppressed during the steadystate stage; creep voids formed at 0.5 of life, and coalesced to form a crack after 0.9of life. Type Ⅳ creep damage was mostly observed in the area about 30% below the surface of the plate. Differences in creep damage behavior between Gr.122 and Gr.91 steel welds were examined. Experimental creep damage distribution was compared with computed versions using the finite element method and damage mechanics.

  12. Fiber laser welding of austenitic steel and commercially pure copper butt joint

    Science.gov (United States)

    Kuryntsev, S. V.; Morushkin, A. E.; Gilmutdinov, A. Kh.

    2017-03-01

    The fiber laser welding of austenitic stainless steel and commercially pure copper in butt joint configuration without filler or intermediate material is presented. In order to melt stainless steel directly and melt copper via heat conduction a defocused laser beam was used with an offset to stainless steel. During mechanical tests the weld seam was more durable than heat affected zone of copper so samples without defects could be obtained. Three process variants of offset of the laser beam were applied. The following tests were conducted: tensile test of weldment, intermediate layer microhardness, optical metallography, study of the chemical composition of the intermediate layer, fractography. Measurements of electrical resistivity coefficients of stainless steel, copper and copper-stainless steel weldment were made, which can be interpreted or recalculated as the thermal conductivity coefficient. It shows that electrical resistivity coefficient of cooper-stainless steel weldment higher than that of stainless steel. The width of intermediate layer between stainless steel and commercially pure copper was 41-53 μm, microhardness was 128-170 HV0.01.

  13. E-beam welding characteristic of the ARAA steel for the KO HCCR TBM

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jae Sung; Kim, Suk-Kwon; Lee, Eo Hwak; Jin, Hyung Gon; Lee, Dong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    To develop the next generation technologies, the one of the important objects of ITER project is to investigate the heat extraction from the blanket module in a fusion reactor and tritium extraction experiments. Korea has decided to test a helium cooled ceramic reflector (HCCR) test blanket module (TBM) in the ITER. The HCCR TBM is composed of four sub-modules and a back manipulator (BM). And each sub-module is composed of a first wall (FW), a breeding box with s even-layer breeding zone (BZ), and side walls (SW) with the cooling path. In addition, Korea is being developed and evaluated advanced reduced activation alloy (ARAA) material as the HCCR TBM structure. In this study, two thickness of ARAA plates, 8 and 13 mm, were carried out by electron beam (E-beam) weld to optimize the welding procedure considering weld speed and current, and investigated the variations in the weld bead width, an amount of dross, and the weld depth in both ARAA plates to optimize the fabrication procedure. Moreover, post weld heat treatment (PWHT) conditions were also carried out considering a different temperature and a cooling time. The micro-hardness measurements and Charpy Impact test in Base, heat affected zone (HAZ), and weld metal (WM) were carried out on E-beam welded joints after PWHT. The microstructural observation in the E-beam weld joints was also analyzed before and after PWHT condition. The purpose of this study is to find the optimized Ebeam weld condition, and analyze the mechanical properties and the influence of microstructure by Ebeam weld of ARAA materials. To optimize the E-beam welding procedure from ARAA material, two kinds of ARAA plates, 8 and 13 mm, were prepared and carried out E-beam weld considering the weld speed and the current, and investigated the variations in the weld bead width, an amount of dross, and the weld depth. Based on the results 1200 mm/min of welding speed and 65 mA current in 8 mm thickness and 110 mA weld current in 13 mm thickness in

  14. Microstructure and Fatigue Properties of Laser Welded DP590 Dual-Phase Steel Joints

    Science.gov (United States)

    Xie, Chaojie; Yang, Shanglei; Liu, Haobo; Zhang, Qi; Cao, Yaming; Wang, Yuan

    2017-08-01

    In this paper, cold-rolled DP590 dual-phase steel sheets with 1.5 mm thickness were butt-welded by a fiber laser, and the evolution and effect on microhardness, tensile property and fatigue property of the welded joint microstructure were studied. The results showed that the base metal is composed of ferrite and martensite, with the martensite dispersed in the ferrite matrix in an island manner. The microstructure of the weld zone was lath-shaped martensite that can be refined further by increasing the welding speed, while the heat-affected zone was composed of ferrite and tempered martensite. The microhardness increased with increasing welding speed, and the hardness reached its highest value—393.8 HV—when the welding speed was 5 m/min. Static tensile fracture of the welded joints always occurred in the base metal, and the elongation at break was more than 16%. The conditional fatigue limits of the base metal and the weld joints were 354.2 and 233.6 MPa, respectively, under tension-tension fatigue tests with a stress rate of 0.1. After observation of the fatigue fracture morphology, it was evident that the fatigue crack of the base metal had sprouted into the surface pits and that its expansion would be accelerated under the action of a secondary crack. The fatigue source of the welded joint was generated in the weld zone and expanded along the martensite, forming a large number of fatigue striations. Transient breaking, which occurred in the heat-affected zone of the joint as a result of the formation of a large number of dimples, reflected the obvious characteristics of ductile fracture.

  15. High power laser welding of thick steel plates in a horizontal butt joint configuration

    Science.gov (United States)

    Atabaki, M. Mazar; Yazdian, N.; Ma, J.; Kovacevic, R.

    2016-09-01

    In this investigation, two laser-based welding techniques, autogenous laser welding (ALW) and laser welding assisted with a cold wire (LWACW), were applied to join thick plates of a structural steel (A36) in a horizontal narrow gap butt joint configuration. The main practical parameters including welding method and laser power were varied to get the sound weld with a requirement to achieve a full penetration with the reinforcement at the back side of weld in just one pass. The weld-bead shape, cross-section and mechanical properties were evaluated by profilometer, micro-hardness test and optical microscope. In order to investigate the stability of laser-induced plasma plume, the emitted optical spectra was detected and analyzed by the spectroscopy analysis. It was found that at the laser power of 7 kW a fully penetrated weld with a convex back side of weld could be obtained by the LWACW. The microstructural examinations showed that for the ALW the acicular ferrite and for the LWACW the pearlite were formed in the heat affected zone (HAZ). The prediction of microstructure based on continuous cooling transformation (CCT) diagram and cooling curves obtained by thermocouple measurement were in good agreement with each other. According to the plasma ionization values obtained from the spectroscopy analysis the plume for both processes was recognized as dominated weakly ionized plasma including the main vaporized elemental composition. At the optimum welding condition (LWACW at the laser power of 7 kW) the fluctuation of the electron temperature was reduced. The spectroscopy analysis demonstrated that at the higher laser power more of the elemental compositions such as Mn and Fe were evaporated.

  16. Finite element modelling and characterization of friction welding on UNS S31803 duplex stainless steel joints

    Directory of Open Access Journals (Sweden)

    Mohammed Asif. M

    2015-12-01

    Full Text Available Solid state joining techniques are increasingly employed in joining duplex stainless steel materials due to their high integrity. Continuous drive friction welding is a solid state welding technique which is used to join similar and dissimilar materials. This joining technique is characterized by short cycle time, low heat input and narrow heat affected zones. The simulation becomes an important tool in friction welding because of short welding cycle. In the present work, a three dimensional non-linear finite element model was developed. The thermal history and axial shortening profiles were predicted using ANSYS, a software tool. This numerical model was validated using experimental results. The results show that the frictional heating stage of the process has more influence on temperature and upsetting stage has more impact on axial shortening. The knowledge of these parameters would lead to optimization of input parameters and improvement of design and machine tools.

  17. Improving weld quality of 09MnNiDR steel by using arc-excited ultrasonic

    Institute of Scientific and Technical Information of China (English)

    Zhang Yanjun; Wu Minsheng; Li Luming; He Longbiao

    2006-01-01

    An experimental setup to excite ultrasonic by modulating electrical arc was applied in the submerged arc welding ( SA W) process of 09MnNiDR steel to study its effect on quality of the welds. Arc-excited ultrasonic energy refines grains of the welds and more acicular ferrite ( AF) appears in the fasion zone. It also enhances impact toughness of the joints at -70 ℃significantly. With the ultrasonic of 50 kHz, the toughness is improved by 47% in the fusion zone and by 82% in the heataffected zone (HAZ). The fractography of welds shows that the fracture is changed from cleavage fracture to gliding fracture while applying ultrasonic vibration.

  18. Finite element analysis of spot laser of steel welding temperature history

    Directory of Open Access Journals (Sweden)

    Shibib Khalid S.

    2009-01-01

    Full Text Available Laser welding process reduces the heat input to the work-piece which is the main goal in aerospace and electronics industries. A finite element model for axi-symmetric transient heat conduction has been used to predict temperature distribution through a steel cylinder subjected to CW laser beam of rectangular beam profile. Many numerical improvements had been used to reduce time of calculation and size of the program so as to achieve the task with minimum time required. An experimental determined absorptivity has been used to determine heat induced when laser interact with material. The heat affected zone and welding zone have been estimated to determine the effect of welding on material. The ratio of depth to width of the welding zone can be changed by proper selection of beam power to meet the specific production requirement. The temperature history obtained numerically has been compared with experimental data indicating good agreement.

  19. Friction welding of TiAl intermetallics and structural steel by applying Inconel 718 as interlayer

    Institute of Scientific and Technical Information of China (English)

    Li Jinglong; Wang Zhongping; Xiong Jiangtao; Zhang Fusheng; Wang Yanfang

    2005-01-01

    lnconel 718 with thickness ranged from 0. 1 - 1.7 mm was chosen as interlayer to promote weldability in friction welding of TiAl intermetallics and structural steel such as AISI 4140, in which the welded joint presents single fin showing less welding deformation on TiAl side. The correlations between tensile strength and the interlayer thickness were analyzed and fitted to a model. It indicates an optimum interlayer thickness ranged from 0. 9 - 1.1 mm where the tensile strength reaches as high as 360 MPa. Otherwise, while the interlayer thickness decreases to 0. 1 mm, brittle compounds of TiC, Al2 Ti4 C2 and M7 C3 are formed in the welded zone so that the tensile strength decays. Thicker interlayer should be also avoided as double joints may occur at TiAl - Inconel 718 and Inconel 718 -AISI 4140, respectively, which lowers the tensile strength to some extent.

  20. Impact of friction stir welding on the microstructure of ODS steel

    Science.gov (United States)

    Dawson, H.; Serrano, M.; Cater, S.; Iqbal, N.; Almásy, L.; Tian, Q.; Jimenez-Melero, E.

    2017-04-01

    We have assessed the impact of the welding parameters on the nano-sized oxide dispersion and the grain size in the matrix of an ODS steel after friction stir welding. Our results, based on combined small angle neutron scattering and electron microscopy, reveal a decrease in the volume fraction of the particles smaller than 80 nm in the welds, mainly due to particle agglomeration. The increase in tool rotation speed or decrease in transverse speed leads to a higher reduction in nano-sized particle fraction, and additionally to the occurrence of particle melting. The dependence of the average grain size in the matrix on the particle volume fraction follows a Zener pinning-type relationship. This result points to the principal role that the particles have in pinning grain boundary movement, and consequently in controlling the grain size during welding.

  1. Rotating arc horizontal narrow gap welding of high strength quenched and tempered steel

    Institute of Scientific and Technical Information of China (English)

    Guo Ning; Yang Chunli; Han Yanfei; Jia Chuanbao; Du Yongpeng; Zhang Linlin

    2010-01-01

    Rotating arc horizontal narrow gap welding of quenched & tempered ( Q&T) steel was innovatively performed for solving the bottleneck that the molten pool sagged due to the gravity. The shapely multilayer single pass horizontal joint could be obtained by using the rotating arc welding process. The cold crack was not observed in the joint without controlling the heat input and selecting the consumables intentionally. Mkrostructure of the joint could be divided into three zones:base metal zone ( BMZ) , heat-affected zone (HAZ) and weld zone ( WZ). Because of the characteristic of the rotating arc horizontal welding process, the defects in the joints were slag inclusion formed at the inUrlayer of lower side wall. The tensile strength and hardness of HAZ and WZ were larger than those of BMZ. The impact toughness in WZ, HAZ and BM at 0℃ is equal to 115, 212 and 236 J, respectively.

  2. Prediction of Welding Residual Stress in 2. 25Cr-1Mo Steel Pipe

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A numerical analysis method was proposed to predict the welding residual stress in 2.25Cr-1Mo steel pipe considering solid-state phase transformations. A thermal elastic plastic finite element (FE) model considering effects of martensite transformation was developed based on commercial ABAQUS software. Continuous cooling transformation (CCT) diagrams were employed to simulate the fraction of martensite in fusion zone, coarsegrained heat affected zone and fine-grained heat affected zone. The Koistinen-Marburger relationship was used to trace the formation of martensite. The effects of both volume change and yield strength change due to phase transformation on welding residual stress were considered using the proposed FE model. The result shows that the phase transformation has significant effects on the welding residual stress in multi-pass butt weld of pipe. The predicted simulation results by the proposed numerical method are generally in good agreement with experimental results.

  3. Fatigue Strength Improvement of Welded Joint by Ultrasonic Peening in Ultra-Fine Grain Steel

    Institute of Scientific and Technical Information of China (English)

    TIAN Zhi-ling; ZOU Gang; HE Chang-hong; ZHANG Xiao-mu

    2003-01-01

    The ultrasonic peening of weld toes in ultra-fine grain steel was applied to enhance the fatigue behavior. The test results show that the ultrasonic treatment remarkably shifts the S-N curve to the right. The FAT (fatigue strength at 106 cycles) is increased by 66 %. The fatigue life at Δσ=200 MPa is extended by 58 times. The mechanism of fatigue strength improvement by ultrasonic treatment was studied. It is shown that two mechanisms improve the fatigue strength of welded joint by ultrasonic treatment: one is the decrease of the stress concentration ratio at weld toes, and the other is the building-up of a compressive residual stress at the weld.

  4. Microstructural evolution of as-rolled modified 9Cr-1Mo steel during friction stir welding

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung-Gu; Lee, Min-Ku; Rhee, Chang-Kyu; Kim, Tae-Kyu [Korea Atomic Energy Research Institute (KAERI), Daejeon (Korea, Republic of). Nuclear Materials Development Div.; Kim, Ju-Myoung [Nano Technology Inc., Daejeon (Korea, Republic of). R and D Center

    2013-09-15

    Friction stir welding was tried on a modified 9Cr-1Mo (wt.%) ferritic steel in an as-rolled condition. The microstructure of the resultant weld was divided into four distinct regions according to each thermo-mechanical history experienced during welding; i.e., stir zone, thermo-mechanically affected zone, inner heat-affected zone, and outer heat-affected zone. The first three zones showed distinct martensite morphologies depending on the different recrystallization phenomena during the heating cycle in the single-phase austenite region. In the outer heat-affected zone, however, only tempering occurred without phase transformation owing to a relatively low heating temperature. Hardness distribution of the weld closely reflected such microstructural differences, indicating that a considerable softening occurred in the thermo-mechanically affected zone and outer heat-affected zone owing to the coarsening and tempering effects, respectively. (orig.)

  5. Improving fatigue performance of welded joints of X65 pipeline steel by UIT

    Institute of Scientific and Technical Information of China (English)

    Liu Jinming; Chen Tong; Zhang Yufeng

    2005-01-01

    Treating weld toes properly can improve the fatigue performance. Ultrasonic impact treatment (UIT) is a more effective and convenient method to enhance the fatigue strength of welded joints and suchlike structures. Fatigue tests were conducted on the specimens made of X65 pipeline steel. The test specimens were investigated on the fatigue strength and the fatigue life at the same stress range level by comparing the ones peened by UIT with the others without the treatment: the fatigue strength of the specimens as UIT, 90% of the fatigue strength of the base mental, is increased by 38% compared with that of as welded only; the fatigue life of the ones as UIT is prolonged by 11 multiples of the ones as welded only.

  6. Multifrequency eddy-current inspection of seam weld in steel sheath

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.H.; Dodd, C.V.; Chitwood, L.D.

    1985-04-01

    Multifrequency eddy-current techniques were used to perform a continuous on-line inspection of the seam weld in the steel jacket for a superconducting cable. The inspection was required to detect both surface and internal weld flaws in the presence of a large, highly conductive central conductor. Raw eddy-current data were recorded on magnetic tape, and test properties such as discontinuity size and weld penetration were determined by mathematically fitting these data to coefficients developed with representative standards. A sophisticated computer-controlled scanning technique was applied, and a unique scanning device was developed to provide full coverage of the weld and heat-affected zone. The techniques used to develop this multifrequency eddy-current examination are described in this report along with the test equipment, test procedures, and computer programs.

  7. Determination of optimum welding parameters in connecting high alloyed X53CrMnNiN219 and X45CrSi93 steels by friction welding

    Indian Academy of Sciences (India)

    Mehmet Uzkut; Bekir Sadik Ünlü; Mustafa Akdağ

    2011-07-01

    In this study, different welding parameters were applied to two different steels with high alloys and mechanical and metallographical investigations are performed. Thus, the optimum welding parameters were determined for these materials and working conditions. 12.30 diameter steel bars made up of 1.4871 (X53CrMnNiN219) and 1.4718 (X45CrSi93) steel were used as experimental material. The material loss increased with increase in friction and rotating pressure. No fracture at the welding region was observed and the highest fracture energy was identified in B5 group. Based on micro hardness investigation; the hardness profile reached its minimum value at the welding region.

  8. Investigation of corrosion of welded joints of austenitic and duplex stainless steels

    Science.gov (United States)

    Topolska, S.

    2016-08-01

    Investigation of corrosion resistance of materials is one of the most important tests that allow determining their functional properties. Among these tests the special group consist electrochemical investigations, which let to accelerate the course of the process. These investigations allow rapidly estimating corrosion processes occurring in metal elements under the influence of the analysed environment. In the paper are presented results of investigations of the resistance to pitting corrosion of the steel of next grades: austenitic 316L and duplex 2205. It was also analysed the corrosion resistance of welded joints of these grades of steel. The investigations were conducted in two different corrosion environments: in the neutral one (3.5 % sodium chloride) and in the aggressive one (0.1 M sulphuric acid VI). The obtained results indicate different resistance of analysed grades of steel and their welded joints in relation to the corrosion environment. The austenitic 316L steel characterizes by the higher resistance to the pitting corrosion in the aggressive environment then the duplex 2205 steel. In the paper are presented results of potentiodynamic tests. They showed that all the specimens are less resistant to pitting corrosion in the environment of sulphuric acid (VI) than in the sodium chloride one. The 2205 steel has higher corrosion resistance than the 316L stainless steel in 3.5% NaCl. On the other hand, in 0.1 M H2SO4, the 316L steel has a higher corrosion resistance than the 2205 one. The weld has a similar, very good resistance to pitting corrosion like both steels.

  9. Microstructure and Mechanical Properties of Narrow Gap Laser-Arc Hybrid Welded 40 mm Thick Mild Steel

    Science.gov (United States)

    Zhang, Chen; Li, Geng; Gao, Ming; Zeng, XiaoYan

    2017-01-01

    Both laser-arc hybrid welding and narrow gap welding have potential for the fabrication of thick sections, but their combination has been seldom studied. In this research, 40 mm thick mild steel was welded by narrow gap laser-arc hybrid welding. A weld with smooth layer transition, free of visible defects, was obtained by nine passes at a 6 mm width narrow gap. The lower part of the weld has the lowest mechanical properties because of the lowest amount of acicular ferrite, but its ultimate tensile strength and impact absorbing energy is still 49% and 60% higher than those of base metal, respectively. The microhardness deviation of all filler layers along weld thickness direction is no more than 15 HV0.2, indicating that no temper softening appeared during multiple heat cycles. The results provide an alternative technique for improving the efficiency and quality of welding thick sections. PMID:28772469

  10. Microstructure and Mechanical Properties of Narrow Gap Laser-Arc Hybrid Welded 40 mm Thick Mild Steel

    Directory of Open Access Journals (Sweden)

    Chen Zhang

    2017-01-01

    Full Text Available Both laser-arc hybrid welding and narrow gap welding have potential for the fabrication of thick sections, but their combination has been seldom studied. In this research, 40 mm thick mild steel was welded by narrow gap laser-arc hybrid welding. A weld with smooth layer transition, free of visible defects, was obtained by nine passes at a 6 mm width narrow gap. The lower part of the weld has the lowest mechanical properties because of the lowest amount of acicular ferrite, but its ultimate tensile strength and impact absorbing energy is still 49% and 60% higher than those of base metal, respectively. The microhardness deviation of all filler layers along weld thickness direction is no more than 15 HV0.2, indicating that no temper softening appeared during multiple heat cycles. The results provide an alternative technique for improving the efficiency and quality of welding thick sections.

  11. Welding of Thermomechanically Rolled Steel by Yb:YAG Disk Laser / Spawanie Stali Walcowanej Termomechanicznie Laserem Dyskowym Yb:YAG

    Directory of Open Access Journals (Sweden)

    Lisiecki A.

    2015-12-01

    Full Text Available Autogenous laser welding of 5.0 mm thick butt joints of thermomechanically rolled steel S700MC was investigated. The Yb:YAG disk laser TruDisk 3302 emitted at 1.03 μm was used for the trials of autogenous welding. The effect of laser welding parameters and thus thermal conditions of welding on weld shape, microstructure of weld metal and heat affected zone (HAZ, tensile strength, bending angle, impact toughness and microhardness profile was determined. Studies have shown that it is advantageous to provide a high welding speed and low heat input. High cooling rate of weld metal and HAZ leads to the formation of a favorable structure characterized by a large proportion of fine-grained acicular ferrite and provides high mechanical properties of butt joints.

  12. The Effect of Constant and Pulsed Current Gas Tungsten Arc Welding on Joint Properties of 2205 Duplex Stainless Steel to 316L Austenitic Stainless Steel

    Science.gov (United States)

    Neissi, R.; Shamanian, M.; Hajihashemi, M.

    2016-05-01

    In this study, dissimilar 316L austenitic stainless steel/2205 duplex stainless steel (DSS) joints were fabricated by constant and pulsed current gas tungsten arc welding process using ER2209 DSS as a filler metal. Microstructures and joint properties were characterized using optical and electron scanning microscopy, tensile, Charpy V-notch impact and micro-hardness tests, and cyclic polarization measurements. Microstructural observations confirmed the presence of chromium nitride and delta ferrite in the heat-affected zone of DSS and 316L, respectively. In addition, there was some deviation in the austenite/ferrite ratio of the surface welding pass in comparison to the root welding pass. Besides having lower pitting potential, welded joints produced by constant current gas tungsten arc welding process, consisted of some brittle sigma phase precipitates, which resulted in some impact energy reduction. The tensile tests showed high tensile strength for the weld joints in which all the specimens were broken in 316L base metal.

  13. Investigation on Mechanical Properties of 9%Cr/CrMoV Dissimilar Steels Welded Joint

    Science.gov (United States)

    Liu, Xia; Lu, Fenggui; Yang, Renjie; Wang, Peng; Xu, Xiaojin; Huo, Xin

    2015-04-01

    Advanced 9%Cr steel with good heat resistance and CrMoV with good toughness were chosen as candidate materials to fabricate combined rotor for steam turbine operating at over 620 °C. But the great difference in base metals properties presents a challenge in achieving sound defect-free joint with optimal properties in dissimilar welded rotor. In this paper, appropriate selection of filler metal, welding parameters, and post-weld heat treatment was combined to successfully weld 1100-mm-diameter 9%Cr/CrMoV dissimilar experimental rotor through ultra-narrow gap submerge arc welding. Some properties such as hardness, low-cycle fatigue (LCF), and high-cycle fatigue (HCF) combined with microstructural characterization qualify the integrity of the weld. Microstructural analysis indicated the presence of high-temperature tempered martensite as the phase responsible for the improved properties obtained in the weld. The Coffin-Manson parameters were obtained by fitting the data in LCF test, while the conditional fatigue strength was derived from the HCF test based on S-N curve. Analysis of hardness profile showed that the lowest value occurred at heat-affected zone adjacent to base metal which represents the appropriate location of fracture for the samples after LCF and HCF tests.

  14. Long-term creep testing and microstructure evaluation of P91 steel weld joints

    Energy Technology Data Exchange (ETDEWEB)

    Jandova, D.; Kasl, J.; Kanta, V. [SKODA VYZKUM s.r.o., Plzen (Czech Republic)

    2007-06-15

    Trial weld joints were made from wrought and cast modified 9Cr-lMo-V steel using GTAW and SMAW methods. Creep testing was carried out at temperature range from 525 deg C to 625 deg C and stresses from 50 to 240 MPa. Time to rupture of welds made from tube segments and cast plates reached almost 30 000 hours and 20 000 hours respectively. Creep strength was evaluated according the Larson-Miller parametric equation and microstructure was investigated using both light and electron microscopy. Creep rupture strength of both weld joints tested at temperatures below 600 deg C falls into the {+-}20% scatter band of the creep rupture strength of the parent material. At 600 deg C and 625 deg C the creep strength dropped by 27% and 30% for the plate weld and the tube weld respectively. All ruptures occurred in fine grain and intercritically reheated heat affected zones either in the parent material or in the weld metal. Observation of thin foils prepared from selected regions of the weld joints revealed differences in precipitation processes and the structure recovery causing decrease of dislocation density in some regions. Fine ferritic grains with low density of fine carbonitride precipitate occurred in critical localities. Soft grains were deformed and cavities at grain boundaries initiated the crack propagation. (orig.)

  15. Different types of cracking of P91 steel weld joints after long-term creep tests

    Energy Technology Data Exchange (ETDEWEB)

    Jandova, D.; Kasl, J.; Chvostova, E. (SKODA VYZKUM s.r.o., Plzen (Czech Republic))

    2010-05-15

    This paper deals with creep testing and microstructural investigation of trial weld joints prepared of wrought and cast 9Cr-1Mo-V steels using GTAW & SMAW method. Creep testing was carried out at temperature range from 525 degC to 625 degC, the longest time to rupture of 45 811 hrs was achieved. The creep strengths of weld joints for 100 000 hrs were calculated. Different types of cracking were observed in dependency on conditions of creep test and the type of weld joint. Type 1 and Type 2 fractures occurred at high applied stress at relatively low temperatures in the tube weld joint and also in two speciments of the cast plate weld joint after creep test at the lowest temperature and the highest temperature. All other fractures were of the Type 4. Causes of different fracture location in tested weld joints were elucidated on the base of substructure evolution in individual zones - the weld metal, the heat affected zone and the base material. Two processes occur simultaneously, which result in the creep damage: (i) softening of solid solution as a result of Laves phase precipitation and (ii) formation and coalescence of cavities in the soft fine grained parts of heat affected zone. (orig.)

  16. Twin-spot laser welding of advanced high-strength multiphase microstructure steel

    Science.gov (United States)

    Grajcar, Adam; Morawiec, Mateusz; Różański, Maciej; Stano, Sebastian

    2017-07-01

    The study addresses the results concerning the laser welding of TRIP (TRansformation Induced Plasticity) steel using a beam focused at two spots (also referred to as twin-spot laser welding). The analysis involved the effect of variable welding thermal cycles on the properties and microstructure of welded joints. The tests were performed using a linear energy of 0.048 and 0.060 kJ/mm and the laser beam power distribution of 50%:50%, 60%:40% and 70%:30%. The tests also involved welding performed using a linear energy of 0.150 kJ/mm and the laser beam power distribution of 70%:30%. In addition, the research included observations of the microstructure of the fusion zone, heat affected zone and the transition zone using light microscopy and scanning electron microscopy. The fusion zone was composed of blocky-lath martensite whereas the HAZ (heat-affected zone) was characterised by the lath microstructure containing martensite, bainite and retained austenite. The distribution of twin-spot laser beam power significantly affected the microstructure and hardness profiles of welded joints. The highest hardness (480-505 HV), regardless of welding variants used, was observed in the HAZ.

  17. Aging Degradation of Austenitic Stainless Steel Weld Probed by Electrochemical Method and Impact Toughness Evaluation

    Science.gov (United States)

    Singh, Raghuvir; Das, Goutam; Mahato, B.; Singh, P. K.

    2017-01-01

    The present study discriminates the spinodal decomposition and G-phase precipitation in stainless steel welds by double loop electrochemical potentio-kinetic reactivation method and correlates it with the degradation in toughness property. The welds produced with different heat inputs were aged up to 10,000 hours at 673 K to 723 K (400 to 450 °C) and evaluated subsequently for the degree of sensitization (DOS) and impact toughness. The DOS values obtained were attributed to the spinodal decomposition and precipitation of G-phase. Study shows that the DOS correlates well with the impact toughness of the 304LN weld. Prolonged aging at 673 K and 723 K (400 °C and 450 °C) increased the DOS values while the impact toughness was decreased. The weld fabricated at 1 kJ/mm of heat input, produced higher DOS, compared to that at 3 kJ/mm. The geometrical location along the weld is shown to influence the DOS; higher values were obtained at the root than at the topside of the weld. Vermicular and columnar microstructure, in addition to the spinodal decomposition and G-phase precipitation, observed in the root side of the weld appear risky for the impact toughness.

  18. Aging Degradation of Austenitic Stainless Steel Weld Probed by Electrochemical Method and Impact Toughness Evaluation

    Science.gov (United States)

    Singh, Raghuvir; Das, Goutam; Mahato, B.; Singh, P. K.

    2017-03-01

    The present study discriminates the spinodal decomposition and G-phase precipitation in stainless steel welds by double loop electrochemical potentio-kinetic reactivation method and correlates it with the degradation in toughness property. The welds produced with different heat inputs were aged up to 10,000 hours at 673 K to 723 K (400 to 450 °C) and evaluated subsequently for the degree of sensitization (DOS) and impact toughness. The DOS values obtained were attributed to the spinodal decomposition and precipitation of G-phase. Study shows that the DOS correlates well with the impact toughness of the 304LN weld. Prolonged aging at 673 K and 723 K (400 °C and 450 °C) increased the DOS values while the impact toughness was decreased. The weld fabricated at 1 kJ/mm of heat input, produced higher DOS, compared to that at 3 kJ/mm. The geometrical location along the weld is shown to influence the DOS; higher values were obtained at the root than at the topside of the weld. Vermicular and columnar microstructure, in addition to the spinodal decomposition and G-phase precipitation, observed in the root side of the weld appear risky for the impact toughness.

  19. Mechanism of selective corrosion in electrical resistance seam welded carbon steel pipe

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Fajardo, Pedro; Godinez Salcedo, Jesus; Gonzalez Velasquez, Jorge L. [Instituto Politecnico Nacional, Mexico D.F., (Mexico). Escuela Superior de Ingenieria Quimica e Industrias Extractivas. Dept. de Ingenieria Metalurgica

    2009-07-01

    In this investigation the studies of the mechanism of selective corrosion in electrical resistance welded (ERW) carbon steel pipe was started. Metallographic characterizations and evaluations for inclusions were performed. The susceptibility of ERW pipe to selective corrosion in sea water (NACE 1D182, with O{sub 2} or CO{sub 2} + H{sub 2}S) was studied by the stepped potential Potentiostatic electrochemical test method in samples of 1 cm{sup 3} (ASTM G5) internal surface of the pipe (metal base-weld). The tests were looking for means for predicting the susceptibility of ERW pipe to selective corrosion, prior to placing the pipeline in service. Manganese sulfide inclusions are observed deformed by the welding process and they are close to the weld centerline. A slight decarburization at the weld line is observed, and a distinct out bent fiber pattern remains despite the post-weld seam annealing. The microstructure of the weld region consists of primarily polygonal ferrite grains mixed with small islands of pearlite. It is possible to observe the differences of sizes of grain of the present phases in the different zones. Finally, scanning electron microscopic observation revealed that the corrosion initiates with the dissolution of MnS inclusions and with small crack between the base metal and ZAC. (author)

  20. Microstructures and Mechanical Properties of Weld Metal and Heat-Affected Zone of Electron Beam-Welded Joints of HG785D Steel

    Science.gov (United States)

    Zhang, Qiang; Han, Jianmin; Tan, Caiwang; Yang, Zhiyong; Wang, Junqiang

    2016-12-01

    Vacuum electron beam welding (EBW) process was employed to butt weld 10-mm-thick HG785D high-strength steels. The penetration into the steel was adjusted by beam current. Microstructures at weld metal and heat-affected zone (HAZ) regions were comparatively observed. Mechanical properties of the EBWed joints including Vickers hardness, tensile and Charpy impact tests were evaluated. The results indicated that microstructures at the weld metal consisted of coarse lath martensite and a small amount of acicular martensite, while that in the HAZ was tempered sorbite and martensite. The grain size in the weld metal was found to be larger than that in the HAZ, and its proportion in weld metal was higher. The hardness in the weld metal was higher than the HAZ and base metal. The tensile strength and impact toughness in the HAZ was higher than that in the weld metal. All the behaviors were related to microstructure evolution caused by higher cooling rates and state of base metal. The fracture surfaces of tensile and impact tests on the optimized joint were characterized by uniform and ductile dimples. The results differed significantly from that obtained using arc welding process.