WorldWideScience

Sample records for activation protein inhibits

  1. Zinc ions bind to and inhibit activated protein C

    DEFF Research Database (Denmark)

    Zhu, Tianqing; Ubhayasekera, Wimal; Nickolaus, Noëlle

    2010-01-01

    Zn2+ ions were found to efficiently inhibit activated protein C (APC), suggesting a potential regulatory function for such inhibition. APC activity assays employing a chromogenic peptide substrate demonstrated that the inhibition was reversible and the apparent K I was 13 +/- 2 microM. k cat was ...

  2. Thioredoxin interacting protein inhibits hypoxia-inducible factor transcriptional activity

    Science.gov (United States)

    Farrell, Michael R; Rogers, Lynette K; Liu, Yusen; Welty, Stephen E; Tipple, Trent E

    2010-01-01

    Vascular endothelial growth factor (VEGF) is required for proper lung development and is transcriptionally regulated in alveolar epithelial cells by hypoxia inducible factor (HIF). Previous findings in a newborn mouse model of bronchopulmonary dysplasia (BPD) suggest that thioredoxin interacting protein (Txnip) is a novel regulator of VEGF expression. The present studies were designed to test the hypothesis that Txnip negatively regulates VEGF through effects on HIF-mediated gene expression. To test this hypothesis, we first examined the levels of VEGF and Txnip protein in the lungs of 1 day-old newborn and E19 embryos and detected a significant inverse correlation. To elucidate the mechanisms underlying this relationship, we studied the effects of Txnip overexpression on HIF-mediated transcription using murine lung epithelial (MLE-12) cells. Overexpression of Txnip inhibited HIF-mediated reporter activity in both hypoxia and room air. Suppression of HIF activity by Txnip appeared to be independent of the ability of Txnip to bind to thioredoxin. Thus, our studies support a model in which Txnip is a potentially critical regulator of HIF-mediated gene transcription in the murine lung. Alterations in Txnip expression could alter lung VEGF expression in prematurely born human infants and contribute to the development of BPD. PMID:20692333

  3. Synergistic inhibition of the intrinsic factor X activation by protein S and C4b-binding protein

    NARCIS (Netherlands)

    Koppelman, S.J.

    1995-01-01

    The complement protein C4b-binding protein plays an important role in the regulation of the protein C anticoagulant pathway. C4b-binding protein can bind to protein S, thereby inhibiting the cofactor activity of protein S for activated protein C. In this report, we describe a new role for

  4. Synergistic inhibition of the intrinsic factor X activation by protein S and C4b-binding protein

    NARCIS (Netherlands)

    Koppelman, S.J.

    1995-01-01

    The complement protein C4b-binding protein plays an important role in the regulation of the protein C anticoagulant pathway. C4b-binding protein can bind to protein S, thereby inhibiting the cofactor activity of protein S for activated protein C. In this report, we describe a new role for C4b-bindin

  5. 2-Bromopalmitate reduces protein deacylation by inhibition of acyl-protein thioesterase enzymatic activities.

    Directory of Open Access Journals (Sweden)

    Maria P Pedro

    Full Text Available S-acylation, the covalent attachment of palmitate and other fatty acids on cysteine residues, is a reversible post-translational modification that exerts diverse effects on protein functions. S-acylation is catalyzed by protein acyltransferases (PAT, while deacylation requires acyl-protein thioesterases (APT, with numerous inhibitors for these enzymes having already been developed and characterized. Among these inhibitors, the palmitate analog 2-brompalmitate (2-BP is the most commonly used to inhibit palmitoylation in cells. Nevertheless, previous results from our laboratory have suggested that 2-BP could affect protein deacylation. Here, we further investigated in vivo and in vitro the effect of 2-BP on the acylation/deacylation protein machinery, with it being observed that 2-BP, in addition to inhibiting PAT activity in vivo, also perturbed the acylation cycle of GAP-43 at the level of depalmitoylation and consequently affected its kinetics of membrane association. Furthermore, 2-BP was able to inhibit in vitro the enzymatic activities of human APT1 and APT2, the only two thioesterases shown to mediate protein deacylation, through an uncompetitive mechanism of action. In fact, APT1 and APT2 hydrolyzed both the monomeric form as well as the micellar state of the substrate palmitoyl-CoA. On the basis of the obtained results, as APTs can mediate deacylation on membrane bound and unbound substrates, this suggests that the access of APTs to the membrane interface is not a necessary requisite for deacylation. Moreover, as the enzymatic activity of APTs was inhibited by 2-BP treatment, then the kinetics analysis of protein acylation using 2-BP should be carefully interpreted, as this drug also inhibits protein deacylation.

  6. 2-Bromopalmitate reduces protein deacylation by inhibition of acyl-protein thioesterase enzymatic activities.

    Science.gov (United States)

    Pedro, Maria P; Vilcaes, Aldo A; Tomatis, Vanesa M; Oliveira, Rafael G; Gomez, Guillermo A; Daniotti, Jose L

    2013-01-01

    S-acylation, the covalent attachment of palmitate and other fatty acids on cysteine residues, is a reversible post-translational modification that exerts diverse effects on protein functions. S-acylation is catalyzed by protein acyltransferases (PAT), while deacylation requires acyl-protein thioesterases (APT), with numerous inhibitors for these enzymes having already been developed and characterized. Among these inhibitors, the palmitate analog 2-brompalmitate (2-BP) is the most commonly used to inhibit palmitoylation in cells. Nevertheless, previous results from our laboratory have suggested that 2-BP could affect protein deacylation. Here, we further investigated in vivo and in vitro the effect of 2-BP on the acylation/deacylation protein machinery, with it being observed that 2-BP, in addition to inhibiting PAT activity in vivo, also perturbed the acylation cycle of GAP-43 at the level of depalmitoylation and consequently affected its kinetics of membrane association. Furthermore, 2-BP was able to inhibit in vitro the enzymatic activities of human APT1 and APT2, the only two thioesterases shown to mediate protein deacylation, through an uncompetitive mechanism of action. In fact, APT1 and APT2 hydrolyzed both the monomeric form as well as the micellar state of the substrate palmitoyl-CoA. On the basis of the obtained results, as APTs can mediate deacylation on membrane bound and unbound substrates, this suggests that the access of APTs to the membrane interface is not a necessary requisite for deacylation. Moreover, as the enzymatic activity of APTs was inhibited by 2-BP treatment, then the kinetics analysis of protein acylation using 2-BP should be carefully interpreted, as this drug also inhibits protein deacylation.

  7. 2-octynoic acid inhibits hepatitis C virus infection through activation of AMP-activated protein kinase.

    Directory of Open Access Journals (Sweden)

    Darong Yang

    Full Text Available Many chronic hepatitis C virus (HCV-infected patients with current therapy do not clear the virus. It is necessary to find novel treatments. The effect of 2-octynoic acid (2-OA on HCV infection in human hepatocytes was examined. The mechanism of 2-OA antiviral activity was explored. Our data showed that 2-OA abrogated lipid accumulation in HCV replicon cells and virus-infected hepatocytes. It suppressed HCV RNA replication and infectious virus production with no cytotoxicity to the host cells. 2-OA did not affect hepatitis B virus replication in HepG2.2.15 cells derived from HepG2 cells transfected with full genome of HBV. Further study demonstrated that 2-OA activated AMP-activated protein kinase (AMPK and inhibited acetyl-CoA carboxylase in viral-infected cells. Compound C, a specific inhibitor of AMPK, inhibited AMPK activity and reversed the reduction of intracellular lipid accumulation and the antiviral effect of 2-OA. Knockdown of AMPK expression by RNA interference abolished the activation of AMPK by 2-OA and blocked 2-OA antiviral activity. Interestingly, 2-OA induced interferon-stimulated genes (ISGs and inhibited microRNA-122 (miR-122 expression in virus-infected hepatocytes. MiR-122 overexpression reversed the antiviral effect of 2-OA. Furthermore, knockdown of AMPK expression reversed both the induction of ISGs and suppression of miR-122 by 2-OA, implying that activated AMPK induces the intracellular innate response through the induction of ISGs and inhibiting miR-122 expression. 2-OA inhibits HCV infection through regulation of innate immune response by activated AMPK. These findings reveal a novel mechanism by which active AMPK inhibits HCV infection. 2-OA and its derivatives hold promise for novel drug development for chronic hepatitis C.

  8. Rheb Inhibits Protein Synthesis by Activating the PERK-eIF2α Signaling Cascade

    Directory of Open Access Journals (Sweden)

    Richa Tyagi

    2015-02-01

    Full Text Available Rheb, a ubiquitous small GTPase, is well known to bind and activate mTOR, which augments protein synthesis. Inhibition of protein synthesis is also physiologically regulated. Thus, with cell stress, the unfolded protein response system leads to phosphorylation of the initiation factor eIF2α and arrest of protein synthesis. We now demonstrate a major role for Rheb in inhibiting protein synthesis by enhancing the phosphorylation of eIF2α by protein kinase-like ER kinase (PERK. Interplay between the stimulatory and inhibitory roles of Rheb may enable cells to modulate protein synthesis in response to varying environmental stresses.

  9. Activation of protein kinase C inhibits synthesis and release of decidual prolactin

    Energy Technology Data Exchange (ETDEWEB)

    Harman, I.; Costello, A.; Ganong, B.; Bell, R.M.; Handwerger, S.

    1986-08-01

    Activation of calcium-activated, phospholipid-dependent protein kinase C by diacylglycerol and phorbol esters has been shown to mediate release of hormones in many systems. To determine whether protein kinase C activation is also involved in the regulation of prolactin release from human decidual, the authors have examined the effects of various acylglycerols and phorbol esters on the synthesis and release of prolactin from cultured human decidual cells. sn-1,2-Dioctanolyglycerol (diC8), which is known to stimulate protein kinase C in other systems, inhibited prolactin release in a dose-dependent manner with maximal inhibition of 53.1% at 100 M. Diolein (100 M), which also stimulates protein kinase C activity in some systems, inhibited prolactin release by 21.3%. Phorbol 12-myristate 13-acetate (PMA), phorbol 12,13-didecanoate, and 4US -phorbol 12,13-dibutyrate, which activate protein kinase C in other systems, also inhibited the release of prolactin, which the protein kinase C inactivate 4 -phorbol-12,13-didecanoate was without effect. The inhibition of prolactin release was secondary to a decrease in prolactin synthesis. Although diC8 and PMA inhibited the synthesis and release of prolactin, these agents had no effect on the synthesis or release of trichloroacetic acid-precipitable (TVS)methionine-labeled decidual proteins and did not cause the release of the cytosolic enzymes lactic dehydrogenase and alkaline phosphatase. DiC8 and PMA stimulates the specific activity of protein kinase C in decidual tissue by 14.6 and 14.0-fold, respectively. The inhibition of the synthesis and release of prolactin by diC8 and phorbol esters strongly implicates protein kinase C in the regulation of the production and release of prolactin from the decidua.

  10. Effect of mitochondrial complex I inhibition on Fe-S cluster protein activity

    Energy Technology Data Exchange (ETDEWEB)

    Mena, Natalia P. [Department of Biology, Faculty of Sciences, Universidad de Chile, Las Palmeras 3425, Santiago (Chile); Millennium Institute of Cell Dynamics and Biotechnology, Santiago (Chile); Bulteau, Anne Laure [UPMC Univ Paris 06, UMRS 975 - UMR 7725, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, F-75005 Paris (France); Inserm, U 975, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, F-75005 Paris (France); CNRS, UMR 7225, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, F-75005 Paris (France); ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, Paris 75013 (France); Salazar, Julio [Millennium Institute of Cell Dynamics and Biotechnology, Santiago (Chile); Hirsch, Etienne C. [UPMC Univ Paris 06, UMRS 975 - UMR 7725, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, F-75005 Paris (France); Inserm, U 975, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, F-75005 Paris (France); CNRS, UMR 7225, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, F-75005 Paris (France); ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, Paris 75013 (France); Nunez, Marco T., E-mail: mnunez@uchile.cl [Department of Biology, Faculty of Sciences, Universidad de Chile, Las Palmeras 3425, Santiago (Chile); Millennium Institute of Cell Dynamics and Biotechnology, Santiago (Chile)

    2011-06-03

    Highlights: {yields} Mitochondrial complex I inhibition resulted in decreased activity of Fe-S containing enzymes mitochondrial aconitase and cytoplasmic aconitase and xanthine oxidase. {yields} Complex I inhibition resulted in the loss of Fe-S clusters in cytoplasmic aconitase and of glutamine phosphoribosyl pyrophosphate amidotransferase. {yields} Consistent with loss of cytoplasmic aconitase activity, an increase in iron regulatory protein 1 activity was found. {yields} Complex I inhibition resulted in an increase in the labile cytoplasmic iron pool. -- Abstract: Iron-sulfur (Fe-S) clusters are small inorganic cofactors formed by tetrahedral coordination of iron atoms with sulfur groups. Present in numerous proteins, these clusters are involved in key biological processes such as electron transfer, metabolic and regulatory processes, DNA synthesis and repair and protein structure stabilization. Fe-S clusters are synthesized mainly in the mitochondrion, where they are directly incorporated into mitochondrial Fe-S cluster-containing proteins or exported for cytoplasmic and nuclear cluster-protein assembly. In this study, we tested the hypothesis that inhibition of mitochondrial complex I by rotenone decreases Fe-S cluster synthesis and cluster content and activity of Fe-S cluster-containing enzymes. Inhibition of complex I resulted in decreased activity of three Fe-S cluster-containing enzymes: mitochondrial and cytosolic aconitases and xanthine oxidase. In addition, the Fe-S cluster content of glutamine phosphoribosyl pyrophosphate amidotransferase and mitochondrial aconitase was dramatically decreased. The reduction in cytosolic aconitase activity was associated with an increase in iron regulatory protein (IRP) mRNA binding activity and with an increase in the cytoplasmic labile iron pool. Since IRP activity post-transcriptionally regulates the expression of iron import proteins, Fe-S cluster inhibition may result in a false iron deficiency signal. Given that

  11. Inhibition of the intrinsic factor X activating complex by protein S: evidence for a specific binding of protein S to factor VIII

    NARCIS (Netherlands)

    Koppelman, S.J.

    1995-01-01

    Protein S is a vitamin K-dependent nonenzymatic anticoagulant protein that acts as a cofactor to activated protein C. Recently it was shown that protein S inhibits the prothrombinase reaction independent of activated protein C. In this study, we show that protein S can also inhibit the intrinsic

  12. Inhibition of the intrinsic factor X activating complex by protein S: evidence for a specific binding of protein S to factor VIII

    NARCIS (Netherlands)

    Koppelman, S.J.

    1995-01-01

    Protein S is a vitamin K-dependent nonenzymatic anticoagulant protein that acts as a cofactor to activated protein C. Recently it was shown that protein S inhibits the prothrombinase reaction independent of activated protein C. In this study, we show that protein S can also inhibit the intrinsic fac

  13. Protein kinase A inhibition facilitates the antitumor activity of xanthohumol, a valosin-containing protein inhibitor.

    Science.gov (United States)

    Shikata, Yuki; Yoshimaru, Tetsuro; Komatsu, Masato; Katoh, Hiroto; Sato, Reiko; Kanagaki, Shuhei; Okazaki, Yasumasa; Toyokuni, Shinya; Tashiro, Etsu; Ishikawa, Shumpei; Katagiri, Toyomasa; Imoto, Masaya

    2017-01-25

    Xanthohumol (XN), a simple prenylated chalcone, can be isolated from hops and has the potential to be a cancer chemopreventive agent against several human tumor cell lines. We previously identified valosin-containing protein (VCP) as a target of XN; VCP can also play crucial roles in cancer progression and prognosis. Therefore, we investigated the molecular mechanisms governing the contribution of VCP to the antitumor activity of XN. Several human tumor cell lines were treated with XN to investigate which human tumor cell lines are sensitive to XN. Several cell lines exhibited high sensitivity to XN both in vitro and in vivo. shRNA screening and bioinformatics analysis identified that the inhibition of the adenylate cyclase (AC) pathway synergistically facilitated apoptosis induced by VCP inhibition. These results suggest there is crosstalk between the AC pathway and VCP function, and targeting both VCP and the AC pathway is a potential chemotherapeutic strategy for a subset of tumor cells. This article is protected by copyright. All rights reserved.

  14. Protective effects of inhibition of adenosine monophosphate activated protein kinase activity against cerebral ischemia-reperfusion injury in mice

    Institute of Scientific and Technical Information of China (English)

    补娟

    2013-01-01

    Objective To observe the effect of inhibition of adenosine monophosphate activated protein kinase (AMPK) on shape,function and inflammatory factor of microglia for mice after cerebral ischemia-reperfusion

  15. Activation of AMP-activated protein kinase inhibits ER stress and renal fibrosis.

    Science.gov (United States)

    Kim, Hyosang; Moon, Soo Young; Kim, Joon-Seok; Baek, Chung Hee; Kim, Miyeon; Min, Ji Yeon; Lee, Sang Koo

    2015-02-01

    It has been suggested that endoplasmic reticulum (ER) stress facilitates fibrotic remodeling. Therefore, modulation of ER stress may serve as one of the possible therapeutic approaches to renal fibrosis. We examined whether and how activation of AMP-activated protein kinase (AMPK) suppressed ER stress induced by chemical ER stress inducers [tunicamycin (TM) and thapsigargin (TG)] and also nonchemical inducers in tubular HK-2 cells. We further investigated the in vivo effects of AMPK on ER stress and renal fibrosis. Western blot analysis, immunofluorescence, small interfering (si)RNA experiments, and immunohistochemical staining were performed. Metformin (the best known clinical activator of AMPK) suppressed TM- or TG-induced ER stress, as shown by the inhibition of TM- or TG-induced upregulation of glucose-related protein (GRP)78 and phosphorylated eukaryotic initiation factor-2α through induction of heme oxygenase-1. Metformin inhibited TM- or TG-induced epithelial-mesenchymal transitions as well. Compound C (AMPK inhibitor) blocked the effect of metformin, and 5-aminoimidazole-4-carboxamide-1β riboside (another AMPK activator) exerted the same effects as metformin. Transfection with siRNA targeting AMPK blocked the effect of metformin. Consistent with the results of cell culture experiments, metformin reduced renal cortical GRP78 expression and increased heme oxygenase-1 expression in a mouse model of ER stress-induced acute kidney injury by TM. Activation of AMPK also suppressed ER stress by transforming growth factor-β, ANG II, aldosterone, and high glucose. Furthermore, metformin reduced GRP78 expression and renal fibrosis in a mouse model of unilateral ureteral obstruction. In conclusion, AMPK may serve as a promising therapeutic target through reducing ER stress and renal fibrosis.

  16. Berberine regulates AMP-activated protein kinase signaling pathways and inhibits colon tumorigenesis in mice.

    Science.gov (United States)

    Li, Weidong; Hua, Baojin; Saud, Shakir M; Lin, Hongsheng; Hou, Wei; Matter, Matthias S; Jia, Libin; Colburn, Nancy H; Young, Matthew R

    2015-10-01

    Colorectal cancer, a leading cause of cancer death, has been linked to inflammation and obesity. Berberine, an isoquinoline alkaloid, possesses anti-inflammatory, anti-diabetes and anti-tumor properties. In the azoxymethane initiated and dextran sulfate sodium (AOM/DSS) promoted colorectal carcinogenesis mouse model, berberine treated mice showed a 60% reduction in tumor number (P = 0.009), a 48% reduction in tumors 4 mm (P = 0.02) compared to vehicle treated mice. Berberine also decreased AOM/DSS induced Ki-67 and COX-2 expression. In vitro analysis showed that in addition to its anti-proliferation activity, berberine also induced apoptosis in colorectal cancer cell lines. Berberine activated AMP-activated protein kinase (AMPK), a major regulator of metabolic pathways, and inhibited mammalian target of rapamycin (mTOR), a downstream target of AMPK. Furthermore, 4E-binding protein-1 and p70 ribosomal S6 kinases, downstream targets of mTOR, were down regulated by berberine treatment. Berberine did not affect Liver kinase B1 (LKB1) activity or the mitogen-activated protein kinase pathway. Berberine inhibited Nuclear Factor kappa-B (NF-κB) activity, reduced the expression of cyclin D1 and survivin, induced phosphorylation of p53 and increased caspase-3 cleavage in vitro. Berberine inhibition of mTOR activity and p53 phosphorylation was found to be AMPK dependent, while inhibition NF-κB was AMPK independent. In vivo, berberine also activated AMPK, inhibited mTOR and p65 phosphorylation and activated caspase-3 cleavage. Our data suggests that berberine suppresses colon epithelial proliferation and tumorigenesis via AMPK dependent inhibition of mTOR activity and AMPK independent inhibition of NF-κB.

  17. Cardiopulmonary bypass reduces peripheral microvascular contractile function by inhibition of mitogen-activated protein kinase activity.

    Science.gov (United States)

    Khan, Tanveer A; Bianchi, Cesario; Araujo, Eugenio G; Ruel, Marc; Voisine, Pierre; Li, Jianyi; Liddicoat, John R; Sellke, Frank W

    2003-08-01

    Mitogen-activated protein kinases (MAPK) have been implicated in pathophysiologic responses to cardiopulmonary bypass (CPB). MAPK are deactivated by phosphatases, such as MAPK phosphatase-1 (MKP-1). We hypothesized that MAPK mediate peripheral microvascular contractile dysfunction caused by CPB in humans. Skeletal muscle was harvested before and after CPB. Protein levels of MKP-1 and activated extracellular signal-regulated kinase 1/2 (ERK1/2) and p38 were measured. MKP-1 gene expression was measured. Peripheral microvessel responses to vasopressors were studied by videomicroscopy. Contractile function also was measured after MAPK inhibition with PD98059 (ERK1/2) and SB203580 (p38). ERK1/2, p38, and MKP-1 were localized by immunohistochemistry and in situ hybridization. ERK1/2 and p38 activity was decreased in peripheral tissue after CPB. MKP-1 was increased after CPB. Contractile responses of peripheral arterioles to phenylephrine and vasopressin were decreased after CPB. Microvessel reactivity also was reduced after treatment with PD98059 and SB203580. ERK1/2, p38, and MKP-1 localized to peripheral arterioles in tissue sections. CPB reduces ERK1/2 and p38 activity in peripheral tissue, potentially by MKP-1. Contractile responses of peripheral arterioles to phenylephrine and vasopressin are dependent on ERK1/2 and p38 and are decreased after CPB. These results suggest that alterations in MAPK pathways in part regulate peripheral microvascular dysfunction after CPB in humans.

  18. Latent Ice Recrystallization Inhibition Activity in Nonantifreeze Proteins: Ca2+-Activated Plant Lectins and Cation-Activated Antimicrobial Peptides.

    Science.gov (United States)

    Mitchell, Daniel E; Gibson, Matthew I

    2015-10-12

    Organisms living in polar regions have evolved a series of antifreeze (glyco) proteins (AFGPs) to enable them to survive by modulating the structure of ice. These proteins have huge potential for use in cellular cryopreservation, ice-resistant surfaces, frozen food, and cryosurgery, but they are limited by their relatively low availability and questions regarding their mode of action. This has triggered the search for biomimetic materials capable of reproducing this function. The identification of new structures and sequences capable of inhibiting ice growth is crucial to aid our understanding of these proteins. Here, we show that plant c-type lectins, which have similar biological function to human c-type lectins (glycan recognition) but no sequence homology to AFPs, display calcium-dependent ice recrystallization inhibition (IRI) activity. This IRI activity can be switched on/off by changing the Ca2+ concentration. To show that more (nonantifreeze) proteins may exist with the potential to display IRI, a second motif was considered, amphipathicity. All known AFPs have defined hydrophobic/hydrophilic domains, rationalizing this choice. The cheap, and widely used, antimicrobial Nisin was found to have cation-dependent IRI activity, controlled by either acid or addition of histidine-binding ions such as zinc or nickel, which promote its amphipathic structure. These results demonstrate a new approach in the identification of antifreeze protein mimetic macromolecules and may help in the development of synthetic mimics of AFPs.

  19. Mitochondrial thiol modification by a targeted electrophile inhibits metabolism in breast adenocarcinoma cells by inhibiting enzyme activity and protein levels.

    Science.gov (United States)

    Smith, M Ryan; Vayalil, Praveen K; Zhou, Fen; Benavides, Gloria A; Beggs, Reena R; Golzarian, Hafez; Nijampatnam, Bhavitavya; Oliver, Patsy G; Smith, Robin A J; Murphy, Michael P; Velu, Sadanandan E; Landar, Aimee

    2016-08-01

    Many cancer cells follow an aberrant metabolic program to maintain energy for rapid cell proliferation. Metabolic reprogramming often involves the upregulation of glutaminolysis to generate reducing equivalents for the electron transport chain and amino acids for protein synthesis. Critical enzymes involved in metabolism possess a reactive thiolate group, which can be modified by certain oxidants. In the current study, we show that modification of mitochondrial protein thiols by a model compound, iodobutyl triphenylphosphonium (IBTP), decreased mitochondrial metabolism and ATP in MDA-MB 231 (MB231) breast adenocarcinoma cells up to 6 days after an initial 24h treatment. Mitochondrial thiol modification also depressed oxygen consumption rates (OCR) in a dose-dependent manner to a greater extent than a non-thiol modifying analog, suggesting that thiol reactivity is an important factor in the inhibition of cancer cell metabolism. In non-tumorigenic MCF-10A cells, IBTP also decreased OCR; however the extracellular acidification rate was significantly increased at all but the highest concentration (10µM) of IBTP indicating that thiol modification can have significantly different effects on bioenergetics in tumorigenic versus non-tumorigenic cells. ATP and other adenonucleotide levels were also decreased by thiol modification up to 6 days post-treatment, indicating a decreased overall energetic state in MB231 cells. Cellular proliferation of MB231 cells was also inhibited up to 6 days post-treatment with little change to cell viability. Targeted metabolomic analyses revealed that thiol modification caused depletion of both Krebs cycle and glutaminolysis intermediates. Further experiments revealed that the activity of the Krebs cycle enzyme, aconitase, was attenuated in response to thiol modification. Additionally, the inhibition of glutaminolysis corresponded to decreased glutaminase C (GAC) protein levels, although other protein levels were unaffected. This study

  20. Mitochondrial thiol modification by a targeted electrophile inhibits metabolism in breast adenocarcinoma cells by inhibiting enzyme activity and protein levels

    Directory of Open Access Journals (Sweden)

    M. Ryan Smith

    2016-08-01

    Full Text Available Many cancer cells follow an aberrant metabolic program to maintain energy for rapid cell proliferation. Metabolic reprogramming often involves the upregulation of glutaminolysis to generate reducing equivalents for the electron transport chain and amino acids for protein synthesis. Critical enzymes involved in metabolism possess a reactive thiolate group, which can be modified by certain oxidants. In the current study, we show that modification of mitochondrial protein thiols by a model compound, iodobutyl triphenylphosphonium (IBTP, decreased mitochondrial metabolism and ATP in MDA-MB 231 (MB231 breast adenocarcinoma cells up to 6 days after an initial 24 h treatment. Mitochondrial thiol modification also depressed oxygen consumption rates (OCR in a dose-dependent manner to a greater extent than a non-thiol modifying analog, suggesting that thiol reactivity is an important factor in the inhibition of cancer cell metabolism. In non-tumorigenic MCF-10A cells, IBTP also decreased OCR; however the extracellular acidification rate was significantly increased at all but the highest concentration (10 µM of IBTP indicating that thiol modification can have significantly different effects on bioenergetics in tumorigenic versus non-tumorigenic cells. ATP and other adenonucleotide levels were also decreased by thiol modification up to 6 days post-treatment, indicating a decreased overall energetic state in MB231 cells. Cellular proliferation of MB231 cells was also inhibited up to 6 days post-treatment with little change to cell viability. Targeted metabolomic analyses revealed that thiol modification caused depletion of both Krebs cycle and glutaminolysis intermediates. Further experiments revealed that the activity of the Krebs cycle enzyme, aconitase, was attenuated in response to thiol modification. Additionally, the inhibition of glutaminolysis corresponded to decreased glutaminase C (GAC protein levels, although other protein levels were

  1. Inhibition by FK506 of formyl peptide-induced neutrophil activation and associated protein synthesis.

    Science.gov (United States)

    Burnett, D; Adams, D H; Martin, T J; Liu, Q; Grant, R A; Stockley, R A; Lord, J M

    1994-09-15

    The macrolide FK506 inhibited, by up to 50%, neutrophil migration and the production of the superoxide radical in response to the formyl peptide, formyl-methionyl-leucyl-phenylalanine (FMLP). The production of the superoxide radical in response to phorbol 12-myristate 13-acetate (PMA) was unaffected by FK506. The inhibition of neutrophil functions was accompanied by a partial reversal of FMLP-induced synthesis of cellular proteins, despite a rise in intracellular Ca2+. Neutrophils treated with FK506 demonstrated a small (average 23%) though significant decrease in formyl-peptide receptor numbers but receptor binding affinity was unaffected. The effects of FK506 on neutrophil activation appear to be analogous to those in T-lymphocytes. The incomplete inhibition, by FK506, of neutrophil responses suggests further that activation by FMLP is mediated via distinct multiple signalling pathways, including protein kinase activation and protein synthesis. The inability of FK506 to reduce FMLP-induced rises in cellular Ca2+ or PMA-induced activation of neutrophils suggests that its action is distal to Ca2+ mobilization and distinct from pathways relying on PKC activation. Thus the immunosuppressive effects of FK506 in vivo might be mediated through the inhibition of inflammatory cells other than lymphocytes and the drug therefore has therapeutic potential in a variety of inflammatory conditions. The drug also has potential in vitro for the characterization of signalling pathways from the plasma membrane to the nucleus.

  2. Protein Synthesis Inhibition Activity by Strawberry Tissue Protein Extracts during Plant Life Cycle and under Biotic and Abiotic Stresses

    Directory of Open Access Journals (Sweden)

    Walther Faedi

    2013-07-01

    Full Text Available Ribosome-inactivating proteins (RIPs, enzymes that are widely distributed in the plant kingdom, inhibit protein synthesis by depurinating rRNA and many other polynucleotidic substrates. Although RIPs show antiviral, antifungal, and insecticidal activities, their biological and physiological roles are not completely understood. Additionally, it has been described that RIP expression is augmented under stressful conditions. In this study, we evaluated protein synthesis inhibition activity in partially purified basic proteins (hereafter referred to as RIP activity from tissue extracts of Fragaria × ananassa (strawberry cultivars with low (Dora and high (Record tolerance to root pathogens and fructification stress. Association between the presence of RIP activity and the crop management (organic or integrated soil, growth stage (quiescence, flowering, and fructification, and exogenous stress (drought were investigated. RIP activity was found in every tissue tested (roots, rhizomes, leaves, buds, flowers, and fruits and under each tested condition. However, significant differences in RIP distribution were observed depending on the soil and growth stage, and an increase in RIP activity was found in the leaves of drought-stressed plants. These results suggest that RIP expression and activity could represent a response mechanism against biotic and abiotic stresses and could be a useful tool in selecting stress-resistant strawberry genotypes.

  3. Apoptotic cells activate AMP-activated protein kinase (AMPK) and inhibit epithelial cell growth without change in intracellular energy stores.

    Science.gov (United States)

    Patel, Vimal A; Massenburg, Donald; Vujicic, Snezana; Feng, Lanfei; Tang, Meiyi; Litbarg, Natalia; Antoni, Angelika; Rauch, Joyce; Lieberthal, Wilfred; Levine, Jerrold S

    2015-09-11

    Apoptosis plays an indispensable role in the maintenance and development of tissues. We have shown that receptor-mediated recognition of apoptotic target cells by viable kidney proximal tubular epithelial cells (PTECs) inhibits the proliferation and survival of PTECs. Here, we examined the effect of apoptotic targets on PTEC cell growth (cell size during G1 phase of the cell cycle). Using a cell culture model, we show that apoptotic cells potently activate AMP-activated protein kinase (AMPK), a highly sensitive sensor of intracellular energy stores. AMPK activation leads to decreased activity of its downstream target, ribosomal protein p70 S6 kinase (p70S6K), and concomitant inhibition of cell growth. Importantly, these events occur without detectable change in intracellular levels of AMP, ADP, or ATP. Inhibition of AMPK, either pharmacologically by compound C or molecularly by shRNA, diminishes the effects of apoptotic targets and largely restores p70S6K activity and cell size to normal levels. Apoptotic targets also inhibit Akt, a second signaling pathway regulating cell growth. Expression of a constitutively active Akt construct partially relieved cell growth inhibition but was less effective than inhibition of AMPK. Inhibition of cell growth by apoptotic targets is dependent on physical interaction between apoptotic targets and PTECs but independent of phagocytosis. We conclude that receptor-mediated recognition of apoptotic targets mimics the effects of intracellular energy depletion, activating AMPK and inhibiting cell growth. By acting as sentinels of environmental change, apoptotic death may enable nearby viable cells, especially nonmigratory epithelial cells, to monitor and adapt to local stresses.

  4. Inhibition of ice recrystallization and cryoprotective activity of wheat proteins in liver and pancreatic cells.

    Science.gov (United States)

    Chow-Shi-Yée, Mélanie; Briard, Jennie G; Grondin, Mélanie; Averill-Bates, Diana A; Ben, Robert N; Ouellet, François

    2016-05-01

    Efficient cryopreservation of cells at ultralow temperatures requires the use of substances that help maintain viability and metabolic functions post-thaw. We are developing new technology where plant proteins are used to substitute the commonly-used, but relatively toxic chemical dimethyl sulfoxide. Recombinant forms of four structurally diverse wheat proteins, TaIRI-2 (ice recrystallization inhibition), TaBAS1 (2-Cys peroxiredoxin), WCS120 (dehydrin), and TaENO (enolase) can efficiently cryopreserve hepatocytes and insulin-secreting INS832/13 cells. This study shows that TaIRI-2 and TaENO are internalized during the freeze-thaw process, while TaBAS1 and WCS120 remain at the extracellular level. Possible antifreeze activity of the four proteins was assessed. The "splat cooling" method for quantifying ice recrystallization inhibition activity (a property that characterizes antifreeze proteins) revealed that TaIRI-2 and TaENO are more potent than TaBAS1 and WCS120. Because of their ability to inhibit ice recrystallization, the wheat recombinant proteins TaIRI-2 and TaENO are promising candidates and could prove useful to improve cryopreservation protocols for hepatocytes and insulin-secreting cells, and possibly other cell types. TaENO does not have typical ice-binding domains, and the TargetFreeze tool did not predict an antifreeze capacity, suggesting the existence of nontypical antifreeze domains. The fact that TaBAS1 is an efficient cryoprotectant but does not show antifreeze activity indicates a different mechanism of action. The cryoprotective properties conferred by WCS120 depend on biochemical properties that remain to be determined. Overall, our results show that the proteins' efficiencies vary between cell types, and confirm that a combination of different protection mechanisms is needed to successfully cryopreserve mammalian cells.

  5. Major Peptides from Amaranth (Amaranthus cruentus Protein Inhibit HMG-CoA Reductase Activity

    Directory of Open Access Journals (Sweden)

    Rosana Aparecida Manólio Soares

    2015-02-01

    Full Text Available The objective of this study was to identify the major peptides generated by the in vitro hydrolysis of Amaranthus cruentus protein and to verify the effect of these peptides on the activity of 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMG-CoA reductase, a key enzyme in cholesterol biosynthesis. A protein isolate was prepared, and an enzymatic hydrolysis that simulated the in vivo digestion of the protein was performed. After hydrolysis, the peptide mixture was filtered through a 3 kDa membrane. The peptide profile of this mixture was determined by reversed phase high performance chromatography (RP-HPLC, and the peptide identification was performed by LC-ESI MS/MS. Three major peptides under 3 kDa were detected, corresponding to more than 90% of the peptides of similar size produced by enzymatic hydrolysis. The sequences identified were GGV, IVG or LVG and VGVI or VGVL. These peptides had not yet been described for amaranth protein nor are they present in known sequences of amaranth grain protein, except LVG, which can be found in amaranth α‑amylase. Their ability to inhibit the activity of HMG-CoA reductase was determined, and we found that the sequences GGV, IVG, and VGVL, significantly inhibited this enzyme, suggesting a possible hypocholesterolemic effect.

  6. The Cytotoxicity of Elderberry Ribosome-Inactivating Proteins Is Not Solely Determined by Their Protein Translation Inhibition Activity.

    Directory of Open Access Journals (Sweden)

    Chenjing Shang

    Full Text Available Although the protein translation inhibition activity of ribosome inactivating proteins (RIPs is well documented, little is known about the contribution of the lectin chain to the biological activity of these proteins. In this study, we compared the in vitro and intracellular activity of several S. nigra (elderberry RIPs and non-RIP lectins. Our data demonstrate that RIPs from elderberry are much more toxic to HeLa cells than to primary fibroblasts. Differences in the cytotoxicity between the elderberry proteins correlated with differences in glycan specificity of their lectin domain, cellular uptake efficiency and intracellular destination. Despite the fact that the bulk of the RIPs accumulated in the lysosomes and partly in the Golgi apparatus, we could demonstrate effective inhibition of protein synthesis in cellula. As we also observed cytotoxicity for non-RIP lectins, it is clear that the lectin chain triggers additional pathways heralding cell death. Our data suggest that one of these pathways involves the induction of autophagy.

  7. The potent, indirect adenosine monophosphate-activated protein kinase activator R419 attenuates mitogen-activated protein kinase signaling, inhibits nociceptor excitability, and reduces pain hypersensitivity in mice

    Directory of Open Access Journals (Sweden)

    Galo L. Mejia

    2016-08-01

    Full Text Available Abstract. There is a great need for new therapeutics for the treatment of pain. A possible avenue to development of such therapeutics is to interfere with signaling pathways engaged in peripheral nociceptors that cause these neurons to become hyperexcitable. There is strong evidence that mitogen-activated protein kinases and phosphoinositide 3-kinase (PI3K/mechanistic target of rapamycin signaling pathways are key modulators of nociceptor excitability in vitro and in vivo. Activation of adenosine monophosphate-activated protein kinase (AMPK can inhibit signaling in both of these pathways, and AMPK activators have been shown to inhibit nociceptor excitability and pain hypersensitivity in rodents. R419 is one of, if not the most potent AMPK activator described to date. We tested whether R419 activates AMPK in dorsal root ganglion (DRG neurons and if this leads to decreased pain hypersensitivity in mice. We find that R419 activates AMPK in DRG neurons resulting in decreased mitogen-activated protein kinase signaling, decreased nascent protein synthesis, and enhanced P body formation. R419 attenuates nerve growth factor (NGF-induced changes in excitability in DRG neurons and blocks NGF-induced mechanical pain amplification in vivo. Moreover, locally applied R419 attenuates pain hypersensitivity in a model of postsurgical pain and blocks the development of hyperalgesic priming in response to both NGF and incision. We conclude that R419 is a promising lead candidate compound for the development of potent and specific AMPK activation to inhibit pain hypersensitivity as a result of injury.

  8. Artemisinin inhibits neuroblastoma proliferation through activation of AHP-activated protein kinase (AMPK) signaling.

    Science.gov (United States)

    Tan, Wei-Qiang; Chen, Gang; Jia, Bing; Ye, Ming

    2014-06-01

    Recent population studies suggest that the use of artemisinin is associated with reduced incidence and improved prognosis of certain cancers. In the current study, we assessed the effect of artemisinin on neuroblastoma cells using SHSY5Y cells. We found that artemisinin inhibited growth and modulated expression of cell-cycle regulators in these cells. Treatment with artemisinin was also associated with activation of AMP kinase and inhibition of mTOR/p70S6K/pS6 signaling in SHSY5Y cells. In addition, inhibition of AMPK signaling reversed impact on the anti-proliferative roles of artemisinin. Taken together, these results provide evidence for a mechanism that may contribute to the antineoplastic effects of artemisinin suggested by recent population studies and justify further work to explore its potential roles in neuroblastoma prevention and treatment.

  9. Farnesoid X Receptor Inhibits the Transcriptional Activity of Carbohydrate Response Element Binding Protein in Human Hepatocytes

    Science.gov (United States)

    Caron, Sandrine; Huaman Samanez, Carolina; Dehondt, Hélène; Ploton, Maheul; Briand, Olivier; Lien, Fleur; Dorchies, Emilie; Dumont, Julie; Postic, Catherine; Cariou, Bertrand; Lefebvre, Philippe

    2013-01-01

    The glucose-activated transcription factor carbohydrate response element binding protein (ChREBP) induces the expression of hepatic glycolytic and lipogenic genes. The farnesoid X receptor (FXR) is a nuclear bile acid receptor controlling bile acid, lipid, and glucose homeostasis. FXR negatively regulates hepatic glycolysis and lipogenesis in mouse liver. The aim of this study was to determine whether FXR regulates the transcriptional activity of ChREBP in human hepatocytes and to unravel the underlying molecular mechanisms. Agonist-activated FXR inhibits glucose-induced transcription of several glycolytic genes, including the liver-type pyruvate kinase gene (L-PK), in the immortalized human hepatocyte (IHH) and HepaRG cell lines. This inhibition requires the L4L3 region of the L-PK promoter, known to bind the transcription factors ChREBP and hepatocyte nuclear factor 4α (HNF4α). FXR interacts directly with ChREBP and HNF4α proteins. Analysis of the protein complex bound to the L4L3 region reveals the presence of ChREBP, HNF4α, FXR, and the transcriptional coactivators p300 and CBP at high glucose concentrations. FXR activation does not affect either FXR or HNF4α binding to the L4L3 region but does result in the concomitant release of ChREBP, p300, and CBP and in the recruitment of the transcriptional corepressor SMRT. Thus, FXR transrepresses the expression of genes involved in glycolysis in human hepatocytes. PMID:23530060

  10. Osteoclast inhibitory peptide-1 (OIP-1) inhibits measles virus nucleocapsid protein stimulated osteoclast formation/activity.

    Science.gov (United States)

    Shanmugarajan, Srinivasan; Youssef, Rimon F; Pati, Parmita; Ries, William L; Rao, D Sudhaker; Reddy, Sakamuri V

    2008-07-01

    Paget's disease (PD) of bone is characterized by increased activity of large abnormal osteoclasts (OCLs) which contain paramyxoviral nuclear and cytoplasmic inclusions. MVNP gene expression has been shown to induce pagetic phenotype in OCLs. We previously characterized the osteoclast inhibitory peptide-1 (OIP-1/hSca) which inhibits OCL formation/bone resorption. OIP-1 is a glycophosphatidylinositol (GPI)-linked membrane protein containing a 79 amino acid extra cellular peptide and a 32 amino acid carboxy terminal GPI-linked peptide (c-peptide) which is critical for OCL inhibition. In this study, we demonstrate that OIP-1 c-peptide significantly decreased (43%) osteoclast differentiation of peripheral blood mononuclear cells from patients with PD. Also, OIP-1 treatment to normal human bone marrow mononuclear cells transduced with the MVNP inhibited (41%) osteoclast precursor (CFU-GM) growth in methyl-cellulose cultures. We further tested if OIP-1 overexpression in the OCL lineage in transgenic mice inhibits MVNP stimulated OCL formation. MVNP transduction and RANKL stimulation of OIP-1 mouse bone marrow cells showed a significant decrease (43%) in OCL formation and inhibition (38%) of bone resorption area compared to wild-type mice. Western blot analysis identified that OIP-1 decreased (3.5-fold) MVNP induced TRAF2 expression during OCL differentiation. MVNP or OIP-1 expression did not affect TRAF6 levels. Furthermore, OIP-1 expression resulted in a significant inhibition of MVNP stimulated ASK1, Rac1, c-Fos, p-JNK, and NFATc1 expression during OCL differentiation. These results suggest that OIP-1 inhibits MVNP induced pagetic OCL formation/activity through suppression of RANK signaling. Thus, OIP-1 may have therapeutic utility against excess bone resorption in patients with PD.

  11. Viral protein inhibits RISC activity by argonaute binding through conserved WG/GW motifs.

    Directory of Open Access Journals (Sweden)

    Ana Giner

    Full Text Available RNA silencing is an evolutionarily conserved sequence-specific gene-inactivation system that also functions as an antiviral mechanism in higher plants and insects. To overcome antiviral RNA silencing, viruses express silencing-suppressor proteins. These viral proteins can target one or more key points in the silencing machinery. Here we show that in Sweet potato mild mottle virus (SPMMV, type member of the Ipomovirus genus, family Potyviridae, the role of silencing suppressor is played by the P1 protein (the largest serine protease among all known potyvirids despite the presence in its genome of an HC-Pro protein, which, in potyviruses, acts as the suppressor. Using in vivo studies we have demonstrated that SPMMV P1 inhibits si/miRNA-programmed RISC activity. Inhibition of RISC activity occurs by binding P1 to mature high molecular weight RISC, as we have shown by immunoprecipitation. Our results revealed that P1 targets Argonaute1 (AGO1, the catalytic unit of RISC, and that suppressor/binding activities are localized at the N-terminal half of P1. In this region three WG/GW motifs were found resembling the AGO-binding linear peptide motif conserved in metazoans and plants. Site-directed mutagenesis proved that these three motifs are absolutely required for both binding and suppression of AGO1 function. In contrast to other viral silencing suppressors analyzed so far P1 inhibits both existing and de novo formed AGO1 containing RISC complexes. Thus P1 represents a novel RNA silencing suppressor mechanism. The discovery of the molecular bases of P1 mediated silencing suppression may help to get better insight into the function and assembly of the poorly explored multiprotein containing RISC.

  12. Inhibiting p38 mitogen-activated protein kinase attenuates cerebral ischemic injury in Swedish mutant amyloid precursor protein transgenic mice

    Institute of Scientific and Technical Information of China (English)

    Liangyu Zou; Haiyan Qin; Yitao He; Heming Huang; Yi Lu; Xiaofan Chu

    2012-01-01

    Cerebral ischemia was induced using photothrombosis 1 hour after intraperitoneal injection of the p38 mitogen-activated protein kinase (MAPK) inhibitor SB239063 into Swedish mutant amyloid precursor protein (APP/SWE) transgenic and non-transgenic mice. The number of surviving neurons in the penumbra was quantified using Nissl staining, and the activity of p38 MAPKs was measured by western blotting. The number of surviving neurons in the penumbra was significantly reduced in APP/SWE transgenic mice compared with non-transgenic controls 7 days after cerebral ischemia, but the activity of p38 MAPKs was significantly elevated compared with the non-ischemic hemisphere in the APP/SWE transgenic mice. SB239063 prevented these changes. The APP/SWE mutation exacerbated ischemic brain injury, and this could be alleviated by inhibiting p38 MAPK activity.

  13. Protein disulfide isomerase inhibition blocks thrombin generation in humans by interfering with platelet factor V activation

    Science.gov (United States)

    Stopa, Jack D.; Neuberg, Donna; Puligandla, Maneka; Furie, Bruce; Zwicker, Jeffrey I.

    2017-01-01

    BACKGROUND: Protein disulfide isomerase (PDI) is required for thrombus formation. We previously demonstrated that glycosylated quercetin flavonoids such as isoquercetin inhibit PDI activity and thrombus formation in animal models, but whether extracellular PDI represents a viable anticoagulant target in humans and how its inhibition affects blood coagulation remain unknown. METHODS: We evaluated effects of oral administration of isoquercetin on platelet-dependent thrombin generation in healthy subjects and patients with persistently elevated anti-phospholipid antibodies. RESULTS: Following oral administration of 1,000 mg isoquercetin to healthy adults, the measured peak plasma quercetin concentration (9.2 μM) exceeded its IC50 for inhibition of PDI by isoquercetin in vitro (2.5 ± 0.4 μM). Platelet-dependent thrombin generation decreased by 51% in the healthy volunteers compared with baseline (P = 0.0004) and by 64% in the anti-phospholipid antibody cohort (P = 0.015) following isoquercetin ingestion. To understand how PDI affects thrombin generation, we evaluated substrates of PDI identified using an unbiased mechanistic-based substrate trapping approach. These studies identified platelet factor V as a PDI substrate. Isoquercetin blocked both platelet factor Va and thrombin generation with an IC50 of ~5 μM. Inhibition of PDI by isoquercetin ingestion resulted in a 53% decrease in the generation of platelet factor Va (P = 0.001). Isoquercetin-mediated inhibition was reversed with addition of exogenous factor Va. CONCLUSION: These studies show that oral administration of isoquercetin inhibits PDI activity in plasma and diminishes platelet-dependent thrombin generation predominantly by blocking the generation of platelet factor Va. These pharmacodynamic and mechanistic observations represent an important step in the development of a novel class of antithrombotic agents targeting PDI. TRIAL REGISTRATION: Clinicaltrials.gov (NCT01722669) FUNDING: National Heart

  14. Curcumin inhibits srebp-2 expression in activated hepatic stellate cells in vitro by reducing the activity of specificity protein-1.

    Science.gov (United States)

    Kang, Qiaohua; Chen, Anping

    2009-12-01

    Elevated levels of cholesterol/low-density lipoprotein (LDL) are a risk factor for the development of nonalcoholic steatohepatitis and its associated hepatic fibrosis. However, underlying mechanisms remain elusive. We previously reported that curcumin induced gene expression of peroxisome proliferator-activated receptor (PPAR)-gamma and stimulated its activity, leading to the inhibition of the activation of hepatic stellate cells (HSCs), the major effector cells during hepatic fibrogenesis. We recently showed that curcumin suppressed gene expression of LDL receptor in activated HSCs in vitro by repressing gene expression of the transcription factor sterol regulatory element binding protein-2 (SREBP-2), leading to the reduction in the level of intracellular cholesterol in HSCs and to the attenuation of the stimulatory effects of LDL on HSCs activation. The current study aimed at exploring molecular mechanisms by which curcumin inhibits srebp-2 expression in HSCs. Promoter deletion assays, mutagenesis assays, and EMSAs localize a specificity protein-1 (SP-1) binding GC-box in the srebp-2 promoter, which is responsible for enhancing the promoter activity and responding to curcumin in HSCs. Curcumin suppresses gene expression of SP-1 and reduces its trans-activation activity, which are mediated by the activation of PPARgamma. The inhibitory effect of curcumin on SP-1 binding to the GC-box is confirmed by chromatin immuno-precipitation. In summary, our results demonstrate that curcumin inhibits srebp-2 expression in cultured HSCs by activating PPARgamma and reducing the SP-1 activity, leading to the repression of ldlr expression. These results provide novel insights into molecular mechanisms by which curcumin inhibits LDL-induced HSC activation.

  15. Sodium arsenite induces chromosome endoreduplication and inhibits protein phosphatase activity in human fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Rong-Nan Huang; I-Ching Ho; Ling-Hui Yih [Institute of Biomedical Sciences, Taiwan (China)] [and others

    1995-08-01

    Arsenic, strongly associated with increased risks of human cancers, is a potent clastogen in a variety of mammalian cell systems. The effect of sodium arsenite (a trivalent arsenic compound) on chromatid separation was studied in human skin fibroblasts (HFW). Human fibroblasts were arrested in S phase by the aid of serum starvation and aphidicolin blocking and then these cells were allowed to synchronously progress into G2 phase. Treatment of the G2-enriched HFW cells with sodium arsenite (0-200 {mu}M) resulted in arrest of cells in the G2 phase, interference with mitotic division, inhibition of spindle assembly, and induction of chromosome endoreduplication in their second mitosis. Sodium arsenite treatment also inhibited the activities of serine/threonine protein phosphatases and enhanced phosphorylation levels of a small heat shock protein (HSP27). These results suggest that sodium arsenite may mimic okadaic acid to induce chromosome endoreduplication through its inhibitory effect on protein phosphatase activity. 61 refs., 6 figs., 2 tabs.

  16. How anacetrapib inhibits the activity of the cholesteryl ester transfer protein? Perspective through atomistic simulations

    DEFF Research Database (Denmark)

    Aijanen, T.; Koivuniemi, A.; Javanainen, M.

    2014-01-01

    Cholesteryl ester transfer protein (CETP) mediates the reciprocal transfer of neutral lipids (cholesteryl esters, triglycerides) and phospholipids between different lipoprotein fractions in human blood plasma. A novel molecular agent known as anacetrapib has been shown to inhibit CETP activity...... of anacetrapib turns out to reside in the tunnel inside CETP, near the residues surrounding the N-terminal opening. Free energy calculations show that when anacetrapib resides in this area, it hinders the ability of cholesteryl ester to diffuse out from CETP. The simulations further bring out the ability...

  17. Inhibition of dopamine transporter activity by G protein βγ subunits.

    Directory of Open Access Journals (Sweden)

    Jennie Garcia-Olivares

    Full Text Available Uptake through the Dopamine Transporter (DAT is the primary mechanism of terminating dopamine signaling within the brain, thus playing an essential role in neuronal homeostasis. Deregulation of DAT function has been linked to several neurological and psychiatric disorders including ADHD, schizophrenia, Parkinson's disease, and drug addiction. Over the last 15 years, several studies have revealed a plethora of mechanisms influencing the activity and cellular distribution of DAT; suggesting that fine-tuning of dopamine homeostasis occurs via an elaborate interplay of multiple pathways. Here, we show for the first time that the βγ subunits of G proteins regulate DAT activity. In heterologous cells and brain tissue, a physical association between Gβγ subunits and DAT was demonstrated by co-immunoprecipitation. Furthermore, in vitro pull-down assays using purified proteins established that this association occurs via a direct interaction between the intracellular carboxy-terminus of DAT and Gβγ. Functional assays performed in the presence of the non-hydrolyzable GTP analog GTP-γ-S, Gβγ subunit overexpression, or the Gβγ activator mSIRK all resulted in rapid inhibition of DAT activity in heterologous systems. Gβγ activation by mSIRK also inhibited dopamine uptake in brain synaptosomes and dopamine clearance from mouse striatum as measured by high-speed chronoamperometry in vivo. Gβγ subunits are intracellular signaling molecules that regulate a multitude of physiological processes through interactions with enzymes and ion channels. Our findings add neurotransmitter transporters to the growing list of molecules regulated by G-proteins and suggest a novel role for Gβγ signaling in the control of dopamine homeostasis.

  18. Inhibition of macrophage activation by the myxoma virus M141 protein (vCD200).

    Science.gov (United States)

    Zhang, Leiliang; Stanford, Marianne; Liu, Jia; Barrett, Catherine; Jiang, Lei; Barclay, A Neil; McFadden, Grant

    2009-09-01

    The M141 protein of myxoma virus (MYXV) is a viral CD200 homolog (also called vOX-2) that inhibits macrophage activation in infected rabbits. Here, we show that murine myeloid RAW 264.7 cells became activated when infected with MYXV in which the M141 gene was deleted (vMyx-M141KO) but not with the parental wild-type MYXV. Moreover, transcript and protein levels of tumor necrosis factor and granulocyte colony-stimulating factor were rapidly upregulated in an NF-kappaB-dependent fashion in the RAW 264.7 cells infected with vMyx-M141KO. M141 protein is present in the virion and counteracts this NF-kappaB activation pathway upon infection with the wild-type MYXV. Our data suggest that upregulation of these classic macrophage-related proinflammatory cytokine markers following infection of myeloid cells with the M141-knockout MYXV is mediated via the rapid activation of the cellular NF-kappaB pathway.

  19. Metformin directly inhibits ghrelin secretion through AMP-activated protein kinase in rat primary gastric cells.

    Science.gov (United States)

    Gagnon, J; Sheppard, E; Anini, Y

    2013-03-01

    The antidiabetic drug Metformin causes weight loss in both diabetic and non-diabetic individuals. Metformin treatment is also associated with lower circulating levels of the orexigenic hormone ghrelin. To test whether Metformin directly affects ghrelin cells, rat primary stomach cells were treated with Metformin and the levels of ghrelin secretion, proghrelin gene expression and activation of adenosine monophosphate-activated protein kinase (AMPK) were examined. Metformin significantly reduced ghrelin secretion and proghrelin mRNA production and both these effects were blocked by co-incubation with the AMPK inhibitor compound C. Furthermore, the AMPK activator 5-amino-1-β-D-ribofuranosyl-imidazole-4-carboxamide (AICAR) significantly inhibited ghrelin secretion. Additionally, ghrelin cells were shown to express AMPK. Finally, Metformin treatment caused a significant increase in the level of phosphorylated (active) AMPK. Our results show that Metformin directly inhibits stomach ghrelin production and secretion through AMPK. This reduction in ghrelin secretion may be one of the key components in Metformin's mechanism of weight loss.

  20. Qushi Huayu Decoction Inhibits Hepatic Lipid Accumulation by Activating AMP-Activated Protein Kinase In Vivo and In Vitro

    Directory of Open Access Journals (Sweden)

    Qin Feng

    2013-01-01

    Full Text Available Qushi Huayu Decoction (QHD, a Chinese herbal formula, has been proven effective on alleviating nonalcoholic fatty liver disease (NAFLD in human and rats. The present study was conducted to investigate whether QHD could inhibit hepatic lipid accumulation by activating AMP-activated protein kinase (AMPK in vivo and in vitro. Nonalcoholic fatty liver (NAFL model was duplicated with high-fat diet in rats and with free fatty acid (FFA in L02 cells. In in vivo experimental condition, QHD significantly decreased the accumulation of fatty droplets in livers, lowered low-density lipoprotein cholesterol (LDL-c, alanine aminotransferase (ALT, and aspartate aminotransferase (AST levels in serum. Moreover, QHD supplementation reversed the HFD-induced decrease in the phosphorylation levels of AMPK and acetyl-CoA carboxylase (ACC and decreased hepatic nuclear protein expression of sterol regulatory element-binding protein-1 (SREBP-1 and carbohydrate-responsive element-binding protein (ChREBP in the liver. In in vitro, QHD-containing serum decreased the cellular TG content and alleviated the accumulation of fatty droplets in L02 cells. QHD supplementation reversed the FFA-induced decrease in the phosphorylation levels of AMPK and ACC and decreased the hepatic nuclear protein expression of SREBP-1 and ChREBP. Overall results suggest that QHD has significant effect on inhibiting hepatic lipid accumulation via AMPK pathway in vivo and in vitro.

  1. 2-Bromopalmitate Reduces Protein Deacylation by Inhibition of Acyl-Protein Thioesterase Enzymatic Activities

    OpenAIRE

    Pedro, Maria P.; Vilcaes, Aldo A.; Vanesa M Tomatis; Oliveira, Rafael G.; Gomez, Guillermo A; Daniotti, Jose L.

    2013-01-01

    S-acylation, the covalent attachment of palmitate and other fatty acids on cysteine residues, is a reversible post-translational modification that exerts diverse effects on protein functions. S-acylation is catalyzed by protein acyltransferases (PAT), while deacylation requires acyl-protein thioesterases (APT), with numerous inhibitors for these enzymes having already been developed and characterized. Among these inhibitors, the palmitate analog 2-brompalmitate (2-BP) is the most commonly use...

  2. Coagulation factor V mediates inhibition of tissue factor signaling by activated protein C in mice.

    Science.gov (United States)

    Liang, Hai Po H; Kerschen, Edward J; Basu, Sreemanti; Hernandez, Irene; Zogg, Mark; Jia, Shuang; Hessner, Martin J; Toso, Raffaella; Rezaie, Alireza R; Fernández, José A; Camire, Rodney M; Ruf, Wolfram; Griffin, John H; Weiler, Hartmut

    2015-11-19

    The key effector molecule of the natural protein C pathway, activated protein C (aPC), exerts pleiotropic effects on coagulation, fibrinolysis, and inflammation. Coagulation-independent cell signaling by aPC appears to be the predominant mechanism underlying its highly reproducible therapeutic efficacy in most animal models of injury and infection. In this study, using a mouse model of Staphylococcus aureus sepsis, we demonstrate marked disease stage-specific effects of the anticoagulant and cell signaling functions of aPC. aPC resistance of factor (f)V due to the R506Q Leiden mutation protected against detrimental anticoagulant effects of aPC therapy but also abrogated the anti-inflammatory and mortality-reducing effects of the signaling-selective 5A-aPC variant that has minimal anticoagulant function. We found that procofactor V (cleaved by aPC at R506) and protein S were necessary cofactors for the aPC-mediated inhibition of inflammatory tissue-factor signaling. The anti-inflammatory cofactor function of fV involved the same structural features that govern its cofactor function for the anticoagulant effects of aPC, yet its anti-inflammatory activities did not involve proteolysis of activated coagulation factors Va and VIIIa. These findings reveal a novel biological function and mechanism of the protein C pathway in which protein S and the aPC-cleaved form of fV are cofactors for anti-inflammatory cell signaling by aPC in the context of endotoxemia and infection.

  3. An inhibition of p38 mitogen activated protein kinase delays the platelet storage lesion.

    Directory of Open Access Journals (Sweden)

    Andrey Skripchenko

    Full Text Available BACKGROUND AND OBJECTIVES: Platelets during storage undergo diverse alterations collectively known as the platelet storage lesion, including metabolic, morphological, functional and structural changes. Some changes correlate with activation of p38 mitogen activated protein kinase (p38 MAPK. Another MAPK, extracellular signal-related kinase (ERK, is involved in PLT activation. The aim of this study was to compare the properties of platelets stored in plasma in the presence or absence of p38 and ERK MAPK inhibitors. MATERIALS AND METHODS: A single Trima apheresis platelet unit (n = 12 was aliquoted into five CLX storage bags. Two aliquots were continuously agitated with or without MAPK inhibitors. Two aliquots were subjected to 48 hours of interruption of agitation with or without MAPK inhibitors. One aliquot contained the same amount of solvent vehicle used to deliver the inhibitor. Platelets were stored at 20-24°C for 7 days and sampled on Days 1, 4, and 7 for 18 in vitro parameters. RESULTS: Inhibition of p38 MAPK by VX-702 leads to better maintenance of all platelet in vitro storage parameters including platelet mitochondrial function. Accelerated by interruption of agitation, the platelet storage lesion of units stored with VX-702 was diminished to that of platelets stored with continuous agitation. Inhibition of ERK MAPK did not ameliorate decrements in any in vitro platelet properties. CONCLUSION: Signaling through p38 MAPK, but not ERK, is associated with platelet deterioration during storage.

  4. Isolation of a novel protein, P12-from adult Drosophila melanogaster that inhibits deoxyribonucleoside and protein kinase activities and activates 3'-5'- exonuclease activity

    DEFF Research Database (Denmark)

    Christiansen, Louise Slot; Zanten, Gabriella van; Berenstein, Dvora;

    2016-01-01

    We have previously found that Drosophila melanogaster only has one deoxyribonucleoside kinase, Dm-dNK, however, capable to phosphorylate all four natural deoxyribonucleosides. Dm-dNK was originally isolated from an embryonic cell line. We wanted to study the expression of Dm-dNK during development......-dNK, also inhibited the two protein kinases to the same degree. Furthermore, testing P12 in a DNA polymerase based assay we found that the 3'-5'-exonuclease part of the DNA polymerase (Klenow polymerase) was activated....

  5. The inhibition effect of non-protein thiols on dentinal matrix metalloproteinase activity and HEMA cytotoxicity.

    Science.gov (United States)

    Nassar, Mohannad; Hiraishi, Noriko; Shimokawa, Hitoyata; Tamura, Yukihiko; Otsuki, Masayuki; Kasugai, Shohei; Ohya, Keiichi; Tagami, Junji

    2014-03-01

    Phosphoric acid (PA) etching used in etch-and-rinse adhesives is known to activate host-derived dentinal matrix-metalloproteinases (MMPs) and increase dentinal permeability. These two phenomena will result, respectively; in degradation of dentine-adhesive bond and leaching of some monomers especially 2-hydroxyethyl methacrylate (HEMA) into the pulp that would negatively affect the viability of pulpal cells. This study is the first to investigate the inhibitory effect of non-protein thiols (NPSH); namely reduced glutathione (GSH) and N-acetylcysteine (NAC) on dentinal MMPs and compare their effects on HEMA cytotoxicity. Dentine powder was prepared from human teeth, demineralized with 1% PA and then treated with 2% GSH, 2% NAC or 2% chlorhexidine (CHX). Zymographic analysis of extracted proteins was performed. To evaluate the effect of GSH, NAC and CHX on HEMA cytotoxicity, solutions of these compounds were prepared with or without HEMA and rat pulpal cells were treated with the tested solutions for (6 and 24h). Cells viability was measured by means of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Cytotoxicity data were analysed by one-way ANOVA and Tukey post hoc tests (pcytotoxicity inhibition. NPSH were effective to inhibit dentinal MMPs and HEMA cytotoxicity. The tested properties of NPSH provide promising clinical use of these agents which would enhance dentine-bond durability and decrease post-operative sensitivity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Piperine ameliorates the severity of cerulein-induced acute pancreatitis by inhibiting the activation of mitogen activated protein kinases.

    Science.gov (United States)

    Bae, Gi-Sang; Kim, Min-Sun; Jeong, Jinsu; Lee, Hye-Youn; Park, Kyoung-Chel; Koo, Bon Soon; Kim, Byung-Jin; Kim, Tae-Hyeon; Lee, Seung Ho; Hwang, Sung-Yeon; Shin, Yong Kook; Song, Ho-Joon; Park, Sung-Joo

    2011-07-01

    Piperine is a phenolic component of black pepper (Piper nigrum) and long pepper (Piper longum), fruits used in traditional Asian medicine. Our previous study showed that piperine inhibits lipopolysaccharide-induced inflammatory responses. In this study, we investigated whether piperine reduces the severity of cerulein-induced acute pancreatitis (AP). Administration of piperine reduced histologic damage and myeloperoxidase (MPO) activity in the pancreas and ameliorated many of the examined laboratory parameters, including the pancreatic weight (PW) to body weight (BW) ratio, as well as serum levels of amylase and lipase and trypsin activity. Furthermore, piperine pretreatment reduced the production of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 during cerulein-induced AP. In accordance with in vivo results, piperine reduced cell death, amylase and lipase activity, and cytokine production in isolated cerulein-treated pancreatic acinar cells. In addition, piperine inhibited the activation of mitogen-activated protein kinases (MAPKs). These findings suggest that the anti-inflammatory effect of piperine in cerulein-induced AP is mediated by inhibiting the activation of MAPKs. Thus, piperine may have a protective effect against AP.

  7. Leptin inhibits proliferation of breast cancer cells at supraphysiological concentrations by inhibiting mitogen-activated protein kinase signaling.

    Science.gov (United States)

    Weichhaus, Michael; Broom, John; Wahle, Klaus; Bermano, Giovanna

    2014-07-01

    Leptin is a hormone secreted by white fat tissue and signals the amount of overall body fat to the hypothalamus. The circulating concentration of leptin correlates with the level of obesity. Breast cancer risk is higher in obese postmenopausal women compared with postmenopausal women of a normal weight, and high leptin concentrations may contribute to this risk. In the present study, SK-BR-3 and MDA-MB-231 breast cancer cell lines were treated with various concentrations (6.25-1,600 ng/ml) of recombinant leptin and changes in cell proliferation were assessed. The SK-BR-3 breast cancer cells exhibited a concentration-dependent increase in proliferation with physiological leptin concentrations (100 ng/ml) was observed. Cell proliferation was not affected at supraphysiological leptin concentrations (>800 ng/ml) in SK-BR-3 cells, whereas it decreased in MDA-MB-231 cells. Therefore, cell signaling and cell cycle changes were assessed at supraphysiological concentrations (1,600 ng/ml). In the two cell lines, leptin treatment decreased the mitogen-activated protein kinase (MAPK) cell signaling pathway activation. Leptin treatment did not increase Akt phosphorylation or significantly alter the cell population distribution across cell cycle stages. To the best of our knowledge, leptin-induced growth inhibition of breast cancer cells at supraphysiological concentrations has not been reported in the literature to date, and the findings of this study suggest that reduced MAPK activity may be the underlying cause. Thus, the effect of leptin on breast cancer growth warrants further investigation since leptin is considered to be one of the main mediators in the obesity-breast cancer connection.

  8. Inhibition of G protein-activated inwardly rectifying K+ channels by different classes of antidepressants.

    Directory of Open Access Journals (Sweden)

    Toru Kobayashi

    Full Text Available Various antidepressants are commonly used for the treatment of depression and several other neuropsychiatric disorders. In addition to their primary effects on serotonergic or noradrenergic neurotransmitter systems, antidepressants have been shown to interact with several receptors and ion channels. However, the molecular mechanisms that underlie the effects of antidepressants have not yet been sufficiently clarified. G protein-activated inwardly rectifying K(+ (GIRK, Kir3 channels play an important role in regulating neuronal excitability and heart rate, and GIRK channel modulation has been suggested to have therapeutic potential for several neuropsychiatric disorders and cardiac arrhythmias. In the present study, we investigated the effects of various classes of antidepressants on GIRK channels using the Xenopus oocyte expression assay. In oocytes injected with mRNA for GIRK1/GIRK2 or GIRK1/GIRK4 subunits, extracellular application of sertraline, duloxetine, and amoxapine effectively reduced GIRK currents, whereas nefazodone, venlafaxine, mianserin, and mirtazapine weakly inhibited GIRK currents even at toxic levels. The inhibitory effects were concentration-dependent, with various degrees of potency and effectiveness. Furthermore, the effects of sertraline were voltage-independent and time-independent during each voltage pulse, whereas the effects of duloxetine were voltage-dependent with weaker inhibition with negative membrane potentials and time-dependent with a gradual decrease in each voltage pulse. However, Kir2.1 channels were insensitive to all of the drugs. Moreover, the GIRK currents induced by ethanol were inhibited by sertraline but not by intracellularly applied sertraline. The present results suggest that GIRK channel inhibition may reveal a novel characteristic of the commonly used antidepressants, particularly sertraline, and contributes to some of the therapeutic effects and adverse effects.

  9. Protodioscin ameliorates fructose-induced renal injury via inhibition of the mitogen activated protein kinase pathway.

    Science.gov (United States)

    Shen, Jinyang; Yang, Xiaolin; Meng, Zhaoqing; Guo, Changrun

    2016-11-15

    High dietary fructose can cause metabolic syndrome and renal injury. The effects of protodioscin on metabolic syndrome and renal injury were investigated in mice receiving high-dose fructose. Mice received 30% (w/v) fructose in water and standard chow for 6 weeks to induce metabolic syndrome and were divided into four groups to receive carboxymethylcellulose sodium, allopurinol (5 mg/kg) and protodioscin (5 and 10 mg/kg) continuously for 6 weeks, respectively. The glucose intolerance, serum uric acid (UA), blood urea nitrogen (BUN), creatinine (Cr), total cholesterol (TC), triglyceride (TG), interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were determined. Protodioscin significantly improved glucose intolerance and reduced the levels of serum UA, BUN, Cr, TC and TG. Histological examinations showed that protodioscin ameliorated glomerular and tubular pathological changes. Protodioscin significantly reduced renal concentrations of IL-1β, IL-6 and TNF-α by inhibiting the activation of nuclear factor-κB, c-Jun N-terminal kinase, p38 mitogen-activated protein kinase and extracellular signal-regulated kinase. In addition, the effect of protodioscin on the mitogen activated protein kinases (MAPK) pathway was examined. Taken together, protodioscin is a potential drug candidate for high dietary fructose-induced metabolic syndrome and renal injury. Copyright © 2016 Elsevier GmbH. All rights reserved.

  10. Hydrogen sulfide inhibits high glucose-induced matrix protein synthesis by activating AMP-activated protein kinase in renal epithelial cells.

    Science.gov (United States)

    Lee, Hak Joo; Mariappan, Meenalakshmi M; Feliers, Denis; Cavaglieri, Rita C; Sataranatarajan, Kavithalakshmi; Abboud, Hanna E; Choudhury, Goutam Ghosh; Kasinath, Balakuntalam S

    2012-02-10

    Hydrogen sulfide, a signaling gas, affects several cell functions. We hypothesized that hydrogen sulfide modulates high glucose (30 mm) stimulation of matrix protein synthesis in glomerular epithelial cells. High glucose stimulation of global protein synthesis, cellular hypertrophy, and matrix laminin and type IV collagen content was inhibited by sodium hydrosulfide (NaHS), an H(2)S donor. High glucose activation of mammalian target of rapamycin (mTOR) complex 1 (mTORC1), shown by phosphorylation of p70S6 kinase and 4E-BP1, was inhibited by NaHS. High glucose stimulated mTORC1 to promote key events in the initiation and elongation phases of mRNA translation: binding of eIF4A to eIF4G, reduction in PDCD4 expression and inhibition of its binding to eIF4A, eEF2 kinase phosphorylation, and dephosphorylation of eEF2; these events were inhibited by NaHS. The role of AMP-activated protein kinase (AMPK), an inhibitor of protein synthesis, was examined. NaHS dose-dependently stimulated AMPK phosphorylation and restored AMPK phosphorylation reduced by high glucose. Compound C, an AMPK inhibitor, abolished NaHS modulation of high glucose effect on events in mRNA translation as well as global and matrix protein synthesis. NaHS induction of AMPK phosphorylation was inhibited by siRNA for calmodulin kinase kinase β, but not LKB1, upstream kinases for AMPK; STO-609, a calmodulin kinase kinase β inhibitor, had the same effect. Renal cortical content of cystathionine β-synthase and cystathionine γ-lyase, hydrogen sulfide-generating enzymes, was significantly reduced in mice with type 1 diabetes or type 2 diabetes, coinciding with renal hypertrophy and matrix accumulation. Hydrogen sulfide is a newly identified modulator of protein synthesis in the kidney, and reduction in its generation may contribute to kidney injury in diabetes.

  11. Structural basis of response regulator inhibition by a bacterial anti-activator protein.

    Directory of Open Access Journals (Sweden)

    Melinda D Baker

    2011-12-01

    Full Text Available The complex interplay between the response regulator ComA, the anti-activator RapF, and the signaling peptide PhrF controls competence development in Bacillus subtilis. More specifically, ComA drives the expression of genetic competence genes, while RapF inhibits the interaction of ComA with its target promoters. The signaling peptide PhrF accumulates at high cell density and upregulates genetic competence by antagonizing the interaction of RapF and ComA. How RapF functions mechanistically to inhibit ComA activity and how PhrF in turn antagonizes the RapF-ComA interaction were unknown. Here we present the X-ray crystal structure of RapF in complex with the ComA DNA binding domain. Along with biochemical and genetic studies, the X-ray crystal structure reveals how RapF mechanistically regulates ComA function. Interestingly, we found that a RapF surface mimics DNA to block ComA binding to its target promoters. Furthermore, RapF is a monomer either alone or in complex with PhrF, and it undergoes a conformational change upon binding to PhrF, which likely causes the dissociation of ComA from the RapF-ComA complex. Finally, we compare the structure of RapF complexed with the ComA DNA binding domain and the structure of RapH complexed with Spo0F. This comparison reveals that RapF and RapH have strikingly similar overall structures, and that they have evolved different, non-overlapping surfaces to interact with diverse cellular targets. To our knowledge, the data presented here reveal the first atomic level insight into the inhibition of response regulator DNA binding by an anti-activator. Compounds that affect the interaction of Rap and Rap-like proteins with their target domains could serve to regulate medically and commercially important phenotypes in numerous Bacillus species, such as sporulation in B. anthracis and sporulation and the production of Cry protein endotoxin in B. thuringiensis.

  12. How anacetrapib inhibits the activity of the cholesteryl ester transfer protein? Perspective through atomistic simulations.

    Directory of Open Access Journals (Sweden)

    Tarja Äijänen

    2014-11-01

    Full Text Available Cholesteryl ester transfer protein (CETP mediates the reciprocal transfer of neutral lipids (cholesteryl esters, triglycerides and phospholipids between different lipoprotein fractions in human blood plasma. A novel molecular agent known as anacetrapib has been shown to inhibit CETP activity and thereby raise high density lipoprotein (HDL-cholesterol and decrease low density lipoprotein (LDL-cholesterol, thus rendering CETP inhibition an attractive target to prevent and treat the development of various cardiovascular diseases. Our objective in this work is to use atomistic molecular dynamics simulations to shed light on the inhibitory mechanism of anacetrapib and unlock the interactions between the drug and CETP. The results show an evident affinity of anacetrapib towards the concave surface of CETP, and especially towards the region of the N-terminal tunnel opening. The primary binding site of anacetrapib turns out to reside in the tunnel inside CETP, near the residues surrounding the N-terminal opening. Free energy calculations show that when anacetrapib resides in this area, it hinders the ability of cholesteryl ester to diffuse out from CETP. The simulations further bring out the ability of anacetrapib to regulate the structure-function relationships of phospholipids and helix X, the latter representing the structural region of CETP important to the process of neutral lipid exchange with lipoproteins. Altogether, the simulations propose CETP inhibition to be realized when anacetrapib is transferred into the lipid binding pocket. The novel insight gained in this study has potential use in the development of new molecular agents capable of preventing the progression of cardiovascular diseases.

  13. Atheroprotective effects of antioxidants through inhibition of mitogen-activated protein kinases

    Institute of Scientific and Technical Information of China (English)

    Moe KYAW; Masanori YOSHIZUMI; Koichiro TSUCHIYA; Yuki IZAWA; Yasuhisa KANEMATSU; Toshiaki TAMAKI

    2004-01-01

    Reactive oxygen species (ROS) have been known to play an important role in the pathogenesis of atherosclerosis and several other cardiovascular diseases. It is now apparent that ROS induce endothelial cell damage and vascular smooth muscle cell (VSMC) growth and cardiac remodeling, which are associated with hypertension,atherosclerosis, heart failure, and restenosis. Several lines of evidence have indicated that ROS and mitogenactivated protein (MAP) kinases were involved in vascular remodeling under various pathological conditions. Recenfiy,it was also reported that MAP kinases were sensitive to oxidative stress. MAP kinases play an important role in cell differentiation, growth, apoptosis, and the regulation of a variety of transcription factors and gene expressions.Bioflavonoids and polyphenolic compounds are believed to be beneficial for the prevention and treatment of atherosclerosis and cardiovascular diseases. One of the most widely distributed bioflavonoids, 3,3',4',5,7-pentahydroxyflavone (quercetin) and its metabolite quercetin 3-O-β-D-glucuronide (Q3GA) inhibited Angiotensin Ⅱstimulated JNK activation and resultant hypertrophy of VSMC. Several studies have suggested that various antioxidants including probucol, N-acetyl-L-cysteine, diphenylene iodonium, Trolox C (vitamin E analogue), and vitamin C inhibit VSMC growth, which is associated with pathogenesis of cardiovascular diseases. Therefore, inhibition of MAP kinases by antioxidant treatment may prove to be a therapeutic strategy for cardiovascular diseases. In contrast, some clinical studies have reported that antioxidant vitamins did not show beneficial effects in coronary artery disease or in a number of high-risk people. Thus, further studies are needed to clarify why antioxidants showed beneficial effects in vitro, whereas less satisfactory results were obtained in some clinical conditions.

  14. Boron Stress Activates the General Amino Acid Control Mechanism and Inhibits Protein Synthesis

    Science.gov (United States)

    Uluisik, Irem; Kaya, Alaattin; Fomenko, Dmitri E.; Karakaya, Huseyin C.; Carlson, Bradley A.; Gladyshev, Vadim N.; Koc, Ahmet

    2011-01-01

    Boron is an essential micronutrient for plants, and it is beneficial for animals. However, at high concentrations boron is toxic to cells although the mechanism of this toxicity is not known. Atr1 has recently been identified as a boron efflux pump whose expression is upregulated in response to boron treatment. Here, we found that the expression of ATR1 is associated with expression of genes involved in amino acid biosynthesis. These mechanisms are strictly controlled by the transcription factor Gcn4 in response to boron treatment. Further analyses have shown that boron impaired protein synthesis by promoting phosphorylation of eIF2α in a Gcn2 kinase dependent manner. The uncharged tRNA binding domain (HisRS) of Gcn2 is necessary for the phosphorylation of eIF2α in the presence of boron. We postulate that boron exerts its toxic effect through activation of the general amino acid control system and inhibition of protein synthesis. Since the general amino acid control pathway is conserved among eukaryotes, this mechanism of boron toxicity may be of general importance. PMID:22114689

  15. Boron stress activates the general amino acid control mechanism and inhibits protein synthesis.

    Directory of Open Access Journals (Sweden)

    Irem Uluisik

    Full Text Available Boron is an essential micronutrient for plants, and it is beneficial for animals. However, at high concentrations boron is toxic to cells although the mechanism of this toxicity is not known. Atr1 has recently been identified as a boron efflux pump whose expression is upregulated in response to boron treatment. Here, we found that the expression of ATR1 is associated with expression of genes involved in amino acid biosynthesis. These mechanisms are strictly controlled by the transcription factor Gcn4 in response to boron treatment. Further analyses have shown that boron impaired protein synthesis by promoting phosphorylation of eIF2α in a Gcn2 kinase dependent manner. The uncharged tRNA binding domain (HisRS of Gcn2 is necessary for the phosphorylation of eIF2α in the presence of boron. We postulate that boron exerts its toxic effect through activation of the general amino acid control system and inhibition of protein synthesis. Since the general amino acid control pathway is conserved among eukaryotes, this mechanism of boron toxicity may be of general importance.

  16. Retinal degeneration 3 (RD3) protein inhibits catalytic activity of retinal membrane guanylyl cyclase (RetGC) and its stimulation by activating proteins.

    Science.gov (United States)

    Peshenko, Igor V; Olshevskaya, Elena V; Azadi, Seifollah; Molday, Laurie L; Molday, Robert S; Dizhoor, Alexander M

    2011-11-08

    Retinal membrane guanylyl cyclase (RetGC) in the outer segments of vertebrate photoreceptors is controlled by guanylyl cyclase activating proteins (GCAPs), responding to light-dependent changes of the intracellular Ca(2+) concentrations. We present evidence that a different RetGC binding protein, retinal degeneration 3 protein (RD3), is a high-affinity allosteric modulator of the cyclase which inhibits RetGC activity at submicromolar concentrations. It suppresses the basal activity of RetGC in the absence of GCAPs in a noncompetitive manner, and it inhibits the GCAP-stimulated RetGC at low intracellular Ca(2+) levels. RD3 opposes the allosteric activation of the cyclase by GCAP but does not significantly change Ca(2+) sensitivity of the GCAP-dependent regulation. We have tested a number of mutations in RD3 implicated in human retinal degenerative disorders and have found that several mutations prevent the stable expression of RD3 in HEK293 cells and decrease the affinity of RD3 for RetGC1. The RD3 mutant lacking the carboxy-terminal half of the protein and associated with Leber congenital amaurosis type 12 (LCA12) is unable to suppress the activity of the RetGC1/GCAP complex. Furthermore, the inhibitory activity of the G57V mutant implicated in cone-rod degeneration is strongly reduced. Our results suggest that inhibition of RetGC by RD3 may be utilized by photoreceptors to block RetGC activity during its maturation and/or incorporation into the photoreceptor outer segment rather than participate in dynamic regulation of the cyclase by Ca(2+) and GCAPs.

  17. Ricin Inhibits Activation of the Unfolded Protein Response by Preventing Splicing of the HAC1 mRNA*

    Science.gov (United States)

    Parikh, Bijal A.; Tortora, Andrew; Li, Xiao-Ping; Tumer, Nilgun E.

    2011-01-01

    Ricin A chain (RTA) inhibits protein synthesis by removing a specific adenine from the highly conserved α-sarcin/ricin loop in the large rRNA. Expression of RTA with its own signal sequence in yeast resulted in its translocation into the endoplasmic reticulum (ER) and subsequent glycosylation. Because RTA must unfold within the ER, it may be vulnerable to host defenses, such as the unfolded protein response (UPR). UPR was induced in cells expressing an active site mutant but not the wild type RTA, indicating that the active site of RTA played a role in perturbing the ER stress response. The inactive RTA without the signal sequence did not induce UPR, indicating that translocation into the ER was critical for induction of UPR. The wild type RTA inhibited activation of UPR not only due to ER stress induced by the protein itself but also by global effectors such as tunicamycin and dithiothreitol. Mature RTA without the signal sequence also inhibited UPR, providing evidence that inhibition of UPR occurred on the cytosolic face of the ER. RTA could not inhibit UPR when the spliced form of HAC1 mRNA was provided in trans, indicating that it had a direct effect on UPR upstream of HAC1-dependent transcriptional activation. Only the precursor form of HAC1 mRNA was detected in cells expressing RTA after exposure to ER stress, demonstrating that ricin inhibits activation of UPR by preventing HAC1 mRNA splicing. The RTA mutants that depurinated ribosomes but did not kill cells were not able to inhibit activation of UPR by tunicamycin, providing evidence that the inability to activate UPR in response to ER stress contributes to the cytotoxicity of ricin. PMID:18180297

  18. Targeting Inhibition of Fibroblast Activation Protein-α and Prolyl Oligopeptidase Activities on Cells Common to Metastatic Tumor Microenvironments

    Directory of Open Access Journals (Sweden)

    Victoria J. Christiansen

    2013-04-01

    Full Text Available Fibroblast activation protein (FAP, a membrane prolyl-specific proteinase with both dipeptidase and endopeptidase activities, is overexpressed by reactive stromal fibroblasts during epithelial-derived cancer growth. FAP digests extracellular matrix as tissue is remodeled during cancer expansion and may also promote an immunotolerant tumor microenvironment. Recent studies suggest that nonspecific FAP inhibitors suppress human cancer xenografts in mouse models. Prolyl oligopeptidase (POP, another prolyl-specific serine proteinase, is also elevated in many cancers and may have a regulatory role in angiogenesis promotion. FAP and POP cell-associated activities may be targets for diagnosis and treatment of various cancers, but their accessibilities to highly effective specific inhibitors have not been shown for cells important to cancer growth. Despite their frequent simultaneous expression in many cancers and their overlapping activities toward commonly used substrates, precise, separate measurement of FAP or POP activity has largely been ignored. To distinguish each of the two activities, we synthesized highly specific substrates and inhibitors for FAP or POP based on amino acid sequences surrounding the scissile bonds of their respective putative substrates. We found varying amounts of FAP and POP protein and activities on activated fibroblasts, mesenchymal cells, normal breast cells, and one breast cancer cell line, with some cells exhibiting more POP than FAP activity. Replicating endothelial cells (ECs expressed POP but not FAP until tubulogenesis began. Targeting FAP-positive cells, especially mesenchymal stem cells and cancer-associated fibroblasts for inactivation or destruction, and inhibiting POP-producing EC may abrogate stromal invasion and angiogenesis simultaneously and thereby diminish cancer growth.

  19. L-Alanylglutamine inhibits signaling proteins that activate protein degradation, but does not affect proteins that activate protein synthesis after an acute resistance exercise.

    Science.gov (United States)

    Wang, Wanyi; Choi, Ran Hee; Solares, Geoffrey J; Tseng, Hung-Min; Ding, Zhenping; Kim, Kyoungrae; Ivy, John L

    2015-07-01

    Sustamine™ (SUS) is a dipeptide composed of alanine and glutamine (AlaGln). Glutamine has been suggested to increase muscle protein accretion; however, the underlying molecular mechanisms of glutamine on muscle protein metabolism following resistance exercise have not been fully addressed. In the present study, 2-month-old rats climbed a ladder 10 times with a weight equal to 75 % of their body mass attached at the tail. Rats were then orally administered one of four solutions: placebo (PLA-glycine = 0.52 g/kg), whey protein (WP = 0.4 g/kg), low dose of SUS (LSUS = 0.1 g/kg), or high dose of SUS (HSUS = 0.5 g/kg). An additional group of sedentary (SED) rats was intubated with glycine (0.52 g/kg) at the same time as the ladder-climbing rats. Blood samples were collected immediately after exercise and at either 20 or 40 min after recovery. The flexor hallucis longus (FHL), a muscle used for climbing, was excised at 20 or 40 min post exercise and analyzed for proteins regulating protein synthesis and degradation. All supplements elevated the phosphorylation of FOXO3A above SED at 20 min post exercise, but only the SUS supplements significantly reduced the phosphorylation of AMPK and NF-kB p65. SUS supplements had no effect on mTOR signaling, but WP supplementation yielded a greater phosphorylation of mTOR, p70S6k, and rpS6 compared with PLA at 20 min post exercise. However, by 40 min post exercise, phosphorylation of mTOR and rpS6 in PLA had risen to levels not different than WP. These results suggest that SUS blocks the activation of intracellular signals for MPB, whereas WP accelerates mRNA translation.

  20. Modulation of cartilage differentiation by melanoma inhibiting activity/cartilage-derived retinoic acid-sensitive protein (MIA/CD-RAP).

    Science.gov (United States)

    Schubert, Thomas; Schlegel, Jacqueline; Schmid, Rainer; Opolka, Alfred; Grassel, Susanne; Humphries, Martin; Bosserhoff, Anja-Katrin

    2010-03-31

    Melanoma inhibiting activity/cartilage-derived retinoic acid-sensitive protein (MIA/CD-RAP) is a small soluble protein secreted from malignant melanoma cells and from chondrocytes. Recently, we revealed that MIA/CD-RAP can modulate bone morphogenetic protein (BMP)2-induced osteogenic differentiation into a chondrogenic direction. In the current study we aimed to find the molecular details of this MIA/CD-RAP function. Direct influence of MIA on BMP2 by protein-protein-interaction or modulating SMAD signaling was ruled out experimentally. Instead, we revealed inhibition of ERK signaling by MIA/CD-RAP. This inhibition is regulated via binding of MIA/CD-RAP to integrin alpha5 and abolishing its activity. Active ERK signaling is known to block chondrogenic differentiation and we revealed induction of aggrecan expression in chondrocytes by treatment with MIA/CD-RAP or PD098059, an ERK inhibitor. In in vivo models we could support the role of MIA/CD-RAP in influencing osteogenic differentiation negatively. Further, MIA/CD-RAP-deficient mice revealed an enhanced calcified cartilage layer of the articular cartilage of the knee joint and disordered arrangement of chondrocytes. Taken together, our data indicate that MIA/CD-RAP stabilizes cartilage differentiation and inhibits differentiation into bone potentially by regulating signaling processes during differentiation.

  1. Activation of AMP-activated protein kinase inhibits oxidized LDL-triggered endoplasmic reticulum stress in vivo.

    Science.gov (United States)

    Dong, Yunzhou; Zhang, Miao; Wang, Shuangxi; Liang, Bin; Zhao, Zhengxing; Liu, Chao; Wu, Mingyuan; Choi, Hyoung Chul; Lyons, Timothy J; Zou, Ming-Hui

    2010-06-01

    The oxidation of LDLs is considered a key step in the development of atherosclerosis. How LDL oxidation contributes to atherosclerosis remains poorly defined. Here we report that oxidized and glycated LDL (HOG-LDL) causes aberrant endoplasmic reticulum (ER) stress and that the AMP-activated protein kinase (AMPK) suppressed HOG-LDL-triggered ER stress in vivo. ER stress markers, sarcoplasmic/endoplasmic reticulum Ca(2+) ATPase (SERCA) activity and oxidation, and AMPK activity were monitored in cultured bovine aortic endothelial cells (BAECs) exposed to HOG-LDL or in isolated aortae from mice fed an atherogenic diet. Exposure of BAECs to clinically relevant concentrations of HOG-LDL induced prolonged ER stress and reduced SERCA activity but increased SERCA oxidation. Chronic administration of Tempol (a potent antioxidant) attenuated both SERCA oxidation and aberrant ER stress in mice fed a high-fat diet in vivo. Likewise, AMPK activation by pharmacological (5'-aminoimidazole-4-carboxymide-1-beta-d-ribofuranoside, metformin, and statin) or genetic means (adenoviral overexpression of constitutively active AMPK mutants) significantly mitigated ER stress and SERCA oxidation and improved the endothelium-dependent relaxation in isolated mouse aortae. Finally, Tempol administration markedly attenuated impaired endothelium-dependent vasorelaxation, SERCA oxidation, ER stress, and atherosclerosis in ApoE(-/-) and ApoE(-/-)/AMPKalpha2(-/-) fed a high-fat diet. We conclude that HOG-LDL, via enhanced SERCA oxidation, causes aberrant ER stress, endothelial dysfunction, and atherosclerosis in vivo, all of which are inhibited by AMPK activation.

  2. Inhibition of Protein Farnesylation Arrests Adipogenesis and Affects PPARγ Expression and Activation in Differentiating Mesenchymal Stem Cells

    Science.gov (United States)

    Rivas, Daniel; Akter, Rahima; Duque, Gustavo

    2007-01-01

    Protein farnesylation is required for the activation of multiple proteins involved in cell differentiation and function. In white adipose tissue protein, farnesylation has shown to be essential for the successful differentiation of preadipocytes into adipocytes. We hypothesize that protein farnesylation is required for PPARγ2 expression and activation, and therefore for the differentiation of human mesenchymal stem cells (MSCs) into adipocytes. MSCs were plated and induced to differentiate into adipocytes for three weeks. Differentiating cells were treated with either an inhibitor of farnesylation (FTI-277) or vehicle alone. The effect of inhibition of farnesylation in differentiating adipocytes was determined by oil red O staining. Cell survival was quantified using MTS Formazan. Additionally, nuclear extracts were obtained and prelamin A, chaperon protein HDJ-2, PPARγ, and SREBP-1 were determined by western blot. Finally, DNA binding PPARγ activity was determined using an ELISA-based PPARγ activation quantification method. Treatment with an inhibitor of farnesylation (FTI-277) arrests adipogenesis without affecting cell survival. This effect was concomitant with lower levels of PPARγ expression and activity. Finally, accumulation of prelamin A induced an increased proportion of mature SREBP-1 which is known to affect PPARγ activity. In summary, inhibition of protein farnesylation arrests the adipogenic differentiation of MSCs and affects PPARγ expression and activity. PMID:18274630

  3. Inhibition of Protein Farnesylation Arrests Adipogenesis and Affects PPARgamma Expression and Activation in Differentiating Mesenchymal Stem Cells.

    Science.gov (United States)

    Rivas, Daniel; Akter, Rahima; Duque, Gustavo

    2007-01-01

    Protein farnesylation is required for the activation of multiple proteins involved in cell differentiation and function. In white adipose tissue protein, farnesylation has shown to be essential for the successful differentiation of preadipocytes into adipocytes. We hypothesize that protein farnesylation is required for PPARgamma2 expression and activation, and therefore for the differentiation of human mesenchymal stem cells (MSCs) into adipocytes. MSCs were plated and induced to differentiate into adipocytes for three weeks. Differentiating cells were treated with either an inhibitor of farnesylation (FTI-277) or vehicle alone. The effect of inhibition of farnesylation in differentiating adipocytes was determined by oil red O staining. Cell survival was quantified using MTS Formazan. Additionally, nuclear extracts were obtained and prelamin A, chaperon protein HDJ-2, PPARgamma, and SREBP-1 were determined by western blot. Finally, DNA binding PPARgamma activity was determined using an ELISA-based PPARgamma activation quantification method. Treatment with an inhibitor of farnesylation (FTI-277) arrests adipogenesis without affecting cell survival. This effect was concomitant with lower levels of PPARgamma expression and activity. Finally, accumulation of prelamin A induced an increased proportion of mature SREBP-1 which is known to affect PPARgamma activity. In summary, inhibition of protein farnesylation arrests the adipogenic differentiation of MSCs and affects PPARgamma expression and activity.

  4. Activation of GABAB receptors inhibits protein kinase B /Glycogen Synthase Kinase 3 signaling

    Directory of Open Access Journals (Sweden)

    Lu Frances Fangjia

    2012-11-01

    Full Text Available Abstract Accumulated evidence has suggested that potentiation of cortical GABAergic inhibitory neurotransmission may be a key mechanism in the treatment of schizophrenia. However, the downstream molecular mechanisms related to GABA potentiation remain unexplored. Recent studies have suggested that dopamine D2 receptor antagonists, which are used in the clinical treatment of schizophrenia, modulate protein kinase B (Akt/glycogen synthase kinase (GSK-3 signaling. Here we report that activation of GABAB receptors significantly inhibits Akt/GSK-3 signaling in a β-arrestin-dependent pathway. Agonist stimulation of GABAB receptors enhances the phosphorylation of Akt (Thr-308 and enhances the phosphorylation of GSK-3α (Ser-21/β (Ser-9 in both HEK-293T cells expressing GABAB receptors and rat hippocampal slices. Furthermore, knocking down the expression of β-arrestin2 using siRNA abolishes the GABAB receptor-mediated modulation of GSK-3 signaling. Our data may help to identify potentially novel targets through which GABAB receptor agents may exert therapeutic effects in the treatment of schizophrenia.

  5. Activation of GABA(B) receptors inhibits protein kinase B/glycogen synthase kinase 3 signaling.

    Science.gov (United States)

    Lu, Frances Fangjia; Su, Ping; Liu, Fang; Daskalakis, Zafiris J

    2012-11-28

    Accumulated evidence has suggested that potentiation of cortical GABAergic inhibitory neurotransmission may be a key mechanism in the treatment of schizophrenia. However, the downstream molecular mechanisms related to GABA potentiation remain unexplored. Recent studies have suggested that dopamine D2 receptor antagonists, which are used in the clinical treatment of schizophrenia, modulate protein kinase B (Akt)/glycogen synthase kinase (GSK)-3 signaling. Here we report that activation of GABA(B) receptors significantly inhibits Akt/GSK-3 signaling in a β-arrestin-dependent pathway. Agonist stimulation of GABA(B) receptors enhances the phosphorylation of Akt (Thr-308) and enhances the phosphorylation of GSK-3α (Ser-21)/β (Ser-9) in both HEK-293T cells expressing GABA(B) receptors and rat hippocampal slices. Furthermore, knocking down the expression of β-arrestin2 using siRNA abolishes the GABA(B) receptor-mediated modulation of GSK-3 signaling. Our data may help to identify potentially novel targets through which GABA(B) receptor agents may exert therapeutic effects in the treatment of schizophrenia.

  6. Activation of Phosphotyrosine Phosphatase Activity Attenuates Mitogen-Activated Protein Kinase Signaling and Inhibits c-FOS and Nitric Oxide Synthase Expression in Macrophages Infected with Leishmania donovani

    OpenAIRE

    Nandan, Devki; Lo, Raymond; Reiner, Neil E

    1999-01-01

    Intracellular protozoan parasites of the genus Leishmania antagonize host defense mechanisms by interfering with cell signaling in macrophages. In this report, the impact of Leishmania donovani on mitogen-activated protein (MAP) kinases and nitric oxide synthase (NOS) expression in the macrophage cell line RAW 264 was investigated. Overnight infection of cells with leishmania led to a significant decrease in phorbol-12-myristate-13-acetate (PMA)-stimulated MAP kinase activity and inhibited PM...

  7. Vaccinia virus protein C6 is a virulence factor that binds TBK-1 adaptor proteins and inhibits activation of IRF3 and IRF7.

    Directory of Open Access Journals (Sweden)

    Leonie Unterholzner

    2011-09-01

    Full Text Available Recognition of viruses by pattern recognition receptors (PRRs causes interferon-β (IFN-β induction, a key event in the anti-viral innate immune response, and also a target of viral immune evasion. Here the vaccinia virus (VACV protein C6 is identified as an inhibitor of PRR-induced IFN-β expression by a functional screen of select VACV open reading frames expressed individually in mammalian cells. C6 is a member of a family of Bcl-2-like poxvirus proteins, many of which have been shown to inhibit innate immune signalling pathways. PRRs activate both NF-κB and IFN regulatory factors (IRFs to activate the IFN-β promoter induction. Data presented here show that C6 inhibits IRF3 activation and translocation into the nucleus, but does not inhibit NF-κB activation. C6 inhibits IRF3 and IRF7 activation downstream of the kinases TANK binding kinase 1 (TBK1 and IκB kinase-ε (IKKε, which phosphorylate and activate these IRFs. However, C6 does not inhibit TBK1- and IKKε-independent IRF7 activation or the induction of promoters by constitutively active forms of IRF3 or IRF7, indicating that C6 acts at the level of the TBK1/IKKε complex. Consistent with this notion, C6 immunoprecipitated with the TBK1 complex scaffold proteins TANK, SINTBAD and NAP1. C6 is expressed early during infection and is present in both nucleus and cytoplasm. Mutant viruses in which the C6L gene is deleted, or mutated so that the C6 protein is not expressed, replicated normally in cell culture but were attenuated in two in vivo models of infection compared to wild type and revertant controls. Thus C6 contributes to VACV virulence and might do so via the inhibition of PRR-induced activation of IRF3 and IRF7.

  8. GCN-2 dependent inhibition of protein synthesis activates osmosensitive gene transcription via WNK and Ste20 kinase signaling.

    Science.gov (United States)

    Lee, Elaine Choung-Hee; Strange, Kevin

    2012-12-15

    Increased gpdh-1 transcription is required for accumulation of the organic osmolyte glycerol and survival of Caenorhabditis elegans during hypertonic stress. Our previous work has shown that regulators of gpdh-1 (rgpd) gene knockdown constitutively activates gpdh-1 expression. Fifty-five rgpd genes play essential roles in translation suggesting that inhibition of protein synthesis is an important signal for regulating osmoprotective gene transcription. We demonstrate here that translation is reduced dramatically by hypertonic stress or knockdown of rgpd genes encoding aminoacyl-tRNA synthetases and eukaryotic translation initiation factors (eIFs). Toxin-induced inhibition of translation also activates gpdh-1 expression. Hypertonicity-induced translation inhibition is mediated by general control nonderepressible (GCN)-2 kinase signaling and eIF-2α phosphoryation. Loss of gcn-1 or gcn-2 function prevents eIF-2α phosphorylation, completely blocks reductions in translation, and inhibits gpdh-1 transcription. gpdh-1 expression is regulated by the highly conserved with-no-lysine kinase (WNK) and Ste20 kinases WNK-1 and GCK-3, which function in the GCN-2 signaling pathway downstream from eIF-2α phosphorylation. Our previous work has shown that hypertonic stress causes rapid and dramatic protein damage in C. elegans and that inhibition of translation reduces this damage. The current studies demonstrate that reduced translation also serves as an essential signal for activation of WNK-1/GCK-3 kinase signaling and subsequent transcription of gpdh-1 and possibly other osmoprotective genes.

  9. Vaccinia virus K1 ankyrin repeat protein inhibits NF-κB activation by preventing RelA acetylation.

    Science.gov (United States)

    Bravo Cruz, Ariana G; Shisler, Joanna L

    2016-10-01

    The vaccinia virus (VACV) K1 protein inhibits dsRNA-dependent protein kinase (PKR) activation. A consequence of this function is that K1 inhibits PKR-induced NF-κB activation during VACV infection. However, transient expression of K1 also inhibits Toll-like receptor (TLR)-induced NF-κB activation. This suggests that K1 has a second NF-κB inhibitory mechanism that is PKR-independent. This possibility was explored by expressing K1 independently of infection and stimulating NF-κB under conditions that minimized or excluded PKR activation. K1 inhibited both TNF- and phorbol 12-myristate 13-acetate (PMA)-induced NF-κB activation, as detected by transcription of synthetic (e.g. luciferase) and natural (e.g. CXCL8) genes controlled by NF-κB. K1 also inhibited NF-κB activity in PKRkd cells, cells that have greatly decreased amounts of PKR. K1 no longer prevented IκBα degradation or NF-κB nuclear translocation in the absence of PKR, suggesting that K1 acted on a nuclear event. Indeed, K1 was present in the nucleus and cytoplasm of stimulated and unstimulated cells. K1 inhibited acetylation of the RelA (p65) subunit of NF-κB, a nuclear event known to be required for NF-κB activation. Moreover, p65-CBP (CREB-binding protein) interactions were blocked in the presence of K1. However, K1 did not preclude NF-κB binding to oligonucleotides containing κB-binding sites. The current interpretation of these data is that NF-κB-promoter interactions still occur in the presence of K1, but NF-κB cannot properly trigger transcriptional activation because K1 antagonizes acetylation of RelA. Thus, in comparison to all known VACV NF-κB inhibitory proteins, K1 acts at one of the most downstream events of NF-κB activation.

  10. Influence of Block Copolymerization on the Antifreeze Protein Mimetic Ice Recrystallization Inhibition Activity of Poly(vinyl alcohol).

    Science.gov (United States)

    Congdon, Thomas R; Notman, Rebecca; Gibson, Matthew I

    2016-09-12

    Antifreeze (glyco) proteins are produced by many cold-acclimatized species to enable them to survive subzero temperatures. These proteins have multiple macroscopic effects on ice crystal growth which makes them appealing for low-temperature applications-from cellular cryopreservation to food storage. Poly(vinyl alcohol) has remarkable ice recrystallization inhibition activity, but its mode of action is uncertain as is the extent at which it can be incorporated into other high-order structures. Here the synthesis and characterization of well-defined block copolymers containing poly(vinyl alcohol) and poly(vinylpyrrolidone) by RAFT/MADIX polymerization is reported, as new antifreeze protein mimetics. The effect of adding a large second hydrophilic block is studied across a range of compositions, and it is found to be a passive component in ice recrystallization inhibition assays, enabling retention of all activity. In the extreme case, a block copolymer with only 10% poly(vinyl alcohol) was found to retain all activity, where statistical copolymers of PVA lose all activity with very minor changes to composition. These findings present a new method to increase the complexity of antifreeze protein mimetic materials, while retaining activity, and also to help understand the underlying mechanisms of action.

  11. A new synthetic protein, TAT-RH, inhibits tumor growth through the regulation of NFκB activity

    Directory of Open Access Journals (Sweden)

    Leggiero Eleonora

    2009-11-01

    Full Text Available Abstract Background Based on its role in angiogenesis and apoptosis, the inhibition of NFκB activity is considered an effective treatment for cancer, hampered by the lack of selective and safe inhibitors. We recently demonstrated that the RH domain of GRK5 (GRK5-RH inhibits NFκB, thus we evaluated its effects on cancer growth. Methods The role of GRK5-RH on tumor growth was assessed in a human cancer cell line (KAT-4. RH overexpression was induced by adenovirus mediated gene transfer; alternatively we administered a synthetic protein reproducing the RH domain of GRK5 (TAT-RH, actively transported into the cells. Results In vitro, adenovirus mediated GRK5-RH overexpression (AdGRK5-NT in human tumor cells (KAT-4 induces IκB accumulation and inhibits NFκB transcriptional activity leading to apoptotic events. In BALB/c nude mice harboring KAT-4 induced neoplasias, intra-tumor delivery of AdGRK5-NT reduces in a dose-dependent fashion tumor growth, with the highest doses completely inhibiting it. This phenomenon is paralleled by a decrease of NFκB activity, an increase of IκB levels and apoptotic events. To move towards a pharmacological setup, we synthesized the TAT-RH protein. In cultured KAT-4 cells, different dosages of TAT-RH reduced cell survival and increased apoptosis. In BALB/c mice, the anti-proliferative effects of TAT-RH appear to be dose-dependent and highest dose completely inhibits tumor growth. Conclusion Our data suggest that GRK5-RH inhibition of NFκB is a novel and effective anti-tumoral strategy and TAT-RH could be an useful tool in the fighting of cancer.

  12. GCN-2 dependent inhibition of protein synthesis activates osmosensitive gene transcription via WNK and Ste20 kinase signaling

    OpenAIRE

    Lee, Elaine Choung-Hee; Strange, Kevin

    2012-01-01

    Increased gpdh-1 transcription is required for accumulation of the organic osmolyte glycerol and survival of Caenorhabditis elegans during hypertonic stress. Our previous work has shown that regulators of gpdh-1 (rgpd) gene knockdown constitutively activates gpdh-1 expression. Fifty-five rgpd genes play essential roles in translation suggesting that inhibition of protein synthesis is an important signal for regulating osmoprotective gene transcription. We demonstrate here that translation is ...

  13. Flavone inhibits nitric oxide synthase (NOS) activity, nitric oxide production and protein S-nitrosylation in breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Wenzhen; Yang, Bingwu; Fu, Huiling; Ma, Long; Liu, Tingting; Chai, Rongfei; Zheng, Zhaodi [Shandong Provincial Key Laboratory of Animal Resistant Biology, School of Life Sciences, Shandong Normal University, Jinan 250014 (China); Zhang, Qunye, E-mail: wz.zhangqy@sdu.edu.cn [Key Laboratory of Cardiovascular Remodeling and Function Research Chinese Ministry of Education and Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, Shandong (China); Li, Guorong, E-mail: grli@sdnu.edu.cn [Shandong Provincial Key Laboratory of Animal Resistant Biology, School of Life Sciences, Shandong Normal University, Jinan 250014 (China)

    2015-03-13

    As the core structure of flavonoids, flavone has been proved to possess anticancer effects. Flavone's growth inhibitory functions are related to NO. NO is synthesized by nitric oxide synthase (NOS), and generally increased in a variety of cancer cells. NO regulates multiple cellular responses by S-nitrosylation. In this study, we explored flavone-induced regulations on nitric oxide (NO)-related cellular processes in breast cancer cells. Our results showed that, flavone suppresses breast cancer cell proliferation and induces apoptosis. Flavone restrains NO synthesis by does-dependent inhibiting NOS enzymatic activity. The decrease of NO generation was detected by fluorescence microscopy and flow cytometry. Flavone-induced inhibitory effect on NOS activity is dependent on intact cell structure. For the NO-induced protein modification, flavone treatment significantly down-regulated protein S-nitrosylation, which was detected by “Biotin-switch” method. The present study provides a novel, NO-related mechanism for the anticancer function of flavone. - Highlights: • Flavone inhibits proliferation and induces apoptosis in MCF-7 cells. • Flavone decreases nitric oxide production by inhibiting NOS enzymatic activity in breast cancer cells. • Flavone down-regulates protein S-nitrosylation.

  14. Adhesive ability means inhibition activities for lactobacillus against pathogens and S-layer protein plays an important role in adhesion.

    Science.gov (United States)

    Zhang, Wenming; Wang, Haifeng; Liu, Jianxin; Zhao, Yunhao; Gao, Kan; Zhang, Juan

    2013-08-01

    Eighty-five strains of lactobacillus were isolated from the pig intestine and identified by sequencing analysis based on 16S rRNA gene, from which five lactobacillus strains with high adhesive ability were selected. The inhibition ability of the five lactobacillus strains with or without S-layer proteins against adherence of Escherichia coli K88 and Salmonella enteritidis 50335 to Caco-2 was evaluated in vitro with Lactobacillus rhamnosus GG strain (LGG) as a positive control. In addition, tolerance of lactobacilli to heat, acid, bile, Zn(2+) and Cu(2+) were assessed. All five selected strains, Lactobacillus salivarius ZJ614 (JN981856), Lactobacillus reuteri ZJ616 (JN981858), L. reuteri ZJ617 (JN981859), L. reuteri ZJ621 (JN981863) and L. reuteri ZJ623 (JN981865), showed inhibition against the two pathogens, E. coli K88 and S. enteritidis 50335. L. reuteri ZJ621 showed higher inhibition ability than the others to S. enteritidis 50335 (P S-layer protein, the inhibition activities of the lactobacilli against pathogens decreased significantly (P S-layer proteins plays an important role.

  15. 5-aminoimidazole-4-carboxamide ribonucleoside and AMP-activated protein kinase inhibit signalling through NF-κB.

    Science.gov (United States)

    Katerelos, Marina; Mudge, Stuart J; Stapleton, David; Auwardt, Russell B; Fraser, Scott A; Chen, C-G; Kemp, Bruce E; Power, David A

    2010-10-01

    Activation of nuclear factor-kappa B (NF-κB) is one of the most important pro-inflammatory mechanisms in disease. In this study, we show that 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR), an intermediate in nucleoside metabolism, inhibits signalling by NF-κB in three cell types, including bovine aortic endothelial cells (BAEC). The block in the NF-κB signalling pathway occurred beyond degradation of IκB-α and movement of p65 into the nucleus of BAEC. There was, however, reduced binding of NF-κB from AICAR-treated cells to a κB-consensus oligonucleotide, suggesting that part of the mechanism was a reduction in NF-κB DNA-binding activity. Although AICAR is metabolized to ZMP and then adenosine, adenosine had no effect on activation of an NF-κB reporter. ZMP, however, activates the metabolic stress-sensing AMP-activated protein kinase (AMPK). Transfection of active AMPK into BAEC reduced NF-κB reporter activity compared with a kinase-dead mutant, suggesting that part of the ability of AICAR to inhibit NF-κB signalling is due to activation of AMPK. Inhibition of NF-κB signalling may be important in the anti-inflammatory action of drugs such as sulfasalazine and methotrexate, which led to the accumulation of AICAR within target cells.

  16. Tat-APE1/ref-1 protein inhibits TNF-alpha-induced endothelial cell activation.

    Science.gov (United States)

    Song, Yun Jeong; Lee, Ji Young; Joo, Hee Kyoung; Kim, Hyo Shin; Lee, Sang Ki; Lee, Kwon Ho; Cho, Chung-Hyun; Park, Jin Bong; Jeon, Byeong Hwa

    2008-03-28

    Apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/ref-1) is a multifunctional protein involved both in DNA base excision repair and redox regulation. In this study we evaluated the protective role of Tat-mediated APE1/ref-1 transduction on the tumor necrosis factor (TNF)-alpha-activated endothelial activation in cultured human umbilical vein endothelial cells. To construct Tat-APE1/ref-1 fusion protein, human full length of APE1/ref-1 was fused with Tat-protein transduction domain. Purified Tat-APE1/ref-1 fusion protein efficiently transduced cultured endothelial cells in a dose-dependent manner and reached maximum expression at 1h after incubation. Transduced Tat-APE1/ref-1 showed inhibitory activity on the TNF-alpha-induced monocyte adhesion and vascular cell adhesion molecule-1 expression in cultured endothelial cells. These results suggest Tat-APE1/ref-1 might be useful to reduce vascular endothelial activation or vascular inflammatory disorders.

  17. Antifreeze (glyco)protein mimetic behavior of poly(vinyl alcohol): detailed structure ice recrystallization inhibition activity study.

    Science.gov (United States)

    Congdon, Thomas; Notman, Rebecca; Gibson, Matthew I

    2013-05-13

    This manuscript reports a detailed study on the ability of poly(vinyl alcohol) to act as a biomimetic surrogate for antifreeze(glyco)proteins, with a focus on the specific property of ice-recrystallization inhibition (IRI). Despite over 40 years of study, the underlying mechanisms that govern the action of biological antifreezes are still poorly understood, which is in part due to their limited availability and challenging synthesis. Poly(vinyl alcohol) (PVA) has been shown to display remarkable ice recrystallization inhibition activity despite its major structural differences to native antifreeze proteins. Here, controlled radical polymerization is used to synthesize well-defined PVA, which has enabled us to obtain the first quantitative structure-activity relationships, to probe the role of molecular weight and comonomers on IRI activity. Crucially, it was found that IRI activity is "switched on" when the polymer chain length increases from 10 and 20 repeat units. Substitution of the polymer side chains with hydrophilic or hydrophobic units was found to diminish activity. Hydrophobic modifications to the backbone were slightly more tolerated than side chain modifications, which implies an unbroken sequence of hydroxyl units is necessary for activity. These results highlight that, although hydrophobic domains are key components of IRI activity, the random inclusion of addition hydrophobic units does not guarantee an increase in activity and that the actual polymer conformation is important.

  18. Protein Kinase C-Independent Inhibition of Organic Cation Transporter 1 Activity by the Bisindolylmaleimide Ro 31-8220.

    Directory of Open Access Journals (Sweden)

    Abdullah Mayati

    Full Text Available Ro 31-8220 is a potent protein kinase C (PKC inhibitor belonging to the chemical class of bisindolylmaleimides (BIMs. Various PKC-independent effects of Ro 31-8220 have however been demonstrated, including inhibition of the ATP-binding cassette drug transporter breast cancer resistance protein. In the present study, we reported that the BIM also blocks activity of the solute carrier organic cation transporter (OCT 1, involved in uptake of marketed drugs in the liver, in a PKC-independent manner. Ro 31-8220, in contrast to other pan-PKC inhibitors such as staurosporine and chelerythrine, was thus shown to cis-inhibit uptake of the reference OCT1 substrate tetraethylammonium in OCT1-transfected HEK293 cells in a concentration-dependent manner (IC50 = 0.18 μM and without altering membrane expression of OCT1. This blockage of OCT1 was also observed in human hepatic HepaRG cells that constitutionally express OCT1. It likely occurred through a mixed mechanism of inhibition. Ro 31-8220 additionally trans-inhibited TEA uptake in OCT1-transfected HEK293 cells, which likely discards a transport of Ro 31-8220 by OCT1. Besides Ro 31-8220, 7 additional BIMs, including the PKC inhibitor LY 333531, inhibited OCT1 activity, whereas 4 other BIMs were without effect. In silico analysis of structure-activity relationships next revealed that various molecular descriptors, especially 3D-WHIM descriptors related to total size, correspond to key physico-chemical parameters for inhibition of OCT1 activity by BIMs. In addition to activity of OCT1, Ro 31-8220 inhibited those of other organic cation transporters such as multidrug and toxin extrusion protein (MATE 1 and MATE2-K, whereas, by contrast, it stimulated that of OCT2. Taken together, these data extend the nature of cellular off-targets of the BIM Ro 31-8220 to OCT1 and other organic cation transporters, which has likely to be kept in mind when using Ro 31-8220 and other BIMs as PKC inhibitors in experimental or

  19. Small heterodimer partner-interacting leucine zipper protein inhibits adipogenesis by regulating peroxisome proliferator-activated receptor γ activity.

    Science.gov (United States)

    Jang, Hoon; Kim, Hyoung-Joo; Kim, Dong-Hwan; Park, Jae-Kyung; Sun, Wu-Sheng; Hwang, Seongsoo; Oh, Keon-Bong; Jang, Won-Gu; Lee, Jeong-Woong

    2015-07-01

    Adipocytes play a critical role in energy balance. Growth of fat tissue is achieved via an increase in adipocyte mass and the formation of newly differentiated adipocytes from precursor cells. Understanding the cellular and molecular mechanisms of adipocyte differentiation is crucial for the study of obesity- and fat-related diseases. The present study was designed to study whether small heterodimer partner-interacting leucine zipper protein (SMILE), a novel co-repressor, could regulate differentiation of adipocyte in 3T3-L1 cells. Treatment of endoplasmic stress inducers, thapsigargin and tunicamycin, inhibited adipocyte differentiation, stimulated Smile mRNA expression, and repressed the expression of adiponectin (Adipoq) in 3T3-L1 pre-adipocyte. Overexpression of SMILE in 3T3-L1 cells decreased the expression of the mRNA encoding Adipoq, a major marker of adipocytes, significantly. Furthermore, knockdown of SMILE recovered the thapsigargin-mediated repression of Adipoq transcription. Co-immunoprecipitation experiments revealed that SMILE interacted physically with PPARγ in 3T3-L1 cells. In addition, chromatin immunoprecipitation experiments revealed that SMILE suppressed the binding affinity of PPARγ for the Adipoq promoter. We demonstrate that SMILE controls adipocyte differentiation by regulating the transactivity of peroxisome proliferator-activated receptor γ (PPARγ). These findings demonstrate that SMILE represses adipocyte differentiation by regulating PPARγ transactivity; hence, SMILE is a potential regulator of PPARγ-related diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. C1q/TNF-related protein-9 inhibits cytokine-induced vascular inflammation and leukocyte adhesiveness via AMP-activated protein kinase activation in endothelial cells.

    Science.gov (United States)

    Jung, Chang Hee; Lee, Min Jung; Kang, Yu Mi; Lee, Yoo La; Seol, So Mi; Yoon, Hae Kyeong; Kang, Sang-Wook; Lee, Woo Je; Park, Joong-Yeol

    2016-01-05

    Although recent studies have reported cardioprotective effects of C1q/TNF-related protein 9 (CTRP9), the closet adiponectin paralog, its role on cytokine-induced endothelial inflammation is unknown. We investigated whether CTRP9 prevented inflammatory cytokine-induced nuclear factor-kappa B (NF-κB) activation and inhibited the expression of adhesion molecules and a chemokine in the vascular endothelial cell. We used human aortic endothelial cells (HAECs) to examine the effects of CTRP9 on NF-κB activation and the expression of NF-κB-mediated genes, including intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and monocyte chemoattractant protein-1 (MCP-1). Tumor necrosis factor alpha (TNFα) was used as a representative proinflammatory cytokine. In an adhesion assay using THP-1 cells, CTRP9 reduced TNFα-induced adhesion of monocytes to HAECs. Treatment with CTRP9 significantly decreased TNFα-induced activation of NF-κB, as well as the expression of ICAM-1, VCAM-1, and MCP-1. In addition, treatment with CTRP9 significantly increased the phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC), the downstream target of AMPK. The inhibitory effect of CTRP9 on the expression of ICAM-1, VCAM-1, and MCP-1 and monocyte adhesion to HAECs was abolished after transfection with an AMPKα1-specific siRNA. Our study is the first to demonstrate that CTRP9 attenuates cytokine-induced vascular inflammation in endothelial cells mediated by AMPK activation.

  1. Mutant Forms of the Azotobacter vinelandii Transcriptional Activator NifA Resistant to Inhibition by the NifL Regulatory Protein

    OpenAIRE

    Reyes-Ramirez, Francisca; Little, Richard; Dixon, Ray

    2002-01-01

    The Azotobacter vinelandii σ54-dependent transcriptional activator protein NifA is regulated by the NifL protein in response to redox, carbon, and nitrogen status. Under conditions inappropriate for nitrogen fixation, NifL inhibits transcription activation by NifA through the formation of the NifL-NifA protein complex. NifL inhibits the ATPase activity of the central AAA+ domain of NifA required to drive open complex formation by σ54-RNA polymerase and may also inhibit the activator-polymeras...

  2. Mutant Forms of the Azotobacter vinelandii Transcriptional Activator NifA Resistant to Inhibition by the NifL Regulatory Protein

    OpenAIRE

    Reyes-Ramirez, Francisca; Little, Richard; Dixon, Ray

    2002-01-01

    The Azotobacter vinelandii σ54-dependent transcriptional activator protein NifA is regulated by the NifL protein in response to redox, carbon, and nitrogen status. Under conditions inappropriate for nitrogen fixation, NifL inhibits transcription activation by NifA through the formation of the NifL-NifA protein complex. NifL inhibits the ATPase activity of the central AAA+ domain of NifA required to drive open complex formation by σ54-RNA polymerase and may also inhibit the activator-polymeras...

  3. The Bmx tyrosine kinase induces activation of the Stat signaling pathway, which is specifically inhibited by protein kinase Cdelta.

    Science.gov (United States)

    Saharinen, P; Ekman, N; Sarvas, K; Parker, P; Alitalo, K; Silvennoinen, O

    1997-12-01

    Members of the hematopoietically expressed Tec tyrosine kinase family have an important role in hematopoietic signal transduction, as exemplified by the crucial role of Btk for B-cell differentiation and activation. Although a variety of cell surface receptors have been found to activate Tec tyrosine kinases, the specific signaling pathways and substrate molecules used by Tec kinases are still largely unknown. In this study a Tec family kinase, Bmx, was found to induce activation of the Stat signaling pathway. Bmx induced the tyrosine phosphorylation and DNA binding activity of all the Stat factors tested, including Stat1, Stat3, and Stat5, both in mammalian and insect cells. Bmx also induced transcriptional activation of Stat1- and Stat5-dependent reporter genes. Other cytoplasmic tyrosine kinases, Syk, Fyn, and c-Src, showed no or only weak ability to activate Stat proteins. Expression of Bmx in mammalian cells was found to induce activation of endogenous Stat proteins without activation of endogenous Jak kinases. We further analyzed the Bmx-mediated activation of Stat1, which was found to be regulated by protein kinase C delta (PKCdelta) isoform, but not beta 1, epsilon, or zeta isoforms, leading to inhibition of Stat1 tyrosine phosphorylation. In conclusion, these studies show that Bmx, a Tec family kinase, can function as an activator of the Stat signaling pathway and identify a role for PKCdelta in the regulation of Bmx signaling.

  4. Activation of protein kinase C inhibits potassium currents in cultured endothelial cells.

    Science.gov (United States)

    Zhang, H; Weir, B; Daniel, E E

    1995-04-01

    The effect of protein kinase C on potassium channels in cultured endothelial cells was investigated by using whole-cell patch-clamp techniques. Activation of protein kinase C by phorbol 12-myristate 13-acetate (PMA) and phorbol 12,13-dibutyrate (PDBu), but not phorbol 12-monomyristate (PMM), an inactive analogue of phorbol esters, depressed an outward calcium-dependent potassium current. The inhibitory actions of PMA and PDBu could be reversed by the kinase inhibitor H-7. Cyclopiazonic acid, an inhibitor of the sarcoplasmic reticulum calcium pump, and LP-805, a novel vasodilator which also releases endothelium-derived relaxing factors, activated the outward calcium-dependent potassium conductance. PMA and PDBu, but not PMM, reduced the outward conductance induced by cyclopiazonic acid and LP-805. These effects of PMA and PDBu on potassium currents may be mediated either by phosphorylation of ion channels, or by decreasing intracellular calcium concentration.

  5. Activation of the Metabolic Sensor AMP-Activated Protein Kinase Inhibits Aquaporin-2 Function in Kidney Principal Cells

    DEFF Research Database (Denmark)

    Al-Bataineh, Mohammad M; Li, Hui; Ohmi, Kazuhiro;

    2016-01-01

    not prevent AQP2 apical accumulation in response to the AVP analog desmopressin (dDAVP). Prolonged AMPK activation prevented AQP2 cell membrane accumulation in response to forskolin in mouse collecting duct mpkCCDc14 cells. Moreover, AMPK inhibition accelerated hypotonic lysis of Xenopus oocytes expressing...

  6. Slit3 inhibits activator protein 1-mediated migration of malignant melanoma cells.

    Science.gov (United States)

    Denk, Alexandra E; Braig, Simone; Schubert, Thomas; Bosserhoff, Anja K

    2011-11-01

    The repellent factor family of Slit molecules has been described to have repulsive function in the developing nervous system on growing axons expressing the Robo receptors. Alterations of the Slit/Robo system have been observed in various pathological conditions and in cancer. However, until today no detailed studies on Slit function on melanoma migration are available. Therefore, we analysed the mRNA expression in melanoma cells and found induction of Robo3 expression compared to normal melanocytes. Functional assays performed with melanoma cells revealed that treatment with Slit3 led to strong inhibition of migration. Interestingly, we observed down-regulation of AP-1 activity and target gene expression after Slit3 treatment contributing to the negative regulation of migration. Taken together, our data showed that Slit3 reduces the migratory activity of melanoma cells, potentially by repulsion of the cells in analogy to the neuronal system. Further studies will be necessary to prove Slit activity in vivo, but due to its function, Slit3 activity may be helpful in the treatment of melanoma.

  7. Herpesviral G protein-coupled receptors activate NFAT to induce tumor formation via inhibiting the SERCA calcium ATPase.

    Directory of Open Access Journals (Sweden)

    Junjie Zhang

    2015-03-01

    Full Text Available G protein-coupled receptors (GPCRs constitute the largest family of proteins that transmit signal to regulate an array of fundamental biological processes. Viruses deploy diverse tactics to hijack and harness intracellular signaling events induced by GPCR. Herpesviruses encode multiple GPCR homologues that are implicated in viral pathogenesis. Cellular GPCRs are primarily regulated by their cognate ligands, while herpesviral GPCRs constitutively activate downstream signaling cascades, including the nuclear factor of activated T cells (NFAT pathway. However, the roles of NFAT activation and mechanism thereof in viral GPCR tumorigenesis remain unknown. Here we report that GPCRs of human Kaposi's sarcoma-associated herpesvirus (kGPCR and cytomegalovirus (US28 shortcut NFAT activation by inhibiting the sarcoplasmic reticulum calcium ATPase (SERCA, which is necessary for viral GPCR tumorigenesis. Biochemical approaches, entailing pharmacological inhibitors and protein purification, demonstrate that viral GPCRs target SERCA2 to increase cytosolic calcium concentration. As such, NFAT activation induced by vGPCRs was exceedingly sensitive to cyclosporine A that targets calcineurin, but resistant to inhibition upstream of ER calcium release. Gene expression profiling identified a signature of NFAT activation in endothelial cells expressing viral GPCRs. The expression of NFAT-dependent genes was up-regulated in tumors derived from tva-kGPCR mouse and human KS. Employing recombinant kGPCR-deficient KSHV, we showed that kGPCR was critical for NFAT-dependent gene expression in KSHV lytic replication. Finally, cyclosporine A treatment diminished NFAT-dependent gene expression and tumor formation induced by viral GPCRs. These findings reveal essential roles of NFAT activation in viral GPCR tumorigenesis and a mechanism of "constitutive" NFAT activation by viral GPCRs.

  8. Interleukin-32α downregulates the activity of the B-cell CLL/lymphoma 6 protein by inhibiting protein kinase Cε-dependent SUMO-2 modification.

    Science.gov (United States)

    Park, Yun Sun; Kang, Jeong-Woo; Lee, Dong Hun; Kim, Man Sub; Bak, Yesol; Yang, Young; Lee, Hee Gu; Hong, JinTae; Yoon, Do-Young

    2014-09-30

    A proinflammatory cytokine IL-32 acts as an intracellular mediator. IL-32α interacts with many intracellular molecules, but there are no reports of interaction with a transcriptional repressor BCL6. In this study, we showed that PMA induces an interaction between IL-32α, PKCε, and BCL6, forming a trimer. To identify the mechanism of the interaction, we treated cells with various inhibitors. In HEK293 and THP-1 cell lines, treatment with a pan-PKC inhibitor, PKCε inhibitor, and PKCδ inhibitor decreased BCL6 and IL-32α protein expression. MAPK inhibitors and classical PKC inhibitor did not decrease PMA-induced BCL6 and IL-32α protein expression. Further, the pan-PKC inhibitor and PKCε inhibitor disrupted PMA-induced interaction between IL-32α and BCL6. These data demonstrate that the intracellular interaction between IL-32α and BCL6 is induced by PMA-activated PKCε. PMA induces post-translational modification of BCL6 by conjugation to SUMO-2, while IL-32α inhibits. PKCε inhibition eliminated PMA-induced SUMOylation of BCL6. Inhibition of BCL6 SUMOylation by IL-32α affected the cellular function and activity of the transcriptional repressor BCL6 in THP-1 cells. Thus, we showed that IL-32α is a negative regulator of the transcriptional repressor BCL6. IL-32α inhibits BCL6 SUMOylation by activating PKCε, resulting in the modulation of BCL6 target genes and cellular functions of BCL6.

  9. Phentolamine inhibits exocytosis of glucagon by Gi2 protein-dependent activation of calcineurin in rat pancreatic alpha -cells.

    Science.gov (United States)

    Høy, M; Bokvist, K; Xiao-Gang, W; Hansen, J; Juhl, K; Berggren, P O; Buschard, K; Gromada, J

    2001-01-12

    Capacitance measurements were used to investigate the molecular mechanisms by which imidazoline compounds inhibit glucagon release in rat pancreatic alpha-cells. The imidazoline compound phentolamine reversibly decreased depolarization-evoked exocytosis >80% without affecting the whole-cell Ca(2+) current. During intracellular application through the recording pipette, phentolamine produced a concentration-dependent decrease in the rate of exocytosis (IC(50) = 9.7 microm). Another imidazoline compound, RX871024, exhibited similar effects on exocytosis (IC(50) = 13 microm). These actions were dependent on activation of pertussis toxin-sensitive G(i2) proteins but were not associated with stimulation of ATP-sensitive K(+) channels or adenylate cyclase activity. The inhibitory effect of phentolamine on exocytosis resulted from activation of the protein phosphatase calcineurin and was abolished by cyclosporin A and deltamethrin. Exocytosis was not affected by intracellular application of specific alpha(2), I(1), and I(2) ligands. Phentolamine reduced glucagon release (IC(50) = 1.2 microm) from intact islets by 40%, an effect abolished by pertussis toxin, cyclosporin A, and deltamethrin. These data suggest that imidazoline compounds inhibit glucagon secretion via G(i2)-dependent activation of calcineurin in the pancreatic alpha-cell. The imidazoline binding site is likely to be localized intracellularly and probably closely associated with the secretory granules.

  10. Using recombinant CD74 protein to inhibit the activity of macrophage migration inhibitory factor (MIF) in vitro

    Institute of Scientific and Technical Information of China (English)

    Zhi-xinSHAN; Xi-yongYU; Qiu-xiongLIN; Yong-hengFU

    2005-01-01

    AIM Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine involved in the pathogenesis of a variety of autoimmune and inflammatory diseases, including arthritis, glomerulonephritis, Gram-positive and Gram-negative sepsis, and atherogenesis. Recent studies showed that CD74(antigen-associated invariant chain Ⅱ) is a high-affinity membrane-binding protein for MIF. The purpose of the present study was to express the recombinant human CD74 in E. coli and inhibit the activity of MIF by using recombinant CD74 in vitro.

  11. The Na+ glucose co-transporter inhibitor canagliflozin activates AMP-activated protein kinase by inhibiting mitochondrial function and increasing cellular AMP levels

    OpenAIRE

    Hawley, Simon A.; Ford, Rebecca J.; Smith, Brennan K.; Gowans, Graeme J.; Mancini, Sarah; Pitt, Ryan D.; Day, Emily A.; Salt, Ian P.; Steinberg, Gregory R.; Hardie, D. Grahame

    2016-01-01

    Canagliflozin, dapagliflozin and empagliflozin, all recently approved for treatment of Type 2 diabetes, were derived from the natural product phlorizin. They reduce hyperglycemia by inhibiting glucose re-uptake by SGLT2 in the kidney, without affecting intestinal glucose uptake by SGLT1. We now report that canagliflozin also activates AMP-activated protein kinase (AMPK), an effect also seen with phloretin (the aglycone breakdown product of phlorizin), but not to any significant extent with da...

  12. Arecoline-mediated inhibition of AMP-activated protein kinase through reactive oxygen species is required for apoptosis induction.

    Science.gov (United States)

    Yen, Ching-Yu; Lin, Mei-Huei; Liu, Shyun-Yeu; Chiang, Wei-Fan; Hsieh, Wan-Fang; Cheng, Yon-Chi; Hsu, Kai-Cheng; Liu, Young-Chau

    2011-05-01

    Arecoline is the major alkaloid of areca nut (AN) and known to induce reactive oxygen species (ROS) production and apoptosis. The metabolic sensor AMP-activated protein kinase (AMPK), activated by ROS, also regulates apoptosis. This study used several types of cells as the experimental model to analyze the roles of ROS and AMPK in arecoline-induced apoptosis. We found that arecoline dose-dependently increased intracellular ROS level, and two antioxidants, N-acetyl-L-cysteine (NAC) and glutathione, attenuated arecoline-induced apoptotic cell death. Interestingly, arecoline dose- and time-dependently inhibited rather than stimulated AMPK-Thr(172) phosphorylation, and both NAC and glutathione relieved this inhibition. The AMPK activator, 5-aminoimidazole-4-carboxamide 1-β-D-ribofuranoside (AICAR), also restored the phosphorylation level of AMPK-Thr(172) and attenuated apoptotic cell death under arecoline insult. In contrast, the AMPK inhibitor, compound C, and RNA interference of AMPK expression increased the cytotoxicity of arecoline. Collectively, these results suggest that arecoline may inhibit AMPK through intracellular ROS, responsible for the execution of apoptosis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Hypericin, the active component of St. John's wort, inhibits glutamate release in the rat cerebrocortical synaptosomes via a mitogen-activated protein kinase-dependent pathway.

    Science.gov (United States)

    Chang, Yi; Wang, Su-Jane

    2010-05-25

    Changes in central glutamate neurotransmission are involved in the pathophysiology of depression and in the mechanism of antidepressants. In this study, the effect of hypericin, a major active constituent of St. John's wort that is widely used in the treatment of depression, on the release of glutamate from nerve terminals purified from rat cerebral cortex was examined. Result showed that hypericin inhibited the release of glutamate evoked by 4-aminopyridine in a concentration-dependent manner. Further experiments revealed that hypericin-mediated inhibition of glutamate release (i) results from a reduction of vesicular exocytosis, not from an inhibition of Ca2+-independent efflux via glutamate transporter; (ii) is not due to an alternation of nerve terminal excitability; (iii) is associated with a decrease in presynaptic N- and P/Q-type voltage-dependent Ca2+ channel activity; and (iv) appears to involve the suppression of mitogen-activated protein kinase pathway. These results are the first to suggest that, in rat cerebrocortical nerve terminals, hypericin suppresses voltage-dependent Ca2+ channel and mitogen-activated protein kinase activity and in so doing inhibits evoked glutamate release. This finding may provide important information regarding the beneficial effects of St. John's wort in the brain.

  14. Manassantin A isolated from Saururus chinensis inhibits 5-lipoxygenase-dependent leukotriene C4 generation by blocking mitogen-activated protein kinase activation in mast cells.

    Science.gov (United States)

    Kim, Su Jeong; Lu, Yue; Kwon, Okyun; Hwangbo, Kyoung; Seo, Chang-Seob; Lee, Seung Ho; Kim, Cheorl-Ho; Chang, Young-Chae; Son, Jong Keun; Chang, Hyeun Wook

    2011-01-01

    In this study, manassantin A (Man A), an herbal medicine isolated from Saururus chinensis (S. chinensis), markedly inhibited 5-lipoxygenase (5-LO)-dependent leukotriene C(4) (LTC(4)) generation in bone marrow-derived mast cells (BMMCs) in a concentration-dependent manner. To investigate the molecular mechanisms underlying the inhibition of LTC(4) generation by Man A, we assessed the effects of Man A on phosphorylation of cytosolic phospholipase A(2) (cPLA(2)) and mitogen-activated protein kinases (MAPKs). Inhibition of LTC(4) generation by Man A was accompanied by a decrease in cPLA(2) phosphorylation, which occurred via the MAPKs including extracellular signal-regulated protein kinase-1/2 (ERK1/2) as well as p38 and c-Jun N-terminal kinase (JNK) pathways. Taken together, the present study suggests the Man A represents a potential therapeutic approach for the treatment of airway allergic-inflammatory diseases.

  15. Activated microglia/macrophage whey acidic protein (AMWAP) inhibits NFκB signaling and induces a neuroprotective phenotype in microglia.

    Science.gov (United States)

    Aslanidis, Alexander; Karlstetter, Marcus; Scholz, Rebecca; Fauser, Sascha; Neumann, Harald; Fried, Cora; Pietsch, Markus; Langmann, Thomas

    2015-04-19

    Microglia reactivity is a hallmark of neurodegenerative diseases. We have previously identified activated microglia/macrophage whey acidic protein (AMWAP) as a counter-regulator of pro-inflammatory response. Here, we studied its mechanisms of action with a focus on toll-like receptor (TLR) and nuclear factor κB (NFκB) signaling. Recombinant AMWAP was produced in Escherichia coli and HEK293 EBNA cells and purified by affinity chromatography. AMWAP uptake was identified by fluorescent labeling, and pro-inflammatory microglia markers were measured by qRT-PCR after stimulation with TLR ligands. NFκB pathway proteins were assessed by immunocytochemistry, Western blot, and immunoprecipitation. A 20S proteasome activity assay was used to investigate the anti-peptidase activity of AMWAP. Microglial neurotoxicity was estimated by nitrite measurement and quantification of caspase 3/7 levels in 661W photoreceptors cultured in the presence of microglia-conditioned medium. Microglial proliferation was investigated using flow cytometry, and their phagocytosis was monitored by the uptake of 661W photoreceptor debris. AMWAP was secreted from lipopolysaccharide (LPS)-activated microglia and recombinant AMWAP reduced gene transcription of IL6, iNOS, CCL2, CASP11, and TNFα in BV-2 microglia treated with LPS as TLR4 ligand. This effect was replicated with murine embryonic stem cell-derived microglia (ESdM) and primary brain microglia. AMWAP also diminished pro-inflammatory markers in microglia activated with the TLR2 ligand zymosan but had no effects on IL6, iNOS, and CCL2 transcription in cells treated with CpG oligodeoxynucleotides as TLR9 ligand. Microglial uptake of AMWAP effectively inhibited TLR4-dependent NFκB activation by preventing IRAK-1 and IκBα proteolysis. No inhibition of IκBα phosphorylation or ubiquitination and no influence on overall 20S proteasome activity were observed. Functionally, both microglial nitric oxide (NO) secretion and 661W photoreceptor

  16. Decreased activity and enhanced nuclear export of CCAAT-enhancer-binding protein beta during inhibition of adipogenesis by ceramide.

    Science.gov (United States)

    Sprott, Kam M; Chumley, Michael J; Hanson, Janean M; Dobrowsky, Rick T

    2002-07-01

    To identify novel molecular mechanisms by which ceramide regulates cell differentiation, we examined its effect on adipogenesis of 3T3-L1 preadipocytes. Hormonal stimulation of 3T3-L1 preadipocytes induced formation of triacylglycerol-laden adipocytes over 7 days; in part, via the co-ordinated action of CCAAT-enhancer-binding proteins alpha, beta and delta (C/EBP-alpha, -beta and -delta) and peroxisome-proliferator-activated receptor gamma (PPARgamma). The addition of exogenous N-acetylsphingosine (C2-ceramide) or increasing endogenous ceramide levels inhibited the expression of C/EBPalpha and PPARgamma, and blocked adipocyte development. C2-ceramide did not decrease the cellular expression of C/EBPbeta, which is required for expression of C/EBPalpha and PPARgamma, but significantly blocked its transcriptional activity from a promoter construct after 24 h. The ceramide-induced decrease in the transcriptional activity of C/EBPbeta correlated with a strong decrease in its phosphorylation, DNA-binding ability and nuclear localization at 24 h. However, ceramide did not change the nuclear level of C/EBPbeta after a period of 4 or 16 h, suggesting that it was not affecting nuclear import. CRM1 (more recently named 'exportin-1') is a nuclear membrane protein that regulates protein export from the nucleus by binding to a specific nuclear export sequence. Leptomycin B is an inhibitor of CRM1/exportin-1, and reversed the ceramide-induced decrease in nuclear C/EBPbeta at 24 h. Taken together, these data support the hypothesis that ceramide may inhibit adipogenesis, at least in part, by enhancing dephosphorylation and premature nuclear export of C/EBPbeta at a time when its maximal transcriptional activity is required to drive adipogenesis.

  17. Mitogen-activated protein kinase inhibition and cardioplegia-cardiopulmonary bypass reduce coronary myogenic tone.

    Science.gov (United States)

    Khan, Tanveer A; Bianchi, Cesario; Ruel, Marc; Voisine, Pierre; Li, Jianyi; Liddicoat, John R; Sellke, Frank W

    2003-09-09

    Cardioplegia-cardiopulmonary bypass (C/CPB) is associated with coronary microcirculatory dysfunction. Regulation of the microcirculation includes myogenic tone. Mitogen-activated protein kinases (MAPK) have been implicated in coronary vasomotor function. We hypothesized that vasomotor dysfunction of the coronary microcirculation is mediated in part by alterations in extracellular signal regulated kinase 1/2 (ERK1/2) activity following C/CPB in humans. Atrial myocardium was harvested from patients (n=15) before and after blood cardioplegia and short-term reperfusion under conditions of CPB. Myogenic tone of coronary arterioles was measured by videomicroscopy. Microvessel tone was determined post-C/CPB and after PD98059, a MAPK/ERK kinase 1/2 (MEK1/2) inhibitor. MAPK phosphatase-1 (MKP-1) and activated ERK1/2 were measured by Western blot. MKP-1 gene expression was determined by Northern blot. In situ hybridization and immunohistochemistry were used to localize myocardial MKP-1 and activated ERK1/2, respectively. Myogenic tone was reduced in coronary arterioles post-C/CPB (-10.5+/-0.9%, P<0.01 versus control/pre-C/CPB, n=5). Myogenic tone was decreased in coronary microvessels after 30 micromol/L (n=5) and 50 micromol/L (n=5) PD98059 treatment (-11.0+/-0.8% and -14.6+/-2.0%, respectively, both P<0.01 versus control/pre-C/CPB). Myocardial levels of activated ERK1/2 were reduced post-C/CPB (0.6+/-0.1, post/pre-C/CPB ratio, P<0.05, n=5) while MKP-1 levels increased (4.2+/-0.6, post/pre-C/CPB ratio, P<0.05, n=5). Myocardial MKP-1 gene expression increased post-C/CPB (3.0+/-0.8, post/pre-C/CPB ratio, P<0.05, n=5). MKP-1 and activated ERK1/2 localized to coronary arterioles in myocardial sections. Coronary myogenic tone is dependent on ERK1/2 and decreased after C/CPB. C/CPB reduces levels of activated ERK1/2, potentially by increased levels of MKP-1. The ERK1/2 signal transduction pathway in part mediates coronary microvascular dysfunction after C/CPB in humans.

  18. Increased activator protein 1 activity as well as resistance to heat-induced radiosensitization, hydrogen peroxide, and cisplatin are inhibited by indomethacin in oxidative stress-resistant cells.

    Science.gov (United States)

    Bradbury, C M; Locke, J E; Wei, S J; Rene, L M; Karimpour, S; Hunt, C; Spitz, D R; Gius, D

    2001-04-15

    It has been established that tumor cells develop resistance to a variety of therapeutic agents after multiple exposures to these agents/drugs. Many of these therapeutic agents also appear to increase the activity of transcription factors, such as activator protein 1 (AP-1), believed to be involved in cellular responses to oxidative stress. Therefore, we hypothesized that cellular resistance to cancer therapeutic agents may involve the increased activity of transcription factors that govern resistance to oxidative stress, such as AP-1. To investigate this hypothesis, a previously characterized cisplatin, hyperthermia, and oxidative stress-resistant Chinese hamster fibroblast cell line, OC-14, was compared to the parental HA-1 cell line. Electrophoretic mobility shift and Western blot assays performed on extracts isolated from OC-14 cells demonstrated a 10-fold increase in constitutive AP-1 DNA-binding activity as well as increased constitutive c-Fos and c-Jun immunoreactive protein relative to HA-1 cells. Treatment of OC-14 cells with indomethacin inhibited constitutive increases in AP-1 DNA-binding activity and c-Fos/c-Jun-immunoreactive protein levels. Clonogenic survival assays demonstrated that pretreatment with indomethacin, at concentrations that inhibited AP-1 activity, significantly reduced the resistance of OC-14 cells to heat-induced radiosensitization, hydrogen peroxide, and cisplatin. These results demonstrate a relationship between increases in AP-1 DNA-binding activity and increased cellular resistance to cancer therapeutic agents and oxidative stress that is inhibited by indomethacin. These results support the hypothesis that inhibition of AP-1 activity with nonsteroidal anti-inflammatory drugs, such as indomethacin, may represent a useful adjuvant to cancer therapy.

  19. Mitogen-activated protein kinase kinase 1/2 inhibition and angiotensin II converting inhibition in mice with cardiomyopathy caused by lamin A/C gene mutation

    Energy Technology Data Exchange (ETDEWEB)

    Muchir, Antoine, E-mail: a.muchir@institut-myologie.org [Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY (United States); Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY (United States); Wu, Wei [Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY (United States); Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY (United States); Sera, Fusako; Homma, Shunichi [Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY (United States); Worman, Howard J., E-mail: hjw14@columbia.edu [Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY (United States); Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY (United States)

    2014-10-03

    Highlights: • Both ACE and MEK1/2 inhibition are beneficial on cardiac function in Lmna cardiomyopathy. • MEK1/2 inhibitor has beneficial effects beyond ACE inhibition for Lmna cardiomyopathy. • These results provide further preclinical rationale for a clinical trial of a MEK1/2 inhibitor. - Abstract: Background: Mutations in the LMNA gene encoding A-type nuclear lamins can cause dilated cardiomyopathy with or without skeletal muscular dystrophy. Previous studies have shown abnormally increased extracellular signal-regulated kinase 1/2 activity in hearts of Lmna{sup H222P/H222P} mice, a small animal model. Inhibition of this abnormal signaling activity with a mitogen-activated protein kinase kinase 1/2 (MEK1/2) inhibitor has beneficial effects on heart function and survival in these mice. However, such treatment has not been examined relative to any standard of care intervention for dilated cardiomyopathy or heart failure. We therefore examined the effects of an angiotensin II converting enzyme (ACE) inhibitor on left ventricular function in Lmna{sup H222P/H222P} mice and assessed if adding a MEK1/2 inhibitor would provide added benefit. Methods: Male Lmna{sup H222P/H222P} mice were treated with the ACE inhibitor benazepril, the MEK1/2 inhibitor selumetinib or both. Transthoracic echocardiography was used to measure left ventricular diameters and fractional shortening was calculated. Results: Treatment of Lmna{sup H222P/H222P} mice with either benazepril or selumetinib started at 8 weeks of age, before the onset of detectable left ventricular dysfunction, lead to statistically significantly increased fractional shortening compared to placebo at 16 weeks of age. There was a trend towards a great value for fractional shortening in the selumetinib-treated mice. When treatment was started at 16 weeks of age, after the onset of left ventricular dysfunction, the addition of selumetinib treatment to benazepril lead to a statistically significant increase in left

  20. Inhibition of nucleoside diphosphate kinase activity by in vitro phosphorylation by protein kinase CK2. Differential phosphorylation of NDP kinases in HeLa cells in culture

    DEFF Research Database (Denmark)

    Biondi, R M; Engel, M; Sauane, M

    1996-01-01

    that in vitro protein kinase CK2 catalyzed phosphorylation of human NDPK A inhibits its enzymatic activity by inhibiting the first step of its ping-pong mechanism of catalysis: its autophosphorylation. Upon in vivo 32P labeling of HeLa cells, we observed that both human NDPKs, A and B, were autophosphorylated...

  1. Inhibition of gap junctional intercellular communication and activation of mitogen-activated protein kinase by tumor-promoting organic peroxides and protection by resveratrol.

    Science.gov (United States)

    Upham, Brad L; Guzvić, Miodrag; Scott, Jacob; Carbone, Joseph M; Blaha, Ludek; Coe, Chad; Li, Lan Lan; Rummel, Alisa M; Trosko, James E

    2007-01-01

    Dicumyl peroxide (di-CuOOH) and benzoyl peroxide (BzOOH) act as tumor promoters in SENCAR mice, whereas di-tert-butylhydroperoxide does not. Tumor promotion requires the removal of growth suppression by inhibition of gap junctional intercellular communication (GJIC) and the induction of mitogenic intracellular pathways. We showed that di-CuOOH and BzOOH both reversibly inhibited GJIC and transiently activated mitogen-activated protein kinase, specifically, the extracellular receptor kinase at noncytotoxic conditions in WB-F344 rat liver epithelial cells, whereas the non-tumor-promoting di-tert-butylhydroperoxide did not inhibit GJIC or activate extracellular receptor kinase. di-CuOOH but not BzOOH inhibited GJIC through a phosphatidylcholine-specific phospholipase C-dependent mechanism. N-acetylcysteine (NAC) was needed to prevent a cytotoxic, glutathione-depleting effect of BzOOH, whereas di-CuOOH was noncytotoxic and did not alter glutathione levels at all doses and times tested. Pretreatment of WB-F344 cells with resveratrol, a polyphenolic antioxidant present in red wine, prevented at physiological doses the inhibition of GJIC by di-CuOOH but not from BzOOH and was effective in significantly preventing extracellular receptor kinase activation by both peroxides. NAC did not prevent any of the peroxide effects on either GJIC or extracellular receptor kinase, suggesting a specific antioxidant effect of resveratrol.

  2. P38 mitogen-activated protein kinase inhibitor, FR167653, inhibits parathyroid hormone related protein-induced osteoclastogenesis and bone resorption.

    Directory of Open Access Journals (Sweden)

    Huiren Tao

    Full Text Available p38 mitogen-activated protein kinase (MAPK acts downstream in the signaling pathway that includes receptor activator of NF-κB (RANK, a powerful inducer of osteoclast formation and activation. We investigated the role of p38 MAPK in parathyroid hormone related protein (PTHrP-induced osteoclastogenesis in vitro and PTHrP-induced bone resorption in vivo. The ability of FR167653 to inhibit osteoclast formation was evaluated by counting the number of tartrate-resistant acid phosphatase positive multinucleated cells (TRAP-positive MNCs in in vitro osteoclastgenesis assays. Its mechanisms were evaluated by detecting the expression level of c-Fos and nuclear factor of activated T cells c1 (NFATc1 in bone marrow macrophages (BMMs stimulated with sRANKL and M-CSF, and by detecting the expression level of osteoprotegerin (OPG and RANKL in bone marrow stromal cells stimulated with PTHrP in the presence of FR167653. The function of FR167653 on bone resorption was assessed by measuring the bone resorption area radiographically and by counting osteoclast number per unit bone tissue area in calvaria in a mouse model of bone resorption by injecting PTHrP subcutaneously onto calvaria. Whole blood ionized calcium levels were also recorded. FR167653 inhibited PTHrP-induced osteoclast formation and PTHrP-induced c-Fos and NFATc1 expression in bone marrow macrophages, but not the expression levels of RANKL and OPG in primary bone marrow stromal cells treated by PTHrP. Furthermore, bone resorption area and osteoclast number in vivo were significantly decreased by the treatment of FR167653. Systemic hypercalcemia was also partially inhibited. Inhibition of p38 MAPK by FR167653 blocks PTHrP-induced osteoclastogenesis in vitro and PTHrP-induced bone resorption in vivo, suggesting that the p38 MAPK signaling pathway plays a fundamental role in PTHrP-induced osteoclastic bone resorption.

  3. Activation of double-stranded RNA-dependent protein kinase inhibits proliferation of pancreatic β-cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shan-Shan [Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing (China); Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing (China); Jiang, Teng [Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Nanjing (China); Wang, Yi; Gu, Li-Ze [Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing (China); Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing (China); Wu, Hui-Wen [Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing (China); Tan, Lan [Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Nanjing (China); Guo, Jun, E-mail: Guoj@njmu.edu.cn [Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing (China); Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing (China)

    2014-01-17

    Highlights: •PKR can be activated by glucolipitoxicity and pro-inflammatory cytokines in β-cells. •Activated PKR inhibited β-cell proliferation by arresting cell cycle at G1 phase. •Activated PKR fully abrogated the pro-proliferative effects of IGF-I on β-cells. -- Abstract: Double-stranded RNA-dependent protein kinase (PKR) is revealed to participate in the development of insulin resistance in peripheral tissues in type 2 diabetes (T2DM). Meanwhile, PKR is also characterized as a critical regulator of cell proliferation. To date, no study has focused on the impact of PKR on the proliferation of pancreatic β-cells. Here, we adopted insulinoma cell lines and mice islet β-cells to investigate: (1) the effects of glucolipotoxicity and pro-inflammatory cytokines on PKR activation; (2) the effects of PKR on proliferation of pancreatic β-cells and its underlying mechanisms; (3) the actions of PKR on pro-proliferative effects of IGF-I and its underlying pathway. Our results provided the first evidence that PKR can be activated by glucolipitoxicity and pro-inflammatory cytokines in pancreatic β-cells, and activated PKR significantly inhibited cell proliferation by arresting cell cycle at G1 phase. Reductions in cyclin D1 and D2 as well as increases in p27 and p53 were associated with the anti-proliferative effects of PKR, and proteasome-dependent degradation took part in the reduction of cyclin D1 and D2. Besides, PKR activation abrogated the pro-proliferative effects of IGF-I by activating JNK and disrupting IRS1/PI3K/Akt signaling pathway. These findings indicate that the anti-proliferative actions of PKR on pancreatic β-cells may contribute to the pathogenesis of T2DM.

  4. Cordycepin Inhibits Lipopolysaccharide (LPS-Induced Tumor Necrosis Factor (TNF-α Production via Activating AMP-Activated Protein Kinase (AMPK Signaling

    Directory of Open Access Journals (Sweden)

    Jian-Li Zhang

    2014-07-01

    Full Text Available Tumor necrosis factor (TNF-α is elevated during the acute phase of Kawasaki disease (KD, which damages vascular endothelial cells to cause systemic vasculitis. In the current study, we investigated the potential role of cordycepin on TNFα expression in both lipopolysaccharide (LPS-stimulated macrophages and ex vivo cultured peripheral blood mononuclear cells (PBMCs of KD patients. We found that cordycepin significantly suppressed LPS-induced TNFα expression and production in mouse macrophages (RAW 264.7 cells and bone marrow-derived macrophages (BMDMs. Meanwhile, cordycepin alleviated TNFα production in KD patients’ PBMCs. PBMCs from healthy controls had a much lower level of basal TNF-α content than that of KD patients. LPS-induced TNF-α production in healthy controls’ PBMCs was also inhibited by cordycepin. For the mechanism study, we discovered that cordycepin activated AMP-activated protein kinase (AMPK signaling in both KD patients’ PBMCs and LPS-stimulated macrophages, which mediated cordycepin-induced inhibition against TNFα production. AMPK inhibition by its inhibitor (compound C or by siRNA depletion alleviated cordycepin’s effect on TNFα production. Further, we found that cordycepin inhibited reactive oxygen species (ROS production and nuclear factor kappa B (NF-κB activation in LPS-stimulate RAW 264.7 cells or healthy controls’ PBMCs. PBMCs of KD patients showed higher basal level of ROS and NF-κB activation, which was also inhibited by cordycepin co-treatment. In conclusion, our data showed that cordycepin inhibited TNFα production, which was associated with AMPK activation as well as ROS and NF-κB inhibition. The results of this study should have significant translational relevance in managing this devastating disease.

  5. Cordycepin inhibits lipopolysaccharide (LPS)-induced tumor necrosis factor (TNF)-α production via activating amp-activated protein kinase (AMPK) signaling.

    Science.gov (United States)

    Zhang, Jian-Li; Xu, Ying; Shen, Jie

    2014-07-08

    Tumor necrosis factor (TNF)-α is elevated during the acute phase of Kawasaki disease (KD), which damages vascular endothelial cells to cause systemic vasculitis. In the current study, we investigated the potential role of cordycepin on TNFα expression in both lipopolysaccharide (LPS)-stimulated macrophages and ex vivo cultured peripheral blood mononuclear cells (PBMCs) of KD patients. We found that cordycepin significantly suppressed LPS-induced TNFα expression and production in mouse macrophages (RAW 264.7 cells and bone marrow-derived macrophages (BMDMs)). Meanwhile, cordycepin alleviated TNFα production in KD patients' PBMCs. PBMCs from healthy controls had a much lower level of basal TNF-α content than that of KD patients. LPS-induced TNF-α production in healthy controls' PBMCs was also inhibited by cordycepin. For the mechanism study, we discovered that cordycepin activated AMP-activated protein kinase (AMPK) signaling in both KD patients' PBMCs and LPS-stimulated macrophages, which mediated cordycepin-induced inhibition against TNFα production. AMPK inhibition by its inhibitor (compound C) or by siRNA depletion alleviated cordycepin's effect on TNFα production. Further, we found that cordycepin inhibited reactive oxygen species (ROS) production and nuclear factor kappa B (NF-κB) activation in LPS-stimulate RAW 264.7 cells or healthy controls' PBMCs. PBMCs of KD patients showed higher basal level of ROS and NF-κB activation, which was also inhibited by cordycepin co-treatment. In conclusion, our data showed that cordycepin inhibited TNFα production, which was associated with AMPK activation as well as ROS and NF-κB inhibition. The results of this study should have significant translational relevance in managing this devastating disease.

  6. Stanniocalcin-1 Potently Inhibits the Proteolytic Activity of the Metalloproteinase Pregnancy-associated Plasma Protein-A

    DEFF Research Database (Denmark)

    Kløverpris, Søren; Mikkelsen, Jakob Hauge; Pedersen, Josefine Hvidkjær

    2015-01-01

    regulation in these species. Several physiological functions of STC1 have been reported, although many molecular details are still lacking. We here demonstrate that STC1 is an inhibitor of the metzincin metalloproteinase, pregnancy-associated plasma protein-A (PAPP-A), which modulates insulin-like growth...... that the homologous STC2 inhibits PAPP-A proteolytic activity, and that this depends on the formation of a covalent complex between the inhibitor and the proteinase, mediated by Cys-120 of STC2. We find that STC1 is unable to bind covalently to PAPP-A, in agreement with the absence of a corresponding cysteine residue....... It rather binds to PAPP-A with high affinity (KD = 75 pm). We further demonstrate that both STC1 and STC2 show inhibitory activity toward PAPP-A2, but not selected serine proteinases and metalloproteinases. We therefore conclude that the STCs are proteinase inhibitors, probably restricted in specificity...

  7. Synthesis and protein tyrosine phosphatase 1B inhibition activities of two new synthetic bromophenols and their methoxy derivatives

    Science.gov (United States)

    Cui, Yongchao; Shi, Dayong; Hu, Zhiqiang

    2011-11-01

    3-bromo-4,5-bis(2,3-dibromo-4,5-dihydroxybenzyl)-1,2-benzenediol ( 1) is a natural bromophenol isolated from the red algae Rhodomela confervoides that exhibits significant inhibition against protein tyrosine phosphatase 1B (PTP1B). Based on its activity, we synthesized two new synthetic bromophenols and their methoxy derivatives from vanillin using the structure of natural bromophenol 1 as a scaffold. The structures of these bromophenols were elucidated from 1H NMR, 13C NMR, and high resolution electron ionization mass spectrometry as 2,3-dibromo-1-(2'-bromo-6'-(3″,4″-dimethoxybenzyl)-3',4'-dimethoxybenzyl)-4,5-dimethoxybenzene ( 2), 2,3-dibromo-1-(2'-bromo-6'-(2″-bromo-4″,5″-dimethoxybenzyl)-3',4'-dimethoxybenzyl)-4,5-dimethoxybenzene ( 3), 3,4-dibromo-5-(2'-bromo-6'-(2″-bromo-4″,5″-dihydroxybenzyl)-3',4'-dihydroxybenzyl)pyrocatechol ( 4) and 3,4-dibromo-5-(2'-bromo-6'-(3″,4″-dihydroxybenzyl)-3',4'-dihydroxybenzyl)pyrocatechol ( 5). PTP1B inhibition activities of these compounds were evaluated using a colorimetric assay, and compounds 3 and 4 demonstrated interesting activity against PTP1B.

  8. Iron-export ferroxidase activity of β-amyloid precursor protein is inhibited by zinc in Alzheimer's disease.

    Science.gov (United States)

    Duce, James A; Tsatsanis, Andrew; Cater, Michael A; James, Simon A; Robb, Elysia; Wikhe, Krutika; Leong, Su Ling; Perez, Keyla; Johanssen, Timothy; Greenough, Mark A; Cho, Hyun-Hee; Galatis, Denise; Moir, Robert D; Masters, Colin L; McLean, Catriona; Tanzi, Rudolph E; Cappai, Roberto; Barnham, Kevin J; Ciccotosto, Giuseppe D; Rogers, Jack T; Bush, Ashley I

    2010-09-17

    Alzheimer's Disease (AD) is complicated by pro-oxidant intraneuronal Fe(2+) elevation as well as extracellular Zn(2+) accumulation within amyloid plaque. We found that the AD β-amyloid protein precursor (APP) possesses ferroxidase activity mediated by a conserved H-ferritin-like active site, which is inhibited specifically by Zn(2+). Like ceruloplasmin, APP catalytically oxidizes Fe(2+), loads Fe(3+) into transferrin, and has a major interaction with ferroportin in HEK293T cells (that lack ceruloplasmin) and in human cortical tissue. Ablation of APP in HEK293T cells and primary neurons induces marked iron retention, whereas increasing APP695 promotes iron export. Unlike normal mice, APP(-/-) mice are vulnerable to dietary iron exposure, which causes Fe(2+) accumulation and oxidative stress in cortical neurons. Paralleling iron accumulation, APP ferroxidase activity in AD postmortem neocortex is inhibited by endogenous Zn(2+), which we demonstrate can originate from Zn(2+)-laden amyloid aggregates and correlates with Aβ burden. Abnormal exchange of cortical zinc may link amyloid pathology with neuronal iron accumulation in AD.

  9. Inhibition of p38 mitogen-activated protein kinase attenuates experimental autoimmune hepatitis: Involvement of nuclear factor kappa B

    Institute of Scientific and Technical Information of China (English)

    Xiong Ma; Yi-Tao Jia; De-Kai Qiu

    2007-01-01

    AIM: To investigate the role of p38 mitogen-activated protein kinase (p38MAPK) in murine experimental autoimmune hepatitis (EAH).METHODS: To induce EAH, the syngeneic S-100 antigen emulsified in complete Freud's adjuvant was injected intraperitoneally into adult male C57BI/6 mice. Liver injury was assessed by serum ALT and liver histology.The expression and activity of p38 MAPK were measured by Western blot and kinase activity assays. In addition,DNA binding activities of nuclear factor kappa B (NF-κB)were analyzed by electrophoretic mobility shift assay. The effects of SB203580, a specific p38 MAPK inhibitor, on liver injuries and expression of proinflammatory cytokines (interferon-γ, IL-12, IL-1β and TNF-α) were observed.RESULTS: The activity of p38 MAPK and NF-κB was increased and reached its peak 14 or 21 d after the first syngeneic S-100 administration. Inhibition of p38 MAPK activation by SB203580 decreased the activation of NF-κB and the expression of proinflammatory cytokines.Moreover, hepatic injuries were improved significantly after SB203580 administration.CONCLUSION: p38 MAPK and NF-κB play an important role in an animal model of autoimmune hepatitis (AIH)induced by autoantigens.

  10. CARMIL is a potent capping protein antagonist: identification of a conserved CARMIL domain that inhibits the activity of capping protein and uncaps capped actin filaments.

    Science.gov (United States)

    Uruno, Takehito; Remmert, Kirsten; Hammer, John A

    2006-04-14

    Acanthamoeba CARMIL was previously shown to co-purify with capping protein (CP) and to bind pure CP. Here we show that this interaction inhibits the barbed end-capping activity of CP. Even more strikingly, this interaction drives the uncapping of actin filaments previously capped with CP. These activities are CP-specific; CARMIL does not inhibit the capping activities of either gelsolin or CapG and does not uncap gelsolin-capped filaments. Although full-length (FL) CARMIL (residues 1-1121) possesses both anti-CP activities, C-terminal fragments like glutathione S-transferase (GST)-P (940-1121) that contain the CARMIL CP binding site are at least 10 times more active. We localized the full activities of GST-P to its C-terminal 51 residues (1071-1121). This sequence contains a stretch of 25 residues that is highly conserved in CARMIL proteins from protozoa, flies, worms, and vertebrates (CARMIL Homology domain 3; CAH3). Point mutations showed that the majority of the most highly conserved residues within CAH3 are critical for the anti-CP activity of GST-AP (862-1121). Finally, we found that GST-AP binds CP approximately 20-fold more tightly than does FL-CARMIL. This observation together with the elevated activities of C-terminal fragments relative to FL-CARMIL suggests that FL-CARMIL might exist primarily in an autoinhibited state. Consistent with this idea, proteolytic cleavage of FL-CARMIL with thrombin generated an approximately 14-kDa C-terminal fragment that expresses full anti-CP activities. We propose that, after some type of physiological activation event, FL-CARMIL could function in vivo as a potent CP antagonist. Given the pivotal role that CP plays in determining the global actin phenotype of cells, our results suggest that CARMIL may play an important role in the physiological regulation of actin assembly.

  11. In Silico Elucidation and Inhibition Studies of Selected Phytoligands Against Mitogen-Activated Protein Kinases of Protozoan Parasites.

    Science.gov (United States)

    Gupta, Chhedi Lal; Akhtar, Salman; Kumar, Nilesh; Ali, Jasarat; Pathak, Neelam; Bajpai, Preeti

    2016-03-01

    Parasitic MAPKs exhibiting significant divergence with humans and playing an imperative role in parasitic metabolic activities have been exploited from several years as important targets for development of novel therapeutics. In addition, the emergence of the drug-resistant variants of parasitic diseases in the recent years has aroused a great need for the development of potent inhibitors against them. In the present study, we selected the metabolically active MAPKs LmxMPK4, PfMAP2 and TbMAPK5 of the three parasitic protozoans Leishmania mexicana, Plasmodium falciparum and Trypanosoma brucei, respectively. The homology modeling technique was used to develop the 3D structures of these proteins, and the same was validated by PROCHECK, ERRAT, ProQ and ProSA web servers to check the reliability. Ten phytoligands were employed for molecular docking studies with these proteins to search for potent phytoligand as a broad spectrum inhibitor. In this regard, two phytoligands (aspidocarpine for LmxMPK4 and TbMAPK5 and cubebin for PfMAP2) were found to be more effective inhibitors, in terms of robust binding energy, strong inhibition constant and better interactions between protein-ligand complexes. Furthermore, predicted ADME and toxicity properties suggested that these identified phytoligands exhibited comparable results to control drugs potentiating them as persuasive therapeutic agents for Leishmania, Trypanosoma and Plasmodium sp.

  12. Inhibition of gap-junctional intercellular communication and activation of mitogen-activated protein kinases by cyanobacterial extracts--indications of novel tumor-promoting cyanotoxins?

    Science.gov (United States)

    Bláha, Ludĕk; Babica, Pavel; Hilscherová, Klára; Upham, Brad L

    2010-01-01

    Toxicity and liver tumor promotion of cyanotoxins microcystins have been extensively studied. However, recent studies document that other metabolites present in the complex cyanobacterial water blooms may also have adverse health effects. In this study we used rat liver epithelial stem-like cells (WB-F344) to examine the effects of cyanobacterial extracts on two established markers of tumor promotion, inhibition of gap-junctional intercellular communication (GJIC) and activation of mitogen-activated protein kinases (MAPKs) - ERK1/2. Extracts of cyanobacteria (laboratory cultures of Microcystis aeruginosa and Aphanizomenon flos-aquae and water blooms dominated by these species) inhibited GJIC and activated MAPKs in a dose-dependent manner (effective concentrations ranging 0.5-5mgd.w./mL). Effects were independent of the microcystin content and the strongest responses were elicited by the extracts of Aphanizomenon sp. Neither pure microcystin-LR nor cylindrospermopsin inhibited GJIC or activated MAPKs. Modulations of GJIC and MAPKs appeared to be specific to cyanobacterial extracts since extracts from green alga Chlamydomonas reinhardtii, heterotrophic bacterium Klebsiella terrigena, and isolated bacterial lipopolysaccharides had no comparable effects. Our study provides the first evidence on the existence of unknown cyanobacterial toxic metabolites that affect in vitro biomarkers of tumor promotion, i.e. inhibition of GJIC and activation of MAPKs.

  13. Inhibition of gap-junctional intercellular communication and activation of mitogen-activated protein kinases by cyanobacterial extracts - indications of novel tumor promoting cyanotoxins?

    Science.gov (United States)

    Bláha, Luděk; Babica, Pavel; Hilscherová, Klára; Upham, Brad L.

    2009-01-01

    Toxicity and liver tumor promotion of cyanotoxins microcystins have been extensively studied. However, recent studies document that other metabolites present in the complex cyanobacterial water blooms may also have adverse health effects. In this study we used rat liver epithelial stem-like cells (WB-F344) to examine the effects of cyanobacterial extracts on two established markers of tumor promotion, inhibition of gap-junctional intercellular communication (GJIC) and activation of mitogen-activated protein kinases (MAPKs) – ERK1/2. Extracts of cyanobacteria (laboratory cultures of Microcystis aeruginosa and Aphanizomenon flos-aquae and water blooms dominated by these species) inhibited GJIC and activated MAPKs in a dose-dependent manner (effective concentrations ranging 0.5 - 5 mg d.w./mL). Effects were independent of the microcystin content and the strongest responses were elicited by the extracts of Aphanizomenon sp. Neither pure microcystin-LR nor cylindrospermopsin inhibited GJIC or activated MAPKs. Modulations of GJIC and MAPKs appeared to be specific to cyanobacterial extracts since extracts from green alga Chlamydomonas reinhardtii, heterotrophic bacterium Klebsiella terrigena, and isolated bacterial lipopolysaccharides had no comparable effects. Our study provides the first evidence on the existence of unknown cyanobacterial toxic metabolites that affect in vitro biomarkers of tumor promotion, i.e. inhibition of GJIC and activation of MAPKs. PMID:19619572

  14. Cell-penetrating peptide derived from human eosinophil cationic protein inhibits mite allergen Der p 2 induced inflammasome activation.

    Directory of Open Access Journals (Sweden)

    Sheng-Jie Yu

    Full Text Available Newly discovered cell penetration peptides derived from human eosinophil cationic proteins (CPPecp have the characteristic of cell internalization, but the effect of CPPecp on immunomodulation has not been clarified. House dust mite (HDM major allergen, Der p 2, can induce proinflammatory cytokine production which contributes to airway inflammation and allergic asthma. However, the mechanism of Der p 2 on NLRP3 inflammasome activation remains unclear. The aim of this study was to investigate the immunomodulatory effect of CPPecp on inhibition of Der p 2 induced inflammasome activation. We showed that proinflammatory cytokines IL-1β, IL-6 and IL-8 were significantly upregulated in peripheral blood mononuclear cells (PBMCs derived from HDM allergic patients after Der p 2 stimulation. Expression of NLRP3, ASC, Caspase-1, IL-1β and Caspase-1 activity was upregulated in THP-1 cells after Der p 2 stimulation. Proinflammatory cytokine production, NLRP3 inflammasome activation and caspase-1 activity were downregulated in THP-1 cells and CD14+ cells co-cultured with Der p 2 and CPPecp. The immunomodulatory effect of CPPecp was through upregulation of IFN-α production but not induction of autophagy. These results suggested Der p 2 plays an important role in NLRP3 inflammasome activation and CPPecp has the potential to be a novel anti-inflammatory agent for allergic inflammation treatment in the future.

  15. INHIBITION OF MELATONIN BIOSYNTHESIS ACTIVATES PROTEIN KINASE A AND INDUCES ALZHEIMER-LIKE TAU HYPERPHOSPHORYLATION IN RATS

    Institute of Scientific and Technical Information of China (English)

    Ling-qiang Zhu; Shao-hui Wang; Zhi-qun Ling; Qun Wang; Mao-qiong Hu; Jian-zhi Wang

    2005-01-01

    Objective To investigate effect of inhibiting melatonin biosynthesis on activities of protein kinase A (PKA), glycogen synthase kinase-3 (GSK-3) and tau phosphorylation at PS214 and M4 epitopes using haloperidol, a specific inhibitor of 5-hydroxyindole-O-methyltransferase. Methods Brain ventricular and intraperitoneal injections were used for haloperidol administration, Western blots for tau phosphorylation, 32p-labeling for PKA and GSK-3 activity, and high performance liquid chromatograph for detection of serum melatonin levels.Results Haloperidol injection through the lateral ventricle and intraperitoneal reinforcement significantly stimulated PKA activity with a concurrent hyperphosphorylation of tau at M4 (Thr231/Ser235) and PS214 (Ser214) sites. Prior treatment of the rats using melatonin supplement for one week and reinforcement during the haloperidol administration arrested PKA activity and attenuated tau hyperphosphorylation. GSK-3 activity showed no obvious change after haloperidol injection, however, melatonin supplements and reinforcements during haloperidol infusion inactivated basal activity of GSK-3. Conclusion Decreased melatonin may be involved in Alzheimer-like tau hyperphosphorylation, and overactivation of PKA may play a crucial role in this process.

  16. The new 4-O-methylhonokiol analog GS12021 inhibits inflammation and macrophage chemotaxis: role of AMP-activated protein kinase α activation.

    Directory of Open Access Journals (Sweden)

    Sora Kim

    Full Text Available Preventing pathologic tissue inflammation is key to treating obesity-induced insulin resistance and type 2 diabetes. Previously, we synthesized a series of methylhonokiol analogs and reported that compounds with a carbamate structure had inhibitory function against cyclooxygenase-2 in a cell-free enzyme assay. However, whether these compounds could inhibit the expression of inflammatory genes in macrophages has not been investigated. Here, we found that a new 4-O-methylhonokiol analog, 3',5-diallyl-4'-methoxy-[1,1'-biphenyl]-2-yl morpholine-4-carboxylate (GS12021 inhibited LPS- or TNFα-stimulated inflammation in macrophages and adipocytes, respectively. LPS-induced phosphorylation of nuclear factor-kappa B (NF-κB/p65 was significantly decreased, whereas NF-κB luciferase activities were slightly inhibited, by GS12021 treatment in RAW 264.7 cells. Either mitogen-activated protein kinase phosphorylation or AP-1 luciferase activity was not altered by GS12021. GS12021 increased the phosphorylation of AMP-activated protein kinase (AMPK α and the expression of sirtuin (SIRT 1. Inhibition of mRNA expression of inflammatory genes by GS12021 was abolished in AMPKα1-knockdown cells, but not in SIRT1 knockout cells, demonstrating that GS12021 exerts anti-inflammatory effects through AMPKα activation. The transwell migration assay results showed that GS12021 treatment of macrophages prevented the cell migration promoted by incubation with conditioned medium obtained from adipocytes. GS12021 suppression of p65 phosphorylation and macrophage chemotaxis were preserved in AMPKα1-knockdown cells, indicating AMPK is not required for these functions of GS12021. Identification of this novel methylhonokiol analog could enable studies of the structure-activity relationship of this class of compounds and further evaluation of its in vivo potential for the treatment of insulin-resistant states and other chronic inflammatory diseases.

  17. Inhibition of herpes simplex virus type 1 replication by adeno-associated virus rep proteins depends on their combined DNA-binding and ATPase/helicase activities.

    Science.gov (United States)

    Glauser, Daniel L; Seyffert, Michael; Strasser, Regina; Franchini, Marco; Laimbacher, Andrea S; Dresch, Christiane; de Oliveira, Anna Paula; Vogel, Rebecca; Büning, Hildegard; Salvetti, Anna; Ackermann, Mathias; Fraefel, Cornel

    2010-04-01

    Adeno-associated virus (AAV) has previously been shown to inhibit the replication of its helper virus herpes simplex virus type 1 (HSV-1), and the inhibitory activity has been attributed to the expression of the AAV Rep proteins. In the present study, we assessed the Rep activities required for inhibition of HSV-1 replication using a panel of wild-type and mutant Rep proteins lacking defined domains and activities. We found that the inhibition of HSV-1 replication required Rep DNA-binding and ATPase/helicase activities but not endonuclease activity. The Rep activities required for inhibition of HSV-1 replication precisely coincided with the activities that were responsible for induction of cellular DNA damage and apoptosis, suggesting that these three processes are closely linked. Notably, the presence of Rep induced the hyperphosphorylation of a DNA damage marker, replication protein A (RPA), which has been reported not to be normally hyperphosphorylated during HSV-1 infection and to be sequestered away from HSV-1 replication compartments during infection. Finally, we demonstrate that the execution of apoptosis is not required for inhibition of HSV-1 replication and that the hyperphosphorylation of RPA per se is not inhibitory for HSV-1 replication, suggesting that these two processes are not directly responsible for the inhibition of HSV-1 replication by Rep.

  18. Sodium tanshinone IIA silate inhibits high glucose-induced vascular smooth muscle cell proliferation and migration through activation of AMP-activated protein kinase.

    Directory of Open Access Journals (Sweden)

    Wen-yu Wu

    Full Text Available The proliferation of vascular smooth muscle cells may perform a crucial role in the pathogenesis of diabetic vascular disease. AMPK additionally exerts several salutary effects on vascular function and improves vascular abnormalities. The current study sought to determine whether sodium tanshinone IIA silate (STS has an inhibitory effect on vascular smooth muscle cell (VSMC proliferation and migration under high glucose conditions mimicking diabetes without dyslipidemia, and establish the underlying mechanism. In this study, STS promoted the phosphorylation of AMP-activated protein kinase (AMPK at T172 in VSMCs. VSMC proliferation was enhanced under high glucose (25 mM glucose, HG versus normal glucose conditions (5.5 mM glucose, NG, and this increase was inhibited significantly by STS treatment. We utilized western blotting analysis to evaluate the effects of STS on cell-cycle regulatory proteins and found that STS increased the expression of p53 and the Cdk inhibitor, p21, subsequent decreased the expression of cell cycle-associated protein, cyclin D1. We further observed that STS arrested cell cycle progression at the G0/G1 phase. Additionally, expression and enzymatic activity of MMP-2, translocation of NF-κB, as well as VSMC migration were suppressed in the presence of STS. Notably, Compound C (CC, a specific inhibitor of AMPK, as well as AMPK siRNA blocked STS-mediated inhibition of VSMC proliferation and migration. We further evaluated its potential for activating AMPK in aortas in animal models of type 2 diabetes and found that Oral administration of STS for 10 days resulted in activation of AMPK in aortas from ob/ob or db/db mice. In conclusion, STS inhibits high glucose-induced VSMC proliferation and migration, possibly through AMPK activation. The growth suppression effect may be attributable to activation of AMPK-p53-p21 signaling, and the inhibitory effect on migration to the AMPK/NF-κB signaling axis.

  19. Black raspberry extracts inhibit benzo(a)pyrene diol-epoxide-induced activator protein 1 activation and VEGF transcription by targeting the phosphotidylinositol 3-kinase/Akt pathway.

    Science.gov (United States)

    Huang, Chuanshu; Li, Jingxia; Song, Lun; Zhang, Dongyun; Tong, Qiangsong; Ding, Min; Bowman, Linda; Aziz, Robeena; Stoner, Gary D

    2006-01-01

    Previous studies have shown that freeze-dried black raspberry extract fractions inhibit benzo(a)pyrene [B(a)P]-induced transformation of Syrian hamster embryo cells and benzo(a)pyrene diol-epoxide [B(a)PDE]-induced activator protein-1 (AP-1) activity in mouse epidermal Cl 41 cells. The phosphotidylinositol 3-kinase (PI-3K)/Akt pathway is critical for B(a)PDE-induced AP-1 activation in mouse epidermal Cl 41 cells. In the present study, we determined the potential involvement of PI-3K and its downstream kinases on the inhibition of AP-1 activation by black raspberry fractions, RO-FOO3, RO-FOO4, RO-ME, and RO-DM. In addition, we investigated the effects of these fractions on the expression of the AP-1 target genes, vascular endothelial growth factor (VEGF) and inducible nitric oxide synthase (iNOS). Pretreatment of Cl 41 cells with fractions RO-F003 and RO-ME reduced activation of AP-1 and the expression of VEGF, but not iNOS. In contrast, fractions RO-F004 and RO-DM had no effect on AP-1 activation or the expression of either VEGF or iNOS. Consistent with inhibition of AP-1 activation, the RO-ME fraction markedly inhibited activation of PI-3K, Akt, and p70 S6 kinase (p70(S6k)). In addition, overexpression of the dominant negative PI-3K mutant delta p85 reduced the induction of VEGF by B(a)PDE. It is likely that the inhibitory effects of fractions RO-FOO3 and RO-ME on B(a)PDE-induced AP-1 activation and VEGF expression are mediated by inhibition of the PI-3K/Akt pathway. In view of the important roles of AP-1 and VEGF in tumor development, one mechanism for the chemopreventive activity of black raspberries may be inhibition of the PI-3K/Akt/AP-1/VEGF pathway.

  20. Inhibition of PMA-induced endothelial cell activation and adhesion by over-expression of domain negative IκBα protein

    Institute of Scientific and Technical Information of China (English)

    Jian-Feng Wei; Ke Sun; Shi-Guo Xu; Hai-Yang Xie; Shu-Sen Zheng

    2005-01-01

    AIM: NF-κB, regulate the expression of cytokine-inducible genes involving immune and inflammatory responses, will be potential therapy approach for allograft from rejection. In this study, we use pCMV-IκBαM vector to inhibit NF-κB activation and investigate the effect of pCMV-IκBαM in inhibition of T cells adhesion to endothelial cells. METHODS: The NF-κB activity was detected with pNF-κB reporter gene and electrophoretic mobility shift assay. Expression of cell surface molecules was detected by RT-PCR and flow cytometer. The cell-cell adhesion assay was performed to determine the effect of pCMV-IκBαM in inhibition of T cells adhesion to endothelial cells. RESULTS: We could find that NF-κB activity is inhibited by over-expression of non-degraded IκBα protein. Expression of adhesion molecules like ICAM-1, VCAM-1, and P-selectin as well as cell-cell adhesion were inhibited significantly by transfection of the pCMV-IκBαM vector. CONCLUSION: Our results indicate that the pCMVIκBαM, which inhibit the activity of NF-κB through over-expression of non-degraded IκBα protein, can be used for gene therapy in diseases involving NF-κB activation abnormally like organ transplantation via inhibiting cell adhesion.

  1. Water extracts of cinnamon and clove exhibits potent inhibition of protein glycation and anti-atherosclerotic activity in vitro and in vivo hypolipidemic activity in zebrafish.

    Science.gov (United States)

    Jin, Seori; Cho, Kyung-Hyun

    2011-07-01

    Advanced glycation end products contribute to the pathogenesis of diabetic complications and atherosclerosis. Aqueous extracts of ground pepper, cinnamon, rosemary, ginger, and clove were analyzed and tested for anti-atherosclerotic activity in vitro and in vivo using hypercholesterolemic zebrafish. Cinnamon and clove extracts (at final 10 μg/mL) had the strongest anti-glycation and antioxidant activity in this study. Cinnamon and clove had the strongest inhibition of activity against copper-mediated low-density lipoprotein (LDL) oxidation and LDL phagocytosis by macrophages. Cinnamon or clove extracts had potent cholesteryl ester transfer protein (CETP) inhibitory activity in a concentration-dependent manner. They exhibited hypolipidemic activity in a hypercholesterolemic zebrafish model; the clove extract-treated group had a 68% and 80% decrease in serum cholesterol and TG levels, respectively. The clove extract-fed group had the smallest increase in body weight and height and the strongest antioxidant activity following a 5-week high cholesterol diet. Hydrophilic ingredients of cinnamon and clove showed potent activities to suppress the incidence of atherosclerosis and diabetes via strong antioxidant potential, prevention of apoA-I glycation and LDL-phagocytosis, inhibition of CETP, and hypolipidemic activity. These results suggest the potential to develop a new functional dietary agent to treat chronic metabolic diseases, such as hyperlipidemia and diabetes.

  2. Two serine residues of non-metastasis protein 23-H1 are critical in inhibiting signal transducer and activator of transcription 3 activity in human lung cancer cells

    Science.gov (United States)

    Wu, Zhihao; Guo, Lili; Ge, Jiangnan; Zhang, Zhijian; Wei, Huijun; Zhou, Qinghua

    2017-01-01

    Constitutive activation of signal transducer and activator of transcription 3 (STAT3) in numerous cancers, including lung cancer, is one of the major mechanisms of tumor progression and metastasis. The authors previously reported that the metastasis suppressor non-metastasis protein 23-H1 (Nm23-H1) negatively regulates STAT3 activity by inhibiting its phosphorylation on Tyr705. Nm23-H1 is a multifunction protein that has three different kinase activities. By transfecting the five mutants that inactivated three different kinase activities respectively into Nm23-H1 deficient lung cancer cell lines, it was identified that Nm23-H1S44A (Ser44 to Ala) and Nm23-H1S120G (Ser120 to Gly) mutant forms were unable to suppress STAT3 phosphorylation on Tyr705, resulting in increased expression of fibronectin and matrix metalloproteinase-9. Notably, protein inhibitor of activated STAT3 was also involved in Nm23-H1S44A- and Nm23-H1S120G-mediated suppression of STAT3 phosphorylation. The present results indicated that Ser44 and Ser120 sites of Nm23-H1 may be responsible for its biological suppressive effects of STAT3 and tumor metastasis, which may contribute to illuminate the metastasis suppression function of Nm23-H1 in lung cancer. PMID:28781685

  3. In vitro and in vivo α-amylase and α-glucosidase inhibiting activities of the protein extracts from two varieties of bitter gourd (Momordica charantia L.).

    Science.gov (United States)

    Poovitha, Sundar; Parani, Madasamy

    2016-07-18

    α-amylase and α-glucosidase digest the carbohydrates and increase the postprandial glucose level in diabetic patients. Inhibiting the activity of these two enzymes can control postprandial hyperglycemia, and reduce the risk of developing diabetes. Bitter gourd or balsam pear is one of the important medicinal plants used for controlling postprandial hyperglycemia in diabetes patients. However, there is limited information available on the presence of α-amylase and α-glucosidase inhibiting compounds. In the current study, the protein extracts from the fruits of M. charantia var. charantia (MCC) and M. charantia var. muricata (MCM) were tested for α-amylase and α-glucosidase inhibiting activities in vitro, and glucose lowering activity after oral administration in vivo. The protein extract from both MCC and MCM inhibited the activity of α-amylase and α-glucosidase through competitive inhibition, which was on par with Acarbose as indicated by in vitro percentage of inhibition (66 to 69 %) and IC50 (0.26 to 0.29 mg/ml). Both the protein extracts significantly reduced peak blood glucose and area under the curve in Streptozotocin-induced diabetic rats, which were orally challenged with starch and sucrose. Protein extracts from the fruits of the two varieties of bitter gourd inhibited α-amylase and α-glucosidase in vitro and lowered the blood glucose level in vivo on par with Acarbose when orally administrated to Streptozotocin-induced diabetic rats. Further studies on mechanism of action and methods of safe and biologically active delivery will help to develop an anti-diabetic oral protein drug from these plants.

  4. GABA/sub B/ receptor activation inhibits Ca/sup 2 +/-activated potassium channels in synaptosomes: involvement of G-proteins

    Energy Technology Data Exchange (ETDEWEB)

    Ticku, M.K.; Delgado, A.

    1989-01-01

    /sup 86/Rb-efflux assay from preloaded synaptosomes of rat cerebral cortex was developed to study the effect of GABA/sub B/ receptor agonist baclofen on Ca/sup 2 +/-activated K/sup +/-channels. Depolarization of /sup 86/Rb-loaded synaptosomes in physiological buffer increased Ca/sup 2 +/-activated /sup 86/Rb-efflux by 400%. The /sup 86/Rb-efflux was blocked by quinine sulfate, tetraethylammonium, and La/sup 3 +/ indicating the involvement of Ca/sup 2 +/-activated K/sup +/-channels. (-)Baclofen inhibited Ca/sup 2 +/-activated /sup 86/Rb-efflux in a stereospecific manner. The inhibitory effect of (-)baclofen was mediated by GABA/sub B/ receptor activation, since it was blocked by GABA/sub B/ antagonist phaclofen, but not by bicuculline. Further, pertussis toxin also blocked the ability of baclofen or depolarizing action to affect Ca/sup 2 +/-activated K/sup +/-channels. These results suggest that baclofen inhibits Ca/sup 2 +/-activated K/sup +/-channels in synaptosomes and these channels are regulated by G-proteins. This assay may provide an ideal in vitro model to study GABA/sub B/ receptor pharmacology.

  5. Anticancer Alkaloid Lamellarins Inhibit Protein Kinases

    Directory of Open Access Journals (Sweden)

    Laurent Meijer

    2008-10-01

    Full Text Available Lamellarins, a family of hexacyclic pyrrole alkaloids originally isolated from marine invertebrates, display promising anti-tumor activity. They induce apoptotic cell death through multi-target mechanisms, including inhibition of topoisomerase I, interaction with DNA and direct effects on mitochondria. We here report that lamellarins inhibit several protein kinases relevant to cancer such as cyclin-dependent kinases, dualspecificity tyrosine phosphorylation activated kinase 1A, casein kinase 1, glycogen synthase kinase-3 and PIM-1. A good correlation is observed between the effects of lamellarins on protein kinases and their action on cell death, suggesting that inhibition of specific kinases may contribute to the cytotoxicity of lamellarins. Structure/activity relationship suggests several paths for the optimization of lamellarins as kinase inhibitors.

  6. THE COMPARING OF ANTIMICROBIAL ACTIVITY OF CSN1S2 PROTEIN OF FRESH MILK AND YOGHURT GOAT BREED ETHAWAH INHIBITED THE PATHOGENIC BACTERIA

    Science.gov (United States)

    Triprisila, Lidwina Faraline; Suharjono, Suharjono; Christianto, Antonius; Fatchiyah, Fatchiyah

    2016-01-01

    Background: Goat milk is reported to have antimicrobial activity of several pathogen bacteria that contained on food materials. The research related with antimicrobial activity of Alpha-S2 casein from goat milk is relatively less than other casein components. Herein, we reported the antimicrobial activity of caprine Alpha-S2 Casein (CSN1S2) protein from Ethawah breed goat milk and yoghurt in Gram positive (Listeria monocytogenes, Staphylococcus aureus and Bacillus cereus) and negative pathogen bacteria (Escherichia coli, Salmonella typhi and Shigella flexneri). Those bacteria were known as pathogens that caused gastrointestinal infection. Methods: Serial dilution and agar diffusion analysis with three different concentrations of caprine CSN1S2, 1.25 mg/ml, 2.5 mg/ml, and 5 mg/ml were used to test the inhibition effect of protein on the viability of bacteria cells. The inhibitory activity of caprine CSN1S2 was based on dose dependent manner. Agar diffusion analysis was showed the larger diameter of clear zone at B. cereus and S. flexneri. Results: The serial dilution analysis was shown the inhibition of almost in all groups of bacteria with concentration 5 mg/ml higher by CSN1S2 protein of goat fresh milk than yogurt. The inhibitory activity caprine CSN1S2 protein of fresh milk was shown a vary inhibition clear zone with optimal concentration 5 mg/ml, however CSN1S2 protein of goat yogurt intermediate effectively was only in gram negative bacteria. The weakness bacteria against inhibition activity caprine CSN1S2 protein was B. cereus (Gram positive) and S. flexneri (Gram negative). Meanwhile the strongest bacteria against inhibition activity caprine CSN1S2 protein was S. typhi (Gram negative), may cause in this bacteria has lipopolysaccharide prevent to interact with that protein as proper. Conclusion: This study result concluded that the caprine CSN1S2 protein has inhibition activity in opposition to pathogenic bacteria by optimal concentration 5 mg/ml in all

  7. HIV-1 Protein Nef Inhibits Activity of ATP-binding Cassette Transporter A1 by Targeting Endoplasmic Reticulum Chaperone Calnexin*

    Science.gov (United States)

    Jennelle, Lucas; Hunegnaw, Ruth; Dubrovsky, Larisa; Pushkarsky, Tatiana; Fitzgerald, Michael L.; Sviridov, Dmitri; Popratiloff, Anastas; Brichacek, Beda; Bukrinsky, Michael

    2014-01-01

    HIV-infected patients are at increased risk of developing atherosclerosis, in part due to an altered high density lipoprotein profile exacerbated by down-modulation and impairment of ATP-binding cassette transporter A1 (ABCA1) activity by the HIV-1 protein Nef. However, the mechanisms of this Nef effect remain unknown. Here, we show that Nef interacts with an endoplasmic reticulum chaperone calnexin, which regulates folding and maturation of glycosylated proteins. Nef disrupted interaction between calnexin and ABCA1 but increased affinity and enhanced interaction of calnexin with HIV-1 gp160. The Nef mutant that did not bind to calnexin did not affect the calnexin-ABCA1 interaction. Interaction with calnexin was essential for functionality of ABCA1, as knockdown of calnexin blocked the ABCA1 exit from the endoplasmic reticulum, reduced ABCA1 abundance, and inhibited cholesterol efflux; the same effects were observed after Nef overexpression. However, the effects of calnexin knockdown and Nef on cholesterol efflux were not additive; in fact, the combined effect of these two factors together did not differ significantly from the effect of calnexin knockdown alone. Interestingly, gp160 and ABCA1 interacted with calnexin differently; although gp160 binding to calnexin was dependent on glycosylation, glycosylation was of little importance for the interaction between ABCA1 and calnexin. Thus, Nef regulates the activity of calnexin to stimulate its interaction with gp160 at the expense of ABCA1. This study identifies a mechanism for Nef-dependent inactivation of ABCA1 and dysregulation of cholesterol metabolism. PMID:25170080

  8. Quantitative structure activity relationship studies on the flavonoid mediated inhibition of multidrug resistance proteins 1 and 2

    NARCIS (Netherlands)

    Zanden, J.J. van; Wortelboer, H.M.; Bijlsma, S.; Punt, A.; Usta, M.; Bladeren, P.J.V.; Rietjens, I.M.C.M.; Cnubben, N.H.P.

    2005-01-01

    In the present study, the effects of a large series of flavonoids on multidrug resistance proteins (MRPs) were studied in MRP1 and MRP2 transfected MDCKII cells. The results were used to define the structural requirements of flavonoids necessary for potent inhibition of MRP1- and MRP2-mediated calce

  9. Quantitative structure activity relationship studies on the flavonoid mediated inhibition of multidrug resistance proteins 1 and 2

    NARCIS (Netherlands)

    Zanden, J.J. van; Wortelboer, H.M.; Bijlsma, S.; Punt, A.; Usta, M.; Bladeren, P.J.V.; Rietjens, I.M.C.M.; Cnubben, N.H.P.

    2005-01-01

    In the present study, the effects of a large series of flavonoids on multidrug resistance proteins (MRPs) were studied in MRP1 and MRP2 transfected MDCKII cells. The results were used to define the structural requirements of flavonoids necessary for potent inhibition of MRP1- and MRP2-mediated

  10. Histidine and Aspartic Acid Residues Important for Immunoglobulin G Endopeptidase Activity of the Group A Streptococcus Opsonophagocytosis-Inhibiting Mac Protein

    Science.gov (United States)

    Lei, Benfang; Liu, Mengyao; Meyers, Elishia G.; Manning, Heather M.; Nagiec, Michael J.; Musser, James M.

    2003-01-01

    The secreted Mac protein made by serotype M1 group A Streptococcus (GAS) (designated Mac5005) inhibits opsonophagocytosis and killing of GAS by human polymorphonuclear neutrophils. This protein also has cysteine endopeptidase activity against human immunoglobulin G (IgG). Site-directed mutagenesis was used to identify histidine and aspartic acid residues important for Mac IgG endopeptidase activity. Replacement of His262 with Ala abolished Mac5005 IgG endopeptidase activity. Asp284Ala and Asp286Ala mutant proteins had compromised enzymatic activity, whereas 21 other Asp-to-Ala mutant proteins cleaved human IgG at the apparent wild-type level. The results suggest that His262 is an active-site residue and that Asp284 and Asp286 are important for the enzymatic activity or structure of Mac protein. These Mac mutants provide new information about structure-activity relationships in this protein and will assist study of the mechanism of inhibition of opsonophagocytosis and killing of GAS by Mac. PMID:12704162

  11. The Shc family protein adaptor, Rai, negatively regulates T cell antigen receptor signaling by inhibiting ZAP-70 recruitment and activation.

    Directory of Open Access Journals (Sweden)

    Micol Ferro

    Full Text Available Rai/ShcC is a member of the Shc family of protein adaptors expressed with the highest abundance in the central nervous system, where it exerts a protective function by coupling neurotrophic receptors to the PI3K/Akt survival pathway. Rai is also expressed, albeit at lower levels, in other cell types, including T and B lymphocytes. We have previously reported that in these cells Rai attenuates antigen receptor signaling, thereby impairing not only cell proliferation but also, opposite to neurons, cell survival. Here we have addressed the mechanism underlying the inhibitory activity of Rai on TCR signaling. We show that Rai interferes with the TCR signaling cascade one of the earliest steps--recruitment of the initiating kinase ZAP-70 to the phosphorylated subunit of the TCR/CD3 complex, which results in a generalized dampening of the downstream signaling events. The inhibitory activity of Rai is associated to its inducible recruitment to phosphorylated CD3, which occurs in the physiological signaling context of the immune synapse. Rai is moreover found as a pre-assembled complex with ZAP-70 and also constitutively interacts with the regulatory p85 subunit of PI3K, similar to neuronal cells, notwithstanding the opposite biological outcome, i.e. impairment of PI-3K/Akt activation. The data highlight the ability of Rai to establish interactions with the TCR and key signaling mediators which, either directly (e.g. by inhibiting ZAP-70 recruitment to the TCR or sequestering ZAP-70/PI3K in the cytosol or indirectly (e.g. by promoting the recruitment of effectors responsible for signal extinction prevent full triggering of the TCR signaling cascade.

  12. Isolation of a novel protein, P12-from adult Drosophila melanogaster that inhibits deoxyribonucleoside and protein kinase activities and activates 3'-5'- exonuclease activity

    DEFF Research Database (Denmark)

    Christiansen, Louise Slot; Zanten, Gabriella van; Berenstein, Dvora;

    2016-01-01

    Dm-dNK, however, capable to phosphorylate all four natural deoxyribonucleosides. Dm-dNK was originally isolated from an embryonic cell line. We wanted to study the expression of Dm-dNK during development from embryonic cells to adult flies and found declining Dm-dNK activity during development...... polymerase based assay we found that the 3'-5'-exonuclease part of the DNA polymerase (Klenow polymerase) was activated....

  13. Inhibition of mTORC1 Enhances the Translation of Chikungunya Proteins via the Activation of the MnK/eIF4E Pathway.

    Directory of Open Access Journals (Sweden)

    Pierre-Emmanuel Joubert

    2015-08-01

    Full Text Available Chikungunya virus (CHIKV, the causative agent of a major epidemic spanning five continents, is a positive stranded mRNA virus that replicates using the cell's cap-dependent translation machinery. Despite viral infection inhibiting mTOR, a metabolic sensor controls cap-dependent translation, viral proteins are efficiently translated. Rapalog treatment, silencing of mtor or raptor genes, but not rictor, further enhanced CHIKV infection in culture cells. Using biochemical assays and real time imaging, we demonstrate that this effect is independent of autophagy or type I interferon production. Providing in vivo evidence for the relevance of our findings, mice treated with mTORC1 inhibitors exhibited increased lethality and showed a higher sensitivity to CHIKV. A systematic evaluation of the viral life cycle indicated that inhibition of mTORC1 has a specific positive effect on viral proteins, enhancing viral replication by increasing the translation of both structural and nonstructural proteins. Molecular analysis defined a role for phosphatidylinositol-3 kinase (PI3K and MAP kinase-activated protein kinase (MnKs activation, leading to the hyper-phosphorylation of eIF4E. Finally, we demonstrated that in the context of CHIKV inhibition of mTORC1, viral replication is prioritized over host translation via a similar mechanism. Our study reveals an unexpected bypass pathway by which CHIKV protein translation overcomes viral induced mTORC1 inhibition.

  14. Hepatitis C virus non-structural protein 3 interacts with cytosolic 5'(3'-deoxyribonucleotidase and partially inhibits its activity.

    Directory of Open Access Journals (Sweden)

    Chiu-Ping Fang

    Full Text Available Infection with hepatitis C virus (HCV is etiologically involved in liver cirrhosis, hepatocellular carcinoma and B-cell lymphomas. It has been demonstrated previously that HCV non-structural protein 3 (NS3 is involved in cell transformation. In this study, a yeast two-hybrid screening experiment was conducted to identify cellular proteins interacting with HCV NS3 protein. Cytosolic 5'(3'-deoxyribonucleotidase (cdN, dNT-1 was found to interact with HCV NS3 protein. Binding domains of HCV NS3 and cellular cdN proteins were also determined using the yeast two-hybrid system. Interactions between HCV NS3 and cdN proteins were further demonstrated by co-immunoprecipitation and confocal analysis in cultured cells. The cellular cdN activity was partially repressed by NS3 protein in both the transiently-transfected and the stably-transfected systems. Furthermore, HCV partially repressed the cdN activity while had no effect on its protein expression in the systems of HCV sub-genomic replicons and infectious HCV virions. Deoxyribonucleotidases are present in most mammalian cells and involve in the regulation of intracellular deoxyribonucleotides pools by substrate cycles. Control of DNA precursor concentration is essential for the maintenance of genetic stability. Reduction of cdN activity would result in the imbalance of DNA precursor concentrations. Thus, our results suggested that HCV partially reduced the cdN activity via its NS3 protein and this may in turn cause diseases.

  15. The selective protein kinase C inhibitor, Ro-31-8220, inhibits mitogen-activated protein kinase phosphatase-1 (MKP-1) expression, induces c-Jun expression, and activates Jun N-terminal kinase.

    Science.gov (United States)

    Beltman, J; McCormick, F; Cook, S J

    1996-10-25

    The role of protein kinase C (PKC) in inflammation, mitogenesis, and differentiation has been deduced in part through the use of a variety of PKC inhibitors. Two widely used inhibitors are the structurally related compounds GF109203X and Ro-31-8220, both of which potently inhibit PKC activity and are believed to be highly selective. While using GF109203X and Ro-31-8220 to address the role of PKC in immediate early gene expression, we observed striking differential effects by each of these two compounds. Growth factors induce the expression of the immediate early gene products MAP kinase phosphatase-1 (MKP-1), c-Fos and c-Jun. Ro-31-8220 inhibits growth factor-stimulated expression of MKP-1 and c-Fos but strongly stimulated c-Jun expression, even in the absence of growth factors. GF109203X displays none of these properties. These data suggest that Ro-31-8220 may have other pharmacological actions in addition to PKC inhibition. Indeed, Ro-31-8220 strongly stimulates the stress-activated protein kinase, JNK1. Furthermore, Ro-31-8220 apparently activates JNK in a PKC-independent manner. Neither the down-regulation of PKC by phorbol esters nor the inhibition of PKC by GF109203X affected the ability of Ro-31-8220 to activate JNK1. These data suggest that, in addition to potently inhibiting PKC, Ro-31-8220 exhibits novel pharmacological properties which are independent of its ability to inhibit PKC.

  16. Inhibition of prostate cancer growth by solanine requires the suppression of cell cycle proteins and the activation of ROS/P38 signaling pathway.

    Science.gov (United States)

    Pan, Bin; Zhong, Weifeng; Deng, Zhihai; Lai, Caiyong; Chu, Jing; Jiao, Genlong; Liu, Junfeng; Zhou, Qizhao

    2016-11-01

    Solanine, a naturally steroidal glycoalkaloid in nightshade (Solanum nigrum Linn.), can inhibit proliferation and induce apoptosis of tumor cells. However, the mechanism of solanine-suppressing prostate cancer cell growth remains to be elucidated. This study investigates the inhibition mechanism of solanine on cancer development in vivo and in cultured human prostate cancer cell DU145 in vitro. Results show that solanine injection significantly suppresses the tumor cell growth in xenograft athymic nude mice. Solanine regulates the protein levels of cell cycle proteins, including Cyclin D1, Cyclin E1, CDK2, CDK4, CDK6, and P21 in vivo and in vitro. Also, in cultured DU145 cell, solanine significantly inhibits cell growth. Moreover, the administration of NAC, an active oxygen scavenger, markedly reduces solanine-induced cell death. Blockade of P38 MAPK kinase cannot suppress reactive oxygen species (ROS), but can suppress solanine-induced cell apoptosis. Also, inhibition of ROS by NAC inactivates P38 pathway. Taken together, the data suggest that inhibition of prostate cancer growth by solanine may be through blocking the expression of cell cycle proteins and inducing apoptosis via ROS and activation of P38 pathway. These findings indicate an attractive therapeutic potential of solanine for suppression of prostate cancer.

  17. Ribosome Inactivating Proteins from Plants Inhibiting Viruses

    Institute of Scientific and Technical Information of China (English)

    Inderdeep Kaur; R C Gupta; Munish Puri

    2011-01-01

    Many plants contain ribosome inactivating proteins (RIPs) with N-glycosidase activity,which depurinate large ribosomal RNA and arrest protein synthesis.RIPs so far tested inhibit replication of mRNA as well as DNA viruses and these proteins,isolated from plants,are found to be effective against a broad range of viruses such as human immunodeficiency virus (HIV),hepatitis B virus (HBV) and herpes simplex virus (HSV).Most of the research work related to RIPs has been focused on antiviral activity against HIV; however,the exact mechanism of antiviral activity is still not clear.The mechanism of antiviral activity was thought to follow inactivation of the host cell ribosome,leading to inhibition of viral protein translation and host cell death.Enzymatic activity of RIPs is not hmited to depurination of the large rRNA,in addition they can depurinate viral DNA as well as RNA.Recently,Phase Ⅰ/Ⅱ clinical trials have demonstrated the potential use of RIPs for treating patients with HIV disease.The aim of this review is to focus on various RIPs from plants associated with anti-HIV activity.

  18. Lactobacillus S-layer protein inhibition of Salmonella-induced reorganization of the cytoskeleton and activation of MAPK signalling pathways in Caco-2 cells.

    Science.gov (United States)

    Li, Pengcheng; Yu, Qinghua; Ye, Xiaolan; Wang, Zhisheng; Yang, Qian

    2011-09-01

    Surface layer (S-layer) proteins are crystalline arrays of proteinaceous subunits that are present as the outermost component of the cell wall in several Lactobacillus species. The S-layer proteins have been shown to play a role in the antimicrobial activity of certain lactobacilli. However, it is not fully understood how the S-layer proteins exert this biological function. The aim of this study was to test the hypothesis that Lactobacillus acidophilus S-layer proteins antagonize Salmonella Typhimurium (S. Typhimurium) infection by protecting against F-actin cytoskeleton rearrangements and the activation of mitogen-activated protein kinase (MAPK) signalling pathways. Monolayer transepithelial electrical resistance (TER) was measured after S. Typhimurium infection in Caco-2 cultured human intestinal cells with L. acidophilus S-layer proteins. F-actin rearrangement and MAPK activation were also assessed by immunofluorescence staining or Western blotting. The results showed that when S. Typhimurium was co-incubated with S-layer proteins, the S. Typhimurium-induced Caco-2 cell F-actin rearrangement was reduced, and the S. Typhimurium-induced TER decrease and interleukin 8 (IL-8) secretion were attenuated. Additionally, L. acidophilus S-layer proteins could inhibit S. Typhimurium-induced phosphorylation of extracellular signal-regulated kinases 1 and 2 (ERK1/2), c-Jun amino-terminal kinase (JNK) and p38. This study indicates that L. acidophilus S-layer proteins are able to inhibit S. Typhimurium infection through blocking S. Typhimurium-induced F-actin rearrangements and S. Typhimurium-induced ERK1/2, JNK and p38 activation in Caco-2 cells. These data provide a rationale for the use of lactobacillus S-layer proteins as therapeutic and preventative agents, at least in infectious diarrhoea.

  19. Infectious salmon anemia virus segment 7 ORF1 and segment 8 ORF2 proteins inhibit IRF mediated activation of the Atlantic salmon IFNa1 promoter.

    Science.gov (United States)

    Li, Chun; Greiner-Tollersrud, Linn; Robertsen, Børre

    2016-05-01

    Infectious salmon anemia virus (ISAV) is an orthomyxovirus, which may cause multisystemic disease and high mortality of Atlantic salmon (Salmo salar L). This suggests that ISAV encodes proteins that antagonize the type I interferon (IFN-I) system, which is of crucial importance in innate antiviral immunity. To find out how ISAV might inhibit IFN-I synthesis, we have here studied whether the two ISAV proteins s7ORF1 and s8ORF2 might interfere with activation of the IFNa1 promoter mediated by overexpression of interferon regulatory factors (IRFs) or by the IFN promoter activation protein IPS-1. The IRF tested were IRF1, IRF3, IRF7A and IRF7B. Promoter activation was measured using a luciferase reporter assay where Atlantic salmon TO cells were co-transfected with the IFNa1 promoter reporter plasmid together with an IRF plasmid and the s7ORF1 or the s8ORF2 construct or a control plasmid. The results showed that s7ORF1 significantly inhibited IRF3 and IRF7B induced IFN promoter activity, while s8ORF2 significantly inhibited IRF1 and IRF3 induced promoter activity. Neither s7ORF1 nor s8ORF2 inhibited IPS-1 mediated promoter activation. Immunoprecipitation data suggest that both s7ORF1 and s8ORF2 can bind to all four IRFs. Taken together, this study thus shows that the ISAV proteins s7ORF1 and s8ORF2 antagonizes IFN-I transcription activation mediated by the IRFs. As such this work provides further insight into the pathogenic properties of ISAV.

  20. Degradation of plasma proteins by the trypsin-like enzyme of Porphyromonas gingivalis and inhibition of protease activity by a serine protease inhibitor of human plasma.

    Science.gov (United States)

    Fishburn, C S; Slaney, J M; Carman, R J; Curtis, M A

    1991-08-01

    The interaction between Porphyromonas gingivalis culture supernatant and human serum was examined. Hydrolysis of the major serum proteins was thiol-dependent and correlated with the trypsin-like activity of the sample. Transferrin and IgG light chains were less susceptible to degradation than albumin and IgG heavy chains and partially degraded IgG retained antigen-binding capability. Serum inhibited the trypsin-like activity in a fluorimetric assay. The inhibition was shown to be independent of the level of IgG antibody reactive with whole cells of P. gingivalis. Purified preparations of antithrombin III, a serine protease inhibitor, but not alpha 1-antitrypsin nor alpha 2-macroglobulin inhibited the trypsin-like activity in the fluorometric assay.

  1. Silencing of ribosomal protein S9 elicits a multitude of cellular responses inhibiting the growth of cancer cells subsequent to p53 activation.

    Directory of Open Access Journals (Sweden)

    Mikael S Lindström

    Full Text Available BACKGROUND: Disruption of the nucleolus often leads to activation of the p53 tumor suppressor pathway through inhibition of MDM2 that is mediated by a limited set of ribosomal proteins including RPL11 and RPL5. The effects of ribosomal protein loss in cultured mammalian cells have not been thoroughly investigated. Here we characterize the cellular stress response caused by depletion of ribosomal protein S9 (RPS9. METHODOLOGY/PRINCIPAL FINDINGS: Depletion of RPS9 impaired production of 18S ribosomal RNA and induced p53 activity. It promoted p53-dependent morphological differentiation of U343MGa Cl2:6 glioma cells as evidenced by intensified expression of glial fibrillary acidic protein and profound changes in cell shape. U2OS osteosarcoma cells displayed a limited senescence response with increased expression of DNA damage response markers, whereas HeLa cervical carcinoma cells underwent cell death by apoptosis. Knockdown of RPL11 impaired p53-dependent phenotypes in the different RPS9 depleted cell cultures. Importantly, knockdown of RPS9 or RPL11 also markedly inhibited cell proliferation through p53-independent mechanisms. RPL11 binding to MDM2 was retained despite decreased levels of RPL11 protein following nucleolar stress. In these settings, RPL11 was critical for maintaining p53 protein stability but was not strictly required for p53 protein synthesis. CONCLUSIONS: p53 plays an important role in the initial restriction of cell proliferation that occurs in response to decreased level of RPS9. Our results do not exclude the possibility that other nucleolar stress sensing molecules act upstream or in parallel to RPL11 to activate p53. Inhibiting the expression of certain ribosomal proteins, such as RPS9, could be one efficient way to reinitiate differentiation processes or to induce senescence or apoptosis in rapidly proliferating tumor cells.

  2. Arctigenin, a natural compound, activates AMP-activated protein kinase via inhibition of mitochondria complex I and ameliorates metabolic disorders in ob/ob mice.

    Science.gov (United States)

    Huang, S-L; Yu, R-T; Gong, J; Feng, Y; Dai, Y-L; Hu, F; Hu, Y-H; Tao, Y-D; Leng, Y

    2012-05-01

    Arctigenin is a natural compound that had never been previously demonstrated to have a glucose-lowering effect. Here it was found to activate AMP-activated protein kinase (AMPK), and the mechanism by which this occurred, as well as the effects on glucose and lipid metabolism were investigated. 2-Deoxyglucose uptake and AMPK phosphorylation were examined in L6 myotubes and isolated skeletal muscle. Gluconeogenesis and lipid synthesis were evaluated in rat primary hepatocytes. The acute and chronic effects of arctigenin on metabolic abnormalities were observed in C57BL/6J and ob/ob mice. Changes in mitochondrial membrane potential were measured using the J-aggregate-forming dye, JC-1. Analysis of respiration of L6 myotubes or isolated mitochondria was conducted in a channel oxygen system. Arctigenin increased AMPK phosphorylation and stimulated glucose uptake in L6 myotubes and isolated skeletal muscles. In primary hepatocytes, it decreased gluconeogenesis and lipid synthesis. The enhancement of glucose uptake and suppression of hepatic gluconeogenesis and lipid synthesis by arctigenin were prevented by blockade of AMPK activation. The respiration of L6 myotubes or isolated mitochondria was inhibited by arctigenin with a specific effect on respiratory complex I. A single oral dose of arctigenin reduced gluconeogenesis in C57BL/6J mice. Chronic oral administration of arctigenin lowered blood glucose and improved lipid metabolism in ob/ob mice. This study demonstrates a new role for arctigenin as a potent indirect activator of AMPK via inhibition of respiratory complex I, with beneficial effects on metabolic disorders in ob/ob mice. This highlights the potential value of arctigenin as a possible treatment of type 2 diabetes.

  3. Inhibition of fibroblast growth factor 2-induced apoptosis involves survivin expression, protein kinase Cα activation and subcellular translocation of Smac in human small cell lung cancer cells

    Institute of Scientific and Technical Information of China (English)

    Desheng Xiao; Kuansong Wang; Jianhua Zhou; Huiqiu Cao; Zhenghao Deng; Yongbin Hu; Xiahui Qu; Jifang Wen

    2008-01-01

    To investigate the mechanism by which fibroblast growth factor 2 (FGF-2) inhibits apoptosis in the human small cell lung cancer cell line H446 subjected to serum starvation,apoptosis was evaluated by flow cytometry, Hoechst 33258 staining, caspase-3 activity, and DNA fragmentation.Survivin expression induced by FGF-2 and protein kinase Cα (PKCα) translocation was detected by subcellular fractionation and Western blot analysis. In addition, FGF-2-induced release of Smac from mitochondria to the cytoplasm was analyzed by Western blotting and immunofluorescence.FGF-2 reduced apoptosis induced by serum starvation and up-regulated survivin expression in H446 cells in a dosedependent and time-dependent manner, and inhibited caspase-3 activity. FGF-2 also inhibited the release of Smac from mitochondria to the cytoplasm induced by serum starvation and increased PKCα translocation from the cytoplasm to the cell membrane. In addition, PKC inhibitor inhibited the expression of survivin. FGF-2 up-regulates the expression of survivin protein in H446 cells and blocks the release of Smac from mitochondria to the cytoplasm. PKCα regulated FGF-2-induced survivin expression. Thus, survivin, Smac,and PKCα might play important roles in the inhibition of apoptosis by FGF-2 in human small cell lung cancer cells.

  4. Ras-mutant cancer cells display B-Raf binding to Ras that activates extracellular signal-regulated kinase and is inhibited by protein kinase A phosphorylation.

    Science.gov (United States)

    Li, Yanping; Takahashi, Maho; Stork, Philip J S

    2013-09-20

    The small G protein Ras regulates proliferation through activation of the mitogen-activated protein (MAP) kinase (ERK) cascade. The first step of Ras-dependent activation of ERK signaling is Ras binding to members of the Raf family of MAP kinase kinase kinases, C-Raf and B-Raf. Recently, it has been reported that in melanoma cells harboring oncogenic Ras mutations, B-Raf does not bind to Ras and does not contribute to basal ERK activation. For other types of Ras-mutant tumors, the relative contributions of C-Raf and B-Raf are not known. We examined non-melanoma cancer cell lines containing oncogenic Ras mutations and express both C-Raf and B-Raf isoforms, including the lung cancer cell line H1299 cells. Both B-Raf and C-Raf were constitutively bound to oncogenic Ras and contributed to Ras-dependent ERK activation. Ras binding to B-Raf and C-Raf were both subject to inhibition by the cAMP-dependent protein kinase PKA. cAMP inhibited the growth of H1299 cells and Ras-dependent ERK activation via PKA. PKA inhibited the binding of Ras to both C-Raf and B-Raf through phosphorylations of C-Raf at Ser-259 and B-Raf at Ser-365, respectively. These studies demonstrate that in non-melanocytic Ras-mutant cancer cells, Ras signaling to B-Raf is a significant contributor to ERK activation and that the B-Raf pathway, like that of C-Raf, is a target for inhibition by PKA. We suggest that cAMP and hormones coupled to cAMP may prove useful in dampening the effects of oncogenic Ras in non-melanocytic cancer cells through PKA-dependent actions on B-Raf as well as C-Raf.

  5. Inhibition of p38 mitogen-activated protein kinase activation in the rostral anterior cingulate cortex attenuates pain-related negative emotion in rats.

    Science.gov (United States)

    Cao, Hong; Zang, Kai-Kai; Han, Mei; Zhao, Zhi-Qi; Wu, Gen-Cheng; Zhang, Yu-Qiu

    2014-08-01

    The emotional components of pain are far less studied than the sensory components. Previous studies have indicated that the rostral anterior cingulate cortex (rACC) is implicated in the affective response to noxious stimuli. Activation of p38 mitogen-activated protein kinase (MAPK) in the spinal cord has been documented to play an important role in diverse kinds of pathological pain states. We used formalin-induced conditioned place aversion (F-CPA) in rats, an animal model believed to reflect the emotional response to pain, to investigate the involvement of p38 MAPK in the rACC after the induction of affective pain. Intraplantar formalin injection produced a significant activation of p38 MAPK, as well as mitogen-activated kinase kinase (MKK) 3 and MKK6, its upstream activators, in the bilateral rACC. p38 MAPK was elevated in both NeuN-positive neurons and Iba1-positive microglia in the rACC, but not GFAP-positive cells. Blocking p38 MAPK activation in the bilateral rACC using its specific inhibitor SB203580 or SB239063 dose-dependently suppressed the formation of F-CPA. Inhibiting p38 MAPK activation did not affect formalin-induced two-phase spontaneous nociceptive response and low intensity electric foot-shock induced CPA. The present study demonstrated that p38 MAPK signaling pathway in the rACC contributes to pain-related negative emotion. Thus, a new pharmacological strategy targeted at the p38 MAPK cascade may be useful in treating pain-related emotional disorders.

  6. Isolation of bovine platelet cationic proteins which inhibit the surface-mediated activation of factor XII and prekallikrein.

    Science.gov (United States)

    Kodama, K; Kato, H; Iwanaga, S

    1985-01-01

    A possible role of bovine platelets in the surface-mediated activation of Factor XII and prekallikrein was studied, using the contact system reconstituted with the purified proteins from bovine plasma. The washed platelets before and after aggregation by ADP, thrombin or collagen did not show any ability to trigger or accelerate the activation of Factor XII and prekallikrein. On the contrary, these aggregates showed a potent inhibitory activity on the activation of those zymogens triggered by kaolin, amylose sulfate and sulfatide. The inhibitory substances from the supernatant of the thrombin-induced aggregates were separated into two major fractions, a low affinity fraction and a high affinity fraction, on a heparin-Sepharose column. The high affinity protein was identified as platelet factor 4, based on the amino acid composition. From the low affinity fraction, a beta-thromboglobulin (beta-TG)-like substance and three kinds of unknown proteins, named LA1, LA2, and LA3, were isolated by gel-filtration on a column of Sephadex G-100 or Sephadex G-75 followed by chromatography on a column of Mono S. The molecular weights of LA1, LA2, and LA3 were estimated to be 35,000, 26,000, and 11,000, respectively, on SDS-PAGE. LA2 was identified as a carbohydrate-less LA1, as judged from the amino acid composition and carbohydrate content. The inhibitory activities of these five cationic proteins on the activation of Factor XII and prekallikrein mediated with amylose sulfate, sulfatide and kaolin were different from each other. In the case of kaolin-mediated activation, LA3 was the most potent inhibitor, while platelet factor 4 and beta-TG-like substance did not show any significant inhibitory activity. Moreover, the inhibitory activities of all the cationic proteins were not correlated with their anti-heparin activities. Since these proteins were rapidly liberated from platelets by the action of the stimulants, the present results demonstrate a negative role of platelets in

  7. Increased MMP-9 expression and activity by aortic smooth muscle cells after nitric oxide synthase inhibition is associated with increased nuclear factor-kappaB and activator protein-1 activity.

    Science.gov (United States)

    Knipp, Brian S; Ailawadi, Gorav; Ford, John W; Peterson, David A; Eagleton, Matthew J; Roelofs, Karen J; Hannawa, Kevin K; Deogracias, Michael P; Ji, Baoan; Logsdon, Craig; Graziano, Kathleen D; Simeone, Diane M; Thompson, Robert W; Henke, Peter K; Stanley, James C; Upchurch, Gilbert R

    2004-01-01

    To determine the mechanism underlying increased expression and activity of matrix metalloproteinase 9 (MMP-9) by rat aortic smooth muscle cells (RA-SMC) after inhibition of inducible nitric oxide synthase (iNOS). Treatment of interleukin-1beta-stimulated RA-SMC with aminoguanidine led to an increase of 96% in MMP-9 activity (P = 0.003) by gelatin zymography, a 40% increase in pro-MMP-9 protein (P = 0.018) by Western blot, and a 155% increase in MMP-9 mRNA (P = 0.06) by reverse transcription polymerase chain reaction. Aminoguanidine also caused a 26% decrease in cytosolic IkappaB levels (P = 0.014) by Western blot, as well as a 97% increase in nuclear factor-kappaB binding and a 216% increase in activator protein-1 binding as measured by electrophoretic mobility shift assay. No significant changes were noted in MMP-2 or TIMP-1 expression, protein levels, or activity after aminoguanidine administration. MMP-9 expression and activity is increased in cytokine stimulated RA-SMCs after iNOS inhibition, coincident with activation of the nuclear factor-kappaB and activator protein-1 pathways. We speculate that local derangements in iNOS may favor MMP-9-dependent vessel wall damage in vivo via an inflammatory cascade mechanism.

  8. Extracts Obtained from Pterocarpus angolensis DC and Ziziphus mucronata Exhibit Antiplasmodial Activity and Inhibit Heat Shock Protein 70 (Hsp70 Function

    Directory of Open Access Journals (Sweden)

    Tawanda Zininga

    2017-07-01

    Full Text Available Malaria parasites are increasingly becoming resistant to currently used antimalarial therapies, therefore there is an urgent need to expand the arsenal of alternative antimalarial drugs. In addition, it is also important to identify novel antimalarial drug targets. In the current study, extracts of two plants, Pterocarpus angolensis and Ziziphus mucronata were obtained and their antimalarial functions were investigated. Furthermore, we explored the capability of the extracts to inhibit Plasmodium falciparum heat shock protein 70 (Hsp70 function. Heat shock protein 70 (Hsp70 are molecular chaperones whose function is to facilitate protein folding. Plasmodium falciparum the main agent of malaria, expresses two cytosol-localized Hsp70s: PfHsp70-1 and PfHsp70-z. The PfHsp70-z has been reported to be essential for parasite survival, while inhibition of PfHsp70-1 function leads to parasite death. Hence both PfHsp70-1 and PfHsp70-z are potential antimalarial drug targets. Extracts of P. angolensis and Z. mucronata inhibited the basal ATPase and chaperone functions of the two parasite Hsp70s. Furthermore, fractions of P. angolensis and Z. mucronata inhibited P. falciparum 3D7 parasite growth in vitro. The extracts obtained in the current study exhibited antiplasmodial activity as they killed P. falciparum parasites maintained in vitro. In addition, the findings further suggest that some of the compounds in P. angolensis and Z. mucronata may target parasite Hsp70 function.

  9. Extracts Obtained from Pterocarpus angolensis DC and Ziziphus mucronata Exhibit Antiplasmodial Activity and Inhibit Heat Shock Protein 70 (Hsp70) Function.

    Science.gov (United States)

    Zininga, Tawanda; Anokwuru, Chinedu P; Sigidi, Muendi T; Tshisikhawe, Milingoni P; Ramaite, Isaiah I D; Traoré, Afsatou N; Hoppe, Heinrich; Shonhai, Addmore; Potgieter, Natasha

    2017-07-28

    Malaria parasites are increasingly becoming resistant to currently used antimalarial therapies, therefore there is an urgent need to expand the arsenal of alternative antimalarial drugs. In addition, it is also important to identify novel antimalarial drug targets. In the current study, extracts of two plants, Pterocarpus angolensis and Ziziphus mucronata were obtained and their antimalarial functions were investigated. Furthermore, we explored the capability of the extracts to inhibit Plasmodium falciparum heat shock protein 70 (Hsp70) function. Heat shock protein 70 (Hsp70) are molecular chaperones whose function is to facilitate protein folding. Plasmodium falciparum the main agent of malaria, expresses two cytosol-localized Hsp70s: PfHsp70-1 and PfHsp70-z. The PfHsp70-z has been reported to be essential for parasite survival, while inhibition of PfHsp70-1 function leads to parasite death. Hence both PfHsp70-1 and PfHsp70-z are potential antimalarial drug targets. Extracts of P. angolensis and Z. mucronata inhibited the basal ATPase and chaperone functions of the two parasite Hsp70s. Furthermore, fractions of P. angolensis and Z. mucronata inhibited P. falciparum 3D7 parasite growth in vitro. The extracts obtained in the current study exhibited antiplasmodial activity as they killed P. falciparum parasites maintained in vitro. In addition, the findings further suggest that some of the compounds in P. angolensis and Z. mucronata may target parasite Hsp70 function.

  10. Inhibition of mitochondrial genome expression triggers the activation of CHOP-10 by a cell signaling dependent on the integrated stress response but not the mitochondrial unfolded protein response.

    Science.gov (United States)

    Michel, Sebastien; Canonne, Morgane; Arnould, Thierry; Renard, Patricia

    2015-03-01

    Mitochondria-to-nucleus communication, known as retrograde signaling, is important to adjust the nuclear gene expression in response to organelle dysfunction. Among the transcription factors described to respond to mitochondrial stress, CHOP-10 is activated by respiratory chain inhibition, mitochondrial accumulation of unfolded proteins and mtDNA mutations. In this study, we show that altered/impaired expression of mtDNA induces CHOP-10 expression in a signaling pathway that depends on the eIF2α/ATF4 axis of the integrated stress response rather than on the mitochondrial unfolded protein response.

  11. Activator protein-1 involved in growth inhibition by RASSF1A gene in the human gastric carcinoma cell line SGC7901

    Institute of Scientific and Technical Information of China (English)

    Zheng-Hao Deng; Ji-Fang Wen; Jing-He Li; De-Sheng Xiao; Jian-Hua Zhou

    2008-01-01

    AIM:To investigate the role of Ras association domain family protein 1 isoform A (RASSFIA) in gastric tumorigenesis.METHODS:Through over-expression of RASSFIA gene in the SGC7901 cell line which was induced by a lipofectamine-mediated gene transfer approach.Activator protein-1 (AP-1) DNA binding activity was measured by electrophoretic mobility shift assay (EMSA).RESULTS:Compared with the control clones,cells over expressing RASSF1A exhibited significant inhibition of cell growth with G1 cell cycle arrest in vitro and in vivo.The over-expression of RASSF1A significantly inhibited AP-1activity in SGC7901 cells (0.981 + 0.011 vs 0.354 ± 0.053,P<0.001).In addition,both Western blot analysis and immunocytochemistry demonstrated that RASSF1A down-regulated the expression of c-Fos (0.975±0.02 vs0.095+0.024,P<0.001) but not c-Jun.CONCLUSION:Over-expression of RASSF1A inhibits the growth of SGC7901 cells by negatively regulating the AP-1 activity,the latter in turn negatively signals cell proliferation.

  12. Phenformin and 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) activation of AMP-activated protein kinase inhibits transepithelial Na+ transport across H441 lung cells.

    Science.gov (United States)

    Woollhead, Alison M; Scott, John W; Hardie, D Grahame; Baines, Deborah L

    2005-08-01

    Active re-absorption of Na+ across the alveolar epithelium is essential to maintain lung fluid balance. Na+ entry at the luminal membrane is predominantly via the amiloride-sensitive Na+ channel (ENaC) down its electrochemical gradient. This gradient is generated and maintained by basolateral Na+ extrusion via Na+,K+-ATPase an energy-dependent process. Several kinases and factors that activate them are known to regulate these processes; however, the role of AMP-activated protein kinase (AMPK) in the lung is unknown. AMPK is an ultra-sensitive cellular energy sensor that monitors energy consumption and down-regulates ATP-consuming processes when activated. The biguanide phenformin has been shown to independently decrease ion transport processes, influence cellular metabolism and activate AMPK. The AMP mimetic drug 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) also activates AMPK in intact cells. Western blotting revealed that both the alpha1 and alpha2 catalytic subunits of AMPK are present in Na+ transporting H441 human lung epithelial cells. Phenformin and AICAR increased AMPK activity in H441 cells in a dose-dependent fashion, stimulating the kinase maximally at 5-10 mm (P = 0.001, n = 3) and 2 mm (P < 0.005, n = 3), respectively. Both agents significantly decreased basal ion transport (measured as short circuit current) across H441 monolayers by approximately 50% compared with that of controls (P < 0.05, n = 4). Neither treatment altered the resistance of the monolayers. Phenformin and AICAR significantly reduced amiloride-sensitive transepithelial Na+ transport compared with controls (P < 0.05, n = 4). This was a result of both decreased Na+,K+-ATPase activity and amiloride-sensitive apical Na+ conductance. Transepithelial Na+ transport decreased with increasing concentrations of phenformin (0.1-10 mm) and showed a significant correlation with AMPK activity. Taken together, these results show that phenformin and AICAR suppress amiloride

  13. Pyridoxine and pyridoxamine inhibits superoxide radicals and prevents lipid peroxidation, protein glycosylation, and (Na+ + K+)-ATPase activity reduction in high glucose-treated human erythrocytes.

    Science.gov (United States)

    Jain, S K; Lim, G

    2001-02-01

    Vitamin B(6) (pyridoxine) supplementation has been found beneficial in preventing diabetic neuropathy and retinopathy, and the glycosylation of proteins. Oxygen radicals and oxidative damage have been implicated in the cellular dysfunction and complications of diabetes. This study was undertaken to test the hypothesis that pyridoxine (P) and pyridoxamine (PM) inhibit superoxide radical production, reduce lipid peroxidation and glycosylation, and increase the (Na+ + K+)-ATPase activity in high glucose-exposed red blood cells (RBC). Superoxide radical production was assessed by the reduction of cytochrome C by glucose in the presence and absence of P or PM in a cell-free buffered solution. To examine cellular effects, washed normal human RBC were treated with control and high glucose concentrations with and without P or PM. Both P and PM significantly lowered lipid peroxidation and glycated hemoglobin (HbA(1)) formation in high glucose-exposed RBC. P and PM significantly prevented the reduction in (Na+ + K+)-ATPase activity in high glucose-treated RBC. Thus, P or PM can inhibit oxygen radical production, which in turn prevents the lipid peroxidation, protein glycosylation, and (Na+ + K+)-ATPase activity reduction induced by the hyperglycemia. This study describes a new biochemical mechanism by which P or PM supplementation may delay or inhibit the development of complications in diabetes.

  14. Pertussis toxin B-oligomer suppresses IL-6 induced HIV-1 and chemokine expression in chronically infected U1 cells via inhibition of activator protein 1.

    Science.gov (United States)

    Rizzi, Chiara; Crippa, Massimo P; Jeeninga, Rienk E; Berkhout, Ben; Blasi, Francesco; Poli, Guido; Alfano, Massimo

    2006-01-15

    Pertussis toxin B-oligomer (PTX-B) inhibits HIV replication in T lymphocytes and monocyte-derived macrophages by interfering with multiple steps of the HIV life cycle. PTX-B prevents CCR5-dependent (R5) virus entry in a noncompetitive manner, and it also exerts suppressive effects on both R5- and CXCR4-dependent HIV expression at a less-characterized postentry level. We demonstrate in this study that PTX-B profoundly inhibits HIV expression in chronically infected promonocytic U1 cells stimulated with several cytokines and, particularly, the IL-6-mediated effect, a cytokine that triggers viral production in these cells independently of NF-kappaB activation. From U1 cells we have subcloned a cell line, named U1-CR1, with increased responsiveness to IL-6. In these cells, PTX-B neither down-regulated the IL-6R nor prevented IL-6 induced signaling in terms of STAT3 phosphorylation and DNA binding. In contrast, PTX-B inhibited AP-1 binding to target DNA and modified its composition with a proportional increases in FosB, Fra2, and ATF2. PTX-B inhibited IL-6-induced HIV-1 long-terminal repeat-driven transcription from A, C, E, and F viral subtypes, which contain functional AP-1 binding sites, but failed to inhibit transcription from subtypes B and D LTR devoid of these sites. In addition, PTX-B inhibited the secretion of IL-6-induced, AP-1-dependent genes, including urokinase-type plasminogen activator, CXCL8/IL-8, and CCL2/monocyte chemotactic protein-1. Thus, PTX-B suppression of IL-6 induced expression of HIV and cellular genes in chronically infected promonocytic cells is strongly correlated to inhibition of AP-1.

  15. Polyenylpyrrole derivatives inhibit NLRP3 inflammasome activation and inflammatory mediator expression by reducing reactive oxygen species production and mitogen-activated protein kinase activation.

    Directory of Open Access Journals (Sweden)

    Kuo-Feng Hua

    Full Text Available Two polyenylpyrroles from a soil ascomycete Gymnoascus reessii were previously identified as hit compounds in screening for cytotoxicity against lung cancer cells. These compounds and various analogs, which have been previously synthesized and tested for anti-lung cancer cell activity, were tested for anti-inflammatory activity. After preliminary screening for cytotoxicity for RAW 264.7 murine macrophage cells, the non-toxic compounds were tested for anti-inflammatory activity using lipopolysaccharide (LPS-activated RAW 264.7 cells. Compounds 1h, 1i, and 1n reduced LPS-induced nitric oxide (NO production, with respective ED50 values of 15 ± 2, 16 ± 2, and 17 ± 2 µM. They also reduced expression of inducible NO synthase and interleukin-6 (IL-6 without affecting cyclooxygenase-2 expression. Compound 1h also reduced secretion of IL-6 and tumor necrosis factor-α by LPS-activated J774A.1 murine macrophage cells, primary mice peritoneal macrophages, and JAWSII murine bone marrow-derived dendritic cells and reduced NLRP3 inflammasome-mediated interleukin-1β (IL-1β secretion by LPS + adenosine triphosphate-activated J774A.1 and JAWSII cells. The underlying mechanisms for the anti-inflammatory activity of compound 1h were found to be a decrease in LPS-induced reactive oxygen species (ROS production, mitogen-activated protein kinase phosphorylation, and NF-κB activation and a decrease in ATP-induced ROS production and PKC-α phosphorylation. These results provide promising insights into the anti-inflammatory activity of these conjugated polyenes and a molecular rationale for future therapeutic intervention in inflammation-related diseases. They also show how compound 1h regulates inflammation and suggest it may be a new source for the development of anti-inflammatory agents to ameliorate inflammation- and NLRP3 inflammasome-related diseases.

  16. Parathyroid hormone-related protein inhibits DKK1 expression through c-Jun-mediated inhibition of β-catenin activation of the DKK1 promoter in prostate cancer.

    Science.gov (United States)

    Zhang, H; Yu, C; Dai, J; Keller, J M; Hua, A; Sottnik, J L; Shelley, G; Hall, C L; Park, S I; Yao, Z; Zhang, J; McCauley, L K; Keller, E T

    2014-05-08

    Prostate cancer (PCa)bone metastases are unique in that majority of them induce excessive mineralized bone matrix, through undefined mechanisms, as opposed to most other cancers that induce bone resorption. Parathyroid hormone-related protein (PTHrP) is produced by PCa cells and intermittent PTHrP exposure has bone anabolic effects, suggesting that PTHrP could contribute to the excess bone mineralization. Wnts are bone-productive factors produced by PCa cells, and the Wnt inhibitor Dickkopfs-1 (DKK1) has been shown to promote PCa progression. These findings, in conjunction with the observation that PTHrP expression increases and DKK1 expression decreases as PCa progresses, led to the hypothesis that PTHrP could be a negative regulator of DKK1 expression in PCa cells and, hence, allow the osteoblastic activity of Wnts to be realized. To test this, we first demonstrated that PTHrP downregulated DKK1 mRNA and protein expression. We then found through multiple mutated DKK1 promoter assays that PTHrP, through c-Jun activation, downregulated the DKK1 promoter through a transcription factor (TCF) response element site. Furthermore, chromatin immunoprecipitation (ChIP) and re-ChIP assays revealed that PTHrP mediated this effect through inducing c-Jun to bind to a transcriptional activator complex consisting of β-catenin, which binds the most proximal DKK1 promoter, the TCF response element. Together, these results demonstrate a novel signaling linkage between PTHrP and Wnt signaling pathways that results in downregulation of a Wnt inhibitor allowing for Wnt activity that could contribute the osteoblastic nature of PCa.

  17. UNC-16 (JIP3) Acts Through Synapse-Assembly Proteins to Inhibit the Active Transport of Cell Soma Organelles to Caenorhabditis elegans Motor Neuron Axons.

    Science.gov (United States)

    Edwards, Stacey L; Morrison, Logan M; Yorks, Rosalina M; Hoover, Christopher M; Boominathan, Soorajnath; Miller, Kenneth G

    2015-09-01

    The conserved protein UNC-16 (JIP3) inhibits the active transport of some cell soma organelles, such as lysosomes, early endosomes, and Golgi, to the synaptic region of axons. However, little is known about UNC-16's organelle transport regulatory function, which is distinct from its Kinesin-1 adaptor function. We used an unc-16 suppressor screen in Caenorhabditis elegans to discover that UNC-16 acts through CDK-5 (Cdk5) and two conserved synapse assembly proteins: SAD-1 (SAD-A Kinase), and SYD-2 (Liprin-α). Genetic analysis of all combinations of double and triple mutants in unc-16(+) and unc-16(-) backgrounds showed that the three proteins (CDK-5, SAD-1, and SYD-2) are all part of the same organelle transport regulatory system, which we named the CSS system based on its founder proteins. Further genetic analysis revealed roles for SYD-1 (another synapse assembly protein) and STRADα (a SAD-1-interacting protein) in the CSS system. In an unc-16(-) background, loss of the CSS system improved the sluggish locomotion of unc-16 mutants, inhibited axonal lysosome accumulation, and led to the dynein-dependent accumulation of lysosomes in dendrites. Time-lapse imaging of lysosomes in CSS system mutants in unc-16(+) and unc-16(-) backgrounds revealed active transport defects consistent with the steady-state distributions of lysosomes. UNC-16 also uses the CSS system to regulate the distribution of early endosomes in neurons and, to a lesser extent, Golgi. The data reveal a new and unprecedented role for synapse assembly proteins, acting as part of the newly defined CSS system, in mediating UNC-16's organelle transport regulatory function.

  18. Gold Nanoparticle Aggregation as a Probe of Antifreeze (Glyco) Protein-Inspired Ice Recrystallization Inhibition and Identification of New IRI Active Macromolecules.

    Science.gov (United States)

    Mitchell, Daniel E; Congdon, Thomas; Rodger, Alison; Gibson, Matthew I

    2015-10-26

    Antifreeze (glyco)proteins are found in polar fish species and act to slow the rate of growth of ice crystals; a property known as ice recrystallization inhibition. The ability to slow ice growth is of huge technological importance especially in the cryopreservation of donor cells and tissue, but native antifreeze proteins are often not suitable, nor easily available. Therefore, the search for new materials that mimic this function is important, but currently limited by the low-throughout assays associated with the antifreeze properties. Here 30 nm gold nanoparticles are demonstrated to be useful colorimetric probes for ice recrystallization inhibition, giving a visible optical response and is compatible with 96 well plates for high-throughout studies. This method is faster, requires less infrastructure, and has easier interpretation than the currently used 'splat' methods. Using this method, a series of serum proteins were identified to have weak, but specific ice recrystallization inhibition activity, which was removed upon denaturation. It is hoped that high-throughput tools such as this will accelerate the discovery of new antifreeze mimics.

  19. AMP-activated protein kinase inhibits TGF-β-, angiotensin II-, aldosterone-, high glucose-, and albumin-induced epithelial-mesenchymal transition.

    Science.gov (United States)

    Lee, Jang Han; Kim, Ji Hyun; Kim, Ja Seon; Chang, Jai Won; Kim, Soon Bae; Park, Jung Sik; Lee, Sang Koo

    2013-03-15

    The epithelial-mesenchymal transition (EMT) is a novel mechanism that promotes renal fibrosis. Transforming growth factor-β (TGF-β), angiotensin II, aldosterone, high glucose, and urinary albumin are well-known causes of EMT and renal fibrosis. We examined whether and how activation of AMP-activated protein kinase (AMPK) suppressed EMT induced by the above agents in tubular epithelial cells. All experiments were performed using HK-2 cells. Protein expression was measured by Western blot analysis. Intracellular reactive oxygen species (ROS) were analyzed by flow cytometry. Exposure of tubular cells to TGF-β (10 ng/ml), angiotensin II (1 μM), aldosterone (100 nM), high glucose (30 mM), and albumin (5 mg/ml) for 5 days induced EMT, as shown by upregulation of α-smooth muscle actin and downregulation of E-cadherin. ROS and NADPH oxidase 4 (Nox4) expression were increased, and antioxidants such as tiron and N-acetylcysteine inhibited EMT induction. Metformin (the best known clinical activator of AMPK) suppressed EMT induction through inhibition of ROS via induction of heme oxygenase-1 and endogenous antioxidant thioredoxin. An AMPK inhibitor (compound C) and AMPK small interfering RNA blocked the effect of metformin, and another AMPK activator [5-aminoimidazole-4-carboxamide-1β riboside (AICAR)] exerted the same effects as metformin. In conclusion, AMPK activation might be beneficial in attenuating the tubulointerstitial fibrosis induced by TGF-β, angiotensin II, aldosterone, high glucose, and urinary albumin.

  20. Sortilin-related receptor 1 interacts with amyloid precursor protein and is activated by 6-shogaol, leading to inhibition of the amyloidogenic pathway.

    Science.gov (United States)

    Na, Ji-Young; Song, Kibbeum; Lee, Ju-Woon; Kim, Sokho; Kwon, Jungkee

    2017-03-18

    Sortilin-related receptor 1 (SORL1) is a neuronal sorting protein that reduces amyloid precursor protein (APP) trafficking to secretases that generate amyloid beta (Aβ). Although 6-shogaol, a constituent of ginger, has been reported to have anti-inflammatory and anti-oxidant effects on neuronal cells, research regarding the activation of SORL1 has not yet been reported. Here, we aimed to investigate whether 6-shogaol contributes to the increases in SORL1 that are related to Alzheimer's disease (AD). To clarify the effect of 6-shogaol as a possible activator of SORL1, we used SORL1 siRNA as a blockade of SORL1 in hippocampal neuronal cells (HT22). We found that SORL1 siRNA treatment naturally inhibited SORL1 and led to increases in β-secretase APP cleaving enzyme (BACE), secreted APP-β (sAPPβ) and Aβ. In contrast, 6-shogaol-mediated activation of SORL1 significantly downregulated BACE, sAPPβ, and Aβ in both in vitro HT22 cells and in vivo APPSw/PS1-dE9 Tg mice. Therefore, SORL1 activation by 6-shogaol provides neuronal cell survival through the inhibition of Aβ production. These results indicate that 6-shogaol should be regarded as an SORL1 activator and a potential preventive agent for the treatment of AD.

  1. Human Cytomegalovirus UL97 Kinase Activity Is Required for the Hyperphosphorylation of Retinoblastoma Protein and Inhibits the Formation of Nuclear Aggresomes

    Energy Technology Data Exchange (ETDEWEB)

    Prichard, Mark N.; Sztul, Elizabeth; Daily, Shannon L.; Perry, Amie L.; Frederick, Samuel L.; Gill, Rachel B.; Hartline, Caroll B.; Streblow, Daniel N.; Varnum, Susan M.; Smith, Richard D.; Kern, Earl R.

    2008-05-01

    Cells infected with human cytomegalovirus in the absence of UL97 kinase activity produce large nuclear aggregates that sequester considerable quantities of viral proteins. A transient expression assay suggested that pp71 and IE1 were also involved in this process, and this suggestion was significant, since both proteins have been reported to interact with components of promyelocytic leukemia (PML) bodies (ND10) and also interact functionally with retinoblastoma pocket proteins (RB). PML bodies have been linked to the formation of nuclear aggresomes, and colocalization studies suggested that viral proteins were recruited to these structures and that UL97 kinase activity inhibited their formation. Proteins associated with PML bodies were examined by Western blot analysis, and pUL97 appeared to specifically affect the phosphorylation of RB in a kinasedependent manner. Three consensus RB binding motifs were identified in the UL97 kinase, and recombinant viruses were constructed in which each was mutated to assess a potential role in the phosphorylation of RB and the inhibition of nuclear aggresome formation. The mutation of either the conserved LxCxE RB binding moti for the lysine required for kinase activity impaired the ability of the virus to stabilize and phosphorylate RB. We concluded from these studies that both UL97 kinase activity and the LxCxE RB binding motif are required for the phosphorylation and stabilization of RB in infected cells and that this effect can be antagonized by the antiviral drug maribavir. These data also suggest a potential link between RB function and the formation of aggresomes.

  2. GTP analogue inhibits polymerization and GTPase activity of the bacterial protein FtsZ without affecting its eukaryotic homologue tubulin.

    Science.gov (United States)

    Läppchen, Tilman; Hartog, Aloysius F; Pinas, Victorine A; Koomen, Gerrit-Jan; den Blaauwen, Tanneke

    2005-05-31

    The prokaryotic tubulin homologue FtsZ plays a key role in bacterial cell division. Selective inhibitors of the GTP-dependent polymerization of FtsZ are expected to result in a new class of antibacterial agents. One of the challenges is to identify compounds which do not affect the function of tubulin and various other GTPases in eukaryotic cells. We have designed a novel inhibitor of FtsZ polymerization based on the structure of the natural substrate GTP. The inhibitory activity of 8-bromoguanosine 5'-triphosphate (BrGTP) was characterized by a coupled assay, which allows simultaneous detection of the extent of polymerization (via light scattering) and GTPase activity (via release of inorganic phosphate). We found that BrGTP acts as a competitive inhibitor of both FtsZ polymerization and GTPase activity with a Ki for GTPase activity of 31.8 +/- 4.1 microM. The observation that BrGTP seems not to inhibit tubulin assembly suggests a structural difference of the GTP-binding pockets of FtsZ and tubulin.

  3. Sri Lankan black tea (Camellia sinensis L.) inhibits the methylglyoxal mediated protein glycation and potentiates its reversing activity in vitro

    Institute of Scientific and Technical Information of China (English)

    Wanigasekara Daya Ratnasooriya

    2016-01-01

    Objective: To evaluate inhibitory activity of methylglyoxal (MGO) mediated protein glycation and ability to potentiate its reversing activity and range of antioxidant properties of Sri Lankan low grown orthodox orange pekoe grade black tea. Methods: Freeze dried black tea brew (BTB) was used as the sample in this study. Anti-glycation and glycation reversing activity was studied in bovine serum albumin (BSA)-MGO model. Antioxidant properties were studied using total polyphenolic content, total flavonoid content, 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid, 1,1-diphenyl-2-picrylhydrazine and ferric reducing antioxidant power in vitro antioxidant assays. Results: The results demonstrated significant (P Conclusions: The novel properties observed for Sri Lankan orange pekoe grade black tea indicate its usefulness as a supplementary beverage in managing MGO and advanced glycation end products related diseases and ailments.

  4. Anti-inflammatory activity of atractylenolide III through inhibition of nuclear factor-κB and mitogen-activated protein kinase pathways in mouse macrophages.

    Science.gov (United States)

    Ji, Guang-Quan; Chen, Ren-Qiong; Wang, Ling

    2016-01-01

    To elucidate the anti-inflammatory mechanisms involved, we investigated the effects of atractylenolide III (ATL-III) on cytokine expression, extracellular signal-regulated kinases 1 and 2 (ERK1/2), p38 mitogen-activated protein kinase (p38), C-Jun-N-terminal protein kinase1/2 (JNK1/2) and nuclear factor-κB (NF-κB) pathways in lipopolysaccharide (LPS)-induced RAW264.7 mouse macrophages. Macrophages were incubated with various concentrations (0, 25, 50, 100 μM) of ATL-III and/or LPS (1 μg/mL) for 24 h. The production of nitric oxide (NO) was determined by the Greiss reagent. The production of tumor necrosis factor alpha (TNF-α), prostaglandin E2 (PGE2) and interleukin 6 (IL-6) was determined by enzyme-linked immunosorbent assay (ELISA). Furthermore, macrophages were treated with ATL-III (0, 25, 100 μM) for 1 h and then stimulated by LPS. NF-κB, p38, JNK1/2 and ERK1/2 were determined by western blotting. We found ATL-III showed no inhibitory effect on cell proliferation at concentrations ranging from 1 μM to 100 μM. In addition, ATL-III decreased the release of NO, TNF-α, PGE2 and IL-6 in a dose-dependent manner and showed statistically significant at concentrations of 50 μM and 100 μM as well as cyclooxygenase-2 (COX-2) expression. Furthermore, ATL-III suppressed the transcriptional activity of NF-κB. ATL-III also inhibited the activation of ERK1/2, p38 and JNK1/2 in LPS-treated macrophages and showed statistically significant at concentrations of 25 μM and 100 μM. These data suggest that ATL-III shows an anti-inflammatory effect by suppressing the release of NO, PGE2, TNF-α and IL-6 related to the NF-κB- and MAPK-signaling pathways.

  5. Isorhamnetin inhibits cell proliferation and induces apoptosis in breast cancer via Akt and mitogen‑activated protein kinase kinase signaling pathways.

    Science.gov (United States)

    Hu, Shan; Huang, Liming; Meng, Liwei; Sun, He; Zhang, Wei; Xu, Yingchun

    2015-11-01

    Breast cancer is the most common cause of female cancer-associated mortality. Although treatment options, including chemotherapy, radiotherapy and surgery have led to a decline in the mortality rates associated with breast cancer, drug resistance remains one of the predominant causes for poor prognosis and high recurrence rates. The present study investigated the potential effects of the natural product, isorhamnetin on breast cancer, and examined the effects of isorhamnetin on the Akt/mammalian target of rapamycin (mTOR) and the mitogen-activated protein kinase (MAPK)/MAPK kinase (MEK) signaling cascades, which are two important signaling pathways for endocrine therapy resistance in breast cancer. The results of the present study indicate that isorhamnetin inhibits cell proliferation and induces cell apoptosis. In addition, isorhamnetin was observed to inhibit the Akt/mTOR and the MEK/extracellular signal-regulated kinase phosphorylation cascades. The inhibition of these two signaling pathways was attenuated by the two Akt and MEK1 inhibitors, but not by the nuclear factor-κB inhibitor. Furthermore, epidermal growth factor inhibited the effects of isorhamnetin via activation of the Akt and MEK signaling pathways. These results indicate that isorhamnetin exhibits antitumor effects in breast cancer, which are mediated by the Akt and MEK signaling pathways.

  6. A diarylheptanoid from lesser galangal (Alpinia officinarum) inhibits proinflammatory mediators via inhibition of mitogen-activated protein kinase, p44/42, and transcription factor nuclear factor-kappa B.

    Science.gov (United States)

    Yadav, Prem N; Liu, Zhihua; Rafi, Mohamed M

    2003-06-01

    The diarylheptanoid 7-(4'-hydroxy-3'-methoxyphenyl)-1-phenylhept-4-en-3-one (HMP) is a naturally occurring phytochemical found in lesser galangal (Alpinia officinarum). In the present study, we have demonstrated the anti-inflammatory properties of this compound on mouse macrophage cell line (RAW 264.7) and human peripheral blood mononuclear cells (PBMCs) in vitro. Treatment of RAW 264.7 cells with HMP (6.25-25 microM) significantly inhibited lipopolysaccharide (LPS)-stimulated nitric oxide (NO) production. This compound also inhibited the release of LPS-induced proinflammatory cytokines interleukin-1 beta (IL-1 beta) and tumor necrosis factor-alpha (TNF-alpha) from human PB-MCs in vitro. In addition, Western blotting and reverse transcription-polymerase chain reaction analysis demonstrated that HMP decreased LPS-induced inducible nitric-oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein and mRNA expression in RAW 264.7 cells. Furthermore, HMP treatment also reduced nuclear factor-kappa B (NF-kappa B) DNA binding induced by LPS in RAW 264.7 cells. To elucidate the molecular mechanism for inhibition of proinflammatory mediators by HMP (25 microM), we have studied the effect of HMP on LPS-induced p38 and p44/42 mitogen-activated protein kinase (MAPK). We observed that the phosphorylation of p44/42 MAPK in LPS-stimulated RAW 264.7 cells was markedly inhibited by HMP, whereas activation of p38 MAPK was not affected. These results suggested that HMP from lesser galangal suppressed the LPS-induced production of NO, IL-1 beta, and TNF-alpha and expression of iNOS and COX-2 gene expression by inhibiting NF-kappa B activation and phosphorylation of p44/42 MAPK.

  7. Dietary grape seed proanthocyanidins inhibit UVB-induced oxidative stress and activation of mitogen-activated protein kinases and nuclear factor-kappaB signaling in in vivo SKH-1 hairless mice.

    Science.gov (United States)

    Sharma, Som D; Meeran, Syed M; Katiyar, Santosh K

    2007-03-01

    We have shown previously that dietary grape seed proanthocyanidins (GSP) inhibit UVB-induced photocarcinogenesis in mice. As UVB-induced oxidative stress and oxidative stress-mediated signaling has been implicated in photocarcinogenesis, this study was designed to investigate the effect of dietary GSPs on UVB-induced oxidative stress in in vivo SKH-1 hairless mice. Here, we report that provision of dietary GSPs (0.2 and 0.5%, w/w) to mice exposed to either acute UVB irradiation (120 mJ/cm(2)) or chronic irradiation of UVB inhibited depletion of glutathione peroxidase, catalase, and glutathione, and inhibited UVB-induced H(2)O(2), lipid peroxidation, protein oxidation, and nitric oxide in mouse skin. As UV-induced oxidative stress mediates activation of mitogen-activated protein kinase (MAPK) and nuclear factor-kappaB (NF-kappaB) signaling pathways, we determined the effect of dietary GSPs on these pathways. We observed that dietary GSPs inhibited UVB-induced phosphorylation of extracellular signal-regulated kinase 1/2, c-Jun-NH(2)-kinase, and p38 proteins of MAPK family, which seems to be mediated through reactivation of MAPK phosphatases. GSPs inhibited UVB-induced activation of NF-kappaB/p65 through inhibition of degradation of IkappaBalpha and activation of IkappaB kinase alpha (IKKalpha). As NF-kappaB-targeted genes play critical roles in inflammation and cellular proliferation, we assessed the effect of GSPs on proteins encoded by these genes. Dietary GSPs resulted in inhibition of the expression of proliferating cell nuclear antigen, cyclin D1, inducible nitric oxide synthase, and cyclooxygenase-2 in the skin. Collectively, our data show that GSPs have the ability to protect the skin from the adverse effects of UVB radiation via modulation of the MAPK and NF-kappaB signaling pathways and provide a molecular basis for the photoprotective effects of GSPs in an in vivo animal model.

  8. Biochemical Activities of Three Pairs of Ehrlichia chaffeensis Two-Component Regulatory System Proteins Involved in Inhibition of Lysosomal Fusion†

    Science.gov (United States)

    Kumagai, Yumi; Cheng, Zhihui; Lin, Mingqun; Rikihisa, Yasuko

    2006-01-01

    Ehrlichia chaffeensis, the etiologic agent of human monocytic ehrlichiosis, replicates in early endosomes by avoiding lysosomal fusion in monocytes and macrophages. In E. chaffeensis we predicted three pairs of putative two-component regulatory systems (TCSs) designated PleC-PleD, NtrY-NtrX, and CckA-CtrA based on amino acid sequence homology. In the present study to determine biochemical pairs and specificities of the TCSs, the recombinant proteins of the three putative histidine kinase (HK) kinase domains (rPleCHKD, rNtrYHKD, and MBP-rCckAHKD) and the full-length forms of three putative response regulators (RRs) (rPleD, rNtrX, and rCtrA) as well as the respective mutant recombinant proteins (rPleCHKDH244A, rNtrYHKDH498A, MBP-rCckAHKDH449A, rPleDD53A, rNtrXD59A, and rCtrAD53A) were expressed and purified as soluble proteins. The in vitro HK activity, the specific His residue-dependent autophosphorylation of the kinase domain, was demonstrated in the three HKs. The specific Asp residue-dependent in vitro phosphotransfer from the kinase domain to the putative cognate RR was demonstrated in each of the three RRs. Western blot analysis of E. chaffeensis membrane and soluble fractions using antibodies specific for each recombinant protein detected PleC and CckA in the membrane fraction, whereas it detected NtrY, NtrX, and PleD in the soluble fraction. CtrA was found in the two fractions at similar levels. E. chaffeensis was sensitive to closantel, an HK inhibitor. Closantel treatment induced lysosomal fusion of the E. chaffeensis inclusion in a human monocytic leukemia cell line, THP-1 cells, implying that functional TCSs are essential in preventing lysosomal fusion of the E. chaffeensis inclusion compartment. PMID:16926392

  9. Recombinant human activated protein C inhibits local and systemic activation of coagulation without influencing inflammation during Pseudomonas aeruginosa pneumonia in rats

    NARCIS (Netherlands)

    Choi, Goda; Hofstra, Jorrit-Jan H; Roelofs, Joris J T H; Florquin, Sandrine; Bresser, Paul; Levi, Marcel; van der Poll, Tom; Schultz, Marcus J

    OBJECTIVE: Alveolar fibrin deposition is a hallmark of pneumonia. It has been proposed that recombinant human activated protein C exerts lung-protective effects via anticoagulant and anti-inflammatory pathways. We investigated the role of the protein C system in pneumonia caused by Pseudomonas

  10. Mitotic aberrations induced by carbaryl reflect tyrosine kinase inhibition with coincident up-regulation of serine/threonine protein phosphatase activity: implications for coordination of karyokinesis and cytokinesis.

    Science.gov (United States)

    Renglin, A; Härmälä-Brasken, A S; Eriksson, J E; Onfelt, A

    1999-05-01

    The insecticide carbaryl and its metabolite 1-naphthol cause partial uncoupling of karyokinesis and cytokinesis in V79 Chinese hamster fibroblasts; karyokinesis is blocked in metaphase, the microtubules of the spindle depolymerize and the chromosomes and spindle remnants become displaced to the periphery of the cell. A high frequency of these disturbed cells elongate and a smaller fraction initiate a cleavage furrow. Here, we attempt to determine the potential targets for carbaryl and 1-naphthol in cytokinesis-specific signalling, led by the fact that the potential protein phosphatase inhibitor 1-naphthyl phosphate was previously identified in treated cells. We found that the typical cytological pattern induced by carbaryl and 1-naphthol could be obtained with tyrphostins, specific tyrosine kinase inhibitors, indicating that the carbaryl-induced effects could be due to tyrosine kinase inhibition. This was confirmed by tyrosine kinase assays showing that carbaryl, 1-naphthol and 2-naphthol were equally efficient at inhibiting tyrosine kinase activity as tyrphostin B44(-). As tyrosine kinases can act as regulatory factors in determining dephosphorylation rates, the activities of type-1 (PP1) and type-2A (PP2A) serine/threonine protein phosphatases were also determined. There was a clear up-regulation of the overall PP1/PP2A activities in cells treated with carbaryl, 1-naphthol or tyrphostin B44(-). This stimulation was shown to be indirect because these compounds had no effect on the activity of purified human PP1 in the test tube. 2-Naphthol, which has been found to be less efficient with regard to displacement of chromatin, did not cause up-regulation, but a significant decrease in PP1/PP2A activity. We suggest that a net decrease in tyrosine kinase activity in combination with a net increase in PP1/PP2A activity is a precondition for cell elongation and cytokinesis in mammalian cells and that the corresponding enzymes are targets in the network of activities

  11. Acetaminophen analog N-acetyl-m-aminophenol, but not its reactive metabolite, N-acetyl-p-benzoquinone imine induces CYP3A activity via inhibition of protein degradation.

    Science.gov (United States)

    Santoh, Masataka; Sanoh, Seigo; Ohtsuki, Yuya; Ejiri, Yoko; Kotake, Yaichiro; Ohta, Shigeru

    2017-05-06

    Cytochrome P450 (CYP) 3A subfamily members are known to metabolize various types of drugs, highlighting the importance of understanding drug-drug interactions (DDI) depending on CYP3A induction or inhibition. While transcriptional regulation of CYP3A members is widely understood, post-translational regulation needs to be elucidated. We previously reported that acetaminophen (APAP) induces CYP3A activity via inhibition of protein degradation and proposed a novel DDI concept. N-Acetyl-p-benzoquinone imine (NAPQI), the reactive metabolite of APAP formed by CYP, is known to cause adverse events related to depletion of intracellular reduced glutathione (GSH). We aimed to inspect whether NAPQI rather than APAP itself could cause the inhibitory effects on protein degradation. We found that N-acetyl-l-cysteine, the precursor of GSH, and 1-aminobenzotriazole, a nonselective CYP inhibitor, had no effect on CYP3A1/23 protein levels affected by APAP. Thus, we used APAP analogs to test CYP3A1/23 mRNA levels, protein levels, and CYP3A activity. We found N-acetyl-m-aminophenol (AMAP), a regioisomer of APAP, has the same inhibitory effects of CYP3A1/23 protein degradation, while p-acetamidobenzoic acid (PAcBA), a carboxy-substituted form of APAP, shows no inhibitory effects. AMAP and PAcBA cannot be oxidized to quinone imine forms such as NAPQI, so the inhibitory effects could depend on the specific chemical structure of APAP. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Role of protein kinase C in TBT-induced inhibition of lytic function and MAPK activation in human natural killer cells.

    Science.gov (United States)

    Abraha, Abraham B; Rana, Krupa; Whalen, Margaret M

    2010-11-01

    Human natural killer (NK) cells are lymphocytes that destroy tumor and virally infected cells. Previous studies have shown that exposure of NK cells to tributyltin (TBT) greatly diminishes their ability to destroy tumor cells (lytic function) while activating mitogen-activated protein kinases (MAPK) (p44/42, p38, and JNK) in NK cells. The signaling pathway that regulates NK lytic function appears to include activation of protein kinase C(PKC) as well as MAPK activity. TBT-induced activation of MAPKs would trigger a portion of the NK lytic signaling pathway, which would then leave the NK cell unable to trigger this pathway in response to a subsequent encounter with a target cell. In the present study we evaluated the involvement of PKC in inhibition of NK lysis of tumor cells and activation of MAPKs caused by TBT exposure. TBT caused a 2–3-fold activation of PKC at concentrations ranging from 50 to 300 nM (16–98 ng/ml),indicating that activation of PKC occurs in response to TBT exposure. This would then leave the NK cell unable to respond to targets. Treatment with the PKC inhibitor, bisindolylmaleimide I, caused an 85% decrease in the ability of NK cells to lyse tumor cells, validating the involvement of PKC in the lytic signaling pathway. The role of PKC in the activation of MAPKs by TBT was also investigated using bisindolylmaleimide I. The results indicated that, in NK cells where PKC activation was blocked, there was no activation of the MAPK, p44/42 in response to TBT.However, TBT-induced activation of the MAPKs, p38 and JNK did not require PKC activation. These results indicate the pivotal role of PKC in the TBT-induced loss of NK lytic function including activation of p44/42 by TBT in NK cells.

  13. Mitogen-activated protein kinases inhibit the ROMK (Kir 1.1)-like small conductance K channels in the cortical collecting duct.

    Science.gov (United States)

    Babilonia, Elisa; Li, Dimin; Wang, Zhijian; Sun, Peng; Lin, Dao-Hong; Jin, Yan; Wang, Wen-Hui

    2006-10-01

    It was demonstrated previously that low dietary potassium (K) intake stimulates Src family protein tyrosine kinase (PTK) expression via a superoxide-dependent signaling. This study explored the role of mitogen-activated protein kinase (MAPK) in mediating the effect of superoxide anions on PTK expression and ROMK (Kir 1.1) channel activity. Western blot analysis demonstrated that low K intake significantly increased the phosphorylation of P38 MAPK (P38) and extracellular signal-regulated kinase (ERK) but had no effect on phosphorylation of c-JUN N-terminus kinase in renal cortex and outer medulla. The stimulatory effect of low K intake on P38 and ERK was abolished by treatment of rats with tempol. The possibility that increases in superoxide and related products that are induced by low K intake were responsible for stimulating phosphorylation of P38 and ERK also was supported by the finding that application of H(2)O(2) increased the phosphorylation of ERK and P38 in the cultured mouse collecting duct cells. Simultaneous blocking of ERK and P38 completely abolished the effect of H(2)O(2) on c-Src expression in mouse collecting duct cells. For determination of the role of P38 and ERK in the regulation of ROMK-like small-conductance K (SK) channels, the patch-clamp technique was used to study the effect of inhibiting P38 and ERK on SK channels in the cortical collecting duct from rats that were on a control K diet (1.1%) and on a K-deficient diet for 1 d. Inhibition of ERK, c-JUN N-terminus kinase, or P38 alone had no effect on SK channels. In contrast, simultaneous inhibition of P38 and ERK significantly increased channel activity. The effect of inhibiting MAPK on SK channels was not affected in the presence of herbimycin A, a PTK inhibitor, and was larger in rats that were on a K-deficient diet than in rats that were on a normal-K diet. However, the stimulatory effect of inhibiting ERK and P38 on SK was absent in the cortical collecting duct that was treated with

  14. Activated sludge inhibition capacity index

    Directory of Open Access Journals (Sweden)

    V. Surerus

    2014-06-01

    Full Text Available Toxic compounds in sewage or industrial wastewater may inhibit the biological activity of activated sludge impairing the treatment process. This paper evaluates the Inhibition Capacity Index (ICI for the assessment of activated sludge in the presence of toxicants. In this study, activated sludge was obtained from industrial treatment plants and was also synthetically produced. Continuous respirometric measurements were carried out in a reactor, and the oxygen uptake rate profile obtained was used to evaluate the impact of inhibiting toxicants, such as dissolved copper, phenol, sodium alkylbenzene sulfonate and amoxicillin, on activated sludge. The results indicate that ICI is an efficient tool to quantify the intoxication capacity. The activated sludge from the pharmaceutical industry showed higher resistance than the sludge from other sources, since toxicants are widely discharged in the biological treatment system. The ICI range was from 58 to 81% when compared to the synthetic effluent with no toxic substances.

  15. Extracellular heat shock protein HSP90{beta} secreted by MG63 osteosarcoma cells inhibits activation of latent TGF-{beta}1

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Shigeki [Functional Genomics Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD (United States); Kulkarni, Ashok B., E-mail: ak40m@nih.gov [Functional Genomics Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD (United States)

    2010-07-30

    Transforming growth factor-beta 1 (TGF-{beta}1) is secreted as a latent complex, which consists of latency-associated peptide (LAP) and the mature ligand. The release of the mature ligand from LAP usually occurs through conformational change of the latent complex and is therefore considered to be the first step in the activation of the TGF-{beta} signaling pathway. So far, factors such as heat, pH changes, and proteolytic cleavage are reportedly involved in this activation process, but the precise molecular mechanism is still far from clear. Identification and characterization of the cell surface proteins that bind to LAP are important to our understanding of the latent TGF-{beta} activation process. In this study, we have identified heat shock protein 90 {beta} (HSP90{beta}) from the cell surface of the MG63 osteosarcoma cell line as a LAP binding protein. We have also found that MG63 cells secrete HSP90{beta} into extracellular space which inhibits the activation of latent TGF-{beta}1, and that there is a subsequent decrease in cell proliferation. TGF-{beta}1-mediated stimulation of MG63 cells resulted in the increased cell surface expression of HSP90{beta}. Thus, extracellular HSP90{beta} is a negative regulator for the activation of latent TGF-{beta}1 modulating TGF-{beta} signaling in the extracellular domain. -- Research highlights: {yields} Transforming growth factor-beta 1 (TGF-{beta}1) is secreted as a latent complex. {yields} This complex consists of latency-associated peptide (LAP) and the mature ligand. {yields} The release of the mature ligand from LAP is the first step in TGF-{beta} activation. {yields} We identified for the first time a novel mechanism for this activation process. {yields} Heat shock protein 90 {beta} is discovered as a negative regulator for this process.

  16. Nitration of Tyrosine 247 Inhibits Protein Kinase G-1α Activity by Attenuating Cyclic Guanosine Monophosphate Binding*

    Science.gov (United States)

    Aggarwal, Saurabh; Gross, Christine M.; Rafikov, Ruslan; Kumar, Sanjiv; Fineman, Jeffrey R.; Ludewig, Britta; Jonigk, Danny; Black, Stephen M.

    2014-01-01

    The cGMP-dependent protein kinase G-1α (PKG-1α) is a downstream mediator of nitric oxide and natriuretic peptide signaling. Alterations in this pathway play a key role in the pathogenesis and progression of vascular diseases associated with increased vascular tone and thickness, such as pulmonary hypertension. Previous studies have shown that tyrosine nitration attenuates PKG-1α activity. However, little is known about the mechanisms involved in this event. Utilizing mass spectrometry, we found that PKG-1α is susceptible to nitration at tyrosine 247 and 425. Tyrosine to phenylalanine mutants, Y247F- and Y425F-PKG-1α, were both less susceptible to nitration than WT PKG-1α, but only Y247F-PKG-1α exhibited preserved activity, suggesting that the nitration of Tyr247 is critical in attenuating PKG-1α activity. The overexpression of WT- or Y247F-PKG-1α decreased the proliferation of pulmonary artery smooth muscle cells (SMC), increased the expression of SMC contractile markers, and decreased the expression of proliferative markers. Nitrosative stress induced a switch from a contractile to a synthetic phenotype in cells expressing WT- but not Y247F-PKG-1α. An antibody generated against 3-NT-Y247 identified increased levels of nitrated PKG-1α in humans with pulmonary hypertension. Finally, to gain a more mechanistic understanding of how nitration attenuates PKG activity, we developed a homology model of PKG-1α. This model predicted that the nitration of Tyr247 would decrease the affinity of PKG-1α for cGMP, which we confirmed using a [3H]cGMP binding assay. Our study shows that the nitration of Tyr247 and the attenuation of cGMP binding is an important mechanism regulating in PKG-1α activity and SMC proliferation/differentiation. PMID:24469460

  17. Nitration of tyrosine 247 inhibits protein kinase G-1α activity by attenuating cyclic guanosine monophosphate binding.

    Science.gov (United States)

    Aggarwal, Saurabh; Gross, Christine M; Rafikov, Ruslan; Kumar, Sanjiv; Fineman, Jeffrey R; Ludewig, Britta; Jonigk, Danny; Black, Stephen M

    2014-03-14

    The cGMP-dependent protein kinase G-1α (PKG-1α) is a downstream mediator of nitric oxide and natriuretic peptide signaling. Alterations in this pathway play a key role in the pathogenesis and progression of vascular diseases associated with increased vascular tone and thickness, such as pulmonary hypertension. Previous studies have shown that tyrosine nitration attenuates PKG-1α activity. However, little is known about the mechanisms involved in this event. Utilizing mass spectrometry, we found that PKG-1α is susceptible to nitration at tyrosine 247 and 425. Tyrosine to phenylalanine mutants, Y247F- and Y425F-PKG-1α, were both less susceptible to nitration than WT PKG-1α, but only Y247F-PKG-1α exhibited preserved activity, suggesting that the nitration of Tyr(247) is critical in attenuating PKG-1α activity. The overexpression of WT- or Y247F-PKG-1α decreased the proliferation of pulmonary artery smooth muscle cells (SMC), increased the expression of SMC contractile markers, and decreased the expression of proliferative markers. Nitrosative stress induced a switch from a contractile to a synthetic phenotype in cells expressing WT- but not Y247F-PKG-1α. An antibody generated against 3-NT-Y247 identified increased levels of nitrated PKG-1α in humans with pulmonary hypertension. Finally, to gain a more mechanistic understanding of how nitration attenuates PKG activity, we developed a homology model of PKG-1α. This model predicted that the nitration of Tyr(247) would decrease the affinity of PKG-1α for cGMP, which we confirmed using a [(3)H]cGMP binding assay. Our study shows that the nitration of Tyr(247) and the attenuation of cGMP binding is an important mechanism regulating in PKG-1α activity and SMC proliferation/differentiation.

  18. Fluvastatin inhibits activation of JAK and STAT proteins in diabetic rat glomeruli and mesangial cells under high glucose conditions

    Institute of Scientific and Technical Information of China (English)

    Yong-hong SHI; Song ZHAO; Chen WANG; Ying LI; Hui-jun DUAN

    2007-01-01

    Aim: The aim of the present study was to further elucidate the mechanism of the protective role of fluvastatin on diabetic nephropathy. Methods: Streptozotocin- induced diabetic rats were treated daily with fluvastatin (4 mg/kg body weight) by gavage. The animals were killed 4 weeks later and urine and blood samples were collected. The kidney tissues were removed and subjected to the following experiments. Rat glomerular mesangial cells (GMC) were cultured under normal glucose (5.5 mmol/L), high glucose (HG, 30 mmol/L), HG+AG490 (10 μmol/L), or HG with fluvastatin (1 pmol/L). Glomeruli or the GMC lysate was immunoprecipi- tated and/or immunoblotted with antibodies against Janus kinase 2 (JAK2), SH2- domain containing tyrosine phosphatase-1 (SHP-1), phosphospecific SHP-2, and signal transducer and activators of transcription (STAT), respectively. Trans- forming growth factor-β (TGF-β) mRNA was measured by RT-PCR. The protein synthesis of TGF-β1 and fibronectin in the culture medium of GMC was detected by ELISA. Results: The phosphorylation levels of JAK2, STAT1, STAT3, and SHP-2 increased significantly, and SHP-1 phosphorylation was reduced in glom- eruli of diabetic rats. Treatment with fluvastatin reduced phosphorylation levels of JAK2, STAT1, STAT3, and SHP-2 in glomeruli of diabetic rats, but it had no effect on the dephosphorylation of SHP-1. The exposure of GMC to 30 mmol/L glucose caused the activation of JAK2, STAT1, STAT3, and SHP-2. It upregulated TGF-β1 expression and increased protein synthesis of fibronectin. These high glucose-induced changes were suppressed by fluvastatin, as well as AG490, a JAK2 inhibitor. Conclusion: The regulation of the phosphorylation of JAK/STAT by fluvastatin may be responsible for its renal protective effects on diabetic nephropathy.

  19. Inhibition of mitogen activated protein kinases increases the sensitivity of A549 lung cancer cells to the cytotoxicity induced by a kava chalcone analog.

    Science.gov (United States)

    Warmka, Janel K; Solberg, Eric L; Zeliadt, Nicholette A; Srinivasan, Balasubramanian; Charlson, Aaron T; Xing, Chengguo; Wattenberg, Elizabeth V

    2012-08-03

    We are interested in investigating the biological activity of chalcones, a major class of compounds found in the beverage kava, in order to develop potent and selective chemopreventive candidates. Consumption of kava in the South Pacific Islands is inversely correlated with cancer incidence, even among smokers. Accordingly, chalcones have anti-cancer activities in animal and cell culture models. To investigate signaling pathways that affect chalcone action we studied a potent analog, (E)-3-(3-hydroxy-4-methoxyphenyl)-1-(3,4,5-trimethoxyphenyl)prop-2-en-1-one (chalcone-24). Chalcone-24 was selected from a series of chalcone analogs that were synthesized based on the structures derived from flavokawain compounds found in kava, and screened in A549 lung cancer cells for induction of cytotoxicity and inhibition of NF-κB, a transcription factor associated with cell survival. Incubation of A549 cells with chalcone-24 resulted in a dose-dependent inhibition of cell viability, inhibition of NF-κB, activation of caspases, and activation of extracellular signal regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK); ERK1/2 and JNK are mitogen activated protein kinases that play central roles in regulating cell fate. Pharmacological inhibitors of ERK1/2 or JNK increased the sensitivity of A549 cells to chalcone-24-induced cytotoxicity, without affecting NF-κB or caspase activity. These results will help refine the synthesis of chalcone analogs to maximize the combination of actions required to prevent and treat cancer.

  20. Crotonis Fructus Extract Inhibits 12-O-Tetradecanoylphorbol-13-Acetate-Induced Expression of Matrix Metalloproteinase-9 via the Activator Protein-1 Pathway in MCF-7 Cells.

    Science.gov (United States)

    Song, Hyun-Kyung; Lee, Guem-San; Park, Sueng Hyuk; Noh, Eun-Mi; Kim, Jeong-Mi; Ryu, Do-Gon; Jung, Sung Hoo; Youn, Hyun Jo; Lee, Young-Rae; Kwon, Kang-Beom

    2017-09-01

    Metastatic cancers spread from the primary site of origin to other parts of the body. Matrix metalloproteinase-9 (MMP-9) is essential in metastatic cancers owing to its major role in cancer cell invasion. Crotonis fructus (CF), the mature fruits of Croton tiglium L., have been used for the treatment of gastrointestinal disturbance in Asia. In this study, the effect of the ethanol extract of CF (CFE) on MMP-9 activity and the invasion of 12-O-tetradecanoylphorbol-13-acetate (TPA)-treated MCF-7 cells was examined. The cell viability was evaluated using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. The expression of MMP-9 was examined by Western blotting, zymography, and real-time polymerase chain reaction. An electrophoretic mobility gel shift assay was performed to detect activator protein-1 (AP-1) DNA binding activity and cell invasiveness was measured by an in vitro Matrigel invasion assay. CFE significantly suppressed MMP-9 expression and activation in a dose-dependent manner. Furthermore, CFE attenuated the TPA-induced activation of AP-1. The results indicated that the inhibitory effects of CFE against TPA-induced MMP-9 expression and MCF-7 cell invasion were dependent on the protein kinase C δ/p38/c-Jun N-terminal kinase/AP-1 pathway. Therefore, CFE could restrict breast cancer invasiveness owing to its ability to inhibit MMP-9 activity.

  1. AMP-activated protein kinase inhibits TGF-β-induced fibrogenic responses of hepatic stellate cells by targeting transcriptional coactivator p300.

    Science.gov (United States)

    Lim, Joong-Yeon; Oh, Min-A; Kim, Won Ho; Sohn, Hee-Young; Park, Sang Ick

    2012-03-01

    Liver fibrosis is a common consequence of various chronic liver injuries, including virus infection and ethanol. Activated hepatic stellate cells (HSCs) contribute to liver fibrosis through the accumulation of extracellular matrix proteins, including type I alpha collagen (COL1A). The activation of adenosine monophosphate-activated protein kinase (AMPK) modulates HSCs activation, but its underlying mechanism remains unclear. Here, we report that AMPK inhibits transforming growth factor (TGF)-β-induced fibrogenic property of HSCs by regulating transcriptional coactivator p300. We treated human (LX-2) and rat (CFSC-2G) HSC lines with TGF-β to induce fibrogenic activation of HSCs. Pharmacological activation of AMPK by treatment with 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside (AICAR), metformin, or adiponectin lowered TGF-β-induced expression of COL1A and myofibroblast marker alpha-smooth muscle actin (α-SMA). Transient transduction of constitutively active AMPKα (caAMPKα) was sufficient to attenuate COL1A and α-SMA expression, whereas an AMPK inhibitor considerably abrogated the inhibitory effect of AICAR on fibrogenic gene expression. Although AMPK significantly suppressed Smad-dependent transcription, it did not affect TGF-β-stimulated phosphorylation, nuclear localization, or DNA-binding activity of Smad2/3. AICAR rather attenuated TGF-β-induced Smad3 interaction with transcriptional coactivator p300 accompanying with reduction of Smad3 acetylation. Moreover, AICAR induced not only physical interaction between AMPK and p300 but also proteasomal degradation of p300 protein. Our data provide substantial evidence that AMPK could be a novel therapeutic target for treatment of liver fibrosis, by demonstrating the underlying mechanism of AMPK-induced antifibrotic function in HSCs.

  2. Inhibition of protease activity 2. Degradation of myofibrillar proteins, myofibril examination and determination of free calcium levels.

    Science.gov (United States)

    Hopkins, D L; Thompson, J M

    2001-10-01

    -calpain has a role in post-mortem tenderisation, but do suggest along with results of protein degradation that activation of μ-calpain is likely to occur before the pH drops to 6.2-6.1.

  3. SIRT1 Protein, by Blocking the Activities of Transcription Factors FoxO1 and FoxO3, Inhibits Muscle Atrophy and Promotes Muscle Growth*

    Science.gov (United States)

    Lee, Donghoon; Goldberg, Alfred L.

    2013-01-01

    In several cell types, the protein deacetylase SIRT1 regulates the activities of FoxO transcription factors whose activation is critical in muscle atrophy. However, the possible effects of SIRT1 on the activity of FoxOs in skeletal muscle and on the regulation of muscle size have not been investigated. Here, we show that after food deprivation, SIRT1 levels fall dramatically in type II skeletal muscles (tibialis anterior), which show marked atrophy, unlike in the liver (where SIRT1 rises) or heart or the soleus, a type I muscle (where SIRT1 is unchanged). Maintenance of high SIRT1 levels by electroporation in mouse muscle inhibits markedly the muscle wasting induced by fasting as well as by denervation, and these protective effects require its deacetylase activity. SIRT1 overexpression reduces muscle wasting by blocking the activation of FoxO1 and 3. It thus prevents the induction of key atrogenes, including the muscle-specific ubiquitin ligases, atrogin1 and MuRF1, and multiple autophagy (Atg) genes and the increase in overall proteolysis. In normal muscle, SIRT1 overexpression by electroporation causes rapid fiber hypertrophy without, surprisingly, activation of the PI3K-AKT signaling pathway. Thus, SIRT1 activation favors postnatal muscle growth, and its fall appears to be critical for atrophy during fasting. Consequently, SIRT1 activation represents an attractive possible pharmacological approach to prevent muscle wasting and cachexia. PMID:24003218

  4. Small molecules CK-666 and CK-869 inhibit actin-related protein 2/3 complex by blocking an activating conformational change.

    Science.gov (United States)

    Hetrick, Byron; Han, Min Suk; Helgeson, Luke A; Nolen, Brad J

    2013-05-23

    Actin-related protein 2/3 (Arp2/3) complex is a seven-subunit assembly that nucleates branched actin filaments. Small molecule inhibitors CK-666 and CK-869 bind to Arp2/3 complex and inhibit nucleation, but their modes of action are unknown. Here, we use biochemical and structural methods to determine the mechanism of each inhibitor. Our data indicate that CK-666 stabilizes the inactive state of the complex, blocking movement of the Arp2 and Arp3 subunits into the activated filament-like (short pitch) conformation, while CK-869 binds to a serendipitous pocket on Arp3 and allosterically destabilizes the short pitch Arp3-Arp2 interface. These results provide key insights into the relationship between conformation and activity in Arp2/3 complex and will be critical for interpreting the influence of the inhibitors on actin filament networks in vivo.

  5. Antithrombin-Ⅲ without concomitant heparin improves endotoxin-induced acute lung injury rats by inhibiting the activation of mitogen-activated protein kinase

    Institute of Scientific and Technical Information of China (English)

    SUN Hui-ming; HONG Ling-zhi; SHEN Xiao-kun; LIN Xin-qing; SONG Yong; SHI Yi

    2009-01-01

    Background Antithrombin-Ⅲ (AT-Ⅲ), the major inhibitor of thrombin in plasma, also has anti-inflammation property and might have positive effect on sepsis. The present study aimed to investigate the effects of AT-Ⅲ on inflammatory reaction and pulmonary protection in endotoxin-induced acute lung injury (ALI) rat.Methods Sixty male Sprague-Dawley rats were randomly assigned equally to normal control group, ALl group, AT-Ⅲ treatment group, AT-Ⅲ+heparin treatment group, and heparin treatment group. The pulmonary vascular permeability index (PVPI) was measured by single nuclide tracer technique. The activity of AT-Ⅲ in plasma was determined by the method of synthetic chromogenic substrata. Tumor necrosis factor-a (TNF-a) and interleukin-6 (IL-6) levels in serum were determined by enzyme-linked immunosorbent assay. The expressions of lung tissue mitogen-activated protein kinases (ERK1/2, P38 and JNK MAPK) were determined by Western blotting.Results Rats had significantly improved lung histopathology in the AT-Ⅲ treatment group and heparin treatment group compared with the ALI group. The PVPI of the ALI group was 0.38±0.04, significantly higher than that of the normal control group (0.20±0.02, P <0.01), AT-Ⅲ treatment group (0.30±0.04, P <0.01) and heparin treatment group (0.28±0.04,P <0.01) respectively. There were no significant differences of PVPI in the ALl group and AT-Ⅲ+heparin treatment group.The activity of AT-Ⅲ in plasma in the ALl group was (76±8)%, significantly lower than that of the normal control group ((96±11)%, P <0.05) and AT-Ill treatment group ((105±17)%, P <0.05) respectively. The serum levels of TNF-α and IL-6 of the ALI group were (2.770±0.373) pg/L and (1.615±0.128) ng/ml respectively, significantly higher than those of the normal control group ((0.506±0.093) pg/L and (0.233±0.047) ng/ml respectively, all P <0.01), AT-Ⅲ treatment group ((1.774±0.218) μg/L and (1.140±0145) ng/ml respectively, all P <0.01) and

  6. PRMT5, a novel TRAIL receptor-binding protein, inhibits TRAIL-induced apoptosis via nuclear factor-kappaB activation.

    Science.gov (United States)

    Tanaka, Hiroshi; Hoshikawa, Yutaka; Oh-hara, Tomoko; Koike, Sumie; Naito, Mikihiko; Noda, Tetsuo; Arai, Hiroyuki; Tsuruo, Takashi; Fujita, Naoya

    2009-04-01

    Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF superfamily and has selective antitumor activity. Although TNF-alpha-induced intracellular signaling pathways have been well studied, TRAIL signaling is not fully understood. Here, we identified a novel TRAIL receptor-binding protein, protein arginine methyltransferase 5 (PRMT5), as a result of proteomic screening. PRMT5 selectively interacted with death receptor 4 and death receptor 5 but not with TNF receptor 1 or Fas. PRMT5 gene silencing sensitized various cancer cells to TRAIL without affecting TRAIL resistance in nontransformed cells. PRMT5 contributed to TRAIL-induced activation of inhibitor of kappaB kinase (IKK) and nuclear factor-kappaB (NF-kappaB), leading to induction of several NF-kappaB target genes. Although IKK inhibition increased sensitivity to both TRAIL and TNF-alpha, PRMT5 knockdown potentiated TRAIL-mediated cytotoxicity alone. PRMT5 had no effect on TNF-alpha-mediated NF-kappaB signaling. These results show the selectivity of PRMT5 for TRAIL signaling. The PRMT5 small interfering RNA-mediated susceptibility to TRAIL was rescued by ectopic expression of active IKKbeta, confirming the involvement of PRMT5 in TRAIL resistance by activating the NF-kappaB pathway. Collectively, our findings suggest the therapeutic potential of PRMT5 in TRAIL-based cancer treatments

  7. Inhibition of Retinoblastoma Protein Inactivation

    Science.gov (United States)

    2016-09-01

    phosphorylation, which dissociates the E2F transcription factor from Rb. Our goal is to find and characterize molecules that stabilize the complex...between phosphorylated Rb and E2F. In this second year of the project period, we further tested our proposed mechanism for how molecules enhance the...Retinoblastoma protein, E2F transcription factor, high throughput screen, drug discovery, x-ray crystallography 16. SECURITY CLASSIFICATION OF: 17

  8. Rapid component I(Kr) of cardiac delayed rectifier potassium currents in guinea-pig is inhibited by alpha(1)-adrenoreceptor activation via protein kinase A and protein kinase C-dependent pathways.

    Science.gov (United States)

    Wang, Sen; Xu, Dong-Jie; Cai, Jing-Bo; Huang, Yuan-Zhu; Zou, Jian-Gang; Cao, Ke-Jiang

    2009-04-17

    Ventricular tachyarrhythmias are often precipitated by physical or emotional stress, indicating a link between increased adrenergic stimulation and cardiac ion channel activity. Human ether-a-go-go related gene (hERG) potassium channels conduct the rapid component of delayed rectifier potassium current, I(kr), a crucial component for action potential repolarization. To evaluate the correlation between increased alpha(1)-adrenergic activity and the rapid component of cardiac I(kr), whole-cell patch-clamp recording was performed in isolated guinea-pig ventricular myocytes. Stimulation of alpha(1)-adrenoceptors using phenylephrine (0.1 nM-100 microM) reduced I(kr) current in a dose-dependent manner at 37 degrees C. Phenylephrine (0.1 microM) reduced I(kr) current to 66.83+/-3.16%. Chelerythrine (1 microM), a specific inhibitor of protein kinase C (PKC) completely inhibited the changes in I(kr) trigged by 0.1 microM phenylephrine. KT5720 (2.5 microM), a specific inhibitor of protein kinase A (PKA) partially inhibited the current decrease induced by 0.1 microM phenylephrine. Both chelerythrine and KT5720 drastically reduced the phenylephrine-induced effects, indicating possible involvement of PKC and PKA in the alpha(1)-adrenergic inhibition of I(kr). Our data suggest a link between I(kr) and the alpha(1)-adrenoceptor, involving activation of PKC and PKA in arrhythmogenesis.

  9. Impact of p38 mitogen-activated protein kinase inhibition on immunostimulatory properties of human 6-sulfo LacNAc dendritic cells.

    Science.gov (United States)

    Langosch, Saskia; Wehner, Rebekka; Malecka, Ania; Franks, Hester A; Schäkel, Knut; Bachmann, Michael; Jackson, Andrew M; Schmitz, Marc

    2016-02-01

    p38 Mitogen-activated protein kinase (MAPK) plays a crucial role in the induction and regulation of innate and adaptive immunity. Furthermore, p38 MAPK can promote tumor invasion, metastasis, and angiogenesis. Based on these properties, p38 MAPK inhibitors emerged as interesting candidates for the treatment of immune-mediated disorders and cancer. However, the majority of p38 MAPK inhibitor-based clinical trials failed due to poor efficacy or toxicity. Further studies investigating the influence of p38 MAPK inhibitors on immunomodulatory capabilities of human immune cells may improve their therapeutic potential. Here, we explored the impact of the p38 MAPK inhibitor SB203580 on the pro-inflammatory properties of native human 6-sulfo LacNAc dendritic cells (slanDCs). SB203580 did not modulate maturation of slanDCs and their capacity to promote T-cell proliferation. However, SB203580 significantly reduced the production of pro-inflammatory cytokines by activated slanDCs. Moreover, inhibition of p38 MAPK impaired the ability of slanDCs to differentiate naïve CD4(+) T cells into T helper 1 cells and to stimulate interferon-γ secretion by natural killer cells. These results provide evidence that SB203580 significantly inhibits various important immunostimulatory properties of slanDCs. This may have implications for the design of p38 MAPK inhibitor-based treatment strategies for immune-mediated disorders and cancer.

  10. Cytoplasmic localized infected cell protein 0 (bICP0) encoded by bovine herpesvirus 1 inhibits beta interferon promoter activity and reduces IRF3 (interferon response factor 3) protein levels

    Science.gov (United States)

    da Silva, Leticia Frizzo; Gaudreault, Natasha; Jones, Clinton

    2011-01-01

    Bovine herpesvirus 1 (BHV-1), an alpha-herpesvirinae subfamily member, establishes a life-long latent infection in sensory neurons. Periodically, BHV-1 reactivates from latency, infectious virus is spread, and consequently virus transmission occurs. BHV-1 acute infection causes upper respiratory track infections and conjunctivitis in infected cattle. As a result of transient immunesuppression, BHV-1 infections can also lead to life-threatening secondary bacterial pneumonia that is referred to as bovine respiratory disease. The infected cell protein 0 (bICP0) encoded by BHV-1 reduces human beta-interferon (IFN-β) promoter activity, in part, by inducing degradation of interferon response factor 3 (IRF3) and interacting with IRF7. In contrast to humans, cattle contain three IFN-β genes. All three bovine IFN-β proteins have anti-viral activity: but each IFN-β gene has a distinct transcriptional promoter. We have recently cloned and characterized the three bovine IFN-β promoters. Relative to the human IFN-β promoter, each of the three IFN-β promoters contain differences in the four positive regulatory domains that are required for virus-induced activity. In this study, we demonstrate that bICP0 effectively inhibits bovine IFN-β promoter activity following transfection of low passage bovine cells with interferon response factor 3 (IRF3) or IRF7. A bICP0 mutant that localizes to the cytoplasm inhibits bovine IFN-β promoter activity as efficiently as wt bICP0. The cytoplasmic localized bICP0 protein also induced IRF3 degradation with similar efficiency as wt bICP0. In summary, these studies suggested that cytoplasmic localized bICP0 plays a role in inhibiting the IFN-β response during productive infection. PMID:21689696

  11. Caffeic Acid Phenethyl Ester Inhibits Oral Cancer Cell Metastasis by Regulating Matrix Metalloproteinase-2 and the Mitogen-Activated Protein Kinase Pathway

    Directory of Open Access Journals (Sweden)

    Chih-Yu Peng

    2012-01-01

    Full Text Available Caffeic acid phenethyl ester (CAPE, an active component extracted from honeybee hives, exhibits anti-inflammatory and anticancer activities. However, the molecular mechanism by which CAPE affects oral cancer cell metastasis has yet to be elucidated. In this study, we investigated the potential mechanisms underlying the effects of CAPE on the invasive ability of SCC-9 oral cancer cells. Results showed that CAPE attenuated SCC-9 cell migration and invasion at noncytotoxic concentrations (0 μM to 40 μM. Western blot and gelatin zymography analysis findings further indicated that CAPE downregulated matrix metalloproteinase-2 (MMP-2 protein expression and inhibited its enzymatic activity. CAPE exerted its inhibitory effects on MMP-2 expression and activity by upregulating tissue inhibitor of metalloproteinase-2 (TIMP-2 and potently decreased migration by reducing focal adhesion kinase (FAK phosphorylation and the activation of its downstream signaling molecules p38/MAPK and JNK. These data indicate that CAPE could potentially be used as a chemoagent to prevent oral cancer metastasis.

  12. Inhibition of Retinoblastoma Protein Inactivation

    Science.gov (United States)

    2015-09-01

    high throughput screen , drug discovery 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER...suitable for high - throughput screening . Together with scientists at the Sanford Burnham Institute, we then screened 350,000 compounds for activity...This project aims to identify such molecules with high - throughput screening , to validate hits in secondary and cellular assays, and to

  13. Atractylenolide I inhibits lipopolysaccharide-induced inflammatory responses via mitogen-activated protein kinase pathways in RAW264.7 cells.

    Science.gov (United States)

    Ji, Guangquan; Chen, Renqiong; Zheng, Jianxian

    2014-12-01

    Atractylenolide I (ATL-I) is a bioactive component of Rhizoma Atractylodis macrocephalae. Although increasing evidence shows that ATL-I has an anti-inflammatory effect, the anti-inflammatory molecular mechanism of ATL-I is still unknown. In this study, we investigated the effect of ATL-I on cell viability by 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay and the level of interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) by enzyme-linked immunosorbent assay (ELISA) in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Further, we examined the effect of ATL-I on the activation of nuclear factor-kappaB (NF-κB) and phosphorylation of extracellular signal regulated kinase 1/2 (ERK1/2) and p38 mitogen-activated protein kinase (p38) by Western blot. We also investigated the effect of ATL-I on the expression of myeloid differentiation protein-2 (MD-2), CD14, complement receptor 3 (CR3), scavenger receptor class A (SR-A), toll-like receptor 4 (TLR4) and myeloid differentiation factor 88 (MyD88). We found that ATL-I showed no inhibitory effect on cell viability at concentrations ranging from 1 µM to 100 µM and markedly reduced the release of IL-6 and TNF-α at a concentrate-dependent manner. In addition, ATL-I suppressed the activity of nuclear NF-κB and the phosphorylation of ERK1/2 and p38 in LPS-treated RAW264.7 cells. Further analysis showed that ATL-I inhibited the expression of MD-2, CD14, SR-A, TLR4 and MyD88, but the expression of CR3 was unaffected. These data suggest that ATL-I shows an anti-inflammatory effect by inhibiting TNF-α and IL-6 production. The anti-inflammatory effects of ATL-I may be associated with the inhibition of the NF-κB, ERK1/2 and p38 signaling pathways.

  14. Perfluorocarbon inhibits lipopolysaccharide-induced macrophage inflammatory protein-2 expression and activation of ATF-2 and c-Jun in A549 pulmonary epithelial cells.

    Science.gov (United States)

    Hu, Y; Li, C S; Li, Y Q; Liang, Y; Cao, L; Chen, L A

    2016-04-30

    The signaling pathway that mediates the anti-inflammatory effects of perfluorocarbon (PFC) in alveolar epithelial cells treated with lipopolysaccharide (LPS) remains unclear. To evaluate the role of macrophage-inflammatory protein-2 (MIP-2), four A549 treatment groups were utilized: (1) untreated control, (2) 10 μg/mL of LPS, (3) 10 μg/mL of LPS+30% PFC and (4) 30% PFC. MIP-2 mRNA expression was determined by qPCR and ELISA. Mitogen-activated protein kinase (MAPK) activation was determined by Western blot analysis, and MIP-2 expression was determined by qPCR following treatment with MAPK inhibitors. PFC suppressed LPS-induced MIP-2 mRNA levels (P≤0.035) and MIP-2 secretion (P≤0.046). LPS induced ATF-2 and c-Jun phosphorylation, which was suppressed by PFC. Finally, inhibitors of ERK, JNK, and p38 suppressed LPS-induced MIP-2 mRNA expression. Thus, PFC inhibits LPS-induced MIP-2 expression and ATF-2 and c-Jun phosphorylation. To fully explore the therapeutic potential of PFC for acute lung injury (ALI), in vivo analyses are required to confirm these effects.

  15. Stanniocalcin-1 inhibits renal ischemia/reperfusion injury via an AMP-activated protein kinase-dependent pathway

    Science.gov (United States)

    AKI is associated with increased morbidity, mortality, and cost of care, and therapeutic options remain limited. Reactive oxygen species are critical for the genesis of ischemic AKI. Stanniocalcin-1 (STC1) suppresses superoxide generation through induction of uncoupling proteins (UCPs), and transgen...

  16. Insulin-like growth factor-binding protein-5 (IGFBP-5) inhibits TNF-{alpha}-induced NF-{kappa}B activity by binding to TNFR1

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Jae Ryoung; Huh, Jae Ho; Lee, Yoonna; Lee, Sang Il [Molecular Therapy Research Center, Sungkyunkwan University, Seoul 135-710 (Korea, Republic of); Rho, Seung Bae [Research Institute, National Cancer Center, Goyang-si, Gyeonggi-do 411-769 (Korea, Republic of); Lee, Je-Ho, E-mail: jeholee@gmail.com [Molecular Therapy Research Center, Sungkyunkwan University, Seoul 135-710 (Korea, Republic of); Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2011-02-25

    Research highlights: {yields} Binding assays demonstrated that secreted- and cellular-IGFBP-5 interacted with TNFR1. {yields} The interaction between IGFBP-5 and TNFR1 was inhibited by TNF-{alpha} and was blocked TNF-{alpha}-activated NF-{kappa}B activity. {yields} IGFBP-5 interacted with TNFR1 through its N- and L-domains but the binding of L-domain to TNFR1 was blocked by TNF-{alpha}. {yields} Competition between the L-domain of IGFBP-5 and TNF-{alpha} blocked TNF-{alpha}-induced NF-{kappa}B activity. {yields} This study suggests that the L-domain of IGFBP-5 is a novel TNFR1 ligand that functions as a competitive TNF-{alpha} inhibitor. -- Abstract: IGFBP-5 is known to be involved in various cell phenomena such as proliferation, differentiation, and apoptosis. However, the exact mechanisms by which IGFBP-5 exerts its functions are unclear. In this study, we demonstrate for the first time that IGFBP-5 is a TNFR1-interacting protein. We found that ectopic expression of IGFBP-5 induced TNFR1 gene expression, and that IGFBP-5 interacted with TNFR1 in both an in vivo and an in vitro system. Secreted IGFBP-5 interacted with GST-TNFR1 and this interaction was blocked by TNF-{alpha}, demonstrating that IGFBP-5 might be a TNFR1 ligand. Furthermore, conditioned media containing secreted IGFBP-5 inhibited PMA-induced NF-{kappa}B activity and IL-6 expression in U-937 cells. Coimmunoprecipitation assays of TNFR1 and IGFBP-5 wild-type and truncation mutants revealed that IGFBP-5 interacts with TNFR1 through its N- and L-domains. However, only the interaction between the L-domain of IGFBP-5 and TNFR1 was blocked by TNF-{alpha} in a dose-dependent manner, suggesting that the L-domain of IGFBP-5 can function as a TNFR1 ligand. Competition between the L-domain of IGFBP-5 and TNF-{alpha} resulted in inhibition of TNF-{alpha}-induced NF-{kappa}{Beta} activity. Taken together, our results suggest that the L-domain of IGFBP-5 is a novel TNFR1 ligand that functions as a competitive TNF

  17. Inhibition of Streptococcus pneumoniae penicillin-binding protein 2x and Actinomadura R39 DD-peptidase activities by ceftaroline.

    Science.gov (United States)

    Zervosen, Astrid; Zapun, André; Frère, Jean-Marie

    2013-01-01

    Although the rate of acylation of a penicillin-resistant form of Streptococcus pneumoniae penicillin-binding protein 2x (PBP2x) by ceftaroline is 80-fold lower than that of its penicillin-sensitive counterpart, it remains sufficiently high (k(2)/K = 12,600 M(-1) s(-1)) to explain the sensitivity of the penicillin-resistant strain to this new cephalosporin. Surprisingly, the Actinomadura R39 DD-peptidase is not very sensitive to ceftaroline.

  18. Supplementation of chitosan alleviates high-fat diet-enhanced lipogenesis in rats via adenosine monophosphate (AMP)-activated protein kinase activation and inhibition of lipogenesis-associated genes.

    Science.gov (United States)

    Chiu, Chen-Yuan; Chan, Im-Lam; Yang, Tsung-Han; Liu, Shing-Hwa; Chiang, Meng-Tsan

    2015-03-25

    This study investigated the role of chitosan in lipogenesis in high-fat diet-induced obese rats. The lipogenesis-associated genes and their upstream regulatory proteins were explored. Diet supplementation of chitosan efficiently decreased the increased weights in body, livers, and adipose tissues in high-fat diet-fed rats. Chitosan supplementation significantly raised the lipolysis rate; attenuated the adipocyte hypertrophy, triglyceride accumulation, and lipoprotein lipase activity in epididymal adipose tissues; and decreased hepatic enzyme activities of lipid biosynthesis. Chitosan supplementation significantly activated adenosine monophosphate (AMP)-activated protein kinase (AMPK) phosphorylation and attenuated high-fat diet-induced protein expressions of lipogenic transcription factors (PPAR-γ and SREBP1c) in livers and adipose tissues. Moreover, chitosan supplementation significantly inhibited the expressions of downstream lipogenic genes (FAS, HMGCR, FATP1, and FABP4) in livers and adipose tissues of high-fat diet-fed rats. These results demonstrate for the first time that chitosan supplementation alleviates high-fat diet-enhanced lipogenesis in rats via AMPK activation and lipogenesis-associated gene inhibition.

  19. FLZ protects dopaminergic neuron through activating protein kinase B/mammalian target of rapamycin pathway and inhibiting RTP801 expression in Parkinson's disease models.

    Science.gov (United States)

    Bao, X-Q; Kong, X-C; Qian, C; Zhang, D

    2012-01-27

    The pathogenesis of Parkinson's disease is characterized by progressive degeneration of dopaminergic neurons in substantia nigra (SNpc). FLZ, a novel synthetic squamosamide derivative from a Chinese herb, has been shown to have neuroprotective effects in experimental Parkinson's disease (PD) models. However, it is still unclear whether FLZ protects against PD through regulating the function of dopaminergic system. In this study, we carried out a set of in vitro and in vivo experiments to address these questions. Oral administration of FLZ significantly improved motor dysfunction of mice challenged by MPTP. The beneficial effects of FLZ on motor behavior attributed to the elevation of dopamine level in striatum, tyrosine hydroxylase (TH)-positive cells, and TH activity in the middle brain of mouse. Mechanism study showed that treatment of FLZ increased the phosphorylation of activating protein kinase B (Akt) and mammalian target of rapamycin (mTOR). Using LY294002 to block phosphoinositide 3-kinases (PI3K)/Akt signaling pathway prevented the phosphorylation of mTOR and attenuated the neuroprotection of FLZ in MN9D cells challenged by MPP(+). In addition, FLZ reduced the expression of RTP801, an important protein in PD, in mice and cells intoxicated by MPTP/MPP(+). Taken together, these results revealed a novel role that FLZ elevated TH expression and activity in dopaminergic neuron through activation of Akt/mTOR survival pathway and inhibition of RTP801 in MPTP/MPP(+)-induced PD models. The data also provided evidence that FLZ had potent neuroprotecive effects and might become a new promising anti-PD drug.

  20. Sesamin suppresses STZ induced INS-1 cell apoptosis through inhibition of NF-κB activation and regulation of Bcl-2 family protein expression.

    Science.gov (United States)

    Zheng, Shuguo; Zhao, Mengqiu; Ren, Younan; Wu, Yuanjie; Yang, Jieren

    2015-03-05

    Diverse risk factors for diabetes can induce oxidative stress, leading to pancreatic beta cell damage and insulin secretion dysfunction. In the present study, we evaluated the effect of sesamin on streptozotocin (STZ) induced apoptosis in INS-1 cells and the possible mechanisms implicated. After preincubation with indicated concentrations of sesamin (0.1, 1.0 and 10.0μmol/l) for 24h, INS-1 cells were exposed to STZ (3mmol/l) for 12h. Sesamin effectively improved STZ induced cell damage as determined by MTT [3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide] assay and insulin secretion capacity, and suppressed STZ induced cell apoptosis as evaluated by flow cytometry using annexin V and propidium iodide double staining. Western blot analysis demonstrated that sesamin markedly suppressed STZ induced nuclear factor kappa B (NF-κB) activation, with Bax protein down-regulated and Bcl-2 protein up-regulated significantly. Preincubation with sesamin resulted in an evident enhancement of total antioxidant capacity in INS-1 cells, accompanied by a significant reduction of intracellular reactive oxygen species and malondialdehyde, an end product of lipid peroxidation. Taken together, these findings suggested that sesamin was capable of suppressing STZ induced INS-1 cell apoptosis, which might be ascribed, at least partly, to the inhibition of NF-κB activation and subsequent regulation of Bcl-2 family protein expression. This study would provide a potential target for treatment of diabetes with sesamin as well as other antioxidants.

  1. A single electrochemical biosensor for detecting the activity and inhibition of both protein kinase and alkaline phosphatase based on phosphate ions induced deposition of redox precipitates.

    Science.gov (United States)

    Shen, Congcong; Li, Xiangzhi; Rasooly, Avraham; Guo, Linyan; Zhang, Kaina; Yang, Minghui

    2016-11-15

    Protein kinase (PKA) and alkaline phosphatase (ALP) are clinically relevant enzymes for a number of diseases. In this work, we developed a new simple electrochemical biosensor for the detection of the activity and inhibition of both PKA and ALP. One common feature of the PKA and ALP catalyzing process is that PKA can hydrolysis adenosine-5'-triphosphate (ATP) and ALP can hydrolysis pyrophosphate, both reactions produce phosphate ions, and the amount of phosphate ion produced is proportional to enzyme activity. Our assay is based on the principle that phosphate ions react with molybdate to form redox molybdophosphate precipitates on the electrode surface, thus generating electrochemical current. The detection limit for PKA and ALP were much lower than existing assays. The biosensor has good specificity and was used to measure drug-stimulated PKA from lysates of HeLa cells. We also evaluated the use of the biosensor as a screening tool for enzyme inhibitors. To the best of our knowledge, this is the first report of a biosensor capable of detecting the activity of both PKA and ALP. This tool has the potential to simplify PKA and ALP clinical measurement, thereby improving diagnostics of relevant diseases. It also may serve as the basis for a simple screening method for new enzyme inhibitors for disease treatment.

  2. Lupine protein hydrolysates inhibit enzymes involved in the inflammatory pathway.

    Science.gov (United States)

    Millán-Linares, María del Carmen; Yust, María del Mar; Alcaide-Hidalgo, Juan María; Millán, Francisco; Pedroche, Justo

    2014-05-15

    Lupine protein hydrolysates (LPHs) were obtained from a lupine protein isolate (LPI) by enzymatic hydrolysis using two proteases, Izyme AL and Alcalase 2.4 L, and their potential anti-inflammatory capacities were studied by determining their in vitro inhibition of the following enzymes that are involved in the inflammatory process: phospholipase A2 (PLA2), cyclooxygenase 2 (COX-2), thrombin, and transglutaminase (TG). The strongest inhibitory activities toward PLA2 and TG were found in the hydrolysates obtained by hydrolysis with Izyme and subsequently with Alcalase, with more than 70% inhibition obtained in some cases. All of the hydrolysates tested inhibited more than 60% of the COX-2 activity. In no case did the percentage of thrombin activity inhibition exceed 40%. The best inhibitory activities were found in the LPH obtained after 15 min of hydrolysis with Alcalase and in the LPH obtained after 60 min of hydrolysis with Izyme followed by 15 min of hydrolysis with Alcalase. Enzyme kinetic analyses were conducted to determine the Km and Vmax parameters of these two hydrolysates using the Lineweaver-Burk equation. Both hydrolysates competitively inhibited the thrombin and PLA2 activities. In the case of COX-2 and TG, the inhibition appeared to be the mixed type. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Pioglitazone inhibits the expression of nicotinamide adenine dinucleotide phosphate oxidase and p38 mitogen-activated protein kinase in rat mesangial cells

    Institute of Scientific and Technical Information of China (English)

    WANG Shan; YE Shan-dong; SUN Wen-jia; HU Yuan-yuan

    2013-01-01

    Background Oxidative Stress and p38 mitogen-activated protein kinase (p38MAPK) play a vital role in renal fibrosis.Pioglitazone can protect kidney but the underlying mechanisms are less clear.The purpose of this study was to investigate the effect of pioglitazone on oxidative stress and whether the severity of oxidative stress was associated with the phosphorylation level of p38MAPK.Methods Rat mesangial cells were cultured and randomly assigned to control group,high glucose group and pioglitazone group.After 48-hour exposure,the supernatants and ceils were collected.The protein levels of p22phox,p47phox,phosphorylated p38MAPK,total p38MAPK were measured by Western blotting.The gene expressions of p22phox,p47phox were detected by RT-PCR.The levels of intracellular reactive oxygen species (ROS) were determined by flow cytometry.The levels of superoxide dismutase (SOD) and maleic dialdehyde (MDA) in the supernatant were determined respectively.Results Compared with the control group,the expression levels of p22phox,p47phox,phospho-p38 and ROS significantly increased,activity of SOD decreased in high glucose group,while the level of MDA greatly increased (P <0.01).Pioglitazone significantly suppressed p22phox,p47phox expressions and oxidative stress induced by high glucose.The expressions of p22phox,p47phox,phospho-p38MAPK and ROS generation were markedly reduced after pioglitazone treatment (P <0.05).The activity of SOD in the the supernatant increased (P <0.05),while the level of MDA decreased greatly by pioglitazone (P <0.05).The level of oxidative stress was associated with the phosphorylation level of p38MAPK (P <0.01).Conclusion Pioglitazone can inhibit oxidative stress through suppressing NADPH oxidase expression and p38MAPK phosphorylation.

  4. Inhibition of Mitogen-activated Protein Kinase (MAPK)-interacting Kinase (MNK) Preferentially Affects Translation of mRNAs Containing Both a 5'-Terminal Cap and Hairpin.

    Science.gov (United States)

    Korneeva, Nadejda L; Song, Anren; Gram, Hermann; Edens, Mary Ann; Rhoads, Robert E

    2016-02-12

    The MAPK-interacting kinases 1 and 2 (MNK1 and MNK2) are activated by extracellular signal-regulated kinases 1 and 2 (ERK1/2) or p38 in response to cellular stress and extracellular stimuli that include growth factors, cytokines, and hormones. Modulation of MNK activity affects translation of mRNAs involved in the cell cycle, cancer progression, and cell survival. However, the mechanism by which MNK selectively affects translation of these mRNAs is not understood. MNK binds eukaryotic translation initiation factor 4G (eIF4G) and phosphorylates the cap-binding protein eIF4E. Using a cell-free translation system from rabbit reticulocytes programmed with mRNAs containing different 5'-ends, we show that an MNK inhibitor, CGP57380, affects translation of only those mRNAs that contain both a cap and a hairpin in the 5'-UTR. Similarly, a C-terminal fragment of human eIF4G-1, eIF4G(1357-1600), which prevents binding of MNK to intact eIF4G, reduces eIF4E phosphorylation and inhibits translation of only capped and hairpin-containing mRNAs. Analysis of proteins bound to m(7)GTP-Sepharose reveals that both CGP and eIF4G(1357-1600) decrease binding of eIF4E to eIF4G. These data suggest that MNK stimulates translation only of mRNAs containing both a cap and 5'-terminal RNA duplex via eIF4E phosphorylation, thereby enhancing the coupled cap-binding and RNA-unwinding activities of eIF4F.

  5. Salidroside pretreatment attenuates apoptosis and autophagy during hepatic ischemia–reperfusion injury by inhibiting the mitogen-activated protein kinase pathway in mice

    Directory of Open Access Journals (Sweden)

    Feng J

    2017-07-01

    Full Text Available Jiao Feng,1,* Qinghui Zhang,2,* Wenhui Mo,3,* Liwei Wu,1 Sainan Li,1 Jingjing Li,1 Tong Liu,1 Shizan Xu,4 Xiaoming Fan,5 Chuanyong Guo1 1Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 2Department of Clinical Laboratory, Kunshan First People’s Hospital Affiliated to Jiangsu University, Kunshan, JiangSu, 3Department of Gastroenterology, Minhang Hospital, Fudan University, Shanghai, 4Department of Gastroenterology, Shanghai Tenth People’s Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai, 5Department of Gastroenterology, Jinshan Hospital of Fudan University, Jinshan, Shanghai, China *These authors contributed equally to this work Abstract: Ischemia–reperfusion injury (IRI contributes to liver damage in many clinical situations, such as liver resection and liver transplantation. In the present study, we investigated the effects of the antioxidant, anti-inflammatory, and anticancer agent salidroside (Sal on hepatic IRI in mice. The mice were randomly divided into six groups: normal control, Sham, Sal (20 mg/kg, IRI, IRI + Sal (10 mg/kg, and IRI + Sal (20 mg/kg. We measured liver enzymes, proinflammatory cytokines, TNF-α and interleukin-6, and apoptosis- and autophagy-related marker proteins at 2, 8, and 24 hours after reperfusion. Components of mitogen-activated protein kinase (MAPK signaling, including P-38, jun N-terminal kinase (JNK, and extracellular signal-regulated kinase (ERK, were also measured using an MAPK activator anisomycin to deduce their roles in hepatic IRI. Our results show that Sal safely protects hepatocytes from IRI by reducing levels of liver enzymes in the serum. These findings were confirmed by histopathology. We concluded that Sal protects hepatocytes from IRI partly by inhibiting the activation of MAPK signaling, including the phosphorylation of P38, JNK, and ERK. This ameliorates inflammatory reactions, apoptosis, and

  6. Taxol-induced unfolded protein response activation in breast cancer cells exposed to hypoxia: ATF4 activation regulates autophagy and inhibits apoptosis.

    Science.gov (United States)

    Notte, Annick; Rebucci, Magali; Fransolet, Maude; Roegiers, Edith; Genin, Marie; Tellier, Celine; Watillon, Kassandra; Fattaccioli, Antoine; Arnould, Thierry; Michiels, Carine

    2015-05-01

    Understanding the mechanisms responsible for the resistance against chemotherapy-induced cell death is still of great interest since the number of patients with cancer increases and relapse is commonly observed. Indeed, the development of hypoxic regions as well as UPR (unfolded protein response) activation is known to promote cancer cell adaptive responses to the stressful tumor microenvironment and resistance against anticancer therapies. Therefore, the impact of UPR combined to hypoxia on autophagy and apoptosis activation during taxol exposure was investigated in MDA-MB-231 and T47D breast cancer cells. The results showed that taxol rapidly induced UPR activation and that hypoxia modulated taxol-induced UPR activation differently according to the different UPR pathways (PERK, ATF6, and IRE1α). The putative involvement of these signaling pathways in autophagy or in apoptosis regulation in response to taxol exposure was investigated. However, while no link between the activation of these three ER stress sensors and autophagy or apoptosis regulation could be evidenced, results showed that ATF4 activation, which occurs independently of UPR activation, was involved in taxol-induced autophagy completion. In addition, an ATF4-dependent mechanism leading to cancer cell adaptation and resistance against taxol-induced cell death was evidenced. Finally, our results demonstrate that expression of ATF4, in association with hypoxia-induced genes, can be used as a biomarker of a poor prognosis for human breast cancer patients supporting the conclusion that ATF4 might play an important role in adaptation and resistance of breast cancer cells to chemotherapy in hypoxic tumors.

  7. Integrin α2β1 inhibits MST1 kinase phosphorylation and activates Yes-associated protein oncogenic signaling in hepatocellular carcinoma.

    Science.gov (United States)

    Wong, Kwong-Fai; Liu, Angela M; Hong, Wanjin; Xu, Zhi; Luk, John M

    2016-11-22

    The Hippo pathway regulates the down-stream target Yes-associated protein (YAP) to maintain organ homeostasis, which is commonly inactivated in many types of cancers. However, how cell adhesion dysregulates the Hippo pathway activating YAP oncogene in hepatocellular carcinoma (HCC) remains unclear. Our findings demonstrate that α2β1 integrin (but not other β1 integrins) expressed in HCC cells, after binding to collagen extracellular matrix, could inhibit MST1 kinase phosphorylation and activate YAP pro-oncogenic activities. Knockdown of integrin α2 gene (ITGA2) suppressed YAP targeted gene expression in vitro. α2β1 and collagen binding resulted in suppressing Hippo signaling of mammalian sterile 20-like kinase 1 (MST1) and Large tumor suppressor homolog 1 (LATS1) with concomitant activation of YAP-mediated connective tissue growth factor (CTGF) gene expression. In vitro kinase assay showed that MST1 is an immediate downstream target of integrin α2 with S1180 residue as the critical phosphorylation site. Clinical correlational analysis using a gene expression dataset of 228 HCC tumors revealed that ITGA2 expression was significantly associated with tumor progression, and co-expression with YAP targeted genes (AXL receptor tyrosine kinase, CTGF, cyclin D1, glypican 3, insulin like growth factor 1 receptor, and SRY-box 4) correlated with survivals of HCC patients. In conclusion, α2β1 integrin activation through cellular adhesion impacts the Hippo pathway in solid tumors and modulates MST1-YAP signaling cascade. Targeting integrin α2 holds promises for treating YAP-positive HCC.

  8. Inhibition of p38 mitogen-activated protein kinase may decrease intestinal epithelial cell apoptosis and improve intestinal epithelial barrier function after ischemia- reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Shu-Yun Zheng; Xiao-Bing Fu; Jian-Guo Xu; Jing-Yu Zhao; Tong-Zhu Sun; Wei Chen

    2005-01-01

    AIM: To investigate the role of p38 mitogen-activated protein kinase in rat small intestine after ischemia-reperfusion (I/R)insult and the relationship between activation of p38 MAPK and apoptotic cell death of intestine.METHODS: Ninety Wistar rats were divided randomly into three groups, namely sham-operated group (C), I/R vehicle group (R) and SB203580 pre-treated group(S).In groups R and S, the superior mesenteric artery(SMA)was separated and occluded for 45 min, then released for reperfusion for0.25, 0.5, 1, 2, 6, 12 and 24 h. In group C, SMA was separated without occlusion. Plasma D-lactate levels were examined and histological changes were observed under a light microscope. The activity of p38 MAPK was determined by Western immunoblotting and apoptotic cells were detected by the terminal deoxynucleotidyl transferase (TdT)-mediated dUDP-biotin nick end labeling (TUNEL).RESULTS: Intestinal ischemia followed by reperfusion activated p38 MAPK, and the maximal level of activation (7.3-fold vs sham-operated group) was reached 30 min after I/R. Treatment with SB 203580, a p38 MAPK inhibitor,reduced intestinal apoptosis (26.72±3.39% vs62.50±3.08%in I/R vehicle, P<0.01) and decreased plasma D-lactate level (0.78±0.15 mmol/L in I/R vehicle vs0.42±0.17 mmol/L in SB-treated group) and improved post-ischemic intestinal histological damage.CONCLUSION: p38 MAPK plays a crucial role in the signal transduction pathway mediating post-ischemic intestinal apoptosis, and inhibition of p38 MAPK may attenuate ischemia-reperfusion injury.

  9. Clopidogrel effectively suppresses endothelial microparticle generation induced by indoxyl sulfate via inhibition of the p38 mitogen-activated protein kinase pathway.

    Science.gov (United States)

    Ryu, Jung-Hwa; Kim, Seung-Jung

    2011-01-01

    Endothelial microparticles (EMPs) are closely associated with vascular dysfunction. We investigated the effects of several drugs on EMP generation in human umbilical vein endothelial cells (HUVECs), and the involvement of the mitogen-activated protein kinase (MAPK) in EMP generation. CD31+CD42-EMP counts were measured by flow cytometry in supernatants of HUVECs incubated with indoxyl sulfate. The EMP responses to losartan, lovastatin, clopidogrel, and mesoglycan were examined. We then measured the effects of MAPK inhibitors on EMPs. (1) Indoxyl sulfate induced EMP release in HUVECs in a dose-dependent fashion; (2) all drugs (10-50 μM) inhibited EMP generation induced by indoxyl sulfate, with clopidogrel being the most effective; (3) the p38 MAPK inhibitor suppressed EMP generation induced by indoxyl sulfate, and (4) clopidogrel significantly suppressed MAPK signaling activated by indoxyl sulfate, with the most potency on p38. The p38 signaling involves EMP generation induced by indoxyl sulfate and is effectively suppressed by clopidogrel. Copyright © 2011 S. Karger AG, Basel.

  10. Mildiomycin: a nucleoside antibiotic that inhibits protein synthesis.

    Science.gov (United States)

    Feduchi, E; Cosín, M; Carrasco, L

    1985-03-01

    Mildiomycin, a new nucleoside antibiotic, selectively inhibits protein synthesis in HeLa cells, and is less active in the inhibition of RNA or DNA synthesis. An increased inhibition of translation by mildiomycin is observed in cultured HeLa cells when they are permeabilized by encephalomyocarditis virus. This observation suggests that this antibiotic does not easily pass through the cell membrane, as occurs with other nucleoside and aminoglycoside antibiotics. The inhibition of translation is also observed in cell-free systems, such as endogenous protein synthesis in a rabbit reticulocyte lysate or the synthesis of polyphenylalanine directed by poly (U). Finally the mode of action of mildiomycin was investigated and the results suggest that the compound blocks the peptidyl-transferase center.

  11. Inhibition of Plasmepsin V activity demonstrates its essential role in protein export, PfEMP1 display, and survival of malaria parasites

    DEFF Research Database (Denmark)

    Sleebs, Brad E; Lopaticki, Sash; Marapana, Danushka S;

    2014-01-01

    PEXEL cleavage occurs cotranslationaly, similar to signal peptidase. Treatment of P. falciparum-infected erythrocytes with the inhibitor caused dose-dependent inhibition of PEXEL processing as well as protein export, including impaired display of the major virulence adhesin, PfEMP1, on the erythrocyte...

  12. Purification and characterization of moschins, arginine-glutamate-rich proteins with translation-inhibiting activity from brown pumpkin (Cucurbita moschata) seeds.

    Science.gov (United States)

    Ng, T B; Parkash, A; Tso, W W

    2002-10-01

    From fresh brown pumpkin seeds, two proteins with a molecular mass of 12kDa and an N-terminal sequence rich in arginine and glutamate residues were obtained. The protein designated alpha-moschin closely resembled the fruitfly programmed-cell death gene product and the protein designated beta-moschin demonstrated striking similarity to prepro 2S albumin in N-terminal sequence. alpha- and beta-moschins inhibited translation in the rabbit reticulocyte lysate system with an IC(50) of 17 microM and 300nM, respectively.

  13. Pharmacological Inhibition of Protein Kinase G1 Enhances Bone Formation by Human Skeletal Stem Cells Through Activation of RhoA-Akt Signaling

    DEFF Research Database (Denmark)

    Jafari, Abbas; Siersbæk, Majken; Chen, Li;

    2015-01-01

    for several malignant and nonmalignant conditions. We screened a library of kinase inhibitors to identify small molecules that enhance bone formation by human skeletal (stromal or mesenchymal) stem cells (hMSC). We identified H-8 (known to inhibit protein kinases A, C, and G) as a potent enhancer of ex vivo......Development of novel approaches to enhance bone regeneration is needed for efficient treatment of bone defects. Protein kinases play a key role in regulation of intracellular signal transduction pathways, and pharmacological targeting of protein kinases has led to development of novel treatments...

  14. Brain hyaluronan binding protein inhibits tumor growth

    Institute of Scientific and Technical Information of China (English)

    高锋; 曹曼林; 王蕾

    2004-01-01

    Background Great efforts have been made to search for the angiogenic inhibitors in avascular tissues. Several proteins isolated from cartilage have been proved to have anti-angiogenic or anti-tumour effects. Because cartilage contains a great amount of hyaluronic acid (HA) oligosaccharides and abundant HA binding proteins (HABP), therefore, we speculated that HABP might be one of the factors regulating vascularization in cartilage or anti-angiogenesis in tumours. The purpose of this research was to evaluale the effects of hyaluronan binding protein on inhibiting tumour growth both in vivo and vitro. Methods A unique protein termed human brain hyaluronan (HA) binding protein (b-HABP) was cloned from human brain cDNA library. MDA-435 human breast cancer cell line was chosen as a transfectant. The in vitro underlying mechanisms were investigated by determining the possibilities of MDA-435/b-HABP colony formation on soft agar, the effects of the transfectant on the proliferation of endothelial cells and the expression levels of caspase 3 and FasL from MDA-435/b-HABP. The in vivo study included tumour growth on the chorioallantoic membrane (CAM) of chicken embryos and nude mice. Results Colony formation assay revealed that the colonies formed by MDA-435/b-HABP were greatly reduced compared to mock transfectants. The conditioned media from MDA-435/b-HABP inhibited the growth of endothelial cells in culture. Caspase 3 and FasL expressions were induced by MDA-435/b-HABP. The size of tumours of MDA-435/b-HABP in both CAM and nude mice was much smaller than that of MDA-435 alone. Conclusions Human brain hyaluronan binding protein (b-HABP) may represent a new kind of naturally existing anti-tumour substance. This brain-derived glycoprotein may block tumour growth by inducing apoptosis of cancer cells or by decreasing angiogenesis in tumour tissue via inhibiting proliferation of endothelial cells.

  15. ORF2 protein of porcine circovirus type 2 promotes phagocytic activity of porcine macrophages by inhibiting proteasomal degradation of complement component 1, q subcomponent binding protein (C1QBP) through physical interaction.

    Science.gov (United States)

    Choi, Chang-Yong; Oh, Hae-Na; Lee, Suk Jun; Chun, Taehoon

    2015-11-01

    Defining how each ORF of porcine circovirus type 2 (PCV2) manipulates the host immune system may be helpful to understand the disease progression of post-weaning multisystemic wasting syndrome. In this study, we demonstrated a direct interaction between the PCV2 ORF2 and complement component 1, q subcomponent binding protein (C1QBP) within the cytoplasm of host macrophages. The physical interaction between PCV2 ORF2 and C1QBP inhibited ubiquitin-mediated proteasomal degradation of C1QBP in macrophages. Increased stability of C1QBP by the interaction with PCV2 ORF2 further enhanced the phagocytic activity of porcine macrophages through the phosphoinositol 3-kinase signalling pathway. This may explain the molecular basis of how PCV2 ORF2 enhances the phagocytic activity of host macrophages.

  16. Inhibition of the early asthmatic response to inhaled allergen by the 5-lipoxygenase activating protein inhibitor GSK2190915: a dose–response study

    Directory of Open Access Journals (Sweden)

    Singh D

    2013-12-01

    Full Text Available Dave Singh,1 Malcolm Boyce,2 Virginia Norris,3 Sandra E Kent,3 Jane H Bentley31University of Manchester, Medicines Evaluation Unit, University Hospital of South Manchester, Manchester, UK; 2Hammersmith Medicines Research, London, UK; 3GlaxoSmithKline, Middlesex, UKBackground: GSK2190915, a 5-lipoxygenase activating protein inhibitor, inhibits the production of cysteinyl leukotrienes and leukotriene B4 and 5-oxo-6,8,11,14-eicosatetraenoic acid. We have previously reported that GSK2190915 100 mg daily inhibits early and late asthmatic responses to inhaled allergen; the effects of lower doses have not been reported. This study assessed the dose–response effects of GSK2190915 10 mg and 50 mg on the early asthmatic response (EAR to inhaled allergen.Methods: Nineteen subjects with mild asthma and an EAR were enrolled in a randomized, double-blind, three-way crossover study of GSK2190915 10 mg, 50 mg, and placebo orally once-daily for 3 days. Allergen challenge was performed 2 hours after the third dose.Results: Compared with placebo, GSK2190915 10 mg and 50 mg caused significant, dose-dependent attenuation of the minimum forced expiratory volume at 1 second (FEV1 absolute change from baseline; mean treatment differences were 0.21 L (95% confidence interval [CI] 0.04 L, 0.38 L and 0.41 L (95% CI 0.24 L, 0.58 L, respectively. GSK2190915 50 mg was more effective than 10 mg; mean difference between treatments was 0.20 L, (95% CI 0.03 L, 0.36 L. Compared with placebo, GSK2190915 50 mg, but not 10 mg, significantly inhibited the weighted mean FEV1 absolute change from baseline.Conclusion: GSK2190915 50 mg attenuated the EAR similarly to GSK2190915 100 mg in our previous study, suggesting 50 mg is at the top of the dose–response curve. GSK2190915 10 mg is a suboptimal dose. The EAR can be used to assess the therapeutic dose of a new treatment for asthma.Keywords: GSK2190915, FLAP inhibitor, early asthmatic response

  17. Spreading depolarization in the brain of Drosophila is induced by inhibition of the Na+/K+-ATPase and mitigated by a decrease in activity of protein kinase G.

    Science.gov (United States)

    Spong, Kristin E; Rodríguez, Esteban C; Robertson, R Meldrum

    2016-09-01

    Spreading depolarization (SD) is characterized by a massive redistribution of ions accompanied by an arrest in electrical activity that slowly propagates through neural tissue. It has been implicated in numerous human pathologies, including migraine, stroke, and traumatic brain injury, and thus the elucidation of control mechanisms underlying the phenomenon could have many health benefits. Here, we demonstrate the occurrence of SD in the brain of Drosophila melanogaster, providing a model system, whereby cellular mechanisms can be dissected using molecular genetic approaches. Propagating waves of SD were reliably induced by disrupting the extracellular potassium concentration ([K(+)]o), either directly or by inhibition of the Na(+)/K(+)-ATPase with ouabain. The disturbance was monitored by recording the characteristic surges in [K(+)]o using K(+)-sensitive microelectrodes or by monitoring brain activity by measuring direct current potential. With the use of wild-type flies, we show that young adults are more resistant to SD compared with older adults, evidenced by shorter bouts of SD activity and attenuated [K(+)]o disturbances. Furthermore, we show that the susceptibility to SD differs between wild-type flies and w1118 mutants, demonstrating that our ouabain model is influenced by genetic strain. Lastly, flies with low levels of protein kinase G (PKG) had increased latencies to onset of both ouabain-induced SD and anoxic depolarization compared with flies with higher levels. Our findings implicate the PKG pathway as a modulator of SD in the fly brain, and given the conserved nature of the signaling pathway, it could likely play a similar role during SD in the mammalian central nervous system.

  18. Signal transducer and activator of transcription 5a inhibited by pimozide may regulate survival of goat mammary gland epithelial cells by regulating parathyroid hormone-related protein.

    Science.gov (United States)

    Li, Hui; Zheng, Huiling; Sun, Yongsen; Yu, Qian; Li, Lihui

    2014-11-10

    The signal transducer and activator of transcription 5a (Stat5a) modulates genes involved in proliferation and survival and plays pivotal roles in regulating the function of the mammary gland during pregnancy, lactation, and involution. However, there is little information about the effects of Stat5a on apoptosis of goat mammary gland epithelial cells (GMECs). In addition, parathyroid hormone-related protein (PTHrP) is a key regulator in cellular calcium transport, mammary gland development and breast tumor biology. This study aimed to explore the interaction of Stat5a and PTHrP in GMEC apoptosis. Quantitative real time PCR (qRT-PCR) suggested that Stat5a was predominantly expressed in the mammary gland, lung, liver and spleen of goats. Treating the GMECs with pimozide, an inhibitor of Stat5a that decreases Stat5a tyrosine phosphorylation, increased PTHrP levels in GMECs in a dose-dependent manner and simultaneously promoted apoptosis of the GMECs. We also demonstrated that PTHrP inhibition induced GMEC apoptosis and restrained cell proliferation. In contrast, PTHrP overexpression protected GMECs from pimozide- and calcium-induced apoptosis, and promoted cell proliferation. Furthermore, pimozide and CaCl2 downregulated the antiapoptotic protein Bcl-2 mRNA expression, respectively, and these effects were protected by PTHrP overexpression. Interestingly, we also found that Stat5a suppressed the expression of matrix metalloproteinase 9 (MMP-9) which can induce goat mammary epithelial cell migration, but PTHrP increased MMP-9 mRNA level. Thus, Stat5a may regulate GMEC survival by regulating the expression of PTHrP. Copyright © 2014. Published by Elsevier B.V.

  19. Olmesartan inhibits angiotensin II-Induced migration of vascular smooth muscle cells through Src and mitogen-activated protein kinase pathways.

    Science.gov (United States)

    Kyotani, Yoji; Zhao, Jing; Tomita, Sayuko; Nakayama, Hitoshi; Isosaki, Minoru; Uno, Masayuki; Yoshizumi, Masanori

    2010-01-01

    Clinical studies have shown that angiotensin-receptor blockers (ARBs) reduce the risk of cardiovascular diseases in hypertensive patients. It is assumed that the reduction of the risk by ARBs may be attributed in part to the inhibition of angiotensin II (AII)-induced vascular smooth muscle cell (VSMC) migration associated with atherosclerosis. However, the effect of ARBs on AII-induced changes in intracellular signaling and resultant cell migration has not been well established. Here, we investigated the effect of olmesartan, an ARB, on AII-induced extracellular signal-regulated kinases 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK) activation and rat aortic smooth muscle cell (RASMC) migration. Olmesartan inhibited AII-induced ERK1/2 and JNK activation at lower concentrations (10 nM). On the other hand, PP2, a Src tyrosine kinase inhibitor, also inhibited AII-induced ERK1/2 and JNK activation, but its effect on ERK1/2 was less pronounced than that of olmesartan. Olmesartan, U0126 (an ERK1/2 inhibitor), SP600125 (a JNK inhibitor), and PP2 potently inhibited AII-induced RASMC migration. From these findings, it was inferred that angiotensin-receptor blockade by olmesartan results in the inhibition of AII-induced activation of Src, ERK1/2, and JNK in RASMC. Olmesartan may be a potent inhibitor of AII-induced VSMC migration, which may be involved in the progression of atherosclerosis.

  20. Inhibition of benzopyrene-diol-epoxide (BPDE)-induced bax and caspase-9 by cadmium: Role of mitogen activated protein kinase

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Jagat J.; Gupta, Suresh K. [State University of New York College at Buffalo, Environ. Toxicol. and Chem., Great Lakes Center, 1300 Elmwood Avenue, Buffalo, NY 14222 (United States); Kumar, Subodh [State University of New York College at Buffalo, Environ. Toxicol. and Chem., Great Lakes Center, 1300 Elmwood Avenue, Buffalo, NY 14222 (United States)], E-mail: kumars@buffalostate.edu

    2009-02-10

    Cadmium, a major metal constituent of tobacco smoke, elicits synergistic enhancement of cell transformation when combined with benzo[a]pyrene (BP) or other polynuclear aromatic hydrocarbons (PAHs). The mechanism underlying this synergism is not clearly understood. Present study demonstrates that (+/-)-anti-benzo[a]pyrene-7,8-diol-9,10-epoxide (BPDE), an ultimate carcinogen of BP, induces apoptosis in human leukemic HL-60 cells and others, and cadmium at non-cytotoxic concentration inhibits BPDE-induced apoptosis. We observed that BPDE treatment also activates all three MAP kinases e.g. ERK1/2, p38 and JNK in HL-60 cells, and inhibition of BPDE-induced apoptosis by cadmium is associated with down-regulation of pro-apoptotic bax induction/caspase-9 activation and up-regulation of ERK phosphorylation, whereas p38 MAP kinase and c-Jun phosphorylation (indicative of JNK activation) remain unaffected. Inhibition of ERKs by prior treatment of cells with 10 {mu}M U0126 relieves cadmium-mediated inhibition of apoptosis/bax induction/caspase-9 activation. Our results suggest that cadmium inhibits BPDE-induced apoptosis by modulating apoptotic signaling through up-regulation of ERK, which is known to promote cell survival.

  1. The stress-activated protein kinases p38α/β and JNK1/2 cooperate with Chk1 to inhibit mitotic entry upon DNA replication arrest.

    Science.gov (United States)

    Llopis, Alba; Salvador, Noelia; Ercilla, Amaia; Guaita-Esteruelas, Sandra; Barrantes, Ivan del Barco; Gupta, Jalaj; Gaestel, Matthias; Davis, Roger J; Nebreda, Angel R; Agell, Neus

    2012-10-01

    Accurate DNA replication is crucial for the maintenance of genome integrity. To this aim, cells have evolved complex surveillance mechanisms to prevent mitotic entry in the presence of partially replicated DNA. ATR and Chk1 are key elements in the signal transduction pathways of DNA replication checkpoint; however, other kinases also make significant contributions. We show here that the stress kinases p38 and JNK are activated when DNA replication is blocked, and that their activity allows S/M, but not G 2/M, checkpoint maintenance when Chk1 is inhibited. Activation of both kinases by DNA replication inhibition is not mediated by the caffeine-sensitive kinases ATR or ATM. Phosphorylation of MKK3/6 and MKK4, p38 and JNK upstream kinases was also observed upon DNA replication inhibition. Using a genetic approach, we dissected the p38 pathway and showed that both p38α and p38β isoforms collaborate to inhibit mitotic entry. We further defined MKK3/6 and MK2/3 as the key upstream and downstream elements in the p38 signaling cascade after replication arrest. Accordingly, we found that the stress signaling pathways collaborate with Chk1 to keep cyclin B1/Cdk1 complexes inactive when DNA replication is inhibited, thereby preventing cell cycle progression when DNA replication is stalled. Our results show a complex response to replication stress, where multiple pathways are activated and fulfill overlapping roles to prevent mitotic entry with unreplicated DNA.

  2. Formononetin, an isoflavone, activates AMP-activated protein kinase/β-catenin signalling to inhibit adipogenesis and rescues C57BL/6 mice from high-fat diet-induced obesity and bone loss.

    Science.gov (United States)

    Gautam, Jyoti; Khedgikar, Vikram; Kushwaha, Priyanka; Choudhary, Dharmendra; Nagar, Geet Kumar; Dev, Kapil; Dixit, Preety; Singh, Divya; Maurya, Rakesh; Trivedi, Ritu

    2017-03-01

    Balance between adipocyte and osteoblast differentiation is the key link of disease progression in obesity and osteoporosis. We have previously reported that formononetin (FNT), an isoflavone extracted from Butea monosperma, stimulates osteoblast formation and protects against postmenopausal bone loss. The inverse relationship between osteoblasts and adipocytes prompted us to analyse the effect of FNT on adipogenesis and in vivo bone loss, triggered by high-fat diet (HFD)-induced obesity. The anti-obesity effect and mechanism of action of FNT was determined in 3T3-L1 cells and HFD-induced obese male mice. Our findings show that FNT suppresses the adipogenic differentiation of 3T3-L1 fibroblasts, through down-regulation of key adipogenic markers such as PPARγ, CCAAT/enhancer-binding protein alpha (C/EBPα) and sterol regulatory element-binding protein (SREBP) and inhibits intracellular TAG accumulation. Increased intracellular reactive oxygen species levels and AMP-activated protein kinase (AMPK) activation accompanied by stabilisation of β-catenin were attributed to the anti-adipogenic action of FNT. In vivo, 12 weeks of FNT treatment inhibited the development of obesity in mice by attenuating HFD-induced body weight gain and visceral fat accumulation. The anti-obesity effect of FNT results from increased energy expenditure. FNT also protects against HFD-induced dyslipidaemia and rescues deterioration of trabecular bone volume by increasing bone formation and decreasing bone resorbtion caused by HFD. FNT's rescuing action against obesity-induced osteoporosis commenced at the level of progenitors, as bone marrow progenitor cells, obtained from the HFD mice group supplemented with FNT, showed increased osteogenic and decreased adipogenic potentials. Our findings suggest that FNT inhibits adipogenesis through AMPK/β-catenin signal transduction pathways and protects against HFD-induced obesity and bone loss.

  3. Green tea epigallocatechin gallate inhibits insulin stimulation of adipocyte glucose uptake via the 67-kilodalton laminin receptor and AMP-activated protein kinase pathways.

    Science.gov (United States)

    Hsieh, Chi-Fen; Tsuei, Yi-Wei; Liu, Chi-Wei; Kao, Chung-Cheng; Shih, Li-Jane; Ho, Low-Tone; Wu, Liang-Yi; Wu, Chi-Peng; Tsai, Pei-Hua; Chang, Hsin-Huei; Ku, Hui-Chen; Kao, Yung-Hsi

    2010-10-01

    Insulin and (-)-epigallocatechin gallate (EGCG) are reported to regulate obesity and fat accumulation, respectively. This study investigated the pathways involved in EGCG modulation of insulin-stimulated glucose uptake in 3T3-L1 and C3H10T1/2 adipocytes. EGCG inhibited insulin stimulation of adipocyte glucose uptake in a dose- and time-dependent manner. The concentration of EGCG that decreased insulin-stimulated glucose uptake by 50-60% was approximately 5-10 µM for a period of 2 h. At 10 µM, EGCG and gallic acid were more effective than (-)-epicatechin, (-)-epigallocatechin, and (-)-epicatechin 3-gallate. We identified the EGCG receptor [also known as the 67-kDa laminin receptor (67LR)] in fat cells and extended the findings for this study to clarify whether EGCG-induced changes in insulin-stimulated glucose uptake in adipocytes could be mediated through the 67LR. Pretreatment of adipocytes with a 67LR antibody, but not normal rabbit immunoglobulin, prevented the effects of EGCG on insulin-increased glucose uptake. This suggests that the 67LR mediates the effect of EGCG on insulin-stimulated glucose uptake in adipocytes. Moreover, pretreatment with an AMP-activated protein kinase (AMPK) inhibitor, such as compound C, but not with a glutathione (GSH) activator, such as N-acetyl-L-cysteine (NAC), blocked the antiinsulin effect of EGCG on adipocyte glucose uptake. These data suggest that EGCG exerts its anti-insulin action on adipocyte glucose uptake via the AMPK, but not the GSH, pathway. The results of this study possibly support that EGCG mediates fat content. © Georg Thieme Verlag KG Stuttgart · New York.

  4. High mobility group box-1 protein inhibits regulatory T cell immune activity in liver failure in patients with chronic hepatitis B

    Institute of Scientific and Technical Information of China (English)

    Lu-WenWang; Hui Chen; Zuo-Jiong Gong

    2010-01-01

    BACKGROUND: Liver failure in chronic hepatitis B (CHB) patients is a severe, life-threatening condition. Intestinal endotoxemia plays a significant role in the progress to liver failure. High mobility group box-1 (HMGB1) protein is involved in the process of endotoxemia. Regulatory T (Treg) cells maintain immune tolerance and contribute to the immunological hyporesponsiveness against HBV infection. However, the roles of HMGB1 and Treg cells in the pathogenesis of liver failure in CHB patients, and whether HMGB1 affects the immune activity of Treg cells are poorly known at present, and so were explored in this study. METHODS: The levels of HMGB1 expression were detected by ELISA, real-time RT-PCR, and Western blotting, and the percentage of CD4+CD25+CD127low Treg cells among CD4+cells was detected by flow cytometry in liver failure patients with chronic HBV infection, CHB patients, and healthy controls. Then, CD4+CD25+CD127low Treg cells isolated from the peripheral blood mononuclear cells from CHB patients were stimulated with HMGB1 at different concentrations or at various intervals. The effect of HMGB1 on the immune activity of Treg cells was assessed by a suppression assay of the allogeneic mixed lymphocyte response. The levels of forkhead box P3 (Foxp3) expression in Treg cells treated with HMGB1 were detected by RT-PCR and Western blotting. RESULTS: A higher level of HMGB1 expression and a lower percentage of Treg cells within the population of CD4+ cells were found in liver failure patients than in CHB patients (82.6±20.1 μg/L vs. 34.2±13.7 μg/L; 4.55±1.34% vs. 9.52± 3.89%, respectively). The immune activity of Treg cells was significantly weakened and the levels of Foxp3 expression were reduced in a dose- or time-dependent manner when Treg cells were stimulated with HMGB1 in vitro. CONCLUSIONS: The high level of HMGB1 and the low percentage of Treg cells play an important role in the pathogenesis of liver failure in patients with chronic HBV infection

  5. The characterization of the soybean polygalacturonase-inhibiting proteins (Pgip) gene family reveals that a single member is responsible for the activity detected in soybean tissues.

    Science.gov (United States)

    D'Ovidio, R; Roberti, S; Di Giovanni, M; Capodicasa, C; Melaragni, M; Sella, L; Tosi, P; Favaron, F

    2006-08-01

    Polygalacturonase-inhibiting proteins (PGIPs) are leucine-rich repeat (LRR) proteins that inhibit fungal endopolygalacturonases (PGs). They are encoded by multigene families whose members show functional redundancy and subfunctionalization for recognition of fungal PGs. In order to expand the information on the structure and functional features of legume PGIP, we have isolated and characterized four members of the soybean Pgip gene family and determined the properties of the encoded protein products. Sequence analysis showed that these genes form two clusters: one cluster of about 5 kbp containing Gmpgip1 and Gmpgip2, and the other containing Gmpgip3 and Gmpgip4 within a 60 kb fragment of a separate BAC clone. Sequence diversification of the four members resides mainly in the xxLxLxx region that includes residues forming the beta-sheet B1. When compared with other legume Pgip genes, Gmpgip3 groups with the bean genes Pvpgip1 and Pvpgip2, suggesting that these genes are closer to the ancestral gene. At the protein level, only GmPGIP3 shows the capability to inhibit fungal PGs. The spectrum of inhibition of GmPGIP3 against eight different fungal PGs mirrors that of the PGIP purified from soybean tissues and is similar to that of the bean PvPGIP2, one of the most efficient inhibitors so far characterized. We also report that the four Gmpgip genes are differentially regulated after wounding or during infection with the fungal pathogen Sclerotinia sclerotiorum. Following fungal infection Gmpgip3 is up regulated promptly, while Gmpgip2 is delayed.

  6. cAMP inhibits modulation of airway smooth muscle phenotype via the exchange protein activated by cAMP (Epac) and protein kinase A

    NARCIS (Netherlands)

    Roscioni, Sara S.; Dekkers, Bart G. J.; Prins, Alwin G.; Menzen, Mark H.; Meurs, Herman; Schmidt, Martina; Maarsingh, Harm

    BACKGROUND AND PURPOSE Changes in airway smooth muscle (ASM) phenotype may contribute to the pathogenesis of airway disease. Platelet-derived growth factor (PDGF) switches ASM from a contractile to a proliferative, hypo-contractile phenotype, a process requiring activation of extracellular

  7. Ketamine inhibits tumor necrosis factor-alpha and interleukin-6 gene expressions in lipopolysaccharide-stimulated macrophages through suppression of toll-like receptor 4-mediated c-Jun N-terminal kinase phosphorylation and activator protein-1 activation.

    Science.gov (United States)

    Wu, Gone-Jhe; Chen, Ta-Liang; Ueng, Yune-Fang; Chen, Ruei-Ming

    2008-04-01

    Our previous study showed that ketamine, an intravenous anesthetic agent, has anti-inflammatory effects. In this study, we further evaluated the effects of ketamine on the regulation of tumor necrosis factor-alpha (TNF-alpha) and interlukin-6 (IL-6) gene expressions and its possible signal-transducing mechanisms in lipopolysaccharide (LPS)-activated macrophages. Exposure of macrophages to 1, 10, and 100 microM ketamine, 100 ng/ml LPS, or a combination of ketamine and LPS for 1, 6, and 24 h was not cytotoxic to macrophages. A concentration of 1000 microM of ketamine alone or in combined treatment with LPS caused significant cell death. Administration of LPS increased cellular TNF-alpha and IL-6 protein levels in concentration- and time-dependent manners. Meanwhile, treatment with ketamine concentration- and time-dependently alleviated the enhanced effects. LPS induced TNF-alpha and IL-6 mRNA syntheses. Administration of ketamine at a therapeutic concentration (100 microM) significantly inhibited LPS-induced TNF-alpha and IL-6 mRNA expressions. Application of toll-like receptor 4 (TLR4) small interfering (si)RNA into macrophages decreased cellular TLR4 levels. Co-treatment of macrophages with ketamine and TLR4 siRNA decreased the LPS-induced TNF-alpha and IL-6 productions more than alone administration of TLR4 siRNA. LPS stimulated phosphorylation of c-Jun N-terminal kinase and translocation of c-Jun and c-Fos from the cytoplasm to nuclei. However, administration of ketamine significantly decreased LPS-induced activation of c-Jun N-terminal kinase and translocation of c-Jun and c-Fos. LPS increased the binding of nuclear extracts to activator protein-1 consensus DNA oligonucleotides. Administration of ketamine significantly ameliorated LPS-induced DNA binding activity of activator protein-1. Therefore, a clinically relevant concentration of ketamine can inhibit TNF-alpha and IL-6 gene expressions in LPS-activated macrophages. The suppressive mechanisms occur through

  8. Enzymatic Treatment of Whey Proteins in Cow's Milk Results in Differential Inhibition of IgE-Mediated Mast Cell Activation Compared to T-Cell Activation

    NARCIS (Netherlands)

    Knipping, Karen; van Esch, Betty C. A. M.; van Ieperen-van Dijk, Adrie G.; van Hoffen, Els; van Baalen, Ton; Knippels, Leon M. J.; van der Heide, Sicco; Dubois, Anthony E. J.; Garssen, Johan; Knol, Edward F.

    2012-01-01

    Background: Cow's milk (CM) hydrolysates are frequently used as milk substitutes for children with CM allergy. In hydrolysates, allergenic epitopes within CM proteins are diminished by enzymatic treatment. The aim of this study was to examine the allergenic and immunogenic properties of whey protein

  9. Adenine nucleotides inhibit proliferation of the human lung adenocarcinoma cell line LXF-289 by activation of nuclear factor kappaB1 and mitogen-activated protein kinase pathways.

    Science.gov (United States)

    Schäfer, Rainer; Hartig, Roland; Sedehizade, Fariba; Welte, Tobias; Reiser, Georg

    2006-08-01

    Extracellular nucleotides have a profound role in the regulation of the proliferation of diseased tissue. We studied how extracellular nucleotides regulate the proliferation of LXF-289 cells, the adenocarcinoma-derived cell line from human lung bronchial tumor. ATP and ADP strongly inhibited LXF-289 cell proliferation. The nucleotide potency profile was ATP = ADP = ATPgammaS > > UTP, UDP, whereas alpha,beta-methylene-ATP, beta,gamma-methylene-ATP, 2',3'-O-(4-benzoylbenzoyl)-ATP, AMP and UMP were inactive. The nucleotide potency profile and the total blockade of the ATP-mediated inhibitory effect by the phospholipase C inhibitor U-73122 clearly show that P2Y receptors, but not P2X receptors, control LXF-289 cell proliferation. Treatment of proliferating LXF-289 cells with 100 microm ATP or ADP induced significant reduction of cell number and massive accumulation of cells in the S phase. Arrest in S phase is also indicated by the enhancement of the antiproliferative effect of ATP by coapplication of the cytostatic drugs cisplatin, paclitaxel and etoposide. Inhibition of LXF-289 cell proliferation by ATP was completely reversed by inhibitors of extracellular signal related kinase-activating kinase/extracellular signal related kinase 1/2 (PD98059, U0126), p38 mitogen-activated protein kinase (SB203508), phosphatidylinositol-3-kinase (wortmannin), and nuclear factor kappaB1 (SN50). Western blot analysis revealed transient activation of p38 mitogen-activated protein kinase, extracellular signal-related kinase 1/2, and nuclear factor kappaB1 and possibly new formation of p50 from its precursor p105. ATP-induced attenuation of LXF-289 cell proliferation was accompanied by transient translocation of p50 nuclear factor kappaB1 and extracellular signal-related kinase 1/2 to the nucleus in a similar time period. In summary, inhibition of LXF-289 cell proliferation is mediated via P2Y receptors by activation of multiple mitogen-activated protein kinase pathways and nuclear

  10. Soluble guanylyl cyclase-activated cyclic GMP-dependent protein kinase inhibits arterial smooth muscle cell migration independent of VASP-serine 239 phosphorylation.

    Science.gov (United States)

    Holt, Andrew W; Martin, Danielle N; Shaver, Patti R; Adderley, Shaquria P; Stone, Joshua D; Joshi, Chintamani N; Francisco, Jake T; Lust, Robert M; Weidner, Douglas A; Shewchuk, Brian M; Tulis, David A

    2016-09-01

    Coronary artery disease (CAD) accounts for over half of all cardiovascular disease-related deaths. Uncontrolled arterial smooth muscle (ASM) cell migration is a major component of CAD pathogenesis and efforts aimed at attenuating its progression are clinically essential. Cyclic nucleotide signaling has long been studied for its growth-mitigating properties in the setting of CAD and other vascular disorders. Heme-containing soluble guanylyl cyclase (sGC) synthesizes cyclic guanosine monophosphate (cGMP) and maintains vascular homeostasis predominantly through cGMP-dependent protein kinase (PKG) signaling. Considering that reactive oxygen species (ROS) can interfere with appropriate sGC signaling by oxidizing the cyclase heme moiety and so are associated with several CVD pathologies, the current study was designed to test the hypothesis that heme-independent sGC activation by BAY 60-2770 (BAY60) maintains cGMP levels despite heme oxidation and inhibits ASM cell migration through phosphorylation of the PKG target and actin-binding vasodilator-stimulated phosphoprotein (VASP). First, using the heme oxidant ODQ, cGMP content was potentiated in the presence of BAY60. Using a rat model of arterial growth, BAY60 significantly reduced neointima formation and luminal narrowing compared to vehicle (VEH)-treated controls. In rat ASM cells BAY60 significantly attenuated cell migration, reduced G:F actin, and increased PKG activity and VASP Ser239 phosphorylation (pVASP·S239) compared to VEH controls. Site-directed mutagenesis was then used to generate overexpressing full-length wild type VASP (FL-VASP/WT), VASP Ser239 phosphorylation-mimetic (FL-VASP/239D) and VASP Ser239 phosphorylation-resistant (FL-VASP/239A) ASM cell mutants. Surprisingly, FL-VASP/239D negated the inhibitory effects of FL-VASP/WT and FL-VASP/239A cells on migration. Furthermore, when FL-VASP mutants were treated with BAY60, only the FL-VASP/239D group showed reduced migration compared to its VEH controls

  11. Structure-activity relationships of chromone derivatives toward the mechanism of interaction with and inhibition of breast cancer resistance protein ABCG2.

    Science.gov (United States)

    Winter, Evelyn; Lecerf-Schmidt, Florine; Gozzi, Gustavo; Peres, Basile; Lightbody, Mark; Gauthier, Charlotte; Ozvegy-Laczka, Csilla; Szakacs, Gergely; Sarkadi, Balazs; Creczynski-Pasa, Tânia B; Boumendjel, Ahcène; Di Pietro, Attilio

    2013-12-27

    We recently identified a chromone derivative, 5-(4-bromobenzyloxy)-2-(2-(5-methoxyindolyl)ethyl-1-carbonyl)-4H-chromen-4-one, named here as chromone 1, as a potent, selective, nontoxic, and nontransported inhibitor of ABCG2-mediated drug efflux (Valdameri et al. J. Med. Chem. 2012, 55, 966). We have now synthesized a series of 14 derivatives to study the structure-activity relationships controlling both drug efflux and ATPase activity of ABCG2 and to elucidate their molecular mechanism of interaction and inhibition. It was found that the 4-bromobenzyloxy substituent at position 5 and the methoxyindole are important for both inhibition of mitoxantrone efflux and inhibition of basal ATPase activity. Quite interestingly, methylation of the central amide nitrogen strongly altered the high affinity for ABCG2 and the complete inhibition of mitoxantrone efflux and coupled ATPase activity. These results allowed the identification of a critical central inhibitory moiety of chromones that has never been investigated previously in any series of inhibitors.

  12. Inhibition of hepatitis C virus protein expression by RNA interference.

    Science.gov (United States)

    Sen, Adrish; Steele, Robert; Ghosh, Asish K; Basu, Arnab; Ray, Ranjit; Ray, Ratna B

    2003-10-01

    Hepatitis C virus (HCV) is a serious human pathogen and an estimated 170 million people are infected worldwide. Current therapeutic regimens have shown limited efficacy against selected genotypes of the virus. The phenomenon of RNA interference can be used to selectively block homologous genes post-transcriptionally, and has revolutionized approaches to study gene function. In this report, we have demonstrated that small interfering RNAs (siRNAs) targeted against NS5A of HCV genotype 1a specifically inhibit NS5A RNA and protein expression in a human hepatoma (HepG2) cell line. Expression of endogenous alpha-actin and the ds-RNA activated serine/threonine kinase-PKR were unaltered, demonstrating that the inhibitory effect observed from siRNA was specific to the HCV NS5A protein. We next examined whether siRNA directed against NS5A could inhibit core protein expression, the first gene product synthesized in virus infected cells due to its localization at the 5' end of the HCV polyprotein. For this purpose, a full-length cDNA clone from HCV (H77, genotype 1a) was used, and results indicated that the introduction of NS5A targeted siRNA resulted in an inhibition of NS5A and core protein expression. Moreover, we observed that this siRNA effectively inhibited NS5A mediated activation of the IL-8 promoter. Taken together, our results demonstrated that siRNA was effective in inhibiting HCV protein expression, and may have therapeutic potential to limit HCV replication in chronically infected patients.

  13. Fasciola hepatica fatty acid binding protein inhibits TLR4 activation and suppresses the inflammatory cytokines induced by lipopolysaccharide in vitro and in vivo.

    Science.gov (United States)

    Martin, Ivelisse; Cabán-Hernández, Kimberly; Figueroa-Santiago, Olgary; Espino, Ana M

    2015-04-15

    TLR4, the innate immunity receptor for bacterial endotoxins, plays a pivotal role in the induction of inflammatory responses. There is a need to develop molecules that block either activation through TLR4 or the downstream signaling pathways to inhibit the storm of inflammation typically elicited by bacterial LPS, which is a major cause of the high mortality associated with bacterial sepsis. We report in this article that a single i.p. injection of 15 μg fatty acid binding protein from Fasciola hepatica (Fh12) 1 h before exposure to LPS suppressed significantly the expression of serum inflammatory cytokines in a model of septic shock using C57BL/6 mice. Because macrophages are a good source of IL-12p70 and TNF-α, and are critical in driving adaptive immunity, we investigated the effect of Fh12 on the function of mouse bone marrow-derived macrophages (bmMΦs). Although Fh12 alone did not induce cytokine expression, it significantly suppressed the expression of IL-12, TNF-α, IL-6, and IL-1β cytokines, as well as inducible NO synthase-2 in bmMΦs, and also impaired the phagocytic capacity of bmMΦs. Fh12 had a limited effect on the expression of inflammatory cytokines induced in response to other TLR ligands. One mechanism used by Fh12 to exert its anti-inflammatory effect is binding to the CD14 coreceptor. Moreover, it suppresses phosphorylation of ERK, p38, and JNK. The potent anti-inflammatory properties of Fh12 demonstrated in this study open doors to further studies directed at exploring the potential of this molecule as a new class of drug against septic shock or other inflammatory diseases.

  14. Inhibition of formyl peptide-stimulated superoxide anion generation by Fal-002-2 occurs mainly through the blockade of the p21-activated kinase and protein kinase C signaling pathways in ratneutrophils.

    Science.gov (United States)

    Tsai, Ya-Ru; Huang, Li-Jiau; Lin, Hui-Yi; Hung, Yun-Jie; Lee, Miau-Rong; Kuo, Sheng-Chu; Hsu, Mei-Feng; Wang, Jih-Pyang

    2013-02-15

    In formyl-Met-Leu-Phe (fMLP)-stimulated rat neutrophils, a synthetic compound, 6-chloro-2-(2-chlorophenyl)-4-oxo-1,4-dihydroquinoline-3-carboxylate (Fal-002-2), inhibited superoxide anion (O2(•-)) generation with an IC50 value of about 11μM, which was not mediated by scavenging the generated O2(•-) or by a cytotoxic effect on neutrophils. Fal-002-2 effectively attenuated the phosphorylation of Ser residues in p47(phox) and the association between p47(phox) and p22(phox) in fMLP-stimulated neutrophils. The interaction of p47(phox) with protein kinase C (PKC) isoforms (α, βI, βII, δ and ζ) was attenuated by Fal-002-2 with a similar IC50 value to that required for inhibition of O2(•-) generation, whereas Fal-002-2 had no prominent effect on PKC isoform membrane translocation and did not affect the kinase activity. Moreover, Fal-002-2 had no effect on the phosphorylation of Akt and downstream glycogen synthase kinase-3β, only slightly affected the intracellular free Ca(2+) concentration, phosphorylation of extracellular signal-regulated kinase and p38 mitogen-activated protein kinase (MAPK), but effectively attenuated the downstream MAPK-activated protein kinase-2 phosphorylation. The interaction of p21-activated kinase (PAK) 1with p47(phox), phosphorylation of PAK1 (Thr423/Ser144) and the membrane recruitment of PAK1 were effectively inhibited by Fal-002-2. Fal-002-2 also blocked the activation of Rac1 and Cdc42 in a concentration range that effectively inhibited PAK activation. Taken together, these results suggest that Fal-002-2 inhibits fMLP-stimulated O2(•-) generation in neutrophils mainly through the blockade of PKC and PAK signaling pathways and partly through p38 MAPK signaling.

  15. Prednisone inhibits the focal adhesion kinase/receptor activator of NF-κB ligand/mitogen-activated protein kinase signaling pathway in rats with adriamycin-induced nephropathy.

    Science.gov (United States)

    Ye, Minyuan; Zheng, Jing; Chen, Xiaoying; Chen, Xuelan; Wu, Xinhong; Lin, Xiuqin; Liu, Yafang

    2015-11-01

    The aim of the present study was to investigate the mechanisms underlying the effects of prednisone on adriamycin-induced nephritic rat kidney damage via the focal adhesion kinase (FAK)/receptor activator of nuclear factor-κB ligand (RANKL)/mitogen‑activated protein kinase (MAPK) signaling pathway. An adriamycin‑induced nephritic rat model was established to investigate these mechanisms. A total of 30 healthy male Sprague‑Dawley rats were randomly assigned to the normal, model or prednisone group. Samples of urine were collected over the course of 24 h at days 7, 14, and 28, and renal cortex tissue samples were harvested at days 14, and 28 following nephritic rat model establishment. The total urinary protein content was measured by biuret colorimetry. Pathological changes in the kidney tissue samples were observed using an electron microscope. The mRNA expressions levels of FAK, RANKL, p38, extracellular signal‑regulated kinase (ERK), c‑Jun N‑terminal kinase (JNK), and nephrin were then quantified by reverse transcription‑quantitative polymerase chain reaction. In addition, the protein expressions levels of FAK, RANKL, p38, ERK, JNK, phosphorylated (p)‑FAK, p‑ERK, and p‑JNK were quantified by western blotting. As compared with the normal group, the protein expression levels of FAK, RANKL, p-FAK, p38 and p-ERK in the model group were increased. In the prednisone group, the protein expression levels of p-ERK decreased, as compared with the normal group. In the prednisone group, the urinary protein levels, the protein expression levels of FAK, RANKL, p38, p-FAK, p-p38 and the mRNA expression levels of FAK, p38, RANKL, ERK, JNK decreased, as compared with the model group. In the prednisone group, the mRNA and protein expression levels of nephrin and the serum expression levels of RANKL increased, the serum expression levels of osteoprotegerin (OPG) were decreased, as compared with the model group. No significant changes in the protein expression

  16. Desferrioxamine Inhibits Protein Tyrosine Nitration: Mechanisms and Implications

    Science.gov (United States)

    Adgent, Margaret A.; Squadrito, Giuseppe L.; Ballinger, Carol A.; Krzywanski, David M.; Lancaster, Jack R.; Postlethwait, Edward M.

    2012-01-01

    Tissues are exposed to exogenous and endogenous nitrogen dioxide (•NO2), which is the terminal agent in protein tyrosine nitration. Besides iron chelation, the hydroxamic acid (HA) desferrioxamine (DFO) shows multiple functionalities including nitration inhibition. To investigate mechanisms whereby DFO affects 3-nitrotyrosine (3-NT) formation, we utilized gas phase •NO2 exposures, to limit introduction of other reactive species, and a lung surface model wherein red cell membranes (RCM) were immobilized under a defined aqueous film. When RCM were exposed to •NO2 covered by +/− DFO: (i) DFO inhibited 3-NT formation more effectively than other HA and non-HA chelators; (ii) 3-NT inhibition occurred at very low [DFO] for prolonged times; and (iii) 3-NT formation was iron independent but inhibition required DFO present. DFO poorly reacted with •NO2 compared to ascorbate, assessed via •NO2 reactive absorption and aqueous phase oxidation rates, yet limited 3-NT formation at far lower concentrations. DFO also inhibited nitration under aqueous bulk phase conditions, and inhibited 3-NT generated by active myeloperoxidase “bound” to RCM. Per the above and kinetic analyses suggesting preferential DFO versus •NO2 reaction within membranes, we conclude that DFO inhibits 3-NT formation predominantly by facile repair of the tyrosyl radical intermediate, which prevents •NO2 addition, and thus nitration, and potentially influences biochemical functionalities. PMID:22705369

  17. Tim-4 inhibition of T-cell activation and T helper type 17 differentiation requires both the immunoglobulin V and mucin domains and occurs via the mitogen-activated protein kinase pathway.

    LENUS (Irish Health Repository)

    Cao, Wei

    2011-06-01

    Emerging experimental data suggest an important role for the T-cell immunoglobulin mucin 1 (Tim-1):Tim-4 pathway in autoimmune and alloimmune responses in vivo. Using a Tim-4 ectodomain human IgG Fc fusion protein we studied the role of Tim-4 in T-cell activation, signalling and differentiation responses in vitro. We demonstrate that Tim-4Fc can inhibit naive and pre-activated T-cell activation, proliferation and cytokine secretion via a Tim-1-independent pathway. Tim-4 contains immunoglobulin variable (IgV) and mucin domains; to identify which domain accounts for the inhibitory effect novel Tim-4 fusion proteins containing either the IgV or mucin domain were generated. We demonstrate that both IgV and mucin domains are required for the inhibitory effects and that they are mediated at least in part by inhibition of extracellular signal-regulated kinase pathway activity. Given the emerging interest in the role of the Tim family in T helper type 17 (Th17) cells, which play an important role in autoimmune disease and transplantation tolerance, our data show that Tim-4Fc can prevent polarization of CD4(+) T cells to the Th17 phenotype. Collectively, our results highlight an inhibitory role for Tim-4Fc in vitro, which we propose is mediated by a receptor other than Tim-1. In addition, this study provides new insights into the role of Tim-4Fc in regulating Th17 immune responses and may open a new avenue for autoimmune therapy.

  18. Hsp90 inhibition decreases mitochondrial protein turnover.

    Directory of Open Access Journals (Sweden)

    Daciana H Margineantu

    Full Text Available BACKGROUND: Cells treated with hsp90 inhibitors exhibit pleiotropic changes, including an expansion of the mitochondrial compartment, accompanied by mitochondrial fragmentation and condensed mitochondrial morphology, with ultimate compromise of mitochondrial integrity and apoptosis. FINDINGS: We identified several mitochondrial oxidative phosphorylation complex subunits, including several encoded by mtDNA, that are upregulated by hsp90 inhibitors, without corresponding changes in mRNA abundance. Post-transcriptional accumulation of mitochondrial proteins observed with hsp90 inhibitors is also seen in cells treated with proteasome inhibitors. Detailed studies of the OSCP subunit of mitochondrial F1F0-ATPase revealed the presence of mono- and polyubiquitinated OSCP in mitochondrial fractions. We demonstrate that processed OSCP undergoes retrotranslocation to a trypsin-sensitive form associated with the outer mitochondrial membrane. Inhibition of proteasome or hsp90 function results in accumulation of both correctly targeted and retrotranslocated mitochondrial OSCP. CONCLUSIONS: Cytosolic turnover of mitochondrial proteins demonstrates a novel connection between mitochondrial and cytosolic compartments through the ubiquitin-proteasome system. Analogous to defective protein folding in the endoplasmic reticulum, a mitochondrial unfolded protein response may play a role in the apoptotic effects of hsp90 and proteasome inhibitors.

  19. A Novel Mannose-binding Lectin/Ficolin-associated Protein Is Highly Expressed in Heart and Skeletal Muscle Tissues and Inhibits Complement Activation

    DEFF Research Database (Denmark)

    Skjoedt, M.-o.; Hummelshoj, T.; Palarasah, Y.

    2010-01-01

    -terminal amino acids. By use of quantitative PCR and MAP-1-specific immunohistochemistry, we found that MAP-1 is highly expressed in myocardial and skeletal muscle tissues as well as in liver hepatocytes with a different expression profile than that observed for MASP-1 and MASP-3. MAP-1 co-precipitated from...... human serum with MBL, ficolin-2, and ficolin-3, and recombinant MAP-1 was able to inhibit complement C4 deposition via both the ficolin-3 and MBL pathway. In conclusion we have identified a novel 45-kDa serum protein derived from the MASP1 gene, which is highly expressed in striated muscle tissues...

  20. Stabilizer-Guided Inhibition of Protein-Protein Interactions.

    Science.gov (United States)

    Milroy, Lech-Gustav; Bartel, Maria; Henen, Morkos A; Leysen, Seppe; Adriaans, Joris M C; Brunsveld, Luc; Landrieu, Isabelle; Ottmann, Christian

    2015-12-21

    The discovery of novel protein-protein interaction (PPI) modulators represents one of the great molecular challenges of the modern era. PPIs can be modulated by either inhibitor or stabilizer compounds, which target different though proximal regions of the protein interface. In principle, protein-stabilizer complexes can guide the design of PPI inhibitors (and vice versa). In the present work, we combine X-ray crystallographic data from both stabilizer and inhibitor co-crystal complexes of the adapter protein 14-3-3 to characterize, down to the atomic scale, inhibitors of the 14-3-3/Tau PPI, a potential drug target to treat Alzheimer's disease. The most potent compound notably inhibited the binding of phosphorylated full-length Tau to 14-3-3 according to NMR spectroscopy studies. Our work sets a precedent for the rational design of PPI inhibitors guided by PPI stabilizer-protein complexes while potentially enabling access to new synthetically tractable stabilizers of 14-3-3 and other PPIs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Manassantin B isolated from Saururus chinensis inhibits cyclooxygenase-2-dependent prostaglandin D2 generation by blocking Fyn-mediated nuclear factor-kappaB and mitogen activated protein kinase pathways in bone marrow derived-mast cells.

    Science.gov (United States)

    Lu, Yue; Hwang, Seung-Lark; Son, Jong Keun; Chang, Hyeun Wook

    2013-01-01

    The authors investigated the effect of manassantin B (Man B) isolated from Saururus chinensis (S. chinensis) on cyclooxygenase-2 (COX-2)-dependent prostaglandin D2 (PGD2) generation in mouse bone marrow derived-mast cells (BMMCs). Man B inhibited the generation of PGD2 dose-dependently by inhibiting COX-2 expression in immunoglobulin E (IgE)/Ag-stimulated BMMCs. To elucidate the mechanism responsible for the inhibition of COX-2 expression by Man B, the effects of Man B on the activation of nuclear factor-kappaB (NF-κB), a transcription factor essential and mitogen-activated protein kinases (MAPKs) for COX-2 induction, were examined. Man B attenuated the nuclear translocation of NF-κB p65 and its DNA-binding activity by inhibiting inhibitors of kappa Bα (IκBα) degradation and concomitantly suppressing IκB kinase (IKK) phosphorylation. In addition, Man B suppressed phosphorylation of MAPKs including extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun NH2-terminal kinase (JNK) and p38. It was also found that Man B suppressed Fyn kinase activation and consequent downstream signaling processes, including those involving Syk, Gab2, and Akt. Taken together, the present results suggest that Man B suppresses COX-2 dependent PGD2 generation by primarily inhibiting Fyn kinase in FcεRI-mediated mast cells.

  2. Hydrogen sulfide-mediated stimulation of mitochondrial electron transport involves inhibition of the mitochondrial phosphodiesterase 2A, elevation of cAMP and activation of protein kinase A.

    Science.gov (United States)

    Módis, Katalin; Panopoulos, Panagiotis; Coletta, Ciro; Papapetropoulos, Andreas; Szabo, Csaba

    2013-11-01

    Although hydrogen sulfide (H₂S) is generally known as a mitochondrial poison, recent studies show that lower concentrations of H₂S play a physiological role in the stimulation of mitochondrial electron transport and cellular bioenergetics. This effect involves electron donation at Complex II. Other lines of recent studies demonstrated that one of the biological actions of H₂S involves inhibition of cAMP and cGMP phosphodiesterases (PDEs). Given the emerging functional role of the mitochondrial isoform of cAMP PDE (PDE2A) in the regulation of mitochondrial function the current study investigated whether cAMP-dependent mechanisms participate in the stimulatory effect of NaHS on mitochondrial function. In isolated rat liver mitochondria, partial digestion studies localized PDE2A into the mitochondrial matrix. NaHS exerted a concentration-dependent inhibitory effect on recombinant PDE2A enzyme in vitro. Moreover, NaHS induced an elevation of cAMP levels when added to isolated mitochondria and stimulated the mitochondrial electron transport. The latter effect was inhibited by Rp-cAMP, an inhibitor of the cAMP-dependent protein kinase (PKA). The current findings suggest that the direct electron donating effect of NaHS is amplified by an intramitochondrial cAMP system, which may involve the inhibition of PDE2A and subsequent, cAMP-mediated stimulation of PKA.

  3. Inhibition of protein kinase C phosphorylation of hepatitis B virus capsids inhibits virion formation and causes intracellular capsid accumulation.

    Science.gov (United States)

    Wittkop, Linda; Schwarz, Alexandra; Cassany, Aurelia; Grün-Bernhard, Stefanie; Delaleau, Mildred; Rabe, Birgit; Cazenave, Christian; Gerlich, Wolfram; Glebe, Dieter; Kann, Michael

    2010-07-01

    Capsids of hepatitis B virus and other hepadnaviruses contain a cellular protein kinase, which phosphorylates the capsid protein. Some phosphorylation sites are shown to be essential for distinct steps of viral replication as pregenome packaging or plus strand DNA synthesis. Although different protein kinases have been reported to phosphorylate the capsid protein, varying experimental approaches do not allow direct comparison. Furthermore, the activity of a specific protein kinase has not yet been correlated to steps in the hepadnaviral life cycle. In this study we show that capsids from various sources encapsidate active protein kinase Calpha, irrespective of hepatitis B virus genotype and host cell. Treatment of a virion expressing cell line with a pseudosubstrate inhibitor showed that inhibition of protein kinase C phosphorylation did not affect genome maturation but resulted in capsid accumulation and inhibited virion release to the medium. Our results imply that different protein kinases have distinct functions within the hepadnaviral life cycle.

  4. Inhibition of p38 mitogen-activated protein kinase ameliorates radiation-induced ototoxicity in zebrafish and cochlea-derived cell lines.

    Science.gov (United States)

    Shin, Yoo Seob; Hwang, Hye Sook; Kang, Sung Un; Chang, Jae Won; Oh, Young-Taek; Kim, Chul-Ho

    2014-01-01

    Radiation is a widely used treatment for head and neck cancers, and one of its most severe side effects is ototoxicity. Radiation-induced ototoxicity has been demonstrated to be linked to the increased production of ROS and MAPK. We intended to investigate the effect of p38 inhibition on radiation-induced ototoxicity in cochlea-derived HEI-OC1 cells and in a zebrafish model. The otoprotective effect of p38 inhibition against radiation was tested in vitro in the organ of Corti-derived cell line, HEI-OC1, and in vivo in a zebrafish model. Radiation-induced apoptosis, mitochondrial dysfunction, and an increase of intracellular NO generation were demonstrated in HEI-OC1 cells. The p38-specific inhibitor, SB203580, ameliorated radiation-induced apoptosis and mitochondrial injury in HEI-OC1 cells. p38 inhibition reduced radiation-induced activation of JNK, p38, cytochrome c, and cleavage of caspase-3 and PARP in HEI-OC1 cells. Scanning electron micrography showed that SB203580 prevented radiation-induced destruction of kinocilium and stereocilia in zebrafish neuromasts. The results of this study suggest that p38 plays an important role in mediating radiation-induced ototoxicity and inhibition of p38 could be a plausible option for preventing radiation ototoxicity. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Functional interaction of hepatic nuclear factor-4 and peroxisome proliferator-activated receptor-gamma coactivator 1alpha in CYP7A1 regulation is inhibited by a key lipogenic activator, sterol regulatory element-binding protein-1c.

    Science.gov (United States)

    Ponugoti, Bhaskar; Fang, Sungsoon; Kemper, Jongsook Kim

    2007-11-01

    Insulin inhibits transcription of cholesterol 7alpha-hydroxylase (Cyp7a1), a key gene in bile acid synthesis, and the hepatic nuclear factor-4 (HNF-4) site in the promoter was identified as a negative insulin response sequence. Using a fasting/feeding protocol in mice and insulin treatment in HepG2 cells, we explored the inhibition mechanisms. Expression of sterol regulatory element-binding protein-1c (SREBP-1c), an insulin-induced lipogenic factor, inversely correlated with Cyp7a1 expression in mouse liver. Interaction of HNF-4 with its coactivator, peroxisome proliferator-activated receptor-gamma coactivator 1alpha (PGC-1alpha), was observed in livers of fasted mice and was reduced after feeding. Conversely, HNF-4 interaction with SREBP-1c was increased after feeding. In vitro studies suggested that SREBP-1c competed with PGC-1alpha for direct interaction with the AF2 domain of HNF-4. Reporter assays showed that SREBP-1c, but not of a SREBP-1c mutant lacking the HNF-4 interacting domain, inhibited HNF-4/PGC-1alpha transactivation of Cyp7a1. SREBP-1c also inhibited PGC-1alpha-coactivation of estrogen receptor, constitutive androstane receptor, pregnane X receptor, and farnesoid X receptor, implying inhibition of HNF-4 by SREBP-1c could extend to other nuclear receptors. In chromatin immunoprecipitation studies, HNF-4 binding to the promoter was not altered, but PGC-1alpha was dissociated, SREBP-1c and histone deacetylase-2 (HDAC2) were recruited, and acetylation of histone H3 was decreased upon feeding. Adenovirus-mediated expression of a SREBP-1c dominant-negative mutant, which blocks the interaction of SREBP-1c and HNF-4, partially but significantly reversed the inhibition of Cyp7a1 after feeding. Our data show that SREBP-1c functions as a non-DNA-binding inhibitor and mediates, in part, suppression of Cyp7a1 by blocking functional interaction of HNF-4 and PGC-1alpha. This mechanism may be relevant to known repression of many other HNF-4 target genes upon

  6. Chemical inhibition of bacterial protein tyrosine phosphatase suppresses capsule production.

    Science.gov (United States)

    Standish, Alistair J; Salim, Angela A; Zhang, Hua; Capon, Robert J; Morona, Renato

    2012-01-01

    Capsule polysaccharide is a major virulence factor for a wide range of bacterial pathogens, including Streptococcus pneumoniae. The biosynthesis of Wzy-dependent capsules in both gram-negative and -positive bacteria is regulated by a system involving a protein tyrosine phosphatase (PTP) and a protein tyrosine kinase. However, how the system functions is still controversial. In Streptococcus pneumoniae, a major human pathogen, the system is present in all but 2 of the 93 serotypes found to date. In order to study this regulation further, we performed a screen to find inhibitors of the phosphatase, CpsB. This led to the observation that a recently discovered marine sponge metabolite, fascioquinol E, inhibited CpsB phosphatase activity both in vitro and in vivo at concentrations that did not affect the growth of the bacteria. This inhibition resulted in decreased capsule synthesis in D39 and Type 1 S. pneumoniae. Furthermore, concentrations of Fascioquinol E that inhibited capsule also lead to increased attachment of pneumococci to a macrophage cell line, suggesting that this compound would inhibit the virulence of the pathogen. Interestingly, this compound also inhibited the phosphatase activity of the structurally unrelated gram-negative PTP, Wzb, which belongs to separate family of protein tyrosine phosphatases. Furthermore, incubation with Klebsiella pneumoniae, which contains a homologous phosphatase, resulted in decreased capsule synthesis. Taken together, these data provide evidence that PTPs are critical for Wzy-dependent capsule production across a spectrum of bacteria, and as such represents a valuable new molecular target for the development of anti-virulence antibacterials.

  7. Chemical inhibition of bacterial protein tyrosine phosphatase suppresses capsule production.

    Directory of Open Access Journals (Sweden)

    Alistair J Standish

    Full Text Available Capsule polysaccharide is a major virulence factor for a wide range of bacterial pathogens, including Streptococcus pneumoniae. The biosynthesis of Wzy-dependent capsules in both gram-negative and -positive bacteria is regulated by a system involving a protein tyrosine phosphatase (PTP and a protein tyrosine kinase. However, how the system functions is still controversial. In Streptococcus pneumoniae, a major human pathogen, the system is present in all but 2 of the 93 serotypes found to date. In order to study this regulation further, we performed a screen to find inhibitors of the phosphatase, CpsB. This led to the observation that a recently discovered marine sponge metabolite, fascioquinol E, inhibited CpsB phosphatase activity both in vitro and in vivo at concentrations that did not affect the growth of the bacteria. This inhibition resulted in decreased capsule synthesis in D39 and Type 1 S. pneumoniae. Furthermore, concentrations of Fascioquinol E that inhibited capsule also lead to increased attachment of pneumococci to a macrophage cell line, suggesting that this compound would inhibit the virulence of the pathogen. Interestingly, this compound also inhibited the phosphatase activity of the structurally unrelated gram-negative PTP, Wzb, which belongs to separate family of protein tyrosine phosphatases. Furthermore, incubation with Klebsiella pneumoniae, which contains a homologous phosphatase, resulted in decreased capsule synthesis. Taken together, these data provide evidence that PTPs are critical for Wzy-dependent capsule production across a spectrum of bacteria, and as such represents a valuable new molecular target for the development of anti-virulence antibacterials.

  8. Gypenoside protects cardiomyocytes against ischemia-reperfusion injury via the inhibition of mitogen-activated protein kinase mediated nuclear factor kappa B pathway in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Haijie eYu

    2016-06-01

    Full Text Available Gypenoside (GP is the major effective component of Gynostemma pentaphyllum and has been shown to encompass a variety of pharmacological activities. In this study, we investigated whether GP is able to protect cardiomyocytes against injury myocardial ischemia-reperfusion (I/R injury by using in vitro oxygen-glucose deprivation-reoxygenation (OGD/R H9c2 cell model and in vivo myocardial I/R rat model. We found that GP pre-treatment alleviated the impairments on the cardiac structure and function in I/R injured rats. Moreover, pre-treatment with GP significantly inhibited IкB-α phosphorylation and nuclear factor (NF-кB p65 subunit translocation into nuclei. GP and the MAPK pathway inhibitors also reduced the phosphorylation of ERK, JNK, and p38 in vitro. Specific inhibition of ERK, JNK, and p38 increased the cell viability of OGD/R injured cells. Taken together, our data demonstrated that GP protects cardiomyocytes against I/R injury by inhibiting NF-кB p65 activation via the MAPK signaling pathway both in vitro and in vivo. These findings suggest that GP may be a promising agent for the prevention or treatment of myocardial I/R injury.

  9. Gypenoside Protects Cardiomyocytes against Ischemia-Reperfusion Injury via the Inhibition of Mitogen-Activated Protein Kinase Mediated Nuclear Factor Kappa B Pathway In Vitro and In Vivo

    Science.gov (United States)

    Yu, Haijie; Shi, Liye; Qi, Guoxian; Zhao, Shijie; Gao, Yuan; Li, Yuzhe

    2016-01-01

    Gypenoside (GP) is the major effective component of Gynostemma pentaphyllum and has been shown to encompass a variety of pharmacological activities. In this study, we investigated whether GP is able to protect cardiomyocytes against injury myocardial ischemia–reperfusion (I/R) injury by using in vitro oxygen-glucose deprivation–reoxygenation (OGD/R) H9c2 cell model and in vivo myocardial I/R rat model. We found that GP pre-treatment alleviated the impairments on the cardiac structure and function in I/R injured rats. Moreover, pre-treatment with GP significantly inhibited IκB-α phosphorylation and nuclear factor (NF)-κB p65 subunit translocation into nuclei. GP and the MAPK pathway inhibitors also reduced the phosphorylation of ERK, JNK, and p38 in vitro. Specific inhibition of ERK, JNK, and p38 increased the cell viability of OGD/R injured cells. Taken together, our data demonstrated that GP protects cardiomyocytes against I/R injury by inhibiting NF-κB p65 activation via the MAPK signaling pathway both in vitro and in vivo. These findings suggest that GP may be a promising agent for the prevention or treatment of myocardial I/R injury. PMID:27313532

  10. Ubiquitylation of terminal deoxynucleotidyltransferase inhibits its activity.

    Directory of Open Access Journals (Sweden)

    So Maezawa

    Full Text Available Terminal deoxynucleotidyltransferase (TdT, which template-independently synthesizes DNA during V(DJ recombination in lymphoid cells, is ubiquitylated by a BPOZ-2/Cul3 complex, as the ubiquitin ligase, and then degraded by the 26 S proteasome. We show here that TdT is ubiquitylated by the Cul3-based ubiquitylation system in vitro. Because TdT could also be ubiquitylated in the absence of Cul/BPOZ-2, we determined that it could also be directly ubiquitylated by the E2 proteins UbcH5a/b/c and UbcH6, E3-independently. Furthermore, the ubiquitylated TdT inhibited its nucleotidyltransferase activity.

  11. Effect of Glucuronidation on the Potential of Kaempferol to Inhibit Serine/Threonine Protein Kinases

    NARCIS (Netherlands)

    Beekmann, Karsten; Haan, De Laura H.J.; Actis-Goretta, Lucas; Bladeren, Van Peter J.; Rietjens, Ivonne M.C.M.

    2016-01-01

    To study the effect of metabolic conjugation of flavonoids on the potential to inhibit protein kinase activity, the inhibitory effects of the dietary flavonol kaempferol and its major plasma conjugate kaempferol-3-O-glucuronide on protein kinases were studied. To this end, the inhibition of the p

  12. Ent-pimara-8(14), 15-dien-19-oic acid isolated from the roots of Aralia cordata inhibits induction of inflammatory mediators by blocking NF-kappaB activation and mitogen-activated protein kinase pathways.

    Science.gov (United States)

    Kang, Ok-Hwa; Chae, Hee-Sung; Choi, Jang-Gi; Oh, Yoo-Chang; Lee, Young-Seob; Kim, Jong-Hak; Seung, Man-Jun; Jang, Hye-Jin; Bae, Ki-Hwan; Lee, John-Hwa; Shin, Dong-Won; Kwon, Dong Yeul

    2008-12-28

    Macrophages play central roles in the innate immune system. The roots of Aralia cordata are widely used in Oriental medicine as a remedy for arthritis. During our program to screen medicinal plants for potential anti-inflammatory compounds, ent-pimara-8(14), 15-dien-19-oic acid (pimaradienoic acid; PA) was isolated from the roots of A. cordata. We examined the effect of PA on pro-inflammatory mediators in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. PA was found to significantly inhibit the production of nitric oxide (NO), prostaglandin E(2) (PGE(2)), and interleukin-6 (IL-6), as well as the expressions of inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), and IL-6. Furthermore, we examined whether mitogen-activated protein kinases (MAPKs) and phosphatidylinositol 3-kinase (PI3K) signaling pathways are involved in LPS-induced RAW 264.7 cells. We found that a p38 inhibitor (SB203580) and an ERK 1/2 inhibitor (PD98059) significantly affected LPS-induced IL-6 production. In contrast, a JNK 1/2 inhibitor (SP600125) and PI3K inhibitor (wortmannin or LY294002) did not block the induction of IL-6 production by LPS. The LPS-induced phosphorylation of p38 MAPK and extracellular signal-regulated kinase 1/2 (ERK1/2) was inhibited by PA, but not the phosphorylation of JNK 1/2 and AKT (Ser473). Moreover, PA suppressed I kappaB alpha degradation, NF-kappaB activation and luciferase activity. These results suggest that PA isolated from A. cordata has a potential regulatory effect on inflammatory iNOS, COX-2 and IL-6 expression through blockade of the phosphorylation of MAPKs following I kappaB alpha degradation and NF-kappaB activation.

  13. 17-Beta-estradiol inhibits transforming growth factor-beta signaling and function in breast cancer cells via activation of extracellular signal-regulated kinase through the G protein-coupled receptor 30.

    Science.gov (United States)

    Kleuser, Burkhard; Malek, Daniela; Gust, Ronald; Pertz, Heinz H; Potteck, Henrik

    2008-12-01

    Breast cancer development and breast cancer progression involves the deregulation of growth factors leading to uncontrolled cellular proliferation, invasion and metastasis. Transforming growth factor (TGF)-beta plays a crucial role in breast cancer because it has the potential to act as either a tumor suppressor or a pro-oncogenic chemokine. A cross-communication between the TGF-beta signaling network and estrogens has been postulated, which is important for breast tumorigenesis. Here, we provide evidence that inhibition of TGF-beta signaling is associated with a rapid estrogen-dependent nongenomic action. Moreover, we were able to demonstrate that estrogens disrupt the TGF-beta signaling network as well as TGF-beta functions in breast cancer cells via the G protein-coupled receptor 30 (GPR30). Silencing of GPR30 in MCF-7 cells completely reduced the ability of 17-beta-estradiol (E2) to inhibit the TGF-beta pathway. Likewise, in GPR30-deficient MDA-MB-231 breast cancer cells, E2 achieved the ability to suppress TGF-beta signaling only after transfection with GPR30-encoding plasmids. It is most interesting that the antiestrogen fulvestrant (ICI 182,780), which possesses agonistic activity at the GPR30, also diminished TGF-beta signaling. Further experiments attempted to characterize the molecular mechanism by which activated GPR30 inhibits the TGF-beta pathway. Our results indicate that GPR30 induces the stimulation of the mitogen-activated protein kinases (MAPKs), which interferes with the activation of Smad proteins. Inhibition of MAPK activity prevented the ability of E2 from suppressing TGF-beta signaling. These findings are of great clinical relevance, because down-regulation of TGF-beta signaling is associated with the development of breast cancer resistance in response to antiestrogens.

  14. Lipid extract of Nostoc commune var. sphaeroides Kutzing, a blue-green alga, inhibits the activation of sterol regulatory element binding proteins in HepG2 cells.

    Science.gov (United States)

    Rasmussen, Heather E; Blobaum, Kara R; Park, Young-Ki; Ehlers, Sarah J; Lu, Fan; Lee, Ji-Young

    2008-03-01

    Nostoc commune var. sphaeroides Kützing (N. commune), a blue-green alga, has been used as both a food ingredient and in medicine for centuries. To determine the effect of N. commune on cholesterol metabolism, N. commune lipid extract was incubated at increasing concentrations (25-100 mg/L) with HepG2 cells, a human hepatoma cell line. The addition of N. commune lipid extract markedly reduced mRNA abundance of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) and LDL receptor (LDLR) (P commune lipid extract confirmed the inhibitory role of N. commune in cholesterol synthesis (P commune lipid extract, expression of sterol regulatory element binding protein 2 (SREBP-2) was assessed. Whereas mRNA for SREBP-2 remained unchanged, SREBP-2 mature protein was reduced by N. commune (P commune lipid extract also decreased SREBP-1 mature protein by approximately 30% (P commune lipid extract inhibits the maturation process of both SREBP-1 and -2, resulting in a decrease in expression of genes involved in cholesterol and fatty acid metabolism.

  15. Neuroprotective effects of inhibiting N-methyl-D-aspartate receptors, P2X receptors and the mitogen-activated protein kinase cascade: a quantitative analysis in organotypical hippocampal slice cultures subjected to oxygen and glucose deprivation.

    Science.gov (United States)

    Rundén-Pran, E; Tansø, R; Haug, F M; Ottersen, O P; Ring, A

    2005-01-01

    Cell death was assessed by quantitative analysis of propidium iodide uptake in rat hippocampal slice cultures transiently exposed to oxygen and glucose deprivation, an in vitro model of brain ischemia. The hippocampal subfields CA1 and CA3, and fascia dentata were analyzed at different stages from 0 to 48 h after the insult. Cell death appeared at 3 h and increased steeply toward 12 h. Only a slight additional increase in propidium iodide uptake was seen at later intervals. The mitogen-activated protein kinases extracellular signal-regulated kinase 1 and extracellular signal-regulated kinase 2 were activated immediately after oxygen and glucose deprivation both in CA1 and in CA3/fascia dentata. Inhibition of the specific mitogen-activated protein kinase activator mitogen-activated protein kinase kinase by PD98059 or U0126 offered partial protection against oxygen and glucose deprivation-induced cell damage. The non-selective P2X receptor antagonist suramin gave neuroprotection of the same magnitude as the N-methyl-D-aspartate channel blocker MK-801 (approximately 70%). Neuroprotection was also observed with the P2 receptor blocker PPADS. Immunogold data indicated that hippocampal slice cultures (like intact hippocampi) express several isoforms of P2X receptors at the synaptic level, consistent with the idea that the effects of suramin and PPADS are mediated by P2X receptors. Virtually complete neuroprotection was obtained by combined blockade of N-methyl-D-aspartate receptors, P2X receptors, and mitogen-activated protein kinase kinase. Both P2X receptors and N-methyl-D-aspartate receptors mediate influx of calcium. Our results suggest that inhibition of P2X receptors has a neuroprotective potential similar to that of inhibition of N-methyl-D-aspartate receptors. In contrast, our comparative analysis shows that only partial protection can be achieved by inhibiting the extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase cascade, one of the

  16. Regulation of kinase cascade activation and heat shock protein expression by poly(ADP-ribose) polymerase inhibition in doxorubicin-induced heart failure.

    Science.gov (United States)

    Bartha, Eva; Solti, Izabella; Szabo, Aliz; Olah, Gabor; Magyar, Klara; Szabados, Eszter; Kalai, Tamas; Hideg, Kalman; Toth, Kalman; Gero, Domokos; Szabo, Csaba; Sumegi, Balazs; Halmosi, Robert

    2011-10-01

    Cardiomyopathy is one of the most severe side effects of the chemotherapeutic agent doxorubicin (DOX). The formation of reactive oxygen species plays a critical role in the development of cardiomyopathies, and the pathophysiological cascade activates nuclear enzyme poly(ADP-ribose) polymerase (PARP), and kinase pathways. We characterized the effects of the PARP-inhibitor and kinase-modulator compound L-2286 in DOX-induced cardiac injury models. We studied the effect of the established superoxide dismutase-mimic Tempol and compared the effects of this agent with those of the PARP inhibitor. In the rat H9C2 cardiomyocytes, in which DOX-induced poly(ADP-ribosyl)ation, L-2286 protected them from the DOX-induced injury in a concentration-dependent manner. In the in vivo studies, mice were pretreated (for 1 week) with L-2286 or Tempol before the DOX treatment. Both the agents improved the activation of cytoprotective kinases, Akt, phospho-specific protein kinase C ϵ, ζ/λ and suppressed the activity of cell death promoting kinases glycogen synthase kinase-3β, JNK, and p38 mitogen-activated protein kinase, but the effect of PARP inhibitor was more pronounced and improved the survival as well. L-2286 activated the phosphorylation of proapoptotic transcription factor FKHR1 and promoted the expression of Hsp72 and Hsp90. These data suggest that the mode of the cytoprotective action of the PARP inhibitor may include the modulation of kinase pathways and heat shock protein expression.

  17. Inhibition of Plasmepsin V activity demonstrates its essential role in protein export, PfEMP1 display, and survival of malaria parasites

    DEFF Research Database (Denmark)

    Sleebs, Brad E; Lopaticki, Sash; Marapana, Danushka S;

    2014-01-01

    The malaria parasite Plasmodium falciparum exports several hundred proteins into the infected erythrocyte that are involved in cellular remodeling and severe virulence. The export mechanism involves the Plasmodium export element (PEXEL), which is a cleavage site for the parasite protease......, Plasmepsin V (PMV). The PMV gene is refractory to deletion, suggesting it is essential, but definitive proof is lacking. Here, we generated a PEXEL-mimetic inhibitor that potently blocks the activity of PMV isolated from P. falciparum and Plasmodium vivax. Assessment of PMV activity in P. falciparum revealed...... surface, and cytoadherence. The inhibitor killed parasites at the trophozoite stage and knockdown of PMV enhanced sensitivity to the inhibitor, while overexpression of PMV increased resistance. This provides the first direct evidence that PMV activity is essential for protein export in Plasmodium spp...

  18. Novel Bioactivity of Ellagic Acid in Inhibiting Human Platelet Activation

    Directory of Open Access Journals (Sweden)

    Yi Chang

    2013-01-01

    Full Text Available Pomegranates are widely consumed either as fresh fruit or in beverage form as juice and wine. Ellagic acid possesses potent antioxidative properties; it is known to be an effective phytotherapeutic agent with antimutagenic and anticarcinogenic qualities. Ellagic acid (20 to 80 μM exhibited a potent activity in inhibiting platelet aggregation stimulated by collagen; however, it did not inhibit platelet aggregation stimulated by thrombin, arachidonic acid, or U46619. Treatment with ellagic acid (50 and 80 μM significantly inhibited platelet activation stimulated by collagen; this alteration was accompanied by the inhibition of relative [Ca2+]i mobilization, and the phosphorylation of phospholipase C (PLCγ2, protein kinase C (PKC, mitogen-activated protein kinases (MAPKs, and Akt, as well as hydroxyl radical (OH● formation. In addition, ellagic acid also inhibited p38 MAPK and Akt phosphorylation stimulated by hydrogen peroxide. By contrast, ellagic acid did not significantly affect PKC activation and platelet aggregation stimulated by PDBu. This study is the first to show that, in addition to being considered a possible agent for preventing tumor growth, ellagic acid possesses potent antiplatelet properties. It appears to initially inhibit the PLCγ2-PKC cascade and/or hydroxyl radical formation, followed by decreased phosphorylation of MAPKs and Akt, ultimately inhibiting platelet aggregation.

  19. Inhibition of histone deacetylase activity by valproic acid blocks adipogenesis.

    Science.gov (United States)

    Lagace, Diane C; Nachtigal, Mark W

    2004-04-30

    Adipogenesis is dependent on the sequential activation of transcription factors including the CCAAT/enhancer-binding proteins (C/EBP), peroxisome proliferator-activated receptor gamma (PPARgamma), and steroid regulatory element-binding protein (SREBP). We show that the mood stabilizing drug valproic acid (VPA; 0.5-2 mm) inhibits mouse 3T3 L1 and human preadipocyte differentiation, likely through its histone deacetylase (HDAC) inhibitory properties. The HDAC inhibitor trichostatin A (TSA) also inhibited adipogenesis, whereas the VPA analog valpromide, which does not possess HDAC inhibitory effects, did not prevent adipogenesis. Acute or chronic VPA treatment inhibited differentiation yet did not affect mitotic clonal expansion. VPA (1 mm) inhibited PPARgamma induced differentiation but does not activate a PPARgamma reporter gene, suggesting that it is not a PPARgamma ligand. VPA or TSA treatment reduced mRNA and protein levels of PPARgamma and SREBP1a. TSA reduced C/EBPalpha mRNA and protein levels, whereas VPA only produced a decrease in C/EBPalpha protein expression. Overall our results highlight a role for HDAC activity in adipogenesis that can be blocked by treatment with VPA.

  20. Strong inhibition of TNF-alpha production and inhibition of IL-8 and COX-2 mRNA expression in monocyte-derived macrophages by RWJ 67657, a p38 mitogen-activated protein kinase (MAPK) inhibitor

    NARCIS (Netherlands)

    Westra, J; Doornbos-van der Meer, B; de Boer, Peter; van Leeuwen, MA; van Rijswijk, Martin; Limburg, PC

    2004-01-01

    In inflammatory processes, the p38 mitogen-activated protein kinase ( MAPK) signal transduction route regulates production and expression of cytokines and other inflammatory mediators. Tumor necrosis factor alpha (TNF-alpha) is a pivotal cytokine in rheumatoid arthritis and its production in macroph

  1. Inhibition of protein kinase CK2 reduces CYP24A1 expression and enhances 1,25-dihydroxyvitamin D3 anti-tumor activity in human prostate cancer cells

    Science.gov (United States)

    Luo, Wei; Yu, Wei-Dong; Ma, Yingyu; Chernov, Mikhail; Trump, Donald L.; Johnson, Candace S.

    2013-01-01

    Vitamin D has broad range of physiological functions and anti-tumor effects. 24-hydroxylase, encoded by the CYP24A1 gene, is the key enzyme for degrading many forms of vitamin D including the most active form, 1,25D3. Inhibition of CYP24A1 enhances 1,25D3 anti-tumor activity. In order to isolate regulators of CYP24A1 expression in prostate cancer cells, we established a stable prostate cancer cell line PC3 with CYP24A1 promoter driving luciferase expression to screen a small molecular library for compounds that inhibit CYP24A1 promoter activity. From this screening, we identified, 4,5,6,7-tetrabromobenzimidazole (TBBz), a protein kinase CK2 selective inhibitor as a disruptor of CYP24A1 promoter activity. We show that TBBz inhibits CYP24A1 promoter activity induced by 1,25D3 in prostate cancer cells. In addition, TBBz downregulates endogenous CYP24A1 mRNA level in TBBz treated PC3 cells. Furthermore, siRNA-mediated CK2 knockdown reduces 1,25D3 induced CYP24A1 mRNA expression in PC3 cells. These results suggest that CK2 contributes to 1,25D3 mediated target gene expression. Lastly, inhibition of CK2 by TBBz or CK2 siRNA significantly enhanced 1,25D3 mediated anti-proliferative effect in vitro and in vivo in a xenograft model. In summary, our findings reveal that protein kinase CK2 is involved in the regulation of CYP24A1 expression by 1,25D3 and CK2 inhibitor enhances 1,25D3 mediated anti-tumor effect. PMID:23358686

  2. Suppressing activity of tributyrin on hepatocarcinogenesis is associated with inhibiting the p53-CRM1 interaction and changing the cellular compartmentalization of p53 protein.

    Science.gov (United States)

    Ortega, Juliana F; de Conti, Aline; Tryndyak, Volodymyr; Furtado, Kelly S; Heidor, Renato; Horst, Maria Aderuza; Fernandes, Laura Helena Gasparini; Tavares, Paulo Eduardo Latorre Martins; Pogribna, Marta; Shpyleva, Svitlana; Beland, Frederick A; Pogribny, Igor P; Moreno, Fernando Salvador

    2016-04-26

    Hepatocellular carcinoma (HCC), an aggressive and the fastest growing life-threatening cancer worldwide, is often diagnosed at intermediate or advanced stages of the disease, which substantially limits therapeutic approaches for its successful treatment. This indicates that the prevention of hepatocarcinogenesis is probably the most promising approach to reduce both the HCC incidence and cancer-related mortality. In previous studies, we demonstrated a potent chemopreventive effect of tributyrin, a butyric acid prodrug, on experimental hepatocarcinogenesis. The cancer-inhibitory effect of tributyrin was linked to the suppression of sustained cell proliferation and induction of apoptotic cell death driven by an activation of the p53 apoptotic signaling pathway. The goal of the present study was to investigate the underlying molecular mechanisms linked to tributyrin-mediated p53 activation. Using in vivo and in vitro models of liver cancer, we demonstrate that an increase in the level of p53 protein in nuclei, a decrease in the level of cytoplasmic p53, and, consequently, an increase in the ratio of nuclear/cytoplasmic p53 in rat preneoplastic livers and in rat and human HCC cell lines caused by tributyrin or sodium butyrate treatments was associated with a marked increase in the level of nuclear chromosome region maintenance 1 (CRM1) protein. Mechanistically, the increase in the level of nuclear p53 protein was associated with a substantially reduced binding interaction between CRM1 and p53. The results demonstrate that the cancer-inhibitory activity of sodium butyrate and its derivatives on liver carcinogenesis may be attributed to retention of p53 and CRM1 proteins in the nucleus, an event that may trigger activation of p53-mediated apoptotic cell death in neoplastic cells.

  3. A polyphenolic fraction from grape seeds causes irreversible growth inhibition of breast carcinoma MDA-MB468 cells by inhibiting mitogen-activated protein kinases activation and inducing G1 arrest and differentiation.

    Science.gov (United States)

    Agarwal, C; Sharma, Y; Zhao, J; Agarwal, R

    2000-07-01

    In recent years, significant emphasis is being placed on identifying naturally occurring cancer preventive and interventive agents. In this regard, a polyphenolic fraction isolated from grape seeds (hereafter referred as GSP) has recently been shown by us and others to prevent tumorigenesis in mouse skin models. Chemical analysis of GSP has shown that it is largely constituted with procyanidins that are strong antioxidants. Breast cancer is the most common invasive malignancy and the second leading cause of cancer-related deaths in United States women. Accordingly, here we investigated the effect of GSP on mitogenic signaling and regulators of cell cycle and apoptosis as molecular targets for the growth arrest, apoptotic death, and/or differentiation of estrogen-independent MDA-MB468 human breast carcinoma cells. Treatment of cells with GSP (at 25-, 50-, and 75-microg/ml doses for 1-3 days) resulted in a highly significant inhibition (90% to complete, P cancer in humans.

  4. Stabilization and inhibition of protein-protein interactions: the 14-3-3 case study.

    Science.gov (United States)

    Milroy, Lech-Gustav; Brunsveld, Luc; Ottmann, Christian

    2013-01-18

    Small-molecule modulation of protein-protein interactions (PPIs) is one of the most exciting but also difficult fields in chemical biology and drug development. As one of the most important "hub" proteins with at least 200-300 interaction partners, the 14-3-3 proteins are an especially fruitful case for PPI intervention. Here, we summarize recent success stories in small-molecule modulation, both inhibition and stabilization, of 14-3-3 PPIs. The chemical breath of modulators includes natural products such as fusicoccin A and derivatives but also compounds identified via high-throughput and in silico screening, which has yielded a toolbox of useful inhibitors and stabilizers for this interesting class of adapter proteins. Protein-protein interactions (PPIs) are involved in almost all biological processes, with any given protein typically engaged in complexes with other proteins for the majority of its lifetime. Hence, proteins function not simply as single, isolated entities but display their roles by interacting with other cellular components. These different interaction patterns are presumably as important as the intrinsic biochemical activity status of the protein itself. The biological role of a protein is therefore decisively dependent on the underlying PPI network that furthermore can show great spatial and temporal variations. A thorough appreciation and understanding of this concept and its regulation mechanisms could help to develop new therapeutic agents and concepts.

  5. Carnosol inhibits cell adhesion molecules and chemokine expression by tumor necrosis factor-α in human umbilical vein endothelial cells through the nuclear factor-κB and mitogen-activated protein kinase pathways.

    Science.gov (United States)

    Yao, Hui; Chen, Yufeng; Zhang, Longjuan; He, Xiaosheng; He, Xiaowen; Lian, Lei; Wu, Xiaojian; Lan, Ping

    2014-02-01

    Inflammatory bowel diseases (IBD) are gastrointestinal disorders associated with chronic inflammatory processes. Carnosol has been demonstrated to possess anti-inflammatory properties. This study examined the suppressive effect of carnosol on the expression of cell adhesion molecules (CAMs) and chemokines in human umbilical vein endothelial cells (HUVECs) and the possible underlying mechanism. The effect of carnosol on CAM and chemokine expression in HUVECs was identified by western blotting and ELISA, respectively. nuclear factor (NF)-κB activation of HUVECs was analyzed using the TransAM NF-κB Family kit. The effect of carnosol on the tumor necrosis factor (TNF)-α-induced activation of the NF-κB and mitogen-activated protein kinase (MAPK) pathways, and was subsequently analyzed using western blotting. Carnosol not only inhibited TNF-α-induced protein expression of intercellular adhesion molecule (ICAM)-1, vascular cell adhesion molecule (VCAM)-1 and E-selectin in HUVECs, but also suppressed interleukin (IL)-8 and monocyte chemoattractant protein (MCP)-1 expression. In addition, carnosol inhibited the TNF-α-induced phosphorylation of p-65 and IκB-α, as well as the activation of NF-κB. The same result was observed in TNF-α-stimulated phosphorylation of ERK1/2 and p-38. It was demonstrated that carnosol inhibited TNF-α-induced CAM and chemokine expression in HUVECs. The underlying mechanism may be associated with the blocking of the NF-κB and MAPK pathways. These results indicate that carnosol may be a novel therapeutic agent for targeting endothelial cells in IBDs.

  6. Kinetic evaluation of the inhibition of protein glycation during heating.

    Science.gov (United States)

    Akıllıoğlu, H Gül; Gökmen, Vural

    2016-04-01

    This study aimed to investigate the kinetics of early stage of the Maillard reaction by a reversible bimolecular reaction mechanism and also to evaluate the compatibility of enzyme inhibition kinetics for calculating the inhibitory activity of protein anti-glycation agents. Model systems composed of ovalbumin, glucose, and anti-glycation agents (tannic acid or calcium ion) at different molar ratios were heated at 90 °C for different times in dry state or in solution. Heated samples were analysed for furosine, acid derivative of N-ε-fructoselysine (FL), to monitor the progression of the early glycation stage. Compared to a control, presence of calcium ions and tannic acid decreased FL formation significantly (pglycation of ovalbumin by a mixed non-competitive mechanism in both dry and in solution conditions; while the mode of inhibition by tannic acid was found to be purely non-competitive in the dry state.

  7. Acetazolamide inhibits aquaporin-1 protein expression and angiogenesis

    Institute of Scientific and Technical Information of China (English)

    Yang XIANG; Bing MA; Tao LI; Jun-wei GAO; He-ming YU; Xue-jun LI

    2004-01-01

    AIM: To study effects of acetazolamide on aquaporin-1 (AQP1) protein expression and angiogenesis. METHODS:Establishing Lewis-lung-carcinoma model, the localization of AQP1 in tumor tissues was investigated by immunohistochemical methods; The biological activity of acetazolamide was detected by endothelial cells proliferation test (MTT) assay and chorioallantoic membrane (CAM) vascular inhibition test. RESULTS: Immunohistochemical localization of AQP1 in mice tumor was labeled in capillaries, post capillary venules endothelial cells. After being treated with acetazolamide, the number of capillaries and post capillary venules was significantly decreased in tumor tissue. Acetazolamide showed significant inhibitory effect on angiogenesis in CAM and endothelial cell proliferation.CONCLUSION: Acetazolamide might be identified and developed as one of potential lead compounds for a new therapeutic intervention in inhibiting cancer angiogenesis.

  8. The Transmembrane Adaptor Protein SIT Inhibits TCR-Mediated Signaling

    Science.gov (United States)

    Arndt, Börge; Krieger, Tina; Kalinski, Thomas; Thielitz, Anja; Reinhold, Dirk; Roessner, Albert; Schraven, Burkhart; Simeoni, Luca

    2011-01-01

    Transmembrane adaptor proteins (TRAPs) organize signaling complexes at the plasma membrane, and thus function as critical linkers and integrators of signaling cascades downstream of antigen receptors. We have previously shown that the transmembrane adaptor protein SIT regulates the threshold for thymocyte selection. Moreover, T cells from SIT-deficient mice are hyperresponsive to CD3 stimulation and undergo enhanced lymphopenia-induced homeostatic proliferation, thus indicating that SIT inhibits TCR-mediated signaling. Here, we have further addressed how SIT regulates signaling cascades in T cells. We demonstrate that the loss of SIT enhances TCR-mediated Akt activation and increased phosphorylation/inactivation of Foxo1, a transcription factor of the Forkhead family that inhibits cell cycle progression and regulates T-cell homeostasis. We have also shown that CD4+ T cells from SIT-deficient mice display increased CD69 and CD40L expression indicating an altered activation status. Additional biochemical analyses further revealed that suppression of SIT expression by RNAi in human T cells resulted in an enhanced proximal TCR signaling. In summary, the data identify SIT as an important modulator of TCR-mediated signaling that regulates T-cell activation, homeostasis and tolerance. PMID:21957439

  9. Inhibition of tumor necrosis factor-alpha-induced interleukin-6 expression by telmisartan through cross-talk of peroxisome proliferator-activated receptor-gamma with nuclear factor kappaB and CCAAT/enhancer-binding protein-beta.

    Science.gov (United States)

    Tian, Qingping; Miyazaki, Ryohei; Ichiki, Toshihiro; Imayama, Ikuyo; Inanaga, Keita; Ohtsubo, Hideki; Yano, Kotaro; Takeda, Kotaro; Sunagawa, Kenji

    2009-05-01

    Telmisartan, an angiotensin II type 1 receptor antagonist, was reported to be a partial agonist of peroxisome proliferator-activated receptor-gamma. Although peroxisome proliferator-activated receptor-gamma activators have been shown to have an anti-inflammatory effect, such as inhibition of cytokine production, it has not been determined whether telmisartan has such effects. We examined whether telmisartan inhibits expression of interleukin-6 (IL-6), a proinflammatory cytokine, in vascular smooth muscle cells. Telmisartan, but not valsartan, attenuated IL-6 mRNA expression induced by tumor necrosis factor-alpha (TNF-alpha). Telmisartan decreased TNF-alpha-induced IL-6 mRNA and protein expression in a dose-dependent manner. Because suppression of IL-6 mRNA expression was prevented by pretreatment with GW9662, a specific peroxisome proliferator-activated receptor-gamma antagonist, peroxisome proliferator-activated receptor-gamma may be involved in the process. Telmisartan suppressed IL-6 gene promoter activity induced by TNF-alpha. Deletion analysis suggested that the DNA segment between -150 bp and -27 bp of the IL-6 gene promoter that contains nuclear factor kappaB and CCAAT/enhancer-binding protein-beta sites was responsible for telmisartan suppression. Telmisartan attenuated TNF-alpha-induced nuclear factor kappaB- and CCAAT/enhancer-binding protein-beta-dependent gene transcription and DNA binding. Telmisartan also attenuated serum IL-6 level in TNF-alpha-infused mice and IL-6 production from rat aorta stimulated with TNF-alpha ex vivo. These data suggest that telmisartan may attenuate inflammatory process induced by TNF-alpha in addition to the blockade of angiotensin II type 1 receptor. Because both TNF-alpha and angiotensin II play important roles in atherogenesis through enhancement of vascular inflammation, telmisartan may be beneficial for treatment of not only hypertension but also vascular inflammatory change.

  10. Gc protein-derived macrophage-activating factor (GcMAF) stimulates cAMP formation in human mononuclear cells and inhibits angiogenesis in chick embryo chorionallantoic membrane assay

    OpenAIRE

    2010-01-01

    Abstract: The effects of Gc protein-derived macrophage-activating factor (GcMAF) have been studied in cancer and other conditions where angiogenesis is deregulated. In this study, we demonstrate for the first time that the mitogenic response of human peripheral blood mononuclear cells (PBMCs) to GcMAF was associated with 3'-5'-cyclic adenosine monophosphate (cAMP) formation. The effect was dose dependent, and maximal stimulation was achieved using 0.1 ng/ml. Heparin inhibited the stimulatory ...

  11. Inhibition of existing denitrification enzyme activity by chloramphenicol

    Science.gov (United States)

    Brooks, M.H.; Smith, R.L.; Macalady, D.L.

    1992-01-01

    Chloramphenicol completely inhibited the activity of existing denitrification enzymes in acetylene-block incubations with (i) sediments from a nitrate-contaminated aquifer and (ii) a continuous culture of denitrifying groundwater bacteria. Control flasks with no antibiotic produced significant amounts of nitrous oxide in the same time period. Amendment with chloramphenicol after nitrous oxide production had begun resulted in a significant decrease in the rate of nitrous oxide production. Chloramphenicol also decreased (>50%) the activity of existing denitrification enzymes in pure cultures of Pseudomonas denitrificans that were harvested during log- phase growth and maintained for 2 weeks in a starvation medium lacking electron donor. Short-term time courses of nitrate consumption and nitrous oxide production in the presence of acetylene with P. denitrificans undergoing carbon starvation were performed under optimal conditions designed to mimic denitrification enzyme activity assays used with soils. Time courses were linear for both chloramphenicol and control flasks, and rate estimates for the two treatments were significantly different at the 95% confidence level. Complete or partial inhibition of existing enzyme activity is not consistent with the current understanding of the mode of action of chloramphenicol or current practice, in which the compound is frequently employed to inhibit de novo protein synthesis during the course of microbial activity assays. The results of this study demonstrate that chloramphenicol amendment can inhibit the activity of existing denitrification enzymes and suggest that caution is needed in the design and interpretation of denitrification activity assays in which chloramphenicol is used to prevent new protein synthesis.

  12. Growth inhibition of human gastric adenocarcinoma cells in vitro by STO-609 is independent of calcium/calmodulin-dependent protein kinase kinase-beta and adenosine monophosphate-activated protein kinase.

    Science.gov (United States)

    Ma, Zhiming; Wen, Dacheng; Wang, Xudong; Yang, Longfei; Liu, Tianzhou; Liu, Jingjing; Zhu, Jiaming; Fang, Xuedong

    2016-01-01

    Adenosine monophosphate (AMP)-activated protein kinase is a recently identified downstream target of calcium/calmodulin-dependent protein kinase kinase-beta, and is involved in the regulation of cell metabolism and cell proliferation. STO-609 is a selective antagonist of calcium/calmodulin-dependent protein kinase kinase-beta. In the present study, we found that STO-609 suppressed AMP-activated protein kinase activity, reduced expression of Akt and ERK, and increased cell apoptosis in SNU-1 and N87 cells but not normal gastric epithelial cells (CCL-241). Interestingly, we found such effects of STO-609 on gastric cancer cells were not affected after the knock-down of CaMKK-β and AMPK. In conclusion, STO-609 is an effective cytotoxic agent for gastric adenocarcinoma in vivo.

  13. Adenovirus E4 open reading frame 4-induced dephosphorylation inhibits E1A activation of the E2 promoter and E2F-1-mediated transactivation independently of the retinoblastoma tumor suppressor protein

    DEFF Research Database (Denmark)

    Mannervik, M; Fan, S; Ström, A C

    1999-01-01

    Previous studies have shown that the cell cycle-regulated E2F transcription factor is subjected to both positive and negative control by phosphorylation. Here we show that in transient transfection experiments, adenovirus E1A activation of the viral E2 promoter is abrogated by coexpression...... of the viral E4 open reading frame 4 (E4-ORF4) protein. This effect does not to require the retinoblastoma protein that previously has been shown to regulate E2F activity. The inhibitory activity of E4-ORF4 appears to be specific because E4-ORF4 had little effect on, for example, E4-ORF6/7 transactivation...... of the E2 promoter. We further show that the repressive effect of E4-ORF4 on E2 transcription works mainly through the E2F DNA-binding sites in the E2 promoter. In agreement with this, we find that E4-ORF4 inhibits E2F-1/DP-1-mediated transactivation. We also show that E4-ORF4 inhibits E2 mRNA expression...

  14. Aedes aegypti D7 Saliva Protein Inhibits Dengue Virus Infection

    Science.gov (United States)

    Conway, Michael J.; Londono-Renteria, Berlin; Troupin, Andrea; Watson, Alan M.; Klimstra, William B.; Fikrig, Erol; Colpitts, Tonya M.

    2016-01-01

    Aedes aegypti is the primary vector of several medically relevant arboviruses including dengue virus (DENV) types 1–4. Ae. aegypti transmits DENV by inoculating virus-infected saliva into host skin during probing and feeding. Ae. aegypti saliva contains over one hundred unique proteins and these proteins have diverse functions, including facilitating blood feeding. Previously, we showed that Ae. aegypti salivary gland extracts (SGEs) enhanced dissemination of DENV to draining lymph nodes. In contrast, HPLC-fractionation revealed that some SGE components inhibited infection. Here, we show that D7 proteins are enriched in HPLC fractions that are inhibitory to DENV infection, and that recombinant D7 protein can inhibit DENV infection in vitro and in vivo. Further, binding assays indicate that D7 protein can directly interact with DENV virions and recombinant DENV envelope protein. These data reveal a novel role for D7 proteins, which inhibits arbovirus transmission to vertebrates through a direct interaction with virions. PMID:27632170

  15. Aedes aegypti D7 Saliva Protein Inhibits Dengue Virus Infection.

    Directory of Open Access Journals (Sweden)

    Michael J Conway

    2016-09-01

    Full Text Available Aedes aegypti is the primary vector of several medically relevant arboviruses including dengue virus (DENV types 1-4. Ae. aegypti transmits DENV by inoculating virus-infected saliva into host skin during probing and feeding. Ae. aegypti saliva contains over one hundred unique proteins and these proteins have diverse functions, including facilitating blood feeding. Previously, we showed that Ae. aegypti salivary gland extracts (SGEs enhanced dissemination of DENV to draining lymph nodes. In contrast, HPLC-fractionation revealed that some SGE components inhibited infection. Here, we show that D7 proteins are enriched in HPLC fractions that are inhibitory to DENV infection, and that recombinant D7 protein can inhibit DENV infection in vitro and in vivo. Further, binding assays indicate that D7 protein can directly interact with DENV virions and recombinant DENV envelope protein. These data reveal a novel role for D7 proteins, which inhibits arbovirus transmission to vertebrates through a direct interaction with virions.

  16. Transmembrane protein aptamers that inhibit CCR5 expression and HIV coreceptor function.

    Science.gov (United States)

    Scheideman, Elizabeth H; Marlatt, Sara A; Xie, Yanhua; Hu, Yani; Sutton, Richard E; DiMaio, Daniel

    2012-10-01

    We have exploited the ability of transmembrane domains to engage in highly specific protein-protein interactions to construct a new class of small proteins that inhibit HIV infection. By screening a library encoding hundreds of thousands of artificial transmembrane proteins with randomized transmembrane domains (termed "traptamers," for transmembrane aptamers), we isolated six 44- or 45-amino-acid proteins with completely different transmembrane sequences that inhibited cell surface and total expression of the HIV coreceptor CCR5. The traptamers inhibited transduction of human T cells by HIV reporter viruses pseudotyped with R5-tropic gp120 envelope proteins but had minimal effects on reporter viruses with X4-tropic gp120. Optimization of two traptamers significantly increased their activity and resulted in greater than 95% inhibition of R5-tropic reporter virus transduction without inhibiting expression of CD4, the primary HIV receptor, or CXCR4, another HIV coreceptor. In addition, traptamers inhibited transduction mediated by a mutant R5-tropic gp120 protein resistant to maraviroc, a small-molecule CCR5 inhibitor, and they dramatically inhibited replication of an R5-tropic laboratory strain of HIV in a multicycle infection assay. Genetic experiments suggested that the active traptamers specifically interacted with the transmembrane domains of CCR5 and that some of the traptamers interacted with different portions of CCR5. Thus, we have constructed multiple proteins not found in nature that interfere with CCR5 expression and inhibit HIV infection. These proteins may be valuable tools to probe the organization of the transmembrane domains of CCR5 and their relationship to its biological activities, and they may serve as starting points to develop new strategies to inhibit HIV infection.

  17. Activation of G protein-coupled estrogen receptor 1 induces coronary artery relaxation via Epac/Rap1-mediated inhibition of RhoA/Rho kinase pathway in parallel with PKA

    Science.gov (United States)

    Yu, Xuan; Zhang, Qiao; Zhao, Yan; Schwarz, Benjamin J.; Stallone, John N.; Heaps, Cristine L.; Han, Guichun

    2017-01-01

    Previously, we reported that cAMP/PKA signaling is involved in GPER-mediated coronary relaxation by activating MLCP via inhibition of RhoA pathway. In the current study, we tested the hypothesis that activation of GPER induces coronary artery relaxation via inhibition of RhoA/Rho kinase pathway by cAMP downstream targets, exchange proteins directly activated by cAMP (Epac) as well as PKA. Our results show that Epac inhibitors, brefeldin A (BFA, 50 μM), or ESI-09 (20 μM), or CE3F4 (100 μM), all partially inhibited porcine coronary artery relaxation response to the selective GPER agonist, G-1 (0.3–3 μM); while concurrent administration of BFA and PKI (5 μM), a PKA inhibitor, almost completely blocked the relaxation effect of G-1. The Epac specific agonist, 8-CPT-2Me-cAMP (007, 1–100 μM), induced a concentration-dependent relaxation response. Furthermore, the activity of Ras-related protein 1 (Rap1) was up regulated by G-1 (1 μM) treatment of porcine coronary artery smooth muscle cells (CASMCs). Phosphorylation of vasodilator-stimulated phosphoprotein (p-VASP) was elevated by G-1 (1 μM) treatment, but not by 007 (50 μM); and the effect of G-1 on p-VASP was blocked by PKI, but not by ESI-09, an Epac antagonist. RhoA activity was similarly down regulated by G-1 and 007, whereas ESI-09 restored most of the reduced RhoA activity by G-1 treatment. Furthermore, G-1 decreased PGF2α-induced p-MYPT1, which was partially reversed with either ESI-09 or PKI; whereas, concurrent administration of ESI-09 and PKI totally prevented the inhibitory effect of G-1. The inhibitory effects of G-1 on p- MLC levels in CASMCs were mostly restored by either ESI-09 or PKI. These results demonstrate that activation of GPER induces coronary artery relaxation via concurrent inhibition of RhoA/Rho kinase by Epac/Rap1 and PKA. GPER could be a potential drug target for preventing and treating cardiovascular diseases. PMID:28278256

  18. All-trans retinoic acid inhibits KIT activity and induces apoptosis in gastrointestinal stromal tumor GIST-T1 cell line by affecting on the expression of survivin and Bax protein

    Directory of Open Access Journals (Sweden)

    Taguchi Takahiro

    2010-12-01

    Full Text Available Abstract Background Imatinib, a selective tyrosine kinase inhibitor, has been used as a standard first-line therapy for irresectable and metastasized gastrointestinal stromal tumor (GIST patients. Unfortunately, most patients responding to imatinib will eventually exhibit imatinib-resistance, the cause of which is not fully understood. The serious clinical problem of imatinib-resistance demands alternative therapeutic strategy. This study was conducted to investigate the effect of all-trans retinoic acid (ATRA on GIST cell lines. Methods Cell proliferation was determined by trypan blue dye exclusion test. Western blot analysis was performed to test the expression of activated KIT, its downstream proteins, and apoptosis associated proteins. The cytotoxic interactions of imatinib with ATRA were evaluated using the isobologram of Steel and Peckham. Results and conclusion In this work, for the first time we have demonstrated that ATRA affected on cell proliferation of GIST-T1 and GIST-882 cell line through inhibition of cell growth in a dose dependent manner and induced apoptosis. High dose of ATRA induced morphologic change in GIST-T1 cells, rounded-up cells, and activated the caspase-3 protein. In further examination, we found that the ATRA-induced apoptosis in GIST-T1 cells was accompanied by the down-regulated expression of survivin and up-regulated expression of Bax protein. Moreover, ATRA suppressed the activity of KIT protein in GIST-T1 cells and its downstream signal, AKT activity, but not MAPK activity. We also have demonstrated that combination of ATRA with imatinib showed additive effect by isobologram, suggesting that the combination of ATRA and imatinib may be a novel potential therapeutic option for GIST treatment. Furthermore, the scracht assay result suggested that ATRA was a potential reagent to prevent the invasion or metastasis of GIST cells.

  19. Metformin inhibits nuclear factor-κB activation and inflammatory cytokines expression induced by high glucose via adenosine monophosphate-activated protein kinase activation in rat glomerular mesangial cells in vitro

    Institute of Scientific and Technical Information of China (English)

    Gu Junfei; Ye Shandong; Wang Shan; Sun Wenjia; Hu Yuanyuan

    2014-01-01

    Background The renoprotective mechanisms of adenosine monophosphate (AMP)-activated protein kinase (AMPK) agonist-metformin have not been stated clearly.We hypothesized that metformin may ameliorate inflammation via AMPK interaction with critical inflammatory cytokines The aim of this study was to observe the effects of metformin on expression of nuclear factor-κB (NF-κB),monocyte chemoattractant protein-1 (MCP-1),intercellular adhesion molecule-1 (ICAM-1) and transforming growth factor-beta 1 (TGF-β1) induced by high glucose (HG) in cultured rat glomerular mesangial cells (MCs).Methods MCs were cultured in the medium with normal concentration glucose (group NG,5.6 mmol/L),high concentration glucose (group HG,25 mmol/L) and different concentrations of metformin (group M1,M2,M3).After 48-hour exposure,the supernatants and MCs were collected.The expression of NF-κB,MCP-1,ICAM-1,and TGF-β1 mRNA was analyzed by real time polymerase chain reaction.Westem blotting was used to detect the expression of AMPK,phospho-Thr-172 AMPK (p-AMPK),NF-κB p65,MCP-1,ICAM-1,and TGF-β1 protein.Results After stimulated by HG,the expression of NF-κB,MCP-1,ICAM-1,TGF-β1 mRNA and protein of MCs in group HG increased significantly compared with group NG (P <0.05).Both genes and protein expression of NF-κB,MCP-1,ICAM-1,TGF-β1 of MCs induced by high glucose were markedly reduced after metformin treatment in a dose-dependent manner (P <0.05).The expression of p-AMPK increased with the rising of metformin concentration,presenting the opposite trend,while the level of total-AMPK protein was unchanged with exposure to HG or metformin.Conlusion Metformin can suppress the expression of NF-κB,MCP-1,ICAM-1 and TGF-β1 of glomerular MCs induced by high glucose via AMPK activation,which may partlv contribute to its reno-protection.

  20. Coronary microembolization induced myocardial contractile dysfunction and tumor necrosis factor-α mRNA expression partly inhibited by SB203580 through a p38 mitogen-activated protein kinase pathway

    Institute of Scientific and Technical Information of China (English)

    LI Lang; QU Nan; LI Dong-hua; WEN Wei-ming; HUANG Wei-qiang

    2011-01-01

    Background The microemboli produced during spontaneous plaque rupture and ulceration and during coronary intervention will reduce coronary reserve and cause cardiac dysfunction. It is though that inflammation caused by the microinfarction induced by the microembolization may play an essential role. It is known that the activation of p38mitogen-activated protein kinases (MAPK) in both infected and non-infected inflammation in myocardium may cause a contractile dysfunction. But the relation between the activation of p38 MAPK and microembolization is still unknown.Methods Sprague-Dawley rats were randomly divided into three groups: Sham group, coronary microembolization (CME) group and SB203580 group (n=10 per group). CME rats were produced by injection of 42 μm microspheres into the left ventricle with occlusion of the ascending aorta. SB203580, a p38 MAPK inhibitor, was injected into the femoral vein after the injection of microspheres to make the SB203580 group. Left ventricular ejection fraction (LVEF) was determined by echocardiography. The protein concentration of P38 MAPK in the myocardium was assessed by Western blotting. The relative expression of mRNA for tumor necrosis factor (TNF)-a was assessed by the technique of semi-quantitative polymerase chain reaction amplification.Results LVEF was depressed at three hours up to 12 hours in the CME group. Increased p38 MAPK activity and TNF-α mRNA expression were observed in the CME group. The administration of SB203580 partly inhibited p38 MAPK activity,but did not fully depress the TNF-α expression, and partly preserved cardiac contractile function.Conclusions p38 MAPK is significantly activated by CME and the inhibition of p38 MAPK can partly depress the TNF-α expression and preserve cardiac contractile function.

  1. Molecular cloning and functional analysis of three genes encoding polygalacturonase-inhibiting proteins from Capsicum annuum, and their relation to increased resistance to two fungal pathogens

    Science.gov (United States)

    Polygalacturonase-inhibiting proteins (PGIPs) are plant cell wall glycoproteins that can inhibit fungal endopolygalacturonases (PGs). Inhibiting by PGIPs directly reduces potential PG activity in specific plant pathogenic fungi, reducing their aggressiveness. Here, we isolated and functionally chara...

  2. Inhibition of prostate cancer growth by solanine requires the suppression of cell cycle proteins and the activation of ROS/P38 signaling pathway

    OpenAIRE

    Pan, Bin; Zhong, Weifeng; Deng, Zhihai; Lai, Caiyong; Chu, Jing; Jiao, Genlong; Liu, Junfeng; Zhou, Qizhao

    2016-01-01

    Abstract Solanine, a naturally steroidal glycoalkaloid in nightshade (Solanum nigrum Linn.), can inhibit proliferation and induce apoptosis of tumor cells. However, the mechanism of solanine‐suppressing prostate cancer cell growth remains to be elucidated. This study investigates the inhibition mechanism of solanine on cancer development in vivo and in cultured human prostate cancer cell DU145 in vitro. Results show that solanine injection significantly suppresses the tumor cell growth in xen...

  3. Cysteine-independent activation/inhibition of heme oxygenase-2.

    Science.gov (United States)

    Vukomanovic, Dragic; Rahman, Mona N; Maines, Mahin D; Ozolinš, Terence Rs; Szarek, Walter A; Jia, Zongchao; Nakatsu, Kanji

    2016-03-01

    Reactive thiols of cysteine (cys) residues in proteins play a key role in transforming chemical reactivity into a biological response. The heme oxygenase-2 (HO-2) isozyme contains two cys residues that have been implicated in binding of heme and also the regulation of its activity. In this paper, we address the question of a role for cys residues for the HO-2 inhibitors or activators designed in our laboratory. We tested the activity of full length recombinant human heme oxygenase-2 (FL-hHO-2) and its analog in which cys265 and cys282 were both replaced by alanine to determine the effect on activation by menadione (MD) and inhibition by QC-2350. Similar inhibition by QC-2350 and almost identical activation by MD was observed for both recombinant FL-hHO-2s. Our findings are interpreted to mean that thiols of FL-hHO-2s are not involved in HO-2 activation or inhibition by the compounds that have been designed and identified by us. Activation or inhibition of HO-2 by our compounds should be attributed to a mechanism other than altering binding affinity of HO-2 for heme through cys265 and cys282.

  4. Cysteine-independent activation/inhibition of heme oxygenase-2

    Directory of Open Access Journals (Sweden)

    Dragic Vukomanovic

    2016-01-01

    Full Text Available Reactive thiols of cysteine (cys residues in proteins play a key role in transforming chemical reactivity into a biological response. The heme oxygenase-2 (HO-2 isozyme contains two cys residues that have been implicated in binding of heme and also the regulation of its activity. In this paper, we address the question of a role for cys residues for the HO-2 inhibitors or activators designed in our laboratory. We tested the activity of full length recombinant human heme oxygenase-2 (FL-hHO-2 and its analog in which cys265 and cys282 were both replaced by alanine to determine the effect on activation by menadione (MD and inhibition by QC-2350. Similar inhibition by QC-2350 and almost identical activation by MD was observed for both recombinant FL-hHO-2s. Our findings are interpreted to mean that thiols of FL-hHO-2s are not involved in HO-2 activation or inhibition by the compounds that have been designed and identified by us. Activation or inhibition of HO-2 by our compounds should be attributed to a mechanism other than altering binding affinity of HO-2 for heme through cys265 and cys282.

  5. Avocado (Persea americana Mill.) phenolics, in vitro antioxidant and antimicrobial activities, and inhibition of lipid and protein oxidation in porcine patties.

    Science.gov (United States)

    Rodríguez-Carpena, Javier-Germán; Morcuende, David; Andrade, María-Jesús; Kylli, Petri; Estévez, Mario

    2011-05-25

    The first aim of the present work (study 1) was to analyze ethyl acetate, 70% acetone, and 70% methanol extracts of the peel, pulp, and seed from two avocado (Persea americana Mill.) varieties, namely, 'Hass' and 'Fuerte', for their phenolic composition and their in vitro antioxidant activity using the CUPRAC, DPPH, and ABTS assays. Their antimicrobial potential was also studied. Peels and seeds had higher amounts of phenolics and a more intense in vitro antioxidant potential than the pulp. Peels and seeds were rich in catechins, procyanidins, and hydroxycinnamic acids, whereas the pulp was particularly rich in hydroxybenzoic and hydroxycinnamic acids and procyanidins. The total phenolic content and antioxidant potential of avocado phenolics was affected by the extracting solvent and avocado variety. The avocado materials also displayed moderate antimicrobial effects against Gram-positive bacteria. Taking a step forward (study 2), extracts (70% acetone) from avocado peels and seeds were tested as inhibitors of oxidative reactions in meat patties. Avocado extracts protected meat lipids and proteins against oxidation with the effect on lipids being dependent on the avocado variety.

  6. Pharmacological inhibition of p38 mitogen-activated protein kinases affects KC/CXCL1-induced intraluminal crawling, transendothelial migration, and chemotaxis of neutrophils in vivo.

    Science.gov (United States)

    Xu, Najia; Hossain, Mokarram; Liu, Lixin

    2013-01-01

    p38 mitogen-activated protein kinase (MAPK) signalling is critical in the pathophysiology of a variety of inflammatory processes. Leukocyte recruitment to the site of inflammation is a multistep process governed by specific signalling cascades. After adhesion in the lumen, many leukocytes crawl to optimal sites at endothelial junctions and transmigrate to extravascular tissue in a Mac-1-dependent manner. The signalling mechanisms that regulate postadhesion steps of intraluminal crawling, transmigration, and chemotaxis in tissue remain incompletely understood. The present study explored the effect of p38 MAPK inhibitor SB203580 on various parameters of neutrophil recruitment triggered by chemokine KC (CXCL1) gradient. Neutrophil-endothelial interactions in microvasculature of murine cremaster muscle were determined using intravital microscopy and time-lapsed video analysis. SB203580 (100 nM) did not change leukocyte rolling but significantly attenuated neutrophil adhesion, emigration, and transmigration and impaired the initiation of neutrophil crawling and transmigration. In response to KC chemotactic gradient, SB203580 significantly reduced the velocity of migration and chemotaxis index of neutrophils in tissue. The upregulation of Mac-1 expression in neutrophils stimulated by KC was significantly blunted by SB203580 in vitro. Collectively, our findings demonstrate that pharmacological suppression of p38 MAPK significantly impairs multiple steps of neutrophil recruitment in vivo.

  7. Pharmacological Inhibition of p38 Mitogen-Activated Protein Kinases Affects KC/CXCL1-Induced Intraluminal Crawling, Transendothelial Migration, and Chemotaxis of Neutrophils In Vivo

    Directory of Open Access Journals (Sweden)

    Najia Xu

    2013-01-01

    Full Text Available p38 mitogen-activated protein kinase (MAPK signalling is critical in the pathophysiology of a variety of inflammatory processes. Leukocyte recruitment to the site of inflammation is a multistep process governed by specific signalling cascades. After adhesion in the lumen, many leukocytes crawl to optimal sites at endothelial junctions and transmigrate to extravascular tissue in a Mac-1-dependent manner. The signalling mechanisms that regulate postadhesion steps of intraluminal crawling, transmigration, and chemotaxis in tissue remain incompletely understood. The present study explored the effect of p38 MAPK inhibitor SB203580 on various parameters of neutrophil recruitment triggered by chemokine KC (CXCL1 gradient. Neutrophil-endothelial interactions in microvasculature of murine cremaster muscle were determined using intravital microscopy and time-lapsed video analysis. SB203580 (100 nM did not change leukocyte rolling but significantly attenuated neutrophil adhesion, emigration, and transmigration and impaired the initiation of neutrophil crawling and transmigration. In response to KC chemotactic gradient, SB203580 significantly reduced the velocity of migration and chemotaxis index of neutrophils in tissue. The upregulation of Mac-1 expression in neutrophils stimulated by KC was significantly blunted by SB203580 in vitro. Collectively, our findings demonstrate that pharmacological suppression of p38 MAPK significantly impairs multiple steps of neutrophil recruitment in vivo.

  8. 不同香蕉品种多聚半乳糖醛酸酶抑制蛋白活性的比较%Comparison of the Activity of Polygalacturonase Inhibiting Proteins in Different Banana Varieties

    Institute of Scientific and Technical Information of China (English)

    刘昆昂; 王振中

    2013-01-01

    Polygalacturonase inhibiting proteins (PGIP), containing rich leucine with repeated region, can inhibit the activity of a variety of fungal Polygalacturonases (PG), and is considered as a kind of important factor in plant resistance against fungal infection. In this study, we used several banana varieties as the research materials to detect their PGIP activities to inhibit PGs produced by race 4 of Fusarium oxysporum f.sp. cubense (Foc4), the severe disease pathogen of banana fusarium wilt. Those banana varieties were concerned as resistant varieties to the pathogen and with different cell genotypes, including Musa AAA, Musa ABB, Musa ABB, Musa AA and Musa AAAB. The results showed that PGIP from Dongguandajiao (Musa ABB) inhibitted PGs of Foc4 with the highest activity among these banana varieties. By comparing the PGIP activities in roots, pseudo-stems and leaves of Dongguandajiao, PGIP from pseudo-stem was found with the highest PGIP activity. The study also found that the PGIP activity could be induced by Foc4 inoculation, and PGIP activity was higher in young seedlings than that in older ones.%植物多聚半乳糖醛酸酶抑制蛋白(PGIP)是一种富含亮氨酸重复区域的蛋白质,能够非竞争性地抑制真菌的多聚半乳糖醛酸酶(PG)的活性.以目前生产上几个主要抗枯萎病的香蕉品种为材料,参照Gross的PGIP活性测定方法,通过测定了Musa AAA、Musa ABB、Musa ABB、Musa AA和Musa AAAB等不同细胞基因型的香蕉品种的PGIP活性,发现东莞大蕉(Musa ABB)的活性最高.通过对东莞大蕉根、假茎、叶不同部位的PGIP活性比较,发现假茎的活性最高.用香蕉枯萎病菌4号生理小种接种诱导东莞大蕉能明显提高PGIP活性,观察还发现东莞大蕉苗期PGIP的活性明显高于后期.

  9. Linking algal growth inhibition to chemical activity

    DEFF Research Database (Denmark)

    Schmidt, Stine N.; Mayer, Philipp

    to chemical activity, as opposed to e.g. the total concentration. Baseline toxicity (narcosis) for neutral hydrophobic organic compounds has been shown to initiate in the narrow chemical activity range of 0.01 to 0.1. This presentation focuses on linking algal growth inhibition to chemical activity....... High-quality toxicity data are carefully selected from peer-reviewed scientific literature and QSAR databases. This presentation shows how the chemical activity concept can be used to compare and combine toxicity data across compounds and species in order to characterize toxicity – and further how...

  10. Bay11-7082 attenuates neuropathic pain via inhibition of nuclear factor-kappa B and nucleotide-binding domain-like receptor protein 3 inflammasome activation in dorsal root ganglions in a rat model of lumbar disc herniation

    Science.gov (United States)

    Zhang, Ailiang; Wang, Kun; Ding, Lianghua; Bao, Xinnan; Wang, Xuan; Qiu, Xubin; Liu, Jinbo

    2017-01-01

    Lumbar disc herniation (LDH) is an important cause of radiculopathy, but the underlying mechanisms are incompletely understood. Many studies suggested that local inflammation, rather than mechanical compression, results in radiculopathy induced by LDH. On the molecular and cellular level, nuclear factor-kappa B (NF-κB) and nucleotide-binding domain-like receptor protein 3 (NLRP3) inflammasome have been implicated in the regulation of neuroinflammation formation and progression. In this study, the autologous nucleus pulposus (NP) was implanted in the left L5 dorsal root ganglion (DRG) to mimic LDH in rats. We investigated the expression of NF-κB and the components of NLRP3 inflammasome in the DRG neurons in rats. Western blotting and immunofluorescence for the related molecules, including NLRP3, apoptosis-associated speck-like protein containing caspase-1 activator domain (ASC), caspase-1, interleukin (IL)-1β, IL-18, IκBα, p-IκBα, p65, p-p65, and calcitonin gene-related peptide (CGRP) were examined. In the NP-treated group, the activations of NLRP3, ASC, caspase-1, IL-1β, IL-18, p-IκBα, and p-p65 in DRG neurons in rats were elevated at 1 day after surgery, and the peak occurred at 7 days. Treatment with Bay11-7082, an inhibitor of the actions of IKK-β, was able to inhibit expression and activation of the molecules (NLRP3, ASC, caspase-1, IL-1β, IL-18, p-IκBα, and p-p65) and relieve the pain in rats. Our study shows that NF-κB and NLRP3 inflammasome are involved in the maintenance of NP-induced pain, and that Bay11-7082 could alleviate mechanical allodynia and thermal hyperalgesia by inhibiting NF-κB and NLRP3 inflammasome activation.

  11. Cholera toxin, a typical protein kinase A activator, induces G1 phase growth arrest in human bladder transitional cell carcinoma cells via inhibiting the c-Raf/MEK/ERK signaling pathway.

    Science.gov (United States)

    Zheng, Xiaoke; Ou, Yanqiu; Shu, Minfeng; Wang, Youqiong; Zhou, Yuxi; Su, Xingwen; Zhu, Wenbo; Yin, Wei; Li, Shifeng; Qiu, Pengxin; Yan, Guangmei; Zhang, Jingxia; Hu, Jun; Xu, Dong

    2014-05-01

    The biotoxin cholera toxin has been demonstrated to have anti-tumor activity in numerous types of cancer, including glioma. However, the role of cholera toxin in the tumorigenesis of transitional cell carcinoma (TCC), the most common malignant tumor of the bladder, remains to be elucidated. To address this, in the present study, two TCC cell lines, T24 and UM-UC-3, were treated with cholera toxin [protein kinase A (PKA) activator] and KT5720 (PKA inhibitor). Cell survival and proliferation, cell cycle alterations and apoptosis were analyzed using Hoechst staining, the MTT assay, fluorescence microscopy and flow cytometry. Western blot analysis was used to detect the expression of proteins involved in cell cycle regulation. The results revealed that cholera toxin significantly induced G1 arrest and downregulated the expression of cyclin D1 and cyclin-dependent kinase 4/6 in the TCC cell lines, and this was rescued by KT5720. Furthermore, it was demonstrated that cholera toxin downregulated the activation of the c-Raf/Mek/Erk cascade, an important mediator of tumor cell proliferation, via the PKA-dependent c-Raf phosphorylation at Ser-43. Furthermore, inhibition of Mek activity with UO126 mimicked the effects of cholera toxin. In conclusion, these results confirmed that cholera toxin specifically inhibited proliferation and induced G1 phase arrest in human bladder TCC cells. This effect was due to PKA-dependent inactivation of the c-Raf/Mek/Erk pathway. This suggested that cholera toxin may be a viable therapeutic treatment against tumorigenesis and proliferation in bladder cancer.

  12. Mechanism of apoptosis induction by inhibition of the anti-apoptotic BCL-2 proteins.

    Science.gov (United States)

    Chipuk, Jerry E; Fisher, John C; Dillon, Christopher P; Kriwacki, Richard W; Kuwana, Tomomi; Green, Douglas R

    2008-12-23

    Normal cellular lifespan is contingent upon preserving outer mitochondrial membrane (OMM) integrity, as permeabilization promotes apoptosis. BCL-2 family proteins control mitochondrial outer membrane permeabilization (MOMP) by regulating the activation of the pro-apoptotic BCL-2 effector molecules, BAX and BAK. Sustainable cellular stress induces proteins (e.g., BID, BIM, and cytosolic p53) capable of directly activating BAX and/or BAK, but these direct activators are sequestered by the anti-apoptotic BCL-2 proteins (e.g., BCL-2, BCL-xL, and MCL-1). In the event of accumulated or marked cellular stress, a coordinated effort between previously sequestered and nascent BH3-only proteins inhibits the anti-apoptotic BCL-2 repertoire to promote direct activator protein-mediated MOMP. We examined the effect of ABT-737, a BCL-2 antagonist, and PUMA, a BH3-only protein that inhibits the entire anti-apoptotic BCL-2 repertoire, with cells and mitochondria that sequestered direct activator proteins. ABT-737 and PUMA cooperated with sequestered direct activator proteins to promote MOMP and apoptosis, which in the absence of ABT-737 or PUMA did not influence OMM integrity or cellular survival. Our data show that the induction of apoptosis by inhibition of the anti-apoptotic BCL-2 repertoire requires "covert" levels of direct activators of BAX and BAK at the OMM.

  13. microRNA-146a inhibits G protein-coupled receptor-mediated activation of NF-κB by targeting CARD10 and COPS8 in gastric cancer

    Directory of Open Access Journals (Sweden)

    Crone Stephanie

    2012-09-01

    Full Text Available Abstract Background Gastric cancer is the second most common cause of cancer-related death in the world. Inflammatory signals originating from gastric cancer cells are important for recruiting inflammatory cells and regulation of metastasis of gastric cancer. Several microRNAs (miRNA have been shown to be involved in development and progression of gastric cancer. miRNA-146a (miR-146a is a modulator of inflammatory signals, but little is known about its importance in gastric cancer. We therefore wanted to identify targets of miR-146a in gastric cancer and examine its biological roles. Results The expression of miR-146a was evaluated by quantitative PCR (qPCR and found up-regulated in the gastrin knockout mice, a mouse model of gastric cancer, and in 73% of investigated human gastric adenocarcinomas. Expression of miR-146a by gastric cancer cells was confirmed by in situ hybridization. Global analysis of changes in mRNA levels after miR-146a transfection identified two transcripts, caspase recruitment domain-containing protein 10 (CARD10 and COP9 signalosome complex subunit 8 (COPS8, as new miR-146a targets. qPCR, Western blotting and luciferase assays confirmed these transcripts as direct miR-146a targets. CARD10 and COPS8 were shown to be part of the G protein-coupled receptor (GPCR pathway of nuclear factor-kappaB (NF-kappaB activation. Lysophosphatidic acid (LPA induces NF-kappaB activation via this pathway and over-expression of miR-146a inhibited LPA-induced NF-kappaB activation, reduced LPA-induced expression of tumor-promoting cytokines and growth factors and inhibited monocyte attraction. Conclusions miR-146a expression is up-regulated in a majority of gastric cancers where it targets CARD10 and COPS8, inhibiting GPCR-mediated activation of NF-kappaB, thus reducing expression of NF-kappaB-regulated tumor-promoting cytokines and growth factors. By targeting components of several NF-kappaB-activating pathways, miR-146a is a key component in

  14. Lithium, an inhibitor of cAMP-induced inositol 1,4,5-trisphosphate accumulation in Dictyostelium discoideum, inhibits activation of guanine-nucleotide-binding regulatory proteins, reduces activation of adenylylcyclase, but potentiates activation of guanyl

    NARCIS (Netherlands)

    Peters, Dorien J.M.; Snaar-Jagalska, B. Ewa; Haastert, Peter J.M. van; Schaap, Pauline

    1992-01-01

    Li+ drastically alters pattern formation in Dictyostelium by inhibiting cAMP-induced prespore-gene expression and promoting cAMP-induced prestalk-gene expression. We reported previously that Li+ inhibits inositol monophosphatases in this organism and strongly reduces basal and cAMP-stimulated inosit

  15. Upstream and Downstream Co-inhibition of Mitogen-Activated Protein Kinase and PI3K/Akt/mTOR Pathways in Pancreatic Ductal Adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Matthew H. Wong

    2016-07-01

    Full Text Available BACKGROUND: Extensive cross talk exists between PI3K/Akt/mTOR and mitogen-activated protein kinase (MAPK pathways, and both are upregulated in pancreatic ductal adenocarcinoma (PDAC. Our previous study suggested that epidermal growth factor receptor inhibitor erlotinib which acts upstream of these pathways acts synergistically with PI3K inhibitors in PDAC. Horizontal combined blockade upstream and downstream of these two pathways is therefore explored. METHODS: Erlotinib paired with PI3K inhibitor (BYL719 was tested against erlotinib plus dual PI3K/mTOR inhibitor BEZ-235, and MEK inhibitor (PD98059 plus BEZ235, on five primary PDAC cell lines and on two pairs of parent and erlotinib-resistant (ER cell lines. A range of in vitro assays including cell proliferation, Western blotting, migration, clonogenic, cell cycle, and apopotic assays was used to test for the efficacy of combined blockade. RESULTS: Dual downstream blockade of the MAPK and PAM pathways was more effective in attenuating downstream molecular signals. Synergy was demonstrated for erlotinib and BEZ235 and for PD-98059 and BEZ-235. This resulted in a trend of increased growth cell cycle arrest, apoptosis, cell proliferation, and colony and migration suppression. This combination showed more efficacy in cell lines with acquired resistance to erlotinib. CONCLUSIONS: The additional mTOR blockade provided by BEZ235 in combined blockade resulted in increased anticancer effect. The hypersensitivity of ER cell lines to additional mTOR blockade suggested PAM pathway oncogenic dependence via mTOR. Dual downstream combined blockade of MAPK and PAM pathways with MEK and PI3K/mTOR inhibitor appeared most effective and represents an attractive therapeutic strategy against pancreatic cancer and its associated drug resistance.

  16. Dual control mechanism for heme oxygenase: tin(IV)-protoporphyrin potently inhibits enzyme activity while markedly increasing content of enzyme protein in liver.

    OpenAIRE

    Sardana, M K; Kappas, A

    1987-01-01

    Tin(IV)-protoporphyrin (Sn-protoporphyrin) potently inhibits heme degradation to bile pigments in vitro and in vivo, a property that confers upon this synthetic compound the ability to suppress a variety of experimentally induced and naturally occurring forms of jaundice in animals and humans. Utilizing rat liver heme oxygenase purified to homogeneity together with appropriate immunoquantitation techniques, we have demonstrated that Sn-protoporphyrin possesses the additional property of poten...

  17. Transcriptional inhibition by the retinoblastoma protein

    DEFF Research Database (Denmark)

    Fattaey, A; Helin, K; Harlow, E

    1993-01-01

    The retinoblastoma protein, pRB, appears to play a key role in coordinating the regulation of cell cycle position and transcriptional events. pRB undergoes specific cell-cycle-dependent phosphorylation, being underphosphorylated in G1 and heavily phosphorylated in S, G2, and M......-mediated transcription would be lost by mutation in the retinoblastoma gene in human tumours, by pRB's interaction with DNA tumour virus oncoproteins, or by phosphorylation during the cell cycle....

  18. Analog sensitive chemical inhibition of the DEAD-box protein DDX3.

    Science.gov (United States)

    Floor, Stephen N; Barkovich, Krister J; Condon, Kendall J; Shokat, Kevan M; Doudna, Jennifer A

    2016-03-01

    Proper maintenance of RNA structure and dynamics is essential to maintain cellular health. Multiple families of RNA chaperones exist in cells to modulate RNA structure, RNA-protein complexes, and RNA granules. The largest of these families is the DEAD-box proteins, named after their catalytic Asp-Glu-Ala-Asp motif. The human DEAD-box protein DDX3 is implicated in diverse biological processes including translation initiation and is mutated in numerous cancers. Like many DEAD-box proteins, DDX3 is essential to cellular health and exhibits dosage sensitivity, such that both decreases and increases in protein levels can be lethal. Therefore, chemical inhibition would be an ideal tool to probe the function of DDX3. However, most DEAD-box protein active sites are extremely similar, complicating the design of specific inhibitors. Here, we show that a chemical genetic approach best characterized in protein kinases, known as analog-sensitive chemical inhibition, is viable for DDX3 and possibly other DEAD-box proteins. We present an expanded active-site mutant that is tolerated in vitro and in vivo, and is sensitive to chemical inhibition by a novel bulky inhibitor. Our results highlight a course towards analog sensitive chemical inhibition of DDX3 and potentially the entire DEAD-box protein family.

  19. Computational insights into the suicide inhibition of Plasmodium falciparum Fk506-binding protein 35.

    Science.gov (United States)

    MacDonald, Corey A; Boyd, Russell J

    2015-08-15

    Malaria is a parasite affecting millions of people worldwide. With the risk of malarial resistance reaching catastrophic levels, novel methods into the inhibition of this disease need to be prioritized. The exploitation of active site differences between parasitic and human peptidyl-prolyl cis/trans isomerases can be used for suicide inhibition, effectively poisoning the parasite without affecting the patient. This method of inhibition was explored using Plasmodium falciparum and Homo sapiens Fk506-binding proteins as templates for quantum mechanics/molecular mechanics calculations. Modification of the natural substrate has shown suicide inhibition is a valid approach for novel anti-malarials with little risk for parasitic resistance.

  20. The parathyroid hormone-related protein is secreted during the osteogenic differentiation of human dental follicle cells and inhibits the alkaline phosphatase activity and the expression of DLX3.

    Science.gov (United States)

    Klingelhöffer, C; Reck, A; Ettl, T; Morsczeck, C

    2016-08-01

    The dental follicle is involved in tooth eruption and it expresses a great amount of the parathyroid hormone-related protein (PTHrP). PTHrP as an extracellular protein is required for a multitude of different regulations of enchondral bone development and differentiation of bone precursor cells and of the development of craniofacial tissues. The dental follicle contains also precursor cells (DFCs) of the periodontium. Isolated DFCs differentiate into periodontal ligament cells, alveolar osteoblast and cementoblasts. However, the role of PTHrP during the human periodontal development remains elusive. Our study evaluated the influence of PTHrP on the osteogenic differentiation of DFCs under in vitro conditions for the first time. The PTHrP protein was highly secreted after 4days of the induction of the osteogenic differentiation of DFCs with dexamethasone (2160.5pg/ml±345.7SD. in osteogenic differentiation medium vs. 315.7pg/ml±156.2SD. in standard cell culture medium; Student's t Test: pPTHrP inhibited the alkaline phosphatase activity and the expression of the transcription factor DLX3, but the depletion of PTHrP did not support the differentiation of DFCs. Previous studies have shown that Indian Hedgehog (IHH) induces PTHrP and that PTHrP, in turn, inhibits IHH via a negative feedback loop. We showed that SUFU (Suppressor Of Fused Homolog) was not regulated during the osteogenic differentiation in DFCs. So, neither the hedgehog signaling pathway induced PTHrP nor PTHrP suppressed the hedgehog signaling pathway during the osteogenic differentiation in DFCs. In conclusion, our results suggest that PTHrP regulates independently of the hedgehog signaling pathway the osteogenic differentiated in DFCs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. TTRAP, a novel protein that associates with CD40, tumor necrosis factor (TNF) receptor-75 and TNF receptor-associated factors (TRAFs), and that inhibits nuclear factor-kappa B activation.

    Science.gov (United States)

    Pype, S; Declercq, W; Ibrahimi, A; Michiels, C; Van Rietschoten, J G; Dewulf, N; de Boer, M; Vandenabeele, P; Huylebroeck, D; Remacle, J E

    2000-06-16

    CD40 belongs to the tumor necrosis factor (TNF) receptor family. CD40 signaling involves the recruitment of TNF receptor-associated factors (TRAFs) to its cytoplasmic domain. We have identified a novel intracellular CD40-binding protein termed TRAF and TNF receptor-associated protein (TTRAP) that also interacts with TNF-R75 and CD30. The region of the CD40 cytoplasmic domain that is required for TTRAP association overlaps with the TRAF6 recognition motif. Association of TTRAP with CD40 increases profoundly in response to treatment of cells with CD40L. Interestingly, TTRAP also associates with TRAFs, with the highest affinity for TRAF6. In transfected cells, TTRAP inhibits in a dose-dependent manner the transcriptional activation of a nuclear factor-kappaB (NF-kappaB)-dependent reporter mediated by CD40, TNF-R75 or Phorbol 12-myristate 13-acetate (PMA) and to a lesser extent by TRAF2, TRAF6, TNF-alpha, or interleukin-1beta (IL-1beta). TTRAP does not affect stimulation of NF-kappaB induced by overexpression of the NF-kappaB-inducing kinase (NIK), the IkappaB kinase alpha (IKKalpha), or the NF-kappaB subunit P65/RelA, suggesting it acts upstream of the latter proteins. Our results indicate that we have isolated a novel regulatory factor that is involved in signal transduction by distinct members of the TNF receptor family.

  2. Oxymatrine inhibits microglia activation via HSP60-TLR4 signaling.

    Science.gov (United States)

    Ding, Feijia; Li, Yunhong; Hou, Xiaolin; Zhang, Rui; Hu, Shuting; Wang, Yin

    2016-11-01

    Oxymatrine (OMT) is an alkaloid extracted from Sophora flavescens, which has broad anti-inflammatory, antitumor and immunosuppressant actions. However, the underlying molecular mechanisms have remained elusive. Heat shock protein 60 (HSP60) has recently been shown to have an important role in autoimmune reactions. The present study aimed to investigate whether OMT exerts its anti-inflammatory effects by inhibiting microglial activation and examined the role of HSP60 in this process. Western blot analysis and ELISA showed that OMT decreased the expression and release of HSP60 by LPS-activated BV2 cells. The expression of heat shock factor 1, the transcription factor of HSP60, was also suppressed by OMT. Extracellular HSP60 has been previously indicated to induce microglial apoptosis through the Toll-like receptor (TLR)-4 pathway. Flow cytometric analysis demonstrated that LPS treatment induced apoptosis of BV2 cells, which was inhibited by OMT in parallel with inhibition of LPS-induced expression of TLR-4. Furthermore, OMT was shown to suppress the levels of myeloid differentiation factor (MYD)88, nuclear factor (NF)-κB, caspase-3, inducible nitric oxide synthase, tumor necrosis factor-α, interleukin (IL)-1β and IL-6. In light of these results, it was concluded that OMT may exert its neuroprotective effects via HSP60/TLR-4/MYD88/NF-κB signaling pathways to inhibit microglial activation. OMT may therefore offer substantial therapeutic potential for treating neurodegenerative diseases associated with microglial activation.

  3. An Activation Threshold Model for Response Inhibition

    Science.gov (United States)

    MacDonald, Hayley J.; McMorland, Angus J. C.; Stinear, Cathy M.; Coxon, James P.; Byblow, Winston D.

    2017-01-01

    Reactive response inhibition (RI) is the cancellation of a prepared response when it is no longer appropriate. Selectivity of RI can be examined by cueing the cancellation of one component of a prepared multi-component response. This substantially delays execution of other components. There is debate regarding whether this response delay is due to a selective neural mechanism. Here we propose a computational activation threshold model (ATM) and test it against a classical “horse-race” model using behavioural and neurophysiological data from partial RI experiments. The models comprise both facilitatory and inhibitory processes that compete upstream of motor output regions. Summary statistics (means and standard deviations) of predicted muscular and neurophysiological data were fit in both models to equivalent experimental measures by minimizing a Pearson Chi-square statistic. The ATM best captured behavioural and neurophysiological dynamics of partial RI. The ATM demonstrated that the observed modulation of corticomotor excitability during partial RI can be explained by nonselective inhibition of the prepared response. The inhibition raised the activation threshold to a level that could not be reached by the original response. This was necessarily followed by an additional phase of facilitation representing a secondary activation process in order to reach the new inhibition threshold and initiate the executed component of the response. The ATM offers a mechanistic description of the neural events underlying RI, in which partial movement cancellation results from a nonselective inhibitory event followed by subsequent initiation of a new response. The ATM provides a framework for considering and exploring the neuroanatomical constraints that underlie RI. PMID:28085907

  4. Metformin inhibits advanced glycation end products (AGEs)-induced growth and VEGF expression in MCF-7 breast cancer cells by suppressing AGEs receptor expression via AMP-activated protein kinase.

    Science.gov (United States)

    Ishibashi, Y; Matsui, T; Takeuchi, M; Yamagishi, S

    2013-05-01

    Metformin use has been reported to decrease breast cancer incidence and mortality in diabetic patients. We have previously shown that advanced glycation end products (AGEs) and their receptor (RAGE) interaction stimulate growth and/or migration of pancreatic cancer and melanoma cells. However, effects of metformin on AGEs-RAGE axis in breast cancers remain unknown. We examined here whether and how metformin could block the AGEs-induced growth and vascular endothelial growth factor (VEGF) expression in MCF-7 breast cancer cells. Cell proliferation was measured with an electron coupling reagent WST-1 based colorimetric assay. Gene expression level was evaluated by real-time reverse-transcription polymerase chain reactions. AGEs significantly increased cell proliferation of MCF-7 cells, which was completely prevented by the treatment with 0.01 or 0.1 mM metformin or anti-RAGE antibodies. Furthermore, metformin at 0.01 mM completely suppressed the AGEs-induced upregulation of RAGE and VEGF mRNA levels in MCF-7 cells. An inhibitor of AMP-activated protein kinase, compound C significantly blocked the growth-inhibitory and RAGE and VEGF suppressing effects of metformin in AGEs-exposed MCF-7 cells. Our present study suggests that metformin could inhibit the AGEs-induced growth and VEGF expression in MCF-7 breast cancer cells by suppressing RAGE gene expression via AMP-activated protein kinase pathway. Metformin may protect against breast cancer expansion in diabetic patients by blocking the AGEs-RAGE axis.

  5. Inhibition of Plasmepsin V activity demonstrates its essential role in protein export, PfEMP1 display, and survival of malaria parasites

    DEFF Research Database (Denmark)

    Sleebs, Brad E; Lopaticki, Sash; Marapana, Danushka S

    2014-01-01

    The malaria parasite Plasmodium falciparum exports several hundred proteins into the infected erythrocyte that are involved in cellular remodeling and severe virulence. The export mechanism involves the Plasmodium export element (PEXEL), which is a cleavage site for the parasite protease, Plasmep...

  6. Inhibition of transducin activation and guanosine triphosphatase activity by aluminum ion.

    Science.gov (United States)

    Miller, J L; Hubbard, C M; Litman, B J; Macdonald, T L

    1989-01-05

    Aluminum ion perturbs the activity of a number of physiologically important enzymes, including members of a family of guanine nucleotide-binding proteins (G-proteins). G-proteins couple cellular receptor proteins to a variety of effector enzymes (including adenylate cyclase, phospholipase C, and the rod photoreceptor phosphodiesterase). We show herein that subnanomolar concentrations of free aluminum ion, produced in a carefully defined and kinetically stable manner through the buffering of total aluminum at 0.1-1.0 mM with calculated ratios of chelating agents, inhibit both the receptor-mediated activation and the self-inactivating GTPase activity of the rod photoreceptor G-protein, Gv. In the presence of 4 X 10(-10) M free aluminum ion, GTPase activity is inhibited from about 25-60% as the magnesium ion concentration is reduced from 10(-3) to about 5 X 10(-5) M. The principal effect of aluminum ion upon Gv is to inhibit receptor catalyzed nucleotide exchange. Binding of the GTP analog 5'-guanylyl imidodiphosphate can be reduced by as much as 90% by aluminum ion following subsaturating rhodopsin stimulation. Aluminum ion can produce either competitive or mixed noncompetitive inhibition of rhodopsin-catalyzed Gv activation and GTPase activity, as a function of whether Gv undergoes single (competitive), or multiple (mixed noncompetitive) nucleotide exchanges. The rod photoreceptor phosphodiesterase is only slightly inhibited by similar aluminum ion activities. Light- and Gv-coupled phosphodiesterase activation exhibits both a lower maximum rate of cyclic guanosine monophosphate hydrolysis and a slower inactivation in the presence of aluminum ion activities from about 10(-12) - 10(-10) M. These data suggest that intracellular free aluminum ion concentrations in the subnanomolar range could markedly affect the ability of cells to transduce extracellular signals. Interestingly, the combination of Al3+ and F- to produce the fluoro-aluminate species (AlFx) also inhibits

  7. IFITM Proteins Inhibit Entry Driven by the MERS-Coronavirus Spike Protein: Evidence for Cholesterol-Independent Mechanisms

    Directory of Open Access Journals (Sweden)

    Florian Wrensch

    2014-09-01

    Full Text Available The interferon-inducible transmembrane (IFITM proteins 1, 2 and 3 inhibit the host cell entry of several enveloped viruses, potentially by promoting the accumulation of cholesterol in endosomal compartments. IFITM3 is essential for control of influenza virus infection in mice and humans. In contrast, the role of IFITM proteins in coronavirus infection is less well defined. Employing a retroviral vector system for analysis of coronavirus entry, we investigated the susceptibility of human-adapted and emerging coronaviruses to inhibition by IFITM proteins. We found that entry of the recently emerged Middle East respiratory syndrome coronavirus (MERS-CoV is sensitive to inhibition by IFITM proteins. In 293T cells, IFITM-mediated inhibition of cellular entry of the emerging MERS- and SARS-CoV was less efficient than blockade of entry of the globally circulating human coronaviruses 229E and NL63. Similar differences were not observed in A549 cells, suggesting that cellular context and/or IFITM expression levels can impact inhibition efficiency. The differential IFITM-sensitivity of coronaviruses observed in 293T cells afforded the opportunity to investigate whether efficiency of entry inhibition by IFITMs and endosomal cholesterol accumulation correlate. No such correlation was observed. Furthermore, entry mediated by the influenza virus hemagglutinin was robustly inhibited by IFITM3 but was insensitive to accumulation of endosomal cholesterol, indicating that modulation of cholesterol synthesis/transport did not account for the antiviral activity of IFITM3. Collectively, these results show that the emerging MERS-CoV is a target of the antiviral activity of IFITM proteins and demonstrate that mechanisms other than accumulation of endosomal cholesterol can contribute to viral entry inhibition by IFITMs.

  8. Romidepsin reduces histone deacetylase activity, induces acetylation of histones, inhibits proliferation, and activates apoptosis in immortalized epithelial endometriotic cells.

    Science.gov (United States)

    Imesch, Patrick; Fink, Daniel; Fedier, André

    2010-12-01

    Romidepsin inhibited HDAC activity, produced acetylation of the histone proteins, up-regulated p21, and down-regulated cyclins B1 and D1, resulting in proliferation inhibition and apoptosis activation in 11z immortalized epithelial endometriotic cells. Our findings provide evidence that endometriotic cells are sensitive to the epigenetic effects of romidepsin and suggest that endometriosis may be therapeutically targeted by romidepsin.

  9. Macrocycles that inhibit the binding between heat shock protein 90 and TPR-containing proteins.

    Science.gov (United States)

    Ardi, Veronica C; Alexander, Leslie D; Johnson, Victoria A; McAlpine, Shelli R

    2011-12-16

    Heat shock protein 90 (Hsp90) accounts for 1-2% of the total proteins in normal cells and functions as a molecular chaperone that folds, assembles, and stabilizes client proteins. Hsp90 is overexpressed (3- to 6-fold increase) in stressed cells, including cancer cells, and regulates over 200 client and co-chaperone proteins. Hsp90 client proteins are involved in a plethora of cellular signaling events including numerous growth and apoptotic pathways. Since pathway-specific inhibitors can be problematic in drug-resistant cancers, shutting down multiple pathways at once is a promising approach when developing new therapeutics. Hsp90's ability to modulate many growth and signaling pathways simultaneously makes this protein an attractive target in the field of cancer therapeutics. Herein we present evidence that a small molecule modulates Hsp90 via binding between the N and middle domain and allosterically inhibiting the binding interaction between Hsp90 and four C-terminal binding client proteins: IP6K2, FKBP38, FKBP52, and HOP. These last three clients contain a tetratricopeptide-repeat (TPR) region, which is known to interact with the MEEVD sequence on the C-terminus of Hsp90. Thus, this small molecule modulates the activity between co-chaperones that contain TPR motifs and Hsp90's MEEVD region. This mechanism of action is unique from that of all Hsp90 inhibitors currently in clinical trials where these molecules have no effect on proteins that bind to the C-terminus of Hsp90. Further, our small molecule induces a Caspase-3 dependent apoptotic event. Thus, we describe the mechanism of a novel scaffold that is a useful tool for studying cell-signaling events that result when blocking the MEEVD-TPR interaction between Hsp90 and co-chaperone proteins.

  10. Momilactione B inhibits protein kinase A signaling and reduces tyrosinase-related proteins 1 and 2 expression in melanocytes.

    Science.gov (United States)

    Lee, Ji Hae; Cho, Boram; Jun, Hee-jin; Seo, Woo-Duck; Kim, Dong-Woo; Cho, Kang-Jin; Lee, Sung-Joon

    2012-05-01

    Momilactone B (MB) is a terpenoid phytoalexin present in rice bran that exhibits several biological activities. MB reduced the melanin content in B16 melanocytes melanin content and inhibited tyrosinase activities. Using transcriptome analysis, the genes involved in protein kinase A (PKA) signaling were found to be markedly altered. B16 cells stimulated with MB had decreased concentrations of cAMP protein kinase A activity, and cAMP-response element-binding protein which is a key transcription factor for microphthalmia-associated transcription factor (MITF) expression. Accordingly, the expression of MITF and its target genes, which are essential for melanogenesis, were reduced. MB thus exhibits anti-melanogenic effects by repressing tyrosinase enzyme activity and inhibiting the PKA signaling pathway which, in turn, decreases melanogenic gene expression.

  11. Inhibition of infectious pancreatic necrosis virus replication by atlantic salmon Mx1 protein.

    Science.gov (United States)

    Larsen, Rannveig; Røkenes, Torunn P; Robertsen, Børre

    2004-08-01

    Mx proteins form a family of interferon (IFN)-induced GTPases with potent antiviral activity against various single-stranded RNA viruses in mammals and chickens. In fish, alpha/beta IFN has been reported to inhibit the replication of infectious pancreatic necrosis virus (IPNV), but the mode of action has not been elucidated. A correlation between the inhibition of IPNV and Mx protein expression has, however, been observed. To examine whether Atlantic salmon Mx1 protein (ASMx1) possesses antiviral activity against IPNV, CHSE-214 cells constitutively expressing ASMx1 were established. ASMx1 appeared to be localized in the cytoplasm. The ASMx1-expressing clone selected showed a severely reduced IPNV-induced cytopathic effect, which was confirmed by a 500-fold reduction in virus yield. The antiviral activity against IPNV was further confirmed by the inhibition of virus protein synthesis and the reduced accumulation of virus transcripts. The present work further adds to the body of evidence which suggests that antiviral activity is a major functional role of vertebrate Mx proteins. Moreover, the list of viruses inhibited by Mx proteins is extended to include double-stranded RNA viruses.

  12. Asynchronous Cholinergic Drive Correlates with Excitation-Inhibition Imbalance via a Neuronal Ca2+ Sensor Protein

    Directory of Open Access Journals (Sweden)

    Keming Zhou

    2017-05-01

    Full Text Available Excitation-inhibition imbalance in neural networks is widely linked to neurological and neuropsychiatric disorders. However, how genetic factors alter neuronal activity, leading to excitation-inhibition imbalance, remains unclear. Here, using the C. elegans locomotor circuit, we examine how altering neuronal activity for varying time periods affects synaptic release pattern and animal behavior. We show that while short-duration activation of excitatory cholinergic neurons elicits a reversible enhancement of presynaptic strength, persistent activation results to asynchronous and reduced cholinergic drive, inducing imbalance between endogenous excitation and inhibition. We find that the neuronal calcium sensor protein NCS-2 is required for asynchronous cholinergic release in an activity-dependent manner and dampens excitability of inhibitory neurons non-cell autonomously. The function of NCS-2 requires its Ca2+ binding and membrane association domains. These results reveal a synaptic mechanism implicating asynchronous release in regulation of excitation-inhibition balance.

  13. Gc protein-derived macrophage-activating factor (GcMAF) stimulates cAMP formation in human mononuclear cells and inhibits angiogenesis in chick embryo chorionallantoic membrane assay.

    Science.gov (United States)

    Pacini, Stefania; Morucci, Gabriele; Punzi, Tiziana; Gulisano, Massimo; Ruggiero, Marco

    2011-04-01

    The effects of Gc protein-derived macrophage-activating factor (GcMAF) have been studied in cancer and other conditions where angiogenesis is deregulated. In this study, we demonstrate for the first time that the mitogenic response of human peripheral blood mononuclear cells (PBMCs) to GcMAF was associated with 3'-5'-cyclic adenosine monophosphate (cAMP) formation. The effect was dose dependent, and maximal stimulation was achieved using 0.1 ng/ml. Heparin inhibited the stimulatory effect of GcMAF on PBMCs. In addition, we demonstrate that GcMAF (1 ng/ml) inhibited prostaglandin E(1)- and human breast cancer cell-stimulated angiogenesis in chick embryo chorionallantoic membrane (CAM) assay. Finally, we tested different GcMAF preparations on CAM, and the assay proved to be a reliable, reproducible and inexpensive method to determine the relative potencies of different preparations and their stability; we observed that storage at room temperature for 15 days decreased GcMAF potency by about 50%. These data could prove useful for upcoming clinical trials on GcMAF.

  14. Inhibition of mitogen-activated protein kinases/nuclear factor κB-dependent inflammation by a novel chalcone protects the kidney from high fat diet-induced injuries in mice.

    Science.gov (United States)

    Fang, Qilu; Deng, Liancheng; Wang, Lintao; Zhang, Yali; Weng, Qiaoyou; Yin, Haimin; Pan, Yong; Tong, Chao; Wang, Jingying; Liang, Guang

    2015-11-01

    The prevalence of obesity has increased dramatically worldwide leading to increases in obesity-related complications, such as obesity-related glomerulopathy (ORG). Obesity is a state of chronic, low-grade inflammation, and increased inflammation in the adipose and kidney tissues has been shown to promote the progression of renal damage in obesity. Current therapeutic options for ORG are fairly limited and, as a result, we are seeing increased rates of progression to end-stage renal disease. Chalcones are a class of naturally occurring compounds with various pharmacological properties. 1-(3,4-Dihydroxyphenyl)-3-(2-methoxyphenyl)prop-2-en-1-one (L2H17) is a chalcone that we have previously synthesized and found capable of inhibiting the lipopolysaccharide-induced inflammatory response in macrophages. In this study, we investigated L2H17's effect on obesity-induced renal injury using palmitic acid-induced mouse peritoneal macrophages and high fat diet-fed mice. Our results indicate that L2H17 protects against renal injury through the inhibition of the mitogen-activated protein kinase/nuclear factor κB pathways significantly by decreasing the expression of proinflammatory cytokines and cell adhesion molecules and improving kidney histology and pathology. These findings lead us to believe that L2H17, as an anti-inflammatory agent, can be a potential therapeutic option in treating ORG.

  15. Theobromine inhibits sensory nerve activation and cough.

    Science.gov (United States)

    Usmani, Omar S; Belvisi, Maria G; Patel, Hema J; Crispino, Natascia; Birrell, Mark A; Korbonits, Márta; Korbonits, Dezso; Barnes, Peter J

    2005-02-01

    Cough is a common and protective reflex, but persistent coughing is debilitating and impairs quality of life. Antitussive treatment using opioids is limited by unacceptable side effects, and there is a great need for more effective remedies. The present study demonstrates that theobromine, a methylxanthine derivative present in cocoa, effectively inhibits citric acid-induced cough in guinea-pigs in vivo. Furthermore, in a randomized, double-blind, placebo-controlled study in man, theobromine suppresses capsaicin-induced cough with no adverse effects. We also demonstrate that theobromine directly inhibits capsaicin-induced sensory nerve depolarization of guinea-pig and human vagus nerve suggestive of an inhibitory effect on afferent nerve activation. These data indicate the actions of theobromine appear to be peripherally mediated. We conclude theobromine is a novel and promising treatment, which may form the basis for a new class of antitussive drugs.

  16. Curcumin directly inhibits the transport activity of GLUT1.

    Science.gov (United States)

    Gunnink, Leesha K; Alabi, Ola D; Kuiper, Benjamin D; Gunnink, Stephen M; Schuiteman, Sam J; Strohbehn, Lauren E; Hamilton, Kathryn E; Wrobel, Kathryn E; Louters, Larry L

    2016-06-01

    Curcumin, a major ingredient in turmeric, has a long history of medicinal applications in a wide array of maladies including treatment for diabetes and cancer. Seemingly counterintuitive to the documented hypoglycemic effects of curcumin, however, a recent report indicates that curcumin directly inhibits glucose uptake in adipocytes. The major glucose transporter in adipocytes is GLUT4. Therefore, this study investigates the effects of curcumin in cell lines where the major transporter is GLUT1. We report that curcumin has an immediate inhibitory effect on basal glucose uptake in L929 fibroblast cells with a maximum inhibition of 80% achieved at 75 μM curcumin. Curcumin also blocks activation of glucose uptake by azide, glucose deprivation, hydroxylamine, or phenylarsine oxide. Inhibition does not increase with exposure time and the inhibitory effects reverse within an hour. Inhibition does not appear to involve a reaction between curcumin and the thiol side chain of a cysteine residue since neither prior treatment of cells with iodoacetamide nor curcumin with cysteine alters curcumin's inhibitory effects. Curcumin is a mixed inhibitor reducing the Vmax of 2DG transport by about half with little effect on the Km. The inhibitory effects of curcumin are not additive to the effects of cytochalasin B and 75 μM curcumin actually reduces specific cytochalasin B binding by 80%. Taken together, the data suggest that curcumin binds directly to GLUT1 at a site that overlaps with the cytochalasin B binding site and thereby inhibits glucose transport. A direct inhibition of GLUT proteins in intestinal epithelial cells would likely reduce absorption of dietary glucose and contribute to a hypoglycemic effect of curcumin. Also, inhibition of GLUT1 activity might compromise cancer cells that overexpress GLUT1 and be another possible mechanism for the documented anticancer effects of curcumin. Copyright © 2016. Published by Elsevier B.V.

  17. Kaempferol inhibits thrombosis and platelet activation.

    Science.gov (United States)

    Choi, Jun-Hui; Park, Se-Eun; Kim, Sung-Jun; Kim, Seung

    2015-08-01

    The objectives of the present study were to investigate whether kaempferol affects pro-coagulant proteinase activity, fibrin clot formation, blood clot and thrombin (or collagen/epinephrine)-stimulated platelet activation, thrombosis, and coagulation in ICR (Imprinting Control Region) mice and SD (Sprague-Dawley) rats. Kaempferol significantly inhibited the enzymatic activities of thrombin and FXa by 68 ± 1.6% and 52 ± 2.4%, respectively. Kaempferol also inhibited fibrin polymer formation in turbidity. Microscopic analysis was performed using a fluorescent conjugate. Kaempferol completely attenuated phosphorylation of extracellular signal-regulated kinase (ERK) 1/2, p38, c-Jun N-terminal kinase (JNK) 1/2, and phosphoinositide 3-kinase (PI3K)/PKB (AKT) in thrombin-stimulated platelets and delayed aggregation time (clotting) by 34.6% in an assay of collagen/epinephrine-stimulated platelet activation. Moreover, kaempferol protected against thrombosis development in 3 animal models, including collagen/epinephrine- and thrombin-induced acute thromboembolism models and an FeCl3-induced carotid arterial thrombus model. The ex vivo anticoagulant effect of kaempferol was further confirmed in ICR mice. This study demonstrated that kaempferol may be clinically useful due to its ability to reduce or prevent thrombotic challenge.

  18. Protease activity, localization and inhibition in the human hair follicle.

    Science.gov (United States)

    Bhogal, R K; Mouser, P E; Higgins, C A; Turner, G A

    2014-02-01

    In humans, the process of hair shedding, referred to as exogen, is believed to occur independently of the other hair cycle phases. Although the actual mechanisms involved in hair shedding are not fully known, it has been hypothesized that the processes leading to the final step of hair shedding may be driven by proteases and/or protease inhibitor activity. In this study, we investigated the presence of proteases and protease activity in naturally shed human hairs and assessed enzyme inhibition activity of test materials. We measured enzyme activity using a fluorescence-based assay and protein localization by indirect immunohistochemistry (IHC). We also developed an ex vivo skin model for measuring the force required to pull hair fibres from skin. Our data demonstrate the presence of protease activity in the tissue material surrounding club roots. We also demonstrated the localization of specific serine protease protein expression in human hair follicle by IHC. These data provide evidence demonstrating the presence of proteases around the hair club roots, which may play a role during exogen. We further tested the hypothesis that a novel protease inhibitor system (combination of Trichogen) and climbazole) could inhibit protease activity in hair fibre club root extracts collected from a range of ethnic groups (U.K., Brazil, China, first-generation Mexicans in the U.S.A., Thailand and Turkey) in both males and females. Furthermore, we demonstrated that this combination is capable of increasing the force required to remove hair in an ex vivo skin model system. These studies indicate the presence of proteolytic activity in the tissue surrounding the human hair club root and show that it is possible to inhibit this activity with a combination of Trichogen and climbazole. This technology may have potential to reduce excessive hair shedding. © 2013 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  19. Grape seed extract inhibits VEGF expression via reducing HIF-1alpha protein expression.

    Science.gov (United States)

    Lu, Jianming; Zhang, Keqiang; Chen, Shiuan; Wen, Wei

    2009-04-01

    Grape seed extract (GSE) is a widely consumed dietary supplement that has antitumor activity. Here, we have investigated the inhibitory effect of GSE on the expression of vascular endothelial growth factor (VEGF) and the mechanism underlying this action. We found that GSE inhibited VEGF messenger RNA (mRNA) and protein expression in U251 human glioma cells and MDA-MB-231 human breast cancer cells. GSE inhibited transcriptional activation of the VEGF gene through reducing protein but not mRNA expression of hypoxia-inducible factor (HIF) 1alpha. The inhibitory effect of GSE on HIF-1alpha expression was mainly through inhibiting HIF-1alpha protein synthesis rather than promoting protein degradation. Consistent with this result, GSE-suppressed phosphorylation of several important components involved in HIF-1alpha protein synthesis, such as Akt, S6 kinase and S6 protein. Furthermore, in the MDA-MB-231 tumor, we found that GSE treatment inhibited the expression of VEGF and HIF-1alpha and the phosphorylation of S6 kinase without altering the subcellular localization of HIF-1alpha, correlating with reduced vessel density and tumor size. Depletion of polyphenol with polyvinylpyrrolidone abolished the inhibitory activity of GSE, suggesting a water-soluble fraction of polyphenol in GSE is responsible for the inhibitory activity. Taken together, our results indicate that GSE inhibits VEGF expression by reducing HIF-1alpha protein synthesis through blocking Akt activation. This finding provides new insight into the mechanisms of anticancer activity of GSE and reveals a novel molecular mechanism underlying the antiangiogenic action of GSE.

  20. Quassinoid inhibition of AP-1 function does not correlate with cytotoxicity or protein synthesis inhibition.

    Science.gov (United States)

    Beutler, John A; Kang, Moon-Il; Robert, Francis; Clement, Jason A; Pelletier, Jerry; Colburn, Nancy H; McKee, Tawnya C; Goncharova, Ekaterina; McMahon, James B; Henrich, Curtis J

    2009-03-27

    Several quassinoids were identified in a high-throughput screening assay as inhibitors of the transcription factor AP-1. Further biological characterization revealed that while their effect was not specific to AP-1, protein synthesis inhibition and cell growth assays were inconsistent with a mechanism of simple protein synthesis inhibition. Numerous plant extracts from the plant family Simaroubaceae were also identified in the same screen; bioassay-guided fractionation of one extract (Ailanthus triphylla) yielded two known quassinoids, ailanthinone (3) and glaucarubinone (4), which were also identified in the pure compound screening procedure.

  1. Separating proteins with activated carbon.

    Science.gov (United States)

    Stone, Matthew T; Kozlov, Mikhail

    2014-07-15

    Activated carbon is applied to separate proteins based on differences in their size and effective charge. Three guidelines are suggested for the efficient separation of proteins with activated carbon. (1) Activated carbon can be used to efficiently remove smaller proteinaceous impurities from larger proteins. (2) Smaller proteinaceous impurities are most efficiently removed at a solution pH close to the impurity's isoelectric point, where they have a minimal effective charge. (3) The most efficient recovery of a small protein from activated carbon occurs at a solution pH further away from the protein's isoelectric point, where it is strongly charged. Studies measuring the binding capacities of individual polymers and proteins were used to develop these three guidelines, and they were then applied to the separation of several different protein mixtures. The ability of activated carbon to separate proteins was demonstrated to be broadly applicable with three different types of activated carbon by both static treatment and by flowing through a packed column of activated carbon.

  2. Protoapigenone, a natural derivative of apigenin, induces mitogen-activated protein kinase-dependent apoptosis in human breast cancer cells associated with induction of oxidative stress and inhibition of glutathione S-transferase π.

    Science.gov (United States)

    Chen, Wen-Ying; Hsieh, Yu-An; Tsai, Ching-I; Kang, Ya-Fei; Chang, Fang-Rong; Wu, Yang-Chang; Wu, Chin-Chung

    2011-12-01

    Protoapigenone, a natural derivative of the flavonoid apigenin, has been shown to exhibit potent antitumor activity in vitro and in vivo; the precise mechanism of action, however, is not fully elucidated. In this study, we investigated and compared the mechanisms by which protoapigenone and apigenin caused cell death in the human breast cancer MDA-MB-231 cells. Flow cytometry analysis revealed that protoapigenone induced apoptosis with 10-fold greater potency than apigenin. Cancer cells treated with protoapigenone resulted in persistent activation of mitogen-activated protein kinase (MAPK) ERK, JNK, and p38, hyperphosphorylation of Bcl-2 and Bcl-xL, and loss of mitochondrial membrane potential (MMP). The MAPK inhibitors effectively prevented the loss of MMP and apoptosis induced by protoapigenone. Treatment of cells with protoapigenone led to increased levels of reactive oxygen species (ROS) and decreased levels of intracellular glutathione. The thiol-antioxidant N-acetylcysteine abolished protoapigenone-induced MAPK activation, mitochondrial dysfunction, and apoptosis. These results suggest that the induction of oxidative stress preceding the activation of MAPK is required to initiate the mitochondria-mediated apoptosis induced by protoapigenone. Additionally, protoapigenone-induced JNK activation was linked to thiol modification of glutathione S-transferase π (GSTpi), which impeded GSTpi inhibition of JNK. In contrast to protoapigenone, apigenin-induced apoptosis was neither dependent on ROS nor on MAPK. Structure-activity relationship studies suggested that the thiol reacting effect of protoapigenone might be associated with an α, β-unsaturated ketone moiety in the structure of ring B.

  3. New structure–activity relationships of chalcone inhibitors of breast cancer resistance protein: polyspecificity toward inhibition and critical substitutions against cytotoxicity

    Science.gov (United States)

    Rangel, Luciana Pereira; Winter, Evelyn; Gauthier, Charlotte; Terreux, Raphaël; Chiaradia-Delatorre, Louise D; Mascarello, Alessandra; Nunes, Ricardo J; Yunes, Rosendo A; Creczynski-Pasa, Tania B; Macalou, Sira; Lorendeau, Doriane; Baubichon-Cortay, Hélène; Ferreira-Pereira, Antonio; Di Pietro, Attilio

    2013-01-01

    Adenosine triphosphate-binding cassette subfamily G member 2 (ABCG2) plays a major role in cancer cell multidrug resistance, which contributes to low eifficacy of chemotherapy. Chalcones were recently found to be potent and specific inhibitors, but unfortunately display a significant cytotoxicity. A cellular screening against ABCG2-mediated mitoxantrone efflux was performed here by flow cytometry on 54 chalcone derivatives from three different series with a wide panel of substituents. The identified leads, with submicromolar IC50 (half maximal inhibitory concentration) values, showed that the previously identified 2′-OH-4′,6′-dimethoxyphenyl, as A-ring, could be efficiently replaced by a 2′-naphthyl group, or a 3′,4′-methylenedioxyphenyl with lower affinity. Such a structural variability indicates 3polyspecificity of the multidrug transporter for inhibitors. At least two methoxyl groups were necessary on B-ring for optimal inhibition, but substitution at positions 3, 4, and 5 induced cytotoxicity. The presence of a large O-benzyl substituent at position 4 and a 2′-naphthyl as A-ring markedly decreased the cytotoxicity, giving a high therapeutic ratio, which constitutes a critical requirement for future in-vivo assays in animal models. PMID:24109177

  4. New structure-activity relationships of chalcone inhibitors of breast cancer resistance protein: polyspecificity toward inhibition and critical substitutions against cytotoxicity.

    Science.gov (United States)

    Rangel, Luciana Pereira; Winter, Evelyn; Gauthier, Charlotte; Terreux, Raphaël; Chiaradia-Delatorre, Louise D; Mascarello, Alessandra; Nunes, Ricardo J; Yunes, Rosendo A; Creczynski-Pasa, Tania B; Macalou, Sira; Lorendeau, Doriane; Baubichon-Cortay, Hélène; Ferreira-Pereira, Antonio; Di Pietro, Attilio

    2013-01-01

    Adenosine triphosphate-binding cassette subfamily G member 2 (ABCG2) plays a major role in cancer cell multidrug resistance, which contributes to low efficacy of chemotherapy. Chalcones were recently found to be potent and specific inhibitors, but unfortunately display a significant cytotoxicity. A cellular screening against ABCG2-mediated mitoxantrone efflux was performed here by flow cytometry on 54 chalcone derivatives from three different series with a wide panel of substituents. The identified leads, with submicromolar IC50 (half maximal inhibitory concentration) values, showed that the previously identified 2'-OH-4',6'-dimethoxyphenyl, as A-ring, could be efficiently replaced by a 2'-naphthyl group, or a 3',4'-methylenedioxyphenyl with lower affinity. Such a structural variability indicates 3polyspecificity of the multidrug transporter for inhibitors. At least two methoxyl groups were necessary on B-ring for optimal inhibition, but substitution at positions 3, 4, and 5 induced cytotoxicity. The presence of a large O-benzyl substituent at position 4 and a 2'-naphthyl as A-ring markedly decreased the cytotoxicity, giving a high therapeutic ratio, which constitutes a critical requirement for future in-vivo assays in animal models.

  5. Effects of oxatomide and derivatives on high affinity IgE receptor-activated signal transduction pathways in rat basophilic leukemia cells : Role of protein tyrosine hyperphosphorylation and inhibition of extracellular calcium influx

    NARCIS (Netherlands)

    Paulussen, JJC; Fischer, MJE; Roozendaal, RL; van der Heijden, VC; van Dijken, P.; de Mol, NJ; Janssen, LHM

    1998-01-01

    The antiallergic drug oxatomide and analogs inhibit mediator release from a rat basophilic leukemia (RBL-2H3) cell line, which is frequently used as a mast cell model. By investigating a series of derivatives of oxatomide with different inhibiting activities on exocytosis, we aimed to evaluate the r

  6. Bay11-7082 attenuates neuropathic pain via inhibition of nuclear factor-kappa B and nucleotide-binding domain-like receptor protein 3 inflammasome activation in dorsal root ganglions in a rat model of lumbar disc herniation

    Directory of Open Access Journals (Sweden)

    Zhang AL

    2017-02-01

    Full Text Available Ailiang Zhang, Kun Wang, Lianghua Ding, Xinnan Bao, Xuan Wang, Xubin Qiu, Jinbo Liu Spine Surgery, Third Affiliated Hospital of Soochow University, Changzhou, People’s Republic of China Abstract: Lumbar disc herniation (LDH is an important cause of radiculopathy, but the underlying mechanisms are incompletely understood. Many studies suggested that local inflammation, rather than mechanical compression, results in radiculopathy induced by LDH. On the molecular and cellular level, nuclear factor-kappa B (NF-κB and nucleotide-binding domain-like receptor protein 3 (NLRP3 inflammasome have been implicated in the regulation of neuroinflammation formation and progression. In this study, the autologous nucleus pulposus (NP was implanted in the left L5 dorsal root ganglion (DRG to mimic LDH in rats. We investigated the expression of NF-κB and the components of NLRP3 inflammasome in the DRG neurons in rats. Western blotting and immunofluorescence for the related molecules, including NLRP3, apoptosis-associated speck-like protein containing caspase-1 activator domain (ASC, caspase-1, interleukin (IL-1β, IL-18, IκBα, p-IκBα, p65, p-p65, and calcitonin gene-related peptide (CGRP were examined. In the NP-treated group, the activations of NLRP3, ASC, caspase-1, IL-1β, IL-18, p-IκBα, and p-p65 in DRG neurons in rats were elevated at 1 day after surgery, and the peak occurred at 7 days. Treatment with Bay11-7082, an inhibitor of the actions of IKK-β, was able to inhibit expression and activation of the molecules (NLRP3, ASC, caspase-1, IL-1β, IL-18, p-IκBα, and p-p65 and relieve the pain in rats. Our study shows that NF-κB and NLRP3 inflammasome are involved in the maintenance of NP-induced pain, and that Bay11-7082 could alleviate mechanical allodynia and thermal hyperalgesia by inhibiting NF-κB and NLRP3 inflammasome activation. Keywords: pain, NLRP3, NF-κB, dorsal root ganglion, nucleus pulposus

  7. Trace element inhibition of phytase activity.

    Science.gov (United States)

    Santos, T; Connolly, C; Murphy, R

    2015-02-01

    Nowadays, 70 % of global monogastric feeds contains an exogenous phytase. Phytase supplementation has enabled a more efficient utilisation of phytate phosphorous (P) and reduction of P pollution. Trace minerals, such as iron (Fe), zinc (Zn), copper (Cu) and manganese (Mn) are essential for maintaining health and immunity as well as being involved in animal growth, production and reproduction. Exogenous sources of phytase and trace elements are regularly supplemented to monogastric diets and usually combined in a premix. However, the possibility for negative interaction between individual components within the premix is high and is often overlooked. Therefore, this initial study focused on assessing the potential in vitro interaction between inorganic and organic chelated sources of Fe, Zn, Cu and Mn with three commercially available phytase preparations. Additionally, this study has investigated if the degree of enzyme inhibition was dependent of the type of chelated sources. A highly significant relationship between phytase inhibition, trace mineral type as well as mineral source and concentration, p phytases for Fe and Zn, as well as for Cu with E. coli and Aspergillus niger phytases. Different chelate trace mineral sources demonstrated diversifying abilities to inhibit exogenous phytase activity.

  8. Inhibition of thermal induced protein denaturation of extract/fractions of Withania somnifera and isolated withanolides.

    Science.gov (United States)

    Khan, Murad Ali; Khan, Haroon; Rauf, Abdul; Ben Hadda, Taibi

    2015-01-01

    This study describes the in vitro inhibition of protein denaturation of extract/fractions of Withania somnifera and isolated withanolides including 20β hydroxy-1-oxo(22R)-witha-2,5,24 trienolide (1), (20R,22R-14α,20α)-dihydroxy-1-oxowitha-2,5,16,24 tetraenolide (2). The results showed that the extract/fractions of the plant evoked profound inhibitory effect on thermal-induced protein denaturation. The chloroform fraction caused the most dominant attenuation of 68% at 500 μg/mL. The bioactivity-guided isolation from chloroform fraction led to the isolation of compounds 1 and 2 that showed profound protein inhibition with 78.05% and 80.43% effect at 500 μg/mL and thus strongly complimented the activity of extract/fractions. In conclusion, extract/fractions of W. somnifera possessed strong inhibition of protein denaturation that can be attributed to these isolated withanolides.

  9. Overexpression of citrus polygalacturonase-inhibiting protein in citrus black rot pathogen Alternaria citri.

    Science.gov (United States)

    Katoh, Hiroshi; Nalumpang, Sarunya; Yamamoto, Hiroyuki; Akimitsu, Kazuya

    2007-05-01

    The rough lemon (Citrus jambhiri) gene encoding polygalacturonase-inhibiting protein (RlemPGIPA) was overexpressed in the pathogenic fungus Alternaria citri. The overexpression mutant AcOPI6 retained the ability to utilize pectin as a sole carbon source, and the overexpression of polygalacturonase-inhibiting protein did not have any effect on the growth of AcOPI6 in potato dextrose and pectin medium. The pathogenicity of AcOPI6 to cause a black rot symptom in citrus fruits was also unchanged. Polygalacturonase-inhibiting protein was secreted together with endopolygalacturonase into culture filtrates of AcOPI6, and oligogalacturonides were digested from polygalacturonic acid by both proteins in the culture filtrates. The reaction mixture containing oligogalacturonides possessed activity for induction of defense-related gene, RlemLOX, in rough lemon leaves.

  10. Purification and Characterization of a Polygalacturonase-Inhibiting Protein from Phaseolus vulgaris L.

    Science.gov (United States)

    Cervone, F; De Lorenzo, G; Degrà, L; Salvi, G; Bergami, M

    1987-11-01

    Homogeneous endo-polygalacturonase (PG) was covalently bound to cyanogen-bromide-activated Sepharose, and the resulting PG-Sepharose conjugate was utilized to purify, by affinity chromatography, a protein from Phaseolus vulgaris hypocotyls that binds to and inhibits PG. Isoelectric focusing of the purified PG-inhibiting protein (PGIP) showed a major protein band that coincided with PG-inhibiting activity. PGIP formed a complex with PG at pH 5.0 and at low salt concentrations. The complex dissociated in 0.5 m Na-acetate and pH values lower than 4.5 or higher than 6.0. Formation of the PG-PGIP complex resulted in complete inhibition of PG activity. PG activity was restored upon dissociation of the complex. The protein exhibited inhibitory activity toward PGs from Colletotrichum lindemuthianum, Fusarium moniliforme and Aspergillus niger. The possible role of PGIP in regulating the activity of fungal PG's and their ability to elicit plant defense reactions are discussed.

  11. Purification and Characterization of a Polygalacturonase-Inhibiting Protein from Phaseolus vulgaris L. 1

    Science.gov (United States)

    Cervone, Felice; De Lorenzo, Giulia; Degrà, Luisa; Salvi, Giovanni; Bergami, Mario

    1987-01-01

    Homogeneous endo-polygalacturonase (PG) was covalently bound to cyanogen-bromide-activated Sepharose, and the resulting PG-Sepharose conjugate was utilized to purify, by affinity chromatography, a protein from Phaseolus vulgaris hypocotyls that binds to and inhibits PG. Isoelectric focusing of the purified PG-inhibiting protein (PGIP) showed a major protein band that coincided with PG-inhibiting activity. PGIP formed a complex with PG at pH 5.0 and at low salt concentrations. The complex dissociated in 0.5 m Na-acetate and pH values lower than 4.5 or higher than 6.0. Formation of the PG-PGIP complex resulted in complete inhibition of PG activity. PG activity was restored upon dissociation of the complex. The protein exhibited inhibitory activity toward PGs from Colletotrichum lindemuthianum, Fusarium moniliforme and Aspergillus niger. The possible role of PGIP in regulating the activity of fungal PG's and their ability to elicit plant defense reactions are discussed. Images Fig. 3 PMID:16665751

  12. Inhibition of Tcf3 binding by I-mfa domain proteins.

    Science.gov (United States)

    Snider, L; Thirlwell, H; Miller, J R; Moon, R T; Groudine, M; Tapscott, S J

    2001-03-01

    We have determined that I-mfa, an inhibitor of several basic helix-loop-helix (bHLH) proteins, and XIC, a Xenopus ortholog of human I-mf domain-containing protein that shares a highly conserved cysteine-rich C-terminal domain with I-mfa, inhibit the activity and DNA binding of the HMG box transcription factor XTcf3. Ectopic expression of I-mfa or XIC in early Xenopus embryos inhibited dorsal axis specification, the expression of the Tcf3/beta-catenin-regulated genes siamois and Xnr3, and the ability of beta-catenin to activate reporter constructs driven by Lef/Tcf binding sites. I-mfa domain proteins can regulate both the Wnt signaling pathway and a subset of bHLH proteins, possibly coordinating the activities of these two critical developmental pathways.

  13. Activated protein C modulates the proinflammatory activity of dendritic cells

    Directory of Open Access Journals (Sweden)

    Matsumoto T

    2015-05-01

    Full Text Available Takahiro Matsumoto,1,2* Yuki Matsushima,1* Masaaki Toda,1 Ziaurahman Roeen,1 Corina N D'Alessandro-Gabazza,1,5 Josephine A Hinneh,1 Etsuko Harada,1,3 Taro Yasuma,4 Yutaka Yano,4 Masahito Urawa,1,5 Tetsu Kobayashi,5 Osamu Taguchi,5 Esteban C Gabazza1 1Department of Immunology, Mie University Graduate School of Medicine, Tsu, Mie Prefecture, 2BONAC Corporation, BIO Factory 4F, Fukuoka, 3Iwade Research Institute of Mycology, 4Department of Endocrinology, Diabetes and Metabolism, 5Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu, Mie Prefecture, Japan *These authors contributed equally to this work Background: Previous studies have demonstrated the beneficial activity of activated protein C in allergic diseases including bronchial asthma and rhinitis. However, the exact mechanism of action of activated protein C in allergies is unclear. In this study, we hypothesized that pharmacological doses of activated protein C can modulate allergic inflammation by inhibiting dendritic cells. Materials and methods: Dendritic cells were prepared using murine bone marrow progenitor cells and human peripheral monocytes. Bronchial asthma was induced in mice that received intratracheal instillation of ovalbumin-pulsed dendritic cells. Results: Activated protein C significantly increased the differentiation of tolerogenic plasmacytoid dendritic cells and the secretion of type I interferons, but it significantly reduced lipopolysaccharide-mediated maturation and the secretion of inflammatory cytokines in myeloid dendritic cells. Activated protein C also inhibited maturation and the secretion of inflammatory cytokines in monocyte-derived dendritic cells. Activated protein C-treated dendritic cells were less effective when differentiating naïve CD4 T-cells from Th1 or Th2 cells, and the cellular effect of activated protein C was mediated by its receptors. Mice that received adoptive transfer of activated protein C

  14. The Leader Protein of Cardioviruses Inhibits Stress Granule Assembly ▿

    Science.gov (United States)

    Borghese, Fabian; Michiels, Thomas

    2011-01-01

    Stress granules (SG) are cytoplasmic aggregates of stalled translation preinitiation complexes that form in cells exposed to various environmental stresses. Here, we show that stress granules assemble in cells infected with Theiler's murine encephalomyelitis virus (TMEV) mutants carrying alterations in the leader (L) protein, but not in cells infected with wild-type TMEV. Stress granules also formed in STAT1-deficient cells, suggesting that SG formation was not a consequence of increased type I interferon (IFN) production when cells were infected with the mutant virus. Ectopic expression of the wild-type L protein was sufficient to inhibit stress granule formation induced by sodium arsenite or thapsigargin treatment. In conclusion, TMEV infection induces stress granule assembly, but this process is inhibited by the L protein. Unlike poliovirus-induced stress granules, TMEV-induced stress granules did not contain the nuclear protein Sam68 but contained polypyrimidine tract binding protein (PTB), an internal ribosome entry site (IRES)-interacting protein. Moreover, G3BP was not degraded and was found in SG after TMEV infection, suggesting that SG content could be virus specific. Despite the colocalization of PTB with SG and the known interaction of PTB with viral RNA, in situ hybridization and immunofluorescence assays failed to detect viral RNA trapped in infection-induced SG. Recombinant Theiler's viruses expressing the L protein of Saffold virus 2 (SAFV-2), a closely related human theilovirus, or the L protein of mengovirus, an encephalomyocarditis virus (EMCV) strain, also inhibited infection-induced stress granule assembly, suggesting that stress granule antagonism is a common feature of cardiovirus L proteins. PMID:21752908

  15. The leader protein of cardioviruses inhibits stress granule assembly.

    Science.gov (United States)

    Borghese, Fabian; Michiels, Thomas

    2011-09-01

    Stress granules (SG) are cytoplasmic aggregates of stalled translation preinitiation complexes that form in cells exposed to various environmental stresses. Here, we show that stress granules assemble in cells infected with Theiler's murine encephalomyelitis virus (TMEV) mutants carrying alterations in the leader (L) protein, but not in cells infected with wild-type TMEV. Stress granules also formed in STAT1-deficient cells, suggesting that SG formation was not a consequence of increased type I interferon (IFN) production when cells were infected with the mutant virus. Ectopic expression of the wild-type L protein was sufficient to inhibit stress granule formation induced by sodium arsenite or thapsigargin treatment. In conclusion, TMEV infection induces stress granule assembly, but this process is inhibited by the L protein. Unlike poliovirus-induced stress granules, TMEV-induced stress granules did not contain the nuclear protein Sam68 but contained polypyrimidine tract binding protein (PTB), an internal ribosome entry site (IRES)-interacting protein. Moreover, G3BP was not degraded and was found in SG after TMEV infection, suggesting that SG content could be virus specific. Despite the colocalization of PTB with SG and the known interaction of PTB with viral RNA, in situ hybridization and immunofluorescence assays failed to detect viral RNA trapped in infection-induced SG. Recombinant Theiler's viruses expressing the L protein of Saffold virus 2 (SAFV-2), a closely related human theilovirus, or the L protein of mengovirus, an encephalomyocarditis virus (EMCV) strain, also inhibited infection-induced stress granule assembly, suggesting that stress granule antagonism is a common feature of cardiovirus L proteins.

  16. New structure–activity relationships of chalcone inhibitors of breast cancer resistance protein: polyspecificity toward inhibition and critical substitutions against cytotoxicity

    Directory of Open Access Journals (Sweden)

    Rangel LP

    2013-09-01

    Full Text Available Luciana Pereira Rangel,1,2,* Evelyn Winter,1,3,* Charlotte Gauthier,1 Raphaël Terreux,4 Louise D Chiaradia-Delatorre,5 Alessandra Mascarello,5 Ricardo J Nunes,5 Rosendo A Yunes,5 Tania B Creczynski-Pasa,3 Sira Macalou,1 Doriane Lorendeau,1 Hélène Baubichon-Cortay,1 Antonio Ferreira-Pereira,2 Attilio Di Pietro11Equipe Labellisée Ligue 2013, BMSSI UMR 5086 CNRS/Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France; 2Department of General Microbiology, Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; 3Department of Pharmaceutical Sciences, PPGFAR, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil; 4Equipe BISI, BMSSI UMR 5086 CNRS/Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France; 5Department of Chemistry, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil*These authors contributed equally to this workAbstract: Adenosine triphosphate-binding cassette subfamily G member 2 (ABCG2 plays a major role in cancer cell multidrug resistance, which contributes to low efficacy of chemotherapy. Chalcones were recently found to be potent and specific inhibitors, but unfortunately display a significant cytotoxicity. A cellular screening against ABCG2-mediated mitoxantrone efflux was performed here by flow cytometry on 54 chalcone derivatives from three different series with a wide panel of substituents. The identified leads, with submicromolar IC50 (half maximal inhibitory concentration values, showed that the previously identified 2'-OH-4',6'-dimethoxyphenyl, as A-ring, could be efficiently replaced by a 2'-naphthyl group, or a 3',4'-methylenedioxyphenyl with lower affinity. Such a structural variability indicates polyspecificity of the multidrug transporter for inhibitors. At least two methoxyl groups were necessary on B-ring for optimal inhibition, but substitution at positions 3, 4, and 5 induced cytotoxicity

  17. Protective Role of PI3-kinase/Akt/eNOS Signaling in Mechanical Stress Through Inhibition of p38 Mitogen-Activated Protein Kinase in Mouse Lung

    Science.gov (United States)

    2010-01-01

    Materials and methods Materials CMRL 1066 medium was purchased from Invitrogen (Carls- bad, CAl, and fetal bovine serum was obtained from Hyclone... endotoxin -induced inflammatory lung injury. Am J Respir Crit Care Med 2004; 169: 1245-51. 3 Miyahara T. Hamanaka K. Weber OS. Drake DA. Anghelescu...kinase up-regulates LPS-induced NF-kappaB activation in the development of lung injury and RAW 264.7 macrophages. Toxicology 2006; 225: 36-47. 15

  18. Identification of Interferon-Stimulated Gene Proteins That Inhibit Human Parainfluenza Virus Type 3.

    Science.gov (United States)

    Rabbani, M A G; Ribaudo, Michael; Guo, Ju-Tao; Barik, Sailen

    2016-12-15

    A major arm of cellular innate immunity is type I interferon (IFN), represented by IFN-α and IFN-β. Type I IFN transcriptionally induces a large number of cellular genes, collectively known as IFN-stimulated gene (ISG) proteins, which act as antivirals. The IFIT (interferon-induced proteins with tetratricopeptide repeats) family proteins constitute a major subclass of ISG proteins and are characterized by multiple tetratricopeptide repeats (TPRs). In this study, we have interrogated IFIT proteins for the ability to inhibit the growth of human parainfluenza virus type 3 (PIV3), a nonsegmented negative-strand RNA virus of the Paramyxoviridae family and a major cause of respiratory disease in children. We found that IFIT1 significantly inhibited PIV3, whereas IFIT2, IFIT3, and IFIT5 were less effective or not at all. In further screening a set of ISG proteins we discovered that several other such proteins also inhibited PIV3, including IFITM1, IDO (indoleamine 2,3-dioxygenase), PKR (protein kinase, RNA activated), and viperin (virus inhibitory protein, endoplasmic reticulum associated, interferon inducible)/Cig5. The antiviral effect of IDO, the enzyme that catalyzes the first step of tryptophan degradation, could be counteracted by tryptophan. These results advance our knowledge of diverse ISG proteins functioning as antivirals and may provide novel approaches against PIV3.

  19. Microsomal protein synthesis inhibition: an early manifestation of gentamicin nephrotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, W.M.; Mela-Riker, L.M.; Houghton, D.C.; Gilbert, D.N.; Buss, W.C.

    1988-08-01

    Aminoglycoside antibiotics achieve bacterial killing by binding to bacterial ribosomes and inhibiting protein synthesis. To examine whether similar mechanisms could be present in renal tubular cells prior to the onset of overt proximal tubular necrosis due to these drugs, we isolated microsomes from Fischer rats given 20 mg/kg gentamicin every 12 h subcutaneously for 2 days and from vehicle-injected controls. Concomitant studies of renal structure, function, and mitochondrial respiration were carried out. (3H)leucine incorporation into renal microsomes of treated animals was reduced by 21.9% (P less than 0.01), whereas brain and liver microsomes from the same animals were unaffected. Gentamicin concentration in the renal microsomal preparation was 56 micrograms/ml, a value 7- to 10-fold above concentrations necessary to inhibit bacterial growth. Conventional renal function studies were normal (blood urea, serum creatinine, creatinine clearance). Treated animals showed only a mild reduction of inulin clearance, 0.71 compared with 0.93 ml.min-1.100 g-1 in controls (P less than 0.05), and an increase in urinary excretion of N-acetylglucosaminidase of 20 compared with 14.8 units/l (P less than 0.05). Renal slice transport of p-aminohippuric acid, tetraethylammonium, and the fractional excretion of sodium were well preserved. There was no evidence, as seen by light microscopy, of proximal tubular necrosis. Mitochondrial cytochrome concentrations were normal and respiratory activities only slightly reduced. Processes similar to those responsible for bacterial killing could be involved in experimental gentamicin nephrotoxicity before overt cellular necrosis.

  20. Amiloride, protein synthesis, and activation of quiescent cells.

    Science.gov (United States)

    Lubin, M; Cahn, F; Coutermarsh, B A

    1982-11-01

    Amiloride is known to inhibit both influx of sodium ions and activation of quiescent cells by growth factors. The coincidence of these effects has been cited to support the proposal that influx of sodium ions acts as a mitogenic signal. Although it was noted that amiloride inhibited protein synthesis, this was attributed to an action on transport of amino acids, particularly those coupled to sodium fluxes. We find, however, that amiloride directly inhibits polypeptide synthesis in a reticulocyte lysate. In Swiss 3T3 cells, concentrations of amiloride and of cycloheximide that are nearly matched in their degree of inhibition of protein synthesis, produce about the same degree of inhibition of transit of cells from G0 to S. Inhibition of protein synthesis is sufficient to explain the effect of amiloride on mitogenesis; the drug, therefore, is not suitable for testing the hypothesis that sodium influx is a mitogenic signal.

  1. Inhibition of Neuroinflammation in LPS-Activated Microglia by Cryptolepine

    Science.gov (United States)

    Olajide, Olumayokun A.; Bhatia, Harsharan S.; de Oliveira, Antonio C. P.; Wright, Colin W.; Fiebich, Bernd L.

    2013-01-01

    Cryptolepine, an indoloquinoline alkaloid in Cryptolepis sanguinolenta, has anti-inflammatory property. In this study, we aimed to evaluate the effects of cryptolepine on lipopolysaccharide (LPS)- induced neuroinflammation in rat microglia and its potential mechanisms. Microglial activation was induced by stimulation with LPS, and the effects of cryptolepine pretreatment on microglial activation and production of proinflammatory mediators, PGE2/COX-2, microsomal prostaglandin E2 synthase and nitric oxide/iNOS were investigated. We further elucidated the role of Nuclear Factor-kappa B (NF-κB) and the mitogen-activated protein kinases in the antiinflammatory actions of cryptolepine in LPS-stimulated microglia. Our results showed that cryptolepine significantly inhibited LPS-induced production of tumour necrosis factor-alpha (TNFα), interleukin-6 (IL-6), interleukin-1beta (IL-1β), nitric oxide, and PGE2. Protein and mRNA levels of COX-2 and iNOS were also attenuated by cryptolepine. Further experiments on intracellular signalling mechanisms show that IκB-independent inhibition of NF-κB nuclear translocation contributes to the anti-neuroinflammatory actions of cryptolepine. Results also show that cryptolepine inhibited LPS-induced p38 and MAPKAPK2 phosphorylation in the microglia. Cell viability experiments revealed that cryptolepine (2.5 and 5 μM) did not produce cytotoxicity in microglia. Taken together, our results suggest that cryptolepine inhibits LPS-induced microglial inflammation by partial targeting of NF-κB signalling and attenuation of p38/MAPKAPK2. PMID:23737832

  2. Inhibition of Neuroinflammation in LPS-Activated Microglia by Cryptolepine

    Directory of Open Access Journals (Sweden)

    Olumayokun A. Olajide

    2013-01-01

    Full Text Available Cryptolepine, an indoloquinoline alkaloid in Cryptolepis sanguinolenta, has anti-inflammatory property. In this study, we aimed to evaluate the effects of cryptolepine on lipopolysaccharide (LPS- induced neuroinflammation in rat microglia and its potential mechanisms. Microglial activation was induced by stimulation with LPS, and the effects of cryptolepine pretreatment on microglial activation and production of proinflammatory mediators, PGE2/COX-2, microsomal prostaglandin E2 synthase and nitric oxide/iNOS were investigated. We further elucidated the role of Nuclear Factor-kappa B (NF-κB and the mitogen-activated protein kinases in the antiinflammatory actions of cryptolepine in LPS-stimulated microglia. Our results showed that cryptolepine significantly inhibited LPS-induced production of tumour necrosis factor-alpha (TNFα, interleukin-6 (IL-6, interleukin-1beta (IL-1β, nitric oxide, and PGE2. Protein and mRNA levels of COX-2 and iNOS were also attenuated by cryptolepine. Further experiments on intracellular signalling mechanisms show that IκB-independent inhibition of NF-κB nuclear translocation contributes to the anti-neuroinflammatory actions of cryptolepine. Results also show that cryptolepine inhibited LPS-induced p38 and MAPKAPK2 phosphorylation in the microglia. Cell viability experiments revealed that cryptolepine (2.5 and 5 μM did not produce cytotoxicity in microglia. Taken together, our results suggest that cryptolepine inhibits LPS-induced microglial inflammation by partial targeting of NF-κB signalling and attenuation of p38/MAPKAPK2.

  3. Multiple mechanisms for CRISPR-Cas inhibition by anti-CRISPR proteins.

    Science.gov (United States)

    Bondy-Denomy, Joseph; Garcia, Bianca; Strum, Scott; Du, Mingjian; Rollins, MaryClare F; Hidalgo-Reyes, Yurima; Wiedenheft, Blake; Maxwell, Karen L; Davidson, Alan R

    2015-10-01

    The battle for survival between bacteria and the viruses that infect them (phages) has led to the evolution of many bacterial defence systems and phage-encoded antagonists of these systems. Clustered regularly interspaced short palindromic repeats (CRISPR) and the CRISPR-associated (cas) genes comprise an adaptive immune system that is one of the most widespread means by which bacteria defend themselves against phages. We identified the first examples of proteins produced by phages that inhibit a CRISPR-Cas system. Here we performed biochemical and in vivo investigations of three of these anti-CRISPR proteins, and show that each inhibits CRISPR-Cas activity through a distinct mechanism. Two block the DNA-binding activity of the CRISPR-Cas complex, yet do this by interacting with different protein subunits, and using steric or non-steric modes of inhibition. The third anti-CRISPR protein operates by binding to the Cas3 helicase-nuclease and preventing its recruitment to the DNA-bound CRISPR-Cas complex. In vivo, this anti-CRISPR can convert the CRISPR-Cas system into a transcriptional repressor, providing the first example-to our knowledge-of modulation of CRISPR-Cas activity by a protein interactor. The diverse sequences and mechanisms of action of these anti-CRISPR proteins imply an independent evolution, and foreshadow the existence of other means by which proteins may alter CRISPR-Cas function.

  4. Antiviral Protein of Momordica charantia L. Inhibits Different Subtypes of Influenza A

    Directory of Open Access Journals (Sweden)

    Viroj Pongthanapisith

    2013-01-01

    Full Text Available The new antiviral activity of the protein extracted from Momordica charantia was determined with different subtypes of influenza A. The protein was purified from the seed of M. charantia using an anion exchanger and a Fast Protein Liquid Chromatography (FPLC system. At the concentration of 1.401 mg/mL, the protein did not exhibit cytotoxicity in Madin-Darby canine kidney cells (MDCK but inhibited FFU influenza A/PR/8/34 H1N1 virus at 56.50%, 65.72%, and 100% inhibition by the protein treated before the virus (pretreated, the protein treated alongside with the virus (simultaneously treated, and the protein treated after the virus (posttreated during incubation, respectively. Using 5, 25, and 100 TCID50 of influenza A/New Caledonia/20/99 H1N1, A/Fujian/411/01 H3N2 and A/Thailand/1(KAN-1/2004 H5N1, the IC50 was calculated to be 100, 150, and 200; 75, 175, and 300; and 40, 75, and 200 μg/mL, respectively. Our present finding indicated that the plant protein inhibited not only H1N1 and H3N2 but also H5N1 subtype. As a result of the broad spectrum of its antiviral activity, this edible plant can be developed as an effective therapeutic agent against various and even new emerging subtypes of influenza A.

  5. Tumor necrosis factor alpha and interleukin 11 secreted by malignant breast epithelial cells inhibit adipocyte differentiation by selectively down-regulating CCAAT/enhancer binding protein alpha and peroxisome proliferator-activated receptor gamma: mechanism of desmoplastic reaction.

    Science.gov (United States)

    Meng, L; Zhou, J; Sasano, H; Suzuki, T; Zeitoun, K M; Bulun, S E

    2001-03-01

    The dense layer of fibroblasts that accumulate around malignant breast epithelial cells (i.e., desmoplastic reaction) arises from the breast adipose tissue and provides structural and biochemical support for breast cancer. We report herein a number of epithelial-stromal interactions responsible for desmoplastic reaction in breast cancer using cultured 3T3-L1 murine fibroblasts and human adipose fibroblasts, which can be activated with a mixture of hormones to differentiate to mature adipocytes. Adipocyte differentiation was inhibited by coculturing fibroblasts with various breast cancer cell lines (T47D, MCF-7, SSC202, SSC78, and SSC30) completely or by breast cancer cell conditioned media in a dose-dependent manner; on the other hand, adipocyte differentiation was not inhibited by coculturing with normal human primary mammary epithelial cell conditioned medium. This tumor effect was eliminated using neutralizing antibodies against tumor necrosis factor (TNF)-alpha or interleukin (IL)-11. TNF-alpha and IL-11 levels were 2.5-3 times higher in T47D conditioned medium compared with control medium, and TNF-alpha transcripts were detectable in T47D but not in 3T3-L1 cells in culture, indicating that the malignant epithelial cell is the major site of cytokine production. This was confirmed in vivo in mastectomy specimens, where immunoreactive TNF-alpha and IL-11 were readily detectable in malignant epithelial cells but not in the majority of the surrounding fibroblasts. Adipocyte differentiation is mediated by the expression of a cascade of adipogenic transcription factors, including CCAAT/enhancer binding protein (C/EBP)beta, C/EBPdelta, peroxisome proliferator-activated receptor (PPAR)gamma and C/EBPalpha. C/EBPalpha and PPARgamma are essential for this process. We demonstrated by Northern analysis that exposure of activated 3T3-L1 cells to T47D cell conditioned medium strikingly decreased the levels of PPARgamma and C/EBPalpha transcripts and increased the levels of C

  6. Suramin inhibits Hsp104 ATPase and disaggregase activity.

    Directory of Open Access Journals (Sweden)

    Mariana P Torrente

    Full Text Available Hsp104 is a hexameric AAA+ protein that utilizes energy from ATP hydrolysis to dissolve disordered protein aggregates as well as amyloid fibers. Interestingly, Hsp104 orthologues are found in all kingdoms of life except animals. Thus, Hsp104 could represent an interesting drug target. Specific inhibition of Hsp104 activity might antagonize non-metazoan parasites that depend on a potent heat shock response, while producing little or no side effects to the host. However, no small molecule inhibitors of Hsp104 are known except guanidinium chloride. Here, we screen over 16,000 small molecules and identify 16 novel inhibitors of Hsp104 ATPase activity. Excluding compounds that inhibited Hsp104 activity by non-specific colloidal effects, we defined Suramin as an inhibitor of Hsp104 ATPase activity. Suramin is a polysulphonated naphthylurea and is used as an antiprotozoal drug for African Trypanosomiasis. Suramin also interfered with Hsp104 disaggregase, unfoldase, and translocase activities, and the inhibitory effect of Suramin was not rescued by Hsp70 and Hsp40. Suramin does not disrupt Hsp104 hexamers and does not effectively inhibit ClpB, the E. coli homolog of Hsp104, establishing yet another key difference between Hsp104 and ClpB behavior. Intriguingly, a potentiated Hsp104 variant, Hsp104A503V, is more sensitive to Suramin than wild-type Hsp104. By contrast, Hsp104 variants bearing inactivating sensor-1 mutations in nucleotide-binding domain (NBD 1 or 2 are more resistant to Suramin. Thus, Suramin depends upon ATPase events at both NBDs to exert its maximal effect. Suramin could develop into an important mechanistic probe to study Hsp104 structure and function.

  7. S-layer proteins of Lactobacillus acidophilus inhibits JUNV infection.

    Science.gov (United States)

    Martínez, María Guadalupe; Prado Acosta, Mariano; Candurra, Nélida A; Ruzal, Sandra M

    2012-06-15

    It has been previously described that S-layer binds to the C-type lectin DC-specific ICAM-3-grabbing nonintegrin (DC-SIGN, CD209). It was also shown that DC-SIGN is a cell-surface adhesion factor that enhances viral entry of several virus families. Among those, Junin virus (JUNV) entry is enhanced in cells expressing DC-SIGN and for that reason surface-layer protein (S-layer) of Lactobacillus acidophilus ATCC 4365 was evaluated as a possible JUNV inhibitor. Experiments using 3T3 cells stably expressing DC-SIGN, showed an almost complete inhibition of JUNV infection when they were treated with S-layer in a similar extend as the inhibition shown by mannan. However no inhibition effect was observed in 3T3 wild type cells or in 3T3 cells expressing liver/lymph node-specific ICAM-3 grabbing nonintegrin (L-SIGN or DC-SIGNR or CD209L). Treatments with S-layer during different times in the infection demonstrated that inhibition was only observed when S-layer was presented in early stages of the viral infection. This inhibition does not involve the classic recognition of mannose by this C-type lectin as the S-layer showed no evidence to be glycosylated. In fact, the highly basic nature of the S-layer (pI>9.5) seems to be involved in electrostatic interactions between DC-SIGN and S-layer, since high pH abolished the inhibitory effect on infection cause by the S-layer. In silico analysis predicts a Ca(2+)-dependant carbohydrate recognition domain in the SlpA protein. This novel characteristic of the S-layer, a GRAS status protein, contribute to the pathogen exclusion reported for this probiotic strain and may be applied as an antiviral agent to inhibit several kinds of viruses.

  8. Computational design of protein interactions: designing proteins that neutralize influenza by inhibiting its hemagglutinin surface protein

    Science.gov (United States)

    Fleishman, Sarel

    2012-02-01

    Molecular recognition underlies all life processes. Design of interactions not seen in nature is a test of our understanding of molecular recognition and could unlock the vast potential of subtle control over molecular interaction networks, allowing the design of novel diagnostics and therapeutics for basic and applied research. We developed the first general method for designing protein interactions. The method starts by computing a region of high affinity interactions between dismembered amino acid residues and the target surface and then identifying proteins that can harbor these residues. Designs are tested experimentally for binding the target surface and successful ones are affinity matured using yeast cell surface display. Applied to the conserved stem region of influenza hemagglutinin we designed two unrelated proteins that, following affinity maturation, bound hemagglutinin at subnanomolar dissociation constants. Co-crystal structures of hemagglutinin bound to the two designed binders were within 1Angstrom RMSd of their models, validating the accuracy of the design strategy. One of the designed proteins inhibits the conformational changes that underlie hemagglutinin's cell-invasion functions and blocks virus infectivity in cell culture, suggesting that such proteins may in future serve as diagnostics and antivirals against a wide range of pathogenic influenza strains. We have used this method to obtain experimentally validated binders of several other target proteins, demonstrating the generality of the approach. We discuss the combination of modeling and high-throughput characterization of design variants which has been key to the success of this approach, as well as how we have used the data obtained in this project to enhance our understanding of molecular recognition. References: Science 332:816 JMB, in press Protein Sci 20:753

  9. PTEN inhibits BMI1 function independently of its phosphatase activity

    Directory of Open Access Journals (Sweden)

    Kapoor Anil

    2009-11-01

    Full Text Available Abstract Background PTEN is the second most mutated tumor suppressor gene other than p53. It suppresses tumorigenesis by dephosphorylating phosphatidylinositol (3,4,5-triphosphate (PIP3 to phosphatidylinositol (4,5-biphosphate (PIP2, thereby directly inhibiting phosphatidylinositol 3 kinase (PI3K-mediated tumorigenic activities. Consistent with this model of action, cytosolic PTEN is recruited to the plasma membrane to dephosphorylate PIP3. While nuclear PTEN has been shown to suppress tumorigenesis by governing genome integrity, additional mechanisms may also contribute to nuclear PTEN-mediated tumor suppression. The nuclear protein BMI1 promotes stem cell self-renewal and tumorigenesis and PTEN inhibits these events, suggesting that PTEN may suppress BMI1 function. Results We investigated whether PTEN inhibits BMI1 function during prostate tumorigenesis. PTEN binds to BMI1 exclusively in the nucleus. This interaction does not require PTEN's phosphatase activity, as phosphatase-deficient PTEN mutants, PTEN/C124S (CS, PTEN/G129E (GE, and a C-terminal PTEN fragment (C-PTEN excluding the catalytic domain, all associate with BMI1. Furthermore, the residues 186-286 of C-PTEN are sufficient for binding to BMI1. This interaction reduces BMI1's function. BMI1 enhances hTERT activity and reduces p16INK4A and p14ARF expression. These effects were attenuated by PTEN, PTEN(CS, PTEN(GE, and C-PTEN. Furthermore, knockdown of PTEN in DU145 cells increased hTERT promoter activity, which was reversed when BMI1 was concomitantly knocked-down, indicating that PTEN reduces hTERT promoter activity via inhibiting BMI1 function. Conversely, BMI1 reduces PTEN's ability to inhibit AKT activation, which can be attributed to its interaction with PTEN in the nucleus, making PTEN unavailable to dephosphorylate membrane-bound PIP3. Furthermore, BMI1 appears to co-localize with PTEN more frequently in clinical prostate tissue samples from patients diagnosed with PIN

  10. Arginine Inhibits Adsorption of Proteins on Polystyrene Surface

    Science.gov (United States)

    Shikiya, Yui; Tomita, Shunsuke; Arakawa, Tsutomu; Shiraki, Kentaro

    2013-01-01

    Nonspecific adsorption of protein on solid surfaces causes a reduction of concentration as well as enzyme inactivation during purification and storage. However, there are no versatile inhibitors of the adsorption between proteins and solid surfaces at low concentrations. Therefore, we examined additives for the prevention of protein adsorption on polystyrene particles (PS particles) as a commonly-used material for vessels such as disposable test tubes and microtubes. A protein solution was mixed with PS particles, and then adsorption of protein was monitored by the concentration and activity of protein in the supernatant after centrifugation. Five different proteins bound to PS particles through electrostatic, hydrophobic, and aromatic interactions, causing a decrease in protein concentration and loss of enzyme activity in the supernatant. Among the additives, including arginine hydrochloride (Arg), lysine hydrochloride, guanidine hydrochloride, NaCl, glycine, and glucose, Arg was most effective in preventing the binding of proteins to PS particles as well as activity loss. Moreover, even after the mixing of protein and PS particles, the addition of Arg caused desorption of the bound protein from PS particles. This study demonstrated a new function of Arg, which expands the potential for application of Arg to proteins. PMID:23967100

  11. Ergostatrien-3β-ol from Antrodia camphorata inhibits diabetes and hyperlipidemia in high-fat-diet treated mice via regulation of hepatic related genes, glucose transporter 4, and AMP-activated protein kinase phosphorylation.

    Science.gov (United States)

    Kuo, Yueh-Hsiung; Lin, Cheng-Hsiu; Shih, Chun-Ching

    2015-03-11

    This study was designed to explore the effects and mechanism of ergostatrien-3β-ol (EK100) from the submerged whole broth of Antrodia camphorata on diabetes and dyslipidemia in high fat diet (HFD)-fed mice for 12 weeks. The C57BL/6J mouse fed with a high fat diet (HFD) could induce insulin resistance and hyperlipidemia. After 8 week of induction, mice were receiving EK100 (at three dosages) or fenofibrate (Feno) or rosiglitazone (Rosi) or vehicle by oral gavage 4 weeks afterward. HFD-fed mice display increased blood glucose, glycated hemoglobin (HbA1c), total cholesterol (TC), triglyceride (TG), insulin, and leptin levels. These blood markers were significantly lower in EK100-treated mice, and finally ameliorated insulin resistance. EK100 treatment exhibited reduced hepatic ballooning degeneration and size of visceral adipocytes. Glucose transporter 4 (GLUT4) proteins and phosphorylation of Akt in skeletal muscle were significantly increased in EK100- and Rosi-treated mice. EK100, Feno, and Rosi treatment led to significant increases in phosphorylation of AMP-activated protein kinase (phospho-AMPK) protein in both skeletal muscle and liver. Moreover, EK100 caused a decrease in hepatic expressions of phosphenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6 Pase), and decreased glucose production. EK100 lowered blood TG level by inhibition of hepatic fatty acid synthesis by dampening sterol response element binding protein-1c (SREBP-1c) but increasing expression of peroxisome proliferator activated receptor α (PPARα). Moreover, EK100-treated mice reduced blood TC levels by decreased hepatic expressions of SREBP2, which plays a major role in the regulation of cholesterol synthesis. EK100 increased high-density lipoprotein cholesterol (HDL-C) concentrations by increasing expressions of apolipoprotein A-I (apo A-I) in liver tissue. Our findings manifest that EK100 may have therapeutic potential in treating type 2 diabetes associated with hyperlipidemia

  12. Alterations in the intestine of Patagonian silverside (Odontesthes hatcheri) exposed to microcystin-LR: Changes in the glycosylation pattern of the intestinal wall and inhibition of multidrug resistance proteins efflux activity.

    Science.gov (United States)

    Bieczynski, Flavia; Torres, Walter D C; Painefilu, Julio C; Castro, Juan M; Bianchi, Virginia A; Frontera, Jimena L; Paz, Dante A; González, Carolina; Martín, Alejandro; Villanueva, Silvina S M; Luquet, Carlos M

    2016-09-01

    MCLR (2.3μmolL(-1)) and MK571 (3μmolL(-1)) by 38 and 27%, respectively (pintestine segments were incubated with different concentrations of MCLR applied alone or together with 3μM MK571. After one hour, protein phosphatase 1 (PP1) activity, the main target of MCLR, was measured. 2.5μM MCLR did not produce any significant effect, while the same amount plus MK571 inhibited PP1 activity (pintestinal lumen through Abcc-like transporters. This mechanism would protect the cell from MCLR toxicity, limiting toxin transport into the blood, which is probably mediated by basolateral Abccs. From an ecotoxicological point of view, elimination of MCLR through this mechanism would reduce the amount of toxin available for trophic transference.

  13. The INHIBITOR OF MERISTEM ACTIVITY (IMA) protein

    Science.gov (United States)

    Sicard, Adrien; Hernould, Michel

    2008-01-01

    The INHIBITOR OF MERISTEM ACTIVITY (IMA) gene from tomato regulates the processes of flower and ovule development. 1 IMA encodes a Mini Zinc Finger (MIF) protein that is characterized by a very short sequence containing an unusual zinc-finger domain. IMA acts as a repressor of WUSCHEL expression which controls the meristem organizing centre and the determinacy of the nucellus during ovule development. IMA inhibits cell proliferation during floral termination, controls the number of carpels during floral development and participates in the initiation of ovule primordia by activating D-type gene expression. In addition IMA is involved in a multiple hormonal signalling pathway like its Arabidopsis homolog MIF1.2 We thus propose that IMA, as a representative of this new family of zinc finger proteins, is an important effector in the regulatory pathway controlling meristem activity linking cell division, differentiation and hormonal control of development. PMID:19704478

  14. Two distinct mechanisms for actin capping protein regulation--steric and allosteric inhibition.

    Directory of Open Access Journals (Sweden)

    Shuichi Takeda

    Full Text Available The actin capping protein (CP tightly binds to the barbed end of actin filaments, thus playing a key role in actin-based lamellipodial dynamics. V-1 and CARMIL proteins directly bind to CP and inhibit the filament capping activity of CP. V-1 completely inhibits CP from interacting with the barbed end, whereas CARMIL proteins act on the barbed end-bound CP and facilitate its dissociation from the filament (called uncapping activity. Previous studies have revealed the striking functional differences between the two regulators. However, the molecular mechanisms describing how these proteins inhibit CP remains poorly understood. Here we present the crystal structures of CP complexed with V-1 and with peptides derived from the CP-binding motif of CARMIL proteins (CARMIL, CD2AP, and CKIP-1. V-1 directly interacts with the primary actin binding surface of CP, the C-terminal region of the alpha-subunit. Unexpectedly, the structures clearly revealed the conformational flexibility of CP, which can be attributed to a twisting movement between the two domains. CARMIL peptides in an extended conformation interact simultaneously with the two CP domains. In contrast to V-1, the peptides do not directly compete with the barbed end for the binding surface on CP. Biochemical assays revealed that the peptides suppress the interaction between CP and V-1, despite the two inhibitors not competing for the same binding site on CP. Furthermore, a computational analysis using the elastic network model indicates that the interaction of the peptides alters the intrinsic fluctuations of CP. Our results demonstrate that V-1 completely sequesters CP from the barbed end by simple steric hindrance. By contrast, CARMIL proteins allosterically inhibit CP, which appears to be a prerequisite for the uncapping activity. Our data suggest that CARMIL proteins down-regulate CP by affecting its conformational dynamics. This conceptually new mechanism of CP inhibition provides a

  15. Inhibition of acetylcholinesterase activity by essential oil from Citrus paradisi.

    Science.gov (United States)

    Miyazawa, M; Tougo, H; Ishihara, M

    2001-01-01

    Inhibition of acetylcholinesterase (AChE) activity by essential oils of Citrus paradisi (grapefruit pink in USA) was studied. Inhibition of AChE was measured by the colorimetric method. Nootkatone and auraptene were isolated from C. paradisi oil and showed 17-24% inhibition of AChE activity at the concentration of 1.62 microg/mL.

  16. Oxidative stress inhibits calpain activity in situ.

    Science.gov (United States)

    Guttmann, R P; Johnson, G V

    1998-05-22

    In this study, the effects of oxidative stress on calpain-mediated proteolysis and calpain I autolysis in situ were examined. Calpain activity was stimulated in SH-SY5Y human neuroblastoma cells with the calcium ionophore, ionomycin. Calpain-mediated proteolysis of the membrane-permeable fluorescent substrate N-succinyl-L-leucyl-L-leucyl-L-valyl-L-tyrosine-7-amido-4-methylcouma rin, as well as the endogenous protein substrates microtubule-associated protein 2, tau and spectrin, was measured. Oxidative stress, induced by addition of either doxorubicin or 2-mercaptopyridine N-oxide, resulted in a significant decrease in the extent of ionophore-stimulated calpain activity of both the fluorescent compound and the endogenous substrates compared with control, normoxic conditions. Addition of glutathione ethyl ester, as well as other antioxidants, resulted in the retention/recovery of calpain activity, indicating that oxidation-induced calpain inactivation was preventable/reversible. The rate of autolytic conversion of the large subunit of calpain I from 80 to 78 to 76 kDa was decreased during oxidative stress; however, the extent of calpain autolysis was not altered. These data indicate that oxidative stress may reversibly inactivate calpain I in vivo.

  17. An update on polygalacturonase-inhibiting protein (PGIP), a leucine-rich repeat protein that protects crop plants against pathogens.

    Science.gov (United States)

    Kalunke, Raviraj M; Tundo, Silvio; Benedetti, Manuel; Cervone, Felice; De Lorenzo, Giulia; D'Ovidio, Renato

    2015-01-01

    Polygalacturonase inhibiting proteins (PGIPs) are cell wall proteins that inhibit the pectin-depolymerizing activity of polygalacturonases secreted by microbial pathogens and insects. These ubiquitous inhibitors have a leucine-rich repeat structure that is strongly conserved in monocot and dicot plants. Previous reviews have summarized the importance of PGIP in plant defense and the structural basis of PG-PGIP interaction; here we update the current knowledge about PGIPs with the recent findings on the composition and evolution of pgip gene families, with a special emphasis on legume and cereal crops. We also update the information about the inhibition properties of single pgip gene products against microbial PGs and the results, including field tests, showing the capacity of PGIP to protect crop plants against fungal, oomycetes and bacterial pathogens.

  18. Protein acylation in the inhibition of insulin secretion by norepinephrine, somatostatin, galanin, and PGE2.

    Science.gov (United States)

    Cheng, Haiying; Straub, Susanne G; Sharp, Geoffrey W G

    2003-08-01

    The major physiological inhibitors of insulin secretion, norepinephrine, somatostatin, galanin, and prostaglandin E2, act via specific receptors that activate pertussis toxin (PTX)-sensitive G proteins. Four inhibitory mechanisms are known: 1) activation of ATP-sensitive K channels and repolarization of the beta-cell; 2) inhibition of L-type Ca2+ channels; 3) decreased activity of adenylyl cyclase; and 4) inhibition of exocytosis at a "distal" site in stimulus-secretion coupling. We have examined the underlying mechanisms of inhibition at this distal site. In rat pancreatic islets, 2-bromopalmitate, cerulenin, and polyunsaturated fatty acids, all of which suppress protein acyltransferase activity, blocked the distal inhibitory effects of norepinephrine in a concentration-dependent manner. In contrast, control compounds such as palmitate, 16-hydroxypalmitate, and etomoxir, which do not block protein acylation, had no effect. Furthermore, 2-bromopalmitate also blocked the distal inhibitory actions of somatostatin, galanin, and prostaglandin E2. Importantly, neither 2-bromopalmitate nor cerulenin affected the action of norepinephrine to decrease cAMP production. We also examined the effects of norepinephrine, 2-bromopalmitate, and cerulenin on palmitate metabolism. Palmitate oxidation and its incorporation into lipids seemed not to contribute to the effects of 2-bromopalmitate and cerulenin on norepinephrine action. These data suggest that protein acylation mediates the distal inhibitory effect on insulin secretion. We propose that the inhibitors of insulin secretion, acting via PTX-sensitive G proteins, activate a specific protein acyltransferase, causing the acylation of a protein or proteins critical to exocytosis. This particular acylation and subsequent disruption of the essential and precise interactions involved in core complex formation would block exocytosis.

  19. Stathmin potentiates vinflunine and inhibits Paclitaxel activity.

    Science.gov (United States)

    Malesinski, Soazig; Tsvetkov, Philipp O; Kruczynski, Anna; Peyrot, Vincent; Devred, François

    2015-01-01

    Cell biology and crystallographic studies have suggested a functional link between stathmin and microtubule targeting agents (MTAs). In a previous study we showed that stathmin increases vinblastine (VLB) binding to tubulin, and that conversely VLB increases stathmin binding to tubulin. This constituted the first biochemical evidence of the direct relationship between stathmin and an antimitotic drug, and revealed a new mechanism of action for VLB. The question remained if the observed interaction was specific for this drug or represented a general phenomenon for all MTAs. In the present study we investigated the binding of recombinant stathmin to purified tubulin in the presence of paclitaxel or another Vinca alkaloid, vinflunine, using Isothermal Titration Calorimetry (ITC). These experiments revealed that stathmin binding to tubulin is increased in the presence of vinflunine, whereas no signal is observed in the presence of paclitaxel. Further investigation using turbidity and co-sedimentation showed that stathmin inhibited paclitaxel microtubule-stabilizing activity. Taken together with the previous study using vinblastine, our results suggest that stathmin can be seen as a modulator of MTA activity and binding to tubulin, providing molecular explanation for multiple previous cellular and in vivo studies showing that stathmin expression level affects MTAs efficiency.

  20. Stathmin potentiates vinflunine and inhibits Paclitaxel activity.

    Directory of Open Access Journals (Sweden)

    Soazig Malesinski

    Full Text Available Cell biology and crystallographic studies have suggested a functional link between stathmin and microtubule targeting agents (MTAs. In a previous study we showed that stathmin increases vinblastine (VLB binding to tubulin, and that conversely VLB increases stathmin binding to tubulin. This constituted the first biochemical evidence of the direct relationship between stathmin and an antimitotic drug, and revealed a new mechanism of action for VLB. The question remained if the observed interaction was specific for this drug or represented a general phenomenon for all MTAs. In the present study we investigated the binding of recombinant stathmin to purified tubulin in the presence of paclitaxel or another Vinca alkaloid, vinflunine, using Isothermal Titration Calorimetry (ITC. These experiments revealed that stathmin binding to tubulin is increased in the presence of vinflunine, whereas no signal is observed in the presence of paclitaxel. Further investigation using turbidity and co-sedimentation showed that stathmin inhibited paclitaxel microtubule-stabilizing activity. Taken together with the previous study using vinblastine, our results suggest that stathmin can be seen as a modulator of MTA activity and binding to tubulin, providing molecular explanation for multiple previous cellular and in vivo studies showing that stathmin expression level affects MTAs efficiency.

  1. IN VITRO ANTIOXIDANT AND α-AMYLASE INHIBITION ACTIVITIES OF PANCHSAKAR CHURNA

    Directory of Open Access Journals (Sweden)

    Ashok Kumar B.S.

    2013-12-01

    Full Text Available Panchsakar Churna is the composition of Cassia angustifolia, Terminalia chebula, Zingiber officinale, Foeniculum vulgare and Saindhava lavana. Aqueous extract of churna was used to investigate antioxidant activity by ferrous ion chelating assay and ferric reducing power and alpha amylase inhibition activity by dinitrosalicylic acid method (DNSA. Aqueous extract of churna showed maximum ferrous chelating activity - 42.01 and ferric reducing power - 1.5 and 83.33 % of inhibition protein denaturation at 1000 µg/ml. Panchsakar churna showed significant antioxidant and alpha amylase inhibition activities.

  2. INHIBITION OF THE DNA-BINDING ACTIVITY OF DROSOPHILA SUPPRESSOR OF HAIRLESS AND OF ITS HUMAN HOMOLOG, KBF2/RBP-J-KAPPA, BY DIRECT PROTEIN-PROTEIN INTERACTION WITH DROSOPHILA HAIRLESS

    NARCIS (Netherlands)

    BROU, C; LOGEAT, F; LECOURTOIS, M; VANDEKERCKHOVE, Joël; KOURILSKY, P; SCHWEISGUTH, F; ISRAEL, A

    1994-01-01

    We have purified the sequence-specific DNA-binding protein KBF2 and cloned the corresponding cDNA, which is derived from the previously described RBP-J kappa gene, the human homolog of the Drosophila Suppressor of Hairless [Su(H)] gene. Deletion studies of the RBP-J kappa and Su(H) proteins allowed

  3. In vitro inhibition of the replication of classical swine fever virus by porcine Mx1 protein.

    Science.gov (United States)

    He, Dan-ni; Zhang, Xiao-min; Liu, Ke; Pang, Ran; Zhao, Jin; Zhou, Bin; Chen, Pu-yan

    2014-04-01

    Classical swine fever virus (CSFV) is the causative pathogen of classical swine fever (CSF), a highly contagious disease of swine. Mx proteins are interferon-induced dynamin-like GTPases present in all vertebrates with a wide range of antiviral activities. Although Zhao et al. (2011) have reported that human MxA can inhibit CSFV replication, whether porcine Mx1 (poMx1) has anti-CSFV activity remains unknown. In this study, we generated a cell line designated PK-15/EGFP-poMx1 which expressed porcine Mx1 protein constitutively, and we observed that the proliferation of progeny virus in this cell line was significantly inhibited as measured by virus titration, indirect immune fluorescence assay, Q-PCR and Western blot. Furthermore, when PTD-poMx1 fusion protein expressed in Escherichia coli (Zhang et al., 2013) was used to treat CSFV-infected PK-15 cells, the results showed that PTD-poMx1 inhibited CSFV replication in a dose-dependent manner. Additionally, the proliferation of progeny virus was inhibited as measured by virus titration and Q-PCR. Overall, the results demonstrated that poMx1 effectively inhibited CSFV replication, suggesting that poMx1 may be a valuable therapeutic agent against CSFV infection.

  4. Statins inhibit protein lipidation and induce the unfolded protein response in the non-sterol producing nematode Caenorhabditis elegans

    DEFF Research Database (Denmark)

    Mörck, Catarina; Olsen, Louise Cathrine Braun; Kurth, Caroline;

    2009-01-01

    of lipid moieties for protein prenylation. The nematode Caenorhabditis elegans possesses a mevalonate pathway that lacks the branch leading to cholesterol synthesis, and thus represents an ideal organism to specifically study the noncholesterol roles of the pathway. Inhibiting HMG-CoA reductase in C....... elegans using statins or RNAi leads to developmental arrest and loss of membrane association of a GFP-based prenylation reporter. The unfolded protein response (UPR) is also strongly activated, suggesting that impaired prenylation of small GTPases leads to the accumulation of unfolded proteins and ER...... and fatty acid composition were unaffected in statin-treated worms, even though they showed reduced staining with Nile red. We conclude that inhibitors of HMG-CoA reductase or of farnesyl transferases induce the UPR by inhibiting the prenylation of M57.2 substrates, resulting in developmental arrest in C...

  5. TIM-family proteins inhibit HIV-1 release.

    Science.gov (United States)

    Li, Minghua; Ablan, Sherimay D; Miao, Chunhui; Zheng, Yi-Min; Fuller, Matthew S; Rennert, Paul D; Maury, Wendy; Johnson, Marc C; Freed, Eric O; Liu, Shan-Lu

    2014-09-02

    Accumulating evidence indicates that T-cell immunoglobulin (Ig) and mucin domain (TIM) proteins play critical roles in viral infections. Herein, we report that the TIM-family proteins strongly inhibit HIV-1 release, resulting in diminished viral production and replication. Expression of TIM-1 causes HIV-1 Gag and mature viral particles to accumulate on the plasma membrane. Mutation of the phosphatidylserine (PS) binding sites of TIM-1 abolishes its ability to block HIV-1 release. TIM-1, but to a much lesser extent PS-binding deficient mutants, induces PS flipping onto the cell surface; TIM-1 is also found to be incorporated into HIV-1 virions. Importantly, TIM-1 inhibits HIV-1 replication in CD4-positive Jurkat cells, despite its capability of up-regulating CD4 and promoting HIV-1 entry. In addition to TIM-1, TIM-3 and TIM-4 also block the release of HIV-1, as well as that of murine leukemia virus (MLV) and Ebola virus (EBOV); knockdown of TIM-3 in differentiated monocyte-derived macrophages (MDMs) enhances HIV-1 production. The inhibitory effects of TIM-family proteins on virus release are extended to other PS receptors, such as Axl and RAGE. Overall, our study uncovers a novel ability of TIM-family proteins to block the release of HIV-1 and other viruses by interaction with virion- and cell-associated PS. Our work provides new insights into a virus-cell interaction that is mediated by TIMs and PS receptors.

  6. Synthesis and characterization of 18F-labeled active site inhibited factor VII (ASIS)

    DEFF Research Database (Denmark)

    Erlandsson, Maria; Nielsen, Carsten Haagen; Jeppesen, Troels Elmer

    2015-01-01

    Activated factor VII blocked in the active site with Phe-Phe-Arg-chloromethyl ketone (active site inhibited factor VII (ASIS)) is a 50-kDa protein that binds with high affinity to its receptor, tissue factor (TF). TF is a transmembrane glycoprotein that plays an important role in, for example, th...

  7. 6-Thioguanine inhibition of parathyroid hormone-related protein expression is mediated by GLI2.

    Science.gov (United States)

    Johnson, Rachelle W; Merkel, Alyssa R; Danilin, Sabrina; Nguyen, Mai P; Mundy, Gregory R; Sterling, Julie A

    2011-09-01

    Breast cancer cells frequently metastasize to bone, where they up-regulate their expression of the transcription factor GLI2 and the downstream osteolytic factor parathyroid hormone-related protein (PTHrP). The guanosine nucleotide 6-thioguanine (6-TG) inhibits PTHrP expression and blocks osteolytic bone destruction in mice inoculated with bone metastatic cells; however, the mechanism by which 6-TG inhibits PTHrP remains unclear. We hypothesized that 6-TG inhibition of PTHrP is mediated through GLI2 signaling. Human MDA-MB-231 breast cancer cells and RWGT2 squamous-cell lung carcinoma cells were treated with 100 μM 6-TG and examined for GLI2 mRNA expression and stability by Q-PCR, promoter activity by luciferase assay, and protein expression by Western blot. 6-TG significantly blocked GLI2 mRNA and protein expression, but did not affect stability. Additionally, 6-TG directly inhibited GLI2 promoter activity, and when cells were transfected with constitutively expressed GLI2, the inhibitory effect of 6-TG on PTHrP expression was abolished. Taken together, these data indicate that 6-TG regulates PTHrP in part through GLI2 transcription, and therefore the clinical use of 6-TG or other guanosine nucleotides may be a viable therapeutic option in tumor types expressing elevated levels of GLI proteins.

  8. Haemophilus ducreyi targets Src family protein tyrosine kinases to inhibit phagocytic signaling.

    Science.gov (United States)

    Mock, Jason R; Vakevainen, Merja; Deng, Kaiping; Latimer, Jo L; Young, Jennifer A; van Oers, Nicolai S C; Greenberg, Steven; Hansen, Eric J

    2005-12-01

    Haemophilus ducreyi, the etiologic agent of the sexually transmitted disease chancroid, has been shown to inhibit phagocytosis of both itself and secondary targets in vitro. Immunodepletion of LspA proteins from H. ducreyi culture supernatant fluid abolished this inhibitory effect, indicating that the LspA proteins are necessary for the inhibition of phagocytosis by H. ducreyi. Fluorescence microscopy revealed that macrophages incubated with wild-type H. ducreyi, but not with a lspA1 lspA2 mutant, were unable to complete development of the phagocytic cup around immunoglobulin G-opsonized targets. Examination of the phosphotyrosine protein profiles of these two sets of macrophages showed that those incubated with wild-type H. ducreyi had greatly reduced phosphorylation levels of proteins in the 50-to-60-kDa range. Subsequent experiments revealed reductions in the catalytic activities of both Lyn and Hck, two members of the Src family of protein tyrosine kinases that are known to be involved in the proximal signaling steps of Fcgamma receptor-mediated phagocytosis. Additional experiments confirmed reductions in the levels of both active Lyn and active Hck in three different immune cell lines, but not in HeLa cells, exposed to wild-type H. ducreyi. This is the first example of a bacterial pathogen that suppresses Src family protein tyrosine kinase activity to subvert phagocytic signaling in hostcells.

  9. Activated AMPK inhibits PPAR-{alpha} and PPAR-{gamma} transcriptional activity in hepatoma cells.

    Science.gov (United States)

    Sozio, Margaret S; Lu, Changyue; Zeng, Yan; Liangpunsakul, Suthat; Crabb, David W

    2011-10-01

    AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor-α (PPAR-α) are critical regulators of short-term and long-term fatty acid oxidation, respectively. We examined whether the activities of these molecules were coordinately regulated. H4IIEC3 cells were transfected with PPAR-α and PPAR-γ expression plasmids and a peroxisome-proliferator-response element (PPRE) luciferase reporter plasmid. The cells were treated with PPAR agonists (WY-14,643 and rosiglitazone), AMPK activators 5-aminoimidazole-4-carboxamide riboside (AICAR) and metformin, and the AMPK inhibitor compound C. Both AICAR and metformin decreased basal and WY-14,643-stimulated PPAR-α activity; compound C increased agonist-stimulated reporter activity and partially reversed the effect of the AMPK activators. Similar effects on PPAR-γ were seen, with both AICAR and metformin inhibiting PPRE reporter activity. Compound C increased basal PPAR-γ activity and rosiglitazone-stimulated activity. In contrast, retinoic acid receptor-α (RAR-α), another nuclear receptor that dimerizes with retinoid X receptor (RXR), was largely unaffected by the AMPK activators. Compound C modestly increased AM580 (an RAR agonist)-stimulated activity. The AMPK activators did not affect PPAR-α binding to DNA, and there was no consistent correlation between effects of the AMPK activators and inhibitor on PPAR and the nuclear localization of AMPK-α subunits. Expression of either a constitutively active or dominant negative AMPK-α inhibited basal and WY-14,643-stimulated PPAR-α activity and basal and rosiglitazone-stimulated PPAR-γ activity. We concluded that the AMPK activators AICAR and metformin inhibited transcriptional activities of PPAR-α and PPAR-γ, whereas inhibition of AMPK with compound C activated both PPARs. The effects of AMPK do not appear to be mediated through effects on RXR or on PPAR/RXR binding to DNA. These effects are independent of kinase activity and instead appear to

  10. Strategies for inhibiting function of HIV-1 accessory proteins: a necessary route to AIDS therapy?

    Science.gov (United States)

    Richter, S N; Frasson, I; Palù, G

    2009-01-01

    The Human Immunodeficiency Virus (HIV) genome encodes three major structural proteins common to all retroviruses (Gag, Pol and Env), two regulatory proteins (Tat and Rev) that are essential for viral replication, and four accessory proteins (Nef, Vif, Vpu, Vpr). While accessory proteins were initially reported to be unnecessary for viral growth, their importance as virulence factors is now being more and more appreciated: they can dramatically alter the course and severity of viral infection, replication and disease progression. None of the HIV accessory proteins display enzymatic activity: they rather act altering cellular pathways via multiple protein-protein interactions with a number of host cell factors. All currently approved anti-HIV drugs target pol and env encoded proteins. Therefore, widening the molecular targets of HIV therapy by additionally targeting accessory proteins may expand treatment options, resulting in high impact effective new therapy. In this review we present the state of the art of compounds that target HIV accessory proteins. Most of the research has focused on the inhibition of specific accessory proteins/host cell partner interactions. Promising compounds have been found within different classes of molecules: small natural and synthetic molecules, peptides and proteins, oligonucleotides, in particular those used as RNA interference (RNAi) tools. With the assortment of compounds available, especially against Nef and Vif functions, the demonstration of the clinical efficacy of the new anti-HIV-1 drugs targeting accessory proteins is next challenge.

  11. Xanthohumol, a prenylated chalcone from Humulus lupulus L., inhibits cholesteryl ester transfer protein.

    Science.gov (United States)

    Hirata, Hiroshi; Takazumi, Koji; Segawa, Shuichi; Okada, Yukio; Kobayashi, Naoyuki; Shigyo, Tatsuro; Chiba, Hitoshi

    2012-10-01

    High density lipoprotein (HDL)-cholesterol levels are correlated with a low risk of atherosclerosis. The inhibition of cholesteryl ester transfer protein (CETP), which catalyses cholesterol transfer between lipoproteins, leads to an increase in HDL-cholesterol and is expected to be the next anti-atherogenic target. This study revealed that xanthohumol, a prenylated chalcone, showed the highest inhibition against CETP from screening of natural products in various plants. We investigated the inhibitory activity of some chalcones and flavanones. Naringenin chalcone showed weak CETP inhibition compared with xanthohumol. In addition, isoxanthohumol and naringenin drastically decreased the inhibitory activity. These results suggest that the prenyl group and chalcone structure of xanthohumol were responsible for the CETP inhibitory activity.

  12. The antituberculosis antibiotic capreomycin inhibits protein synthesis by disrupting interaction between ribosomal proteins L12 and L10.

    Science.gov (United States)

    Lin, Yuan; Li, Yan; Zhu, Ningyu; Han, Yanxing; Jiang, Wei; Wang, Yanchang; Si, Shuyi; Jiang, Jiandong

    2014-01-01

    Capreomycin is a second-line drug for multiple-drug-resistant tuberculosis (TB). However, with increased use in clinics, the therapeutic efficiency of capreomycin is decreasing. To better understand TB resistance to capreomycin, we have done research to identify the molecular target of capreomycin. Mycobacterium tuberculosis ribosomal proteins L12 and L10 interact with each other and constitute the stalk of the 50S ribosomal subunit, which recruits initiation and elongation factors during translation. Hence, the L12-L10 interaction is considered to be essential for ribosomal function and protein synthesis. Here we provide evidence showing that capreomycin inhibits the L12-L10 interaction by using an established L12-L10 interaction assay. Overexpression of L12 and/or L10 in M. smegmatis, a species close to M. tuberculosis, increases the MIC of capreomycin. Moreover, both elongation factor G-dependent GTPase activity and ribosome-mediated protein synthesis are inhibited by capreomycin. When protein synthesis was blocked with thiostrepton, however, the bactericidal activity of capreomycin was restrained. All of these results suggest that capreomycin seems to inhibit TB by interrupting the L12-L10 interaction. This finding might provide novel clues for anti-TB drug discovery.

  13. Targeted in vivo inhibition of specific protein-protein interactions using recombinant antibodies.

    Directory of Open Access Journals (Sweden)

    Matej Zábrady

    Full Text Available With the growing availability of genomic sequence information, there is an increasing need for gene function analysis. Antibody-mediated "silencing" represents an intriguing alternative for the precise inhibition of a particular function of biomolecules. Here, we describe a method for selecting recombinant antibodies with a specific purpose in mind, which is to inhibit intrinsic protein-protein interactions in the cytosol of plant cells. Experimental procedures were designed for conveniently evaluating desired properties of recombinant antibodies in consecutive steps. Our selection method was successfully used to develop a recombinant antibody inhibiting the interaction of ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEIN 3 with such of its upstream interaction partners as the receiver domain of CYTOKININ INDEPENDENT HISTIDINE KINASE 1. The specific down-regulation of the cytokinin signaling pathway in vivo demonstrates the validity of our approach. This selection method can serve as a prototype for developing unique recombinant antibodies able to interfere with virtually any biomolecule in the living cell.

  14. Hypoxia inhibits colonic ion transport via activation of AMP kinase.

    LENUS (Irish Health Repository)

    Collins, Danielle

    2012-02-01

    BACKGROUND AND AIMS: Mucosal hypoxia is a common endpoint for many pathological processes including ischemic colitis, colonic obstruction and anastomotic failure. Previous studies suggest that hypoxia modulates colonic mucosal function through inhibition of chloride secretion. However, the molecular mechanisms underlying this observation are poorly understood. AMP-activated protein kinase (AMPK) is a metabolic energy regulator found in a wide variety of cells and has been linked to cystic fibrosis transmembrane conductance regulator (CFTR) mediated chloride secretion in several different tissues. We hypothesized that AMPK mediates many of the acute effects of hypoxia on human and rat colonic electrolyte transport. METHODS: The fluorescent chloride indicator dye N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide was used to measure changes in intracellular chloride concentrations in isolated single rat colonic crypts. Ussing chamber experiments in human colonic mucosa were conducted to evaluate net epithelial ion transport. RESULTS: This study demonstrates that acute hypoxia inhibits electrogenic chloride secretion via AMPK mediated inhibition of CFTR. Pre-treatment of tissues with the AMPK inhibitor 6-[4-(2-piperidin-1-yl-ethoxy)-phenyl)]-3-pyridin-4-yl-pyyrazolo [1,5-a] pyrimidine (compound C) in part reversed the effects of acute hypoxia on chloride secretion. CONCLUSION: We therefore suggest that AMPK is a key component of the adaptive cellular response to mucosal hypoxia in the colon. Furthermore, AMPK may represent a potential therapeutic target in diseased states or in prevention of ischemic intestinal injury.

  15. Berberine inhibits PTP1B activity and mimics insulin action.

    Science.gov (United States)

    Chen, Chunhua; Zhang, Yuebo; Huang, Cheng

    2010-07-02

    Type 2 diabetes patients show defects in insulin signal transduction that include lack of insulin receptor, decrease in insulin stimulated receptor tyrosine kinase activity and receptor-mediated phosphorylation of insulin receptor substrates (IRSs). A small molecule that could target insulin signaling would be of significant advantage in the treatment of diabetes. Berberine (BBR) has recently been shown to lower blood glucose levels and to improve insulin resistance in db/db mice partly through the activation of AMP-activated protein kinase (AMPK) signaling and induction of phosphorylation of insulin receptor (IR). However, the underlying mechanism remains largely unknown. Here we report that BBR mimics insulin action by increasing glucose uptake ability by 3T3-L1 adipocytes and L6 myocytes in an insulin-independent manner, inhibiting phosphatase activity of protein tyrosine phosphatase 1B (PTP1B), and increasing phosphorylation of IR, IRS1 and Akt in 3T3-L1 adipocytes. In diabetic mice, BBR lowers hyperglycemia and improves impaired glucose tolerance, but does not increase insulin release and synthesis. The results suggest that BBR represents a different class of anti-hyperglycemic agents.

  16. Mutant p53 protein localized in the cytoplasm inhibits autophagy.

    Science.gov (United States)

    Morselli, Eugenia; Tasdemir, Ezgi; Maiuri, Maria Chiara; Galluzzi, Lorenzo; Kepp, Oliver; Criollo, Alfredo; Vicencio, José Miguel; Soussi, Thierry; Kroemer, Guido

    2008-10-01

    The knockout, knockdown or chemical inhibition of p53 stimulates autophagy. Moreover, autophagy-inducing stimuli such as nutrient depletion, rapamycin or lithium cause the depletion of cytoplasmic p53, which in turn is required for the induction of autophagy. Here, we show that retransfection of p53(-/-) HCT 116 colon carcinoma cells with wild type p53 decreases autophagy down to baseline levels. Surprisingly, one third among a panel of 22 cancer-associated p53 single amino acid mutants also inhibited autophagy when transfected into p53(-/-) cells. Those variants of p53 that preferentially localize to the cytoplasm effectively repressed autophagy, whereas p53 mutants that display a prominently nuclear distribution failed to inhibit autophagy. The investigation of a series of deletion mutants revealed that removal of the DNA-binding domain from p53 fails to interfere with its role in the regulation of autophagy. Altogether, these results identify the cytoplasmic localization of p53 as the most important feature for p53-mediated autophagy inhibition. Moreover, the structural requirements for the two biological activities of extranuclear p53, namely induction of apoptosis and inhibition of autophagy, are manifestly different.

  17. HEPES inhibits the conversion of prion protein in cell culture.

    Science.gov (United States)

    Delmouly, Karine; Belondrade, Maxime; Casanova, Danielle; Milhavet, Ollivier; Lehmann, Sylvain

    2011-05-01

    HEPES is a well-known buffering reagent used in cell-culture medium. Interestingly, this compound is also responsible for significant modifications of biological parameters such as uptake of organic molecules, alteration of oxidative stress mechanisms or inhibition of ion channels. While using cell-culture medium supplemented with HEPES on prion-infected cells, it was noticed that there was a significant concentration-dependent inhibition of accumulation of the abnormal isoform of the prion protein (PrP(Sc)). This effect was present only in live cells and was thought to be related to modification of the PrP environment or biology. These results could modify the interpretation of cell-culture assays of prion therapeutic agents, as well as of previous cell biology results obtained in the field using HEPES buffers. This inhibitory effect of HEPES could also be exploited to prevent contamination or propagation of prions in cell culture.

  18. Prediction and evaluation of protein farnesyltransferase inhibition by commercial drugs

    Science.gov (United States)

    DeGraw, Amanda J.; Keiser, Michael J.; Ochocki, Joshua D.; Shoichet, Brian K.; Distefano, Mark D.

    2010-01-01

    The Similarity Ensemble Approach (SEAa) relates proteins based on the set-wise chemical similarity among their ligands. It can be used to rapidly search large compound databases and to build cross-target similarity maps. The emerging maps relate targets in ways that reveal relationships one might not recognize based on sequence or structural similarities alone. SEA has previously revealed cross talk between drugs acting primarily on G-protein coupled receptors (GPCRs). Here we used SEA to look for potential off-target inhibition of the enzyme protein farnesyltransferase (PFTase) by commercially available drugs. The inhibition of PFTase has profound consequences for oncogenesis, as well as a number of other diseases. In the present study, two commercial drugs, Loratadine and Miconazole, were identified as potential ligands for PFTase and subsequently confirmed as such experimentally. These results point towards the applicability of SEA for the prediction of not only GPCR-GPCR drug cross talk, but also GPCR-enzyme and enzyme-enzyme drug cross talk. PMID:20180535

  19. Expression of lysozymes from Erwinia amylovora phages and Erwinia genomes and inhibition by a bacterial protein.

    Science.gov (United States)

    Müller, Ina; Gernold, Marina; Schneider, Bernd; Geider, Klaus

    2012-01-01

    Genes coding for lysozyme-inhibiting proteins (Ivy) were cloned from the chromosomes of the plant pathogens Erwinia amylovora and Erwinia pyrifoliae. The product interfered not only with activity of hen egg white lysozyme, but also with an enzyme from E. amylovora phage ΦEa1h. We have expressed lysozyme genes from the genomes of three Erwinia species in Escherichia coli. The lysozymes expressed from genes of the E. amylovora phages ΦEa104 and ΦEa116, Erwinia chromosomes and Arabidopsis thaliana were not affected by Ivy. The enzyme from bacteriophage ΦEa1h was fused at the N- or C-terminus to other peptides. Compared to the intact lysozyme, a His-tag reduced its lytic activity about 10-fold and larger fusion proteins abolished activity completely. Specific protease cleavage restored lysozyme activity of a GST-fusion. The bacteriophage-encoded lysozymes were more active than the enzymes from bacterial chromosomes. Viral lyz genes were inserted into a broad-host range vector, and transfer to E. amylovora inhibited cell growth. Inserted in the yeast Pichia pastoris, the ΦEa1h-lysozyme was secreted and also inhibited by Ivy. Here we describe expression of unrelated cloned 'silent' lyz genes from Erwinia chromosomes and a novel interference of bacterial Ivy proteins with a viral lysozyme.

  20. Inhibition of Tomato Yellow Leaf Curl Virus (TYLCV using whey proteins

    Directory of Open Access Journals (Sweden)

    Dawood Abdelgawad

    2010-02-01

    Full Text Available Abstract The antiviral activity of native and esterified whey proteins fractions (α-lactalbumin, β-lactoglobulin, and lactoferrin was studied to inhibit tomato yellow leaf curl virus (TYLCV on infected tomato plants. Whey proteins fractions and their esterified derivatives were sprayed into TYLCV-infected plants. Samples were collected from infected leaves before treatment, 7 and 15 days after treatment for DNA and molecular hybridization analysis. The most evident inhibition of virus replication was observed after 7 and 15 days using α-lactoferrin and α-lactalbumin, respectively. Native and esterified lactoferrin showed complete inhibition after 7 days. On the other hand, native β-lactoglobulin showed inhibition after 7 and 15 days whereas esterified β-lactoglobulin was comparatively more effective after 7 days. The relative amount of viral DNA was less affected by the esterified α-lactalbumin whereas native α-lactalbumin inhibited virus replication completely after 15 days. These results indicate that native or modified whey proteins fractions can be used for controlling the TYLCV-infected plants.

  1. Auto-phosphorylation Represses Protein Kinase R Activity

    Science.gov (United States)

    Wang, Die; de Weerd, Nicole A.; Willard, Belinda; Polekhina, Galina; Williams, Bryan R. G.; Sadler, Anthony J.

    2017-01-01

    The central role of protein kinases in controlling disease processes has spurred efforts to develop pharmaceutical regulators of their activity. A rational strategy to achieve this end is to determine intrinsic auto-regulatory processes, then selectively target these different states of kinases to repress their activation. Here we investigate auto-regulation of the innate immune effector protein kinase R, which phosphorylates the eukaryotic initiation factor 2α to inhibit global protein translation. We demonstrate that protein kinase R activity is controlled by auto-inhibition via an intra-molecular interaction. Part of this mechanism of control had previously been reported, but was then controverted. We account for the discrepancy and extend our understanding of the auto-inhibitory mechanism by identifying that auto-inhibition is paradoxically instigated by incipient auto-phosphorylation. Phosphor-residues at the amino-terminus instigate an intra-molecular interaction that enlists both of the N-terminal RNA-binding motifs of the protein with separate surfaces of the C-terminal kinase domain, to co-operatively inhibit kinase activation. These findings identify an innovative mechanism to control kinase activity, providing insight for strategies to better regulate kinase activity. PMID:28281686

  2. Auto-phosphorylation Represses Protein Kinase R Activity.

    Science.gov (United States)

    Wang, Die; de Weerd, Nicole A; Willard, Belinda; Polekhina, Galina; Williams, Bryan R G; Sadler, Anthony J

    2017-03-10

    The central role of protein kinases in controlling disease processes has spurred efforts to develop pharmaceutical regulators of their activity. A rational strategy to achieve this end is to determine intrinsic auto-regulatory processes, then selectively target these different states of kinases to repress their activation. Here we investigate auto-regulation of the innate immune effector protein kinase R, which phosphorylates the eukaryotic initiation factor 2α to inhibit global protein translation. We demonstrate that protein kinase R activity is controlled by auto-inhibition via an intra-molecular interaction. Part of this mechanism of control had previously been reported, but was then controverted. We account for the discrepancy and extend our understanding of the auto-inhibitory mechanism by identifying that auto-inhibition is paradoxically instigated by incipient auto-phosphorylation. Phosphor-residues at the amino-terminus instigate an intra-molecular interaction that enlists both of the N-terminal RNA-binding motifs of the protein with separate surfaces of the C-terminal kinase domain, to co-operatively inhibit kinase activation. These findings identify an innovative mechanism to control kinase activity, providing insight for strategies to better regulate kinase activity.

  3. Hepatitis C virus core protein inhibits interferon production by a human plasmacytoid dendritic cell line and dysregulates interferon regulatory factor-7 and signal transducer and activator of transcription (STAT 1 protein expression.

    Directory of Open Access Journals (Sweden)

    Amy E L Stone

    Full Text Available Plasmacytoid Dendritic Cells (pDCs represent a key immune cell population in the defense against viruses. pDCs detect viral pathogen associated molecular patterns (PAMPs through pattern recognition receptors (PRR. PRR/PAMP interactions trigger signaling events that induce interferon (IFN production to initiate local and systemic responses. pDCs produce Type I and Type III (IFNL IFNs in response to HCV RNA. Extracellular HCV core protein (Core is found in the circulation in chronic infection. This study defined how Core modulates PRR signaling in pDCs. Type I and III IFN expression and production following exposure to recombinant Core or β-galactosiade was assessed in human GEN2.2 cells, a pDC cell line. Core suppressed type I and III IFN production in response to TLR agonists and the HCV PAMP agonist of RIG-I. Core suppression of IFN induction was linked with decreased IRF-7 protein levels and increased non-phosphorylated STAT1 protein. Circulating Core protein interferes with PRR signaling by pDCs to suppress IFN production. Strategies to define and target Core effects on pDCs may serve to enhance IFN production and antiviral actions against HCV.

  4. Inhibition of the 20S proteosome by a protein proteinase inhibitor: evidence that a natural serine proteinase inhibitor can inhibit a threonine proteinase.

    Science.gov (United States)

    Yabe, Kimihiko; Koide, Takehiko

    2009-02-01

    The 20S proteasome (20S) is an intracellular threonine proteinase (Mr 750,000) that plays important roles in many cellular regulations. Several synthetic peptide inhibitors and bacteria-derived inhibitors such as lactacystin and epoxomicin have been identified as potent proteasome inhibitors. However, essentially no protein proteinase inhibitor has been characterized. By examining several small size protein proteinase inhibitors, we found that a well-known serine proteinase inhibitor from bovine pancreas, basic pancreatic trypsin inhibitor (BPTI), inhibits the 20S in vitro and ex vivo. Inhibition of the 20S by BPTI was time- and concentration-dependent, and stoichiometric. To inhibit the 20S activity, BPTI needs to enter into the interior of the 20S molecule. The molar ratio of BPTI to the 20S in the complex was estimated as approximately six BPTI to one 20S, thereby two sets of three peptidase activities (trypsin-like, chymotrypsin-like and caspase-like) of the 20S were all inhibited. These results indicate that an entrance hole to the 20S formed by seven alpha-subunits is sufficiently large for BPTI to enter. This report is essentially the initial description of the inhibition of a threonine proteinase by a protein serine proteinase inhibitor, suggesting a common mechanism of inhibition between serine and threonine proteinases by a natural protein proteinase inhibitor.

  5. Inhibition of Multimolecular RNA-Protein Interactions Using Multitarget-Directed Nanohybrid System.

    Science.gov (United States)

    Jeong, Woo-Jin; Kye, Mahnseok; Han, So-Hee; Choi, Jun Shik; Lim, Yong-Beom

    2017-04-05

    Multitarget-directed ligands (MTDLs) are hybrid ligands obtained by covalently linking active pharmacophores that can act on different targets. We envision that the concept of MTDLs can also be applied to supramolecular bioinorganic nanohybrid systems. Here, we report the inhibition of multimolecular RNA-protein complexes using multitarget-directed peptide-carbon nanotube hybrids (SPCHs). One of the most well-characterized and important RNA-protein interactions, a Rev-response element (RRE) RNA:Rev protein:Crm1 protein interaction system in human immunodeficiency virus type-1, was used as a model of multimolecular RNA-protein interactions. Although all previous studies have targeted only one of the interaction interfaces, that is, either the RRE:Rev interface or the RRE-Rev complex:Crm1 interface, we here have developed multitarget-directed SPCHs that could target both interfaces because the supramolecular nanosystem could be best suited for inhibiting multimolecular RNA-protein complexes that are characterized by large and complex molecular interfaces. The results showed that the single target-directed SPCHs were inhibitory to the single interface comprised only of RNA and protein in vitro, whereas multitarget-directed SPCHs were inhibitory to the multimolecular RNA-protein interfaces both in vitro and in cellulo. The MTDL nanohybrids represent a novel nanotherapeutic system that could be used to treat complex disease targets.

  6. Proteins in the Cocoon of Silkworm Inhibit the Growth of Beauveria bassiana

    Science.gov (United States)

    Zhang, Yan; Li, Youshan; Liu, Huawei; Xia, Qingyou; Zhao, Ping

    2016-01-01

    Silk cocoons are composed of fiber proteins (fibroins) and adhesive glue proteins (sericins), which provide a physical barrier to protect the inside pupa. Moreover, other proteins were identified in the cocoon silk, many of which are immune related proteins. In this study, we extracted proteins from the silkworm cocoon by Tris-HCl buffer (pH7.5), and found that they had a strong inhibitory activity against fungal proteases and they had higher abundance in the outer cocoon layers than in the inner cocoon layers. Moreover, we found that extracted cocoon proteins can inhibit the germination of Beauveria bassiana spores. Consistent with the distribution of protease inhibitors, we found that proteins from the outer cocoon layers showed better inhibitory effects against B. bassiana spores than proteins from the inner layers. Liquid chromatography-tandem mass spectrometry was used to reveal the extracted components in the scaffold silk, the outermost cocoon layer. A total of 129 proteins were identified, 30 of which were annotated as protease inhibitors. Protease inhibitors accounted for 89.1% in abundance among extracted proteins. These protease inhibitors have many intramolecular disulfide bonds to maintain their stable structure, and remained active after being boiled. This study added a new understanding to the antimicrobial function of the cocoon. PMID:27032085

  7. [Inhibition of aromatics on ammonia-oxidizing activity of sediment].

    Science.gov (United States)

    Dong, Chun-hong; Hu, Hong-ying; Wei, Dong-bin; Huang, Xia; Qian, Yi

    2004-03-01

    The inhibition of 24 aromatics on ammonia-oxidizing activity of nitrifying bacteria in sediment was measured. The effects of the kind, number and position of substituted groups on ammonia-oxidizing activity of nitrifying bacteria were discussed. The inhibition of mono-substituted benzenes on ammonia-oxidizing activity of nitrifying bacteria were in order of -OH > -NO2 > -NH2 > -Cl > -CH3 > -H. The position of substituted groups of di-substituted benzenes also affected the inhibition, and the inhibitions of dimethylbenzenes(xylene) were in order of meta-> ortho-> para-. The increase in number of substituted group on benzene-ring enhanced the inhibition of aromatics studied in this study on nitrifying bacteria. There was a linear relationship between inhibition (IC50, mumol.L-1) of aromatics on ammonia-oxidizing activity and total electronegativity (sigma E) of aromatics: lgIC50 = 14.72 - 0.91 sigma E.

  8. Parathyroid hormone-related protein (PTHrP) inhibits mitochondrial-dependent apoptosis through CK2.

    Science.gov (United States)

    Okoumassoun, Liliane Eustache; Russo, Caterina; Denizeau, Francine; Averill-Bates, Diana; Henderson, Janet E

    2007-09-01

    Over the past decade, parathyroid hormone-related protein (PTHrP) has been identified as a key survival factor for cells subjected to apoptotic stimuli. Its anti-apoptotic activity has been attributed to nuclear accumulation of the intact protein, or a synthetic peptide corresponding to its nuclear targeting sequence (NTS), which promotes rapid exit of nutrient deprived cells from the cell cycle. Intracellular PTHrP also inhibited apoptosis by blocking tumor necrosis factor alpha (TNFalpha)-induced apoptosis by blocking signaling from the "death receptor" and preventing damage to the mitochondrial membrane. In both cases, the anti-apoptotic activity was significantly reduced in the presence of a nuclear deficient form of PTHrP with a (88)K/E K/E.K/I(91) mutation in the NTS. The current work was undertaken to determine the mechanism by which nuclear PTHrP blocked mitochondrial-mediated apoptosis. Using sub-cellular fractionation and functional assays we showed that pre-treatment of HEK293 cells with exogenous NTS peptide before inducing apoptosis with TNFalpha was as effective as expression of the full-length protein in inhibiting apoptosis. Inhibition of apoptosis was associated with increased expression of protein kinase casein kinase 2 (CK2) and in sustained CK2 accumulation and activity in the nuclear fraction. In primary chondrogenic cells harvested from the limb buds of PTHrP(+/-) and PTHrP(-/-) embryonic mice, there was a dose-dependent decrease in CK2 expression and activity that correlated with increased susceptibility to apoptosis. Taken together the results indicate that nuclear accumulation of PTHrP effectively inhibits mitochondrial-mediated apoptosis through regulation of the expression, activity, and sub-cellular trafficking of CK2.

  9. Activating and inhibiting connections in biological network dynamics

    Directory of Open Access Journals (Sweden)

    Knight Rob

    2008-12-01

    Full Text Available Abstract Background Many studies of biochemical networks have analyzed network topology. Such work has suggested that specific types of network wiring may increase network robustness and therefore confer a selective advantage. However, knowledge of network topology does not allow one to predict network dynamical behavior – for example, whether deleting a protein from a signaling network would maintain the network's dynamical behavior, or induce oscillations or chaos. Results Here we report that the balance between activating and inhibiting connections is important in determining whether network dynamics reach steady state or oscillate. We use a simple dynamical model of a network of interacting genes or proteins. Using the model, we study random networks, networks selected for robust dynamics, and examples of biological network topologies. The fraction of activating connections influences whether the network dynamics reach steady state or oscillate. Conclusion The activating fraction may predispose a network to oscillate or reach steady state, and neutral evolution or selection of this parameter may affect the behavior of biological networks. This principle may unify the dynamics of a wide range of cellular networks. Reviewers Reviewed by Sergei Maslov, Eugene Koonin, and Yu (Brandon Xia (nominated by Mark Gerstein. For the full reviews, please go to the Reviewers' comments section.

  10. Inhibition of HIV-1 replication by balsamin, a ribosome inactivating protein of Momordica balsamina.

    Science.gov (United States)

    Kaur, Inderdeep; Puri, Munish; Ahmed, Zahra; Blanchet, Fabien P; Mangeat, Bastien; Piguet, Vincent

    2013-01-01

    Ribosome-inactivating proteins (RIPs) are endowed with several medicinal properties, including antiviral activity. We demonstrate here that the recently identified type I RIP from Momordica balsamina also possesses antiviral activity, as determined by viral growth curve assays and single-round infection experiments. Importantly, this activity is at play even as doses where the RIP has no cytotoxic effect. In addition, balsamin inhibits HIV-1 replication not only in T cell lines but also in human primary CD4(+) T cells. This antiviral compound exerts its activity at a viral replicative step occurring later than reverse-transcription, most likely on viral protein translation, prior to viral budding and release. Finally, we demonstrate that balsamin antiviral activity is broad since it also impedes influenza virus replication. Altogether our results demonstrate that type I RIP can exert a potent anti-HIV-1 activity which paves the way for new therapeutic avenues for the treatment of viral infections.

  11. Regulation of the activity of protein kinases by endogenous heat stable protein inhibitors.

    Science.gov (United States)

    Szmigielski, A

    1985-01-01

    Protein kinase activities are regulated by endogenous thermostable protein inhibitors. Type I inhibitor is a protein of MW 22,000-24,000 which inhibits specifically cyclic AMP-(cAMP) dependent protein kinase (APK) as a competitive inhibitor of catalytic subunits of the enzyme. Type I inhibitor activity changes inversely according to the activation of adenylate cyclase and the changes in cAMP content in tissues. It seems that type I inhibitor serves as a factor preventing spontaneous cAMP-dependent phosphorylation in unstimulated cell. The other thermostable protein which inhibits APK activity has been found in Sertoli cell-enriched testis (testis inhibitor). Physiological role of the testis inhibitor is unknown. Type II inhibitor is a protein of MW 15,000 which blocks phosphorylation mediated by cAMP and cyclic GMP (cGMP) dependent (APK and GPK) and cyclic nucleotide independent protein kinases as a competitive inhibitor of substrate proteins. Activity of this inhibitor specifically changes in reciprocal manner to the changes in cGMP content. It seems that type II inhibitor serves as a factor preventing the phosphorylation catalyzed by GPK when cGMP content is low. Stimulation of guanylate cyclase and activation of GPK is followed by a decrease of type II inhibitor activity. This change in relationship between activities of GPK and type II inhibitor allows for effective phosphorylation catalyzed by this enzyme when cGMP content is increased.

  12. Investigating isoquinoline derivatives for inhibition of inhibitor of apoptosis proteins for ovarian cancer treatment

    Directory of Open Access Journals (Sweden)

    Chen C

    2017-09-01

    Full Text Available Chen Chen,1,* Jie Wu,2,* Pengfei Zhu,3 Congjian Xu,1 Liangqing Yao1 1Obstetrics and Gynecology Hospital and Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, 2Department of Chemistry, Fudan University, Shanghai, 3Department of Obstetrics and Gynecology, Shangyu City Hospital, Shangyu, Zhejiang Province, People’s Republic of China *These authors contributed equally to this work Objective: To discover novel isoquinoline derivatives for inhibition of inhibitor of apoptosis proteins (IAP for the treatment of ovarian cancer. Methods: We first synthesized 533 isoquinoline derivatives, and screened them using CCK-8 to measure their antiproliferative activity. These compounds were further tested by Hoechst staining and flow cytometric analysis to assess proapoptotic activity. The in vivo antitumor efficacy and safety of the screened compounds were evaluated on the xenograft mouse model. Ki-67 staining and TUNEL assay were used to evaluate proliferation and apoptosis in the resected tumors, respectively. Western blot and polymerase chain reaction (PCR were conducted to evaluate the levels of proliferating cell nuclear antigen (PCNA, caspase-3, PARP, and IAP in resected tumors. Results: Compound B01002 and C26001 displayed antiproliferative and proapoptotic activity on SKOV3 ovarian cancer with an IC50 of 7.65 and 11.68 µg/mL, respectively. Both compounds inhibited tumor growth in a xenografted mouse model with good safety profiles, and tumor growth inhibition (TGI of B01002 and C26001 was 99.53% and 84.23%, respectively. Resected tumors showed that both compounds inhibited tumor cell proliferation and induced apoptosis in vivo. Caspase-3 and PARP were activated, whereas IAP proteins were downregulated at the protein level. Conclusion: Compound B01002 and C26001 could inhibit ovarian tumor growth and promote tumor apoptosis, partly by downregulating the IAPs, and, thus, might be promising candidates for treatment of ovarian

  13. Rapamycin Inhibits Lymphatic Endothelial Cell Tube Formation by Downregulating Vascular Endothelial Growth Factor Receptor 3 Protein Expression

    Directory of Open Access Journals (Sweden)

    Yan Luo

    2012-03-01

    Full Text Available Mammalian target of rapamycin (mTOR controls lymphangiogenesis. However, the underlying mechanism is not clear. Here we show that rapamycin suppressed insulin-like growth factor 1 (IGF-1- or fetal bovine serum (FBS-stimulated lymphatic endothelial cell (LEC tube formation, an in vitro model of lymphangiogenesis. Expression of a rapamycin-resistant and kinase-active mTOR (S2035T, mTOR-T, but not a rapamycin-resistant and kinase-dead mTOR (S2035T/D2357E, mTOR-TE, conferred resistance to rapamycin inhibition of LEC tube formation, suggesting that rapamycin inhibition of LEC tube formation is mTOR kinase activity dependent. Also, rapamycin inhibited proliferation and motility in the LECs. Furthermore, we found that rapamycin inhibited protein expression of VEGF receptor 3 (VEGFR-3 by inhibiting protein synthesis and promoting protein degradation of VEGFR-3 in the cells. Down-regulation of VEGFR-3 mimicked the effect of rapamycin, inhibiting IGF-1- or FBS-stimulated tube formation, whereas over-expression of VEGFR-3 conferred high resistance to rapamycin inhibition of LEC tube formation. The results indicate that rapamycin inhibits LEC tube formation at least in part by downregulating VEGFR-3 protein expression.

  14. A single whey acidic protein domain containing protein (SWD) inhibits bacteria invasion and dissemination in shrimp Marsupenaeus japonicus.

    Science.gov (United States)

    Jiang, Hai-Shan; Sun, Chen; Wang, Tong; Zhao, Xiao-Fan; Wang, Jin-Xing

    2013-08-01

    The single whey acidic protein (WAP) domain containing proteins (SWDs) in crustacean belong to type III crustins and have antiprotease activities and/or antimicrobial activities. Their functions in vivo in crustacean immunity need to be clarify. In this study, a new single WAP domain containing protein (SWD) was obtained from Marsupenaeus japonicus, designated as MjSWD. The full-length cDNA of MjSWD was 522 bp.The open reading frame of MjSWD encoded a protein of 79 amino acids, with a 24 amino acid signal peptide and a WAP domain. Tissue distribution analysis revealed that MjSWD transcripts were generally expressed in all the tested tissues, including hemocytes, heart, hepatopancreas, gill, stomach and intestine. The time course expression of MjSWD was analyzed by quantitative real time PCR, and the results exhibited that MjSWD was upregulated after bacteria (Vibrio anguillarum, Staphylococcus aureus) and white spot syndrome virus (WSSV) challenge in gills and stomach of the shrimp. The purified recombinant protein of MjSWD could bind to several Gram-negative and Gram-positive bacteria though binding to microbial polysaccharides (peptidoglycan). MjSWD could inhibit the activity of Subtilisin A and Proteinase K and bacteria-secreted proteases. The results of natural infection with MjSWD incubated bacteria showed that the inhibition of MjSWD against bacterial secreted proteases was contributed to inhibiting bacteria invasion and dissemination in the shrimp. The MjSWD is, thus, involved in the shrimp antibacterial innate immunity.

  15. Inhibition of Protein-Protein Interactions and Signaling by Small Molecules

    Science.gov (United States)

    Freire, Ernesto

    2010-03-01

    Protein-protein interactions are at the core of cell signaling pathways as well as many bacterial and viral infection processes. As such, they define critical targets for drug development against diseases such as cancer, arthritis, obesity, AIDS and many others. Until now, the clinical inhibition of protein-protein interactions and signaling has been accomplished with the use of antibodies or soluble versions of receptor molecules. Small molecule replacements of these therapeutic agents have been extremely difficult to develop; either the necessary potency has been hard to achieve or the expected biological effect has not been obtained. In this presentation, we show that a rigorous thermodynamic approach that combines differential scanning calorimetry (DSC) and isothermal titration calorimetry (ITC) provides a unique platform for the identification and optimization of small molecular weight inhibitors of protein-protein interactions. Recent advances in the development of cell entry inhibitors of HIV-1 using this approach will be discussed.

  16. Norepinephrine inhibits the migratory activity of pancreatic cancer cells.

    Science.gov (United States)

    Stock, Anna-Maria; Powe, Desmond G; Hahn, Stephan A; Troost, Gabriele; Niggemann, Bernd; Zänker, Kurt S; Entschladen, Frank

    2013-07-15

    We have shown previously that norepinephrine induces migratory activity of tumour cells from breast, colon and prostate tissue via activation of beta-2 adrenergic receptors. Consequently, this effect can be inhibited pharmacologically by clinically established beta-blockers. Tumour cell migration is a prerequisite for metastasis formation, and accordingly we and others have shown that breast cancer patients, which take beta-blockers due to hypertension, have reduced metastasis formation and increased survival probability as compared to patients without hypertension or using other anti-hypertensive medication. Unlike the aforementioned tumour cells, pancreatic cancer cells show a reduced migratory activity upon norepinephrine treatment. By means of our three-dimensional, collagen-based cell migration assay, we have investigated the signal transduction pathways involved in this phenomenon. We have found that this conflicting effect of norepinephrine on pancreatic cancer cells is due to an imbalanced activation of the two pathways that usually mediate a pro-migratory effect of norepinephrine in other tumour cell types. Firstly, the inhibitory effect results from activation of a pathway which causes a strong increase of the secondary cell signalling molecule, cAMP. In addition, activation of phospholipase C gamma and the downstream protein kinase C alpha were shown to be already activated in pancreatic cancer cells and cannot be further activated by norepinephrine. We hypothesize that this constitutive activation of the phospholipase C gamma pathway is due to a cross-talk with receptor tyrosine kinase signalling, and this might also deliver an explanation for the unusual high spontaneous migratory activity of pancreatic cancer cells. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Nutlin-3 down-regulates retinoblastoma protein expression and inhibits muscle cell differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Erica M. [Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118 (United States); Niu, MengMeng; Bergholz, Johann [Center of Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu, 610014 China (China); Jim Xiao, Zhi-Xiong, E-mail: jxiao@bu.edu [Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118 (United States); Center of Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu, 610014 China (China)

    2015-05-29

    The p53 tumor suppressor gene plays a critical role in regulation of proliferation, cell death and differentiation. The MDM2 oncoprotein is a major negative regulator for p53 by binding to and targeting p53 for proteasome-mediated degradation. The small molecule inhibitor, nutlin-3, disrupts MDM2-p53 interaction resulting in stabilization and activation of p53 protein. We have previously shown that nutlin-3 activates p53, leading to MDM2 accumulation as concomitant of reduced retinoblastoma (Rb) protein stability. It is well known that Rb is important in muscle development and myoblast differentiation and that rhabdomyosarcoma (RMS), or cancer of the skeletal muscle, typically harbors MDM2 amplification. In this study, we show that nutlin-3 inhibited myoblast proliferation and effectively prevented myoblast differentiation, as evidenced by lack of expression of muscle differentiation markers including myogenin and myosin heavy chain (MyHC), as well as a failure to form multinucleated myotubes, which were associated with dramatic increases in MDM2 expression and decrease in Rb protein levels. These results indicate that nutlin-3 can effectively inhibit muscle cell differentiation. - Highlights: • Nutlin-3 inhibits myoblast proliferation and prevents differentiation into myotubes. • Nutlin-3 increases MDM2 expression and down-regulates Rb protein levels. • This study has implication in nutlin-3 treatment of rhabdomyosarcomas.

  18. Protein kinase B/Akt1 inhibits autophagy by down-regulating UVRAG expression

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Wonseok; Ju, Ji-hyun; Lee, Kyung-min; Nam, KeeSoo; Oh, Sunhwa [Department of Life Science, College of Natural Science, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Shin, Incheol, E-mail: incheol@hanyang.ac.kr [Department of Life Science, College of Natural Science, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of)

    2013-02-01

    Autophagy, or autophagocytosis, is a selective intracellular degradative process involving the cell's own lysosomal apparatus. An essential component in cell development, homeostasis, repair and resistance to stress, autophagy may result in either cell death or survival. The targeted region of the cell is sequestered within a membrane structure, the autophagosome, for regulation of the catabolic process. A key factor in both autophagosome formation and autophagosome maturation is a protein encoded by the ultraviolet irradiation resistance-associated gene (UVRAG). Conversely, the serine/threonine-specific protein kinase B (PKB, also known as Akt), which regulates survival in various cancers, inhibits autophagy through mTOR activation. We found that Akt1 may also directly inhibit autophagy by down-regulating UVRAG both in a 293T transient transfection system and breast cancer cells stably expressing Akt1. The UVRAG with mutations at putative Akt1-phosphorylation sites were still inhibited by Akt1, and dominant-negative Akt1 also inhibited UVRAG expression, suggesting that Akt1 down-regulates UVRAG by a kinase activity-independent mechanism. We showed that Akt1 overexpression in MDA-MB-231 breast cancer cells down-regulated UVRAG transcription. Cells over-expressing Akt1 were more resistant than control cells to ultraviolet light-induced autophagy and exhibited the associated reduction in cell viability. Levels of the autophagosome indicator protein LC3B-II and mRFP-GFP-LC3 were reduced in cells that over-expressing Akt1. Inhibiting Akt1 by siRNA or reintroducing UVRAG gene rescued the level of LC3B-II in UV-irradiation. Altogether, these data suggest that Akt1 may inhibit autophagy by decreasing UVRAG expression, which also sensitizes cancer cells to UV irradiation.

  19. Spironolactone blocks Epstein-Barr virus production by inhibiting EBV SM protein function.

    Science.gov (United States)

    Verma, Dinesh; Thompson, Jacob; Swaminathan, Sankar

    2016-03-29

    Clinically available drugs active against Epstein-Barr virus (EBV) and other human herpesviruses are limited to those targeting viral DNA replication. To identify compounds directed against other steps in the viral life cycle, we searched for drugs active against the EBV SM protein, which is essential for infectious virus production. SM has a highly gene-specific mode of action and preferentially enhances expression of several late lytic cycle EBV genes. Here we demonstrate that spironolactone, a mineralocorticoid receptor antagonist approved for clinical use, inhibits SM function and infectious EBV production. Expression of EBV viral capsid antigen is highly SM dependent, and spironolactone inhibits viral capsid antigen synthesis and capsid formation, blocking EBV virion production at a step subsequent to viral DNA replication. In addition, spironolactone inhibits expression of other SM-dependent genes necessary for infectious virion formation. We further demonstrate that molecules structurally related to spironolactone with similar antimineralocorticoid blocking activity do not inhibit EBV production. These findings pave the way for development of antiherpesvirus drugs with new mechanisms of action directed against SM and homologous essential proteins in other herpesviruses.

  20. Functional domains of wild-type and mutant p53 proteins involved in transcriptional regulation, transdominant inhibition, and transformation suppression.

    OpenAIRE

    1993-01-01

    The wild-type (wt) p53 protein has transcriptional activation functions which may be linked to its tumor suppressor activity. Many mutant p53 proteins expressed in cancers have lost the ability to function as transcriptional activators and furthermore may inhibit wt p53 function. To study the mechanisms by which mutant forms of p53 have lost their transactivation function and can act in a dominant negative manner, a structure-function analysis of both mutant and engineered truncated forms of ...

  1. Identification and characterization of interferon-induced proteins that inhibit alphavirus replication.

    Science.gov (United States)

    Zhang, Yugen; Burke, Crystal W; Ryman, Kate D; Klimstra, William B

    2007-10-01

    Alpha/beta interferon (IFN-alpha/beta) produces antiviral effects through upregulation of many interferon-stimulated genes (ISGs) whose protein products are effectors of the antiviral state. Previous data from our laboratory have shown that IFN-alpha/beta can limit Sindbis virus (SB) replication through protein kinase R (PKR)-dependent and PKR-independent mechanisms and that one PKR-independent mechanism inhibits translation of the infecting virus genome (K. D. Ryman et al., J. Virol. 79:1487-1499, 2005). Further, using Affymetrix microarray technology, we identified 44 genes as candidates for PKR/RNase L-independent IFN-induced antiviral activities. In the current studies, we have begun analyzing these gene products for antialphavirus activity using three techniques: (i) overexpression of the protein from SB vectors and assessment of virulence attenuation in mice; (ii) overexpression of the proteins in a stable tetracycline-inducible murine fibroblast culture system and assessment of effects upon SB replication; and (iii) small interfering RNA-mediated knockdown of gene mRNA in fibroblast cultures followed by SB replication assessment as above. Tested proteins included those we hypothesized had potential to affect virus genome translation and included murine ISG20, ISG15, the zinc finger antiviral protein (ZAP), viperin, p56, p54, and p49. Interestingly, the pattern of antiviral activity for some gene products was different between in vitro and in vivo assays. Viperin and ZAP attenuated virulence most profoundly in mice. However, ISG20 and ZAP potently inhibited SB replication in vitro, whereas and viperin, p56, and ISG15 exhibited modest replication inhibition in vitro. In contrast, p54 and p49 had little to no effect in any assay.

  2. RNase P Ribozymes Inhibit the Replication of Human Cytomegalovirus by Targeting Essential Viral Capsid Proteins.

    Science.gov (United States)

    Yang, Zhu; Reeves, Michael; Ye, Jun; Trang, Phong; Zhu, Li; Sheng, Jingxue; Wang, Yu; Zen, Ke; Wu, Jianguo; Liu, Fenyong

    2015-06-24

    An engineered RNase P-based ribozyme variant, which was generated using the in vitro selection procedure, was used to target the overlapping mRNA region of two proteins essential for human cytomegalovirus (HCMV) replication: capsid assembly protein (AP) and protease (PR). In vitro studies showed that the generated variant, V718-A, cleaved the target AP mRNA sequence efficiently and its activity was about 60-fold higher than that of wild type ribozyme M1-A. Furthermore, we observed a reduction of 98%-99% in AP/PR expression and an inhibition of 50,000 fold in viral growth in cells with V718-A, while a 75% reduction in AP/PR expression and a 500-fold inhibition in viral growth was found in cells with M1-A. Examination of the antiviral effects of the generated ribozyme on the HCMV replication cycle suggested that viral DNA encapsidation was inhibited and as a consequence, viral capsid assembly was blocked when the expression of AP and PR was inhibited by the ribozyme. Thus, our study indicates that the generated ribozyme variant is highly effective in inhibiting HCMV gene expression and blocking viral replication, and suggests that engineered RNase P ribozyme can be potentially developed as a promising gene-targeting agent for anti-HCMV therapy.

  3. Itraconazole Inhibits Enterovirus Replication by Targeting the Oxysterol-Binding Protein

    Directory of Open Access Journals (Sweden)

    Jeroen R.P.M. Strating

    2015-02-01

    Full Text Available Itraconazole (ITZ is a well-known antifungal agent that also has anticancer activity. In this study, we identify ITZ as a broad-spectrum inhibitor of enteroviruses (e.g., poliovirus, coxsackievirus, enterovirus-71, rhinovirus. We demonstrate that ITZ inhibits viral RNA replication by targeting oxysterol-binding protein (OSBP and OSBP-related protein 4 (ORP4. Consistently, OSW-1, a specific OSBP/ORP4 antagonist, also inhibits enterovirus replication. Knockdown of OSBP inhibits virus replication, whereas overexpression of OSBP or ORP4 counteracts the antiviral effects of ITZ and OSW-1. ITZ binds OSBP and inhibits its function, i.e., shuttling of cholesterol and phosphatidylinositol-4-phosphate between membranes, thereby likely perturbing the virus-induced membrane alterations essential for viral replication organelle formation. ITZ also inhibits hepatitis C virus replication, which also relies on OSBP. Together, these data implicate OSBP/ORP4 as molecular targets of ITZ and point to an essential role of OSBP/ORP4-mediated lipid exchange in virus replication that can be targeted by antiviral drugs.

  4. Inhibition of 5-Lipoxygenase Pathway Attenuates Acute Liver Failure by Inhibiting Macrophage Activation

    Directory of Open Access Journals (Sweden)

    Lu Li

    2014-01-01

    Full Text Available This study aimed to investigate the role of 5-lipoxygenase (5-LO in acute liver failure (ALF and changes in macrophage activation by blocking it. ALF was induced in rats by administration of D-galactosamine (D-GalN/lipopolysaccharide (LPS. Rats were injected intraperitoneally with AA-861 (a specific 5-LO inhibitor, 24 hr before D-GalN/LPS administration. After D-GalN/LPS injection, the liver tissue was collected for assessment of histology, macrophage microstructure, macrophage counts, 5-LO mRNA formation, protein expression, and concentration of leukotrienes. Serum was collected for detecting alanine aminotransferase (ALT, aspartate transaminase (AST, total bilirubin (Tbil, and tumor necrosis factor- (TNF-α. Twenty-four hours after injection, compared with controls, ALF rats were characterized by widespread hepatocyte necrosis and elevated ALT, AST, and Tbil, and 5-LO protein expression reached a peak. Liver leukotriene B4 was also significantly elevated. However, 5-LO mRNA reached a peak 8 hr after D-GalN/LPS injection. Simultaneously, the microstructure of macrophages was changed most significantly and macrophages counts were increased significantly. Moreover, serum TNF-α was also elevated. By contrast, AA-861 pretreatment significantly decreased liver necrosis as well as all of the parameters compared with the rats without pretreatment. Macrophages, via the 5-LO pathway, play a critical role in ALF, and 5-LO inhibitor significantly alleviates ALF, possibly related to macrophage inhibition.

  5. Inhibition of glyceraldehyde-3-phosphate dehydrogenase by peptide and protein peroxides generated by singlet oxygen attack

    DEFF Research Database (Denmark)

    Morgan, Philip E; Dean, Roger T; Davies, Michael Jonathan

    2002-01-01

    the active-site thiol of the enzyme and the peroxide. A number of low-molecular-mass compounds including thiols and ascorbate, but not Trolox C, can prevent inhibition by removing the initial peroxide, or species derived from it. In contrast, glutathione reductase and lactate dehydrogenase are poorly......Reaction of certain peptides and proteins with singlet oxygen (generated by visible light in the presence of rose bengal dye) yields long-lived peptide and protein peroxides. Incubation of these peroxides with glyceraldehyde-3-phosphate dehydrogenase, in the absence of added metal ions, results...

  6. Ca2+-dependent inhibition of G protein-coupled receptor kinase 2 by calmodulin.

    Science.gov (United States)

    Haga, K; Tsuga, H; Haga, T

    1997-02-11

    Agonist- or light-dependent phosphorylation of muscarinic acetylcholine receptor m2 subtypes (m2 receptors) or rhodopsin by G protein-coupled receptor kinase 2 (GRK2) was found to be inhibited by calmodulin in a Ca2+-dependent manner. The phosphorylation was fully inhibited in the absence of G protein betagamma subunits and partially inhibited in the presence of betagamma subunits. The dose-response curve for stimulation by betagamma subunits of the m2 and rhodopsin phosphorylation was shifted to the higher concentration of betagamma subunits by addition of Ca2+-calmodulin. The phosphorylation by GRK2 of a glutathione S-transferase fusion protein containing a peptide corresponding to the central part of the third intracellular loop of m2 receptors (I3-GST) was not affected by Ca2+-calmodulin in the presence or absence of betagamma subunits, but the agonist-dependent stimulation of I3-GST phosphorylation by an I3-deleted m2 receptor mutant in the presence of betagamma subunits was suppressed by Ca2+-calmodulin. These results indicate that Ca2+-calmodulin does not directly interact with the catalytic site of GRK2 but inhibits the kinase activity of GRK2 by interfering with the activation of GRK2 by agonist-bound m2 receptors and G protein betagamma subunits. In agreement with the assumption that GRK2 activity is suppressed by the increase in intracellular Ca2+, the sequestration of m2 receptors expressed in Chinese hamster ovary cells was found to be attenuated by the treatment with a Ca2+ ionophore, A23187.

  7. Gi proteins regulate adenylyl cyclase activity independent of receptor activation.

    Science.gov (United States)

    Melsom, Caroline Bull; Ørstavik, Øivind; Osnes, Jan-Bjørn; Skomedal, Tor; Levy, Finn Olav; Krobert, Kurt Allen

    2014-01-01

    Despite the view that only β2- as opposed to β1-adrenoceptors (βARs) couple to G(i), some data indicate that the β1AR-evoked inotropic response is also influenced by the inhibition of Gi. Therefore, we wanted to determine if Gi exerts tonic receptor-independent inhibition upon basal adenylyl cyclase (AC) activity in cardiomyocytes. We used the Gs-selective (R,R)- and the Gs- and G(i)-activating (R,S)-fenoterol to selectively activate β2ARs (β1AR blockade present) in combination with Gi inactivation with pertussis toxin (PTX). We also determined the effect of PTX upon basal and forskolin-mediated responses. Contractility was measured ex vivo in left ventricular strips and cAMP accumulation was measured in isolated ventricular cardiomyocytes from adult Wistar rats. PTX amplified both the (R,R)- and (R,S)-fenoterol-evoked maximal inotropic response and concentration-dependent increases in cAMP accumulation. The EC50 values of fenoterol matched published binding affinities. The PTX enhancement of the Gs-selective (R,R)-fenoterol-mediated responses suggests that Gi regulates AC activity independent of receptor coupling to Gi protein. Consistent with this hypothesis, forskolin-evoked cAMP accumulation was increased and inotropic responses to forskolin were potentiated by PTX treatment. In non-PTX-treated tissue, phosphodiesterase (PDE) 3 and 4 inhibition or removal of either constitutive muscarinic receptor activation of Gi with atropine or removal of constitutive adenosine receptor activation with CGS 15943 had no effect upon contractility. However, in PTX-treated tissue, PDE3 and 4 inhibition alone increased basal levels of cAMP and accordingly evoked a large inotropic response. Together, these data indicate that Gi exerts intrinsic receptor-independent inhibitory activity upon AC. We propose that PTX treatment shifts the balance of intrinsic G(i) and Gs activity upon AC towards Gs, enhancing the effect of all cAMP-mediated inotropic agents.

  8. Competitive inhibition reaction mechanisms for the two-step model of protein aggregation.

    Science.gov (United States)

    Whidden, Mark; Ho, Allison; Ivanova, Magdalena I; Schnell, Santiago

    2014-01-01

    We propose three new reaction mechanisms for competitive inhibition of protein aggregation for the two-step model of protein aggregation. The first mechanism is characterized by the inhibition of native protein, the second is characterized by the inhibition of aggregation-prone protein and the third mechanism is characterized by the mixed inhibition of native and aggregation-prone proteins. Rate equations are derived for these mechanisms, and a method is described for plotting kinetic results to distinguish these three types of inhibitors. The derived rate equations provide a simple way of estimating the inhibition constant of native or aggregation-prone protein inhibitors in protein aggregation. The new approach is used to estimate the inhibition constants of different peptide inhibitors of insulin aggregation.

  9. LINGO-1, a transmembrane signaling protein, inhibits oligodendrocyte differentiation and myelination through intercellular self-interactions.

    Science.gov (United States)

    Jepson, Scott; Vought, Bryan; Gross, Christian H; Gan, Lu; Austen, Douglas; Frantz, J Daniel; Zwahlen, Jacque; Lowe, Derek; Markland, William; Krauss, Raul

    2012-06-22

    Overcoming remyelination failure is a major goal of new therapies for demyelinating diseases like multiple sclerosis. LINGO-1, a key negative regulator of myelination, is a transmembrane signaling protein expressed in both neurons and oligodendrocytes. In neurons, LINGO-1 is an integral component of the Nogo receptor complex, which inhibits axonal growth via RhoA. Because the only ligand-binding subunit of this complex, the Nogo receptor, is absent in oligodendrocytes, the extracellular signals that inhibit myelination through a LINGO-1-mediated mechanism are unknown. Here we show that LINGO-1 inhibits oligodendrocyte terminal differentiation through intercellular interactions and is capable of a self-association in trans. Consistent with previous reports, overexpression of full-length LINGO-1 inhibited differentiation of oligodendrocyte precursor cells (OPCs). Unexpectedly, treatment with a soluble recombinant LINGO-1 ectodomain also had an inhibitory effect on OPCs and decreased myelinated axonal segments in cocultures with neurons from dorsal root ganglia. We demonstrated LINGO-1-mediated inhibition of OPCs through intercellular signaling by using a surface-bound LINGO-1 construct expressed ectopically in astrocytes. Further investigation showed that the soluble LINGO-1 ectodomain can interact with itself in trans by binding to CHO cells expressing full-length LINGO-1. Finally, we observed that soluble LINGO-1 could activate RhoA in OPCs. We propose that LINGO-1 acts as both a ligand and a receptor and that the mechanism by which it negatively regulates OPC differentiation and myelination is mediated by a homophilic intercellular interaction. Disruption of this protein-protein interaction could lead to a decrease of LINGO-1 inhibition and an increase in myelination.

  10. Inhibition of protein tyrosine phosphatase 1B by lignans from Myristica fragrans.

    Science.gov (United States)

    Yang, Senugmi; Na, Min Kyun; Jang, Jun Pil; Kim, Kyung Ah; Kim, Bo Yeon; Sung, Nak Ju; Oh, Won Keun; Ahn, Jong Seog

    2006-08-01

    Inhibition of protein tyrosine phosphatase 1B (PTP1B) has been proposed as one of the drug targets for treating type 2 diabetes and obesity. Bioassay-guided fractionation of a MeOH extract of the semen of Myristica fragrans Houtt. (Myristicaceae) afforded PTP1B inhibitory compounds, meso-dihydroguaiaretic acid (1) and otobaphenol (2). Compounds 1 and 2 inhibited PTP1B with IC(50) values of 19.6 +/- 0.3 and 48.9 +/- 0.5 microM, respectively, in the manner of non-competitive inhibitors. Treatment with compound 1 on 32D cells overexpressing the insulin receptor (IR) resulted in a dose-dependent increase in the tyrosine phosphorylation of IR. These results indicate that compound 1 can act as an enhancing agent in intracellular insulin signaling, possibly through the inhibition of PTP1B activity.

  11. Allostery in BAX protein activation.

    Science.gov (United States)

    Jiang, Zhenyan; Zhang, Hansi; Böckmann, Rainer A

    2016-11-01

    BAX is a member of the proapoptotic BCL-2 family of proteins, which is involved in the regulation of the intrinsic pathway of apoptosis. In the process of apoptosis, BH3-only molecules activate cytosolic BAX. Activated BAX molecules insert into the mitochondrial outer membrane with their [Formula: see text]-helix and form oligomers that lead to membrane poration, resulting in the release of apoptogenic factors including cytochrome c. Recently, a novel interaction site for the binding of the BIM SAHB ligand to BAX was reported. BIM SAHB binding was shown to invoke the exposure of the 6A7 epitope (amino acids 13-19) and of the BH3 domain of BAX, followed by mobilization of the BAX [Formula: see text]-helix. However, the intramolecular pathway for signal transmission in BAX, from BIM SAHB binding to mobilization of the [Formula: see text]-helix largely remained elusive. For a molecular understanding of the activation of BAX, and thus the first steps in apoptosis, we performed microsecond atomistic molecular dynamics simulations both of the BAX protein and of the BAX:BIM SAHB complex in aqueous solution. In agreement with experiment, the 6A7 and BH3 domains adopt a more solvent-exposed conformation within the BAX:BIM SAHB complex. BIM SAHB binding was found to stabilize the secondary structure of the [Formula: see text]9-helix. A force distribution analysis revealed a force network of residue-residue interactions responsible for signal transmission from the BIM SAHB binding site predominantly via the [Formula: see text]4- and [Formula: see text]6-helices to the [Formula: see text]9-helix on the opposite site of the protein.

  12. Amot130 adapts atrophin-1 interacting protein 4 to inhibit yes-associated protein signaling and cell growth.

    Science.gov (United States)

    Adler, Jacob J; Heller, Brigitte L; Bringman, Lauren R; Ranahan, William P; Cocklin, Ross R; Goebl, Mark G; Oh, Misook; Lim, Hyun-Suk; Ingham, Robert J; Wells, Clark D

    2013-05-24

    The adaptor protein Amot130 scaffolds components of the Hippo pathway to promote the inhibition of cell growth. This study describes how Amot130 through binding and activating the ubiquitin ligase AIP4/Itch achieves these effects. AIP4 is found to bind and ubiquitinate Amot130 at residue Lys-481. This both stabilizes Amot130 and promotes its residence at the plasma membrane. Furthermore, Amot130 is shown to scaffold a complex containing overexpressed AIP4 and the transcriptional co-activator Yes-associated protein (YAP). Consequently, Amot130 promotes the ubiquitination of YAP by AIP4 and prevents AIP4 from binding to large tumor suppressor 1. Amot130 is found to reduce YAP stability. Importantly, Amot130 inhibition of YAP dependent transcription is reversed by AIP4 silencing, whereas Amot130 and AIP4 expression interdependently suppress cell growth. Thus, Amot130 repurposes AIP4 from its previously described role in degrading large tumor suppressor 1 to the inhibition of YAP and cell growth.

  13. Sulindac metabolites inhibit epidermal growth factor receptor activation and expression

    Directory of Open Access Journals (Sweden)

    Pangburn Heather A

    2005-09-01

    Full Text Available Abstract Background Regular use of nonsteroidal anti-inflammatory drugs (NSAIDs is associated with a decreased mortality from colorectal cancer (CRC. NSAIDs induce apoptotic cell death in colon cancer cells in vitro and inhibit growth of neoplastic colonic mucosa in vivo however, the biochemical mechanisms required for these growth inhibitory effects are not well defined. We previously reported that metabolites of the NSAID sulindac downregulate extracellular-signal regulated kinase 1/2 (ERK1/2 signaling and that this effect is both necessary and sufficient for the apoptotic effects of these drugs. The goal of this project was to specifically test the hypothesis that sulindac metabolites block activation and/or expression of the epidermal growth factor (EGF receptor (EGFR. Methods HT29 human colon cancer cells were treated with EGF, alone, or in the presence of sulindac sulfide or sulindac sulfone. Cells lysates were assayed by immunoblotting for phosphorylated EGFR (pEGFR, pY1068, total EGFR, phosphorylated ERK1/2 (pERK1/2, total ERK1/2, activated caspase-3, and α-tubulin. Results EGF treatment rapidly induced phosphorylation of both EGFR and ERK1/2 in HT29 colon cancer cells. Pretreatment with sulindac metabolites for 24 h blocked EGF-induced phosphorylation of both EGFR and ERK1/2 and decreased total EGFR protein expression. Under basal conditions, downregulation of pEGFR and total EGFR was detected as early as 12 h following sulindac sulfide treatment and persisted through at least 48 h. Sulindac sulfone induced downregulation of pEGFR and total EGFR was detected as early as 1 h and 24 h, respectively, following drug treatment, and persisted through at least 72 h. EGFR downregulation by sulindac metabolites was observed in three different CRC cell lines, occurred prior to the observed downregulation of pERK1/2 and induction of apoptosis by these drugs, and was not dependent of caspase activation. Conclusion These results suggest that

  14. The specific activation of TRPC4 by Gi protein subtype.

    Science.gov (United States)

    Jeon, Jae-Pyo; Lee, Kyu Pil; Park, Eun Jung; Sung, Tae Sik; Kim, Byung Joo; Jeon, Ju-Hong; So, Insuk

    2008-12-12

    The classical type of transient receptor potential channel (TRPC) is a molecular candidate for Ca(2+)-permeable cation channels in mammalian cells. Especially, TRPC4 has the similar properties to Ca(2+)-permeable nonselective cation channels (NSCCs) activated by muscarinic stimulation in visceral smooth muscles. In visceral smooth muscles, NSCCs activated by muscarinic stimulation were blocked by anti-Galphai/o antibodies. However, there is still no report which Galpha proteins are involved in the activation process of TRPC4. Among Galpha proteins, only Galphai protein can activate TRPC4 channel. The activation effect of Galphai was specific for TRPC4 because Galphai has no activation effect on TRPC5, TRPC6 and TRPV6. Coexpression with muscarinic receptor M2 induced TRPC4 current activation by muscarinic stimulation with carbachol, which was inhibited by pertussis toxin. These results suggest that Galphai is involved specifically in the activation of TRPC4.

  15. Rgg protein structure-function and inhibition by cyclic peptide compounds.

    Science.gov (United States)

    Parashar, Vijay; Aggarwal, Chaitanya; Federle, Michael J; Neiditch, Matthew B

    2015-04-21

    Peptide pheromone cell-cell signaling (quorum sensing) regulates the expression of diverse developmental phenotypes (including virulence) in Firmicutes, which includes common human pathogens, e.g., Streptococcus pyogenes and Streptococcus pneumoniae. Cytoplasmic transcription factors known as "Rgg proteins" are peptide pheromone receptors ubiquitous in Firmicutes. Here we present X-ray crystal structures of a Streptococcus Rgg protein alone and in complex with a tight-binding signaling antagonist, the cyclic undecapeptide cyclosporin A. To our knowledge, these represent the first Rgg protein X-ray crystal structures. Based on the results of extensive structure-function analysis, we reveal the peptide pheromone-binding site and the mechanism by which cyclosporin A inhibits activation of the peptide pheromone receptor. Guided by the Rgg-cyclosporin A complex structure, we predicted that the nonimmunosuppressive cyclosporin A analog valspodar would inhibit Rgg activation. Indeed, we found that, like cyclosporin A, valspodar inhibits peptide pheromone activation of conserved Rgg proteins in medically relevant Streptococcus species. Finally, the crystal structures presented here revealed that the Rgg protein DNA-binding domains are covalently linked across their dimerization interface by a disulfide bond formed by a highly conserved cysteine. The DNA-binding domain dimerization interface observed in our structures is essentially identical to the interfaces previously described for other members of the XRE DNA-binding domain family, but the presence of an intermolecular disulfide bond buried in this interface appears to be unique. We hypothesize that this disulfide bond may, under the right conditions, affect Rgg monomer-dimer equilibrium, stabilize Rgg conformation, or serve as a redox-sensitive switch.

  16. The SARS coronavirus papain like protease can inhibit IRF3 at a post activation step that requires deubiquitination activity.

    Science.gov (United States)

    Matthews, Krystal; Schäfer, Alexandra; Pham, Alissa; Frieman, Matthew

    2014-12-07

    The outcome of a viral infection is regulated by complex interactions of viral and host factors. SARS coronavirus (SARS-CoV) engages and regulates several innate immune response pathways during infection. We have previously shown that the SARS-CoV Papain-like Protease (PLpro) inhibits type I interferon (IFN) by inhibiting IRF3 phosphorylation thereby blocking downstream Interferon induction. This finding prompted us to identify other potential mechanisms of inhibition of PLpro on IFN induction. We have used plasmids expressing PLpro and IRF3 including an IRF3 mutant that is constitutively active, called IRF3(5D). In these experiments we utilize transfections, chromatin immunoprecipitation, Electro-mobility Shift Assays (EMSA) and protein localization to identify where IRF3 and IRF3(5D) are inhibited by PLpro. Here we show that PLpro also inhibits IRF3 activation at a step after phosphorylation and that this inhibition is dependent on the de-ubiquitination (DUB) activity of PLpro. We found that PLpro is able to block the type I IFN induction of a constitutively active IRF3, but does not inhibit IRF3 dimerization, nuclear localization or DNA binding. However, inhibition of PLpro's DUB activity by mutagenesis blocked the IRF3 inhibition activity of PLpro, suggesting a role for IRF3 ubiquitination in induction of a type I IFN innate immune response. These results demonstrate an additional mechanism that PLpro is able to inhibit IRF3 signaling. These data suggest novel innate immune antagonism activities of PLpro that may contribute to SARS-CoV pathogenesis.

  17. Nicotinamide mononucleotide inhibits JNK activation to reverse Alzheimer disease.

    Science.gov (United States)

    Yao, Zhiwen; Yang, Wenhao; Gao, Zhiqiang; Jia, Peng

    2017-04-24

    Amyloid-β (Aβ) oligomers have been accepted as major neurotoxic agents in the therapy of Alzheimer's disease (AD). It has been shown that the activity of nicotinamide adenine dinucleotide (NAD+) is related with the decline of Aβ toxicity in AD. Nicotinamide mononucleotide (NMN), the important precursor of NAD+, is produced during the reaction of nicotinamide phosphoribosyl transferase (Nampt). This study aimed to figure out the potential therapeutic effects of NMN and its underlying mechanisms in APPswe/PS1dE9 (AD-Tg) mice. We found that NMN gave rise to a substantial improvement in behavioral measures of cognitive impairments compared to control AD-Tg mice. In addition, NMN treatment significantly decreased β-amyloid production, amyloid plaque burden, synaptic loss, and inflammatory responses in transgenic animals. Mechanistically, NMN effectively controlled JNK activation. Furthermore, NMN potently progressed nonamyloidogenic amyloid precursor protein (APP) and suppressed amyloidogenic APP by mediating the expression of APP cleavage secretase in AD-Tg mice. Based on our findings, it was suggested that NMN substantially decreases multiple AD-associated pathological characteristically at least partially by the inhibition of JNK activation. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Inhibition of intestinal disaccharidase activity by pentoses

    DEFF Research Database (Denmark)

    Halschou-Jensen, Kia

    digestive enzymes. In paper 3, D-xylose and L-arabinose was investigated in vitro and in vivo. This study found that D-xylose and Larabinose inhibit both sucrase and maltase when tested in a Caco-2 cell model. In addition, 13 healthy subjects completed a randomized double-blinded cross-over study......The current health problems regarding the obesity epidemic, development of type 2 diabetes mellitus (T2D) and cardiovascular disease are a major challenge for healthcare systems worldwide.No simple or unique cure has been documented to prevent or treat this major health problem regarding T2D...

  19. Non-human Primate Schlafen11 Inhibits Production of Both Host and Viral Proteins.

    Directory of Open Access Journals (Sweden)

    Alex C Stabell

    2016-12-01

    Full Text Available Schlafen11 (encoded by the SLFN11 gene has been shown to inhibit the accumulation of HIV-1 proteins. We show that the SLFN11 gene is under positive selection in simian primates and is species-specific in its activity against HIV-1. The activity of human Schlafen11 is relatively weak compared to that of some other primate versions of this protein, with the versions encoded by chimpanzee, orangutan, gibbon, and marmoset being particularly potent inhibitors of HIV-1 protein production. Interestingly, we find that Schlafen11 is functional in the absence of infection and reduces protein production from certain non-viral (GFP and even host (Vinculin and GAPDH transcripts. This suggests that Schlafen11 may just generally block protein production from non-codon optimized transcripts. Because Schlafen11 is an interferon-stimulated gene with a broad ability to inhibit protein production from many host and viral transcripts, its role may be to create a general antiviral state in the cell. Interestingly, the strong inhibitors such as marmoset Schlafen11 consistently block protein production better than weak primate Schlafen11 proteins, regardless of the virus or host target being analyzed. Further, we show that the residues to which species-specific differences in Schlafen11 potency map are distinct from residues that have been targeted by positive selection. We speculate that the positive selection of SLFN11 could have been driven by a number of different factors, including interaction with one or more viral antagonists that have yet to be identified.

  20. Cotranslational Coat Protein-Mediated Inhibition of Potyviral RNA Translation

    Science.gov (United States)

    Besong-Ndika, Jane; Ivanov, Konstantin I.; Hafrèn, Anders; Michon, Thierry

    2015-01-01

    ABSTRACT Potato virus A (PVA) is a single-stranded positive-sense RNA virus and a member of the family Potyviridae. The PVA coat protein (CP) has an intrinsic capacity to self-assemble into filamentous virus-like particles, but the mechanism responsible for the initiation of viral RNA encapsidation in vivo remains unclear. Apart from virion assembly, PVA CP is also involved in the inhibition of viral RNA translation. In this study, we show that CP inhibits PVA RNA translation in a dose-dependent manner, through a mechanism involving the CP-encoding region. Analysis of this region, however, failed to identify any RNA secondary structure(s) preferentially recognized by CP, suggesting that the inhibition depends on CP-CP rather than CP-RNA interactions. In agreement with this possibility, insertion of an in-frame stop codon upstream of the CP sequence led to a marked decrease in the inhibition of viral RNA translation. Based on these results, we propose a model in which the cotranslational interactions between excess CP accumulating in trans and CP translated from viral RNA in cis are required to initiate the translational repression. This model suggests a mechanism for how viral RNA can be sequestered from translation and specifically selected for encapsidation at the late stages of viral infection. IMPORTANCE The main functions of the CP during potyvirus infection are to protect viral RNA from degradation and to transport it locally, systemically, and from host to host. Although virion assembly is a key step in the potyviral infectious cycle, little is known about how it is initiated and how viral RNA is selected for encapsidation. The results presented here suggest that CP-CP rather than CP-RNA interactions are predominantly involved in the sequestration of viral RNA away from translation. We propose that the cotranslational nature of these interactions may represent a mechanism for the selection of viral RNA for encapsidation. A better understanding of the

  1. Phenobarbital indirectly activates the constitutive active androstane receptor (CAR) by inhibition of epidermal growth factor receptor signaling.

    Science.gov (United States)

    Mutoh, Shingo; Sobhany, Mack; Moore, Rick; Perera, Lalith; Pedersen, Lee; Sueyoshi, Tatsuya; Negishi, Masahiko

    2013-05-07

    Phenobarbital is a central nervous system depressant that also indirectly activates nuclear receptor constitutive active androstane receptor (CAR), which promotes drug and energy metabolism, as well as cell growth (and death), in the liver. We found that phenobarbital activated CAR by inhibiting epidermal growth factor receptor (EGFR) signaling. Phenobarbital bound to EGFR and potently inhibited the binding of EGF, which prevented the activation of EGFR. This abrogation of EGFR signaling induced the dephosphorylation of receptor for activated C kinase 1 (RACK1) at Tyr(52), which then promoted the dephosphorylation of CAR at Thr(38) by the catalytic core subunit of protein phosphatase 2A. The findings demonstrated that the phenobarbital-induced mechanism of CAR dephosphorylation and activation is mediated through its direct interaction with and inhibition of EGFR.

  2. Inhibition of Hsp70 by Methylene Blue Affects Signaling Protein Function and Ubiquitination and Modulates Polyglutamine Protein Degradation*

    Science.gov (United States)

    Wang, Adrienne M.; Morishima, Yoshihiro; Clapp, Kelly M.; Peng, Hwei-Ming; Pratt, William B.; Gestwicki, Jason E.; Osawa, Yoichi; Lieberman, Andrew P.

    2010-01-01

    The Hsp90/Hsp70-based chaperone machinery regulates the activity and degradation of many signaling proteins. Cycling with Hsp90 stabilizes client proteins, whereas Hsp70 interacts with chaperone-dependent E3 ubiquitin ligases to promote protein degradation. To probe these actions, small molecule inhibitors of Hsp70 would be extremely useful; however, few have been identified. Here we test the effects of methylene blue, a recently described inhibitor of Hsp70 ATPase activity, in three well established systems of increasing complexity. First, we demonstrate that methylene blue inhibits the ability of the purified Hsp90/Hsp70-based chaperone machinery to enable ligand binding by the glucocorticoid receptor and show that this effect is due to specific inhibition of Hsp70. Next, we establish that ubiquitination of neuronal nitric-oxide synthase by the native ubiquitinating system of reticulocyte lysate is dependent upon both Hsp70 and the E3 ubiquitin ligase CHIP and is blocked by methylene blue. Finally, we demonstrate that methylene blue impairs degradation of the polyglutamine expanded androgen receptor, an Hsp90 client mutated in spinal and bulbar muscular atrophy. In contrast, degradation of an amino-terminal fragment of the receptor, which lacks the ligand binding domain and, therefore, is not a client of the Hsp90/Hsp70-based chaperone machinery, is enhanced through homeostatic induction of autophagy that occurs when Hsp70-dependent proteasomal degradation is inhibited by methylene blue. Our data demonstrate the utility of methylene blue in defining Hsp70-dependent functions and reveal divergent effects on polyglutamine protein degradation depending on whether the substrate is an Hsp90 client. PMID:20348093

  3. Inhibition of hsp70 by methylene blue affects signaling protein function and ubiquitination and modulates polyglutamine protein degradation.

    Science.gov (United States)

    Wang, Adrienne M; Morishima, Yoshihiro; Clapp, Kelly M; Peng, Hwei-Ming; Pratt, William B; Gestwicki, Jason E; Osawa, Yoichi; Lieberman, Andrew P

    2010-05-21

    The Hsp90/Hsp70-based chaperone machinery regulates the activity and degradation of many signaling proteins. Cycling with Hsp90 stabilizes client proteins, whereas Hsp70 interacts with chaperone-dependent E3 ubiquitin ligases to promote protein degradation. To probe these actions, small molecule inhibitors of Hsp70 would be extremely useful; however, few have been identified. Here we test the effects of methylene blue, a recently described inhibitor of Hsp70 ATPase activity, in three well established systems of increasing complexity. First, we demonstrate that methylene blue inhibits the ability of the purified Hsp90/Hsp70-based chaperone machinery to enable ligand binding by the glucocorticoid receptor and show that this effect is due to specific inhibition of Hsp70. Next, we establish that ubiquitination of neuronal nitric-oxide synthase by the native ubiquitinating system of reticulocyte lysate is dependent upon both Hsp70 and the E3 ubiquitin ligase CHIP and is blocked by methylene blue. Finally, we demonstrate that methylene blue impairs degradation of the polyglutamine expanded androgen receptor, an Hsp90 client mutated in spinal and bulbar muscular atrophy. In contrast, degradation of an amino-terminal fragment of the receptor, which lacks the ligand binding domain and, therefore, is not a client of the Hsp90/Hsp70-based chaperone machinery, is enhanced through homeostatic induction of autophagy that occurs when Hsp70-dependent proteasomal degradation is inhibited by methylene blue. Our data demonstrate the utility of methylene blue in defining Hsp70-dependent functions and reveal divergent effects on polyglutamine protein degradation depending on whether the substrate is an Hsp90 client.

  4. Milk inhibits the biological activity of ricin

    Science.gov (United States)

    Ricin is a highly toxic protein produced by the castor plant Ricinus communis. The toxin is relatively easy to isolate and can be used as a biological weapon. There is great interest in identifying effective inhibitors for ricin. In this study, we demonstrated by three independent assays that compon...

  5. Sestrins Inhibit mTORC1 Kinase Activation through the GATOR Complex

    Directory of Open Access Journals (Sweden)

    Anita Parmigiani

    2014-11-01

    Full Text Available The mechanistic target of rapamycin complex 1 (mTORC1 kinase is a sensor of different environmental conditions and regulator of cell growth, metabolism, and autophagy. mTORC1 is activated by Rag GTPases, working as RagA:RagB and RagC:RagD heterodimers. Rags control mTORC1 activity by tethering mTORC1 to the lysosomes where it is activated by Rheb GTPase. RagA:RagB, active in its GTP-bound form, is inhibited by GATOR1 complex, a GTPase-activating protein, and GATOR1 is in turn negatively regulated by GATOR2 complex. Sestrins are stress-responsive proteins that inhibit mTORC1 via activation of AMP-activated protein kinase (AMPK and tuberous sclerosis complex. Here we report an AMPK-independent mechanism of mTORC1 inhibition by Sestrins mediated by their interaction with GATOR2. As a result of this interaction, the Sestrins suppress mTOR lysosomal localization in a Rag-dependent manner. This mechanism is potentially involved in mTORC1 regulation by amino acids, rotenone, and tunicamycin, connecting stress response with mTORC1 inhibition