WorldWideScience

Sample records for activation modulates permeability

  1. Interleukin-6 modulation of intestinal epithelial tight junction permeability is mediated by JNK pathway activation of claudin-2 gene.

    Directory of Open Access Journals (Sweden)

    Rana Al-Sadi

    Full Text Available Defective intestinal epithelial tight junction (TJ barrier has been shown to be a pathogenic factor in the development of intestinal inflammation. Interleukin-6 (IL-6 is a pleiotropic, pro-inflammatory cytokine which plays an important role in promoting inflammatory response in the gut and in the systemic circulation. Despite its key role in mediating variety inflammatory response, the effect of IL-6 on intestinal epithelial barrier remains unclear. The purpose of this study was to investigate the effect of IL-6 on intestinal epithelial TJ barrier and to delineate the intracellular mechanisms involved using in-vitro (filter-grown Caco-2 monolayers and in-vivo model (mouse intestinal perfusion systems. Our results indicated that IL-6 causes a site-selective increase in Caco-2 intestinal epithelia TJ permeability, causing an increase in flux of small-sized molecules having molecular radius <4 Å. The size-selective increase in Caco-2 TJ permeability was regulated by protein-specific increase in claudin-2 expression. The IL-6 increase in TJ permeability required activation of JNK signaling cascade. The JNK pathway activation of AP-1 resulted in AP-1 binding to its binding sequence on the claudin-2 promoter region, leading to promoter activation and subsequent increase in claudin-2 gene transcription and protein synthesis and TJ permeability. Our in-vivo mouse perfusion showed that IL-6 modulation of mouse intestinal permeability was also mediated by AP-1 dependent increase in claudin-2 expression. In conclusion, our studies show for the first time that the IL-6 modulation of intestinal TJ permeability was regulated by JNK activation of AP-1 and AP-1 activation of claudin-2 gene.

  2. Composite Crew Module (CCM) Permeability Characterization

    Science.gov (United States)

    Kirsch, Michael T.

    2013-01-01

    In January 2007, the NASA Administrator chartered the NASA Engineering and Safety Center (NESC) to form an Agency team to design and build a composite crew module in 18 months in order to gain hands-on experience in anticipation that future exploration systems may be made of composite materials. One of the conclusions from this Composite Crew Module Primary Structure assessment was that there was a lack of understanding regarding the ability for composite pressure shells to contain consumable gases, which posed a technical risk relative to the use of a metallic design. After the completion of the Composite Crew Module test program, the test article was used in a new program to assess the overall leakage/permeability and identify specific features associated with high leak rates. This document contains the outcome of the leakage assessment.

  3. Vesicles as tools for the modulation of skin permeability.

    Science.gov (United States)

    Dubey, Vaibhav; Mishra, Dinesh; Nahar, Manoj; Jain, Narendra K

    2007-11-01

    Human skin is a remarkably efficient barrier designed to keep our insides in and the outside out. The modulation of this efficient barrier's properties, including its permeability to chemicals, drugs and biologically active agents is the prime target for various dermal, transdermal, drug, antigen and gene delivery approaches. Therefore, several methods have been attempted to enhance the permeation rate of biologically active agents, temporarily and locally. One of the approaches is the application of drug-laden vesicular formulations. This review presents various mechanisms involved in increasing drug transport across the skin via different vesicular approaches, such as liposomes, elastic vesicles and ethosomes, along with compiling the research work conducted in this field. PMID:17970662

  4. Temporal photonic crystals with modulations of both permittivity and permeability

    Science.gov (United States)

    Martínez-Romero, Juan Sabino; Becerra-Fuentes, O. M.; Halevi, P.

    2016-06-01

    We present an in-depth study of electromagnetic wave propagation in a temporal photonic crystal, namely, a nonconducting medium whose permittivity ɛ (t ) and/or permeability μ (t ) are modulated periodically by unspecified agents (these modulations not necessarily being in phase). Maxwell's equations lead to an eigenvalue problem whose solution provides the dispersion relation ω (k ) for the waves that can propagate in such a dynamic medium. This is a generalization of previous work [J. R. Zurita-Sánchez and P. Halevi, Phys. Rev. A 81, 053834 (2010)], 10.1103/PhysRevA.81.053834 that was restricted to the electric modulation ɛ (t ) . For our numerical work (only) we assumed the harmonic modulations ɛ (t ) =ɛ ¯[1 +mɛsin(Ω t ) ] and μ (t ) =μ ¯[1 +mμsin(Ω t +θ ) ] , where Ω is the circular modulation frequency; mɛ and mμ are, respectively, the strengths of the electric and magnetic modulations; and θ is the phase difference between these modulations. An analytic calculation for weak modulations (mɛ≪1 ,mμ≪1 ) leads to two k bands, k1(ω ) and k2(ω ) , that are separated by a k gap. If the modulations are in phase (θ =0 ) , this gap is proportional to | mɛ-mμ| , while the gap is proportional to (mɛ+mμ) if the modulations are out of phase (θ =π ) . The gap thus disappears for equal, in-phase, modulations (mɛ=mμ) . An exact solution of the eigenvalue equation confirms that these approximations hold reasonably well even for moderate modulations. In fact, there are no k gaps for equal modulations even if these are very strong (mɛ ,μ≲1 ) . The photonic band structure k (ω ) is periodic in ω , with period Ω , and there is an infinite number of bands k1(ω ) , k2(ω ) ,... Further, by allowing ɛ (t ) and μ (t ) to have imaginary parts, we examined the effects of damping [Im k (ω )] on the k bands. We also determined the optical response of a temporal photonic crystal slab, applying the above harmonic model for ɛ (t ) and μ (t

  5. Intracellular calcium modulates basolateral K(+)-permeability in frog skin epithelium

    DEFF Research Database (Denmark)

    Brodin, Birger; Rytved, K A; Nielsen, R

    1994-01-01

    Cytosolic calcium ([Ca2+]i) has been suggested as a key modulator in the regulation of active sodium transport across electrically "tight" (high resistance) epithelia. In this study we investigated the effects of calcium on cellular electrophysiological parameters in a classical model tissue, the......, the frog skin. [Ca2+]i was measured with fura-2 in an epifluorescence microscope setup. An inhibition of basolateral potassium permeability was observed when cytosolic calcium was increased. This inhibition was reversible upon removal of calcium from the serosal solution....

  6. In vitro blood-brain barrier permeability predictions for GABAA receptor modulating piperine analogs.

    Science.gov (United States)

    Eigenmann, Daniela Elisabeth; Dürig, Carmen; Jähne, Evelyn Andrea; Smieško, Martin; Culot, Maxime; Gosselet, Fabien; Cecchelli, Romeo; Helms, Hans Christian Cederberg; Brodin, Birger; Wimmer, Laurin; Mihovilovic, Marko D; Hamburger, Matthias; Oufir, Mouhssin

    2016-06-01

    The alkaloid piperine from black pepper (Piper nigrum L.) and several synthetic piperine analogs were recently identified as positive allosteric modulators of γ-aminobutyric acid type A (GABAA) receptors. In order to reach their target sites of action, these compounds need to enter the brain by crossing the blood-brain barrier (BBB). We here evaluated piperine and five selected analogs (SCT-66, SCT-64, SCT-29, LAU397, and LAU399) regarding their BBB permeability. Data were obtained in three in vitro BBB models, namely a recently established human model with immortalized hBMEC cells, a human brain-like endothelial cells (BLEC) model, and a primary animal (bovine endothelial/rat astrocytes co-culture) model. For each compound, quantitative UHPLC-MS/MS methods in the range of 5.00-500ng/mL in the corresponding matrix were developed, and permeability coefficients in the three BBB models were determined. In vitro predictions from the two human BBB models were in good agreement, while permeability data from the animal model differed to some extent, possibly due to protein binding of the screened compounds. In all three BBB models, piperine and SCT-64 displayed the highest BBB permeation potential. This was corroborated by data from in silico prediction. For the other piperine analogs (SCT-66, SCT-29, LAU397, and LAU399), BBB permeability was low to moderate in the two human BBB models, and moderate to high in the animal BBB model. Efflux ratios (ER) calculated from bidirectional permeability experiments indicated that the compounds were likely not substrates of active efflux transporters. PMID:27018328

  7. Thyroid hormone modulates rabbit proximal straight tubule paracellular permeability

    OpenAIRE

    Baum, Michel; Quigley, Raymond

    2003-01-01

    Proximal straight tubules (PST) from both neonatal and hypothyroid adult rabbits have a lower rate of passive volume absorption when perfused with a high-chloride solution simulating late proximal tubular fluid than adult rabbit PST. We hypothesized that the maturational increase in serum thyroid hormone levels mediates the developmental changes in PST paracellular permeability. Neonatal tubules had lower chloride permeability, higher transepithelial resistance, but comparable mannitol permea...

  8. Zinc modulation of water permeability reveals that aquaporin 0 functions as a cooperative tetramer.

    Science.gov (United States)

    Németh-Cahalan, Karin L; Kalman, Katalin; Froger, Alexandrine; Hall, James E

    2007-11-01

    We previously showed that the water permeability of AQP0, the water channel of the lens, increases with acid pH and that His40 is required (Németh-Cahalan, K.L., and J.E. Hall. 2000. J. Biol. Chem. 275:6777-6782; Németh-Cahalan, K.L., K. Kalman, and J.E. Hall. 2004. J. Gen. Physiol. 123:573-580). We have now investigated the effect of zinc (and other transition metals) on the water permeability of AQP0 expressed in Xenopus oocytes and determined the amino acid residues that facilitate zinc modulation. Zinc (1 mM) increased AQP0 water permeability by a factor of two and prevented any additional increase induced by acid pH. Zinc had no effect on water permeability of AQP1, AQP4 or MIPfun (AQP0 from killifish), or on mutants of AQP1 and MIPfun with added external histidines. Nickel, but not copper, had the same effect on AQP0 water permeability as zinc. A fit of the concentration dependence of the zinc effect to the Hill equation gives a coefficient greater than three, suggesting that binding of more than one zinc ion is necessary to enhance water permeability. His40 and His122 are necessary for zinc modulation of AQP0 water permeability, implying structural constraints for zinc binding and functional modulation. The change in water permeability was highly sensitive to a coinjected zinc-insensitive mutant and a single insensitive monomer completely abolished zinc modulation. Our results suggest a model in which positive cooperativity among subunits of the AQP0 tetramer is required for zinc modulation, implying that the tetramer is the functional unit. The results also offer the possibility of a pharmacological approach to manipulate the water permeability and transparency of the lens. PMID:17938229

  9. The Mitochondrial Calcium Uniporter Matches Energetic Supply with Cardiac Workload during Stress and Modulates Permeability Transition

    Directory of Open Access Journals (Sweden)

    Timothy S. Luongo

    2015-07-01

    Full Text Available Cardiac contractility is mediated by a variable flux in intracellular calcium (Ca2+, thought to be integrated into mitochondria via the mitochondrial calcium uniporter (MCU channel to match energetic demand. Here, we examine a conditional, cardiomyocyte-specific, mutant mouse lacking Mcu, the pore-forming subunit of the MCU channel, in adulthood. Mcu−/− mice display no overt baseline phenotype and are protected against mCa2+ overload in an in vivo myocardial ischemia-reperfusion injury model by preventing the activation of the mitochondrial permeability transition pore, decreasing infarct size, and preserving cardiac function. In addition, we find that Mcu−/− mice lack contractile responsiveness to acute β-adrenergic receptor stimulation and in parallel are unable to activate mitochondrial dehydrogenases and display reduced bioenergetic reserve capacity. These results support the hypothesis that MCU may be dispensable for homeostatic cardiac function but required to modulate Ca2+-dependent metabolism during acute stress.

  10. The Mitochondrial Calcium Uniporter Matches Energetic Supply with Cardiac Workload during Stress and Modulates Permeability Transition.

    Science.gov (United States)

    Luongo, Timothy S; Lambert, Jonathan P; Yuan, Ancai; Zhang, Xueqian; Gross, Polina; Song, Jianliang; Shanmughapriya, Santhanam; Gao, Erhe; Jain, Mohit; Houser, Steven R; Koch, Walter J; Cheung, Joseph Y; Madesh, Muniswamy; Elrod, John W

    2015-07-01

    Cardiac contractility is mediated by a variable flux in intracellular calcium (Ca(2+)), thought to be integrated into mitochondria via the mitochondrial calcium uniporter (MCU) channel to match energetic demand. Here, we examine a conditional, cardiomyocyte-specific, mutant mouse lacking Mcu, the pore-forming subunit of the MCU channel, in adulthood. Mcu(-/-) mice display no overt baseline phenotype and are protected against mCa(2+) overload in an in vivo myocardial ischemia-reperfusion injury model by preventing the activation of the mitochondrial permeability transition pore, decreasing infarct size, and preserving cardiac function. In addition, we find that Mcu(-/-) mice lack contractile responsiveness to acute β-adrenergic receptor stimulation and in parallel are unable to activate mitochondrial dehydrogenases and display reduced bioenergetic reserve capacity. These results support the hypothesis that MCU may be dispensable for homeostatic cardiac function but required to modulate Ca(2+)-dependent metabolism during acute stress.

  11. Interleukin-1beta induced vascular permeability is dependent on induction of endothelial tissue factor (TF) activity.

    Science.gov (United States)

    Puhlmann, Markus; Weinreich, David M; Farma, Jeffrey M; Carroll, Nancy M; Turner, Ewa M; Alexander, H Richard

    2005-09-30

    IL-1beta is a pleotropic cytokine that may mediate increased procoagulant activity and permeability in endothelial tissue during inflammatory conditions. The procoagulant effects of IL-1beta are mediated through induction of tissue factor (TF) but its alterations on vascular permeability are not well characterized. We found that IL-1beta induced a rapid and dose-dependent increase in TF activity in human umbilical vein endothelial cells (ECs) under routine culture conditions. However, IL-1beta caused a rapid and marked increase in permeability across confluent EC monolayers using a two-compartment in vitro model only in the presence of factor VIII-deficient plasma that was completely abrogated by neutralizing anti-TF antibody pre-treatment. In vitro permeability was associated with loss of EC surface expression of VE-cadherin and contraction of F-actin cytoskeletal elements that resulted in EC intercellular gap formation. These data demonstrate that IL-1beta induces marked changes in permeability across activated endothelium via a TF dependent mechanism and suggest that modulation of TF activity may represent a strategy to treat various acute and chronic inflammatory conditions mediated by this cytokine.

  12. Interleukin-1β induced vascular permeability is dependent on induction of endothelial Tissue Factor (TF activity

    Directory of Open Access Journals (Sweden)

    Turner Ewa M

    2005-09-01

    Full Text Available Abstract IL-1β is a pleotropic cytokine that may mediate increased procoagulant activity and permeability in endothelial tissue during inflammatory conditions. The procoagulant effects of IL-1β are mediated through induction of tissue factor (TF but its alterations on vascular permeability are not well characterized. We found that IL-1β induced a rapid and dose-dependent increase in TF activity in human umbilical vein endothelial cells (ECs under routine culture conditions. However, IL-1β caused a rapid and marked increase in permeability across confluent EC monolayers using a two-compartment in vitro model only in the presence of factor VIII-deficient plasma that was completely abrogated by neutralizing anti-TF antibody pre-treatment. In vitro permeability was associated with loss of EC surface expression of VE-cadherin and contraction of F-actin cytoskeletal elements that resulted in EC intercellular gap formation. These data demonstrate that IL-1β induces marked changes in permeability across activated endothelium via a TF dependent mechanism and suggest that modulation of TF activity may represent a strategy to treat various acute and chronic inflammatory conditions mediated by this cytokine.

  13. Method for producing a selectively permeable separation module

    Science.gov (United States)

    Stone, Mark L.; Orme, Christopher J.; Peterson, Eric S.

    2000-03-14

    A method and apparatus is provided for casting a polymeric membrane on the inside surface of porous tubes to provide a permeate filter system capable of withstanding hostile operating conditions and having excellent selectivity capabilities. Any polymer in solution, by either solvent means or melt processing means, is capable of being used in the present invention to form a thin polymer membrane having uniform thickness on the inside surface of a porous tube. Multiple tubes configured as a tubular module can also be coated with the polymer solution. By positioning the longitudinal axis of the tubes in a substantially horizontal position and rotating the tube about the longitudinal axis, the polymer solution coats the inside surface of the porous tubes without substantially infiltrating the pores of the porous tubes, thereby providing a permeate filter system having enhanced separation capabilities.

  14. Permeability and modulation of the intestinal epithelial barrier in vitro

    NARCIS (Netherlands)

    Duizer, E.

    1999-01-01

    The bioavailability of all ingested compounds is to a great extend determined by the ability of these compounds to pass the intestinal epithelium. A high bioavailability is guaranteed for most nutrients and electrolytes since they are actively absorbed by the epithelium. The same epithelium, however

  15. Permeability and modulation of the intestinal epithelial barrier in vitro

    OpenAIRE

    Duizer, E.

    1999-01-01

    The bioavailability of all ingested compounds is to a great extend determined by the ability of these compounds to pass the intestinal epithelium. A high bioavailability is guaranteed for most nutrients and electrolytes since they are actively absorbed by the epithelium. The same epithelium, however, renders the entrance of non-nutrient (potentially harmful) hydrophilic (macro-) molecules, viruses and bacteria into the systemic circulation very low by presenting an almost impermeable barrier ...

  16. Exogenous γ-aminobutyric acid (GABA) affects pollen tube growth via modulating putative Ca2+-permeable membrane channels and is coupled to negative regulation on glutamate decarboxylase.

    Science.gov (United States)

    Yu, Guang-Hui; Zou, Jie; Feng, Jing; Peng, Xiong-Bo; Wu, Ju-You; Wu, Ying-Liang; Palanivelu, Ravishankar; Sun, Meng-Xiang

    2014-07-01

    γ-Aminobutyric acid (GABA) is implicated in pollen tube growth, but the molecular and cellular mechanisms that it mediates are largely unknown. Here, it is shown that exogenous GABA modulates putative Ca(2+)-permeable channels on the plasma membranes of tobacco pollen grains and pollen tubes. Whole-cell voltage-clamp experiments and non-invasive micromeasurement technology (NMT) revealed that the influx of Ca(2+) increases in pollen tubes in response to exogenous GABA. It is also demonstrated that glutamate decarboxylase (GAD), the rate-limiting enzyme of GABA biosynthesis, is involved in feedback controls of Ca(2+)-permeable channels to fluctuate intracellular GABA levels and thus modulate pollen tube growth. The findings suggest that GAD activity linked with Ca(2+)-permeable channels relays an extracellular GABA signal and integrates multiple signal pathways to modulate tobacco pollen tube growth. Thus, the data explain how GABA mediates the communication between the style and the growing pollen tubes.

  17. Strategies for improving chemotherapeutic delivery to solid tumors mediated by vascular permeability modulation

    Science.gov (United States)

    Roy Chaudhuri, Tista

    An essential mode of distribution of blood-borne chemotherapeutic agents within a solid tumor is via the micro-circulation. Poor tumor perfusion, because of a lack of functional vasculature or a lack of microvessels, as well as low tumor vascular permeability, can prevent adequate deposition of even low molecular-weight agents into the tumor. The modulation of tumor vascular function and density can provides numerous strategies for improving intratumor deposition of chemotherapeutic agents. Here we investigated strategies to improve drug delivery to two tumor types that share in common poor drug delivery, but differ in the underlying cause. First, in an angiogenesis-driven brain tumor model of Glioblastoma, the vascular permeability barrier, along with poorly-functional vasculature, hinders drug delivery. A strategy of nanoparticle-based tumor 'priming' to attack the vascular permeability barrier, employing sterically stabilized liposomal doxorubicin (SSL-DXR), was investigated. Functional and histological evaluation of tumor vasculature revealed that after an initial period of depressed vascular permeability and vascular pruning 3--4 days after SSL-DXR administration, vascular permeability and perfusion were restored and then elevated after 5--7 days. As a result of tumor priming, deposition of subsequently-administered nanoparticles was enhanced, and the efficacy of temozolomide (TMZ), if administered during the window of elevated permeability, was increased. The sequenced regimen resulted in a persistent reduction of the tumor proliferative index and a 40% suppression of tumor volume, compared to animals that received both agents simultaneously. Second, in a hypovascular, pancreatic ductal adenocarcinoma model, disruption of tumor-stromal communication via sonic hedgehog (sHH) signaling pathway inhibition mediated an indirect vascular proliferation and a more than 2-fold increase in intratumor nanoparticle deposition. Enhanced delivery of SSL-DXR in tumors pre

  18. [Effect of plasma membrane ion permeability modulators on respiration and heat output of wheat roots].

    Science.gov (United States)

    Alekseeva, V A; Gordon, L Kh; Loseva, N L; Rakhimova, G G; Tsentsevitskiĭ, A N

    2006-01-01

    A study was made of changes in the rates of respiration, heat production, and membrane characteristics in cells of excised roots of wheat seedlings under the modulation of plasma membrane ion permeability by two membrane active compounds: valinomycin (20 microM (V50)) and chlorpromazine (50 microM (CP50) and 100 microM (CP100)). Both compounds increased the loss of potassium ions, which correlated with the lowering of membrane potential, rate of respiration, and heat production after a 2 h exposure. The differences in alteration of these parameters were due to specific action of either compound on the membrane and to the extent of ion homeostasis disturbance. V20 had a weak effect on the studied parameters. V50 caused an increase of the rate of respiration and heat production, which enhanced following a prolonged action (5 h) and were associated with ion homeostatis restoration. The extent of alteration of membrane characteristics (an increase of potassium loss by roots, and lowering of cell membrane potential) as well as energy expense under the action of CP50 during the first period were more pronounced than in the presence of V50. During a prolonged action of CP50, the increase of respiration intensity and heat production correlated with partial recovery of ion homeostatis in cells. Essential lowering of membrane potential and substantial loss of potassium by cells, starting from the early stages of their response reaction, were followed by inhibition of respiration rate and heat production. Alterations of the structure and functional characteristics of excised root cells indicate the intensification of the membrane-tropic effect of a prolonged action of CP100, and the lack of cell energy resources.

  19. Tuning PAK Activity to Rescue Abnormal Myelin Permeability in HNPP.

    Science.gov (United States)

    Hu, Bo; Arpag, Sezgi; Zhang, Xuebao; Möbius, Wiebke; Werner, Hauke; Sosinsky, Gina; Ellisman, Mark; Zhang, Yang; Hamilton, Audra; Chernoff, Jonathan; Li, Jun

    2016-09-01

    Schwann cells in the peripheral nervous systems extend their membranes to wrap axons concentrically and form the insulating sheath, called myelin. The spaces between layers of myelin are sealed by myelin junctions. This tight insulation enables rapid conduction of electric impulses (action potentials) through axons. Demyelination (stripping off the insulating sheath) has been widely regarded as one of the most important mechanisms altering the action potential propagation in many neurological diseases. However, the effective nerve conduction is also thought to require a proper myelin seal through myelin junctions such as tight junctions and adherens junctions. In the present study, we have demonstrated the disruption of myelin junctions in a mouse model (Pmp22+/-) of hereditary neuropathy with liability to pressure palsies (HNPP) with heterozygous deletion of Pmp22 gene. We observed a robust increase of F-actin in Pmp22+/- nerve regions where myelin junctions were disrupted, leading to increased myelin permeability. These abnormalities were present long before segmental demyelination at the late phase of Pmp22+/- mice. Moreover, the increase of F-actin levels correlated with an enhanced activity of p21-activated kinase (PAK1), a molecule known to regulate actin polymerization. Pharmacological inhibition of PAK normalized levels of F-actin, and completely prevented the progression of the myelin junction disruption and nerve conduction failure in Pmp22+/- mice. Our findings explain how abnormal myelin permeability is caused in HNPP, leading to impaired action potential propagation in the absence of demyelination. We call it "functional demyelination", a novel mechanism upstream to the actual stripping of myelin that is relevant to many demyelinating diseases. This observation also provides a potential therapeutic approach for HNPP. PMID:27583434

  20. Redox-active media for permeable reactive barriers

    International Nuclear Information System (INIS)

    In this paper, three classes of redox-active media are described and evaluated in terms of their long-term effectiveness in treating TCE-contaminated groundwater in permeable reactive zones. Zero-valent iron, in the form of recycled cast iron filings, the first class, has received considerable attention as a reactive media and has been used in about a dozen pilot- and full-scale subsurface wall installations. Criteria used in selecting commercial sources of granular iron, will be discussed. Two other classes of redox-active media that have not yet seen wide use in pilot- or full-scale installations will also be described: Fe(II) minerals and bimetallic systems. Fe(II) minerals, including magnetite (Fe3O4), and ferrous sulfide (troilite, FeS), are redox-active and afford TCE reduction rates and product distributions that suggest that they react via a reductive mechanism similar to that which operates in the FeO system. Fe(II) species within the passive oxide layer coating the iron metal may act as electron transfer mediators, with FeO serving as the bulk reductant. Bimetallic systems, the third class of redox-active media, are commonly prepared by plating a second metal onto zero-valent iron (e.g., Ni/Fe and Pd/Fe) and have been shown to accelerate solvent degradation rates relative to untreated iron metal. The long-term effectiveness of this approach, however, has not yet been determined in groundwater treatability tests. The results of a Ni-plated iron column study using site groundwater indicate that a change in reduction mechanism (to catalytic dehydrohalogenation/hydrogenation) accounts for the observed rate enhancement. A significant loss in media reactivity was observed over time, attributable to Ni catalyst deactivation or poisoning. Zero-valent iron systems have not shown similar losses in reactivity in long-term laboratory, pilot or field investigations

  1. Effects of GSM modulated radio-frequency electromagnetic radiation on permeability of blood-brain barrier in male & female rats.

    Science.gov (United States)

    Sırav, Bahriye; Seyhan, Nesrin

    2016-09-01

    With the increased use of mobile phones, their biological and health effects have become more important. Usage of mobile phones near the head increases the possibility of effects on brain tissue. This study was designed to investigate the possible effects of pulse modulated 900MHz and 1800MHz radio-frequency radiation on the permeability of blood-brain barrier of rats. Study was performed with 6 groups of young adult male and female wistar albino rats. The permeability of blood-brain barrier to intravenously injected evans blue dye was quantitatively examined for both control and radio-frequency radiarion exposed groups. For male groups; Evans blue content in the whole brain was found to be 0.08±0.01mg% in the control, 0.13±0.03mg% in 900MHz exposed and 0.26±0.05mg% in 1800MHz exposed animals. In both male radio-frequency radiation exposed groups, the permeability of blood-brain barrier found to be increased with respect to the controls (pradiation exposure was found more effective on the male animals (p0.01). However 900MHz pulse modulated radio-frequency exposure was found effective on the permeability of blood-brain barrier of female animals. Results have shown that 20min pulse modulated radio-frequency radiation exposure of 900MHz and 1800MHz induces an effect and increases the permeability of blood-brain barrier of male rats. For females, 900MHz was found effective and it could be concluded that this result may due to the physiological differences between female and male animals. The results of this study suggest that mobile phone radation could lead to increase the permeability of blood-brain barrier under non-thermal exposure levels. More studies are needed to demonstrate the mechanisms of that breakdown.

  2. Glucocorticoids Regulate Tight Junction Permeability of Lung Epithelia by Modulating Claudin 8.

    Science.gov (United States)

    Kielgast, Felix; Schmidt, Hanna; Braubach, Peter; Winkelmann, Veronika E; Thompson, Kristin E; Frick, Manfred; Dietl, Paul; Wittekindt, Oliver H

    2016-05-01

    The lung epithelium constitutes a selective barrier that separates the airways from the aqueous interstitial compartment. Regulated barrier function controls water and ion transport across the epithelium and is essential for maintaining lung function. Tight junctions (TJs) seal the epithelial barrier and determine the paracellular transport. The properties of TJs depend especially on their claudin composition. Steroids are potent drugs used to treat a variety of airway diseases. Therefore, we addressed whether steroid hormones directly act on TJ properties in lung epithelia. Primary human tracheal epithelial cells and NCI-H441 cells, both cultivated under air-liquid interface conditions, were used as epithelial cell models. Our results demonstrate that glucocorticoids, but not mineralocorticoids, decreased paracellular permeability and shifted the ion permselectivity of TJs toward Cl(-). Glucocorticoids up-regulated claudin 8 (cldn8) expression via glucocorticoid receptors. Silencing experiments revealed that cldn8 is necessary to recruit occludin at the TJs. Immunohistochemistry on human lung tissue showed that cldn8 is specifically expressed in resorptive epithelia of the conducting and respiratory airways but not in the alveolar epithelium. We conclude that glucocorticoids enhance lung epithelia barrier function and increase paracellular Cl(-) selectivity via modulation of cldn8-dependent recruitment of occludin at the TJs. This mode of glucocorticoid action on lung epithelia might be beneficial to patients who suffer from impaired lung barrier function in various diseased conditions. PMID:26473470

  3. Effects of GSM modulated radio-frequency electromagnetic radiation on permeability of blood-brain barrier in male & female rats.

    Science.gov (United States)

    Sırav, Bahriye; Seyhan, Nesrin

    2016-09-01

    With the increased use of mobile phones, their biological and health effects have become more important. Usage of mobile phones near the head increases the possibility of effects on brain tissue. This study was designed to investigate the possible effects of pulse modulated 900MHz and 1800MHz radio-frequency radiation on the permeability of blood-brain barrier of rats. Study was performed with 6 groups of young adult male and female wistar albino rats. The permeability of blood-brain barrier to intravenously injected evans blue dye was quantitatively examined for both control and radio-frequency radiarion exposed groups. For male groups; Evans blue content in the whole brain was found to be 0.08±0.01mg% in the control, 0.13±0.03mg% in 900MHz exposed and 0.26±0.05mg% in 1800MHz exposed animals. In both male radio-frequency radiation exposed groups, the permeability of blood-brain barrier found to be increased with respect to the controls (pmale animals (pfemale groups; dye contents in the whole brains were 0.14±0.01mg% in the control, 0.24±0.03mg% in 900MHz exposed and 0.14±0.02mg% in 1800MHz exposed animals. No statistical variance found between the control and 1800MHz exposed animals (p>0.01). However 900MHz pulse modulated radio-frequency exposure was found effective on the permeability of blood-brain barrier of female animals. Results have shown that 20min pulse modulated radio-frequency radiation exposure of 900MHz and 1800MHz induces an effect and increases the permeability of blood-brain barrier of male rats. For females, 900MHz was found effective and it could be concluded that this result may due to the physiological differences between female and male animals. The results of this study suggest that mobile phone radation could lead to increase the permeability of blood-brain barrier under non-thermal exposure levels. More studies are needed to demonstrate the mechanisms of that breakdown. PMID:26723545

  4. Quantitative Retention-Activity Relationship Studies by Liposome Electrokinetic Chromatography to Predict Skin Permeability

    Institute of Scientific and Technical Information of China (English)

    XIAN De-Ling; HUANG Ke-Long; LIU Su-Qin; XIAO Jing-Yi

    2008-01-01

    Liposome electrokinetic chromatography (LEKC) provides a simple and facile approach for drug membrane interactions using liposome as a pseudostationary phase. This study evaluated the potential of LEKC for high-throughput skin permeability profiled as an in vitro technique. A quantitative retention-activity relationship(QRAR) model for the estimation of skin permeability was proposed. For the 16 structurally diverse chemicals, lg k correlated well with permeability values (R2=0.886). The predictive ability of the model was evaluated by cross-validation. The result was compared to traditional quantitative structure-activity relationship, QSAR, models using some molecular descriptors and physicochemical parameters. Interestingly, a single LEKC retention parameter was capable of describing the skin permeability, while three variables in QSAR were needed to achieve a similar correlation (R2=0.704). The QRAR models developed in this paper may be a useful method to screening new chemicals and in the early stage of development and selection of chemicals.

  5. A calcium-permeable cGMP-activated cation conductance in hippocampal neurons

    Science.gov (United States)

    Leinders-Zufall, T.; Rosenboom, H.; Barnstable, C. J.; Shepherd, G. M.; Zufall, F.

    1995-01-01

    Whole-cell patch clamp recordings detected a previously unidentified cGMP-activated membrane conductance in cultured rat hippocampal neurons. This conductance is nonselectively permeable for cations and is completely but reversibly blocked by external Cd2+. The Ca2+ permeability of the hippocampal cGMP-activated conductance was examined in detail, indicating that the underlying ion channels display a high relative permeability for Ca2+. The results indicate that hippocampal neurons contain a cGMP-activated membrane conductance that has some properties similar to the cyclic nucleotide-gated channels previously shown in sensory receptor cells and retinal neurons. In hippocampal neurons this conductance similarly could mediate membrane depolarization and Ca2+ fluxes in response to intracellular cGMP elevation.

  6. Platelets mediate increased endothelium permeability in dengue through NLRP3-inflammasome activation.

    Science.gov (United States)

    Hottz, Eugenio D; Lopes, Juliana F; Freitas, Carla; Valls-de-Souza, Rogério; Oliveira, Marcus F; Bozza, Marcelo T; Da Poian, Andrea T; Weyrich, Andrew S; Zimmerman, Guy A; Bozza, Fernando A; Bozza, Patricia T

    2013-11-14

    Dengue is the most frequent hemorrhagic viral disease and re-emergent infection in the world. Although thrombocytopenia is characteristically observed in mild and severe forms of dengue, the role of platelet activation in dengue pathogenesis has not been fully elucidated. We hypothesize that platelets have major roles in inflammatory amplification and increased vascular permeability during severe forms of dengue. Here we investigate interleukin (IL)-1β synthesis, processing, and secretion in platelets during dengue virus (DV) infection and potential contribution of these events to endothelial permeability during infection. We observed increased expression of IL-1β in platelets and platelet-derived microparticles from patients with dengue or after platelet exposure to DV in vitro. We demonstrated that DV infection leads to assembly of nucleotide-binding domain leucine rich repeat containing protein (NLRP3) inflammasomes, activation of caspase-1, and caspase-1-dependent IL-1β secretion. Our findings also indicate that platelet-derived IL-1β is chiefly released in microparticles through mechanisms dependent on mitochondrial reactive oxygen species-triggered NLRP3 inflammasomes. Inflammasome activation and platelet shedding of IL-1β-rich microparticles correlated with signs of increased vascular permeability. Moreover, microparticles from DV-stimulated platelets induced enhanced permeability in vitro in an IL-1-dependent manner. Our findings provide new evidence that platelets contribute to increased vascular permeability in DV infection by inflammasome-dependent release of IL-1β.

  7. C-type natriuretic peptide modulates permeability of the blood–brain barrier

    OpenAIRE

    BOHARA, Manoj; Kambe, Yuki; Nagayama, Tetsuya; TOKIMURA, Hiroshi; Arita, Kazunori; Miyata, Atsuro

    2014-01-01

    C-type natriuretic peptide (CNP) is abundant in brain and is reported to exert autocrine function in vascular cells, but its effect on blood–brain barrier (BBB) permeability has not been clarified yet. Here, we examined this effect. Transendothelial electrical resistance (TEER) of in vitro BBB model, composed of bovine brain microvascular endothelial cells and astrocytes, was significantly dose dependently decreased by CNP (1, 10, and 100 nmol/L). C-type natriuretic peptide treatment reduced ...

  8. Neuropilin-1 mediates vascular permeability independently of vascular endothelial growth factor receptor-2 activation.

    Science.gov (United States)

    Roth, Lise; Prahst, Claudia; Ruckdeschel, Tina; Savant, Soniya; Weström, Simone; Fantin, Alessandro; Riedel, Maria; Héroult, Mélanie; Ruhrberg, Christiana; Augustin, Hellmut G

    2016-04-26

    Neuropilin-1 (NRP1) regulates developmental and pathological angiogenesis, arteriogenesis, and vascular permeability, acting as a coreceptor for semaphorin 3A (Sema3A) and the 165-amino acid isoform of vascular endothelial growth factor A (VEGF-A165). NRP1 is also the receptor for the CendR peptides, a class of cell- and tissue-penetrating peptides with a specific R-x-x-R carboxyl-terminal motif. Because the cytoplasmic domain of NRP1 lacks catalytic activity, NRP1 is mainly thought to act through the recruitment and binding to other receptors. We report here that the NRP1 intracellular domain mediates vascular permeability. Stimulation with VEGF-A165, a ligand-blocking antibody, and a CendR peptide led to NRP1 accumulation at cell-cell contacts in endothelial cell monolayers, increased cellular permeability in vitro and vascular leakage in vivo. Biochemical analyses, VEGF receptor-2 (VEGFR-2) silencing, and the use of a specific VEGFR blocker established that the effects induced by the CendR peptide and the antibody were independent of VEGFR-2. Moreover, leakage assays in mice expressing a mutant NRP1 lacking the cytoplasmic domain revealed that this domain was required for NRP1-induced vascular permeability in vivo. Hence, these data define a vascular permeability pathway mediated by NRP1 but independent of VEGFR-2 activation.

  9. Negatively charged silver nanoparticles cause retinal vascular permeability by activating plasma contact system and disrupting adherens junction.

    Science.gov (United States)

    Long, Yan-Min; Zhao, Xing-Chen; Clermont, Allen C; Zhou, Qun-Fang; Liu, Qian; Feener, Edward P; Yan, Bing; Jiang, Gui-Bin

    2016-01-01

    Silver nanoparticles (AgNPs) have been extensively used as antibacterial component in numerous healthcare, biomedical and consumer products. Therefore, their adverse effects to biological systems have become a major concern. AgNPs have been shown to be absorbed into circulation and redistributed into various organs. It is thus of great importance to understand how these nanoparticles affect vascular permeability and uncover the underlying molecular mechanisms. A negatively charged mecaptoundeonic acid-capped silver nanoparticle (MUA@AgNP) was investigated in this work. Ex vivo experiments in mouse plasma revealed that MUA@AgNPs caused plasma prekallikrein cleavage, while positively charged or neutral AgNPs, as well as Ag ions had no effect. In vitro tests revealed that MUA@AgNPs activated the plasma kallikrein-kinin system (KKS) by triggering Hageman factor autoactivation. By using specific inhibitors aprotinin and HOE 140, we demonstrated that KKS activation caused the release of bradykinin, which activated B2 receptors and induced the shedding of adherens junction protein, VE-cadherin. These biological perturbations eventually resulted in endothelial paracellular permeability in mouse retina after intravitreal injection of MUA@AgNPs. The findings from this work provided key insights for toxicity modulation and biomedical applications of AgNPs. PMID:26399585

  10. A PERMEABLE ACTIVE AMENDMENT CONCRETE (PAAC) FOR CONTAMINANT REMEDIATION AND EROSION CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    Knox, A.; Paller, M.; Dixon, K.

    2012-06-29

    The final project report for SEED SERDP ER - 2134 describes the development of permeable active amendment concrete (PAAC), which was evaluated through four tasks: 1) development of PAAC; 2) assessment of PAAC for contaminant removal; 3) evaluation of promising PAAC formulations for potential environmental impacts; and 4) assessment of the hydraulic, physical, and structural properties of PAAC. Conventional permeable concrete (often referred to as pervious concrete) is concrete with high porosity as a result of an extensive and interconnected void content. It is made from carefully controlled amounts of water and cementitious materials used to create a paste that forms a coating around aggregate particles. The mixture has a substantial void content (e.g., 15% - 25%) that results in a highly permeable structure that drains quickly. In PAAC, the aggregate material is partly replaced by chemically-active amendments that precipitate or adsorb contaminants in water that flows through the concrete interstices. PAAC combines the relatively high structural strength, ample void space, and water permeability of pervious concrete with the contaminant sequestration ability of chemically-active amendments to produce a new material with superior durability and ability to control contaminant mobility. The high surface area provided by the concrete interstices in PAAC provides significant opportunity for contaminants to react with the amendments incorporated into the concrete matrix. PAAC has the potential to immobilize a large variety of organic and inorganic contaminants by incorporating different active sequestering agents including phosphate materials (rock phosphate), organoclays, zeolite, and lime individually or in combinations.

  11. In vitro blood-brain barrier permeability predictions for GABAA receptor modulating piperine analogs

    DEFF Research Database (Denmark)

    Eigenmann, Daniela Elisabeth; Dürig, Carmen; Jähne, Evelyn Andrea;

    2016-01-01

    The alkaloid piperine from black pepper (Piper nigrum L.) and several synthetic piperine analogs were recently identified as positive allosteric modulators of γ-aminobutyric acid type A (GABAA) receptors. In order to reach their target sites of action, these compounds need to enter the brain by c...

  12. Controlled synthesis of N,N,N-trimethyl chitosan for modulated bioadhesion and nasal membrane permeability.

    Science.gov (United States)

    Pardeshi, Chandrakantsing V; Belgamwar, Veena S

    2016-01-01

    In an experiment to explore the bioadhesion, biocompatibility, and membrane permeation properties, the controlled synthesis of N,N,N-trimethyl chitosan (TMC) was carried out by two-step reductive methylation of chitosan (CHT). Methylation was confirmed by (1)H NMR (δ=3.1 ppm) and FTIR analysis (CH stretch at 1,485 cm(-1)). The TMC was further characterized by DSC, TGA, XRD, HR-TEM, SEM, and elemental analysis. Findings revealed improved solubility, enhanced viscosity, increased swelling index and higher molecular weight of TMC over CHT. Comparative evaluation validated increased bioadhesion potential, and improved ex vivo biocompatibility of TMC compared to CHT. Increased bioadhesion of TMC NPs over CHT NPs can be attributed to the strong electrostatic interactions between cationic amino groups with anionic sialic and sulfonic acid moieties contained in the mucin of the nasal mucus. Ex vivo biocompatibility studies suggested that the NP formulations of both biopolymers were biocompatible and could be applied safely on the nasal epithelium. Ex vivo permeation studies executed on excised cattle nasal mucosa illustrated improved permeability of TMC NPs over CHT NPs. In the author's opinion, two-step reductive methylation of CHT could be an attractive strategy to improve its solubility, bioadhesion, and permeation characteristics without affecting biocompatibility across the mucosal surfaces.

  13. Nanomechanics and sodium permeability of endothelial surface layer modulated by hawthorn extract WS 1442.

    Directory of Open Access Journals (Sweden)

    Wladimir Peters

    Full Text Available The endothelial glycocalyx (eGC plays a pivotal role in the physiology of the vasculature. By binding plasma proteins, the eGC forms the endothelial surface layer (ESL which acts as an interface between bloodstream and endothelial cell surface. The functions of the eGC include mechanosensing of blood flow induced shear stress and thus flow dependent vasodilation. There are indications that levels of plasma sodium concentrations in the upper range of normal and beyond impair flow dependent regulation of blood pressure and may therefore increase the risk for hypertension. Substances, therefore, that prevent sodium induced endothelial dysfunction may be attractive for the treatment of cardiovascular disease. By means of combined atomic force-epifluorescence microscopy we studied the impact of the hawthorn (Crataegus spp. extract WS 1442, a herbal therapeutic with unknown mechanism of action, on the mechanics of the ESL of ex vivo murine aortae. Furthermore, we measured the impact of WS 1442 on the sodium permeability of endothelial EA.hy 926 cell monolayer. The data show that (i the ESL contributes by about 11% to the total endothelial barrier resistance for sodium and (ii WS 1442 strengthens the ESL resistance for sodium up to about 45%. This mechanism may explain some of the vasoprotective actions of this herbal therapeutic.

  14. Permeability-increasing activity in hereditary angioneurotic edema plasma. II. Mechanism of formation and partial characterization.

    Science.gov (United States)

    Donaldson, V H; Ratnoff, O D; Dias Da Silva, W; Rosen, F S

    1969-04-01

    Plasma from persons with hereditary angioneurotic edema readily developed the capacity to increase vascular permeability and to induce the isolated rat uterus to contract. Both activities resided in a small, heat-stable molecule that was apparently a polypeptide. Crude preparations of the polypeptide were inactivated during incubation with trypsin. They also failed to produce pain and erythema, but caused markedly increased vascular permeability in human skin. These characteristics differ from those of bradykinin, from which crude preparations of the polypeptide could also be distinguished by electrophoretic mobility and paper chromatographic behavior. Proof that the polypeptide is truly different from bradykinin must await its further purification. Histamine played no role in the activities observed. Although the enzymes functioning to release the permeability factor and kinin activities in hereditary angioneurotic edema plasma were not clearly defined, one or more plasma enzymes other than C'1 esterase presumably participated either in conjunction with C'1 esterase or in pari passu events to release the polypeptide mediating these activities. PMID:5813121

  15. Allopregnanolone modulates spontaneous GABA release via presynaptic Cl- permeability in rat preoptic nerve terminals.

    Science.gov (United States)

    Haage, David; Druzin, Michael; Johansson, Staffan

    2002-12-27

    The endogenous neurosteroid 3alpha-hydroxy-5alpha-pregnane-20-one (allopregnanolone) affects presynaptic nerve terminals and thereby increases the frequency of spontaneous GABA release. The present study aimed at clarifying the mechanisms underlying this presynaptic neurosteroid action, by recording the frequency of spontaneous GABA-mediated inhibitory postsynaptic currents (sIPSCs) in neurons from the medial preoptic nucleus (MPN) of rat. Acutely dissociated neurons with functional adhering nerve terminals were studied by perforated-patch recording under voltage-clamp conditions. It was shown that the sIPSC frequency increased with the external K(+) concentration ([K(+)](o)). Further, the effect of allopregnanolone on the sIPSC frequency was strongly dependent on [K(+)](o). In a [K(+)](o) of 5 mM, 2.0 microM allopregnanolone caused a clear increase in sIPSC frequency. However, the effect declined rapidly with increased [K(+)](o) and at high [K(+)](o) allopregnanolone reduced the sIPSC frequency. The effect of allopregnanolone was also strongly dependent on the external Cl(-) concentration ([Cl(-)](o)). In a reduced [Cl(-)](o) (40 mM, but with a standard [K(+)](o) of 5 mM), the effect on sIPSC frequency was larger than that in the standard [Cl(-)](o) of 146 mM. The dependence of the effect of allopregnanolone on [K(+)](o) and on estimated presynaptic membrane potential was also altered by the reduction in [Cl(-)](o). As in standard [Cl(-)](o), the effect in low [Cl(-)](o) declined when [K(+)](o) was raised, but reversed at a higher [K(+)](o). The GABA(A) receptor agonist muscimol also potentiated the sIPSC frequency. Altogether, the results suggest that allopregnanolone exerts its presynaptic effect by increasing the presynaptic Cl(-) permeability, most likely via GABA(A) receptors. PMID:12470877

  16. Comparison on Thermal Conductivity and Permeability of Granular and Consolidated Activated Carbon for Refrigeration

    Institute of Scientific and Technical Information of China (English)

    JIN Zhequan; TIAN Bo; WANG Liwei; WANG Ruzhu

    2013-01-01

    This paper focuses on the development of three types of activated carbon (AC) adsorbents,i.e.granular AC,consolidated AC with chemical binder,and consolidated AC with expanded natural graphite (ENG).Their thermal conductivity was investigated with the steady-state heat source method and the permeability was tested with nitrogen as the gas source.Results show that the thermal conductivity of granular AC with different sizes almost maintains a constant at 0.36 W·(m·K)-1,while the value modestly increases to 0.40 W·(m·K)-1 for the consolidated AC with chemical binder.The consolidated AC with ENG at the density of 600 kg·m-3 shows the best heat transfer performance and their thermal conductivity vary from 2.08 W·(m·K)-1 to 2.61 W·(m·K)-1 according to its fraction of AC.However,the granular AC and consolidated AC with chemical binder show the better permeability performance than consolidated AC with ENG binder whose permeability changes from 6.98×10-13 m2 to 5.16×10-11 m2 and the maximum occurs when the content of AC reaches 71.4% (by mass).According to the different thermal properties,the refrigeration application of three types of adsorbents is analyzed.

  17. Antibacterial activity of Syzygium aromaticum seed: Studies on oxidative stress biomarkers and membrane permeability.

    Science.gov (United States)

    Ajiboye, T O; Mohammed, A O; Bello, S A; Yusuf, I I; Ibitoye, O B; Muritala, H F; Onajobi, I B

    2016-06-01

    Oxidative stress and membrane permeability as mode of antibacterial activity of aqueous extract of Syzygium aromaticum seeds against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus was investigated. The concentration of phytochemical constituents of Syzygium aromaticum was determined using gas chromatography. Syzygium aromaticum seeds contain eugenol acetate > β-carophyllene > eugenin > eugenol > methyl salicylate > β-humulene > rhamnatin > fernesol > α-copeane > β-ylangene > kaempferol > cinnamic acid > oleanolic acid > benzaldehyde > α-humulene > vanillin > α-cubebene > carvicol > benzoic acid. Syzygium aromaticum showed antimicrobial activity with minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values as 0.06 and 0.10 mg/mL respectively. Time kill susceptibility by Syzygium aromaticum at MBC values showed significant decrease in the optical density and colony-forming unit (CFU) of Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Superoxide anion radical content of the bacterial cells increased significantly following exposure to the extract. In a similar vein, superoxide dismutase and catalase activities increased significantly, while the level of reduced glutathione reduced, malondialdehyde increased significantly in bacterial cells exposed to the extract. The extract at MBC also enhanced the leakage of 260 nm absorbing materials and outer membrane permeability. It is evident from the data generated from this study that aqueous extract of Syzygium aromaticum seeds enhanced membrane permeability and oxidative stress in Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. PMID:27038843

  18. Effects of Neodymium on Growth, Pectinase Activity and Mycelium Permeability of Fusarium oxysporum

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The diameter of the colony of Fusarium oxysporum in solid medium, and the mycelium growth, pectinase activity, and mycelium permeability of Fusarium oxysporum in liquid medium under varying concentrations of Nd3+ (0, 2, 4, 10, 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 300, and 400 mg·L-1) were measured. The results indicated that the growth of Fusarium oxysporum was stimulated in solid medium when the concentration of Nd3+ ranges from 2 to 180 mg·L-1, whereas it was inhibited when Nd3+ concentration was greater than 200 mg·L-1. The colonies were fewer and smaller when Nd3+ was used in the solid medium. The growth of Fusarium oxysporum was inhibited in liquid medium when Nd3+ was used. The inhibition rate showed by the dry weight of mycelium ranged from 4.83% to 52.18% and increased with Nd3+ concentration. The pectinase activity decreased compared with that of controls. When the concentration of Nd3+ was 10 and 400 mg·L-1, the pectinase activity decreased by 95% at both concentrations. Mycelium cell membrane permeability increased when Nd3+ concentrations ranged from 10 to 400 mg·L-1 but decreased when Nd3+ concentration was 2 mg·L-1.

  19. Modulation of Emotion by Cognitive Activity

    Directory of Open Access Journals (Sweden)

    Saea Iida

    2013-09-01

    Full Text Available While emotions themselves are beneficial for our survival, they are also the targets to be regulated appropriately to adapt to social environments. Previous studies have demonstrated that cognitive strategies such as cognitive reappraisal and expressive suppression can effectively enhance and attenuate emotions. Such cognitive strategies of emotion regulation are based on cortical modulation of sub-cortical emotion-related brain regions. Though in the prior studies emotion regulation was conducted in parallel with or after the emotion elicitation, a series of our studies showed that prior cognitive activities can automatically and unintentionally attenuate subsequent emotional responses. In this article, after reviewing the previous findings about emotion regulation, we introduce our empirical findings showing that cognitive activities where the neural system of emotion regulation would be recruited can unintentionally and automatically dampen psychological and physiological emotional responses. Finally, we propose possible neural mechanisms underlying modulation of emotion by cognitive activity.

  20. Specific binding of a mutated fragment of Clostridium perfringens enterotoxin to endothelial claudin-5 and its modulation of cerebral vascular permeability.

    Science.gov (United States)

    Liao, Zhuangbin; Yang, Zhenguo; Piontek, Anna; Eichner, Miriam; Krause, Gerd; Li, Longxuan; Piontek, Joerg; Zhang, Jingjing

    2016-07-01

    The vertebrate blood-brain barrier (BBB) creates an obstacle for central nervous system-related drug delivery. Claudin-5 (Cldn5), expressed in large quantities in BBB, plays a vital role in restricting BBB permeability. The C-terminal domain of Clostridium perfringens enterotoxin (cCPE) has been verified as binding to a subset of claudins (Cldns). The Cldn5-binding cCPE194-319 variant cCPEY306W/S313H was applied in this study to investigate its ability to modulate the permeability of zebrafish larval BBB. In vitro results showed that cCPEY306W/S313H is able to bind specifically to Cldn5 in murine brain vascular endothelial (bEnd.3) cells, and is transported along with Cldn5 from the cell membrane to the cytoplasm, which in turn results in a reduction in transendothelial electrical resistance (TEER). Conversely, this effect can be reversed by removal of cCPEY306W/S313H. In an in vivo experiment, this study estimates the capability of cCPEY306W/S313H to modulate Cldn5 using a rhodamine B-Dextran dye diffusion assay in zebrafish larval BBB. The results show that cCPEY306W/S313H co-localized with Cldn5 in zebrafish cerebral vascular cells and modulated BBB permeability, resulting in dye leakage. Taken together, this study suggests that cCPEY306W/S313H has the capability - both in vitro and in vivo - to modulate BBB permeability temporarily by specific binding to Cldn5. PMID:27095710

  1. Preparation and Visible Light Photocatalytic Activity for Photocatalyst of Permeable Glass Membrane/TiO2 Doped with Co

    Institute of Scientific and Technical Information of China (English)

    HU Ke-Yan; CUI Ping; CHEN Xiao-Ming; ZHANG Min; LI Yong

    2007-01-01

    @@ The photocatalyst of permeable glass membrane/TiO2 doped with Co (permeable glass membrane/TiO2 doped with Co) is prepared by the sol-gel method. The morphology and phase of the samples are determined by the field emission scanning electron microscopy (FESEM) and x-ray diffraction experiment, respectively. The photocatalytic results show that the photocatalyst is sensitive to the visible light and exhibits excellent photocatalytic activity of photodegradation methylene blue. The photocatalytic mechanism is also discussed.

  2. Modulation of CD44 Activity by A6-Peptide

    Directory of Open Access Journals (Sweden)

    Malcolm eFinlayson

    2015-03-01

    Full Text Available AbstractHyaluronan (HA is a nonsulfated glycosaminoglycan distributed throughout the extracellular matrix that plays a major role in cell adhesion, migration, and proliferation. CD44, a multifunctional cell surface glycoprotein, is a receptor for HA. In addition, CD44 is known to interact with other receptors and ligands, and to mediate a number of cellular functions as well as disease progression. Studies have shown that binding of HA to CD44 in cancer cells activates survival pathways resulting in cancer cell survival. This effect can be blocked by anti-CD44 monoclonal antibodies. A6 is a capped, 8 L-amino acid peptide (Ac-KPSSPPEE-NH2 derived from the biologically active connecting peptide domain of the serine protease, human urokinase plasminogen activator (uPA. A6 does not bind to the uPA receptor (uPAR nor interfere with uPA/uPAR binding. A6 binds to CD44 resulting in the inhibition of migration, invasion, and metastasis of tumor cells, and the modulation of CD44-mediated cell signaling. A6 has been shown to have no dose-limiting toxicity in animal studies. A6 has demonstrated efficacy and an excellent safety profile in Phase 1a, 1b, and 2 clinical trials. In animal models, A6 has also exhibited promising results for the treatment of diabetic retinopathy and wet age-related macular degeneration through the reduction of retinal vascular permeability and inhibition of choroidal neovascularization, respectively. Recently, A6 has been shown to be directly cytotoxic for B-lymphocytes obtained from patients with chronic lymphocytic leukemia (CLL expressing the kinase, ZAP-70. This review will discuss the activity of A6, A6 modulation of HA and CD44, and a novel strategy for therapeutic intervention in disease.

  3. Caco-2 cells permeability evaluation of nifuroxazide derivatives with potential activity against methicillin-resistant Staphylococcus aureus (MRSA).

    Science.gov (United States)

    B Fernandes, Mariane; Gonçalves, José E; C Tavares, Leoberto; Storpirtis, Sílvia

    2015-01-01

    Throughout the period of evaluation and selection in drug development, the assessment of the permeability potential of a compound to achieve an efficient refinement of the molecular structure has been widely appraised by the transport of substances across cell monolayers. This study aims to develop in vitro assays through Caco-2 cells in order to analyze the permeability of 5-nitro-heterocyclic compounds analogues to nifuroxazide with antimicrobial activity, especially showing promising activity against multidrug-resistant Staphylococcus aureus (MRSA). Caco-2 cell monolayers cultivated for 21 days in Transwell® plates were used for the in vitro permeability assays. The quantification of the nifuroxazide derivatives in the basolateral chambers was performed by a validated high performance liquid chromatography with UV (HPLC-UV) method. Apparent permeability values (Papp) show that these compounds can be considered as new drug candidates with the potential to present high absorption in vivo, according to the classifications of Yee and Biganzoli. The thiophenic derivatives showed permeability values higher than the furanic ones, being AminoTIO the compound with the greatest potential for the development of a new drug against MRSA, since it showed the best cytotoxicity, permeability and solubility ratio among all the derivatives. PMID:24918173

  4. The effect of microneedles on the skin permeability and antitumor activity of topical 5-fluorouracil

    Directory of Open Access Journals (Sweden)

    Youssef W. Naguib

    2014-02-01

    Full Text Available Topical 5-fluorouracil (5-FU is approved for the treatment of superficial basal cell carcinoma and actinic keratosis. However, 5-FU suffers from poor skin permeation. Microneedles have been successfully applied to improve the skin permeability of small and large molecules, and even nanoparticles, by creating micron-sized pores in the stratum corneum layer of the skin. In this report, the feasibility of using microneedles to increase the skin permeability of 5-FU was tested. Using full thickness mouse skin mounted on Franz diffusion apparatus, it was shown that the flux of 5-FU through the skin was increased by up to 4.5-fold when the skin was pretreated with microneedles (500 μm in length, 50 μm in base diameter. In a mouse model with B16-F10 mouse melanoma cells implanted in the subcutaneous space, the antitumor activity of a commercially available 5-FU topical cream (5% was significantly enhanced when the cream was applied on a skin area that was pretreated with microneedles, as compared to when the cream was simply applied on a skin area, underneath which the tumor cells were implanted, and without pretreatment of the skin with microneedles. Fluorouracil is not approved for melanoma therapy, but the clinical efficacy of topical 5-FU against tumors such as basal cell carcinoma may be improved by integrating microneedle technology into the therapy.

  5. Blood-brain barrier permeability mechanisms in view of quantitative structure-activity relationships (QSAR).

    Science.gov (United States)

    Bujak, Renata; Struck-Lewicka, Wiktoria; Kaliszan, Michał; Kaliszan, Roman; Markuszewski, Michał J

    2015-04-10

    The goal of the present paper was to develop a quantitative structure-activity relationship (QSAR) method using a simple statistical approach, such as multiple linear regression (MLR) for predicting the blood-brain barrier (BBB) permeability of chemical compounds. The "best" MLR models, comprised logP and either molecular mass (M) or isolated atomic energy (E(isol)), tested on a structurally diverse set of 66 compounds, is characterized the by correlation coefficients (R) around 0.8. The obtained models were validated using leave-one-out (LOO) cross-validation technique and the correlation coefficient of leave-one-out- R(LOO)(2) (Q(2)) was at least 0.6. Analysis of a case from legal medicine demonstrated informative value of our QSAR model. To best authors' knowledge the present study is a first application of the developed QSAR models of BBB permeability to case from the legal medicine. Our data indicate that molecular energy-related descriptors, in combination with the well-known descriptors of lipophilicity may have a supportive value in predicting blood-brain distribution, which is of utmost importance in drug development and toxicological studies.

  6. Infection of human monocyte-derived dendritic cells by ANDES Hantavirus enhances pro-inflammatory state, the secretion of active MMP-9 and indirectly enhances endothelial permeability

    Directory of Open Access Journals (Sweden)

    Lopez-Lastra Marcelo

    2011-05-01

    Full Text Available Abstract Background Andes virus (ANDV, a rodent-borne Hantavirus, is the major etiological agent of Hantavirus cardiopulmonary syndrome (HCPS in South America, which is mainly characterized by a vascular leakage with high rate of fatal outcomes for infected patients. Currently, neither specific therapy nor vaccines are available against this pathogen. ANDV infects both dendritic and epithelial cells, but in despite that the severity of the disease directly correlates with the viral RNA load, considerable evidence suggests that immune mechanisms rather than direct viral cytopathology are responsible for plasma leakage in HCPS. Here, we assessed the possible effect of soluble factors, induced in viral-activated DCs, on endothelial permeability. Activated immune cells, including DC, secrete gelatinolytic matrix metalloproteases (gMMP-2 and -9 that modulate the vascular permeability for their trafficking. Methods A clinical ANDES isolate was used to infect DC derived from primary PBMC. Maturation and pro-inflammatory phenotypes of ANDES-infected DC were assessed by studying the expression of receptors, cytokines and active gMMP-9, as well as some of their functional status. The ANDES-infected DC supernatants were assessed for their capacity to enhance a monolayer endothelial permeability using primary human vascular endothelial cells (HUVEC. Results Here, we show that in vitro primary DCs infected by a clinical isolate of ANDV shed virus RNA and proteins, suggesting a competent viral replication in these cells. Moreover, this infection induces an enhanced expression of soluble pro-inflammatory factors, including TNF-α and the active gMMP-9, as well as a decreased expression of anti-inflammatory cytokines, such as IL-10 and TGF-β. These viral activated cells are less sensitive to apoptosis. Moreover, supernatants from ANDV-infected DCs were able to indirectly enhance the permeability of a monolayer of primary HUVEC. Conclusions Primary human DCs

  7. Propofol and magnesium attenuate isoflurane-induced caspase-3 activation via inhibiting mitochondrial permeability transition pore

    Directory of Open Access Journals (Sweden)

    Zhang Yiying

    2012-08-01

    Full Text Available Abstract Background The inhalation anesthetic isoflurane has been shown to open the mitochondrial permeability transition pore (mPTP and induce caspase activation and apoptosis, which may lead to learning and memory impairment. Cyclosporine A, a blocker of mPTP opening might attenuate the isoflurane-induced mPTP opening, lessening its ripple effects. Magnesium and anesthetic propofol are also mPTP blockers. We therefore set out to determine whether propofol and magnesium can attenuate the isoflurane-induced caspase activation and mPTP opening. Methods We investigated the effects of magnesium sulfate (Mg2+, propofol, and isoflurane on the opening of mPTP and caspase activation in H4 human neuroglioma cells stably transfected to express full-length human amyloid precursor protein (APP (H4 APP cells and in six day-old wild-type mice, employing Western blot analysis and flowcytometry. Results Here we show that Mg2+ and propofol attenuated the isoflurane-induced caspase-3 activation in H4-APP cells and mouse brain tissue. Moreover, Mg2+ and propofol, the blockers of mPTP opening, mitigated the isoflurane-induced mPTP opening in the H4-APP cells. Conclusion These data illustrate that Mg2+ and propofol may ameliorate the isoflurane-induced neurotoxicity by inhibiting its mitochondrial dysfunction. Pending further studies, these findings may suggest the use of Mg2+ and propofol in preventing and treating anesthesia neurotoxicity.

  8. Acyl lipidation of a peptide: effects on activity and epidermal permeability in vitro.

    Science.gov (United States)

    Rocco, Daniel; Ross, James; Murray, Paul E; Caccetta, Rima

    2016-01-01

    Short-chain lipid conjugates can increase permeability of a small peptide across human epidermis; however, the emerging lipoaminoacid (LAA) conjugation technique is costly and can deliver mixed synthetic products of varied biological potential. LAA conjugation using a racemic mixture produces a mixture of D- and L-stereoisomers. Individual enantiomers can be produced at an extra cost. We investigated an affordable technique that produces only one synthetic product: short-chain (C7-C8) acyl lipidation. Acyl lipidation of Ala-Ala-Pro-Val, an inhibitor of human neutrophil elastase (HNE; believed to lead to abnormal tissue destruction and disease development), was investigated as an alternative to LAA conjugation. The current study aimed to assess the effects of acyl lipidation (either at the N-terminal or at the C-terminal) on neutrophil elastase activity in vitro and on transdermal delivery ex vivo. The inhibitory capacity of the acyl conjugates was compared to LAA conjugates (conjugated at the N-terminal) of the same peptide. The L-stereoisomer appears to rapidly degrade, but it represents a significantly (Ppeptide (Ala-Ala-Pro-Val). Although the D-stereoisomer appears to permeate human epidermal skin sections in a better fashion than the L-stereoisomer, it is not a significantly better inhibitor of HNE than the parent peptide. Acyl lipidation (with a C7 lipid chain) at either end of the peptide substantially enhances the permeability of the peptide across human skin epidermis as well as significantly (Ppeptide is a more economical and effective alternative to LAA conjugation. PMID:27468224

  9. Acyl lipidation of a peptide: effects on activity and epidermal permeability in vitro

    Science.gov (United States)

    Rocco, Daniel; Ross, James; Murray, Paul E; Caccetta, Rima

    2016-01-01

    Short-chain lipid conjugates can increase permeability of a small peptide across human epidermis; however, the emerging lipoaminoacid (LAA) conjugation technique is costly and can deliver mixed synthetic products of varied biological potential. LAA conjugation using a racemic mixture produces a mixture of D- and L-stereoisomers. Individual enantiomers can be produced at an extra cost. We investigated an affordable technique that produces only one synthetic product: short-chain (C7–C8) acyl lipidation. Acyl lipidation of Ala-Ala-Pro-Val, an inhibitor of human neutrophil elastase (HNE; believed to lead to abnormal tissue destruction and disease development), was investigated as an alternative to LAA conjugation. The current study aimed to assess the effects of acyl lipidation (either at the N-terminal or at the C-terminal) on neutrophil elastase activity in vitro and on transdermal delivery ex vivo. The inhibitory capacity of the acyl conjugates was compared to LAA conjugates (conjugated at the N-terminal) of the same peptide. The L-stereoisomer appears to rapidly degrade, but it represents a significantly (P<0.05) better inhibitor of HNE than the parent peptide (Ala-Ala-Pro-Val). Although the D-stereoisomer appears to permeate human epidermal skin sections in a better fashion than the L-stereoisomer, it is not a significantly better inhibitor of HNE than the parent peptide. Acyl lipidation (with a C7 lipid chain) at either end of the peptide substantially enhances the permeability of the peptide across human skin epidermis as well as significantly (P<0.005) increases its elastase inhibitory potential. Therefore, our current study indicates that acyl lipidation of a peptide is a more economical and effective alternative to LAA conjugation. PMID:27468224

  10. Phosphatidylcholine Reverses Ethanol-Induced Increase in Transepithelial Endotoxin Permeability and Abolishes Transepithelial Leukocyte Activation

    DEFF Research Database (Denmark)

    Mitzscherling, Katja; Volynets, Valentina; Parlesak, Alexandr

    2009-01-01

    Chronic alcohol abuse increases both intestinal bacterial overgrowth and intestinal permeability to macromolecules. Intestinal permeability of endotoxin, a component of the outer cell membrane of Gram-negative bacteria, plays a crucial role in the development of alcohol-induced liver disease (ALD...

  11. Solar active envelope module with an adjustable transmittance/absorptance

    OpenAIRE

    C. Villasante Villasante; I. del Hoyo; Pagola, I. (I.); Sanchez, M.; E. Aranzabe

    2015-01-01

    A solar active envelope module with a high flexibility degree is proposed in this paper. The transparent module controls the day-lighting of the room, improving the indoor environment, while absorbing the superfluous solar energy inside. That energy is used to increase the efficiency of heating, ventilation, and the air-conditioning (HVAC) system of the building. This is carried out through a fine control of the absorptance of the envelope module. The active envelope module consists of three ...

  12. Inhibition of mitochondrial permeability transition pore contributes to the neuroprotection induced by activation of mitochondrial ATP-sensitive potassium channel

    Institute of Scientific and Technical Information of China (English)

    Li-pingWU; FangSHEN; QiangXIA

    2004-01-01

    AIM: To investigate whether the neuroprotection via activating mitochondrial ATP-sensitive potassium channel (mitoKTP) is mediated by the inhibition of mitochondrial permeability transition pore (MPTP). METHODS: Adult male Sprague-Dawleyrats were undergoing 90 min of middle cerebral artery occlusion(MCAO) by introducing a nylon monofilament through the external

  13. The modulation of tumor vessel permeability by thalidomide and its impacts on different types of targeted drug delivery systems in a sarcoma mouse model.

    Science.gov (United States)

    Wang, Dan; Fu, Jijun; Shi, Yujie; Peng, Dong; Yuan, Lan; He, Bing; Dai, Wenbing; Zhang, Hua; Wang, Xueqing; Tian, Jie; Zhang, Qiang

    2016-09-28

    The transport of nanocarriers is supposed to be based on EPR effect which is affected by diverse factors, so the modulation of EPR effect seems very significant for nanocarriers including targeted drug delivery systems (TDDSs). Besides, it is extremely unclear how the EPR effect impacts the fate of different types of TDDSs. To make the most advantage of EPR effect for TDDSs, it is definitely necessary to clarify these key issues. Here, we construct and characterize various TDDSs, including sterically-stabilized liposomes (SSL), RGD functionalized SSL (RGD-SSL) and novel 7PEP functionalized SSL (7PEP-SSL), loaded with doxorubicin (DOX), DIR or DID. Here, we modulate the permeability of tumor vessels by thalidomide (THD) in a sarcoma-bearing EPR mouse model via monitoring endogenous deoxygenated hemoglobin in circulation, and then we confirm the effect of THD on tumor vessel permeability by vessel density, vessel maturity, VEGF expression and so on. Importantly, we investigate and find the impacts of EPR effect on the antitumor efficacy, in vivo distribution and intratumoral microdistribution of the three TDDSs. Interestingly, the EPR effects affect different TDDSs differently. The elevated EPR effect enhances the tumor accumulation of SSL and RGD-SSL but fails to increase their efficacy. The RGD-SSL exhibits the best efficacy with the least fluctuation, demonstrating the advantage of angiogenesis targeted systems. 7PEP-SSL seems the biggest beneficiary of EPR effect, suggesting the significance of EPR modulation for cells targeted systems. Generally, this study demonstrates the feasibility of modulating EPR effect bidirectionally by THD as well as the impacts of EPR effect on different type of testing TDDSs based on this animal model. It certainly provides novel insight into the design and potential use of TDDSs.

  14. Tempol modulates changes in xenobiotic permeability and occludin oligomeric assemblies at the blood-brain barrier during inflammatory pain

    OpenAIRE

    Lochhead, Jeffrey J; McCaffrey, Gwen; Sanchez-Covarrubias, Lucy; Finch, Jessica D.; DeMarco, Kristin M; Quigley, Colleen E.; Davis, Thomas P.; Ronaldson, Patrick T

    2011-01-01

    Our laboratory has shown that λ-carrageenan-induced peripheral inflammatory pain (CIP) can alter tight junction (TJ) protein expression and/or assembly leading to changes in blood-brain barrier xenobiotic permeability. However, the role of reactive oxygen species (ROS) and subsequent oxidative stress during CIP is unknown. ROS (i.e., superoxide) are known to cause cellular damage in response to pain/inflammation. Therefore, we examined oxidative stress-associated effects at the blood-brain ba...

  15. Revision of the DELFIC Particle Activity Module

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, David A [ORNL; Jodoin, Vincent J [ORNL

    2010-09-01

    The Defense Land Fallout Interpretive Code (DELFIC) was originally released in 1968 as a tool for modeling fallout patterns and for predicting exposure rates. Despite the continual advancement of knowledge of fission yields, decay behavior of fission products, and biological dosimetry, the decay data and logic of DELFIC have remained mostly unchanged since inception. Additionally, previous code revisions caused a loss of conservation of radioactive nuclides. In this report, a new revision of the decay database and the Particle Activity Module is introduced and explained. The database upgrades discussed are replacement of the fission yields with ENDF/B-VII data as formatted in the Oak Ridge Isotope Generation (ORIGEN) code, revised decay constants, revised exposure rate multipliers, revised decay modes and branching ratios, and revised boiling point data. Included decay logic upgrades represent a correction of a flaw in the treatment of the fission yields, extension of the logic to include more complex decay modes, conservation of nuclides (including stable nuclides) at all times, and conversion of key variables to double precision for nuclide conservation. Finally, recommended future work is discussed with an emphasis on completion of the overall radiation physics upgrade, particularly for dosimetry, induced activity, decay of the actinides, and fractionation.

  16. Synthetic modulators of TRP channel activity.

    Science.gov (United States)

    Harteneck, Christian; Klose, Chihab; Krautwurst, Dietmar

    2011-01-01

    In humans, 27 TRP channels from 6 related families contribute to a broad spectrum of cellular functions, such as thermo-, pressure-, volume-, pain- and chemosensation. Pain and inflammation-inducing compounds represent potent plant and animal defense mechanisms explaining the great variety of the naturally occurring, TRPV1-, TRPM8-, and TRPA1-activating ligands. The discovery of the first vanilloid receptor (TRPV1) and its involvement in nociception triggered the euphoria and the hope in novel therapeutic strategies treating pain, and this clear-cut indication inspired the development of TRPV1-selective ligands. On the other hand the nescience in the physiological role and putative clinical indication hampered the development of a selective drug in the case of the other TRP channels. Therefore, currently only a handful of mostly un-selective blocker is available to target TRP channels. Nevertheless, there is an ongoing quest for new, natural or synthetic ligands and modulators. In this chapter, we will give an overview on available broad-range blocker, as well as first TRP channel-selective compounds. PMID:21290290

  17. Effect of Light-Activated Hypocrellin B on the Growth and Membrane Permeability of Gram-Negative Escherichia coli Cells

    Directory of Open Access Journals (Sweden)

    Yuan Jiang

    2014-01-01

    Full Text Available Aim. To investigate the effect of light-activated hypocrellin B on the growth and membrane permeability of Gram-negative bacteria. Methods. Escherichia coli (E. coli as a model bacterium of Gram-negative bacteria was incubated with various concentrations of hypocrellin B for 60 min and was subsequently irradiated by blue light with wavelength of 470 nm at the dose of 12 J/cm2. Colony forming units were counted and the growth inhibition rate of E. coli cells was calculated after light-activated hypocrellin B. Membrane permeability was measured using flow cytometry and confocal laser scanning microscopy (CLSM with propidium iodide (PI staining. Bacterial morphology was observed using transmission electron microscopy (TEM. Reactive oxygen species in bacterial cells were measured using flow cytometry with DCFH-DA staining. Results. Significant growth inhibition rate of E. coli cells was observed after photodynamic action of hypocrellin B. Remarkable damage to the ultrastructure of E. coli was also observed by TEM. Flow cytometry and CLSM observation showed that light-activated hypocrellin B markedly increased membrane permeability of E. coli. Flow cytometry showed the intracellular ROS increase in E. coli treated by photodynamic action of hypocrellin B. Conclusion. Light-activated hypocrellin B caused intracellular ROS increase and structural damages and inhibited the growth of Gram-negative E. coli cells.

  18. Classical activation of microglia in CD200-deficient mice is a consequence of blood brain barrier permeability and infiltration of peripheral cells.

    Science.gov (United States)

    Denieffe, Stephanie; Kelly, Ronan J; McDonald, Claire; Lyons, Anthony; Lynch, Marina A

    2013-11-01

    The interaction between CD200, expressed on several cell types, and its receptor CD200R, expressed on cells of the myeloid lineage, has been shown to be an important factor in modulating inflammation in macrophage function in several conditions including colitis and arthritis. More recently its modulatory effect on microglial activation has been identified and CD200-deficiency has been associated with increased microglial activation accompanied by increased production of inflammatory cytokines. The response of glia prepared from CD200-deficient mice to stimuli like lipopolysaccharide (LPS) is markedly greater than the response of cells prepared from wildtype mice and, consistent with this, is the recent observation that expression of Toll-like receptor (TLR)4 and signalling through NFκB are increased in microglia prepared from CD200-deficient mice. Here we show that glia from CD200-deficient mice are also more responsive to interferon-γ (IFNγ) which triggers classical activation of microglia. We investigated the effects of CD200-deficiency in vivo and report that there is an increase in expression of several markers of microglial activation including tumor necrosis factor (TNF)-α, which is a hallmark of classically-activated microglia. These changes are accompanied by increased IFNγ, and the evidence suggests that this is produced by infiltrating cells including T cells and macrophages. We propose that these cells enter the brain as a consequence of increased blood brain barrier (BBB) permeability in CD200-deficient mice and that infiltration is assisted by increased expression of the chemokines, monocyte chemotactic protein-1 (MCP-1), IFNγ-induced protein-10 (IP-10) and RANTES. This may have implications in neurodegenerative diseases where BBB permeability is compromised.

  19. FECAL CALPROTECTIN AND GASTROINTESTINAL (GI) PERMEABILITY CORRELATE WITH DISEASE ACTIVITY INDEX, AND HISTOLOGIC, ENDOSCOPIC, AND RADIOLOGIC FINDINGS IN CHILDREN WITH CROHN DISEASE (CD)

    Science.gov (United States)

    Fecal calprotectin and permeability are noninvasive measures of GI inflammation and damage, respectively. However, there are scant data as to the possible association between the tests and CD disease activity in children. We hypothesized that levels of fecal calprotectin and permeability would corre...

  20. Heavy metal removal from MSWI fly ash by electrokinetic remediation coupled with a permeable activated charcoal reactive barrier

    OpenAIRE

    Tao Huang; Dongwei Li; Liu Kexiang; Yuewei Zhang

    2015-01-01

    This paper presents the investigations into the feasibility of the application of a remediation system that couples electrokinetic remediation (EKR) with the permeable reactive barrier (PRB) concept for municipal solid waste incineration (MSWI) fly ash with activated charcoal as the PRB material. The experimental results of this study showed that the proposed combined method can effectively improve the remediation efficiency and that the addition of the oxalic acid to the PRB media before the...

  1. An In-tether Chiral Center Modulates the Helicity, Cell Permeability, and Target Binding Affinity of a Peptide.

    Science.gov (United States)

    Hu, Kuan; Geng, Hao; Zhang, Qingzhou; Liu, Qisong; Xie, Mingsheng; Sun, Chengjie; Li, Wenjun; Lin, Huacan; Jiang, Fan; Wang, Tao; Wu, Yun-Dong; Li, Zigang

    2016-07-01

    The addition of a precisely positioned chiral center in the tether of a constrained peptide is reported, yielding two separable peptide diastereomers with significantly different helicity, as supported by circular dichroism (CD) and NMR spectroscopy. Single crystal X-ray diffraction analysis suggests that the absolute configuration of the in-tether chiral center in helical form is R, which is in agreement with theoretical simulations. The relationship between the secondary structure of the short peptides and their biochemical/biophysical properties remains elusive, largely because of the lack of proper controls. The present strategy provides the only method for investigating the influence of solely conformational differences upon the biochemical/biophysical properties of peptides. The significant differences in permeability and target binding affinity between the peptide diastereomers demonstrate the importance of helical conformation. PMID:27167181

  2. Bile enhances glucose uptake, reduces permeability, and modulates effects of lectins, trypsin inhibitors and saponins on intestinal tissue.

    Science.gov (United States)

    Bakke, Anne Marie; Chikwati, Elvis M; Venold, Fredrik F; Sahlmann, Christian; Holm, Halvor; Penn, Michael H; Oropeza-Moe, Marianne; Krogdahl, Åshild

    2014-02-01

    Antinutritional factors (ANFs) can disrupt digestive and other intestinal functions. ANFs in soybean meal (SBM) are implicated in proliferative and inflammatory responses in the intestine of various (functionally) monogastric animals, including Atlantic salmon (Salmo salar L.). The goal of the current study was to investigate the effect of ex vivo exposure of mid and distal intestinal tissue of salmon to soybean saponins (SAP), lectin (LEC) and Kunitz' trypsin inhibitor (KTI), singly and in combination, on epithelial function, as assessed by measuring in vitro glucose uptake pathways along a glucose concentration gradient. As solubilization of SAP in the calcium-containing Ringer's solution was problematic but resolved with the addition of a physiological concentration of bile collected from the gall bladder of salmon, an evaluation of bile effects became an added element. Results indicated that bile increased baseline glucose absorption and possibly transport, and also had a protective effect on the epithelial barrier, at least partially due to taurocholate. Compared to controls, tissues exposed to LEC+bile, KTI+bile and LEC+KTI+bile exhibited increased glucose uptake at the higher glucose concentrations, apparently due to markedly increased tissue permeability. Addition of SAP, however, attenuated the response, possibly by binding bile components. SAP+bile, also in combination with LEC and/or KTI, as well as LEC, KTI and LEC+KTI without bile often reduced transcellular glucose uptake pathways, while maintaining low tissue permeability. SAP+LEC+KTI+bile, LEC and KTI caused the most marked reductions. The distal intestine was more affected, reflecting the restriction of in vivo SBM-induced inflammatory changes to this region. PMID:24291392

  3. Endothelial cell permeability during hantavirus infection involves factor XII-dependent increased activation of the kallikrein-kinin system.

    Science.gov (United States)

    Taylor, Shannon L; Wahl-Jensen, Victoria; Copeland, Anna Maria; Jahrling, Peter B; Schmaljohn, Connie S

    2013-01-01

    Hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS) are diseases caused by hantavirus infections and are characterized by vascular leakage due to alterations of the endothelial barrier. Hantavirus-infected endothelial cells (EC) display no overt cytopathology; consequently, pathogenesis models have focused either on the influx of immune cells and release of cytokines or on increased degradation of the adherens junction protein, vascular endothelial (VE)-cadherin, due to hantavirus-mediated hypersensitization of EC to vascular endothelial growth factor (VEGF). To examine endothelial leakage in a relevant in vitro system, we co-cultured endothelial and vascular smooth muscle cells (vSMC) to generate capillary blood vessel-like structures. In contrast to results obtained in monolayers of cultured EC, we found that despite viral replication in both cell types as well as the presence of VEGF, infected in vitro vessels neither lost integrity nor displayed evidence of VE-cadherin degradation. Here, we present evidence for a novel mechanism of hantavirus-induced vascular leakage involving activation of the plasma kallikrein-kinin system (KKS). We show that incubation of factor XII (FXII), prekallikrein (PK), and high molecular weight kininogen (HK) plasma proteins with hantavirus-infected EC results in increased cleavage of HK, higher enzymatic activities of FXIIa/kallikrein (KAL) and increased liberation of bradykinin (BK). Measuring cell permeability in real-time using electric cell-substrate impedance sensing (ECIS), we identified dramatic increases in endothelial cell permeability after KKS activation and liberation of BK. Furthermore, the alterations in permeability could be prevented using inhibitors that directly block BK binding, the activity of FXIIa, or the activity of KAL. Lastly, FXII binding and autoactivation is increased on the surface of hantavirus-infected EC. These data are the first to demonstrate KKS activation during

  4. Endothelial cell permeability during hantavirus infection involves factor XII-dependent increased activation of the kallikrein-kinin system.

    Directory of Open Access Journals (Sweden)

    Shannon L Taylor

    Full Text Available Hemorrhagic fever with renal syndrome (HFRS and hantavirus pulmonary syndrome (HPS are diseases caused by hantavirus infections and are characterized by vascular leakage due to alterations of the endothelial barrier. Hantavirus-infected endothelial cells (EC display no overt cytopathology; consequently, pathogenesis models have focused either on the influx of immune cells and release of cytokines or on increased degradation of the adherens junction protein, vascular endothelial (VE-cadherin, due to hantavirus-mediated hypersensitization of EC to vascular endothelial growth factor (VEGF. To examine endothelial leakage in a relevant in vitro system, we co-cultured endothelial and vascular smooth muscle cells (vSMC to generate capillary blood vessel-like structures. In contrast to results obtained in monolayers of cultured EC, we found that despite viral replication in both cell types as well as the presence of VEGF, infected in vitro vessels neither lost integrity nor displayed evidence of VE-cadherin degradation. Here, we present evidence for a novel mechanism of hantavirus-induced vascular leakage involving activation of the plasma kallikrein-kinin system (KKS. We show that incubation of factor XII (FXII, prekallikrein (PK, and high molecular weight kininogen (HK plasma proteins with hantavirus-infected EC results in increased cleavage of HK, higher enzymatic activities of FXIIa/kallikrein (KAL and increased liberation of bradykinin (BK. Measuring cell permeability in real-time using electric cell-substrate impedance sensing (ECIS, we identified dramatic increases in endothelial cell permeability after KKS activation and liberation of BK. Furthermore, the alterations in permeability could be prevented using inhibitors that directly block BK binding, the activity of FXIIa, or the activity of KAL. Lastly, FXII binding and autoactivation is increased on the surface of hantavirus-infected EC. These data are the first to demonstrate KKS activation

  5. Activated protein C modulates the proinflammatory activity of dendritic cells

    Directory of Open Access Journals (Sweden)

    Matsumoto T

    2015-05-01

    Full Text Available Takahiro Matsumoto,1,2* Yuki Matsushima,1* Masaaki Toda,1 Ziaurahman Roeen,1 Corina N D'Alessandro-Gabazza,1,5 Josephine A Hinneh,1 Etsuko Harada,1,3 Taro Yasuma,4 Yutaka Yano,4 Masahito Urawa,1,5 Tetsu Kobayashi,5 Osamu Taguchi,5 Esteban C Gabazza1 1Department of Immunology, Mie University Graduate School of Medicine, Tsu, Mie Prefecture, 2BONAC Corporation, BIO Factory 4F, Fukuoka, 3Iwade Research Institute of Mycology, 4Department of Endocrinology, Diabetes and Metabolism, 5Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu, Mie Prefecture, Japan *These authors contributed equally to this work Background: Previous studies have demonstrated the beneficial activity of activated protein C in allergic diseases including bronchial asthma and rhinitis. However, the exact mechanism of action of activated protein C in allergies is unclear. In this study, we hypothesized that pharmacological doses of activated protein C can modulate allergic inflammation by inhibiting dendritic cells. Materials and methods: Dendritic cells were prepared using murine bone marrow progenitor cells and human peripheral monocytes. Bronchial asthma was induced in mice that received intratracheal instillation of ovalbumin-pulsed dendritic cells. Results: Activated protein C significantly increased the differentiation of tolerogenic plasmacytoid dendritic cells and the secretion of type I interferons, but it significantly reduced lipopolysaccharide-mediated maturation and the secretion of inflammatory cytokines in myeloid dendritic cells. Activated protein C also inhibited maturation and the secretion of inflammatory cytokines in monocyte-derived dendritic cells. Activated protein C-treated dendritic cells were less effective when differentiating naïve CD4 T-cells from Th1 or Th2 cells, and the cellular effect of activated protein C was mediated by its receptors. Mice that received adoptive transfer of activated protein C

  6. Exploring the biophysical evidence that mammalian two-pore channels are NAADP-activated calcium-permeable channels.

    Science.gov (United States)

    Pitt, Samantha J; Reilly-O'Donnell, Benedict; Sitsapesan, Rebecca

    2016-08-01

    Nicotinic acid adenine dinucleotide phosphate (NAADP) potently releases Ca(2+) from acidic intracellular endolysosomal Ca(2+) stores. It is widely accepted that two types of two-pore channels, termed TPC1 and TPC2, are responsible for the NAADP-mediated Ca(2+) release but the underlying mechanisms regulating their gating appear to be different. For example, although both TPC1 and TPC2 are activated by NAADP, TPC1 appears to be additionally regulated by cytosolic Ca(2+) . Ion conduction and permeability also differ markedly. TPC1 and TPC2 are permeable to a range of cations although biophysical experiments suggest that TPC2 is slightly more selective for Ca(2+) over K(+) than TPC1 and hence capable of releasing greater quantities of Ca(2+) from acidic stores. TPC1 is also permeable to H(+) and therefore may play a role in regulating lysosomal and cytosolic pH, possibly creating localised acidic domains. The significantly different gating and ion conducting properties of TPC1 and TPC2 suggest that these two ion channels may play complementary physiological roles as Ca(2+) -release channels of the endolysosomal system. PMID:26872338

  7. Thermal anomalies in fumaroles at Vulcano island (Italy) and their relationship with seismic activity and stress-induced permeability changes

    Science.gov (United States)

    Madonia, Paolo; Cusano, Paola; Diliberto, Iole Serena; Cangemi, Marianna

    2016-04-01

    Fumarole thermal monitoring is a useful tool in the evaluation of volcanic activity, since temperatures strongly relate to the upward flux of magmatic volatiles. Once depurated from meteorological noise, their variations can reflect permeability changes due to crustal stress dynamics eventually associated to seismic activity. In this work, we discuss a fumarole temperature record acquired in the period September 2009 - May 2012 at Vulcano island (Italy), during which changes of volcanic state, local seismic activity and teleseisms occurred. Apart from positive thermal anomalies driven by increments in volcanic activity, we observed 3 episodes at least of concurrence between tectonic earthquakes and fumarole temperature increments, with particular reference to the local August 16th, 2010 Lipari earthquake, the March 11th, 2011 Sendai-Honshu (Japan) earthquake and a seismic swarm occurred along the Tindari-Letojanni fault in July-August 2011. We interpreted the seismic-related anomalies as "crustal fluid transients", i.e. signals of volcanogenic vapour flow variations induced by stress-induced permeability changes. From this perspective fumarolic activity can be considered as a tracer of geodynamic instability but, since seismic and volcanic phenomena are in mutual cause-effect relationships, a multidisciplinary observation system is mandatory for correctly addressing thermal data interpretation.

  8. Modulation of Emotion by Cognitive Activity

    OpenAIRE

    Saea Iida; Hiroki C. Tanabe; Takashi Nakao; Hideki Ohira

    2013-01-01

    While emotions themselves are beneficial for our survival, they are also the targets to be regulated appropriately to adapt to social environments. Previous studies have demonstrated that cognitive strategies such as cognitive reappraisal and expressive suppression can effectively enhance and attenuate emotions. Such cognitive strategies of emotion regulation are based on cortical modulation of sub-cortical emotion-related brain regions. Though in the prior studies emotion regulation was cond...

  9. Tuning Liposome Membrane Permeability by Competitive Peptide Dimerization and Partitioning-Folding Interactions Regulated by Proteolytic Activity.

    Science.gov (United States)

    Lim, Seng Koon; Sandén, Camilla; Selegård, Robert; Liedberg, Bo; Aili, Daniel

    2016-01-01

    Membrane active peptides are of large interest for development of drug delivery vehicles and therapeutics for treatment of multiple drug resistant infections. Lack of specificity can be detrimental and finding routes to tune specificity and activity of membrane active peptides is vital for improving their therapeutic efficacy and minimize harmful side effects. We describe a de novo designed membrane active peptide that partition into lipid membranes only when specifically and covalently anchored to the membrane, resulting in pore-formation. Dimerization with a complementary peptide efficiently inhibits formation of pores. The effect can be regulated by proteolytic digestion of the inhibitory peptide by the matrix metalloproteinase MMP-7, an enzyme upregulated in many malignant tumors. This system thus provides a precise and specific route for tuning the permeability of lipid membranes and a novel strategy for development of recognition based membrane active peptides and indirect enzymatically controlled release of liposomal cargo.

  10. Tuning Liposome Membrane Permeability by Competitive Peptide Dimerization and Partitioning-Folding Interactions Regulated by Proteolytic Activity

    Science.gov (United States)

    Lim, Seng Koon; Sandén, Camilla; Selegård, Robert; Liedberg, Bo; Aili, Daniel

    2016-02-01

    Membrane active peptides are of large interest for development of drug delivery vehicles and therapeutics for treatment of multiple drug resistant infections. Lack of specificity can be detrimental and finding routes to tune specificity and activity of membrane active peptides is vital for improving their therapeutic efficacy and minimize harmful side effects. We describe a de novo designed membrane active peptide that partition into lipid membranes only when specifically and covalently anchored to the membrane, resulting in pore-formation. Dimerization with a complementary peptide efficiently inhibits formation of pores. The effect can be regulated by proteolytic digestion of the inhibitory peptide by the matrix metalloproteinase MMP-7, an enzyme upregulated in many malignant tumors. This system thus provides a precise and specific route for tuning the permeability of lipid membranes and a novel strategy for development of recognition based membrane active peptides and indirect enzymatically controlled release of liposomal cargo.

  11. Glucose and calcium ions may modulate the efficiency of bovine β-casomorphin-7 permeability through a monolayer of Caco-2 cells.

    Science.gov (United States)

    Jarmołowska, Beata; Teodorowicz, Małgorzata; Fiedorowicz, Ewa; Sienkiewicz-Szłapka, Edyta; Matysiewicz, Michał; Kostyra, Elżbieta

    2013-11-01

    Milk and dairy products provide a lot of valuable nutritive elements. They are also sources of biologically active peptides, including β-casomorphins that manifest the properties of morphine. An activity of DPPIV seems to be most crucial factor decreasing the efficiency of the β-casomorphin-7 (BCM7) transport. The increase of BCM7 concentration in blood may intensify symptoms of apparent life threatening events (ALTE), autism, schizophrenia, and allergy. This study aimed at identifying the influence of several selected substances on a transport efficiency of bovine BCM7 through an intestinal monolayer in a Caco-2 cell model system. Applying the ELISA method, the permeability coefficient of BCM7 through the Caco-2 monolayer was calculated. TEER values were used to evaluate the integrity of Caco-2 cell monolayers. An increase of glucose and Ca(2+) concentrations in the culture medium was accompanied by an increase of the BCM7 transport efficiency. The lowest permeability coefficients of BCM7 were observed for the membranes with high electrical resistances. The transport was enhanced in the presence of milk infant formulas, whereas no changes were observed when using μ-opioid receptor antagonist (casoxin-6). The results may be useful in understanding the pathogenesis of inflammation and food allergy in infants.

  12. Flos Lonicera ameliorates obesity and associated endotoxemia in rats through modulation of gut permeability and intestinal microbiota.

    Directory of Open Access Journals (Sweden)

    Jing-Hua Wang

    ameliorates obesity and related metabolic endotoxemia via regulating distribution of gut flora and gut permeability.

  13. Photothermal configuration applied to the study of water vapor permeability in biodegradable films under several water activities

    Science.gov (United States)

    Lopez-Bueno, G.; Martín-Martínez, E. San; Cruz-Orea, A.; Tomas, S. A.; Tufiño, M.; Sanchez, F.

    2003-01-01

    A photothermal configuration was used to determine the water vapor permeability of biodegradable films (nixtamalized corn pericarps). The films were obtained from corn grains boiled in an alkaline solution containing water and Ca(OH)2. Samples were exposed to saturated salt solutions with relative humidity in the range 7%-97%. The water vapor diffusion coefficient was determined as a function of relative humidity. The obtained coefficients agreed with data available in the literature. It was also found that the photoacoustic amplitude shows a linear dependence on the water activity, in agreement with our theoretical model.

  14. Wireless multi-level terahertz amplitude modulator using active metamaterial-based spatial light modulation.

    Science.gov (United States)

    Rout, Saroj; Sonkusale, Sameer

    2016-06-27

    The ever increasing demand for bandwidth in wireless communication systems will inevitably lead to the extension of operating frequencies toward the terahertz (THz) band known as the 'THz gap'. Towards closing this gap, we present a multi-level amplitude shift keying (ASK) terahertz wireless communication system using terahertz spatial light modulators (SLM) instead of traditional voltage mode modulation, achieving higher spectral efficiency for high speed communication. The fundamental principle behind this higher efficiency is the conversion of a noisy voltage domain signal to a noise-free binary spatial pattern for effective amplitude modulation of a free-space THz carrier wave. Spatial modulation is achieved using an an active metamaterial array embedded with pseudomorphic high-electron mobility (pHEMT) designed in a consumer-grade galium-arsenide (GaAs) integrated circuit process which enables electronic control of its THz transmissivity. Each array is assembled as individually controllable tiles for transmissive terahertz spatial modulation. Using the experimental data from our metamaterial based modulator, we show that a four-level ASK digital communication system has two orders of magnitude improvement in symbol error rate (SER) for a degradation of 20 dB in transmit signal-to-noise ratio (SNR) using spatial light modulation compared to voltage controlled modulation. PMID:27410614

  15. Enzyme activities in the water column and in shallow permeable sediments from the northeastern Gulf of Mexico

    Science.gov (United States)

    Arnosti, C.; Ziervogel, K.; Ocampo, L.; Ghobrial, S.

    2009-09-01

    The activities of extracellular enzymes that initiate the microbial remineralization of high molecular weight organic matter were investigated in the water column and sandy surface sediments at two sites in the northeastern Gulf of Mexico. Six fluorescently labeled polysaccharides were hydrolyzed rapidly in the water column as well as in permeable sediments. This result contrasts with previous studies carried out in environments dominated by fine-grained muds, in which the spectrum of enzymes active in the water column is quite limited compared to that of the underlying sediments. Extracts of Spirulina, Isochrysis, and Thalassiosira were also used to measure hydrolysis rates in water from one of the sites. Rates of hydrolysis of the three plankton extracts were comparable to those of the purified polysaccharides. The broad spectrum and rapid rates of hydrolysis observed in the water column at both sites in the northeastern Gulf of Mexico may be due to the permeable nature of the sediments. Fluid flux through the sediments is sufficiently high that the entire 1.5 m deep water column could filter though the sediments on timescales of a few days to two weeks. Movement of water through sediments may also transport dissolved enzymes from the sediment into the water column, enhancing the spectrum as well as the rate of water column enzymatic activities. Such interaction between the sediments and water column would permit water column microbial communities to access high molecular weight substrates that might otherwise remain unavailable as substrates.

  16. An Evaluation of Subsurface Microbial Activity Conditional to Subsurface Temperature, Porosity, and Permeability at North American Carbon Sequestration Sites

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, B. [Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States); National Energy Technology Lab. (NETL), Albany, OR (United States); Mordensky, S. [Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States); National Energy Technology Lab. (NETL), Albany, OR (United States); Verba, Circe [National Energy Technology Lab. (NETL), Albany, OR (United States); Rabjohns, K. [Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States); National Energy Technology Lab. (NETL), Albany, OR (United States); Colwell, F. [National Energy Technology Lab. (NETL), Albany, OR (United States); Oregon State Univ., Corvallis, OR (United States). College of Earth, Ocean, and Atmospheric Sciences

    2016-06-21

    Several nations, including the United States, recognize global climate change as a force transforming the global ecosphere. Carbon dioxide (CO2) is a greenhouse gas that contributes to the evolving climate. Reduction of atmospheric CO2 levels is a goal for many nations and carbon sequestration which traps CO2 in the Earth’s subsurface is one method to reduce atmospheric CO2 levels. Among the variables that must be considered in developing this technology to a national scale is microbial activity. Microbial activity or biomass can change rock permeability, alter artificial seals around boreholes, and play a key role in biogeochemistry and accordingly may determine how CO2 is sequestered underground. Certain physical parameters of a reservoir found in literature (e.g., temperature, porosity, and permeability) may indicate whether a reservoir can host microbial communities. In order to estimate which subsurface formations may host microbes, this report examines the subsurface temperature, porosity, and permeability of underground rock formations that have high potential to be targeted for CO2 sequestration. Of the 268 North American wellbore locations from the National Carbon Sequestration Database (NATCARB; National Energy and Technology Laboratory, 2015) and 35 sites from Nelson and Kibler (2003), 96 sequestration sites contain temperature data. Of these 96 sites, 36 sites have temperatures that would be favorable for microbial survival, 48 sites have mixed conditions for supporting microbial populations, and 11 sites would appear to be unfavorable to support microbial populations. Future studies of microbe viability would benefit from a larger database with more formation parameters (e.g. mineralogy, structure, and groundwater chemistry), which would help to increase understanding of where CO2 sequestration could be most efficiently implemented.

  17. Modulation of intercellular junctions by cyclic-ADT peptides as a method to reversibly increase blood-brain barrier permeability.

    Science.gov (United States)

    Laksitorini, Marlyn D; Kiptoo, Paul K; On, Ngoc H; Thliveris, James A; Miller, Donald W; Siahaan, Teruna J

    2015-03-01

    It is challenging to deliver molecules to the brain for diagnosis and treatment of brain diseases. This is primarily because of the presence of the blood-brain barrier (BBB), which restricts the entry of many molecules into the brain. In this study, cyclic-ADT peptides (ADTC1, ADTC5, and ADTC6) have been shown to modify the BBB to enhance the delivery of marker molecules [e.g., (14) C-mannitol, gadolinium-diethylenetriaminepentacetate (Gd-DTPA)] to the brain via the paracellular pathways of the BBB. The hypothesis is that these peptides modulate cadherin interactions in the adherens junctions of the vascular endothelial cells forming the BBB to increase paracellular drug permeation. In vitro studies indicated that ADTC5 had the best profile to inhibit adherens junction resealing in Madin-Darby canine kidney cell monolayers in a concentration-dependent manner (IC50 = 0.3 mM) with a maximal response at 0.4 mM. Under the current experimental conditions, ADTC5 improved the delivery of (14) C-mannitol to the brain about twofold compared with the negative control in the in situ rat brain perfusion model. Furthermore, ADTC5 peptide increased in vivo delivery of Gd-DTPA to the brain of Balb/c mice when administered intravenously. In conclusion, ADTC5 has the potential to improve delivery of diagnostic and therapeutic agents to the brain.

  18. Topical antihistamines display potent anti-inflammatory activity linked in part to enhanced permeability barrier function

    DEFF Research Database (Denmark)

    Lin, Tzu-Kai; Man, Mao-Qiang; Santiago, Juan-Luis;

    2013-01-01

    dermatitis), topical H1/2r agonists aggravated, whereas H1/2r antagonists improved, inflammation and/or barrier function. The apparent ability of topical H1r/2r antagonists to target epidermal H1/2r could translate into increased efficacy in the treatment of inflammatory dermatoses, likely due to decreased...... express both Hr1 and Hr2, we hypothesized that H1/2r antagonists might be more effective if they were used topically to treat inflammatory dermatoses. Topical H1/2r antagonists additively enhanced permeability barrier homeostasis in normal mouse skin by the following mechanisms: (i) stimulation...... of epidermal differentiation, leading to thickened cornified envelopes; and (ii) enhanced epidermal lipid synthesis and secretion. As barrier homeostasis was enhanced to a comparable extent in mast cell-deficient mice, with no further improvement following application of topical H1/2r antagonists, H1/2r...

  19. Optimal Coding Predicts Attentional Modulation of Activity in Neural Systems

    OpenAIRE

    Jaramillo, Santiago; Pearlmutter, Barak A.

    2007-01-01

    Neuronal activity in response to a fixed stimulus has been shown to change as a function of attentional state, implying that the neural code also changes with attention. We propose an information-theoretic account of such modulation: that the nervous system adapts to optimally encode sensory stimuli while taking into account the changing relevance of different features. We show using computer simulation that such modulation emerges in a coding system informed about the uneven relevance of ...

  20. Network-dependent modulation of brain activity during sleep

    OpenAIRE

    Watanabe, T.; Kan, S.; Koike, T.; Misaki, M; Konishi, S.; Miyauchi, S; Miyahsita, Y.; Masuda, N.

    2014-01-01

    Brain activity dynamically changes even during sleep. A line of neuroimaging studies has reported changes in functional connectivity and regional activity across different sleep stages such as slow-wave sleep (SWS) and rapid-eye-movement (REM) sleep. However, it remains unclear whether and how the large-scale network activity of human brains changes within a given sleep stage. Here, we investigated modulation of network activity within sleep stages by applying the pairwise maximum entropy mod...

  1. Intracellular protease activation in apoptosis and cell-mediated cytotoxicity characterized by cell-permeable fluorogenic protease substrates

    Institute of Scientific and Technical Information of China (English)

    Beverly Z Packard; Akira Komoriya

    2008-01-01

    Over the past decade the importance of signaling from reporter molecules inside live cells and tissues has been clearly established. Biochemical events related to inflammation, tumor metastasis and proliferation, and viral infectivity and replication are examples of processes being further defined as more molecular tools for live cell measurements become available. Moreover, in addition to quantitating parameters related to physiologic processes, real-time imaging of molecular interactions that compose basic cellular activities are providing insights into understanding disease mechanisms as well as extending clinical efficacy of therapeutic regimens. In this review the use of highly cell-permeable fluorogenic substrates that report protease activities inside live cells is described; applications to defining the molecular events of two cellular processes, i.e., apoptosis and cell-mediated cytotoxicity, are then illustrated.

  2. Seasonal Modulation of Earthquake Swarm Activity Near Maupin, Oregon

    Science.gov (United States)

    Braunmiller, J.; Nabelek, J.; Trehu, A. M.

    2012-12-01

    Between December 2006 and November 2011, the Pacific Northwest Seismic Network (PNSN) reported 464 earthquakes in a swarm about 60 km east-southeast of Mt. Hood near the town of Maupin, Oregon. Relocation of forty-five MD≥2.5 earthquakes and regional moment tensor analysis of nine 3.3≤Mw≤3.9 earthquakes reveals a north-northwest trending, less than 1 km2 sized active fault patch on a 70° west dipping fault. At about 17 km depth, the swarm occurred at or close to the bottom of the seismogenic crust. The swarm's cumulative seismic moment release, equivalent to an Mw=4.4 earthquake, is not dominated by a single shock; it is rather mainly due to 20 MD≥3.0 events, which occurred throughout the swarm. The swarm started at the southern end and, during the first 18 months of activity, migrated to the northwest at a rate of about 1-2 m/d until reaching its northern terminus. A 10° fault bend, inferred from locations and fault plane solutions, acted as geometrical barrier that temporarily halted event migration in mid-2007 before continuing north in early 2008. The slow event migration points to a pore pressure diffusion process suggesting the swarm onset was triggered by fluid inflow into the fault zone. At 17 km depth, triggering by meteoritic water seems unlikely for a normal crustal permeability. The double couple source mechanisms preclude a magmatic intrusion at the depth of the earthquakes. However, fluids (or gases) associated with a deeper, though undocumented, magma injection beneath the Cascade Mountains, could trigger seismicity in a pre-stressed region when they have migrated upward and reached the seismogenic crust. Superimposed on overall swarm evolution, we found a statistically significant annual seismicity variation, which is likely surface driven. The annual seismicity peak during spring (March-May) coincides with the maximum snow load on the near-by Cascades. The load corresponds to a surface pressure variation of about 6 kPa, which likely

  3. Double, double, (but mostly) toil, and trouble: A multidisciplinary approach to quantify the permeability of an active volcanic hydrothermal system (Whakaari volcano, New Zealand)

    Science.gov (United States)

    Heap, Michael; Kennedy, Ben; Farquharson, Jamie; Ashworth, James; Mayer, Klaus; Letham-Brake, Mark; Reuschlé, Thierry; Gilg, Albert; Scheu, Betty; Lavallée, Yan; Siratovich, Paul; Cole, Jim; Jolly, Art; Dingwell, Donald

    2016-04-01

    Our multidisciplinary approach, which combines field techniques and traditional laboratory methods, aims to better understand the permeability of an active volcanic hydrothermal system, a vital prerequisite for understanding and modelling the behaviour of hydrothermal systems worldwide. Whakaari volcano (an active stratovolcano located 48 km off New Zealand's North Island) hosts an open, highly reactive hydrothermal system (hot springs and mud pools, fumaroles, acid streams and lakes) and represents an ideal natural laboratory to undertake such a study. We first gained an appreciation of the different lithologies at Whakaari and (where possible) their lateral and vertical extent through reconnaissance by land, sea, and air. Due to the variable nature of these altered lithologies (mainly lavas and tuffs), we measured porosity-permeability for in excess of a hundred rock hand samples using field techniques. We also measured the permeability of recent, unconsolidated deposits using a field soil permeameter. Our field measurements were then groundtruthed on a subset of these samples (~40-50) using traditional laboratory techniques: helium pycnometry and measurements of permeability using a benchtop permeameter, including measurements under increasing confining pressure (i.e., depth). In all, our measurements highlight that the porosity of the materials at Whakaari can vary from ~0.01 to ~0.6, and permeability can vary by eight orders of magnitude. However, our data show no discernable trend between porosity and permeability. A combination of macroscopic and microscopic observations, chemistry (XRF), mineralogy (XRD), and mercury porosimetry highlight that the absence of a robust porosity-permeability relationship is the product of an insane variability in alteration and microstructure (pore size, particle size, pore connectivity, presence/absence of microcracks, layering, amongst others). While our systematic study offers the most complete porosity-permeability dataset

  4. Intestinal permeability and malabsorption of rifampin and isoniazid in active pulmonary tuberculosis

    Directory of Open Access Journals (Sweden)

    Valéria G. F. Pinheiro

    2006-12-01

    Full Text Available Low antimycobacterial drug concentrations have been observed in tuberculosis (TB patients under treatment. The lactulose/mannitol urinary excretion test (L/M, normally used to measure intestinal permeability, may be useful to assess drug absorption. The objective of this research was to study intestinal absorptive function and bioavailability of rifampin and isoniazid in TB patients. A cross sectional study was done with 41 patients and 28 healthy controls, using the L/M test. The bioavailabilities of rifampin (R and isoniazid (H were evaluated in 18 patients receiving full doses. Urinary excretion of mannitol and lactulose, measured by HPLC, was significantly lower in TB patients. The serum concentrations of the drugs were below the expected range for R (8-24 mcg/mL or H (3-6 mcg/mL in 16/18 patients. Analyzing the drugs individually, 12/18 patients had low serum concentrations of R, 13/18 for H and 8/18 for both drugs. We suggest that there is a decrease in the functional absorptive area of the intestine in TB patients, which would explain the reduced serum concentrations of antituberculosis drugs. There is a need for new approaches to improve drug bioavailability in TB patients.

  5. Nitroprusside modulates pulmonary vein arrhythmogenic activity

    Directory of Open Access Journals (Sweden)

    Chen Yao-Chang

    2010-03-01

    Full Text Available Abstract Background Pulmonary veins (PVs are the most important sources of ectopic beats with the initiation of paroxysmal atrial fibrillation, or the foci of ectopic atrial tachycardia and focal atrial fibrillation. Elimination of nitric oxide (NO enhances cardiac triggered activity, and NO can decrease PV arrhythmogensis through mechano-electrical feedback. However, it is not clear whether NO may have direct electrophysiological effects on PV cardiomyocytes. This study is aimed to study the effects of nitroprusside (NO donor, on the ionic currents and arrhythmogenic activity of single cardiomyocytes from the PVs. Methods Single PV cardiomyocytes were isolated from the canine PVs. The action potential and ionic currents were investigated in isolated single canine PV cardiomyocytes before and after sodium nitroprusside (80 μM, using the whole-cell patch clamp technique. Results Nitroprusside decreased PV cardiomyocytes spontaneous beating rates from 1.7 ± 0.3 Hz to 0.5 ± 0.4 Hz in 9 cells (P Conclusion Nitroprusside regulates the electrical activity of PV cardiomyocytes, which suggests that NO may play a role in PV arrhythmogenesis.

  6. [Peptidergic modulation of the hippocampus synaptic activity].

    Science.gov (United States)

    Skrebitskiĭ, V G; Kondratenko, R V; Povarov, I S; Dereviagin, V I

    2011-11-01

    Effects of two newly synthesized nootropic and anxiolytic dipeptides: Noopept and Selank on inhibitory synaptic transmission in hippocampal CA1 pyramidal cells were investigated using patch-clamp technique in whole-cell configuration. Bath application of Noopept (1 microM) or Selank (2 microM) significantly increased the frequency of spike-dependent spontaneous m1PSCs, whereas spike-independent mlPSCs remained unchanged. It was suggested that both peptides mediated their effect sue to activation of inhibitory interneurons terminating on CA1 pyramidal cells. Results of current clamp recording of inhibitory interneurons residing in stratum radiatum confirmed this suggestion, at least for Noonent. PMID:22390072

  7. Hydrophobic core flexibility modulates enzyme activity in HIV-1 protease

    OpenAIRE

    Mittal, Seema; Cai, Yufeng; Nalam, Madhavi N.; Bolon, Daniel N. A.; Schiffer, Celia A.

    2012-01-01

    Human immunodeficiency virus Type-1 (HIV-1) protease is crucial for viral maturation and infectivity. Studies of protease dynamics suggest that the rearrangement of the hydrophobic core is essential for enzyme activity. Many mutations in the hydrophobic core are also associated with drug resistance and may modulate the core flexibility. To test the role of flexibility in protease activity, pairs of cysteines were introduced at the interfaces of flexible regions remote from the active site. Di...

  8. Epithelial sodium channel modulates platelet collagen activation.

    Science.gov (United States)

    Cerecedo, Doris; Martínez-Vieyra, Ivette; Alonso-Rangel, Lea; Benítez-Cardoza, Claudia; Ortega, Arturo

    2014-03-01

    Activated platelets adhere to the exposed subendothelial extracellular matrix and undergo a rapid cytoskeletal rearrangement resulting in shape change and release of their intracellular dense and alpha granule contents to avoid hemorrhage. A central step in this process is the elevation of the intracellular Ca(2+) concentration through its release from intracellular stores and on throughout its influx from the extracellular space. The Epithelial sodium channel (ENaC) is a highly selective Na(+) channel involved in mechanosensation, nociception, fluid volume homeostasis, and control of arterial blood pressure. The present study describes the expression, distribution, and participation of ENaC in platelet migration and granule secretion using pharmacological inhibition with amiloride. Our biochemical and confocal analysis in suspended and adhered platelets suggests that ENaC is associated with Intermediate filaments (IF) and with Dystrophin-associated proteins (DAP) via α-syntrophin and β-dystroglycan. Migration assays, quantification of soluble P-selectin, and serotonin release suggest that ENaC is dispensable for migration and alpha and dense granule secretion, whereas Na(+) influx through this channel is fundamental for platelet collagen activation.

  9. Introduction of an active enzyme into permeable cells of Escherichia coli

    International Nuclear Information System (INIS)

    Plasmolysed cells of Escherichia coli N212 (uvrA recA) acquired ultraviolet resistance when the cells were exposed to high concentrations of T4 endonuclease V. With increasing concentrations of T4 enzyme, survivals of plasmolysed cells after ultraviolet irradiation increased while colony-forming ability of unirradiated plasmolysed cells was not significantly affected by the enzyme treatment. Under appropriate conditions more than 200 fold increase in survivals was observed. When plasmolysed cells were treated with a pre-heated enzyme preparation or enzyme fractions derived from T4v1 (endonuclease V-deficient mutant)-infected cells, only little or no reactivation took place. Permeabilization of cells prior to the enzyme treatment was essential for the effective reactivation. Treatment of intact cells with the T4 enzyme did not cause any reactivation. Cells treated with 20mMEGTA or 50mM CaCl2 in cold were reactivated to certain extents by the enzyme, but the extents of the reactivation were far less compared to those of plasmolysed cells. Plasmolysed cells of strains carrying a mutation in one of uvrA, uvrB and uvrC genes were reactivated by introduction of T4 endonuclease V, as was the uvrA recA double mutant. UvrD mutants were also reactivated, but rather slightly. However, wild type strain as well as strains having a mutation in recA or polA gene were not reactivated. From these results it was suggested that T4 endonuclease V, taken up into permeable cells, can function in vivo to replace defective functions, which are controlled by the uvr genes. The conditions established in the present study may be used for introduction of other proteins into viable bacterial cells. (orig.)

  10. Total Cellular RNA Modulates Protein Activity.

    Science.gov (United States)

    Majumder, Subhabrata; DeMott, Christopher M; Reverdatto, Sergey; Burz, David S; Shekhtman, Alexander

    2016-08-16

    RNA constitutes up to 20% of a cell's dry weight, corresponding to ∼20 mg/mL. This high concentration of RNA facilitates low-affinity protein-RNA quinary interactions, which may play an important role in facilitating and regulating biological processes. In the yeast Pichia pastoris, the level of ubiquitin-RNA colocalization increases when cells are grown in the presence of dextrose and methanol instead of methanol as the sole carbon source. Total RNA isolated from cells grown in methanol increases β-galactosidase activity relative to that seen with RNA isolated from cells grown in the presence of dextrose and methanol. Because the total cellular RNA content changes with growth medium, protein-RNA quinary interactions can alter in-cell protein biochemistry and may play an important role in cell adaptation, critical to many physiological and pathological states. PMID:27456029

  11. Chemoprotective activity of boldine: modulation of drug-metabolizing enzymes.

    Science.gov (United States)

    Kubínová, R; Machala, M; Minksová, K; Neca, J; Suchý, V

    2001-03-01

    Possible chemoprotective effects of the naturally occurring alkaloid boldine, a major alkaloid of boldo (Peumus boldus Mol.) leaves and bark, including in vitro modulations of drug-metabolizing enzymes in mouse hepatoma Hepa-1 cell line and mouse hepatic microsomes, were investigated. Boldine manifested inhibition activity on hepatic microsomal CYP1A-dependent 7-ethoxyresorufin O-deethylase and CYP3A-dependent testosterone 6 beta-hydroxylase activities and stimulated glutathione S-transferase activity in Hepa-1 cells. In addition to the known antioxidant activity, boldine could decrease the metabolic activation of other xenobiotics including chemical mutagens. PMID:11265593

  12. Application of Discontinuous PWM Modulation in Active Power Filters

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Asiminoaei, Lucian; Rodriguez, Pedro

    2008-01-01

    Classical discontinuous pulsewidth modulations (DPWMs) may not be efficiently applied in active power filters (APFs), because it is hard to predict the peak values of the inverter current, and consequently it is difficult to calculate the position of the clamped interval, that minimizes the switc...

  13. Solar active envelope module with an adjustable transmittance/absorptance

    Directory of Open Access Journals (Sweden)

    C. Villasante Villasante

    2015-06-01

    Full Text Available A solar active envelope module with a high flexibility degree is proposed in this paper. The transparent module controls the day-lighting of the room, improving the indoor environment, while absorbing the superfluous solar energy inside. That energy is used to increase the efficiency of heating, ventilation, and the air-conditioning (HVAC system of the building. This is carried out through a fine control of the absorptance of the envelope module. The active envelope module consists of three glazed chambers with advanced coatings and frames to assure a minimum thermal transmittance while allowing transparency. A fluid containing heat-absorbing nanoparticles flows inside the central chamber and is heated up due to the impinging solar energy. Unlike other systems proposed in the past, which included transparency control systems based on complex filters and chemical processes, the absorption of the module is controlled by the variation of the thickness of the central chamber with a mechanical device. That is, varying the thickness of the central chamber, it allows controlling the absorptance of the whole system and, as a result, indoor day-lighting and thermal loads. Therefore, a new system is proposed that enables to:  

  14. Hydrophobic Core Flexibility Modulates Enzyme Activity in HIV-1 Protease

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, Seema; Cai, Yufeng; Nalam, Madhavi N.L.; Bolon, Daniel N.A.; Schiffer, Celia A. (UMASS, MED)

    2012-09-11

    Human immunodeficiency virus Type-1 (HIV-1) protease is crucial for viral maturation and infectivity. Studies of protease dynamics suggest that the rearrangement of the hydrophobic core is essential for enzyme activity. Many mutations in the hydrophobic core are also associated with drug resistance and may modulate the core flexibility. To test the role of flexibility in protease activity, pairs of cysteines were introduced at the interfaces of flexible regions remote from the active site. Disulfide bond formation was confirmed by crystal structures and by alkylation of free cysteines and mass spectrometry. Oxidized and reduced crystal structures of these variants show the overall structure of the protease is retained. However, cross-linking the cysteines led to drastic loss in enzyme activity, which was regained upon reducing the disulfide cross-links. Molecular dynamics simulations showed that altered dynamics propagated throughout the enzyme from the engineered disulfide. Thus, altered flexibility within the hydrophobic core can modulate HIV-1 protease activity, supporting the hypothesis that drug resistant mutations distal from the active site can alter the balance between substrate turnover and inhibitor binding by modulating enzyme activity.

  15. Synergistic inhibition of T-cell activation by a cell-permeable ZAP-70 mutant and ctCTLA-4

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyun-Do [Department of Biotechnology, Yonsei University, Seodaemun-Gu, Shinchon-Dong 134, Seoul 120-749 (Korea, Republic of); Choi, Je-Min; Chae, Wook-Jin [Department of Immunobiology, Yale University School of Medicine, New Haven CT 06520 (United States); Lee, Sang-Kyou, E-mail: sjrlee@yonsei.ac.kr [Department of Biotechnology, Yonsei University, Seodaemun-Gu, Shinchon-Dong 134, Seoul 120-749 (Korea, Republic of); ForHumanTech Co., Ltd., Kowoon Institute of Technology Innovation, Bldg. 706, Suwon (Korea, Republic of)

    2009-04-10

    T-cell activation requires TcR-mediated and co-stimulatory signals. ZAP-70 participates in the initial step of TcR signal transduction, while a co-receptor, CTLA-4, inhibits T-cell activation. In previous studies, the overexpression of a ZAP-70 mutant (ZAP-70-Y319F) inhibited the TcR-induced activation of NFAT and IL-2 production, while Hph-1-ctCTLA-4 prevented allergic inflammation. To develop an effective immunosuppressive protein drug that blocks both TcR-mediated and co-stimulatory signaling pathways, a fusion protein of ZAP-70-Y319F and the Hph-1 protein transduction domain was generated. Hph-1-ZAP-70-Y319F inhibited the phosphorylation of ZAP-70-Tyr{sup 319}, LAT-Tyr{sup 191}, and p44/42 MAPK induced by TcR stimulation, NFAT- and AP-1-mediated gene transcription, and the induction of CD69 expression and IL-2 secretion. Hph-1-ZAP-70-Y319F and Hph-1-ctCTLA-4 synergistically inhibited signaling events during T-cell activation. This is the first report to demonstrate the synergistic inhibition of signals transmitted via TcR and its co-stimulatory receptor by cell-permeable forms of intracellular signal mediators.

  16. Performance of iron filings and activated sludge as media for permeable reactive barriers to treat zinc contaminated groundwater

    Directory of Open Access Journals (Sweden)

    Chayapat Hassapak

    2015-02-01

    Full Text Available Zinc is one of the important contaminants in groundwater. Removal of zinc by iron filings, activated sludge and lateritic soil was studied with batch test. The lowest optimum pH for removal of zinc by iron filings, activated sludge and lateritic soil was 6. From isotherm studies iron filings and activated sludge were chosen as media for permeable reactive barrier (PRB. The PRB of 0.5-m thick was simulated in the unconfined aquifer with the distance of 21.5 m downgradient of the zinc contaminated site having constant concentration of 100 mg/l. The groundwater flow in the site was induced by the hydraulic gradient of 0.02. Simulation results indicated that the concentration of zinc of treated groundwater was less than 5 mg/l, which met Thai Groundwater Quality Standard for Drinking Purposes. The continuous PRBs using iron filings and activated sludge could treat zinc for 2,170 and 2,248 days, respectively

  17. The Influence of Gasotransmitters on Membrane Permeability and Activity of Tonoplast H+-ATPase Under Oxidative Stress

    Directory of Open Access Journals (Sweden)

    E.V. Spiridonova

    2016-05-01

    Full Text Available The investigation of the influence of gasotransmitters – a new class of signaling molecules – on the root tissues of red beet (Beta vulgaris L. was conducted. It was found, that hydrogen sulfide (H2S had some stabilizing effect on cellular membranes, reducing their permeability detected with the aid of conductometric technique. The reliable influence of carbon monoxide (CO and nitrogen oxide (NO in our experiments was not observed. A significant increase in efflux of electrolytes from beet tissue under oxidative stress was observed. The addition of gasotransmitters failed to reduce it reliably. Under normal conditions, no appreciable effect of gasotransmitters on tonoplast H+-ATPase transport activity was found. Under oxidative stress, NO and H2S increased the H+-ATPase activity, reduced significantly by the impact of hydrogen peroxide, but did not recover it completely. CO enhanced the negative impact of oxidative stress, and reduced H+-ATPase transport activity. The results obtained suggest a possible conclusion that the gaseous signaling molecules take part in the regulation of transport processes in plant cell through the control of H+-ATPase activity under oxidative stress.

  18. Neuronal modulation of calcium channel activity in cultured rat astrocytes.

    OpenAIRE

    Corvalan, V; Cole, R; de Vellis, J.; Hagiwara, S.

    1990-01-01

    The patch-clamp technique was used to study whether cocultivation of neurons and astrocytes modulates the expression of calcium channel activity in astrocytes. Whole-cell patch-clamp recordings from rat brain astrocytes cocultured with rat embryonic neurons revealed two types of voltage-dependent inward currents carried by Ca2+ and blocked by either Cd2+ or Co2+ that otherwise were not detected in purified astrocytes. This expression of calcium channel activity in astrocytes was neuron depend...

  19. Comparison of Linear and Cyclic His-Ala-Val Peptides in Modulating the Blood-Brain Barrier Permeability: Impact on Delivery of Molecules to the Brain.

    Science.gov (United States)

    Alaofi, Ahmed; On, Ngoc; Kiptoo, Paul; Williams, Todd D; Miller, Donald W; Siahaan, Teruna J

    2016-02-01

    The aim of this study is to evaluate the effect of peptide cyclization on the blood-brain barrier (BBB) modulatory activity and plasma stability of His-Ala-Val peptides, which are derived from the extracellular 1 domain of human E-cadherin. The activities to modulate the intercellular junctions by linear HAV4 (Ac-SHAVAS-NH2), cyclic cHAVc1 (Cyclo(1,8)Ac-CSHAVASC-NH2), and cyclic cHAVc3 (Cyclo(1,6)Ac-CSHAVC-NH2) were compared in in vitro and in vivo BBB models. Linear HAV4 and cyclic cHAVc1 have the same junction modulatory activities as assessed by in vitro MDCK monolayer model and in situ rat brain perfusion model. In contrast, cyclic cHAVc3 was more effective than linear HAV4 in modulating MDCK cell monolayers and in improving in vivo brain delivery of Gd-DTPA on i.v. administration in Balb/c mice. Cyclic cHAVc3 (t1/2 = 12.95 h) has better plasma stability compared with linear HAV4 (t1/2 = 2.4 h). The duration of the BBB modulation was longer using cHAVc3 (2-4 h) compared with HAV4 (<1 h). Both HAV4 and cHAVc3 peptides also enhanced the in vivo brain delivery of IRdye800cw-PEG (25 kDa) as detected by near IR imaging. The result showed that cyclic cHAVc3 peptide had better activity and plasma stability than linear HAV4 peptide.

  20. Contextual modulation of hippocampal activity during picture naming.

    Science.gov (United States)

    Llorens, A; Dubarry, A-S; Trébuchon, A; Chauvel, P; Alario, F-X; Liégeois-Chauvel, C

    2016-08-01

    Picture naming is a standard task used to probe language processes in healthy and impaired speakers. It recruits a broad neural network of language related areas, among which the hippocampus is rarely included. However, the hippocampus could play a role during picture naming, subtending, for example, implicit learning of the links between pictured objects and their names. To test this hypothesis, we recorded hippocampal activity during plain picture naming, without memorization requirement; we further assessed whether this activity was modulated by contextual factors such as repetition priming and semantic interference. Local field potentials recorded from intracerebral electrodes implanted in the healthy hippocampi of epileptic patients revealed a specific and reliable pattern of activity, markedly modulated by repetition priming and semantic context. These results indicate that the hippocampus is recruited during picture naming, presumably in relation to implicit learning, with contextual factors promoting differential hippocampal processes, possibly subtended by different sub-circuitries. PMID:27380274

  1. Effects of ε-viniferin, a dehydrodimer of resveratrol, on transepithelial active ion transport and ion permeability in the rat small and large intestinal mucosa.

    Science.gov (United States)

    Karaki, Shin-Ichiro; Ishikawa, Junji; Tomizawa, Yuka; Kuwahara, Atsukazu

    2016-05-01

    ε-Viniferin is a dehydrodimer of resveratrol, a polyphenol synthesized in many plants, including grapevine. The present study investigated the effects of ε-viniferin and resveratrol on epithelial secretory and barrier functions in isolated rat small and large intestinal mucosa. Mucosa-submucosa tissue preparations of various segments of the rat large and small intestines were mounted on Ussing chambers, and short-circuit current (Isc) and tissue conductance (Gt) were continuously measured. The mucosal addition of ε-viniferin (>10(-5) mol/L) and resveratrol (>10(-4) mol/L) to the cecal mucosa, which was the most sensitive region, induced an increase in Isc and a rapid phase decrease (P-1) followed by rapid (P-2) and broad (P-3) peak increases in Gt in concentration-dependent manners. Mucosal ε-viniferin (10(-4) mol/L), but not resveratrol (10(-4) mol/L), increased the permeability of FITC-conjugated dextran (4 kDa). The mucosal ε-viniferin-evoked changes in Isc (Cl(-) secretion), but not in Gt, were attenuated by a selective cyclooxygenase (COX)-1 inhibitor and a selective EP4 prostaglandin receptor. The mucosal ε-viniferin-evoked increase in Isc was partially attenuated, and P-2, but not P-1 or P-3, change in Gt was abolished by a transient receptor potential cation channel, subfamily A, member 1 (TRPA1) inhibitor. Moreover, the mucosal ε-viniferin concentration-dependently attenuated the mucosal propionate (1 mmol/L)-evoked increases in Isc and Gt Immunohistochemical studies revealed COX-1-immunoreactive epithelial cells in the cecal crypt. The present study showed that mucosal ε-viniferin modulated transepithelial ion transport and permeability, possibly by activating sensory epithelial cells expressing COX-1 and TRPA1. Moreover, mucosal ε-viniferin decreased mucosal sensitivity to other luminal molecules such as short-chain fatty acids. In conclusion, these results suggest that ε-viniferin modifies intestinal mucosal transport and barrier

  2. Effects of ε-viniferin, a dehydrodimer of resveratrol, on transepithelial active ion transport and ion permeability in the rat small and large intestinal mucosa.

    Science.gov (United States)

    Karaki, Shin-Ichiro; Ishikawa, Junji; Tomizawa, Yuka; Kuwahara, Atsukazu

    2016-05-01

    ε-Viniferin is a dehydrodimer of resveratrol, a polyphenol synthesized in many plants, including grapevine. The present study investigated the effects of ε-viniferin and resveratrol on epithelial secretory and barrier functions in isolated rat small and large intestinal mucosa. Mucosa-submucosa tissue preparations of various segments of the rat large and small intestines were mounted on Ussing chambers, and short-circuit current (Isc) and tissue conductance (Gt) were continuously measured. The mucosal addition of ε-viniferin (>10(-5) mol/L) and resveratrol (>10(-4) mol/L) to the cecal mucosa, which was the most sensitive region, induced an increase in Isc and a rapid phase decrease (P-1) followed by rapid (P-2) and broad (P-3) peak increases in Gt in concentration-dependent manners. Mucosal ε-viniferin (10(-4) mol/L), but not resveratrol (10(-4) mol/L), increased the permeability of FITC-conjugated dextran (4 kDa). The mucosal ε-viniferin-evoked changes in Isc (Cl(-) secretion), but not in Gt, were attenuated by a selective cyclooxygenase (COX)-1 inhibitor and a selective EP4 prostaglandin receptor. The mucosal ε-viniferin-evoked increase in Isc was partially attenuated, and P-2, but not P-1 or P-3, change in Gt was abolished by a transient receptor potential cation channel, subfamily A, member 1 (TRPA1) inhibitor. Moreover, the mucosal ε-viniferin concentration-dependently attenuated the mucosal propionate (1 mmol/L)-evoked increases in Isc and Gt Immunohistochemical studies revealed COX-1-immunoreactive epithelial cells in the cecal crypt. The present study showed that mucosal ε-viniferin modulated transepithelial ion transport and permeability, possibly by activating sensory epithelial cells expressing COX-1 and TRPA1. Moreover, mucosal ε-viniferin decreased mucosal sensitivity to other luminal molecules such as short-chain fatty acids. In conclusion, these results suggest that ε-viniferin modifies intestinal mucosal transport and barrier

  3. Vascular endothelial growth factor regulates angiogenesis and vascular permeability in Kaposi's sarcoma.

    OpenAIRE

    Cornali, E.; Zietz, C; Benelli, R; Weninger, W.; Masiello, L.; Breier, G; Tschachler, E; Albini, A; Stürzl, M

    1996-01-01

    Abundant vasculature with increased permeability is a prominent histological feature of Kaposi's sarcoma (KS), a multifocal, cytokine-regulated tumor. Here we report on the role of vascular endothelial growth factor (VEGF) in AIDS-KS angiogenesis and vascular permeability. We demonstrate that different cytokines, which were previously shown to be active in KS development, modulate VEGF expression in KS spindle cells and cooperate with VEGF on the functional level. Northern blot analysis as we...

  4. Optimized Pulse Width Modulation for transformerless active-NPC inverters

    DEFF Research Database (Denmark)

    Achilladelis, Nikolaos; Koutroulis, Eftichios; Blaabjerg, Frede

    2014-01-01

    The transformerless DC/AC inverter topologies are employed in Photovoltaic systems in order to improve the power conversion efficiency, power density and cost. The Active-Neutral Point Clamped (Active-NPC) transformerless inverters have the advantage of achieving better thermal balance among...... their power semiconductors. In this paper, a new modulation technique is proposed for optimally controlling the power switches employed in transformerless Active-NPC inverters. The design results demonstrate that compared to the existing PWM strategies, using the proposed method results in lower total power...

  5. Capsaicin modulates proliferation, migration, and activation of hepatic stellate cells.

    Science.gov (United States)

    Bitencourt, Shanna; Mesquita, Fernanda; Basso, Bruno; Schmid, Júlia; Ferreira, Gabriela; Rizzo, Lucas; Bauer, Moises; Bartrons, Ramon; Ventura, Francesc; Rosa, Jose Luis; Mannaerts, Inge; van Grunsven, Leo Adrianus; Oliveira, Jarbas

    2014-03-01

    Capsaicin, the active component of chili pepper, has been reported to have antiproliferative and anti-inflammatory effects on a variety of cell lines. In the current study, we aimed to investigate the effects of capsaicin during HSC activation and maintenance. Activated and freshly isolated HSCs were treated with capsaicin. Proliferation was measured by incorporation of EdU. Cell cycle arrest and apoptosis were investigated using flow cytometry. The migratory response to chemotactic stimuli was evaluated by a modified Boyden chamber assay. Activation markers and inflammatory cytokines were determined by qPCR, immunocytochemistry, and flow cytometry. Our results show that capsaicin reduces HSC proliferation, migration, and expression of profibrogenic markers of activated and primary mouse HSCs. In conclusion, the present study shows that capsaicin modulates proliferation, migration, and activation of HSC in vitro. PMID:23955514

  6. Permeable reactive barrier of surface hydrophobic granular activated carbon coupled with elemental iron for the removal of 2,4-dichlorophenol in water

    Energy Technology Data Exchange (ETDEWEB)

    Yang Ji, E-mail: yangji@ecust.edu.cn [School of Resources and Environmental Engineering, State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237 (China); Cao Limei; Guo Rui; Jia Jinping [School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2010-12-15

    Granular activated carbon was modified with dimethyl dichlorosilane to improve its surface hydrophobicity, and therefore to improve the performance of permeable reactive barrier constructed with the modified granular activated carbon and elemental iron. X-ray photoelectron spectroscopy shows that the surface silicon concentration of the modified granular activated carbon is higher than that of the original one, leading to the increased surface hydrophobicity. Although the specific surface area decreased from 895 to 835 m{sup 2} g{sup -1}, the modified granular activated carbon could adsorb 20% more 2,4-dichlorophenol than the original one did in water. It is also proven that the permeable reactive barrier with the modified granular activated carbon is more efficient at 2,4-dichlorophenol dechlorination, in which process 2,4-dichlorophenol is transformed to 2-chlorophenol or 4-chlorophenol then to phenol, or to phenol directly.

  7. Characterization of cutaneous vascular permeability induced by platelet-activating factor in guinea pigs and rats and its inhibition by a platelet-activating factor receptor antagonist

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, S.B.; Li, C.L.; Lam, M.H.; Shen, T.Y.

    1985-06-01

    Mechanisms of platelet-activating factor (PAF)-induced increases of cutaneous vascular permeability in guinea pigs and in rats were further explored. PAF so far is the most potent vasoactive mediator, being more than 1000-fold more potent than histamine and bradykinin in both species. In guinea pigs, there is a time delay of 5 to 10 minutes before PAF action, whereas, in the rat, the increased vasopermeability occurs immediately following the intradermal PAF injection. Relative vasoactive potencies of PAF and several structure-related analogues in both species correlate very well with their relative inhibition of the binding of /sup 3/H-PAF to specific receptor sites on isolated rabbit platelet plasma membranes and their aggregatory abilities of rabbit platelets. Furthermore, the PAF-induced cutaneous vascular permeability is inhibitable by a competitive specific PAF receptor antagonist, kadsurenone, suggesting that binding of PAF to its specific receptor site is the first step to initiate its action of increased cutaneous vascular permeability. Several pure cyclooxygenase inhibitors, including indomethacin, diflunisal, and flurbiprofen, and the dual cyclooxygenase/lipoxygenase inhibitor, BW755C, but not the histamine antagonists, inhibit the PAF-induced vasopermeability in guinea pigs. The inhibition by indomethacin or BW755C can be fully reversed by coinjection intradermally with PAF and prostaglandin E1 but not leukotriene B4. Also, prostaglandin E1 but not leukotriene B4 enhances the guinea pig in vivo response to PAF in this model. However, in rats, none of the cyclooxygenase inhibitors, histamine antagonists, or BW755C inhibit the PAF effect of cutaneous phenomena.

  8. Active removal of large massive objects by hybrid propulsion module

    OpenAIRE

    Luigi T. De Luca; Lavagna, Mich?le; Maggi, Filippo; Tadini, Pietro; Pardini, Carmen; Anselmo, Luciano; Grassi, Michele; Tancredi, Urbano; Francesconi, Alessandro; Chiesa, Sergio; Viola, Nicole; Bonnal, Christophe

    2013-01-01

    This paper deals with the feasibility study of a mission for the active removal of a large massive object, such as the second stage of the Zenit launcher or the Envisat spacecraft, abandoned in the most populated orbit region in low Earth orbit. Critical mission aspects and related technologies are investigated at a preliminary level. In particular, an innovative electro-adhesive system for target capture, mechanical systems for chaser-debris hard docking and a hybrid propulsion module for re...

  9. Target cell-specific modulation of neuronal activity by astrocytes

    OpenAIRE

    Kozlov, A. S.; Angulo, M. C.; Audinat, E.; Charpak, S

    2006-01-01

    Interaction between astrocytes and neurons enriches the behavior of brain circuits. By releasing glutamate and ATP, astrocytes can directly excite neurons and modulate synaptic transmission. In the rat olfactory bulb, we demonstrate that the release of GABA by astrocytes causes long-lasting and synchronous inhibition of mitral and granule cells. In addition, astrocytes release glutamate, leading to a selective activation of granule-cell NMDA receptors. Thus, by releasing excitatory and inhibi...

  10. Maternal antibiotic-induced early changes in microbial colonization selectively modulate colonic permeability and inducible heat shock proteins, and digesta concentrations of alkaline phosphatase and TLR-stimulants in swine offspring.

    Directory of Open Access Journals (Sweden)

    Marie-Edith Arnal

    Full Text Available Elevated intake of high energy diets is a risk factor for the development of metabolic diseases and obesity. High fat diets cause alterations in colonic microbiota composition and increase gut permeability to bacterial lipopolysaccharide, and subsequent low-grade chronic inflammation in mice. Chronic inflammatory bowel diseases are increasing worldwide and may involve alterations in microbiota-host dialog. Metabolic disorders appearing in later life are also suspected to reflect changes in early programming. However, how the latter affects the colon remains poorly studied. Here, we hypothesized that various components of colonic physiology, including permeability, ion exchange and protective inducible heat shock proteins (HSP are influenced in the short- and long-terms by early disturbances in microbial colonization. The hypothesis was tested in a swine model. Offspring were born to control mothers (n = 12 or mothers treated with the antibiotic (ATB amoxicillin around parturition (n = 11. Offspring were slaughtered between 14 and 42 days of age to study short-term effects. For long-term effects, young adult offspring from the same litters consumed a normal or a palm oil-enriched diet for 4 weeks between 140 and 169 days of age. ATB treatment transiently modified maternal fecal microbiota although the minor differences observed for offspring colonic microbiota were nonsignificant. In the short-term, consistently higher HSP27 and HSP70 levels and transiently increased horseradish peroxidase permeability in ATB offspring colon were observed. Importantly, long-term consequences included reduced colonic horseradish peroxidase permeability, and increased colonic digesta alkaline phosphatase (AP and TLR2- and TLR4-stimulant concentrations in rectal digesta in adult ATB offspring. Inducible HSP27 and HSP70 did not change. Interactions between early ATB treatment and later diet were noted for paracellular permeability and concentrations of colonic

  11. Evaluation of the Antidepressant Activity, Hepatotoxicity and Blood Brain Barrier Permeability of Methyl Genipin

    Directory of Open Access Journals (Sweden)

    Xin Che

    2016-07-01

    Full Text Available Geniposide (GE is the main bioactive component of Gardeniae Fructus. The hepatotoxicity of geniposide limited clinical application. In order to get a new geniposide derivative that has less hepatotoxicity and still possesses the antidepressant activity, a new C-1 hydroxyl methylation derivative named methyl genipin (MG was synthesized from geniposide. In the present study, we demonstrated that MG did not increase the liver index, alanine aminotransferase (ALT and aspirate aminotransferase (AST. Histopathological examination suggested that no toxic damages were observed in rats treated orally with MG (0.72 mmol/kg. More importantly, a 7-day treatment with MG at 0.13, 0.26, and 0.52 mmol/kg/day could reduce the duration of immobility. It showed that the antidepressant-like effects of MG were similar to GE in the tail suspension test and the forced swim test. Furthermore, we found MG could be detected in the brain homogenate of mice treated orally with MG 0.52 mmol/kg/day for 1 day by HPLC. The area under the curve (AUC of MG in the brain homogenate was enhanced to 21.7 times that of GE. The brain amount and distribution speed of MG were improved significantly after oral administration. This study demonstrated that MG possessed the antidepressant effects and could cross the blood–brain barrier, but had less hepatotoxicity.

  12. Cardioprotective effects of luteolin on ischemia/reperfusion injury in diabetic rats are modulated by eNOS and the mitochondrial permeability transition pathway.

    Science.gov (United States)

    Yang, Jin-Ting; Qian, Ling-Bo; Zhang, Feng-Jiang; Wang, Jue; Ai, Heng; Tang, Li-Hui; Wang, Hui-Ping

    2015-04-01

    Myocardial ischemia/reperfusion (I/R) injury in diabetes is associated with oxidative stress, endothelial nitric oxide synthase (eNOS) dysfunction, and mitochondrial collapse, whereas luteolin is known to protect the cardiovascular system against diabetes and I/R injury. Here, we investigated whether luteolin pretreatment diminishes myocardial I/R injury in diabetic rats by affecting eNOS and the mitochondrial permeability transition pore (mPTP). After diabetic rats were produced by streptozotocin treatment (65 mg/kg) for 3 weeks, luteolin (100 mg·kg·d) or L-NAME (25 mg·kg·d) was administered intragastrically for 2 weeks. Hearts were then isolated and subjected to 30 minutes of global ischemia followed by 120 minutes of reperfusion. Pretreatment with luteolin significantly improved left ventricular function and coronary flow throughout reperfusion, increased cardiac tissue viability and manganese superoxide dismutase (MnSOD) activity, and reduced coronary lactate dehydrogenase release, and the myocardial malonaldehyde level in diabetic I/R rat hearts. All these improving effects of luteolin were significantly attenuated by L-NAME. Luteolin also significantly upregulated eNOS expression in diabetic rat hearts after I/R. Ca-induced mPTP opening and mitochondrial inner membrane potential reduction were significantly inhibited in ventricular myocytes isolated from luteolin-treated diabetic rats, and this effect was attenuated by L-NAME. These findings indicate that luteolin protects the diabetic heart against I/R injury by upregulating the myocardial eNOS pathway, and downstream effects include the enhancement of MnSOD and inhibition of mPTP. PMID:25502309

  13. Protaphorura tricampata, a euedaphic and highly permeable springtail that can sustain activity by osmoregulation during extreme drought.

    Science.gov (United States)

    Holmstrup, Martin; Bayley, Mark

    2013-11-01

    We have investigated drought physiology of soil dwelling springtails since water availability is a key environmental factor governing their performance, and predictions of climate change suggest increased frequency and intensity of summer droughts. Here we show in field and laboratory experiments that the typical euedaphic springtail, Protaphorura tricampata, can survive extreme drought and remain active in soils where the water potential is much lower than equivalent to normal osmotic pressure of springtails. Euedaphic springtails (i.e. species living in deeper soil layers) have an extraordinary ability to up-regulate osmotic pressure of body fluids and prevent water loss in soils where the water potential has dropped to well below the permanent wilting percentage of plants. The ability to regulate osmotic pressure of body fluids is based on accumulation of compatible osmolytes such as sugars and free amino acids. Alanine was the most important osmolyte in P. tricampata and accumulated to concentrations of about 300μmolg(-1) dry weight. It is suggested that alanine also serves as a non-toxic storage of ammonia during drought periods where the normal urine production is hampered. The results presented here show, contrary to convention, that high cuticular permeability is not necessarily accompanied by poor drought tolerance, and is not a good predictor of drought susceptibility. PMID:24035747

  14. Heavy metal removal from MSWI fly ash by electrokinetic remediation coupled with a permeable activated charcoal reactive barrier

    Science.gov (United States)

    Huang, Tao; Li, Dongwei; Kexiang, Liu; Zhang, Yuewei

    2015-10-01

    This paper presents the investigations into the feasibility of the application of a remediation system that couples electrokinetic remediation (EKR) with the permeable reactive barrier (PRB) concept for municipal solid waste incineration (MSWI) fly ash with activated charcoal as the PRB material. The experimental results of this study showed that the proposed combined method can effectively improve the remediation efficiency and that the addition of the oxalic acid to the PRB media before the coupled system can further enhance the remediation process. In the optimization tests, the maximum removals of Zn, Pb, Cu and Cd were achieved under different experimental conditions. The voltage gradient and processing time were shown to have significant effects on the removal of Cu and Cd, whereas the addition of the oxalic acid had a more significant influence on the removal of Pb. Generally, the processing time is the most significant factor in changing the removal rates of HMs in the enhanced coupled system. In terms of the leaching toxicity, the specimen remediated by ENEKR + PRB showed the lowest leaching value for each HM in the S2 and S3 regions.

  15. Interaction of p190RhoGAP with C-terminal domain of p120-catenin modulates endothelial cytoskeleton and permeability.

    Science.gov (United States)

    Zebda, Noureddine; Tian, Yufeng; Tian, Xinyong; Gawlak, Grzegorz; Higginbotham, Katherine; Reynolds, Albert B; Birukova, Anna A; Birukov, Konstantin G

    2013-06-21

    p120-catenin is a multidomain intracellular protein, which mediates a number of cellular functions, including stabilization of cell-cell transmembrane cadherin complexes as well as regulation of actin dynamics associated with barrier function, lamellipodia formation, and cell migration via modulation of the activities of small GTPAses. One mechanism involves p120 catenin interaction with Rho GTPase activating protein (p190RhoGAP), leading to p190RhoGAP recruitment to cell periphery and local inhibition of Rho activity. In this study, we have identified a stretch of 23 amino acids within the C-terminal domain of p120 catenin as the minimal sequence responsible for the recruitment of p190RhoGAP (herein referred to as CRAD; catenin-RhoGAP association domain). Expression of the p120-catenin truncated mutant lacking the CRAD in endothelial cells attenuated effects of barrier protective oxidized phospholipid, OxPAPC. This effect was accompanied by inhibition of membrane translocation of p190RhoGAP, increased Rho signaling, as well as suppressed activation of Rac1 and its cytoskeletal effectors PAK1 (p21-activated kinase 1) and cortactin. Expression of p120 catenin-truncated mutant lacking CRAD also delayed the recovery process after thrombin-induced endothelial barrier disruption. Concomitantly, RhoA activation and downstream signaling were sustained for a longer period of time, whereas Rac signaling was inhibited. These data demonstrate a critical role for p120-catenin (amino acids 820-843) domain in the p120-catenin·p190RhoGAP signaling complex assembly, membrane targeting, and stimulation of p190RhoGAP activity toward inhibition of the Rho pathway and reciprocal up-regulation of Rac signaling critical for endothelial barrier regulation. PMID:23653363

  16. Modulation of zinc toxicity by tissue plasminogen activator.

    Science.gov (United States)

    Siddiq, Mustafa M; Tsirka, Stella E

    2004-01-01

    The tissue plasminogen activator (tPA)-plasmin proteolytic system mediates excitotoxin-induced neurodegeneration in vivo and in cell culture. tPA also confers neuroprotection from zinc toxicity in cell culture through a proteolysis-independent mechanism. This raises two questions: what is this non-enzymatic mechanism, and why tPA does not synergize with zinc to promote neuronal cell death? We show here that zinc binds to tPA and inhibits its activity in a dose-dependent fashion, thus terminating its protease-dependent neurotoxic capacity. We extend the previously reported culture findings to demonstrate that elevated zinc is neurotoxic in vivo, and even more so when tPA is absent. Thus, physiological levels of tPA confer protection from elevated free zinc. Mechanistically, tPA promotes movement of zinc into hippocampal neuron cells through voltage-sensitive Ca(2+) channels and Ca(2+)-permeable AMPA/KA channels. Therefore, zinc and tPA each appear to be able to limit the potential of the other to facilitate neurodegeneration, a reciprocal set of actions that may be critical in the hippocampus where tPA is secreted during the nonpathological conditions of learning and memory at sites known to be repositories of free and sequestered zinc.

  17. Abnormal Task Modulation of Oscillatory Neural Activity in Schizophrenia

    Directory of Open Access Journals (Sweden)

    Elisa C Dias

    2013-08-01

    Full Text Available Schizophrenia patients have deficits in cognitive function that are a core feature of the disorder. AX-CPT is commonly used to study cognition in schizophrenia, and patients have characteristic pattern of behavioral and ERP response. In AX-CPT subjects respond when a flashed cue A is followed by a target X, ignoring other letter combinations. Patients show reduced hit rate to go trials, and increased false alarms to sequences that require inhibition of a prepotent response. EEG recordings show reduced sensory (P1/N1, as well as later cognitive components (N2, P3, CNV. Behavioral deficits correlate most strongly with sensory dysfunction. Oscillatory analyses provide critical information regarding sensory/cognitive processing over and above standard ERP analyses. Recent analyses of induced oscillatory activity in single trials during AX-CPT in healthy volunteers showed characteristic response patterns in theta, alpha and beta frequencies tied to specific sensory and cognitive processes. Alpha and beta modulated during the trials and beta modulation over the frontal cortex correlated with reaction time. In this study, EEG data was obtained from 18 schizophrenia patients and 13 controls during AX-CPT performance, and single trial decomposition of the signal yielded power in the target wavelengths.Significant task-related event-related desynchronization (ERD was observed in both alpha and beta frequency bands over parieto-occipital cortex related to sensory encoding of the cue. This modulation was reduced in patients for beta, but not for alpha. In addition, significant beta ERD was observed over motor cortex, related to motor preparation for the response, and was also reduced in patients. These findings demonstrate impaired dynamic modulation of beta frequency rhythms in schizophrenia, and suggest that failures of oscillatory activity may underlie impaired sensory information processing in schizophrenia that in turn contributes to cognitive deficits.

  18. Quantification of active mitochondrial permeability transition pores using GNX-4975 inhibitor titrations provides insights into molecular identity

    Science.gov (United States)

    Richardson, Andrew P.; Halestrap, Andrew P.

    2016-01-01

    Inhibition of the mitochondrial permeability transition pore (MPTP) by the novel inhibitor GNX-4975 was characterized. Titration of MPTP activity in de-energized rat liver mitochondria allowed determination of the number of GNX-4975-binding sites and their dissociation constant (Ki). Binding sites increased in number when MPTP opening was activated by increasing [Ca2+], phenylarsine oxide (PAO) or KSCN, and decreased when MPTP opening was inhibited with bongkrekic acid (BKA) or ADP. Values ranged between 9 and 50 pmol/mg of mitochondrial protein, but the Ki remained unchanged at ∼1.8 nM when the inhibitor was added before Ca2+. However, when GNX-4975 was added after Ca2+ it was much less potent with a Ki of ∼140 nM. These data imply that a protein conformational change is required to form the MPTP complex and generate the GNX-4975-binding site. Occupation of the latter with GNX-4975 prevents the Ca2+ binding that triggers pore opening. We also demonstrated that GNX-4975 stabilizes an interaction between the adenine nucleotide translocase (ANT), held in its ‘c’ conformation with carboxyatractyloside (CAT), and the phosphate carrier (PiC) bound to immobilized PAO. No components of the F1Fo-ATP synthase bound significantly to immobilized PAO. Our data are consistent with our previous proposal that the MPTP may form at an interface between the PiC and ANT (or other similar mitochondrial carrier proteins) when they adopt novel conformations induced by factors that sensitize the MPTP to [Ca2+]. We propose that GNX-4975 binds to this interface preventing a calcium-triggered event that opens the interface into a pore. PMID:26920024

  19. Benthic exchange and biogeochemical cycling in permeable sediments.

    Science.gov (United States)

    Huettel, Markus; Berg, Peter; Kostka, Joel E

    2014-01-01

    The sandy sediments that blanket the inner shelf are situated in a zone where nutrient input from land and strong mixing produce maximum primary production and tight coupling between water column and sedimentary processes. The high permeability of the shelf sands renders them susceptible to pressure gradients generated by hydrodynamic and biological forces that modulate spatial and temporal patterns of water circulation through these sediments. The resulting dynamic three-dimensional patterns of particle and solute distribution generate a broad spectrum of biogeochemical reaction zones that facilitate effective decomposition of the pelagic and benthic primary production products. The intricate coupling between the water column and sediment makes it challenging to quantify the production and decomposition processes and the resultant fluxes in permeable shelf sands. Recent technical developments have led to insights into the high biogeochemical and biological activity of these permeable sediments and their role in the global cycles of matter.

  20. Modulating enzyme activity using ionic liquids or surfactants.

    Science.gov (United States)

    Goldfeder, Mor; Fishman, Ayelet

    2014-01-01

    One of the important strategies for modulating enzyme activity is the use of additives to affect their microenvironment and subsequently make them suitable for use in different industrial processes. Ionic liquids (ILs) have been investigated extensively in recent years as such additives. They are a class of solvents with peculiar properties and a "green" reputation in comparison to classical organic solvents. ILs as co-solvents in aqueous systems have an effect on substrate solubility, enzyme structure and on enzyme-water interactions. These effects can lead to higher reaction yields, improved selectivity, and changes in substrate specificity, and thus there is great potential for IL incorporation in biocatalysis. The use of surfactants, which are usually denaturating agents, as additives in enzymatic reactions is less reviewed in recent years. However, interesting modulations in enzyme activity in their presence have been reported. In the case of surfactants there is a more pronounced effect on the enzyme structure, as can be observed in a number of crystal structures obtained in their presence. For each additive and enzymatic process, a specific optimization process is needed and there is no one-fits-all solution. Combining ILs and surfactants in either mixed micelles or water-in-IL microemulsions for use in enzymatic reaction systems is a promising direction which may further expand the range of enzyme applications in industrial processes. While many reviews exist on the use of ILs in biocatalysis, the present review centers on systems in which ILs or surfactants were able to modulate and improve the natural activity of enzymes in aqueous systems. PMID:24281758

  1. Surface plasmon polariton modulator with optimized active layer

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Lavrinenko, Andrei

    2012-01-01

    applying voltage to electrodes the carrier density in the transparent conducting oxide layer (we study indium tin oxide - ITO) changes according to the Thomas-Fermi screening theory. We employ analytical solutions for a multilayered system as well as numerical simulations with the commercial software...... package CST Microwave Studio in the frequency domain. We explore different permittivities of the ITO layer, which can be achieved by utilizing different anneal conditions. To increase transmittance and enhance modulation depth or efficiency, we propose to pattern the continuous active layer. Dependence...

  2. EarthScope Content Module for IRIS Active Earth Monitor

    Science.gov (United States)

    McQuillan, P. J.; Welti, R.; Johnson, J. A.; Shiffman, C. R.; Olds, S. E.

    2012-12-01

    The Active Earth Monitor (AEM) is an interactive computer-based display for university lobbies, museums, visitor centers, schools and libraries. AEM runs in a standard Internet web browser in full screen mode. The display consists of a customizable set of content pages about plate tectonics, earthquakes, volcanoes and tsunamis. Low-cost and simple-to-implement, the Active Earth Monitor provides a way to engage audiences with earth science information without spending resources on a large exhibit. The EarthScope Active Earth Monitor content set highlights the connections between the landscape and the research and monitoring being conducted by EarthScope in partnership with regional monitoring networks. Modules consist of chapters that focus on What is EarthScope?, EarthScope Observatories, and EarthScope Research Results. Content topics are easily explored using a web page button type navigation interface via a touch screen or mouse. A formative evaluation of general public users informed the interface design. Chapters in the modules start with a general overview and proceed to detailed specifics. Each chapter utilizes at least one set of live or near real-time research data (often more than one). This exposes the general public to active ongoing research that is engaging, relevant to the individual user, and explained in easy to understand terms. All live content is updated each time a user accesses the individual page displaying the live data. Leading questions are presented allowing the user to examine the content before accessing the answer via pop-up box. Diagrams and charts of research data have explanatory keys that allow users to self explore all content. Content pages can be created and inserted in the Active Earth Monitor by utilizing the simple HTML/CSS coding.;

  3. Efficacy Coefficients Determined Using Nail Permeability and Antifungal Activity in Keratin-Containing Media Are Useful for Predicting Clinical Efficacies of Topical Drugs for Onychomycosis

    OpenAIRE

    Matsuda, Yoshiki; Sugiura, Keita; Hashimoto, Takashi; Ueda, Akane; Konno, Yoshihiro; TATSUMI, YOSHIYUKI

    2016-01-01

    Onychomycosis is difficult to treat topically due to the deep location of the infection under the densely keratinized nail plate. In order to obtain an in vitro index that is relevant to the clinical efficacy of topical anti-onychomycosis drugs, we profiled five topical drugs: amorolfine, ciclopirox, efinaconazole, luliconazole, and terbinafine, for their nail permeabilities, keratin affinities, and anti-dermatophytic activities in the presence of keratin. Efinaconazole and ciclopirox permeat...

  4. Integrated Brain Circuits: Astrocytic Networks Modulate Neuronal Activity and Behavior

    Science.gov (United States)

    Halassa, Michael M.; Haydon, Philip G.

    2011-01-01

    The past decade has seen an explosion of research on roles of neuron-astrocyte interactions in the control of brain function. We highlight recent studies performed on the tripartite synapse, the structure consisting of pre- and postsynaptic elements of the synapse and an associated astrocytic process. Astrocytes respond to neuronal activity and neuro-transmitters, through the activation of metabotropic receptors, and can release the gliotransmitters ATP, D-serine, and glutamate, which act on neurons. Astrocyte-derived ATP modulates synaptic transmission, either directly or through its metabolic product adenosine. D-serine modulates NMDA receptor function, whereas glia-derived glutamate can play important roles in relapse following withdrawal from drugs of abuse. Cell type–specific molecular genetics has allowed a new level of examination of the function of astrocytes in brain function and has revealed an important role of these glial cells that is mediated by adenosine accumulation in the control of sleep and in cognitive impairments that follow sleep deprivation. PMID:20148679

  5. The mechanical environment modulates intracellular calcium oscillation activities of myofibroblasts.

    Directory of Open Access Journals (Sweden)

    Charles Godbout

    Full Text Available Myofibroblast contraction is fundamental in the excessive tissue remodeling that is characteristic of fibrotic tissue contractures. Tissue remodeling during development of fibrosis leads to gradually increasing stiffness of the extracellular matrix. We propose that this increased stiffness positively feeds back on the contractile activities of myofibroblasts. We have previously shown that cycles of contraction directly correlate with periodic intracellular calcium oscillations in cultured myofibroblasts. We analyze cytosolic calcium dynamics using fluorescent calcium indicators to evaluate the possible impact of mechanical stress on myofibroblast contractile activity. To modulate extracellular mechanics, we seeded primary rat subcutaneous myofibroblasts on silicone substrates and into collagen gels of different elastic modulus. We modulated cell stress by cell growth on differently adhesive culture substrates, by restricting cell spreading area on micro-printed adhesive islands, and depolymerizing actin with Cytochalasin D. In general, calcium oscillation frequencies in myofibroblasts increased with increasing mechanical challenge. These results provide new insight on how changing mechanical conditions for myofibroblasts are encoded in calcium oscillations and possibly explain how reparative cells adapt their contractile behavior to the stresses occurring in normal and pathological tissue repair.

  6. Spermidine oxidase-derived H₂O₂ regulates pollen plasma membrane hyperpolarization-activated Ca(2+) -permeable channels and pollen tube growth.

    Science.gov (United States)

    Wu, Juyou; Shang, Zhonglin; Wu, Jun; Jiang, Xueting; Moschou, Panagiotis N; Sun, Wending; Roubelakis-Angelakis, Kalliopi A; Zhang, Shaoling

    2010-09-01

    Spermidine (Spd) has been correlated with various physiological and developmental processes in plants, including pollen tube growth. In this work, we show that Spd induces an increase in the cytosolic Ca(2+) concentration that accompanies pollen tube growth. Using the whole-cell patch clamp and outside-out single-channel patch clamp configurations, we show that exogenous Spd induces a hyperpolarization-activated Ca(2+) current: the addition of Spd cannot induce the channel open probability increase in excised outside-out patches, indicating that the effect of Spd in the induction of Ca(2+) currents is exerted via a second messenger. This messenger is hydrogen peroxide (H₂O₂), and is generated during Spd oxidation, a reaction mediated by polyamine oxidase (PAO). These reactive oxygen species trigger the opening of the hyperpolarization-activated Ca(2+) -permeable channels in pollen. To provide further evidence that PAO is in fact responsible for the effect of Spd on the Ca(2+) -permeable channels, two Arabidopsis mutants lacking expression of the peroxisomal-encoding AtPAO3 gene, were isolated and characterized. Pollen from these mutants was unable to induce the opening of the Ca(2+) -permeable channels in the presence of Spd, resulting in reduced pollen tube growth and seed number. However, a high Spd concentration triggers a Ca(2+) influx beyond the optimal, which has a deleterious effect. These findings strongly suggest that the Spd-derived H₂O₂ signals Ca(2+) influx, thereby regulating pollen tube growth.

  7. Modulation of cortical oscillatory activity during transcranial magnetic stimulation.

    Science.gov (United States)

    Brignani, Debora; Manganotti, Paolo; Rossini, Paolo M; Miniussi, Carlo

    2008-05-01

    Transcranial magnetic stimulation (TMS) can transiently modulate cortical excitability, with a net effect depending on the stimulation frequency ( or =5 Hz facilitation, at least for the motor cortex). This possibility has generated interest in experiments aiming to improve deficits in clinical settings, as well as deficits in the cognitive domain. The aim of the present study was to investigate the on-line effects of low frequency (1 Hz) TMS on the EEG oscillatory activity in the healthy human brain, focusing particularly on the outcome of these modulatory effects in relation to the duration of the TMS stimulation. To this end, we used the event-related desynchronization/synchronization (ERD/ERS) approach to determine the patterns of oscillatory activity during two consecutive trains of sham and real TMS. Each train of stimulation was delivered to the left primary motor cortex (MI) of healthy subjects over a period of 10 min, while EEG rhythms were simultaneously recorded. Results indicated that TMS induced an increase in the power of brain rhythms that was related to the period of the stimulation, i.e. the synchronization of the alpha band increased with the duration of the stimulation, and this increase was inversely correlated with motor-evoked potentials (MEPs) amplitude. In conclusion, low frequency TMS over primary motor cortex induces a synchronization of the background oscillatory activity on the stimulated region. This induced modulation in brain oscillations seems to increase coherently with the duration of stimulation, suggesting that TMS effects may involve short-term modification of the neural circuitry sustaining MEPs characteristics. PMID:17557296

  8. Fingolimod modulates microglial activation to augment markers of remyelination

    Directory of Open Access Journals (Sweden)

    Baker David

    2011-07-01

    Full Text Available Abstract Introduction Microglial activation in multiple sclerosis has been postulated to contribute to long-term neurodegeneration during disease. Fingolimod has been shown to impact on the relapsing remitting phase of disease by modulating autoreactive T-cell egress from lymph organs. In addition, it is brain penetrant and has been shown to exert multiple effects on nervous system cells. Methods In this study, the impact of fingolimod and other sphingosine-1-phosphate receptor active molecules following lysophosphotidyl choline-induced demyelination was examined in the rat telencephalon reaggregate, spheroid cell culture system. The lack of immune system components allowed elucidation of the direct effects of fingolimod on CNS cell types in an organotypic situation. Results Following demyelination, fingolimod significantly augmented expression of myelin basic protein in the remyelination phase. This increase was not associated with changes in neurofilament levels, indicating de novo myelin protein expression not associated with axonal branching. Myelin wrapping was confirmed morphologically using confocal and electron microscopy. Increased remyelination was associated with down-regulation of microglial ferritin, tumor necrosis factor alpha and interleukin 1 during demyelination when fingolimod was present. In addition, nitric oxide metabolites and apoptotic effectors caspase 3 and caspase 7 were reduced during demyelination in the presence of fingolimod. The sphingosine-1-phosphate receptor 1 and 5 agonist BAF312 also increased myelin basic protein levels, whereas the sphingosine-1-phosphate receptor 1 agonist AUY954 failed to replicate this effect on remyelination. Conclusions The results presented indicate that modulation of S1P receptors can ameliorate pathological effectors associated with microglial activation leading to a subsequent increase in protein and morphological markers of remyelination. In addition, sphingosine-1-phosphate

  9. Cinobufagin Modulates Human Innate Immune Responses and Triggers Antibacterial Activity.

    Science.gov (United States)

    Xie, Shanshan; Spelmink, Laura; Codemo, Mario; Subramanian, Karthik; Pütsep, Katrin; Henriques-Normark, Birgitta; Olliver, Marie

    2016-01-01

    The traditional Chinese medicine Chan-Su is widely used for treatment of cancer and cardiovascular diseases, but also as a remedy for infections such as furunculosis, tonsillitis and acute pharyngitis. The clinical use of Chan-Su suggests that it has anti-infective effects, however, the mechanism of action is incompletely understood. In particular, the effect on the human immune system is poorly defined. Here, we describe previously unrecognized immunomodulatory activities of cinobufagin (CBG), a major bioactive component of Chan-Su. Using human monocyte-derived dendritic cells (DCs), we show that LPS-induced maturation and production of a number of cytokines was potently inhibited by CBG, which also had a pro-apoptotic effect, associated with activation of caspase-3. Interestingly, CBG triggered caspase-1 activation and significantly enhanced IL-1β production in LPS-stimulated cells. Finally, we demonstrate that CBG upregulates gene expression of the antimicrobial peptides (AMPs) hBD-2 and hBD-3 in DCs, and induces secretion of HNP1-3 and hCAP-18/LL-37 from neutrophils, potentiating neutrophil antibacterial activity. Taken together, our data indicate that CBG modulates the inflammatory phenotype of DCs in response to LPS, and triggers an antibacterial innate immune response, thus proposing possible mechanisms for the clinical effects of Chan-Su in anti-infective therapy. PMID:27529866

  10. Superoxide radical and iron modulate aconitase activity in mammalian cells.

    Science.gov (United States)

    Gardner, P R; Raineri, I; Epstein, L B; White, C W

    1995-06-01

    Aconitase is a member of a family of iron-sulfur-containing (de)hydratases whose activities are modulated in bacteria by superoxide radical (O2-.)-mediated inactivation and iron-dependent reactivation. The inactivation-reactivation of aconitase(s) in cultured mammalian cells was explored since these reactions may impact important and diverse aconitase functions in the cytoplasm and mitochondria. Conditions which increase O2-. production including exposure to the redox-cycling agent phenazine methosulfate (PMS), inhibitors of mitochondrial ubiquinol-cytochrome c oxidoreductase, or hyperoxia inactivated aconitase in mammalian cells. Overproduction of mitochondrial Mn-superoxide dismutase protected aconitase from inactivation by PMS or inhibitors of ubiquinol-cytochrome c oxidoreductase, but not from normobaric hyperoxia. Aconitase activity was reactivated (t1/2 of 12 +/- 3 min) upon removal of PMS. The iron chelator deferoxamine impaired reactivation and increased net inactivation of aconitase by O2-.. The ability of ubiquinol-cytochrome c oxidoreductase-generated O2-. to inactivate aconitase in several cell types correlated with the fraction of the aconitase activity localized in mitochondria. Extracellular O2-. generated with xanthine oxidase did not affect aconitase activity nor did exogenous superoxide dismutase decrease aconitase inactivation by PMS. The results demonstrate a dynamic and cyclical O2-.-mediated inactivation and iron-dependent reactivation of the mammalian [4Fe-4S] aconitases under normal and stress conditions and provide further evidence for the membrane compartmentalization of O2-.. PMID:7768942

  11. MCT SWIR modules for passive and active imaging applications

    Science.gov (United States)

    Breiter, R.; Benecke, M.; Eich, D.; Figgemeier, H.; Weber, A.; Wendler, J.; Sieck, A.

    2016-05-01

    Based on AIM's state-of-the-art MCT IR technology, detector modules for the SWIR spectral range have been developed, fabricated and characterized. While LPE grown MCT FPAs with extended 2.5μm cut-off have been fabricated and integrated also MBE grown MCT on GaAs is considered for future production. Two imaging applications have been in focus operating either in passive mode by making use of e.g. the night glow, or in active mode by laser illumination for gated viewing. Dedicated readout integrated circuits (ROIC), realized in 0.18μm Si-CMOS technology providing the required functionality for passive imaging and gated imaging, have been designed and implemented. For both designs a 640x512 15μm pitch format was chosen. The FPAs are integrated in compact dewar cooler configurations using AIM's split linear coolers. A command and control electronics (CCE) provides supply voltages, biasing, clocks, control and video digitization for easy system interfacing. For imaging under low-light conditions a low-noise 640x512 15μm pitch ROIC with CTIA input stages and correlated double sampling was designed. The ROIC provides rolling shutter and snapshot integration. To reduce size, weight, power and cost (SWaP-C) a 640x512 format detector in a 10μm pitch is under development. The module makes use of the extended SWIR spectral cut-off up to 2.5μm. To be used for active gated-viewing operation SWIR MCT avalanche photodiodes have been implemented and characterized on FPA level in a 640x512 15μm pitch format. The specific ROIC provides also the necessary functions for range gate control and triggering by the laser illumination. First lab and field tests of a gated viewing demonstrator have been carried out. The paper will present the development status and performance results of AIM's MCT based SWIR Modules for imaging applications.

  12. Caenorhabditis elegans glia modulate neuronal activity and behavior

    Directory of Open Access Journals (Sweden)

    Randy F Stout

    2014-03-01

    Full Text Available Glial cells of C. elegans can modulate neuronal activity and behavior, which is the focus of this review. Initially, we provide an overview of neuroglial evolution, making a comparison between C. elegans glia and their genealogical counterparts. What follows is a brief discussion on C. elegans glia characteristics in terms of their exact numbers, germ layers origin, their necessity for proper development of sensory organs, and lack of their need for neuronal survival. The more specific roles that various glial cells have on neuron-based activity/behavior are succinctly presented. The cephalic sheath glia are important for development, maintenance and activity of central synapses, whereas the amphid glia seem to set the tone of sensory synapses; these glial cell types are ectoderm-derived. Mesoderm-derived GLR glia appear to be a part of the circuit for production of motor movement of the worm anterior. Finally, we discuss tools and approaches utilized in studying C. elegans glia, which are an extension of those experimental assets available for this animal, making it an appealing model, not only in neurosciences, but in biology in general.

  13. Ca2+ permeability of unedited and edited versions of the kainate selective glutamate receptor GluR6.

    OpenAIRE

    Egebjerg, J; Heinemann, S F

    1993-01-01

    The Ca2+ permeability of the kainate selective glutamate receptor GluR6 depends on the editing of the RNA (or DNA). The unedited version of GluR6, GluR6Q, encodes a glutamine at position 621 (Q/R site) and exhibits a Ca2+/monovalent ion permeability ratio of 1.2, while the edited version of GluR6, GluR6R, encodes an arginine at position 621 and exhibits a permeability ratio of 0.47. Kainate activation of the GluR6 receptor results in currents that are modulated by extracellular calcium ions. ...

  14. Developments in permeable and low permeability barriers

    International Nuclear Information System (INIS)

    The concept of the reactive treatment zone whereby pollutants are attenuated as they move along a pathway in the ground has enabled a re-thinking of many of the concepts of containment. In particular it offers the potential for the control of the flux from a contaminated area by controlling the contaminant concentration in the pathway(s) as well as or instead of using a low permeability barrier. The paper outlines the basic concepts of the reactive treatment zone and the use of permeable and low permeability reactive systems. The paper then gives a case history of the installation of a permeable barrier using an in-situ reaction chamber

  15. Melatonin modulates aromatase activity and expression in endothelial cells.

    Science.gov (United States)

    Alvarez-García, Virginia; González, Alicia; Martínez-Campa, Carlos; Alonso-González, Carolina; Cos, Samuel

    2013-05-01

    Melatonin is known to suppress the development of endocrine-responsive breast cancers by interacting with the estrogen signaling pathways. Paracrine interactions between malignant epithelial cells and proximal stromal cells are responsible for local estrogen biosynthesis. In human breast cancer cells and peritumoral adipose tissue, melatonin downregulates aromatase, which transforms androgens into estrogens. The presence of aromatase on endothelial cells indicates that endothelial cells may contribute to tumor growth by producing estrogens. Since human umbilical vein endothelial cells (HUVECs) express both aromatase and melatonin receptors, the aim of the present study was to evaluate the ability of melatonin to regulate the activity and expression of aromatase on endothelial cells, thus, modulating local estrogen biosynthesis. In the present study, we demonstrated that melatonin inhibits the growth of HUVECs and reduces the local biosynthesis of estrogens through the downregulation of aromatase. These results are supported by three lines of evidence. Firstly, 1 mM of melatonin counteracted the testosterone-induced cell proliferation of HUVECs, which is dependent on the local biosynthesis of estrogens from testosterone by the aromatase activity of the cells. Secondly, we found that 1 mM of melatonin reduced the aromatase activity of HUVECs. Finally, by real‑time RT-PCR, we demonstrated that melatonin significantly downregulated the expression of aromatase as well as its endothelial-specific aromatase promoter region I.7. We conclude that melatonin inhibits aromatase activity and expression in HUVECs by regulating gene expression of specific aromatase promoter regions, thereby reducing the local production of estrogens. PMID:23450505

  16. Discovery and Characterization of a Cell-Permeable, Small-Molecule c-Abl Kinase Activator that Binds to the Myristoyl Binding Site

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jingsong; Campobasso, Nino; Biju, Mangatt P.; Fisher, Kelly; Pan, Xiao-Qing; Cottom, Josh; Galbraith, Sarah; Ho, Thau; Zhang, Hong; Hong, Xuan; Ward, Paris; Hofmann, Glenn; Siegfried, Brett; Zappacosta, Francesca; Washio, Yoshiaki; Cao, Ping; Qu, Junya; Bertrand, Sophie; Wang, Da-Yuan; Head, Martha S.; Li, Hu; Moores, Sheri; Lai, Zhihong; Johanson, Kyung; Burton, George; Erickson-Miller, Connie; Simpson, Graham; Tummino, Peter; Copeland, Robert A.; Oliff, Allen (GSKPA)

    2014-10-02

    c-Abl kinase activity is regulated by a unique mechanism involving the formation of an autoinhibited conformation in which the N-terminal myristoyl group binds intramolecularly to the myristoyl binding site on the kinase domain and induces the bending of the {alpha}I helix that creates a docking surface for the SH2 domain. Here, we report a small-molecule c-Abl activator, DPH, that displays potent enzymatic and cellular activity in stimulating c-Abl activation. Structural analyses indicate that DPH binds to the myristoyl binding site and prevents the formation of the bent conformation of the {alpha}I helix through steric hindrance, a mode of action distinct from the previously identified allosteric c-Abl inhibitor, GNF-2, that also binds to the myristoyl binding site. DPH represents the first cell-permeable, small-molecule tool compound for c-Abl activation.

  17. Tiazofurin modulates lipopolysaccharide-activated microglia in vitro

    Directory of Open Access Journals (Sweden)

    Savić Danijela

    2014-01-01

    Full Text Available Tiazofurin is a purine nucleoside analogue, with a broad spectrum of antitumoral and anti-inflammatory properties. In the present study, we have investigated the effect of tiazofurin on microglial inflammatory response to lipopolysaccharide in vitro. The cytotoxic effect of the drug was examined by sulforhodamine B assay. The Griess method was used to quantify nitrite production. Microglial morphology was assessed by measuring cell body size. Release of the pro-inflammatory cytokines, tumor necrosis factor-α, interleukin-1β, interleukin-6, and the anti-inflammatory cytokine interleukin- 10, were evaluated by enzyme-linked immunosorbent assay. Our data showed that tiazofurin decreased the number of activated microglia, lowered nitric oxide production and reduced the average cell surface of these cells. Tiazofurin reduced tumor necrosis factor-α, interleukin-6 and increased interleukin-10 secretion. Conversely, this drug promoted the release of interleukin-1β. Results obtained in this study indicate that TR displayed both anti- and pro-inflammatory modulation of activated microglia that could be relevant for its antitumor action within the central nervous system. [Projekat Ministarstva nauke Republike Srbije, br. III41014

  18. Active Desiccant Dehumidification Module Integration with Rooftop Packaged HVAC

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, J

    2002-04-17

    This report summarizes a research and development program that produced a stand-alone active desiccant module (ADM) that can be easily integrated with new or existing packaged cooling equipment. The program also produced a fully integrated hybrid system, combining the active desiccant section with a conventional direct expansion air-conditioning unit, that resulted in a compact, low-cost, energy-efficient end product. Based upon the results of this investigation, both systems were determined to be highly viable products for commercialization. Major challenges--including wheel development, compact packaging, regeneration burner development, control optimization, and low-cost design--were all successfully addressed by the final prototypes produced and tested as part of this program. Extensive laboratory testing was completed in the SEMCO laboratory for each of the two ADM system approaches. This testing confirmed the performance of the ADM systems to be attractive compared with that of alternate approaches currently used to precondition outdoor air, where a return air path is not readily available for passive desiccant recovery or where first cost is the primary design criterion. Photographs, schematics, and performance maps are provided for the ADM systems that were developed; and many of the control advantages are discussed. Based upon the positive results of this research and development program, field tests are under way for fully instrumented pilot installations of ADM systems in both a hotel/motel and a restaurant.

  19. Materials and Process Activities for NASA's Composite Crew Module

    Science.gov (United States)

    Polis, Daniel L.

    2012-01-01

    In January 2007, the NASA Administrator and Associate Administrator for the Exploration Systems Mission Directorate chartered the NASA Engineering and Safety Center (NESC) to design, build, and test a full-scale Composite Crew Module (CCM). The overall goal of the CCM project was to develop a team from the NASA family with hands-on experience in composite design, manufacturing, and testing in anticipation of future space exploration systems being made of composite materials. The CCM project was planned to run concurrently with the Orion project s baseline metallic design within the Constellation Program so that features could be compared and discussed without inducing risk to the overall Program. The materials and process activities were prioritized based on a rapid prototype approach. This approach focused developmental activities on design details with greater risk and uncertainty, such as out-of-autoclave joining, over some of the more traditional lamina and laminate building block levels. While process development and associated building block testing were performed, several anomalies were still observed at the full-scale level due to interactions between process robustness and manufacturing scale-up. This paper describes the process anomalies that were encountered during the CCM development and the subsequent root cause investigations that led to the final design solutions. These investigations highlight the importance of full-scale developmental work early in the schedule of a complex composite design/build project.

  20. Building gene expression signatures indicative of transcription factor activation to predict AOP modulation

    Science.gov (United States)

    Building gene expression signatures indicative of transcription factor activation to predict AOP modulation Adverse outcome pathways (AOPs) are a framework for predicting quantitative relationships between molecular initiatin...

  1. Active space debris removal by a hybrid propulsion module

    Science.gov (United States)

    DeLuca, L. T.; Bernelli, F.; Maggi, F.; Tadini, P.; Pardini, C.; Anselmo, L.; Grassi, M.; Pavarin, D.; Francesconi, A.; Branz, F.; Chiesa, S.; Viola, N.; Bonnal, C.; Trushlyakov, V.; Belokonov, I.

    2013-10-01

    During the last 40 years, the mass of the artificial objects in orbit increased quite steadily at the rate of about 145 metric tons annually, leading to a total tally of approximately 7000 metric tons. Now, most of the cross-sectional area and mass (97% in LEO) is concentrated in about 4600 intact objects, i.e. abandoned spacecraft and rocket bodies, plus a further 1000 operational spacecraft. Simulations and parametric analyses have shown that the most efficient and effective way to prevent the outbreak of a long-term exponential growth of the catalogued debris population would be to remove enough cross-sectional area and mass from densely populated orbits. In practice, according to the most recent NASA results, the active yearly removal of approximately 0.1% of the abandoned intact objects would be sufficient to stabilize the catalogued debris in low Earth orbit, together with the worldwide adoption of mitigation measures. The candidate targets for removal would have typical masses between 500 and 1000 kg, in the case of spacecraft, and of more than 1000 kg, in the case of rocket upper stages. Current data suggest that optimal active debris removal missions should be carried out in a few critical altitude-inclination bands. This paper deals with the feasibility study of a mission in which the debris is removed by using a hybrid propulsion module as propulsion unit. Specifically, the engine is transferred from a servicing platform to the debris target by a robotic arm so to perform a controlled disposal. Hybrid rocket technology for de-orbiting applications is considered a valuable option due to high specific impulse, intrinsic safety, thrust throttle ability, low environmental impact and reduced operating costs. Typically, in hybrid rockets a gaseous or liquid oxidizer is injected into the combustion chamber along the axial direction to burn a solid fuel. However, the use of tangential injection on a solid grain Pancake Geometry allows for more compact design of

  2. Coincident helminth infection modulates systemic inflammation and immune activation in active pulmonary tuberculosis.

    Directory of Open Access Journals (Sweden)

    Parakkal Jovvian George

    Full Text Available Helminth infections are known to modulate innate and adaptive immune responses in active and latent tuberculosis (TB. However, the role of helminth infections in modulating responses associated with inflammation and immune activation (reflecting disease activity and/or severity in TB is not known.We measured markers of inflammation and immune activation in active pulmonary TB individuals (ATB with co-incidental Strongyloides stercoralis (Ss infection. These included systemic levels of acute phase proteins, matrix metalloproteinases and their endogenous inhibitors and immune activation markers. As a control, we measured the systemic levels of the same molecules in TB-uninfected individuals (NTB with or without Ss infection.Our data confirm that ATB is associated with elevated levels of the various measured molecules when compared to those seen in NTB. Our data also reveal that co-incident Ss infection in ATB individuals is associated with significantly decreased circulating levels of acute phase proteins, matrix metalloproteinases, tissue inhibitors of matrix metalloproteinases as well as the systemic immune activation markers, sCD14 and sCD163. These changes are specific to ATB since they are absent in NTB individuals with Ss infection.Our data therefore reveal a profound effect of Ss infection on the markers associated with TB disease activity and severity and indicate that co-incidental helminth infections might dampen the severity of TB disease.

  3. Antileishmanial activity of the estrogen receptor modulator raloxifene.

    Directory of Open Access Journals (Sweden)

    Juliana Q Reimão

    2014-05-01

    Full Text Available BACKGROUND: The treatment of leishmaniasis relies mostly on parenteral drugs with potentially serious adverse effects. Additionally, parasite resistance in the treatment of leishmaniasis has been demonstrated for the majority of drugs available, making the search for more effective and less toxic drugs and treatment regimens a priority for the control of leishmaniasis. The aims of this study were to evaluate the antileishmanial activity of raloxifene in vitro and in vivo and to investigate its mechanism of action against Leishmania amazonensis. METHODOLOGY/PRINCIPAL FINDINGS: Raloxifene was shown to possess antileishmanial activity in vitro against several species with EC50 values ranging from 30.2 to 38.0 µM against promastigotes and from 8.8 to 16.2 µM against intracellular amastigotes. Raloxifene's mechanism of action was investigated through transmission electron microscopy and labeling with propidium iodide, DiSBAC2(3, rhodamine 123 and monodansylcadaverine. Microscopic examinations showed that raloxifene treated parasites displayed autophagosomes and mitochondrial damage while the plasma membrane remained continuous. Nonetheless, plasma membrane potential was rapidly altered upon raloxifene treatment with initial hyperpolarization followed by depolarization. Loss of mitochondrial membrane potential was also verified. Treatment of L. amazonensis-infected BALB/c mice with raloxifene led to significant decrease in lesion size and parasite burden. CONCLUSIONS/SIGNIFICANCE: The results of this work extend the investigation of selective estrogen receptor modulators as potential candidates for leishmaniasis treatment. The antileishmanial activity of raloxifene was demonstrated in vitro and in vivo. Raloxifene produces functional disorder on the plasma membrane of L. amazonensis promastigotes and leads to functional and morphological disruption of mitochondria, which culminate in cell death.

  4. Role of the endogenous kallikrein-kinin system in modulating vasopressin-stimulated water flow and urea permeability in the toad urinary bladder.

    OpenAIRE

    Carvounis, C P; Carvounis, G; Arbeit, L A

    1981-01-01

    This study investigates the endogenous kallikrein-kinin system's role as a modulator of vasopressin action in the toad urinary bladder. Kalli-krein inhibition by aprotinin, which results in decreased kinin production, significantly increased both vasopressin and 8-Br-cyclic (c) AMP-stimulated water flow. Kinin potentiation by the kininase II inhibitor captopril (SQ 14225) significantly decreased vasopressin and 8-Br-cAMP-stimulated water flow. In contrast to water flow, vasopressin-stimulated...

  5. CD83 Modulates B Cell Activation and Germinal Center Responses.

    Science.gov (United States)

    Krzyzak, Lena; Seitz, Christine; Urbat, Anne; Hutzler, Stefan; Ostalecki, Christian; Gläsner, Joachim; Hiergeist, Andreas; Gessner, André; Winkler, Thomas H; Steinkasserer, Alexander; Nitschke, Lars

    2016-05-01

    CD83 is a maturation marker for dendritic cells. In the B cell lineage, CD83 is expressed especially on activated B cells and on light zone B cells during the germinal center (GC) reaction. The function of CD83 during GC responses is unclear. CD83(-/-) mice have a strong reduction of CD4(+) T cells, which makes it difficult to analyze a functional role of CD83 on B cells during GC responses. Therefore, in the present study we generated a B cell-specific CD83 conditional knockout (CD83 B-cKO) model. CD83 B-cKO B cells show defective upregulation of MHC class II and CD86 expression and impaired proliferation after different stimuli. Analyses of GC responses after immunization with various Ags revealed a characteristic shift in dark zone and light zone B cell numbers, with an increase of B cells in the dark zone of CD83 B-cKO mice. This effect was not accompanied by alterations in the level of IgG immune responses or by major differences in affinity maturation. However, an enhanced IgE response was observed in CD83 B-cKO mice. Additionally, we observed a strong competitive disadvantage of CD83-cKO B cells in GC responses in mixed bone marrow chimeras. Furthermore, infection of mice with Borrelia burgdorferi revealed a defect in bacterial clearance of CD83 B-cKO mice with a shift toward a Th2 response, indicated by a strong increase in IgE titers. Taken together, our results show that CD83 is important for B cell activation and modulates GC composition and IgE Ab responses in vivo. PMID:26983787

  6. Allergy Enhances Neurogenesis and Modulates Microglial Activation in the Hippocampus

    Science.gov (United States)

    Klein, Barbara; Mrowetz, Heike; Thalhamer, Josef; Scheiblhofer, Sandra; Weiss, Richard; Aigner, Ludwig

    2016-01-01

    Allergies and their characteristic TH2-polarized inflammatory reactions affect a substantial part of the population. Since there is increasing evidence that the immune system modulates plasticity and function of the central nervous system (CNS), we investigated the effects of allergic lung inflammation on the hippocampus—a region of cellular plasticity in the adult brain. The focus of the present study was on microglia, the resident immune cells of the CNS, and on hippocampal neurogenesis, i.e., the generation of new neurons. C57BL/6 mice were sensitized with a clinically relevant allergen derived from timothy grass pollen (Phl p 5). As expected, allergic sensitization induced high serum levels of allergen-specific immunoglobulins (IgG1 and IgE) and of TH2 cytokines (IL-5 and IL-13). Surprisingly, fewer Iba1+ microglia were found in the granular layer (GL) and subgranular zone (SGZ) of the hippocampal dentate gyrus and also the number of Iba1+MHCII+ cells was lower, indicating a reduced microglial surveillance and activation in the hippocampus of allergic mice. Neurogenesis was analyzed by labeling of proliferating cells with bromodeoxyuridine (BrdU) and determining their fate 4 weeks later, and by quantitative analysis of young immature neurons, i.e., cells expressing doublecortin (DCX). The number of DCX+ cells was clearly increased in the allergy animals. Moreover, there were more BrdU+ cells present in the hippocampus of allergic mice, and these newly born cells had differentiated into neurons as indicated by a higher number of BrdU+NeuN+ cells. In summary, allergy led to a reduced microglia presence and activity and to an elevated level of neurogenesis in the hippocampus. This effect was apparently specific to the hippocampus, as we did not observe these alterations in the subventricular zone (SVZ)/olfactory bulb (OB) system, also a region of high cellular plasticity and adult neurogenesis.

  7. Escherichia coli strain Nissle 1917 ameliorates experimental colitis by modulating intestinal permeability, the inflammatory response and clinical signs in a faecal transplantation model.

    Science.gov (United States)

    Souza, Éricka L; Elian, Samir D; Paula, Laís M; Garcia, Cristiana C; Vieira, Angélica T; Teixeira, Mauro M; Arantes, Rosa M; Nicoli, Jacques R; Martins, Flaviano S

    2016-03-01

    Inflammatory bowel diseases (IBDs) are a group of inflammatory conditions of the gut that include ulcerative colitis and Crohn's disease. Probiotics are live micro-organisms that may be used as adjuvant therapy for patients with IBD. The aim of this study was to evaluate the effect of prophylactic ingestion of Escherichia coli strain Nissle 1917 (EcN) in a murine model of colitis. For induction of colitis, mice were given a 3.5% dextran sodium sulfate (DSS) solution for 7 days in drinking water. EcN administration to mice subjected to DSS-induced colitis resulted in significant reduction in clinical and histopathological signs of disease and preservation of intestinal permeability. We observed reduced inflammation, as assessed by reduced levels of neutrophils, eosinophils, chemokines and cytokines. We observed an increase in the number of regulatory T-cells in Peyer's patches. Germ-free mice received faecal content from control or EcN-treated mice and were then subjected to DSS-induced colitis. We observed protection from colitis in animals that were colonized with faecal content from EcN-treated mice. These results suggest that preventative oral administration of EcN or faecal microbiota transplantation with EcN-containing microbiota ameliorates DSS-induced colitis by modifying inflammatory responsiveness to DSS.

  8. Telmisartan Modulates Glial Activation: In Vitro and In Vivo Studies.

    Science.gov (United States)

    Torika, Nofar; Asraf, Keren; Danon, Abraham; Apte, Ron N; Fleisher-Berkovich, Sigal

    2016-01-01

    The circulating renin-angiotensin system (RAS), including the biologically active angiotensin II, is a fundamental regulatory mechanism of blood pressure conserved through evolution. Angiotensin II components of the RAS have also been identified in the brain. In addition to pro-inflammatory cytokines, neuromodulators, such as angiotensin II can induce (through angiotensin type 1 receptor (AT1R)) some of the inflammatory actions of brain glial cells and influence brain inflammation. Moreover, in Alzheimer's disease (AD) models, where neuroinflammation occurs, increased levels of cortical AT1Rs have been shown. Still, the precise role of RAS in neuroinflammation is not completely clear. The overall aim of the present study was to elucidate the role of RAS in the modulation of glial functions and AD pathology. To reach this goal, the specific aims of the present study were a. to investigate the long term effect of telmisartan (AT1R blocker) on tumor necrosis factor-α (TNF-α), interleukin 1-β (IL1-β) and nitric oxide (NO) release from glial cells. b. to examine the effect of intranasally administered telmisartan on amyloid burden and microglial activation in 5X familial AD (5XFAD) mice. Telmisartan effects in vivo were compared to those of perindopril (angiotensin converting enzyme inhibitor). Long-term-exposure of BV2 microglia to telmisartan significantly decreased lipopolysaccharide (LPS) -induced NO, inducible NO synthase, TNF-α and IL1-β synthesis. The effect of Telmisartan on NO production in BV2 cells was confirmed also in primary neonatal rat glial cells. Intranasal administration of telmisartan (1 mg/kg/day) for up to two months significantly reduced amyloid burden and CD11b expression (a marker for microglia) both in the cortex and hipoccampus of 5XFAD. Based on the current view of RAS and our data, showing reduced amyloid burden and glial activation in the brains of 5XFAD transgenic mice, one may envision potential intervention with the progression of

  9. Telmisartan Modulates Glial Activation: In Vitro and In Vivo Studies.

    Directory of Open Access Journals (Sweden)

    Nofar Torika

    Full Text Available The circulating renin-angiotensin system (RAS, including the biologically active angiotensin II, is a fundamental regulatory mechanism of blood pressure conserved through evolution. Angiotensin II components of the RAS have also been identified in the brain. In addition to pro-inflammatory cytokines, neuromodulators, such as angiotensin II can induce (through angiotensin type 1 receptor (AT1R some of the inflammatory actions of brain glial cells and influence brain inflammation. Moreover, in Alzheimer's disease (AD models, where neuroinflammation occurs, increased levels of cortical AT1Rs have been shown. Still, the precise role of RAS in neuroinflammation is not completely clear. The overall aim of the present study was to elucidate the role of RAS in the modulation of glial functions and AD pathology. To reach this goal, the specific aims of the present study were a. to investigate the long term effect of telmisartan (AT1R blocker on tumor necrosis factor-α (TNF-α, interleukin 1-β (IL1-β and nitric oxide (NO release from glial cells. b. to examine the effect of intranasally administered telmisartan on amyloid burden and microglial activation in 5X familial AD (5XFAD mice. Telmisartan effects in vivo were compared to those of perindopril (angiotensin converting enzyme inhibitor. Long-term-exposure of BV2 microglia to telmisartan significantly decreased lipopolysaccharide (LPS -induced NO, inducible NO synthase, TNF-α and IL1-β synthesis. The effect of Telmisartan on NO production in BV2 cells was confirmed also in primary neonatal rat glial cells. Intranasal administration of telmisartan (1 mg/kg/day for up to two months significantly reduced amyloid burden and CD11b expression (a marker for microglia both in the cortex and hipoccampus of 5XFAD. Based on the current view of RAS and our data, showing reduced amyloid burden and glial activation in the brains of 5XFAD transgenic mice, one may envision potential intervention with the

  10. Indicaxanthin inhibits NADPH oxidase (NOX)-1 activation and NF-κB-dependent release of inflammatory mediators and prevents the increase of epithelial permeability in IL-1β-exposed Caco-2 cells.

    Science.gov (United States)

    Tesoriere, L; Attanzio, A; Allegra, M; Gentile, C; Livrea, M A

    2014-02-01

    Dietary redox-active/antioxidant phytochemicals may help control or mitigate the inflammatory response in chronic inflammatory bowel disease (IBD). In the present study, the anti-inflammatory activity of indicaxanthin (Ind), a pigment from the edible fruit of cactus pear (Opuntia ficus-indica, L.), was shown in an IBD model consisting of a human intestinal epithelial cell line (Caco-2 cells) stimulated by IL-1β, a cytokine known to play a major role in the initiation and amplification of inflammatory activity in IBD. The exposure of Caco-2 cells to IL-1β brought about the activation of NADPH oxidase (NOX-1) and the generation of reactive oxygen species (ROS) to activate intracellular signalling leading to the activation of NF-κB, with the over-expression of inflammatory enzymes and release of pro-inflammatory mediators. The co-incubation of the cells with Ind, at a nutritionally relevant concentration (5-25 μM), and IL-1β prevented the release of the pro-inflammatory cytokines IL-6 and IL-8, PGE2 and NO, the formation of ROS and the loss of thiols in a dose-dependent manner. The co-incubation of the cells with Ind and IL-1β also prevented the IL-1β-induced increase of epithelial permeability. It was also shown that the activation of NOX-1 and NF-κB was prevented by Ind and the expression of COX-2 and inducible NO synthase was reduced. The uptake of Ind in Caco-2 cell monolayers appeared to be unaffected by the inflamed state of the cells. In conclusion, our findings suggest that the dietary pigment Ind may have the potential to modulate inflammatory processes at the intestinal level. PMID:23931157

  11. Oral supplementation with non-absorbable antibiotics or curcumin attenuates western diet-induced atherosclerosis and glucose intolerance in LDLR-/- mice--role of intestinal permeability and macrophage activation.

    Directory of Open Access Journals (Sweden)

    Siddhartha S Ghosh

    Full Text Available Association between circulating lipopolysaccharide (LPS and metabolic diseases (such as Type 2 Diabetes and atherosclerosis has shifted the focus from Western diet-induced changes in gut microbiota per se to release of gut bacteria-derived products into circulation as the possible mechanism for the chronic inflammatory state underlying the development of these diseases. Under physiological conditions, an intact intestinal barrier prevents this release of LPS underscoring the importance of examining and modulating the direct effects of Western diet on intestinal barrier function. In the present study we evaluated two strategies, namely selective gut decontamination and supplementation with oral curcumin, to modulate Western-diet (WD induced changes in intestinal barrier function and subsequent development of glucose intolerance and atherosclerosis. LDLR-/- mice were fed WD for 16 weeks and either received non-absorbable antibiotics (Neomycin and polymyxin in drinking water for selective gut decontamination or gavaged daily with curcumin. WD significantly increased intestinal permeability as assessed by in vivo translocation of FITC-dextran and plasma LPS levels. Selective gut decontamination and supplementation with curcumin significantly attenuated the WD-induced increase in plasma LPS levels (3.32 vs 1.90 or 1.51 EU/ml, respectively and improved intestinal barrier function at multiple levels (restoring intestinal alkaline phosphatase activity and expression of tight junction proteins, ZO-1 and Claudin-1. Consequently, both these interventions significantly reduced WD-induced glucose intolerance and atherosclerosis in LDLR-/- mice. Activation of macrophages by low levels of LPS (50 ng/ml and its exacerbation by fatty acids is likely the mechanism by which release of trace amounts of LPS into circulation due to disruption of intestinal barrier function induces the development of these diseases. These studies not only establish the important role

  12. Cytotoxic Effect and Permeability Activities of Curcumin Analogue; 2, 6-Bis (2, 5-dimethoxybenzy-lidene cyclohexanone (BDMC33 in Caco-2 Cell Model

    Directory of Open Access Journals (Sweden)

    N. Yakubu

    2015-11-01

    Full Text Available Previously, curcumin analogue, 2, 6-bis (2, 5-dimethoxybenzylidene cyclohexanone (BDMC33 with high anti-inflammatory activity was chemically synthesized in our laboratory to enhance the biological activity of curcumin. In this study, the toxicity and permeability activities of 2,6-bis(2,5-dimethoxybenzy-lidenecyclohexanone (BDMC33 in Caco-2 cells was investigated. Toxicity effects using MTT assay and apparent permeability coefficient (Papp, uptake (UR and efflux (ER ratios, and mass balance of BDMC33 after permeation in Caco-2 cells for 180 min were evaluated in apical (A to basolateral (B and basolateral (B to apical (A directions. The similar analyses on 3-(2-fluoro-benzylidene-5-(2-fluorocyclohexylmethylene-piperidin-4-one; (EF-24 (check control were also conducted. The 24 hr LC50 value for BDMC33 and EF-24 on Caco-2 cells were both 50 µM. The Papp value in A→B direction was 3.37 ± 0.47 cm/s (BDMC33 and 2.47 ± 0.15 cm/s (EF-24. Whereas in B→A direction, it was 1.9 ± 0.36 cm/s (BDMC33 and 1.8 ± 0.15 cm/s (EF-24 upon 120 min incubation. The UR and ER ratios calculated were 1.77% and 0.56%, respectively, and the mass balance calculated were 41-44% (BDMC33 and 31-34% (EF-24 in A→B and B→A direction. This study has suggested BDMC33 to be more absorbable than EF-24 in Caco-2 cells. Therefore, BDMC33 could be a leading feature, the anti-inflammatory agent, as it biological activities would be expected outside the intestine.

  13. Vascular permeability in cerebral cavernous malformations.

    Science.gov (United States)

    Mikati, Abdul G; Khanna, Omaditya; Zhang, Lingjiao; Girard, Romuald; Shenkar, Robert; Guo, Xiaodong; Shah, Akash; Larsson, Henrik B W; Tan, Huan; Li, Luying; Wishnoff, Matthew S; Shi, Changbin; Christoforidis, Gregory A; Awad, Issam A

    2015-10-01

    Patients with the familial form of cerebral cavernous malformations (CCMs) are haploinsufficient for the CCM1, CCM2, or CCM3 gene. Loss of corresponding CCM proteins increases RhoA kinase-mediated endothelial permeability in vitro, and in mouse brains in vivo. A prospective case-controlled observational study investigated whether the brains of human subjects with familial CCM show vascular hyperpermeability by dynamic contrast-enhanced quantitative perfusion magnetic resonance imaging, in comparison with CCM cases without familial disease, and whether lesional or brain vascular permeability correlates with CCM disease activity. Permeability in white matter far (WMF) from lesions was significantly greater in familial than in sporadic cases, but was similar in CCM lesions. Permeability in WMF increased with age in sporadic patients, but not in familial cases. Patients with more aggressive familial CCM disease had greater WMF permeability compared to those with milder disease phenotype, but similar lesion permeability. Subjects receiving statin medications for routine cardiovascular indications had a trend of lower WMF, but not lesion, permeability. This is the first demonstration of brain vascular hyperpermeability in humans with an autosomal dominant disease, as predicted mechanistically. Brain permeability, more than lesion permeability, may serve as a biomarker of CCM disease activity, and help calibrate potential drug therapy.

  14. Recombinant Treponema pallidum protein Tp0965 activates endothelial cells and increases the permeability of endothelial cell monolayer.

    Directory of Open Access Journals (Sweden)

    Rui-Li Zhang

    Full Text Available The recombinant Treponema pallidum protein Tp0965 (rTp0965, one of the many proteins derived from the genome of T. pallidum subsp. pallidum, shows strong immunogenicity and immunoreactivity. In this study, we investigated the effects of rTp0965 on the endothelial barrier. Treatment of human umbilical vein endothelial cells (HUVECs with rTp0965 resulted in increased levels of ICAM-1, E-selectin, and MCP-1 mRNA and protein expression. These increases contributed to the adhesion and chemataxis of monocytes (THP-1 cells to HUVECs preincubated with rTp0965. In addition, rTp0965 induced reorganization of F-actin and decreased expression of claudin-1 in HUVECs. Interestingly, inhibition of the RhoA/ROCK signal pathway protected against rTp0965-induced higher endothelial permeability as well as transendothelial migration of monocytes. These data indicate that Tp0965 protein may play an important role in the immunopathogenesis of syphilis.

  15. Cd(2+) sensitivity and permeability of a low voltage-activated Ca(2+) channel with CatSper-like selectivity filter.

    Science.gov (United States)

    Garza-López, Edgar; Chávez, Julio César; Santana-Calvo, Carmen; López-González, Ignacio; Nishigaki, Takuya

    2016-07-01

    CatSper is a sperm-specific Ca(2+) channel that plays an essential role in the male fertility. However, its biophysical properties have been poorly characterized mainly due to its deficient heterologous expression. As other voltage-gated Ca(2+) channels (CaVs), CatSper possesses a conserved Ca(2+)-selective filter motif ([T/S]x[D/E]xW) in the pore region. Interestingly, CatSper conserves four aspartic acids (DDDD) as the negatively charged residues in this motif while high voltage-activated CaVs have four glutamic acids (EEEE) and low voltage-activated CaVs possess two glutamic acids and two aspartic acids (EEDD). Previous studies based on site-directed mutagenesis of L- and T-type channels showed that the number of D seems to have a negative correlation with their cadmium (Cd(2+)) sensitivity. These results suggest that CatSper (DDDD) would have low sensitivity to Cd(2+). To explore Cd(2+)-sensitivity and -permeability of CatSper, we performed two types of experiments: 1) Electrophysiological analysis of heterologously expressed human CaV3.1 channel and three pore mutants (DEDD, EDDD and DDDD), 2) Cd(2+) imaging of human spermatozoa with FluoZin-1. Electrophysiological studies showed a significant increase in Cd(2+) and manganese (Mn(2+)) currents through the CaV3.1 mutants as well as a reduction in the inhibitory effect of Cd(2+) on the Ca(2+) current. In fluorescence imaging with human sperm, we observed an increase in Cd(2+) influx potentiated by progesterone, a potent activator of CatSper. These results support our hypothesis, namely that Cd(2+)-sensitivity and -permeability are related to the absolute number of D in the Ca(2+)-selective filter independently to the type of the Cav channels.

  16. Surfactant Protein A integrates activation signal strength to differentially modulate T cell proliferation

    OpenAIRE

    Mukherjee, Sambuddho; Giamberardino, Charles; Thomas, Joseph; Evans, Kathy; GOTO, HISATSUGU; Ledford, Julie G.; Hsia, Bethany; Pastva, Amy M.; Wright, Jo Rae

    2012-01-01

    Pulmonary surfactant lipoproteins lower the surface tension at the alveolar:airway interface of the lung and participate in host defense. Previous studies reported that surfactant protein A (SP-A) inhibits lymphocyte proliferation. We hypothesized that SP-A mediated modulation of T cell activation depends upon the strength, duration and type of lymphocyte activating signals. Modulation of T cell signal strength imparted by different activating agents ex and in vivo in different mouse models, ...

  17. Active cancellation of residual amplitude modulation in a frequency-modulation based Fabry-Perot interferometer

    Science.gov (United States)

    Yu, Yinan; Wang, Yicheng; Pratt, Jon R.

    2016-03-01

    Residual amplitude modulation (RAM) is one of the most common noise sources known to degrade the sensitivity of frequency modulation spectroscopy. RAM can arise as a result of the temperature dependent birefringence of the modulator crystal, which causes the orientation of the crystal's optical axis to shift with respect to the polarization of the incident light with temperature. In the fiber-based optical interferometer used on the National Institute of Standards and Technology calculable capacitor, RAM degrades the measured laser frequency stability and correlates with the environmental temperature fluctuations. We have demonstrated a simple approach that cancels out excessive RAM due to polarization mismatch between the light and the optical axis of the crystal. The approach allows us to measure the frequency noise of a heterodyne beat between two lasers individually locked to different resonant modes of a cavity with an accuracy better than 0.5 ppm, which meets the requirement to further determine the longitudinal mode number of the cavity length. Also, this approach has substantially mitigated the temperature dependency of the measurements of the cavity length and consequently the capacitance.

  18. Energy-Storage Modules for Active Solar Heating and Cooling

    Science.gov (United States)

    Parker, J. C.

    1982-01-01

    34 page report describes a melting salt hydrate that stores 12 times as much heat as rocks and other heavy materials. Energy is stored mostly as latent heat; that is, heat that can be stored and recovered without any significant change in temperature. Report also describes development, evaluation and testing of permanently sealed modules containing salt hydrate mixture.

  19. Task-dependent modulation of oscillatory neural activity during movements

    DEFF Research Database (Denmark)

    Herz, D. M.; Christensen, M. S.; Reck, C.;

    2011-01-01

    -dependent modulation of frequency coupling within this network. To this end we recorded 122-multichannel EEG in 13 healthy subjects while they performed three simple motor tasks. EEG data source modeling using individual MR images was carried out with a multiple source beamformer approach. A bilateral motor network...

  20. Studying modulation on simultaneously activated SSVEP neural networks by a cognitive task.

    Science.gov (United States)

    Wu, Zhenghua

    2014-01-01

    Since the discovery of steady-state visually evoked potential (SSVEP), it has been used in many fields. Numerous studies suggest that there exist three SSVEP neural networks in different frequency bands. An obvious phenomenon has been observed, that the amplitude and phase of SSVEP can be modulated by a cognitive task. Previous works have studied this modulation on separately activated SSVEP neural networks by a cognitive task. If two or more SSVEP neural networks are activated simultaneously in the process of a cognitive task, is the modulation on different SSVEP neural networks the same? In this study, two different SSVEP neural networks were activated simultaneously by two different frequency flickers, with a working memory task irrelevant to the flickers being conducted at the same time. The modulated SSVEP waves were compared with each other and to those only under one flicker in previous studies. The comparison results show that the cognitive task can modulate different SSVEP neural networks with a similar style.

  1. Signal Modulation of Super Read Only Memory with Thermally Activated Aperture Model

    Science.gov (United States)

    Kim, June Seo; Kwak, Keumcheol; You, Chun-Yeol

    2008-07-01

    We describe the signal modulation of super read only memory (ROM) with thermally activated aperture model using a three-dimensional finite-difference time-domain method. The thermally activated aperture is modeled using a spatially varied refractive indices of the GeSbTe layer. No meaningful signal modulation is observed without thermally activated aperture below the resolution limit of 120 nm. When we open the thermally activated aperture by considering the temperature dependence of the refractive indices in the GeSbTe layer, the 2.8 and 1.7% signal modulations are observed for 120 and 80 nm pits, respectively. The experimentally observed signal modulation under the resolution limit can be explained using the thermally activated aperture model.

  2. Permeability prediction in chalks

    DEFF Research Database (Denmark)

    Alam, Mohammad Monzurul; Fabricius, Ida Lykke; Prasad, Manika

    2011-01-01

    The velocity of elastic waves is the primary datum available for acquiring information about subsurface characteristics such as lithology and porosity. Cheap and quick (spatial coverage, ease of measurement) information of permeability can be achieved, if sonic velocity is used for permeability......-permeability relationships were replaced by relationships between velocity of elastic waves and permeability using laboratory data, and the relationships were then applied to well-log data. We found that the permeability prediction in chalk and possibly other sediments with large surface areas could be improved...... significantly using the effective specific surface as the fluid-flow concept. The FZI unit is appropriate for highly permeable sedimentary rocks such as sandstones and limestones that have small surface areas....

  3. M19 modulates skeletal muscle differentiation and insulin secretion in pancreatic β-cells through modulation of respiratory chain activity.

    Directory of Open Access Journals (Sweden)

    Linda Cambier

    Full Text Available Mitochondrial dysfunction due to nuclear or mitochondrial DNA alterations contributes to multiple diseases such as metabolic myopathies, neurodegenerative disorders, diabetes and cancer. Nevertheless, to date, only half of the estimated 1,500 mitochondrial proteins has been identified, and the function of most of these proteins remains to be determined. Here, we characterize the function of M19, a novel mitochondrial nucleoid protein, in muscle and pancreatic β-cells. We have identified a 13-long amino acid sequence located at the N-terminus of M19 that targets the protein to mitochondria. Furthermore, using RNA interference and over-expression strategies, we demonstrate that M19 modulates mitochondrial oxygen consumption and ATP production, and could therefore regulate the respiratory chain activity. In an effort to determine whether M19 could play a role in the regulation of various cell activities, we show that this nucleoid protein, probably through its modulation of mitochondrial ATP production, acts on late muscle differentiation in myogenic C2C12 cells, and plays a permissive role on insulin secretion under basal glucose conditions in INS-1 pancreatic β-cells. Our results are therefore establishing a functional link between a mitochondrial nucleoid protein and the modulation of respiratory chain activities leading to the regulation of major cellular processes such as myogenesis and insulin secretion.

  4. Variable Glutamine-Rich Repeats Modulate Transcription Factor Activity

    OpenAIRE

    Gemayel, Rita; Chavali, Sreenivas; Pougach, Ksenia; Legendre, Matthieu; Zhu, Bo; Boeynaems, Steven; van der Zande, Elisa; Gevaert, Kris; Rousseau, Frederic; Schymkowitz, Joost; Babu, M Madan; Verstrepen, Kevin J.

    2015-01-01

    Summary Excessive expansions of glutamine (Q)-rich repeats in various human proteins are known to result in severe neurodegenerative disorders such as Huntington’s disease and several ataxias. However, the physiological role of these repeats and the consequences of more moderate repeat variation remain unknown. Here, we demonstrate that Q-rich domains are highly enriched in eukaryotic transcription factors where they act as functional modulators. Incremental changes in the number of repeats i...

  5. Modulated spectral activity (MSA) - Implications for planetary radio sources

    Science.gov (United States)

    Thieman, James R.; Alexander, Joseph K.; Staelin, David H.

    1988-01-01

    The properties of the Jovian and Saturnian MSA, modulation patterns within the normally diffuse nonthermal radio emission that are characterized by distinctive banded structures of enhanced intensity fluctuations in frequency over time scales of minutes to tens of minutes, are discussed. Although Jovian and Saturnian MSA are both normally observed in the 0.2-1.3-MHz frequency range, similar pattern have been noted in Jovian decametric emission above 30 MHz. The MSA properties are used to constrain the possible source mechanism.

  6. Same modulation but different starting points: performance modulates age differences in inferior frontal cortex activity during word-retrieval.

    Directory of Open Access Journals (Sweden)

    Marcus Meinzer

    Full Text Available The neural basis of word-retrieval deficits in normal aging has rarely been assessed and the few previous functional imaging studies found enhanced activity in right prefrontal areas in healthy older compared to younger adults. However, more pronounced right prefrontal recruitment has primarily been observed during challenging task conditions. Moreover, increased task difficulty may result in enhanced activity in the ventral inferior frontal gyrus (vIFG bilaterally in younger participants as well. Thus, the question arises whether increased activity in older participants represents an age-related phenomenon or reflects task difficulty effects. In the present study, we manipulated task difficulty during overt semantic and phonemic word-generation and used functional magnetic resonance imaging to assess activity patterns in the vIFG in healthy younger and older adults (N = 16/group; mean age: 24 vs. 69 years. Both groups produced fewer correct responses during the more difficult task conditions. Overall, older participants produced fewer correct responses and showed more pronounced task-related activity in the right vIFG. However, increased activity during the more difficult conditions was found in both groups. Absolute degree of activity was correlated with performance across groups, tasks and difficulty levels. Activity modulation (difficult vs. easy conditions was correlated with the respective drop in performance across groups and tasks. In conclusion, vIFG activity levels and modulation of activity were mediated by performance accuracy in a similar way in both groups. Group differences in the right vIFG activity were explained by performance accuracy which needs to be considered in future functional imaging studies of healthy and pathological aging.

  7. Modulation of pulmonary macrophage superoxide release and tumoricidal activity following activation by biological response modifiers.

    Science.gov (United States)

    Drath, D B

    1986-10-01

    Following immunologic activation, pulmonary macrophages may prevent or cause regression of lung metastases by mechanisms which remain largely unknown. The studies described here were designed to determine if enhanced oxygen metabolite release was related to postactivation tumoricidal activity. We have shown that in vitro activation of Fischer 344 rat pulmonary macrophages by either free or liposome-encapsulated muramyl dipeptide leads to both enhanced release of superoxide anions and marked tumoricidal activity against syngenic (Fischer 13762), allogeneic (Schmidt-Ruppin RR 1022) and xenogeneic (Fibrosarcoma MCA-F) 125I-deoxyuridine-labeled target cells. This immune modulator did not, however, metabolically activate pulmonary macrophages as effectively as liposome-encapsulated lipopolysaccharide. A 24-h in vitro incubation with either 150 U or 300 U of interferon-gamma (3 X 10(6) U/mg) or 30 U, 150 U or 300 U of interferon-alpha (6 X 10(5) U/mg) caused a significant elevation in superoxide release above controls, whereas short-term exposure (2 or 4 h) had little or no effect. Free or encapsulated 6-O-stearoyl muramyl dipeptide, on the other hand, did increase superoxide levels at all 3 time periods. When either interferon-gamma or free or encapsulated muramyl dipeptide derivative were administered to intact rats by either i.v. injection, intratracheal instillation or osmotic minipump infusion, pulmonary macrophage tumoricidal activity was observed 96 h after cell harvesting. Zymosan-stimulated superoxide release, however, was not consistently elevated above control or empty liposome treatment following this course of in vivo activation. The data collectively suggest that in vivo pulmonary macrophage activation to a tumoricidal state and metabolic activation resulting in enhanced superoxide may be separable events. PMID:3021650

  8. Modulation of PPAR Expression and Activity in Response to Polyphenolic Compounds in High Fat Diets

    OpenAIRE

    J. Abraham Domínguez-Avila; Gustavo A. González-Aguilar; Emilio Alvarez-Parrilla; de la Rosa, Laura A.

    2016-01-01

    Peroxisome proliferator-activated receptors (PPAR) are transcription factors that modulate energy metabolism in liver, adipose tissue and muscle. High fat diets (HFD) can negatively impact PPAR expression or activity, favoring obesity, dyslipidemia, insulin resistance and other conditions. However, polyphenols (PP) found in vegetable foodstuffs are capable of positively modulating this pathway. We therefore focused this review on the possible effects that PP can have on PPAR when administered...

  9. [Change of cholinesterase relative activity under modulated ultra high frequency electromagnetic radiation in experiments in vitro].

    Science.gov (United States)

    Pashovkina, M S; Pashovkin, T N

    2011-01-01

    Changes in the activity of enzyme cholinesterase (ChE) have been experimentally investigated under the influence of amplitude-modulated super-high-frequency electromagnetic radiation (carrier frequency of 2.375 MHz; power flux density of 8 mW/cm2, 20 mW/cm2 and 50 mW/cm2; modulation frequency range 10 to 210 Hz; exposure time 5 min). The appearance of peaks of the cholinesterase increased relative activity, as well as the changes in the direction and intensity of the reaction associated with the modulation frequency and power flux are observed at equal power flux densities and exposure times.

  10. Permeability of Dentine

    OpenAIRE

    Ghazali, Farid Bin Che

    2003-01-01

    This is an update on the present integrated knowledge regarding dentine permeability that assumed a role in dentine sensitivity and contribute clinically to the effective bonding properties of restorative dental materials. This paper will attempt to refer to in vivo and in vitro studies of dentine permeability and the various interrelated factors governing it.

  11. Permeable Pavements at Purdue

    OpenAIRE

    Knapp, Jim

    2013-01-01

    Two case studies will be presented describing sustainable drainage alternatives. The processes used for the 2nd Street project in Seymour will provide a comparison of the design processes for conventional and green infrastructure solutions. Purdue University will discuss a number of permeable pavement installations on campus and provide a map for viewing. Asphalt, concrete, and permeable paver options will be discussed.

  12. Curcumin Pretreatment Prevents Potassium Dichromate-Induced Hepatotoxicity, Oxidative Stress, Decreased Respiratory Complex I Activity, and Membrane Permeability Transition Pore Opening

    Directory of Open Access Journals (Sweden)

    Wylly Ramsés García-Niño

    2013-01-01

    Full Text Available Curcumin is a polyphenol derived from turmeric with recognized antioxidant properties. Hexavalent chromium is an environmental toxic and carcinogen compound that induces oxidative stress. The objective of this study was to evaluate the potential protective effect of curcumin on the hepatic damage generated by potassium dichromate (K2Cr2O7 in rats. Animals were pretreated daily by 9-10 days with curcumin (400 mg/kg b.w. before the injection of a single intraperitoneal of K2Cr2O7 (15 mg/kg b.w.. Groups of animals were sacrificed 24 and 48 h later. K2Cr2O7-induced damage to the liver was evident by histological alterations and increase in the liver weight and in the activity of alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, and alkaline phosphatase in plasma. In addition, K2Cr2O7 induced oxidative damage in liver and isolated mitochondria, which was evident by the increase in the content of malondialdehyde and protein carbonyl and decrease in the glutathione content and in the activity of several antioxidant enzymes. Moreover, K2Cr2O7 induced decrease in mitochondrial oxygen consumption, in the activity of respiratory complex I, and permeability transition pore opening. All the above-mentioned alterations were prevented by curcumin pretreatment. The beneficial effects of curcumin against K2Cr2O7-induced liver oxidative damage were associated with prevention of mitochondrial dysfunction.

  13. Antimicrobial activity of peptides derived from olive flounder lipopolysaccharide binding protein/bactericidal permeability-increasing protein (LBP/BPI).

    Science.gov (United States)

    Nam, Bo-Hye; Moon, Ji-Young; Park, Eun-Hee; Kim, Young-Ok; Kim, Dong-Gyun; Kong, Hee Jeong; Kim, Woo-Jin; Jee, Young Ju; An, Cheul Min; Park, Nam Gyu; Seo, Jung-Kil

    2014-10-17

    We describe the antimicrobial function of peptides derived from the C-terminus of the olive flounder LBP BPI precursor protein. The investigated peptides, namely, ofLBP1N, ofLBP2A, ofLBP4N, ofLBP5A, and ofLBP6A, formed α-helical structures, showing significant antimicrobial activity against several Gram-negative bacteria, Gram-positive bacteria, and the yeast Candida albicans, but very limited hemolytic activities. The biological activities of these five analogs were evaluated against biomembranes or artificial membranes for the development of candidate therapeutic agents. Gel retardation studies revealed that peptides bound to DNA and inhibited migration on an agarose gel. In addition, we demonstrated that ofLBP6A inhibited polymerase chain reaction. These results suggested that the ofLBP-derived peptide bactericidal mechanism may be related to the interaction with intracellular components such as DNA or polymerase.

  14. Antimicrobial Activity of Peptides Derived from Olive Flounder Lipopolysaccharide Binding Protein/Bactericidal Permeability-Increasing Protein (LBP/BPI

    Directory of Open Access Journals (Sweden)

    Bo-Hye Nam

    2014-10-01

    Full Text Available We describe the antimicrobial function of peptides derived from the C-terminus of the olive flounder LBP BPI precursor protein. The investigated peptides, namely, ofLBP1N, ofLBP2A, ofLBP4N, ofLBP5A, and ofLBP6A, formed α-helical structures, showing significant antimicrobial activity against several Gram-negative bacteria, Gram-positive bacteria, and the yeast Candida albicans, but very limited hemolytic activities. The biological activities of these five analogs were evaluated against biomembranes or artificial membranes for the development of candidate therapeutic agents. Gel retardation studies revealed that peptides bound to DNA and inhibited migration on an agarose gel. In addition, we demonstrated that ofLBP6A inhibited polymerase chain reaction. These results suggested that the ofLBP-derived peptide bactericidal mechanism may be related to the interaction with intracellular components such as DNA or polymerase.

  15. Staphylococcal Enterotoxin O Exhibits Cell Cycle Modulating Activity

    Science.gov (United States)

    Hodille, Elisabeth; Alekseeva, Ludmila; Berkova, Nadia; Serrier, Asma; Badiou, Cedric; Gilquin, Benoit; Brun, Virginie; Vandenesch, François; Terman, David S.; Lina, Gerard

    2016-01-01

    Maintenance of an intact epithelial barrier constitutes a pivotal defense mechanism against infections. Staphylococcus aureus is a versatile pathogen that produces multiple factors including exotoxins that promote tissue alterations. The aim of the present study is to investigate the cytopathic effect of staphylococcal exotoxins SEA, SEG, SEI, SElM, SElN and SElO on the cell cycle of various human cell lines. Among all tested exotoxins only SEIO inhibited the proliferation of a broad panel of human tumor cell lines in vitro. Evaluation of a LDH release and a DNA fragmentation of host cells exposed to SEIO revealed that the toxin does not induce necrosis or apoptosis. Analysis of the DNA content of tumor cells synchronized by serum starvation after exposure to SEIO showed G0/G1 cell cycle delay. The cell cycle modulating feature of SEIO was confirmed by the flow cytometry analysis of synchronized cells exposed to supernatants of isogenic S. aureus strains wherein only supernatant of the SElO producing strain induced G0/G1 phase delay. The results of yeast-two-hybrid analysis indicated that SEIO’s potential partner is cullin-3, involved in the transition from G1 to S phase. In conclusion, we provide evidence that SEIO inhibits cell proliferation without inducing cell death, by delaying host cell entry into the G0/G1 phase of the cell cycle. We speculate that this unique cell cycle modulating feature allows SEIO producing bacteria to gain advantage by arresting the cell cycle of target cells as part of a broader invasive strategy. PMID:27148168

  16. Glucose Enhances Leptin Signaling through Modulation of AMPK Activity

    OpenAIRE

    Haoran Su; Lin Jiang; Christin Carter-Su; Liangyou Rui

    2012-01-01

    Leptin exerts its action by binding to and activating the long form of leptin receptors (LEPRb). LEPRb activates JAK2 that subsequently phosphorylates and activates STAT3. The JAK2/STAT3 pathway is required for leptin control of energy balance and body weight. Defects in leptin signaling lead to leptin resistance, a primary risk factor for obesity. Body weight is also regulated by nutrients, including glucose. Defects in glucose sensing also contribute to obesity. Here we report crosstalk bet...

  17. ROMA: representation and quantification of module activity from target expression data

    Directory of Open Access Journals (Sweden)

    Loredana eMartignetti

    2016-02-01

    Full Text Available In many analysis of high-throughput data in systems biology, there is a need to quantify the activity of a set of genes in individual samples. A typical example is the case where it is necessary to estimate the activity of a transcription factor (which is often not directly measurable from the expression of its target genes. We present here ROMA (Representation and quantification Of Module Activities Java software, designed for fast and robust computation of the activity of gene sets (or modules with coordinated expression. ROMA activity quantification is based on the simplest uni-factor linear model of gene regulation that approximates the expression data of a gene set by its first principal component.The proposed algorithm implements novel functionalities: it provides several method modifications for principal components computation, including weighted, robust and centered methods; it distinguishes overdispersed modules (based on the variance explained by the first principal component and coordinated modules (based on the significance of the spectral gap; finally, it computes statistical significance of the estimated module overdispersion or coordination.ROMA can be applied in many contexts, from estimating differential activities of transcriptional factors to findingoverdispersed pathways in single-cell transcriptomics data. We describe here the principles of ROMA providing several practical examples of its use.ROMA source code is available at https://github.com/sysbio-curie/Roma.

  18. Cloning and characterization of two lipopolysaccharide-binding protein/bactericidal permeability-increasing protein (LBP/BPI) genes from the sea cucumber Apostichopus japonicus with diversified function in modulating ROS production.

    Science.gov (United States)

    Shao, Yina; Li, Chenghua; Che, Zhongjie; Zhang, Pengjuan; Zhang, Weiwei; Duan, Xuemei; Li, Ye

    2015-09-01

    Lipopolysaccharide-binding protein and bactericidal permeability-increasing protein (LBP/BPI) play crucial role in modulating cellular signals in response to Gram-negative bacteria infection. In the present study, two isoforms of LBP/BPI genes (designated as AjLBP/BPI1 and AjLBP/BPI2, respectively) were cloned from the sea cucumber Apostichopus japonicus by RACE approach. The full-length cDNAs of AjLBP/BPI1 and AjLBP/BPI2 were of 1479 and 1455 bp and encoded two secreted proteins of 492 and 484 amino acid residues, respectively. Signal peptide, two BPI/LBP/CETP and one central domain were totally conserved in the deduced amino acid of AjLBP/BPI1 and AjLBP/BPI2. Phylogentic analysis further supported that AjLBP/BPI1 and AjLBP/BPI2 belonged to new members of invertebrates LBP/BPI family. Spatial expression analysis revealed that both AjLBP/BPI1 and AjLBP/BPI2 were ubiquitously expressed in all examined tissues with the larger magnitude in AjLBP/BPI1. The Vibrio splenfidus challenge and LPS stimulation could significantly up-regulate the mRNA expression of both AjLBP/BPI1 and AjLBP/BPI2, with the increase of AjLBP/BPI2 expression occurred earlier than that of AjLBP/BPI1. More importantly, we found that LPS induced ROS production was markedly depressed after AjLBP/BPI1 knock-down, but there was no significant change by AjLBP/BPI2 silencing. Consistently, the expression level of unclassified AjToll, not AjTLR3, was tightly correlated with that of AjLBP/BPI1. Silencing the AjToll also depressed the ROS production in the cultured coelomocytes. All these results indicated that AjLBP/BPI1 and AjLBP/BPI2 probably played distinct roles in bacterial mediating immune response in sea cucumber, and AjLBP/BPI1 depressed coelomocytes ROS production via modulating AjToll cascade. PMID:25956196

  19. Learning new gait patterns: Exploratory muscle activity during motor learning is not predicted by motor modules.

    Science.gov (United States)

    Ranganathan, Rajiv; Krishnan, Chandramouli; Dhaher, Yasin Y; Rymer, William Z

    2016-03-21

    The motor module hypothesis in motor control proposes that the nervous system can simplify the problem of controlling a large number of muscles in human movement by grouping muscles into a smaller number of modules. Here, we tested one prediction of the modular organization hypothesis by examining whether there is preferential exploration along these motor modules during the learning of a new gait pattern. Healthy college-aged participants learned a new gait pattern which required increased hip and knee flexion during the swing phase while walking in a lower-extremity robot (Lokomat). The new gait pattern was displayed as a foot trajectory in the sagittal plane and participants attempted to match their foot trajectory to this template. We recorded EMG from 8 lower-extremity muscles and we extracted motor modules during both baseline walking and target-tracking using non-negative matrix factorization (NMF). Results showed increased trajectory variability in the first block of learning, indicating that participants were engaged in exploratory behavior. Critically, when we examined the muscle activity during this exploratory phase, we found that the composition of motor modules changed significantly within the first few strides of attempting the new gait pattern. The lack of persistence of the motor modules under even short time scales suggests that motor modules extracted during locomotion may be more indicative of correlated muscle activity induced by the task constraints of walking, rather than reflecting a modular control strategy.

  20. Program-Controlled High Voltage Module in Active Voltage Dividers(AVD) for MPGD

    CERN Document Server

    Ginting, Muhammad Fadhil

    2016-01-01

    Micro Pattern Gas Detectors (MPGD) applications are rapidly developing and became an important part of upgrades for the LHC detectors. RD51/CERN have worked on Active Voltage Divider (AVD) technology for multistage MPGDs, One of the next developments for the AVD is to design and integrate high voltage module in a single box. The Program-Controlled High Voltage Module, part of one AIDA2020 project, has been successfully designed and developed, and can be integrated in AVD design.

  1. Pentameric ligand-gated ion channel ELIC is activated by GABA and modulated by benzodiazepines

    OpenAIRE

    Spurny, R.; Ramerstorfer, J.; Price, K; Brams, M.; M. Ernst; Nury, H.; Verheij, M.; Legrand, P.; Bertrand, D.; Bertrand, S.; Dougherty, D A; de Esch, I. J. P.; Corringer, P.-J.; Sieghart, W.; Lummis, S. C. R.

    2012-01-01

    GABA_A receptors are pentameric ligand-gated ion channels involved in fast inhibitory neurotransmission and are allosterically modulated by the anxiolytic, anticonvulsant, and sedative-hypnotic benzodiazepines. Here we show that the prokaryotic homolog ELIC also is activated by GABA and is modulated by benzodiazepines with effects comparable to those at GABA_A receptors. Crystal structures reveal important features of GABA recognition and indicate that benzodiazepines, depending on their conc...

  2. Modulation of bulbospinal RVLM neurons by hypoxia/hypercapnia but not medullary respiratory activity

    OpenAIRE

    Boychuk, Carie R.; Woerman, Amanda L.; Mendelowitz, David

    2012-01-01

    Although sympathetic vasomotor discharge has respiratory modulation, the site(s) responsible for this cardiorespiratory interaction are unknown. One likely source for this coupling is the RVLM where pre-sympathetic neurons originate in close apposition to respiratory neurons. The current study tested the hypothesis that RVLM bulbospinal neurons are modulated by medullary respiratory network activity using whole-cell patch-clamp electrophysiological recordings of RVLM neurons while simultaneou...

  3. Reward Sensitivity Modulates Brain Activity in the Prefrontal Cortex, ACC and Striatum during Task Switching

    Science.gov (United States)

    Fuentes-Claramonte, Paola; Ávila, César; Rodríguez-Pujadas, Aina; Ventura-Campos, Noelia; Bustamante, Juan C.; Costumero, Víctor; Rosell-Negre, Patricia; Barrós-Loscertales, Alfonso

    2015-01-01

    Current perspectives on cognitive control acknowledge that individual differences in motivational dispositions may modulate cognitive processes in the absence of reward contingencies. This work aimed to study the relationship between individual differences in Behavioral Activation System (BAS) sensitivity and the neural underpinnings involved in processing a switching cue in a task-switching paradigm. BAS sensitivity was hypothesized to modulate brain activity in frontal regions, ACC and the striatum. Twenty-eight healthy participants underwent fMRI while performing a switching task, which elicited activity in fronto-striatal regions during the processing of the switch cue. BAS sensitivity was negatively associated with activity in the lateral prefrontal cortex, anterior cingulate cortex and the ventral striatum. Combined with previous results, our data indicate that BAS sensitivity modulates the neurocognitive processes involved in task switching in a complex manner depending on task demands. Therefore, individual differences in motivational dispositions may influence cognitive processing in the absence of reward contingencies. PMID:25875640

  4. Development and construction of a thermoelectric active facade module

    OpenAIRE

    Marıa Ibanez-Puy; Jose Antonio Fernandez Sacristan; Cesar Martın-Gomez; Marina Vidaurre-Arbizu

    2015-01-01

    In order to fulfil the current challenges for the European building sector, building design has diverged into two alternative directions: active technologies and passive design strategies. In the last few years, advanced and responsive building envelope components have represented a promising answer to these challenges. This paper presents the design and construction process of a project that aims to design, build and control the energy performance of an industrial-scale modular active ventil...

  5. Fuzzy Behavior Modulation with Threshold Activation for Autonomous Vehicle Navigation

    Science.gov (United States)

    Tunstel, Edward

    2000-01-01

    This paper describes fuzzy logic techniques used in a hierarchical behavior-based architecture for robot navigation. An architectural feature for threshold activation of fuzzy-behaviors is emphasized, which is potentially useful for tuning navigation performance in real world applications. The target application is autonomous local navigation of a small planetary rover. Threshold activation of low-level navigation behaviors is the primary focus. A preliminary assessment of its impact on local navigation performance is provided based on computer simulations.

  6. Activity-dependent modulation of neural circuit synaptic connectivity

    OpenAIRE

    Tessier, Charles R.; Kendal Broadie

    2009-01-01

    In many nervous systems, the establishment of neural circuits is known to proceed via a two-stage process; 1) early, activity-independent wiring to produce a rough map characterized by excessive synaptic connections, and 2) subsequent, use-dependent pruning to eliminate inappropriate connections and reinforce maintained synapses. In invertebrates, however, evidence of the activity-dependent phase of synaptic refinement has been elusive, and the dogma has long been that invertebrate circ...

  7. Modulation of KCNQ4 channel activity by changes in cell volume

    DEFF Research Database (Denmark)

    Hougaard, Charlotte; Klaerke, Dan A; Hoffmann, Else K;

    2004-01-01

    KCNQ4 channels expressed in HEK 293 cells are sensitive to cell volume changes, being activated by swelling and inhibited by shrinkage, respectively. The KCNQ4 channels contribute significantly to the regulatory volume decrease (RVD) process following cell swelling. Under isoosmotic conditions......, the KCNQ4 channel activity is modulated by protein kinases A and C, G protein activation, and a reduction in the intracellular Ca2+ concentration, but these signalling pathways are not responsible for the increased channel activity during cell swelling....

  8. Gyroid Nanoporous Membranes with Tunable Permeability

    DEFF Research Database (Denmark)

    Li, Li; Schulte, Lars; Clausen, Lydia D.;

    2011-01-01

    Understanding the relevant permeability properties of ultrafiltration membranes is facilitated by using materials and procedures that allow a high degree of control on morphology and chemical composition. Here we present the first study on diffusion permeability through gyroid nanoporous cross....... The chemistry of 1,2-PB nanoporous membranes can be controlled, for example, by hydrophilic patterning of the originally hydrophobic membranes, which allows for different active porosity toward aqueous solutions and, therefore, different permeability. The membrane selectivity is evaluated by comparing...... for the presented gyroid nanoporous membranes....

  9. Modulation of Motor Area Activity during Observation of Unnatural Body Movements

    Science.gov (United States)

    Shimada, Sotaro; Oki, Kazuma

    2012-01-01

    The mirror neuron system (MNS) is activated when observing the actions of others. However, it remains unclear whether the MNS responds more strongly to natural bodily actions in the observer's motor repertoire than to unnatural actions. We investigated whether MNS activity is modulated by the unnaturalness of an observed action by inserting short…

  10. Modulation of the protein kinase activity of mTOR.

    Science.gov (United States)

    Lawrence, J C; Lin, T A; McMahon, L P; Choi, K M

    2004-01-01

    mTOR is a founding member of a family of protein kinases having catalytic domains homologous to those in phosphatidylinositol 3-OH kinase. mTOR participates in the control by insulin of the phosphorylation of lipin, which is required for adipocyte differentiation, and the two translational regulators, p70S6K and PHAS-I. The phosphorylation of mTOR, itself, is stimulated by insulin in Ser2448, a site that is also phosphorylated by protein kinase B (PKB) in vitro and in response to activation of PKB activity in vivo. Ser2448 is located in a short stretch of amino acids not found in the two TOR proteins in yeast. A mutant mTOR lacking this stretch exhibited increased activity, and binding of the antibody, mTAb-1, to this region markedly increased mTOR activity. In contrast, rapamycin-FKBP12 inhibited mTOR activity towards both PHAS-I and p70S6K, although this complex inhibited the phosphorylation of some sites more than that of others. Mutating Ser2035 to Ile in the FKBP12-rapamycin binding domain rendered mTOR resistant to inhibition by rapamycin. Unexpectedly, this mutation markedly decreased the ability of mTOR to phosphorylate certain sites in both PHAS-I and p70S6K. The results support the hypotheses that rapamycin disrupts substrate recognition instead of directly inhibiting phosphotransferase activity and that mTOR activity in cells is controlled by the phosphorylation of an inhibitory regulatory domain containing the mTAb-1 epitope. PMID:14560959

  11. Permeability of edible coatings.

    Science.gov (United States)

    Mishra, B; Khatkar, B S; Garg, M K; Wilson, L A

    2010-01-01

    The permeabilities of water vapour, O2 and CO2 were determined for 18 coating formulations. Water vapour transmission rate ranged from 98.8 g/m(2).day (6% beeswax) to 758.0 g/m(2).day (1.5% carboxymethyl cellulose with glycerol). O2 permeability at 14 ± 1°C and 55 ± 5% RH ranged from 1.50 to 7.95 cm(3)cm cm(-2)s(-1)Pa(-1), with CO2 permeability 2 to 6 times as high. Permeability to noncondensable gases (O2 and CO2) was higher for hydrophobic (peanut oil followed by beeswax) coatings as compared to hydrophilic (whey protein concentrate and carboxymethyl cellulose).

  12. Permeable pavement study (Edison)

    Data.gov (United States)

    U.S. Environmental Protection Agency — While permeable pavement is increasingly being used to control stormwater runoff, field-based, side-by-side investigations on the effects different pavement types...

  13. Modulation of β-catenin signaling by glucagon receptor activation.

    Directory of Open Access Journals (Sweden)

    Jiyuan Ke

    Full Text Available The glucagon receptor (GCGR is a member of the class B G protein-coupled receptor family. Activation of GCGR by glucagon leads to increased glucose production by the liver. Thus, glucagon is a key component of glucose homeostasis by counteracting the effect of insulin. In this report, we found that in addition to activation of the classic cAMP/protein kinase A (PKA pathway, activation of GCGR also induced β-catenin stabilization and activated β-catenin-mediated transcription. Activation of β-catenin signaling was PKA-dependent, consistent with previous reports on the parathyroid hormone receptor type 1 (PTH1R and glucagon-like peptide 1 (GLP-1R receptors. Since low-density-lipoprotein receptor-related protein 5 (Lrp5 is an essential co-receptor required for Wnt protein mediated β-catenin signaling, we examined the role of Lrp5 in glucagon-induced β-catenin signaling. Cotransfection with Lrp5 enhanced the glucagon-induced β-catenin stabilization and TCF promoter-mediated transcription. Inhibiting Lrp5/6 function using Dickkopf-1(DKK1 or by expression of the Lrp5 extracellular domain blocked glucagon-induced β-catenin signaling. Furthermore, we showed that Lrp5 physically interacted with GCGR by immunoprecipitation and bioluminescence resonance energy transfer assays. Together, these results reveal an unexpected crosstalk between glucagon and β-catenin signaling, and may help to explain the metabolic phenotypes of Lrp5/6 mutations.

  14. How Orthography Modulates Morphological Priming: Subliminal Kanji Activation in Japanese

    Science.gov (United States)

    Nakano, Yoko; Ikemoto, Yu; Jacob, Gunnar; Clahsen, Harald

    2016-01-01

    The current study investigates to what extent masked morphological priming is modulated by language-particular properties, specifically by its writing system. We present results from two masked priming experiments investigating the processing of complex Japanese words written in less common (moraic) scripts. In Experiment 1, participants performed lexical decisions on target verbs; these were preceded by primes which were either (i) a past-tense form of the same verb, (ii) a stem-related form with the epenthetic vowel -i, (iii) a semantically-related form, and (iv) a phonologically-related form. Significant priming effects were obtained for prime types (i), (ii), and (iii), but not for (iv). This pattern of results differs from previous findings on languages with alphabetic scripts, which found reliable masked priming effects for morphologically related prime/target pairs of type (i), but not for non-affixal and semantically-related primes of types (ii), and (iii). In Experiment 2, we measured priming effects for prime/target pairs which are neither morphologically, semantically, phonologically nor - as presented in their moraic scripts—orthographically related, but which—in their commonly written form—share the same kanji, which are logograms adopted from Chinese. The results showed a significant priming effect, with faster lexical-decision times for kanji-related prime/target pairs relative to unrelated ones. We conclude that affix-stripping is insufficient to account for masked morphological priming effects across languages, but that language-particular properties (in the case of Japanese, the writing system) affect the processing of (morphologically) complex words. PMID:27065895

  15. How Orthography Modulates Morphological Priming: Subliminal Kanji Activation in Japanese

    Directory of Open Access Journals (Sweden)

    Yoko eNakano

    2016-03-01

    Full Text Available The current study investigates to what extent masked morphological priming is modulated by language-particular properties, specifically by its writing system. We present results from two masked priming experiments investigating the processing of complex Japanese words written in less common (moraic scripts. In Experiment 1, participants performed lexical decisions on target verbs; these were preceded by primes which were either (i a past-tense form of the same verb, (ii a stem-related form with the epenthetic vowel -i, (iii a semantically-related form, and (iv a phonologically-related form. Significant priming effects were obtained for prime types (i, (ii and (iii, but not for (iv. This pattern of results differs from previous findings on languages with alphabetic scripts, which found reliable masked priming effects for morphologically related prime/target pairs of type (i, but not for non-affixal and semantically-related primes of types (ii and (iii. In Experiment 2, we measured priming effects for prime/target pairs which are neither morphologically, semantically, phonologically nor - as presented in their moraic scripts – orthographically related, but which - in their commonly written form - share the same kanji, which are logograms adopted from Chinese. The results showed a significant priming effect, with faster lexical-decision times for kanji-related prime/target pairs relative to unrelated ones. We conclude that affix-stripping is insufficient to account for masked morphological priming effects across languages, but that language-particular properties (in the case of Japanese, the writing system affect the processing of (morphologically complex words.

  16. How Orthography Modulates Morphological Priming: Subliminal Kanji Activation in Japanese.

    Science.gov (United States)

    Nakano, Yoko; Ikemoto, Yu; Jacob, Gunnar; Clahsen, Harald

    2016-01-01

    The current study investigates to what extent masked morphological priming is modulated by language-particular properties, specifically by its writing system. We present results from two masked priming experiments investigating the processing of complex Japanese words written in less common (moraic) scripts. In Experiment 1, participants performed lexical decisions on target verbs; these were preceded by primes which were either (i) a past-tense form of the same verb, (ii) a stem-related form with the epenthetic vowel -i, (iii) a semantically-related form, and (iv) a phonologically-related form. Significant priming effects were obtained for prime types (i), (ii), and (iii), but not for (iv). This pattern of results differs from previous findings on languages with alphabetic scripts, which found reliable masked priming effects for morphologically related prime/target pairs of type (i), but not for non-affixal and semantically-related primes of types (ii), and (iii). In Experiment 2, we measured priming effects for prime/target pairs which are neither morphologically, semantically, phonologically nor - as presented in their moraic scripts-orthographically related, but which-in their commonly written form-share the same kanji, which are logograms adopted from Chinese. The results showed a significant priming effect, with faster lexical-decision times for kanji-related prime/target pairs relative to unrelated ones. We conclude that affix-stripping is insufficient to account for masked morphological priming effects across languages, but that language-particular properties (in the case of Japanese, the writing system) affect the processing of (morphologically) complex words. PMID:27065895

  17. Activity-dependent modulation of neural circuit synaptic connectivity

    Directory of Open Access Journals (Sweden)

    Charles R Tessier

    2009-07-01

    Full Text Available In many nervous systems, the establishment of neural circuits is known to proceed via a two-stage process; 1 early, activity-independent wiring to produce a rough map characterized by excessive synaptic connections, and 2 subsequent, use-dependent pruning to eliminate inappropriate connections and reinforce maintained synapses. In invertebrates, however, evidence of the activity-dependent phase of synaptic refinement has been elusive, and the dogma has long been that invertebrate circuits are “hard-wired” in a purely activity-independent manner. This conclusion has been challenged recently through the use of new transgenic tools employed in the powerful Drosophila system, which have allowed unprecedented temporal control and single neuron imaging resolution. These recent studies reveal that activity-dependent mechanisms are indeed required to refine circuit maps in Drosophila during precise, restricted windows of late-phase development. Such mechanisms of circuit refinement may be key to understanding a number of human neurological diseases, including developmental disorders such as Fragile X syndrome (FXS and autism, which are hypothesized to result from defects in synaptic connectivity and activity-dependent circuit function. This review focuses on our current understanding of activity-dependent synaptic connectivity in Drosophila, primarily through analyzing the role of the fragile X mental retardation protein (FMRP in the Drosophila FXS disease model. The particular emphasis of this review is on the expanding array of new genetically-encoded tools that are allowing cellular events and molecular players to be dissected with ever greater precision and detail.

  18. Modulation of Erythrocyte Plasma Membrane Redox System Activity by Curcumin.

    Science.gov (United States)

    Singh, Prabhakar; Kesharwani, Rajesh Kumar; Misra, Krishna; Rizvi, Syed Ibrahim

    2016-01-01

    Plasma membrane redox system (PMRS) is an electron transport chain system ubiquitously present throughout all cell types. It transfers electron from intracellular substrates to extracellular acceptors for regulation of redox status. Curcumin, isolated from Curcuma longa, has modulatory effects on cellular physiology due to its membrane interaction ability and antioxidant potential. The present study investigates the effect of curcumin on PMRS activity of erythrocytes isolated from Wistar rats in vitro and in vivo and validated through an in silico docking simulation study using Molegro Virtual Docker (MVD). Effects of curcumin were also evaluated on level of glutathione (GSH) and the oxidant potential of plasma measured in terms of plasma ferric equivalent oxidative potentials (PFEOP). Results show that curcumin significantly (p < 0.01) downregulated the PMRS activity in a dose-dependent manner. Molecular docking results suggest that curcumin interacts with amino acids at the active site cavity of cytochrome b 5 reductase, a key constituent of PMRS. Curcumin also increased the GSH level in erythrocytes and plasma while simultaneously decreasing the oxidant potential (PFEOP) of plasma. Altered PMRS activity and redox status are associated with the pathophysiology of several health complications including aging and diabetes; hence, the above finding may explain part of the role of curcumin in health beneficial effects. PMID:26904287

  19. Modulation of Erythrocyte Plasma Membrane Redox System Activity by Curcumin

    Directory of Open Access Journals (Sweden)

    Prabhakar Singh

    2016-01-01

    Full Text Available Plasma membrane redox system (PMRS is an electron transport chain system ubiquitously present throughout all cell types. It transfers electron from intracellular substrates to extracellular acceptors for regulation of redox status. Curcumin, isolated from Curcuma longa, has modulatory effects on cellular physiology due to its membrane interaction ability and antioxidant potential. The present study investigates the effect of curcumin on PMRS activity of erythrocytes isolated from Wistar rats in vitro and in vivo and validated through an in silico docking simulation study using Molegro Virtual Docker (MVD. Effects of curcumin were also evaluated on level of glutathione (GSH and the oxidant potential of plasma measured in terms of plasma ferric equivalent oxidative potentials (PFEOP. Results show that curcumin significantly (p<0.01 downregulated the PMRS activity in a dose-dependent manner. Molecular docking results suggest that curcumin interacts with amino acids at the active site cavity of cytochrome b5 reductase, a key constituent of PMRS. Curcumin also increased the GSH level in erythrocytes and plasma while simultaneously decreasing the oxidant potential (PFEOP of plasma. Altered PMRS activity and redox status are associated with the pathophysiology of several health complications including aging and diabetes; hence, the above finding may explain part of the role of curcumin in health beneficial effects.

  20. Electrostatically gated membrane permeability in inorganic protocells

    OpenAIRE

    Li, Mei; Harbron, Rachel; Weaver, Jonathan; Binks, Bernard; Mann, Stephen.

    2013-01-01

    Although several strategies are now available to produce functional microcompartments analogous to primitive cell-like structures, little progress has been made in generating protocell constructs with self-controlled membrane permeability. Here we describe the preparation of water-dispersible colloidosomes based on silica nanoparticles and delineated by a continuous semipermeable inorganic membrane capable of self-activated, electrostatically gated permeability. We use crosslinking and covale...

  1. Crystallinity Modulation of Layered Carbon Nitride for Enhanced Photocatalytic Activities.

    Science.gov (United States)

    Wang, Jianhai; Shen, Yanfei; Li, Ying; Liu, Songqin; Zhang, Yuanjian

    2016-08-22

    As an emerging metal-free semiconductor, covalently bonded carbon nitride (CN) has attracted much attention in photocatalysis. However, drawbacks such as a high recombination rate of excited electrons and holes hinder its potential applications. Tailoring the crystallinity of semiconductors is an important way to suppress unwanted charge recombination, but has rarely been applied to CN so far. Herein, a simple method to synthesize CN of high crystallinity by protonation of specific intermediate species during conventional polymerization is reported. Interestingly, the as-obtained CN exhibited improved photocatalytic activities of up to seven times those of the conventional bulk CN. This approach, with only a slight change to the conventional method, provides a facile way to effectively regulate the crystallinity of bulk CN to improve its photocatalytic activities and sheds light on large-scale industrial applications of CN with high efficiency for sustainable energy.

  2. Substrate modulation of enzyme activity in the herpesvirus protease family

    OpenAIRE

    Lazic, Ana; Goetz, David H.; Nomura, Anson M.; Marnett, Alan B.; Craik, Charles S.

    2007-01-01

    The herpesvirus proteases are an example in which allosteric regulation of an enzyme activity is achieved through the formation of quaternary structure. Here, we report a 1.7 Å resolution structure of Kaposi’s Sarcoma herpesvirus protease in complex with a hexapeptide transition state analogue that stabilizes the dimeric state of the enzyme. Extended substrate binding sites are induced upon peptide binding. In particular, 104 Å2 of surface are buried in the newly formed S4 pocket when tyrosin...

  3. Modulation of insulin degrading enzyme activity and liver cell proliferation

    OpenAIRE

    Pivovarova, Olga; von Loeffelholz, Christian; Ilkavets, Iryna; Sticht, Carsten; Zhuk, Sergei; Murahovschi, Veronica; Lukowski, Sonja; Döcke, Stephanie; Kriebel, Jennifer; de las Heras Gala, Tonia; Malashicheva, Anna; Kostareva, Anna; Lock, Johan F; Stockmann, Martin; Grallert, Harald

    2015-01-01

    Diabetes mellitus type 2 (T2DM), insulin therapy, and hyperinsulinemia are independent risk factors of liver cancer. Recently, the use of a novel inhibitor of insulin degrading enzyme (IDE) was proposed as a new therapeutic strategy in T2DM. However, IDE inhibition might stimulate liver cell proliferation via increased intracellular insulin concentration. The aim of this study was to characterize effects of inhibition of IDE activity in HepG2 hepatoma cells and to analyze liver specific expre...

  4. Reconstituted high-density lipoprotein modulates activation of human leukocytes.

    Directory of Open Access Journals (Sweden)

    Rolf Spirig

    Full Text Available An anti-inflammatory effect of reconstituted High Density Lipoprotein (rHDL has been demonstrated in atherosclerosis and in sepsis models. An increase of adhesion molecules as well as tissue factor expression on endothelial cells in response to inflammatory or danger signals are attenuated by the treatment with rHDL. Here we show the inhibitory effect of rHDL on the activation of human leukocytes in a whole blood assay as well as on monocyte-derived human dendritic cells (DC. Multiplex analysis of human whole blood showed that phytohaemagglutinin (PHA-induced secretion of the cytokines IL-1β, IL-1RA, IL-2R, IL-6, IL-7, IL-12(p40, IL-15 and IFN-α was inhibited. Furthermore, an inhibitory effect on the production of the chemokines CCL-2, CCL-4, CCL-5, CXCL-9 and CXCL-10 was observed. Activation of granulocytes and CD14+ monocytes by PHA is inhibited dose-dependently by rHDL shown as decreased up-regulation of ICAM-1 surface expression. In addition, we found a strong inhibitory effect of rHDL on toll-like receptor 2 (TLR2- and TLR4-mediated maturation of DC. Treatment of DC with rHDL prevented the up-regulation of cell surface molecules CD80, CD83 and CD86 and it inhibited the TLR-driven activation of inflammatory transcription factor NF-κB. These findings suggest that rHDL prevents activation of crucial cellular players of cellular immunity and could therefore be a useful reagent to impede inflammation as well as the link between innate and adaptive immunity.

  5. Sendai Virus Fusion Activity as Modulated by Target Membrane Components

    OpenAIRE

    Nunes-Correia, Isabel; Ramalho-Santos, João; Maria C Pedroso de Lima

    1998-01-01

    We have studied the differences between erythrocytes and erythrocyte ghosts as target membranes for the study of Sendai virus fusion activity. Fusion was monitored continuously by fluorescence dequenching of R18-labeled virus. Experiments were carried out either with or without virus/target membrane prebinding. When Sendai virus was added directly to a erythrocyte/erythrocyte ghost suspension, fusion was always lower than that obtained when experiments were carried out with virus already boun...

  6. Implicitly perceived vocal attractiveness modulates prefrontal cortex activity.

    Science.gov (United States)

    Bestelmeyer, Patricia E G; Latinus, Marianne; Bruckert, Laetitia; Rouger, Julien; Crabbe, Frances; Belin, Pascal

    2012-06-01

    Social interactions involve more than "just" language. As important is a more primitive nonlinguistic mode of communication acting in parallel with linguistic processes and driving our decisions to a much higher degree than is generally suspected. Amongst the "honest signals" that influence our behavior is perceived vocal attractiveness. Not only does vocal attractiveness reflect important biological characteristics of the speaker, it also influences our social perceptions according to the "what sounds beautiful is good" phenomenon. Despite the widespread influence of vocal attractiveness on social interactions revealed by behavioral studies, its neural underpinnings are yet unknown. We measured brain activity while participants listened to a series of vocal sounds ("ah") and performed an unrelated task. We found that voice-sensitive auditory and inferior frontal regions were strongly correlated with implicitly perceived vocal attractiveness. While the involvement of auditory areas reflected the processing of acoustic contributors to vocal attractiveness ("distance to mean" and spectrotemporal regularity), activity in inferior prefrontal regions (traditionally involved in speech processes) reflected the overall perceived attractiveness of the voices despite their lack of linguistic content. These results suggest the strong influence of hidden nonlinguistic aspects of communication signals on cerebral activity and provide an objective measure of this influence.

  7. Implicitly perceived vocal attractiveness modulates prefrontal cortex activity.

    Science.gov (United States)

    Bestelmeyer, Patricia E G; Latinus, Marianne; Bruckert, Laetitia; Rouger, Julien; Crabbe, Frances; Belin, Pascal

    2012-06-01

    Social interactions involve more than "just" language. As important is a more primitive nonlinguistic mode of communication acting in parallel with linguistic processes and driving our decisions to a much higher degree than is generally suspected. Amongst the "honest signals" that influence our behavior is perceived vocal attractiveness. Not only does vocal attractiveness reflect important biological characteristics of the speaker, it also influences our social perceptions according to the "what sounds beautiful is good" phenomenon. Despite the widespread influence of vocal attractiveness on social interactions revealed by behavioral studies, its neural underpinnings are yet unknown. We measured brain activity while participants listened to a series of vocal sounds ("ah") and performed an unrelated task. We found that voice-sensitive auditory and inferior frontal regions were strongly correlated with implicitly perceived vocal attractiveness. While the involvement of auditory areas reflected the processing of acoustic contributors to vocal attractiveness ("distance to mean" and spectrotemporal regularity), activity in inferior prefrontal regions (traditionally involved in speech processes) reflected the overall perceived attractiveness of the voices despite their lack of linguistic content. These results suggest the strong influence of hidden nonlinguistic aspects of communication signals on cerebral activity and provide an objective measure of this influence. PMID:21828348

  8. Lipid metabolizing enzyme activities modulated by phospholipid substrate lateral distribution.

    Science.gov (United States)

    Salinas, Dino G; Reyes, Juan G; De la Fuente, Milton

    2011-09-01

    Biological membranes contain many domains enriched in phospholipid lipids and there is not yet clear explanation about how these domains can control the activity of phospholipid metabolizing enzymes. Here we used the surface dilution kinetic theory to derive general equations describing how complex substrate distributions affect the activity of enzymes following either the phospholipid binding kinetic model (which assumes that the enzyme molecules directly bind the phospholipid substrate molecules), or the surface-binding kinetic model (which assumes that the enzyme molecules bind to the membrane before binding the phospholipid substrate). Our results strongly suggest that, if the enzyme follows the phospholipid binding kinetic model, any substrate redistribution would increase the enzyme activity over than observed for a homogeneous distribution of substrate. Besides, enzymes following the surface-binding model would be independent of the substrate distribution. Given that the distribution of substrate in a population of micelles (each of them a lipid domain) should follow a Poisson law, we demonstrate that the general equations give an excellent fit to experimental data of lipases acting on micelles, providing reasonable values for kinetic parameters--without invoking special effects such as cooperative phenomena. Our theory will allow a better understanding of the cellular-metabolism control in membranes, as well as a more simple analysis of the mechanisms of membrane acting enzymes. PMID:21108012

  9. Multifractal detrended fluctuation analysis of optogenetic modulation of neural activity

    Science.gov (United States)

    Kumar, S.; Gu, L.; Ghosh, N.; Mohanty, S. K.

    2013-02-01

    Here, we introduce a computational procedure to examine whether optogenetically activated neuronal firing recordings could be characterized as multifractal series. Optogenetics is emerging as a valuable experimental tool and a promising approach for studying a variety of neurological disorders in animal models. The spiking patterns from cortical region of the brain of optogenetically-stimulated transgenic mice were analyzed using a sophisticated fluctuation analysis method known as multifractal detrended fluctuation analysis (MFDFA). We observed that the optogenetically-stimulated neural firings are consistent with a multifractal process. Further, we used MFDFA to monitor the effect of chemically induced pain (formalin injection) and optogenetic treatment used to relieve the pain. In this case, dramatic changes in parameters characterizing a multifractal series were observed. Both the generalized Hurst exponent and width of singularity spectrum effectively differentiates the neural activities during control and pain induction phases. The quantitative nature of the analysis equips us with better measures to quantify pain. Further, it provided a measure for effectiveness of the optogenetic stimulation in inhibiting pain. MFDFA-analysis of spiking data from other deep regions of the brain also turned out to be multifractal in nature, with subtle differences in the parameters during pain-induction by formalin injection and inhibition by optogenetic stimulation. Characterization of neuronal firing patterns using MFDFA will lead to better understanding of neuronal response to optogenetic activation and overall circuitry involved in the process.

  10. Detection and characterisation of delamination in PV modules by active infrared thermography

    Science.gov (United States)

    Sinha, A.; Sastry, O. S.; Gupta, R.

    2016-01-01

    The paper presents a fast and efficient method for the detection and characterisation of delamination in photovoltaic (PV) modules by using active infrared thermography approach. A discrete part of PV module was irradiated by step heating and its thermal image sequence was used to detect and analyse delamination. Different types of heating source for thermal excitation for this application have been studied. An electro-thermal model was developed to simulate the active thermography approach for the characterisation of delamination in PV module by equivalent resistance-capacitance (RC) network using a circuit simulator. This simulation approach was used to estimate the extent of delamination in the module and to determine the optimum parameters for the characterisation of delamination. Different applications based on front and backsides of heating the module were also proposed in this paper. The proposed method has the potential to be employed for the quality check of PV modules during inline production as well as for the predictive maintenance of outdoor PV plants.

  11. Hybrid Modulation of Bidirectional Three-Phase Dual-Active-Bridge DC Converters for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Yen-Ching Wang

    2016-06-01

    Full Text Available Bidirectional power converters for electric vehicles (EVs have received much attention recently, due to either grid-supporting requirements or emergent power supplies. This paper proposes a hybrid modulation of the three-phase dual-active bridge (3ΦDAB converter for EV charging systems. The designed hybrid modulation allows the converter to switch its modulation between phase-shifted and trapezoidal modes to increase the conversion efficiency, even under light-load conditions. The mode transition is realized in a real-time manner according to the charging or discharging current. The operation principle of the converter is analyzed in different modes and thus design considerations of the modulation are derived. A lab-scaled prototype circuit with a 48V/20Ah LiFePO4 battery is established to validate the feasibility and effectiveness.

  12. Respiratory modulation of sympathetic nerve activity is enhanced in male rat offspring following uteroplacental insufficiency.

    Science.gov (United States)

    Menuet, C; Wlodek, M E; Fong, A Y; Allen, A M

    2016-06-01

    Sympathetic nerve activity to the cardiovascular system displays prominent respiratory-related modulation which leads to the generation of rhythmic oscillations in blood pressure called Traube-Hering waves. An amplification of this respiratory modulation of sympathetic activity is observed in hypertension of both genetic, the spontaneously hypertensive rat, and induced, chronic intermittent hypoxia or maternal protein restriction during gestation, origin. Male offspring of mothers with uteroplacental insufficiency, induced by bilateral uterine vessel ligation at 18 days of gestation, are also hypertensive in adulthood. In this study we examined whether these male offspring display altered respiratory modulation of sympathetic activity at pre-hypertensive ages compared to controls. Respiratory, cardiovascular and sympathetic parameters were examined using the working heart-brainstem preparation in 35 day old male rats that had reduced birth weight due to uteroplacental insufficiency. Whilst all respiratory parameters were not different between groups, we observed an enhanced respiratory-related burst of thoracic sympathetic nerve activity and amplified Traube-Hering waves in the growth-restricted group. This group also showed an increased sympathetic and bradycardic response to activation of peripheral chemoreceptors. The observations add support to the view that altered respiratory modulation of sympathetic activity represents a common mechanism involved in the development of several forms of hypertension. PMID:26593642

  13. Seismic waves increase permeability.

    Science.gov (United States)

    Elkhoury, Jean E; Brodsky, Emily E; Agnew, Duncan C

    2006-06-29

    Earthquakes have been observed to affect hydrological systems in a variety of ways--water well levels can change dramatically, streams can become fuller and spring discharges can increase at the time of earthquakes. Distant earthquakes may even increase the permeability in faults. Most of these hydrological observations can be explained by some form of permeability increase. Here we use the response of water well levels to solid Earth tides to measure permeability over a 20-year period. At the time of each of seven earthquakes in Southern California, we observe transient changes of up to 24 degrees in the phase of the water level response to the dilatational volumetric strain of the semidiurnal tidal components of wells at the Piñon Flat Observatory in Southern California. After the earthquakes, the phase gradually returns to the background value at a rate of less than 0.1 degrees per day. We use a model of axisymmetric flow driven by an imposed head oscillation through a single, laterally extensive, confined, homogeneous and isotropic aquifer to relate the phase response to aquifer properties. We interpret the changes in phase response as due to changes in permeability. At the time of the earthquakes, the permeability at the site increases by a factor as high as three. The permeability increase depends roughly linearly on the amplitude of seismic-wave peak ground velocity in the range of 0.21-2.1 cm s(-1). Such permeability increases are of interest to hydrologists and oil reservoir engineers as they affect fluid flow and might determine long-term evolution of hydrological and oil-bearing systems. They may also be interesting to seismologists, as the resulting pore pressure changes can affect earthquakes by changing normal stresses on faults. PMID:16810253

  14. Development and construction of a thermoelectric active facade module

    Directory of Open Access Journals (Sweden)

    Marıa Ibanez-Puy

    2015-06-01

    Full Text Available In order to fulfil the current challenges for the European building sector, building design has diverged into two alternative directions: active technologies and passive design strategies. In the last few years, advanced and responsive building envelope components have represented a promising answer to these challenges. This paper presents the design and construction process of a project that aims to design, build and control the energy performance of an industrial-scale modular active ventilated facade prototype with a new Themoelectric Peltier System (TPS. The TPS is a thermoelectric HVAC heat pump system designed to be located in the building envelope and providing a high comfort level. Trying to optimize the energy performance of the traditional ventilated opaque facade, and make more efficient the energy performance of the TPS, the concept of adaptability has been applied to ventilated opaque facades. The essential research theme is to control the natural phenomena that take place inside the ventilated air cavity of the facade: taking advantage when heat dissipation is needed, and avoiding it when heat losses are not welcome. In order to quantify the previous statements, some facade prototypes are being built in Pamplona (Spain and their energy performance is going to be analyzed during a year.  

  15. Dopaminergic Activity in the Medial Prefrontal Cortex Modulates Fear Conditioning

    Directory of Open Access Journals (Sweden)

    Parvin Babaei

    2011-07-01

    Full Text Available "nThe purpose of the present study was to determine the role of medial prefrontal cortex (mPFC dopaminergic system in fear conditioning response considering individual differences. Animals were initially counterbalanced and classified based on open field test, and then were given a single infusion of the dopamine agonist, amphetamine (AMPH and antagonist, clozapine (CLZ into the medial prefrontal cortex. Rats received tone-shock pairing in a classical fear conditioning test and then exposed to the tone alone. Freezing responses were measured as conditioned fear index. The results showed that both AMPH and CLZ infusion in mPFC reduced the expression of conditioned fear. This finding indicates that elevation or reduction in the dopaminergic activity is associated with the decrease of fear responses, despite preexisting individual-typological differences.

  16. Activities of nicotinic acetylcholine receptors modulate neurotransmission and synaptic architecture

    Institute of Scientific and Technical Information of China (English)

    Akira Oda; Hidekazu Tanaka

    2014-01-01

    The cholinergic system is involved in a broad spectrum of brain function, and its failure has been implicated in Alzheimer’s disease. Acetylcholine transduces signals through muscarinic and nicotinic acetylcholine receptors, both of which inlfuence synaptic plasticity and cognition. However, the mechanisms that relate the rapid gating of nicotinic acetylcholine receptors to per-sistent changes in brain function have remained elusive. Recent evidence indicates that nicotinic acetylcholine receptors activities affect synaptic morphology and density, which result in per-sistent rearrangements of neural connectivity. Further investigations of the relationships between nicotinic acetylcholine receptors and rearrangements of neural circuitry in the central nervous system may help understand the pathogenesis of Alzheimer’s disease.

  17. Modulation of P-glycoprotein ATPase activity by some phytoconstituents.

    Science.gov (United States)

    Najar, I A; Sachin, B S; Sharma, S C; Satti, N K; Suri, K A; Johri, R K

    2010-03-01

    In the present investigation 16 phytoconstituents, which are active moieties found in several medicinal herbs, have been evaluated for their P-glycoprotein (P-gp) stimulation/inhibition profiles using a P-gp-dependent ATPase assay in rat jejunal membrane (in vitro). Acteoside, agnuside, catechin, chlorogenic acid, picroside -II and santonin showed an inhibitory effect. Negundoside, picroside -I and oleanolic acid caused a stimulatory effect. Andrographolide, apocyanin, berberine, glycyrrhizin, magniferin and piperine produced a biphasic response (stimulation at low concentration and inhibition at high concentration). The results suggested that a possible interaction of these phytoconstituents at the level of P-gp, could be an important parameter in determining their role in several key pharmacodynamic events. PMID:19653312

  18. CCL2/MCP-1 modulation of microglial activation and proliferation

    Directory of Open Access Journals (Sweden)

    Garcia-Bueno Borja

    2011-07-01

    Full Text Available Abstract Background Monocyte chemoattractant protein (CCL2/MCP-1 is a chemokine that attracts cells involved in the immune/inflammatory response. As microglia are one of the main cell types sustaining inflammation in brain, we proposed here to analyze the direct effects of MCP-1 on cultured primary microglia. Methods Primary microglia and neuronal cultures were obtained from neonatal and embryonic Wistar rats, respectively. Microglia were incubated with different concentrations of recombinant MCP-1 and LPS. Cell proliferation was quantified by measuring incorporation of bromodeoxyuridine (BrdU. Nitrite accumulation was measured using the Griess assay. The expression and synthesis of different proteins was measured by RT-PCR and ELISA. Cell death was quantified by measuring release of LDH into the culture medium. Results MCP-1 treatment (50 ng/ml, 24 h did not induce morphological changes in microglial cultures. Protein and mRNA levels of different cytokines were measured, showing that MCP-1 was not able to induce proinflammatory cytokines (IL-1β, IL6, MIP-1α, either by itself or in combination with LPS. A similar lack of effect was observed when measuring inducible nitric oxide synthase (NOS2 expression or accumulation of nitrites in the culture media as a different indicator of microglial activation. MCP-1 was also unable to alter the expression of different trophic factors that were reduced by LPS treatment. In order to explore the possible release of other products by microglia and their potential neurotoxicity, neurons were co-cultured with microglia: no death of neurons could be detected when treated with MCP-1. However, the presence of MCP-1 induced proliferation of microglia, an effect opposite to that observed with LPS. Conclusion These data indicate that, while causing migration and proliferation of microglia, MCP-1 does not appear to directly activate an inflammatory response in this cell type, and therefore, other factors may be

  19. Vascular permeability in cerebral cavernous malformations

    DEFF Research Database (Denmark)

    Mikati, Abdul G; Khanna, Omaditya; Zhang, Lingjiao;

    2015-01-01

    -controlled observational study investigated whether the brains of human subjects with familial CCM show vascular hyperpermeability by dynamic contrast-enhanced quantitative perfusion magnetic resonance imaging, in comparison with CCM cases without familial disease, and whether lesional or brain vascular permeability...... vascular hyperpermeability in humans with an autosomal dominant disease, as predicted mechanistically. Brain permeability, more than lesion permeability, may serve as a biomarker of CCM disease activity, and help calibrate potential drug therapy.......Patients with the familial form of cerebral cavernous malformations (CCMs) are haploinsufficient for the CCM1, CCM2, or CCM3 gene. Loss of corresponding CCM proteins increases RhoA kinase-mediated endothelial permeability in vitro, and in mouse brains in vivo. A prospective case...

  20. Isolated PWM DC-AC SICAM with an active capacitive voltage clamp[Pulse Density Modulated; Pulse Width Modulation

    Energy Technology Data Exchange (ETDEWEB)

    Ljusev, P.

    2004-03-15

    In this report an isolated PWM DC-AC SICAM with an active capacitive voltage clamp is presented. AC-DC power supply is implemented in its simplest form: diode rectifier followed by a medium-size charge-storage capacitors and possibly with an EMC filter on the mains entrance. Isolation from the AC mains is achieved using a high frequency (HF) transformer, whose voltages are not audio-modulated. The latter simplifies the design and is expected to have many advantages over the approach where the transformer voltages are modulated in regards to the audio signal reference. Input stage is built as a DC-AC inverter (push-pull, half-bridge or a full-bridge) and operated with 50% duty cycle, with all the challenges to avoid transformer saturation and obtain symmetrical operation. On the secondary side the output section is implemented as rectifier+inverter AC-AC stage, i.e. a true bidirectional bridge, which operation is aimed towards amplification of the audio signal. In order to solve the problem with the commutation of the load current, a dead time between the incoming and outgoing bidirectional switch is implemented, while a capacitive voltage clamp is used to keep the induced overvoltage to reasonable levels. The energy stored in the clamping capacitor is not wasted as in the dissipative clamps, but is rather transferred back to the primary side for further processing using an auxiliary isolated single-switch converter, i.e. an active clamping technique is used. (au)

  1. Determination of depth, permeability, and fluid pressure of hydraulically active fractures in the COSC-1 borehole and their correlation with chemical and geophysical logging data

    Science.gov (United States)

    Tsang, Chin-Fu; Doughty, Christine; Rosberg, Jan-Erik; Berthet, Theo; Juhlin, Christopher; Niemi, Auli

    2016-04-01

    The Flowing Fluid Electricity Conductivity (FFEC) logging method has been applied to the 2.5-km fully-cored COSC-1 borehole in Sweden, both during and after the drilling period. The method is based on the fact that the drilling fluid has a lower electric conductivity (EC) value (about 200 μS/cm) compared to the formation water. Thus, by scanning several times along the borehole while it is being pumped at a low rate, Q, the locations of inflow zones can be identified as EC peaks at these depths. An analysis of the shape of the EC peaks will yield the local inflow rates and the formation water EC at each of the inflow zones. Further, by conducting the logging more than once with two values of Q, the initial or inherent fluid pressure at each inflow zone can be calculated. In the case of the COSC-1 borehole, the method has identified nine discrete inflow zones between 250 m depth and the borehole bottom of 2500 m depth. The permeability values are small and spread over more than one order of magnitude. The fluid pressures in the inflow zones show two groups of similar values with the shallow inflow zones having a higher pressure than those in the deeper part of the borehole. Correlation of the FFEC logging results with other information and data from the COSC-1 borehole are underway. First, rock cores were carefully examined at the depths of the inflow zones identified by FFEC logging. We were able to identify the fractures which may be responsible for the flow. It appears that each inflow zone can be correlated with one single fracture. The cores with these hydraulically active fractures have been transferred to the laboratory for detailed study. Second, COSC-1 fracture logs were reviewed. The majority of the fractures in the borehole are not hydraulically active and the active ones represent only about 1-2 % of the total number of fractures, consistent with previous statistical studies of fractures in crystalline rocks. Breakout logs were also studied and it

  2. Efficacy Coefficients Determined Using Nail Permeability and Antifungal Activity in Keratin-Containing Media Are Useful for Predicting Clinical Efficacies of Topical Drugs for Onychomycosis.

    Science.gov (United States)

    Matsuda, Yoshiki; Sugiura, Keita; Hashimoto, Takashi; Ueda, Akane; Konno, Yoshihiro; Tatsumi, Yoshiyuki

    2016-01-01

    Onychomycosis is difficult to treat topically due to the deep location of the infection under the densely keratinized nail plate. In order to obtain an in vitro index that is relevant to the clinical efficacy of topical anti-onychomycosis drugs, we profiled five topical drugs: amorolfine, ciclopirox, efinaconazole, luliconazole, and terbinafine, for their nail permeabilities, keratin affinities, and anti-dermatophytic activities in the presence of keratin. Efinaconazole and ciclopirox permeated full-thickness human nails more deeply than luliconazole. Amorolfine and terbinafine did not show any detectable permeation. The free-drug concentration of efinaconazole in a 5% human nail keratin suspension was 24.9%, which was significantly higher than those of the other drugs (1.1-3.9%). Additionally, efinaconazole was released from human nail keratin at a greater proportion than the other drugs. The MICs of the five drugs for Trichophyton rubrum were determined at various concentrations of keratin (0-20%) in RPMI 1640 medium. The MICs of ciclopirox were not affected by keratin, whereas those of efinaconazole were slightly increased and those of luliconazole and terbinafine were markedly increased in the presence of 20% keratin. Efficacy coefficients were calculated using the nail permeation flux and MIC in media without or with keratin. Efinaconazole showed the highest efficacy coefficient, which was determined using MIC in media with keratin. The order of efficacy coefficients determined using MIC in keratin-containing media rather than keratin-free media was consistent with that of complete cure rates in previously reported clinical trials. The present study revealed that efficacy coefficients determined using MIC in keratin-containing media are useful for predicting the clinical efficacies of topical drugs. In order to be more effective, topical drugs have to possess higher efficacy coefficients. PMID:27441843

  3. Efficacy Coefficients Determined Using Nail Permeability and Antifungal Activity in Keratin-Containing Media Are Useful for Predicting Clinical Efficacies of Topical Drugs for Onychomycosis.

    Science.gov (United States)

    Matsuda, Yoshiki; Sugiura, Keita; Hashimoto, Takashi; Ueda, Akane; Konno, Yoshihiro; Tatsumi, Yoshiyuki

    2016-01-01

    Onychomycosis is difficult to treat topically due to the deep location of the infection under the densely keratinized nail plate. In order to obtain an in vitro index that is relevant to the clinical efficacy of topical anti-onychomycosis drugs, we profiled five topical drugs: amorolfine, ciclopirox, efinaconazole, luliconazole, and terbinafine, for their nail permeabilities, keratin affinities, and anti-dermatophytic activities in the presence of keratin. Efinaconazole and ciclopirox permeated full-thickness human nails more deeply than luliconazole. Amorolfine and terbinafine did not show any detectable permeation. The free-drug concentration of efinaconazole in a 5% human nail keratin suspension was 24.9%, which was significantly higher than those of the other drugs (1.1-3.9%). Additionally, efinaconazole was released from human nail keratin at a greater proportion than the other drugs. The MICs of the five drugs for Trichophyton rubrum were determined at various concentrations of keratin (0-20%) in RPMI 1640 medium. The MICs of ciclopirox were not affected by keratin, whereas those of efinaconazole were slightly increased and those of luliconazole and terbinafine were markedly increased in the presence of 20% keratin. Efficacy coefficients were calculated using the nail permeation flux and MIC in media without or with keratin. Efinaconazole showed the highest efficacy coefficient, which was determined using MIC in media with keratin. The order of efficacy coefficients determined using MIC in keratin-containing media rather than keratin-free media was consistent with that of complete cure rates in previously reported clinical trials. The present study revealed that efficacy coefficients determined using MIC in keratin-containing media are useful for predicting the clinical efficacies of topical drugs. In order to be more effective, topical drugs have to possess higher efficacy coefficients.

  4. Efficacy Coefficients Determined Using Nail Permeability and Antifungal Activity in Keratin-Containing Media Are Useful for Predicting Clinical Efficacies of Topical Drugs for Onychomycosis.

    Directory of Open Access Journals (Sweden)

    Yoshiki Matsuda

    Full Text Available Onychomycosis is difficult to treat topically due to the deep location of the infection under the densely keratinized nail plate. In order to obtain an in vitro index that is relevant to the clinical efficacy of topical anti-onychomycosis drugs, we profiled five topical drugs: amorolfine, ciclopirox, efinaconazole, luliconazole, and terbinafine, for their nail permeabilities, keratin affinities, and anti-dermatophytic activities in the presence of keratin. Efinaconazole and ciclopirox permeated full-thickness human nails more deeply than luliconazole. Amorolfine and terbinafine did not show any detectable permeation. The free-drug concentration of efinaconazole in a 5% human nail keratin suspension was 24.9%, which was significantly higher than those of the other drugs (1.1-3.9%. Additionally, efinaconazole was released from human nail keratin at a greater proportion than the other drugs. The MICs of the five drugs for Trichophyton rubrum were determined at various concentrations of keratin (0-20% in RPMI 1640 medium. The MICs of ciclopirox were not affected by keratin, whereas those of efinaconazole were slightly increased and those of luliconazole and terbinafine were markedly increased in the presence of 20% keratin. Efficacy coefficients were calculated using the nail permeation flux and MIC in media without or with keratin. Efinaconazole showed the highest efficacy coefficient, which was determined using MIC in media with keratin. The order of efficacy coefficients determined using MIC in keratin-containing media rather than keratin-free media was consistent with that of complete cure rates in previously reported clinical trials. The present study revealed that efficacy coefficients determined using MIC in keratin-containing media are useful for predicting the clinical efficacies of topical drugs. In order to be more effective, topical drugs have to possess higher efficacy coefficients.

  5. Hydrogen sulfide preconditioning protects rat liver against ischemia/reperfusion injury by activating Akt-GSK-3β signaling and inhibiting mitochondrial permeability transition.

    Directory of Open Access Journals (Sweden)

    Qingqing Zhang

    Full Text Available Hydrogen sulfide (H2S is the third most common endogenously produced gaseous signaling molecule, but its impact on hepatic ischemia/reperfusion (I/R injury, especially on mitochondrial function, remains unclear. In this study, rats were randomized into Sham, I/R, ischemia preconditioning (IPC or sodium hydrosulfide (NaHS, an H2S donor preconditioning groups. To establish a model of segmental (70% warm hepatic ischemia, the hepatic artery, left portal vein and median liver lobes were occluded for 60 min and then unclamped to allow reperfusion. Preconditioning with 12.5, 25 or 50 μmol/kg NaHS prior to the I/R insult significantly increased serum H2S levels, and, similar to IPC, NaHS preconditioning decreased alanine aminotransferase (ALT and aspartate aminotransferase (AST levels in the plasma and prevented hepatocytes from undergoing I/R-induced necrosis. Moreover, a sub-toxic dose of NaHS (25 μmol/kg did not disrupt the systemic hemodynamics but dramatically inhibited mitochondrial permeability transition pore (MPTP opening and thus prevented mitochondrial-related cell death and apoptosis. Mechanistic studies revealed that NaHS preconditioning markedly increased the expression of phosphorylated protein kinase B (p-Akt, phosphorylated glycogen synthase kinase-3 beta (p-GSK-3β and B-cell lymphoma-2 (Bcl-2 and decreased the release of mitochondrial cytochrome c and cleaved caspase-3/9 levels. Therefore, NaHS administration prior to hepatic I/R ameliorates mitochondrial and hepatocellular damage through the inhibition of MPTP opening and the activation of Akt-GSK-3β signaling. Furthermore, this study provides experimental evidence for the clinical use of H2S to reduce liver damage after perioperative I/R injury.

  6. Vestibular activation differentially modulates human early visual cortex and V5/MT excitability and response entropy.

    Science.gov (United States)

    Seemungal, Barry M; Guzman-Lopez, Jessica; Arshad, Qadeer; Schultz, Simon R; Walsh, Vincent; Yousif, Nada

    2013-01-01

    Head movement imposes the additional burdens on the visual system of maintaining visual acuity and determining the origin of retinal image motion (i.e., self-motion vs. object-motion). Although maintaining visual acuity during self-motion is effected by minimizing retinal slip via the brainstem vestibular-ocular reflex, higher order visuovestibular mechanisms also contribute. Disambiguating self-motion versus object-motion also invokes higher order mechanisms, and a cortical visuovestibular reciprocal antagonism is propounded. Hence, one prediction is of a vestibular modulation of visual cortical excitability and indirect measures have variously suggested none, focal or global effects of activation or suppression in human visual cortex. Using transcranial magnetic stimulation-induced phosphenes to probe cortical excitability, we observed decreased V5/MT excitability versus increased early visual cortex (EVC) excitability, during vestibular activation. In order to exclude nonspecific effects (e.g., arousal) on cortical excitability, response specificity was assessed using information theory, specifically response entropy. Vestibular activation significantly modulated phosphene response entropy for V5/MT but not EVC, implying a specific vestibular effect on V5/MT responses. This is the first demonstration that vestibular activation modulates human visual cortex excitability. Furthermore, using information theory, not previously used in phosphene response analysis, we could distinguish between a specific vestibular modulation of V5/MT excitability from a nonspecific effect at EVC.

  7. Vestibular Activation Differentially Modulates Human Early Visual Cortex and V5/MT Excitability and Response Entropy

    Science.gov (United States)

    Guzman-Lopez, Jessica; Arshad, Qadeer; Schultz, Simon R; Walsh, Vincent; Yousif, Nada

    2013-01-01

    Head movement imposes the additional burdens on the visual system of maintaining visual acuity and determining the origin of retinal image motion (i.e., self-motion vs. object-motion). Although maintaining visual acuity during self-motion is effected by minimizing retinal slip via the brainstem vestibular-ocular reflex, higher order visuovestibular mechanisms also contribute. Disambiguating self-motion versus object-motion also invokes higher order mechanisms, and a cortical visuovestibular reciprocal antagonism is propounded. Hence, one prediction is of a vestibular modulation of visual cortical excitability and indirect measures have variously suggested none, focal or global effects of activation or suppression in human visual cortex. Using transcranial magnetic stimulation-induced phosphenes to probe cortical excitability, we observed decreased V5/MT excitability versus increased early visual cortex (EVC) excitability, during vestibular activation. In order to exclude nonspecific effects (e.g., arousal) on cortical excitability, response specificity was assessed using information theory, specifically response entropy. Vestibular activation significantly modulated phosphene response entropy for V5/MT but not EVC, implying a specific vestibular effect on V5/MT responses. This is the first demonstration that vestibular activation modulates human visual cortex excitability. Furthermore, using information theory, not previously used in phosphene response analysis, we could distinguish between a specific vestibular modulation of V5/MT excitability from a nonspecific effect at EVC. PMID:22291031

  8. General and efficient method for calculating modulation ressponses and noise spectra of active semiconductor waveguides

    DEFF Research Database (Denmark)

    Blaaberg, Søren; Öhman, Filip; Mørk, Jesper

    2008-01-01

    We present a theoretical method for obtaining small-signal responses in a spatially resolved active semiconductor waveguide including finite end-facet reflectivities and amplified spontaneous emission. RF-modulation responses and output noise spectra of an SOA are shown....

  9. Real-time MEG neurofeedback training of posterior alpha activity modulates subsequent visual detection performance

    NARCIS (Netherlands)

    Okazaki, Y.O.; Horschig, J.; Luther, L.M.; Oostenveld, R.; Murakami, I.; Jensen, O.

    2015-01-01

    It has been demonstrated that alpha activity is lateralized when attention is directed to the left or right visual hemifield. We investigated whether real-time neurofeedback training of the alpha lateralization enhances participants' ability to modulate posterior alpha lateralization and causes subs

  10. Effect of modulated photo-activation on polymerization shrinkage behavior of dental restorative resin composites

    NARCIS (Netherlands)

    T.T. Tauböck; A.J. Feilzer; W. Buchalla; C.J. Kleverlaan; I. Krejci; T. Attin

    2014-01-01

    This study investigated the influence of modulated photo-activation on axial polymerization shrinkage, shrinkage force, and hardening of light- and dual-curing resin-based composites. Three light-curing resin composites (SDR bulk-fill, Esthet X flow, and Esthet X HD) and one dual-curing material (Re

  11. Modulators of membrane drug transporters potentiate the activity of the DMI fungicide oxpoconazole against Botrytis cinerea

    NARCIS (Netherlands)

    Hayashi, K.; Schoonbeek, H.; Waard, de M.A.

    2003-01-01

    Modulators known to reduce multidrug resistance in tumour cells were tested for their potency to synergize the fungitoxic activity of the fungicide oxpoconazole, a sterol demethylation inhibitor (DMI), against Botrytis cinerea Pers. Chlorpromazine, a phenothiazine compound known as a calmodulin anta

  12. MODULATION BREATHING OF THE ELECTRICAL ACTIVITY IN THE PHRENIC NERVE DURING STARTLES REFLEXES

    OpenAIRE

    Emanov, Sergey

    2006-01-01

    In the paper the reflex activity in the phrenic nerve is studied in chloralose anesthetized cats during development of somatic startle reflexes. Modulation of responses during the respiratory cycle is described. Organization of possible neurophysiologic mechanisms of phrenic responses during startle reflexes is discussed

  13. Effect of hypnotic pain modulation on brain activity in patients with temporomandibular disorder pain

    DEFF Research Database (Denmark)

    Abrahamsen, Randi; Dietz, Martin; Lodahl, Sanne;

    2010-01-01

    Hypnosis modulates pain perception but the associated brain mechanisms in chronic pain conditions are poorly understood. Brain activity evoked by painful repetitive pin-prick stimulation of the left mental nerve region was investigated with use of fMRI in 19 patients with painful temporomandibular...

  14. HCN channels contribute to serotonergic modulation of ventral surface chemosensitive neurons and respiratory activity.

    Science.gov (United States)

    Hawkins, Virginia E; Hawryluk, Joanna M; Takakura, Ana C; Tzingounis, Anastasios V; Moreira, Thiago S; Mulkey, Daniel K

    2015-02-15

    Chemosensitive neurons in the retrotrapezoid nucleus (RTN) provide a CO2/H(+)-dependent drive to breathe and function as an integration center for the respiratory network, including serotonergic raphe neurons. We recently showed that serotonergic modulation of RTN chemoreceptors involved inhibition of KCNQ channels and activation of an unknown inward current. Hyperpolarization-activated cyclic-nucleotide-gated (HCN) channels are the molecular correlate of the hyperpolarization-activated inward current (Ih) and have a high propensity for modulation by serotonin. To investigate whether HCN channels contribute to basal activity and serotonergic modulation of RTN chemoreceptors, we characterize resting activity and the effects of serotonin on RTN chemoreceptors in vitro and on respiratory activity of anesthetized rats in the presence or absence of blockers of KCNQ (XE991) and/or HCN (ZD7288, Cs(+)) channels. We found in vivo that bilateral RTN injections of ZD7288 increased respiratory activity and in vitro HCN channel blockade increased activity of RTN chemoreceptors under control conditions, but this was blunted by KCNQ channel inhibition. Furthermore, in vivo unilateral RTN injection of XE991 plus ZD7288 eliminated the serotonin response, and in vitro serotonin sensitivity was eliminated by application of XE991 and ZD7288 or SQ22536 (adenylate cyclase blocker). Serotonin-mediated activation of RTN chemoreceptors was blocked by a 5-HT7-receptor blocker and mimicked by a 5-HT7-receptor agonist. In addition, serotonin caused a depolarizing shift in the voltage-dependent activation of Ih. These results suggest that HCN channels contribute to resting chemoreceptor activity and that serotonin activates RTN chemoreceptors and breathing in part by a 5-HT7 receptor-dependent mechanism and downstream activation of Ih.

  15. Engineering a hyper-catalytic enzyme by photo-activated conformation modulation

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Pratul K [ORNL

    2012-01-01

    Enzyme engineering for improved catalysis has wide implications. We describe a novel chemical modification of Candida antarctica lipase B that allows modulation of the enzyme conformation to promote catalysis. Computational modeling was used to identify dynamical enzyme regions that impact the catalytic mechanism. Surface loop regions located distal to active site but showing dynamical coupling to the reaction were connected by a chemical bridge between Lys136 and Pro192, containing a derivative of azobenzene. The conformational modulation of the enzyme was achieved using two sources of light that alternated the azobenzene moiety in cis and trans conformations. Computational model predicted that mechanical energy from the conformational fluctuations facilitate the reaction in the active-site. The results were consistent with predictions as the activity of the engineered enzyme was found to be enhanced with photoactivation. Preliminary estimations indicate that the engineered enzyme achieved 8-52 fold better catalytic activity than the unmodulated enzyme.

  16. 5-HT1A receptors modulate small-conductance Ca2+-activated K+ channels

    DEFF Research Database (Denmark)

    Grunnet, Morten; Jespersen, Thomas; Perrier, Jean-François

    2004-01-01

    Small-conductance calcium-activated potassium channels (SK) are responsible for the medium afterhyperpolarisation (mAHP) following action potentials in neurons. Here we tested the ability of serotonin (5-HT) to modulate the activity of SK channels by coexpressing 5-HT1A receptors with different...... and the ion channel. To investigate the physiological relevance of this pathway, we characterized the mAHP present after action potentials in spinal motoneurons recorded in a slice preparation from the lumbar spinal cord of the adult turtle. By performing current and voltage clamp recordings, we showed that 8......-OH-DPAT specifically inhibited the fraction of the AHP mediated by SK channels. We conclude that the activity of SK channels is modulated by activation of serotonergic receptors....

  17. Novel Active Bouncer Topology for Klystron Modulators based on Pulsed Transformers

    CERN Document Server

    AUTHOR|(CDS)2079689; Aguglia, Davide; Viarouge, Philippe; Cros, Jérôme

    2015-01-01

    Active droop compensation systems, so called active bouncers, for klystron modulators based on monolithic pulse transformers perform the regulation of the output pulse voltage while simultaneously withstand all the primary current of the modulator. This imposes the utilization of high power semiconductors which can produce high switching losses and degrade the overall system efficiency. In order to overcome this issue, this paper proposes a new active bouncer topology based on the parallel connection of two different power converters: the first one is in charge of handling the majority of the primary current at high efficiency, and the second one is used to fine tune the bouncer voltage via a high bandwidth converter rated at a fraction of the first parallel connected converter. Detailed comparison between a classical active bouncer and two variants of the proposed topology are presented and based on numerical simulations.

  18. Accessible cultural mind-set modulates default mode activity: evidence for the culturally situated brain.

    Science.gov (United States)

    Wang, Chenbo; Oyserman, Daphna; Liu, Qiang; Li, Hong; Han, Shihui

    2013-01-01

    Self-construal priming modulates human behavior and associated neural activity. However, the neural activity associated with the self-construal priming procedure itself remains unknown. It is also unclear whether and how self-construal priming affects neural activity prior to engaging in a particular task. To address this gap, we scanned Chinese adults, using functional magnetic resonance imaging, during self-construal priming and a following resting state. We found that, relative to a calculation task, both interdependent and independent self-construal priming activated the ventral medial prefrontal cortex (MPFC) and the posterior cingulate cortex (PCC). The contrast of interdependent vs. independent self-construal priming also revealed increased activity in the dorsal MPFC and left middle frontal cortex. The regional homogeneity analysis of the resting-state activity revealed increased local synchronization of spontaneous activity in the dorsal MPFC but decreased local synchronization of spontaneous activity in the PCC when contrasting interdependent vs. independent self-construal priming. The functional connectivity analysis of the resting-state activity, however, did not show significant difference in synchronization of activities in remote brain regions between different priming conditions. Our findings suggest that accessible collectivistic/individualistic mind-set induced by self-construal priming is associated with modulations of both task-related and resting-state activity in the default mode network.

  19. Noradrenergic Activation of the Basolateral Amygdala Modulates Consolidation of Object Recognition Memory

    OpenAIRE

    Roozendaal, Benno; Castello, Nicholas A.; Vedana, Gustavo; Barsegyan, Areg; McGaugh, James L.

    2008-01-01

    Noradrenergic activation of the basolateral complex of the amygdala (BLA) modulates the consolidation of memory for many kinds of highly emotionally arousing training tasks. The present experiments investigated whether posttraining noradrenergic activation of the BLA is sufficient to enable memory consolidation of a low-arousing training experience. Sprague-Dawley rats received intra-BLA infusions of norepinephrine, the β-adrenoceptor antagonist propranolol or saline immediately after either ...

  20. Dopamine Modulates Reward System Activity During Subconscious Processing of Sexual Stimuli

    OpenAIRE

    Oei, Nicole Y. L.; Rombouts, Serge ARB; Soeter, Roelof P.; van Gerven, Joop M; Both, Stephanie

    2012-01-01

    Dopaminergic medication influences conscious processing of rewarding stimuli, and is associated with impulsive–compulsive behaviors, such as hypersexuality. Previous studies have shown that subconscious subliminal presentation of sexual stimuli activates brain areas known to be part of the ‘reward system'. In this study, it was hypothesized that dopamine modulates activation in key areas of the reward system, such as the nucleus accumbens, during subconscious processing of sexual stimuli. You...

  1. Copper modulates the phenotypic response of activated BV2 microglia through the release of nitric oxide

    OpenAIRE

    Rossi-George, Alba; GUO, CHANG-JIANG; Oakes, Benjamin L.; Gow, Andrew J.

    2012-01-01

    Microglia are resident immune cells of the central nervous system. Their persistent activation in neurodegenerative diseases, traditionally attributed to neuronal dysfunction, may be due to a microglial failure to modulate the release of cytotoxic mediators such as nitric oxide (NO). The persistent activation of microglia with the subsequent release of NO vis-á-vis the accumulation of redox transition metals such as copper (Cu) in neurodegenerative diseases, prompted the hypothesis that coppe...

  2. Identification of Functionally Relevant Lysine Residues That Modulate Human Farnesoid X Receptor Activation

    OpenAIRE

    Sun, An-Qiang; Luo, Yuhuan; Backos, Donald S.; Xu, Shuhua; Balasubramaniyan, Natarajan; Reigan, Philip; Suchy, Frederick J.

    2013-01-01

    Base amino acid lysine residues play an important role in regulation of nuclear receptors [e.g., farnesyl X receptor (FXR)], leading to enhanced or suppressed biologic activity. To understand the molecular mechanisms and the subsequent effects in modulating FXR functions in diverse biologic processes, we individually replaced eight highly conserved lysine residues of human FXR (hFXR) with arginine. The effects of each mutated FXR on target gene activation, subcellular localization, protein-pr...

  3. Cardiotoxicity of acetogenins from Persea americana occurs through the mitochondrial permeability transition pore and caspase-dependent apoptosis pathways.

    Science.gov (United States)

    Silva-Platas, Christian; García, Noemí; Fernández-Sada, Evaristo; Dávila, Daniel; Hernández-Brenes, Carmen; Rodríguez, Dariana; García-Rivas, Gerardo

    2012-08-01

    Acetogenins are cell-membrane permeable, naturally occurring secondary metabolites of plants such as Annonaceae, Lauraceae and other related phylogenic families. They belong to the chemical derivatives of polyketides, which are synthesized from fatty acid precursors. Although acetogenins have displayed diverse biological activities, the anti-proliferative effect on human cancer cells has been widely reported. Acetogenins are inhibitors of complex I in the electron transport chain therefore they interrupt ATP synthesis in mitochondria. We tested a new acetogenins-enriched extract from the seed of Persea americana in order to investigate if any toxicity was induced on cardiac tissue and determine the involved mechanism. In isolated perfused heart we found that contractility was completely inhibited at an accumulative dose of 77 μg/ml. In isolated cardiomyocytes, the acetogenins-enriched extract induced apoptosis through the activation of the intrinsic pathway at 43 μg/ml. In isolated mitochondria, it inhibited complex I activity on NADH-linked respiration, as would be expected, but also induced permeability transition on succinate-linked respiration. Cyclosporine A, a known blocker of permeability transition, significantly prevented the permeability transition triggered by the acetogenins-enriched extract. In addition, our acetogenins-enriched extract inhibited ADP/ATP exchange, suggesting that an important element in phosphate or adenylate transport was affected. In this manner we suggest that acetogenins-enriched extract from Persea americana could directly modulate permeability transition, an entity not yet associated with the acetogenins' direct effects, resulting in cardiotoxicity. PMID:22733015

  4. Plasmonic modulator optimized by patterning of active layer and tuning permittivity

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Lavrinenko, Andrei

    2012-01-01

    -dimension periodic stripes increases transmittance through the device and keeps the modulator's performance at the same level. The dependence on the pattern size and filling factor of the active material is analyzed and optimum parameters are found. Patterned ITO layers allow us to design a Bragg grating inside the...... waveguide. The grating can be turned on and off, thus modulating reflection from the structure. The considered structure with electrical control possesses a high performance and can efficiently work as a plasmonic component in nanophotonic architectures....

  5. Vascular permeability modulation and isolated perfused microvessel approach%血管通透性的调节和游离微血管技术在其研究中的应用

    Institute of Scientific and Technical Information of China (English)

    王述昀; 赵克森

    2005-01-01

    Vascular hyperpermeability is a cardinal feature of inflammation or bum in which an array of inflammatory mediators can cause such changes in the microvessels. The fimctional measures of microvascular exchange that represent the properties of microvascular wails are the permeability coefficients which have been reported from measurements on intact whole organisms (including human subjects}, on perfused tissues and organs, on single perfused microvessels, and on monolayers of cultured microvascular endothelial cells. In this review, we summarize some experiments of vascular permeability in individually isolated perfused microvessels.

  6. Bicarbonate and Ca(2+) Sensing Modulators Activate Photoreceptor ROS-GC1 Synergistically.

    Science.gov (United States)

    Duda, Teresa; Pertzev, Alexandre; Makino, Clint L; Sharma, Rameshwar K

    2016-01-01

    Photoreceptor ROS-GC1, a prototype subfamily member of the membrane guanylate cyclase family, is a central component of phototransduction. It is a single transmembrane-spanning protein, composed of modular blocks. In rods, guanylate cyclase activating proteins (GCAPs) 1 and 2 bind to its juxtamembrane domain (JMD) and the C-terminal extension, respectively, to accelerate cyclic GMP synthesis when Ca(2+) levels are low. In cones, the additional expression of the Ca(2+)-dependent guanylate cyclase activating protein (CD-GCAP) S100B which binds to its C-terminal extension, supports acceleration of cyclic GMP synthesis at high Ca(2+) levels. Independent of Ca(2+), ROS-GC1 activity is also stimulated directly by bicarbonate binding to the core catalytic domain (CCD). Several enticing molecular features of this transduction system are revealed in the present study. In combination, bicarbonate and Ca(2+)-dependent modulators raised maximal ROS-GC activity to levels that exceeded the sum of their individual effects. The F(514)S mutation in ROS-GC1 that causes blindness in type 1 Leber's congenital amaurosis (LCA) severely reduced basal ROS-GC1 activity. GCAP2 and S100B Ca(2+) signaling modes remained functional, while the GCAP1-modulated mode was diminished. Bicarbonate nearly restored basal activity as well as GCAP2- and S100B-stimulated activities of the F(514)S mutant to normal levels but could not resurrect GCAP1 stimulation. We conclude that GCAP1 and GCAP2 forge distinct pathways through domain-specific modules of ROS-GC1 whereas the S100B and GCAP2 pathways may overlap. The synergistic interlinking of bicarbonate to GCAPs- and S100B-modulated pathways intensifies and tunes the dependence of cyclic GMP synthesis on intracellular Ca(2+). Our study challenges the recently proposed GCAP1 and GCAP2 "overlapping" phototransduction model (Peshenko et al., 2015b). PMID:26858600

  7. Modulation of WNT/β-catenin pathway in melanoma by biologically active components derived from plants.

    Science.gov (United States)

    Gajos-Michniewicz, Anna; Czyz, Malgorzata

    2016-03-01

    Metastatic melanoma is an aggressive cancer, often resistant to treatment. Therefore, it is essential to determine the molecular mechanisms leading to melanoma or underlying resistance to therapy, and the response to targeted inhibition of the RAS/BRAF/MEK/ERK pathway was a good lesson in this respect. Aberrant WNT/β-catenin pathway is observed in melanoma, and the modulators of this signaling cascade have been under investigation in the context of therapy as well as chemoprevention. Several natural compounds were recognized as being capable of targeting elements of the WNT/β-catenin pathway in various cancers, however, only a few of them can modulate this pathway in melanoma. This review examines recent research on the role of the WNT/β-catenin pathway in tumor development and maintenance, as well as summarizes the current knowledge concerning the modulation of this pathway in melanoma by active compounds of natural origin. PMID:26851176

  8. Performance Evaluation of a High Bandwidth Liquid Fuel Modulation Valve for Active Combustion Control

    Science.gov (United States)

    Saus, Joseph R.; DeLaat, John C.; Chang, Clarence T.; Vrnak, Daniel R.

    2012-01-01

    At the NASA Glenn Research Center, a characterization rig was designed and constructed for the purpose of evaluating high bandwidth liquid fuel modulation devices to determine their suitability for active combustion control research. Incorporated into the rig s design are features that approximate conditions similar to those that would be encountered by a candidate device if it were installed on an actual combustion research rig. The characterized dynamic performance measures obtained through testing in the rig are planned to be accurate indicators of expected performance in an actual combustion testing environment. To evaluate how well the characterization rig predicts fuel modulator dynamic performance, characterization rig data was compared with performance data for a fuel modulator candidate when the candidate was in operation during combustion testing. Specifically, the nominal and off-nominal performance data for a magnetostrictive-actuated proportional fuel modulation valve is described. Valve performance data were collected with the characterization rig configured to emulate two different combustion rig fuel feed systems. Fuel mass flows and pressures, fuel feed line lengths, and fuel injector orifice size was approximated in the characterization rig. Valve performance data were also collected with the valve modulating the fuel into the two combustor rigs. Comparison of the predicted and actual valve performance data show that when the valve is operated near its design condition the characterization rig can appropriately predict the installed performance of the valve. Improvements to the characterization rig and accompanying modeling activities are underway to more accurately predict performance, especially for the devices under development to modulate fuel into the much smaller fuel injectors anticipated in future lean-burning low-emissions aircraft engine combustors.

  9. Inhibitory short-term plasticity modulates neuronal activity in the rat entopeduncular nucleus in vitro.

    Science.gov (United States)

    Lavian, Hagar; Korngreen, Alon

    2016-04-01

    The entopeduncular nucleus (EP) is one of the basal ganglia output nuclei integrating synaptic information from several pathways within the basal ganglia. The firing of EP neurons is modulated by two streams of inhibitory synaptic transmission, the direct pathway from the striatum and the indirect pathway from the globus pallidus. These two inhibitory pathways continuously modulate the firing of EP neurons. However, the link between these synaptic inputs to neuronal firing in the EP is unclear. To investigate this input-output transformation we performed whole-cell and perforated-patch recordings from single neurons in the entopeduncular nucleus in rat brain slices during repetitive stimulation of the striatum and the globus pallidus at frequencies within the in vivo activity range of these neurons. These recordings, supplemented by compartmental modelling, showed that GABAergic synapses from the striatum, converging on EP dendrites, display short-term facilitation and that somatic or proximal GABAergic synapses from the globus pallidus show short-term depression. Activation of striatal synapses during low presynaptic activity decreased postsynaptic firing rate by continuously increasing the inter-spike interval. Conversely, activation of pallidal synapses significantly affected postsynaptic firing during high presynaptic activity. Our data thus suggest that low-frequency striatal output may be encoded as progressive phase shifts in downstream nuclei of the basal ganglia while high-frequency pallidal output may continuously modulate EP firing.

  10. PKC-dependent Phosphorylation of the H1 Histamine Receptor Modulates TRPC6 Activity.

    Science.gov (United States)

    Chen, Xingjuan; Egly, Christian; Riley, Ashley M; Li, Wennan; Tewson, Paul; Hughes, Thomas E; Quinn, Anne Marie; Obukhov, Alexander G

    2014-01-01

    Transient receptor potential canonical 6 (TRPC6) is a cation selective, DAG-regulated, Ca2+-permeable channel activated by the agonists of Gq-protein-coupled heptahelical receptors. Dysfunctions of TRPC6 are implicated in the pathogenesis of various cardiovascular and kidney conditions such as vasospasm and glomerulosclerosis. When stimulated by agonists of the histamine H1 receptor (H1R), TRPC6 activity decays to the baseline despite the continuous presence of the agonist. In this study, we examined whether H1R desensitization contributes to regulating the decay rate of TRPC6 activity upon receptor stimulation. We employed the HEK expression system and a biosensor allowing us to simultaneously detect the changes in intracellular diacylglycerol (DAG) and Ca2+ concentrations. We found that the histamine-induced DAG response was biphasic, in which a transient peak was followed by maintained elevated plateau, suggesting that desensitization of H1R takes place in the presence of histamine. The application of PKC inhibitor Gö6983 slowed the decay rate of intracellular DAG concentration. Activation of the mouse H1R mutant lacking a putative PKC phosphorylation site, Ser399, responsible for the receptor desensitization, resulted in a prolonged intracellular DAG increase and greater Mn2+ influx through the TRPC6 channel. Thus, our data support the hypothesis that PKC-dependent H1R phosphorylation leads to a reduced production of intracellular DAG that contributes to TRPC6 activity regulation.

  11. PKC-dependent Phosphorylation of the H1 Histamine Receptor Modulates TRPC6 Activity

    Directory of Open Access Journals (Sweden)

    Xingjuan Chen

    2014-04-01

    Full Text Available Transient receptor potential canonical 6 (TRPC6 is a cation selective, DAG-regulated, Ca2+-permeable channel activated by the agonists of Gq-protein-coupled heptahelical receptors. Dysfunctions of TRPC6 are implicated in the pathogenesis of various cardiovascular and kidney conditions such as vasospasm and glomerulosclerosis. When stimulated by agonists of the histamine H1 receptor (H1R, TRPC6 activity decays to the baseline despite the continuous presence of the agonist. In this study, we examined whether H1R desensitization contributes to regulating the decay rate of TRPC6 activity upon receptor stimulation. We employed the HEK expression system and a biosensor allowing us to simultaneously detect the changes in intracellular diacylglycerol (DAG and Ca2+ concentrations. We found that the histamine-induced DAG response was biphasic, in which a transient peak was followed by maintained elevated plateau, suggesting that desensitization of H1R takes place in the presence of histamine. The application of PKC inhibitor Gö6983 slowed the decay rate of intracellular DAG concentration. Activation of the mouse H1R mutant lacking a putative PKC phosphorylation site, Ser399, responsible for the receptor desensitization, resulted in a prolonged intracellular DAG increase and greater Mn2+ influx through the TRPC6 channel. Thus, our data support the hypothesis that PKC-dependent H1R phosphorylation leads to a reduced production of intracellular DAG that contributes to TRPC6 activity regulation.

  12. Leishmania amazonensis: PKC-like protein kinase modulates the (Na++K+)ATPase activity.

    Science.gov (United States)

    Almeida-Amaral, Elmo Eduardo de; Caruso-Neves, Celso; Lara, Lucienne Silva; Pinheiro, Carla Mônica; Meyer-Fernandes, José Roberto

    2007-08-01

    The present study aimed to identify the presence of protein kinase C-like (PKC-like) in Leishmania amazonensis and to elucidate its possible role in the modulation of the (Na(+)+K(+))ATPase activity. Immunoblotting experiments using antibody against a consensus sequence (Ac 543-549) of rabbit protein kinase C (PKC) revealed the presence of a protein kinase of 80 kDa in L. amazonensis. Measurements of protein kinase activity showed the presence of both (Ca(2+)-dependent) and (Ca(2+)-independent) protein kinase activity in plasma membrane and cytosol. Phorbol ester (PMA) activation of the Ca(2+)-dependent protein kinase stimulated the (Na(+)+K(+))ATPase activity, while activation of the Ca(2+)-independent protein kinase was inhibitory. Both effects of protein kinase on the (Na(+)+K(+))ATPase of the plasma membrane were lower than that observed in intact cells. PMA induced the translocation of protein kinase from cytosol to plasma membrane, indicating that the maximal effect of protein kinase on the (Na(+)+K(+))ATPase activity depends on the synergistic action of protein kinases from both plasma membrane and cytosol. This is the first demonstration of a protein kinase activated by PMA in L. amazonensis and the first evidence for a possible role in the regulation of the (Na(+)+K(+))ATPase activity in this trypanosomatid. Modulation of the (Na(+)+K(+))ATPase by protein kinase in a trypanosomatid opens up new possibilities to understand the regulation of ion homeostasis in this parasite. PMID:17475255

  13. Maternal antibiotic-induced early changes in microbial colonization selectively modulate colonic permeability and inducible heat shock proteins, and digesta concentrations of alkaline phosphatase and TLR-stimulants in swine offspring

    NARCIS (Netherlands)

    Arnal, Marie Edith; Zhang, Jing; Erridge, Clett; Smidt, Hauke; Lallès, Jean Paul

    2015-01-01

    Elevated intake of high energy diets is a risk factor for the development of metabolic diseases and obesity. High fat diets cause alterations in colonic microbiota composition and increase gut permeability to bacterial lipopolysaccharide, and subsequent low-grade chronic inflammation in mice. Chr

  14. Improved prognostic classification of breast cancer defined by antagonistic activation patterns of immune response pathway modules

    International Nuclear Information System (INIS)

    Elucidating the activation pattern of molecular pathways across a given tumour type is a key challenge necessary for understanding the heterogeneity in clinical response and for developing novel more effective therapies. Gene expression signatures of molecular pathway activation derived from perturbation experiments in model systems as well as structural models of molecular interactions ('model signatures') constitute an important resource for estimating corresponding activation levels in tumours. However, relatively few strategies for estimating pathway activity from such model signatures exist and only few studies have used activation patterns of pathways to refine molecular classifications of cancer. Here we propose a novel network-based method for estimating pathway activation in tumours from model signatures. We find that although the pathway networks inferred from cancer expression data are highly consistent with the prior information contained in the model signatures, that they also exhibit a highly modular structure and that estimation of pathway activity is dependent on this modular structure. We apply our methodology to a panel of 438 estrogen receptor negative (ER-) and 785 estrogen receptor positive (ER+) breast cancers to infer activation patterns of important cancer related molecular pathways. We show that in ER negative basal and HER2+ breast cancer, gene expression modules reflecting T-cell helper-1 (Th1) and T-cell helper-2 (Th2) mediated immune responses play antagonistic roles as major risk factors for distant metastasis. Using Boolean interaction Cox-regression models to identify non-linear pathway combinations associated with clinical outcome, we show that simultaneous high activation of Th1 and low activation of a TGF-beta pathway module defines a subtype of particularly good prognosis and that this classification provides a better prognostic model than those based on the individual pathways. In ER+ breast cancer, we find that

  15. Improved prognostic classification of breast cancer defined by antagonistic activation patterns of immune response pathway modules

    Directory of Open Access Journals (Sweden)

    El-Ashry Dorraya

    2010-11-01

    Full Text Available Abstract Background Elucidating the activation pattern of molecular pathways across a given tumour type is a key challenge necessary for understanding the heterogeneity in clinical response and for developing novel more effective therapies. Gene expression signatures of molecular pathway activation derived from perturbation experiments in model systems as well as structural models of molecular interactions ("model signatures" constitute an important resource for estimating corresponding activation levels in tumours. However, relatively few strategies for estimating pathway activity from such model signatures exist and only few studies have used activation patterns of pathways to refine molecular classifications of cancer. Methods Here we propose a novel network-based method for estimating pathway activation in tumours from model signatures. We find that although the pathway networks inferred from cancer expression data are highly consistent with the prior information contained in the model signatures, that they also exhibit a highly modular structure and that estimation of pathway activity is dependent on this modular structure. We apply our methodology to a panel of 438 estrogen receptor negative (ER- and 785 estrogen receptor positive (ER+ breast cancers to infer activation patterns of important cancer related molecular pathways. Results We show that in ER negative basal and HER2+ breast cancer, gene expression modules reflecting T-cell helper-1 (Th1 and T-cell helper-2 (Th2 mediated immune responses play antagonistic roles as major risk factors for distant metastasis. Using Boolean interaction Cox-regression models to identify non-linear pathway combinations associated with clinical outcome, we show that simultaneous high activation of Th1 and low activation of a TGF-beta pathway module defines a subtype of particularly good prognosis and that this classification provides a better prognostic model than those based on the individual pathways

  16. Is Brain Activity during Action Observation Modulated by the Perceived Fairness of the Actor?

    Directory of Open Access Journals (Sweden)

    Joset A Etzel

    Full Text Available Perceiving other people's actions triggers activity in premotor and parietal areas, brain areas also involved in executing and sensing our own actions. Paralleling this phenomenon, observing emotional states (including pain in others is associated with activity in the same brain areas as activated when experiencing similar emotions directly. This emotion perception associated activity has been shown to be affected by the perceived fairness of the actor, and in-group membership more generally. Here, we examine whether action observation associated brain activity is also affected by the perceived social fairness of the actors. Perceived fairness was manipulated using an alternating iterated Prisoner's Dilemma game between the participant and two confederates, one of whom played fairly and the other unfairly. During fMRI scanning the participants watched movies of the confederates performing object-directed hand actions, and then performed hand actions themselves. Mass-univariate analysis showed that observing the actions triggered robust activation in regions associated with action execution, but failed to identify a strong modulation of this activation based on perceived fairness. Multivariate pattern analysis, however, identified clusters potentially carrying information about the perceived fairness of the actor in the middle temporal gyrus, left postcentral gyrus, right inferior parietal lobule, right middle cingulate cortex, right angular gyrus, and right superioroccipital gyrus. Despite being identified by a whole-brain searchlight analysis (and so without anatomical restriction, these clusters fall into areas frequently associated with action observation. We conclude that brain activity during action observation may be modulated by perceived fairness, but such modulation is subtle; robust activity is associated with observing the actions of both fair and unfair individuals.

  17. Is Brain Activity during Action Observation Modulated by the Perceived Fairness of the Actor?

    Science.gov (United States)

    Etzel, Joset A; Valchev, Nikola; Gazzola, Valeria; Keysers, Christian

    2016-01-01

    Perceiving other people's actions triggers activity in premotor and parietal areas, brain areas also involved in executing and sensing our own actions. Paralleling this phenomenon, observing emotional states (including pain) in others is associated with activity in the same brain areas as activated when experiencing similar emotions directly. This emotion perception associated activity has been shown to be affected by the perceived fairness of the actor, and in-group membership more generally. Here, we examine whether action observation associated brain activity is also affected by the perceived social fairness of the actors. Perceived fairness was manipulated using an alternating iterated Prisoner's Dilemma game between the participant and two confederates, one of whom played fairly and the other unfairly. During fMRI scanning the participants watched movies of the confederates performing object-directed hand actions, and then performed hand actions themselves. Mass-univariate analysis showed that observing the actions triggered robust activation in regions associated with action execution, but failed to identify a strong modulation of this activation based on perceived fairness. Multivariate pattern analysis, however, identified clusters potentially carrying information about the perceived fairness of the actor in the middle temporal gyrus, left postcentral gyrus, right inferior parietal lobule, right middle cingulate cortex, right angular gyrus, and right superioroccipital gyrus. Despite being identified by a whole-brain searchlight analysis (and so without anatomical restriction), these clusters fall into areas frequently associated with action observation. We conclude that brain activity during action observation may be modulated by perceived fairness, but such modulation is subtle; robust activity is associated with observing the actions of both fair and unfair individuals. PMID:26820995

  18. Projective Synchronization in Modulated Time-Delayed Chaotic Systems Using an Active Control Approach

    Institute of Scientific and Technical Information of China (English)

    冯存芳; 汪映海

    2011-01-01

    Projective synchronization in modulated time-delayed systems is studied by applying an active control method. Based on the Lyapunov asymptotical stability theorem, the controller and sufficient condition for projective synchronization are calculated analytically. We give a genera./ method with which we can achieve projective synchronization in modulated time-delayed chaotic systems. This method allows us to adjust the desired scaling factor arbitrarily. The effectiveness of our method is confirmed by using the famous delay-differential equations related to optical bistable or hybrid optical bistable devices. Numerical simulations fully support the analytical approach.%Projective synchronization in modulated time-delayed systems is studied by applying an active control method.Based on the Lyapunov asymptotical stability theorem,the controller and sufficient condition for projective synchronization are calculated analytically.We give a general method with which we can achieve projective synchronization in modulated time-delayed chaotic systems.This method allows us to adjust the desired scaling factor arbitrarily.The effectiveness of our method is confirmed by using the famous delay-differential equations related to optical bistable or hybrid optical bistable devices.Numerical simulations fully support the analytical approach.

  19. Activation Characteristics of Fuel Breeding Blanket Module in Fusion Driven Subcritical System

    Institute of Scientific and Technical Information of China (English)

    HUANG Qun-Ying; LI Jian-Gang; CHEN Yi-Xue

    2004-01-01

    @@ Shortage of energy resources and production of long-lived radioactivity wastes from fission reactors are among the main problems which will be faced in the world in the near future. The conceptual design of a fusion driven subcritical system (FDS) is underway in Institute of Plasma Physics, Chinese Academy of Sciences. There are alternative designs for multi-functional blanket modules of the FDS, such as fuel breeding blanket module (FBB)to produce fuels for fission reactors, tritium breeding blanket module to produce the fuel, i.e. tritium, for fusion reactor and waste transmutation blanket module to try to permanently dispose of long-lived radioactivity wastes from fission reactors, etc. Activation of the fuel breeding blanket of the fusion driven subcritical system (FDS-FBB) by D-T fusion neutrons from the plasma and fission neutrons from the hybrid blanket are calculated and analysed under the neutron wall loading 0.5 MW/m2 and neutron fluence 15 MW. yr/m2. The neutron spectrum is calculated with the worldwide-used transport code MCNP/4C and activation calculations are carried out with the well known European inventory code FISPACT/99 with the latest released IAEA Fusion Evaluated Nuclear Data Library FENDL-2.0 and the ENDF/B-V uranium evaluated data. Induced radioactivities, dose rates and afterheats, etc, for different components of the FDS-FBB are compared and analysed.

  20. Permeability measuremens of brazilian Eucalyptus

    OpenAIRE

    Marcio Rogério da Silva; Gilmara de Oliveira Machado; Jay Deiner; Carlito Calil Junior

    2010-01-01

    The permeability of Brazilian Eucalyptus grandis and Eucalyptus citriodora wood was measured in a custom build gas analysis chamber in order to determine which species could be successfully treated with preservatives. Liquid permeability was tested using an emulsion of Neen oil and a control of distillated water. Air was used to test the gas phase permeability. For both Eucalyptus grandis and Eucalyptus citriodora, the longitudinal permeability of gas was shown to be about twice as great as t...

  1. Insights into structure-activity relationship of GABAA receptor modulating coumarins and furanocoumarins.

    Science.gov (United States)

    Singhuber, Judith; Baburin, Igor; Ecker, Gerhard F; Kopp, Brigitte; Hering, Steffen

    2011-10-01

    The coumarins imperatorin and osthole are known to exert anticonvulsant activity. We have therefore analyzed the modulation of GABA-induced chloride currents (I(GABA)) by a selection of 18 coumarin derivatives on recombinant α(1)β(2)γ(2S) GABA(A) receptors expressed in Xenopus laevis oocytes by means of the two-microelectrode voltage clamp technique. Osthole (EC(50)=14 ± 1 μM) and oxypeucedanin (EC(50)=25 ± 8 μM) displayed the highest efficiency with I(GABA) potentiation of 116 ± 4 % and 547 ± 56 %, respectively. I(GABA) enhancement by osthole and oxypeucedanin was not inhibited by flumazenil (1 μM) indicating an interaction with a binding site distinct from the benzodiazepine binding site. In general, prenyl residues are essential for the positive modulatory activity, while longer side chains or bulkier residues (e.g. geranyl residues) diminish I(GABA) modulation. Generation of a binary classification tree revealed the importance of polarisability, which is sufficient to distinguish actives from inactives. A 4-point pharmacophore model based on oxypeucedanin - comprising three hydrophobic and one aromatic feature - identified 6 out of 7 actives as hits. In summary, (oxy-)prenylated coumarin derivatives from natural origin represent new GABA(A) receptor modulators. PMID:21749864

  2. Screening and characterization of molecules that modulate the biological activity of IFNs-I.

    Science.gov (United States)

    Bürgi, Milagros; Zapol'skii, Viktor A; Hinkelmann, Bettina; Köster, Mario; Kaufmann, Dieter E; Sasse, Florenz; Hauser, Hansjörg; Etcheverrigaray, Marina; Kratje, Ricardo; Bollati-Fogolín, Mariela; Oggero, Marcos

    2016-09-10

    Type I Interferons (IFNs-I) are species-specific glycoproteins which play an important role as primary defence against viral infections and that can also modulate the adaptive immune system. In some autoimmune diseases, interferons (IFNs) are over-produced. IFNs are widely used as biopharmaceuticals for a variety of cancer indications, chronic viral diseases, and for their immuno-modulatory action in patients with multiple sclerosis; therefore, increasing their therapeutic efficiency and decreasing their side effects is of high clinical value. In this sense, it is interesting to find molecules that can modulate the activity of IFNs. In order to achieve that, it was necessary to establish a simple, fast and robust assay to analyze numerous compounds simultaneously. We developed four reporter gene assays (RGAs) to identify IFN activity modulator compounds by using WISH-Mx2/EGFP, HeLa-Mx2/EGFP, A549-Mx2/EGFP, and HEp2-Mx2/EGFP reporter cell lines (RCLs). All of them present a Z' factor higher than 0.7. By using these RGAs, natural and synthetic compounds were analyzed simultaneously. A total of 442 compounds were studied by the Low Throughput Screening (LTS) assay using the four RCLs to discriminate between their inhibitory or enhancing effects on IFN activity. Some of them were characterized and 15 leads were identified. Finally, one promising candidate with enhancing effect on IFN-α/-β activity and five compounds with inhibitory effect were described. PMID:27346232

  3. Erythropoietin Modulates Cerebral and Serum Degradation Products from Excess Calpain Activation following Prenatal Hypoxia-Ischemia.

    Science.gov (United States)

    Jantzie, Lauren L; Winer, Jesse L; Corbett, Christopher J; Robinson, Shenandoah

    2016-01-01

    Preterm infants suffer central nervous system (CNS) injury from hypoxia-ischemia and inflammation - termed encephalopathy of prematurity. Mature CNS injury activates caspase and calpain proteases. Erythropoietin (EPO) limits apoptosis mediated by activated caspases, but its role in modulating calpain activation has not yet been investigated extensively following injury to the developing CNS. We hypothesized that excess calpain activation degrades developmentally regulated molecules essential for CNS circuit formation, myelination and axon integrity, including neuronal potassium-chloride co-transporter (KCC2), myelin basic protein (MBP) and phosphorylated neurofilament (pNF), respectively. Further, we predicted that post-injury EPO treatment could mitigate CNS calpain-mediated degradation. Using prenatal transient systemic hypoxia-ischemia (TSHI) in rats to mimic CNS injury from extreme preterm birth, and postnatal EPO treatment with a clinically relevant dosing regimen, we found sustained postnatal excess cortical calpain activation following prenatal TSHI, as shown by the cleavage of alpha II-spectrin (αII-spectrin) into 145-kDa αII-spectrin degradation products (αII-SDPs) and p35 into p25. Postnatal expression of the endogenous calpain inhibitor calpastatin was also reduced following prenatal TSHI. Calpain substrate expression following TSHI, including cortical KCC2, MBP and NF, was modulated by postnatal EPO treatment. Calpain activation was reflected in serum levels of αII-SDPs and KCC2 fragments, and notably, EPO treatment also modulated KCC2 fragment levels. Together, these data indicate that excess calpain activity contributes to the pathogenesis of encephalopathy of prematurity. Serum biomarkers of calpain activation may detect ongoing cerebral injury and responsiveness to EPO or similar neuroprotective strategies. PMID:26551007

  4. Vascular permeability and drug delivery in cancers

    Directory of Open Access Journals (Sweden)

    Sandy eAzzi

    2013-08-01

    Full Text Available The endothelial barrier strictly maintains vascular and tissue homeostasis, and therefore modulates many physiological processes such as angiogenesis, immune responses, and dynamic exchanges throughout organs. Consequently, alteration of this finely tuned function may have devastating consequences for the organism. This is particularly obvious in cancers, where a disorganized and leaky blood vessel network irrigates solid tumors. In this context, vascular permeability drives tumor-induced angiogenesis, blood flow disturbances, inflammatory cell infiltration, and tumor cell extravasation. This can directly restrain the efficacy of conventional therapies by limiting intravenous drug delivery. Indeed, for more effective anti-angiogenic therapies, it is now accepted that not only should excessive angiogenesis be alleviated, but also that the tumor vasculature needs to be normalized. Recovery of normal state vasculature requires diminishing hyperpermeability, increasing pericyte coverage, and restoring the basement membrane, to subsequently reduce hypoxia and interstitial fluid pressure. In this review, we will introduce how vascular permeability accompanies tumor progression and, as a collateral damage, impacts on efficient drug delivery. The molecular mechanisms involved in tumor-driven vascular permeability will next be detailed, with a particular focus on the main factors produced by tumor cells, especially the emblematic vascular endothelial growth factor (VEGF. Finally, new perspectives in cancer therapy will be presented, centered on the use of anti-permeability factors and normalization agents.

  5. Positive affect modulates activity in the visual cortex to images of high calorie foods.

    Science.gov (United States)

    Killgore, William D S; Yurgelun-Todd, Deborah A

    2007-05-01

    Activity within the visual cortex can be influenced by the emotional salience of a stimulus, but it is not clear whether such cortical activity is modulated by the affective status of the individual. This study used functional magnetic resonance imaging (fMRI) to examine the relationship between affect ratings on the Positive and Negative Affect Schedule and activity within the occipital cortex of 13 normal-weight women while viewing images of high calorie and low calorie foods. Regression analyses revealed that when participants viewed high calorie foods, Positive Affect correlated significantly with activity within the lingual gyrus and calcarine cortex, whereas Negative Affect was unrelated to visual cortex activity. In contrast, during presentations of low calorie foods, affect ratings, regardless of valence, were unrelated to occipital cortex activity. These findings suggest a mechanism whereby positive affective state may affect the early stages of sensory processing, possibly influencing subsequent perceptual experience of a stimulus. PMID:17464782

  6. Amperometric NOx-sensor for Combustion Exhaust Gas Control. Studies on transport properties and catalytic activity of oxygen permeable ceramic membranes

    International Nuclear Information System (INIS)

    The aim of the research described in this thesis is the development of a mixed conducting oxide layer, which can be used as an oxygen permselective membrane in an amperometric NOx sensor. The sensor will be used in exhaust gas systems. The exhaust gas-producing engine will run in the lean mix mode. The preparation of this sensor is carried out using screen-printing technology, in which the different layers of the sensor are applied successively. Hereafter, a co-firing step is applied in which all layers are sintered together. This co-firing step imposes several demands on the selection of materials. The design specifications of the sensor further include requirements concerning the operating temperature, measurement range and overall stability. The operating temperature of the sensor varies between 700 and 850C, enabling measurement of NOx concentrations between 50 and 1200 ppm with a measurement accuracy of 10 ppm. Concerning the stability of the sensor, it must withstand the exhaust gas atmosphere containing, amongst others, smoke, acids, abrasive particles and sulphur. Because of the chosen lean-mix engine concept, in which the fuel/air mixture switches continuously between lean (excess oxygen) and fat (excess fuel) mixtures, the sensor must withstand alternately oxidising and reducing atmospheres. Besides, it should be resistant to thermal shock and show no cross-sensitivity of NOx with other exhaust gas constituents like oxygen and hydrocarbons. The response time should be short, typically less than 500 ms. Because of the application in combustion engines of cars, the operational lifetime should be longer than 10 years. Demands on the mixed conducting oxide layer include the following ones. The layer should show minimal catalytic activity towards NOx-reduction. The oxygen permeability must be larger than 6.22 10-8 mol/cm2s at a layer thickness between 3-50 μm. Since the mixed conducting oxide layer is coated on the YSZ electrolyte embodiment, the two

  7. Afferent-mediated modulation of the soleus muscle activity during the stance phase of human walking

    DEFF Research Database (Denmark)

    Nazarena, Mazzaro; Grey, Michael James; do Nascimento, Omar Feix;

    2006-01-01

    The aim of this study was to investigate the contribution of proprioceptive feedback to the amplitude modulation of the soleus muscle activity during human walking. We have previously shown that slow-velocity, small-amplitude ankle dorsiflexion enhancements and reductions applied during the stance......-mediated contribution from muscle group II afferents, cutaneous and proprioceptive afferents from the foot, and load-sensitive afferents to the soleus EMG. Slow-velocity, small-amplitude ankle trajectory modifications were combined with the pharmaceutical depression of group II polysynaptic pathways with tizanidine...... that the feedback from group II afferents, and possibly from load-sensitive afferents, contribute to the amplitude modulation of the soleus muscle activity during the stance phase of the step cycle. However, feedback from cutaneous afferents and instrinsic proprioceptive afferents from the foot does not seem...

  8. Development of active edge pixel sensors and four-side buttable modules using vertical integration technologies

    CERN Document Server

    Macchiolo, A; Moser, H-G; Nisius, R; Richter, R H; Terzo, S; Weigell, P

    2014-01-01

    We present an R&D activity focused on the development of novel modules for the upgrade of the ATLAS pixel system at the High Luminosity LHC (HL-LHC). The modules consist of n-in-p pixel sensors, 100 or 200 $\\mu$m thick, produced at VTT (Finland) with an active edge technology, which considerably reduces the dead area at the periphery of the device. The sensors are interconnected with solder bump-bonding to the ATLAS FE-I3 and FE-I4 read-out chips, and characterized with radioactive sources and beam tests at the CERN-SPS and DESY. The results of these measurements will be discussed for devices before and after irradiation up to a fluence of $5\\times 10^{15}$ \

  9. Aloe vera : Potential candidate in health management via modulation of biological activities

    Directory of Open Access Journals (Sweden)

    Arshad H Rahmani

    2015-01-01

    Full Text Available Treatment based on natural products is rapidly increasing worldwide due to the affordability and fewer side effects of such treatment. Various plants and the products derived from them are commonly used in primary health treatment, and they play a pivotal role in the treatment of diseases via modulation of biochemical and molecular pathways. Aloe vera, a succulent species, produces gel and latex, plays a therapeutic role in health management through antioxidant, antitumor, and anti-inflammatory activities, and also offers a suitable alternative approach for the treatment of various types of diseases. In this review, we summarize the possible mechanism of action and the therapeutic implications of Aloe vera in health maintenance based on its modulation of various biological activities.

  10. Stainless Steel Permeability

    Energy Technology Data Exchange (ETDEWEB)

    Buchenauer, Dean A. [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Karnesky, Richard A. [Sandia National Laboratories (SNL-CA), Livermore, CA (United States)

    2015-09-01

    An understanding of the behavior of hydrogen isotopes in materials is critical to predicting tritium transport in structural metals (at high pressure), estimating tritium losses during production (fission environment), and predicting in-vessel inventory for future fusion devices (plasma driven permeation). Current models often assume equilibrium diffusivity and solubility for a class of materials (e.g. stainless steels or aluminum alloys), neglecting trapping effects or, at best, considering a single population of trapping sites. Permeation and trapping studies of the particular castings and forgings enable greater confidence and reduced margins in the models. For FY15, we have continued our investigation of the role of ferrite in permeation for steels of interest to GTS, through measurements of the duplex steel 2507. We also initiated an investigation of the permeability in work hardened materials, to follow up on earlier observations of unusual permeability in a particular region of 304L forgings. Samples were prepared and characterized for ferrite content and coated with palladium to prevent oxidation. Issues with the poor reproducibility of measurements at low permeability were overcome, although the techniques in use are tedious. Funding through TPBAR and GTS were secured for a research grade quadrupole mass spectrometer (QMS) and replacement turbo pumps, which should improve the fidelity and throughput of measurements in FY16.

  11. Indomethacin induces increase in gastric epithelial tight junction permeability via redistribution of occludin and activation of p38 MAPK in MKN-28 Cells.

    Science.gov (United States)

    Thakre-Nighot, Meghali; Blikslager, Anthony T

    2016-01-01

    Tight Junctions (TJ) create a paracellular barrier that is compromised when nonsteriodal anti-inflammatory drugs (NSAIDs) injure the gastric epithelium, leading to increased permeability. However, the mechanism of NSAID-induced gastric injury is unclear. Here, we examined the effect of indomethacin on barrier function and TJ in gastric MKN-28 cells. In concentration response studies, 500 µm indomethacin induced a significant decrease in transepithelial resistance (TER; 380 vs. 220 Ω·cm(2) for control and indomethacin-treated cells respectively, p permeability by 0.2 vs 1.2 g/l (p permeability. Pretreatment with the p38 MAPK inhibitor significantly attenuated the disruption of barrier function, but JNK and MEK/ERK inhibition had no effect. Western blot analysis on gastric mucosa reveled loss of TJ protein occludin by indomethacin, which was prevented by inhibition of p38 MAPK. This data suggests that indomethacin compromises the gastric epithelial barrier via p38 MAPK inducing occludin alterations in the TJs. PMID:27583191

  12. Exploring the scale-dependent permeability of fractured andesite

    Science.gov (United States)

    Heap, Michael J.; Kennedy, Ben M.

    2016-08-01

    rock (10-12 to 10-11 m2) is essentially unaffected by the presence of numerous tensile fractures. By contrast, a single tensile fracture increases the equivalent permeability of low-permeability rock (volcanic systems. While our laboratory measurements show that, regardless of the initial porosity, the equivalent permeability of fractured rock on the laboratory scale is 2- 6 ×10-11 m2, the equivalent permeability of low-permeability rock is significantly reduced as the scale of interest is increased. Therefore, due to the scale-dependence of permeability, laboratory measurements on pristine, low-permeability rocks significantly underestimate the equivalent permeability of fractured volcanic rock. Further, measurements on fractured rock samples can significantly overestimate the equivalent permeability. As a result, care must be taken when selecting samples in the field and when using laboratory data in volcano outgassing models. The data and modelling presented herein provide insight into the scale-dependence of the permeability of fractured volcanic rock, a prerequisite for understanding outgassing at active volcanoes.

  13. Respiratory activity in medulla oblongata and its modulation by adenosine and opioids

    OpenAIRE

    Herlenius, Eric

    1998-01-01

    From the moment of birth the complex neuronal networks generating breathing has to function continuously and adapt to the new postnatal environmental demands. This thesis aims at studying the perinatal development of respiratory control and its modulation by adenosine and opioids. Respiratory activity was studied in vitro using brainstem spinal cord preparations and in vivo with a barometric plethysmograph. In vitro whole-cell patch clamp recordings of respiratory related ne...

  14. Face gender modulates women’s brain activity during face encoding

    OpenAIRE

    Lovén, Johanna; Svärd, Joakim; Natalie C Ebner; Herlitz, Agneta; Fischer, Håkan

    2013-01-01

    Women typically remember more female than male faces, whereas men do not show a reliable own-gender bias. However, little is known about the neural correlates of this own-gender bias in face recognition memory. Using functional magnetic resonance imaging (fMRI), we investigated whether face gender modulated brain activity in fusiform and inferior occipital gyri during incidental encoding of faces. Fifteen women and 14 men underwent fMRI while passively viewing female and male faces, followed ...

  15. Multi-Senses Explication Activities Module for Dyslexic Children in Malaysia

    OpenAIRE

    Vijayaletchumy Subramaniam; Vijay Kumar Mallan; Noor Hayati Che Mat

    2013-01-01

    Dyslexic children are having abnormal difficulties in reading, spelling and writing. The awareness on these problems leads researcher to conduct a case study in the psycholinguistic field about the multi-senses explication activities in the words mastery among the dyslexic children in Sekolah Kebangsaan Padang Temu Melaka. Starting from the Information Processing Theory by Robert M. Gagne (1975) as the theoretical framework, this research aims to produce a module on the multi-senses explicati...

  16. A biased activation theory of the cognitive and attentional modulation of emotion

    OpenAIRE

    Edmund eRolls

    2013-01-01

    Cognition can influence emotion by biasing neural activity in the first cortical region in which the reward value and subjective pleasantness of stimuli is made explicit in the representation, the orbitofrontal cortex. The same effect occurs in a second cortical tier for emotion, the anterior cingulate cortex. Similar effects are found for selective attention, to for example the pleasantness vs the intensity of stimuli, which modulates representations of reward value and affect in the orbitof...

  17. A biased activation theory of the cognitive and attentional modulation of emotion

    OpenAIRE

    Rolls, Edmund T.

    2013-01-01

    Cognition can influence emotion by biasing neural activity in the first cortical region in which the reward value and subjective pleasantness of stimuli is made explicit in the representation, the orbitofrontal cortex (OFC). The same effect occurs in a second cortical tier for emotion, the anterior cingulate cortex (ACC). Similar effects are found for selective attention, to for example the pleasantness vs. the intensity of stimuli, which modulates representations of reward value and affect i...

  18. Modulation of the chaperone-like activity of bovine α-crystallin

    OpenAIRE

    Clark, John I.; Huang, Qing-ling

    1996-01-01

    The effects of pantethine, glutathione, and selected chemical reagents on the anti-aggregation activity of α-crystallin was evaluated. Protein aggregation was monitored by light scattering of solutions of denatured βL-crystallin or alcohol dehydrogenase (ADH). The ratios of βL-crystallin/α-crystallin and ADH/α-crystallin were adjusted so that partial inhibition of protein aggregation at 60°C or 37°C, respectively, was observed and modulation of the chaperone ac...

  19. Theta-modulated gamma-band synchronization among activated regions during a verb generation task

    Directory of Open Access Journals (Sweden)

    Sam McLeod Doesburg

    2012-06-01

    Full Text Available Expressive language is complex and involves processing within a distributed network of cortical regions. Functional MRI and magnetoencephalography (MEG have identified brain areas critical for expressive language, but how these regions communicate across the network remains poorly understood. It is thought that synchronization of oscillations between neural populations, particularly at a gamma rate (>30 Hz, underlies functional integration within cortical networks. Modulation of gamma rhythms by theta-band oscillations (4 – 8 Hz has been proposed as a mechanism for the integration of local cell coalitions into large-scale networks underlying cognition and perception. The present study tested the hypothesis that these oscillatory mechanisms of functional integration were present within the expressive language network. We recorded MEG while subjects performed a covert verb generation task. Using beamformer analysis, we localized activated cortical regions, calculated inter-regional phase locking between activated areas, and measured modulation of inter-regional gamma synchronization by theta phase. The results show task-dependent gamma-band synchronization among regions activated during the performance of the verb generation task, and we provide evidence that these transient and periodic instances of high-frequency connectivity were modulated by the phase of cortical theta oscillations. These findings suggest that oscillatory synchronization and cross-frequency interactions are mechanisms for functional integration among distributed brain areas supporting expressive language processing.

  20. Fast oscillatory activity in the anterior cingulate cortex: dopaminergic modulation and efect of perineuronal net loss

    Directory of Open Access Journals (Sweden)

    Pascal eSteullet

    2014-08-01

    Full Text Available Dopamine release in the prefrontal cortex plays a critical role in cognitive function such as working memory, attention and planning. Dopamine exerts complex modulation on excitability of pyramidal neurons and interneurons, and regulates excitatory and inhibitory synaptic transmission. Because of the complexity of this modulation, it is difficult to fully comprehend the effect of dopamine on neuronal network activity. In this study, we investigated the effect of dopamine on local high-frequency oscillatory neuronal activity (in  band in slices of the mouse anterior cingulate cortex (ACC. We found that dopamine enhanced the power of these oscillations induced by kainate and carbachol, but did not affect their peak frequency. Activation of D2R and in a lesser degree D1R increased the oscillation power, while activation of D4R had no effect. These high-frequency oscillations in the ACC relied on both phasic inhibitory and excitatory transmission and functional gap junctions. Thus, dopamine released in the ACC promotes high-frequency synchronized local cortical activity which is known to favor information transfer, fast selection and binding of distributed neuronal responses. Finally, the power of these oscillations was significantly enhanced after degradation of the perineuronal nets enwrapping most parvalbumin interneurons. This study provides new insights for a better understanding of the abnormal prefrontal gamma activity in schizophrenia patients who display prefrontal anomalies of both the dopaminergic system and the perineuronal nets.

  1. Yersinia enterocolitica differentially modulates RhoG activity in host cells.

    Science.gov (United States)

    Roppenser, Bernhard; Röder, Anja; Hentschke, Moritz; Ruckdeschel, Klaus; Aepfelbacher, Martin

    2009-03-01

    Pathogenic bacteria of the genus Yersinia (Y. pestis, Y. enterocolitica and Y. pseudotuberculosis) have evolved numerous virulence factors (termed a stratagem) to manipulate the activity of Rho GTPases. Here, we show that Y. enterocolitica modulates RhoG, an upstream regulator of other Rho GTPases. At the contact site of virulent Y. enterocolitica and host cells, we could visualise spatiotemporally organised activation and deactivation of RhoG. On the one hand, the beta1-integrin clustering protein Invasin on the bacterial surface was found to activate RhoG and this promoted cell invasion. On the other hand, active RhoG was downregulated by the type III secretion system effector YopE acting as a GTPase-activating protein (GAP). YopE localised to Golgi and endoplasmic reticulum, and this determined its specificity for RhoG and other selected Rho GTPases. RhoG and its downstream effector module Elmo/Dock180 controlled both Rac1 activation by Invasin and Rac1 deactivation by YopE. We propose that RhoG is a central target of the Yersinia stratagem and a major upstream regulator of Rac1 during different phases of the Yersinia infection cycle. PMID:19208761

  2. Perceptual demand modulates activation of human auditory cortex in response to task-irrelevant sounds.

    Science.gov (United States)

    Sabri, Merav; Humphries, Colin; Verber, Matthew; Mangalathu, Jain; Desai, Anjali; Binder, Jeffrey R; Liebenthal, Einat

    2013-09-01

    In the visual modality, perceptual demand on a goal-directed task has been shown to modulate the extent to which irrelevant information can be disregarded at a sensory-perceptual stage of processing. In the auditory modality, the effect of perceptual demand on neural representations of task-irrelevant sounds is unclear. We compared simultaneous ERPs and fMRI responses associated with task-irrelevant sounds across parametrically modulated perceptual task demands in a dichotic-listening paradigm. Participants performed a signal detection task in one ear (Attend ear) while ignoring task-irrelevant syllable sounds in the other ear (Ignore ear). Results revealed modulation of syllable processing by auditory perceptual demand in an ROI in middle left superior temporal gyrus and in negative ERP activity 130-230 msec post stimulus onset. Increasing the perceptual demand in the Attend ear was associated with a reduced neural response in both fMRI and ERP to task-irrelevant sounds. These findings are in support of a selection model whereby ongoing perceptual demands modulate task-irrelevant sound processing in auditory cortex.

  3. Cells in the monkey ponto-medullary reticular formation modulate their activity with slow finger movements.

    Science.gov (United States)

    Soteropoulos, Demetris S; Williams, Elizabeth R; Baker, Stuart N

    2012-08-15

    Recent work has shown that the primate reticulospinal tract can influence spinal interneurons and motoneurons involved in control of the hand. However, demonstrating connectivity does not reveal whether reticular outputs are modulated during the control of different types of hand movement. Here, we investigated how single unit discharge in the pontomedullary reticular formation (PMRF) modulated during performance of a slow finger movement task in macaque monkeys. Two animals performed an index finger flexion–extension task to track a target presented on a computer screen; single units were recorded both from ipsilateral PMRF (115 cells) and contralateral primary motor cortex (M1, 210 cells). Cells in both areas modulated their activity with the task (M1: 87%, PMRF: 86%). Some cells (18/115 in PMRF; 96/210 in M1) received sensory input from the hand, showing a short-latency modulation in their discharge following a rapid passive extension movement of the index finger. Effects in ipsilateral electromyogram to trains of stimuli were recorded at 45 sites in the PMRF. These responses involved muscles controlling the digits in 13/45 sites (including intrinsic hand muscles, 5/45 sites). We conclude that PMRF may contribute to the control of fine finger movements, in addition to its established role in control of more proximal limb and trunk movements. This finding may be especially important in understanding functional recovery after brain lesions such as stroke. PMID:22641776

  4. Impaired Peroxisome Proliferator-activated Receptor-γ Contributes to Phenotypic Modulation of Vascular Smooth Muscle Cells during Hypertension*

    OpenAIRE

    Zhang, Lili; Xie, Peng; Wang, Jingzhou; Yang, Qingwu; Fang, Chuanqin; Zhou, Shuang; Li, Jingcheng

    2010-01-01

    The phenotypic modulation of vascular smooth muscle cells (VSMCs) plays a pivotal role in hypertension-induced vascular changes including vascular remodeling. The precise mechanisms underlying VSMC phenotypic modulation remain elusive. Here we test the role of peroxisome proliferator-activated receptor (PPAR)-γ in the VSMC phenotypic modulation during hypertension. Both spontaneously hypertensive rat (SHR) aortas and SHR-derived VSMCs exhibited reduced PPAR-γ expression and excessive VSMC phe...

  5. Determination Permeability Coefficient from Piezocone

    Directory of Open Access Journals (Sweden)

    Qiang Wang

    2014-01-01

    Full Text Available The permeability coefficient of soil profile is one of the problems concerned by engineers, and the determination of permeability coefficient method mainly relies on the laboratory permeability test and field pumping test, but these tests are time-consuming and inefficient, and especially the permeability coefficient of soil under the condition of partial drainage was difficult to determine; in this paper, the modern digital CPTU technology was used. Dimensional permeability KT was defined by using the dimensionless normalized cone tip resistance Qt, friction factor Fr, and pore pressure ratio Bq, these parameters enable plots of Bq-Qt, Fr-Qt, Bq-Fr to be contoured KT and hence for permeability coefficient. The relationship has been applied to Nanjing 4th Yangtze river bridge, and compared with laboratory penetration test. The results indicate that the method can accurately determine the permeability coefficient of soil under partial drainage condition and provide the theoretical basis for engineering application.

  6. Inhibition of the host proteasome facilitates papaya ringspot virus accumulation and proteosomal catalytic activity is modulated by viral factor HcPro.

    Directory of Open Access Journals (Sweden)

    Nandita Sahana

    Full Text Available The ubiquitin/26S proteasome system plays an essential role not only in maintaining protein turnover, but also in regulating many other plant responses, including plant-pathogen interactions. Previous studies highlighted different roles of the 20S proteasome in plant defense during virus infection, either indirectly through viral suppressor-mediated degradation of Argonaute proteins, affecting the RNA interference pathway, or directly through modulation of the proteolytic and RNase activity of the 20S proteasome, a component of the 20S proteasome, by viral proteins, affecting the levels of viral proteins and RNAs. Here we show that MG132, a cell permeable proteasomal inhibitor, caused an increase in papaya ringspot virus (PRSV accumulation in its natural host papaya (Carica papaya. We also show that the PRSV HcPro interacts with the papaya homologue of the Arabidopsis PAA (α1 subunit of the 20S proteasome, but not with the papaya homologue of Arabidopsis PAE (α5 subunit of the 20S proteasome, associated with the RNase activity, although the two 20S proteasome subunits interacted with each other. Mutated forms of PRSV HcPro showed that the conserved KITC54 motif in the N-terminal domain of HcPro was necessary for its binding to PAA. Co-agroinfiltration assays demonstrated that HcPro expression mimicked the action of MG132, and facilitated the accumulation of bothtotal ubiquitinated proteins and viral/non-viral exogenous RNA in Nicotiana benthamiana leaves. These effects were not observed by using an HcPro mutant (KITS54, which impaired the HcPro - PAA interaction. Thus, the PRSV HcPro interacts with a proteasomal subunit, inhibiting the action of the 20S proteasome, suggesting that HcPro might be crucial for modulating its catalytic activities in support of virus accumulation.

  7. Amplification of Frequency-Modulated Similariton Pulses in Length-Inhomogeneous Active Fibers

    Directory of Open Access Journals (Sweden)

    I. O. Zolotovskii

    2012-01-01

    Full Text Available The possibility of an effective gain of the self-similar frequency-modulated (FM wave packets is studied in the length-inhomogeneous active fibers. The dynamics of parabolic pulses with the constant chirp has been considered. The optimal profile for the change of the group-velocity dispersion corresponding to the optimal similariton pulse amplification has been obtained. It is shown that the use of FM pulses in the active (gain and length-inhomogeneous optical fibers with the normal group-velocity dispersion can provide subpicosecond optical pulse amplification up to the energies higher than 1 nJ.

  8. Synthesis, structure-activity relationships, and characterization of novel nonsteroidal and selective androgen receptor modulators.

    Science.gov (United States)

    Schlienger, Nathalie; Lund, Birgitte W; Pawlas, Jan; Badalassi, Fabrizio; Bertozzi, Fabio; Lewinsky, Rasmus; Fejzic, Alma; Thygesen, Mikkel B; Tabatabaei, Ali; Bradley, Stefania Risso; Gardell, Luis R; Piu, Fabrice; Olsson, Roger

    2009-11-26

    Herein we describe the discovery of ACP-105 (1), a novel and potent nonsteroidal selective androgen receptor modulator (SARM) with partial agonist activity relative to the natural androgen testosterone. Compound 1 was developed from a series of compounds found in a HTS screen using the receptor selection and amplification technology (R-SAT). In vivo, 1 improved anabolic parameters in a 2-week chronic study in castrated male rats. In addition to compound 1, a number of potent antiandrogens were discovered from the same series of compounds whereof one compound, 13, had antagonist activity at the AR T877A mutant involved in prostate cancer.

  9. KATP channels modulate intrinsic firing activity of immature entorhinal cortex layer III neurons

    Directory of Open Access Journals (Sweden)

    Maria S. Lemak

    2014-08-01

    Full Text Available Medial temporal lobe structures are essential for memory formation which is associated with coherent network oscillations. During ontogenesis, these highly organized patterns develop from distinct, less synchronized forms of network activity. This maturation process goes along with marked changes in intrinsic firing patterns of individual neurons. One critical factor determining neuronal excitability is activity of ATP-sensitive K+ channels (KATP channels which coupled electrical activity to metabolic state. Here, we examined the role of KATP channels for intrinsic firing patterns and emerging network activity in the immature medial entorhinal cortex (mEC of rats. Western blot analysis of Kir6.2 (a subunit of the KATP channel confirmed expression of this protein in the immature entorhinal cortex. Neuronal activity was monitored by field potential (fp and whole-cell recordings from layer III of the mEC in horizontal brain slices obtained at postnatal day (P 6-13. Spontaneous fp-bursts were suppressed by the KATP channel opener diazoxide and prolonged after blockade of KATP channels by glibenclamide. Immature mEC LIII principal neurons displayed two dominant intrinsic firing patterns, prolonged bursts or regular firing activity, respectively. Burst discharges were suppressed by the KATP channel openers diazoxide and NN414, and enhanced by the KATP channel blockers tolbutamide and glibenclamide. Activity of regularly firing neurons was modulated in a frequency-dependent manner: the diazoxide-mediated reduction of firing correlated negatively with basal frequency, while the tolbutamide-mediated increase of firing showed a positive correlation. These data are in line with an activity-dependent regulation of KATP channel activity. Together, KATP channels exert powerful modulation of intrinsic firing patterns and network activity in the immature mEC.

  10. Preferential binding of allosteric modulators to active and inactive conformational states of metabotropic glutamate receptors

    Directory of Open Access Journals (Sweden)

    Klein-Seetharaman Judith

    2008-02-01

    Full Text Available Abstract Metabotropic glutamate receptors (mGluRs are G protein coupled receptors that play important roles in synaptic plasticity and other neuro-physiological and pathological processes. Allosteric mGluR ligands are particularly promising drug targets because of their modulatory effects – enhancing or suppressing the response of mGluRs to glutamate. The mechanism by which this modulation occurs is not known. Here, we propose the hypothesis that positive and negative modulators will differentially stabilize the active and inactive conformations of the receptors, respectively. To test this hypothesis, we have generated computational models of the transmembrane regions of different mGluR subtypes in two different conformations. The inactive conformation was modeled using the crystal structure of the inactive, dark state of rhodopsin as template and the active conformation was created based on a recent model of the light-activated state of rhodopsin. Ligands for which the nature of their allosteric effects on mGluRs is experimentally known were docked to the modeled mGluR structures using ArgusLab and Autodock softwares. We find that the allosteric ligand binding pockets of mGluRs are overlapping with the retinal binding pocket of rhodopsin, and that ligands have strong preferences for the active and inactive states depending on their modulatory nature. In 8 out of 14 cases (57%, the negative modulators bound the inactive conformations with significant preference using both docking programs, and 6 out of 9 cases (67%, the positive modulators bound the active conformations. Considering results by the individual programs only, even higher correlations were observed: 12/14 (86% and 8/9 (89% for ArgusLab and 10/14 (71% and 7/9 (78% for AutoDock. These findings strongly support the hypothesis that mGluR allosteric modulation occurs via stabilization of different conformations analogous to those identified in rhodopsin where they are induced by

  11. Dark/light transition and vigilance states modulate jaw-closing muscle activity level in mice.

    Science.gov (United States)

    Katayama, Keisuke; Mochizuki, Ayako; Kato, Takafumi; Ikeda, Minako; Ikawa, Yasuha; Nakamura, Shiro; Nakayama, Kiyomi; Wakabayashi, Noriyuki; Baba, Kazuyoshi; Inoue, Tomio

    2015-12-01

    Bruxism is associated with an increase in the activity of the jaw-closing muscles during sleep and wakefulness. However, the changes in jaw-closing muscle activity across states of vigilance over a 24-h period are unclear. In this study, we investigated the effects of dark/light transition and sleep/wake state on EMG activity of the masseter (jaw-closing) muscle in comparison with the activity of the upper trapezius muscle (a neck muscle) over a 24-h period in mice. The activities of the masseter and neck muscles during wakefulness were much greater than during non-REM and REM sleep. In contrast, the activities of both muscles slightly, but significantly, decreased during the transition period from dark to light. Histograms of masseter activity during wakefulness and non-REM sleep showed bimodal distributions, whereas the neck muscle showed unimodal activation in all states. These results suggest that the activities of jaw-closing and neck muscles are modulated by both sleep/wake state and dark/light transition, with the latter being to a lesser degree. Furthermore, even during non-REM sleep, jaw-closing muscles display bimodal activation, which may contribute to the occurrence of exaggerated aberrant muscle activity, such as sleep bruxism. PMID:26188127

  12. Different Brain Network Activations Induced by Modulation and Nonmodulation Laser Acupuncture

    Directory of Open Access Journals (Sweden)

    Chang-Wei Hsieh

    2011-01-01

    Full Text Available The aim of this study is to compare the distinct cerebral activation with continued wave (CW and 10 Hz-modulated wave (MW stimulation during low-level laser acupuncture. Functional magnetic resonance imaging (fMRI studies were performed to investigate the possible mechanism during laser acupuncture stimulation at the left foot's yongquan (K1 acupoint. There are 12 healthy right-handed volunteers for each type of laser stimulation (10-Hz-Modulated wave: 8 males and 4 females; continued wave: 9 males and 3 females. The analysis of multisubjects in this experiment was applied by random-effect (RFX analysis. In CW groups, significant activations were found within the inferior parietal lobule, the primary somatosensory cortex, and the precuneus of left parietal lobe. Medial and superior frontal gyrus of left frontal lobe were also aroused. In MW groups, significant activations were found within the primary motor cortex and middle temporal gyrus of left hemisphere and bilateral cuneus. Placebo stimulation did not show any activation. Most activation areas were involved in the functions of memory, attention, and self-consciousness. The results showed the cerebral hemodynamic responses of two laser acupuncture stimulation modes and implied that its mechanism was not only based upon afferent sensory information processing, but that it also had the hemodynamic property altered during external stimulation.

  13. Plant carbohydrate binding module enhances activity of hybrid microbial cellulase enzyme

    Directory of Open Access Journals (Sweden)

    Caitlin Siobhan Byrt

    2012-11-01

    Full Text Available A synthetic, highly active cellulase enzyme suitable for in planta production may be a valuable tool for biotechnological approaches to develop transgenic biofuel crops with improved digestibility. Here, we demonstrate that the addition of a plant derived carbohydrate binding module (CBM to a synthetic glycosyl hydrolase (GH improved the activity of the hydrolase in releasing sugar from plant biomass. A CEL-HYB1-CBM enzyme was generated by fusing a hybrid microbial cellulase, CEL-HYB1, with the carbohydrate-binding module (CBM of the tomato (Solanum lycopersicum SlCel9C1 cellulase. CEL-HYB1 and CEL-HYB1-CBM enzymes were produced in vitro using Pichia pastoris and the activity of these enzymes was tested using CMC, MUC and native crystalline cellulose assays. The presence of the CBM substantially improved the endo-glucanase activity of CEL-HYB1, especially against the native crystalline cellulose encountered in Sorghum plant cell walls. These results indicate that addition of an endogenous plant derived CBM to cellulase enzymes may enhance hydrolytic activity.

  14. Modulation of Banana Polyphenol Oxidase (Ppo Activity by Naturally Occurring Bioactive Compounds From Plant Extracts

    Directory of Open Access Journals (Sweden)

    Alamelumangai. M

    2015-01-01

    Full Text Available Polyphenol Oxidase (PPO (E.C number 1.14.18.1 was extracted from banana (Musa paradisiaca and partially purified by acetone precipitation. The enzyme was found to have high affinity towards its substrate, catechol. In this study, various plant extracts like Glycyrrhiza glabra, Rubia cordifolia, Hesperethusa crenulata and oil from the seeds of Hydnocarpus laurifolia were observed to modulate the activity of banana PPO. Method In this study, various plant extracts were observed to modulate the activity of banana PPO at two different concentrations (0.4 and 40 μg/ml concentrations Result Among these 4 plant extracts, Glycyrrhiza glabra and Rubia cordifolia were found to increase the activity of PPO up to 1.35- 2.7 fold at two different concentrations (4 and 40 μg/ml. Few other two samples like Chaulmogra oil (2 and 4 μl/ml and the Hesperethusa crenulata plant extract (0.4 and 40 μg/ml concentrations, when used at low concentrations decreased the enzyme activity (38 %. Conclusion The novelty of this study is to screen their naturally occurring bioactive compounds from the plant extracts and their inhibitory activity against PPO.

  15. Pre-irradiation testing of actively cooled Be-Cu divertor modules

    Energy Technology Data Exchange (ETDEWEB)

    Linke, J.; Duwe, R.; Kuehnlein, W. [Forschungszentrum Juelich GmbH (Germany)] [and others

    1995-09-01

    A set of neutron irradiation tests is prepared on different plasma facing materials (PFM) candidates and miniaturized components for ITER. Beside beryllium the irradiation program which will be performed in the High Flux Reactor (HFR) in Petten, includes different carbon fiber composites (CFQ) and tungsten alloys. The target values for the neutron irradiation will be 0.5 dpa at temperatures of 350{degrees}C and 700{degrees}C, resp.. The post irradiation examination (PIE) will cover a wide range of mechanical tests; in addition the degradation of thermal conductivity will be investigated. To determine the high heat flux (HHF) performance of actively cooled divertor modules, electron beam tests which simulate the expected heat loads during the operation of ITER, are scheduled in the hot cell electron beam facility JUDITH. These tests on a selection of different actively cooled beryllium-copper and CFC-copper divertor modules are performed before and after neutron irradiation; the pre-irradiation testing is an essential part of the program to quantify the zero-fluence high heat flux performance and to detect defects in the modules, in particular in the brazed joints.

  16. Bicarbonate and Ca2+ sensing modulators activate photoreceptor ROS-GC1 synergistically

    Directory of Open Access Journals (Sweden)

    Teresa eDuda

    2016-01-01

    Full Text Available Photoreceptor ROS-GC1, a prototype subfamily member of the membrane guanylate cyclase family, is a central component of phototransduction. It is a single transmembrane-spanning protein, composed of modular blocks. In rods, guanylate cyclase activating proteins (GCAPs 1 and 2 bind to its juxtamembrane domain and the C-terminal extension, respectively, to accelerate cyclic GMP synthesis when Ca2+ levels are low. In cones, the additional expression of the Ca2+-dependent guanylate cyclase activating protein (CD-GCAP S100B which binds to its C-terminal extension, supports acceleration of cyclic GMP synthesis at high Ca2+ levels. Independent of Ca2+, ROS-GC1 activity is also stimulated directly by bicarbonate binding to the core catalytic domain. Several enticing molecular features of this transduction system are revealed in the present study. In combination, bicarbonate and Ca2+-dependent modulators raised maximal ROS-GC activity to levels that exceeded the sum of their individual effects. The F514S mutation in ROS-GC1 that causes blindness in type 1 Leber’s congenital amaurosis severely reduced basal ROS-GC1 activity. GCAP2 and S100B Ca2+ signaling modes remained functional, while the GCAP1-modulated mode was diminished. Bicarbonate nearly restored basal activity as well as GCAP2- and S100B-stimulated activities of the F514S mutant to normal levels but could not resurrect GCAP1 stimulation. We conclude that GCAP1 and GCAP2 forge distinct pathways through domain-specific modules of ROS-GC1 whereas the S100B and GCAP2 pathways may overlap. The synergistic interlinking of bicarbonate to GCAPs- and S100B-modulated pathways intensifies and tunes the dependence of cyclic GMP synthesis on intracellular Ca2+. Our study challenges the recently proposed GCAP1 and GCAP2 overlapping phototransduction model (Peshenko, I.V., Olshevskaya, and Dizhoor, A. M. (2015 J Biol. Chem 290, 6913-6924.

  17. Cucurbitacin IIb exhibits anti-inflammatory activity through modulating multiple cellular behaviors of mouse lymphocytes.

    Directory of Open Access Journals (Sweden)

    Yao Wang

    Full Text Available Cucurbitacin IIb (CuIIb is one of the major active compounds in Hemsleyadine tablets which have been used for clinical treatment of bacillary dysentery, enteritis and acute tonsilitis. However, its action mechanism has not been completely understood. This study aimed to explore the anti-inflammatory activity of CuIIb and its underlying mechanism in mitogen-activated lymphocytes isolated from mouse mesenteric lymph nodes. The results showed that CuIIb inhibited the proliferation of concanavalin A (Con A-activated lymphocytes in a time- and dose-dependent manner. CuIIb treatment arrested their cell cycle in S and G2/M phases probably due to the disruption of the actin cytoskeleton and the modulation of p27(Kip1 and cyclin levels. Moreover, the surface expression of activation markers CD69 and CD25 on Con A-activated CD3(+ T lymphocytes was suppressed by CuIIb treatment. Both Con A- and phorbol ester plus ionomycin-induced expression of TNF-α, IFN-γ and IL-6 proteins was attenuated upon exposure to CuIIb. Mechanistically, CuIIb treatment suppressed the phosphorylation of JNK and Erk1/2 but not p38 in Con A-activated lymphocytes. Although CuIIb unexpectedly enhanced the phosphorylation of IκB and NF-κB (p65, it blocked the nuclear translocation of NF-κB (p65. In support of this, CuIIb significantly decreased the mRNA levels of IκBα and TNF-α, two target genes of NF-κB, in Con A-activated lymphocytes. In addition, CuIIb downregulated Con A-induced STAT3 phosphorylation and increased cell apoptosis. Collectively, these results suggest that CuIIb exhibits its anti-inflammatory activity through modulating multiple cellular behaviors and signaling pathways, leading to the suppression of the adaptive immune response.

  18. Mangroves Build Land. "Mangroves are a Valuable Resource." Grades 7 and 8. A Two Lesson Unit. Student Learning Activity Module.

    Science.gov (United States)

    Frank, James

    This module is an activity and film-oriented unit focusing on the importance of mangroves in the South Florida ecosystem. The module is part of a series designed to be used by teachers, students, and community members to help them utilize community resources in developing and teaching environmental concepts and responsibility, and in seeking ways…

  19. Relative permeability through fractures

    Energy Technology Data Exchange (ETDEWEB)

    Diomampo, Gracel, P.

    2001-08-01

    The mechanism of two-phase flow through fractures is of importance in understanding many geologic processes. Currently, two-phase flow through fractures is still poorly understood. In this study, nitrogen-water experiments were done on both smooth and rough parallel plates to determine the governing flow mechanism for fractures and the appropriate methodology for data analysis. The experiments were done using a glass plate to allow visualization of flow. Digital video recording allowed instantaneous measurement of pressure, flow rate and saturation. Saturation was computed using image analysis techniques. The experiments showed that gas and liquid phases flow through fractures in nonuniform separate channels. The localized channels change with time as each phase path undergoes continues breaking and reforming due to invasion of the other phase. The stability of the phase paths is dependent on liquid and gas flow rate ratio. This mechanism holds true for over a range of saturation for both smooth and rough fractures. In imbibition for rough-walled fractures, another mechanism similar to wave-like flow in pipes was also observed. The data from the experiments were analyzed using Darcy's law and using the concept of friction factor and equivalent Reynold's number for two-phase flow. For both smooth- and rough-walled fractures a clear relationship between relative permeability and saturation was seen. The calculated relative permeability curves follow Corey-type behavior and can be modeled using Honarpour expressions. The sum of the relative permeabilities is not equal one, indicating phase interference. The equivalent homogeneous single-phase approach did not give satisfactory representation of flow through fractures. The graphs of experimentally derived friction factor with the modified Reynolds number do not reveal a distinctive linear relationship.

  20. Activation of murine invariant NKT cells promotes susceptibility to candidiasis by IL-10 induced modulation of phagocyte antifungal activity.

    Science.gov (United States)

    Haraguchi, Norihiro; Kikuchi, Norihiro; Morishima, Yuko; Matsuyama, Masashi; Sakurai, Hirofumi; Shibuya, Akira; Shibuya, Kazuko; Taniguchi, Masaru; Ishii, Yukio

    2016-07-01

    Invariant NKT (iNKT) cells play an important role in a variety of antimicrobial immune responses due to their ability to produce high levels of immune-modulating cytokines. Here, we investigated the role of iNKT cells in host defense against candidiasis using Jα18-deficient mice (Jα18(-/-) ), which lack iNKT cells. Jα18(-/-) mice were more resistant to the development of lethal candidiasis than wild-type (WT) mice. In contrast, treatment of WT mice with the iNKT cell activating ligand α-galactosylceramide markedly enhanced their mortality after infection with Candida albicans. Serum IL-10 levels were significantly elevated in WT mice in response to infection with C. albicans. Futhermore, IL-10 production increased after in vitro coculture of peritoneal macrophages with iNKT cells and C. albicans. The numbers of peritoneal macrophages, the production of IL-1β and IL-18, and caspase-1 activity were also significantly elevated in Jα18(-/-) mice after infection with C. albicans. The adoptive transfer of iNKT cells or exogenous administration of IL-10 into Jα18(-/-) reversed susceptibility to candidiasis to the level of WT mice. These results suggest that activation of iNKT cells increases the initial severity of C. albicans infection, most likely mediated by IL-10 induced modulation of macrophage antifungal activity. PMID:27151377

  1. Model documentation report: Macroeconomic Activity Module (MAM) of the National Energy Modeling System

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-07

    This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Macroeconomic Activity Module (MAM) used to develop the Annual Energy Outlook for 1994 (AEO94). The report catalogues and describes the module assumptions, computations, methodology, parameter estimation techniques, and mainframe source code. This document serves three purposes. First, it is a reference document providing a detailed description of the NEMS MAM used for the AEO 1994 production runs for model analysts, users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its models (Public Law 94-385, section 57.b.2). Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects.

  2. Different pulse pattern generation by frequency detuning in pulse modulated actively mode-locked ytterbium doped fiber laser

    Science.gov (United States)

    Chen, He; Chen, Sheng-Ping; Si, Lei; Zhang, Bin; Jiang, Zong-Fu

    2015-10-01

    We report the results of our recent experimental investigation of the modulation frequency detuning effect on the output pulse dynamics in a pulse modulated actively mode-locked ytterbium doped fiber laser. The experimental study shows the existence of five different mode-locking states that mainly depend on the modulation frequency detuning, which are: (a) amplitude-even harmonic/fundamental mode-locking, (b) Q-switched harmonic/fundamental mode-locking, (c) sinusoidal wave modulation mode, (d) pulses bundle state, and (e) noise-like state. A detailed experimental characterization of the output pulses dynamics in each operating mode is presented.

  3. Modulation of HMG-CoA reductase activity by pantetheine/pantethine.

    Science.gov (United States)

    Cighetti, G; Del Puppo, M; Paroni, R; Galli Kienle, M

    1988-11-25

    The ability of pantetheine/pantethine to modulate the activity of HMG-CoA reductase (EC 1.1.1.34) was determined in vitro with rat liver microsomes. The decay of the activity was obtained with pantethine in the 10(-5)-10(-4) M range, whereas stimulation by pantetheine occurred at 10(-3)-10(-2) M, as previously reported for GSSG and GSH, respectively. Inhibition of HMG-CoA by pantethine in isolated liver cells was also investigated by measuring the enzyme activity in microsomes isolated from hepatocytes incubated without or with 1 mM pantethine under conditions previously shown by us to induce inhibition of cholesterol synthesis from acetate. The enzyme amount was not modified by pantethine, but in cells treated with the disulphide, the relative amounts of the thiolic active forms of the enzyme, both phosphorylated and dephosphorylated, were decreased to about half compared to controls. PMID:3196742

  4. Somatostatin modulates insulin-degrading-enzyme metabolism: implications for the regulation of microglia activity in AD.

    Directory of Open Access Journals (Sweden)

    Grazia Tundo

    Full Text Available The deposition of β-amyloid (Aβ into senile plaques and the impairment of somatostatin-mediated neurotransmission are key pathological events in the onset of Alzheimer's disease (AD. Insulin-degrading-enzyme (IDE is one of the main extracellular protease targeting Aβ, and thus it represents an interesting pharmacological target for AD therapy. We show that the active form of somatostatin-14 regulates IDE activity by affecting its expression and secretion in microglia cells. A similar effect can also be observed when adding octreotide. Following a previous observation where somatostatin directly interacts with IDE, here we demonstrate that somatostatin regulates Aβ catabolism by modulating IDE proteolytic activity in IDE gene-silencing experiments. As a whole, these data indicate the relevant role played by somatostatin and, potentially, by analogue octreotide, in preventing Aβ accumulation by partially restoring IDE activity.

  5. Permeability measuremens of brazilian Eucalyptus

    Directory of Open Access Journals (Sweden)

    Marcio Rogério da Silva

    2010-09-01

    Full Text Available The permeability of Brazilian Eucalyptus grandis and Eucalyptus citriodora wood was measured in a custom build gas analysis chamber in order to determine which species could be successfully treated with preservatives. Liquid permeability was tested using an emulsion of Neen oil and a control of distillated water. Air was used to test the gas phase permeability. For both Eucalyptus grandis and Eucalyptus citriodora, the longitudinal permeability of gas was shown to be about twice as great as the liquid phase permeability. No radial permeability was observed for either wood. The permeability of air and water through the sapwood of Eucalyptus grandis was greater than that through the sapwood of Eucalyptus citriodora. The permeability of neen oil preservative through the sapwood of Eucalyptus grandis was also greater than through the sapwood of E. Citradora, but the difference was not statistically significant. Scanning Electron Microscopy images showed that the distribution and obstruction in the vessels could be correlated with observed permeability properties. Irrespective of the causes of differences in permeability between the species, the fluid phase flux through the sapwood of both species was significant, indicating that both Eucalyptus grandis and Eucalyptus citriodora could be successfully treated with wood preservative.

  6. Biological activities of the homologous loop regions in the laminin α chain LG modules.

    Science.gov (United States)

    Katagiri, Fumihiko; Hara, Toshihiro; Yamada, Yuji; Urushibata, Shunsuke; Hozumi, Kentaro; Kikkawa, Yamato; Nomizu, Motoyoshi

    2014-06-10

    Each laminin α chain (α1-α5 chains) has chain-specific diverse biological functions. The C-terminal globular domain of the α chain consists of five laminin-like globular (LG1-5) modules and plays a critical role in biological activities. The LG modules consist of a 14-stranded β-sheet (A-N) sandwich structure. Previously, we described the chain-specific biological activities of the loop regions between the E and F strands in the LG4 modules using five homologous peptides (G4EF1-G4EF5). Here, we further analyze the biological activities of the E-F strands loop regions in the rest of LG modules. We designed 20 homologous peptides (approximately 20 amino acid length), and 17 soluble peptides were used for the cell attachment assay. Thirteen peptides promoted cell attachment activity with different cell morphologies. Cell attachment to peptides G1EF1, G1EF2, G2EF1, G3EF4, and G5EF4 was inhibited by heparin, and peptides G1EF1, G1EF2, and G2EF1 specifically bound to syndecan-overexpressing cells. Cell attachment to peptides G2EF3, G3EF1, G3EF3, G5EF1, G5EF3, and G5EF5 was inhibited EDTA. Further, cell attachment to peptides G3EF3, G5EF1, and G5EF5 was inhibited by both anti-integrin α2 and β1 antibodies, whereas cell attachment to peptide G5EF3 was inhibited by only anti-integrin β1 antibody. Cell attachment to peptides G1EF4, G3EF4, and G5EF4 was inhibited by both heparin and EDTA and was not inhibited by anti-integrin antibodies. The active peptide sequence alignments suggest that the syndecan-binding peptides contain a "basic amino acid (BAA)-Gly-BAA" motif in the middle of the molecule and that the integrin-binding peptides contain an "acidic amino acid (AAA)"-Gly-BAA motif. Core-switched peptide analyses suggested that the "BAA-Gly-BAA" motif is critical for binding to syndecans and that the "AAA-Gly-BAA" motif has potential to recognize integrins. These findings are useful for understanding chain-specific biological activities of laminins and to evaluate

  7. Modulation of the Activity of Secretory Phospholipase A2 by Antimicrobial Peptides

    Science.gov (United States)

    Zhao, Hongxia; Kinnunen, Paavo K. J.

    2003-01-01

    The antimicrobial peptides magainin 2, indolicidin, and temporins B and L were found to modulate the hydrolytic activity of secretory phospholipase A2 (sPLA2) from bee venom and in human lacrimal fluid. More specifically, hydrolysis of phosphatidylcholine (PC) liposomes by bee venom sPLA2 at 10 μM Ca2+ was attenuated by these peptides while augmented product formation was observed in the presence of 5 mM Ca2+. The activity of sPLA2 towards anionic liposomes was significantly enhanced by the antimicrobial peptides at low [Ca2+] and was further enhanced in the presence of 5 mM Ca2+. Similarly, with 5 mM Ca2+ the hydrolysis of anionic liposomes was enhanced significantly by human lacrimal fluid sPLA2, while that of PC liposomes was attenuated. These results indicate that concerted action of antimicrobial peptides and sPLA2 could improve the efficiency of the innate response to infections. Interestingly, inclusion of a cationic gemini surfactant in the vesicles showed an essentially similar pattern on sPLA2 activity, suggesting that the modulation of the enzyme activity by the antimicrobial peptides may involve also charge properties of the substrate surface. PMID:12604528

  8. Oscillatory phase modulates the timing of neuronal activations and resulting behavior.

    Science.gov (United States)

    Coon, W G; Gunduz, A; Brunner, P; Ritaccio, A L; Pesaran, B; Schalk, G

    2016-06-01

    Human behavioral response timing is highly variable from trial to trial. While it is generally understood that behavioral variability must be due to trial-by-trial variations in brain function, it is still largely unknown which physiological mechanisms govern the timing of neural activity as it travels through networks of neuronal populations, and how variations in the timing of neural activity relate to variations in the timing of behavior. In our study, we submitted recordings from the cortical surface to novel analytic techniques to chart the trajectory of neuronal population activity across the human cortex in single trials, and found joint modulation of the timing of this activity and of consequent behavior by neuronal oscillations in the alpha band (8-12Hz). Specifically, we established that the onset of population activity tends to occur during the trough of oscillatory activity, and that deviations from this preferred relationship are related to changes in the timing of population activity and the speed of the resulting behavioral response. These results indicate that neuronal activity incurs variable delays as it propagates across neuronal populations, and that the duration of each delay is a function of the instantaneous phase of oscillatory activity. We conclude that the results presented in this paper are supportive of a general model for variability in the effective speed of information transmission in the human brain and for variability in the timing of human behavior. PMID:26975551

  9. Influence of decenylsuccinic Acid on water permeability of plant cells.

    Science.gov (United States)

    Lee, O Y; Stadelmann, E J; Weiser, C J

    1972-11-01

    Decenylsuccinic acid altered permeability to water of epidermal cells of bulb scales of Allium cepa and of the leaf midrib of Rhoeo discolor. Water permeability, as determined by deplasmolysis time measurements, was related to the dose of undissociated decenylsuccinic acid (mm undissociated decenylsuccinic acid x minute). No relationship was found between permeability and total dose of decenylsuccinic acid, or dose of dissociated decenylsuccinic acid, suggesting that the undissociated molecule was the active factor in permeability changes and injury.At doses which did not damage cells (0.0008 to 0.6 [mm of the undissociated molecule x minute]) decenylsuccinic acid decreased water permeability. At higher doses (e.g., 4 to 8 [mm x minute]) injury to cells was common and decenylsuccinic acid increased permeability. Doses above the 10 to 20 (mm x minute) range were generally lethal. The plasmolysis form of uninjured cells was altered and protoplasmic swelling occasionally was observed. The dose-dependent reversal of water permeability changes (decreased to increased permeability) may reflect decenylsuccinic acid-induced changes in membrane structure. Reported effects of decenylsuccinic acid on temperature dependence of permeability and frost resistance were not verified. PMID:16658227

  10. Modulation of cocaine-induced activity by intracerebral administration of CXCL12.

    Science.gov (United States)

    Trecki, J; Unterwald, E M

    2009-06-16

    The role of chemokines in immune function is clearly established. Recent evidence suggests that these molecules also play an important role in the central nervous system as modulators of neuronal activity. The chemokine CXCL12 has been identified in several regions of the adult rat brain including the substantia nigra, ventral tegmental area and caudate putamen. CXCR4, a receptor activated by CXCL12, is expressed by dopaminergic neurons in the substantia nigra. The present study tested the effects of intracranial injections of CXCL12 on cocaine-induced locomotion and stereotypic activity in adult male Sprague-Dawley rats. Results demonstrate that intracerebral ventricular administration of CXCL12 (25 ng/4 microl) 15 min prior to cocaine (20 mg/kg intraperitoneal (i.p.)) produced a significant potentiation of both ambulatory and stereotypic activity as compared to cocaine alone. The effects of CXCL12 were blocked by administration of the selective CXCR4 antagonist, AMD 3100. Administration of CXCL12 into specific brain regions was performed to further understand the site of action of CXCL12. Bilateral administration of CXCL12 (25 ng/0.5 microl) into the ventral tegmental area 15 min prior to cocaine (20 mg/kg i.p.) significantly potentiated cocaine-induced ambulatory activity, whereas microinjections of CXCL12 into the caudate putamen selectively increased stereotypy. Conversely, administration of CXCL12 into the lateral shell of the nucleus accumbens resulted in an inhibition of cocaine-stimulated ambulatory activity. No alterations in ambulatory or stereotypic activity were observed following CXCL12 administration into the core of the nucleus accumbens. These results demonstrate that CXCL12 can modulate the behavioral effects produced by cocaine in a brain region-specific manner. PMID:19303923

  11. Effect of low-level laser therapy on the modulation of the mitochondrial activity of macrophages

    Directory of Open Access Journals (Sweden)

    Nadhia H. C. Souza

    2014-08-01

    Full Text Available BACKGROUND: Macrophages play a major role among the inflammatory cells that invade muscle tissue following an injury. Low-level laser therapy (LLLT has long been used in clinical practice to accelerate the muscle repair process. However, little is known regarding its effect on macrophages. OBJECTIVE: This study evaluated the effect of LLLT on the mitochondrial activity (MA of macrophages. METHOD: J774 macrophages were treated with lipopolysaccharide (LPS and interferon - gamma (IFN-γ (activation for 24 h to simulate an inflammatory process, then irradiated with LLLT using two sets of parameters (780 nm; 70 mW; 3 J/cm2 and 660 nm; 15 mW; 7.5 J/cm2. Non-activated/non-irradiated cells composed the control group. MA was evaluated by the cell mitochondrial activity (MTT assay (after 1, 3 and 5 days in three independent experiments. The data were analyzed statistically. RESULTS: After 1 day of culture, activated and 780 nm irradiated macrophages showed lower MA than activated macrophages, but activated and 660 nm irradiated macrophages showed MA similar to activated cells. After 3 days, activated and irradiated (660 nm and 780 nm macrophages showed greater MA than activated macrophages, and after 5 days, the activated and irradiated (660 nm and 780 nm macrophages showed similar MA to the activated macrophages. CONCLUSIONS: These results show that 660 nm and 780 nm LLLT can modulate the cellular activation status of macrophages in inflammation, highlighting the importance of this resource and of the correct determination of its parameters in the repair process of skeletal muscle.

  12. Effect of low-level laser therapy on the modulation of the mitochondrial activity of macrophages

    Science.gov (United States)

    Souza, Nadhia H. C.; Ferrari, Raquel A. M.; Silva, Daniela F. T.; Nunes, Fabio D.; Bussadori, Sandra K.; Fernandes, Kristianne P. S.

    2014-01-01

    BACKGROUND: Macrophages play a major role among the inflammatory cells that invade muscle tissue following an injury. Low-level laser therapy (LLLT) has long been used in clinical practice to accelerate the muscle repair process. However, little is known regarding its effect on macrophages. OBJECTIVE: This study evaluated the effect of LLLT on the mitochondrial activity (MA) of macrophages. METHOD: J774 macrophages were treated with lipopolysaccharide (LPS) and interferon - gamma (IFN-γ) (activation) for 24 h to simulate an inflammatory process, then irradiated with LLLT using two sets of parameters (780 nm; 70 mW; 3 J/cm2 and 660 nm; 15 mW; 7.5 J/cm2). Non-activated/non-irradiated cells composed the control group. MA was evaluated by the cell mitochondrial activity (MTT) assay (after 1, 3 and 5 days) in three independent experiments. The data were analyzed statistically. RESULTS: After 1 day of culture, activated and 780 nm irradiated macrophages showed lower MA than activated macrophages, but activated and 660 nm irradiated macrophages showed MA similar to activated cells. After 3 days, activated and irradiated (660 nm and 780 nm) macrophages showed greater MA than activated macrophages, and after 5 days, the activated and irradiated (660 nm and 780 nm) macrophages showed similar MA to the activated macrophages. CONCLUSIONS: These results show that 660 nm and 780 nm LLLT can modulate the cellular activation status of macrophages in inflammation, highlighting the importance of this resource and of the correct determination of its parameters in the repair process of skeletal muscle. PMID:25076002

  13. Liver Fatty acid binding protein (L-Fabp) modulates murine stellate cell activation and diet induced nonalcoholic fatty liver disease

    OpenAIRE

    Chen, Anping; Tang, Youcai; Davis, Victoria; Hsu, Fong-Fu; Kennedy, Susan M; Song, Haowei; Turk, John; Brunt, Elizabeth M.; Newberry, Elizabeth P.; Davidson, Nicholas O.

    2013-01-01

    Activation of hepatic stellate cells (HSCs) is crucial to the development of fibrosis in nonalcoholic fatty liver disease. Quiescent HSCs contain lipid droplets (LDs), whose depletion upon activation induces a fibrogenic gene program. Here we show that liver fatty acid-binding protein (L-Fabp), an abundant cytosolic protein that modulates fatty acid (FA) metabolism in enterocytes and hepatocytes also modulates HSC FA utilization and in turn regulates the fibrogenic program. L-Fabp expression ...

  14. Nucleus accumbens-specific interventions in RGS9-2 activity modulate responses to morphine.

    Science.gov (United States)

    Gaspari, Sevasti; Papachatzaki, Maria M; Koo, Ja Wook; Carr, Fiona B; Tsimpanouli, Maria-Efstratia; Stergiou, Eugenia; Bagot, Rosemary C; Ferguson, Deveroux; Mouzon, Ezekiell; Chakravarty, Sumana; Deisseroth, Karl; Lobo, Mary Kay; Zachariou, Venetia

    2014-07-01

    Regulator of G protein signalling 9-2 (Rgs9-2) modulates the actions of a wide range of CNS-acting drugs by controlling signal transduction of several GPCRs in the striatum. RGS9-2 acts via a complex mechanism that involves interactions with Gα subunits, the Gβ5 protein, and the adaptor protein R7BP. Our recent work identified Rgs9-2 complexes in the striatum associated with acute or chronic exposures to mu opioid receptor (MOR) agonists. In this study we use several new genetic tools that allow manipulations of Rgs9-2 activity in particular brain regions of adult mice in order to better understand the mechanism via which this protein modulates opiate addiction and analgesia. We used adeno-associated viruses (AAVs) to express forms of Rgs9-2 in the dorsal and ventral striatum (nucleus accumbens, NAc) in order to examine the influence of this protein in morphine actions. Consistent with earlier behavioural findings from constitutive Rgs9 knockout mice, we show that Rgs9-2 actions in the NAc modulate morphine reward and dependence. Notably, Rgs9-2 in the NAc affects the analgesic actions of morphine as well as the development of analgesic tolerance. Using optogenetics we demonstrate that activation of Channelrhodopsin2 in Rgs9-2-expressing neurons, or in D1 dopamine receptor (Drd1)-enriched medium spiny neurons, accelerates the development of morphine tolerance, whereas activation of D2 dopamine receptor (Drd2)-enriched neurons does not significantly affect the development of tolerance. Together, these data provide new information on the signal transduction mechanisms underlying opiate actions in the NAc.

  15. Modulation of Backbone Flexibility for Effective Dissociation of Antibacterial and Hemolytic Activity in Cyclic Peptides.

    Science.gov (United States)

    Oddo, Alberto; Thomsen, Thomas T; Britt, Hannah M; Løbner-Olesen, Anders; Thulstrup, Peter W; Sanderson, John M; Hansen, Paul R

    2016-08-11

    Bacterial resistance to antibiotic therapy is on the rise and threatens to evolve into a worldwide emergency: alternative solutions to current therapies are urgently needed. Cationic amphipathic peptides are potent membrane-active agents that hold promise as the next-generation therapy for multidrug-resistant infections. The peptides' behavior upon encountering the bacterial cell wall is crucial, and much effort has been dedicated to the investigation and optimization of this amphipathicity-driven interaction. In this study we examined the interaction of a novel series of nine-membered flexible cyclic AMPs with liposomes mimicking the characteristics of bacterial membranes. Employed techniques included circular dichroism and marker release assays, as well as microbiological experiments. Our analysis was aimed at correlating ring flexibility with their antimicrobial, hemolytic, and membrane activity. By doing so, we obtained useful insights to guide the optimization of cyclic antimicrobial peptides via modulation of their backbone flexibility without loss of activity. PMID:27563396

  16. Antitumor properties and modulation of antioxidant enzymes' activity by Aloe vera leaf active principles isolated via supercritical carbon dioxide extraction.

    Science.gov (United States)

    El-Shemy, H A; Aboul-Soud, M A M; Nassr-Allah, A A; Aboul-Enein, K M; Kabash, A; Yagi, A

    2010-01-01

    The aim of this study was to evaluate the potential anticancer properties and modulatory effect of selected Aloe vera (A. vera) active principles on antioxidant enzyme activities. Thus, three anthraquinones (Namely: aloesin, aloe-emodin and barbaloin) were extracted from A. vera leaves by supercritical fluid extraction and subsequently purified by high performance liquid chromatography. Additionally, the N-terminal octapeptide derived from verectin, a biologically active 14 kDa glycoprotein present in A. vera, was also tested. In vivo, active principles exhibited significant prolongation of the life span of tumor-transplanted animals in the following order: barbaloin> octapeptide> aloesin > aloe-emodin. A. vera active principles exhibited significant inhibition on Ehrlich ascite carcinoma cell (EACC) number, when compared to positive control group, in the following order: barbaloin> aloe-emodin > octapeptide > aloesin. Moreover, in trypan blue cell viability assay, active principles showed a significant concentration-dependent cytotoxicity against acute myeloid leukemia (AML) and acute lymphocytes leukemia (ALL) cancerous cells. Furthermore, in MTT cell viability test, aloe-emodin was found to be active against two human colon cancer cell lines (i.e. DLD-1 and HT2), with IC(50) values of 8.94 and 10.78 microM, respectively. Treatments of human AML leukemic cells with active principles (100 microg ml(-1)) resulted in varying intensities of internucleosomal DNA fragmentation, hallmark of cells undergoing apoptosis, in the following order: aloe-emodin> aloesin> barbaloin> octapeptide. Intererstingly, treatment of EACC tumors with active principles resulted in a significant elevation activity of key antioxidant enzymes (SOD, GST, tGPx, and LDH). Our data suggest that the tested A. vera compounds may exert their chemo-preventive effect through modulating antioxidant and detoxification enzyme activity levels, as they are one of the indicators of tumorigenesis. These

  17. Modulation of PPAR Expression and Activity in Response to Polyphenolic Compounds in High Fat Diets

    Directory of Open Access Journals (Sweden)

    J. Abraham Domínguez-Avila

    2016-06-01

    Full Text Available Peroxisome proliferator-activated receptors (PPAR are transcription factors that modulate energy metabolism in liver, adipose tissue and muscle. High fat diets (HFD can negatively impact PPAR expression or activity, favoring obesity, dyslipidemia, insulin resistance and other conditions. However, polyphenols (PP found in vegetable foodstuffs are capable of positively modulating this pathway. We therefore focused this review on the possible effects that PP can have on PPAR when administered together with HFD. We found that PP from diverse sources, such as coffee, olives, rice, berries and others, are capable of inducing the expression of genes involved in a decrease of adipose mass, liver and serum lipids and lipid biosynthesis in animal and cell models of HFD. Since cells or gut bacteria can transform PP into different metabolites, it is possible that a synergistic or antagonistic effect ultimately occurs. PP molecules from vegetable sources are an interesting option to maintain or return to a state of energy homeostasis, possibly due to an adequate PPAR expression and activity.

  18. Modulation of electroencephalograph activity by manual acupuncture stimulation in healthy subjects: An autoregressive spectral analysis

    Institute of Scientific and Technical Information of China (English)

    Yi Guo-Sheng; Wang Jiang; Deng Bin; Wei Xi-Le; Han Chun-Xiao

    2013-01-01

    To investigate whether and how manual acupuncture (MA) modulates brain activities,we design an experiment where acupuncture at acupoint ST36 of the right leg is used to obtain electroencephalograph (EEG) signals in healthy subjects.We adopt the autoregressive (AR) Burg method to estimate the power spectrum of EEG signals and analyze the relative powers in delta (0 Hz-4 Hz),theta (4 Hz-8 Hz),alpha (8 Hz-13 Hz),and beta (13 Hz-30 Hz) bands.Our results show that MA at ST36 can significantly increase the EEG slow wave relative power (delta band) and reduce the fast wave relative powers (alpha and beta bands),while there are no statistical differences in theta band relative power between different acupuncture states.In order to quantify the ratio of slow to fast wave EEG activity,we compute the power ratio index.It is found that the MA can significantly increase the power ratio index,especially in frontal and central lobes.All the results highlight the modulation of brain activities with MA and may provide potential help for the clinical use of acupuncture.The proposed quantitative method of acupuncture signals may be further used to make MA more standardized.

  19. Development of active edge pixel sensors and four-side buttable modules using vertical integration technologies

    Energy Technology Data Exchange (ETDEWEB)

    Macchiolo, A., E-mail: Anna.Macchiolo@mpp.mpg.de [Max-Planck-Institut for Physics, Föhringer Ring 6, D-80805 Munich (Germany); Andricek, L. [Semiconductor Laboratory of the Max-Planck-Society, Otto Hahn Ring 6, D-81739 Munich (Germany); Moser, H.-G.; Nisius, R. [Max-Planck-Institut for Physics, Föhringer Ring 6, D-80805 Munich (Germany); Richter, R.H. [Semiconductor Laboratory of the Max-Planck-Society, Otto Hahn Ring 6, D-81739 Munich (Germany); Terzo, S.; Weigell, P. [Max-Planck-Institut for Physics, Föhringer Ring 6, D-80805 Munich (Germany)

    2014-11-21

    We present an R and D activity focused on the development of novel modules for the upgrade of the ATLAS pixel system at the High Luminosity LHC (HL-LHC). The modules consist of n-in-p pixel sensors, 100 or 200 μm thick, produced at VTT (Finland) with an active edge technology, which considerably reduces the dead area at the periphery of the device. The sensors are interconnected with solder bump-bonding to the ATLAS FE-I3 and FE-I4 read-out chips, and characterised with radioactive sources and beam tests at the CERN-SPS and DESY. The results of these measurements will be discussed for devices before and after irradiation up to a fluence of 5×10{sub 15}n{sub eq}/cm{sup 2}. We will also report on the R and D activity to obtain Inter Chip Vias (ICVs) on the ATLAS read-out chip in collaboration with the Fraunhofer Institute EMFT. This step is meant to prove the feasibility of the signal transport to the newly created readout pads on the backside of the chips allowing for four side buttable devices without the presently used cantilever for wire bonding. The read-out chips with ICVs will be interconnected to thin pixel sensors, 75 μm and 150 μm thick, with the Solid Liquid Interdiffusion (SLID) technology, which is an alternative to the standard solder bump-bonding.

  20. Modulation of PPAR Expression and Activity in Response to Polyphenolic Compounds in High Fat Diets.

    Science.gov (United States)

    Domínguez-Avila, J Abraham; González-Aguilar, Gustavo A; Alvarez-Parrilla, Emilio; de la Rosa, Laura A

    2016-01-01

    Peroxisome proliferator-activated receptors (PPAR) are transcription factors that modulate energy metabolism in liver, adipose tissue and muscle. High fat diets (HFD) can negatively impact PPAR expression or activity, favoring obesity, dyslipidemia, insulin resistance and other conditions. However, polyphenols (PP) found in vegetable foodstuffs are capable of positively modulating this pathway. We therefore focused this review on the possible effects that PP can have on PPAR when administered together with HFD. We found that PP from diverse sources, such as coffee, olives, rice, berries and others, are capable of inducing the expression of genes involved in a decrease of adipose mass, liver and serum lipids and lipid biosynthesis in animal and cell models of HFD. Since cells or gut bacteria can transform PP into different metabolites, it is possible that a synergistic or antagonistic effect ultimately occurs. PP molecules from vegetable sources are an interesting option to maintain or return to a state of energy homeostasis, possibly due to an adequate PPAR expression and activity. PMID:27367676

  1. Modulation of electroencephalograph activity by manual acupuncture stimulation in healthy subjects: An autoregressive spectral analysis

    International Nuclear Information System (INIS)

    To investigate whether and how manual acupuncture (MA) modulates brain activities, we design an experiment where acupuncture at acupoint ST36 of the right leg is used to obtain electroencephalograph (EEG) signals in healthy subjects. We adopt the autoregressive (AR) Burg method to estimate the power spectrum of EEG signals and analyze the relative powers in delta (0 Hz–4 Hz), theta (4 Hz–8 Hz), alpha (8 Hz–13 Hz), and beta (13 Hz–30 Hz) bands. Our results show that MA at ST36 can significantly increase the EEG slow wave relative power (delta band) and reduce the fast wave relative powers (alpha and beta bands), while there are no statistical differences in theta band relative power between different acupuncture states. In order to quantify the ratio of slow to fast wave EEG activity, we compute the power ratio index. It is found that the MA can significantly increase the power ratio index, especially in frontal and central lobes. All the results highlight the modulation of brain activities with MA and may provide potential help for the clinical use of acupuncture. The proposed quantitative method of acupuncture signals may be further used to make MA more standardized. (interdisciplinary physics and related areas of science and technology)

  2. Synthesis and Biological Activity of 6-Selenocaffeine: Potential Modulator of Chemotherapeutic Drugs in Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Inês L. Martins

    2013-05-01

    Full Text Available We report the development of a new microwave-based synthetic methodology mediated by Woollins’ reagent that allowed an efficient conversion of caffeine into 6-selenocaffeine. A preliminary evaluation on the modulation of antioxidant activity upon selenation of caffeine, using the DPPH assay, indicated a mild antioxidant activity for 6-selenocaffeine, contrasting with caffeine, that exhibited no antioxidant activity under the same experimental conditions. Interestingly, whereas 6-selenocaffeine has revealed to have a low cytotoxic potential in both MCF10A and MCF-7 breast cells (24 h, up to 100 µM, MTT assay, a differential effect was observed when used in combination with the anticancer agents doxorubicin and oxaliplatin in MCF-7 breast cancer cells. The co-treatment of doxorubicin (1 µM and 6-selenocaffeine (100 µM resulted in a slight decrease in cellular viability when compared to doxorubicin (1 µM alone. Conversely, the seleno-caffeine derivative at the same concentration markedly increased the viability of oxaliplatin (100 µM-treated cells (p < 0.01. Overall, this work highlights an emerging methodology to synthesize organoselenium compounds and points out the differential roles of 6-selenocaffeine in the modulation of the cytotoxicity of anticancer agents.

  3. Development of active edge pixel sensors and four-side buttable modules using vertical integration technologies

    Science.gov (United States)

    Macchiolo, A.; Andricek, L.; Moser, H.-G.; Nisius, R.; Richter, R. H.; Terzo, S.; Weigell, P.

    2014-11-01

    We present an R&D activity focused on the development of novel modules for the upgrade of the ATLAS pixel system at the High Luminosity LHC (HL-LHC). The modules consist of n-in-p pixel sensors, 100 or 200 μm thick, produced at VTT (Finland) with an active edge technology, which considerably reduces the dead area at the periphery of the device. The sensors are interconnected with solder bump-bonding to the ATLAS FE-I3 and FE-I4 read-out chips, and characterised with radioactive sources and beam tests at the CERN-SPS and DESY. The results of these measurements will be discussed for devices before and after irradiation up to a fluence of 5 ×1015neq /cm2. We will also report on the R&D activity to obtain Inter Chip Vias (ICVs) on the ATLAS read-out chip in collaboration with the Fraunhofer Institute EMFT. This step is meant to prove the feasibility of the signal transport to the newly created readout pads on the backside of the chips allowing for four side buttable devices without the presently used cantilever for wire bonding. The read-out chips with ICVs will be interconnected to thin pixel sensors, 75 μm and 150 μm thick, with the Solid Liquid Interdiffusion (SLID) technology, which is an alternative to the standard solder bump-bonding.

  4. Modulation of the chaperone-like activity of bovine alpha-crystallin.

    Science.gov (United States)

    Clark, J I; Huang, Q L

    1996-12-24

    The effects of pantethine, glutathione, and selected chemical reagents on the anti-aggregation activity of alpha-crystallin was evaluated. Protein aggregation was monitored by light scattering of solutions of denatured beta L-crystallin or alcohol dehydrogenase (ADH). The ratios of beta L-crystallin/alpha-crystallin and ADH/alpha-crystallin were adjusted so that partial inhibition of protein aggregation at 60 degrees C or 37 degrees C, respectively, was observed and modulation of the chaperone action of alpha-crystallin could be evaluated easily with selected endogenous metabolites. Enhancement of the anti-aggregation activity in the beta L-crystallin assay was strongest with pantethine, which appeared to interact with alpha-crystallin. Enhancement of the anti-aggregation activity in the ADH assay was strongest with glutathione which appeared to interact with ADH. The results indicated that the products of common metabolic pathways can modulate the chaperone-like effects of alpha-crystallin on protein aggregation. PMID:8986785

  5. Modulation of PPAR Expression and Activity in Response to Polyphenolic Compounds in High Fat Diets

    Science.gov (United States)

    Domínguez-Avila, J. Abraham; González-Aguilar, Gustavo A.; Alvarez-Parrilla, Emilio; de la Rosa, Laura A.

    2016-01-01

    Peroxisome proliferator-activated receptors (PPAR) are transcription factors that modulate energy metabolism in liver, adipose tissue and muscle. High fat diets (HFD) can negatively impact PPAR expression or activity, favoring obesity, dyslipidemia, insulin resistance and other conditions. However, polyphenols (PP) found in vegetable foodstuffs are capable of positively modulating this pathway. We therefore focused this review on the possible effects that PP can have on PPAR when administered together with HFD. We found that PP from diverse sources, such as coffee, olives, rice, berries and others, are capable of inducing the expression of genes involved in a decrease of adipose mass, liver and serum lipids and lipid biosynthesis in animal and cell models of HFD. Since cells or gut bacteria can transform PP into different metabolites, it is possible that a synergistic or antagonistic effect ultimately occurs. PP molecules from vegetable sources are an interesting option to maintain or return to a state of energy homeostasis, possibly due to an adequate PPAR expression and activity. PMID:27367676

  6. Significant Modules and Biological Processes between Active Components of Salvia miltiorrhiza Depside Salt and Aspirin

    Directory of Open Access Journals (Sweden)

    Yuan Li

    2016-01-01

    Full Text Available The aim of this study is to examine and compare the similarities and differences between active components of S. miltiorrhiza depside salt and aspirin using perspective of pharmacological molecular networks. Active components of S. miltiorrhiza depside salt and aspirin’s related genes were identified via the STITCH4.0 and GeneCards Database. A text search engine (Agilent Literature Search 2.71 and MCODE software were applied to construct network and divide modules, respectively. Finally, 32, 2, and 28 overlapping genes, modules, and pathways were identified between active components of S. miltiorrhiza depside salt and aspirin. A multidimensional framework of drug network showed that two networks reflected commonly in human aortic endothelial cells and atherosclerosis process. Aspirin plays a more important role in metabolism, such as the well-known AA metabolism pathway and other lipid or carbohydrate metabolism pathways. S. miltiorrhiza depside salt still plays a regulatory role in type II diabetes mellitus, insulin resistance, and adipocytokine signaling pathway. Therefore, this study suggests that aspirin combined with S. miltiorrhiza depside salt may be more efficient in treatment of CHD patients, especially those with diabetes mellitus or hyperlipidemia. Further clinical trials to confirm this hypothesis are still needed.

  7. Optogenetic micro-electrocorticography for modulating and localizing cerebral cortex activity

    Science.gov (United States)

    Richner, Thomas J.; Thongpang, Sanitta; Brodnick, Sarah K.; Schendel, Amelia A.; Falk, Ryan W.; Krugner-Higby, Lisa A.; Pashaie, Ramin; Williams, Justin C.

    2014-02-01

    Objective. Spatial localization of neural activity from within the brain with electrocorticography (ECoG) and electroencephalography remains a challenge in clinical and research settings, and while microfabricated ECoG (micro-ECoG) array technology continues to improve, complementary methods to simultaneously modulate cortical activity while recording are needed. Approach. We developed a neural interface utilizing optogenetics, cranial windowing, and micro-ECoG arrays fabricated on a transparent polymer. This approach enabled us to directly modulate neural activity at known locations around micro-ECoG arrays in mice expressing Channelrhodopsin-2. We applied photostimuli varying in time, space and frequency to the cortical surface, and we targeted multiple depths within the cortex using an optical fiber while recording micro-ECoG signals. Main results. Negative potentials of up to 1.5 mV were evoked by photostimuli applied to the entire cortical window, while focally applied photostimuli evoked spatially localized micro-ECoG potentials. Two simultaneously applied focal stimuli could be separated, depending on the distance between them. Photostimuli applied within the cortex with an optical fiber evoked more complex micro-ECoG potentials with multiple positive and negative peaks whose relative amplitudes depended on the depth of the fiber. Significance. Optogenetic ECoG has potential applications in the study of epilepsy, cortical dynamics, and neuroprostheses.

  8. Matrix stiffness modulates formation and activity of neuronal networks of controlled architectures.

    Science.gov (United States)

    Lantoine, Joséphine; Grevesse, Thomas; Villers, Agnès; Delhaye, Geoffrey; Mestdagh, Camille; Versaevel, Marie; Mohammed, Danahe; Bruyère, Céline; Alaimo, Laura; Lacour, Stéphanie P; Ris, Laurence; Gabriele, Sylvain

    2016-05-01

    The ability to construct easily in vitro networks of primary neurons organized with imposed topologies is required for neural tissue engineering as well as for the development of neuronal interfaces with desirable characteristics. However, accumulating evidence suggests that the mechanical properties of the culture matrix can modulate important neuronal functions such as growth, extension, branching and activity. Here we designed robust and reproducible laminin-polylysine grid micropatterns on cell culture substrates that have similar biochemical properties but a 100-fold difference in Young's modulus to investigate the role of the matrix rigidity on the formation and activity of cortical neuronal networks. We found that cell bodies of primary cortical neurons gradually accumulate in circular islands, whereas axonal extensions spread on linear tracks to connect circular islands. Our findings indicate that migration of cortical neurons is enhanced on soft substrates, leading to a faster formation of neuronal networks. Furthermore, the pre-synaptic density was two times higher on stiff substrates and consistently the number of action potentials and miniature synaptic currents was enhanced on stiff substrates. Taken together, our results provide compelling evidence to indicate that matrix stiffness is a key parameter to modulate the growth dynamics, synaptic density and electrophysiological activity of cortical neuronal networks, thus providing useful information on scaffold design for neural tissue engineering.

  9. Low Permeability Polyimide Insulation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Resodyn Technologies proposes a new technology that enables the application of polyimide based cryogenic insulation with low hydrogen permeability. This effort...

  10. Modulation of Subgenual Anterior Cingulate Cortex Activity With Real-Time Neurofeedback

    OpenAIRE

    Hamilton, J. Paul; Glover, Gary H.; Hsu, Jung-Jiin; Johnson, Rebecca F.; Gotlib, Ian H.

    2011-01-01

    The advent of real-time neurofeedback techniques has allowed us to begin to map the controllability of sensory and cognitive and, more recently, affective centers in the brain. The subgenual anterior cingulate cortex (sACC) is thought to be involved in generation of affective states and has been implicated in psychopathology. In this study, we examined whether individuals could use realtime fMRI neurofeedback to modulate sACC activity. Following a localizer task used to identify an sACC regio...

  11. Integration of Optical Manipulation and Electrophysiological Tools to Modulate and Record Activity in Neural Networks

    Science.gov (United States)

    Difato, F.; Schibalsky, L.; Benfenati, F.; Blau, A.

    2011-07-01

    We present an optical system that combines IR (1064 nm) holographic optical tweezers with a sub-nanosecond-pulsed UV (355 nm) laser microdissector for the optical manipulation of single neurons and entire networks both on transparent and non-transparent substrates in vitro. The phase-modulated laser beam can illuminate the sample concurrently or independently from above or below assuring compatibility with different types of microelectrode array and patch-clamp electrophysiology. By combining electrophysiological and optical tools, neural activity in response to localized stimuli or injury can be studied and quantified at sub-cellular, cellular, and network level.

  12. Advanced glycation end products induce fibrogenic activity in NASH by modulating the TNFα converting enzyme activity

    OpenAIRE

    Joy, Jiang X; Chen, Xiangling; Fukada, Hiroo; Serizawa, Nobuko; Devaraj, Sridevi; Török, Natalie J.

    2013-01-01

    Advanced glycation end products (AGEs) accumulate in patients with diabetes, yet the link between AGEs and the inflammatory and fibrogenic activity in non-alcoholic steatohepatitis (NASH) has not been explored. TNFα converting enzyme (TACE) is at the center of inflammatory processes. As the main natural regulator of TACE activity is the tissue inhibitor of metalloproteinase 3 (Timp3), we hypothesized that AGEs induce TACE through NADPH oxidase 2 (NOX2); and the downregulation of Sirtuin 1 (Si...

  13. Modulation of hepatocarcinoma cell morphology and activity by parylene-C coating on PDMS.

    Directory of Open Access Journals (Sweden)

    Nazaré Pereira-Rodrigues

    Full Text Available BACKGROUND: The ability to understand and locally control the morphogenesis of mammalian cells is a fundamental objective of cell and developmental biology as well as tissue engineering research. We present parylene-C (ParC deposited on polydimethylsiloxane (PDMS as a new substratum for in vitro advanced cell culture in the case of Human Hepatocarcinoma (HepG2 cells. PRINCIPAL FINDINGS: Our findings establish that the intrinsic properties of ParC-coated PDMS (ParC/PDMS influence and modulate initial extracellular matrix (ECM; here, type-I collagen surface architecture, as compared to non-coated PDMS substratum. Morphological changes induced by the presence of ParC on PDMS were shown to directly affect liver cell metabolic activity and the expression of transmembrane receptors implicated in cell adhesion and cell-cell interaction. These changes were characterized by atomic force microscopy (AFM, which elucidated differences in HepG2 cell adhesion, spreading, and reorganization into two- or three-dimensional structures by neosynthesis of ECM components. Local modulation of cell aggregation was successfully performed using ParC/PDMS micropatterns constructed by simple microfabrication. CONCLUSION/SIGNIFICANCE: We demonstrated for the first time the modulation of HepG2 cells' behavior in relation to the intrinsic physical properties of PDMS and ParC, enabling the local modulation of cell spreading in a 2D or 3D manner by simple microfabrication techniques. This work will provide promising insights into the development of cell-based platforms that have many applications in the field of in vitro liver tissue engineering, pharmacology and therapeutics.

  14. Histones Differentially Modulate the Anticoagulant and Profibrinolytic Activities of Heparin, Heparin Derivatives, and Dabigatran.

    Science.gov (United States)

    Ammollo, Concetta Tiziana; Semeraro, Nicola; Carratù, Maria Rosaria; Colucci, Mario; Semeraro, Fabrizio

    2016-02-01

    The antithrombin activity of unfractionated heparin (UFH) is offset by extracellular histones, which, along with DNA, represent a novel mediator of thrombosis and a structural component of thrombi. Here, we systematically evaluated the effect of histones, DNA, and histone-DNA complexes on the anticoagulant and profibrinolytic activities of UFH, its derivatives enoxaparin and fondaparinux, and the direct thrombin inhibitor dabigatran. Thrombin generation was assessed by calibrated automated thrombinography, inhibition of factor Xa and thrombin by synthetic substrates, tissue plasminogen activator-mediated clot lysis by turbidimetry, and thrombin-activatable fibrinolysis inhibitor (TAFI) activation by a functional assay. Histones alone delayed coagulation and slightly stimulated fibrinolysis. The anticoagulant activity of UFH and enoxaparin was markedly inhibited by histones, whereas that of fondaparinux was enhanced. Histones neutralized both the anti-Xa and anti-IIa activities of UFH and preferentially blocked the anti-IIa activity of enoxaparin. The anti-Xa activity of fondaparinux was not influenced by histones when analyzed by chromogenic substrates, but was potentiated in a plasma prothrombinase assay. Histones inhibited the profibrinolytic activity of UFH and enoxaparin and enhanced that of fondaparinux by acting on the modulation of TAFI activation by anticoagulants. Histone H1 was mainly responsible for these effects. Histone-DNA complexes, as well as intact neutrophil extracellular traps, impaired the activities of UFH, enoxaparin, and fondaparinux. Dabigatran was not noticeably affected by histones and/or DNA, whatever the assay performed. In conclusion, histones and DNA present in the forming clot may variably influence the antithrombotic activities of anticoagulants, suggesting a potential therapeutic advantage of dabigatran and fondaparinux over heparins.

  15. Dopaminergic modulation of the spectral characteristics in the rat brain oscillatory activity

    International Nuclear Information System (INIS)

    Highlights: ► The oscillatory activity recorded at different locations of the rat brain present a power law characteristic (PLC). ► Dopaminergic drugs are able to modify the power law spectral characteristic of the oscillatory activity. ► Drugs with opposite effects over the dopaminergic system (agonists/antagonists), induce opposite changes in the PLC. ► There is a fulcrum point for the modulation of the PLC around 20 Hz. ► The brain operates in a state of self-organized criticality (SOC) sensitive to dopaminergic modulation. - Abstract: Oscillatory activity can be widely recorded in the brain. It has been demonstrated to play an important role not only in the physiology of movement, perception and cognition, but also in the pathophysiology of a variety of diseases. In frequency domain, neurophysiological recordings show a power spectrum (PSD) following a log (PSD) ∝ log (f)−β, that reveals an intrinsic feature of many complex systems in nature: the presence of a scale-free dynamics characterized by a power-law component (PLC). Here we analyzed the influence of dopaminergic drugs over the PLC of the oscillatory activity recorded from different locations of the rat brain. Dopamine (DA) is a neurotransmitter that is required for a number of physiological functions like normal feeding, locomotion, posturing, grooming and reaction time. Alterations in the dopaminergic system cause vast effects in the dynamics of the brain activity, that may be crucial in the pathophysiology of neurological (like Parkinson’s disease) or psychiatric (like schizophrenia) diseases. Our results show that drugs with opposite effects over the dopaminergic system, induce opposite changes in the characteristics of the PLC: DA agonists/antagonists cause the PLC to swing around a fulcrum point in the range of 20 Hz. Changes in the harmonic component of the spectrum were also detected. However, differences between recordings are better explained by the modulation of the PLC than

  16. Layer-by-layer self-assembly of micro-capsules for the magnetic activation of semi-permeable nano-shells

    Science.gov (United States)

    Prouty, Malcolm D.

    2007-12-01

    Layer-by-layer (LbL) self-assembly has demonstrated broad perspectives for encapsulating, and the controllable delivery, of drugs. The nano-scale polymer layers have the capability of material protection. Magnetic nanoparticles have great potential to be applied with LbL technology to achieve both "focusing" of the encapsulated drugs to a specific location followed by "switching" them on to release the encapsulated drugs. In this work, Phor21-betaCG(ala), dextran, and dexamethasone were used as model drugs. Encapsulation of these drugs with layer-by-layer self-assembly formed biolnano robotic capsules for controlled delivery and drug release. Silica nanoparticles coated with polyelectrolyte layers of sodium carboxymethyl cellulose (CMC) or gelatin B, along with an oppositely charged peptide drug (Phor2l-betaCG(ala)), were prepared using LbL self-assembly and confirmed using QCM and zeta potential measurements. The peptide drug was assembled as a component of the multilayer walls. The release kinetics of the embedded peptide were determined. Up to 18% of the embedded Phor21-betaCG(ala) was released from the CMC multilayers over a period of 28 hours. The release was based on physiological conditions, and an external control mechanism using magnetic nanoparticles needed to be developed. Magnetic permeability control experiments were setup by applying LbL self-assembly on MnCO3 micro-cores to fabricate polyelectrolyte microcapsules embedded with superparamagnetic gold coated cobalt (Co Au) nanoparticles. An alternating magnetic field was applied to the microcapsules to check for changes in permeability. Permeability experiments were achieved by adding fluorescein isothiocyanate (FITC) labeled dextran to the microcapsule solution. Before an alternating magnetic field was applied, the capsules remained impermeable to the FITC-dextran; however, after an alternating magnetic field was applied for 30 minutes, approximately 99% of the capsules were filled with FITC

  17. On the Modulation of Brain Activation During Simulated Weight Bearing in Supine Gait-Like Stepping.

    Science.gov (United States)

    Jaeger, Lukas; Marchal-Crespo, Laura; Wolf, Peter; Luft, Andreas R; Riener, Robert; Michels, Lars; Kollias, Spyros

    2016-01-01

    To date, the neurophysiological correlates of muscle activation required for weight bearing during walking are poorly understood although, a supraspinal involvement has been discussed in the literature for many years. The present study investigates the effect of simulated ground reaction forces (0, 20, and 40% of individual body weight) on brain activation in sixteen healthy participants. A magnetic resonance compatible robot was applied to render three different levels of load against the feet of the participants during active and passive gait-like stepping movements. Brain activation was analyzed by the means of voxel-wise whole brain analysis as well as by a region-of-interest analysis. A significant modulation of brain activation in sensorimotor areas by the load level could neither be demonstrated during active nor during passive stepping. These observations suggest that the regulation of muscle activation under different weight-bearing conditions during stepping occurs at the level of spinal circuitry or the brainstem rather than at the supraspinal level.

  18. cAMP Modulates Macrophage Development by Suppressing M-CSF-Induced MAPKs Activation

    Institute of Scientific and Technical Information of China (English)

    Ning Zhu; Jian Cui; Chunxia Qiao; Yan Li; Yuanfang Ma; Jiyan Zhang; Beifen Shen

    2008-01-01

    M-CSF is a key cytokine in macrophage development by inducing MAPKs activation, and cAMP can inhibit MAPKs activation induced by inflammatory stimuli. To explore the effects of cAMP on M-CSF-induced MAPKs activation and on macrophage development, the model of bone marrow-derived murine macrophages (BMMs) was used. The effects of cAMP on M-CSF-induced MAPKs activation were analyzed by Western blotting assay, and the effects of cAMP on CD14 and F4/80 expression during macrophage development were examined by FACS analysis.Macrophage morphology showed the successful establishment of the model of macrophage development. Western blotting assay revealed that M-CSF activated ERK, JNK and p38 in both mature and immature macrophages, and cAMP inhibited M-CSF-induced ERK, JNK and p38 activation in a time-dependent manner. FACS analysis revealed that macrophage development was impaired with cAMP pretreatment. In conclusion, cAMP modulates macrophage development by suppressing M-CSF-induced MAPKs activation.

  19. The role of metals in modulating metalloprotease activity in the AD brain.

    Science.gov (United States)

    Filiz, Gulay; Price, Katherine A; Caragounis, Aphrodite; Du, Tai; Crouch, Peter J; White, Anthony R

    2008-03-01

    Biometals such as copper and zinc have an important role in Alzheimer's disease (AD). Accumulating evidence indicates that copper homeostasis is altered in AD brain with elevated extracellular and low intracellular copper levels. Studies in animals and cell cultures have suggested that increasing intracellular copper can ameliorate AD-like pathology including amyloid deposition and tau phosphorylation. Modulating copper homeostasis can also improve cognitive function in animal models of AD. Treatments are now being developed that may result in redistribution of copper within the brain. Metal ligands such as clioquinol (CQ), DP-109 or pyrrolidine dithiocarbamate (PDTC) have shown promising results in animal models of AD, however, the actual mode of action in vivo has not been fully determined. We previously reported that CQ-metal complexes were able to increase intracellular copper levels in vitro. This resulted in stimulation of phosphoinositol-3-kinase activity and mitogen activated protein kinases (MAPK). Increased kinase activity resulted in up-regulated matrix metalloprotease (MMP2 and MMP3) activity resulting in enhanced degradation of secreted A beta. These findings are consistent with previous studies reporting metal-mediated activation of MAPKs and MMPs. How this activation occurs is unknown but evidence suggests that copper may be able to activate membrane receptors such as the epidermal growth factor receptor (EGFR) and result in downstream activation of MAPK pathways. This has been supported by studies showing metal-mediated activation of EGFR through ligand-independent processes in a number of cell-types. Our initial studies reveal that copper complexes can in fact activate EGFR. However, further studies are necessary to determine if metal complexes such as CQ-copper induce up-regulation of A beta-degrading MMP activity through this mechanism. Elucidation of this pathway may have important implications for the development of metal ligand based

  20. Permeability of alkaline magmas: a study from Campi Flegrei, Italy

    Science.gov (United States)

    Polacci, M.; Bouvet de Maissoneuve, C.; Giordano, D.; Piochi, M.; Degruyter, W.; Bachmann, O.; Mancini, L.

    2012-04-01

    Knowledge of permeability is of paramount importance for understanding the evolution of magma degassing during pre-, syn- and post-eruptive volcanic processes. Most permeability estimates existing to date refer to magmas of calc-alkaline compositions. We report here the preliminary results of permeability measurements performed on alkali-trachyte products erupted from the Campanian Ignimbrite (CI) and Monte Nuovo (MTN), two explosive eruptions from Campi Flegrei (CF), an active, hazardous caldera west of Naples, Southern Italy. Darcian (viscous) permeability spans a wide range between 10^-11 and 10^-14 m^2. We observe that the most permeable samples are the scoria clasts from the upper units of MTN; pumice samples from the Breccia Museo facies of CI are instead the least permeable. Non-Darcian (inertial) permeability follows the same trend as Darcian permeability. The first implication of this study is that porosity in alkaline as well as calc-alkaline magmas does not exert a first order control on permeability (e.g. the MTN samples are the most permeable but not the most porous). Second, sample geometry exhibits permeability anisotropy (higher permeability in the direction of vesicle elongation), suggesting stronger degassing in the vertical direction in the conduit. In addition, inertial effects are higher across the sample. As inertial effects are potentially generated by tortuosity (or tortuous vesicle paths), tortuosity is likely higher horizontally than vertically in the conduit. Finally, the measured CF permeability values overlap with those of rhyolitic pumice clasts from the Kos Plateau Tuff (Bouvet de Maisonneuve et al., 2009), together with CI one of the major Quaternary explosive eruptions of the Mediterranean region. This indicates that gas flow is strongly controlled by the geometry of the porous media, which is generated by the bubble dynamics during magma ascent. Therefore, permeability will depend on composition through the rheological properties

  1. Surfactant protein A integrates activation signal strength to differentially modulate T cell proliferation.

    Science.gov (United States)

    Mukherjee, Sambuddho; Giamberardino, Charles; Thomas, Joseph; Evans, Kathy; Goto, Hisatsugu; Ledford, Julie G; Hsia, Bethany; Pastva, Amy M; Wright, Jo Rae

    2012-02-01

    Pulmonary surfactant lipoproteins lower the surface tension at the alveolar-airway interface of the lung and participate in host defense. Previous studies reported that surfactant protein A (SP-A) inhibits lymphocyte proliferation. We hypothesized that SP-A-mediated modulation of T cell activation depends upon the strength, duration, and type of lymphocyte activating signals. Modulation of T cell signal strength imparted by different activating agents ex vivo and in vivo in different mouse models and in vitro with human T cells shows a strong correlation between strength of signal (SoS) and functional effects of SP-A interactions. T cell proliferation is enhanced in the presence of SP-A at low SoS imparted by exogenous mitogens, specific Abs, APCs, or in homeostatic proliferation. Proliferation is inhibited at higher SoS imparted by different doses of the same T cell mitogens or indirect stimuli such as LPS. Importantly, reconstitution with exogenous SP-A into the lungs of SP-A(-/-) mice stimulated with a strong signal also resulted in suppression of T cell proliferation while elevating baseline proliferation in unstimulated T cells. These signal strength and SP-A-dependent effects are mediated by changes in intracellular Ca(2+) levels over time, involving extrinsic Ca(2+)-activated channels late during activation. These effects are intrinsic to the global T cell population and are manifested in vivo in naive as well as memory phenotype T cells. Thus, SP-A appears to integrate signal thresholds to control T cell proliferation. PMID:22219327

  2. Predicting chemically-induced skin reactions. Part II: QSAR models of skin permeability and the relationships between skin permeability and skin sensitization

    International Nuclear Information System (INIS)

    Skin permeability is widely considered to be mechanistically implicated in chemically-induced skin sensitization. Although many chemicals have been identified as skin sensitizers, there have been very few reports analyzing the relationships between molecular structure and skin permeability of sensitizers and non-sensitizers. The goals of this study were to: (i) compile, curate, and integrate the largest publicly available dataset of chemicals studied for their skin permeability; (ii) develop and rigorously validate QSAR models to predict skin permeability; and (iii) explore the complex relationships between skin sensitization and skin permeability. Based on the largest publicly available dataset compiled in this study, we found no overall correlation between skin permeability and skin sensitization. In addition, cross-species correlation coefficient between human and rodent permeability data was found to be as low as R2 = 0.44. Human skin permeability models based on the random forest method have been developed and validated using OECD-compliant QSAR modeling workflow. Their external accuracy was high (Q2ext = 0.73 for 63% of external compounds inside the applicability domain). The extended analysis using both experimentally-measured and QSAR-imputed data still confirmed the absence of any overall concordance between skin permeability and skin sensitization. This observation suggests that chemical modifications that affect skin permeability should not be presumed a priori to modulate the sensitization potential of chemicals. The models reported herein as well as those developed in the companion paper on skin sensitization suggest that it may be possible to rationally design compounds with the desired high skin permeability but low sensitization potential. - Highlights: • It was compiled the largest publicly-available skin permeability dataset. • Predictive QSAR models were developed for skin permeability. • No concordance between skin sensitization and skin

  3. Predicting chemically-induced skin reactions. Part II: QSAR models of skin permeability and the relationships between skin permeability and skin sensitization

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Vinicius M. [Laboratory of Molecular Modeling and Design, Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO 74605-220 (Brazil); Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599 (United States); Muratov, Eugene [Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599 (United States); Laboratory of Theoretical Chemistry, A.V. Bogatsky Physical–Chemical Institute NAS of Ukraine, Odessa 65080 (Ukraine); Fourches, Denis [Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599 (United States); Strickland, Judy; Kleinstreuer, Nicole [ILS/Contractor supporting the NTP Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM), P.O. Box 13501, Research Triangle Park, NC 27709 (United States); Andrade, Carolina H. [Laboratory of Molecular Modeling and Design, Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO 74605-220 (Brazil); Tropsha, Alexander, E-mail: alex_tropsha@unc.edu [Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599 (United States)

    2015-04-15

    Skin permeability is widely considered to be mechanistically implicated in chemically-induced skin sensitization. Although many chemicals have been identified as skin sensitizers, there have been very few reports analyzing the relationships between molecular structure and skin permeability of sensitizers and non-sensitizers. The goals of this study were to: (i) compile, curate, and integrate the largest publicly available dataset of chemicals studied for their skin permeability; (ii) develop and rigorously validate QSAR models to predict skin permeability; and (iii) explore the complex relationships between skin sensitization and skin permeability. Based on the largest publicly available dataset compiled in this study, we found no overall correlation between skin permeability and skin sensitization. In addition, cross-species correlation coefficient between human and rodent permeability data was found to be as low as R{sup 2} = 0.44. Human skin permeability models based on the random forest method have been developed and validated using OECD-compliant QSAR modeling workflow. Their external accuracy was high (Q{sup 2}{sub ext} = 0.73 for 63% of external compounds inside the applicability domain). The extended analysis using both experimentally-measured and QSAR-imputed data still confirmed the absence of any overall concordance between skin permeability and skin sensitization. This observation suggests that chemical modifications that affect skin permeability should not be presumed a priori to modulate the sensitization potential of chemicals. The models reported herein as well as those developed in the companion paper on skin sensitization suggest that it may be possible to rationally design compounds with the desired high skin permeability but low sensitization potential. - Highlights: • It was compiled the largest publicly-available skin permeability dataset. • Predictive QSAR models were developed for skin permeability. • No concordance between skin

  4. Restoring wtp53 activity in HIPK2 depleted MCF7 cells by modulating metallothionein and zinc.

    Science.gov (United States)

    Puca, Rosa; Nardinocchi, Lavinia; Bossi, Gianluca; Sacchi, Ada; Rechavi, Gideon; Givol, David; D'Orazi, Gabriella

    2009-01-01

    The maintenance of p53 transactivation activity is important for p53 apoptotic function. We have shown that stable knockdown of HIPK2 induces p53 misfolding with inhibition of p53 target gene transcription. In this study we established a lentiviral-based system for doxycyclin (Dox)-induced conditional interference of HIPK2 expression to evaluate the molecular mechanisms involved in p53 deregulation. We found that HIPK2 knockdown induced metallothionein 2A (MT2A) upregulation as assessed by RT-PCR analysis, increased promoter acetylation, and increased promoter luciferase activity. The MT2A upregulation correlated with resistance to Adriamycin (ADR)-driven apoptosis and with p53 inhibition. Thus, acute knockdown of HIPK2 (HIPK2i) induced misfolded p53 protein in MCF7 breast cancer cells and inhibited p53 DNA-binding and transcription activities in response to ADR treatment. Previous works show that MT may modulate p53 activity through zinc exchange. Here, we found that inhibition of MT2A expression by siRNA in the HIPK2i cells restored p53 transcription activity. Similarly zinc supplementation to HIPK2i cells restored p53 transcription activity and drug-induced apoptosis. These data support the notion that MT2A is involved in p53 deregulation and strengthen the possibility that combination of chemotherapy and zinc might be useful to treat tumors with inactive wtp53. PMID:18996371

  5. Neural correlates of executive dysfunction in schizophrenia: failure to modulate brain activity with task demands.

    Science.gov (United States)

    Dirnberger, Georg; Fuller, Rebecca; Frith, Chris; Jahanshahi, Marjan

    2014-11-12

    In schizophrenia, executive functions are impaired and are associated with altered activation of prefrontal areas. We used H2[15]O PET to examine patients with schizophrenia and matched controls on a random number generation (RNG) task and a control counting (COUNT) task. To assess the effects of increasing task demand, both tasks were performed at three different rates (intervals 1, 2 or 3 s). Both groups showed a significant increase in the nonrandomness of responses at faster rates of RNG. Despite similar performances, patients but not controls showed higher activation of the right dorsolateral prefrontal cortex (DLPFC) and atypically reduced activation of the right anterior cingulate gyrus and the right medial frontal gyrus in RNG compared with COUNT, whereas only for controls, activation of the left DLPFC was increased and activation of the right superior temporal gyrus and the right superior frontal gyrus was reduced in the same comparison. Whereas for the controls several cortical areas including the bilateral superior temporal gyrus and the bilateral DLPFC, together with the right cerebellum, showed significant changes in regional cerebral blood flow with faster or slower rates, patients with schizophrenia showed rate-dependent changes only in the left cerebellum. In conclusion, the patients' failure to modulate cortical activation with changing demands of rate, particularly in prefrontal areas and in the cerebellum, and even when performance is similar to that in healthy controls, is a characteristic of their abnormal pattern of executive processing. PMID:25275638

  6. SUMOylation modulates the transcriptional activity of androgen receptor in a target gene and pathway selective manner.

    Science.gov (United States)

    Sutinen, Päivi; Malinen, Marjo; Heikkinen, Sami; Palvimo, Jorma J

    2014-07-01

    Androgen receptor (AR) plays an important regulatory role in prostate cancer. AR's transcriptional activity is regulated by androgenic ligands, but also by post-translational modifications, such as SUMOylation. To study the role of AR SUMOylation in genuine chromatin environment, we compared androgen-regulated gene expression and AR chromatin occupancy in PC-3 prostate cancer cell lines stably expressing wild-type (wt) or doubly SUMOylation site-mutated AR (AR-K386R,K520R). Our genome-wide gene expression analyses reveal that the SUMOylation modulates the AR function in a target gene and pathway selective manner. The transcripts that are differentially regulated by androgen and SUMOylation are linked to cellular movement, cell death, cellular proliferation, cellular development and cell cycle. Fittingly, SUMOylation mutant AR cells proliferate faster and are more sensitive to apoptosis. Moreover, ChIP-seq analyses show that the SUMOylation can modulate the chromatin occupancy of AR on many loci in a fashion that parallels their differential androgen-regulated expression. De novo motif analyses reveal that FOXA1, C/EBP and AP-1 motifs are differentially enriched at the wtAR- and the AR-K386R,K520R-preferred genomic binding positions. Taken together, our data indicate that SUMOylation does not simply repress the AR activity, but it regulates AR's interaction with the chromatin and the receptor's target gene selection.

  7. Phasic and Tonic mGlu7 Receptor Activity Modulates the Thalamocortical Network.

    Science.gov (United States)

    Tassin, Valériane; Girard, Benoît; Chotte, Apolline; Fontanaud, Pierre; Rigault, Delphine; Kalinichev, Mikhail; Perroy, Julie; Acher, Francine; Fagni, Laurent; Bertaso, Federica

    2016-01-01

    Mutation of the metabotropic glutamate receptor type 7 (mGlu7) induces absence-like epileptic seizures, but its precise role in the somatosensory thalamocortical network remains unknown. By combining electrophysiological recordings, optogenetics, and pharmacology, we dissected the contribution of the mGlu7 receptor at mouse thalamic synapses. We found that mGlu7 is functionally expressed at both glutamatergic and GABAergic synapses, where it can inhibit neurotransmission and regulate short-term plasticity. These effects depend on the PDZ-ligand of the receptor, as they are lost in mutant mice. Interestingly, the very low affinity of mGlu7 receptors for glutamate raises the question of how it can be activated, namely at GABAergic synapses and in basal conditions. Inactivation of the receptor activity with the mGlu7 negative allosteric modulator (NAM), ADX71743, enhances thalamic synaptic transmission. In vivo administration of the NAM induces a lethargic state with spindle and/or spike-and-wave discharges accompanied by a behavioral arrest typical of absence epileptic seizures. This provides evidence for mGlu7 receptor-mediated tonic modulation of a physiological function in vivo preventing synchronous and potentially pathological oscillations. PMID:27199672

  8. A 5'-region polymorphism modulates promoter activity of the tumor suppressor gene MFSD2A

    Directory of Open Access Journals (Sweden)

    Kunitoh Hideo

    2011-07-01

    Full Text Available Abstract Background The MFSD2A gene maps within a linkage disequilibrium block containing the MYCL1-EcoRI polymorphism associated with prognosis and survival in lung cancer patients. Survival discrepancies between Asians and Caucasians point to ethnic differences in allelic frequencies of the functional genetic variations. Results Analysis of three single-nucleotide polymorphisms (SNPs mapping in the MFSD2A 5'-regulatory region using a luciferase reporter system showed that SNP rs12072037, in linkage disequilibrium with the MYCL1-EcoRI polymorphism and polymorphic in Asians but not in Caucasians, modulated transcriptional activity of the MFSD2A promoter in cell lines expressing AHR and ARNT transcription factors, which potentially bind to the SNP site. Conclusion SNP rs12072037 modulates MFSD2A promoter activity and thus might affect MFSD2A levels in normal lung and in lung tumors, representing a candidate ethnically specific genetic factor underlying the association between the MYCL1 locus and lung cancer patients' survival.

  9. Modulation of yeast telomerase activity by Cdc13 and Est1 in vitro

    Science.gov (United States)

    Chen, Yu-Fan; Lu, Chia-Ying; Lin, Yi-Chien; Yu, Tai-Yuan; Chang, Chun-Ping; Li, Jing-Ru; Li, Hung-Wen; Lin, Jing-Jer

    2016-01-01

    Telomerase is the enzyme involved in extending telomeric DNA. Control of telomerase activity by modulating its access to chromosome ends is one of the most important fundamental mechanisms. This study established an in vitro yeast telomerase reconstitution system that resembles telomere replication in vivo. In this system, a tailed-duplex DNA formed by telomeric DNA was employed to mimic the structure of telomeres. The core catalytic components of telomerase Est2/Tlc1 RNA were used as the telomeric DNA extension machinery. Using the reconstituted systems, this study found that binding of Cdc13 to telomeric DNA inhibited the access of telomerase to its substrate. The result was further confirmed by a single-molecule approach using the tethered-particle motion (TPM)-based telomerase assay. The findings also showed that the inhibitory effect can be relieved by telomerase-associated protein Est1, consistent with the role of Cdc13 and Est1 in regulating telomere extension in vivo. Significantly, this study found that the DNA binding property of Cdc13 was altered by Est1, providing the first mechanistic evidence of Est1 regulating the access of telomerase to its substrate. Thus, the roles of Cdc13 and Est1 in modulating telomerase activity were clearly defined using the in vitro reconstituted system. PMID:27659693

  10. Lung protease/anti-protease network and modulation of mucus production and surfactant activity.

    Science.gov (United States)

    Garcia-Verdugo, Ignacio; Descamps, Delphyne; Chignard, Michel; Touqui, Lhousseine; Sallenave, Jean-Michel

    2010-11-01

    Lung epithelium guarantees gas-exchange (performed in the alveoli) and protects from external insults (pathogens, pollutants…) present within inhaled air. Both functions are facilitated by secretions lining airway surface liquid, mucus (in the upper airways) and pulmonary surfactant (in the alveoli). Mucins, the main glycoproteins present within the mucus, are responsible for its rheologic properties and participate in lung defense mechanisms. In parallel, lung collectins are pattern recognition molecules present in pulmonary surfactant that also modulate lung defense. During chronic airways diseases, excessive protease activity can promote mucus hypersecretion and degradation of lung collectins and therefore contribute to the pathophysiology of these diseases. Importantly, secretion of local and systemic anti-proteases might be crucial to equilibrate the protease/anti-protease unbalance and therefore preserve the function of lung host defense compounds and airway surface liquid homeostasis. In this review we will present information relative to proteases able to modulate mucin production and lung collectin integrity, two important compounds of innate immune defense. One strategy to preserve physiological mucus production and collectin integrity during chronic airways diseases might be the over-expression of local 'alarm' anti-proteases such as SLPI and elafin. Interestingly, a cross-talk between lung collectins and anti-protease activity has recently been described, implicating the presence within the lung of a complex network between proteases, anti-proteases and pattern recognition molecules, which aims to keep or restore homeostasis in resting or inflamed lungs. PMID:20493919

  11. Phasic and tonic mGlu7 receptor activity modulates the thalamocortical network

    Directory of Open Access Journals (Sweden)

    Valériane eTassin

    2016-04-01

    Full Text Available Mutation of the metabotropic glutamate receptor type 7 (mGlu7 induces absence-like epileptic seizures, but its precise role in the somatosensory thalamocortical network remains unknown. By combining electrophysiological recordings, optogenetics and pharmacology we dissected the contribution of the mGlu7 receptor at mouse thalamic synapses. We found that mGlu7 is functionally expressed at both glutamatergic and GABAergic synapses, where it can inhibit neurotransmission and regulate short-term plasticity. These effects depend on the PDZ-ligand of the receptor, as they are lost in mutant mice. Interestingly, the very low affinity of mGlu7 receptors for glutamate raises the question of how it can be activated, namely at GABAergic synapses and in basal conditions. Inactivation of the receptor activity with the mGlu7 negative allosteric modulator (NAM, ADX71743, enhances thalamic synaptic transmission. In vivo administration of the NAM induces a lethargic state with spindle and/or spike-and-wave discharges accompanied by a behavioral arrest typical of absence epileptic seizures. This provides evidence for mGlu7 receptor-mediated tonic modulation of a physiological function in vivo preventing synchronous and potentially pathological oscillations.

  12. Epigenetic modulations in activated cells early after HIV-1 infection and their possible functional consequences.

    Directory of Open Access Journals (Sweden)

    Juliana T Maricato

    Full Text Available Epigenetic modifications refer to a number of biological processes which alter the structure of chromatin and its transcriptional activity such as DNA methylation and histone post-translational processing. Studies have tried to elucidate how the viral genome and its products are affected by epigenetic modifications imposed by cell machinery and how it affects the ability of the virus to either, replicate and produce a viable progeny or be driven to latency. The purpose of this study was to evaluate epigenetic modifications in PBMCs and CD4+ cells after HIV-1 infection analyzing three approaches: (i global DNA- methylation; (ii qPCR array and (iii western blot. HIV-1 infection led to methylation increases in the cellular DNA regardless the activation status of PBMCs. The analysis of H3K9me3 and H3K27me3 suggested a trend towards transcriptional repression in activated cells after HIV-1 infection. Using a qPCR array, we detected genes related to epigenetic processes highly modulated in activated HIV-1 infected cells. SETDB2 and RSK2 transcripts showed highest up-regulation levels. SETDB2 signaling is related to transcriptional silencing while RSK2 is related to either silencing or activation of gene expression depending on the signaling pathway triggered down-stream. In addition, activated cells infected by HIV-1 showed lower CD69 expression and a decrease of IL-2, IFN-γ and metabolism-related factors transcripts indicating a possible functional consequence towards global transcriptional repression found in HIV-1 infected cells. Conversely, based on epigenetic markers studied here, non-stimulated cells infected by HIV-1, showed signs of global transcriptional activation. Our results suggest that HIV-1 infection exerts epigenetic modulations in activated cells that may lead these cells to transcriptional repression with important functional consequences. Moreover, non-stimulated cells seem to increase gene transcription after HIV-1 infection

  13. Amygdala activity can be modulated by unexpected chord functions during music listening.

    Science.gov (United States)

    Koelsch, Stefan; Fritz, Thomas; Schlaug, Gottfried

    2008-12-01

    Numerous earlier studies have investigated the cognitive processing of musical syntax with regular and irregular chord sequences. However, irregular sequences may also be perceived as unexpected, and therefore have a different emotional valence than regular sequences. We provide behavioral data showing that irregular chord functions presented in chord sequence paradigms are perceived as less pleasant than regular sequences. A reanalysis of functional MRI data showed increased blood oxygen level-dependent signal changes bilaterally in the amygdala in response to music-syntactically irregular (compared with regular) chord functions. The combined data indicate that music-syntactically irregular events elicit brain activity related to emotional processes, and that, in addition to intensely pleasurable music or highly unpleasant music, single chord functions can also modulate amygdala activity. PMID:19050462

  14. Metabolic pathways and activity-dependent modulation of glutamate concentration in the human brain.

    Science.gov (United States)

    Mangia, Silvia; Giove, Federico; Dinuzzo, Mauro

    2012-11-01

    Glutamate is one of the most versatile molecules present in the human brain, involved in protein synthesis, energy production, ammonia detoxification, and transport of reducing equivalents. Aside from these critical metabolic roles, glutamate plays a major part in brain function, being not only the most abundant excitatory neurotransmitter, but also the precursor for γ-aminobutyric acid, the predominant inhibitory neurotransmitter. Regulation of glutamate levels is pivotal for normal brain function, as abnormal extracellular concentration of glutamate can lead to impaired neurotransmission, neurodegeneration and even neuronal death. Understanding how the neuron-astrocyte functional and metabolic interactions modulate glutamate concentration during different activation status and under physiological and pathological conditions is a challenging task, and can only be tentatively estimated from current literature. In this paper, we focus on describing the various metabolic pathways which potentially affect glutamate concentration in the brain, and emphasize which ones are likely to produce the variations in glutamate concentration observed during enhanced neuronal activity in human studies.

  15. Behavioral activation system modulation on brain activation during appetitive and aversive stimulus processing

    OpenAIRE

    Barrós-Loscertales, Alfonso; Ventura-Campos, Noelia; Sanjuán-Tomás, Ana; Belloch, Vicente; Parcet, Maria-Antònia; Ávila, César

    2010-01-01

    The reinforcement sensitivity theory (RST) proposed the behavioral activation system (BAS) as a neurobehavioral system that is dependent on dopamine-irrigated structures and that mediates the individual differences in sensitivity and reactivity to appetitive stimuli associated with BAS-related personality traits. Theoretical developments propose that high BAS sensitivity is associated with both enhanced appetitive stimuli processing and the diminished processing of aversive stimuli. The objec...

  16. Peptides complementary to the active loop of porin P2 from Haemophilus influenzae modulate its activity

    Directory of Open Access Journals (Sweden)

    Galdiero S

    2012-05-01

    Full Text Available Marco Cantisani,1 Mariateresa Vitiello,2 Annarita Falanga,1 Emiliana Finamore,2 Marilena Galdiero,2 Stefania Galdiero11Department of Biological Sciences, CIRPeB and IBB CNR, University of Naples "Federico II," Napoli, Italy; 2Department of Experimental Medicine, II University of Naples, Napoli, ItalyAbstract: Haemophilus influenzae type b (Hib is one of the leading causes of invasive bacterial infection in young children. It is characterized by inflammation that is mainly mediated by cytokines and chemokines. One of the most abundant components of the Hib outer membrane is the P2 porin, which has been shown to induce the release of several inflammatory cytokines. A synthetic peptide corresponding to loop L7 of the porin activates JNK and p38 mitogen-activated protein kinase (MAPK pathways. We report a novel use of the complementary peptide approach to design a peptide that is able to bind selectively to the protein P2, thereby reducing its activity. This work provides insights into essential molecular details of P2 that may affect the pathogenesis of Hib infections where interruption of the signaling cascade could represent an attractive therapeutic strategy.Keywords: complementary-peptide, rational design, porin

  17. Compound A, a selective glucocorticoid receptor modulator, enhances heat shock protein Hsp70 gene promoter activation.

    Directory of Open Access Journals (Sweden)

    Ilse M Beck

    Full Text Available Compound A possesses glucocorticoid receptor (GR-dependent anti-inflammatory properties. Just like classical GR ligands, Compound A can repress NF-κB-mediated gene expression. However, the monomeric Compound A-activated GR is unable to trigger glucocorticoid response element-regulated gene expression. The heat shock response potently activates heat shock factor 1 (HSF1, upregulates Hsp70, a known GR chaperone, and also modulates various aspects of inflammation. We found that the selective GR modulator Compound A and heat shock trigger similar cellular effects in A549 lung epithelial cells. With regard to their anti-inflammatory mechanism, heat shock and Compound A are both able to reduce TNF-stimulated IκBα degradation and NF-κB p65 nuclear translocation. We established an interaction between Compound A-activated GR and Hsp70, but remarkably, although the presence of the Hsp70 chaperone as such appears pivotal for the Compound A-mediated inflammatory gene repression, subsequent novel Hsp70 protein synthesis is uncoupled from an observed CpdA-induced Hsp70 mRNA upregulation and hence obsolete in mediating CpdA's anti-inflammatory effect. The lack of a Compound A-induced increase in Hsp70 protein levels in A549 cells is not mediated by a rapid proteasomal degradation of Hsp70 or by a Compound A-induced general block on translation. Similar to heat shock, Compound A can upregulate transcription of Hsp70 genes in various cell lines and BALB/c mice. Interestingly, whereas Compound A-dependent Hsp70 promoter activation is GR-dependent but HSF1-independent, heat shock-induced Hsp70 expression alternatively occurs in a GR-independent and HSF1-dependent manner in A549 lung epithelial cells.

  18. Enhanced exo-inulinase activity and stability by fusion of an inulin-binding module.

    Science.gov (United States)

    Zhou, Shun-Hua; Liu, Yuan; Zhao, Yu-Juan; Chi, Zhe; Chi, Zhen-Ming; Liu, Guang-Lei

    2016-09-01

    In this study, an inulin-binding module from Bacillus macerans was successfully fused to an exo-inulinase from Kluyveromyces marxianus, creating a hybrid functional enzyme. The recombinant exo-inulinase (rINU), the hybrid enzyme (rINUIBM), and the recombinant inulin-binding module (rIBM) were, respectively, heterologously expressed and biochemically characterized. It was found that both the inulinase activity and the catalytic efficiency (k cat/K m(app)) of the rINUIBM were considerably higher than those of rINU. Though the rINU and the rINUIBM shared the same optimum pH of 4.5, the optimum temperature of the rINUIBM (60 °C) was 5 °C higher than that of the rINU. Notably, the fused IBM significantly enhanced both the pH stability and the thermostability of the rINUIBM, suggesting that the rINUIBM obtained would have more extensive potential applications. Furthermore, the fusion of the IBM could substantially improve the inulin-binding capability of the rINUIBM, which was consistent with the determination of the K m(app). This meant that the fused IBM could play a critical role in the recognition of polysaccharides and enhanced the hydrolase activity of the associated inulinase by increasing enzyme-substrate proximity. Besides, the extra supplement of the independent non-catalytic rIBM could also improve the inulinase activity of the rINU. However, this improvement was much better in case of the fusion. Consequently, the IBM could be designated as a multifunctional domain that was responsible for the activity enhancement, the stabilization, and the substrate binding of the rINUIBM. All these features obtained in this study make the rINUIBM become an attractive candidate for an efficient inulin hydrolysis.

  19. Multiple monoaminergic modulation of posturo-locomotor network activity in the newborn rat spinal cord

    Directory of Open Access Journals (Sweden)

    Lauriane eBeliez

    2014-08-01

    Full Text Available Studies devoted to understanding locomotor control have mainly addressed the functioning of the neural circuits controlling leg movements and relatively little is known of the operation of networks that activate trunk muscles in coordination with limb movements. The aim of the present work was (1 to identify the exogenous neurotransmitter cocktail that most strongly activates postural thoracic circuitry; (2 to investigate how the biogenic amines serotonin (5-HT, dopamine (DA and noradrenaline (NA modulate the coordination between limb and axial motor networks. Experiments were carried out on in vitro isolated spinal cord preparations from newborn rats. We recorded from ventral roots to monitor hindlimb locomotor and axial postural network activity. Each combination of the three amines with excitatory amino acids (EAAs elicited coordinated rhythmic motor activity at all segmental levels with specific characteristics. The variability in cycle period was similar with 5-HT and DA while it was significantly higher with NA. DA elicited motor bursts of smaller amplitude in thoracic segments compared to 5-HT and NA, while both DA and NA elicited motor bursts of higher amplitude than 5-HT in the lumbar and sacral segments. The amines modulated the phase relationships of bursts in various segments with respect to the reference lumbar segment. At the thoracic level there was a phase lag between all recorded segments in the presence of 5-HT, while DA and NA elicited synchronous bursting. At the sacral level, 5-HT and DA induced an intersegmental phase shift while relationships became phase-locked with NA. Various combinations of EAAs with two or even all three amines elicited rhythmic motor output that was more variable than with one amine alone. Our results provide new data on the coordinating processes between spinal cord networks, demonstrating that each amine has a characteristic signature regarding its specific effect on intersegmental phase

  20. Vagal modulation of pre-inspiratory activity in hypoglossal discharge in the decerebrate rat.

    Science.gov (United States)

    Ghali, Michael George Zaki

    2015-08-15

    Respiration consists of three phases--inspiration (I), post-inspiration (post-I), and late expiration (E2). Pre-I is a subphase occurring at the end of E2. Hypoglossal (XII) discharge contains I and occasionally pre-I activity. Functionally, XII pre-I underlies tongue muscle contraction and expansion of the upper airway, causing a decrease in airway resistance in anticipation of the succeeding inspiratory effort. It has been shown that vagotomy causes an increase in pre-I activity in XII in anesthetized animals. Also, in anesthetized artificially-ventilated animals, XII onset is synchronized with that of inspiratory phrenic nerve (PhN) activity. Therefore, we sought to systematically test the hypothesis that XII pre-I is present in vagus-intact unanesthetized decerebrate animals and vagal afferents negatively modulate XII pre-I discharge in decerebrate rats, in the absence of confounding anesthesia. Experiments were performed on seven Sprague-Dawley unanesthetized decerebrate adult male rats and bilateral PhN and XII recordings performed. In three animals, vagotomy was performed during PhN recordings and one animal was vagotomized during initial surgical preparation prior to recordings. In vagus-intact animals, XII pre-I duration averaged 12.4 ms. Vagotomy was associated with greater XII pre-I duration, expressed in absolute time (89.5 vs. 12.4 ms; p<0.01) as well as relative to the XII bursting period (18.9 vs. 3.4%; p<0.01). Vagal deafferentation was also associated with a larger relative amplitude of the pre-I XII activity relative to total XII discharge (12.4 vs. 2.1%; p<0.01). We conclude that pre-I discharge is present in vagus-intact artificially-ventilated unanesthetized decerebrate animals and is negatively modulated by vagal afferents. PMID:25979456

  1. Rho signaling in Entamoeba histolytica modulates actomyosin-dependent activities stimulated during invasive behavior.

    Science.gov (United States)

    Franco-Barraza, Janusz; Zamudio-Meza, Horacio; Franco, Elizabeth; del Carmen Domínguez-Robles, M; Villegas-Sepúlveda, Nicolás; Meza, Isaura

    2006-03-01

    Interaction of Entamoeba histolytica trophozoites with target cells and substrates activates signaling pathways in the parasite. Phosphorylation cascades triggered by phospho-inositide and adenyl-cyclase-dependent pathways modulate reorganization of the actin cytoskeleton to form structures that facilitate adhesion. In contrast, little is known about participation of Rho proteins and Rho signaling in actin rearrangements. We report here the in vivo expression of at least one Rho protein in trophozoites, whose activation induced actin reorganization and actin-myosin interaction. Antibodies to EhRhoA1 recombinant protein mainly localized Rho in the cytosol of nonactivated amoebae, but it was translocated to vesicular membranes and to some extent to the plasma membrane after treatment with lysophosphatidic acid (LPA), a specific agonist of Rho activation. Activated Rho was identified in LPA-treated trophozoites. LPA induced striking polymerization of actin into distinct dynamic structures. Disorganization of these structures by inhibition of Rho effector, Rho-kinase (ROCK), and by ML-7, an inhibitor of myosin light chain kinase dependent phosphorylation of myosin light chain, suggested that the actin structures also contained myosin. LPA stimulated concanavalin-A-mediated formation of caps, chemotaxis, invasion of extracellular matrix substrates, and erythrophagocytosis, but not binding to fibronectin. ROCK inhibition impaired LPA-stimulated functions and to some extent adhesion to fibronectin. Similar results were obtained with ML-7. These data suggest the presence and operation of Rho-signaling pathways in E. histolytica, that together with other, already described, signaling routes modulate actomyosin-dependent motile processes, particularly stimulated during invasive behavior.

  2. Electrokinetic effects and fluid permeability

    Science.gov (United States)

    G. Berryman, James

    2003-10-01

    Fluid permeability of porous media depends mainly on connectivity of the pore space and two physical parameters: porosity and a pertinent length-scale parameter. Electrical imaging methods typically establish connectivity and directly measure electrical conductivity, which can then often be related to porosity by Archie's law. When electrical phase measurements are made in addition to the amplitude measurements, information about the pertinent length scale can then be obtained. Since fluid permeability controls the ability to flush unwanted fluid contaminants from the subsurface, inexpensive maps of permeability could improve planning strategies for remediation efforts. Detailed knowledge of fluid permeability is also important for oil field exploitation, where knowledge of permeability distribution in three dimensions is a common requirement for petroleum reservoir simulation and analysis, as well as for estimates on the economics of recovery.

  3. Generic phosphatase activity detection using zinc mediated aggregation modulation of polypeptide-modified gold nanoparticles

    Science.gov (United States)

    Selegård, Robert; Enander, Karin; Aili, Daniel

    2014-11-01

    A challenge in the design of plasmonic nanoparticle-based colorimetric assays is that the change in colloidal stability, which generates the colorimetric response, is often directly linked to the biomolecular recognition event. New assay strategies are hence required for every type of substrate and enzyme of interest. Here, a generic strategy for monitoring of phosphatase activity is presented where substrate recognition is completely decoupled from the nanoparticle stability modulation mechanism, which enables detection of a wide range of enzymes using different natural substrates with a single simple detection scheme. Phosphatase activity generates inorganic phosphate that forms an insoluble complex with Zn2+. In a sample containing a preset concentration of Zn2+, phosphatase activity will markedly reduce the concentration of dissolved Zn2+ from the original value, which in turn affects the aggregation of gold nanoparticles functionalized with a designed Zn2+ responsive polypeptide. The change in nanoparticle stability thus provides a rapid and sensitive readout of the phosphatase activity. The assay is not limited to a particular enzyme or enzyme substrate, which is demonstrated using three completely different phosphatases and five different substrates, and thus constitutes a highly interesting system for drug screening and diagnostics.A challenge in the design of plasmonic nanoparticle-based colorimetric assays is that the change in colloidal stability, which generates the colorimetric response, is often directly linked to the biomolecular recognition event. New assay strategies are hence required for every type of substrate and enzyme of interest. Here, a generic strategy for monitoring of phosphatase activity is presented where substrate recognition is completely decoupled from the nanoparticle stability modulation mechanism, which enables detection of a wide range of enzymes using different natural substrates with a single simple detection scheme

  4. Bile Salts Modulate the Mucin-Activated Type VI Secretion System of Pandemic Vibrio cholerae.

    Science.gov (United States)

    Bachmann, Verena; Kostiuk, Benjamin; Unterweger, Daniel; Diaz-Satizabal, Laura; Ogg, Stephen; Pukatzki, Stefan

    2015-01-01

    The causative agent of cholera, Vibrio cholerae, regulates its diverse virulence factors to thrive in the human small intestine and environmental reservoirs. Among this pathogen's arsenal of virulence factors is the tightly regulated type VI secretion system (T6SS). This system acts as an inverted bacteriophage to inject toxins into competing bacteria and eukaryotic phagocytes. V. cholerae strains responsible for the current 7th pandemic activate their T6SS within the host. We established that T6SS-mediated competition occurs upon T6SS activation in the infant mouse, and that this system is functional under anaerobic conditions. When investigating the intestinal host factors mucins (a glycoprotein component of mucus) and bile for potential regulatory roles in controlling the T6SS, we discovered that once mucins activate the T6SS, bile acids can further modulate T6SS activity. Microbiota modify bile acids to inhibit T6SS-mediated killing of commensal bacteria. This interplay is a novel interaction between commensal bacteria, host factors, and the V. cholerae T6SS, showing an active host role in infection.

  5. Modulation of phase-II enzyme activities in benzene treated ovariectomized rats.

    Science.gov (United States)

    Verma, Yeshvandra; Rana, S V S

    2011-05-01

    The aim of the study was to determine the influence of ovariectomy on phase II enzymes viz. glutathione-S-transferase (GST), glutathione peroxidase (GPX) and catalase (CAT) in liver and kidney of female rats treated with benzene. The results showed the significant decrease of the GST and GPX activity in benzene treated rats after ovariectomy. However progesterone supplementation stimulated the activity of GST and GPX in liver and kidney of benzene treated non ovariectomized and ovariectomized rats. Progesterone supplementation to benzene treated ovariectomized rats helps to gain in CAT activity. Our results on DNA damage using single cell gel electrophoresis also confirmed our findings on antioxidant enzymes. The results showed that lack of protective progesterone against benzene toxicity is reflected in alterations in antioxidant enzyme activities. However progesterone therapy to benzene treated ovariectomized rats results in activating the antioxidant defence system. Since female workers are engaged in industrial sector, these results are important from occupational health point of view. Benzene exposure affects their reproductive health. Nevertheless, it could be modulated by suitable hormonal therapy. PMID:21787707

  6. Bile Salts Modulate the Mucin-Activated Type VI Secretion System of Pandemic Vibrio cholerae.

    Directory of Open Access Journals (Sweden)

    Verena Bachmann

    Full Text Available The causative agent of cholera, Vibrio cholerae, regulates its diverse virulence factors to thrive in the human small intestine and environmental reservoirs. Among this pathogen's arsenal of virulence factors is the tightly regulated type VI secretion system (T6SS. This system acts as an inverted bacteriophage to inject toxins into competing bacteria and eukaryotic phagocytes. V. cholerae strains responsible for the current 7th pandemic activate their T6SS within the host. We established that T6SS-mediated competition occurs upon T6SS activation in the infant mouse, and that this system is functional under anaerobic conditions. When investigating the intestinal host factors mucins (a glycoprotein component of mucus and bile for potential regulatory roles in controlling the T6SS, we discovered that once mucins activate the T6SS, bile acids can further modulate T6SS activity. Microbiota modify bile acids to inhibit T6SS-mediated killing of commensal bacteria. This interplay is a novel interaction between commensal bacteria, host factors, and the V. cholerae T6SS, showing an active host role in infection.

  7. BAS-drive trait modulates dorsomedial striatum activity during reward response-outcome associations.

    Science.gov (United States)

    Costumero, Víctor; Barrós-Loscertales, Alfonso; Fuentes, Paola; Rosell-Negre, Patricia; Bustamante, Juan Carlos; Ávila, César

    2016-09-01

    According to the Reinforcement Sensitivity Theory, behavioral studies have found that individuals with stronger reward sensitivity easily detect cues of reward and establish faster associations between instrumental responses and reward. Neuroimaging studies have shown that processing anticipatory cues of reward is accompanied by stronger ventral striatum activity in individuals with stronger reward sensitivity. Even though establishing response-outcome contingencies has been consistently associated with dorsal striatum, individual differences in this process are poorly understood. Here, we aimed to study the relation between reward sensitivity and brain activity while processing response-reward contingencies. Forty-five participants completed the BIS/BAS questionnaire and performed a gambling task paradigm in which they received monetary rewards or punishments. Overall, our task replicated previous results that have related processing high reward outcomes with activation of striatum and medial frontal areas, whereas processing high punishment outcomes was associated with stronger activity in insula and middle cingulate. As expected, the individual differences in the activity of dorsomedial striatum correlated positively with BAS-Drive. Our results agree with previous studies that have related the dorsomedial striatum with instrumental performance, and suggest that the individual differences in this area may form part of the neural substrate responsible for modulating instrumental conditioning by reward sensitivity. PMID:26489979

  8. Suppressor Mutations for Presenilin 1 Familial Alzheimer Disease Mutants Modulate γ-Secretase Activities.

    Science.gov (United States)

    Futai, Eugene; Osawa, Satoko; Cai, Tetsuo; Fujisawa, Tomoya; Ishiura, Shoichi; Tomita, Taisuke

    2016-01-01

    γ-Secretase is a multisubunit membrane protein complex containing presenilin (PS1) as a catalytic subunit. Familial Alzheimer disease (FAD) mutations within PS1 were analyzed in yeast cells artificially expressing membrane-bound substrate, amyloid precursor protein, or Notch fused to Gal4 transcriptional activator. The FAD mutations, L166P and G384A (Leu-166 to Pro and Gly-384 to Ala substitution, respectively), were loss-of-function in yeast. We identified five amino acid substitutions that suppress the FAD mutations. The cleavage of amyloid precursor protein or Notch was recovered by the secondary mutations. We also found that secondary mutations alone activated the γ-secretase activity. FAD mutants with suppressor mutations, L432M or S438P within TMD9 together with a missense mutation in the second or sixth loops, regained γ-secretase activity when introduced into presenilin null mouse fibroblasts. Notably, the cells with suppressor mutants produced a decreased amount of Aβ42, which is responsible for Alzheimer disease. These results indicate that the yeast system is useful to screen for mutations and chemicals that modulate γ-secretase activity.

  9. The modulation of platelet adhesion and activation by chitosan through plasma and extracellular matrix proteins.

    Science.gov (United States)

    Lord, Megan S; Cheng, Bill; McCarthy, Simon J; Jung, MoonSun; Whitelock, John M

    2011-10-01

    Chitosan has been shown to promote initial wound closure events to prevent blood loss. Platelet adhesion and activation are crucial early events in these processes after traumatic bleeding leading to thrombus formation. Platelet adhesion to chitosan was found to be enhanced in the presence of adsorbed plasma and extracellular matrix proteins and was found to be primarily mediated by α(IIb)β(3) integrins, while α(2)β(1) integrins were found to be involved in platelet adhesion to collagen and perlecan. Platelets were found to be activated by chitosan, as shown by an increase in the expression of α(IIb)β(3) integrins and P-selectin, while the extent of activation was modulated by the presence of proteins including perlecan and fibrinogen. Collagen-coated chitosan was found to activate platelets to the same extent as either chitosan or collagen alone. These data support the role of plasma and extracellular matrix proteins in promoting chitosan mediated platelet adhesion and activation supporting the hypothesis that chitosan promotes wound healing via these interactions.

  10. The psychedelic state induced by ayahuasca modulates the activity and connectivity of the default mode network.

    Directory of Open Access Journals (Sweden)

    Fernanda Palhano-Fontes

    Full Text Available The experiences induced by psychedelics share a wide variety of subjective features, related to the complex changes in perception and cognition induced by this class of drugs. A remarkable increase in introspection is at the core of these altered states of consciousness. Self-oriented mental activity has been consistently linked to the Default Mode Network (DMN, a set of brain regions more active during rest than during the execution of a goal-directed task. Here we used fMRI technique to inspect the DMN during the psychedelic state induced by Ayahuasca in ten experienced subjects. Ayahuasca is a potion traditionally used by Amazonian Amerindians composed by a mixture of compounds that increase monoaminergic transmission. In particular, we examined whether Ayahuasca changes the activity and connectivity of the DMN and the connection between the DMN and the task-positive network (TPN. Ayahuasca caused a significant decrease in activity through most parts of the DMN, including its most consistent hubs: the Posterior Cingulate Cortex (PCC/Precuneus and the medial Prefrontal Cortex (mPFC. Functional connectivity within the PCC/Precuneus decreased after Ayahuasca intake. No significant change was observed in the DMN-TPN orthogonality. Altogether, our results support the notion that the altered state of consciousness induced by Ayahuasca, like those induced by psilocybin (another serotonergic psychedelic, meditation and sleep, is linked to the modulation of the activity and the connectivity of the DMN.

  11. BAS-drive trait modulates dorsomedial striatum activity during reward response-outcome associations.

    Science.gov (United States)

    Costumero, Víctor; Barrós-Loscertales, Alfonso; Fuentes, Paola; Rosell-Negre, Patricia; Bustamante, Juan Carlos; Ávila, César

    2016-09-01

    According to the Reinforcement Sensitivity Theory, behavioral studies have found that individuals with stronger reward sensitivity easily detect cues of reward and establish faster associations between instrumental responses and reward. Neuroimaging studies have shown that processing anticipatory cues of reward is accompanied by stronger ventral striatum activity in individuals with stronger reward sensitivity. Even though establishing response-outcome contingencies has been consistently associated with dorsal striatum, individual differences in this process are poorly understood. Here, we aimed to study the relation between reward sensitivity and brain activity while processing response-reward contingencies. Forty-five participants completed the BIS/BAS questionnaire and performed a gambling task paradigm in which they received monetary rewards or punishments. Overall, our task replicated previous results that have related processing high reward outcomes with activation of striatum and medial frontal areas, whereas processing high punishment outcomes was associated with stronger activity in insula and middle cingulate. As expected, the individual differences in the activity of dorsomedial striatum correlated positively with BAS-Drive. Our results agree with previous studies that have related the dorsomedial striatum with instrumental performance, and suggest that the individual differences in this area may form part of the neural substrate responsible for modulating instrumental conditioning by reward sensitivity.

  12. Plasminogen activator inhibitor type 1 interacts with alpha3 subunit of proteasome and modulates its activity.

    Science.gov (United States)

    Boncela, Joanna; Przygodzka, Patrycja; Papiewska-Pajak, Izabela; Wyroba, Elzbieta; Osinska, Magdalena; Cierniewski, Czeslaw S

    2011-02-25

    Plasminogen activator inhibitor type-1 (PAI-1), a multifunctional protein, is an important physiological regulator of fibrinolysis, extracellular matrix homeostasis, and cell motility. Recent observations show that PAI-1 may also be implicated in maintaining integrity of cells, especially with respect to cellular proliferation or apoptosis. In the present study we provide evidence that PAI-1 interacts with proteasome and affects its activity. First, by using the yeast two-hybrid system, we found that the α3 subunit of proteasome directly interacts with PAI-1. Then, to ensure that the PAI-1-proteasome complex is formed in vivo, both proteins were coimmunoprecipitated from endothelial cells and identified with specific antibodies. The specificity of this interaction was evidenced after transfection of HeLa cells with pCMV-PAI-1 and coimmunoprecipitation of both proteins with anti-PAI-1 antibodies. Subsequently, cellular distribution of the PAI-1-proteasome complexes was established by immunogold staining and electron microscopy analyses. Both proteins appeared in a diffuse cytosolic pattern but also could be found in a dense perinuclear and nuclear location. Furthermore, PAI-1 induced formation of aggresomes freely located in endothelial cytoplasm. Increased PAI-1 expression abrogated degradation of degron analyzed after cotransfection of HeLa cells with pCMV-PAI-1 and pd2EGFP-N1 and prevented degradation of p53 as well as IκBα, as evidenced both by confocal microscopy and Western immunoblotting.

  13. Plasminogen Activator Inhibitor Type 1 Interacts with α3 Subunit of Proteasome and Modulates Its Activity*

    Science.gov (United States)

    Boncela, Joanna; Przygodzka, Patrycja; Papiewska-Pajak, Izabela; Wyroba, Elzbieta; Osinska, Magdalena; Cierniewski, Czeslaw S.

    2011-01-01

    Plasminogen activator inhibitor type-1 (PAI-1), a multifunctional protein, is an important physiological regulator of fibrinolysis, extracellular matrix homeostasis, and cell motility. Recent observations show that PAI-1 may also be implicated in maintaining integrity of cells, especially with respect to cellular proliferation or apoptosis. In the present study we provide evidence that PAI-1 interacts with proteasome and affects its activity. First, by using the yeast two-hybrid system, we found that the α3 subunit of proteasome directly interacts with PAI-1. Then, to ensure that the PAI-1-proteasome complex is formed in vivo, both proteins were coimmunoprecipitated from endothelial cells and identified with specific antibodies. The specificity of this interaction was evidenced after transfection of HeLa cells with pCMV-PAI-1 and coimmunoprecipitation of both proteins with anti-PAI-1 antibodies. Subsequently, cellular distribution of the PAI-1-proteasome complexes was established by immunogold staining and electron microscopy analyses. Both proteins appeared in a diffuse cytosolic pattern but also could be found in a dense perinuclear and nuclear location. Furthermore, PAI-1 induced formation of aggresomes freely located in endothelial cytoplasm. Increased PAI-1 expression abrogated degradation of degron analyzed after cotransfection of HeLa cells with pCMV-PAI-1 and pd2EGFP-N1 and prevented degradation of p53 as well as IκBα, as evidenced both by confocal microscopy and Western immunoblotting. PMID:21135093

  14. The availability of attentional resources modulates the inhibitory strength related to weakly activated priming.

    Science.gov (United States)

    Wang, Yongchun; Wang, Yonghui; Liu, Peng; Dai, Dongyang; Di, Meilin; Chen, Qiang

    2016-08-01

    The current study investigated the role of attention in inhibitory processes (the inhibitory processes described in the current study refer only to those associated with masked or flanked priming) using a mixed paradigm involving the negative compatibility effect (NCE) and object-based attention. Accumulating evidence suggests that attention can be spread more easily within the same object, which increases the availability of attentional resources, than across different objects. Accordingly, we manipulated distractor location (with primes presented in the same object versus presented in different objects) together with prime/target compatibility (compatible versus incompatible) and prime-distractor stimulus onset asynchrony (SOA, 23 ms vs 70 ms). The aim was to investigate whether inhibitory processes related to weakly activated priming, which have been previously assumed to be automatic, depend on the availability of attentional resources. The results of Experiment 1 showed a significant NCE for the 70-ms SOA when the prime and distractor were presented in the same object (greater attentional resource availability); however, reversed NCEs were obtained for all other conditions. Experiment 2 was designed to disentangle whether the results of Experiment 1 were affected by the prime position, and the results indicated that the prime position did not modulate the NCE in Experiment 1. Together, these results are consistent with the claim that the availability of attentional resources modulates the inhibitory strength related to weakly activated priming. Specifically, if attentional resources are assigned to the distractor when it is presented in the same object as the prime, the strength of the inhibition elicited by the distractor may increase and reverse the activation elicited by the prime, which could lead to a significant NCE. PMID:27198916

  15. Water permeability of elastomers.

    Science.gov (United States)

    Held, H R; Landi, S

    1977-01-01

    In a previous study it has been shown that the free moisture content in freeze-dried BCG vaccine dispensed in vials sealed with rubber stoppers increased during storage. The search for the source of this increase led us to explore the possibility that this additional moisture could originate from the rubber stoppers themselves. Therefore, the water permeability of various rubber stoppers has been studied, and the water content of grey butyl stoppers during some operations (autoclaving, oven-drying, freeze-drying, storage) used in the manufacturing of BCG vaccine has been determined. Our experiments showed: rapid water uptake during steam-autoclaving and rapid water release during subsequent oven-drying of the stoppers; a slow water uptake of the stoppers during freeze-drying and a slow water permeation through the stoppers when vials containing Indicating Drierite were stored in a water-saturated atmosphere. Among 12 types of rubber stoppers tested, the grey butyl stoppers and the silicone stoppers showed the lowest water uptake. Moisture-resistant wrappings decreased significantly the moisture uptake of Drierite. To delay moisture from reaching the vaccine it is recommended that the stoppers employed be as dry as possible. PMID:881425

  16. Coumestrol, Bisphenol-A, DDT, and TCDD Modulation of Interleukin-2 Expression in Activated CD+4 Jurkat T Cells

    OpenAIRE

    McMurray, Robert W.; Tchounwou, Paul B.; Kenneth Ndebele

    2004-01-01

    Endogenous estrogens are known to modulate several components of immune response, including interleukin-2 (IL-2) production. IL-2 is a cytokine that plays an important role in adaptive immune responses. These responses may be modulated by xenoestrogens such as coumestrol, bisphenol A (BPA), DDT, and TCDD. In this research, we examined the effects and potential mechanisms of action of these estrogenic compounds on IL-2 production in activated CD4+ Jurkat T cells. IL-2 production was analyzed b...

  17. An experimental study of permeability development as a function of crystal-free melt viscosity

    Science.gov (United States)

    Lindoo, A.; Larsen, J. F.; Cashman, K. V.; Dunn, A. L.; Neill, O. K.

    2016-02-01

    Permeability development in magmas controls gas escape and, as a consequence, modulates eruptive activity. To date, there are few experimental controls on bubble growth and permeability development, particularly in low viscosity melts. To address this knowledge gap, we have run controlled decompression experiments on crystal-free rhyolite (76 wt.% SiO2), rhyodacite (70 wt.% SiO2), K-phonolite (55 wt.% SiO2) and basaltic andesite (54 wt.% SiO2) melts. This suite of experiments allows us to examine controls on the critical porosity at which vesiculating melts become permeable. As starting materials we used both fine powders and solid slabs of pumice, obsidian and annealed starting materials with viscosities of ˜102 to ˜106 Pas. We saturated the experiments with water at 900° (rhyolite, rhyodacite, and phonolite) and 1025 °C (basaltic andesite) at 150 MPa for 2-72 hrs and decompressed samples isothermally to final pressures of 125 to 10 MPa at rates of 0.25-4.11 MPa/s. Sample porosity was calculated from reflected light images of polished charges and permeability was measured using a bench-top gas permeameter and application of the Forchheimer equation to estimate both viscous (k1) and inertial (k2) permeabilities. Degassing conditions were assessed by measuring dissolved water contents using micro-Fourier-Transform Infrared (μ-FTIR) techniques. All experiment charges are impermeable below a critical porosity (ϕc) that varies among melt compositions. For experiments decompressed at 0.25 MPa/s, we find the percolation threshold for rhyolite is 68.3 ± 2.2 vol.%; for rhyodacite is 77.3 ± 3.8 vol.%; and for K-phonolite is 75.6 ± 1.9 vol.%. Rhyolite decompressed at 3-4 MPa/s has a percolation threshold of 74 ± 1.8 vol.%. These results are similar to previous experiments on silicic melts and to high permeability thresholds inferred for silicic pumice. All basaltic andesite melts decompressed at 0.25 MPa/s, in contrast, have permeabilities below the detection limit

  18. Absolute frequency synthesis of pulsed coherent light waves through phase-modulation active optical feedback.

    Science.gov (United States)

    Shimizu, K; Horiguchi, T; Koyamada, Y

    1996-11-15

    A novel method for the broadband absolute frequency synthesis of pulsed coherent lightwaves is demonstrated. It is based on pulse recirculation around an active optical feedback ring containing a delay-line fiber, an external phase modulator, an acousto-optic frequency shifter (AOFS), and a high-finesse Fabry-Perot étalon. The modulation frequency F(M) and the frequency shift F(AO) that are due to AOFS are designed so that their sum or difference equals the free-spectral range of the étalon and F(AO) is set at larger than the half-width at full maximum of its resonant peaks. If one of the peak frequencies is tuned to the frequency of the initial pulse, the frequency of the recirculating pulse jumps to the next peak for each round trip. In the experiment the absolute frequency is synthesized over a frequency span of 700 GHz around the initial stabilized frequency of the master laser.

  19. Selective androgen receptor modulator activity of a steroidal antiandrogen TSAA-291 and its cofactor recruitment profile.

    Science.gov (United States)

    Hikichi, Yukiko; Yamaoka, Masuo; Kusaka, Masami; Hara, Takahito

    2015-10-15

    Selective androgen receptor modulators (SARMs) specifically bind to the androgen receptor and exert agonistic or antagonistic effects on target organs. In this study, we investigated the SARM activity of TSAA-291, previously known as a steroidal antiandrogen, in mice because TSAA-291 was found to possess partial androgen receptor agonist activity in reporter assays. In addition, to clarify the mechanism underlying its tissue selectivity, we performed comprehensive cofactor recruitment analysis of androgen receptor using TSAA-291 and dihydrotestosterone (DHT), an endogenous androgen. The androgen receptor agonistic activity of TSAA-291 was more obvious in reporter assays using skeletal muscle cells than in those using prostate cells. In castrated mice, TSAA-291 increased the weight of the levator ani muscle without increasing the weight of the prostate and seminal vesicle. Comprehensive cofactor recruitment analysis via mammalian two-hybrid methods revealed that among a total of 112 cofactors, 12 cofactors including the protein inhibitor of activated STAT 1 (PIAS1) were differently recruited to androgen receptor in the presence of TSAA-291 and DHT. Prostate displayed higher PIAS1 expression than skeletal muscle. Forced expression of the PIAS1 augmented the transcriptional activity of the androgen receptor, and silencing of PIAS1 by siRNAs suppressed the secretion of prostate-specific antigen, an androgen responsive marker. Our results demonstrate that TSAA-291 has SARM activity and suggest that TSAA-291 may induce different conformational changes of the androgen receptor and recruitment profiles of cofactors such as PIAS1, compared with DHT, to exert tissue-specific activity.

  20. Look who's judging-Feedback source modulates brain activation to performance feedback in social anxiety.

    Science.gov (United States)

    Peterburs, Jutta; Sandrock, Carolin; Miltner, Wolfgang H R; Straube, Thomas

    2016-06-01

    It is as yet unknown if behavioral and neural correlates of performance monitoring in socially anxious individuals are affected by whether feedback is provided by a person or a computer. This fMRI study investigated modulation of feedback processing by feedback source (person vs. computer) in participants with high (HSA) (N=16) and low social anxiety (LSA) (N=16). Subjects performed a choice task in which they were informed that they would receive positive or negative feedback from a person or the computer. Subjective ratings indicated increased arousal and anxiety in HSA versus LSA, most pronounced for social and negative feedback. FMRI analyses yielded hyperactivation in ventral medial prefrontal cortex (vmPFC)/anterior cingulate cortex (ACC) and insula for social relative to computer feedback, and in mPFC/ventral ACC for positive relative to negative feedback in HSA as compared to LSA. These activation patterns are consistent with increased interoception and self-referential processing in social anxiety, especially during processing of positive feedback. Increased ACC activation in HSA to positive feedback may link to unexpectedness of (social) praise as posited in social anxiety disorder (SAD) psychopathology. Activation in rostral ACC showed a reversed pattern, with decreased activation to positive feedback in HSA, possibly indicating altered action values depending on feedback source and valence. The present findings corroborate a crucial role of mPFC for performance monitoring in social anxiety.

  1. Modulation of CP2 family transcriptional activity by CRTR-1 and sumoylation.

    Directory of Open Access Journals (Sweden)

    Sarah To

    Full Text Available CRTR-1 is a member of the CP2 family of transcription factors. Unlike other members of the family which are widely expressed, CRTR-1 expression shows specific spatio-temporal regulation. Gene targeting demonstrates that CRTR-1 plays a central role in the maturation and function of the salivary glands and the kidney. CRTR-1 has also recently been identified as a component of the complex transcriptional network that maintains pluripotency in embryonic stem (ES cells. CRTR-1 was previously shown to be a repressor of transcription. We examine the activity of CRTR-1 in ES and other cells and show that CRTR-1 is generally an activator of transcription and that it modulates the activity of other family members, CP2, NF2d9 and altNF2d9, in a cell specific manner. We also demonstrate that CRTR-1 activity is regulated by sumoylation at a single major site, residue K30. These findings imply that functional redundancy with other family members may mask important roles for CRTR-1 in other tissues, including the blastocyst stage embryo and embryonic stem cells.

  2. Tetraspanin CD9 modulates human lymphoma cellular proliferation via histone deacetylase activity

    Energy Technology Data Exchange (ETDEWEB)

    Herr, Michael J. [Vascular Biology Center of Excellence, The University of Tennessee Health Science Center, Memphis, TN 38163 (United States); Department of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163 (United States); Department of Molecular Sciences, The University of Tennessee Health Science Center, Memphis, TN 38163 (United States); Department of Surgery, The University of Tennessee Health Science Center, Memphis, TN 38163 (United States); Longhurst, Celia M.; Baker, Benjamin [Vascular Biology Center of Excellence, The University of Tennessee Health Science Center, Memphis, TN 38163 (United States); Homayouni, Ramin [Department of Biology, Bioinformatics Program, University of Memphis, Memphis, TN 38152 (United States); Speich, Henry E.; Kotha, Jayaprakash [Vascular Biology Center of Excellence, The University of Tennessee Health Science Center, Memphis, TN 38163 (United States); Jennings, Lisa K., E-mail: ljennings@uthsc.edu [Vascular Biology Center of Excellence, The University of Tennessee Health Science Center, Memphis, TN 38163 (United States); Department of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163 (United States); Department of Molecular Sciences, The University of Tennessee Health Science Center, Memphis, TN 38163 (United States); Department of Surgery, The University of Tennessee Health Science Center, Memphis, TN 38163 (United States); Department of Biology, Bioinformatics Program, University of Memphis, Memphis, TN 38152 (United States)

    2014-05-16

    Highlights: • CD9 is differentially expressed in human Burkitt’s lymphoma cells. • We found that CD9 expression promotes these cells proliferation. • CD9 expression also increases HDAC activity. • HDAC inhibition decreased both cell proliferation and importantly CD9 expression. • CD9 may dictate HDAC efficacy and play a role in HDAC regulation. - Abstract: Non-Hodgkin Lymphoma (NHL) is a type of hematological malignancy that affects two percent of the overall population in the United States. Tetraspanin CD9 is a cell surface protein that has been thoroughly demonstrated to be a molecular facilitator of cellular phenotype. CD9 expression varies in two human lymphoma cell lines, Raji and BJAB. In this report, we investigated the functional relationship between CD9 and cell proliferation regulated by histone deacetylase (HDAC) activity in these two cell lines. Introduction of CD9 expression in Raji cells resulted in significantly increased cell proliferation and HDAC activity compared to Mock transfected Raji cells. The increase in CD9–Raji cell proliferation was significantly inhibited by HDAC inhibitor (HDACi) treatment. Pretreatment of BJAB cells with HDAC inhibitors resulted in a significant decrease in endogenous CD9 mRNA and cell surface expression. BJAB cells also displayed decreased cell proliferation after HDACi treatment. These results suggest a significant relationship between CD9 expression and cell proliferation in human lymphoma cells that may be modulated by HDAC activity.

  3. Melatonin and nitric oxide modulate glutathione content and glutathione reductase activity in sunflower seedling cotyledons accompanying salt stress.

    Science.gov (United States)

    Kaur, Harmeet; Bhatla, Satish C

    2016-09-30

    The present findings demonstrate significant modulation of total glutathione content, reduced glutathione (GSH) content, oxidized glutathione (GSSG) content, GSH/GSSG ratio and glutathione reductase (GR; EC 1.6.4.2) activity in dark-grown seedling cotyledons in response to salt-stress (120 mM NaCl) in sunflower (Helianthus annuus L.) seedlings. A differential spatial distribution of GR activity (monitored by confocal laser scanning microscopic (CLSM) imaging) is also evident. Melatonin and nitric oxide (NO) differentially ameliorate salt stress effect by modulating GR activity and GSH content in seedling cotyledons. Total glutathione content (GSH + GSSG) exhibit a seedling age-dependent increase in the cotyledons, more so in salt-stressed conditions and when subjected to melatonin treatment. Seedlings raised in presence of 15 μM of melatonin exhibit significant increase in GR activity in cotyledon homogenates (10,000 g supernatant) coinciding with significant increase in GSH content. GSSG content and GSH/GSSG ratio also increased due to melatonin treatment. A correlation is thus evident in NaCl-sensitized modulation of GSH content and GR activity by melatonin. GSH content is down regulated by NO provided as 250 μM of sodium nitroprusside (SNP) although total glutathione content remained in similar range. A reversal of response (enhanced total glutathione accumulation) by NO scavenger (cPTIO) highlights the critical role of NO in modulating glutathione homeostasis. SNP lowers the activity of hydroxyindole-O-methyltransferase (HIOMT) - a regulatory enzyme in melatonin biosynthesis in control seedlings whereas its activity is upregulated in salt-stressed seedling cotyledons. Melatonin content of seedling cotyledons is also modulated by NO. NO and melatonin thus seem to modulate GR activity and GSH content during seedling growth under salt stress. PMID:27432590

  4. Tumor-Suppressive Activity of Lunatic Fringe in Prostate through Differential Modulation of Notch Receptor Activation

    Directory of Open Access Journals (Sweden)

    Shubing Zhang

    2014-02-01

    Full Text Available Elevated Notch ligand and receptor expression has been associated with aggressive forms of prostate cancer, suggesting a role for Notch signaling in regulation of prostate tumor initiation and progression. Here, we report a critical role for Lunatic Fringe (Lfng, which encodes an O-fucosylpeptide 3-ß-N-acetylglucosaminyltransferase known to modify epidermal growth factor repeats of Notch receptor proteins, in regulation of prostate epithelial differentiation and proliferation, as well as in prostate tumor suppression. Deletion of Lfng in mice caused altered Notch activation in the prostate, associated with elevated accumulation of Notch1, Notch2, and Notch4 intracellular domains, decreased levels of the putative Notch3 intracellular fragment, as well as increased expression of Hes1, Hes5, and Hey2. Loss of Lfng resulted in expansion of the basal layer, increased proliferation of both luminal and basal cells, and ultimately, prostatic intraepithelial neoplasia. The Lfng-null prostate showed down-regulation of prostatic tumor suppressor gene NKX3.1 and increased androgen receptor expression. Interestingly, expression of LFNG and NKX3.1 were positively correlated in publically available human prostate cancer data sets. Knockdown of LFNG in DU-145 prostate cancer cells led to expansion of CD44+CD24− and CD49f+CD24− stem/progenitor-like cell population associated with enhanced prostatosphere-forming capacity. Taken together, these data revealed a tumor-suppressive role for Lfng in the prostate through differential regulation of Notch signaling.

  5. Relative Permeability of Fractured Rock

    Energy Technology Data Exchange (ETDEWEB)

    Mark D. Habana

    2002-06-30

    Contemporary understanding of multiphase flow through fractures is limited. Different studies using synthetic fractures and various fluids have yielded different relative permeability-saturation relations. This study aimed to extend the understanding of multiphase flow by conducting nitrogen-water relative permeability experiments on a naturally-fractured rock from The Geysers geothermal field. The steady-state approach was used. However, steady state was achieved only at the endpoint saturations. Several difficulties were encountered that are attributed to phase interference and changes in fracture aperture and surface roughness, along with fracture propagation/initiation. Absolute permeabilities were determined using nitrogen and water. The permeability values obtained change with the number of load cycles. Determining the absolute permeability of a core is especially important in a fractured rock. The rock may change as asperities are destroyed and fractures propagate or st rain harden as the net stresses vary. Pressure spikes occurred in water a solute permeability experiments. Conceptual models of an elastic fracture network can explain the pressure spike behavior. At the endpoint saturations the water relative permeabilities obtained are much less than the nitrogen gas relative permeabilities. Saturations were determined by weighing and by resistivity calculations. The resistivity-saturation relationship developed for the core gave saturation values that differ by 5% from the value determined by weighing. Further work is required to complete the relative permeability curve. The steady-state experimental approach encountered difficulties due to phase interference and fracture change. Steady state may not be reached until an impractical length of time. Thus, unsteady-state methods should be pursued. In unsteady-state experiments the challenge will be in quantifying rock fracture change in addition to fluid flow changes.

  6. A point mutation in a silencer module reduces the promoter activity for the human mercaptopyruvate sulfurtransferase.

    Science.gov (United States)

    Nagahara, Noriyuki; Sreeja, V G; Li, Qing; Shimizu, Takako; Tsuchiya, Terumasa; Fujii-Kuriyama, Yoshiaki

    2004-11-01

    A promoter region of human mercaptopyruvate sulfurtransferase (MST) [EC 2.8.1.2] is G+C-rich and TATA-less, showing features of a house-keeping gene. In the core promoter, a GC box (-284:GGGGCGTGGC:-275) and an initiator (-219:TTATATG:-225) are found. A cap site hunting analysis for human liver cDNA revealed four possible transcriptional start sites, nucleotides -223, -159, -35 and -25. Point mutagenesis and deletion studies suggest that a module of the silencer element is -394:GCTG:-391. A replacement of -391G to C lost the silencer function; on the other hand, a replacement of -394G to T or C, -393C to T or -392T to G markedly reduced the promoter activity. PMID:15507321

  7. EV71-infected CD14(+) cells modulate the immune activity of T lymphocytes in rhesus monkeys.

    Science.gov (United States)

    Wang, Jingjing; Pu, Jing; Huang, Hongtai; Zhang, Ying; Liu, Longding; Yang, Erxia; Zhou, Xiaofang; Ma, Na; Zhao, Hongling; Wang, Lichun; Xie, Zhenfeng; Tang, Donghong; Li, Qihan

    2013-07-01

    Preliminary studies of the major pathogen enterovirus 71 (EV71), a member of the Picornaviridae family, have suggested that EV71 may be a major cause of fatal hand, foot and mouth disease cases. Currently, the role of the pathological changes induced by EV71 infection in the immunopathogenic response remains unclear. Our study focused on the interaction between this virus and immunocytes and indicated that this virus has the ability to replicate in CD14(+) cells. Furthermore, these EV71-infected CD14(+) cells have the capacity to stimulate the proliferation of T cells and to enhance the release of certain functional cytokines. An adaptive immune response induced by the back-transfusion of EV71-infected CD14(+) cells was observed in donor neonatal rhesus monkeys. Based on these observations, the proposed hypothesis is that CD14(+) cells infected by the EV71 virus might modulate the anti-EV71 adaptive immune response by inducing simultaneous T-cell activation.

  8. Bovine colostrum modulates immune activation cascades in human peripheral blood mononuclear cells in vitro

    DEFF Research Database (Denmark)

    Jenny, Marcel; Pedersen, Ninfa R; Hidayat, Budi J;

    2010-01-01

    Bovine colostrum (BC) is the thick yellow fluid a lactating cow Oyes to a suckling calf during its first days of life to support the growth of the calf and prevent gastrointestinal infections until the calf has synthesized its own active immune defense system. BC contains a complex system of immune...... factors and has a long history of use in traditional medicine. In an approach to evaluate the effects of bovine colostrum (BC) on the T-cell/macrophage interplay, we investigated and compared the capacity of BC containing low and high amounts of lactose and lactoferrin to modulate tryptophan degradation...... and neopterin formation in unstimulated and mitogen-stimulated human peripheral blood mononuclear cells (PBMC). The present study shows significant immunomodulatory effects of these BC preparations in human PBMC, either by enhancing or suppressing the occurrence of a Th-1 type immune response. The amount...

  9. Anticancer Activities of Medicinal Plants: Modulation of p53 Expression and Induction of Apoptosis.

    Science.gov (United States)

    Parveen, Amna; Akash, Muhammad Sajid Hamid; Rehman, Kanwal; Kyunn, Whang Wan

    2016-01-01

    For the treatment of several types of cancers, tumors and malignancies, scientists are investigating natural sources to discover novel therapeutic agents from medicinal plants having diverse anticancer properties. Research on natural products is being conducted to identify unexplored phytochemical constituents that have been proven to have diverse pharmacological activities. Several medicinal plants have been reported to regulate the progression of different types of cancers, tumors, and malignancies. In this article, we briefly summarize the recent progress in exploring the anticancer properties of various medicinal plants reported to modulate the expression of p53 and the induction of apoptosis. These plants provide a rich source of chemo-protective agents that can ultimately be used to manage cancer progression. PMID:27650989

  10. Development of Reduced Activation Ferritic-Martensitic Steels and fabrication technologies for Indian test blanket module

    Energy Technology Data Exchange (ETDEWEB)

    Raj, Baldev [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Jayakumar, T., E-mail: tjk@igcar.gov.in [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India)

    2011-10-01

    For the development of Reduced Activation Ferritic-Martensitic Steel (RAFMS), for the Indian Test Blanket Module for ITER, a 3-phase programme has been adopted. The first phase consists of melting and detailed characterization of a laboratory scale heat conforming to Eurofer 97 composition, to demonstrate the capability of the Indian industry for producing fusion grade steel. In the second phase which is currently in progress, the chemical composition will be optimized with respect to tungsten and tantalum for better combination of mechanical properties. Characterization of the optimized commercial scale India-specific RAFM steel will be carried out in the third phase. The first phase of the programme has been successfully completed and the tensile, impact and creep properties are comparable with Eurofer 97. Laser and electron beam welding parameters have been optimized and welding consumables were developed for Narrow Gap - Gas Tungsten Arc welding and for laser-hybrid welding.

  11. The self-pleasantness judgment modulates the encoding performance and the Default Mode Network activity

    Directory of Open Access Journals (Sweden)

    Perrone-Bertolotti eMarcela

    2016-03-01

    Full Text Available In this functional magnetic resonance imaging (fMRI study, we evaluated the effect of self-relevance on cerebral activity and behavioral performance during an incidental encoding task. Recent findings suggest that pleasantness judgments reliably induce self-oriented (internal thoughts and increase default mode network (DMN activity. We hypothesized that this increase in DMN activity would relate to increased memory recognition for pleasantly-judged stimuli (which depend on internally-oriented attention but decreased recognition for unpleasantly-judged items (which depend on externally-oriented attention. To test this hypothesis, brain activity was recorded from 21 healthy participants while they performed a pleasantness judgment requiring them to rate visual stimuli as pleasant or unpleasant. One hour later, participants performed a surprise memory recognition test outside of the scanner. Thus, we were able to evaluate the effects of pleasant and unpleasant judgments on cerebral activity and incidental encoding. The behavioral results showed that memory recognition was better for items rated as pleasant than items rated as unpleasant. The whole brain analysis indicated that successful encoding activates the inferior frontal and lateral temporal cortices, whereas unsuccessful encoding recruits two key medial posterior DMN regions, the posterior cingulate cortex and precuneus. A region of interest analysis including classic DMN areas, revealed significantly greater involvement of the medial Prefrontal Cortex in pleasant compared to unpleasant judgments, suggesting this region’s involvement in self-referential (i.e., internal processing. This area may be responsible for the greater recognition performance seen for pleasant stimuli. Furthermore, a significant interaction between the encoding performance (successful vs. unsuccessful and pleasantness was observed for the posterior cingulate cortex, precuneus and inferior frontal gyrus. Overall, our

  12. Modulation of Ca2+ oscillation and melatonin secretion by BKCa channel activity in rat pinealocytes.

    Science.gov (United States)

    Mizutani, Hiroya; Yamamura, Hisao; Muramatsu, Makoto; Hagihara, Yumiko; Suzuki, Yoshiaki; Imaizumi, Yuji

    2016-05-01

    The pineal glands regulate circadian rhythm through the synthesis and secretion of melatonin. The stimulation of nicotinic acetylcholine receptor due to parasympathetic nerve activity causes an increase in intracellular Ca(2+) concentration and eventually downregulates melatonin production. Our previous report shows that rat pinealocytes have spontaneous and nicotine-induced Ca(2+) oscillations that are evoked by membrane depolarization followed by Ca(2+) influx through voltage-dependent Ca(2+) channels (VDCCs). These Ca(2+) oscillations are supposed to contribute to the inhibitory mechanism of melatonin secretion. Here we examined the involvement of large-conductance Ca(2+)-activated K(+) (BKCa) channel conductance on the regulation of Ca(2+) oscillation and melatonin production in rat pinealocytes. Spontaneous Ca(2+) oscillations were markedly enhanced by BKCa channel blockers (1 μM paxilline or 100 nM iberiotoxin). Nicotine (100 μM)-induced Ca(2+) oscillations were also augmented by paxilline. In contrast, spontaneous Ca(2+) oscillations were abolished by BKCa channel opener [3 μM 12,14-dichlorodehydroabietic acid (diCl-DHAA)]. Under whole cell voltage-clamp configurations, depolarization-elicited outward currents were significantly activated by diCl-DHAA and blocked by paxilline. Expression analyses revealed that the α and β3 subunits of BKCa channel were highly expressed in rat pinealocytes. Importantly, the activity of BKCa channels modulated melatonin secretion from whole pineal gland of the rat. Taken together, BKCa channel activation attenuates these Ca(2+) oscillations due to depolarization-synchronized Ca(2+) influx through VDCCs and results in a recovery of reduced melatonin secretion during parasympathetic nerve activity. BKCa channels may play a physiological role for melatonin production via a negative-feedback mechanism. PMID:26791489

  13. Associations between prefrontal cortex activation and H-reflex modulation during dual task gait

    Directory of Open Access Journals (Sweden)

    Daan eMeester

    2014-02-01

    Full Text Available Walking, although a largely automatic process, is controlled by the cortex and the spinal cord; with corrective reflexes modulated through integration of neural signals from central and peripheral inputs at supraspinal level throughout the gait cycle. However the full mechanism is not described. In this study we used an additional cognitive task to interfere with the automatic processing during walking in order to explore the neural mechanisms involved in healthy young adults. Participants were asked to walk on a treadmill at two speeds, both with and without additional cognitive load. We evaluated the impact of speed and cognitive load by analysing activity of the pre-frontal cortex (PFC using functional Near-Infrared Spectroscopy (fNIRS alongside with spinal cord reflex activity measured by soleus H-reflex amplitude and gait changes obtained by using an inertial measuring unit. Repeated measures ANOVA revealed that fNIRS Oxy-Hb concentrations significantly increased in the PFC with dual task (walking while performing a cognitive task compared to a single talk only (walking (p< 0.05. PFC activity was unaffected by increases of walking speed. H-reflex amplitude and gait variables did not change in response to either dual task or increases of walking speed. When walking under additional cognitive load we observed that participants adapted by using greater activity in the PFC, but that this adaption did not detrimentally affect H-reflex amplitude or gait variables. Our findings suggests that in a healthy young population central mechanisms (PFC are activated in response to cognitive loads but that H-reflex activity and gait performance can successfully be maintained. This study provides insight in the mechanisms behind healthy individuals safely performing dual task walking

  14. Dioxin modulates expression of receptor for activated C kinase (RACK-1) in developing neurons

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J.H.; Kim, S.Y.; Lee, H.G.; Kim, M.Y.; Lee, J.H.; Chae, W.G. [Catholic Univ. of Daegu, Dept. of Pharmacology/Toxicology, Daegu (Korea)

    2004-09-15

    TCDD is sensitive to the central nerve system of the developing brain. The TCDD-induced neurodevelopmental deficits include the cognitive disability and motor dysfunction. While TCDD may lead to neurodevelopmental and neurobehavioral deficit, it is not known which molecular substances are intracellular targets for TCDD. Since TCDD accumulates in brain and the brain contains the Ah receptor, it is possible that TCDD may act at the target site such as cerebellum, which is responsible for cognitive abilities and motor function. A recent in vitro studies using cerebellar granule cells demonstrated a translocation of PKC-{alpha} and {epsilon} following the TCDD or PCB exposure. One of the most pivotal second messenger molecules involved in neuronal function and development is protein kinase C (PKC). PKC signaling pathways have been implicated as an important factor in learning and memory processes. PKC signaling events are optimized by the adaptor proteins, which organize PKCs near their selective substrates and away from others. RACK-1(receptor for activated C-kinase) is one of adaptor proteins that anchor the activated PKC at the site of translocation 6. RACKs bind PKC only in the presence of PKC activators. RACKs are 30- and 36-kDa proteins located in cytoskeletal compartment and play a key role in PKC activation and in membrane amchoring. Since different PKC isoforms translocate to distinct subcellular sites on activation, it is suggested that isoform-specific RACK may be present. Activation of certain PKC isoforms (PKC-a and {beta}II) is preferentially associated with RACK-1. While TCDD modulates PKC signaling pathway, role of RACK-1 on TCDD-mediated signaling pathway is not known. To identify the intracellular target for TCDD and understand a mechanism of signaling pathway in the developing brain, the present study attempted to analyze effects of RACK-1 in the cerebellar granule cells following TCDD exposure.

  15. Heteromerization of PIP aquaporins affects their intrinsic permeability.

    Science.gov (United States)

    Yaneff, Agustín; Sigaut, Lorena; Marquez, Mercedes; Alleva, Karina; Pietrasanta, Lía Isabel; Amodeo, Gabriela

    2014-01-01

    The plant aquaporin plasma membrane intrinsic proteins (PIP) subfamily represents one of the main gateways for water exchange at the plasma membrane (PM). A fraction of this subfamily, known as PIP1, does not reach the PM unless they are coexpressed with a PIP2 aquaporin. Although ubiquitous and abundantly expressed, the role and properties of PIP1 aquaporins have therefore remained masked. Here, we unravel how FaPIP1;1, a fruit-specific PIP1 aquaporin from Fragaria x ananassa, contributes to the modulation of membrane water permeability (Pf) and pH aquaporin regulation. Our approach was to combine an experimental and mathematical model design to test its activity without affecting its trafficking dynamics. We demonstrate that FaPIP1;1 has a high water channel activity when coexpressed as well as how PIP1-PIP2 affects gating sensitivity in terms of cytosolic acidification. PIP1-PIP2 random heterotetramerization not only allows FaPIP1;1 to arrive at the PM but also produces an enhancement of FaPIP2;1 activity. In this context, we propose that FaPIP1;1 is a key participant in the regulation of water movement across the membranes of cells expressing both aquaporins. PMID:24367080

  16. Impaired Peroxisome Proliferator-activated Receptor-γ Contributes to Phenotypic Modulation of Vascular Smooth Muscle Cells during Hypertension*

    Science.gov (United States)

    Zhang, Lili; Xie, Peng; Wang, Jingzhou; Yang, Qingwu; Fang, Chuanqin; Zhou, Shuang; Li, Jingcheng

    2010-01-01

    The phenotypic modulation of vascular smooth muscle cells (VSMCs) plays a pivotal role in hypertension-induced vascular changes including vascular remodeling. The precise mechanisms underlying VSMC phenotypic modulation remain elusive. Here we test the role of peroxisome proliferator-activated receptor (PPAR)-γ in the VSMC phenotypic modulation during hypertension. Both spontaneously hypertensive rat (SHR) aortas and SHR-derived VSMCs exhibited reduced PPAR-γ expression and excessive VSMC phenotypic modulation identified by reduced contractile proteins, α-smooth muscle actin (α-SMA) and smooth muscle 22α (SM22α), and enhanced proliferation and migration. PPAR-γ overexpression rescued the expression of α-SMA and SM22α, and inhibited the proliferation and migration in SHR-derived VSMCs. In contrast, PPAR-γ silencing exerted the opposite effect. Activating PPAR-γ using rosiglitazone in vivo up-regulated aortic α-SMA and SM22α expression and attenuated aortic remodeling in SHRs. Increased activation of phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling was observed in SHR-derived VSMCs. PI3K inhibitor LY294002 rescued the impaired expression of contractile proteins, and inhibited proliferation and migration in VSMCs from SHRs, whereas constitutively active PI3K mutant had the opposite effect. Overexpression or silencing of PPAR-γ inhibited or excited PI3K/Akt activity, respectively. LY294002 counteracted the PPAR-γ silencing induced proliferation and migration in SHR-derived VSMCs, whereas active PI3K mutant had the opposite effect. In contrast, reduced proliferation and migration by PPAR-γ overexpression were reversed by the active PI3K mutant, and further inhibited by LY294002. We conclude that PPAR-γ inhibits VSMC phenotypic modulation through inhibiting PI3K/Akt signaling. Impaired PPAR-γ expression is responsible for VSMC phenotypic modulation during hypertension. These findings highlight an attractive therapeutic target for

  17. Pathogenic Mycobacterium bovis strains differ in their ability to modulate the proinflammatory activation phenotype of macrophages

    Directory of Open Access Journals (Sweden)

    Andrade Marcelle RM

    2012-08-01

    Full Text Available Abstract Background Tuberculosis, caused by Mycobacterium tuberculosis or Mycobacterium bovis, remains one of the leading infectious diseases worldwide. The ability of mycobacteria to rapidly grow in host macrophages is a factor contributing to enhanced virulence of the bacteria and disease progression. Bactericidal functions of phagocytes are strictly dependent on activation status of these cells, regulated by the infecting agent and cytokines. Pathogenic mycobacteria can survive the hostile environment of the phagosome through interference with activation of bactericidal responses. To study the mechanisms employed by highly virulent mycobacteria to promote their intracellular survival, we investigated modulating effects of two pathogenic M. bovis isolates and a reference M. tuberculosis H37Rv strain, differing in their ability to multiply in macrophages, on activation phenotypes of the cells primed with major cytokines regulating proinflammatory macrophage activity. Results Bone marrow- derived macrophages obtained from C57BL/6 mice were infected by mycobacteria after a period of cell incubation with or without treatment with IFN-γ, inducing proinflammatory type-1 macrophages (M1, or IL-10, inducing anti-inflammatory type-2 cells (M2. Phenotypic profiling of M1 and M2 was then evaluated. The M. bovis strain MP287/03 was able to grow more efficiently in the untreated macrophages, compared with the strains B2 or H37Rv. This strain induced weaker secretion of proinflammatory cytokines, coinciding with higher expression of M2 cell markers, mannose receptor (MR and arginase-1 (Arg-1. Treatment of macrophages with IFN-γ and infection by the strains B2 and H37Rv synergistically induced M1 polarization, leading to high levels of inducible nitric oxide synthase (iNOS expression, and reduced expression of the Arg-1. In contrast, the cells infected with the strain MP287/03 expressed high levels of Arg-1 which competed with iNOS for the common substrate

  18. Designed modulation of sex steroid signaling inhibits telomerase activity and proliferation of human prostate cancer cells

    International Nuclear Information System (INIS)

    The predominant estrogen-receptor (ER)-β signaling in normal prostate is countered by increased ER-α signaling in prostate cancer (CaP), which in association with androgen-receptor (AR) signaling results in pathogenesis of the disease. However CaP treatments mostly target AR signaling which is initially effective but eventually leads to androgen resistance, hence simultaneous targeting of ERs has been proposed. A novel series of molecules were designed with multiple sex-steroid receptor modulating capabilities by coalescing the pharmacophores of known anti-CaP molecules that act via modulation of ER(α/β) and/or AR, viz. 3,3′diindolylmethane (DIM), mifepristone, toremifene, tamoxifen and raloxifene. N,N-diethyl-4-((2-(4-methoxyphenyl)-1H-indol-3-yl)methyl) aniline (DIMA) was identified as the most promising structure of this new series. DIMA increased annexin-V labelling, cell-cycle arrest and caspase-3 activity, and decreased expression of AR and prostate specific antigen in LNCaP cells, in vitro. Concurrently, DIMA increased ER-β, p21 and p27 protein levels in LNCaP cells and exhibited ∼ 5 times more selective binding for ER-β than ER-α, in comparison to raloxifene. DIMA exhibited a dose-dependent ER-β agonism and ER-α antagonism in classical gene reporter assay and decreased hTERT (catalytic subunit of telomerase) transcript levels in LNCaP at 3.0 μM (P < 0.05). DIMA also dose-dependently decreased telomerase enzyme activity in prostate cancer cells. It is thus concluded that DIMA acts as a multi-steroid receptor modulator and effectively inhibits proliferation of prostate cancer cells through ER-β mediated telomerase inhibition, by countering actions of ER-α and AR. Its unique molecular design can serve as a lead structure for generation of potent agents against endocrine malignancies like the CaP

  19. Designed modulation of sex steroid signaling inhibits telomerase activity and proliferation of human prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Vikas; Sharma, Vikas; Singh, Vishal [Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226 031 (India); Sharma, Siddharth; Bishnoi, Ajay Kumar [Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226 031 (India); Chandra, Vishal; Maikhuri, J.P.; Dwivedi, Anila [Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226 031 (India); Kumar, Atul [Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226 031 (India); Gupta, Gopal, E-mail: g_gupta@cdri.res.in [Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226 031 (India)

    2014-10-15

    The predominant estrogen-receptor (ER)-β signaling in normal prostate is countered by increased ER-α signaling in prostate cancer (CaP), which in association with androgen-receptor (AR) signaling results in pathogenesis of the disease. However CaP treatments mostly target AR signaling which is initially effective but eventually leads to androgen resistance, hence simultaneous targeting of ERs has been proposed. A novel series of molecules were designed with multiple sex-steroid receptor modulating capabilities by coalescing the pharmacophores of known anti-CaP molecules that act via modulation of ER(α/β) and/or AR, viz. 3,3′diindolylmethane (DIM), mifepristone, toremifene, tamoxifen and raloxifene. N,N-diethyl-4-((2-(4-methoxyphenyl)-1H-indol-3-yl)methyl) aniline (DIMA) was identified as the most promising structure of this new series. DIMA increased annexin-V labelling, cell-cycle arrest and caspase-3 activity, and decreased expression of AR and prostate specific antigen in LNCaP cells, in vitro. Concurrently, DIMA increased ER-β, p21 and p27 protein levels in LNCaP cells and exhibited ∼ 5 times more selective binding for ER-β than ER-α, in comparison to raloxifene. DIMA exhibited a dose-dependent ER-β agonism and ER-α antagonism in classical gene reporter assay and decreased hTERT (catalytic subunit of telomerase) transcript levels in LNCaP at 3.0 μM (P < 0.05). DIMA also dose-dependently decreased telomerase enzyme activity in prostate cancer cells. It is thus concluded that DIMA acts as a multi-steroid receptor modulator and effectively inhibits proliferation of prostate cancer cells through ER-β mediated telomerase inhibition, by countering actions of ER-α and AR. Its unique molecular design can serve as a lead structure for generation of potent agents against endocrine malignancies like the CaP.

  20. Modulation of Na+/K+ ATPase Activity by Hydrogen Peroxide Generated through Heme in L. amazonensis.

    Directory of Open Access Journals (Sweden)

    Nathália Rocco-Machado

    Full Text Available Leishmania amazonensis is a protozoan parasite that occurs in many areas of Brazil and causes skin lesions. Using this parasite, our group showed the activation of Na+/K+ ATPase through a signaling cascade that involves the presence of heme and protein kinase C (PKC activity. Heme is an important biomolecule that has pro-oxidant activity and signaling capacity. Reactive oxygen species (ROS can act as second messengers, which are required in various signaling cascades. Our goal in this work is to investigate the role of hydrogen peroxide (H2O2 generated in the presence of heme in the Na+/K+ ATPase activity of L. amazonensis. Our results show that increasing concentrations of heme stimulates the production of H2O2 in a dose-dependent manner until a concentration of 2.5 μM heme. To confirm that the effect of heme on the Na+/K+ ATPase is through the generation of H2O2, we measured enzyme activity using increasing concentrations of H2O2 and, as expected, the activity increased in a dose-dependent manner until a concentration of 0.1 μM H2O2. To investigate the role of PKC in this signaling pathway, we observed the production of H2O2 in the presence of its activator phorbol 12-myristate 13-acetate (PMA and its inhibitor calphostin C. Both showed no effect on the generation of H2O2. Furthermore, we found that PKC activity is increased in the presence of H2O2, and that in the presence of calphostin C, H2O2 is unable to activate the Na+/K+ ATPase. 100 μM of Mito-TEMPO was capable of abolishing the stimulatory effect of heme on Na+/K+ ATPase activity, indicating that mitochondria might be the source of the hydrogen peroxide production induced by heme. The modulation of L. amazonensis Na+/K+ ATPase by H2O2 opens new possibilities for understanding the signaling pathways of this parasite.

  1. Modulation of Na+/K+ ATPase Activity by Hydrogen Peroxide Generated through Heme in L. amazonensis.

    Science.gov (United States)

    Rocco-Machado, Nathália; Cosentino-Gomes, Daniela; Meyer-Fernandes, José Roberto

    2015-01-01

    Leishmania amazonensis is a protozoan parasite that occurs in many areas of Brazil and causes skin lesions. Using this parasite, our group showed the activation of Na+/K+ ATPase through a signaling cascade that involves the presence of heme and protein kinase C (PKC) activity. Heme is an important biomolecule that has pro-oxidant activity and signaling capacity. Reactive oxygen species (ROS) can act as second messengers, which are required in various signaling cascades. Our goal in this work is to investigate the role of hydrogen peroxide (H2O2) generated in the presence of heme in the Na+/K+ ATPase activity of L. amazonensis. Our results show that increasing concentrations of heme stimulates the production of H2O2 in a dose-dependent manner until a concentration of 2.5 μM heme. To confirm that the effect of heme on the Na+/K+ ATPase is through the generation of H2O2, we measured enzyme activity using increasing concentrations of H2O2 and, as expected, the activity increased in a dose-dependent manner until a concentration of 0.1 μM H2O2. To investigate the role of PKC in this signaling pathway, we observed the production of H2O2 in the presence of its activator phorbol 12-myristate 13-acetate (PMA) and its inhibitor calphostin C. Both showed no effect on the generation of H2O2. Furthermore, we found that PKC activity is increased in the presence of H2O2, and that in the presence of calphostin C, H2O2 is unable to activate the Na+/K+ ATPase. 100 μM of Mito-TEMPO was capable of abolishing the stimulatory effect of heme on Na+/K+ ATPase activity, indicating that mitochondria might be the source of the hydrogen peroxide production induced by heme. The modulation of L. amazonensis Na+/K+ ATPase by H2O2 opens new possibilities for understanding the signaling pathways of this parasite. PMID:26070143

  2. Modulation of inflammasome activity by Porphyromonas gingivalis in periodontitis and associated systemic diseases

    Directory of Open Access Journals (Sweden)

    Ingar Olsen

    2016-02-01

    Full Text Available Inflammasomes are large multiprotein complexes localized in the cytoplasm of the cell. They are responsible for the maturation of pro-inflammatory cytokines such as interleukin-1β (IL-1β and IL-18 as well as for the activation of inflammatory cell death, the so-called pyroptosis. Inflammasomes assemble in response to cellular infection, cellular stress, or tissue damage; promote inflammatory responses and are of great importance in regulating the innate immune system in chronic inflammatory diseases such as periodontitis and several chronic systemic diseases. In addition to sensing cellular integrity, inflammasomes are involved in the homeostatic mutualism between the indigenous microbiota and the host. There are several types of inflammasomes of which NLRP3 is best characterized in microbial pathogenesis. Many opportunistic bacteria try to evade the innate immune system in order to survive in the host cells. One of these is the periodontopathogen Porphyromonas gingivalis which has been shown to have several mechanisms of modulating innate immunity by limiting the activation of the NLRP3 inflammasome. Among them, ATP-/P2X7- signaling is recently associated not only with periodontitis but also with development of several systemic diseases. The present paper reviews multiple mechanisms through which P. gingivalis can modify innate immunity by affecting inflammasome activity.

  3. Modulation of microRNA activity by semi-microRNAs (smiRNAs

    Directory of Open Access Journals (Sweden)

    Isabelle ePlante

    2012-06-01

    Full Text Available The ribonuclease Dicer plays a central role in the microRNA pathway by catalyzing the formation of 19 to 24-nucleotide (nt long microRNAs. Subsequently incorporated into Ago2 effector complexes, microRNAs are known to regulate messenger RNA (mRNA translation. Whether shorter RNA species derived from microRNAs exist and play a role in mRNA regulation remains unknown. Here, we report the serendipitous discovery of a 12-nt long RNA species corresponding to the 5’ region of the microRNA let-7, and tentatively termed semi-microRNA, or smiRNA. Using a smiRNA derived from the precursor of miR-223 as a model, we show that 12-nt long smiRNA species are devoid of any direct mRNA regulatory activity, as assessed in a reporter gene activity assay in transfected cultured human cells. However, smiR-223 was found to modulate the ability of the microRNA from which it derives to mediate translational repression or cleavage of reporter mRNAs. Our findings suggest that smiRNAs may be generated along the microRNA pathway and participate to the control of gene expression by regulating the activity of the related full-length mature microRNA in vivo.

  4. Pharmacological activation of CB1 receptor modulates long term potentiation by interfering with protein synthesis.

    Science.gov (United States)

    Navakkode, Sheeja; Korte, Martin

    2014-04-01

    Cognitive impairment is one of the most important side effects associated with cannabis drug abuse, as well as the serious issue concerning the therapeutic use of cannabinoids. Cognitive impairments and neuropsychiatric symptoms are caused by early synaptic dysfunctions, such as loss of synaptic connections in different brain structures including the hippocampus, a region that is believed to play an important role in certain forms of learning and memory. We report here that metaplastic priming of synapses with a cannabinoid type 1 receptor (CB1 receptor) agonist, WIN55,212-2 (WIN55), significantly impaired long-term potentiation in the apical dendrites of CA1 pyramidal neurons. Interestingly, the CB1 receptor exerts its effect by altering the balance of protein synthesis machinery towards higher protein production. Therefore the activation of CB1 receptor, prior to strong tetanization, increased the propensity to produce new proteins. In addition, WIN55 priming resulted in the expression of late-LTP in a synaptic input that would have normally expressed early-LTP, thus confirming that WIN55 priming of LTP induces new synthesis of plasticity-related proteins. Furthermore, in addition to the effects on protein translation, WIN55 also induced synaptic deficits due to the ability of CB1 receptors to inhibit the release of acetylcholine, mediated by both muscarinic and nicotinic acetylcholine receptors. Taken together this supports the notion that the modulation of cholinergic activity by CB1 receptor activation is one mechanism that regulates the synthesis of plasticity-related proteins.

  5. Disintegrins: integrin selective ligands which activate integrin-coupled signaling and modulate leukocyte functions

    Directory of Open Access Journals (Sweden)

    Barja-Fidalgo C.

    2005-01-01

    Full Text Available Extracellular matrix proteins and cell adhesion receptors (integrins play essential roles in the regulation of cell adhesion and migration. Interactions of integrins with the extracellular matrix proteins lead to phosphorylation of several intracellular proteins such as focal adhesion kinase, activating different signaling pathways responsible for the regulation of a variety of cell functions, including cytoskeleton mobilization. Once leukocytes are guided to sites of infection, inflammation, or antigen presentation, integrins can participate in the initiation, maintenance, or termination of the immune and inflammatory responses. The modulation of neutrophil activation through integrin-mediated pathways is important in the homeostatic control of the resolution of inflammatory states. In addition, during recirculation, T lymphocyte movement through distinct microenvironments is mediated by integrins, which are critical for cell cycle, differentiation and gene expression. Disintegrins are a family of low-molecular weight, cysteine-rich peptides first identified in snake venom, usually containing an RGD (Arg-Gly-Asp motif, which confers the ability to selectively bind to integrins, inhibiting integrin-related functions in different cell systems. In this review we show that, depending on the cell type and the microenvironment, disintegrins are able to antagonize the effects of integrins or to act agonistically by activating integrin-mediated signaling. Disintegrins have proven useful as tools to improve the understanding of the molecular events regulated by integrin signaling in leukocytes and prototypes in order to design therapies able to interfere with integrin-mediated effects.

  6. Intracellular modulation, extracellular disposal and serum increase of MiR-150 mark lymphocyte activation.

    Directory of Open Access Journals (Sweden)

    Paola de Candia

    Full Text Available Activated lymphocytes release nano-sized vesicles (exosomes containing microRNAs that can be monitored in the bloodstream. We asked whether elicitation of immune responses is followed by release of lymphocyte-specific microRNAs. We found that, upon activation in vitro, human and mouse lymphocytes down-modulate intracellular miR-150 and accumulate it in exosomes. In vivo, miR-150 levels increased significantly in serum of humans immunized with flu vaccines and in mice immunized with ovalbumin, and this increase correlated with elevation of antibody titers. Immunization of immune-deficient mice, lacking MHCII, resulted neither in antibody production nor in elevation of circulating miR-150. This study provides proof of concept that serum microRNAs can be detected, with minimally invasive procedure, as biomarkers of vaccination and more in general of adaptive immune responses. Furthermore, the prompt reduction of intracellular level of miR-150, a key regulator of mRNAs critical for lymphocyte differentiation and functions, linked to its release in the external milieu suggests that the selective extracellular disposal of microRNAs can be a rapid way to regulate gene expression during lymphocyte activation.

  7. Activity-dependent modulation of odorant receptor gene expression in the mouse olfactory epithelium.

    Directory of Open Access Journals (Sweden)

    Shaohua Zhao

    Full Text Available Activity plays critical roles in development and maintenance of the olfactory system, which undergoes considerable neurogenesis throughout life. In the mouse olfactory epithelium, each olfactory sensory neuron (OSN stably expresses a single odorant receptor (OR type out of a repertoire of ∼1200 and the OSNs with the same OR identity are distributed within one of the few broadly-defined zones. However, it remains elusive whether and how activity modulates such OR expression patterns. Here we addressed this question by investigating OR gene expression via in situ hybridization when sensory experience or neuronal excitability is manipulated. We first examined the expression patterns of fifteen OR genes in mice which underwent neonatal, unilateral naris closure. After four-week occlusion, the cell density in the closed (sensory-deprived side was significantly lower (for four ORs, similar (for three ORs, or significantly higher (for eight ORs as compared to that in the open (over-stimulated side, suggesting that sensory inputs have differential effects on OSNs expressing different OR genes. We next examined the expression patterns of seven OR genes in transgenic mice in which mature OSNs had reduced neuronal excitability. Neuronal silencing led to a significant reduction in the cell density for most OR genes tested and thinner olfactory epithelium with an increased density of apoptotic cells. These results suggest that sensory experience plays important roles in shaping OR gene expression patterns and the neuronal activity is critical for survival of OSNs.

  8. 3β-Acetyl Tormentic Acid (3ATA a Novel Modulator of ABCC Proteins Activity

    Directory of Open Access Journals (Sweden)

    Cerli Rocha Gattass

    2012-06-01

    Full Text Available Multidrug resistance (MDR is considered the main cause of cancer chemotherapy failure and patient relapse. The active drug efflux mediated by transporter proteins of the ABC (ATP-binding cassette family is the most investigated mechanism leading to MDR. With the aim of inhibiting this transport and circumventing MDR, a great amount of work has been dedicated to identifying pharmacological inhibitors of specific ABC transporters. We recently showed that 3β-acetyl tormentic acid (3ATA had no effect on P-gp/ABCB1 activity. Herein, we show that 3ATA strongly inhibited the activity of MRP1/ABCC1. In the B16/F10 and Ma104 cell lines, this effect was either 20X higher or similar to that observed with MK571, respectively. Nevertheless, the low inhibitory effect of 3ATA on A549, a cell line that expresses MRP1-5, suggests that it may not inhibit other MRPs. The use of cells transfected with ABCC2, ABCC3 or ABCC4 showed that 3ATA was also able to modulate these transporters, though with an inhibition ratio lower than that observed for MRP1/ABCC1. These data point to 3ATA as a new ABCC inhibitor and call attention to its potential use as a tool to investigate the function of MRP/ABCC proteins or as a co-adjuvant in the treatment of MDR tumors.

  9. Inflows towards active regions and the modulation of the solar cycle: a parameter study

    CERN Document Server

    Martin-Belda, David

    2016-01-01

    Aims: We aim to investigate how converging flows towards active regions affect the surface transport of magnetic flux, as well as their impact on the generation of the Sun's poloidal field. The inflows constitute a potential non-linear mechanism for the saturation of the global dynamo and may contribute to the modulation of the solar cycle in the Babcock-Leighton framework. Methods: We build a surface flux transport code incorporating a parametrized model of the inflows and run simulations spanning several cycles. We carry out a parameter study to assess how the strength and extension of the inflows affect the build-up of the global dipole field. We also perform simulations with different levels of activity to investigate the potential role of the inflows in the saturation of the global dynamo. Results: We find that the interaction of neighbouring active regions can lead to the occasional formation of single-polarity magnetic flux clumps inconsistent with observations. We propose the darkening caused by pores...

  10. Bitter melon extracts enhance the activity of chemotherapeutic agents through the modulation of multiple drug resistance.

    Science.gov (United States)

    Kwatra, Deep; Venugopal, Anand; Standing, David; Ponnurangam, Sivapriya; Dhar, Animesh; Mitra, Ashim; Anant, Shrikant

    2013-12-01

    Recently, we demonstrated that extracts of bitter melon (BME) can be used as a preventive/therapeutic agent in colon cancers. Here, we determined BME effects on anticancer activity and bioavailability of doxorubicin (DOX) in colon cancer cells. BME enhanced the effect of DOX on cell proliferation and sensitized the cells toward DOX upon pretreatment. Furthermore, there was both increased drug uptake and reduced drug efflux. We also observed a reduction in the expression of multidrug resistance conferring proteins (MDRCP) P-glycoprotein, MRP-2, and BCRP. Further BME suppressed DOX efflux in MDCK cells overexpressing the three efflux proteins individually, suggesting that BME is a potent inhibitor of MDR function. Next, we determined the effect of BME on PXR, a xenobiotic sensing nuclear receptor and a transcription factor that controls the expression of the three MDR genes. BME suppressed PXR promoter activity thereby suppressing its expression. Finally, we determined the effect of AMPK pathway on drug efflux because we have previously demonstrated that BME affects the pathway. However, inhibiting AMPK did not affect drug resistance, suggesting that BME may use different pathways for the anticancer and MDR modulating activities. Together, these results suggest that BME can enhance the bioavailability and efficacy of conventional chemotherapy.

  11. Prediction-error in the context of real social relationships modulates reward system activity

    Directory of Open Access Journals (Sweden)

    Joshua ePoore

    2012-08-01

    Full Text Available The human reward system is sensitive to both social (e.g., validation and non-social rewards (e.g., money and is likely integral for relationship development and reputation building. However, data is sparse on the question of whether implicit social reward processing meaningfully contributes to explicit social representations such as trust and attachment security in pre-existing relationships. This event-related fMRI experiment examined reward system prediction-error activity in response to a potent social reward—social validation—and this activity’s relation to both attachment security and trust in the context of real romantic relationships. During the experiment, participants’ expectations for their romantic partners’ positive regard of them were confirmed (validated or violated, in either positive or negative directions. Primary analyses were conducted using predefined regions of interest, the locations of which were taken from previously published research. Results indicate that activity for mid-brain and striatal reward system regions of interest was modulated by social reward expectation violation in ways consistent with prior research on reward prediction-error. Additionally, activity in the striatum during viewing of disconfirmatory information was associated with both increases in post-scan reports of attachment anxiety and decreases in post-scan trust, a finding that follows directly from representational models of attachment and trust.

  12. Modulation of western North Pacific tropical cyclone activity by the Atlantic Meridional Mode

    Science.gov (United States)

    Zhang, Wei; Vecchi, Gabriel A.; Villarini, Gabriele; Murakami, Hiroyuki; Rosati, Anthony; Yang, Xiaosong; Jia, Liwei; Zeng, Fanrong

    2016-05-01

    This study examines the year-to-year modulation of the western North Pacific (WNP) tropical cyclones (TC) activity by the Atlantic Meridional Mode (AMM) using both observations and the Geophysical Fluid Dynamics Laboratory Forecast-oriented Low Ocean Resolution Version of CM2.5 (FLOR) global coupled model. 1. The positive (negative) AMM phase suppresses (enhances) WNP TC activity in observations. The anomalous occurrence of WNP TCs results mainly from changes in TC genesis in the southeastern part of the WNP. 2. The observed responses of WNP TC activity to the AMM are connected to the anomalous zonal vertical wind shear (ZVWS) caused by AMM-induced changes to the Walker circulation. During the positive AMM phase, the warming in the North Atlantic induces strong descending flow in the tropical eastern and central Pacific, which intensifies the Walker cell in the WNP. The intensified Walker cell is responsible for the suppressed (enhanced) TC genesis in the eastern (western) part of the WNP by strengthening (weakening) ZVWS. 3. The observed WNPTC-AMM linkage is examined by the long-term control and idealized perturbations experiment with FLOR-FA. A suite of sensitivity experiments strongly corroborate the observed WNPTC-AMM linkage and underlying physical mechanisms.

  13. Dopamine exerts activation-dependent modulation of spinal locomotor circuits in the neonatal mouse.

    Science.gov (United States)

    Humphreys, Jennifer M; Whelan, Patrick J

    2012-12-01

    Monoamines can modulate the output of a variety of invertebrate and vertebrate networks, including the spinal cord networks that control walking. Here we examined the multiple changes in the output of locomotor networks induced by dopamine (DA). We found that DA can depress the activation of locomotor networks in the neonatal mouse spinal cord following ventral root stimulation. By examining disinhibited rhythms, where the Renshaw cell pathway was blocked, we found that DA depresses a putative recurrent excitatory pathway that projects onto rhythm-generating circuitry of the spinal cord. This depression was D(2) but not D(1) receptor dependent and was not due exclusively to depression of excitatory drive to motoneurons. Furthermore, the depression in excitation was not dependent on network activity. We next compared the modulatory effects of DA on network function by focusing on a serotonin and a N-methyl-dl-aspartate-evoked rhythm. In contrast to the depressive effects on a ventral root-evoked rhythm, we found that DA stabilized a drug-evoked rhythm, reduced the frequency of bursting, and increased amplitude. Overall, these data demonstrate that DA can potentiate network activity while at the same time reducing the gain of recurrent excitatory feedback loops from motoneurons onto the network.

  14. Structure-function analysis indicates that sumoylation modulates DNA-binding activity of STAT1

    Directory of Open Access Journals (Sweden)

    Grönholm Juha

    2012-10-01

    Full Text Available Abstract Background STAT1 is an essential transcription factor for interferon-γ-mediated gene responses. A distinct sumoylation consensus site (ψKxE 702IKTE705 is localized in the C-terminal region of STAT1, where Lys703 is a target for PIAS-induced SUMO modification. Several studies indicate that sumoylation has an inhibitory role on STAT1-mediated gene expression but the molecular mechanisms are not fully understood. Results Here, we have performed a structural and functional analysis of sumoylation in STAT1. We show that deconjugation of SUMO by SENP1 enhances the transcriptional activity of STAT1, confirming a negative regulatory effect of sumoylation on STAT1 activity. Inspection of molecular model indicated that consensus site is well exposed to SUMO-conjugation in STAT1 homodimer and that the conjugated SUMO moiety is directed towards DNA, thus able to form a sterical hindrance affecting promoter binding of dimeric STAT1. In addition, oligoprecipitation experiments indicated that sumoylation deficient STAT1 E705Q mutant has higher DNA-binding activity on STAT1 responsive gene promoters than wild-type STAT1. Furthermore, sumoylation deficient STAT1 E705Q mutant displayed enhanced histone H4 acetylation on interferon-γ-responsive promoter compared to wild-type STAT1. Conclusions Our results suggest that sumoylation participates in regulation of STAT1 responses by modulating DNA-binding properties of STAT1.

  15. Geothermal Permeability Enhancement - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Joe Beall; Mark Walters

    2009-06-30

    The overall objective is to apply known permeability enhancement techniques to reduce the number of wells needed and demonstrate the applicability of the techniques to other undeveloped or under-developed fields. The Enhanced Geothermal System (EGS) concept presented in this project enhances energy extraction from reduced permeability zones in the super-heated, vapor-dominated Aidlin Field of the The Geysers geothermal reservoir. Numerous geothermal reservoirs worldwide, over a wide temperature range, contain zones of low permeability which limit the development potential and the efficient recovery of heat from these reservoirs. Low permeability results from poorly connected fractures or the lack of fractures. The Enhanced Geothermal System concept presented here expands these technologies by applying and evaluating them in a systematic, integrated program.

  16. Transcranial Direct Current Stimulation Modulates Cortical Neuronal Activity in Alzheimer's Disease

    Science.gov (United States)

    Marceglia, Sara; Mrakic-Sposta, Simona; Rosa, Manuela; Ferrucci, Roberta; Mameli, Francesca; Vergari, Maurizio; Arlotti, Mattia; Ruggiero, Fabiana; Scarpini, Elio; Galimberti, Daniela; Barbieri, Sergio; Priori, Alberto

    2016-01-01

    . Our findings disclosed that tDCS induces significant modulations in the cortical EEG activity in AD patients. The abnormal pattern of EEG activity observed in AD during memory processing is partially reversed by applying anodal tDCS, suggesting that anodal tDCS benefits in AD patients during working memory tasks are supported by the modulation of cortical activity. PMID:27065792

  17. Commensal Streptococcus salivarius Modulates PPARγ Transcriptional Activity in Human Intestinal Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Benoît Couvigny

    Full Text Available The impact of commensal bacteria in eukaryotic transcriptional regulation has increasingly been demonstrated over the last decades. A multitude of studies have shown direct effects of commensal bacteria from local transcriptional activity to systemic impact. The commensal bacterium Streptococcus salivarius is one of the early bacteria colonizing the oral and gut mucosal surfaces. It has been shown to down-regulate nuclear transcription factor (NF-кB in human intestinal cells, a central regulator of the host mucosal immune system response to the microbiota. In order to evaluate its impact on a further important transcription factor shown to link metabolism and inflammation in the intestine, namely PPARγ (peroxisome proliferator-activated receptor, we used human intestinal epithelial cell-lines engineered to monitor PPARγ transcriptional activity in response to a wide range of S. salivarius strains. We demonstrated that different strains from this bacterial group share the property to inhibit PPARγ activation independently of the ligand used. First attempts to identify the nature of the active compounds showed that it is a low-molecular-weight, DNase-, proteases- and heat-resistant metabolite secreted by S. salivarius strains. Among PPARγ-targeted metabolic genes, I-FABP and Angptl4 expression levels were dramatically reduced in intestinal epithelial cells exposed to S. salivarius supernatant. Both gene products modulate lipid accumulation in cells and down-regulating their expression might consequently affect host health. Our study shows that species belonging to the salivarius group of streptococci impact both host inflammatory and metabolic regulation suggesting a possible role in the host homeostasis and health.

  18. Commensal Streptococcus salivarius Modulates PPARγ Transcriptional Activity in Human Intestinal Epithelial Cells.

    Science.gov (United States)

    Couvigny, Benoît; de Wouters, Tomas; Kaci, Ghalia; Jacouton, Elsa; Delorme, Christine; Doré, Joël; Renault, Pierre; Blottière, Hervé M; Guédon, Eric; Lapaque, Nicolas

    2015-01-01

    The impact of commensal bacteria in eukaryotic transcriptional regulation has increasingly been demonstrated over the last decades. A multitude of studies have shown direct effects of commensal bacteria from local transcriptional activity to systemic impact. The commensal bacterium Streptococcus salivarius is one of the early bacteria colonizing the oral and gut mucosal surfaces. It has been shown to down-regulate nuclear transcription factor (NF-кB) in human intestinal cells, a central regulator of the host mucosal immune system response to the microbiota. In order to evaluate its impact on a further important transcription factor shown to link metabolism and inflammation in the intestine, namely PPARγ (peroxisome proliferator-activated receptor), we used human intestinal epithelial cell-lines engineered to monitor PPARγ transcriptional activity in response to a wide range of S. salivarius strains. We demonstrated that different strains from this bacterial group share the property to inhibit PPARγ activation independently of the ligand used. First attempts to identify the nature of the active compounds showed that it is a low-molecular-weight, DNase-, proteases- and heat-resistant metabolite secreted by S. salivarius strains. Among PPARγ-targeted metabolic genes, I-FABP and Angptl4 expression levels were dramatically reduced in intestinal epithelial cells exposed to S. salivarius supernatant. Both gene products modulate lipid accumulation in cells and down-regulating their expression might consequently affect host health. Our study shows that species belonging to the salivarius group of streptococci impact both host inflammatory and metabolic regulation suggesting a possible role in the host homeostasis and health. PMID:25946041

  19. Temporal modulations of agonist and antagonist muscle activities accompanying improved performance of ballistic movements.

    Science.gov (United States)

    Liang, Nan; Yamashita, Takamasa; Ni, Zhen; Takahashi, Makoto; Murakami, Tsuneji; Yahagi, Susumu; Kasai, Tatsuya

    2008-02-01

    Although many studies have examined performance improvements of ballistic movement through practice, it is still unclear how performance advances while maintaining maximum velocity, and how the accompanying triphasic electromyographic (EMG) activity is modified. The present study focused on the changes in triphasic EMG activity, i.e., the first agonist burst (AG1), the second agonist burst (AG2), and the antagonist burst (ANT), that accompanied decreases in movement time and error. Twelve healthy volunteers performed 100 ballistic wrist flexion movements in ten 10-trial sessions under the instruction to "maintain maximum velocity throughout the experiment and to stop the limb at the target as fast and accurately as possible". Kinematic parameters (position and velocity) and triphasic EMG activities from the agonist (flexor carpi radialis) and antagonist (extensor carpi radialis) muscles were recorded. Comparison of the results obtained from the first and the last 10 trials, revealed that movement time, movement error, and variability of amplitudes reduced with practice, and that maximum velocity and time to maximum velocity remained constant. EMG activities showed that AG1 and AG2 durations were reduced, whereas ANT duration did not change. Additionally, ANT and AG2 latencies were reduced. Integrated EMG of AG1 was significantly reduced as well. Analysis of the alpha angle (an index of the rate of recruitment of the motoneurons) showed that there was no change in either AG1 or AG2. Correlation analysis of alpha angles between these two bursts further revealed that the close relationship of AG1 and AG2 was kept constant through practice. These findings led to the conclusion that performance improvement in ballistic movement is mainly due to the temporal modulations of agonist and antagonist muscle activities when maximum velocity is kept constant. Presumably, a specific strategy is consistently applied during practice.

  20. PRE-ACTIVITY MODULATION OF LOWER EXTREMITY MUSCLES WITHIN DIFFERENT TYPES AND HEIGHTS OF DEEP JUMP

    Directory of Open Access Journals (Sweden)

    Vladimir Mrdakovic

    2008-06-01

    Full Text Available The purpose of this study was to determine modulation of pre- activity related to different types and heights of deep jump. Sixteen male soccer players without experience in deep jumps training (the national competition; 15.0 ± 0.5yrs; weight 61.9 ± 6.1kg; height 1.77 ± 0.07m, who participated in the study, performed three types of deep jump (bounce landing, counter landing, and bounce drop jump from three different heights (40cm, 60cm, and 80cm. Surface EMG device (1000Hz was used to estimate muscle activity (maximal amplitude of EMG - AmaxEMG; integral EMG signal - iEMG of five muscles (mm.gastrocnemii, m.soleus, m.tibialis anterior, m.vastus lateralis within 150ms before touchdown. All the muscles, except m. gastrocnemius medialis, showed systematic increase in pre-activity when platform height was raised. For most of the lower extremity muscles, the most significant differences were between values of pre-activity obtained for 40 cm and 80 cm platforms. While the amount of muscle pre-activity in deep jumps from the heights above and beneath the optimal one did not differ significantly from that generated in deep jumps from the optimal drop height of 60 cm, the patterns of muscle pre-activity obtained for the heights above the optimal one did differ from those obtained for the optimal drop height. That suggests that deep jumps from the heights above the optimal one do not seem to be an adequate exercise for adjusting muscle activity for the impact. Muscle pre-activity in bounce drop jumps differed significantly from that in counter landing and bounce landing respectively, which should indicate that a higher amount of pre-activity generated during bounce drop jumps was used for performing take-offs. As this study included the subjects who were not familiar with deep jumps training, the prospective studies should reveal the results of athletes with previous experience

  1. Permeability of soils in Mississippi

    Science.gov (United States)

    O'Hara, Charles G.

    1994-01-01

    The permeability of soils in Mississippi was determined and mapped using a geographic information system (GIS). Soil permeabilities in Mississippi were determined to range in value from nearly 0.0 to values exceeding 5.0 inches per hour. The U.S. Soil Conservation Service's State Soil Geographic Data Base (STATSGO) was used as the primary source of data for the determination of area-weighted soil permeability. STATSGO provides soil layer properties that are spatially referenced to mapped areas. These mapped areas are referred to as polygons in the GIS. The polygons arc boundaries of soils mapped as a group and are given unique Map Unit Identifiers (MUIDs). The data describing the physical characteristics of the soils within each polygon are stored in a tabular data base format and are referred to as attributes. The U.S. Soil Conservation Service developed STATSGO to be primarily used as a guide for regional resource planning, management, and monitoring. STATSGO was designed so that soil information could be extracted from properties tables at the layer level, combined by component, and statistically expanded to cover the entire map unit. The results of this study provide a mapped value for permeability which is representative of the vertical permeability of soils in that area. The resultant permeability map provides a representative vertical soil permeability for a given area sufficient for county, multi- county, and area planning, and will be used as the soil permeability data component in the evaluation of the susceptibility of major aquifers to contami- nation in Mississippi.

  2. Plasminogen N-terminal activation peptide modulates the activity of angiostatin-related peptides on endothelial cell proliferation and migration.

    Science.gov (United States)

    Hayashi, Moyuru; Tamura, Yosuke; Dohmae, Naoshi; Kojima, Soichi; Shimonaka, Motoyuki

    2008-05-01

    Angiostatin, a potent inhibitor of angiogenesis, is derived from the fibrinolytic proenzyme, plasminogen, by enzymatic processing. Plasminogen N-terminal activation peptide (PAP) is one of the products concomitantly released aside from angiostatin (kringles 1-4) and mini-plasminogen (kringle 5 plus the catalytic domain) when plasminogen is processed. To determine whether PAP alone or together with the angiostatin-related peptides derived from the processing of plasminogen modulate the proliferation and motility of endothelial cells, we have generated a recombinant PAP and used it to study its effects on endothelial cells in the presence and absence of the angiostatin-related peptides. Our results showed that PAP alone slightly increased the migration but not the proliferation of endothelial cells. However, in the presence of the angiostatin-related peptides, PAP attenuated the inhibitory activity of the angiostatin-related peptides on the proliferation and migration of endothelial cells. The inhibitory effect of PAP on the angiostatin-related peptides could be due to its binding to the kringle domains of the latter peptides. PMID:18294956

  3. Plasminogen N-terminal activation peptide modulates the activity of angiostatin-related peptides on endothelial cell proliferation and migration

    International Nuclear Information System (INIS)

    Angiostatin, a potent inhibitor of angiogenesis, is derived from the fibrinolytic proenzyme, plasminogen, by enzymatic processing. Plasminogen N-terminal activation peptide (PAP) is one of the products concomitantly released aside from angiostatin (kringles 1-4) and mini-plasminogen (kringle 5 plus the catalytic domain) when plasminogen is processed. To determine whether PAP alone or together with the angiostatin-related peptides derived from the processing of plasminogen modulate the proliferation and motility of endothelial cells, we have generated a recombinant PAP and used it to study its effects on endothelial cells in the presence and absence of the angiostatin-related peptides. Our results showed that PAP alone slightly increased the migration but not the proliferation of endothelial cells. However, in the presence of the angiostatin-related peptides, PAP attenuated the inhibitory activity of the angiostatin-related peptides on the proliferation and migration of endothelial cells. The inhibitory effect of PAP on the angiostatin-related peptides could be due to its binding to the kringle domains of the latter peptides

  4. West Nile virus-induced cell adhesion molecules on human brain microvascular endothelial cells regulate leukocyte adhesion and modulate permeability of the in vitro blood-brain barrier model.

    Directory of Open Access Journals (Sweden)

    Kelsey Roe

    Full Text Available Characterizing the mechanisms by which West Nile virus (WNV causes blood-brain barrier (BBB disruption, leukocyte infiltration into the brain and neuroinflammation is important to understand the pathogenesis of WNV encephalitis. Here, we examined the role of endothelial cell adhesion molecules (CAMs in mediating the adhesion and transendothelial migration of leukocytes across human brain microvascular endothelial cells (HBMVE. Infection with WNV (NY99 strain significantly induced ICAM-1, VCAM-1, and E-selectin in human endothelial cells and infected mice brain, although the levels of their ligands on leukocytes (VLA-4, LFA-1and MAC-1 did not alter. The permeability of the in vitro BBB model increased dramatically following the transmigration of monocytes and lymphocytes across the models infected with WNV, which was reversed in the presence of a cocktail of blocking antibodies against ICAM-1, VCAM-1, and E-selectin. Further, WNV infection of HBMVE significantly increased leukocyte adhesion to the HBMVE monolayer and transmigration across the infected BBB model. The blockade of these CAMs reduced the adhesion and transmigration of leukocytes across the infected BBB model. Further, comparison of infection with highly neuroinvasive NY99 and non-lethal (Eg101 strain of WNV demonstrated similar level of virus replication and fold-increase of CAMs in HBMVE cells suggesting that the non-neuropathogenic response of Eg101 is not because of its inability to infect HBMVE cells. Collectively, these results suggest that increased expression of specific CAMs is a pathological event associated with WNV infection and may contribute to leukocyte infiltration and BBB disruption in vivo. Our data further implicate that strategies to block CAMs to reduce BBB disruption may limit neuroinflammation and virus-CNS entry via 'Trojan horse' route, and improve WNV disease outcome.

  5. Electrostatically gated membrane permeability in inorganic protocells

    Science.gov (United States)

    Li, Mei; Harbron, Rachel L.; Weaver, Jonathan V. M.; Binks, Bernard P.; Mann, Stephen

    2013-06-01

    Although several strategies are now available to produce functional microcompartments analogous to primitive cell-like structures, little progress has been made in generating protocell constructs with self-controlled membrane permeability. Here we describe the preparation of water-dispersible colloidosomes based on silica nanoparticles and delineated by a continuous semipermeable inorganic membrane capable of self-activated, electrostatically gated permeability. We use crosslinking and covalent grafting of a pH-responsive copolymer to generate an ultrathin elastic membrane that exhibits selective release and uptake of small molecules. This behaviour, which depends on the charge of the copolymer coronal layer, serves to trigger enzymatic dephosphorylation reactions specifically within the protocell aqueous interior. This system represents a step towards the design and construction of alternative types of artificial chemical cells and protocell models based on spontaneous processes of inorganic self-organization.

  6. mGluR5 positive modulators both potentiate activation and restore inhibition in NMDA receptors by PKC dependent pathway

    Directory of Open Access Journals (Sweden)

    Liao Pei-Fei

    2011-02-01

    Full Text Available Abstract Background In order to understand the interaction between the metabotropic glutamate subtype 5 (mGluR5 and N-methyl-D-aspartate (NMDA receptors, the influence of mGluR5 positive modulators in the inhibition of NMDA receptors by the noncompetitive antagonist ketamine, the competitive antagonist D-APV and the selective NR2B inhibitor ifenprodil was investigated. Methods This study used the multi-electrode dish (MED system to observe field potentials in hippocampal slices of mice. Results Data showed that the mGluR5 agonist (RS-2-chloro-5-hydroxyphenylglycine (CHPG, as well as the positive allosteric modulators 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl benzamide (CDPPB and 3,3'-difluorobenzaldazine (DFB alone did not alter the basal field potentials, but enhanced the amplitude of field potentials induced by NMDA. The inhibitory action of ketamine on NMDA-induced response was reversed by CHPG, DFB, and CDPPB, whereas the blockade of NMDA receptor by D-APV was restored by CHPG and CDPPB, but not by DFB. Alternatively, activation of NMDA receptors prior to the application of mGluR5 modulators, CHPG was able to enhance NMDA-induced field potentials and reverse the suppressive effect of ketamine and D-APV, but not ifenprodil. In addition, chelerythrine chloride (CTC, a protein kinase C (PKC inhibitor, blocked the regulation of mGluR5 positive modulators in enhancing NMDA receptor activation and recovering NMDA receptor inhibition. The PKC activator (PMA mimicked the effects of mGluR5 positive modulators on enhancing NMDA receptor activation and reversing NMDA antagonist-evoked NMDA receptor suppression. Conclusion Our results demonstrate that the PKC-dependent pathway may be involved in the positive modulation of mGluR5 resulting in potentiating NMDA receptor activation and reversing NMDA receptor suppression induced by NMDA antagonists.

  7. Autobiographical Planning and the Brain: Activation and Its Modulation by Qualitative Features.

    Science.gov (United States)

    Spreng, R Nathan; Gerlach, Kathy D; Turner, Gary R; Schacter, Daniel L

    2015-11-01

    To engage in purposeful behavior, it is important to make plans, which organize subsequent actions. Most studies of planning involve "look-ahead" puzzle tasks that are unrelated to personal goals. We developed a task to assess autobiographical planning, which involves the formulation of personal plans in response to real-world goals, and examined autobiographical planning in 63 adults during fMRI scanning. Autobiographical planning was found to engage the default network, including medial-temporal lobe and midline structures, and executive control regions in lateral pFC and parietal cortex and caudate. To examine how specific qualitative features of autobiographical plans modulate neural activity, we performed parametric modulation analyses. Ratings of plan detail, novelty, temporal distance, ease of plan formulation, difficulty in goal completion, and confidence in goal accomplishment were used as covariates in six hierarchical linear regression models. This modeling procedure removed shared variance among the ratings, allowing us to determine the independent relationship between ratings of interest and trial-wise BOLD signal. We found that specific autobiographical planning, describing a detailed, achievable, and actionable planning process for attaining a clearly envisioned future, recruited both default and frontoparietal brain regions. In contrast, abstract autobiographical planning, plans that were constructed from more generalized semantic or affective representations of a less tangible and distant future, involved interactions among default, sensory perceptual, and limbic brain structures. Specific qualities of autobiographical plans are important predictors of default and frontoparietal control network engagement during plan formation and reflect the contribution of mnemonic and executive control processes to autobiographical planning.

  8. Common modulation of limbic network activation underlies musical emotions as they unfold.

    Science.gov (United States)

    Singer, Neomi; Jacoby, Nori; Lin, Tamar; Raz, Gal; Shpigelman, Lavi; Gilam, Gadi; Granot, Roni Y; Hendler, Talma

    2016-11-01

    Music is a powerful means for communicating emotions among individuals. Here we reveal that this continuous stream of affective information is commonly represented in the brains of different listeners and that particular musical attributes mediate this link. We examined participants' brain responses to two naturalistic musical pieces using functional Magnetic Resonance imaging (fMRI). Following scanning, as participants listened to the musical pieces for a second time, they continuously indicated their emotional experience on scales of valence and arousal. These continuous reports were used along with a detailed annotation of the musical features, to predict a novel index of Dynamic Common Activation (DCA) derived from ten large-scale data-driven functional networks. We found an association between the unfolding music-induced emotionality and the DCA modulation within a vast network of limbic regions. The limbic-DCA modulation further corresponded with continuous changes in two temporal musical features: beat-strength and tempo. Remarkably, this "collective limbic sensitivity" to temporal features was found to mediate the link between limbic-DCA and the reported emotionality. An additional association with the emotional experience was found in a left fronto-parietal network, but only among a sub-group of participants with a high level of musical experience (>5years). These findings may indicate two processing-levels underlying the unfolding of common music emotionality; (1) a widely shared core-affective process that is confined to a limbic network and mediated by temporal regularities in music and (2) an experience based process that is rooted in a left fronto-parietal network that may involve functioning of the 'mirror-neuron system'. PMID:27389788

  9. Aqueous Extracts of Selected Potentilla Species Modulate Biological Activity of Human Normal Colon Cells.

    Science.gov (United States)

    Paduch, Roman; Wiater, Adrian; Locatelli, Marcello; Pleszczyńska, Malgorzata; Tomczyk, Michal

    2015-01-01

    Potentilla L. (Rosaceae) species have been used in traditional and in folk medicine for many years. This study characterized the activity of extracts from aerial parts of selected Potentilla species: P. argentea, P. anserina, P. grandiflora and P. erecta as well as one species of closely related to the genus Potentilla, Drymocallis rupestris (syn. P. rupestris). The biological activities were analyzed using MTT, NR and DPPH assays on CCD 841 CoTr and CCD-18Co cells. Moreover, cell morphology and cytoskeletal actin F-filaments organization and IL-6 and IL-10 levels by ELISA were analyzed after 24 h of incubation. Potentilla extracts at dose levels between 25 and 250 µg/mL were analyzed. For ELISA, 15 µg/mL and 30 μg/mL were chosen. When mitochondrial succinyl dehydrogenase activity was tested (MTT assay) only extract obtained from P. erecta at lower concentrations (up to 125 µg/mL) suppressed metabolism of myofibroblasts, while epithelial cells mitochondrial enzyme activity increased after incubation with all extracts. In Neutral Red (NR) method cellular membrane disturbance of both cell cultures was found after D. rupestris and P. grandiflora addition. Moreover, strong influence on epithelial cells was also found for P. anserina. All extracts showed similar, concentration-dependent free radical scavenging (DPPH) effect. Potentilla extracts, especially at lower concentration, decreased IL-6 production in myofibroblasts but the level of the cytokine was found to be stable in epithelial cells. IL-10 analysis revealed that P. argentea, D. rupestris, P. erecta extracts decrease cytokine level in myofibroblasts, while only when higher concentration were applied, decreased cytokine level produced by epithelial cells was found. F-actin filaments staining revealed that Potentilla extracts significantly influence on cellular cytoskeleton organization. Potentilla extracts influence on cells of human colon wall lining modulating the main features of them (viability

  10. Rhythmic Components in Extracranial Brain Signals Reveal Multifaceted Task Modulation of Overlapping Neuronal Activity.

    Directory of Open Access Journals (Sweden)

    Roemer van der Meij

    Full Text Available Oscillatory neuronal activity is implicated in many cognitive functions, and its phase coupling between sensors may reflect networks of communicating neuronal populations. Oscillatory activity is often studied using extracranial recordings and compared between experimental conditions. This is challenging, because there is overlap between sensor-level activity generated by different sources, and this can obscure differential experimental modulations of these sources. Additionally, in extracranial data, sensor-level phase coupling not only reflects communicating populations, but can also be generated by a current dipole, whose sensor-level phase coupling does not reflect source-level interactions. We present a novel method, which is capable of separating and characterizing sources on the basis of their phase coupling patterns as a function of space, frequency and time (trials. Importantly, this method depends on a plausible model of a neurobiological rhythm. We present this model and an accompanying analysis pipeline. Next, we demonstrate our approach, using magnetoencephalographic (MEG recordings during a cued tactile detection task as a case study. We show that the extracted components have overlapping spatial maps and frequency content, which are difficult to resolve using conventional pairwise measures. Because our decomposition also provides trial loadings, components can be readily contrasted between experimental conditions. Strikingly, we observed heterogeneity in alpha and beta sources with respect to whether their activity was suppressed or enhanced as a function of attention and performance, and this happened both in task relevant and irrelevant regions. This heterogeneity contrasts with the common view that alpha and beta amplitude over sensory areas are always negatively related to attention and performance.

  11. IκB Kinases Modulate the Activity of the Androgen Receptor in Prostate Carcinoma Cell Lines

    Directory of Open Access Journals (Sweden)

    Garima Jain

    2012-03-01

    Full Text Available Enhanced nuclear localization of nuclear factor κB (NF-κB in prostate cancer (PCa samples and constitutive NF-κB signaling in a class of PCa cell lines with low androgen receptor (AR expression (PC3 and DU-145 imply an important role of the IκB kinase (IKK/NF-κB system in PCa. However, most PCa and PCa cell lines depend on the activity of the AR, and the role of NF-κB in these AR-expressing PCa remains unclear. Here, we demonstrate that inhibition of NF-κB signaling by the IKK inhibitor BMS345541 reduced proliferation and increased apoptosis in AR-expressing PCa cell lines. Furthermore, AR activity and target gene expression were distinctively reduced, whereas AR protein levels remained unaltered on BMS345541 treatment. Similar effects were observed particularly after small interfering RNA (siRNA-mediated knockdown of IKK1, but not by siRNA-mediated suppression of IKK2. Moreover, IKK1 overexpression augmented 5α-dihydrotestosterone-induced nuclear AR translocation, whereas nuclear AR was reduced by IKK1 knockdown or BMS345541. However, because IKK1 also enhances the activity of a chronically nuclear AR mutant, modulation of the subcellular distribution seems not to be the only mechanism by which IKK1 enhances AR activity. Finally, reduced in vivo AR phosphorylation after BMS345541 treatment and in vitro AR phosphorylation by IKK1 or IKK2 imply that AR constitutes a novel IKK target. Taken together, our data identify IKK1 as a potentially target structure for future therapeutic intervention in PCa.

  12. Modulation of peritoneal macrophage activity by the saturation state of the fatty acid moiety of phosphatidylcholine

    Directory of Open Access Journals (Sweden)

    F.C.C. Grando

    2009-07-01

    Full Text Available To determine the effects of saturated and unsaturated fatty acids in phosphatidylcholine (PC on macrophage activity, peritoneal lavage cells were cultured in the presence of phosphatidylcholine rich in saturated or unsaturated fatty acids (sat PC and unsat PC, respectively, both used at concentrations of 32 and 64 µM. The treatment of peritoneal macrophages with 64 µM unsat PC increased the production of hydrogen peroxide by 48.3% compared to control (148.3 ± 16.3 vs 100.0 ± 1.8%, N = 15, and both doses of unsat PC increased adhesion capacity by nearly 50%. Moreover, 64 µM unsat PC decreased neutral red uptake by lysosomes by 32.5% compared to the untreated group (67.5 ± 6.8 vs 100.0 ± 5.5%, N = 15, while both 32 and 64 µM unsat PC decreased the production of lipopolysaccharide-elicited nitric oxide by 30.4% (13.5 ± 2.6 vs 19.4 ± 2.5 µM and 46.4% (10.4 ± 3.1 vs 19.4 ± 2.5 µM, respectively. Unsat PC did not affect anion production in non-stimulated cells or phagocytosis of unopsonized zymosan particles. A different result pattern was obtained for macrophages treated with sat PC. Phorbol 12-miristate 13-acetate-elicited superoxide production and neutral red uptake were decreased by nearly 25% by 32 and 64 µM sat PC, respectively. Sat PC did not affect nitric oxide or hydrogen peroxide production, adhesion capacity or zymosan phagocytosis. Thus, PC modifies macrophage activity, but this effect depends on cell activation state, fatty acid saturation and esterification to PC molecule and PC concentration. Taken together, these results indicate that the fatty acid moiety of PC modulates macrophage activity and, consequently, is likely to affect immune system regulation in vivo.

  13. Bone Microenvironment Modulates Expression and Activity of Cathepsin B in Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Izabela Podgorski

    2005-03-01

    Full Text Available Prostate cancers metastasize to bone leading to osteolysis. Here we assessed proteolysis of DOcollagen I (a bone matrix protein and, for comparison, DO-collagen IV, by living human prostate carcinoma cells in vitro. Both collagens were degraded, this degradation was reduced by inhibitors of matrix metallo, serine, cysteine proteases. Because secretion of the cysteine protease cathepsin B is increased in human breast fibroblasts grown on collagen I gels, we analyzed cathepsin B levels and secretion in prostate cells grown on collagen I gels. Levels and secretion were increased only in DU145 cells-cells that expressed the highest baseline levels of cathepsin B. Secretion of cathepsin B was also elevated in DU145 cells grown in vitro on human bone fragments. We further investigated the effect of the bone microenvironment on cathepsin B expression and activity in vivo in a SCID-human model of prostate bone metastasis. High levels of cathepsin B protein and activity were found in DU145, PC3, LNCaP bone tumors, although the PC3 and LNCaP cells had exhibited low cathepsin B expression in vitro. Our results suggest that tumor-stromal interactions in the context of the bone microenvironment can modulate the expression of the cysteine protease cathepsin B.

  14. Green Tea and Bone Marrow Transplantation: From Antioxidant Activity to Enzymatic and Multidrug-resistance Modulation.

    Science.gov (United States)

    Peluso, Ilaria; Palmery, Maura; Vitalone, Annabella

    2016-10-25

    Epigallocatechin-3-gallate (EGCG), the main flavonoid of green tea (GT), could play an active role in the prevention of oxidative-stress-related diseases, such as hematologic malignancies. Some effects of EGCG are not imputable to antioxidant activity, but involve modulation of antioxidant enzymes and uric acid (UA) levels. The latter is the major factor responsible of the plasma non-enzymatic antioxidant capacity (NEAC). However, hyperuricemia is a frequent clinical feature caused by tumor lysis syndrome or cyclosporine side effects, both before and after bone marrow transplantation (BMT). Besides this, food-drug interactions could be associated with GT consumption and could have clinical implications. The molecular mechanisms involved in the redox and drug metabolizing/transporting pathways were discussed, with particular reference to the potential role of GT and EGCG in BMT. Moreover, on reviewing data on NEAC, isoprostanes, uric acid, and various enzymes from human studies on GT, its extract, or EGCG, an increase in NEAC, without effect on isoprostanes, and contrasting results on UA and enzymes were observed. Currently, few and contrasting available evidences suggest caution for GT consumption in BMT patients and more studies are needed to better understand the potential impact of EGCG on oxidative stress and metabolizing/transporting systems. PMID:26047551

  15. JNK Pathway Activation Modulates Acquired Resistance to EGFR/HER2-Targeted Therapies.

    Science.gov (United States)

    Manole, Simin; Richards, Edward J; Meyer, Aaron S

    2016-09-15

    Resistance limits the effectiveness of receptor tyrosine kinase (RTK)-targeted therapies. Combination therapies targeting resistance mechanisms can considerably improve response, but will require an improved understanding of when particular combinations will be effective. One common form of resistance is bypass signaling, wherein RTKs not targeted by an inhibitor can direct reactivation of pathways essential for survival. Although this mechanism of resistance is well appreciated, it is unclear which downstream signaling events are responsible. Here, we apply a combined experimental- and statistical modeling-based approach to identify a set of pathway reactivation essential for RTK-mediated bypass resistance. Differences in the downstream pathway activation provided by particular RTKs lead to qualitative differences in the capacity of each receptor to drive therapeutic resistance. We identify and validate that the JNK pathway is activated during and strongly modulates bypass resistance. These results identify effective therapeutic combinations that block bypass-mediated resistance and provide a basic understanding of this network-level change in kinase dependence that will inform the design of prognostic assays for identifying effective therapeutic combinations in individual patients. Cancer Res; 76(18); 5219-28. ©2016 AACR. PMID:27450453

  16. Augmented vagal heart rate modulation in active hypoestrogenic pre-menopausal women with functional hypothalamic amenorrhoea.

    Science.gov (United States)

    O'Donnell, Emma; Goodman, Jack M; Morris, Beverly L; Floras, John S; Harvey, Paula J

    2015-11-01

    Compared with eumenorrhoeic women, exercise-trained women with functional hypothalamic amenorrhoea (ExFHA) exhibit low heart rates (HRs) and absent reflex renin-angiotensin-system activation and augmentation of their muscle sympathetic nerve response to orthostatic stress. To test the hypothesis that their autonomic HR modulation is altered concurrently, three age-matched (pooled mean, 24 ± 1 years; mean ± S.E.M.) groups of women were studied: active with either FHA (ExFHA; n=11) or eumenorrhoeic cycles (ExOv; n=17) and sedentary with eumenorrhoeic cycles (SedOv; n=17). Blood pressure (BP), HR and HR variability (HRV) in the frequency domain were determined during both supine rest and graded lower body negative pressure (LBNP; -10, -20 and -40 mmHg). Very low (VLF), low (LF) and high (HF) frequency power spectra (ms(2)) were determined and, owing to skewness, log10-transformed. LF/HF ratio and total power (VLF + LF + HF) were calculated. At baseline, HR and systolic BP (SBP) were lower (P0.05). At each stage, HR correlated inversely (Ppost-menopausal women.

  17. A biased activation theory of the cognitive and attentional modulation of emotion.

    Science.gov (United States)

    Rolls, Edmund T

    2013-01-01

    Cognition can influence emotion by biasing neural activity in the first cortical region in which the reward value and subjective pleasantness of stimuli is made explicit in the representation, the orbitofrontal cortex (OFC). The same effect occurs in a second cortical tier for emotion, the anterior cingulate cortex (ACC). Similar effects are found for selective attention, to for example the pleasantness vs. the intensity of stimuli, which modulates representations of reward value and affect in the orbitofrontal and anterior cingulate cortices. The mechanisms for the effects of cognition and attention on emotion are top-down biased competition and top-down biased activation. Affective and mood states can in turn influence memory and perception, by backprojected biasing influences. Emotion-related decision systems operate to choose between gene-specified rewards such as taste, touch, and beauty. Reasoning processes capable of planning ahead with multiple steps held in working memory in the explicit system can allow the gene-specified rewards not to be selected, or to be deferred. The stochastic, noisy, dynamics of decision-making systems in the brain may influence whether decisions are made by the selfish-gene-specified reward emotion system, or by the cognitive reasoning system that explicitly calculates reward values that are in the interests of the individual, the phenotype.

  18. Active optics null test system based on a liquid crystal programmable spatial light modulator.

    Science.gov (United States)

    Ares, Miguel; Royo, Santiago; Sergievskaya, Irina; Riu, Jordi

    2010-11-10

    We present an active null test system adapted to test lenses and wavefronts with complex shapes and strong local deformations. This system provides greater flexibility than conventional static null tests that match only a precisely positioned, individual wavefront. The system is based on a cylindrical Shack-Hartmann wavefront sensor, a commercial liquid crystal programmable phase modulator (PPM), which acts as the active null corrector, enabling the compensation of large strokes with high fidelity in a single iteration, and a spatial filter to remove unmodulated light when steep phase changes are compensated. We have evaluated the PPM's phase response at 635 nm and checked its performance by measuring its capability to generate different amounts of defocus aberration, finding root mean squared errors below λ/18 for spherical wavefronts with peak-to-valley heights of up to 78.7λ, which stands as the limit from which diffractive artifacts created by the PPM have been found to be critical under no spatial filtering. Results of a null test for a complex lens (an ophthalmic customized progressive addition lens) are presented and discussed. PMID:21068848

  19. VAMP-associated protein B (VAPB) promotes breast tumor growth by modulation of Akt activity.

    Science.gov (United States)

    Rao, Meghana; Song, Wenqiang; Jiang, Aixiang; Shyr, Yu; Lev, Sima; Greenstein, David; Brantley-Sieders, Dana; Chen, Jin

    2012-01-01

    VAPB (VAMP- associated protein B) is an ER protein that regulates multiple biological functions. Although aberrant expression of VAPB is associated with breast cancer, its function in tumor cells is poorly understood. In this report, we provide evidence that VAPB regulates breast tumor cell proliferation and AKT activation. VAPB protein expression is elevated in primary and metastatic tumor specimens, and VAPB mRNA expression levels correlated negatively with patient survival in two large breast tumor datasets. Overexpression of VAPB in mammary epithelial cells increased cell growth, whereas VAPB knockdown in tumor cells inhibited cell proliferation in vitro and suppressed tumor growth in orthotopic mammary gland allografts. The growth regulation of mammary tumor cells controlled by VAPB appears to be mediated, at least in part, by modulation of AKT activity. Overexpression of VAPB in MCF10A-HER2 cells enhances phosphorylation of AKT. In contrast, knockdown of VAPB in MMTV-Neu tumor cells inhibited pAKT levels. Pharmacological inhibition of AKT significantly reduced three-dimensional spheroid growth induced by VAPB. Collectively, the genetic, functional and mechanistic analyses suggest a role of VAPB in tumor promotion in human breast cancer.

  20. VAMP-associated protein B (VAPB promotes breast tumor growth by modulation of Akt activity.

    Directory of Open Access Journals (Sweden)

    Meghana Rao

    Full Text Available VAPB (VAMP- associated protein B is an ER protein that regulates multiple biological functions. Although aberrant expression of VAPB is associated with breast cancer, its function in tumor cells is poorly understood. In this report, we provide evidence that VAPB regulates breast tumor cell proliferation and AKT activation. VAPB protein expression is elevated in primary and metastatic tumor specimens, and VAPB mRNA expression levels correlated negatively with patient survival in two large breast tumor datasets. Overexpression of VAPB in mammary epithelial cells increased cell growth, whereas VAPB knockdown in tumor cells inhibited cell proliferation in vitro and suppressed tumor growth in orthotopic mammary gland allografts. The growth regulation of mammary tumor cells controlled by VAPB appears to be mediated, at least in part, by modulation of AKT activity. Overexpression of VAPB in MCF10A-HER2 cells enhances phosphorylation of AKT. In contrast, knockdown of VAPB in MMTV-Neu tumor cells inhibited pAKT levels. Pharmacological inhibition of AKT significantly reduced three-dimensional spheroid growth induced by VAPB. Collectively, the genetic, functional and mechanistic analyses suggest a role of VAPB in tumor promotion in human breast cancer.

  1. Oscillatory Activity in Developing Prefrontal Networks Results from Theta-Gamma-Modulated Synaptic Inputs

    Directory of Open Access Journals (Sweden)

    Sebastian H. Bitzenhofer

    2015-04-01

    Full Text Available The hippocampus-driven entrainment of neonatal prefrontal circuits in theta-gamma oscillations contributes to the maturation of cognitive abilities, yet the underlying synaptic mechanisms are still unknown. Here we combine patch-clamp recordings from morphologically and neurochemically characterized layer V pyramidal neurons and interneurons in vivo, with extracellular recordings from the prelimbic cortex (PL of awake and lightly anesthetized neonatal rats, to elucidate the synaptic framework of early network oscillations. We demonstrate that all neurons spontaneously fire bursts of action potentials. They receive barrages of fast and slow glutamatergic as well as GABAergic synaptic inputs. Oscillatory theta activity results from long-range coupling of pyramidal neurons, presumably within prelimbic-hippocampal circuits, and from local interactions between interneurons. In contrast, beta-low gamma activity requires external glutamatergic drive on prelimbic interneurons. High-frequency oscillations in layer V are independent of interactions at chemical synapses. Thus, specific theta-gamma-modulated synaptic interactions represent the substrate of network oscillations in the developing PL.

  2. A biased activation theory of the cognitive and attentional modulation of emotion

    Directory of Open Access Journals (Sweden)

    Edmund eRolls

    2013-03-01

    Full Text Available Cognition can influence emotion by biasing neural activity in the first cortical region in which the reward value and subjective pleasantness of stimuli is made explicit in the representation, the orbitofrontal cortex. The same effect occurs in a second cortical tier for emotion, the anterior cingulate cortex. Similar effects are found for selective attention, to for example the pleasantness vs the intensity of stimuli, which modulates representations of reward value and affect in the orbitofrontal and anterior cingulate cortices. The mechanisms for the effects of cognition and attention on emotion are top-down biased competition and top-down biased activation. Affective and mood states can in turn influence memory and perception, by backprojected biasing influences. Emotion-related decision systems operate to choose between gene-specified rewards such as taste, touch, and beauty. Reasoning processes capable of planning ahead with multiple steps held in working memory in the explicit system can allow the gene-specified rewards not to be selected, or to be deferred. The stochastic, noisy, dynamics of decision-making systems in the brain may influence whether decisions are made by the selfish-gene-specified reward emotion system, or by the cognitive reasoning system that explicitly calculates reward values that are in the interests of the individual, the phenotype.

  3. Cannabinoid modulation of prefrontal-limbic activation during fear extinction learning and recall in humans.

    Science.gov (United States)

    Rabinak, Christine A; Angstadt, Mike; Lyons, Maryssa; Mori, Shoko; Milad, Mohammed R; Liberzon, Israel; Phan, K Luan

    2014-09-01

    Pre-extinction administration of Δ9-tetrahydrocannibinol (THC) facilitates recall of extinction in healthy humans, and evidence from animal studies suggest that this likely occurs via enhancement of the cannabinoid system within the ventromedial prefrontal cortex (vmPFC) and hippocampus (HIPP), brain structures critical to fear extinction. However, the effect of cannabinoids on the underlying neural circuitry of extinction memory recall in humans has not been demonstrated. We conducted a functional magnetic resonance imaging (fMRI) study using a randomized, double-blind, placebo-controlled, between-subjects design (N=14/group) coupled with a standard Pavlovian fear extinction paradigm and an acute pharmacological challenge with oral dronabinol (synthetic THC) in healthy adult volunteers. We examined the effects of THC on vmPFC and HIPP activation when tested for recall of extinction learning 24 h after extinction learning. Compared to subjects who received placebo, participants who received THC showed increased vmPFC and HIPP activation to a previously extinguished conditioned stimulus (CS+E) during extinction memory recall. This study provides the first evidence that pre-extinction administration of THC modulates prefrontal-limbic circuits during fear extinction in humans and prompts future investigation to test if cannabinoid agonists can rescue or correct the impaired behavioral and neural function during extinction recall in patients with PTSD. Ultimately, the cannabinoid system may serve as a promising target for innovative intervention strategies (e.g. pharmacological enhancement of exposure-based therapy) in PTSD and other fear learning-related disorders.

  4. Anthropogenically-Induced Superficial Seismic Activity Modulated By Slow-Slip Events in Guerrero, Mexico

    Science.gov (United States)

    Frank, W.; Shapiro, N.; Husker, A. L.; Kostoglodov, V.; Campillo, M.

    2014-12-01

    We use the data of the MASE seismic experiment operated during 2.5 years in Guerrero, Mexico to create a large catalog of seismic multiplets. This catalog is dominated by families of Low-Frequency Earthquakes (LFE) occurring in vicinity of the main subduction interface. In addition to more than one thousand LFE families, we detected nine repeating seismic event families that are located in the upper crust and are anthropogenically induced (AI) by mining blasts. Analysis of the recurrence of these AI events in time shows that their activity significantly increases during the strong Slow-Slip Event (SSE) in 2006. Modeled static stress perturbations induced by the SSE at the surface are ~5 kPa that is on the same order of magnitude as dynamic stress perturbations observed to trigger other low stress drop phenomena, such as tectonic tremor. We propose therefore that strong SSEs in Guerrero impose an extensional regime throughout the continental crust, modifying the stress field near the surface and increasing AI activity. This modulation of the recurrence of the crustal seismic events by the SSE-induced stress might be related to another recent observation: the SSE-induced reduction of seismic velocities linked to nonlinear elastic effects caused by opening of cracks (Rivet et al., 2011, 2014).

  5. Active optics null test system based on a liquid crystal programmable spatial light modulator

    Energy Technology Data Exchange (ETDEWEB)

    Ares, Miguel; Royo, Santiago; Sergievskaya, Irina; Riu, Jordi

    2010-11-10

    We present an active null test system adapted to test lenses and wavefronts with complex shapes and strong local deformations. This system provides greater flexibility than conventional static null tests that match only a precisely positioned, individual wavefront. The system is based on a cylindrical Shack-Hartmann wavefront sensor, a commercial liquid crystal programmable phase modulator (PPM), which acts as the active null corrector, enabling the compensation of large strokes with high fidelity in a single iteration, and a spatial filter to remove unmodulated light when steep phase changes are compensated. We have evaluated the PPM's phase response at 635 nm and checked its performance by measuring its capability to generate different amounts of defocus aberration, finding root mean squared errors below {lambda}/18 for spherical wavefronts with peak-to-valley heights of up to 78.7{lambda}, which stands as the limit from which diffractive artifacts created by the PPM have been found to be critical under no spatial filtering. Results of a null test for a complex lens (an ophthalmic customized progressive addition lens) are presented and discussed.

  6. Polyamines cause plasma membrane depolarization, activate Ca2+-, and modulate H+-ATPase pump activity in pea roots.

    Science.gov (United States)

    Pottosin, Igor; Velarde-Buendía, Ana María; Bose, Jayakumar; Fuglsang, Anja T; Shabala, Sergey

    2014-06-01

    Polyamines regulate a variety of cation and K(+) channels, but their potential effects on cation-transporting ATPases are underexplored. In this work, noninvasive microelectrode ion flux estimation and conventional microelectrode techniques were applied to study the effects of polyamines on Ca(2+) and H(+) transport and membrane potential in pea roots. Externally applied spermine or putrescine (1mM) equally activated eosin yellow (EY)-sensitive Ca(2+) pumping across the root epidermis and caused net H(+) influx or efflux. Proton influx induced by spermine was suppressed by EY, supporting the mechanism in which Ca(2+) pump imports 2 H(+) per each exported Ca(2+). Suppression of the Ca(2+) pump by EY diminished putrescine-induced net H(+) efflux instead of increasing it. Thus, activities of Ca(2+) and H(+) pumps were coupled, likely due to the H(+)-pump inhibition by intracellular Ca(2+). Additionally, spermine but not putrescine caused a direct inhibition of H(+) pumping in isolated plasma membrane vesicles. Spermine, spermidine, and putrescine (1mM) induced membrane depolarization by 70, 50, and 35 mV, respectively. Spermine-induced depolarization was abolished by cation transport blocker Gd(3+), was insensitive to anion channels' blocker niflumate, and was dependent on external Ca(2+). Further analysis showed that uptake of polyamines but not polyamine-induced cationic (K(+)+Ca(2+)+H(+)) fluxes were a main cause of membrane depolarization. Polyamine increase is a common component of plant stress responses. Activation of Ca(2+) efflux by polyamines and contrasting effects of polyamines on net H(+) fluxes and membrane potential can contribute to Ca(2+) signalling and modulate a variety of transport processes across the plasma membrane under stress. PMID:24723394

  7. The Self-Pleasantness Judgment Modulates the Encoding Performance and the Default Mode Network Activity.

    Science.gov (United States)

    Perrone-Bertolotti, Marcela; Cerles, Melanie; Ramdeen, Kylee T; Boudiaf, Naila; Pichat, Cedric; Hot, Pascal; Baciu, Monica

    2016-01-01

    In this functional magnetic resonance imaging (fMRI) study, we evaluated the effect of self-relevance on cerebral activity and behavioral performance during an incidental encoding task. Recent findings suggest that pleasantness judgments reliably induce self-oriented (internal) thoughts and increase default mode network (DMN) activity. We hypothesized that this increase in DMN activity would relate to increased memory recognition for pleasantly-judged stimuli (which depend on internally-oriented attention) but decreased recognition for unpleasantly-judged items (which depend on externally-oriented attention). To test this hypothesis, brain activity was recorded from 21 healthy participants while they performed a pleasantness judgment requiring them to rate visual stimuli as pleasant or unpleasant. One hour later, participants performed a surprise memory recognition test outside of the scanner. Thus, we were able to evaluate the effects of pleasant and unpleasant judgments on cerebral activity and incidental encoding. The behavioral results showed that memory recognition was better for items rated as pleasant than items rated as unpleasant. The whole brain analysis indicated that successful encoding (SE) activates the inferior frontal and lateral temporal cortices, whereas unsuccessful encoding (UE) recruits two key medial posterior DMN regions, the posterior cingulate cortex (PCC) and precuneus (PCU). A region of interest (ROI) analysis including classic DMN areas, revealed significantly greater involvement of the medial prefrontal cortex (mPFC) in pleasant compared to unpleasant judgments, suggesting this region's involvement in self-referential (i.e., internal) processing. This area may be responsible for the greater recognition performance seen for pleasant stimuli. Furthermore, a significant interaction between the encoding performance (successful vs. unsuccessful) and pleasantness was observed for the PCC, PCU and inferior frontal gyrus (IFG). Overall, our

  8. CHD7 targets active gene enhancer elements to modulate ES cell-specific gene expression.

    Directory of Open Access Journals (Sweden)

    Michael P Schnetz

    2010-07-01

    Full Text Available CHD7 is one of nine members of the chromodomain helicase DNA-binding domain family of ATP-dependent chromatin remodeling enzymes found in mammalian cells. De novo mutation of CHD7 is a major cause of CHARGE syndrome, a genetic condition characterized by multiple congenital anomalies. To gain insights to the function of CHD7, we used the technique of chromatin immunoprecipitation followed by massively parallel DNA sequencing (ChIP-Seq to map CHD7 sites in mouse ES cells. We identified 10,483 sites on chromatin bound by CHD7 at high confidence. Most of the CHD7 sites show features of gene enhancer elements. Specifically, CHD7 sites are predominantly located distal to transcription start sites, contain high levels of H3K4 mono-methylation, found within open chromatin that is hypersensitive to DNase I digestion, and correlate with ES cell-specific gene expression. Moreover, CHD7 co-localizes with P300, a known enhancer-binding protein and strong predictor of enhancer activity. Correlations with 18 other factors mapped by ChIP-seq in mouse ES cells indicate that CHD7 also co-localizes with ES cell master regulators OCT4, SOX2, and NANOG. Correlations between CHD7 sites and global gene expression profiles obtained from Chd7(+/+, Chd7(+/-, and Chd7(-/- ES cells indicate that CHD7 functions at enhancers as a transcriptional rheostat to modulate, or fine-tune the expression levels of ES-specific genes. CHD7 can modulate genes in either the positive or negative direction, although negative regulation appears to be the more direct effect of CHD7 binding. These data indicate that enhancer-binding proteins can limit gene expression and are not necessarily co-activators. Although ES cells are not likely to be affected in CHARGE syndrome, we propose that enhancer-mediated gene dysregulation contributes to disease pathogenesis and that the critical CHD7 target genes may be subject to positive or negative regulation.

  9. Belief about Nicotine Modulates Subjective Craving and Insula Activity in Deprived Smokers

    Science.gov (United States)

    Gu, Xiaosi; Lohrenz, Terry; Salas, Ramiro; Baldwin, Philip R.; Soltani, Alireza; Kirk, Ulrich; Cinciripini, Paul M.; Montague, P. Read

    2016-01-01

    Little is known about the specific neural mechanisms through which cognitive factors influence craving and associated brain responses, despite the initial success of cognitive therapies in treating drug addiction. In this study, we investigated how cognitive factors such as beliefs influence subjective craving and neural activities in nicotine-addicted individuals using model-based functional magnetic resonance imaging (fMRI) and neuropharmacology. Deprived smokers (N = 24) participated in a two-by-two balanced placebo design, which crossed beliefs about nicotine (told “nicotine” vs. told “no nicotine”) with the nicotine content in a cigarette (nicotine vs. placebo) which participants smoked immediately before performing a fMRI task involving reward learning. Subjects’ reported craving was measured both before smoking and after the fMRI session. We found that first, in the presence of nicotine, smokers demonstrated significantly reduced craving after smoking when told “nicotine in cigarette” but showed no change in craving when told “no nicotine.” Second, neural activity in the insular cortex related to craving was only significant when smokers were told “nicotine” but not when told “no nicotine.” Both effects were absent in the placebo condition. Third, insula activation related to computational learning signals was modulated by belief about nicotine regardless of nicotine’s presence. These results suggest that belief about nicotine has a strong impact on subjective craving and insula responses related to both craving and learning in deprived smokers, providing insights into the complex nature of belief–drug interactions. PMID:27468271

  10. Testosterone administration in females modulates moral judgment and patterns of brain activation and functional connectivity.

    Science.gov (United States)

    Chen, Chenyi; Decety, Jean; Huang, Pin-Chia; Chen, Chin-Yau; Cheng, Yawei

    2016-10-01

    Morality is defined as prescriptive norms regarding how people should treat one another, and includes concepts of fairness, justice, and rights. One recent study with moral dilemmas suggested that testosterone administration increases utilitarian judgments, which depends on second-to-fourth (2D: 4D) digit ratio, as a proxy of prenatal priming. However, the neural mechanism by which acute testosterone modulates moral reasoning remains to be determined. Using a placebo-controlled within-subject design, the current study examined the neuromodulatory effect of testosterone in young females by combining moral dilemmas, 2D: 4D, functional magnetic resonance imaging (fMRI), and subjective ratings of morally laden scenarios. Results showed that testosterone administration elicited more utilitarian responses to evitable dilemmas. The high 2D: 4D group scored more punishments for moral evaluation, whereas the low 2D: 4D group did the opposite. The activity in the amygdala, anterior insular cortex, and dorsolateral prefrontal cortex (dlPFC) was increased when participants evaluated morally unorthodox actions (intentional harm). The activity in the posterior superior temporal sulcus/temporoparietal junction (pSTS/TPJ) to accidental harm was decreased, specific to the high 2D: 4D group. The functional connectivity between the amygdala and dlPFC was reduced. The activity in the pSTS/TPJ to perceived agency predicted utilitarian responses to evitable dilemmas. The findings demonstrate the acute effect of testosterone on neural responses associated with moral judgment, and provide evidence to support that prenatal sex-hormones priming could be important for early neurodevelopment, which plays a crucial role in the neural and behavioral manifestations of testosterone on adult moral reasoning. Hum Brain Mapp 37:3417-3430, 2016. © 2016 Wiley Periodicals, Inc. PMID:27145084

  11. Bhas 42 cell transformation activity of cigarette smoke condensate is modulated by selenium and arsenic.

    Science.gov (United States)

    Han, Sung Gu; Pant, Kamala; Bruce, Shannon W; Gairola, C Gary

    2016-04-01

    Cigarette smoking remains a major health risk worldwide. Development of newer tobacco products requires the use of quantitative toxicological assays. Recently, v-Ha-ras transfected BALB/c3T3 (Bhas 42) cell transformation assay was established that simulates the two-stage animal tumorigenesis model and measures tumor initiating and promoting activities of chemicals. The present study was performed to assess the feasibility of using this Bhas 42 cell transformation assay to determine the initiation and promotion activities of cigarette smoke condensate (CSC) and its water soluble fraction. Further, the modulating effects of selenium and arsenic on cigarette smoke-induced cell transformation were investigated. Dimethyl sulfoxide (DMSO) and water extracts of CSC (CSC-D and CSC-W, respectively) were tested at concentrations of 2.5-40 µg mL(-1) in the initiation or promotion assay formats. Initiation protocol of the Bhas 42 assay showed a 3.5-fold increase in transformed foci at 40 µg mL(-1) of CSC-D but not CSC-W. The promotion phase of the assay yielded a robust dose response with CSC-D (2.5-40 µg mL(-1)) and CSC-W (20-40 µg mL(-1)). Preincubation of cells with selenium (100 nM) significantly reduced CSC-induced increase in cell transformation in initiation assay. Co-treatment of cells with a sub-toxic dose of arsenic significantly enhanced cell transformation activity of CSC-D in promotion assay. The results suggest a presence of both water soluble and insoluble tumor promoters in CSC, a role of oxidative stress in CSC-induced cell transformation, and usefulness of Bhas 42 cell transformation assay in comparing tobacco product toxicities and in studying the mechanisms of tobacco carcinogenesis.

  12. Chronic activation of NPFFR2 stimulates the stress-related depressive behaviors through HPA axis modulation.

    Science.gov (United States)

    Lin, Ya-Tin; Liu, Tzu-Yu; Yang, Ching-Yao; Yu, Yu-Lian; Chen, Ting-Chun; Day, Yuan-Ji; Chang, Che-Chien; Huang, Guo-Jen; Chen, Jin-Chung

    2016-09-01

    Neuropeptide FF (NPFF) is a morphine-modulating peptide that regulates the analgesic effect of opioids, and also controls food consumption and cardiovascular function through its interaction with two cognate receptors, NPFFR1 and NPFFR2. In the present study, we explore a novel modulatory role for NPFF-NPFFR2 in stress-related depressive behaviors. In a mouse model of chronic mild stress (CMS)-induced depression, the expression of NPFF significantly increased in the hypothalamus, hippocampus, medial prefrontal cortex (mPFC) and amygdala. In addition, transgenic (Tg) mice over-expressing NPFFR2 displayed clear depression and anxiety-like behaviors with hyperactivity in the hypothalamic-pituitary-adrenal (HPA) axis, reduced expression of glucocorticoid receptor (GR) and neurogenesis in the hippocampus. Furthermore, acute treatment of NPFFR2 agonists in wild-type (WT) mice enhanced the activity of the HPA axis, and chronic administration resulted in depressive and anxiety-like behaviors. Chronic stimulation of NPFFR2 also decreased the expression of hippocampal GR and led to persistent activation of the HPA axis. Strikingly, bilateral intra-paraventricular nucleus (PVN) injection of NPFFR2 shRNA predominately inhibits the depressive-like behavior in CMS-exposed mice. Antidepressants, fluoxetine and ketamine, effectively relieved the depressive behaviors of NPFFR2-Tg mice. We speculate that persistent NPFFR2 activation, in particular in the hypothalamus, up-regulates the HPA axis and results in long-lasting increases in circulating corticosterone (CORT), consequently damaging hippocampal function. This novel role of NPFFR2 in regulating the HPA axis and hippocampal function provides a new avenue for combating depression and anxiety-like disorder. PMID:27243477

  13. Chronic activation of NPFFR2 stimulates the stress-related depressive behaviors through HPA axis modulation.

    Science.gov (United States)

    Lin, Ya-Tin; Liu, Tzu-Yu; Yang, Ching-Yao; Yu, Yu-Lian; Chen, Ting-Chun; Day, Yuan-Ji; Chang, Che-Chien; Huang, Guo-Jen; Chen, Jin-Chung

    2016-09-01

    Neuropeptide FF (NPFF) is a morphine-modulating peptide that regulates the analgesic effect of opioids, and also controls food consumption and cardiovascular function through its interaction with two cognate receptors, NPFFR1 and NPFFR2. In the present study, we explore a novel modulatory role for NPFF-NPFFR2 in stress-related depressive behaviors. In a mouse model of chronic mild stress (CMS)-induced depression, the expression of NPFF significantly increased in the hypothalamus, hippocampus, medial prefrontal cortex (mPFC) and amygdala. In addition, transgenic (Tg) mice over-expressing NPFFR2 displayed clear depression and anxiety-like behaviors with hyperactivity in the hypothalamic-pituitary-adrenal (HPA) axis, reduced expression of glucocorticoid receptor (GR) and neurogenesis in the hippocampus. Furthermore, acute treatment of NPFFR2 agonists in wild-type (WT) mice enhanced the activity of the HPA axis, and chronic administration resulted in depressive and anxiety-like behaviors. Chronic stimulation of NPFFR2 also decreased the expression of hippocampal GR and led to persistent activation of the HPA axis. Strikingly, bilateral intra-paraventricular nucleus (PVN) injection of NPFFR2 shRNA predominately inhibits the depressive-like behavior in CMS-exposed mice. Antidepressants, fluoxetine and ketamine, effectively relieved the depressive behaviors of NPFFR2-Tg mice. We speculate that persistent NPFFR2 activation, in particular in the hypothalamus, up-regulates the HPA axis and results in long-lasting increases in circulating corticosterone (CORT), consequently damaging hippocampal function. This novel role of NPFFR2 in regulating the HPA axis and hippocampal function provides a new avenue for combating depression and anxiety-like disorder.

  14. Identification of anabolic selective androgen receptor modulators with reduced activities in reproductive tissues and sebaceous glands.

    Science.gov (United States)

    Schmidt, Azriel; Harada, Shun-Ichi; Kimmel, Donald B; Bai, Chang; Chen, Fang; Rutledge, Su Jane; Vogel, Robert L; Scafonas, Angela; Gentile, Michael A; Nantermet, Pascale V; McElwee-Witmer, Sheila; Pennypacker, Brenda; Masarachia, Patricia; Sahoo, Soumya P; Kim, Yuntae; Meissner, Robert S; Hartman, George D; Duggan, Mark E; Rodan, Gideon A; Towler, Dwight A; Ray, William J

    2009-12-25

    Androgen replacement therapy is a promising strategy for the treatment of frailty; however, androgens pose risks for unwanted effects including virilization and hypertrophy of reproductive organs. Selective Androgen Receptor Modulators (SARMs) retain the anabolic properties of androgens in bone and muscle while having reduced effects in other tissues. We describe two structurally similar 4-aza-steroidal androgen receptor (AR) ligands, Cl-4AS-1, a full agonist, and TFM-4AS-1, which is a SARM. TFM-4AS-1 is a potent AR ligand (IC(50), 38 nm) that partially activates an AR-dependent MMTV promoter (55% of maximal response) while antagonizing the N-terminal/C-terminal interaction within AR that is required for full receptor activation. Microarray analyses of MDA-MB-453 cells show that whereas Cl-4AS-1 behaves like 5alpha-dihydrotestosterone (DHT), TFM-4AS-1 acts as a gene-selective agonist, inducing some genes as effectively as DHT and others to a lesser extent or not at all. This gene-selective agonism manifests as tissue-selectivity: in ovariectomized rats, Cl-4AS-1 mimics DHT while TFM-4AS-1 promotes the accrual of bone and muscle mass while having reduced effects on reproductive organs and sebaceous glands. Moreover, TFM-4AS-1 does not promote prostate growth and antagonizes DHT in seminal vesicles. To confirm that the biochemical properties of TFM-4AS-1 confer tissue selectivity, we identified a structurally unrelated compound, FTBU-1, with partial agonist activity coupled with antagonism of the N-terminal/C-terminal interaction and found that it also behaves as a SARM. TFM-4AS-1 and FTBU-1 represent two new classes of SARMs and will allow for comparative studies aimed at understanding the biophysical and physiological basis of tissue-selective effects of nuclear receptor ligands.

  15. Probiotic Lactobacilli Modulate Staphylococcus aureus-Induced Activation of Conventional and Unconventional T cells and NK Cells.

    Science.gov (United States)

    Johansson, Maria A; Björkander, Sophia; Mata Forsberg, Manuel; Qazi, Khaleda Rahman; Salvany Celades, Maria; Bittmann, Julia; Eberl, Matthias; Sverremark-Ekström, Eva

    2016-01-01

    Lactobacilli are probiotic commensal bacteria and potent modulators of immunity. When present in the gut or supplemented as probiotics, they beneficially modulate ex vivo immune responsiveness. Further, factors derived from several lactobacilli strains act immune regulatory in vitro. In contrast, Staphylococcus aureus (S. aureus) is known to induce excessive T cell activation. In this study, we aimed to investigate S. aureus-induced activation of human mucosal-associated invariant T cells (MAIT cells), γδ T cells, NK cells, as well as of conventional CD4(+) and CD8(+) T cells in vitro. Further, we investigated if lactobacilli-derived factors could modulate their activation. PBMC were cultured with S. aureus 161:2 cell-free supernatants (CFS), staphylococcal enterotoxin A or CD3/CD28-beads alone, or in combination with Lactobacillus rhamnosus GG-CFS or Lactobacillus reuteri DSM 17938-CFS and activation of T and NK cells was evaluated. S. aureus-CFS induced IFN-γ and CD107a expression as well as proliferation. Costimulation with lactobacilli-CFS dampened lymphocyte-activation in all cell types analyzed. Preincubation with lactobacilli-CFS was enough to reduce subsequent activation, and the absence of APC or APC-derived IL-10 did not prevent lactobacilli-mediated dampening. Finally, lactate selectively dampened activation of unconventional T cells and NK cells. In summary, we show that molecules present in the lactobacilli-CFS are able to directly dampen in vitro activation of conventional and unconventional T cells and of NK cells. This study provides novel insights on the immune-modulatory nature of probiotic lactobacilli and suggests a role for lactobacilli in the modulation of induced T and NK cell activation.

  16. Tonic activation of peripheral chemosensory function modulates vagal heart rate control in heart failure patients with paroxysmal atrialfibrillation

    NARCIS (Netherlands)

    Drexel, T.; Eickholt, C.; Muehlsteff, J.; Ritz, A.; Siekiera, M.; Kirmanoglou, K.; Shin, D.I.; Balzer, J.; Rassaf, T.; Kelm, M.; Meyer, C.

    2012-01-01

    Tonic activation of peripheral chemosensory function modulates vagalheart rate control in heart failure patients with paroxysmal atrialfibrillation Thomas Drexel1, Christian Eickholt1, Jens Mühlsteff2,Anita Ritz1, Markus Siekiera1, Kiriakos Kirmanoglou1, Dong-In Shin1,Jan Balzer1, Tienush Rassaf1, M

  17. Modulation of Posterior Alpha Activity by Spatial Attention Allows for Controlling A Continuous Brain-Computer Interface

    NARCIS (Netherlands)

    Horschig, J.M.; Oosterheert, W.; Oostenveld, R.; Jensen, O.

    2014-01-01

    Here we report that the modulation of alpha activity by covert attention can be used as a control signal in an online brain-computer interface, that it is reliable, and that it is robust. Subjects were instructed to orient covert visual attention to the left or right hemifield. We decoded the direct

  18. Two dimensional distribution of tritium breeding ratio and induced activity in Japanese water cooled and helium cooled test blanket modules

    International Nuclear Information System (INIS)

    Solid breeder blankets are regarded as a near-at-hand blanket concept for a fusion power demonstration plant in Japan. Test blanket module (TBM) to be tested in ITER is the most important milestone to establish the fusion demonstration blanket. For the candidate TBM's, two types of TBM, water cooled solid breeder TBM, and a helium gas cooled solid breeder TBM have been proposed and designed in JAERI. For detailed performance study under operation and after shut down, detailed neutronics analysis gives the most important design conditions, such as, distribution of tritium breeding ratio, nuclear heating rate during operation, and induced activation and decay heat after termination of irradiation. In the analysis, neutron and gamma transportation was calculated by two dimensional analysis code, DOT3.5, for two TBMs. Nuclear reaction rate and induced activation rate were evaluated by APPLE-3 and ACT-4, respectively. The analysis model included configurations of thermo-mechanical test modules and surrounding common frames for both of He cooled and water cooled TBMs. By the neutronics analysis, TBR and contact dose rate by induced activation till one year after termination of the module testing have been evaluated. For the evaluation of induced activation level change and decay heat change, the transient decreases in one year after termination of the module testing have been calculated. The time duration of the module testing before termination of testing is assumed to be 133 continuous days of full power operation. The result of TBR analysis showed that TBR distribution in the toroidal direction of TBM is not significant, however, the neutron flux decreases in the region of sidewall of common frame made of SS and water. This result shows that there is relatively large neutron loss from the TBM to the common frame. Thus, it is considered that the TBR value observed in the TBM testing may be smaller than the estimation by one dimensional neutronics analysis which does

  19. CITED2 modulates estrogen receptor transcriptional activity in breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Lau, Wen Min; Doucet, Michele; Huang, David; Weber, Kristy L.; Kominsky, Scott L., E-mail: kominsc@jhmi.edu

    2013-07-26

    Highlights: •The effects of elevated CITED2 on ER function in breast cancer cells are examined. •CITED2 enhances cell growth in the absence of estrogen and presence of tamoxifen. •CITED2 functions as a transcriptional co-activator of ER in breast cancer cells. -- Abstract: Cbp/p300-interacting transactivator with Glu/Asp-rich carboxy-terminal domain 2 (CITED2) is a member of the CITED family of non-DNA binding transcriptional co-activators of the p300/CBP-mediated transcription complex. Previously, we identified CITED2 as being overexpressed in human breast tumors relative to normal mammary epithelium. Upon further investigation within the estrogen receptor (ER)-positive subset of these breast tumor samples, we found that CITED2 mRNA expression was elevated in those associated with poor survival. In light of this observation, we investigated the effect of elevated CITED2 levels on ER function. While ectopic overexpression of CITED2 in three ER-positive breast cancer cell lines (MCF-7, T47D, and CAMA-1) did not alter cell proliferation in complete media, growth was markedly enhanced in the absence of exogenous estrogen. Correspondingly, cells overexpressing CITED2 demonstrated reduced sensitivity to the growth inhibitory effects of the selective estrogen receptor modulator, 4-hydroxytamoxifen. Subsequent studies revealed that basal ER transcriptional activity was elevated in CITED2-overexpressing cells and was further increased upon the addition of estrogen. Similarly, basal and estrogen-induced expression of the ER-regulated genes trefoil factor 1 (TFF1) and progesterone receptor (PGR) was higher in cells overexpressing CITED2. Concordant with this observation, ChIP analysis revealed higher basal levels of CITED2 localized to the TFF-1 and PGR promoters in cells with ectopic overexpression of CITED2, and these levels were elevated further in response to estrogen stimulation. Taken together, these data indicate that CITED2 functions as a transcriptional co-activator

  20. Differential water permeability and regulation of three aquaporin 4 isoforms

    DEFF Research Database (Denmark)

    Fenton, Robert A.; Moeller, Hanne B; Zelenina, Marina;

    2010-01-01

    Aquaporin 4 (AQP4) is expressed in the perivascular glial endfeet and is an important pathway for water during formation and resolution of brain edema. In this study, we examined the functional properties and relative unit water permeability of three functional isoforms of AQP4 expressed...... in the brain (M1, M23, Mz). The M23 isoform gave rise to square arrays when expressed in Xenopus laevis oocytes. The relative unit water permeability differed significantly between the isoforms in the order of M1 > Mz > M23. None of the three isoforms were permeable to small osmolytes nor were they affected...... by changes in external K(+) concentration. Upon protein kinase C (PKC) activation, oocytes expressing the three isoforms demonstrated rapid reduction of water permeability, which correlated with AQP4 internalization. The M23 isoform was more sensitive to PKC regulation than the longer isoforms...

  1. Quantifying tight-gas sandstone permeability via critical path analysis

    Science.gov (United States)

    Ghanbarian, Behzad; Torres-Verdín, Carlos; Skaggs, Todd H.

    2016-06-01

    Rock permeability has been actively investigated over the past several decades by the geosciences community. However, its accurate estimation still presents significant technical challenges, particularly in spatially complex rocks. In this short communication, we apply critical path analysis (CPA) to estimate permeability in porous rocks from measured mercury intrusion porosimetry and electrical conductivity data. Theoretical estimations of various CPA-based models are then compared to experimental measurements using eighteen tight-gas sandstones. Except for two of the samples, we find permeability estimations performed with the Skaggs model (assuming pore diameter independent of its length) more accurate than other models, within a factor of two of the measured permeabilities. We discuss some plausible sources of the uncertainties.

  2. Scorpion venom component III inhibits cell proliferation by modulating NF-κB activation in human leukemia cells

    OpenAIRE

    SONG, XIANGFENG; Zhang, Guojun; SUN, AIPING; Guo, Jiqiang; TIAN, ZHONGWEI; Wang, Hui; Liu, Yufeng

    2012-01-01

    Scorpion venom contains various groups of compounds that exhibit anticancer activity against a variety of malignancies through a poorly understood mechanism. While the aberrant activation of nuclear factor κB (NF-κB) has been linked with hematopoietic malignancies, we hypothesized that scorpion venom mediates its effects by modulating the NF-κB signaling pathway. In the present study, we examined the effects of scorpion venom component III (SVCIII) on the human leukemia cell lines THP-1 and J...

  3. Planning Educational Activities and Teaching Strategies on Constructing a Conservation Educational Module

    Science.gov (United States)

    Dimopoulos, Dimitrios I.; Paraskevopoulos, Stefanos; Pantis, John D.

    2009-01-01

    This paper describes the design of an educational module which aims to raise awareness and change the attitudes of elementary school students about focal endangered species in protected areas. The proposed design builds on, and extends the General Teaching Model. The educational module which was developed through this approach was pilot-tested in…

  4. Balancing bilateral sensory activity: callosal processing modulates sensory transmission through the contralateral thalamus by altering the response threshold.

    Science.gov (United States)

    Li, Lu; Ebner, Ford F

    2006-07-01

    Rats tactually explore a nearly spherical space field around their heads with their whiskers. The information sampled by the two sets of whiskers is integrated bilaterally at the cortical level in an activity dependent manner via the corpus callosum. We have recently shown that sensory activity in one barrel field cortex (BFC) modulates the processing of incoming sensory information to the other BFC. Whether interhemispheric integration is dynamically linked with corticothalamic modulation of incoming sensory activity is an important hypothesis to test, since subcortical relay neurons are directly modulated by cortical neurons through top-down processes. In the present study, we compared the direct sensory responses of single thalamic relay neurons under urethane anesthesia before and after inactivating the BFC contralateral to a thalamic neuron. The data show that silencing one BFC reduces response magnitude in contralateral thalamic relay neurons, significantly and reversibly, in response to test stimuli applied to the principal whisker at two times response threshold (2T) intensity for each unit. Neurons in the ventral posterior medial (VPM) nucleus and the medial division of the posterior nucleus (POm) react in a similar manner, although POm neurons are more profoundly depressed by inactivation of the contralateral BFC than VPM neurons. The results support the novel idea that the subcortical relay of sensory information to one hemisphere is strongly modulated by activity levels in the contralateral as well as in the ipsilateral SI cortex. The mechanism of the modulation appears to be based on shifting the stimulus-response curves of thalamic neurons, thereby rendering them more or less sensitive to sensory stimuli. We conclude that global sensory processing is created by combining activity in each cerebral hemisphere and continually balancing the flow of information to cortex by adjusting the responsiveness of ascending sensory pathways.

  5. 论情感教育在幼儿音乐活动中的渗透%Affective education permeability in children music activities

    Institute of Scientific and Technical Information of China (English)

    高英杰

    2013-01-01

      The music is the most direct expression of human feelings in art, it does not require any media, than the more direct language. Take music activities of preschool children as an example, discuss from the music activities and children's age characteristics, the penetration in emotional education of music activities.%  音乐是最能直接表达人类感情的艺术,它不需要任何媒介,比语言更为直接。本文以学龄前幼儿音乐活动为例,从音乐活动形式、幼儿年龄特点等方面对情感教育在幼儿音乐活动中的渗透进行论述。

  6. Modulation of activity of the adipocyte aquaglyceroporin channel by plant extracts.

    Science.gov (United States)

    Cals-Grierson, M-M

    2007-02-01

    The plasma membrane protein, aquaglyceroporin-7 (AQP7) is exclusively expressed in adipocytes and appears to be a channel for glycerol entry and exit. It is possible that by facilitating the opening of these channels, the loss of intracellular glycerol could be encouraged and thus reduce the size of the lipid reservoir. Human preadipocytes and mouse 3T3-L1 preadipocytes were induced to develop an adipocytic phenotype by culture in a semi-defined medium. After 7 days, the expression of AQP7 message had increased by 37-fold, a level which could be further up-regulated by troglitazone or retinoic acid or down-regulated by insulin. The mature adipocytes also expressed immunoreactive aquaporin (AQP) channel protein as assessed by immunocytochemistry and Western blot. The addition of adrenaline to the culture medium stimulated the release of glycerol (blockable by HgCl(2)). Plant extracts, with potential anti-cellulite properties, were tested for their effect on glycerol elimination. These included wild yam root (Dioscorea opposita), cocoa bean (Theobroma cacao), horse chestnut tree (Aesculus hippocastanum) seed and bark and tomato (Solanum lycopersicum). Of these, D. opposita appeared to induce a dose-dependent glycerol release. The results show that our assay can help to identify modulators of AQP7 channel expression and activation in adipocytes. PMID:18489306

  7. Modulation of Irisin and Physical Activity on Executive Functions in Obesity and Morbid obesity.

    Science.gov (United States)

    Fagundo, A B; Jiménez-Murcia, S; Giner-Bartolomé, C; Agüera, Z; Sauchelli, S; Pardo, M; Crujeiras, A B; Granero, R; Baños, R; Botella, C; de la Torre, R; Fernández-Real, J M; Fernández-García, J C; Frühbeck, G; Rodríguez, A; Mallorquí-Bagué, N; Tárrega, S; Tinahones, F J; Rodriguez, R; Ortega, F; Menchón, J M; Casanueva, F F; Fernández-Aranda, F

    2016-01-01

    Whether the executive profile is different between obesity (OB) and morbid obesity (MO) remains unclear. Recent evidence suggests that physical activity (PA) can act as a cognitive enhancer. Irisin is a recently discovered hormone associated with some of the positive effects of PA. The objective of the study was to investigate the executive profile in OB and MO, and to explore the role of PA and irisin. 114 participants were included (21 OB, 44 MO and 49 healthy controls-HC) in the study and assessed with the Wisconsin Card Sorting Test, Stroop Color and Word Test, and Iowa Gambling Task. All participants were female, aged between 18 and 60 years. Results showed a similar dysfunctional profile on decision making in OB and MO compared with HC. Thus, no specific neuropsychological profiles between OB and MO can be clearly observed in our sample. However, a negative correlation was found between irisin and executive functioning. These results demonstrate a specific executive profile in OB and a relevant and negative modulation of irisin on executive functioning. Although irisin might be a promising target for the treatment of obesity, its effects on cognition might be considered when thinking about its therapeutic use. PMID:27476477

  8. Event-related power modulations of brain activity preceding visually guided saccades.

    Science.gov (United States)

    Brignani, Debora; Maioli, Claudio; Maria Rossini, Paolo; Miniussi, Carlo

    2007-03-01

    To analyze the characteristics of the event-related desynchronization (ERD) and synchronization (ERS) of cortical rhythms during the preparation and execution of a lateralized eye movement, EEG was recorded in normal subjects during a visually guided task. Alpha and beta bands were investigated in three temporal intervals: a sensory period, a delay period and a saccade preparation period time locked with saccade onset. Modulations of ERD/ERS power, coupled with the task, reached the largest amplitudes over the frontal and parieto-occipital regions. Differences of oscillatory activity in the alpha bands revealed an intriguing pattern of asymmetry in parieto-occipital areas. Rightward saccades induced a larger desynchronization with respect to the leftward saccades in the left hemisphere, but not in the right. If representative, these findings are congruent to the established right-hemisphere dominance of the brain areas that direct attention. Moreover differences between the two alpha types emerged in the frontal areas before and during the saccade preparation periods, indicative of differential engagement of these areas depending on the task demands. In conclusion, the present approach shows that planning eye movements is linked with covert orienting of spatial attention and may supply a useful method for studying eye movements and selective attention-related processes. PMID:17196943

  9. Effect of modulated photo-activation on polymerization shrinkage behavior of dental restorative resin composites.

    Science.gov (United States)

    Tauböck, Tobias T; Feilzer, Albert J; Buchalla, Wolfgang; Kleverlaan, Cornelis J; Krejci, Ivo; Attin, Thomas

    2014-08-01

    This study investigated the influence of modulated photo-activation on axial polymerization shrinkage, shrinkage force, and hardening of light- and dual-curing resin-based composites. Three light-curing resin composites (SDR bulk-fill, Esthet X flow, and Esthet X HD) and one dual-curing material (Rebilda DC) were subjected to different irradiation protocols with identical energy density (27 J cm(-2) ): high-intensity continuous light (HIC), low-intensity continuous light (LIC), soft-start (SS), and pulse-delay curing (PD). Axial shrinkage and shrinkage force of 1.5-mm-thick specimens were recorded in real time for 15 min using custom-made devices. Knoop hardness was determined at the end of the observation period. Statistical analysis revealed no significant differences among the curing protocols for both Knoop hardness and axial shrinkage, irrespective of the composite material. Pulse-delay curing generated the significantly lowest shrinkage forces within the three light-curing materials SDR bulk-fill, Esthet X flow, and Esthet X HD. High-intensity continuous light created the significantly highest shrinkage forces within Esthet X HD and Rebilda DC, and caused significantly higher forces than LIC within Esthet X flow. In conclusion, both the composite material and the applied curing protocol control shrinkage force formation. Pulse-delay curing decreases shrinkage forces compared with high-intensity continuous irradiation without affecting hardening and axial polymerization shrinkage.

  10. Perhexiline activates KLF14 and reduces atherosclerosis by modulating ApoA-I production.

    Science.gov (United States)

    Guo, Yanhong; Fan, Yanbo; Zhang, Jifeng; Lomberk, Gwen A; Zhou, Zhou; Sun, Lijie; Mathison, Angela J; Garcia-Barrio, Minerva T; Zhang, Ji; Zeng, Lixia; Li, Lei; Pennathur, Subramaniam; Willer, Cristen J; Rader, Daniel J; Urrutia, Raul; Chen, Y Eugene

    2015-10-01

    Recent genome-wide association studies have revealed that variations near the gene locus encoding the transcription factor Krüppel-like factor 14 (KLF14) are strongly associated with HDL cholesterol (HDL-C) levels, metabolic syndrome, and coronary heart disease. However, the precise mechanisms by which KLF14 regulates lipid metabolism and affects atherosclerosis remain largely unexplored. Here, we report that KLF14 is dysregulated in the liver of 2 dyslipidemia mouse models. We evaluated the effects of both KLF14 overexpression and genetic inactivation and determined that KLF14 regulates plasma HDL-C levels and cholesterol efflux capacity by modulating hepatic ApoA-I production. Hepatic-specific Klf14 deletion in mice resulted in decreased circulating HDL-C levels. In an attempt to pharmacologically target KLF14 as an experimental therapeutic approach, we identified perhexiline, an approved therapeutic small molecule presently in clinical use to treat angina and heart failure, as a KLF14 activator. Indeed, in WT mice, treatment with perhexiline increased HDL-C levels and cholesterol efflux capacity via KLF14-mediated upregulation of ApoA-I expression. Moreover, perhexiline administration reduced atherosclerotic lesion development in apolipoprotein E-deficient mice. Together, these results provide comprehensive insight into the KLF14-dependent regulation of HDL-C and subsequent atherosclerosis and indicate that interventions that target the KLF14 pathway should be further explored for the treatment of atherosclerosis. PMID:26368306

  11. Modulation of NADPH oxidase activation in cerebral ischemia/reperfusion injury in rats.

    Science.gov (United States)

    Genovese, Tiziana; Mazzon, Emanuela; Paterniti, Irene; Esposito, Emanuela; Bramanti, Placido; Cuzzocrea, Salvatore

    2011-02-01

    NADPH oxidase is a major complex that produces reactive oxygen species (ROSs) during the ischemic period and aggravates brain damage and cell death after ischemic injury. Although many approaches have been tested for preventing production of ROSs by NADPH oxidase in ischemic brain injury, the regulatory mechanisms of NADPH oxidase activity after cerebral ischemia are still unclear. The aim of this study is identifying apocynin as a critical modulator of NADPH oxidase and elucidating its role as a neuroprotectant in an experimental model of brain ischemia in rat. Treatment of apocynin 5min before of reperfusion attenuated cerebral ischemia in rats. Administration of apocynin showed marked reduction in infarct size compared with that of control rats. Medial carotid artery occlusion (MCAo)-induced cerebral ischemia was also associated with an increase in, nitrotyrosine formation, as well as IL-1β expression, IκB degradation and ICAM expression in ischemic regions. These expressions were markedly inhibited by the treatment of apocynin. We also demonstrated that apocynin reduces levels of apoptosis (TUNEL, Bax and Bcl-2 expression) resulting in a reduction in the infarct volume in ischemia-reperfusion brain injury. This new understanding of apocynin induced adaptation to ischemic stress and inflammation could suggest novel avenues for clinical intervention during ischemic and inflammatory diseases. PMID:21138737

  12. Modulating Composition and Metabolic Activity of the Gut Microbiota in IBD Patients

    Directory of Open Access Journals (Sweden)

    Mario Matijašić

    2016-04-01

    Full Text Available The healthy intestine represents a remarkable interface where sterile host tissues come in contact with gut microbiota, in a balanced state of homeostasis. The imbalance of gut homeostasis is associated with the onset of many severe pathological conditions, such as inflammatory bowel disease (IBD, a chronic gastrointestinal disorder increasing in incidence and severely influencing affected individuals. Despite the recent development of next generation sequencing and bioinformatics, the current scientific knowledge of specific triggers and diagnostic markers to improve interventional approaches in IBD is still scarce. In this review we present and discuss currently available and emerging therapeutic options in modulating composition and metabolic activity of gut microbiota in patients affected by IBD. Therapeutic approaches at the microbiota level, such as dietary interventions alone or with probiotics, prebiotics and synbiotics, administration of antibiotics, performing fecal microbiota transplantation (FMT and the use of nematodes, all represent a promising opportunities towards establishing and maintaining of well-being as well as improving underlying IBD symptoms.

  13. Magnetically controlled permeability membranes

    KAUST Repository

    Kosel, Jurgen

    2013-10-31

    A bioactive material delivery system can include a thermoresponsive polymer membrane and nanowires distributed within the thermoresponsive polymer membrane. Magnetic activation of a thermoresponsive polymer membrane can take place via altering the magnetization or dimensions of nanowires dispersed or ordered within the membrane matrix.

  14. Timescales for permeability reduction and strength recovery in densifying magma

    Science.gov (United States)

    Heap, M. J.; Farquharson, J. I.; Wadsworth, F. B.; Kolzenburg, S.; Russell, J. K.

    2015-11-01

    Transitions between effusive and explosive behaviour are routine for many active volcanoes. The permeability of the system, thought to help regulate eruption style, is likely therefore in a state of constant change. Viscous densification of conduit magma during effusive periods, resulting in physical and textural property modifications, may reduce permeability to that preparatory for an explosive eruption. We present here a study designed to estimate timescales of permeability reduction and strength recovery during viscous magma densification by coupling measurements of permeability and strength (using samples from a suite of variably welded, yet compositionally identical, volcanic deposits) with a rheological model for viscous compaction and a micromechanical model, respectively. Bayesian Information Criterion analysis confirms that our porosity-permeability data are best described by two power laws that intersect at a porosity of 0.155 (the "changepoint" porosity). Above and below this changepoint, the permeability-porosity relationship has a power law exponent of 8.8 and 1.0, respectively. Quantitative pore size analysis and micromechanical modelling highlight that the high exponent above the changepoint is due to the closure of wide (∼200-300 μm) inter-granular flow channels during viscous densification and that, below the changepoint, the fluid pathway is restricted to narrow (∼50 μm) channels. The large number of such narrow channels allows porosity loss without considerable permeability reduction, explaining the switch to a lower exponent. Using these data, our modelling predicts a permeability reduction of four orders of magnitude (for volcanically relevant temperatures and depths) and a strength increase of a factor of six on the order of days to weeks. This discrepancy suggests that, while the viscous densification of conduit magma will inhibit outgassing efficiency over time, the regions of the conduit prone to fracturing, such as the margins, will

  15. Cannabinoid modulation of prefrontal-limbic activation during fear extinction learning and recall in humans.

    Science.gov (United States)

    Rabinak, Christine A; Angstadt, Mike; Lyons, Maryssa; Mori, Shoko; Milad, Mohammed R; Liberzon, Israel; Phan, K Luan

    2014-09-01

    Pre-extinction administration of Δ9-tetrahydrocannibinol (THC) facilitates recall of extinction in healthy humans, and evidence from animal studies suggest that this likely occurs via enhancement of the cannabinoid system within the ventromedial prefrontal cortex (vmPFC) and hippocampus (HIPP), brain structures critical to fear extinction. However, the effect of cannabinoids on the underlying neural circuitry of extinction memory recall in humans has not been demonstrated. We conducted a functional magnetic resonance imaging (fMRI) study using a randomized, double-blind, placebo-controlled, between-subjects design (N=14/group) coupled with a standard Pavlovian fear extinction paradigm and an acute pharmacological challenge with oral dronabinol (synthetic THC) in healthy adult volunteers. We examined the effects of THC on vmPFC and HIPP activation when tested for recall of extinction learning 24 h after extinction learning. Compared to subjects who received placebo, participants who received THC showed increased vmPFC and HIPP activation to a previously extinguished conditioned stimulus (CS+E) during extinction memory recall. This study provides the first evidence that pre-extinction administration of THC modulates prefrontal-limbic circuits during fear extinction in humans and prompts future investigation to test if cannabinoid agonists can rescue or correct the impaired behavioral and neural function during extinction recall in patients with PTSD. Ultimately, the cannabinoid system may serve as a promising target for innovative intervention strategies (e.g. pharmacological enhancement of exposure-based therapy) in PTSD and other fear learning-related disorders. PMID:24055595

  16. Quasi-biennial modulation of solar neutrino flux: connections with solar activity

    Science.gov (United States)

    Vecchio, A.; Laurenza, M.; D'alessi, L.; Carbone, V.; Storini, M.

    2011-12-01

    A quasi-biennial periodicity has been recently found (Vecchio et al., 2010) in the solar neutrino flux, as detected at the Homestake experiment, as well as in the flux of solar energetic protons, by means of the Empirical Modes Decomposition technique. Moreover, both fluxes have been found to be significantly correlated at the quasi-biennial timescale, thus supporting the hypothesis of a connection between solar neutrinos and solar activity. The origin of this connection is investigated, by modeling how the standard Mikheyev-Smirnov-Wolfenstein (MSW) effect (the process for which the well-known neutrino flavor oscillations are modified in passing through the material) could be influenced by matter fluctuations. As proposed by Burgess et al., 2004, by introducing a background magnetic field in the helioseismic model, density fluctuations can be excited in the radiative zone by the resonance between helioseismic g-modes and Alfvén waves. In particular, with reasonable values of the background magnetic field (10-100 kG), the distance between resonant layers could be of the same order of neutrino oscillation length. We study the effect over this distance of a background magnetic field which is variable with a ~2 yr period, in agreement with typical variations of solar activity. Our findings suggest that the quasi-biennial modulation of the neutrino flux is theoretically possible as a consequence of the magnetic field variations in the solar interior. A. Vecchio, M. Laurenza, V. Carbone, M. Storini, The Astrophysical Journal Letters, 709, L1-L5 (2010). C. Burgess, N. S. Dzhalilov, T. I. Rashba, V., B.Semikoz, J. W. F. Valle, Mon. Not. R. Astron. Soc., 348, 609-624 (2004).

  17. Learning to modulate one's own brain activity: The effect of spontaneous mental strategies

    Directory of Open Access Journals (Sweden)

    Silvia Erika Kober

    2013-10-01

    Full Text Available Using neurofeedback (NF, individuals can learn to modulate their own brain activity, in most cases electroencephalographic (EEG rhythms. Although a large body of literature reports positive effects of NF training on behavior and cognitive functions, there are hardly any reports on how participants can successfully learn to gain control over their own brain activity. About one third of people fail to gain significant control over their brain signals even after repeated training sessions. The reasons for this failure are still largely unknown. In this context, we investigated the effects of spontaneous mental strategies on NF performance. Twenty healthy participants performed either a SMR (sensorimotor rhythm, 12-15 Hz based or a Gamma (40-43 Hz based NF training over ten sessions. After the first and the last training session, they were asked to write down which mental strategy they have used for self-regulating their EEG. After the first session, all participants reported the use of various types of mental strategies such as visual strategies, concentration, or relaxation. After the last NF training session, four participants of the SMR group reported to employ no specific strategy. These four participants showed linear improvements in NF performance over the ten training sessions. In contrast, participants still reporting the use of specific mental strategies in the last NF session showed no changes in SMR based NF performance over the ten sessions. This effect could not be observed in the Gamma group. The Gamma group showed no prominent changes in Gamma power over the NF training sessions, regardless of the mental strategies used. These results indicate that successful SMR based NF performance is associated with implicit learning mechanisms. Participants stating vivid reports on strategies to control their SMR probably overload cognitive resources, which might be counterproductive in terms of increasing SMR power.

  18. Permeability enhancement by shock cooling

    Science.gov (United States)

    Griffiths, Luke; Heap, Michael; Reuschlé, Thierry; Baud, Patrick; Schmittbuhl, Jean

    2015-04-01

    The permeability of an efficient reservoir, e.g. a geothermal reservoir, should be sufficient to permit the circulation of fluids. Generally speaking, permeability decreases over the life cycle of the geothermal system. As a result, is usually necessary to artificially maintain and enhance the natural permeability of these systems. One of the methods of enhancement -- studied here -- is thermal stimulation (injecting cold water at low pressure). This goal of this method is to encourage new thermal cracks within the reservoir host rocks, thereby increasing reservoir permeability. To investigate the development of thermal microcracking in the laboratory we selected two granites: a fine-grained (Garibaldi Grey granite, grain size = 0.5 mm) and a course-grained granite (Lanhelin granite, grain size = 2 mm). Both granites have an initial porosity of about 1%. Our samples were heated to a range of temperatures (100-1000 °C) and were either cooled slowly (1 °C/min) or shock cooled (100 °C/s). A systematic microstructural (2D crack area density, using standard stereological techniques, and 3D BET specific surface area measurements) and rock physical property (porosity, P-wave velocity, uniaxial compressive strength, and permeability) analysis was undertaken to understand the influence of slow and shock cooling on our reservoir granites. Microstructurally, we observe that the 2D crack surface area per unit volume and the specific surface area increase as a result of thermal stressing, and, for the same maximum temperature, crack surface area is higher in the shock cooled samples. This observation is echoed by our rock physical property measurements: we see greater changes for the shock cooled samples. We can conclude that shock cooling is an extremely efficient method of generating thermal microcracks and modifying rock physical properties. Our study highlights that thermal treatments are likely to be an efficient method for the "matrix" permeability enhancement of

  19. Endogenous opiates modulate the pulsatile secretion of biologically active luteinizing hormone in man.

    Science.gov (United States)

    Veldhuis, J D; Rogol, A D; Johnson, M L

    1983-12-01

    . We infer that modulation of the episodic GNRH signal by endogenous opiates provides another significant mechanism by which the hypothalamus can alter the biological activity of circulating gonadotropic hormone in man. Moreover, observed alterations in the pulsatile pattern of bioactive LH release were associated in turn with significant changes in testosterone concentrations. Thus, we hypothesize that alterations in the properties of the bioactive LH pulse signal can provide an important mechanism for regulating target-cell function within the gonad in states of health or disease. PMID:6315775

  20. Chimeric RXFP1 and RXFP2 Receptors Highlight the Similar Mechanism of Activation Utilizing Their N-Terminal Low-Density Lipoprotein Class A Modules

    OpenAIRE

    Bruell, Shoni; Kong, Roy C. K.; Petrie, Emma J.; Hoare, Brad; John D Wade; Scott, Daniel J.; Gooley, Paul R.; Bathgate, Ross A. D.

    2013-01-01

    Relaxin family peptide (RXFP) receptors 1 and 2 are unique G-protein coupled receptors in that they contain an N-terminal low-density lipoprotein type A (LDLa) module which is necessary for receptor activation. The current hypothesis suggests that upon ligand binding the LDLa module interacts with the transmembrane (TM) domain of a homodimer partner receptor to induce the active receptor conformations. We recently demonstrated that three residues in the N-terminus of the RXFP1 LDLa module are...

  1. Chimeric RXFP1 and RXFP2 receptors highlight the similar mechanism of activation utilizing their N-terminal low density lipoprotein class A modules

    OpenAIRE

    RossBathgate; EmmaJunePetrie; JohnDWade

    2013-01-01

    Relaxin family peptide (RXFP) receptors 1 and 2 are unique G-protein coupled receptors in that they contain an N-terminal low density lipoprotein type A (LDLa) module which is necessary for receptor activation. The current hypothesis suggests that upon ligand binding the LDLa module interacts with the transmembrane (TM) domain of a homodimer partner receptor to induce the active receptor conformations. We recently demonstrated that three residues in the N-terminus of the RXFP1 LDLa module are...

  2. Modulation of Exciton Generation in Organic Active Planar pn Heterojunction: Toward Low Driving Voltage and High-Efficiency OLEDs Employing Conventional and Thermally Activated Delayed Fluorescent Emitters.

    Science.gov (United States)

    Chen, Dongcheng; Liu, Kunkun; Gan, Lin; Liu, Ming; Gao, Kuo; Xie, Gaozhan; Ma, Yuguang; Cao, Yong; Su, Shi-Jian

    2016-08-01

    Organic light-emitting diodes (OLEDs) combining low driving voltage and high efficiency are designed by employing conventional and thermally activated delayed fluorescence emitters through modulation of excitons generated at the planar p-n heterojunction region. To date, this approach enables the highest power efficiency for yellow-green emitting fluorescent OLEDs with a simplified structure.