WorldWideScience

Sample records for activation induces type

  1. Activity deprivation induces neuronal cell death: mediation by tissue-type plasminogen activator.

    Directory of Open Access Journals (Sweden)

    Eldi Schonfeld-Dado

    Full Text Available Spontaneous activity is an essential attribute of neuronal networks and plays a critical role in their development and maintenance. Upon blockade of activity with tetrodotoxin (TTX, neurons degenerate slowly and die in a manner resembling neurodegenerative diseases-induced neuronal cell death. The molecular cascade leading to this type of slow cell death is not entirely clear. Primary post-natal cortical neurons were exposed to TTX for up to two weeks, followed by molecular, biochemical and immunefluorescence analysis. The expression of the neuronal marker, neuron specific enolase (NSE, was down-regulated, as expected, but surprisingly, there was a concomitant and striking elevation in expression of tissue-type plasminogen activator (tPA. Immunofluorescence analysis indicated that tPA was highly elevated inside affected neurons. Transfection of an endogenous tPA inhibitor, plasminogen activator inhibitor-1 (PAI-1, protected the TTX-exposed neurons from dying. These results indicate that tPA is a pivotal player in slowly progressing activity deprivation-induced neurodegeneration.

  2. Targeting of macrophage galactose-type C-type lectin (MGL) induces DC signaling and activation

    DEFF Research Database (Denmark)

    Napoletano, Chiara; Zizzari, Ilaria G; Rughetti, Aurelia;

    2012-01-01

    Dendritic cells (DCs) sense the microenvironment through several types of receptors recognizing pathogen-associated molecular patterns. In particular, C-type lectins, expressed by distinct subsets of DCs, recognize and internalize specific carbohydrate antigen in a Ca(2+) -dependent manner. Targe...

  3. Prevention of Paclitaxel-Induced Neuropathy Through Activation of the Central Cannabinoid Type 2 Receptor System

    Science.gov (United States)

    Naguib, Mohamed; Xu, Jijun J.; Diaz, Philippe; Brown, David L.; Cogdell, David; Bie, Bihua; Hu, Jianhua; Craig, Suzanne; Hittelman, Walter N.

    2012-01-01

    Background Peripheral neuropathy is a major dose-limiting toxicity of chemotherapy, especially after multiple courses of paclitaxel. The development of paclitaxel-induced neuropathy is associated with the activation of microglia followed by the activation and proliferation of astrocytes, and the expression and release of proinflammatory cytokines in the spinal dorsal horn. Cannabinoid type 2 (CB2) receptors are expressed in the microglia in neurodegenerative disease models. Methods To explore the potential of CB2 agonists for preventing paclitaxel-induced neuropathy, we designed and synthesized a novel CB2-selective agonist, namely MDA7. The effect of MDA7 in preventing paclitaxel-induced allodynia was assessed in rats and in CB2+/+ and CB2–/– mice. We hypothesize that the CB2 receptor functions in a negative-feedback loop and that early MDA7 administration can blunt the neuroinflammatory response to paclitaxel and prevent mechanical allodynia through interference with specific signaling pathways. Results We found that MDA7 prevents paclitaxel-induced mechanical allodynia in rats and mice in a dose- and time-dependent manner without compromising paclitaxel's antineoplastic effect. MDA7's neuroprotective effect was absent in CB2-/- mice and was blocked by CB2 antagonists, suggesting that MDA7's action directly involves CB2 receptor activation. MDA7 treatment was found to interfere with early events in the paclitaxel-induced neuroinflammatory response as evidenced by relatively reduced Toll-like receptor and CB2 expression in the lumbar spinal cord, reduced levels of extracellular signal regulated kinase 1/2 activity, reduced numbers of activated microglia and astrocytes, and reduced secretion of proinflammatory mediators in vivo and in in vitro models. Conclusions Our findings suggest an innovative therapeutic approach to prevent chemotherapy-induced neuropathy and may permit more aggressive use of active chemotherapeutic regimens with reduced long-term sequelae

  4. Fasciola hepatica Kunitz type molecule decreases dendritic cell activation and their ability to induce inflammatory responses.

    Directory of Open Access Journals (Sweden)

    Cristian R Falcón

    Full Text Available The complete repertoire of proteins with immunomodulatory activity in Fasciola hepatica (Fh has not yet been fully described. Here, we demonstrated that Fh total extract (TE reduced LPS-induced DC maturation, and the DC ability to induce allogeneic responses. After TE fractionating, a fraction lower than 10 kDa (F<10 kDa was able to maintain the TE properties to modulate the DC pro- and anti-inflammatory cytokine production induced by LPS. In addition, TE or F<10 kDa treatment decreased the ability of immature DC to stimulate the allogeneic responses and induced a novo allogeneic CD4+CD25+Foxp3+ T cells. In contrast, treatment of DC with T/L or F<10 kDa plus LPS (F<10/L induced a regulatory IL-27 dependent mechanism that diminished the proliferative and Th1 and Th17 allogeneic responses. Finally, we showed that a Kunitz type molecule (Fh-KTM, present in F<10 kDa, was responsible for suppressing pro-inflammatory cytokine production in LPS-activated DC, by printing tolerogenic features on DC that impaired their ability to induce inflammatory responses. These results suggest a modulatory role for this protein, which may be involved in the immune evasion mechanisms of the parasite.

  5. Tissue-type plasminogen activator is not required for kainate-induced motoneuron death in vitro.

    Science.gov (United States)

    Vandenberghe, W; Van Den Bosch, L; Robberecht, W

    1998-08-24

    Spinal motoneurons are highly vulnerable to kainate both in vivo and in vitro. Tissue-type plasminogen activator (tPA) and plasmin have recently been shown to mediate kainate-induced neuronal death in the mouse hippocampus in vivo. The aim of the present study was to determine whether tPA also mediates the kainate-induced death of motoneurons in vitro. A motoneuron-enriched neuronal population was isolated from the ventral spinal cord of wild-type (WT) and tPA-deficient (tPA-/-) mouse embryos. WT and tPA-/- neurons were cultured on WT and tPA-/- spinal glial feeder layers, respectively. WT and tPA-/- co-cultures were morphologically indistinguishable. Expression of tPA in WT co-cultures was demonstrated using RT-PCR. WT and tPA-/- co-cultures were exposed to kainate for 24 h. The neurotoxic effect of kainate did not differ significantly between WT and tPA-/- cultures. The plasmin inhibitor alpha2-antiplasmin did not protect WT neurons against kainate-induced injury. These results indicate that the plasmin system is not a universal mediator of kainate-induced excitotoxicity.

  6. Tissue-type plasminogen activator induces synaptic vesicle endocytosis in cerebral cortical neurons.

    Science.gov (United States)

    Yepes, M; Wu, F; Torre, E; Cuellar-Giraldo, D; Jia, D; Cheng, L

    2016-04-05

    The release of the serine proteinase tissue-type plasminogen activator (tPA) from the presynaptic terminal of cerebral cortical neurons plays a central role in the development of synaptic plasticity, adaptation to metabolic stress and neuronal survival. Our earlier studies indicate that by inducing the recruitment of the cytoskeletal protein βII-spectrin and voltage-gated calcium channels to the active zone, tPA promotes Ca(2+)-dependent translocation of synaptic vesicles (SVs) to the synaptic release site where they release their load of neurotransmitters into the synaptic cleft. Here we used a combination of in vivo and in vitro experiments to investigate whether this effect leads to depletion of SVs in the presynaptic terminal. Our data indicate that tPA promotes SV endocytosis via a mechanism that does not require the conversion of plasminogen into plasmin. Instead, we show that tPA induces calcineurin-mediated dynamin I dephosphorylation, which is followed by dynamin I-induced recruitment of the actin-binding protein profilin II to the presynaptic membrane, and profilin II-induced F-actin formation. We report that this tPA-induced sequence of events leads to the association of newly formed SVs with F-actin clusters in the endocytic zone. In summary, the data presented here indicate that following the exocytotic release of neurotransmitters tPA activates the mechanism whereby SVs are retrieved from the presynaptic membrane and endocytosed to replenish the pool of vesicles available for a new cycle of exocytosis. Together, these results indicate that in murine cerebral cortical neurons tPA plays a central role coupling SVs exocytosis and endocytosis.

  7. Continuous contractile activity induces fiber type specific expression of HSP70 in skeletal muscle.

    Science.gov (United States)

    Neufer, P D; Ordway, G A; Hand, G A; Shelton, J M; Richardson, J A; Benjamin, I J; Williams, R S

    1996-12-01

    Continuous contractile activity of skeletal muscle elicits an early and dramatic increase in ribosomal RNA, suggesting that translational efficiency and/or capacity is enhanced during the adaptive response to increased metabolic demand. In view of the important role heat shock or stress proteins (HSPs) play as molecular chaperones during protein synthesis, we examined whether expression of the inducible 70-kDa HSP (HSP70) and/or mitochondrial 60-kDa HSP (HSP60) is altered in rabbit tibialis anterior muscle during continuous low-frequency motor nerve stimulation. Induction of the HSP70 gene was evident within 24 h after the onset of stimulation as reflected by increases in HSP70 transcription (> 20-fold) and mRNA (> 50-fold). HSP70 protein levels were significantly elevated (10- to 12-fold) after 14 and 21 days of stimulation. Mitochondrial HSP60 mRNA and protein also increased during stimulation (> 18- and > 5-fold after 21 days, respectively). In situ hybridization and immunohistochemistry coupled with myosin ATPase staining revealed that expression of HSP70 was restricted to oxidative type I and IIa fibers during the first 3 days of stimulation but shifted to primarily type II fibers after 21 days of stimulation. These findings demonstrate that induction of HSP70 during the adaptive response to chronic motor nerve stimulation proceeds from type I/IIa to type IId(x)/b fibers, suggesting that the expression of HSPs may be required to support the folding and compartmentalization of nascent proteins during the transformation process.

  8. Anti-diabetic activity of Zingiber officinale in streptozotocin-induced type I diabetic rats.

    Science.gov (United States)

    Akhani, Sanjay P; Vishwakarma, Santosh L; Goyal, Ramesh K

    2004-01-01

    The fresh and dried rhizome of Zingiber officinale Roscoe (commonly known as ginger) is widely used in traditional medicine. We have studied the effect of the juice of Z. officinale (4 mL kg(-1), p.o. daily) for 6 weeks on streptozotocin (STZ)-induced type I diabetic rats with particular reference to the involvement of serotonin (5-hydroxytryptamine; 5-HT) receptors in glycaemic control. In normoglycaemic rats, 5-HT (1mg kg(-1), i.p.) produced hyperglycaemia and hypoinsulinaemia, which was significantly prevented by the juice of Z. officinale. STZ-diabetes produced a significant increase in fasting glucose levels that was associated with a significant decrease in serum insulin levels. Treatment with Z. officinale produced a significant increase in insulin levels and a decrease in fasting glucose levels in diabetic rats. In an oral glucose tolerance test, treatment with Z. officinale was found to decrease significantly the area under the curve of glucose and to increase the area under the curve of insulin in STZ-diabetic rats. Treatment with Z. officinale also caused a decrease in serum cholesterol, serum triglyceride and blood pressure in diabetic rats. Our data suggest a potential antidiabetic activity of the juice of Z. officinale in type I diabetic rats, possibly involving 5-HT receptors.

  9. Antidiabetic Activity of Benzopyrone Analogues in Nicotinamide-Streptozotocin Induced Type 2 Diabetes in Rats

    Directory of Open Access Journals (Sweden)

    Yogendra Nayak

    2014-01-01

    Full Text Available Benzopyrones are proven antidiabetic drug candidate in diabetic drug discovery. In this view novel synthetic benzopyrone analogues were selected for testing in experimental diabetes. Type 2 diabetes (T2D was induced in Wistar rats by streptozotocin (60 mg/kg, i.p. followed by nicotinamide (120 mg/kg i.p.. Rats having fasting blood glucose (FBG >200 mg/dL, 7 days after T2D-induction, are selected for the study. Test compounds and standard treatment were continued for 15 days. FBG, oral glucose tolerance test (OGTT, and insulin tolerance test (ITT were determined on 21st day after induction of T2D. Plasma lipids and serum insulin were estimated. Homeostatic model assessment (HOMA-IR was then calculated from serum insulin. Rats were sacrificed and pancreas was isolated for histopathological observations. Oxidative stress markers were estimated in liver homogenate. Quercetin, a natural product with benzopyrone ring, showed significant hypoglycemic activity comparable to glibenclamide. Treatment with test compounds lowered the FBG and insulin resistance was significant alleviated as determined by OGTT, HOMA-IR, and ITT. There was significant normalisation of liver antioxidant enzymes compared to diabetic rats indicating that all the synthesised benzopyrone analogues are beneficial in reducing oxidative stress and are on par with the standard quercetin and glibenclamide in experimental T2D.

  10. Hemin activation of innate cellular response blocks human immunodeficiency virus type-1-induced osteoclastogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Kazuyo [Microscopy and Imaging Core Facility, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD (United States); Adhikari, Rewati [Division of Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD (United States); Yamada, Kenneth M. [National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD (United States); Dhawan, Subhash, E-mail: subhash.dhawan@fda.hhs.gov [Division of Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD (United States)

    2015-08-14

    The normal skeletal developmental and homeostatic process termed osteoclastogenesis is exacerbated in numerous pathological conditions and causes excess bone loss. In cancer and HIV-1-infected patients, this disruption of homeostasis results in osteopenia and eventual osteoporesis. Counteracting the factors responsible for these metabolic disorders remains a challenge for preventing or minimizing this co-morbidity associated with these diseases. In this report, we demonstrate that a hemin-induced host protection mechanism not only suppresses HIV-1 associated osteoclastogenesis, but it also exhibits anti-osteoclastogenic activity for non-infected cells. Since the mode of action of hemin is both physiological and pharmacological through induction of heme oxygenase-1 (HO-1), an endogenous host protective response to an FDA-licensed therapeutic used to treat another disease, our study suggests an approach to developing novel, safe and effective therapeutic strategies for treating bone disorders, because hemin administration in humans has previously met required FDA safety standards. - Highlights: • HIV-1 infection induced osteoclastogenesis in primary human macrophages. • Heme oxygenase-1 (HO-1) induction inhibited HIV-1-induced osteoclastogenesis in macrophages. • HO-1 induction suppressed RANKL-enhanced osteoclastogenesis in HIV-1-infected macrophages. • This inverse relationship between HO-1 and HIV-1 pathogenesis may define a novel host defense response against HIV-1 infection.

  11. Metabolic respiration induces AMPK- and Ire1p-dependent activation of the p38-Type HOG MAPK pathway.

    Science.gov (United States)

    Adhikari, Hema; Cullen, Paul J

    2014-10-01

    Evolutionarily conserved mitogen activated protein kinase (MAPK) pathways regulate the response to stress as well as cell differentiation. In Saccharomyces cerevisiae, growth in non-preferred carbon sources (like galactose) induces differentiation to the filamentous cell type through an extracellular-signal regulated kinase (ERK)-type MAPK pathway. The filamentous growth MAPK pathway shares components with a p38-type High Osmolarity Glycerol response (HOG) pathway, which regulates the response to changes in osmolarity. To determine the extent of functional overlap between the MAPK pathways, comparative RNA sequencing was performed, which uncovered an unexpected role for the HOG pathway in regulating the response to growth in galactose. The HOG pathway was induced during growth in galactose, which required the nutrient regulatory AMP-dependent protein kinase (AMPK) Snf1p, an intact respiratory chain, and a functional tricarboxylic acid (TCA) cycle. The unfolded protein response (UPR) kinase Ire1p was also required for HOG pathway activation in this context. Thus, the filamentous growth and HOG pathways are both active during growth in galactose. The two pathways redundantly promoted growth in galactose, but paradoxically, they also inhibited each other's activities. Such cross-modulation was critical to optimize the differentiation response. The human fungal pathogen Candida albicans showed a similar regulatory circuit. Thus, an evolutionarily conserved regulatory axis links metabolic respiration and AMPK to Ire1p, which regulates a differentiation response involving the modulated activity of ERK and p38 MAPK pathways.

  12. Metabolic respiration induces AMPK- and Ire1p-dependent activation of the p38-Type HOG MAPK pathway.

    Directory of Open Access Journals (Sweden)

    Hema Adhikari

    2014-10-01

    Full Text Available Evolutionarily conserved mitogen activated protein kinase (MAPK pathways regulate the response to stress as well as cell differentiation. In Saccharomyces cerevisiae, growth in non-preferred carbon sources (like galactose induces differentiation to the filamentous cell type through an extracellular-signal regulated kinase (ERK-type MAPK pathway. The filamentous growth MAPK pathway shares components with a p38-type High Osmolarity Glycerol response (HOG pathway, which regulates the response to changes in osmolarity. To determine the extent of functional overlap between the MAPK pathways, comparative RNA sequencing was performed, which uncovered an unexpected role for the HOG pathway in regulating the response to growth in galactose. The HOG pathway was induced during growth in galactose, which required the nutrient regulatory AMP-dependent protein kinase (AMPK Snf1p, an intact respiratory chain, and a functional tricarboxylic acid (TCA cycle. The unfolded protein response (UPR kinase Ire1p was also required for HOG pathway activation in this context. Thus, the filamentous growth and HOG pathways are both active during growth in galactose. The two pathways redundantly promoted growth in galactose, but paradoxically, they also inhibited each other's activities. Such cross-modulation was critical to optimize the differentiation response. The human fungal pathogen Candida albicans showed a similar regulatory circuit. Thus, an evolutionarily conserved regulatory axis links metabolic respiration and AMPK to Ire1p, which regulates a differentiation response involving the modulated activity of ERK and p38 MAPK pathways.

  13. Activation Induces Structural Changes in the Liganded Angiotensin II Type 1 Receptor*

    Science.gov (United States)

    Clément, Martin; Cabana, Jérôme; Holleran, Brian J.; Leduc, Richard; Guillemette, Gaétan; Lavigne, Pierre; Escher, Emanuel

    2009-01-01

    The octapeptide hormone angiotensin II (AngII) binds to and activates the human angiotensin II type 1 receptor (hAT1) of the G protein-coupled receptor class A family. Several activation mechanisms have been proposed for this family, but they have not yet been experimentally validated. We previously used the methionine proximity assay to show that 11 residues in transmembrane domain (TMD) III, VI, and VII of the hAT1 receptor reside in close proximity to the C-terminal residue of AngII. With the exception of a single change in TMD VI, the same contacts are present on N111G-hAT1, a constitutively active mutant; this N111G-hAT1 is a model for the active form of the receptor. In this study, two series of 53 individual methionine mutations were constructed in TMD I, II, IV, and V on both receptor forms. The mutants were photolabeled with a neutral antagonist, 125I-[Sar1,p-benzoyl-l-Phe8]AngII, and the resulting complexes were digested with cyanogen bromide. Although no new contacts were found for the hAT1 mutants, two were found in the constitutively active mutants, Phe-77 in TMD II and Asn-200 in TMD V. To our knowledge, this is the first time that a direct ligand contact with TMD II and TMD V has been reported. These contact point differences were used to identify the structural changes between the WT-hAT1 and N111G-hAT1 complexes through homology-based modeling and restrained molecular dynamics. The model generated revealed an important structural rearrangement of several TMDs from the basal to the activated form in the WT-hAT1 receptor. PMID:19635801

  14. Effects of active fault types on earthquake-induced deep-seated landslides: A study of historical cases in Japan

    Science.gov (United States)

    Chen, Chi-Wen; Iida, Tomoyuki; Yamada, Ryuji

    2017-10-01

    We investigated the relationship between the distribution of deep-seated landslides (DSLs; landslide volume > 105 m3) induced by inland earthquakes as well as the distribution of corresponding active faults by compiling preexisting documents on historical DSL occurrence records. The following points are found: (1) The DSLs induced by reverse fault earthquakes tend to occur equally within a wide range of about 20 km from the faults, whilst > 80% of DSLs induced by strike-slip fault earthquakes are concentrated within a small range of about 5 km from the faults. (2) Most of the DSLs are distributed on the hanging wall side of the active faults. (3) The distribution of some historical DSLs may reflect the directivity of the seismic waves of the historical earthquakes. The minimum peak ground velocity (PGV) and peak ground acceleration (PGA) during earthquakes that can induce DSLs are estimated to be 15-20 cm s- 1 and 300-400 cm s- 2, although most of the DSLs examined were induced by strike-slip fault earthquakes with PGV > 60 cm s- 1 and PGA > 900 cm s- 2. This discrepancy may be attributed to a possible limitation of the proposed equation, which was established mainly for cases of reverse fault earthquakes. It is implied that the type of fault, the side of the epicenter location (hanging wall/footwall side), and the directivity of seismic waves should be considered for assessing the distribution of ground motion in terms of DSL occurrence, and that these factors may reflect the level of risk for earthquake-induced landslides around active faults.

  15. Antidiabetic activity of alcoholic leaves extract ofAlangium lamarckii Thwaites on streptozotocin-nicotinamide induced type 2 diabetic rats

    Institute of Scientific and Technical Information of China (English)

    Rajesh Kumar; Dinesh Kumar Pate; Satyendra Kuldip Prasad; Kirshnamurthy Sairam; Siva Hemalatha

    2011-01-01

    Objective:To investigate antidiabetic potential of alcoholic leaves extract ofAlangium lamarckii (A. lamarckii) on streptozotocin-nicotinamide induced type2 diabetic rats.Methods: Oral glucose tolerance test was done by inducing hyperglycemic state via administration of glucose in water (2 g/kg). Single dose of alcoholic leaves extract ofA. lamarckii(250and500 mg/kg,p.o.) were administered to normoglycemic, hyperglycemic rats. Type 2 diabetes was induced by single intraperitoneal injection of nicotinamide (110 mg/kg) followed by streptozotocin (65 mg/kg). The study also included estimations of blood plasma glucose, lipid profile, liver glycogen, body weight and antioxidant status in normal and diabetic rats.Results: Admistration of alcoholic extract ofA. lamarckii at two dosage250 and500 mg/kg,p.o. did not showed any significant change in blood glucose level of normoglycemic rats (P>0.05), whereas, oral glucose tolerance test depicted reduction in blood glucose level (P<0.05). The streptozotocin-nicotinamide induced diabetic rats, significantly decreased the blood plasma glucose level (P<0.001) comparable to glibenclamide (10 mg/kg), restored the lipid profile and showed improvement in liver glycogen, body weight and antioxidant status in diabetic rats.Conclusions: Present finding demonstrated the significant antidiabetic activity of alcoholic leaves extract ofA. lamarckii.

  16. Activation of angiotensin II type 1 receptors in the median preoptic nucleus induces a diuretic and natriuretic response in rats

    Institute of Scientific and Technical Information of China (English)

    Yuan Gao; Lei Luo; Hong Liu

    2009-01-01

    Objective: To investigate the effect of activation of angiotensin II (AngII) type 1 (ATI) receptors in the median preoptic nucleus (MnPO) of rats on renal sodium excretion. Methods: After anesthesia, the rats were injected into the MnPO via an implanted cannula. Urine samples were collected via a bladder cannula, and the urine sodium concentration was assayed with flame spectrophotometry. The serum level of endogenous digitalis-like factor (EDLF) and Na+,K+-ATPase activity in the renal cortex tissue were assayed respectively with a radioimmunoassay and with an ammonium molybdophosphate-based kit. Results: Both the urinary volume and the sodium excretion peaked 60 min after Angll was administered into the MnPO. The responses were accompanied by an increase in serum EDLF and a decrease in Na+,K+-ATPase activity in the renal cortex. The responses of diuresis and natriuresis, as well as an increase in serum EDLF and a decrease in Na+,K+-ATPase activity in the renal cortex induced by MnPO adminstration with AngII were inhibited by pior treatment with the AngII receptor blocking agent losartan into the MnPO. Conclusion: These results suggest that activation of ATI receptors in the MnPO of rat induces diuretic and natriuretic responses. The responses are associated with an increase release of EDLF and with the inhibition of Na+,K+-ATPase activity in renal cortex tissue.

  17. Hydrogen sulfide-induced itch requires activation of Cav3.2 T-type calcium channel in mice

    Science.gov (United States)

    Wang, Xue-Long; Tian, Bin; Huang, Ya; Peng, Xiao-Yan; Chen, Li-Hua; Li, Jun-Cheng; Liu, Tong

    2015-01-01

    The contributions of gasotransmitters to itch sensation are largely unknown. In this study, we aimed to investigate the roles of hydrogen sulfide (H2S), a ubiquitous gasotransmitter, in itch signaling. We found that intradermal injection of H2S donors NaHS or Na2S, but not GYY4137 (a slow-releasing H2S donor), dose-dependently induced scratching behavior in a μ-opioid receptor-dependent and histamine-independent manner in mice. Interestingly, NaHS induced itch via unique mechanisms that involved capsaicin-insensitive A-fibers, but not TRPV1-expressing C-fibers that are traditionally considered for mediating itch, revealed by depletion of TRPV1-expressing C-fibers by systemic resiniferatoxin treatment. Moreover, local application of capsaizapine (TRPV1 blocker) or HC-030031 (TRPA1 blocker) had no effects on NaHS-evoked scratching. Strikingly, pharmacological blockade and silencing of Cav3.2 T-type calcium channel by mibefradil, ascorbic acid, zinc chloride or Cav3.2 siRNA dramatically decreased NaHS-evoked scratching. NaHS induced robust alloknesis (touch-evoked itch), which was inhibited by T-type calcium channels blocker mibefradil. Compound 48/80-induced itch was enhanced by an endogenous precursor of H2S (L-cysteine) but attenuated by inhibitors of H2S-producing enzymes cystathionine γ-lyase and cystathionine β-synthase. These results indicated that H2S, as a novel nonhistaminergic itch mediator, may activates Cav3.2 T-type calcium channel, probably located at A-fibers, to induce scratching and alloknesis in mice. PMID:26602811

  18. Microdamage induced calcium efflux from bone matrix activates intracellular calcium signaling in osteoblasts via L-type and T-type voltage-gated calcium channels.

    Science.gov (United States)

    Jung, Hyungjin; Best, Makenzie; Akkus, Ozan

    2015-07-01

    Mechanisms by which bone microdamage triggers repair response are not completely understood. It has been shown that calcium efflux ([Ca(2+)]E) occurs from regions of bone undergoing microdamage. Such efflux has also been shown to trigger intracellular calcium signaling ([Ca(2+)]I) in MC3T3-E1 cells local to damaged regions. Voltage-gated calcium channels (VGCCs) are implicated in the entry of [Ca(2+)]E to the cytoplasm. We investigated the involvement of VGCC in the extracellular calcium induced intracellular calcium response (ECIICR). MC3T3-E1 cells were subjected to one dimensional calcium efflux from their basal aspect which results in an increase in [Ca(2+)]I. This increase was concomitant with membrane depolarization and it was significantly reduced in the presence of Bepridil, a non-selective VGCC inhibitor. To identify specific type(s) of VGCC in ECIICR, the cells were treated with selective inhibitors for different types of VGCC. Significant changes in the peak intensity and the number of [Ca(2+)]I oscillations were observed when L-type and T-type specific VGCC inhibitors (Verapamil and NNC55-0396, respectively) were used. So as to confirm the involvement of L- and T-type VGCC in the context of microdamage, cells were seeded on devitalized notched bone specimen, which were loaded to induce microdamage in the presence and absence of Verapamil and NNC55-0396. The results showed significant decrease in [Ca(2+)]I activity of cells in the microdamaged regions of bone when L- and T-type blockers were applied. This study demonstrated that extracellular calcium increase in association with damage depolarizes the cell membrane and the calcium ions enter the cell cytoplasm by L- and T-type VGCCs.

  19. Type IV secretion-dependent activation of host MAP kinases induces an increased proinflammatory cytokine response to Legionella pneumophila.

    Directory of Open Access Journals (Sweden)

    Sunny Shin

    2008-11-01

    Full Text Available The immune system must discriminate between pathogenic and nonpathogenic microbes in order to initiate an appropriate response. Toll-like receptors (TLRs detect microbial components common to both pathogenic and nonpathogenic bacteria, whereas Nod-like receptors (NLRs sense microbial components introduced into the host cytosol by the specialized secretion systems or pore-forming toxins of bacterial pathogens. The host signaling pathways that respond to bacterial secretion systems remain poorly understood. Infection with the pathogen Legionella pneumophila, which utilizes a type IV secretion system (T4SS, induced an increased proinflammatory cytokine response compared to avirulent bacteria in which the T4SS was inactivated. This enhanced response involved NF-kappaB activation by TLR signaling as well as Nod1 and Nod2 detection of type IV secretion. Furthermore, a TLR- and RIP2-independent pathway leading to p38 and SAPK/JNK MAPK activation was found to play an equally important role in the host response to virulent L. pneumophila. Activation of this MAPK pathway was T4SS-dependent and coordinated with TLR signaling to mount a robust proinflammatory cytokine response to virulent L. pneumophila. These findings define a previously uncharacterized host response to bacterial type IV secretion that activates MAPK signaling and demonstrate that coincident detection of multiple bacterial components enables immune discrimination between virulent and avirulent bacteria.

  20. Propofol inhibits T-helper cell type-2 differentiation by inducing apoptosis via activating gamma-aminobutyric acid receptor.

    Science.gov (United States)

    Meng, Jingxia; Xin, Xin; Liu, Zhen; Li, Hao; Huang, Bo; Huang, Yuguang; Zhao, Jing

    2016-12-01

    Propofol has been shown to attenuate airway hyperresponsiveness in asthma patients. Our previous study showed that it may alleviate lung inflammation in a mouse model of asthma. Given the critical role of T-helper cell type-2 (Th2) differentiation in asthma pathology and the immunomodulatory role of the gamma-aminobutyric acid type A (GABAA) receptor, we hypothesized that propofol could alleviate asthma inflammation by inhibiting Th2 cell differentiation via the GABA receptor. For in vivo testing, chicken ovalbumin-sensitized and challenged asthmatic mice were used to determine the effect of propofol on Th2-type asthma inflammation. For in vitro testing, Th2-type cytokines as well as the cell proliferation and apoptosis were measured to assess the effects of propofol on Th2 cell differentiation and determine the underlying mechanisms. We found that propofol significantly decreased inflammatory cell counts and interleukin-4 and inflammation score in vivo. Propofol, but not intralipid, significantly reduced the Th2-type cytokine interleukin-5 secretion and caused Th2 cell apoptosis without obvious inhibition of proliferation in vitro. A GABA receptor agonist simulated the effect of propofol, whereas pretreatment with an antagonist reversed this effect. This study demonstrates that the antiinflammatory effects of propofol on Th2-type asthma inflammation in mice are mediated by inducing apoptosis without compromising proliferation during Th2 cell differentiation via activation of the GABA receptor. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Coordinated Regulation of Tissue Type Plasminogen Activator and Plasminogen Activator Inhibitor Type-1 Gene Expression in Hypophysectomized Rat Ovaries During GnRHa-Induced Ovulation

    Institute of Scientific and Technical Information of China (English)

    刘以训; 刘奎; 彭晓蓉; T.Ny

    1994-01-01

    In this study we have demonstrated that both granulosa and theca-interstitial cells of hy-pophysectomized rat ovaries are capable of synthesizing tPA and PAI-1.Injection of a GnRH agonist canmarkedly induce these gene expressions in the ovary in a cell-specific and time-coordinated manner,so that asurge of tPA mRNA and its activity in both granulosa and theca-interstitial cells was obtained just prior toovulation.Theca-interstitial cells make PAI-1 become the most active in the ovary.Both the amount PAI-1mRNA and its activity in the cells reach the maximum level 6 h before the tPA peak.By contrast,granulosacells produce only a little amount of PAI-1 (most increase tPA activity),and both PAI-1 mRNA and activityin the cells reach the maximum after ovulation.The coordinated regulation of tPA and PAI-1 in the ovarymay fine-tune the peak of tPA activity which may be important for the regulation of the ovulatory process.The changes of tPA and PAI-1 in the ovarian cells of hypophysectomized rats during GnRHa-induced ovula-tion are similar to that in intact rats during hCG-induced ovulation,suggesting that the ovulatory process canbe modulated by different regulatory signals mediated by influencing the coordinated expression of both tPAand PAI-1.

  2. In vivo activity of 11beta-hydroxysteroid dehydrogenase type 1 and free fatty acid-induced insulin resistance.

    Science.gov (United States)

    Mai, K; Kullmann, V; Bobbert, T; Maser-Gluth, C; Möhlig, M; Bähr, V; Pfeiffer, A F H; Spranger, J; Diederich, S

    2005-10-01

    Free fatty acids (FFAs) induce hepatic insulin resistance and enhance hepatic gluconeogenesis. Glucocorticoids (GCs) also stimulate hepatic gluconeogenesis. The aim of this study was to investigate whether the FFA-induced hepatic insulin resistance is mediated by increased activity of hepatic 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1), accompanied by elevated hepatic cortisol levels. Following a 10-h overnight fast, six healthy male volunteers were investigated. A euglycaemic hyperinsulinaemic clamp was performed during lipid or saline infusion. To assess hepatic 11beta-HSD1 activity, plasma cortisol levels were measured after oral administration of cortisone acetate during lipid or saline infusion. In addition, 11beta-HSD activities were determined in vivo by calculating the urinary ratios of GC metabolites. Lipid infusion increased FFAs (5.41 +/- 1.00 vs. 0.48 +/- 0.20 mmol/l; P < 0.005) and significantly increased insulin resistance [glucose infusion rate (GIR) 6.02 +/- 2.60 vs. 4.08 +/- 2.15 mg/kg/min; P < 0.005]. After lipid and saline infusions no changes in 11beta-HSD1 activity were found, neither by changes in cortisone acetate to cortisol conversion nor by differences in urinary free cortisol (UFF) or cortisone (UFE), 5beta-tetrahydrocortisol (THF), 5alpha-THF, cortisone (THE), UFF/UFE and (5alpha-THF + THF)/THE ratios. We found no change in hepatic and whole-body 11beta-HSD1 activity during acute FFA-induced insulin resistance. Further studies are necessary to clarify whether 11beta-HSD1 in muscle and adipose tissue is influenced by FFAs and whether 11beta-HSD1 is involved in other conditions of insulin resistance.

  3. Discoidin Domain Receptor 2 Mediates Collagen-Induced Activation of Membrane-Type 1 Matrix Metalloproteinase in Human Fibroblasts.

    Science.gov (United States)

    Majkowska, Iwona; Shitomi, Yasuyuki; Ito, Noriko; Gray, Nathanael S; Itoh, Yoshifumi

    2017-03-07

    Membrane-Type 1 Matrix Metalloproteinase (MT1-MMP) is a membrane-bound MMP that is highly expressed in cells with invading capacity including fibroblasts and invasive cancer cell. A potential physiological stimulus for MT1-MMP expression is fibrillar collagen, and it has been shown that it upregulates both MT1-MMP gene and functions in various cell types. However, the mechanisms of collagen-mediated MT1-MMP activation is not clearly understood. In this study we identified discoidin domain receptor 2 (DDR2) as a crucial receptor that mediates this process in human fibroblasts. Knocking down DDR2, but not β1 integrin subunit, a common subunit for all collagen-binding integrins, inhibited collagen-induced activation of proMMP-2 and upregulation of MT1-MMP at the gene and protein level. Interestingly DDR2 knockdown or pharmacological inhibition of DDR2 also inhibited MT1-MMP-dependent cellular degradation of collagen film, suggesting that cell surface collagen degradation by MT1-MMP involves DDR2-mediated collagen signalling. This DDR2-mediated mechanism is only present in non-transformed mesenchymal cells, as collagen-induced MT1-MMP activation in HT1080 fibrosarcoma cells and MT1-MMP function in MDA-MB231 breast cancer cells were not affected by DDR kinase inhibition. DDR2 activation was found to be noticeably more effective when cells were stimulated by collagen without non-helical telopeptides region compared to intact collagen fibrils. Those data suggest that DDR2 is a microenvironmental sensor that regulates fibroblasts migration in collagen-rich environment.

  4. Methylene blue counteracts H2S toxicity-induced cardiac depression by restoring L-type Ca channel activity

    Science.gov (United States)

    Zhang, Xue-Qian; Sonobe, Takashi; Song, Jianliang; Rannals, Matthew D.; Wang, JuFang; Tubbs, Nicole; Cheung, Joseph Y.; Haouzi, Philippe

    2016-01-01

    We have previously reported that methylene blue (MB) can counteract hydrogen sulfide (H2S) intoxication-induced circulatory failure. Because of the multifarious effects of high concentrations of H2S on cardiac function, as well as the numerous properties of MB, the nature of this interaction, if any, remains uncertain. The aim of this study was to clarify 1) the effects of MB on H2S-induced cardiac toxicity and 2) whether L-type Ca2+ channels, one of the targets of H2S, could transduce some of the counteracting effects of MB. In sedated rats, H2S infused at a rate that would be lethal within 5 min (24 μM·kg−1·min−1), produced a rapid fall in left ventricle ejection fraction, determined by echocardiography, leading to a pulseless electrical activity. Blood concentrations of gaseous H2S reached 7.09 ± 3.53 μM when cardiac contractility started to decrease. Two to three injections of MB (4 mg/kg) transiently restored cardiac contractility, blood pressure, and V̇o2, allowing the animals to stay alive until the end of H2S infusion. MB also delayed PEA by several minutes following H2S-induced coma and shock in unsedated rats. Applying a solution containing lethal levels of H2S (100 μM) on isolated mouse cardiomyocytes significantly reduced cell contractility, intracellular calcium concentration ([Ca2+]i) transient amplitudes, and L-type Ca2+ currents (ICa) within 3 min of exposure. MB (20 mg/l) restored the cardiomyocyte function, ([Ca2+]i) transient, and ICa. The present results offer a new approach for counteracting H2S toxicity and potentially other conditions associated with acute inhibition of L-type Ca2+ channels. PMID:26962024

  5. Methylene blue counteracts H2S toxicity-induced cardiac depression by restoring L-type Ca channel activity.

    Science.gov (United States)

    Judenherc-Haouzi, Annick; Zhang, Xue-Qian; Sonobe, Takashi; Song, Jianliang; Rannals, Matthew D; Wang, JuFang; Tubbs, Nicole; Cheung, Joseph Y; Haouzi, Philippe

    2016-06-01

    We have previously reported that methylene blue (MB) can counteract hydrogen sulfide (H2S) intoxication-induced circulatory failure. Because of the multifarious effects of high concentrations of H2S on cardiac function, as well as the numerous properties of MB, the nature of this interaction, if any, remains uncertain. The aim of this study was to clarify 1) the effects of MB on H2S-induced cardiac toxicity and 2) whether L-type Ca(2+) channels, one of the targets of H2S, could transduce some of the counteracting effects of MB. In sedated rats, H2S infused at a rate that would be lethal within 5 min (24 μM·kg(-1)·min(-1)), produced a rapid fall in left ventricle ejection fraction, determined by echocardiography, leading to a pulseless electrical activity. Blood concentrations of gaseous H2S reached 7.09 ± 3.53 μM when cardiac contractility started to decrease. Two to three injections of MB (4 mg/kg) transiently restored cardiac contractility, blood pressure, and V̇o2, allowing the animals to stay alive until the end of H2S infusion. MB also delayed PEA by several minutes following H2S-induced coma and shock in unsedated rats. Applying a solution containing lethal levels of H2S (100 μM) on isolated mouse cardiomyocytes significantly reduced cell contractility, intracellular calcium concentration ([Ca(2+)]i) transient amplitudes, and L-type Ca(2+) currents (ICa) within 3 min of exposure. MB (20 mg/l) restored the cardiomyocyte function, ([Ca(2+)]i) transient, and ICa The present results offer a new approach for counteracting H2S toxicity and potentially other conditions associated with acute inhibition of L-type Ca(2+) channels. Copyright © 2016 the American Physiological Society.

  6. The cytosolic sensor cGAS detects Mycobacterium tuberculosis DNA to induce type I interferons and activate autophagy

    Science.gov (United States)

    MacDuff, Donna A.; Kimmey, Jacqueline M.; Diner, Elie J.; Olivas, Joanna; Vance, Russell E.; Stallings, Christina L.; Virgin, Herbert W.; Cox, Jeffery S.

    2015-01-01

    Summary Type I interferons (IFNs) are critical mediators of antiviral defense, but their elicitation by bacterial pathogens can be detrimental to hosts. Many intracellular bacterial pathogens, including Mycobacterium tuberculosis, induce type I IFNs following phagosomal membrane perturbations. Cytosolic M. tuberculosis DNA has been implicated as a trigger for IFN production, but the mechanisms remain obscure. We report that the cytosolic DNA sensor, cyclic GMP-AMP synthase (cGAS), is required for activating IFN production via the STING/TBK1/IRF3 pathway during M. tuberculosis and L. pneumophila infection of macrophages, whereas L. monocytogenes short-circuits this pathway by producing the STING agonist, c-di-AMP. Upon sensing cytosolicDNA, cGAS also activates cell-intrinsic antibacterial defenses, promoting autophagic targeting of M. tuberculosis. Importantly, we show that cGAS binds M. tuberculosis DNA during infection, providing direct evidence that this unique host-pathogen interaction occurs in vivo. These data uncover a mechanism by which IFN is likely elicited during active human infections. PMID:26048136

  7. Novel nitric oxide-releasing spirolactone-type diterpenoid derivatives with in vitro synergistic anticancer activity as apoptosis inducer.

    Science.gov (United States)

    Li, Dahong; Han, Tong; Tian, Kangtao; Tang, Shuang; Xu, Shengtao; Hu, Xu; Wang, Lei; Li, Zhanlin; Hua, Huiming; Xu, Jinyi

    2016-09-01

    Herein, we reported the cytotoxicity, NO-releasing property, and apoptosis induced ability of two series of novel nitric oxide-releasing spirolactone-type diterpenoid derivatives (10a-f and 15a-f). All the title compounds were more potent than oridonin (7) and parent compound (9 or 14) against human tumor Bel-7402, K562, MGC-803 and CaEs-17 cells. SARs were concluded based on above data. Compound 15d exhibited the strongest antiproliferative activity with the IC50 of 0.86, 1.74, 1.16 and 3.75μM, respectively, and could produce high level (above 25μM) of NO at the time point of 60min. Further mechanism evaluation showed that 15d could induce S phase cell cycle arrest and apoptosis at low micromolar concentrations in Bel-7402 cells via mitochondria-related pathways. It was expected that the remarkable biological profile of the synthetic NO-releasing spirolactone-type diterpenoid analogs make them possible as promising candidates for the development of anticancer agents.

  8. Antidiabetic activity of alkaloids of Aerva lanata roots on streptozotocin-nicotinamide induced type-II diabetes in rats.

    Science.gov (United States)

    Agrawal, Ritesh; Sethiya, Neeraj K; Mishra, S H

    2013-05-01

    The roots of Aerva lanata Linn. (Amaranthaceae) (AL) are employed traditionally as an antihyperglycaemic in the Ayurvedic system of medicine. The present investigation is focus for identification and isolation of the bioactive compound from methanol roots extract of AL against streptozocin-nicotinamide induced elevated serum glucose level in rats. The methanol extract of the roots was fractionated using different solvents. The partially purified alkaloid basified toluene fraction (PPABTF) showed the presence of alkaloids. The fraction (10 and 20 mg/kg) was tested for oral glucose tolerance test (OGTT) and in non-insulin-dependent diabetes mellitus (NIDDM)-induced elevated serum glucose level in rats. The fraction was also subjected to high performance thin layer chromatography (HPTLC) for the determination of content of individual alkaloids. Single oral administration of PPABTF (10 and 20 mg/kg) after 20 h caused a significant (p diabetic rats (p compounds identified by ultraviolet, infrared, mass spectroscopy and nuclear magnetic resonance, as canthin-6-one derivatives. The PPABTF in the dose of 20 mg/kg showed significant effects on streptozotocin-nicotinamide induced type-II NIDDM in rats. The activity may be due to the presence of alkaloids like canthin-6-one derivatives.

  9. Reactive coagulation induced by plasmin in patients treated with recombinant tissue-type plasminogen activator

    NARCIS (Netherlands)

    Gram, J.; Munkvad, S.; Leebeek, F.W.G.; Kluft, C.; Jespersen, J.

    1993-01-01

    Background: We and others have demonstrated that administration of thrombolytic agents causes the generation of thrombosis-promoting agents. At present, we have studied whether formation in vivo of excessive amounts of plasmin is responsible for the activation of coagulation in patients treated with

  10. INVESTIGATION OF THROMBOMODULIN AND PLASMINOGEN ACTIVATOR INHIBITOR TYPE-I IN PREGNANCY INDUCED HYPERTENSION AND ITS CLINICAL SIGNIFICANCE

    Institute of Scientific and Technical Information of China (English)

    马水清; 白春梅; 边旭明

    2001-01-01

    Objective. To measure tbe circulating levels of thrombomodulin (TM) and plasminogen activator inhibitor type-Ⅰ(PAI-I) in women with pregnancy induced hypertension (PIH).``Methods. Blood samples were drawn from 97 pregnant women in their third trimester, grouped as 25 mild PIH, 26 moderate PIH, 22 severe PIH and 24 normotensive healthy pregnant women for determining levels of TM by ELISA, PAI-I by colorimetric assay methods, and creatinine (Cr) in serum by biochemical method.``Results. Circulating levels of TM, PAId and TM/Cr ratio increased with increasing severity of PIH. There were no significant differences between mild and normotensive pregnant women. The parameters were significantly changed in the moderate and severe PIH groups.``Conclv, sion. TM and PAI-Ⅰ may serve as meaningful clinical markers for the assessment of the endothelial damage in PIH,which is very important in evaluating and following the development of PIH.

  11. INVESTIGATION OF THROMBOMODULIN AND PLASMINOGEN ACTIVATOR INHIBITOR TYPE-I IN PREGNANCY INDUCED HYPERTENSION AND ITS CLINICAL SIGNIFICANCE

    Institute of Scientific and Technical Information of China (English)

    马水清; 白春梅; 边旭明

    2001-01-01

    Objective. To measure the circulating levels of thrombomodulin (TM) and plasminogen activator inhibitor type-I (PAI-I) inwomen with pregnancy induced hypertension (PIH). Methods. Blood samples were drawn from 97 pregnant women in their third trimester, grouped as 25 mild PIH, 26 moderate PIH, 22 severe PIH and 24 normotensive healthy pregnant women for determining levels of TM by ELISA, PAI-I by colorimetric assay methods, and creatinine (Cr) in serum by biochemical method. Results. Circulating levels of TM, PAI-I and TM/Cr ratio increased with increasing severity of PIH. There were no significant differences between mild and normotensive pregnant women. The parameters were significantly changed in the moderate and severe PIH groups. Conclusion. TM and PAI-I may serve as meaningful clinical markers for the assessment of the endothelial damage in PIH,which is very important in evaluating and following the development of PIH.

  12. An important role for type III interferon (IFN-lambda/IL-28) in TLR-induced antiviral activity

    DEFF Research Database (Denmark)

    Ank, Nina; Iversen, Marie B; Bartholdy, Christina

    2008-01-01

    Type III IFNs (IFN-lambda/IL-28/29) are cytokines with type I IFN-like antiviral activities, which remain poorly characterized. We herein show that most cell types expressed both types I and III IFNs after TLR stimulation or virus infection, whereas the ability of cells to respond to IFN-lambda w...

  13. An important role for type III interferon (IFN-lambda/IL-28) in TLR-induced antiviral activity

    DEFF Research Database (Denmark)

    Ank, Nina; Iversen, Marie B; Bartholdy, Christina;

    2008-01-01

    Type III IFNs (IFN-lambda/IL-28/29) are cytokines with type I IFN-like antiviral activities, which remain poorly characterized. We herein show that most cell types expressed both types I and III IFNs after TLR stimulation or virus infection, whereas the ability of cells to respond to IFN-lambda w...

  14. Active inhibition of herpes simplex virus type 1-induced cell fusion

    Energy Technology Data Exchange (ETDEWEB)

    Bzik, D.J.; Person, S.; Read, G.S.

    1982-01-01

    Previous studies have demonstrated that syn mutant-infected cells fuse less well with nonsyncytial virus-infected cells than with uninfected cells, a phenomenon defined as function inhibition. The present study characterizes the kinetics as well as the requirements for expression of fusion inhibition. Initially, the capacity of sparse syn mutant-infected cells to fuse with uninfected surrounding cells was determined throughout infection. Of seven syn mutants examined, including representatives with alterations in two different viral genes that affect cell fusion, all showed an increase in fusion capacity up to 12 hr after infection and a decrease at later times. Fusion inhibition was examined in experiments employing sparse syn20-infected cells which had been incubated to a maximum fusion capacity; it was shown that surrounding cells infected with KOS, the parent of syn20, began to inhibit fusion by the syn20-infected cells at about 4 hr after infection, and that the maximum ability to inhibit fusion was attained at about 6 hr after infection. The metabolic blocking agents actinomycin D (RNA), cycloheximide (protein), 2-deoxyglucose, and tunicamycin (glycoslyation of glycoproteins) all showed the ability to inhibit the expression of fusion inhibition by KOS-infected cells if added shortly after infection. It is concluded that fusion inhibition is an active process that requires the synthesis of RNA, proteins, and glycoproteins. 17 references, 3 figures, 2 tables.

  15. Ligand-induced internalization of the type 1 cholecystokinin receptor independent of recognized signaling activity.

    Science.gov (United States)

    Cawston, Erin E; Harikumar, Kaleeckal G; Miller, Laurence J

    2012-02-01

    distinct from that being studied. This interpretation was further supported by the inability of peptide 309-323 to inhibit its d-Trp-OPE-stimulated internalization. Thus the 309-323 region of the type 1 CCK receptor affects antagonist-stimulated internalization of this receptor, although its mechanism and interacting partner are not yet clear.

  16. Enriched environment induces beneficial effects on memory deficits and microglial activation in the hippocampus of type 1 diabetic rats.

    Science.gov (United States)

    Piazza, Francele Valente; Segabinazi, Ethiane; Centenaro, Lígia Aline; do Nascimento, Patrícia Severo; Achaval, Matilde; Marcuzzo, Simone

    2014-03-01

    Type 1 diabetes mellitus (T1DM) has been associated with long-term complications in the central nervous system, causing brain cellular dysfunctions and cognitive deficits. On the other hand, enriched environment (EE) induces experience-dependent plasticity, especially in the hippocampus, improving the performance of animals in learning and memory tasks. Thus, our objective was to investigate the influence of the EE on memory deficits, locomotion, corticosterone levels, synaptophysin (SYP) protein immunoreactivity, cell survival and microglial activation in the dentate gyrus (DG) of T1DM rat hippocampus. Male Wistar rats (21-day-old) were exposed to EE or maintained in standard housing (controls, C) for 3 months. At adulthood, the C and EE animals were randomly divided and diabetes was induced in half of them. All the animals received 4 doses of BrdU, 24 h apart. Hippocampus-dependent spatial memory, general locomotion and serum corticosterone levels were evaluated at the end of the experiment. The animals were transcardially perfused 30 days post-BrdU administration. Our results showed that EE was able to prevent/delay the development of memory deficits caused by diabetes in rats, however it did not revert the motor impairment observed in the diabetic group. SYP immunoreactivity was increased in the enriched healthy group. The EE decreased the serum corticosterone levels in diabetic adult rats and attenuated the injurious microglial activation, though without altering the decrease of the survival cell. Thus, EE was shown to help to ameliorate cognitive comorbidities associated with T1DM, possibly by reducing hyperactivity in the hypothalamic-pituitary-adrenal axis and microglial activation in diabetic animals.

  17. Lambda interferon (IFN-lambda), a type III IFN, is induced by viruses and IFNs and displays potent antiviral activity against select virus infections in vivo

    DEFF Research Database (Denmark)

    Ank, Nina; West, Hans; Bartholdy, Christina;

    2006-01-01

    Type III interferons (IFNs) (interleukin-28/29 or lambda interferon [IFN-lambda]) are cytokines with IFN-like activities. Here we show that several classes of viruses induce expression of IFN-lambda1 and -lambda2/3 in similar patterns. The IFN-lambdas were-unlike alpha/beta interferon (IFN......-alpha/beta)-induced directly by stimulation with IFN-alpha or -lambda, thus identifying type III IFNs as IFN-stimulated genes. In vitro assays revealed that IFN-lambdas have appreciable antiviral activity against encephalomyocarditis virus (EMCV) but limited activity against herpes simplex virus type 2 (HSV-2), whereas IFN...... had a more modest antiviral activity. Finally, pretreatment with IFN-lambda enhanced the levels of IFN-gamma in serum after HSV-2 infection. Thus, type III IFNs are expressed in response to most viruses and display potent antiviral activity in vivo against select viruses. The discrepancy between...

  18. Lambda Interferon (IFN-gamma), a Type III IFN, is induced by viruses and IFNs and displays potent antiviral activity against select virus infections in vivo

    DEFF Research Database (Denmark)

    Ank, Nina; West, Hans; Bartholdy, C.;

    2006-01-01

    Type III interferons (IFNs) (interleukin-28/29 or lambda interferon [IFN-lambda]) are cytokines with IFN-like activities. Here we show that several classes of viruses induce expression of IFN-lambda1 and -lambda2/3 in similar patterns. The IFN-lambdas were-unlike alpha/beta interferon (IFN......-alpha/beta)-induced directly by stimulation with IFN-alpha or -lambda, thus identifying type III IFNs as IFN-stimulated genes. In vitro assays revealed that IFN-lambdas have appreciable antiviral activity against encephalomyocarditis virus (EMCV) but limited activity against herpes simplex virus type 2 (HSV-2), whereas IFN...... had a more modest antiviral activity. Finally, pretreatment with IFN-lambda enhanced the levels of IFN-gamma in serum after HSV-2 infection. Thus, type III IFNs are expressed in response to most viruses and display potent antiviral activity in vivo against select viruses. The discrepancy between...

  19. A novel activation-induced cytidine deaminase (AID) mutation in Brazilian patients with hyper-IgM type 2 syndrome.

    Science.gov (United States)

    Caratão, Nadine; Cortesão, Catarina S; Reis, Pedro H; Freitas, Raquel F; Jacob, Cristina M A; Pastorino, Antonio C; Carneiro-Sampaio, Magda; Barreto, Vasco M

    2013-08-01

    Activation-induced cytidine deaminase (AID) is a DNA editing protein that plays an essential role in three major events of immunoglobulin (Ig) diversification: somatic hypermutation, class switch recombination and Ig gene conversion. Mutations in the AID gene (AICDA) have been found in patients with autosomal recessive Hyper-IgM (HIGM) syndrome type 2. Here, two 9- and 14-year-old Brazilian sisters, from a consanguineous family, were diagnosed with HIGM2 syndrome. Sequencing analysis of the exons from AICDA revealed that both patients are homozygous for a single C to G transversion in the third position of codon 15, which replaces a conserved Phenylalanine with a Leucine. To our knowledge, this is a new AICDA mutation found in HIGM2 patients. Functional studies confirm that the homologous murine mutation leads to a dysfunctional protein with diminished intrinsic cytidine deaminase activity and is unable to rescue CSR when introduced in Aicda(-/-)stimulated murine B cells. We briefly discuss the relevance of AICDA mutations found in patients for the biology of this molecule.

  20. Rabies virus infection induces type I interferon production in an IPS-1 dependent manner while dendritic cell activation relies on IFNAR signaling.

    Science.gov (United States)

    Faul, Elizabeth J; Wanjalla, Celestine N; Suthar, Mehul S; Gale, Michael; Wirblich, Christoph; Schnell, Matthias J

    2010-07-22

    As with many viruses, rabies virus (RABV) infection induces type I interferon (IFN) production within the infected host cells. However, RABV has evolved mechanisms by which to inhibit IFN production in order to sustain infection. Here we show that RABV infection of dendritic cells (DC) induces potent type I IFN production and DC activation. Although DCs are infected by RABV, the viral replication is highly suppressed in DCs, rendering the infection non-productive. We exploited this finding in bone marrow derived DCs (BMDC) in order to differentiate which pattern recognition receptor(s) (PRR) is responsible for inducing type I IFN following infection with RABV. Our results indicate that BMDC activation and type I IFN production following a RABV infection is independent of TLR signaling. However, IPS-1 is essential for both BMDC activation and IFN production. Interestingly, we see that the BMDC activation is primarily due to signaling through the IFNAR and only marginally induced by the initial infection. To further identify the receptor recognizing RABV infection, we next analyzed BMDC from Mda-5-/- and RIG-I-/- mice. In the absence of either receptor, there is a significant decrease in BMDC activation at 12h post infection. However, only RIG-I-/- cells exhibit a delay in type I IFN production. In order to determine the role that IPS-1 plays in vivo, we infected mice with pathogenic RABV. We see that IPS-1-/- mice are more susceptible to infection than IPS-1+/+ mice and have a significantly increased incident of limb paralysis.

  1. Nitric oxide synthase inhibition prevents activity-induced calcineurin–NFATc1 signalling and fast-to-slow skeletal muscle fibre type conversions

    Science.gov (United States)

    Martins, Karen J B; St-Louis, Mathieu; Murdoch, Gordon K; MacLean, Ian M; McDonald, Pamela; Dixon, Walter T; Putman, Charles T; Michel, Robin N

    2012-01-01

    The calcineurin–NFAT (nuclear factor of activated T-cells) signalling pathway is involved in the regulation of activity-dependent skeletal muscle myosin heavy chain (MHC) isoform type expression. Emerging evidence indicates that nitric oxide (NO) may play a critical role in this regulatory pathway. Thus, the purpose of this study was to investigate the role of NO in activity-induced calcineurin–NFATc1 signalling leading to skeletal muscle faster-to-slower fibre type transformations in vivo. Endogenous NO production was blocked by administering l-NAME (0.75 mg ml−1) in drinking water throughout 0, 1, 2, 5 or 10 days of chronic low-frequency stimulation (CLFS; 10 Hz, 12 h day−1) of rat fast-twitch muscles (L+Stim; n= 30) and outcomes were compared with control rats receiving only CLFS (Stim; n= 30). Western blot and immunofluorescence analyses revealed that CLFS induced an increase in NFATc1 dephosphorylation and nuclear localisation, sustained by glycogen synthase kinase (GSK)-3β phosphorylation in Stim, which were all abolished in L+Stim. Moreover, real-time RT-PCR revealed that CLFS induced an increased expression of MHC-I, -IIa and -IId(x) mRNAs in Stim that was abolished in L+Stim. SDS-PAGE and immunohistochemical analyses revealed that CLFS induced faster-to-slower MHC protein and fibre type transformations, respectively, within the fast fibre population of both Stim and L+Stim groups. The final fast type IIA to slow type I transformation, however, was prevented in L+Stim. It is concluded that NO regulates activity-induced MHC-based faster-to-slower fibre type transformations at the transcriptional level via inhibitory GSK-3β-induced facilitation of calcineurin–NFATc1 nuclear accumulation in vivo, whereas transformations within the fast fibre population may also involve translational control mechanisms independent of NO signalling. PMID:22219342

  2. Differentiation-inducing activity of lupeol, a lupane-type triterpene from Chinese dandelion root (Hokouei-kon), on a mouse melanoma cell line.

    Science.gov (United States)

    Hata, K; Ishikawa, K; Hori, K; Konishi, T

    2000-08-01

    We examined the differentiation-inducing effects of extracts of 49 wild plants, 25 types of seaweed and 26 mushrooms in Akita on the human leukemia cell line HL60 and a B16 mouse melanoma-derived sub-clone with high differentiation capability (B16 2F2). Differentiation inducers of HL60 cells such as retinoic acid, showed no effects on the differentiation of B16 2F2 cells. Furthermore, chemical compounds known to be inducers of B16 cells, did not induce differentiation of HL60 cells. Screening tests showed that the differentiation of HL60 cells was induced by extracts of 28 wild plants, 10 types of seaweed and 2 mushrooms, and melanogenesis of B16 2F2 cells was increased by extracts of 21 wild plants, 8 types of seaweed and 7 mushrooms. All of the alcoholic extracts of plants belonging to the subfamily Cichorioideae of the family Compositae caused cell differentiation of the melanoma cell line. The extracts of Chinese dandelion root, also inhibited cell growth and induced melanogenesis of B16 2F2 cells. We isolated the active compound from ethanol extracts of the crude drug. Chemical and physical data for the active compound were identical with those for lupeol, a lupane-type triterpene.

  3. New macrolides active against Streptococcus pyogenes with inducible or constitutive type of macrolide-lincosamide-streptogramin B resistance.

    Science.gov (United States)

    Fernandes, P B; Baker, W R; Freiberg, L A; Hardy, D J; McDonald, E J

    1989-01-01

    Macrolide-resistant bacteria can be classified as inducibly resistant or constitutively resistant. Inducibly resistant bacteria are resistant to 14-membered macrolides, such as erythromycin and clarithromycin (A-56268), but are susceptible to the 16-membered macrolides, such as tylosin and spiramycin, as well as to clindamycin. Constitutively resistant bacteria are resistant to macrolide-lincosamide-streptogramin B antibiotics. In this study, the MICs of several erythromycin and clarithromycin analogs against macrolide-susceptible and macrolide-resistant Streptococcus pyogenes strains were determined. Four 11,12-carbamate analogs of clarithromycin had lower MICs than erythromycin did against S. pyogenes with the inducible or constitutive type of macrolide-lincosamide-streptogramin B resistance. Five 11,12-carbonate analogs of erythromycin with modifications at the 4" position of cladinose had lower MICs than did erythromycin against S. pyogenes with the constitutive type of resistance, and one of these compounds, which had a naphthyl-glycyl substitution at the 4" position, had a lower MIC than erythromycin against both the inducibly resistant and constitutively resistant strains. Two analogs of erythromycin with a modification on the 4" position of cladinose had lower MICs than erythromycin did against the constitutively resistant organisms but not against the inducibly resistant organisms. Thus, 14-membered macrolides can be modified so as to confer a low MIC when tested in vitro.

  4. Biological Activities of Chinese Propolis and Brazilian Propolis on Streptozotocin-Induced Type 1 Diabetes Mellitus in Rats

    OpenAIRE

    Wei Zhu; Minli Chen; Qiyang Shou; Yinghua Li; Fuliang Hu

    2011-01-01

    Propolis is a bee-collected natural product and has been proven to have various bioactivities. This study tested the effects of Chinese propolis and Brazilian propolis on streptozotocin-induced type 1 diabetes mellitus in Sprague-Dawley rats. The results showed that Chinese propolis and Brazilian propolis significantly inhibited body weight loss and blood glucose increase in diabetic rats. In addition, Chinese propolis-treated rats showed an 8.4% reduction of glycated hemoglobin levels compar...

  5. Anti-inflammatory effects of levalbuterol-induced 11β-hydroxysteroid dehydrogenase type 1 activity in airway epithelial cells

    Directory of Open Access Journals (Sweden)

    Matthew J Randall

    2015-01-01

    Full Text Available Airway epithelial NF-kB activation is observed in asthmatic subjects and is a cause of airway inflammation in mouse models of allergic asthma. Combination therapy with inhaled short-acting b2-agonists and corticosteroids significantly improves lung function and reduces inflammation in asthmatic subjects. Corticosteroids operate through a number of mechanisms to potently inhibit NF-kB activity. Since b-agonists can induce expression of 11b-HSD1, which converts inactive 11-keto corticosteroids into active 11-hydroxy corticosteroids, thereby potentiating the effects of endogenous glucocorticoids, we examined whether this mechanism is involved in the inhibition of NF-kB activation induced by the b-agonist albuterol in airway epithelial cells. Treatment of transformed murine Club cells (MTCC with (R-albuterol (levalbuterol, but not with (S- or a mixture of (R+S- (racemic albuterol, augmented mRNA expression of 11b-HSD1. MTCC were stably transfected with luciferase (luc reporter constructs under transcriptional regulation by NF-kB (NF-kB/luc or glucocorticoid response element (GRE/luc consensus motifs. Stimulation of NF-kB/luc MTCC with lipopolysaccharide (LPS or tumor necrosis factor-α (TNFα induced luciferase activity, which was inhibited by pretreatment with (R-, but not (S- or racemic albuterol. Furthermore, pretreatment of GRE/luc MTCC with (R-albuterol augmented 11-keto corticosteroid (cortisone induced luciferase activity, which was diminished by the 11β-HSD inhibitor glycyrrhetinic acid (18β-GA. LPS- and TNFα-induced NF-kB/luc activity was diminished in MTCC cells treated with a combination of cortisone and (R-albuterol, an effect that was inhibited by 18β-GA. Finally, pretreatment of MTCC cells with the combination of cortisone and (R-albuterol diminished LPS- and TNFα-induced pro-inflammatory cytokine production. These results demonstrate that levalbuterol augments conversion of inactive 11-keto corticosteroids into the active 11

  6. Camptothecin induces urokinase-type plasminogen activator gene-expression in human RC-K8 malignant lymphoma and H69 small cell lung cancer cells.

    OpenAIRE

    Shibakura M; Niiya K; Kiguchi T; Nakata Y; Tanimoto M

    2002-01-01

    We previously reported that anthracyclines, which could generate reactive oxygen species (ROS), could induce the urokinase-type plasminogen activator (uPA) gene expression in human RC-K8 malignant lymphoma cells and in H69 small cell lung cancer (SCLC) cells. In screening other uPA-inducible anti-cancer agents, we found that camptothecin (CPT) and its derivative, SN38, could induce uPA in RC-K8 and H69 cells. CPT and SN38, which are also used for the treatment of lymphoma and SCLC, significan...

  7. Protective role of Kalpaamruthaa in type II diabetes mellitus-induced cardiovascular disease through the modulation of protease-activated receptor-1

    Directory of Open Access Journals (Sweden)

    Raja Latha

    2015-01-01

    Full Text Available Background: Kalpaamruthaa (KA is a formulatory herbal preparation has beneficial antioxidant, anti-apoptotic and anti-inflammatory properties against cardiovascular damage (CVD. Objective: The present study was undertaken to investigate the protective role of KA in type II diabetes mellitus-induced CVD through the modulation of protease-activated receptor-1 (PAR1. Materials and Methods: CVD was developed in 8 weeks after type II diabetes mellitus induction with high fat diet (2 weeks and low dose of streptozotocin (2 × 35 mg/kg b.w. i.p. in 24 h interval. CVD-induced rats treated with KA (200 mg/kg b.w. in 0.5 ml of olive oil orally for 4 weeks. Results: KA increased the activities of enzymatic antioxidants and the levels of non-enzymatic antioxidants in pancreas of CVD-induced rats. KA effectively reduced the lipid peroxides and carbonyl content in the pancreas of CVD-induced rats. KA reduced cellular damage by ameliorating the activities of marker enzymes in plasma, heart and liver. The protective nature of KA was further evidenced by histological observation in pancreas. Further, KA reduced CVD by decreasing the expression of PAR1 in heart. Conclusion: This study exhibits the defending role of KA in type II diabetes mellitus-induced CVD through altering PAR1.

  8. Angiotensin type 2-receptor (AT2R) activation induces hypotension in apolipoprotein E-deficient mice by activating peroxisome proliferator-activated receptor-γ

    Science.gov (United States)

    Li, Ming; Tejada, Thor; Lambert, Jonathan P; Nicholson, Chad K; Yahiro, Eiji; Ambai, Vats T; Ali, Syeda F; Bradley, Eddie W; Graham, Robert M; Dell’Italia, Louis J; Calvert, John W; Naqvi, Nawazish

    2016-01-01

    Angiotensin II (Ang II) modulates blood pressure and atherosclerosis development through its vascular type-1 (AT1R) and type-2 (AT2R) receptors, which have opposing effects. AT2R activation produces hypotension, and is anti-atherogenic. Targeted overexpression of AT2Rs in vascular smooth muscle cells (VSMCs) indicates that these effects are due to increased nitric oxide (NO) generation. However, the role of endogenous VSMC AT2Rs in these events is unknown. Effect of 7-day low-dose Ang II-infusion (12 µg/kg/hr) on blood pressure was tested in 9-week-old apoE(-/-) mice fed a low or high cholesterol diet (LCD or HCD, respectively). Cardiac output was measured by echocardiography. Immunohistochemistry was performed to localize and quantify AT2Rs and p-Ser1177-endothelial nitric oxide synthase (eNOS) levels in the aortic arch. PD123319 and GW-9662 were used to selectively block the AT2R and peroxisome proliferator-activated receptor-γ (PPAR-γ), respectively. Ang II infusion decreased blood pressure by 12 mmHg (P LCD/apoE(-/-) mice without altering cardiac output; a response blocked by PD123319. Although, AT2R stimulation neither activated eNOS (p-Ser1177-eNOS) nor changed plasma NO metabolites, it caused an ~6-fold increase in VSMC PPAR-γ levels (P < 0.001) and the AT2R-mediated hypotension was abolished by GW-9662. AT2R-mediated hypotension was also inhibited by HCD, which selectively decreased VSMC AT2R expression by ~6-fold (P < 0.01). These findings suggest a novel pathway for the Ang II/AT2R-mediated hypotensive response that involves PPAR-γ, and is down regulated by a HCD. PMID:27679746

  9. Rabies virus infection induces type I interferon production in an IPS-1 dependent manner while dendritic cell activation relies on IFNAR signaling.

    Directory of Open Access Journals (Sweden)

    Elizabeth J Faul

    Full Text Available As with many viruses, rabies virus (RABV infection induces type I interferon (IFN production within the infected host cells. However, RABV has evolved mechanisms by which to inhibit IFN production in order to sustain infection. Here we show that RABV infection of dendritic cells (DC induces potent type I IFN production and DC activation. Although DCs are infected by RABV, the viral replication is highly suppressed in DCs, rendering the infection non-productive. We exploited this finding in bone marrow derived DCs (BMDC in order to differentiate which pattern recognition receptor(s (PRR is responsible for inducing type I IFN following infection with RABV. Our results indicate that BMDC activation and type I IFN production following a RABV infection is independent of TLR signaling. However, IPS-1 is essential for both BMDC activation and IFN production. Interestingly, we see that the BMDC activation is primarily due to signaling through the IFNAR and only marginally induced by the initial infection. To further identify the receptor recognizing RABV infection, we next analyzed BMDC from Mda-5-/- and RIG-I-/- mice. In the absence of either receptor, there is a significant decrease in BMDC activation at 12h post infection. However, only RIG-I-/- cells exhibit a delay in type I IFN production. In order to determine the role that IPS-1 plays in vivo, we infected mice with pathogenic RABV. We see that IPS-1-/- mice are more susceptible to infection than IPS-1+/+ mice and have a significantly increased incident of limb paralysis.

  10. The physiologic increase in expression of some type I IFN-inducible genes during pregnancy is not associated with improved disease activity in pregnant patients with rheumatoid arthritis.

    Science.gov (United States)

    Weix, Janine; Häupl, Thomas; Raio, Luigi; Villiger, Peter Matthias; Förger, Frauke

    2013-06-01

    During pregnancy, most patients with rheumatoid arthritis (RA) experience a spontaneous improvement in their condition. Since type I interferons (IFN) have immunomodulatory properties, we investigated whether type I IFN-inducible genes are upregulated in pregnant patients with RA. Peripheral blood mononuclear cells were evaluated using quantitative real-time polymerase chain reaction for type I IFN-inducible genes (IFI 35, IFI44, IFI44L, IFIT3, OAS1, and Siglec1) in patients with RA and healthy women during and after pregnancy as well as in nonpregnant controls. IFN-alpha and IFN-beta levels in sera of patients and healthy donors were analyzed by enzyme linked immunosorbent assay. It was found that healthy women did not show a change of gene expression levels from the second trimester until postpartum, yet some type I IFN-inducible genes were significantly upregulated in pregnant and postpartum women compared with nonpregnant individuals. In patients with RA, a pronounced upregulation of IFI35 and IFI44 at the second trimester and a peak expression of Siglec1 at the third trimester were observed. Pregnancy levels of IFI35 and IFI44 in patients with RA were higher than those of nonpregnant patients with RA. No significant association of gene expression levels with disease activity was found. In the sera of patients and healthy women, IFN-beta was undetectable and IFN-alpha levels remained stable throughout pregnancy and postpartum. Thus, pregnancy can give rise to an increased expression of type I IFN-inducible genes, reflecting an upregulation of the innate immune system. However, an association of type I IFN-inducible genes with pregnancy induced disease amelioration seems unlikely.

  11. MAPK Phosphatase 5 Expression Induced by Influenza and Other RNA Virus Infection Negatively Regulates IRF3 Activation and Type I Interferon Response

    Directory of Open Access Journals (Sweden)

    Sharmy J. James

    2015-03-01

    Full Text Available The type I interferon system is essential for antiviral immune response and is a primary target of viral immune evasion strategies. Here, we show that virus infection induces the expression of MAPK phosphatase 5 (MKP5, a dual-specificity phosphatase (DUSP, in host cells. Mice deficient in MKP5 were resistant to H1N1 influenza infection, which is associated with increased IRF3 activation and type I interferon expression in comparison with WT mice. Increased type I interferon responses were also observed in MKP5-deficient cells and animals upon other RNA virus infection, including vesicular stomatitis virus and sendai virus. These observations were attributed to the ability of MKP5 to interact with and dephosphorylate IRF3. Our study reveals a critical function of a DUSP in negative regulation of IRF3 activity and demonstrates a mechanism by which influenza and other RNA viruses inhibit type I interferon response in the host through MKP5.

  12. Increased p50/p50 NF-κB Activation in Human Papillomavirus Type 6- or Type 11-Induced Laryngeal Papilloma Tissue

    Science.gov (United States)

    Vancurova, Ivana; Wu, Rong; Miskolci, Veronika; Sun, Shishinn

    2002-01-01

    We have observed elevated NF-κB DNA-binding activity in nuclear extracts from human papillomavirus type 6- and 11-infected laryngeal papilloma tissues. The predominant DNA-binding species is the p50/p50 homodimer. The elevated NF-κB activity could be correlated with a reduced level of cytoplasmic IκBβ and could be associated with the overexpression of p21CIP1/WAF1 in papilloma cells. Increased NF-κB activity and cytoplasmic accumulation of p21CIP1/WAF1 might counteract death-promoting effects elicited by overexpressed PTEN and reduced activation of Akt and STAT3 previously noted in these tissues. PMID:11773428

  13. 1,25 (OH)2D3 enhances PTH-induced Ca2+ transients in preosteoblasts by activating L-type Ca2+ channels

    Science.gov (United States)

    Li, W.; Duncan, R. L.; Karin, N. J.; Farach-Carson, M. C.

    1997-01-01

    We previously demonstrated electrophysiologically that 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] shifts the activation threshold of L-type Ca2+ channels in osteoblasts toward the resting potential and prolongs mean open time. Presently, we used single-cell Ca2+ imaging to study the combined effects of 1,25(OH)2D3 and parathyroid hormone (PTH) during generation of Ca2+ transients in fura 2-loaded MC3T3-E1 cells. Pretreatment with 1,25(OH)2D3 concentrations, which alone did not produce Ca2+ transients, consistently enhanced Ca2+ responses to PTH. Enhancement was dose dependent over the range of 1 to 10 nM and was blocked by pretreatment with 5 microM nitrendipine during pretreatment. A 1,25(OH)2D3 analog that activates L-type channels and shifts their activation threshold also enhanced PTH responses. In contrast, an analog devoid of membrane Ca2+ effects did not enhance PTH-induced Ca2+ transients. The PTH-induced Ca2+ transient involved activation of a dihydropyridine-insensitive cation channel that was inhibited by Gd3+. Together, these data suggest that 1,25(OH)2D3 increases osteoblast responsiveness to PTH through rapid modification of L-type Ca2+ channel gating properties, whose activation enhances Ca2+ entry through other channels such as the PTH-responsive, Gd(3+)-sensitive cation channel.

  14. Transcriptional Regulation of Urokinase-type Plasminogen Activator Receptor by Hypoxia-Inducible Factor 1 Is Crucial for Invasion of Pancreatic and Liver Cancer

    Directory of Open Access Journals (Sweden)

    Peter Büchler

    2009-02-01

    Full Text Available Angioinvasion is critical for metastasis with urokinase-type plasminogen activator receptor (uPAR and tumor hypoxia-activated hypoxia-inducible factor 1 (HIF-1 as key players. Transcriptional control of uPAR expression by HIF has never been reported. The aim of the present study, therefore, was to test whether tumor hypoxia-induced HIF expression may be linked to transcriptional activation of uPAR and dependent angioinvasion. We used human pancreatic cancer cells and a model of parental and derived HIF-1β-deficient mouse liver cancer cell lines and performed Northern blot analysis, nuclear runoff assays, electrophoretic mobility shift assay, polymerase chain reaction-generated deletion mutants, luciferase assays, Matrigel invasion assays, and in vivo angioinvasion assays in the chorioallantoic membrane of fertilized chicken eggs. Urokinase-type plasminogen activator receptor promoter analysis resulted in four putative HIF binding sites. Hypoxia strongly induced de novo transcription of uPAR mRNA. With sequential deletion mutants of the uPAR promoter, it was possible to identify one HIF binding site causing a nearly 200-fold increase in luciferase activity. Hypoxia enhanced the number of invading tumor cells in vitro and in vivo. In contrast, HIF-1β-deficient cells failed to upregulate uPAR expression, to activate luciferase activity, and to invade on hypoxia. Taken together, we show for the first time that uPAR is under transcriptional control of HIF and that this is important for hypoxia-induced metastasis.

  15. Nuclear envelope breakdown induced by herpes simplex virus type 1 involves the activity of viral fusion proteins

    Energy Technology Data Exchange (ETDEWEB)

    Maric, Martina; Haugo, Alison C. [Department of Microbiology, University of Iowa, Iowa City, IA 52242 (United States); Dauer, William [Department of Neurology, University of Michigan, Ann Arbor, MI 48109 (United States); Johnson, David [Department of Microbiology and Immunology, Oregon Health Sciences University, Portland, OR 97201 (United States); Roller, Richard J., E-mail: richard-roller@uiowa.edu [Department of Microbiology, University of Iowa, Iowa City, IA 52242 (United States)

    2014-07-15

    Herpesvirus infection reorganizes components of the nuclear lamina usually without loss of integrity of the nuclear membranes. We report that wild-type HSV infection can cause dissolution of the nuclear envelope in transformed mouse embryonic fibroblasts that do not express torsinA. Nuclear envelope breakdown is accompanied by an eight-fold inhibition of virus replication. Breakdown of the membrane is much more limited during infection with viruses that lack the gB and gH genes, suggesting that breakdown involves factors that promote fusion at the nuclear membrane. Nuclear envelope breakdown is also inhibited during infection with virus that does not express UL34, but is enhanced when the US3 gene is deleted, suggesting that envelope breakdown may be enhanced by nuclear lamina disruption. Nuclear envelope breakdown cannot compensate for deletion of the UL34 gene suggesting that mixing of nuclear and cytoplasmic contents is insufficient to bypass loss of the normal nuclear egress pathway. - Highlights: • We show that wild-type HSV can induce breakdown of the nuclear envelope in a specific cell system. • The viral fusion proteins gB and gH are required for induction of nuclear envelope breakdown. • Nuclear envelope breakdown cannot compensate for deletion of the HSV UL34 gene.

  16. Shigella type III secretion protein MxiI is recognized by Naip2 to induce Nlrc4 inflammasome activation independently of Pkcδ.

    Directory of Open Access Journals (Sweden)

    Shiho Suzuki

    2014-02-01

    Full Text Available Recognition of intracellular pathogenic bacteria by members of the nucleotide-binding domain and leucine-rich repeat containing (NLR family triggers immune responses against bacterial infection. A major response induced by several Gram-negative bacteria is the activation of caspase-1 via the Nlrc4 inflammasome. Upon activation, caspase-1 regulates the processing of proIL-1β and proIL-18 leading to the release of mature IL-1β and IL-18, and induction of pyroptosis. The activation of the Nlrc4 inflammasome requires the presence of an intact type III or IV secretion system that mediates the translocation of small amounts of flagellin or PrgJ-like rod proteins into the host cytosol to induce Nlrc4 activation. Using the Salmonella system, it was shown that Naip2 and Naip5 link flagellin and the rod protein PrgJ, respectively, to Nlrc4. Furthermore, phosphorylation of Nlrc4 at Ser533 by Pkcδ was found to be critical for the activation of the Nlrc4 inflammasome. Here, we show that Naip2 recognizes the Shigella T3SS inner rod protein MxiI and induces Nlrc4 inflammasome activation. The expression of MxiI in primary macrophages was sufficient to induce pyroptosis and IL-1β release, which were prevented in macrophages deficient in Nlrc4. In the presence of MxiI or Shigella infection, MxiI associated with Naip2, and Naip2 interacted with Nlrc4. siRNA-mediated knockdown of Naip2, but not Naip5, inhibited Shigella-induced caspase-1 activation, IL-1β maturation and Asc pyroptosome formation. Notably, the Pkcδ kinase was dispensable for caspase-1 activation and secretion of IL-1β induced by Shigella or Salmonella infection. These results indicate that activation of caspase-1 by Shigella is triggered by the rod protein MxiI that interacts with Naip2 to induce activation of the Nlrc4 inflammasome independently of the Pkcδ kinase.

  17. C7L family of poxvirus host range genes inhibits antiviral activities induced by type I interferons and interferon regulatory factor 1.

    Science.gov (United States)

    Meng, Xiangzhi; Schoggins, John; Rose, Lloyd; Cao, Jingxin; Ploss, Alexander; Rice, Charles M; Xiang, Yan

    2012-04-01

    Vaccinia virus (VACV) K1L and C7L function equivalently in many mammalian cells to support VACV replication and antagonize antiviral activities induced by type I interferons (IFNs). While K1L is limited to orthopoxviruses, genes that are homologous to C7L are found in diverse mammalian poxviruses. In this study, we showed that the C7L homologues from sheeppox virus and swinepox virus could rescue the replication defect of a VACV mutant deleted of both K1L and C7L (vK1L(-)C7L(-)). Interestingly, the sheeppox virus C7L homologue could rescue the replication of vK1L(-)C7L(-) in human HeLa cells but not in murine 3T3 and LA-4 cells, in contrast to all other C7L homologues. Replacing amino acids 134 and 135 of the sheeppox virus C7L homologue, however, made it functional in the two murine cell lines, suggesting that these two residues are critical for antagonizing a putative host restriction factor which has some subtle sequence variation in human and murine cells. Furthermore, the C7L family of host range genes from diverse mammalian poxviruses were all capable of antagonizing type I IFN-induced antiviral activities against VACV. Screening of a library of more than 350 IFN-stimulated genes (ISGs) identified interferon-regulated factor 1 (IRF1) as an inhibitor of vK1L(-)C7L(-) but not wild-type VACV. Expression of either K1L or C7L, however, rendered vK1L(-)C7L(-) resistant to IRF1-induced antiviral activities. Altogether, our data show that K1L and C7L antagonize IRF1-induced antiviral activities and that the host modulation function of C7L is evolutionally conserved in all poxviruses that can readily replicate in tissue-cultured mammalian cells.

  18. High-altitude hypoxia induces disorders of the brain-endocrine-immune network through activation of corticotropin-releasing factor and its type-1 receptors

    Institute of Scientific and Technical Information of China (English)

    Xue-qun CHEN; Fan-ping KONG; Yang ZHAO; Ji-zeng DU

    2012-01-01

    High-altitude hypoxia can induce physiological dysfunction and mountain sickness,but the underlying mechanism is not fully understood.Corticotrophin-releasing factor (CRF) and CRF type-1 receptors (CRFR1) are members of the CRF family and the essential controllers of the physiological activity of the hypothalamo-pituitary-adrenal (HPA) axis and modulators of endocrine and behavioral activity in response to various stressors.We have previously found that high-altitude hypoxia induces disorders of the brain-endocrine-immune network through activation of CRF and CRFR1 in the brain and periphery that include activation of the HPA axis in a time-and dose-dependent manner,impaired or improved learning and memory,and anxiety-like behavioral change.Meanwhile,hypoxia induces dysfunctions of the hypothalamo-pituitary-endocrine and immune systems,including suppression of growth and development,as well as inhibition of reproductive,metabolic and immune functions.In contrast,the small mammals that live on the Qinghai-Tibet Plateau alpine meadow display low responsiveness to extreme high-altitudehypoxia challenge,suggesting well-acclimatized genes and a physiological strategy that developed during evolution through interact-ions between the genes and environment.All the findings provide evidence for understanding the neuroendocrine mechanisms of hypoxia-induced physiological dysfunction.This review extends these findings.

  19. THE INFLUENCE OF INDUCING EARLY REPRODUCTIVE ACTIVITY IN YOUNG HENS AND ROOSTERS OF EGG-LAYING TYPE BREED

    Directory of Open Access Journals (Sweden)

    V MICLEA

    2003-04-01

    Full Text Available A Fsample of young 60 hens and 40 roosters of Rhode Island breed were divided in groups L1, L2 and L3. Individuals in group L1 were transferred at the age of 16 weeks from 8 h light/ day to 16 h light/ day and fed with a normal adult poultry feed. The same switch was performed with groups L2 and L3 at the age of 18 and respectively 20 weeks. Modifications of the sexual traits were recorded including: phenotype, weight and length of the genital tract, laying intensity, average egg weight and semen parameters. Furthermore, blood samples were analysed for FSH and LH. From photo stimulated roosters -kept under an 8 h light/ day programme at the age of 18, 22 and 24 weeks- histology samples from testis and deferens ducts were analysed. In young hens reproductive parameters are influenced both by light length and the age when this photo stimulation occur. All data shows that starting photo stimulation at 18 weeks has positive effects on the egg production in the analysed population. In young roosters inducing sexual stimulation before the age of 20 weeks will prolong the time length to typical reproductive activity and also will affect the semen quality. Thus, it seems that age is more important for young roosters in achieving reproductive maturity than in young hens. Therefore, inducing early sexual development is rather detrimental for males.

  20. {beta}1-Adrenergic receptor activation induces mouse cardiac myocyte death through both L-type calcium channel-dependent and -independent pathways.

    Science.gov (United States)

    Wang, Wei; Zhang, Hongyu; Gao, Hui; Kubo, Hajime; Berretta, Remus M; Chen, Xiongwen; Houser, Steven R

    2010-08-01

    Cardiac diseases persistently increase the contractility demands of cardiac myocytes, which require activation of the sympathetic nervous system and subsequent increases in myocyte Ca(2+) transients. Persistent exposure to sympathetic and/or Ca(2+) stress is associated with myocyte death. This study examined the respective roles of persistent beta-adrenergic receptor (beta-AR) agonist exposure and high Ca(2+) concentration in myocyte death. Ventricular myocytes (VMs) were isolated from transgenic (TG) mice with cardiac-specific and inducible expression of the beta(2a)-subunit of the L-type Ca(2+) channel (LTCC). VMs were cultured, and the rate of myocyte death was measured in the presence of isoproterenol (ISO), other modulators of Ca(2+) handling and the beta-adrenergic system, and inhibitors of caspases and reactive oxygen species generation. The rate of myocyte death was greater in TG vs. wild-type myocytes and accelerated by ISO in both groups, although ISO did not increase LTCC current (I(Ca-L)) in TG-VMs. Nifedipine, an LTCC antagonist, only partially prevented myocyte death. These results suggest both LTCC-dependent and -independent mechanisms in ISO induced myocyte death. ISO increased the contractility of wild type and TG-VMs by enhancing sarcoplasmic reticulum function and inhibiting sarco(endo)plasmic reticulum Ca(2+)-ATPase, Na(+)/Ca(2+) exchanger, and CaMKII partially protected myocyte from death induced by both Ca(2+) and ISO. Caspase and reactive oxygen species inhibitors did not, but beta(2)-AR activation did, reduce myocyte death induced by enhanced I(Ca-L) and ISO stimulation. Our results suggest that catecholamines induce myocyte necrosis primarily through beta(1)-AR-mediated increases in I(Ca-L), but other mechanisms are also involved in rodents.

  1. Gliotoxin promotes Aspergillus fumigatus internalization into type II human pneumocyte A549 cells by inducing host phospholipase D activation.

    Science.gov (United States)

    Jia, Xiaodong; Chen, Fangyan; Pan, Weihua; Yu, Rentao; Tian, Shuguang; Han, Gaige; Fang, Haiqin; Wang, Shuo; Zhao, Jingya; Li, Xianping; Zheng, Dongyu; Tao, Sha; Liao, Wanqing; Han, Xuelin; Han, Li

    2014-06-01

    The internalization of Aspergillus fumigatus into lung epithelial cells is critical for the infection process in the host. Gliotoxin is the most potent toxin produced by A. fumigatus. However, its role in A. fumigatus internalization into the lung epithelial cells is still largely unknown. In the present study, the deletion of the gliP gene regulating the production of gliotoxin in A. fumigatus suppressed the internalization of conidia into the A549 lung epithelial cells, and this suppression could be rescued by the exogenous addition of gliotoxin. At lower concentrations, gliotoxin enhanced the internalization of the conidia of A. fumigatus into A549 cells; in contrast, it inhibited the phagocytosis of J774 macrophages in a dose-dependent manner. Under a concentration of 100 ng/ml, gliotoxin had no effect on A549 cell viability but attenuated ROS production in a dose-dependent manner. Gliotoxin significantly stimulated the phospholipase D activity in the A549 cells at a concentration of 50 ng/ml. This stimulation was blocked by the pretreatment of host cells with PLD1- but not PLD2-specific inhibitor. Morphological cell changes induced by gliotoxin were observed in the A549 cells accompanying with obvious actin cytoskeleton rearrangement and a moderate alteration of phospholipase D distribution. Our data indicated that gliotoxin might be responsible for modulating the A. fumigatus internalization into epithelial cells through phospholipase D1 activation and actin cytoskeleton rearrangement.

  2. Piracetam Facilitates the Anti-Amnesic but not Anti-Diabetic Activity of Metformin in Experimentally Induced Type-2 Diabetic Encephalopathic Rats.

    Science.gov (United States)

    Pandey, Shruti; Garabadu, Debapriya

    2017-07-01

    Piracetam exhibits anti-amnesic activity in several animal models of dementia. However, its anti-amnesic potential has yet to be evaluated in type-2 diabetes mellitus (T2DM)-induced encephalopathy. Therefore, in the present study, piracetam (25, 50 and 100 mg/kg) was screened for anti-amnesic and anti-diabetic activity in T2DM-induced encephalopathic male rats. Subsequently, anti-amnesic and anti-diabetic activities were evaluated for piracetam, metformin and their combination in T2DM-induced encephalopathic animals. Rats received streptozotocin (45 mg/kg) and nicotinamide (110 mg/kg) injections on day-1 (D-1) of the experimental schedule and were kept undisturbed for 35 days to exhibit T2DM-induced encephalopathy. All drug treatments were continued from D-7 to D-35 in both experiments. Piracetam (100 mg/kg) attenuated loss in learning and memory in terms of increase in escape latency on D-4 (D-34) and decrease in time spent in the target quadrant on D-5 (D-35) of Morris water maze test protocol, and spatial memory in terms of reduced spontaneous alternation behavior in Y-maze test of encephalopathic rats. Additionally, piracetam attenuated altered levels of fasting plasma glucose and insulin, HOMA-IR and HOMA-B in encephalopathic animals, comparatively lesser than metformin. In the next experiment, combination of piracetam and metformin exhibited better anti-amnesic but not anti-diabetic activity than respective monotherapies in encephalopathic rats. Further, the combination attenuated reduced acetylcholine level and increased acetylcholinesterase activity, increased glycogen synthase kinase-3β level and decreased brain-derived neurotropic factor level in hippocampus and pre-frontal cortex of encephalopathic animals. Thus, piracetam could be used as an adjuvant to metformin in the management of dementia in T2DM-induced encephalopathy.

  3. Wild-Type N-Ras, Overexpressed in Basal-like Breast Cancer, Promotes Tumor Formation by Inducing IL-8 Secretion via JAK2 Activation

    Directory of Open Access Journals (Sweden)

    Ze-Yi Zheng

    2015-07-01

    Full Text Available Basal-like breast cancers (BLBCs are aggressive, and their drivers are unclear. We have found that wild-type N-RAS is overexpressed in BLBCs but not in other breast cancer subtypes. Repressing N-RAS inhibits transformation and tumor growth, whereas overexpression enhances these processes even in preinvasive BLBC cells. We identified N-Ras-responsive genes, most of which encode chemokines; e.g., IL8. Expression levels of these chemokines and N-RAS in tumors correlate with outcome. N-Ras, but not K-Ras, induces IL-8 by binding and activating the cytoplasmic pool of JAK2; IL-8 then acts on both the cancer cells and stromal fibroblasts. Thus, BLBC progression is promoted by increasing activities of wild-type N-Ras, which mediates autocrine/paracrine signaling that can influence both cancer and stroma cells.

  4. Wild-Type N-Ras, Overexpressed in Basal-like Breast Cancer, Promotes Tumor Formation by Inducing IL-8 Secretion via JAK2 Activation.

    Science.gov (United States)

    Zheng, Ze-Yi; Tian, Lin; Bu, Wen; Fan, Cheng; Gao, Xia; Wang, Hai; Liao, Yi-Hua; Li, Yi; Lewis, Michael T; Edwards, Dean; Zwaka, Thomas P; Hilsenbeck, Susan G; Medina, Daniel; Perou, Charles M; Creighton, Chad J; Zhang, Xiang H-F; Chang, Eric C

    2015-07-21

    Basal-like breast cancers (BLBCs) are aggressive, and their drivers are unclear. We have found that wild-type N-RAS is overexpressed in BLBCs but not in other breast cancer subtypes. Repressing N-RAS inhibits transformation and tumor growth, whereas overexpression enhances these processes even in preinvasive BLBC cells. We identified N-Ras-responsive genes, most of which encode chemokines; e.g., IL8. Expression levels of these chemokines and N-RAS in tumors correlate with outcome. N-Ras, but not K-Ras, induces IL-8 by binding and activating the cytoplasmic pool of JAK2; IL-8 then acts on both the cancer cells and stromal fibroblasts. Thus, BLBC progression is promoted by increasing activities of wild-type N-Ras, which mediates autocrine/paracrine signaling that can influence both cancer and stroma cells.

  5. Tissue-type plasminogen activator-plasmin-BDNF modulate glutamate-induced phase-shifts of the mouse suprachiasmatic circadian clock in vitro.

    Science.gov (United States)

    Mou, Xiang; Peterson, Cynthia B; Prosser, Rebecca A

    2009-10-01

    The mammalian circadian clock in the suprachiasmatic nucleus (SCN) maintains environmental synchrony through light signals transmitted by glutamate released from retinal ganglion terminals. Brain-derived neurotrophic factor (BDNF) is required for light/glutamate to reset the clock. In the hippocampus, BDNF is activated by the extracellular protease, plasmin, which is produced from plasminogen by tissue-type plasminogen activator (tPA). We provide data showing expression of proteins from the plasminogen activation cascade in the SCN and their involvement in circadian clock phase-resetting. Early night glutamate application to SCN-containing brain slices resets the circadian clock. Plasminogen activator inhibitor-1 (PAI-1) blocked these shifts in slices from wild-type mice but not mice lacking its stabilizing protein, vitronectin (VN). Plasmin, but not plasminogen, prevented inhibition by PAI-1. Both plasmin and active BDNF reversed alpha(2)-antiplasmin inhibition of glutamate-induced shifts. alpha(2)-Antiplasmin decreased the conversion of inactive to active BDNF in the SCN. Finally, both tPA and BDNF allowed daytime glutamate-induced phase-resetting. Together, these data are the first to demonstrate expression of these proteases in the SCN, their involvement in modulating photic phase-shifts, and their activation of BDNF in the SCN, a potential 'gating' mechanism for photic phase-resetting. These data also demonstrate a functional interaction between PAI-1 and VN in adult brain. Given the usual association of these proteins with the extracellular matrix, these data suggest new lines of investigation into the locations and processes modulating mammalian circadian clock phase-resetting.

  6. Camptothecin induces urokinase-type plasminogen activator gene-expression in human RC-K8 malignant lymphoma and H69 small cell lung cancer cells.

    Directory of Open Access Journals (Sweden)

    Shibakura M

    2002-10-01

    Full Text Available We previously reported that anthracyclines, which could generate reactive oxygen species (ROS, could induce the urokinase-type plasminogen activator (uPA gene expression in human RC-K8 malignant lymphoma cells and in H69 small cell lung cancer (SCLC cells. In screening other uPA-inducible anti-cancer agents, we found that camptothecin (CPT and its derivative, SN38, could induce uPA in RC-K8 and H69 cells. CPT and SN38, which are also used for the treatment of lymphoma and SCLC, significantly increased the uPA accumulation in the conditioned media of both cells in a dose-dependent manner. The maximum induction of uPA mRNA levels was observed 24 h after stimulation. Pretreatment with pyrrolidine dithiocarbamate (PDTC, an anti-oxidant, inhibited the CPT-induced uPA mRNA expression. Thus, CPT induces uPA through gene expression, and, therefore, CPT may influence the tumor-cell biology by up-regulating the uPA/plasmin system.

  7. Camptothecin induces urokinase-type plasminogen activator gene-expression in human RC-K8 malignant lymphoma and H69 small cell lung cancer cells.

    Science.gov (United States)

    Shibakura, Misako; Niiya, Kenji; Kiguchi, Toru; Nakata, Yasunari; Tanimoto, Mitsune

    2002-10-01

    We previously reported that anthracyclines, which could generate reactive oxygen species (ROS), could induce the urokinase-type plasminogen activator (uPA) gene expression in human RC-K8 malignant lymphoma cells and in H69 small cell lung cancer (SCLC) cells. In screening other uPA-inducible anti-cancer agents, we found that camptothecin (CPT) and its derivative, SN38, could induce uPA in RC-K8 and H69 cells. CPT and SN38, which are also used for the treatment of lymphoma and SCLC, significantly increased the uPA accumulation in the conditioned media of both cells in a dose-dependent manner. The maximum induction of uPA mRNA levels was observed 24 h after stimulation. Pretreatment with pyrrolidine dithiocarbamate (PDTC), an anti-oxidant, inhibited the CPT-induced uPA mRNA expression. Thus, CPT induces uPA through gene expression, and, therefore, CPT may influence the tumor-cell biology by up-regulating the uPA/plasmin system.

  8. Isolation and Characterization of Dammarane-Type Saponins from Gynostemma pentaphyllum and Their Inhibitory Effects on IL-6-Induced STAT3 Activation.

    Science.gov (United States)

    Lee, Chul; Lee, Jin Woo; Jin, Qinghao; Jang, Hari; Jang, Hyun-Jae; Rho, Mun-Chual; Lee, Myung Koo; Lee, Chong Kil; Lee, Mi Kyeong; Hwang, Bang Yeon

    2015-05-22

    Five new dammarane-type saponins, gypenosides GD1-GD5 (1-5), along with six known saponins (6-11), were isolated from the aerial parts of Gynostemma pentaphyllum using various chromatographic methods. Their structures were elucidated by a combination of spectroscopic and spectrometric data, including 1D and 2D NMR and HRESIMS. All isolates were tested for their inhibitory effects on IL-6-induced STAT3 promoter activity in Hep3B cells. Compounds 1, 9, and 11 displayed potent inhibitory effects, with IC50 values ranging from 0.27 to 0.59 μM.

  9. Simultaneous human papilloma virus type 16 E7 and cdk inhibitor p21 expression induces apoptosis and cathepsin B activation

    DEFF Research Database (Denmark)

    Kaznelson, Dorte Wissing; Bruun, Silas; Monrad, Astrid

    2004-01-01

    and induction of cell death. We have used the osteosarcoma cell line U2OS cells provided with E7 and the cdk2 inhibitor p21 (cip1/waf1) under inducible control, as a model system for the analysis of E7-mediated apoptosis. Our data shows that simultaneous expression of E7 and p21 proteins induces cell death...

  10. Reduction of conventional dendritic cells during Plasmodium infection is dependent on activation induced cell death by type I and II interferons.

    Science.gov (United States)

    Tamura, Takahiko; Kimura, Kazumi; Yui, Katsuyuki; Yoshida, Shigeto

    2015-12-01

    Dendritic cells (DCs) play critical roles in innate and adaptive immunity and in pathogenesis during the blood stage of malaria infection. The mechanisms underlying DC homeostasis during malaria infection are not well understood. In this study, the numbers of conventional DCs (cDCs) and plasmacytoid DCs (pDCs) in the spleens after lethal rodent malaria infection were examined, and were found to be significantly reduced. Concomitant with up-regulation of maturation-associated molecules, activation of caspase-3 was significantly increased, suggesting induction of cell death. Studies using neutralizing antibody and gene-deficient mice showed that type I and II interferons were critically involved in activation induced cell death of cDCs during malaria infection. These results demonstrate that DCs rapidly disappeared following IFN-mediated DC activation, and that homeostasis of DCs was significantly impaired during malaria infection.

  11. New macrolides active against Streptococcus pyogenes with inducible or constitutive type of macrolide-lincosamide-streptogramin B resistance.

    OpenAIRE

    Fernandes, P B; Baker, W.R.; Freiberg, L A; Hardy, D. J.; McDonald, E J

    1989-01-01

    Macrolide-resistant bacteria can be classified as inducibly resistant or constitutively resistant. Inducibly resistant bacteria are resistant to 14-membered macrolides, such as erythromycin and clarithromycin (A-56268), but are susceptible to the 16-membered macrolides, such as tylosin and spiramycin, as well as to clindamycin. Constitutively resistant bacteria are resistant to macrolide-lincosamide-streptogramin B antibiotics. In this study, the MICs of several erythromycin and clarithromyci...

  12. Unfractionated and low-molecular-weight heparin and the phosphodiesterase inhibitors, IBMX and cilostazol, block ex vivo Equid Herpesvirus type-1-induced platelet activation

    Directory of Open Access Journals (Sweden)

    Tracy Stokol

    2016-11-01

    Full Text Available Equid herpes virus type-1 (EHV-1 is a major pathogen of horses, causing abortion storms and outbreaks of herpes virus myeloencephalopathy. These clinical syndromes are partly attributed to ischemic injury from thrombosis in placental and spinal vessels. The mechanism of thrombosis in affected horses is unknown. We have previously shown that EHV-1 activates platelets through virus-associated tissue factor-initiated thrombin generation. Activated platelets participate in thrombus formation by providing a surface to localize coagulation factor complexes that amplify and propagate thrombin generation. We hypothesized that coagulation inhibitors that suppress thrombin generation (heparins or platelet inhibitors that impede post-receptor thrombin signaling (phosphodiesterase [PDE] antagonists would inhibit EHV-1-induced platelet activation ex vivo. We exposed platelet-rich plasma collected from healthy horses to the RacL11 abortigenic and Ab4 neuropathogenic strains of EHV-1 at 1 plaque forming unit/cell in the presence or absence of unfractionated heparin (UFH, low-molecular-weight (LMWH heparin or the PDE inhibitors, 3-isobutyl-1methylxanthine (IBMX and cilostazol. We assessed platelet activation status in flow cytometric assays by measuring P-selectin expression. We found that all of the inhibitors blocked EHV-1- and thrombin-induced platelet activation in a dose-dependent manner. Platelet activation in PRP was maximally inhibited at concentrations of 0.05 U/mL UFH and 2.5 μg/mL LMWH. These concentrations represented 0.1 to 0.2 U/mL anti-Factor Xa activity measured in chromogenic assays. Both IBMX and cilostazol showed maximal inhibition of platelet activation at the highest tested concentration of 50 μM but inhibition was lower than that seen with UFH and LMWH. Our results indicate that heparin anticoagulants and strong non-selective (IBMX or isoenzyme-3 selective (cilostazol PDE antagonists inhibit ex vivo EHV-1-induced platelet activation

  13. Cannabinoid receptor type 2 activation induces a microglial anti-inflammatory phenotype and reduces migration via MKP induction and ERK dephosphorylation

    Directory of Open Access Journals (Sweden)

    Landry Russell P

    2009-05-01

    Full Text Available Abstract Background Cannabinoid receptor type 2 (CBR2 inhibits microglial reactivity through a molecular mechanism yet to be elucidated. We hypothesized that CBR2 activation induces an anti-inflammatory phenotype in microglia by inhibiting extracellular signal-regulated kinase (ERK pathway, via mitogen-activated protein kinase-phosphatase (MKP induction. MKPs regulate mitogen activated protein kinases, but their role in the modulation of microglial phenotype is not fully understood. Results JWH015 (a CBR2 agonist increased MKP-1 and MKP-3 expression, which in turn reduced p-ERK1/2 in LPS-stimulated primary microglia. These effects resulted in a significant reduction of tumor necrosis factor-α (TNF expression and microglial migration. We confirmed the causative link of these findings by using MKP inhibitors. We found that the selective inhibition of MKP-1 by Ro-31-8220 and PSI2106, did not affect p-ERK expression in LPS+JWH015-treated microglia. However, the inhibition of both MKP-1 and MKP-3 by triptolide induced an increase in p-ERK expression and in microglial migration using LPS+JWH015-treated microglia. Conclusion Our results uncover a cellular microglial pathway triggered by CBR2 activation. These data suggest that the reduction of pro-inflammatory factors and microglial migration via MKP-3 induction is part of the mechanism of action of CBR2 agonists. These findings may have clinical implications for further drug development.

  14. Transient receptor potential ankyrin 1 activation enhances hapten sensitization in a T-helper type 2-driven fluorescein isothiocyanate-induced contact hypersensitivity mouse model

    Energy Technology Data Exchange (ETDEWEB)

    Shiba, Takahiro; Tamai, Takuma; Sahara, Yurina; Kurohane, Kohta [Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, 52‐1 Yada, Suruga-ku, Shizuoka City, Shizuoka 422‐8526 (Japan); Watanabe, Tatsuo [Laboratory of Food Chemistry, School of Food and Nutritional Sciences, University of Shizuoka, 52‐1 Yada, Suruga-ku, Shizuoka City, Shizuoka 422‐8526 (Japan); Imai, Yasuyuki, E-mail: imai@u-shizuoka-ken.ac.jp [Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, 52‐1 Yada, Suruga-ku, Shizuoka City, Shizuoka 422‐8526 (Japan)

    2012-11-01

    Some chemicals contribute to the development of allergies by increasing the immunogenicity of other allergens. We have demonstrated that several phthalate esters, including dibutyl phthalate (DBP), enhance skin sensitization to fluorescein isothiocyanate (FITC) in a mouse contact hypersensitivity model, in which the T-helper type 2 (Th2) response is essential. On the other hand, some phthalate esters were found to activate transient receptor potential ankyrin 1 (TRPA1) cation channels on sensory neurons. We then found a positive correlation between the enhancing effects of several types of phthalate esters on skin sensitization to FITC and their ability to activate TRPA1. Here we examined the involvement of TRPA1 in sensitization to FITC by using TRPA1 agonists other than phthalate esters. During skin sensitization to FITC, the TRPA1 agonists (menthol, carvacrol, cinnamaldehyde and DBP) augmented the ear-swelling response as well as trafficking of FITC-presenting dendritic cells to draining lymph nodes. We confirmed that these TRPA1 agonists induced calcium influx into TRPA1-expressing Chinese hamster ovary (CHO) cells. We also found that TRPA1 antagonist HC-030031 inhibited DBP-induced calcium influx into TRPA1-expressing CHO cells. After pretreatment with this antagonist upon skin sensitization to FITC, the enhancing effect of DBP on sensitization was suppressed. These results suggest that TRPA1 activation will become a useful marker to find chemicals that facilitate sensitization in combination with other immunogenic haptens. -- Highlights: ► Role of TRPA1 activation was revealed in a mouse model of skin sensitization to FITC. ► TRPA1 agonists enhanced skin sensitization as well as dendritic cell trafficking. ► Dibutyl phthalate (DBP) has been shown to enhance skin sensitization to FITC. ► TRPA1 activation by DBP was inhibited by a selective antagonist, HC-030031. ► HC-030031 inhibited the enhancing effect of DBP on skin sensitization to FITC.

  15. The activation of RhoC in vascular endothelial cells is required for the S1P receptor type 2-induced inhibition of angiogenesis.

    Science.gov (United States)

    Del Galdo, Sabrina; Vettel, Christiane; Heringdorf, Dagmar Meyer Zu; Wieland, Thomas

    2013-12-01

    Sphingosine-1-phosphate (S1P) is a multifunctional phospholipid inducing a variety of cellular responses in endothelial cells (EC). S1P responses are mediated by five G protein coupled receptors of which three types (S1P1R-S1P3R) have been described to be of importance in vascular endothelial cells (EC). Whereas the S1P1R regulates endothelial barrier function by coupling to Gαi and the monomeric GTPase Rac1, the signaling pathways involved in the S1P-induced regulation of angiogenesis are ill defined. We therefore studied the sprouting of human umbilical vein EC (HUVEC) in vitro and analyzed the activation of the RhoGTPases RhoA and RhoC. Physiological relevant concentrations of S1P (100-300nM) induce a moderate activation of RhoA and RhoC. Inhibition or siRNA-mediated depletion of the S1P2R preferentially decreased the activation of RhoC. Both manipulations caused an increase of sprouting in a spheroid based in vitro sprouting assay. Interestingly, a similar increase in sprouting was detected after effective siRNA-mediated knockdown of RhoC. In contrast, the depletion of RhoA had no influence on sprouting. Furthermore, suppression of the activity of G proteins of the Gα12/13 subfamily by adenoviral overexpression of the regulator of G protein signaling domain of LSC as well as siRNA-mediated knockdown of the Rho specific guanine nucleotide exchange factor leukemia associated RhoGEF (LARG) inhibited the S1P-induced activation of RhoC and concomitantly increased sprouting of HUVEC with similar efficacy. We conclude that the angiogenic sprouting of EC is suppressed via the S1P2R subtype. Thus, the increase in basal sprouting can be attributed to blocking of the inhibitory action of autocrine S1P stimulating the S1P2R. This inhibitory pathway involves the activation of RhoC via Gα12/13 and LARG, while the simultaneously occurring activation of RhoA is apparently dispensable here.

  16. Gallic acid ameliorates renal functions by inhibiting the activation of p38 MAPK in experimentally induced type 2 diabetic rats and cultured rat proximal tubular epithelial cells.

    Science.gov (United States)

    Ahad, Amjid; Ahsan, Haseeb; Mujeeb, Mohd; Siddiqui, Waseem Ahmad

    2015-10-05

    Diabetic nephropathy (DN) is one of the leading causes of morbidity and mortality in diabetic patients that accounts for about 40% of deaths in type 2 diabetes. p38 mitogen activated protein kinase (p38 MAPK), a serine-threonine kinase, plays an important role in tissue inflammation and is known to be activated under conditions of oxidative stress and hyperglycemia. The role of p38 MAPK has been demonstrated in DN, and its inhibition has been suggested as an alternative approach in the treatment of DN. In the present study, we investigated the nephroprotective effects of an anti-inflammatory phenolic compound, gallic acid (GA, 3,4,5-trihydroxybenzoic acid), in high fat diet/streptozotocin (HFD/STZ) induce type 2 diabetic wistar albino rats. GA (25 mg/kgbw and 50 mg/kgbw, p.o.) treatment for 16 weeks post induction of diabetes led to a significant reduction in the levels of blood glucose, HbA1c, serum creatinine, blood urea nitrogen and proteinuria as well as a significant reduction in the levels of creatinine clearance. GA significantly inhibited the renal p38 MAPK and nuclear factor kappa B (N-κB) activation as well as significantly reduced the levels of renal transforming growth factor beta (TGF-β) and fibronectin. Treatment with GA resulted in a significant reduction in the serum levels of proinflammatory cytokines viz. interleukin 1 beta (IL-1β), IL-6 and tumor necrosis factor alpha (TNF-α). Moreover, GA significantly lowered renal pathology and attenuated renal oxidative stress. In cultured rat NRK 52E proximal tubular epithelial cells, GA treatment inhibited high glucose induced activation of p38 MAPK and NF-κB as well as suppressed proinflammatory cytokine synthesis. The results of the present study provide in vivo and in vitro evidences that the p38 MAPK pathway plays an important role in the pathogenesis of DN, and GA attenuates the p38 MAPK-mediated renal dysfunction in HFD/STZ induced type 2 diabetic rats.

  17. Activation of the MDA-5-IPS-1 Viral Sensing Pathway Induces Cancer Cell Death and Type I IFN-Dependent Antitumor Immunity.

    Science.gov (United States)

    Yu, Xiaofei; Wang, Hongxia; Li, Xia; Guo, Chunqing; Yuan, Fang; Fisher, Paul B; Wang, Xiang-Yang

    2016-04-15

    Melanoma differentiation-associated gene 5 (MDA-5, IFIH1), a cytosolic innate pattern recognition receptor, functions as a first line of defense against viral infection by sensing double-stranded RNA. Ectopic expression of MDA-5 has been shown to induce cancer cell death, but the mechanism of action by which MDA-5 exerts these cytotoxic effects is unclear. Here, we demonstrate that ectopic expression of MDA-5 via replication-incompetent adenovirus (Ad.Mda-5) initiates multiple signaling cascades, culminating in cytotoxicity and type I IFN production in mouse and human prostate cancer cells. This intrinsic dual activity of MDA-5 required the adaptor protein IFNβ promoter stimulator 1 (IPS-1, MAVS) and could be functionally uncoupled. MDA-5 lacking N-terminal caspase recruitment domains (CARD) engaged an intracellular death program in cancer cells but was unable to efficiently stimulate the expression of IFNβ. In contrast to cancer cells susceptible to MDA-5-mediated cytotoxicity, normal cells were highly resistant and instead developed a robust type I IFN response. Strikingly, intratumoral delivery of Ad.Mda-5 led to regression of preestablished prostate cancers and development of long-lasting antitumor immune memory, which was primarily attributed to the activation of tumor-reactive cytotoxic T lymphocytes and/or natural killer cells. Using the CARD-truncated MDA-5 mutant, silencing of IPS-1, and antibody blockade of the IFNα/β receptor, we further demonstrate that type I IFN signaling was crucial for in situ MDA-5-induced protective antitumor immunity. Therefore, deliberately targeting the evolutionarily conserved MDA-5-IPS-1 antiviral pathway in tumors can provoke parallel tumoricidal and immunostimulatory effects that bridge innate and adaptive immune responses for the therapeutic treatment of cancer. Cancer Res; 76(8); 2166-76. ©2016 AACR. ©2016 American Association for Cancer Research.

  18. Coriander leaf extract exerts antioxidant activity and protects against UVB-induced photoaging of skin by regulation of procollagen type I and MMP-1 expression.

    Science.gov (United States)

    Hwang, Eunson; Lee, Do-Gyeong; Park, Sin Hee; Oh, Myung Sook; Kim, Sun Yeou

    2014-09-01

    Ultraviolet (UV) radiation causes photodamage to the skin, which, in turn, leads to depletion of the dermal extracellular matrix and chronic alterations in skin structure. Skin wrinkles are associated with collagen synthesis and matrix metalloproteinase-1 (MMP-1) activity. Coriandrum sativum L. (coriander leaf, cilantro; CS) has been used as a herbal medicine for the treatment of diabetes, hyperlipidemia, liver disease, and cancer. In this study, we examined whether CS ethanol extract (CSE) has protective effects against UVB-induced skin photoaging in normal human dermal fibroblasts (NHDF) in vitro and in the skin of hairless mice in vivo. The main component of CSE, linolenic acid, was determined by gas chromatography-mass spectroscopy. We measured the cellular levels of procollagen type I and MMP-1 using ELISA in NHDF cells after UVB irradiation. NHDF cells that were treated with CSE after UVB irradiation exhibited higher procollagen type I production and lower levels of MMP-1 than untreated cells. We found that the activity of transcription factor activator protein-1 (AP-1) was also inhibited by CSE treatment. We measured the epidermal thickness, dermal collagen fiber density, and procollagen type I and MMP-1 levels in photo-aged mouse skin in vivo using histological staining and western blot analysis. Our results showed that CSE-treated mice had thinner epidermal layers and denser dermal collagen fibers than untreated mice. On a molecular level, it was further confirmed that CSE-treated mice had lower MMP-1 levels and higher procollagen type I levels than untreated mice. Our results support the potential of C. sativum L. to prevent skin photoaging.

  19. Nuclear envelope breakdown induced by herpes simplex virus type 1 involves the activity of viral fusion proteins.

    Science.gov (United States)

    Maric, Martina; Haugo, Alison C; Dauer, William; Johnson, David; Roller, Richard J

    2014-07-01

    Herpesvirus infection reorganizes components of the nuclear lamina usually without loss of integrity of the nuclear membranes. We report that wild-type HSV infection can cause dissolution of the nuclear envelope in transformed mouse embryonic fibroblasts that do not express torsinA. Nuclear envelope breakdown is accompanied by an eight-fold inhibition of virus replication. Breakdown of the membrane is much more limited during infection with viruses that lack the gB and gH genes, suggesting that breakdown involves factors that promote fusion at the nuclear membrane. Nuclear envelope breakdown is also inhibited during infection with virus that does not express UL34, but is enhanced when the US3 gene is deleted, suggesting that envelope breakdown may be enhanced by nuclear lamina disruption. Nuclear envelope breakdown cannot compensate for deletion of the UL34 gene suggesting that mixing of nuclear and cytoplasmic contents is insufficient to bypass loss of the normal nuclear egress pathway.

  20. Intraneuronal Aβ accumulation induces hippocampal neuron hyperexcitability through A-type K(+) current inhibition mediated by activation of caspases and GSK-3.

    Science.gov (United States)

    Scala, Federico; Fusco, Salvatore; Ripoli, Cristian; Piacentini, Roberto; Li Puma, Domenica Donatella; Spinelli, Matteo; Laezza, Fernanda; Grassi, Claudio; D'Ascenzo, Marcello

    2015-02-01

    Amyloid β-protein (Aβ) pathologies have been linked to dysfunction of excitability in neurons of the hippocampal circuit, but the molecular mechanisms underlying this process are still poorly understood. Here, we applied whole-cell patch-clamp electrophysiology to primary hippocampal neurons and show that intracellular Aβ42 delivery leads to increased spike discharge and action potential broadening through downregulation of A-type K(+) currents. Pharmacologic studies showed that caspases and glycogen synthase kinase 3 (GSK-3) activation are required for these Aβ42-induced effects. Extracellular perfusion and subsequent internalization of Aβ42 increase spike discharge and promote GSK-3-dependent phosphorylation of the Kv4.2 α-subunit, a molecular determinant of A-type K(+) currents, at Ser-616. In acute hippocampal slices derived from an adult triple-transgenic Alzheimer's mouse model, characterized by endogenous intracellular accumulation of Aβ42, CA1 pyramidal neurons exhibit hyperexcitability accompanied by increased phosphorylation of Kv4.2 at Ser-616. Collectively, these data suggest that intraneuronal Aβ42 accumulation leads to an intracellular cascade culminating into caspases activation and GSK-3-dependent phosphorylation of Kv4.2 channels. These findings provide new insights into the toxic mechanisms triggered by intracellular Aβ42 and offer potentially new therapeutic targets for Alzheimer's disease treatment.

  1. Characterization of the activation of protein tyrosine phosphatase, receptor-type, Z polypeptide 1 (PTPRZ1 by hypoxia inducible factor-2 alpha.

    Directory of Open Access Journals (Sweden)

    Victoria Wang

    Full Text Available BACKGROUND: Hypoxia inducible factors (HIFs are the principal means by which cells upregulate genes in response to hypoxia and certain other stresses. There are two major HIFs, HIF-1 and HIF-2. We previously found that certain genes are preferentially activated by HIF-2. One was protein tyrosine phosphatase, receptor-type, Z polypeptide 1 (PTPRZ1. PTPRZ1 is overexpressed in a number of tumors and has been implicated in glioblastoma pathogenesis. METHODOLOGY/PRINCIPAL FINDINGS: To understand the preferential activation of PTPRZ1 by HIF-2, we studied the PTPRZ1 promoter in HEK293T cells and Hep3B cells. Through deletion and mutational analysis, we identified the principal hypoxia response element. This element bound to both HIF-1 and HIF-2. We further identified a role for ELK1, an E26 transformation-specific (Ets factor that can bind to HIF-2alpha but not HIF-1alpha, in the HIF-2 responsiveness. Knock-down experiments using siRNA to ELK1 decreased HIF-2 activation by over 50%. Also, a deletion mutation of one of the two Ets binding motifs located near the principal hypoxia response element similarly decreased activation of the PTPRZ1 promoter by HIF-2. Finally, chromatin immunoprecipitation assays showed binding of HIF and ELK1 to the PTPRZ1 promoter region. CONCLUSIONS/SIGNIFICANCE: These results identify HIF-binding and Ets-binding motifs on the PTPRZ1 promoter and provide evidence that preferential activation of PTPRZ1 by HIF-2 results at least in part from cooperative binding of HIF-2 and ELK1 to nearby sites on the PTPRZ1 promoter region. These results may have implications in tumor pathogenesis and in understanding neurobiology, and may help inform the development of novel tumor therapy.

  2. Anti-diabetic activity of chromium picolinate and biotin in rats with type 2 diabetes induced by high-fat diet and streptozotocin.

    Science.gov (United States)

    Sahin, Kazim; Tuzcu, Mehmet; Orhan, Cemal; Sahin, Nurhan; Kucuk, Osman; Ozercan, Ibrahim H; Juturu, Vijaya; Komorowski, James R

    2013-07-28

    The objective of the present study was to evaluate anti-diabetic effects of chromium picolinate (CrPic) and biotin supplementations in type 2 diabetic rats. The type 2 diabetic rat model was induced by high-fat diet (HFD) and low-dose streptozotocin. The rats were divided into five groups as follows: (1) non-diabetic rats fed a regular diet; (2) diabetic rats fed a HFD; (3) diabetic rats fed a HFD and supplemented with CrPic (80 μg/kg body weight (BW) per d); (4) diabetic rats fed a HFD and supplemented with biotin (300 μg/kg BW per d); (5) diabetic rats fed a HFD and supplemented with both CrPic and biotin. Circulating glucose, cortisol, total cholesterol, TAG, NEFA and malondialdehyde concentrations decreased (Padipose tissue and phosphorylated insulin receptor substrate 1 (p-IRS-1) expression of liver, kidney and muscle tissues, while the supplements increased (Ptissues. Expression of NF-κB in the liver and kidney was greater in diabetic rats fed a HFD, as compared with rats fed a regular diet (P< 0·01). The supplements decreased the expression of NF-κB in diabetic rats (P< 0·05). Results of the present study revealed that supplementing CrPic and biotin alone or in a combination exerts anti-diabetic activities, probably through modulation of PPAR-γ, IRS-1 and NF-κB proteins.

  3. Acute ethanol intake induces superoxide anion generation and mitogen-activated protein kinase phosphorylation in rat aorta: A role for angiotensin type 1 receptor

    Energy Technology Data Exchange (ETDEWEB)

    Yogi, Alvaro; Callera, Glaucia E. [Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ontario (Canada); Mecawi, André S. [Department of Physiology, Faculty of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP (Brazil); Batalhão, Marcelo E.; Carnio, Evelin C. [Department of General and Specialized Nursing, College of Nursing of Ribeirão Preto, USP, São Paulo (Brazil); Antunes-Rodrigues, José [Department of Physiology, Faculty of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP (Brazil); Queiroz, Regina H. [Department of Clinical, Toxicological and Food Science Analysis, Faculty of Pharmaceutical Sciences, USP, São Paulo (Brazil); Touyz, Rhian M. [Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ontario (Canada); Tirapelli, Carlos R., E-mail: crtirapelli@eerp.usp.br [Department of Psychiatric Nursing and Human Sciences, Laboratory of Pharmacology, College of Nursing of Ribeirão Preto, USP, Ribeirão Preto, SP (Brazil)

    2012-11-01

    Ethanol intake is associated with increase in blood pressure, through unknown mechanisms. We hypothesized that acute ethanol intake enhances vascular oxidative stress and induces vascular dysfunction through renin–angiotensin system (RAS) activation. Ethanol (1 g/kg; p.o. gavage) effects were assessed within 30 min in male Wistar rats. The transient decrease in blood pressure induced by ethanol was not affected by the previous administration of losartan (10 mg/kg; p.o. gavage), a selective AT{sub 1} receptor antagonist. Acute ethanol intake increased plasma renin activity (PRA), angiotensin converting enzyme (ACE) activity, plasma angiotensin I (ANG I) and angiotensin II (ANG II) levels. Ethanol induced systemic and vascular oxidative stress, evidenced by increased plasma thiobarbituric acid-reacting substances (TBARS) levels, NAD(P)H oxidase‐mediated vascular generation of superoxide anion and p47phox translocation (cytosol to membrane). These effects were prevented by losartan. Isolated aortas from ethanol-treated rats displayed increased p38MAPK and SAPK/JNK phosphorylation. Losartan inhibited ethanol-induced increase in the phosphorylation of these kinases. Ethanol intake decreased acetylcholine-induced relaxation and increased phenylephrine-induced contraction in endothelium-intact aortas. Ethanol significantly decreased plasma and aortic nitrate levels. These changes in vascular reactivity and in the end product of endogenous nitric oxide metabolism were not affected by losartan. Our study provides novel evidence that acute ethanol intake stimulates RAS activity and induces vascular oxidative stress and redox-signaling activation through AT{sub 1}-dependent mechanisms. These findings highlight the importance of RAS in acute ethanol-induced oxidative damage. -- Highlights: ► Acute ethanol intake stimulates RAS activity and vascular oxidative stress. ► RAS plays a role in acute ethanol-induced oxidative damage via AT{sub 1} receptor activation.

  4. Cadmium induces urokinase-type plasminogen activator receptor expression and the cell invasiveness of human gastric cancer cells via the ERK-1/2, NF-κB, and AP-1 signaling pathways.

    Science.gov (United States)

    Khoi, Pham Ngoc; Xia, Yong; Lian, Sen; Kim, Ho Dong; Kim, Do Hyun; Joo, Young Eun; Chay, Kee-Oh; Kim, Kyung Keun; Jung, Young Do

    2014-10-01

    Cadmium exposure has been linked to human cancers, including stomach cancer. In this study, the effects of cadmium on urokinase-type plasminogen activator receptor (uPAR) expression in human gastric cancer cells and the underlying signal transduction pathways were investigated. Cadmium induced uPAR expression in a time- and concentration-dependent manner. Cadmium also induced uPAR promoter activity. Additionally, cadmium induced the activation of extracellular signal regulated kinase-1/2 (ERK-1/2), p38 mitogen-activated protein kinase (MAPK), and the activation of c-Jun amino terminal kinase (JNK). A specific inhibitor of MEK-1 (PD98059) inhibited cadmium-induced uPAR expression, while JNK and p38 MAPK inhibitors did not. Expression vectors encoding dominant-negative MEK-1 (pMCL-K97M) also prevented cadmium-induced uPAR promoter activity. Site-directed mutagenesis and electrophoretic mobility shift studies showed that sites for the transcription factors nuclear factor (NF)-κB and activator protein-1 (AP-1) were involved in cadmium-induced uPAR transcription. Suppression of the cadmium-induced uPAR promoter activity by a mutated-type NF-κB-inducing kinase and I-κB and an AP-1 decoy oligonucleotide confirmed that the activation of NF-κB and AP-1 are essential for cadmium-induced uPAR upregulation. Cells pretreated with cadmium showed markedly enhanced invasiveness and this effect was partially abrogated by uPAR-neutralizing antibodies and by inhibitors of ERK-1/2, NF-κB, and AP-1. These results suggest that cadmium induces uPAR expression via ERK-1/2, NF-κB, and AP-1 signaling pathways and, in turn, stimulates cell invasiveness in human gastric cancer AGS cells.

  5. Inducible ASABF-Type Antimicrobial Peptide from the Sponge Suberites domuncula: Microbicidal and Hemolytic Activity in Vitro and Toxic Effect on Molluscs in Vivo

    Directory of Open Access Journals (Sweden)

    Werner E. G. Müller

    2011-10-01

    Full Text Available Since sponges, as typical filter-feeders, are exposed to a high load of attacking prokaryotic and eukaryotic organisms, they are armed with a wide arsenal of antimicrobial/cytostatic low-molecular-weight, non-proteinaceous bioactive compounds. Here we present the first sponge agent belonging to the group of ASABF-type antimicrobial peptides. The ASABF gene was identified and cloned from the demospongeSuberites domuncula. The mature peptide, with a length of 64 aa residues has a predicted pI of 9.24, and comprises the characteristic CSαβ structural motif. Consequently, the S. domuncula ASABF shares high similarity with the nematode ASABFs; it is distantly related to the defensins. The recombinant peptide was found to display besides microbicidal activity, anti-fungal activity. In addition, the peptide lyses human erythrocytes. The expression ofASABF is upregulated after exposure to the apoptosis-inducing agent 2,2'-dipyridyl. During the process of apoptosis of surface tissue of S. domuncula, grazing gastropods (Bittium sp. are attracted by quinolinic acid which is synthesized through the kynurenine pathway by the enzyme 3-hydroxyanthranilate 3,4-dioxygenase (HAD. Finally, the gastropods are repelled from the sponge tissue by the ASABF. It is shown that the effector peptide ASABF is sequentially expressed after the induction of the HAD gene and a caspase, as a central enzyme executing apoptosis.

  6. A vascular endothelial growth factor activating transcription factor increases the endothelial progenitor cells population and induces therapeutic angiogenesis in a type 1 diabetic mouse with hindlimb ischemia

    Institute of Scientific and Technical Information of China (English)

    Diao Yongpeng; Lian Lishan; Guo Lilong; Chen Houzao; Chen Yuexin; Song Xiaojun; Li Yongjun

    2014-01-01

    Background Therapeutic angiogenesis has been shown to promote blood vessel growth and improve tissue perfusion.Vascular endothelial growth factor (VEGF) plays an important role in angiogenesis.However,it has side effects that limit its therapeutic utility in vivo,especially at high concentrations.This study aimed to investigate whether an intramuscular injection of a genetically engineered zinc finger VEGF-activating transcription factor modulates the endothelial progenitor cells (EPC) and promotes therapeutic angiogenesis in a hindlimb ischemia model with type 1 diabetes.Methods Alloxan (intravenous injection) was used to induce type Ⅰ diabetes in C57BL/6 mice (n=58).The ischemic limb received ZFP-VEGF (125 μg ZFP-VEGF plasmid in 1% poloxamer) or placebo (1% poloxamer) intramuscularly.Mice were sacrificed 3,5,10,or 20 days post-injection.Limb blood flow was monitored using laser Doppler perfusion imaging.VEGF mRNA and protein expression were examined using real-time PCR and ELISA,respectively.Capillary density,proliferation,and apoptosis were examined using immunohistochemistry techniques.Flow cytometry was used to detect the EPC population in bone marrow.Two-tailed Student's paired t test and repeated-measures analysis of variance were used for statistical analysis.Results ZFP-VEGF increased VEGF mRNA and protein expression at 3 and 10 days post-injection,and increased EPC in bone marrow at day 5 and 20 post-injection compared with controls (P<0.05).ZFP-VEGF treatment resulted in better perfusion recovery,a higher capillary density and proliferation,and less apoptosis compared with controls (P<0.05).Conclusions Intramuscular ZFP-VEGF injection promotes therapeutic angiogenesis in an ischemic hindlimb model with type 1 diabetes.This might be due to the effects of VEGF on cell survival and EPC recruitment.

  7. Berberine treatment prevents cardiac dysfunction and remodeling through activation of 5'-adenosine monophosphate-activated protein kinase in type 2 diabetic rats and in palmitate-induced hypertrophic H9c2 cells.

    Science.gov (United States)

    Chang, Wenguang; Zhang, Ming; Meng, Zhaojie; Yu, Yang; Yao, Fan; Hatch, Grant M; Chen, Li

    2015-12-15

    Diabetic cardiomyopathy is the major cause of death in type 2 diabetic patients. Berberine is an isoquinoline alkaloid extract from traditional chinese herbs and its hypoglycemic and hypolipidemic effects make it a promising drug for treatment of type 2 diabetes. We examined if berberine improved cardiac function and attenuated cardiac hypertrophy and fibrosis in high fat diet and streptozotocin induced-type 2 diabetic rats in vivo and reduced expression of hypertrophy markers in palmitate-induced hypertrophic H9c2 cells in vitro. Treatment of diabetic animals with berberine partially improved cardiac function and restored fasting blood insulin, fasting blood glucose, total cholesterol, and triglyceride levels to that of control. In addition, berberine treatment of diabetic animals increased cardiac 5'-adenosine monophosphate-activated protein kinase (AMPK) and protein kinase B (AKT) activation and reduced glycogen synthase kinase 3 beta (GSK3β) activation compared to control. Palmitate incubation of H9c2 cells resulted in cellular hypertrophy and decreased expression of alpha-myosin heavy chain (α-MHC) and increased expression of beta-myosin heavy chain (β-MHC) compared to controls. Berberine treatment of palmitate-incubated H9c2 cells reduced hypertrophy, increased α-MHC expression and decreased β-MHC expression. In addition, berberine treatment of palmitate-incubated H9c2 cells increased AMPK and AKT activation and reduced GSK3β activation. The presence of the AMPK inhibitor Compound C attenuated the effects of berberine. The results strongly indicate that berberine treatment may be protective against the development of diabetic cardiomyopathy.

  8. Exercise-induced oxidative stress and antioxidant enzyme activity in type 2 diabetic patients with and without diastolic dysfunction and hypertension

    Directory of Open Access Journals (Sweden)

    Kostić Nada

    2009-01-01

    increase of GSH-Px activity (47.10±7.37 vs 54.52±11.97 U/g Hb; p<0.01. Conclusion. Elevated enzyme levels are associated with exercise in type 2 diabetic patients. We suggest that it could be a compensatory mechanism to prevent free radical tissue damage. We hypothesize that a physical training programme induces the enhancement of muscular and liver antioxidant enzymes and reduces the oxidative stress.

  9. Effect of sardine proteins on hyperglycaemia, hyperlipidaemia and lecithin:cholesterol acyltransferase activity, in high-fat diet-induced type 2 diabetic rats.

    Science.gov (United States)

    Benaicheta, Nora; Labbaci, Fatima Z; Bouchenak, Malika; Boukortt, Farida O

    2016-01-14

    Type 2 diabetes (T2D) is a major risk factor of CVD. The effects of purified sardine proteins (SP) were examined on glycaemia, insulin sensitivity and reverse cholesterol transport in T2D rats. Rats fed a high-fat diet (HFD) for 5 weeks, and injected with a low dose of streptozotocin, were used. The diabetic rats were divided into four groups, and they were fed casein (CAS) or SP combined with 30 or 5% lipids, for 4 weeks. HFD-induced hyperglycaemia, insulin resistance and hyperlipidaemia in rats fed HFD, regardless of the consumed protein. In contrast, these parameters lowered in rats fed SP combined with 5 or 30% lipids, and serum insulin values reduced in SP v. CAS. HFD significantly increased total cholesterol and TAG concentrations in the liver and serum, whereas these parameters decreased with SP, regardless of lipid intake. Faecal cholesterol excretion was higher with SP v. CAS, combined with 30 or 5% lipids. Lecithin:cholesterol acyltransferase (LCAT) activity and HDL3-phospholipids (PL) were higher in CAS-HF than in CAS, whereas HDL2-cholesteryl esters (CE) were lower. Otherwise, LCAT activity and HDL2-CE were higher in the SP group than in the CAS group, whereas HDL3-PL and HDL3-unesterified cholesterol were lower. Moreover, LCAT activity lowered in the SP-HF group than in the CAS-HF group, when HDL2-CE was higher. In conclusion, these results indicate the potential effects of SP to improve glycaemia, insulin sensitivity and reverse cholesterol transport, in T2D rats.

  10. Nitric oxide-induced calcium release: activation of type 1 ryanodine receptor, a calcium release channel, through non-enzymatic posttranslational modification by nitric oxide

    Directory of Open Access Journals (Sweden)

    Sho eKakizawa

    2013-10-01

    Full Text Available Nitric oxide (NO is a typical gaseous messenger involved in a wide range of biological processes. In our classical knowledge, effects of NO are largely achieved by activation of soluble guanylyl cyclase to form cyclic guanosine-3’, 5’-monophosphate. However, emerging evidences have suggested another signaling mechanism mediated by NO: S-nitrosylation of target proteins.S-nitrosylation is a covalent addition of an NO group to a cysteine thiol/sulfhydryl (RSH, and categorized into non-enzymatic posttranslational modification of proteins, contrasted to enzymatic posttranslational modification of proteins, such as phosphorylation mediated by various protein kinases.Very recently, we found novel intracellular calcium (Ca2+ mobilizing mechanism, NO-induced Ca2+ release (NICR in cerebellar Purkinje cells. NICR is mediated by type 1 ryanodine receptor (RyR1, a Ca2+ release channel expressed in endoplasmic-reticular membrane. Furthermore, NICR is indicated to be dependent on S-nitrosylation of RyR1, and involved in synaptic plasticity in the cerebellum. In this review, molecular mechanisms and functional significance of NICR, as well as non-enzymatic posttranslational modification of proteins by gaseous signals, are described.

  11. Involvement of transient receptor potential melastatin type 7 channels on Poncirus fructus-induced depolarizations of pacemaking activity in interstitial cells of Cajal from murine small intestine

    Directory of Open Access Journals (Sweden)

    Byung Joo Kim

    2013-06-01

    Conclusion: These results suggest that the PTE-induced depolarization of pacemaking activity occurs in a G-protein-, phospholipase C-, and 1,4,5-inositol triphosphate-dependent manner via TRPM7 channels in cultured ICCs from murine small intestine, which indicates that ICCs are PTE targets and that their interactions affect intestinal motility.

  12. Pharmacologically induced long QT type 2 can be rescued by activation of IKs with benzodiazepine R-L3 in isolated guinea pig cardiomyocytes

    DEFF Research Database (Denmark)

    Nissen, Jakob Dahl; Diness, Jonas Goldin; Diness, Thomas Goldin

    2009-01-01

    of this study was to evaluate potential antiarrhythmic effects of compound induced IKs activation using the benzodiazepine L-364,373 (R-L3). Ventricular myocytes from guinea pigs were isolated and whole-cell current clamping was performed at 35 degrees C. It was found that 1 microM R-L3 significantly reduced...

  13. Fluconazole-Induced Type 1 Kounis Syndrome.

    Science.gov (United States)

    Singh Mahal, Hardeep

    2016-01-01

    The administration of fluconazole is commonly used in both inpatient and outpatient settings for the management of candidiasis infection. Although it is associated with a relatively safe side effect profile, some patients experience adverse effects associated with increased morbidity. We describe 1 such patient, a 42-year-old woman with a history of severe eczema who developed fluconazole-induced type 1 Kounis syndrome. Review of literature indicates that this as the first case reported of fluconazole-induced type 1 Kounis syndrome.

  14. Calpain Activator Dibucaine Induces Platelet Apoptosis

    Directory of Open Access Journals (Sweden)

    Jun Liu

    2011-03-01

    Full Text Available Calcium-dependent calpains are a family of cysteine proteases that have been demonstrated to play key roles in both platelet glycoprotein Ibα shedding and platelet activation and altered calpain activity is associated with thrombotic thrombocytopenic purpura. Calpain activators induce apoptosis in several types of nucleated cells. However, it is not clear whether calpain activators induce platelet apoptosis. Here we show that the calpain activator dibucaine induced several platelet apoptotic events including depolarization of the mitochondrial inner transmembrane potential, up-regulation of Bax and Bak, down-regulation of Bcl-2 and Bcl-XL, caspase-3 activation and phosphatidylserine exposure. Platelet apoptosis elicited by dibucaine was not affected by the broad spectrum metalloproteinase inhibitor GM6001. Furthermore, dibucaine did not induce platelet activation as detected by P-selectin expression and PAC-1 binding. However, platelet aggregation induced by ristocetin or α-thrombin, platelet adhesion and spreading on von Willebrand factor were significantly inhibited in platelets treated with dibucaine. Taken together, these data indicate that dibucaine induces platelet apoptosis and platelet dysfunction.

  15. Angiotensin-(1-7 Prevents Skeletal Muscle Atrophy Induced by Transforming Growth Factor Type Beta (TGF-β via Mas Receptor Activation

    Directory of Open Access Journals (Sweden)

    Johanna Ábrigo

    2016-11-01

    Full Text Available Background: Transforming growth factor type beta 1 (TGF-β1 produces skeletal muscle atrophy. Angiotensin-(1-7 (Ang-(1-7, through the Mas receptor, prevents the skeletal muscle atrophy induced by sepsis, immobilization, or angiotensin II (Ang-II. However, the effect of Ang-(1-7 on muscle wasting induced by TGF-β1 is unknown. Aim: To evaluate whether Ang-(1-7/Mas receptor axis could prevent the skeletal muscle atrophy induced by TGF-β1. Methods: This study assessed the atrophic effect of TGF-β1 in C2C12 myotubes and mice in absence or presence of Ang-(1-7, and the receptor participation using A779, an antagonist of the Mas receptor. The levels of myosin heavy chain (MHC, polyubiquitination, and MuRF-1 were detected by western blot. Myotube diameter was also evaluated. In vivo analysis included the muscle strength, fibre diameter, MHC and MuRF-1 levels by western blot, and ROS levels by DCF probe detection. Results: The results showed that Ang-(1-7 prevented the increase in MuRF-1 and polyubiquitined protein levels, the decrease of MHC levels, the myotubes/fibre diameter diminution, and the increased production of reactive oxygen species (ROS induced by TGF-β1. Utilizing A779 inhibited the anti-atrophic effect of Ang-(1-7. Conclusion: The preventive effect of Ang-(1-7 on skeletal muscle atrophy induced by TGF-β1 is produced through inhibition of ROS production and proteasomal degradation of MHC.

  16. The types and characteristics of man-induced sediment disaster

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The man-induced sediment disaster includes material erosion, transportation and accumula-tion by human activities. It possesses special attribute in sociology and disaster science. In accordancewith human activities, geomorphologic location, behavior and particular, the man-induced sedimentdisaster can be divided into 4 types: the drainage network, slope and gully, channel and plain-estu-au-coastline. Each type includes erosion, transportation, accumulation, complexity and cascading.Based on human activity, geomorphology, sediment mechanics and catastrophology, the man-inducedsediment disaster is characterized as follows: (1) accelerating tendency with geographical zoning back-ground; (2) non-order characters by blind action without special technical training; (3) gradually andsharply changing with human environment vibration; and (4) complexity and non-linear figure, etc.One of the reasons leading to man-induced sediment disaster is human environment vibration.

  17. Glucose-based PD solution, but not icodextrin-based PD solution, induces plasminogen activator inhibitor-1 and tissue-type plasminogen activator in human peritoneal mesothelial cells via ERK1/2.

    Science.gov (United States)

    Katsutani, Masahira; Ito, Takafumi; Masaki, Takao; Kohno, Nobuoki; Yorioka, Noriaki

    2007-04-01

    Peritoneal dialysis (PD) solutions containing glucose are considered to cause peritoneal fibrosis. Plasminogen activator inhibitor-1 (PAI-1) and tissue-type plasminogen activator (t-PA) participate in fibrogenesis of various organs, and human peritoneal mesothelial cells (HPMC) can produce PAI-1 and t-PA following glucose stimulation. Icodextrin has been widely used as an alternative osmotic agent. In this study, we investigated whether icodextrin-based PD solution reduced the production of PAI-1 and t-PA by HPMC. We also examined the involvement of extracellular signal-regulated kinase 1/2 (ERK1/2). Glucose-based PD solutions increased the production of PAI-1 and t-PA by HPMC, whereas icodextrin-based PD solution exerted lesser effects. Glucose-based PD solutions activated ERK1/2, and PD98059 inhibited the production of PAI-1 and t-PA-responses not observed with icodextrin-based PD solution. In conclusion, glucose-based PD solutions, unlike icodextrin-based PD solution, induce overproduction of PAI-1 and t-PA via the ERK1/2 pathway.

  18. Induced activation in accelerator components

    Directory of Open Access Journals (Sweden)

    Cristian Bungau

    2014-08-01

    Full Text Available The residual activity induced in particle accelerators is a serious issue from the point of view of radiation safety as the long-lived radionuclides produced by fast or moderated neutrons and impact protons cause problems of radiation exposure for staff involved in the maintenance work and when decommissioning the facility. This paper presents activation studies of the magnets and collimators in the High Energy Beam Transport line of the European Spallation Source due to the backscattered neutrons from the target and also due to the direct proton interactions and their secondaries. An estimate of the radionuclide inventory and induced activation are predicted using the GEANT4 code.

  19. Hypoglycemic Activity through a Novel Combination of Fruiting Body and Mycelia of Cordyceps militaris in High-Fat Diet-Induced Type 2 Diabetes Mellitus Mice

    Directory of Open Access Journals (Sweden)

    Sung-Hsun Yu

    2015-01-01

    Full Text Available Diabetes mellitus (DM is currently ranked among leading causes of death worldwide in which type 2 DM is reaching an epidemic proportion. Hypoglycemic medications for type 2 DM have either proven inadequate or posed adverse effects; therefore, the Chinese herbal products are under investigation as an alternative treatment. In this study, a novel combination of fruiting body and mycelia powder of herbal Cordyceps militaris number 1 (CmNo1 was administered to evaluate their potential hypoglycemic effects in high-fat diet- (HFD- induced type 2 DM in C57BL/6J mice. Body weight, fasting blood glucose (FBG, oral glucose tolerance test (OGTT, and blood biochemistry indexes were measured. Results indicated that CmNo1 lowered the blood glucose level by increasing insulin sensitivity, while no change in body weight was observed. Increased protein expression of IRS-1, pIRS-1, AKT, pAKT, and GLUT-4 in skeletal muscle and adipose tissue was found indicating restoration of insulin signaling. Additionally, PPAR-γ expression in adipose tissue restored the triglyceride and cholesterol levels. Finally, our results suggest that CmNo1 possesses strong hypoglycemic, anticholesterolemic, and antihypertriglyceridemic actions and is more economical alternate for DM treatment.

  20. Hypoglycemic Activity through a Novel Combination of Fruiting Body and Mycelia of Cordyceps militaris in High-Fat Diet-Induced Type 2 Diabetes Mellitus Mice

    Science.gov (United States)

    Yu, Sung-Hsun; Chen, Szu-Yu Tina; Li, Wei-Shan; Dubey, Navneet Kumar; Chen, Wei-Hong; Chuu, Jiunn-Jye; Leu, Sy-Jye; Deng, Win-Ping

    2015-01-01

    Diabetes mellitus (DM) is currently ranked among leading causes of death worldwide in which type 2 DM is reaching an epidemic proportion. Hypoglycemic medications for type 2 DM have either proven inadequate or posed adverse effects; therefore, the Chinese herbal products are under investigation as an alternative treatment. In this study, a novel combination of fruiting body and mycelia powder of herbal Cordyceps militaris number 1 (CmNo1) was administered to evaluate their potential hypoglycemic effects in high-fat diet- (HFD-) induced type 2 DM in C57BL/6J mice. Body weight, fasting blood glucose (FBG), oral glucose tolerance test (OGTT), and blood biochemistry indexes were measured. Results indicated that CmNo1 lowered the blood glucose level by increasing insulin sensitivity, while no change in body weight was observed. Increased protein expression of IRS-1, pIRS-1, AKT, pAKT, and GLUT-4 in skeletal muscle and adipose tissue was found indicating restoration of insulin signaling. Additionally, PPAR-γ expression in adipose tissue restored the triglyceride and cholesterol levels. Finally, our results suggest that CmNo1 possesses strong hypoglycemic, anticholesterolemic, and antihypertriglyceridemic actions and is more economical alternate for DM treatment. PMID:26258146

  1. Low-dose radiation prevents type 1 diabetes-induced cardiomyopathy via activation of AKT mediated anti-apoptotic and anti-oxidant effects.

    Science.gov (United States)

    Zhang, Fangfang; Lin, Xiufei; Yu, Lechu; Li, Weihua; Qian, Dingliang; Cheng, Peng; He, Luqing; Yang, Hong; Zhang, Chi

    2016-07-01

    We investigated whether low-dose radiation (LDR) can prevent late-stage diabetic cardiomyopathy and whether this protection is because of the induction of anti-apoptotic and anti-oxidant pathways. Streptozotocin-induced diabetic C57BL/6J mice were treated with/without whole-body LDR (12.5, 25, or 50 mGy) every 2 days. Twelve weeks after onset of diabetes, cardiomyopathy was diagnosed characterized by significant cardiac dysfunction, hypertrophy and histopathological abnormalities associated with increased oxidative stress and apoptosis, which was prevented by LDR (25 or 50 mGy only). Low-dose radiation-induced cardiac protection also associated with P53 inactivation, enhanced Nrf2 function and improved Akt activation. Next, for the mechanistic study, mouse primary cardiomyocytes were treated with high glucose (33 mmol/l) for 24 hrs and during the last 15 hrs bovine serum albumin-conjugated palmitate (62.5 μmol/l) was added into the medium to mimic diabetes, and cells were treated with LDR (25 mGy) every 6 hrs during the whole process of HG/Pal treatment. Data show that blocking Akt/MDM2/P53 or Akt/Nrf2 pathways with small interfering RNA of akt, mdm2 and nrf2 not only prevented LDR-induced anti-apoptotic and anti-oxidant effects but also prevented LDR-induced suppression on cardiomyocyte hypertrophy and fibrosis against HG/Pal. Low-dose radiation prevented diabetic cardiomyopathy by improving cardiac function and hypertrophic remodelling attributed to Akt/MDM2/P53-mediated anti-apoptotic and Akt/Nrf2-mediated anti-oxidant pathways simultaneously. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  2. Gate-induced transition between metal-type and thermally activated transport in self-catalyzed MBE-grown InAs nanowires.

    Science.gov (United States)

    Blömers, C; Rieger, T; Grap, T; Raux, M; Lepsa, M I; Lüth, H; Grützmacher, D; Schäpers, Th

    2013-08-16

    Electronic transport properties of InAs nanowires are studied systematically. The nanowires are grown by molecular beam epitaxy on a SiOx-covered GaAs wafer, without using foreign catalyst particles. Room-temperature measurements revealed relatively high resistivity and low carrier concentration values, which correlate with the low background doping obtained by our growth method. Transport parameters, such as resistivity, mobility, and carrier concentration, show a relatively large spread that is attributed to variations in surface conditions. For some nanowires the conductivity has a metal-type dependence on temperature, i.e. decreasing with decreasing temperature, while other nanowires show the opposite temperature behavior, i.e. temperature-activated characteristics. An applied gate voltage in a field-effect transistor configuration can switch between the two types of behavior. The effect is explained by the presence of barriers formed by potential fluctuations.

  3. XIAP acts as a switch between type I and type II FAS-induced apoptosis signalling

    OpenAIRE

    Jost, Philipp J; Grabow, Stephanie; Gray, Daniel; McKenzie, Mark D.; Nachbur, Ueli; Huang, David C. S.; Bouillet, Philippe; Helen E Thomas; Borner, Christoph; Silke, John; Strasser, Andreas; Kaufmann, Thomas

    2009-01-01

    FAS (APO-1/CD95) and its physiological ligand, FASL, regulate apoptotic death of unwanted or dangerous cells in many tissues, functioning as a guardian against autoimmunity and cancer development1-4. Distinct cell types differ in the mechanisms by which the ‘death receptor’ FAS triggers their apoptosis1-4. In type I cells, such as lymphocytes, activation of ‘effector caspases’ by FAS-induced activation of caspase-8 suffices for cell killing whereas in type II cells, including hepatocytes and ...

  4. Enhancement of 5-iododeoxyuridine-induced endogenous C-type virus activation by polycyclic hydrocarbons: apparent lack of parallelism between enhancement and carcinogenicity.

    Science.gov (United States)

    Yoshikura, H; Zajdela, F; Perin, F; Perin-Roussel, O; Jacquignon, P; Latarjet, R

    1977-04-01

    When mouse MLg cells were treated with 3-methylcholanthrene or 7,12-dimethylbenz[alpha]anthracene in the presence of microsomal enzymes and NADPH after 5-iododeoxyuridine (IUDR) treatment, the induction rate of the endogenous C-type virus was increased fivefold to sixfold in comparison with the culture treated with IUDR only. In this reaction, both the microsomal enzymes and NADPH were indispensable. 7,8-Benzoflavone, an inhibitor of the metabolism of hydrocarbons in hamster embryo cultures, inhibited the reaction. For detecting the enhancing activity, the concentration of IUDR for the pretreatment, the concentration of the test products, and the duration of the treatment with the products were important factors. In screening 30 polycyclic hydrocarbons, we were unable to detect a correlation between the in vivo carcinogenicity in the skin and the enhancing activity in the conditions tested.

  5. Cisplatin-induced apoptosis in non-small-cell lung cancer cells is dependent on Bax- and Bak-induction pathway and synergistically activated by BH3-mimetic ABT-263 in p53 wild-type and mutant cells.

    Science.gov (United States)

    Matsumoto, Masaru; Nakajima, Wataru; Seike, Masahiro; Gemma, Akihiko; Tanaka, Nobuyuki

    2016-04-29

    Cisplatin is a highly effective anticancer drug for treatment of various tumors including non-small-cell lung cancer (NSCLC), and is especially useful in cases nonresponsive to molecular-targeted drugs. Accumulating evidence has shown that cisplatin activates the p53-dependent apoptotic pathway, but it also induces apoptosis in p53-mutated cancer cells. Here we demonstrated that DNA-damage inducible proapoptotic BH3 (Bcl-2 homology region 3)-only Bcl-2 family members, Noxa, Puma, Bim and Bid, are not involved in cisplatin-induced apoptosis in human NSCLC cell lines. In contrast, the expression of proapoptotic multidomain Bcl-2-family members, Bak and Bax, was induced by cisplatin in p53-dependent and -independent manners, respectively. Moreover, in wild-type p53-expressing cells, cisplatin mainly used the Bak-dependent apoptotic pathway, but this apoptotic pathway shifted to the Bax-dependent pathway by loss-of-function of p53. Furthermore, both Bak- and Bax-induced apoptosis was enhanced by the antiapoptotic Bcl-2 family member, Bcl-XL knockdown, but not by Mcl-1 knockdown. From this result, we tested the effect of ABT-263 (Navitoclax), the specific inhibitor of Bcl-2 and Bcl-XL, but not Mcl-1, and found that ABT-263 synergistically enhanced cisplatin-induced apoptosis in NSCLC cells in the presence or absence of p53. These results indicate a novel regulatory system in cisplatin-induced NSCLC cell apoptosis, and a candidate efficient combination chemotherapy method against lung cancers.

  6. Levamisole induces interleukin-18 and shifts type 1/type 2 cytokine balance

    Science.gov (United States)

    Szeto, C-C; Gillespie, K M; Mathieson, P W

    2000-01-01

    Immune responses can be classified, according to the predominant cytokines involved, into type 1 (featuring interferon-γ, IFN-γ) and type 2 (featuring interleukin-4, IL-4); imbalance between type 1 and type 2 cytokine compartments has been implicated in many human diseases. Levamisole is a drug with an unknown mode of action that has been used to boost immunity in infectious diseases including leprosy, and in some cancers. To test the hypothesis that levamisole acts by inducing a shift to a type 1 immune response, we used Brown Norway (BN) rats, which are markedly biased to type 2 responses. BN rats treated with levamisole showed a dose-dependent rise in serum IFN-γ and fall in serum immunoglobulin E (IgE) level. Detailed analysis of cytokine gene expression showed upregulation of IFN-γ and downregulation of IL-4 messenger RNA. This coincided with marked upregulation of IL-18, a recently characterized cytokine with potent activity in stimulating IFN-γ production. IL-12 was not induced. Further, the type 2 response induced in BN rats by mercuric chloride was markedly attenuated when rats were pretreated with levamisole: there was a 2-log reduction in maximum serum IgE level and marked attenuation of IL-4 gene upregulation. These data indicate that levamisole acts by resetting the immune balance towards a type 1 response via induction of IL-18. Our findings provide a direction for development of more specific immunomodulating therapy. PMID:10886398

  7. Neoglycoconjugate of Tetrasaccharide Representing One Repeating Unit of the Streptococcus pneumoniae Type 14 Capsular Polysaccharide Induces the Production of Opsonizing IgG1 Antibodies and Possesses the Highest Protective Activity As Compared to Hexa- and Octasaccharide Conjugates

    Directory of Open Access Journals (Sweden)

    Ekaterina A. Kurbatova

    2017-06-01

    Full Text Available Identifying protective synthetic oligosaccharide (OS epitopes of Streptococcus pneumoniae capsular polysaccharides (CPs is an indispensable step in the development of third-generation carbohydrate pneumococcal vaccines. Synthetic tetra-, hexa-, and octasaccharide structurally related to CP of S. pneumoniae type 14 were coupled to bovine serum albumin (BSA, adjuvanted with aluminum hydroxide, and tested for their immunogenicity in mice upon intraperitoneal prime-boost immunizations. Injections of the conjugates induced production of opsonizing anti-OS IgG1 antibodies (Abs. Immunization with the tetra- and octasaccharide conjugates stimulated the highest titers of the specific Abs. Further, the tetrasaccharide ligand demonstrated the highest ability to bind OS and CP Abs. Murine immune sera developed against tetra- and octasaccharide conjugates promoted pathogen opsonization to a higher degree than antisera against conjugated hexasaccharide. For the first time, the protective activities of these glycoconjugates were demonstrated in mouse model of generalized pneumococcal infections. The tetrasaccharide conjugate possessed the highest protective activities. Conversely, the octasaccharide conjugate had lower protective activities and the lowest one showed the hexasaccharide conjugate. Sera against all of the glycoconjugates passively protected naive mice from pneumococcal infections. Given that the BSA-tetrasaccharide induced the most abundant yield of specific Abs and the best protective activity, this OS may be regarded as the most promising candidate for the development of conjugated vaccines against S. pneumoniae type 14 infections.

  8. Equid herpesvirus type 1 activates platelets.

    Directory of Open Access Journals (Sweden)

    Tracy Stokol

    Full Text Available Equid herpesvirus type 1 (EHV-1 causes outbreaks of abortion and neurological disease in horses. One of the main causes of these clinical syndromes is thrombosis in placental and spinal cord vessels, however the mechanism for thrombus formation is unknown. Platelets form part of the thrombus and amplify and propagate thrombin generation. Here, we tested the hypothesis that EHV-1 activates platelets. We found that two EHV-1 strains, RacL11 and Ab4 at 0.5 or higher plaque forming unit/cell, activate platelets within 10 minutes, causing α-granule secretion (surface P-selectin expression and platelet microvesiculation (increased small events double positive for CD41 and Annexin V. Microvesiculation was more pronounced with the RacL11 strain. Virus-induced P-selectin expression required plasma and 1.0 mM exogenous calcium. P-selectin expression was abolished and microvesiculation was significantly reduced in factor VII- or X-deficient human plasma. Both P-selectin expression and microvesiculation were re-established in factor VII-deficient human plasma with added purified human factor VIIa (1 nM. A glycoprotein C-deficient mutant of the Ab4 strain activated platelets as effectively as non-mutated Ab4. P-selectin expression was abolished and microvesiculation was significantly reduced by preincubation of virus with a goat polyclonal anti-rabbit tissue factor antibody. Infectious virus could be retrieved from washed EHV-1-exposed platelets, suggesting a direct platelet-virus interaction. Our results indicate that EHV-1 activates equine platelets and that α-granule secretion is a consequence of virus-associated tissue factor triggering factor X activation and thrombin generation. Microvesiculation was only partly tissue factor and thrombin-dependent, suggesting the virus causes microvesiculation through other mechanisms, potentially through direct binding. These findings suggest that EHV-1-induced platelet activation could contribute to the thrombosis

  9. Oral Wild-Type Salmonella Typhi Challenge Induces Activation of Circulating Monocytes and Dendritic Cells in Individuals Who Develop Typhoid Disease.

    Science.gov (United States)

    Toapanta, Franklin R; Bernal, Paula J; Fresnay, Stephanie; Darton, Thomas C; Jones, Claire; Waddington, Claire S; Blohmke, Christoph J; Dougan, Gordon; Angus, Brian; Levine, Myron M; Pollard, Andrew J; Sztein, Marcelo B

    2015-06-01

    A new human oral challenge model with wild-type Salmonella Typhi (S. Typhi) was recently developed. In this model, ingestion of 104 CFU of Salmonella resulted in 65% of subjects developing typhoid fever (referred here as typhoid diagnosis -TD-) 5-10 days post-challenge. TD criteria included meeting clinical (oral temperature ≥38°C for ≥12 h) and/or microbiological (S. Typhi bacteremia) endpoints. One of the first lines of defense against pathogens are the cells of the innate immune system (e.g., monocytes, dendritic cells -DCs-). Various changes in circulating monocytes and DCs have been described in the murine S. Typhimurium model; however, whether similar changes are present in humans remains to be explored. To address these questions, a subset of volunteers (5 TD and 3 who did not develop typhoid despite oral challenge -NoTD-) were evaluated for changes in circulating monocytes and DCs. Expression of CD38 and CD40 were upregulated in monocytes and DCs in TD volunteers during the disease days (TD-0h to TD-96h). Moreover, integrin α4β7, a gut homing molecule, was upregulated on monocytes but not DCs. CD21 upregulation was only identified in DCs. These changes were not observed among NoTD volunteers despite the same oral challenge. Moreover, monocytes and DCs from NoTD volunteers showed increased binding to S. Typhi one day after challenge. These monocytes showed phosphorylation of p38MAPK, NFkB and Erk1/2 upon stimulation with S. Typhi-LPS-QDot micelles. In contrast, monocytes from TD volunteers showed only a moderate increase in S. Typhi binding 48 h and 96 h post-TD, and only Erk1/2 phosphorylation. This is the first study to describe different activation and migration profiles, as well as differential signaling patterns, in monocytes and DCs which relate directly to the clinical outcome following oral challenge with wild type S. Typhi.

  10. Superb hydroxyl radical-mediated biocidal effect induced antibacterial activity of tuned ZnO/chitosan type II heterostructure under dark

    Science.gov (United States)

    Podder, Soumik; Halder, Suman; Roychowdhury, Anirban; Das, Dipankar; Ghosh, Chandan Kr.

    2016-10-01

    Reactive oxygen species (ROS) is the most dominating factor for bacteria cell toxicity due to release of oxidative stress. Hydroxyl radical (·OH) is a strong oxidizing ROS that has high impact on biocidal activity. This present paper highlights ·OH influenced antibacterial activity and biocidal propensity of tuned ZnO/chitosan (ZnO/CS) nanocomposite against Pseudomonas putida (P. putida) in the absence of light for the first time. For this purpose, the CS proportion was increased by 25 % (w/w) of ZnO during the preparation of ZnO/CS nanocomposite and a systematic study of different ROS like superoxide anion (O 2 ·- ), hydrogen peroxide (H2O2) and ·OH production as well as their kinetics was carried out both under UV irradiation and in dark by UV-Vis spectroscopy using NBT dye, starch and iodine reaction and fluorescence spectroscopy using terephthalic acid. The decoration of ZnO nanoparticles (ZnO·NPs) with CS tuning was characterized by XRD and FTIR spectroscopy, revealing sustained crystallinity and surface coating of ZnO NP (size about 24 nm) by CS molecule. The hybridization of ZnO nanoparticles with CS@50 wt% (w/w) resulted superior biocidal activity (81 %) within 3 h in dark mediated by optimum production of ·OH among all ROS. Here we have proposed the enhanced production of ·OH in ZnO/CS due to generation of holes by entrapment of electrons in acceptor level formed in nanocomposite for the first time, and the acceptor levels were probed by Positron annihilation lifetime spectroscopy. The increase in non-positronium (non-Ps) formation probability (I2) in ZnO/CS nanocomposite confirmed the acceptor levels. This work also confirms surface defect-mediated ROS generation in dark, and zinc interstitials are proposed as active defect sites for generation of holes and ·OH for the first time and confirmed by steady-state room temperature photoluminescence spectroscopy. Finally, a plausible mechanism was hypothesized focusing on hole generation in ZnO NP and

  11. XIAP discriminates between type I and type II FAS-induced apoptosis.

    Science.gov (United States)

    Jost, Philipp J; Grabow, Stephanie; Gray, Daniel; McKenzie, Mark D; Nachbur, Ueli; Huang, David C S; Bouillet, Philippe; Thomas, Helen E; Borner, Christoph; Silke, John; Strasser, Andreas; Kaufmann, Thomas

    2009-08-20

    FAS (also called APO-1 and CD95) and its physiological ligand, FASL, regulate apoptosis of unwanted or dangerous cells, functioning as a guardian against autoimmunity and cancer development. Distinct cell types differ in the mechanisms by which the 'death receptor' FAS triggers their apoptosis. In type I cells, such as lymphocytes, activation of 'effector caspases' by FAS-induced activation of caspase-8 suffices for cell killing, whereas in type II cells, including hepatocytes and pancreatic beta-cells, caspase cascade amplification through caspase-8-mediated activation of the pro-apoptotic BCL-2 family member BID (BH3 interacting domain death agonist) is essential. Here we show that loss of XIAP (X-chromosome linked inhibitor of apoptosis protein) function by gene targeting or treatment with a second mitochondria-derived activator of caspases (SMAC, also called DIABLO; direct IAP-binding protein with low pI) mimetic drug in mice rendered hepatocytes and beta-cells independent of BID for FAS-induced apoptosis. These results show that XIAP is the critical discriminator between type I and type II apoptosis signalling and suggest that IAP inhibitors should be used with caution in cancer patients with underlying liver conditions.

  12. XIAP acts as a switch between type I and type II FAS-induced apoptosis signalling

    Science.gov (United States)

    Jost, Philipp J.; Grabow, Stephanie; Gray, Daniel; McKenzie, Mark D.; Nachbur, Ueli; Huang, David C.S.; Bouillet, Philippe; Thomas, Helen E.; Borner, Christoph; Silke, John; Strasser, Andreas; Kaufmann, Thomas

    2010-01-01

    FAS (APO-1/CD95) and its physiological ligand, FASL, regulate apoptotic death of unwanted or dangerous cells in many tissues, functioning as a guardian against autoimmunity and cancer development1-4. Distinct cell types differ in the mechanisms by which the ‘death receptor’ FAS triggers their apoptosis1-4. In type I cells, such as lymphocytes, activation of ‘effector caspases’ by FAS-induced activation of caspase-8 suffices for cell killing whereas in type II cells, including hepatocytes and pancreatic β-cells, amplification of the caspase cascade through caspase-8 mediated activation of the pro-apoptotic BCL-2 family member BID5 is essential6-8. Here we show, that loss of X-chromosome linked inhibitor of apoptosis (XIAP)9,10 function by gene-targeting or treatment with a second mitochondria-derived activator of caspases (SMAC11, also called DIABLO12: direct IAP binding protein with low pI) mimetic drug rendered hepatocytes independent of BID for FAS-induced apoptosis signalling. These results show that XIAP is the critical discriminator between type I versus type II apoptosis signalling and suggest that IAP inhibitors should be used with caution in cancer patients with underlying liver conditions. PMID:19626005

  13. Oral Wild-Type Salmonella Typhi Challenge Induces Activation of Circulating Monocytes and Dendritic Cells in Individuals Who Develop Typhoid Disease.

    Directory of Open Access Journals (Sweden)

    Franklin R Toapanta

    2015-06-01

    Full Text Available A new human oral challenge model with wild-type Salmonella Typhi (S. Typhi was recently developed. In this model, ingestion of 104 CFU of Salmonella resulted in 65% of subjects developing typhoid fever (referred here as typhoid diagnosis -TD- 5-10 days post-challenge. TD criteria included meeting clinical (oral temperature ≥38°C for ≥12 h and/or microbiological (S. Typhi bacteremia endpoints. One of the first lines of defense against pathogens are the cells of the innate immune system (e.g., monocytes, dendritic cells -DCs-. Various changes in circulating monocytes and DCs have been described in the murine S. Typhimurium model; however, whether similar changes are present in humans remains to be explored. To address these questions, a subset of volunteers (5 TD and 3 who did not develop typhoid despite oral challenge -NoTD- were evaluated for changes in circulating monocytes and DCs. Expression of CD38 and CD40 were upregulated in monocytes and DCs in TD volunteers during the disease days (TD-0h to TD-96h. Moreover, integrin α4β7, a gut homing molecule, was upregulated on monocytes but not DCs. CD21 upregulation was only identified in DCs. These changes were not observed among NoTD volunteers despite the same oral challenge. Moreover, monocytes and DCs from NoTD volunteers showed increased binding to S. Typhi one day after challenge. These monocytes showed phosphorylation of p38MAPK, NFkB and Erk1/2 upon stimulation with S. Typhi-LPS-QDot micelles. In contrast, monocytes from TD volunteers showed only a moderate increase in S. Typhi binding 48 h and 96 h post-TD, and only Erk1/2 phosphorylation. This is the first study to describe different activation and migration profiles, as well as differential signaling patterns, in monocytes and DCs which relate directly to the clinical outcome following oral challenge with wild type S. Typhi.

  14. Diverse intracellular pathogens activate type III interferon expression from peroxisomes.

    Science.gov (United States)

    Odendall, Charlotte; Dixit, Evelyn; Stavru, Fabrizia; Bierne, Helene; Franz, Kate M; Durbin, Ann Fiegen; Boulant, Steeve; Gehrke, Lee; Cossart, Pascale; Kagan, Jonathan C

    2014-08-01

    Type I interferon responses are considered the primary means by which viral infections are controlled in mammals. Despite this view, several pathogens activate antiviral responses in the absence of type I interferons. The mechanisms controlling type I interferon-independent responses are undefined. We found that RIG-I like receptors (RLRs) induce type III interferon expression in a variety of human cell types, and identified factors that differentially regulate expression of type I and type III interferons. We identified peroxisomes as a primary site of initiation of type III interferon expression, and revealed that the process of intestinal epithelial cell differentiation upregulates peroxisome biogenesis and promotes robust type III interferon responses in human cells. These findings highlight the importance of different intracellular organelles in specific innate immune responses.

  15. In vitro inhibition activity of polyphenol-rich extracts from Syzygium aromaticum (L.) Merr. & Perry (Clove) buds against carbohydrate hydrolyzing enzymes linked to type 2 diabetes and Fe2+-induced lipid peroxidation in rat pancreas

    Institute of Scientific and Technical Information of China (English)

    Stephen Adeniyi Adefegha; Ganiyu Oboh

    2012-01-01

    To investigate and compare the inhibitory properties of free and bound phenolic extracts of clove bud against carbohydrate hydrolyzing enzymes (alpha-amylase & alpha-glucosidase) and Fe2+-induced lipid peroxidation in rat pancreas in vitro. Methods: The free phenolics were extracted with 80% (v/v) acetone, while bound phenolics were extracted from the alkaline and acid hydrolyzed residue with ethyl acetate. Then, the interaction of the extracts with alpha-amylase and alpha-glucosidase was subsequently assessed. Thereafter, the total phenolic contents and antioxidant activities of the extracts were determined. Results: The result revealed that both extracts inhibited alpha-amylase and alpha-glucosidase in a dose-dependent manner. However, the alpha-glucosidase inhibitory activity of the extracts were significantly (P<0.05) higher than their alpha-amylase inhibitory activity. The free phenolics (31.67 mg/g) and flavonoid (17.28 mg/g) contents were significantly (P<0.05) higher than bound phenolic (23.52 mg/g) and flavonoid (13.70 mg/g) contents. Both extracts also exhibited high antioxidant activities as typified by their high reducing power, 1,1 diphenyl-2- picrylhydrazyl (DPPH) and 2, 2-azinobis-3-ethylbenzo-thiazoline-6-sulfonate (ABTS) radical scavenging abilities, as well as inhibition of Fe2+-induced lipid peroxidation in rat pancreas in vitro. Conclusions: This study provides a biochemical rationale by which clove elicits therapeutic effect on type 2 diabetes.

  16. Effect of Semecaprus anacardium on diabetes-induced alterations in the activities of marker enzymes and antioxidant enzymes in type 2 diabetes induced cardiac vascular damage model in rats.

    Science.gov (United States)

    Subramaniam, Suganthi; Khan, Haseena Banu Hedayathullah; Gomathy, G; Palanvelu, Shanthi; Panchanadham, Sachidanandam Tiruvaiyaru

    2014-12-01

    Semecarpus anacardium is a commonly used drug in the Siddha system of medicine for curing various metabolic disorders. The cardio protective effect of the drug in Type 2 diabetes-induced cardiovascular complications was studied in rats by feeding them with a high fat diet for 2 weeks followed by intra peritoneal injection of streptozotocin at a moderate dosage of 2*35 mg/kg/ b.wt 24 hr apart and leaving them for 8 weeks to develop cardiovascular complications. The effect of the drug was studied by analyzing levels of blood glucose, insulin, HbA1c, marker enzymes, the antioxidative enzymes and the levels of lipid peroxides in Type 2 diabetic rats. Diabetic rats were treated with SA at a dosage of 300 mg/kg/b.wt. for 8 weeks and the results were compared with diabetic rats treated with the combination therapy drugs metformin at a dosage of 100 mg/kg/b.wt and atorvastatin at a dosage of 10 mg/kg/b.wt for 8 weeks. The drug SA significantly decreased the blood glucose levels and also HbA1c levels while improving glucose tolerance at the same time. The levels of marker enzymes and lipid peroxides were significantly increased in diabetic rats when compared with control rats. On the other hand significant decreases in the levels of antioxidative enzymes were observed in diabetic rats. Upon treatment with the drug SA, all of these abnormalities were restored to near normalcy. The present study thereby establishes the protective effect of the drug against diabetes-induced cardiac damage.

  17. Evaluation of anti-diabetic activity of Glucova Active Tablet on Type I and Type II diabetic model in rats

    Directory of Open Access Journals (Sweden)

    Hardik Soni

    2014-01-01

    Full Text Available Background: Glucova Active Tablet is a proprietary Ayurvedic formulation with ingredients reported for anti-hyperglycemic, anti-hyperlipidemic activity and antioxidant properties. Objective: Evaluation of anti-diabetic activity of Glucova Active Tablet on Type I and Type II diabetic model in rats. Materials and Methods: Experimental Type I diabetes was induced in 24 albino rats with intra-peritoneal injection of streptozotocin (50 mg/kg. Type II diabetes was induced in 18 albino rats by intra-peritoneal injection of streptozotocin (35 mg/kg along with high fat diet. The rats were divided in 5 groups for Type I model and 4 groups for Type II model. Normal control group was kept common for both experimental models. Glucova Active Tablet (108 mg/kg treatment was provided for 28 days twice daily orally. Fasting blood glucose level, serum lipid profile and liver anti-oxidant parameters like superoxide dismutase and reduced glutathione was carried out in both experimental models. Pancreas histopathology was also done. Statistical analysis were done by ′analysis of variance′ test followed by post hoc Tukey′s test, with significant level of P < 0.05.Results and Discussion: Glucova Active Tablet showed significant effect on fasting blood glucose level. It also showed significant alteration in lipid profile and antioxidant parameters. Histopathology study revealed restoration of beta cells in pancreas in Glucova Active Tablet treated group. Conclusion: Finding of this study concludes that Glucova Active Tablet has shown promising anti-diabetic activity in Type I and Type II diabetic rats. It was also found showing good anti-hyperlipidemic activity and anti-oxidant property.

  18. Evaluation of anti-diabetic activity of Glucova Active Tablet on Type I and Type II diabetic model in rats

    Science.gov (United States)

    Soni, Hardik; Patel, Sejal; Patel, Ghanshyam; Paranjape, Archana

    2014-01-01

    Background: Glucova Active Tablet is a proprietary Ayurvedic formulation with ingredients reported for anti-hyperglycemic, anti-hyperlipidemic activity and antioxidant properties. Objective: Evaluation of anti-diabetic activity of Glucova Active Tablet on Type I and Type II diabetic model in rats. Materials and Methods: Experimental Type I diabetes was induced in 24 albino rats with intra-peritoneal injection of streptozotocin (50 mg/kg). Type II diabetes was induced in 18 albino rats by intra-peritoneal injection of streptozotocin (35 mg/kg) along with high fat diet. The rats were divided in 5 groups for Type I model and 4 groups for Type II model. Normal control group was kept common for both experimental models. Glucova Active Tablet (108 mg/kg) treatment was provided for 28 days twice daily orally. Fasting blood glucose level, serum lipid profile and liver anti-oxidant parameters like superoxide dismutase and reduced glutathione was carried out in both experimental models. Pancreas histopathology was also done. Statistical analysis were done by ‘analysis of variance’ test followed by post hoc Tukey's test, with significant level of P < 0.05. Results and Discussion: Glucova Active Tablet showed significant effect on fasting blood glucose level. It also showed significant alteration in lipid profile and antioxidant parameters. Histopathology study revealed restoration of beta cells in pancreas in Glucova Active Tablet treated group. Conclusion: Finding of this study concludes that Glucova Active Tablet has shown promising anti-diabetic activity in Type I and Type II diabetic rats. It was also found showing good anti-hyperlipidemic activity and anti-oxidant property. PMID:24948860

  19. Domain-induced activation of human phospholipase A2 type IIA: Local versus global lipid composition

    DEFF Research Database (Denmark)

    Leidy, C.; Linderoth, L.; Andresen, T.L.

    2006-01-01

    , we show that local enrichment of anionic lipids into fluid domains triggers PLA(2)-IIA activity. In addition, the compositional range of enzyme activity is shown to be related to the underlying lipid phase diagram. A comparison is done between PLA(2)-IIA and snake venom PLA(2), which in contrast...

  20. Ca2+ influx through L-type Ca2+ channels and Ca2+-induced Ca2+ release regulate cAMP accumulation and Epac1-dependent ERK 1/2 activation in INS-1 cells.

    Science.gov (United States)

    Pratt, Evan P S; Salyer, Amy E; Guerra, Marcy L; Hockerman, Gregory H

    2016-01-05

    We previously reported that INS-1 cells expressing the intracellular II-III loop of the L-type Ca(2+) channel Cav1.2 (Cav1.2/II-III cells) are deficient in Ca(2+)-induced Ca(2+) release (CICR). Here we show that glucose-stimulated ERK 1/2 phosphorylation (GSEP) is slowed and reduced in Cav1.2/II-III cells compared to INS-1 cells. This parallels a decrease in glucose-stimulated cAMP accumulation (GS-cAMP) in Cav1.2/II-III cells. Influx of Ca(2+) via L-type Ca(2+) channels and CICR play roles in both GSEP and GS-cAMP in INS-1 cells since both are inhibited by nicardipine or ryanodine. Further, the Epac1-selective inhibitor CE3F4 abolishes glucose-stimulated ERK activation in INS-1 cells, as measured using the FRET-based sensor EKAR. The non-selective Epac antagonist ESI-09 but not the Epac2-selective antagonist ESI-05 nor the PKA antagonist Rp-cAMPs inhibits GSEP in both INS-1 and Cav1.2/II-III cells. We conclude that L-type Ca(2+) channel-dependent cAMP accumulation, that's amplified by CICR, activates Epac1 and drives GSEP in INS-1 cells.

  1. LZAP inhibits p38 MAPK (p38 phosphorylation and activity by facilitating p38 association with the wild-type p53 induced phosphatase 1 (WIP1.

    Directory of Open Access Journals (Sweden)

    Hanbing An

    Full Text Available LZAP (Cdk5rap3, C53 is a putative tumor suppressor that inhibits RelA, Chk1 and Chk2 and activates p53. LZAP is lost in a portion of human head and neck squamous cell carcinoma and experimental loss of LZAP expression is associated with enhanced invasion, xenograft tumor growth and angiogenesis. p38 MAPK can increase or decrease proliferation and cell death depending on cellular context. LZAP has no known enzymatic activity, implying that its biological functions are likely mediated by its protein-protein interactions. To gain further insight into LZAP activities, we searched for LZAP-associated proteins (LAPs. Here we show that the LZAP binds p38, alters p38 cellular localization, and inhibits basal and cytokine-stimulated p38 activity. Expression of LZAP inhibits p38 phosphorylation in a dose-dependent fashion while loss of LZAP enhances phosphorylation and activation with resultant phosphorylation of p38 downstream targets. Mechanistically, the ability of LZAP to alter p38 phosphorylation depended, at least partially, on the p38 phosphatase, Wip1. Expression of LZAP increased both LZAP and Wip1 binding to p38. Taken together, these data suggest that LZAP activity includes inhibition of p38 phosphorylation and activation.

  2. LZAP inhibits p38 MAPK (p38) phosphorylation and activity by facilitating p38 association with the wild-type p53 induced phosphatase 1 (WIP1).

    Science.gov (United States)

    An, Hanbing; Lu, Xinyuan; Liu, Dan; Yarbrough, Wendell G

    2011-01-24

    LZAP (Cdk5rap3, C53) is a putative tumor suppressor that inhibits RelA, Chk1 and Chk2 and activates p53. LZAP is lost in a portion of human head and neck squamous cell carcinoma and experimental loss of LZAP expression is associated with enhanced invasion, xenograft tumor growth and angiogenesis. p38 MAPK can increase or decrease proliferation and cell death depending on cellular context. LZAP has no known enzymatic activity, implying that its biological functions are likely mediated by its protein-protein interactions. To gain further insight into LZAP activities, we searched for LZAP-associated proteins (LAPs). Here we show that the LZAP binds p38, alters p38 cellular localization, and inhibits basal and cytokine-stimulated p38 activity. Expression of LZAP inhibits p38 phosphorylation in a dose-dependent fashion while loss of LZAP enhances phosphorylation and activation with resultant phosphorylation of p38 downstream targets. Mechanistically, the ability of LZAP to alter p38 phosphorylation depended, at least partially, on the p38 phosphatase, Wip1. Expression of LZAP increased both LZAP and Wip1 binding to p38. Taken together, these data suggest that LZAP activity includes inhibition of p38 phosphorylation and activation.

  3. Chronic hypoxia induces the in vivo activation of the Wnt/β-catenin signaling pathway and stimulates hippocampal neurogenesis in wild-type and APPswe-PS1deltaE9 transgenic mice

    Directory of Open Access Journals (Sweden)

    Lorena eVarela-Nallar

    2014-02-01

    Full Text Available Hypoxia modulates proliferation and differentiation of cultured embryonic and adult stem cells, an effect that includes β-catenin a key component of the canonical Wnt signaling pathway. Here we studied in vivo the effect of mild hypoxia on the activity of the Wnt/β-catenin signaling pathway in the hippocampus of adult mice. As a molecular control of the physiological hypoxic response the hypoxia-inducible transcription factor-1α (HIF-1α was analyzed. Exposure to chronic hypoxia (10% oxygen for 6-72 h stimulated the activation of the Wnt/β-catenin signaling pathway. Because the Wnt/β-catenin pathway is a positive modulator of adult neurogenesis, we evaluated whether chronic hypoxia was able to stimulate neurogenesis in the subgranular zone (SGZ of the hippocampal dentate gyrus. Results indicate that hypoxia increased cell proliferation and neurogenesis in adult wild-type mice as determined by Ki67 staining, BrdU incorporation and double labeling with doublecortin. Chronic hypoxia also induced neurogenesis in double transgenic APPswe-PS1deltaE9 mouse model of Alzheimer’s disease (AD, which shows decreased levels of neurogenesis at the SGZ. Our results show for the first time that in vivo exposure to hypoxia can induce the activation of the Wnt/β-catenin signaling cascade in the hippocampus, suggesting that mild hypoxia may have a therapeutic value in neurodegenerative disorder associated with altered Wnt signaling in the brain and also in pathological conditions in which hippocampal neurogenesis is impaired.

  4. Chronic hypoxia induces the activation of the Wnt/β-catenin signaling pathway and stimulates hippocampal neurogenesis in wild-type and APPswe-PS1ΔE9 transgenic mice in vivo

    Science.gov (United States)

    Varela-Nallar, Lorena; Rojas-Abalos, Macarena; Abbott, Ana C.; Moya, Esteban A.; Iturriaga, Rodrigo; Inestrosa, Nibaldo C.

    2014-01-01

    Hypoxia modulates proliferation and differentiation of cultured embryonic and adult stem cells, an effect that includes β-catenin, a key component of the canonical Wnt signaling pathway. Here we studied the effect of mild hypoxia on the activity of the Wnt/β-catenin signaling pathway in the hippocampus of adult mice in vivo. The hypoxia-inducible transcription factor-1α (HIF-1α) was analyzed as a molecular control of the physiological hypoxic response. Exposure to chronic hypoxia (10% oxygen for 6–72 h) stimulated the activation of the Wnt/β-catenin signaling pathway. Because the Wnt/β-catenin pathway is a positive modulator of adult neurogenesis, we evaluated whether chronic hypoxia was able to stimulate neurogenesis in the subgranular zone (SGZ) of the hippocampal dentate gyrus. Results indicate that hypoxia increased cell proliferation and neurogenesis in adult wild-type mice as determined by Ki67 staining, Bromodeoxyuridine (BrdU) incorporation and double labeling with doublecortin (DCX). Chronic hypoxia also induced neurogenesis in a double transgenic APPswe-PS1ΔE9 mouse model of Alzheimer’s disease (AD), which shows decreased levels of neurogenesis in the SGZ. Our results show for the first time that exposure to hypoxia in vivo can induce the activation of the Wnt/β-catenin signaling cascade in the hippocampus, suggesting that mild hypoxia may have a therapeutic value in neurodegenerative disorders associated with altered Wnt signaling in the brain and also in pathological conditions in which hippocampal neurogenesis is impaired. PMID:24574965

  5. STUDIES ON THE CHEMICAL NATURE OF THE SUBSTANCE INDUCING TRANSFORMATION OF PNEUMOCOCCAL TYPES : II. EFFECT OF DESOXYRIBONUCLEASE ON THE BIOLOGICAL ACTIVITY OF THE TRANSFORMING SUBSTANCE.

    Science.gov (United States)

    McCarty, M; Avery, O T

    1946-01-31

    It has been shown that extremely minute amounts of purified preparations of desoxyribonuclease are capable of bringing about the complete and irreversible inactivation of the transforming substance of Pneumococcus Type III. The significance of the effect of the enzyme, and its bearing on the chemical nature of the transforming substance, together with certain considerations concerning the biological specificity of desoxyribonucleic acids in general, are discussed.

  6. LZAP Inhibits p38 MAPK (p38) Phosphorylation and Activity by Facilitating p38 Association with the Wild-Type p53 Induced Phosphatase 1 (WIP1)

    OpenAIRE

    Hanbing An; Xinyuan Lu; Dan Liu; Wendell G Yarbrough

    2011-01-01

    LZAP (Cdk5rap3, C53) is a putative tumor suppressor that inhibits RelA, Chk1 and Chk2 and activates p53. LZAP is lost in a portion of human head and neck squamous cell carcinoma and experimental loss of LZAP expression is associated with enhanced invasion, xenograft tumor growth and angiogenesis. p38 MAPK can increase or decrease proliferation and cell death depending on cellular context. LZAP has no known enzymatic activity, implying that its biological functions are likely mediated by its p...

  7. Myostatin induces DNA damage in skeletal muscle of streptozotocin-induced type 1 diabetic mice.

    Science.gov (United States)

    Sriram, Sandhya; Subramanian, Subha; Juvvuna, Prasanna Kumar; McFarlane, Craig; Salerno, Monica Senna; Kambadur, Ravi; Sharma, Mridula

    2014-02-28

    One of the features of uncontrolled type 1 diabetes is oxidative stress that induces DNA damage and cell death. Skeletal muscle atrophy is also considerable in type 1 diabetes, however, the signaling mechanisms that induce oxidative stress culminating in muscle atrophy are not fully known. Here, we show that in Streptozotocin-induced diabetic wild type mice, hypo-phosphorylation of Akt, resulted in activation of Foxa2 transcription factor in the muscle. Foxa2 transcriptionally up-regulated Myostatin, contributing to exaggerated oxidative stress leading to DNA damage via p63/REDD1 pathway in skeletal muscle of Streptozotocin-treated wild type mice. In Myostatin(-/-) mice however, Streptozotocin treatment did not reduce Akt phosphorylation despite reduced IRS-1 signaling. Moreover, Foxa2 levels remained unaltered in Myostatin(-/-) mice, while levels of p63/REDD1 were higher compared with wild type mice. Consistent with these results, relatively less DNA damage and muscle atrophy was observed in Myostatin(-/-) muscle in response to Streptozotocin treatment. Taken together, our results for the first time show the role of Foxa2 in Myostatin regulation in skeletal muscle in diabetic mice. Altogether, these results demonstrate the mechanism by which Myostatin contributes to DNA damage in skeletal muscle of the diabetic mice that would lead to myofiber degeneration.

  8. In vitro inhibition activity of polyphenol-rich extracts from Syzygium aromaticum(L.)Merr.& Perry(Clove)buds against carbohydrate hydrolyzing enzymes linked to type 2 diabetes and Fe2+-induced lipid peroxidation in rat pancreas

    Institute of Scientific and Technical Information of China (English)

    Stephen; Adeniyi; Adefegha; Ganiyu; Oboh

    2012-01-01

    Objective:To investigate and compare the inhibitor)’properties)of free and bound phenolic extracts of clove bud against carbohydrate hydrolyzing enzymes(alpha-amylase&alphaglucosidase)and Fe2+-induced lipid peroxidation in rat pancreas in vitro.Methods:The free phenolics were extracted with 80%.(v/v)acetone,while bound phenolics were extracted from the alkaline and acid hydrolyzed residue with ethyl acetate.Then,the interaction of the extracts with alpha-amylase and alpha-glucosidase was subsequently assessed.Thereafter,the total phenolic contents and antioxidant activities of the extracts were determined.Results:The result revealed that both extracts inhibited alpha-amylase and alpha-glucosidase in a dose-dependent manner.However,the alpha-glucosidase inhibitory activity of the extracts were significantly(P<0.05)higher than their alpha-amylase inhibitory activity.The free phenolics(31.67 mg/g)and flavonoid(17.28 mg/g)contents were significantly(P<0.05)higher than bound phenolic(23.52 mg/g)and flavonoid(13.70 mg/g)contents.Both extracts also exhibited high antioxidant activities as typified by their high reducing power,LI diphenyl-2-picrylhydrazyl(DPPH)and 2,2-azinobis-3-ethylbenzo-thiazoline-6-sulfonate(ABTS)radical scavenging abilities,as well as inhibition of Fe2+-induced lipid peroxidation in rat pancreas in vitro.Conclusions:This study provides a biochemical rationale by which clove elicits therapeutic effect on type 2 diabetes.

  9. Ultraviolet- and infrared-induced 11 beta-hydroxysteroid dehydrogenase type 1 activating skin photoaging is inhibited by red ginseng extract containing high concentration of ginsenoside Rg3(S).

    Science.gov (United States)

    Nam, Jin-Ju; Min, Ji-Eun; Son, Min-Ho; Oh, Jin-Hwan; Kang, Seunghyun

    2017-08-09

    Sun irradiation is one of major extrinsic stressors responsible for premature skin aging through activation and expression of 11 beta-hydroxysteroid dehydrogenase type 1 (11β-HSD1), which converts inactive cortisone to active cortisol. The aim of this study was to evaluate the inhibitory effects of red ginseng extract containing high concentrations of ginsenoside Rg3 (S) (GERg3) on 11β-HSD1-induced skin photoaging. To evaluate the inhibitory effects of GERg3 on ultraviolet- (UV) or infrared (IR)-induced skin photoaging, human dermal fibroblasts or a normal human 3D skin model was exposed to UV or an IR. RT-PCR, ELISA, Western blot, and H&E staining were used for evaluations. GERg3 was isolated from crude red ginseng. GERg3 inhibited the increased expressions of 11β-HSD1, interleukin (IL)-6, and matrix metalloproteinase-1 (MMP-1) in UVB- or IR-exposed Hs68 cells. Additionally, the increased cortisol, IL-6, and MMP-1 expressions were effectively reduced by GERg3 in UVA-exposed 3D skin models. The photoinduced decrease in type 1 procollagen also recovered as a result of GERg3 treatment in Hs68 cells and the 3D skin model. In addition, the UVA-exposed dermal thickness was decreased in comparison with the UVA-protected 3D skin model, recovered with GERg3 treatment. GERg3 had antiphotoaging effects in UV- or IR-exposed human dermal fibroblasts and normal human 3D skin model. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. The influence of type I diabetes mellitus on the expression and activity of gelatinases (matrix metalloproteinases-2 and -9) in induced periodontal disease.

    Science.gov (United States)

    Silva, J A F; Lorencini, M; Peroni, L A; De La Hoz, C L R; Carvalho, H F; Stach-Machado, D R

    2008-02-01

    Periodontal disease corresponds to a group of lesions that affect the tooth-supporting tissues present in the dental follicle. Although bacterial plaque is important, the immune response also contributes to the destruction of periodontal tissues. Diabetes mellitus is closely associated with the development, progression and severity of periodontal disease because it not only affects extracellular matrix organization but also the tissue response to inflammation. The objective of the present investigation was to study the influence of diabetes on experimental periodontal disease by evaluating the degradation of extracellular matrix through the analysis of matrix metalloproteinase (MMP)-2 and MMP-9 expression and activity, using immunofluorescence, zymography and real-time reverse transcription-polymerase chain reaction. Wistar rats were divided into normal and diabetic groups and evaluated 0, 15 and 30 d after the induction of periodontal disease by ligature. MMP-2 and -9 were detected in epithelial cells, in the blood vessel endothelium and in connective tissue cells. The same profile of enzymatic expression of MMP-2 and -9 was observed in normal and diabetic animals, with a peak in activity at day 15 of inflammation. However, in diabetic animals, MMP-2 gelatinolytic activity was reduced after the inflammatory stimulus, whereas that of MMP-9 was increased. MMP-2 gene expression decreased with inflammation in both normal groups and groups with diabetes. In contrast, MMP-9 expression increased in normal animals and decreased in diabetic animals after inflammation. The results suggest the involvement of MMP-2 and -9 in the dynamics of periodontal disease and that variation in their expression levels results in differences in tissue organization and wound healing in normal and diabetic animals.

  11. Regulation of tissue-type plasminogen activator and plasminogen activator inhibitor type-1 in cultured rat Sertoli and Leydig cells

    Institute of Scientific and Technical Information of China (English)

    刘以训; 杜群; 周红明; 刘奎; 胡召元

    1996-01-01

    New data are provided to show that (i) rat Sertoli cells produce two types of plasminogen activators, tissue type (tPA) and urokinase type (uPA), and a plasminogen activator inhibitor type-1 (PAI-1); (ii) both tPA (but not uPA) and PAI-1 secretion in the culture are modified by FSH, forskolin, dbcAMP, GnRH, PMA and growth factors (EGF and FGF), but not by hCG and androstenedione (△4); (iii) in vitro secretion of tPA and PA-PAI-1 complexes of Sertoli cells are greatly enhanced by presence of Leydig cells which produce negligible tPA but measurable PAI-1 activity;(iv) combination culture of Sertoli and Leydig cells remarkably increases FSH-induced PAI-1 activity and decreases hCG- and forskolin-induced inhibitor activity as compared with that of two cell types cultured alone. These data suggest that rat Sertoli cells, similar to ovarian granulosa cells, are capable of secreting both tPA and uPA, as well as PAI-1. The interaction of Sertoli cells and Leydig cells is essential for the cells to response to

  12. Mechanisms of macrophage activation in obesity-induced insulin resistance

    OpenAIRE

    Odegaard, Justin I.; Chawla, Ajay

    2008-01-01

    Chronic inflammation is now recognized as a key step in the pathogenesis of obesity-induced insulin resistance and type 2 diabetes mellitus. This low-grade inflammation is mediated by the inflammatory (classical) activation of recruited and resident macrophages that populate metabolic tissues, including adipose tissue and liver. These findings have led to the concept that infiltration and activation of adipose tissue macrophages is causally linked to obesity-induced insulin resistance. Studie...

  13. A serpin-induced extensive proteolytic susceptibility of urokinase-type plasminogen activator implicates distortion of the proteinase substrate-binding pocket and oxyanion hole in the serpin inhibitory mechanism.

    Science.gov (United States)

    Egelund, R; Petersen, T E; Andreasen, P A

    2001-02-01

    The formation of stable complexes between serpins and their target serine proteinases indicates formation of an ester bond between the proteinase active-site serine and the serpin P1 residue [Egelund, R., Rodenburg, K.W., Andreasen, P.A., Rasmussen, M.S., Guldberg, R.E. & Petersen, T.E. (1998) Biochemistry 37, 6375-6379]. An important question concerning serpin inhibition is the contrast between the stability of the ester bond in the complex and the rapid hydrolysis of the acyl-enzyme intermediate in general serine proteinase-catalysed peptide bond hydrolysis. To answer this question, we used limited proteolysis to detect conformational differences between free urokinase-type plasminogen activator (uPA) and uPA in complex with plasminogen activator inhibitor-1 (PAI-1). Whereas the catalytic domain of free uPA, pro-uPA, uPA in complex with non-serpin inhibitors and anhydro-uPA in a non-covalent complex with PAI-1 was resistant to proteolysis, the catalytic domain of PAI-1-complexed uPA was susceptible to proteolysis. The cleavage sites for four different proteinases were localized in specific areas of the C-terminal beta-barrel of the catalytic domain of uPA, providing evidence that the serpin inhibitory mechanism involves a serpin-induced massive rearrangement of the proteinase active site, including the specificity pocket, the oxyanion hole, and main-chain binding area, rendering the proteinase unable to complete the normal hydrolysis of the acyl-enzyme intermediate. The distorted region includes the so-called activation domain, also known to change conformation on zymogen activation.

  14. Lipoteichoic acid induces surfactant protein-A biosynthesis in human alveolar type II epithelial cells through activating the MEK1/2-ERK1/2-NF-κB pathway

    Directory of Open Access Journals (Sweden)

    Liu Feng-Lin

    2012-10-01

    Full Text Available Abstract Background Lipoteichoic acid (LTA, a gram-positive bacterial outer membrane component, can cause septic shock. Our previous studies showed that the gram-negative endotoxin, lipopolysaccharide (LPS, could induce surfactant protein-A (SP-A production in human alveolar epithelial (A549 cells. Objectives In this study, we further evaluated the effect of LTA on SP-A biosynthesis and its possible signal-transducing mechanisms. Methods A549 cells were exposed to LTA. Levels of SP-A, nuclear factor (NF-κB, extracellular signal-regulated kinase 1/2 (ERK1/2, and mitogen-activated/extracellular signal-regulated kinase kinase (MEK1 were determined. Results Exposure of A549 cells to 10, 30, and 50 μg/ml LTA for 24 h did not affect cell viability. Meanwhile, when exposed to 30 μg/ml LTA for 1, 6, and 24 h, the biosynthesis of SP-A mRNA and protein in A549 cells significantly increased. As to the mechanism, LTA enhanced cytosolic and nuclear NF-κB levels in time-dependent manners. Pretreatment with BAY 11–7082, an inhibitor of NF-κB activation, significantly inhibited LTA-induced SP-A mRNA expression. Sequentially, LTA time-dependently augmented phosphorylation of ERK1/2. In addition, levels of phosphorylated MEK1 were augmented following treatment with LTA. Conclusions Therefore, this study showed that LTA can increase SP-A synthesis in human alveolar type II epithelial cells through sequentially activating the MEK1-ERK1/2-NF-κB-dependent pathway.

  15. Serum Levels of IL-6 Type Cytokines and Soluble IL-6 Receptors in Active B-Cell Chronic Lymphocytic Leukemia and in Cladribine Induced Remission

    Directory of Open Access Journals (Sweden)

    T. Robak

    1999-01-01

    Full Text Available We have investigated the serum concentrations of interleukin-6 (IL-6 and two IL-6 family cytokines-oncostatin M (OSM and leukemia inhibitory factor (LIF-in 63 patients with B-cell chronic lymphocytic leukemia (B-CLL and 17 healthy controls using the enzyme-linked immunosorbent assay (ELISA method. Simultaneously, we measured the serum levels of the soluble forms of two subunits of the IL-6 receptor complex-ligand binding glycoprotein 80 (sIL-6R and glycoprotein 130 (sgp130. The cytokines and receptors were evaluated in 25 untreated patients and 38 patients treated with cladribine (2-CdA, as well as in 17 healthy controls. We have correlated the serum levels of these proteins with Rai's clinical stage of the disease, the response to 2-CdA treatment and some hematological parameters. We have also evaluated the correlation of the IL-6 serum level with the concentration of OSM and IL-6 soluble receptors. IL-6 was measurable in 62/63 (98.4%, OSM in 20/25 (80% of untreated and 14/38 (37.8% of the treated patients. sIL-6R and sgp130 were detectable in all 63 patients and LIF in none of the CLL patients. IL-6 serum level in untreated patients was not significantly different as compared to its concentration in the control group (P>0.05. However, in the patients treated with 2-CdA the IL-6 level was significantly lower (P0.05. We have found significant positive correlation between the levels of sIL6R and the lymphocytes count in CLL patients (Ρ=0.423; P<0.001. In addition, sIL-6R and OSM serum concentrations correlated also with CLL Rai stage. In conclusion, the serum level of IL-6, OSM and sIL-6R, but not LIF and sgp130, are useful indicators of CLL activity.

  16. Macrophage-inducible C-type lectin underlies obesity-induced adipose tissue fibrosis.

    Science.gov (United States)

    Tanaka, Miyako; Ikeda, Kenji; Suganami, Takayoshi; Komiya, Chikara; Ochi, Kozue; Shirakawa, Ibuki; Hamaguchi, Miho; Nishimura, Satoshi; Manabe, Ichiro; Matsuda, Takahisa; Kimura, Kumi; Inoue, Hiroshi; Inagaki, Yutaka; Aoe, Seiichiro; Yamasaki, Sho; Ogawa, Yoshihiro

    2014-09-19

    In obesity, a paracrine loop between adipocytes and macrophages augments chronic inflammation of adipose tissue, thereby inducing systemic insulin resistance and ectopic lipid accumulation. Obese adipose tissue contains a unique histological structure termed crown-like structure (CLS), where adipocyte-macrophage crosstalk is known to occur in close proximity. Here we show that Macrophage-inducible C-type lectin (Mincle), a pathogen sensor for Mycobacterium tuberculosis, is localized to macrophages in CLS, the number of which correlates with the extent of interstitial fibrosis. Mincle induces obesity-induced adipose tissue fibrosis, thereby leading to steatosis and insulin resistance in liver. We further show that Mincle in macrophages is crucial for CLS formation, expression of fibrosis-related genes and myofibroblast activation. This study indicates that Mincle, when activated by an endogenous ligand released from dying adipocytes, is involved in adipose tissue remodelling, thereby suggesting that sustained interactions between adipocytes and macrophages within CLS could be a therapeutic target for obesity-induced ectopic lipid accumulation.

  17. Inducing immune tolerance: a focus on Type 1 diabetes mellitus.

    Science.gov (United States)

    Xu, Dan; Prasad, Suchitra; Miller, Stephen D

    2013-09-01

    Tolerogenic strategies that specifically target diabetogenic immune cells in the absence of complications of immunosuppression are the desired treatment for the prevention or even reversal of Type 1 diabetes (T1D). Antigen (Ag)-based therapies must not only suppress disease-initiating diabetogenic T cells that are already activated, but, more importantly, prevent activation of naive auto-Ag-specific T cells that may become autoreactive through epitope spreading as a result of Ag liberation from damaged islet cells. Therefore, identification of auto-Ags relevant to T1D initiation and progression is critical to the design of effective Ag-specific therapies. Animal models of T1D have been successfully employed to identify potential diabetogenic Ags, and have further facilitated translation of Ag-specific tolerance strategies into human clinical trials. In this review, we highlight important advances using animal models in Ag-specific T1D immunotherapies, and the application of the preclinical findings to human subjects. We provide an up-to-date overview of the strengths and weaknesses of various tolerance-inducing strategies, including infusion of soluble Ags/peptides by various routes of delivery, genetic vaccinations, cell- and inert particle-based tolerogenic approaches, and various other strategies that target distinct tolerance-inducing pathways.

  18. Classifying sows' activity types from acceleration patterns

    DEFF Research Database (Denmark)

    Cornou, Cecile; Lundbye-Christensen, Søren

    2008-01-01

    -dimensional axes, plus the length of the acceleration vector) are selected for each activity. Each time series is modeled using a Dynamic Linear Model with cyclic components. The classification method, based on a Multi-Process Kalman Filter (MPKF), is applied to a total of 15 times series of 120 observations......An automated method of classifying sow activity using acceleration measurements would allow the individual sow's behavior to be monitored throughout the reproductive cycle; applications for detecting behaviors characteristic of estrus and farrowing or to monitor illness and welfare can be foreseen....... This article suggests a method of classifying five types of activity exhibited by group-housed sows. The method involves the measurement of acceleration in three dimensions. The five activities are: feeding, walking, rooting, lying laterally and lying sternally. Four time series of acceleration (the three...

  19. Physical Activity and Type 1 Diabetes

    Science.gov (United States)

    Colberg, Sheri R.; Laan, Remmert; Dassau, Eyal; Kerr, David

    2015-01-01

    While being physically active bestows many health benefits on individuals with type 1 diabetes, their overall blood glucose control is not enhanced without an effective balance of insulin dosing and food intake to maintain euglycemia before, during, and after exercise of all types. At present, a number of technological advances are already available to insulin users who desire to be physically active with optimal blood glucose control, although a number of limitations to those devices remain. In addition to continued improvements to existing technologies and introduction of new ones, finding ways to integrate all of the available data to optimize blood glucose control and performance during and following exercise will likely involve development of “smart” calculators, enhanced closed-loop systems that are able to use additional inputs and learn, and social aspects that allow devices to meet the needs of the users. PMID:25568144

  20. Types,Active Characteristics and Development Trend of Rainfall-induced Landslides After Wenchuan Earthquake%汶川地震震后降雨滑坡的类型、活动特征及发展趋势

    Institute of Scientific and Technical Information of China (English)

    裴来政; 周小军; 方华

    2012-01-01

    汶川地震造成许多山体的整体性破坏,部分山体后缘出现裂缝,岩土体在主震作用下产生损伤,边坡稳定性大大降低,在降雨激发作用下极易产生新的滑坡灾害。在分析汶川震后滑坡发育条件变化和降雨滑坡现场调查的基础上,将震后降雨诱发滑坡分为5种类型。震后降雨滑坡的活动特征主要体现在以小型的塌滑最为典型且数量多,沿河道两岸广泛发育,且震区滑坡发生与降雨在时间上具有较强的对应关系,滑坡发生滞后时间短,在强暴雨条件下多为群发型滑坡。从震后降雨滑坡发展趋势来看,初期主要以中小型的滑塌为主,随着时间的推移,小型滑塌数量将逐渐减少,大型、特大型滑坡发生的数量可能会有一定程度的增加。%Under the action of the Wenchuan earthquake,the integrity of some mountains was destroyed and some slits appeared on the mountains.Main shocks caused soils and rocks damaged and its self-strength declined.The quantity of rainfall-induced landslides after the Wenchuan earthquake was much more than that before the earthquake.Five types of the landslides caused by the earthquake were classified based on the investigation of rainfall-induced landslides after the Wenchuan earthquake.Active characteristics of rainfall-induced landslides were mainly embodied in the small and tremendous landslides widely developed along rivers and roads.Landslides and rainfall in the area had a better relationship and the delayed-time for the occurrence of landslides was very short.Massive landslides were developed under the condition of intensive rainstorms.In view of the development trend of rainfall-induced landslides,the small and medium landslides are dominant in the early time.However,the number of the small landslides will decrease but large or huge landslides will increase with increasing time.

  1. Characterization of the radial velocity signal induced by rotation in late-type dwarfs

    Science.gov (United States)

    Suárez Mascareño, A.; Rebolo, R.; González Hernández, J. I.; Esposito, M.

    2017-07-01

    We investigate the activity-induced signals related to rotation and magnetic cycles in late-type stars (FGKM) and analyse the Ca II H&K, the H α and the radial velocity time series of 55 stars using the spectra from the HARPS public data base and the light curves provided by the All Sky Automated Survey. We search for short-term and long-term periodic signals in the time series of activity indicators as well as in the photometric light curves. Radial velocity data sets are then analysed to determine the presence of activity-induced signals. We measure a radial velocity signal induced by rotational modulation of stellar surface features in 37 stars, from late-F-type to mid-M-type stars. We report an empirical relationship, with some degree of spectral type dependency, between the mean level of chromospheric emission measured by the log _{10}(R^' }_{HK}) and the measured radial velocity semi-amplitude. We also report a relationship between the semi-amplitude of the chromospheric measured signal and the semi-amplitude of the radial velocity-induced signal, which strongly depends on the spectral type. We find that for a given strength of chromospheric activity (i.e. a given rotation period), M-type stars tend to induce larger rotation-related radial velocity signals than G- and K-type stars.

  2. Lichenoid type cutaneous hyperpigmentation induced by nebivolol.

    Science.gov (United States)

    Aslan, Abdullah Nabi; Güney, Murat Can; Akçay, Murat; Keleş, Telat; Bozkurt, Engin

    2017-04-01

    Cutaneous hyperpigmentation is a common and well-defined side effect of many drugs, such as non-steroidal anti-inflammatory drugs, beta-blockers, and tetracyclines, but to the best of our knowledge there is no case of skin discoloration related to nebivolol in the literature. Presently described is lichenoid type cutaneous hyperpigmentation in a 46-year-old female patient. Hyperpigmentation emerged 3 months after initiating use of nebivolol and resolved after cessation of drug use. It was concluded that effect emerged as result of therapeutic doses of nebivolol.

  3. On the type and the standardform of induced UA representations

    NARCIS (Netherlands)

    Broek, van den P.M.

    1979-01-01

    We derive to which of the three types an irreducible UA representation which is obtained with the procedure of generalised induction belongs. We analyse the question whether or not the irreducible induced UA representations are on standardform. The results hold as well for induced PUA representation

  4. Stresslets induced by active swimmers

    CERN Document Server

    Lauga, Eric

    2016-01-01

    Active particles disturb the fluid around them as force dipoles, or stresslets, which govern their collective dynamics. Unlike swimming speeds, the stresslets of active particles are rarely determined due to the lack of a suitable theoretical framework for arbitrary geometry. We propose a general method, based on the reciprocal theorem of Stokes flows, to compute stresslets as integrals of the velocities on the particle's surface, which we illustrate for spheroidal chemically-active particles. Our method will allow tuning the stresslet of artificial swimmers and tailoring their collective motion in complex environments.

  5. ALDOSTERONE-INDUCED VASCULAR REMODELING AND ENDOTHELIAL DYSFUNCTION REQUIRE FUNCTIONAL ANGIOTENSIN TYPE 1a RECEPTORS

    OpenAIRE

    Briet, Marie; Barhoumi, Tlili; Mian, Muhammad Oneeb Rehman; Coelho, Suellen C.; Ouerd, Sofiane; Rautureau, Yohann; Coffman, Thomas M.; Paradis, Pierre; Ernesto L Schiffrin

    2016-01-01

    We investigated the role of angiotensin type 1a receptors (AGTR1a) in vascular injury induced by aldosterone activation of mineralocorticoid receptors (MR) in Agtr1a−/− and wild-type mice infused with aldosterone for 14 days while receiving 1% NaCl in drinking water. Aldosterone increased systolic blood pressure by ~30 mmHg in wild-type mice, and ~50 mmHg in Agtr1a−/− mice. Aldosterone induced aortic and small artery remodeling and impaired endothelium-dependent relaxation in wild-type mice, ...

  6. Borrelia burgdorferi Spirochetes Induce Mast Cell Activation and Cytokine Release

    Science.gov (United States)

    Talkington, Jeffrey; Nickell, Steven P.

    1999-01-01

    The Lyme disease spirochete, Borrelia burgdorferi, is introduced into human hosts via tick bites. Among the cell types present in the skin which may initially contact spirochetes are mast cells. Since spirochetes are known to activate a variety of cell types in vitro, we tested whether B. burgdorferi spirochetes could activate mast cells. We report here that freshly isolated rat peritoneal mast cells or mouse MC/9 mast cells cultured in vitro with live or freeze-thawed B. burgdorferi spirochetes undergo low but detectable degranulation, as measured by [5-3H] hydroxytryptamine release, and they synthesize and secrete the proinflammatory cytokine tumor necrosis factor alpha (TNF-α). In contrast to findings in previous studies, where B. burgdorferi-associated activity was shown to be dependent upon protein lipidation, mast cell TNF-α release was not induced by either lipidated or unlipidated recombinant OspA. This activity was additionally shown to be protease sensitive and surface expressed. Finally, comparisons of TNF-α-inducing activity in known low-, intermediate-, and high-passage B. burgdorferi B31 isolates demonstrated passage-dependent loss of activity, indicating that the activity is probably plasmid encoded. These findings document the presence in low-passage B. burgdorferi spirochetes of a novel lipidation-independent activity capable of inducing cytokine release from host cells. PMID:10024550

  7. Induced starburst and nuclear activity: Faith, facts, and theory

    Science.gov (United States)

    Shlosman, Isaac

    1990-01-01

    The problem of the origin of starburst and nuclear (nonstellar) activity in galaxies is reviewed. A physical understanding of the mechanism(s) that induce both types of activity requires one to address the following issues: (1) what is the source of fuel that powers starbursts and active galactic nuclei; and (2) how is it channeled towards the central regions of host galaxies? As a possible clue, the author examines the role of non-axisymmetric perturbations of galactic disks and analyzes their potential triggers. Global gravitational instabilities in the gas on scales approx. 100 pc appear to be crucial for fueling the active galactic nuclei.

  8. Initial Assessment of β3-Adrenoceptor-Activated Brown Adipose Tissue in Streptozotocin-Induced Type 1 Diabetes Rodent Model Using [18F]Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography

    OpenAIRE

    Aparna Baranwal; M. Reza Mirbolooki; Jogeshwar Mukherjee

    2015-01-01

    Metabolic activity of brown adipose tissue (BAT) is activated by β3-adrenoceptor agonists and norepinephrine transporter (NET) blockers and is measurable using [18F]fluorodeoxyglucose ([18F]FDG) positron emission tomography/computed tomography (PET/CT) in rats. Using the streptozotocin (STZ)-treated rat model of type 1 diabetes mellitus (T1DM), we investigated BAT activity in this rat model under fasting and nonfasting conditions using [18F]FDG PET/CT. Drugs that enhance BAT activity may have...

  9. Median raphe stimulation-induced motor inhibition concurrent with suppression of type 1 and type 2 hippocampal theta.

    Science.gov (United States)

    Bland, Brian H; Bland, Cheryl E; MacIver, M Bruce

    2016-03-01

    This study investigated behavioral, anatomical and electrophysiological effects produced by electrical stimulation of posterior hypothalamic (PH) or median raphe (MR) nuclei, independently and during combined stimulation of both PH and MR. These three stimulation conditions were applied during spontaneous behavior in an open field and during PH stimulation-induced wheel running, while simultaneously recording hippocampal (HPC) field activity. An additional objective was to determine the effects of MR stimulation on Type 1 movement related theta and Type 2 sensory processing related theta. To achieve the latter, when behavioral studies were completed we studied the same rats under urethane anesthesia and then during urethane anesthesia with the addition of atropine sulfate (ATSO4). Here we demonstrated that electrical stimulation of a localized region of the MR nucleus resulted in a profound inhibition of both spontaneously occurring theta related motor behaviors and the theta related motor behaviors induced by electrical stimulation of the PH nucleus. Furthermore, this motor inhibition occurred concurrently with strong suppression of hippocampal theta field oscillations in the freely moving rat, a condition where the theta recorded is Type 2 sensory processing theta occurring coincidently with Type 1 movement related theta (Bland, 1986). Our results indicate that motor inhibition resulted from stimulation of neurons located in the mid central region of the MR, while stimulation in adjacent regions produced variable responses, including movements and theta activity. The present study provided evidence that the pharmacological basis of the suppression of Type 2 sensory processing HPC theta was cholinergic. However, MR inhibition of PH-induced wheel running was not affected by cholinergic blockade, which blocks Type 2 theta, indicating that MR stimulation-induced motor inhibition also requires the suppression of Type 1 theta.

  10. Hyperalgesic priming (type II) induced by repeated opioid exposure: maintenance mechanisms.

    Science.gov (United States)

    Araldi, Dioneia; Ferrari, Luiz F; Levine, Jon D

    2017-07-01

    We previously developed a model of opioid-induced neuroplasticity in the peripheral terminal of the nociceptor that could contribute to opioid-induced hyperalgesia, type II hyperalgesic priming. Repeated administration of mu-opioid receptor (MOR) agonists, such as DAMGO, at the peripheral terminal of the nociceptor, induces long-lasting plasticity expressed, prototypically as opioid-induced hyperalgesia and prolongation of prostaglandin E2-induced hyperalgesia. In this study, we evaluated the mechanisms involved in the maintenance of type II priming. Opioid receptor antagonist, naloxone, induced hyperalgesia in DAMGO-primed paws. When repeatedly injected, naloxone-induced hyperalgesia, and hyperalgesic priming, supporting the suggestion that maintenance of priming involves changes in MOR signaling. However, the knockdown of MOR with oligodeoxynucleotide antisense did not reverse priming. Mitogen-activated protein kinase and focal adhesion kinase, which are involved in the Src signaling pathway, previously implicated in type II priming, also inhibited the expression, but not maintenance of priming. However, when Src and mitogen-activated protein kinase inhibitors were coadministered, type II priming was reversed, in male rats. A second model of priming, latent sensitization, induced by complete Freund's adjuvant was also reversed, in males. In females, the inhibitor combination was only able to inhibit the expression and maintenance of DAMGO-induced priming when knockdown of G-protein-coupled estrogen receptor 30 (GPR30) in the nociceptor was performed. These findings demonstrate that the maintenance of DAMGO-induced type II priming, and latent sensitization is mediated by an interaction between, Src and MAP kinases, which in females is GPR30 dependent.

  11. Differential roles of prostaglandin E-type receptors in activation of hypoxia-inducible factor 1 by prostaglandin E1 in vascular-derived cells under non-hypoxic conditions

    Directory of Open Access Journals (Sweden)

    Kengo Suzuki

    2013-11-01

    Full Text Available Prostaglandin E1 (PGE1, known pharmaceutically as alprostadil, has vasodilatory properties and is used widely in various clinical settings. In addition to acute vasodilatory properties, PGE1 may exert beneficial effects by altering protein expression of vascular cells. PGE1 is reported to be a potent stimulator of angiogenesis via upregulation of VEGF expression, which is under the control of the transcription factor hypoxia-inducible factor 1 (HIF-1. However, the molecular mechanisms behind the phenomenon are largely unknown. In the present study, we investigated the mechanism by which PGE1 induces HIF-1 activation and VEGF gene expression in human aortic smooth muscle cells (HASMCs and human umbilical vein endothelial cells (HUVECs, both vascular-derived cells. HUVECs and HASMCs were treated with PGE1 at clinically relevant concentrations under 20% O2 conditions and HIF-1 protein expression was investigated. Expression of HIF- 1α protein and the HIF-1-downstream genes were low under 20% O2 conditions and increased in response to PGE1 treatment in both HUVECs and HASMCs in a dose- and time-dependent manner under 20% O2 conditions as comparable to exposure to 1% O2 conditions. Studies using EP-receptor-specific agonists and antagonists revealed that EP1 and EP3 are critical to PGE1-induced HIF-1 activation. In vitro vascular permeability assays using HUVECs indicated that PGE1 increased vascular permeability in HUVECs. Thus, we demonstrate that PGE1 induces HIF- 1α protein expression and HIF-1 activation under non-hypoxic conditions and also provide evidence that the activity of multiple signal transduction pathways downstream of EP1 and EP3 receptors is required for HIF-1 activation.

  12. Extract of Ginkgo Biloba Ameliorates Streptozotocin-Induced Type 1 Diabetes Mellitus and High-Fat Diet-Induced Type 2 Diabetes Mellitus in Mice

    National Research Council Canada - National Science Library

    Rhee, Ki-Jong; Lee, Chang Gun; Kim, Sung Woo; Gim, Dong-Hyeon; Kim, Hyun-Cheol; Jung, Bae Dong

    2015-01-01

    .... In this study, we assessed whether Ginkgo biloba extract (EGb) 761 could provide beneficial effects in the streptozotocin-induced type 1 DM and high-fat diet-induced type 2 DM murine model system...

  13. Adenosine-A1 receptor agonist induced hyperalgesic priming type II.

    Science.gov (United States)

    Araldi, Dioneia; Ferrari, Luiz F; Levine, Jon D

    2016-03-01

    We have recently shown that repeated exposure of the peripheral terminal of the primary afferent nociceptor to the mu-opioid receptor (MOR) agonist DAMGO ([D-Ala, N-Me-Phe, Gly-ol]-enkephalin acetate salt) induces a model of transition to chronic pain that we have termed type II hyperalgesic priming. Similar to type I hyperalgesic priming, there is a markedly prolonged response to subsequent administration of proalgesic cytokines, prototypically prostaglandin E2 (PGE2). However, type II hyperalgesic priming differs from type I in being rapidly induced, protein kinase A (PKA), rather than PKCε dependent, not reversed by a protein translation inhibitor, occurring in female as well as in male rats, and isolectin B4-negative neuron dependent. We report that, as with the repeated injection of a MOR agonist, the repeated administration of an agonist at the A1-adenosine receptor, also a Gi-protein coupled receptor, N-cyclopentyladenosine (CPA), also produces priming similar to DAMGO-induced type II hyperalgesic priming. In this study, we demonstrate that priming induced by repeated exposure to this A1-adenosine receptor agonist shares the same mechanisms, as MOR-agonist induced priming. However, the prolongation of PGE2 hyperalgesia induced by repeated administration of CPA depends on G-protein αi subunit activation, differently from DAMGO-induced type II priming, in which it depends on the β/γ subunit. These data implicate a novel form of Gi-protein signaling pathway in the type II hyperalgesic priming induced by repeated administration of an agonist at A1-adenosine receptor to the peripheral terminal of the nociceptor.

  14. [Protein kinase C activation induces platelet apoptosis].

    Science.gov (United States)

    Zhao, Li-Li; Chen, Meng-Xing; Zhang, Ming-Yi; Dai, Ke-Sheng

    2013-10-01

    Platelet apoptosis elucidated by either physical or chemical compound or platelet storage occurs wildly, which might play important roles in controlling the numbers and functions of circulated platelets, or in the development of some platelet-related diseases. However, up to now, a little is known about the regulatory mechanisms of platelet apoptosis. Protein kinase C (PKC) is highly expressed in platelets and plays central roles in regulating platelet functions. Although there is evidence indicating that PKC is involved in the regulation of apoptosis of nucleated cells, it is still unclear whether PKC plays a role in platelet apoptosis. The aim of this study was to investigate the role of PKC in platelet apoptosis. The effects of PKC on mitochondrial membrane potential (ΔΨm), phosphatidylserine (PS) exposure, and caspase-3 activation of platelets were analyzed by flow cytometry and Western blot. The results showed that the ΔΨm depolarization in platelets was induced by PKC activator in time-dependent manner, and the caspase-3 activation in platelets was induced by PKC in concentration-dependent manner. However, the platelets incubated with PKC inhibitor did not results in ΔΨm depolarization and PS exposure. It is concluded that the PKC activation induces platelet apoptosis through influencing the mitochondrial functions and activating caspase 3. The finds suggest a novel mechanism for PKC in regulating platelet numbers and functions, which has important pathophysiological implications for thrombosis and hemostasis.

  15. Nrf2 activation prevents cadmium-induced acute liver injury

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Kai C. [Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Liu, Jie J. [Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS (United States); Klaassen, Curtis D., E-mail: cklaasse@kumc.edu [Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS (United States)

    2012-08-15

    Oxidative stress plays an important role in cadmium-induced liver injury. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that up-regulates cytoprotective genes in response to oxidative stress. To investigate the role of Nrf2 in cadmium-induced hepatotoxicity, Nrf2-null mice, wild-type mice, kelch-like ECH-associated protein 1-knockdown (Keap1-KD) mice with enhanced Nrf2, and Keap1-hepatocyte knockout (Keap1-HKO) mice with maximum Nrf2 activation were treated with cadmium chloride (3.5 mg Cd/kg, i.p.). Blood and liver samples were collected 8 h thereafter. Cadmium increased serum alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) activities, and caused extensive hepatic hemorrhage and necrosis in the Nrf2-null mice. In contrast, Nrf2-enhanced mice had lower serum ALT and LDH activities and less morphological alternations in the livers than wild-type mice. H{sub 2}DCFDA (2′,7′-dichlorodihydrofluoresein diacetate) staining of primary hepatocytes isolated from the four genotypes of mice indicated that oxidative stress was higher in Nrf2-null cells, and lower in Nrf2-enhanced cells than in wild-type cells. To further investigate the mechanism of the protective effect of Nrf2, mRNA of metallothionein (MT) and other cytoprotective genes were determined. Cadmium markedly induced MT-1 and MT-2 in livers of all four genotypes of mice. In contrast, genes involved in glutathione synthesis and reducing reactive oxygen species, including glutamate-cysteine ligase (Gclc), glutathione peroxidase-2 (Gpx2), and sulfiredoxin-1 (Srxn-1) were only induced in Nrf2-enhanced mice, but not in Nrf2-null mice. In conclusion, the present study shows that Nrf2 activation prevents cadmium-induced oxidative stress and liver injury through induction of genes involved in antioxidant defense rather than genes that scavenge Cd. -- Highlights: ► Cadmium caused extensive hepatic hemorrhage and necrosis in Nrf2-null mice. ► Keap1-KD and Keap1-HKO mice

  16. Madagascine Induces Vasodilatation via Activation of AMPK

    Science.gov (United States)

    Chen, Dapeng; Lv, Bochao; Kobayashi, Sei; Xiong, Yongjian; Sun, Pengyuan; Lin, Yuan; Genovese, Salvatore; Epifano, Francesco; Hou, Shanshan; Tang, Fusheng; Ji, Yunyan; Yu, Dandan

    2016-01-01

    Madagascine (3-isopentenyloxyemodin) can be chemically synthesized or purified from several Rhamnus species, and it is found to have more potent biological activities than the parent compound emodin. The aim of this study is to characterize the vasodilatory effect of madagascine on vasoconstriction and sphingosylphosphorylcholine induced vasospasm in ex vivo and reveal the potential mechanisms in vitro. The effects of madagascine on vasoconstriction of rat mesenteric resistance arteries (MRAs) induced by K+, methoxamine, and endothelin-1 were, respectively, studied. The cholesterol-enriched porcine coronary vascular smooth muscle (VSM) strips were used to investigate the effects of madagascine on abnormal constriction induced by sphingosylphosphorylcholine (SPC) which has a pivotal role in vasospasm. The vasodilatory effect was induced by madagascine (0.3–100 μM) in isolated rat MRAs and the vasodilatory effect was blocked by NO synthase inhibitor L-NAME and AMPK inhibitor compound C. Madagascine (10 μM) also significantly relaxed the abnormal constriction in porcine VSM induced by SPC and the effect was abolished by compound C. Madagascine significantly increased the phosphorylation of endothelial nitric oxide synthase (eNOS) in endothelial cells while decreasing the phosphorylation of myosin phosphatase target subunit 1 (MYPT1) in VSM cells. Madagascine-induced vasodilatation was abrogated using small interfering RNA knockdown of AMPK. In summary, madagascine exerted vasodilatation through activating AMPK, leading to the activation of eNOS in endothelium and inhibition of ROCK/MYPT1 in VSM. This study suggests the potential value of madagascine in amelioration of vasospasm related cardiovascular diseases. PMID:27932979

  17. Transgenic chickens expressing human urokinase-type plasminogen activator.

    Science.gov (United States)

    Lee, Sung Ho; Gupta, Mukesh Kumar; Ho, Young Tae; Kim, Teoan; Lee, Hoon Taek

    2013-09-01

    Urokinase-type plasminogen activator is a serine protease that is clinically used in humans for the treatment of thrombolytic disorders and vascular diseases such as acute ischemic stroke and acute peripheral arterial occlusion. This study explored the feasibility of using chickens as a bioreactor for producing human urokinase-type plasminogen activator (huPA). Recombinant huPA gene, under the control of a ubiquitous Rous sarcoma virus promoter, was injected into the subgerminal cavity of freshly laid chicken eggs at stage X using the replication-defective Moloney murine leukemia virus (MoMLV)-based retrovirus vectors encapsidated with VSV-G (vesicular stomatitis virus G) glycoprotein. A total of 38 chicks, out of 573 virus-injected eggs, hatched and contained the huPA gene in their various body parts. The mRNA transcript of the huPA gene was present in various organs, including blood and egg, and was germ-line transmitted to the next generation. The level of active huPA protein was 16-fold higher in the blood of the transgenic chicken than in the nontransgenic chicken (P pharming of the huPA drug but also be useful for studying huPA-induced bleeding and other disorders.

  18. Ionic changes during experimentally induced seizure activity.

    Science.gov (United States)

    Lux, H D; Heinemann, U

    1978-01-01

    Changes in intra- and extracellular ionic activity and their relation to generation and termination of seizure phenomena can be studied with the help of ion-selective microelectrodes. Transient changes in extracellular potassium activity (aK) of the cortex regularly accompany paroxysmal activity induced by electrical stimulation and pentylenetetrazol injections or occur within active penicillin and aluminum foci. A rise of aK from baseline levels of about 3 mmoles/l up to ceiling levels of 8--12 mmoles/l, followed by subnormal K activity, is typically found during seizure discharge. Extracellular K accumulation during seizures facilitates the spread into extrafocal regions. Ceiling levels of extracellular aK are characterized by pronounced K reabsorption which is probably a limiting mechanism for the rise in extracellular aK. It may be a consequence of a simultaneous rise in intracellular Na activity that an electrogenic Na--K exchange process is involved in the termination of ictal activity. Seizures are also accompanied by significant reductions in extracellular Ca2+ activity (aCa) to as low as 0.7 mmoles/l (resting aCa 1.25 mmoles/l). There is no critical level of lowered aCa at which a seizure ultimately results. However, unlike changes in aK reductions in aCa can precede ictal activity. Thus, a fall of aCa occurs before the onset of paroxysmal periods during cyclical spike driving in a penicillin focus and before seizures induced by pentylenetetrazol. Ca2+-dependent mechanisms may contribute to seizure generation. In addition to changes in aK and aCa, intracellular chloride activity (aCl) can increase during seizure activity, as a result of an impaired chloride extrusion mechanism, which would lead to a reduced efficacy of inhibitory synaptic transmission and, therefore, to facilitation of seizure generation.

  19. Interleukin-25 fails to activate STAT6 and induce alternatively activated macrophages.

    Science.gov (United States)

    Stolfi, Carmine; Caruso, Roberta; Franzè, Eleonora; Sarra, Massimiliano; De Nitto, Daniela; Rizzo, Angelamaria; Pallone, Francesco; Monteleone, Giovanni

    2011-01-01

    Interleukin-25 (IL-25), a T helper type 2 (Th2) -related factor, inhibits the production of inflammatory cytokines by monocytes/macrophages. Since Th2 cytokines antagonize classically activated monocytes/macrophages by inducing alternatively activated macrophages (AAMs), we here assessed the effect of IL-25 on the alternative activation of human monocytes/macrophages. The interleukins IL-25, IL-4 and IL-13 were effective in reducing the expression of inflammatory chemokines in monocytes. This effect was paralleled by induction of AAMs in cultures added with IL-4 or IL-13 but not with IL-25, regardless of whether cells were stimulated with lipopolysaccharide or interferon-γ. Moreover, pre-incubation of cells with IL-25 did not alter the ability of both IL-4 and IL-13 to induce AAMs. Both IL-4 and IL-13 activated signal transducer and activator of transcription 6 (STAT6), and silencing of this transcription factor markedly reduced the IL-4/IL-13-driven induction of AAMs. In contrast, IL-25 failed to trigger STAT6 activation. Among Th2 cytokines, only IL-25 and IL-10 were able to activate p38 mitogen-activated protein kinase. These results collectively indicate that IL-25 fails to induce AAMs and that Th2-type cytokines suppress inflammatory responses in human monocytes by activating different intracellular signalling pathways.

  20. Tidal-induced lopsidedness in Magellanic-type galaxies

    CERN Document Server

    Yozin, Cameron

    2014-01-01

    We investigate the tidally-induced conversion of barred late-type spirals to Magellanic-type discs with numerical simulations, to establish how the lifetime of lopsidedness (asymmetry) varies with numerical parametrizations. Using a reference model based on observed properties of the Large Magellanic Cloud (LMC), we show that its off-centre bar, one-arm spiral and one-sided star formation can be induced by a brief tidal interaction. We thereafter perform a detailed parameter study, and find that at the dynamical mass of LMC-type discs ($\\sim$10$^{\\rm 10}$ \\md{}), stellar lopsidedness (as quantified by the m$=$1 Fourier mode) and bar off-centredness can vary widely in amplitude, but are generally short-lived ($\\sim$Gyr). Tidal interactions induce more persistent lopsidedness in lower mass galaxies (several Gyr), in particular those with large halo-to-disc mass ratios as implied by recent halo occupation models. We suggest that the tidal interactions play a larger role in the observed ubiquity of lopsidedness t...

  1. Mass-transfer induced activity in galaxies

    Science.gov (United States)

    Shlosman, Isaac

    Current research on the origin and evolution of active galaxies is comprehensively surveyed in this collaborative volume. Both of the proposed types of central activity --- active galactic nuclei and nuclear starbursts --- are analyzed with a particular emphasis on their relationship to the large-scale properties of the host galaxy. The crucial question is what triggers and fuels nuclear activity now and at earlier epochs. The topics covered here are gas flows near to massive black holes, the circumnuclear galactic regions, and the large-scale bars in disk galaxies. Aspects of nuclear bursts of star formation and the relationship between central activity and the gas and stellar dynamics of the host galaxy are addressed as well. The contributors of this book for professionals and graduate students are world experts on galaxy evolution.

  2. Nonpathogenic, environmental fungi induce activation and degranulation of human eosinophils.

    Science.gov (United States)

    Inoue, Yoshinari; Matsuwaki, Yoshinori; Shin, Seung-Heon; Ponikau, Jens U; Kita, Hirohito

    2005-10-15

    Eosinophils and their products are probably important in the pathophysiology of allergic diseases, such as bronchial asthma, and in host immunity to certain organisms. An association between environmental fungal exposure and asthma has been long recognized clinically. Although products of microorganisms (e.g., lipopolysaccharides) directly activate certain inflammatory cells (e.g., macrophages), the mechanism(s) that triggers eosinophil degranulation is unknown. In this study we investigated whether human eosinophils have an innate immune response to certain fungal organisms. We incubated human eosinophils with extracts from seven environmental airborne fungi (Alternaria alternata, Aspergillus versicolor, Bipolaris sorokiniana, Candida albicans, Cladosporium herbarum, Curvularia spicifera, and Penicillium notatum). Alternaria and Penicillium induced calcium-dependent exocytosis (e.g., eosinophil-derived neurotoxin release) in eosinophils from normal individuals. Alternaria also strongly induced other activation events in eosinophils, including increases in intracellular calcium concentration, cell surface expression of CD63 and CD11b, and production of IL-8. Other fungi did not induce eosinophil degranulation, and Alternaria did not induce neutrophil activation, suggesting specificity for fungal species and cell type. The Alternaria-induced eosinophil degranulation was pertussis toxin sensitive and desensitized by preincubating cells with G protein-coupled receptor agonists, platelet-activating factor, or FMLP. The eosinophil-stimulating activity in Alternaria extract was highly heat labile and had an M(r) of approximately 60 kDa. Thus, eosinophils, but not neutrophils, possess G protein-dependent cellular activation machinery that directly responds to an Alternaria protein product(s). This innate response by eosinophils to certain environmental fungi may be important in host defense and in the exacerbation of inflammation in asthma and allergic diseases.

  3. Butyrylcholinesterase activity in Nigerian type 2 diabetics with and ...

    African Journals Online (AJOL)

    ... -cells lose their ability to compensate for the prevailing levels of insulin sensitivity. ... Butyrylcholinesterase activity in diabetes and metabolic syndrome is ... obese type 2 diabetics without metabolic syndrome (n = 21) and non-obese type 2 ...

  4. Initial Assessment of β3-Adrenoceptor-Activated Brown Adipose Tissue in Streptozotocin-Induced Type 1 Diabetes Rodent Model Using [18F]Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography

    Directory of Open Access Journals (Sweden)

    Aparna Baranwal

    2015-12-01

    Full Text Available Metabolic activity of brown adipose tissue (BAT is activated by β3-adrenoceptor agonists and norepinephrine transporter (NET blockers and is measurable using [18F]fluorodeoxyglucose ([18F]FDG positron emission tomography/computed tomography (PET/CT in rats. Using the streptozotocin (STZ-treated rat model of type 1 diabetes mellitus (T1DM, we investigated BAT activity in this rat model under fasting and nonfasting conditions using [18F]FDG PET/CT. Drugs that enhance BAT activity may have a potential for therapeutic development in lowering blood sugar in insulin-resistant diabetes. Rats were rendered diabetic by administration of STZand confirmed by glucose measures. [18F]FDG was injected in the rats (fasted or nonfasted pretreated with either saline or β3-adrenoceptor agonist CL316,243 or the NET blocker atomoxetine for PET/CT scans. [18F]FDG metabolic activity was computed as standard uptake values (SUVs in interscapular brown adipose tissue (IBAT and compared across the different drug treatment conditions. Blood glucose levels > 500 mg/dL were established for the STZ-treated diabetic rats. Under fasting conditions, average uptake of [18F]FDG in the IBAT of STZ-treated diabetic rats was approximately 70% lower compared to that of normal rats. Both CL316,243 and atomoxetine activated IBAT in normal rats had an SUV > 5, whereas activation in STZ-treated rats was significantly lower. The agonist CL316,243 activated IBAT up to threefold compared to saline in the fasted STZ-treated rat. In the nonfasted rat, the IBAT activation was up by twofold by CL316243. Atomoxetine had a greater effect on lowering blood sugar levels compared to CL316,243 in the nonfasted rats. A significant reduction in metabolic activity was observed in the STZ-treated diabetic rodent model. Increased IBAT activity in the STZ-treated diabetic rat under nonfasted conditions using the β3-adrenoceptor agonist CL316,243 suggests a potential role of BAT in modulating blood sugar

  5. Initial Assessment of β3-Adrenoceptor-Activated Brown Adipose Tissue in Streptozotocin-Induced Type 1 Diabetes Rodent Model Using [18F]Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography.

    Science.gov (United States)

    Baranwal, Aparna; Mirbolooki, M Reza; Mukherjee, Jogeshwar

    2015-01-01

    Metabolic activity of brown adipose tissue (BAT) is activated by β3-adrenoceptor agonists and norepinephrine transporter (NET) blockers and is measurable using [(18)F]fluorodeoxyglucose ([(18)F]FDG) positron emission tomography/computed tomography (PET/CT) in rats. Using the streptozotocin (STZ)-treated rat model of type 1 diabetes mellitus (T1DM), we investigated BAT activity in this rat model under fasting and nonfasting conditions using [(18)F]FDG PET/CT. Drugs that enhance BAT activity may have a potential for therapeutic development in lowering blood sugar in insulin-resistant diabetes. Rats were rendered diabetic by administration of STZ and confirmed by glucose measures. [(18)F]FDG was injected in the rats (fasted or nonfasted) pretreated with either saline or β3-adrenoceptor agonist CL316,243 or the NET blocker atomoxetine for PET/CT scans. [(18)F]FDG metabolic activity was computed as standard uptake values (SUVs) in interscapular brown adipose tissue (IBAT) and compared across the different drug treatment conditions. Blood glucose levels > 500 mg/dL were established for the STZ-treated diabetic rats. Under fasting conditions, average uptake of [(18)F]FDG in the IBAT of STZ-treated diabetic rats was approximately 70% lower compared to that of normal rats. Both CL316,243 and atomoxetine activated IBAT in normal rats had an SUV > 5, whereas activation in STZ-treated rats was significantly lower. The agonist CL316,243 activated IBAT up to threefold compared to saline in the fasted STZ-treated rat. In the nonfasted rat, the IBAT activation was up by twofold by CL316243. Atomoxetine had a greater effect on lowering blood sugar levels compared to CL316,243 in the nonfasted rats. A significant reduction in metabolic activity was observed in the STZ-treated diabetic rodent model. Increased IBAT activity in the STZ-treated diabetic rat under nonfasted conditions using the β3-adrenoceptor agonist CL316,243 suggests a potential role of BAT in modulating blood

  6. Nutrient Induced Type 2 and Chemical Induced Type 1 Experimental Diabetes Differently Modulate Gastric GLP-1 Receptor Expression

    Directory of Open Access Journals (Sweden)

    Olga Bloch

    2015-01-01

    Full Text Available T2DM patients demonstrate reduced GLP-1 receptor (GLP-1R expression in their gastric glands. Whether induced T2DM and T1DM differently affect the gastric GLP-1R expression is not known. This study assessed extrapancreatic GLP-1R system in glandular stomach of rodents with different types of experimental diabetes. T2DM and T1DM were induced in Psammomys obesus (PO by high-energy (HE diet and by streptozotocin (STZ in Sprague Dawly (SD rats, respectively. GLP-1R expression was determined in glandular stomach by RT PCR and immunohistomorphological analysis. The mRNA expression and cellular association of the GLP-1R in principal glands were similar in control PO and SD rats. However, nutrient and chemical induced diabetes resulted in opposite alterations of glandular GLP-1R expression. Diabetic PO demonstrated increased GLP-1R mRNA expression, intensity of cellular GLP-1R immunostaining, and frequency of GLP-1R positive cells in the neck area of principal glands compared with controls. In contrast, SD diabetic rats demonstrated decreased GLP-1 mRNA, cellular GLP-1R immunoreactivity, and frequency of GLP-1R immunoreactive cells in the neck area compared with controls. In conclusion, nutrient and chemical induced experimental diabetes result in distinct opposite alterations of GLP-1R expression in glandular stomach. These results suggest that induced T1DM and T2DM may differently modulate GLP-1R system in enteropancreatic axis.

  7. Brain tumors induced in rats by human adenovirus type 12

    Directory of Open Access Journals (Sweden)

    Murao,Tsuyoshi

    1974-02-01

    Full Text Available Oncogenesis of human adenovirus type 12 in the brain of rats was examined. Newborn rats of Sprague-Dawley and Donryu strains were injected intracranially with human adenovirus type 12. The incidence of intracranial tumors was 91% (30/33 in SpragueDawley and 56% (14/25 in Donryu rats. Except for one tumor nodule located in the parietal cortex of a Sprague.Dawley rat, all tumors developed in the paraventricular areas or in the meninges. Tumors were quite similar histologically to those induced in hamsters and mice resembling the undifferentiated human brain tumors such as medulloblastoma, ependymoblastoma and embryonic gliomas. From the histological features and primary sites of tumor development, it is suggested that the tumors in the brain of rats induced by adenovirus type 12 originate from the embryonic cells in the paraventricular area and also from the undifferentiated supporting cells of the peripheral nerves in the leptomeninges.

  8. Novel visible light activated type 1 photosensitizers

    Science.gov (United States)

    Rajagopalan, Raghavan; Karwa, Amolkumar; Poreddy, Amruta R.; Lusiak, Przemyslaw M.; Pandurangi, Raghoottama S.; Cantrell, Gary L.; Dorshow, Richard B.

    2010-02-01

    Photodynamic therapy of tumors involving Type 2 photosenstizers has been conspicuously successful, but the Type 1 process, in contrast, has not received much attention despite its considerable potential. Accordingly, several classes of molecules containing fragile bonds such as azido (-N=N=N), azo (-N=N-), and oxaza (-N-O-) functional groups that produce reactive intermediates such as radicals and nitrenes upon photoexcitation with visible light were prepared and tested for cell viability using U397 leukemia cell line. The cells were incubated with the photosensitizer at various concentrations, and were illuminated for 5, 10, and 20 minutes. The results show that all the photosensitizers caused cell death compared to the controls when exposed to both the photosensitizers and light.

  9. Evidence for Planet-induced Chromospheric Activity on HD 179949

    CERN Document Server

    Shkolnik, E; Bohlender, D A; Shkolnik, Evgenya; Walker, Gordon A.H.; Bohlender, David A.

    2003-01-01

    We have detected the synchronous enhancement of Ca II H & K emission with the short-period planetary orbit in HD 179949. High-resolution spectra taken on three observing runs extending more than a year show the enhancement coincides with phi ~ 0 (the sub-planetary point) of the 3.093-day orbit with the effect persisting for more than 100 orbits. The synchronous enhancement is consistent with planet-induced chromospheric heating by magnetic rather than tidal interaction. Something which can only be confirmed by further observations. Independent observations are needed to determine whether the stellar rotation is sychronous with the planet's orbit. Of the five 51 Peg-type systems monitored, HD 179949 shows the greatest chromospheric H & K activity. Three others show significant nightly variations but the lack of any phase coherence prevents us saying whether the activity is induced by the planet. Our two standards, tau Ceti and the Sun, show no such nightly variations.

  10. Type I interferons regulate susceptibility to inflammation-induced preterm birth

    Science.gov (United States)

    Cappelletti, Monica; Presicce, Pietro; Lawson, Matthew J.; Chaturvedi, Vandana; Stankiewicz, Traci E.; Vanoni, Simone; Harley, Isaac T.W.; McAlees, Jaclyn W.; Giles, Daniel A.; Moreno-Fernandez, Maria E.; Rueda, Cesar M.; Senthamaraikannan, Paranth; Karns, Rebekah; Hoebe, Kasper; Janssen, Edith M.; Karp, Christopher L.; Hildeman, David A.; Hogan, Simon P.; Kallapur, Suhas G.; Chougnet, Claire A.; Way, Sing Sing

    2017-01-01

    Preterm birth (PTB) is a leading worldwide cause of morbidity and mortality in infants. Maternal inflammation induced by microbial infection is a critical predisposing factor for PTB. However, biological processes associated with competency of pathogens, including viruses, to induce PTB or sensitize for secondary bacterial infection–driven PTB are unknown. We show that pathogen/pathogen-associated molecular pattern–driven activation of type I IFN/IFN receptor (IFNAR) was sufficient to prime for systemic and uterine proinflammatory chemokine and cytokine production and induction of PTB. Similarly, treatment with recombinant type I IFNs recapitulated such effects by exacerbating proinflammatory cytokine production and reducing the dose of secondary inflammatory challenge required for induction of PTB. Inflammatory challenge–driven induction of PTB was eliminated by defects in type I IFN, TLR, or IL-6 responsiveness, whereas the sequence of type I IFN sensing by IFNAR on hematopoietic cells was essential for regulation of proinflammatory cytokine production. Importantly, we also show that type I IFN priming effects are conserved from mice to nonhuman primates and humans, and expression of both type I IFNs and proinflammatory cytokines is upregulated in human PTB. Thus, activation of the type I IFN/IFNAR axis in pregnancy primes for inflammation-driven PTB and provides an actionable biomarker and therapeutic target for mitigating PTB risk. PMID:28289719

  11. Gazing and Typing Activities during Translation

    DEFF Research Database (Denmark)

    Carl, Michael; Kay, Martin

    2011-01-01

    The paper investigates the notion of Translation Units (TUs) from a cognitive angle. A TU is defined as the translator’s focus of attention at a time. Since attention can be directed towards source text (ST) understanding and/or target text (TT) production, we analyze the activity data of the tra...

  12. Differences in typing forces, muscle activity, comfort, and typing performance among virtual, notebook, and desktop keyboards.

    Science.gov (United States)

    Kim, Jeong Ho; Aulck, Lovenoor; Bartha, Michael C; Harper, Christy A; Johnson, Peter W

    2014-11-01

    The present study investigated whether there were physical exposure and typing productivity differences between a virtual keyboard with no tactile feedback and two conventional keyboards where key travel and tactile feedback are provided by mechanical switches under the keys. The key size and layout were same across all the keyboards. Typing forces; finger and shoulder muscle activity; self-reported comfort; and typing productivity were measured from 19 subjects while typing on a virtual (0 mm key travel), notebook (1.8 mm key travel), and desktop keyboard (4 mm key travel). When typing on the virtual keyboard, subjects typed with less force (p's typing forces and finger muscle activity came at the expense of a 60% reduction in typing productivity (p typing sessions or when typing productivity is at a premium, conventional keyboards with tactile feedback may be more suitable interface.

  13. Inhibitory effect of a modified adenovirus type 5 E1A gene on the NF-κB activity in porcine aortic endothelial cells induced by TNF-α

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The transcription factor nuclear factor κB (NF-κB) plays a key role in the delayed xenograft rejection (DXR). One of the important objects in the field is how to inhibit the NF-κB activity at optimal level. Thus, a modified E1A gene (E1AΔ) containing function domain (1-80 aa) and nuclear localization domain (139-243 aa) was used and cloned into an eucaryotic expression vector pcDNA3 to transfect the porcine aortic endothelial cells (PAEC). The stable transfectants were screened with G418. E1AΔ gene was able to be stably expressed in the PAEC and could not affect the growth of PAEC as analyzed by RT-PCR and cell growth rate. Reporter gene assay demonstrated that E1AΔ was capable of inhibiting NF-κB activity in the PAEC induced by TNF-α without sensitizing to apoptosis, and the rate of inhibition was 53%. Furthermore, E1AΔ inhibited the expression of a NF-κB-dependent inflammatory gene E-selectin in the cells, and the rate of inhibition was 63%. In summary, the usage of E1AΔ gene may be a new strategy to overcome DXR in the xenotransplantation.

  14. Type 1 Interferons Induce Changes in Core Metabolism that Are Critical for Immune Function.

    Science.gov (United States)

    Wu, Duojiao; Sanin, David E; Everts, Bart; Chen, Qiongyu; Qiu, Jing; Buck, Michael D; Patterson, Annette; Smith, Amber M; Chang, Chih-Hao; Liu, Zhiping; Artyomov, Maxim N; Pearce, Erika L; Cella, Marina; Pearce, Edward J

    2016-06-21

    Greater understanding of the complex host responses induced by type 1 interferon (IFN) cytokines could allow new therapeutic approaches for diseases in which these cytokines are implicated. We found that in response to the Toll-like receptor-9 agonist CpGA, plasmacytoid dendritic cells (pDC) produced type 1 IFNs, which, through an autocrine type 1 IFN receptor-dependent pathway, induced changes in cellular metabolism characterized by increased fatty acid oxidation (FAO) and oxidative phosphorylation (OXPHOS). Direct inhibition of FAO and of pathways that support this process, such as fatty acid synthesis, prevented full pDC activation. Type 1 IFNs also induced increased FAO and OXPHOS in non-hematopoietic cells and were found to be responsible for increased FAO and OXPHOS in virus-infected cells. Increased FAO and OXPHOS in response to type 1 IFNs was regulated by PPARα. Our findings reveal FAO, OXPHOS and PPARα as potential targets to therapeutically modulate downstream effects of type 1 IFNs.

  15. Different types of cell death induced by enterotoxins.

    Science.gov (United States)

    Lin, Chiou-Feng; Chen, Chia-Ling; Huang, Wei-Ching; Cheng, Yi-Lin; Hsieh, Chia-Yuan; Wang, Chi-Yun; Hong, Ming-Yuan

    2010-08-01

    The infection of bacterial organisms generally causes cell death to facilitate microbial invasion and immune escape, both of which are involved in the pathogenesis of infectious diseases. In addition to the intercellular infectious processes, pathogen-produced/secreted enterotoxins (mostly exotoxins) are the major weapons that kill host cells and cause diseases by inducing different types of cell death, particularly apoptosis and necrosis. Blocking these enterotoxins with synthetic drugs and vaccines is important for treating patients with infectious diseases. Studies of enterotoxin-induced apoptotic and necrotic mechanisms have helped us to create efficient strategies to use against these well-characterized cytopathic toxins. In this article, we review the induction of the different types of cell death from various bacterial enterotoxins, such as staphylococcal enterotoxin B, staphylococcal alpha-toxin, Panton-Valentine leukocidin, alpha-hemolysin of Escherichia coli, Shiga toxins, cytotoxic necrotizing factor 1, heat-labile enterotoxins, and the cholera toxin, Vibrio cholerae. In addition, necrosis caused by pore-forming toxins, apoptotic signaling through cross-talk pathways involving mitochondrial damage, endoplasmic reticulum stress, and lysosomal injury is discussed.

  16. Different Types of Cell Death Induced by Enterotoxins

    Directory of Open Access Journals (Sweden)

    Ming-Yuan Hong

    2010-08-01

    Full Text Available The infection of bacterial organisms generally causes cell death to facilitate microbial invasion and immune escape, both of which are involved in the pathogenesis of infectious diseases. In addition to the intercellular infectious processes, pathogen-produced/secreted enterotoxins (mostly exotoxins are the major weapons that kill host cells and cause diseases by inducing different types of cell death, particularly apoptosis and necrosis. Blocking these enterotoxins with synthetic drugs and vaccines is important for treating patients with infectious diseases. Studies of enterotoxin-induced apoptotic and necrotic mechanisms have helped us to create efficient strategies to use against these well-characterized cytopathic toxins. In this article, we review the induction of the different types of cell death from various bacterial enterotoxins, such as staphylococcal enterotoxin B, staphylococcal alpha-toxin, Panton-Valentine leukocidin, alpha-hemolysin of Escherichia coli, Shiga toxins, cytotoxic necrotizing factor 1, heat-labile enterotoxins, and the cholera toxin, Vibrio cholerae. In addition, necrosis caused by pore-forming toxins, apoptotic signaling through cross-talk pathways involving mitochondrial damage, endoplasmic reticulum stress, and lysosomal injury is discussed.

  17. Aldosterone-induced brain MAPK signaling and sympathetic excitation are angiotensin II type-1 receptor dependent.

    Science.gov (United States)

    Zhang, Zhi-Hua; Yu, Yang; Wei, Shun-Guang; Felder, Robert B

    2012-02-01

    Angiotensin II (ANG II)-induced mitogen-activated protein kinase (MAPK) signaling upregulates angiotensin II type-1 receptors (AT(1)R) in hypothalamic paraventricular nucleus (PVN) and contributes to AT(1)R-mediated sympathetic excitation in heart failure. Aldosterone has similar effects to increase AT(1)R expression in the PVN and sympathetic drive. The present study was undertaken to determine whether aldosterone also activates the sympathetic nervous system via MAPK signaling and, if so, whether its effect is independent of ANG II and AT(1)R. In anesthetized rats, a 4-h intravenous infusion of aldosterone induced increases (P < 0.05) in phosphorylated (p-) p44/42 MAPK in PVN, PVN neuronal excitation, renal sympathetic nerve activity (RSNA), mean blood pressure (MBP), and heart rate (HR). Intracerebroventricular or bilateral PVN microinjection of the p44/42 MAPK inhibitor PD-98059 reduced the aldosterone-induced RSNA, HR, and MBP responses. Intracerebroventricular pretreatment (5 days earlier) with pooled small interfering RNAs targeting p44/42 MAPK reduced total and p-p44/42 MAPK, aldosterone-induced c-Fos expression in the PVN, and the aldosterone-induced increases in RSNA, HR, and MBP. Intracerebroventricular infusion of either the mineralocorticoid receptor antagonist RU-28318 or the AT(1)R antagonist losartan blocked aldosterone-induced phosphorylation of p44/42 MAPK and prevented the increases in RSNA, HR, and MBP. These data suggest that aldosterone-induced sympathetic excitation depends upon that AT(1)R-induced MAPK signaling in the brain. The short time course of this interaction suggests a nongenomic mechanism, perhaps via an aldosterone-induced transactivation of the AT(1)R as described in peripheral tissues.

  18. Administrative Judicial Decisions as a Hybrid Argumentative Activity Type

    NARCIS (Netherlands)

    Plug, H.J.

    2016-01-01

    This article focuses on strategic manoeuvring that takes place in Dutch administrative judi- cial decisions. These decisions may be seen as a distinct argumentative activity type. Starting from the char- acteristics that traditionally are per- tinent to this activity type, I will explore how implica

  19. Type IV collagen-degrading enzyme activity in human serum.

    Directory of Open Access Journals (Sweden)

    Hashimoto,Noriaki

    1988-02-01

    Full Text Available Type IV collagen-degrading enzyme activity was detected in human serum. Serum was preincubated with 4-aminophenylmercuric acetate and trypsin to activate the enzyme prior to assay. Type IV collagen, purified from human placentas and radiolabeled with [1-14C] acetic anhydride, was used as the substrate. The enzyme activity was measured at pH 7.5 and inhibited by treatment with ethylenediaminetetraacetic acid or heat. The assay of type IV collagen-degrading enzyme in human serum might be useful for estimating the degradation of type IV collagen.

  20. BMP type I receptor ALK2 is required for angiotensin II-induced cardiac hypertrophy

    Science.gov (United States)

    Spagnolli, Ester; Ernande, Laura; Thoonen, Robrecht; Kolodziej, Starsha A.; Leyton, Patricio A.; Cheng, Juan; Tainsh, Robert E. T.; Mayeur, Claire; Rhee, David K.; Wu, Mei. X.; Scherrer-Crosbie, Marielle; Buys, Emmanuel S.; Zapol, Warren M.; Bloch, Kenneth D.; Bloch, Donald B.

    2016-01-01

    Bone morphogenetic protein (BMP) signaling contributes to the development of cardiac hypertrophy. However, the identity of the BMP type I receptor involved in cardiac hypertrophy and the underlying molecular mechanisms are poorly understood. By using quantitative PCR and immunoblotting, we demonstrated that BMP signaling increased during phenylephrine-induced hypertrophy in cultured neonatal rat cardiomyocytes (NRCs), as evidenced by increased phosphorylation of Smads 1 and 5 and induction of Id1 gene expression. Inhibition of BMP signaling with LDN193189 or noggin, and silencing of Smad 1 or 4 using small interfering RNA diminished the ability of phenylephrine to induce hypertrophy in NRCs. Conversely, activation of BMP signaling with BMP2 or BMP4 induced hypertrophy in NRCs. Luciferase reporter assay further showed that BMP2 or BMP4 treatment of NRCs repressed atrogin-1 gene expression concomitant with an increase in calcineurin protein levels and enhanced activity of nuclear factor of activated T cells, providing a mechanism by which BMP signaling contributes to cardiac hypertrophy. In a model of cardiac hypertrophy, C57BL/6 mice treated with angiotensin II (A2) had increased BMP signaling in the left ventricle. Treatment with LDN193189 attenuated A2-induced cardiac hypertrophy and collagen deposition in left ventricles. Cardiomyocyte-specific deletion of BMP type I receptor ALK2 (activin-like kinase 2), but not ALK1 or ALK3, inhibited BMP signaling and mitigated A2-induced cardiac hypertrophy and left ventricular fibrosis in mice. The results suggest that BMP signaling upregulates the calcineurin/nuclear factor of activated T cell pathway via BMP type I receptor ALK2, contributing to cardiac hypertrophy and fibrosis. PMID:26873969

  1. BMP type I receptor ALK2 is required for angiotensin II-induced cardiac hypertrophy.

    Science.gov (United States)

    Shahid, Mohd; Spagnolli, Ester; Ernande, Laura; Thoonen, Robrecht; Kolodziej, Starsha A; Leyton, Patricio A; Cheng, Juan; Tainsh, Robert E T; Mayeur, Claire; Rhee, David K; Wu, Mei X; Scherrer-Crosbie, Marielle; Buys, Emmanuel S; Zapol, Warren M; Bloch, Kenneth D; Bloch, Donald B

    2016-04-15

    Bone morphogenetic protein (BMP) signaling contributes to the development of cardiac hypertrophy. However, the identity of the BMP type I receptor involved in cardiac hypertrophy and the underlying molecular mechanisms are poorly understood. By using quantitative PCR and immunoblotting, we demonstrated that BMP signaling increased during phenylephrine-induced hypertrophy in cultured neonatal rat cardiomyocytes (NRCs), as evidenced by increased phosphorylation of Smads 1 and 5 and induction of Id1 gene expression. Inhibition of BMP signaling with LDN193189 or noggin, and silencing of Smad 1 or 4 using small interfering RNA diminished the ability of phenylephrine to induce hypertrophy in NRCs. Conversely, activation of BMP signaling with BMP2 or BMP4 induced hypertrophy in NRCs. Luciferase reporter assay further showed that BMP2 or BMP4 treatment of NRCs repressed atrogin-1 gene expression concomitant with an increase in calcineurin protein levels and enhanced activity of nuclear factor of activated T cells, providing a mechanism by which BMP signaling contributes to cardiac hypertrophy. In a model of cardiac hypertrophy, C57BL/6 mice treated with angiotensin II (A2) had increased BMP signaling in the left ventricle. Treatment with LDN193189 attenuated A2-induced cardiac hypertrophy and collagen deposition in left ventricles. Cardiomyocyte-specific deletion of BMP type I receptor ALK2 (activin-like kinase 2), but not ALK1 or ALK3, inhibited BMP signaling and mitigated A2-induced cardiac hypertrophy and left ventricular fibrosis in mice. The results suggest that BMP signaling upregulates the calcineurin/nuclear factor of activated T cell pathway via BMP type I receptor ALK2, contributing to cardiac hypertrophy and fibrosis.

  2. Analysis Si/Al ratio in zeolites type FAU by laser induced breakdown spectroscopy (LIBS)

    Science.gov (United States)

    Contreras, W. A.; Cabanzo, R.; Mejía-Ospino, E.

    2011-01-01

    In this work, Laser Induced Breakdown Spectroscopy (LIBS) is used to determine the Si/Al ratio of Zeolite type Y. The catalytic activity of zeolite is strongly dependent of the Si/Al ratio. We have used Si lines in the spectral region between 245-265 nm to determine temperature of the plasma generated on pelletized sample of zeolite, and stoichiometry relation between Si and Al.

  3. 11beta-hydroxysteroid dehydrogenase type 1 regulates glucocorticoid-induced insulin resistance in skeletal muscle.

    LENUS (Irish Health Repository)

    Morgan, Stuart A

    2009-11-01

    Glucocorticoid excess is characterized by increased adiposity, skeletal myopathy, and insulin resistance, but the precise molecular mechanisms are unknown. Within skeletal muscle, 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) converts cortisone (11-dehydrocorticosterone in rodents) to active cortisol (corticosterone in rodents). We aimed to determine the mechanisms underpinning glucocorticoid-induced insulin resistance in skeletal muscle and indentify how 11beta-HSD1 inhibitors improve insulin sensitivity.

  4. Terpenoids from Diplophyllum taxifolium with quinone reductase-inducing activity.

    Science.gov (United States)

    Wang, Xiao; Zhang, Jiao-Zhen; Zhou, Jin-Chuan; Shen, Tao; Lou, Hong-Xiang

    2016-03-01

    Two new ent-prenylaromadendrane-type diterpenoids, diplotaxifols A (1) and B (2), a new ent-eudesmol, ent-eudesma-4(15),11(13)-dien-6α,12-diol (3), eight new eudesmanolides enantiomers (4-11) of the corresponding compounds from higher plants along with four known ent-eudesmanolides (12-15) were isolated from the 95% EtOH extract of Chinese liverwort Diplophyllum taxifolium. Their structures were elucidated on the basis of MS, NMR and IR spectral data, and confirmed by single-crystal X-ray diffraction analysis. The quinone reductase-inducing activity of the compounds was evaluated.

  5. Dihydrotestosterone Potentiates EGF-Induced ERK Activation by Inducing SRC in Fetal Lung Fibroblasts

    Science.gov (United States)

    Smith, Susan M.; Murray, Sandy; Pham, Lucia D.; Minoo, Parviz; Nielsen, Heber C.

    2014-01-01

    Lung maturation is regulated by interactions between mesenchymal and epithelial cells, and is delayed by androgens. Fibroblast–Type II cell communications are dependent on extracellular signal-regulated kinases (ERK) 1/2 activation by the ErbB receptor ligands epidermal growth factor (EGF), transforming growth factor (TGF)-α, and neuregulin (Nrg). In other tissues, dihydrotestosterone (DHT) has been shown to activate SRC by a novel nontranscriptional mechanism, which phosphorylates EGF receptors to potentiate EGF-induced ERK1/2 activation. This study sought to determine if DHT potentiates EGFR signaling by a nontranscriptional mechanism. Embryonic day (E)17 fetal lung cells were isolated from dams treated with or without DHT since E12. Cells were exposed to 30 ng/ml DHT for periods of 30 minutes to 3 days before being stimulated with 100 ng/ml EGF, TGF-α, or Nrg for up to 30 minutes. Lysates were immunoblotted for ErbB and SRC pathway signaling intermediates. DHT increased ERK1/2 activation by EGF, TGF-α, and Nrg in fibroblasts and Type II cells. Characterization in fibroblasts showed that potentiation of the EGF pathway was significant after 60 minutes of DHT exposure and persisted in the presence of the translational inhibitor cycloheximide. SRC and EGF receptor phosphorylation was increased by DHT, as was EGF-induced SHC1 phosphorylation and subsequent association with GRB2. Finally, SRC silencing, SRC inhibition with PP2, and overexpression of a dominant-negative SRC each prevented DHT from increasing EGF-induced ERK1/2 phosphorylation. These results suggest that DHT activates SRC to potentiate the signaling pathway leading from the EGF receptor to ERK activation in primary fetal lung fibroblasts. PMID:24484548

  6. How do different types of physical activity affect mode?

    OpenAIRE

    高橋, 信二; 坂入, 洋右; 吉田, 雄大; 木塚, 朝博

    2012-01-01

    Generally, typical physical activities (e.g. walking and cycling) increase positive affect and decrease negative affect. However, few studies have investigated the effects on mood of activities that are frequently pursued during leisure time (e.g. dynamic stretching and video games). The purpose of the present study was to investigate the influences of different types of physical activity on mood. We selected 16 activities (kendama, active video games ["Wii Sports" tennis, baseball, boxing], ...

  7. Circadian Rest-Activity Rhythm in Pediatric Type 1 Narcolepsy.

    Science.gov (United States)

    Filardi, Marco; Pizza, Fabio; Bruni, Oliviero; Natale, Vincenzo; Plazzi, Giuseppe

    2016-06-01

    Pediatric type 1 narcolepsy is often challenging to diagnose and remains largely undiagnosed. Excessive daytime sleepiness, disrupted nocturnal sleep, and a peculiar phenotype of cataplexy are the prominent features. The knowledge available about the regulation of circadian rhythms in affected children is scarce. This study compared circadian rest-activity rhythm and actigraphic estimated sleep measures of children with type 1 narcolepsy versus healthy controls. Twenty-two drug-naïve type 1 narcolepsy children and 21 age- and sex- matched controls were monitored for seven days during the school week by actigraphy. Circadian activity rhythms were analyzed through functional linear modeling; nocturnal and diurnal sleep measures were estimated from activity using a validated algorithm. Children with type 1 narcolepsy presented an altered rest-activity rhythm characterized by enhanced motor activity throughout the night and blunted activity in the first afternoon. No difference was found between children with type 1 narcolepsy and controls in the timing of the circadian phase. Actigraphic sleep measures showed good discriminant capabilities in assessing type 1 narcolepsy nycthemeral disruption. Actigraphy reliably renders the nycthemeral disruption typical of narcolepsy type 1 in drug-naïve children with recent disease onset, indicating the sensibility of actigraphic assessment in the diagnostic work-up of childhood narcolepsy type 1. © 2016 Associated Professional Sleep Societies, LLC.

  8. Power consumption in gas-inducing-type mechanically agitated contactors

    Energy Technology Data Exchange (ETDEWEB)

    Saravanan, K.; Mundale, V.D.; Patwardhan, A.W.; Joshi, J.B. [Univ. of Bombay (India). Dept. of Chemical Technology

    1996-05-01

    Power consumption was measured in 0.57, 1.0, and 1.5 m i.d. gas inducing type of mechanically agitated contactors (GIMAC) using single and multiple impellers. The ratio of impeller diameter to vessel diameter was varied in the range of 0.13 < D/T < 0.59. The effect of liquid submergence from the top and impeller clearance from the vessel bottom was investigated in detail. In the case of multiple impeller systems, six different designs were investigated. The designs included pitched blade downflow turbine (PBTD), pitched blade upflow turbine (PBTU), downflow propeller (PD), upflow propeller (PU), straight bladed turbine (SBT) and disc turbine (DT). The effect of interimpeller clearance was studied for the multiple impeller system. The effect of impeller speed was studied in the range of 0.13 < N < 13.5 rotations/s. A mathematical model has been developed for power consumption before and after the onset of gas induction.

  9. Type IV collagen-degrading enzyme activity in human serum.

    OpenAIRE

    Hashimoto, Noriaki; Kobayashi, Michio; Watanabe,Akiharu; Higashi, Toshiro; Tsuji, Takao

    1988-01-01

    Type IV collagen-degrading enzyme activity was detected in human serum. Serum was preincubated with 4-aminophenylmercuric acetate and trypsin to activate the enzyme prior to assay. Type IV collagen, purified from human placentas and radiolabeled with [1-14C] acetic anhydride, was used as the substrate. The enzyme activity was measured at pH 7.5 and inhibited by treatment with ethylenediaminetetraacetic acid or heat. The assay of type IV collagen-degrading enzyme in human serum might be useful...

  10. Glycation of Wild-Type Apomyoglobin Induces Formation of Highly Cytotoxic Oligomeric Species.

    Science.gov (United States)

    Iannuzzi, Clara; Carafa, Vincenzo; Altucci, Lucia; Irace, Gaetano; Borriello, Margherita; Vinciguerra, Roberto; Sirangelo, Ivana

    2015-11-01

    Protein glycation is a non-enzymatic, irreversible modification of protein amino groups by reactive carbonyl species leading to the formation of advanced glycation end products (AGEs). Several proteins implicated in neurodegenerative diseases have been found to be glycated in vivo and the extent of glycation is related to the pathologies of the patients. Although it is now accepted that there is a direct correlation between AGEs formation and the development of neurodegenerative diseases related to protein misfolding and amyloid aggregation, several questions still remain unanswered: whether glycation is the triggering event or just an additional factor acting on the aggregation pathway. We have recently shown that glycation of the amyloidogenic W7FW14F apomyoglobin mutant significantly accelerates the amyloid fibrils formation providing evidence that glycation actively participates to the process. In the present study, to test if glycation can be considered also a triggering factor in amyloidosis, we evaluated the ability of different glycation agents to induce amyloid aggregation in the soluble wild-type apomyoglobin. Our results show that glycation covalently modifies apomyoglobin and induces conformational changes that lead to the formation of oligomeric species that are not implicated in amyloid aggregation. Thus, AGEs formation does not trigger amyloid aggregation in the wild-type apomyoglobin but only induce the formation of soluble oligomeric species able to affect cell viability. The molecular bases of cell toxicity induced by AGEs formed upon glycation of wild-type apomyoglobin have been also investigated.

  11. Bullous pemphigoid autoantibodies directly induce blister formation without complement activation.

    Science.gov (United States)

    Ujiie, Hideyuki; Sasaoka, Tetsumasa; Izumi, Kentaro; Nishie, Wataru; Shinkuma, Satoru; Natsuga, Ken; Nakamura, Hideki; Shibaki, Akihiko; Shimizu, Hiroshi

    2014-11-01

    Complement activation and subsequent recruitment of inflammatory cells at the dermal/epidermal junction are thought to be essential for blister formation in bullous pemphigoid (BP), an autoimmune blistering disease induced by autoantibodies against type XVII collagen (COL17); however, this theory does not fully explain the pathological features of BP. Recently, the involvement of complement-independent pathways has been proposed. To directly address the question of the necessity of the complement activation in blister formation, we generated C3-deficient COL17-humanized mice. First, we show that passive transfer of autoantibodies from BP patients induced blister formation in neonatal C3-deficient COL17-humanized mice without complement activation. By using newly generated human and murine mAbs against the pathogenic noncollagenous 16A domain of COL17 with high (human IgG1, murine IgG2), low (murine IgG1), or no (human IgG4) complement activation abilities, we demonstrate that the deposition of Abs, and not complements, is relevant to the induction of blister formation in neonatal and adult mice. Notably, passive transfer of BP autoantibodies reduced the amount of COL17 in lesional mice skin, as observed in cultured normal human keratinocytes treated with the same Abs. Moreover, the COL17 depletion was associated with a ubiquitin/proteasome pathway. In conclusion, the COL17 depletion induced by BP autoantibodies, and not complement activation, is essential for the blister formation under our experimental system. Copyright © 2014 by The American Association of Immunologists, Inc.

  12. Tissue-type plasminogen activator is a neuroprotectant in the mouse hippocampus.

    Science.gov (United States)

    Echeverry, Ramiro; Wu, Jialing; Haile, Woldeab B; Guzman, Johanna; Yepes, Manuel

    2010-06-01

    The best-known function of the serine protease tissue-type plasminogen activator (tPA) is as a thrombolytic enzyme. However, it is also found in structures of the brain that are highly vulnerable to hypoxia-induced cell death, where its association with neuronal survival is poorly understood. Here, we have demonstrated that hippocampal areas of the mouse brain lacking tPA activity are more vulnerable to neuronal death following an ischemic insult. We found that sublethal hypoxia, which elicits tolerance to subsequent lethal hypoxic/ischemic injury in a natural process known as ischemic preconditioning (IPC), induced a rapid release of neuronal tPA. Treatment of hippocampal neurons with tPA induced tolerance against a lethal hypoxic insult applied either immediately following insult (early IPC) or 24 hours later (delayed IPC). tPA-induced early IPC was independent of the proteolytic activity of tPA and required the engagement of a member of the LDL receptor family. In contrast, tPA-induced delayed IPC required the proteolytic activity of tPA and was mediated by plasmin, the NMDA receptor, and PKB phosphorylation. We also found that IPC in vivo increased tPA activity in the cornu ammonis area 1 (CA1) layer and Akt phosphorylation in the hippocampus, as well as ischemic tolerance in wild-type but not tPA- or plasminogen-deficient mice. These data show that tPA can act as an endogenous neuroprotectant in the murine hippocampus.

  13. Role of Chitinase 3-Like-1 in Interleukin-18-Induced Pulmonary Type 1, Type 2, and Type 17 Inflammation; Alveolar Destruction; and Airway Fibrosis in the Murine Lung.

    Science.gov (United States)

    Kang, Min-Jong; Yoon, Chang Min; Nam, Milang; Kim, Do-Hyun; Choi, Je-Min; Lee, Chun Geun; Elias, Jack A

    2015-12-01

    Chitinase 3-like 1 (Chi3l1), which is also called YKL-40 in humans and BRP-39 in mice, is the prototypic chitinase-like protein. Recent studies have highlighted its impressive ability to regulate the nature of tissue inflammation and the magnitude of tissue injury and fibroproliferative repair. This can be appreciated in studies that highlight its induction after cigarette smoke exposure, during which it inhibits alveolar destruction and the genesis of pulmonary emphysema. IL-18 is also known to be induced and activated by cigarette smoke, and, in murine models, the IL-18 pathway has been shown to be necessary and sufficient to generate chronic obstructive pulmonary disease-like inflammation, fibrosis, and tissue destruction. However, the relationship between Chi3l1 and IL-18 has not been defined. To address this issue we characterized the expression of Chi3l1/BRP-39 in control and lung-targeted IL-18 transgenic mice. We also characterized the effects of transgenic IL-18 in mice with wild-type and null Chi3l1 loci. The former studies demonstrated that IL-18 is a potent stimulator of Chi3l1/BRP-39 and that this stimulation is mediated via IFN-γ-, IL-13-, and IL-17A-dependent mechanisms. The latter studies demonstrated that, in the absence of Chi3l1/BRP-39, IL-18 induced type 2 and type 17 inflammation and fibrotic airway remodeling were significantly ameliorated, whereas type 1 inflammation, emphysematous alveolar destruction, and the expression of cytotoxic T lymphocyte perforin, granzyme, and retinoic acid early transcript 1 expression were enhanced. These studies demonstrate that IL-18 is a potent stimulator of Chi3l1 and that Chi3l1 is an important mediator of IL-18-induced inflammatory, fibrotic, alveolar remodeling, and cytotoxic responses.

  14. Administrative Judicial Decisions as a Hybrid Argumentative Activity Type

    OpenAIRE

    Plug, H.J.

    2016-01-01

    This article focuses on strategic manoeuvring that takes place in Dutch administrative judi- cial decisions. These decisions may be seen as a distinct argumentative activity type. Starting from the char- acteristics that traditionally are per- tinent to this activity type, I will explore how implications of current discussions on the changing task of the administrative judge may be- come manifest in the judge’s strate- gic manoeuvring by means of the presentation of argumentation and the intr...

  15. DNA-Damage-Induced Type I Interferon Promotes Senescence and Inhibits Stem Cell Function

    Directory of Open Access Journals (Sweden)

    Qiujing Yu

    2015-05-01

    Full Text Available Expression of type I interferons (IFNs can be induced by DNA-damaging agents, but the mechanisms and significance of this regulation are not completely understood. We found that the transcription factor IRF3, activated in an ATM-IKKα/β-dependent manner, stimulates cell-autonomous IFN-β expression in response to double-stranded DNA breaks. Cells and tissues with accumulating DNA damage produce endogenous IFN-β and stimulate IFN signaling in vitro and in vivo. In turn, IFN acts to amplify DNA-damage responses, activate the p53 pathway, promote senescence, and inhibit stem cell function in response to telomere shortening. Inactivation of the IFN pathway abrogates the development of diverse progeric phenotypes and extends the lifespan of Terc knockout mice. These data identify DNA-damage-response-induced IFN signaling as a critical mechanism that links accumulating DNA damage with senescence and premature aging.

  16. Reelin induces EphB activation

    Institute of Scientific and Technical Information of China (English)

    Elisabeth Bouché; Mario I Romero-Ortega; Mark Henkemeyer; Timothy Catchpole; Jost Leemhuis; Michael Frotscher; Petra May

    2013-01-01

    The integration of newborn neurons into functional neuronal networks requires migration of cells to their final position in the developing brain,the growth and arborization of neuronal processes and the formation of synaptic contacts with other neurons.A central player among the signals that coordinate this complex sequence of differentiation events is the secreted glycoprotein Reelin,which also modulates synaptic plasticity,learning and memory formation in the adult brain.Binding of Reelin to ApoER2 and VLDL receptor,two members of the LDL receptor family,initiates a signaling cascade involving tyrosine phosphorylation of the intracellular cytoplasmic adaptor protein Disabled-l,which targets the neuronal cytoskeleton and ultimately controls the positioning of neurons throughout the developing brain.However,it is possible that Reelin signals interact with other receptor-mediated signaling cascades to regulate different aspects of brain development and plasticity.EphB tyrosine kinases regulate cell adhesion and repulsion-dependent processes via bidirectional signaling through ephrin B transmembrane proteins.Here,we demonstrate that Reelin binds to the extracellular domains of EphB transmembrane proteins,inducing receptor clustering and activation of EphB forward signaling in neurons,independently of the ‘classical' Reelin receptors,ApoER2 and VLDLR.Accordingly,mice lacking EphB1 and EphB2 display a positioning defect of CA3 hippocampal pyramidal neurons,similar to that in Reelin-deficient mice,and this cell migration defect depends on the kinase activity of EphB proteins.Together,our data provide biochemical and functional evidence for signal integration between Reelin and EphB forward signaling.

  17. Protein tyrosine phosphatase non-receptor type 22 modulates NOD2-induced cytokine release and autophagy.

    Directory of Open Access Journals (Sweden)

    Marianne R Spalinger

    Full Text Available BACKGROUND: Variations within the gene locus encoding protein tyrosine phosphatase non-receptor type 22 (PTPN22 are associated with the risk to develop inflammatory bowel disease (IBD. PTPN22 is involved in the regulation of T- and B-cell receptor signaling, but although it is highly expressed in innate immune cells, its function in other signaling pathways is less clear. Here, we study whether loss of PTPN22 controls muramyl-dipeptide (MDP-induced signaling and effects in immune cells. MATERIAL & METHODS: Stable knockdown of PTPN22 was induced in THP-1 cells by shRNA transduction prior to stimulation with the NOD2 ligand MDP. Cells were analyzed for signaling protein activation and mRNA expression by Western blot and quantitative PCR; cytokine secretion was assessed by ELISA, autophagosome induction by Western blot and immunofluorescence staining. Bone marrow derived dendritic cells (BMDC were obtained from PTPN22 knockout mice or wild-type animals. RESULTS: MDP-treatment induced PTPN22 expression and activity in human and mouse cells. Knockdown of PTPN22 enhanced MDP-induced activation of mitogen-activated protein kinase (MAPK-isoforms p38 and c-Jun N-terminal kinase as well as canonical NF-κB signaling molecules in THP-1 cells and BMDC derived from PTPN22 knockout mice. Loss of PTPN22 enhanced mRNA levels and secretion of interleukin (IL-6, IL-8 and TNF in THP-1 cells and PTPN22 knockout BMDC. Additionally, loss of PTPN22 resulted in increased, MDP-mediated autophagy in human and mouse cells. CONCLUSIONS: Our data demonstrate that PTPN22 controls NOD2 signaling, and loss of PTPN22 renders monocytes more reactive towards bacterial products, what might explain the association of PTPN22 variants with IBD pathogenesis.

  18. H-Ras Exerts Opposing Effects on Type I Interferon Responses Depending on Its Activation Status.

    Science.gov (United States)

    Chen, Guann-An; Lin, Yun-Ru; Chung, Hai-Ting; Hwang, Lih-Hwa

    2017-01-01

    Using shRNA high-throughput screening, we identified H-Ras as a regulator of antiviral activity, whose depletion could enhance Sindbis virus replication. Further analyses indicated that depletion of H-Ras results in a robust increase in vesicular stomatitis virus infection and a decrease in Sendai virus (SeV)-induced retinoic acid-inducible gene-I-like receptor (RLR) signaling. Interestingly, however, ectopic expression of wild-type H-Ras results in a biphasic mode of RLR signaling regulation: while low-level expression of H-Ras enhances SeV-induced RLR signaling, high-level expression of H-Ras significantly inhibits this signaling. The inhibitory effects correlate with the activation status of H-Ras. As a result, oncogenic H-Ras, H-RasV12, strongly inhibits SeV-induced IFN-β promoter activity and type I interferon signaling. Conversely, the positive effects exerted by H-Ras on RLR signaling are independent of its signaling activity, as a constitutively inactive form of H-Ras, H-RasN17, also positively regulates RLR signaling. Mechanistically, we demonstrate that depletion of H-Ras reduces the formation of MAVS-TNF receptor-associated factor 3 signaling complexes. These results reveal that the H-Ras protein plays a role in promoting MAVS signalosome assembly in the mitochondria, whereas oncogenic H-Ras exerts a negative effect on type I IFN responses.

  19. Opposite regulation of brain angiotensin type 1 and type 2 receptors in cold-induced hypertension.

    Science.gov (United States)

    Peng, J F; Phillips, M I

    2001-03-02

    Rats exposed chronically to mild cold (5 degrees C/41 degrees F) develop hypertension. This cold-induced hypertension (CIH) is an environmentally induced, non-surgical, non-pharmacological and non-genetic model for studying hypertension in rats. The blood renin angiotensin system (RAS) appears to play a role in both initiating and maintaining the high blood pressure in CIH. The goal of the present study was to evaluate the role of brain angiotensin type 1 and type 2 receptors (AT1R and AT2R) in CIH. Sprague-Dawley adult male rats were used. Thirty-six rats were kept in a cold room at 5 degrees C and the other 36 were kept at 24 degrees C as controls. Systolic blood pressure (SBP) was recorded by tail cuff. The SBP was elevated in rats exposed to cold within 1 week (n=12, P>0.05), significantly increased at 3 weeks (Pcold-treated and the controls were sacrificed at 1, 3 and 5 weeks. Specific brain sections were removed, either for reverse transcription polymerase chain reaction (RT-PCR) to measure mRNA, or for autoradiography to measure receptor binding for AT1R and AT2R. The AT1R mRNA was increased significantly in hypothalamus and brainstem after the first week in cold-treated rats and was maintained throughout the time of exposure to cold (n=6, Pcold-treated rats after exposure to cold. The experiments show differential regulation of RAS components, AT1R and AT2R, in different brain areas in cold-exposed rats and provide evidence that up-regulated AT1R and down-regulated AT2R in different brain areas are involved in CIH. The opposing directions of expression of AT1R and AT2R suggest that they play counterbalancing roles in brain function.

  20. Taurolidine and povidone-iodine induce different types of cell death in malignant pleural mesothelioma.

    Science.gov (United States)

    Opitz, I; Sigrist, B; Hillinger, S; Lardinois, D; Stahel, R; Weder, W; Hopkins-Donaldson, S

    2007-06-01

    Taurolidine and povidone-iodine (PVP-I) are used in every day clinical practice, taurolidine as a broad spectrum antibiotic, and PVP-I as an antiseptic. The type of cell death induced in malignant pleural mesothelioma (MPM) cell lines by these agents was compared, and their ability to sensitize to chemotherapy assessed. Both taurolidine and PVP-I inhibited MPM cell growth after 7.5min incubation, but taurolidine was more effective at later time points and was more specific towards tumour cells than PVP-I. Taurolidine induced death by caspase-dependent and independent mechanisms, whereas in contrast, PVP-I induced a necrotic phenotype that was not caspase-dependent. Interestingly, both taurolidine and PVP-I induced the production of reactive oxygen intermediates and decreased mitochondrial membrane permeability, and cell death was inhibited by the oxygen scavenger N-acetyl cysteine. Taurolidine but not PVP-I treatment resulted in p53 activation in 2/3 MPM cell lines and a decrease in the protein levels of survivin, Bcl-2 and Mcl-1. Survivin also decreased in response to PVP-I whereas Bcl-xL remained unaffected by both treatments. Targeting of Bcl-xL with siRNA sensitized MPM cells to taurolidine and taurolidine treatment sensitized MPM cells to cisplatin-induced apoptosis. In conclusion, taurolidine and PVP-I are both cytotoxic to human MPM cells at early and late time points and induce reactive oxygen intermediate production. Taurolidine induces apoptosis and necrosis, activates p53 and sensitizes cells to cisplatin, whereas PVP-I inhibits cell growth via necrosis. Both agents are promising candidates for use in local treatment within multimodality concepts for MPM.

  1. Double-stranded RNA induces biphasic STAT1 phosphorylation by both type I interferon (IFN)-dependent and type I IFN-independent pathways.

    Science.gov (United States)

    Dempoya, Junichi; Matsumiya, Tomoh; Imaizumi, Tadaatsu; Hayakari, Ryo; Xing, Fei; Yoshida, Hidemi; Okumura, Ken; Satoh, Kei

    2012-12-01

    Upon viral infection, pattern recognition receptors sense viral nucleic acids, leading to the production of type I interferons (IFNs), which initiate antiviral activities. Type I IFNs bind to their cognate receptor, IFNAR, resulting in the activation of signal-transducing activators of transcription 1 (STAT1). Thus, it has long been thought that double-stranded RNA (dsRNA)-induced STAT1 phosphorylation is mediated by the transactivation of type I IFN signaling. Foreign RNA, such as viral RNA, in cells is sensed by the cytoplasmic sensors retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (MDA-5). In this study, we explored the molecular mechanism responsible for STAT1 phosphorylation in response to the sensing of dsRNA by cytosolic RNA sensors. Polyinosinic-poly(C) [poly(I:C)], a synthetic dsRNA that is sensed by both RIG-I and MDA-5, induces STAT1 phosphorylation. We found that the poly(I:C)-induced initial phosphorylation of STAT1 is dependent on the RIG-I pathway and that MDA-5 is not involved in STAT1 phosphorylation. Furthermore, pretreatment of the cells with neutralizing antibody targeting the IFN receptor suppressed the initial STAT1 phosphorylation in response to poly(I:C), suggesting that this initial phosphorylation event is predominantly type I IFN dependent. In contrast, neither the known RIG-I pathway nor type I IFN is involved in the late phosphorylation of STAT1. In addition, poly(I:C) stimulated STAT1 phosphorylation in type I IFN receptor-deficient U5A cells with delayed kinetics. Collectively, our study provides evidence of a comprehensive regulatory mechanism in which dsRNA induces STAT1 phosphorylation, indicating the importance of STAT1 in maintaining very tight regulation of the innate immune system.

  2. Heparin-induced thrombocytopenia type II: Innovations in diagnostics and treatment

    Directory of Open Access Journals (Sweden)

    Antonijević Nebojša

    2003-01-01

    Full Text Available Heparin-induced thrombocytopenia (HIT Management of heparin-induced thrombocytopenia (HIT and treatment options have significantly changed recently. Heparin may induce two types of thrombocytopenia. Type I, occurring earlier with a much higher rate of incidence (5-30%, is characterized by mild thrombocytopenia without significant clinical manifestations. Type II is less frequent (0.5-2%, life threatening immune type, develops following a period of minimum 5-7 days upon introduction of heparin therapy (patients earlier treated with heparin are excluded. Type II heparin-induced thrombocytopenia with severely reduced platelet count may be clinically manifested by thrombosis in 20-50% cases within the period of 30 days. HIT is suspected in persons resistant to heparin with relatively reduced platelet count, though HIT is described in person with normal platelet counts, as well. None of available assays used for HIT detection is completely reliable Sensitivity of a highly specific platelet aggregation assay is only 36% sensitivity and specificity of 14C-serotonin release assays amounts to 95% while ELISA using a heparin/platelet factor-4 target has a sensitivity of 85%. Thus, it is sometimes necessary to combine functional and antigen assays. Furthermore, new classes of antigen assays, like antibody detection tests of complexes between heparin and neutrophil-activating peptide-2 as well as those between heparin and interleukin-8, have been used. Current therapy options Current therapy options exclude formerly applied low-molecular-weight heparins due to the existing cross-reactivity of 80–100%. Danaparoid sodium exhibits in vitro cross-reactivity of 10–61%, clinically manifested in less than 5% of patients. Two drugs are drugs of choice in HIT type II treatment: lepirudin, especially in patients without renal failure and argatroban, particularly in patients with renal failure. The following procedures and agents are also efficient: asmapheresis

  3. Mobile application to induce lifestyle modifications in type 2 diabetic patients: prototype based on international guidelines

    Science.gov (United States)

    García-Jaramillo, M.; Delgado, J. S.; León-Vargas, F.

    2015-12-01

    This paper describes a prototype app to induce lifestyle modifications in newly diagnosed type 2 diabetic patients. The app design is based on International Diabetes Federation guidelines and recommendations from clinical studies related to diabetes health-care. Two main approaches, lifestyle modification and self-management education are used owing to significant benefits reported. The method used is based on setting goals under medical support related to physical activity, nutritional habits and weight loss, in addition to educational messages. This is specially implemented to address the main challenges that have limited the success of similar mobile applications already validated on diabetic patients. A traffic light is used to show the overall state of the goals compliance. This state could be understood as excellent (green), there are aspects to improve (yellow), or some individual goals are not carrying out (red). An example of how works this method is presented in results. Furthermore, the app provides recommendations to the user in case the overall state was in yellow or red. The recommendations pretend to induce the user to make changes in their eating habits and physical activity. According to international guidelines and clinical studies, a prototype of mobile application to induce a lifestyle modification in order to prevent adverse risk factors related to diabetes was presented. The resulting application is apparently consistent with clinical judgments, but a formal clinical validation is required. The effectiveness of this app is currently under consideration for the Colombian population with type 2 diabetes.

  4. Effects of alpha-AMPK knockout on exercise-induced gene activation in mouse skeletal muscle

    DEFF Research Database (Denmark)

    Jørgensen, Sebastian Beck; Wojtaszewski, Jørgen; Viollet, Benoit

    2005-01-01

    We tested the hypothesis that 5'AMP-activated protein kinase (AMPK) plays an important role in regulating the acute, exercise-induced activation of metabolic genes in skeletal muscle, which were dissected from whole-body a2- and a1-AMPK knockout (KO) and wild-type (WT) mice at rest, after treadmi...

  5. Survivin S81A Enhanced TRAIL's Activity in Inducing Apoptosis

    Directory of Open Access Journals (Sweden)

    Ferry Sandra

    2010-12-01

    Full Text Available BACKGROUND: Survivin is rarely expressed in normal healthy adult tissues, however, it is upregulated in the majority of cancers. Survivin, which belongs to IAPs family, has been widely reported to protect cells from apoptosis by inhibiting caspases pathway. Survivin’s mitotic activity is modulated by many kinases, and its phosphor status can also influence its ability to inhibit apoptosis. There are several important survivin’s phosphorylation sites, such as S20 and T34. We have continued our investigation on other potential survivin’s phosphorylation sites that could be important site for regulating survivin’s cyto-protection. METHODS: By assuming that S81 could be a potential target to modify activity of survivin, wild-type survivin (Survivin, antisense survivin (Survivin-AS, mutated-survivin Thr34Ala (Survivin-T34A and mutated-survivin Ser81Ala (Survivin-S81A were constructed and inserted into pMSCV-IRES-GFP vector with cytomegalovirus (CMV promoter. Each retroviral product was produced in BOSC23 cells. LY294002 pretreatment and TRAIL treatment along with infection of retroviral products were performed in murine fibrosarcoma L929 cells. For analysis, flow cytometric apoptosis assay and western blot were performed. RESULTS: In our present study, survivin for providing cytoprotection was regulated by PI3K. The results showed that LY294002, an inhibitor of PI3K, effectively suppressed survivin-modulated cytoprotection in a TRAIL-induced apoptotic model. In addition, mutated survivin S81A showed marked suppression on survivin’s cytoprotection. Along with that, TRAIL’s apoptotic activity was enhanced for inducing apoptosis. CONCLUSIONS: We suggested that survivin could inhibit apoptosis through PI3K and S81A could be another potential target in order to inhibit Survivin-modulated cytoprotection as well as to sensitize efficacy of TRAIL or other related apoptotic inducers. KEYWORDS: apoptosis, survivin, TRAIL, S81A, L929, LY294002.

  6. When Do Types Induce the Same Belief Hierarchy?

    Directory of Open Access Journals (Sweden)

    Andrés Perea

    2016-10-01

    Full Text Available Type structures are a simple device to describe higher-order beliefs. However, how can we check whether two types generate the same belief hierarchy? This paper generalizes the concept of a type morphism and shows that one type structure is contained in another if and only if the former can be mapped into the other using a generalized type morphism. Hence, every generalized type morphism is a hierarchy morphism and vice versa. Importantly, generalized type morphisms do not make reference to belief hierarchies. We use our results to characterize the conditions under which types generate the same belief hierarchy.

  7. Discovery of orally active hepatoselective glucokinase activators for treatment of Type II Diabetes Mellitus.

    Science.gov (United States)

    Xu, Jiayi; Lin, Songnian; Myers, Robert W; Trujillo, Maria E; Pachanski, Michele J; Malkani, Sunita; Chen, Hsuan-Shen; Chen, Zhesheng; Campbell, Brian; Eiermann, George J; Elowe, Nadine; Farrer, Brian T; Feng, Wen; Fu, Qinghong; Kats-Kagan, Roman; Kavana, Michael; McMasters, Daniel R; Mitra, Kaushik; Tong, Xinchun; Xu, Libo; Zhang, Fengqi; Zhang, Rui; Addona, George H; Berger, Joel P; Zhang, Bei; Parmee, Emma R

    2017-05-01

    Systemically acting glucokinase activators (GKA) have been demonstrated in clinical trials to effectively lower blood glucose in patients with type II diabetes. However, mechanism-based hypoglycemia is a major adverse effect that limits the therapeutic potential of these agents. We hypothesized that the predominant mechanism leading to hypoglycemia is GKA-induced excessive insulin secretion from pancreatic β-cells at (sub-)euglycemic levels. We further hypothesized that restricting GK activation to hepatocytes would maintain glucose-lowering efficacy while significantly reducing hypoglycemic risk. Here we report the discovery of a novel series of carboxylic acid substituted GKAs based on pyridine-2-carboxamide. These GKAs exhibit preferential distribution to the liver versus the pancreas in mice. SAR studies led to the identification of a potent and orally active hepatoselective GKA, compound 6. GKA 6 demonstrated robust glucose lowering efficacy in high fat diet-fed mice at doses ⩾10mpk, with ⩾70-fold liver:pancreas distribution, minimal effects on plasma insulin levels, and significantly reduced risk of hypoglycemia. Copyright © 2016. Published by Elsevier Ltd.

  8. Creatine kinase activity in patients with diabetes mellitus type I and type II.

    Science.gov (United States)

    Jevrić-Causević, Adlija; Malenica, Maja; Dujić, Tanja

    2006-08-01

    Diabetes mellitus can be looked upon as an array of diseases, all of which exhibit common symptoms. While pathogenesis of IDDM (insulin dependant diabetes mellitus) is well understood, the same is not true for diabetes mellitus type II. In the latter case, relative contribution of the two factors (insulin resistance or decreased insulin secretion) varies individually, being highly increased in peripheral tissues and strictly dependant on insulin for glucose uptake. Moreover, in patients with diabetes mellitus type II, disbalance at the level of regulation of glucose metabolism as well as lipid metabolism has been noted in skeletal muscles. It is normal to assume that in this type of diabetes, these changes are reflected at the level of total activity of enzyme creatine kinase. This experimental work was performed on a group of 80 regular patients of Sarajevo General Hospital. Forty of those patients were classified as patients with diabetes type I and forty as patients with diabetes type II. Each group of patients was carefully chosen and constituted of equal number of males and females. The same was applied for adequate controls. Concentration of glucose was determined for each patient with GOD method, while activity of creatine kinase was determined with CK-NAC activated kit. Statistical analysis of the results was performed with SPSS software for Windows. Obtained results point out highly expressed differences in enzyme activity between two populations examined. Changes in enzyme activity are more expressed in patients with diabetes type II. Positive correlation between concentration of glucose and serum activity of the enzyme is seen in both categories of diabetic patients which is not the case for the patients in control group. At the same time, correlation between age and type of diabetes does exist . This is not followed at the level of enzyme activity or concentration of glucose.

  9. Gallic acid attenuates high-fat diet fed-streptozotocin-induced insulin resistance via partial agonism of PPARγ in experimental type 2 diabetic rats and enhances glucose uptake through translocation and activation of GLUT4 in PI3K/p-Akt signaling pathway.

    Science.gov (United States)

    Gandhi, Gopalsamy Rajiv; Jothi, Gnanasekaran; Antony, Poovathumkal James; Balakrishna, Kedike; Paulraj, Michael Gabriel; Ignacimuthu, Savarimuthu; Stalin, Antony; Al-Dhabi, Naif Abdullah

    2014-12-15

    In this study, the therapeutic efficacy of gallic acid from Cyamopsis tetragonoloba (L.) Taub. (Fabaceae) beans was examined against high-fat diet fed-streptozotocin-induced experimental type 2 diabetic rats. Molecular-dockings were done to determine the putative binding modes of gallic acid into the active sites of key insulin-signaling markers. Gallic acid (20 mg/kg) given to high-fat diet fed-streptozotocin-induced rats lowered body weight gain, fasting blood glucose and plasma insulin in diabetic rats. It further restored the alterations of biochemical parameters to near normal levels in diabetic treated rats along with cytoprotective action on pancreatic β-cell. Histology of liver and adipose tissues supported the biochemical findings. Gallic acid significantly enhanced the level of peroxisome proliferator-activated receptor γ (PPARγ) expression in the adipose tissue of treated rat compared to untreated diabetic rat; it also slightly activated PPARγ expressions in the liver and skeletal muscle. Consequently, it improved insulin-dependent glucose transport in adipose tissue through translocation and activation of glucose transporter protein 4 (GLUT4) in phosphatidylinositol 3-kinase (PI3K)/phosphorylated protein kinase B (p-Akt) dependent pathway. Gallic acid docked with PPARγ; it exhibited promising interactions with the GLUT4, glucose transporter protein 1 (GLUT1), PI3K and p-Akt. These findings provided evidence to show that gallic acid could improve adipose tissue insulin sensitivity, modulate adipogenesis, increase adipose glucose uptake and protect β-cells from impairment. Hence it can be used in the management of obesity-associated type 2 diabetes mellitus.

  10. Hyaluronic acid induces activation of the κ-opioid receptor.

    Directory of Open Access Journals (Sweden)

    Barbara Zavan

    Full Text Available INTRODUCTION: Nociceptive pain is one of the most common types of pain that originates from an injury involving nociceptors. Approximately 60% of the knee joint innervations are classified as nociceptive. The specific biological mechanism underlying the regulation of nociceptors is relevant for the treatment of symptoms affecting the knee joint. Intra-articular administration of exogenous hyaluronic acid (HA in patients with osteoarthritis (OA appears to be particularly effective in reducing pain and improving patient function. METHODS: We performed an in vitro study conducted in CHO cells that expressed a panel of opioid receptors and in primary rat dorsal root ganglion (DRG neurons to determine if HA induces the activation of opioid peptide receptors (OPr using both aequorin and the fluorescent dye Fura-2/AM. RESULTS: Selective agonists and antagonists for each OPr expressed on CHO cells were used to test the efficacy of our in vitro model followed by stimulation with HA. The results showed that HA induces stimulatory effects on the κ receptor (KOP. These effects of HA were also confirmed in rat DRG neurons, which express endogenously the OPr. CONCLUSIONS: HA activates the KOP receptor in a concentration dependent manner, with a pEC(50 value of 7.57.

  11. Daily physical activity and type 2 diabetes: A review

    Institute of Scientific and Technical Information of China (English)

    Hidetaka; Hamasaki

    2016-01-01

    Physical activity improves glycemic control and reduces the risk of cardiovascular disease(CVD) and mortality in patients with type 2 diabetes(T2D). Moderate to vigorous physical activity is recommended to manage T2D; however, patients with T2D can be physically weak, making it difficult to engage in the recommended levels of physical activity. Daily physical activity includes various activities performed during both occupational and leisure time such as walking, gardening, and housework that type 2 diabetic patients should be able to perform without considerable physical burden. This review focuses on the association between daily physical activity and T2D. Walking was the most common form of daily physical activity, with numerous studies demonstrating its beneficial effects on reducing the risk of T2D, CVD, and mortality. Walking for at least 30 min per day was shown to reduce the risk of T2D by approximately 50%. Additionally, walking was associated with a reduction in mortality. In contrast, evidence was extremely limited regarding other daily physical activities such as gardening and housework in patients with T2D. Recent studies have suggested daily physical activity, including non-exercise activity thermogenesis, to be favorably associated with metabolic risks and mortality. However, well-designed longitudinal studies are warranted to elucidate its effects on overall health.

  12. Redifferentiation of human hepatoma cells (SMMC-7721) induced by two new highly oxygenated bisabolane-type sesquiterpenes

    Indian Academy of Sciences (India)

    Ruidong Miao; Juan Wei; Q I Zhang; Venkateswara Sajja; Jinbo Yang; Qin Wang

    2008-12-01

    Bisabolane-type sesquiterpenes are a class of biologically active compounds that has antitumour, antifungal, antibacterial, antioxidant and antivenom properties. We investigated the effect of two new highly oxygenated bisabolane-type sesquiterpenes (HOBS) isolated from Cremanthodium discoideum (C. discoideum) on tumour cells. Our results showed that HOBS induced morphological differentiation and reduced microvilli formation on the cell surface in SMMC-7721 cells. Flow cytometry analysis demonstrated that HOBS could induce cell-cycle arrest in the G1 phase. Moreover, HOBS was able to increase tyrosine--ketoglutarate transaminase activity, decrease -foetoprotein level and -glutamyl transferase activity. In addition, we found that HOBS inhibited the anchorage-independent growth of SMMC-7721 cells in a dose-dependent manner. Taken together, all the above observations indicate that HOBS might be able to normalize malignant SMMC-7721 cells by inhibiting cell proliferation and inducing redifferentiation.

  13. Effect of Eugenia Jambolana on Streptozotocin-Nicotinamide induced type-2 Diabetic Nephropathy in Rats

    Directory of Open Access Journals (Sweden)

    Godwin Selvaraj Esther

    2014-03-01

    Full Text Available The chronic type-2 diabetes mellitus leads to diabetic nephropathy, which is one of the major microvascular complication of end stage renal disease worldwide and causes premature death in diabetic patients. The objective of the present investigation was to evaluate the antidiabetic activity and protective effect of diabetic induced nephropathy of ethanolic extract of seeds of Eugenia jambolana (SEEJ by using in-vitro and in-vivo models. The in-vitro antidiabetic effect was studied by glucose uptake assay in lymphocyte culture preparation. The in-vivo antidiabetic activity and the effect on diabetic nephropathy was evaluated using streptozotocin-nicotinamide induced type-2 diabetes mellitus in male albino Wistar rats. The results of in-vitro study revealed that SEEJ increased the percentage glucose uptake when calculated in comparison with control group. The in-vivo study showed that blood glucose level was significantly reduced in dose dependent manner when compared to the diabetic control group. In addition, it significantly restored the body weight loss, increased kidney weight, glycosylated haemoglobin, blood urea, blood uric acid, blood urea nitrogen, blood creatinine, urine volume and urine microalbumin levels when compared to diabetic control groups. The report of histopathological study of rat kidney tissues strongly supported the protective effect of SEEJ in diabetic nephropathy. The findings of this investigation concluded that SEEJ has significant antidiabetic activity and potential protective effect in diabetic nephropathy.

  14. Laser Induced Selective Activation For Subsequent Autocatalytic Electroless Plating

    DEFF Research Database (Denmark)

    Zhang, Yang

    The subject of this PhD thesis is “Laser induced selective activation for subsequent autocatalytic electroless plating.” The objective of the project is to investigate the process chains for micro structuring of polymer surfaces for selective micro metallization. Laser induced selective activation...

  15. Bioinformatics analysis of the factors controlling type I IFN gene expression in autoimmune disease and virus-induced immunity

    Directory of Open Access Journals (Sweden)

    Di eFeng

    2013-09-01

    Full Text Available Patients with systemic lupus erythematosus (SLE and Sjögren's syndrome (SS display increased levels of type I IFN-induced genes. Plasmacytoid dendritic cells (PDCs are natural interferon producing cells and considered to be a primary source of IFN-α in these two diseases. Differential expression patterns of type I IFN inducible transcripts can be found in different immune cell subsets and in patients with both active and inactive autoimmune disease. A type I IFN gene signature generally consists of three groups of IFN-induced genes - those regulated in response to virus-induced type I IFN, those regulated by the IFN-induced mitogen-activated protein kinase/extracellular-regulated kinase (MAPK/ERK pathway, and those by the IFN-induced phosphoinositide-3 kinase (PI-3K pathway. These three groups of type I IFN-regulated genes control important cellular processes such as apoptosis, survival, adhesion, and chemotaxis, that when dysregulated, contribute to autoimmunity. With the recent generation of large datasets in the public domain from next-generation sequencing and DNA microarray experiments, one can perform detailed analyses of cell type-specific gene signatures as well as identify distinct transcription factors that differentially regulate these gene signatures. We have performed bioinformatics analysis of data in the public domain and experimental data from our lab to gain insight into the regulation of type I IFN gene expression. We have found that the genetic landscape of the IFNA and IFNB genes are occupied by transcription factors, such as insulators CTCF and cohesin, that negatively regulate transcription, as well as IRF5 and IRF7, that positively and distinctly regulate IFNA subtypes. A detailed understanding of the factors controlling type I IFN gene transcription will significantly aid in the identification and development of new therapeutic strategies targeting the IFN pathway in autoimmune disease.

  16. Cleistanthus collinus induces type I distal renal tubular acidosis and type II respiratory failure in rats

    Directory of Open Access Journals (Sweden)

    Maneksh Delinda

    2010-01-01

    Full Text Available Background and Purpose : A water decoction of the poisonous shrub Cleistanthus collinus is used for suicidal purposes. The mortality rate is 28%. The clinical profile includes distal renal tubular acidosis (DRTA and respiratory failure. The mechanism of toxicity is unclear. Objectives : To demonstrate features of C. collinus toxicity in a rat model and to identify its mechanism(s of action. Materials and Methods : Rats were anesthetized and the carotid artery was cannulated. Electrocardiogram and respiratory movements were recorded. Either aqueous extract of C. collinus or control solution was administered intraperitoneally. Serial measurements of blood gases, electrolytes and urinary pH were made. Isolated brush border and basolateral membranes from rat kidney were incubated with C. collinus extract and reduction in ATPase activity was assessed. Venous blood samples from human volunteers and rats were incubated with an acetone extract of C. collinus and plasma potassium was estimated as an assay for sodium-potassium pump activity. Results : The mortality was 100% in tests and 17% in controls. Terminal event in test animals was respiratory arrest. Controls had metabolic acidosis, respiratory compensation , acidic urine and hyperkalemia. Test animals showed respiratory acidosis, alkaline urine and low blood potassium as compared to controls. C. collinus extract inhibited ATPase activity in rat kidney. Plasma K + did not increase in human blood incubated with C. collinus extract. Conclusions and Implications : Active principles of C. collinus inhibit proton pumps in the renal brush border, resulting in type I DRTA in rats. There is no inhibition of sodium-potassium pump activity. Test animals develop respiratory acidosis, and the immediate cause of death is respiratory arrest.

  17. Daily physical activity and type 2 diabetes: A review

    Institute of Scientific and Technical Information of China (English)

    Hidetaka; Hamasaki[1

    2016-01-01

    Physical activity improves glycemic control and reduces the risk of cardiovascular disease (CVD) and mortality in patients with type 2 diabetes (T2D). Moderate to vigorous physical activity is recommended to manage T2D; however, patients with T2D can be physically weak, making it difficult to engage in the recommended levels of physical activity. Daily physical activity includes various activities performed during both occupational and leisure time such as walking, gardening, and housework that type 2 diabetic patients should be able to perform without considerable physical burden. This review focuses on the association between daily physical activity and T2D. Walking was the most common form of daily physical activity, with numerous studies demonstrating its beneficial effects on reducing the risk of T2D, CVD,and mortality. Walking for at least 30 min per day was shown to reduce the risk of T2D by approximately 50%. Additionally, walking was associated with a reduction in mortality. In contrast, evidence was extremely limited regarding other daily physical activities such as gardening and housework in patients with T2D. Recent studies have suggested daily physical activity, including non-exerciseactivity thermogenesis, to be favorably associated with metabolic risks and mortality. However, well-designed longitudinal studies are warranted to elucidate its effects on overall health.

  18. Plant-derived cannabinoids modulate the activity of transient receptor potential channels of ankyrin type-1 and melastatin type-8.

    Science.gov (United States)

    De Petrocellis, Luciano; Vellani, Vittorio; Schiano-Moriello, Aniello; Marini, Pietro; Magherini, Pier Cosimo; Orlando, Pierangelo; Di Marzo, Vincenzo

    2008-06-01

    The plant cannabinoids (phytocannabinoids), cannabidiol (CBD), and Delta(9)-tetrahydrocannabinol (THC) were previously shown to activate transient receptor potential channels of both vanilloid type 1 (TRPV1) and ankyrin type 1 (TRPA1), respectively. Furthermore, the endocannabinoid anandamide is known to activate TRPV1 and was recently found to antagonize the menthol- and icilin-sensitive transient receptor potential channels of melastatin type 8 (TRPM8). In this study, we investigated the effects of six phytocannabinoids [i.e., CBD, THC, CBD acid, THC acid, cannabichromene (CBC), and cannabigerol (CBG)] on TRPA1- and TRPM8-mediated increase in intracellular Ca2+ in either HEK-293 cells overexpressing the two channels or rat dorsal root ganglia (DRG) sensory neurons. All of the compounds tested induced TRPA1-mediated Ca2+ elevation in HEK-293 cells with efficacy comparable with that of mustard oil isothiocyanates (MO), the most potent being CBC (EC(50) = 60 nM) and the least potent being CBG and CBD acid (EC(50) = 3.4-12.0 microM). CBC also activated MO-sensitive DRG neurons, although with lower potency (EC(50) = 34.3 microM). Furthermore, although none of the compounds tested activated TRPM8-mediated Ca2+ elevation in HEK-293 cells, they all, with the exception of CBC, antagonized this response when it was induced by either menthol or icilin. CBD, CBG, THC, and THC acid were equipotent (IC(50) = 70-160 nM), whereas CBD acid was the least potent compound (IC(50) = 0.9-1.6 microM). CBG inhibited Ca2+ elevation also in icilin-sensitive DRG neurons with potency (IC(50) = 4.5 microM) similar to that of anandamide (IC(50) = 10 microM). Our findings suggest that phytocannabinoids and cannabis extracts exert some of their pharmacological actions also by interacting with TRPA1 and TRPM8 channels, with potential implications for the treatment of pain and cancer.

  19. STUDIES ON THE CHEMICAL NATURE OF THE SUBSTANCE INDUCING TRANSFORMATION OF PNEUMOCOCCAL TYPES : INDUCTION OF TRANSFORMATION BY A DESOXYRIBONUCLEIC ACID FRACTION ISOLATED FROM PNEUMOCOCCUS TYPE III.

    Science.gov (United States)

    Avery, O T; Macleod, C M; McCarty, M

    1944-02-01

    1. From Type III pneumococci a biologically active fraction has been isolated in highly purified form which in exceedingly minute amounts is capable under appropriate cultural conditions of inducing the transformation of unencapsulated R variants of Pneumococcus Type II into fully encapsulated cells of the same specific type as that of the heat-killed microorganisms from which the inducing material was recovered. 2. Methods for the isolation and purification of the active transforming material are described. 3. The data obtained by chemical, enzymatic, and serological analyses together with the results of preliminary studies by electrophoresis, ultracentrifugation, and ultraviolet spectroscopy indicate that, within the limits of the methods, the active fraction contains no demonstrable protein, unbound lipid, or serologically reactive polysaccharide and consists principally, if not solely, of a highly polymerized, viscous form of desoxyribonucleic acid. 4. Evidence is presented that the chemically induced alterations in cellular structure and function are predictable, type-specific, and transmissible in series. The various hypotheses that have been advanced concerning the nature of these changes are reviewed.

  20. Aging. Aging-induced type I interferon response at the choroid plexus negatively affects brain function.

    Science.gov (United States)

    Baruch, Kuti; Deczkowska, Aleksandra; David, Eyal; Castellano, Joseph M; Miller, Omer; Kertser, Alexander; Berkutzki, Tamara; Barnett-Itzhaki, Zohar; Bezalel, Dana; Wyss-Coray, Tony; Amit, Ido; Schwartz, Michal

    2014-10-03

    Aging-associated cognitive decline is affected by factors produced inside and outside the brain. By using multiorgan genome-wide analysis of aged mice, we found that the choroid plexus, an interface between the brain and the circulation, shows a type I interferon (IFN-I)-dependent gene expression profile that was also found in aged human brains. In aged mice, this response was induced by brain-derived signals, present in the cerebrospinal fluid. Blocking IFN-I signaling within the aged brain partially restored cognitive function and hippocampal neurogenesis and reestablished IFN-II-dependent choroid plexus activity, which is lost in aging. Our data identify a chronic aging-induced IFN-I signature, often associated with antiviral response, at the brain's choroid plexus and demonstrate its negative influence on brain function, thereby suggesting a target for ameliorating cognitive decline in aging.

  1. Classification of types of stuttering symptoms based on brain activity.

    Science.gov (United States)

    Jiang, Jing; Lu, Chunming; Peng, Danling; Zhu, Chaozhe; Howell, Peter

    2012-01-01

    Among the non-fluencies seen in speech, some are more typical (MT) of stuttering speakers, whereas others are less typical (LT) and are common to both stuttering and fluent speakers. No neuroimaging work has evaluated the neural basis for grouping these symptom types. Another long-debated issue is which type (LT, MT) whole-word repetitions (WWR) should be placed in. In this study, a sentence completion task was performed by twenty stuttering patients who were scanned using an event-related design. This task elicited stuttering in these patients. Each stuttered trial from each patient was sorted into the MT or LT types with WWR put aside. Pattern classification was employed to train a patient-specific single trial model to automatically classify each trial as MT or LT using the corresponding fMRI data. This model was then validated by using test data that were independent of the training data. In a subsequent analysis, the classification model, just established, was used to determine which type the WWR should be placed in. The results showed that the LT and the MT could be separated with high accuracy based on their brain activity. The brain regions that made most contribution to the separation of the types were: the left inferior frontal cortex and bilateral precuneus, both of which showed higher activity in the MT than in the LT; and the left putamen and right cerebellum which showed the opposite activity pattern. The results also showed that the brain activity for WWR was more similar to that of the LT and fluent speech than to that of the MT. These findings provide a neurological basis for separating the MT and the LT types, and support the widely-used MT/LT symptom grouping scheme. In addition, WWR play a similar role as the LT, and thus should be placed in the LT type.

  2. Classification of types of stuttering symptoms based on brain activity.

    Directory of Open Access Journals (Sweden)

    Jing Jiang

    Full Text Available Among the non-fluencies seen in speech, some are more typical (MT of stuttering speakers, whereas others are less typical (LT and are common to both stuttering and fluent speakers. No neuroimaging work has evaluated the neural basis for grouping these symptom types. Another long-debated issue is which type (LT, MT whole-word repetitions (WWR should be placed in. In this study, a sentence completion task was performed by twenty stuttering patients who were scanned using an event-related design. This task elicited stuttering in these patients. Each stuttered trial from each patient was sorted into the MT or LT types with WWR put aside. Pattern classification was employed to train a patient-specific single trial model to automatically classify each trial as MT or LT using the corresponding fMRI data. This model was then validated by using test data that were independent of the training data. In a subsequent analysis, the classification model, just established, was used to determine which type the WWR should be placed in. The results showed that the LT and the MT could be separated with high accuracy based on their brain activity. The brain regions that made most contribution to the separation of the types were: the left inferior frontal cortex and bilateral precuneus, both of which showed higher activity in the MT than in the LT; and the left putamen and right cerebellum which showed the opposite activity pattern. The results also showed that the brain activity for WWR was more similar to that of the LT and fluent speech than to that of the MT. These findings provide a neurological basis for separating the MT and the LT types, and support the widely-used MT/LT symptom grouping scheme. In addition, WWR play a similar role as the LT, and thus should be placed in the LT type.

  3. Classification of Types of Stuttering Symptoms Based on Brain Activity

    Science.gov (United States)

    Jiang, Jing; Lu, Chunming; Peng, Danling; Zhu, Chaozhe; Howell, Peter

    2012-01-01

    Among the non-fluencies seen in speech, some are more typical (MT) of stuttering speakers, whereas others are less typical (LT) and are common to both stuttering and fluent speakers. No neuroimaging work has evaluated the neural basis for grouping these symptom types. Another long-debated issue is which type (LT, MT) whole-word repetitions (WWR) should be placed in. In this study, a sentence completion task was performed by twenty stuttering patients who were scanned using an event-related design. This task elicited stuttering in these patients. Each stuttered trial from each patient was sorted into the MT or LT types with WWR put aside. Pattern classification was employed to train a patient-specific single trial model to automatically classify each trial as MT or LT using the corresponding fMRI data. This model was then validated by using test data that were independent of the training data. In a subsequent analysis, the classification model, just established, was used to determine which type the WWR should be placed in. The results showed that the LT and the MT could be separated with high accuracy based on their brain activity. The brain regions that made most contribution to the separation of the types were: the left inferior frontal cortex and bilateral precuneus, both of which showed higher activity in the MT than in the LT; and the left putamen and right cerebellum which showed the opposite activity pattern. The results also showed that the brain activity for WWR was more similar to that of the LT and fluent speech than to that of the MT. These findings provide a neurological basis for separating the MT and the LT types, and support the widely-used MT/LT symptom grouping scheme. In addition, WWR play a similar role as the LT, and thus should be placed in the LT type. PMID:22761887

  4. Semicarbazide sensitive amine oxidase activity in pathogenesis of type Ⅱcollagen-induced rheumatoid arthritis%Ⅱ型胶原诱导的类风湿性关节炎发病过程中氨基脲敏感性胺氧化酶的活性变化

    Institute of Scientific and Technical Information of China (English)

    李兴暖; 罗红军; 林哲绚; 李慧; 刘艳英

    2011-01-01

    Objective To investigate the change of semicarbazide sensitive amine oxidase ( SSAO ) activity in pathogenesis of type Ⅱ collagen -induced rheumatoid arthritis. Methods Caudal intradermal injection of type Ⅱ collagen were applied for construction of rheumatoid arthritis model in 25 Wistar rats, while another 5 Wistar rats were included for control. At baseline and on day 3 , 7, 14 and 21 , each 5 model rats were scarified for collection of plasma and ankles tissue. The SSAO enzyme activity, TNF - α and ICAM - 1 levels were measured. Results Rheumatoid arthritis occurred in model rats on day 12. In ankle tissues, SSAO enzyme activity began to increase on day 3, peaked on day 7, and declined afterward. However, no significant changes in plasma SSAO enzyme activity or TNF - α and ICAM - 1 levels in ankle tissues or plasma were found. Conclusion Changes in SSAO activity is assoicated with the pathogenesis of type Ⅱ collagen induced - rheumatoid arthritis.%目的 探讨氨基脲敏感性胺氧化酶(SSAO)活性在类风湿性关节炎发病过程中的变化.方法 取25只Wistar大鼠,尾根部多点注射Ⅱ型胶原制作类风湿性关节炎大鼠模型,以造模当天为0 d,在造模第3、7、14和21天,分别处死5只大鼠,取血浆和踝关节组织,分别检测SSAO活性、肿瘤坏死因子-α(TNF-α)和细胞间黏附分子-1(ICAM-1)水平.另取5只大鼠作为空白对照组.结果 造模后第12天大鼠开始发病;关节组织SSAO活性于造模第3天开始升高,第7天升高到最高,之后开始降低;血浆SSAO活性变化不明显.血浆和组织中TNF-α及ICAM-1水平均随关节炎发病过程出现显著变化.结论 Ⅱ型胶原大鼠关节炎发病过程中伴随有SSAO活性的变化.

  5. Plasminogen activator inhibitor type 1 interacts with alpha3 subunit of proteasome and modulates its activity.

    Science.gov (United States)

    Boncela, Joanna; Przygodzka, Patrycja; Papiewska-Pajak, Izabela; Wyroba, Elzbieta; Osinska, Magdalena; Cierniewski, Czeslaw S

    2011-02-25

    Plasminogen activator inhibitor type-1 (PAI-1), a multifunctional protein, is an important physiological regulator of fibrinolysis, extracellular matrix homeostasis, and cell motility. Recent observations show that PAI-1 may also be implicated in maintaining integrity of cells, especially with respect to cellular proliferation or apoptosis. In the present study we provide evidence that PAI-1 interacts with proteasome and affects its activity. First, by using the yeast two-hybrid system, we found that the α3 subunit of proteasome directly interacts with PAI-1. Then, to ensure that the PAI-1-proteasome complex is formed in vivo, both proteins were coimmunoprecipitated from endothelial cells and identified with specific antibodies. The specificity of this interaction was evidenced after transfection of HeLa cells with pCMV-PAI-1 and coimmunoprecipitation of both proteins with anti-PAI-1 antibodies. Subsequently, cellular distribution of the PAI-1-proteasome complexes was established by immunogold staining and electron microscopy analyses. Both proteins appeared in a diffuse cytosolic pattern but also could be found in a dense perinuclear and nuclear location. Furthermore, PAI-1 induced formation of aggresomes freely located in endothelial cytoplasm. Increased PAI-1 expression abrogated degradation of degron analyzed after cotransfection of HeLa cells with pCMV-PAI-1 and pd2EGFP-N1 and prevented degradation of p53 as well as IκBα, as evidenced both by confocal microscopy and Western immunoblotting.

  6. Plasminogen Activator Inhibitor Type 1 Interacts with α3 Subunit of Proteasome and Modulates Its Activity*

    Science.gov (United States)

    Boncela, Joanna; Przygodzka, Patrycja; Papiewska-Pajak, Izabela; Wyroba, Elzbieta; Osinska, Magdalena; Cierniewski, Czeslaw S.

    2011-01-01

    Plasminogen activator inhibitor type-1 (PAI-1), a multifunctional protein, is an important physiological regulator of fibrinolysis, extracellular matrix homeostasis, and cell motility. Recent observations show that PAI-1 may also be implicated in maintaining integrity of cells, especially with respect to cellular proliferation or apoptosis. In the present study we provide evidence that PAI-1 interacts with proteasome and affects its activity. First, by using the yeast two-hybrid system, we found that the α3 subunit of proteasome directly interacts with PAI-1. Then, to ensure that the PAI-1-proteasome complex is formed in vivo, both proteins were coimmunoprecipitated from endothelial cells and identified with specific antibodies. The specificity of this interaction was evidenced after transfection of HeLa cells with pCMV-PAI-1 and coimmunoprecipitation of both proteins with anti-PAI-1 antibodies. Subsequently, cellular distribution of the PAI-1-proteasome complexes was established by immunogold staining and electron microscopy analyses. Both proteins appeared in a diffuse cytosolic pattern but also could be found in a dense perinuclear and nuclear location. Furthermore, PAI-1 induced formation of aggresomes freely located in endothelial cytoplasm. Increased PAI-1 expression abrogated degradation of degron analyzed after cotransfection of HeLa cells with pCMV-PAI-1 and pd2EGFP-N1 and prevented degradation of p53 as well as IκBα, as evidenced both by confocal microscopy and Western immunoblotting. PMID:21135093

  7. FIVPET Flow-Induced Vibration Test Report (1) - Candidate Spacer Grid Type I (Optimized H Type)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang Hee; Kang, Heung Seok; Yoon, Kyung Ho; Song, Kee Nam; Kim, Jae Yong

    2006-03-15

    The flow-induced vibration (FIV) test using a 5x5 partial fuel assembly was performed to evaluate mechanical/structural performance of the candidate spacer grid type I (Optimized H shape). From the measured vibration response of the test bundle and the flow parameters, design features of the spacer strap can be analyzed in the point of vibration and hydraulic aspect, and also compared with other spacer strap in simple comparative manner. Furthermore, the FIV test will contributes to understand behaviors of nuclear fuel in operating reactor. The FIV test results will be used to verify the theoretical model of fuel rod and assembly vibration. The aim of this report is to present the results of the FIV test of partial fuel assembly and to introduce the detailed test methodology and analysis procedure. In chapter 2, the overall configuration of test bundle and instrumented tube is remarked and chapter 3 will introduce the test facility (FIVPET) and test section. Chapter 4 deals with overall test condition and procedure, measurement and data acquisition devices, instrumentation equipment and calibration, and error analysis. Finally, test result of vibration and pressure fluctuation is presented and discussed in chapter 5.

  8. Factors Affecting Canagliflozin-Induced Transient Urine Volume Increase in Patients with Type 2 Diabetes Mellitus.

    Science.gov (United States)

    Tanaka, Hiroyuki; Takano, Kazuhiko; Iijima, Hiroaki; Kubo, Hajime; Maruyama, Nobuko; Hashimoto, Toshio; Arakawa, Kenji; Togo, Masanori; Inagaki, Nobuya; Kaku, Kohei

    2017-02-01

    Sodium glucose co-transporter 2 (SGLT2) inhibitors exhibit diuretic activity, which is a possible mechanism underlying the cardiovascular benefit of these inhibitors. However, the osmotic diuresis-induced increase in urine volume, and the risk of dehydration have been of concern with SGLT2 inhibitor treatment. This study aimed to investigate the mechanism underlying SGLT2 inhibitor canagliflozin-induced diuresis in Japanese type 2 diabetes mellitus (T2DM) patients. Thirteen T2DM patients received a daily oral dose of 100 mg canagliflozin before breakfast for 6 days. Blood and urine samples were collected at predetermined time points. The primary endpoint was evaluation of correlations between changes from baseline in urine volume and factors that are known to affect urine volume and between actual urine volume and these factors. Canagliflozin transiently increased urine volume and urinary sodium excretion on Day 1 with a return to baseline levels thereafter. Canagliflozin administration increased urinary glucose excretion, which was sustained during repeated-dose administration. Plasma atrial natriuretic peptide (ANP) and N-terminal pro-b-type natriuretic peptide (NT-proBNP) levels decreased, while plasma renin activity increased. On Day 1 of treatment, changes in sodium and potassium excretion were closely correlated with changes in urine output. A post hoc multiple regression analysis showed changes in sodium excretion and water intake as factors that affected urine volume change at Day 1. Furthermore, relative to that at baseline, canagliflozin decreased blood glucose throughout the day and increased plasma total GLP-1 after breakfast. Canagliflozin induced transient sodium excretion and did not induce water intake at Day 1; hence, natriuresis rather than glucose-induced osmotic diuresis may be a major factor involved in the canagliflozin-induced transient increase in urine output. In addition, canagliflozin decreased plasma ANP and NT-proBNP levels and

  9. An endothelial storage granule for tissue-type plasminogen activator

    NARCIS (Netherlands)

    Emeis, J.J.; Eijnden van den - Schrauwen, Y.; Hoogen, C.M. van den; Priester, W. de; Westmuckett, A.; Lupu, F.

    1997-01-01

    In previous studies we have shown that, after stimulation by a receptor ligand such as thrombin, tissue-type plasminogen activator (tPA) and von Willebrand factor (vW(f)) will be acutely released from human umbilical vein endothelial cells (HUVEC). However, the mechanisms involved in the secretion o

  10. Mechanisms of Ca2+-dependent calcineurin activation in mechanical stretch-induced hypertrophy.

    Science.gov (United States)

    Zobel, Carsten; Rana, Obaida R; Saygili, Erol; Bölck, Birgit; Saygili, Esra; Diedrichs, Holger; Reuter, Hannes; Frank, Konrad; Müller-Ehmsen, Jochen; Pfitzer, Gabriele; Schwinger, Robert H G

    2007-01-01

    Pressure overload is the major stimulus for cardiac hypertrophy. Accumulating evidence suggests an important role for calcium-induced activation of calcineurin in mediating hypertrophic signaling. Hypertrophy is an important risk factor for cardiovascular morbidity and mortality. We therefore employed an in vitro mechanical stretch model of cultured neonatal cardiomyocytes to evaluate proposed mechanisms of calcium-induced calcineurin activation in terms of inhibition of calcineurin activity and hypertrophy. The protein/DNA ratio and ANP gene expression were used as markers for stretch-induced hypertrophy. Stretch increased the calcineurin activity, MCIP1 gene expression and DNA binding of NFATc as well as the protein/DNA ratio and ANP mRNA in a significant manner. The specific inhibitor of calcineurin, cyclosporin A, inhibited the stretch-induced increase in calcineurin activity, MCIP1 gene expression and hypertrophy. The L-type Ca2+ channel blocker nifedipine and a blocker of the Na+/H+ exchanger (cariporide) both suppressed stretch-dependent enhanced calcineurin activity and hypertrophy. Also application of a blocker of the Na+/Ca2+ exchanger (KB-R7943) was effective in preventing calcineurin activation and increases in the protein/DNA ratio. Inhibition of capacitative Ca2+ entry with SKF 96365 was also sufficient to abrogate calcineurin activation and hypertrophy. The blocker of stretch-activated ion channels, streptomycin, was without effect on stretch-induced hypertrophy and calcineurin activity. The present work suggests that of the proposed mechanisms for the calcium-induced activation of calcineurin (L-type Ca2+ channels, capacitative Ca2+ entry, Na+/H+ exchanger, Na+/Ca2+ exchanger and stretch-activated channels) all but stretch-activated channels are possible targets for the inhibition of hypertrophy. 2007 S. Karger AG, Basel

  11. L-type calcium channel blockers enhance 5-HTP-induced antinociception in mice

    Institute of Scientific and Technical Information of China (English)

    Jian-hui LIANG; Jun-xu LI; Xu-hua WANG; Bi CHEN; Ying LU; Pan ZHANG; Rong HAN; Xiang-feng YE

    2004-01-01

    AIM: To investigate the involvement of L-type Ca2+ channels in antinociceptive action induced by the 5-HT precursor,5-hydroxytryptophan (5-HTP). METHODS: Female Kunming mice were treated with either 5-HTP (20-80 mg/kg,ip) alone, or the combination of 5-HTP and fluoxetine (2-8 mg/kg, ip), pargyline (15-60 mg/kg, ip), nimodipine (2.5-10 mg/kg, ip), nifedipine (2.5-10 mg/kg, ip), verapamil (2.5-10 mg/kg, ip), CaC12 (5-20 mmol/L, icv), or EGTA (0.5-3 mmol/L, icv) prior to the hot-plate test (55 ℃, hind-paw licking latency). In addition, locomotor activity in mice treated with 5-HTP alone was measured using an ambulometer with five activity boxes. RESULTS: Ip injection of 5-HTP alone had no influence on the spontaneous locomotor activity, whereas dose-dependently increased the latency to licking hind-paw in the hot-plate test in mice. The inhibitory effects of 5-HTP on nociceptive response were significantly enhanced by fluoxetine in the mouse hot-plate test. At a sub-effective dose, pargyline could cause a leftward shift in the dose-response curve of 5-HTP-induced antinociception. Co-administration with 5-HTP and nimodipine, nifedipine, or verapamil obviously potentiated the antinociceptive effects elicited by 5-HTP.Interestingly, 5-HTP-induced antinociception was antagonized by CaC12 and enhanced by EGTA injected icv in the mouse hot-plate test. CONCLUSION: These findings suggest that systemic administration of 5-HTP may yield the antinociceptive effects, which are related to Ca2+ influx from extracellular fluid through L-type Ca2+ channels.

  12. Bone Cell-autonomous Contribution of Type 2 Cannabinoid Receptor to Breast Cancer-induced Osteolysis.

    Science.gov (United States)

    Sophocleous, Antonia; Marino, Silvia; Logan, John G; Mollat, Patrick; Ralston, Stuart H; Idris, Aymen I

    2015-09-04

    The cannabinoid type 2 receptor (CB2) has previously been implicated as a regulator of tumor growth, bone remodeling, and bone pain. However, very little is known about the role of the skeletal CB2 receptor in the regulation of osteoblasts and osteoclasts changes associated with breast cancer. Here we found that the CB2-selective agonists HU308 and JWH133 reduced the viability of a variety of parental and bone-tropic human and mouse breast cancer cells at high micromolar concentrations. Under conditions in which these ligands are used at the nanomolar range, HU308 and JWH133 enhanced human and mouse breast cancer cell-induced osteoclastogenesis and exacerbated osteolysis, and these effects were attenuated in cultures obtained from CB2-deficient mice or in the presence of a CB2 receptor blocker. HU308 and JWH133 had no effects on osteoblast growth or differentiation in the presence of conditioned medium from breast cancer cells, but under these circumstances both agents enhanced parathyroid hormone-induced osteoblast differentiation and the ability to support osteoclast formation. Mechanistic studies in osteoclast precursors and osteoblasts showed that JWH133 and HU308 induced PI3K/AKT activity in a CB2-dependent manner, and these effects were enhanced in the presence of osteolytic and osteoblastic factors such as RANKL (receptor activator of NFκB ligand) and parathyroid hormone. When combined with published work, these findings suggest that breast cancer and bone cells exhibit differential responses to treatment with CB2 ligands depending upon cell type and concentration used. We, therefore, conclude that both CB2-selective activation and antagonism have potential efficacy in cancer-associated bone disease, but further studies are warranted and ongoing.

  13. L-type calcium channel blockers enhance 5-HTP-induced antinociception in mice.

    Science.gov (United States)

    Liang, Jian-hui; Li, Jun-xu; Wang, Xu-hua; Chen, Bi; Lu, Ying; Zhang, Pan; Han, Rong; Ye, Xiang-feng

    2004-05-01

    To investigate the involvement of L-type Ca(2+) channels in antinociceptive action induced by the 5-HT precursor, 5-hydroxytryptophan (5-HTP). Female Kunming mice were treated with either 5-HTP (20-80 mg/kg, ip) alone, or the combination of 5-HTP and fluoxetine (2-8 mg/kg, ip), pargyline (15-60 mg/kg, ip), nimodipine (2.5-10 mg/kg, ip), nifedipine (2.5-10 mg/kg, ip), verapamil (2.5-10 mg/kg, ip), CaCl(2) (5-20 mmol/L, icv), or EGTA (0.5-3 mmol/L, icv) prior to the hot-plate test (55 degree, hind-paw licking latency). In addition, locomotor activity in mice treated with 5-HTP alone was measured using an ambulometer with five activity boxes. Ip injection of 5-HTP alone had no influence on the spontaneous locomotor activity, whereas dose-dependently increased the latency to licking hind-paw in the hot-plate test in mice. The inhibitory effects of 5-HTP on nociceptive response were significantly enhanced by fluoxetine in the mouse hot-plate test. At a sub-effective dose, pargyline could cause a leftward shift in the dose-response curve of 5-HTP-induced antinociception. Co-administration with 5-HTP and nimodipine, nifedipine, or verapamil obviously potentiated the antinociceptive effects elicited by 5-HTP. Interestingly, 5-HTP-induced antinociception was antagonized by CaCl(2) and enhanced by EGTA injected icv in the mouse hot-plate test. These findings suggest that systemic administration of 5-HTP may yield the antinociceptive effects, which are related to Ca(2+) influx from extracellular fluid through L-type Ca(2+) channels.

  14. STL-based analysis of TRAIL-induced apoptosis challenges the notion of type I/type II cell line classification.

    Directory of Open Access Journals (Sweden)

    Szymon Stoma

    Full Text Available Extrinsic apoptosis is a programmed cell death triggered by external ligands, such as the TNF-related apoptosis inducing ligand (TRAIL. Depending on the cell line, the specific molecular mechanisms leading to cell death may significantly differ. Precise characterization of these differences is crucial for understanding and exploiting extrinsic apoptosis. Cells show distinct behaviors on several aspects of apoptosis, including (i the relative order of caspases activation, (ii the necessity of mitochondria outer membrane permeabilization (MOMP for effector caspase activation, and (iii the survival of cell lines overexpressing Bcl2. These differences are attributed to the activation of one of two pathways, leading to classification of cell lines into two groups: type I and type II. In this work we challenge this type I/type II cell line classification. We encode the three aforementioned distinguishing behaviors in a formal language, called signal temporal logic (STL, and use it to extensively test the validity of a previously-proposed model of TRAIL-induced apoptosis with respect to experimental observations made on different cell lines. After having solved a few inconsistencies using STL-guided parameter search, we show that these three criteria do not define consistent cell line classifications in type I or type II, and suggest mutants that are predicted to exhibit ambivalent behaviors. In particular, this finding sheds light on the role of a feedback loop between caspases, and reconciliates two apparently-conflicting views regarding the importance of either upstream or downstream processes for cell-type determination. More generally, our work suggests that these three distinguishing behaviors should be merely considered as type I/II features rather than cell-type defining criteria. On the methodological side, this work illustrates the biological relevance of STL-diagrams, STL population data, and STL-guided parameter search implemented in the

  15. Type II SOCS as a feedback repressor for GH-induced Igf1 expression in carp hepatocytes.

    Science.gov (United States)

    Jiang, Xue; Xiao, Jia; He, Mulan; Ma, Ani; Wong, Anderson O L

    2016-05-01

    Type II suppressor of cytokine signaling (SOCS) serve as feedback repressors for cytokines and are known to inhibit growth hormone (GH) actions. However, direct evidence for SOCS modulation of GH-induced insulin-like growth factor 1 (Igf1) expression is lacking, and the post-receptor signaling for SOCS expression at the hepatic level is still unclear. To shed light on the comparative aspects of SOCS in GH functions, grass carp was used as a model to study the role of type II SOCS in GH-induced Igf1 expression. Structural identity of type II SOCS, Socs1-3 and cytokine-inducible SH2-containing protein (Cish), was established in grass carp by 5'/3'-RACE, and their expression at both transcript and protein levels were confirmed in the liver by RT-PCR and LC/MS/MS respectively. In carp hepatocytes, GH treatment induced rapid phosphorylation of JAK2, STATs, MAPK, PI3K, and protein kinase B (Akt) with parallel rises in socs1-3 and cish mRNA levels, and these stimulatory effects on type II SOCS were shown to occur before the gradual loss of igf1 gene expression caused by prolonged exposure of GH. Furthermore, GH-induced type II SOCS gene expression could be negated by inhibiting JAK2, STATs, MEK1/2, P38 (MAPK), PI3K, and/or Akt respectively. In CHO cells transfected with carp GH receptor, over-expression of these newly cloned type II SOCS not only suppressed JAK2/STAT5 signaling with GH treatment but also inhibited GH-induced grass carp Igf1 promoter activity. These results, taken together, suggest that type II SOCS could be induced by GH in the carp liver via JAK2/STATs, MAPK, and PI3K/Akt cascades and serve as feedback repressors for GH signaling and induction of igf1 gene expression.

  16. Activity trends in young solar-type stars

    CERN Document Server

    Lehtinen, Jyri; Hackman, Thomas; Kajatkari, Perttu; Henry, Gregory W

    2015-01-01

    We apply the Continuous Period Search (CPS) time series analysis method on Johnson B and V band photometry of 21 young and active solar-type, collected over 16 to 27 years and characterize the behaviour of their activity. Using the CPS method, differential rotation could be estimated from the observed variations of the photometric rotation period. Active longitudes were retrieved by applying a non-parametric period search on the light curve minimum epochs, and activity cycles by applying a secondary period search on the modelled light curve mean and amplitude values. We supplemented the time series results by calculating new $\\log{R'_{\\rm HK}}$ emission indices for the stars from high resolution spectroscopy. The measurements of the photometric rotation period variations point to a trend of increasing differential rotation coefficients towards longer rotation periods but do not reveal any dependence from the effective temperature of the stars. The secondary period searches revealed activity cycles in 18 of th...

  17. HSV-1 infection of human brain cells induces miRNA-146a and Alzheimer-type inflammatory signaling.

    Science.gov (United States)

    Hill, James M; Zhao, Yuhai; Clement, Christian; Neumann, Donna M; Lukiw, Walter J

    2009-10-28

    Herpes simplex virus type-1 (HSV-1) infection of human brain cells induces changes in gene expression favorable to the propagation of the infecting agent and detrimental to the function of the host cells. We report that infection of human primary neural cells with a high phenotypic reactivator HSV-1 (17syn+) induces upregulation of a brain-enriched microRNA (miRNA)-146a that is associated with proinflammatory signaling in stressed brain cells and Alzheimer's disease. Expression of cytoplasmic phospholipase A2, the inducible prostaglandin synthase cyclooxygenase-2, and the neuroinflammatory cytokine interleukin-1beta were each upregulated. A known miRNA-146a target in the brain, complement factor H, was downregulated. These data suggest a role for HSV-1-induced miRNA-146a in the evasion of HSV-1 from the complement system, and the activation of key elements of the arachidonic acid cascade known to contribute to Alzheimer-type neuropathological change.

  18. Activity-dependent regulation of T-type calcium channels by submembrane calcium ions.

    Science.gov (United States)

    Cazade, Magali; Bidaud, Isabelle; Lory, Philippe; Chemin, Jean

    2017-01-21

    Voltage-gated Ca(2+) channels are involved in numerous physiological functions and various mechanisms finely tune their activity, including the Ca(2+) ion itself. This is well exemplified by the Ca(2+)-dependent inactivation of L-type Ca(2+) channels, whose alteration contributes to the dramatic disease Timothy Syndrome. For T-type Ca(2+) channels, a long-held view is that they are not regulated by intracellular Ca(2+). Here we challenge this notion by using dedicated electrophysiological protocols on both native and expressed T-type Ca(2+) channels. We demonstrate that a rise in submembrane Ca(2+) induces a large decrease in T-type current amplitude due to a hyperpolarizing shift in the steady-state inactivation. Activation of most representative Ca(2+)-permeable ionotropic receptors similarly regulate T-type current properties. Altogether, our data clearly establish that Ca(2+) entry exerts a feedback control on T-type channel activity, by modulating the channel availability, a mechanism that critically links cellular properties of T-type Ca(2+) channels to their physiological roles.

  19. CD95/Fas Increases Stemness in Cancer Cells by Inducing a STAT1-Dependent Type I Interferon Response.

    Science.gov (United States)

    Qadir, Abdul S; Ceppi, Paolo; Brockway, Sonia; Law, Calvin; Mu, Liang; Khodarev, Nikolai N; Kim, Jung; Zhao, Jonathan C; Putzbach, William; Murmann, Andrea E; Chen, Zhuo; Chen, Wenjing; Liu, Xia; Salomon, Arthur R; Liu, Huiping; Weichselbaum, Ralph R; Yu, Jindan; Peter, Marcus E

    2017-03-07

    Stimulation of CD95/Fas drives and maintains cancer stem cells (CSCs). We now report that this involves activation of signal transducer and activator of transcription 1 (STAT1) and induction of STAT1-regulated genes and that this process is inhibited by active caspases. STAT1 is enriched in CSCs in cancer cell lines, patient-derived human breast cancer, and CD95(high)-expressing glioblastoma neurospheres. CD95 stimulation of cancer cells induced secretion of type I interferons (IFNs) that bind to type I IFN receptors, resulting in activation of Janus-activated kinases, activation of STAT1, and induction of a number of STAT1-regulated genes that are part of a gene signature recently linked to therapy resistance in five primary human cancers. Consequently, we identified type I IFNs as drivers of cancer stemness. Knockdown or knockout of STAT1 resulted in a strongly reduced ability of CD95L or type I IFN to increase cancer stemness. This identifies STAT1 as a key regulator of the CSC-inducing activity of CD95. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  20. CD95/Fas Increases Stemness in Cancer Cells by Inducing a STAT1-Dependent Type I Interferon Response

    Directory of Open Access Journals (Sweden)

    Abdul S. Qadir

    2017-03-01

    Full Text Available Stimulation of CD95/Fas drives and maintains cancer stem cells (CSCs. We now report that this involves activation of signal transducer and activator of transcription 1 (STAT1 and induction of STAT1-regulated genes and that this process is inhibited by active caspases. STAT1 is enriched in CSCs in cancer cell lines, patient-derived human breast cancer, and CD95high-expressing glioblastoma neurospheres. CD95 stimulation of cancer cells induced secretion of type I interferons (IFNs that bind to type I IFN receptors, resulting in activation of Janus-activated kinases, activation of STAT1, and induction of a number of STAT1-regulated genes that are part of a gene signature recently linked to therapy resistance in five primary human cancers. Consequently, we identified type I IFNs as drivers of cancer stemness. Knockdown or knockout of STAT1 resulted in a strongly reduced ability of CD95L or type I IFN to increase cancer stemness. This identifies STAT1 as a key regulator of the CSC-inducing activity of CD95.

  1. Human type II pneumocyte chemotactic responses to CXCR3 activation are mediated by splice variant A.

    Science.gov (United States)

    Ji, Rong; Lee, Clement M; Gonzales, Linda W; Yang, Yi; Aksoy, Mark O; Wang, Ping; Brailoiu, Eugen; Dun, Nae; Hurford, Matthew T; Kelsen, Steven G

    2008-06-01

    Chemokine receptors control several fundamental cellular processes in both hematopoietic and structural cells, including directed cell movement, i.e., chemotaxis, cell differentiation, and proliferation. We have previously demonstrated that CXCR3, the chemokine receptor expressed by Th1/Tc1 inflammatory cells present in the lung, is also expressed by human airway epithelial cells. In airway epithelial cells, activation of CXCR3 induces airway epithelial cell movement and proliferation, processes that underlie lung repair. The present study examined the expression and function of CXCR3 in human alveolar type II pneumocytes, whose destruction causes emphysema. CXCR3 was present in human fetal and adult type II pneumocytes as assessed by immunocytochemistry, immunohistochemistry, and Western blotting. CXCR3-A and -B splice variant mRNA was present constitutively in cultured type II cells, but levels of CXCR3-B greatly exceeded CXCR3-A mRNA. In cultured type II cells, I-TAC, IP-10, and Mig induced chemotaxis. Overexpression of CXCR3-A in the A549 pneumocyte cell line produced robust chemotactic responses to I-TAC and IP-10. In contrast, I-TAC did not induce chemotactic responses in CXCR3-B and mock-transfected cells. Finally, I-TAC increased cytosolic Ca(2+) and activated the extracellular signal-regulated kinase, p38, and phosphatidylinositol 3-kinase (PI 3-kinase)/protein kinase B kinases only in CXCR3-A-transfected cells. These data indicate that the CXCR3 receptor is expressed by human type II pneumocytes, and the CXCR3-A splice variant mediates chemotactic responses possibly through Ca(2+) activation of both mitogen-activated protein kinase and PI 3-kinase signaling pathways. Expression of CXCR3 in alveolar epithelial cells may be important in pneumocyte repair from injury.

  2. Activated Type 2 Innate Lymphoid Cells regulate Beige Fat Biogenesis

    Science.gov (United States)

    Lee, Min-Woo; Odegaard, Justin I.; Mukundan, Lata; Qiu, Yifu; Molofsky, Ari B.; Nussbaum, Jesse C.; Yun, Karen; Locksley, Richard M.; Chawla, Ajay

    2014-01-01

    SUMMARY Type 2 innate lymphoid cells (ILC2s), an innate source of the type 2 cytokines interleukin (IL)-5 and -13, participate in the maintenance of tissue homeostasis. Although type 2 immunity is critically important for mediating metabolic adaptations to environmental cold, the functions of ILC2s in beige or brown fat development are poorly defined. We report here that activation of ILC2s by IL-33 is sufficient to promote the growth of functional beige fat in thermoneutral mice. Mechanistically, ILC2 activation results in the proliferation of bipotential adipocyte precursors (APs) and their subsequent commitment to the beige fat lineage. Loss- and gain-of-function studies reveal that ILC2-and eosinophil-derived type 2 cytokines stimulate signaling via the IL-4Rα in PDGFRα+ APs to promote beige fat biogenesis. Together, our results highlight a critical role for ILC2s and type 2 cytokines in the regulation of adipocyte precursor numbers and fate, and as a consequence, adipose tissue homeostasis. PMID:25543153

  3. Physical Activity in Adolescent Females with Type 1 Diabetes

    Directory of Open Access Journals (Sweden)

    Bahareh Schweiger

    2010-01-01

    Full Text Available Objective. We sought to identify amount of physical activity and relationship of physical activity to glycemic control among adolescent females 11 to 19 years of age with type 1 diabetes mellitus (T1DM. We also sought to evaluate associations of age and ethnicity with physical activity levels. Research Design and Methods. Adolescent females ages 11–19 years (n=203 were recruited during their outpatient diabetes appointment. Physical activity was obtained by self-report and was categorized as the number of days subjects had accumulated 60 minutes of moderate-to-vigorous physical activity during the past 7 days and for a typical week. Results. Girls reported being physically active for at least 60 minutes per day on 2.7±2.3 days in the last week, and on 3.1±2.2 days in a typical week. A greater number of physically active days in a typical week were associated with lower A1c (P=.049 in linear regression analysis. Conclusion. Adolescent females with T1DM report exercising for at least 60 minutes about 3 days per week, which does not meet the international recommendations of 60 minutes of moderate-to-vigorous activity per day. It is particularly important that adolescent girls with T1DM be encouraged to exercise since a greater number of physically active days per week is associated with better glycemic control.

  4. Antiangiogenic effect of angiotensin II type 2 receptor in ischemia-induced angiogenesis in mice hindlimb.

    Science.gov (United States)

    Silvestre, Jean-Sébastien; Tamarat, Radia; Senbonmatsu, Takaaki; Icchiki, Toshihiro; Ebrahimian, Teni; Iglarz, Marc; Besnard, Sandrine; Duriez, Micheline; Inagami, Tadashi; Lévy, Bernard I

    2002-05-31

    This study examined the potential role of angiotensin type 2 (AT(2)) receptor on angiogenesis in a model of surgically induced hindlimb ischemia. Ischemia was produced by femoral artery ligature in both wild-type and AT(2) gene-deleted mice (Agtr2(-)/Y). After 28 days, angiogenesis was quantitated by microangiography, capillary density measurement, and laser Doppler perfusion imaging. Protein levels of vascular endothelial growth factor (VEGF), endothelial nitric oxide synthase (eNOS), Bax, and Bcl-2 were determined by Western blot analysis in hindlimbs. The AT(2) mRNA level (assessed by semiquantitative RT-PCR) was increased in the ischemic hindlimb of wild-type mice. Angiographic vessel density and laser Doppler perfusion data showed significant improvement in ischemic/nonischemic leg ratio, 1.9- and 1.7-fold, respectively, in Agtr2(-)/Y mice compared with controls. In ischemic leg of Agtr2(-)/Y mice, revascularization was associated with an increase in the antiapoptotic protein content, Bcl-2 (211% of basal), and a decrease (60% of basal) in the number of cell death, determined by TUNEL method. Angiotensin II treatment (0.3 mg/kg per day) raised angiogenic score, blood perfusion, and both VEGF and eNOS protein content in ischemic leg of wild-type control but did not modulate the enhanced angiogenic response observed in untreated Agtr2(-)/Y mice. Finally, immunohistochemistry analysis revealed that VEGF was mainly localized to myocyte, whereas eNOS-positive staining was mainly observed in the capillary of ischemic leg of both wild-type and AT(2)-deficient mice. This study demonstrates for the first time that the AT(2) receptor subtype may negatively modulate ischemia-induced angiogenesis through an activation of the apoptotic process.

  5. Photocatalytic activity of glass ceramics containing Nasicon-type crystals

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Jie, E-mail: fu@ohara-inc.co.jp [R and D Department, Ohara Inc., Sagamihara-shi, Kanagawa 252-5286 (Japan)

    2013-01-15

    Graphical abstract: Display Omitted Highlights: ► Glass ceramics containing Nasicon-type crystals were prepared. ► The glass ceramics showed photocatalytic activity under UV irradiation. ► Higher activity was observed in the MgTi{sub 4}(PO{sub 4}){sub 6}- and CaTi{sub 4}(PO{sub 4}){sub 6}-containing glass ceramics. -- Abstract: Glass ceramics were prepared by heat-treating MO–TiO{sub 2}–P{sub 2}O{sub 5} (M = Mg, Ca, Sr and Ba) and R{sub 2}O–TiO{sub 2}–P{sub 2}O{sub 5}–SiO{sub 2} (R = Li, Na and K) glasses, and their photocatalytic activity was investigated. The crystalline phases precipitated in the glasses were only Nasicon-type crystals, MTi{sub 4}(PO{sub 4}){sub 6} or RTi{sub 2}(PO{sub 4}){sub 3}. Decomposition experiments of both methylene blue (MB) and acetaldehyde showed that the glass ceramics exhibited effective photocatalytic activity. The activity did not depend on the radius of the M{sup 2+} or R{sup +} ion, and higher activity was observed in the MgTi{sub 4}(PO{sub 4}){sub 6} and CaTi{sub 4}(PO{sub 4}){sub 6} precipitated glass ceramics.

  6. Effect of montelukast on platelet activating factor- and tachykinin induced mucus secretion in the rat

    Directory of Open Access Journals (Sweden)

    Groneberg David A

    2008-02-01

    Full Text Available Abstract Background Platelet activating factor and tachykinins (substance P, neurokinin A, neurokinin B are important mediators contributing to increased airway secretion in the context of different types of respiratory diseases including acute and chronic asthma. Leukotriene receptor antagonists are recommended as add-on therapy for this disease. The cys-leukotriene-1 receptor antagonist montelukast has been used in clinical asthma therapy during the last years. Besides its inhibitory action on bronchoconstriction, only little is known about its effects on airway secretions. Therefore, the aim of this study was to evaluate the effects of montelukast on platelet activating factor- and tachykinin induced tracheal secretory activity. Methods The effects of montelukast on platelet activating factor- and tachykinin induced tracheal secretory activity in the rat were assessed by quantification of secreted 35SO4 labelled mucus macromolecules using the modified Ussing chamber technique. Results Platelet activating factor potently stimulated airway secretion, which was completely inhibited by the platelet activating factor receptor antagonist WEB 2086 and montelukast. In contrast, montelukast had no effect on tachykinin induced tracheal secretory activity. Conclusion Cys-leukotriene-1 receptor antagonism by montelukast reverses the secretagogue properties of platelet activating factor to the same degree as the specific platelet activating factor antagonist WEB 2086 but has no influence on treacheal secretion elicited by tachykinins. These results suggest a role of montelukast in the signal transduction pathway of platelet activating factor induced secretory activity of the airways and may further explain the beneficial properties of cys-leukotriene-1 receptor antagonists.

  7. Urinary heparanase activity in patients with Type 1 and Type 2 diabetes.

    Science.gov (United States)

    Rops, Angelique L W M M; van den Hoven, Mabel J; Veldman, Bart A; Salemink, Simone; Vervoort, Gerald; Elving, Lammy D; Aten, Jan; Wetzels, Jack F; van der Vlag, Johan; Berden, Jo H M

    2012-07-01

    A reduced heparan sulphate (HS) expression in the glomerular basement membrane of patients with overt diabetic nephropathy is associated with an increased glomerular heparanase expression. We investigated the possible association of urinary heparanase activity with the development of proteinuria in patients with Type 1 diabetes (T1D), Type 2 diabetes (T2D), or membranous glomerulopathy (MGP) as non-diabetic disease controls. Heparanase activity, albumin, HS and creatinine were measured in the urine of patients with T1D (n=58) or T2D (n=31), in patients with MGP (n=52) and in healthy controls (n=10). Heparanase messenger RNA (mRNA) expression in leukocytes was determined in a subgroup of patients with T1D (n=19). Urinary heparanase activity was increased in patients with T1D and T2D, which was more prominent in patients with macroalbuminuria, whereas no activity could be detected in healthy controls. Albuminuria levels were associated with increased urinary heparanase activity in diabetic patients (r=0.20; P<0.05) but not in patients with MGP (r=0.11; P=0.43). A lower urinary heparanase activity was observed in diabetic patients treated with inhibitors of the renin-angiotensin-aldosterone system (RAAS), when compared to diabetic patients treated with other anti-hypertensives. Additionally, urinary heparanase activity was associated with age in T1D and MGP. In MGP, heparanase activity and β2-microglobulin excretion correlated. In patients with T1D, no differences in heparanase mRNA expression in leukocytes could be observed. Urinary heparanase activity is increased in diabetic patients with proteinuria. However, whether increased heparanase activity is a cause or consequence of proteinuria requires additional research.

  8. Transepithelial activation of human leukocytes by probiotics and commensal bacteria: Role of Enterobacteriaceae-type endotoxin

    DEFF Research Database (Denmark)

    Baeuerlein, Annette; Ackermann, Stefanie; Parlesak, Alexandr

    2009-01-01

    The goal of the current study was to clarify whether commercially available probiotics induce greater trans-epithelial activation of human leukocytes than do commensal, food-derived and pathogenic bacteria and to identify the compounds responsible for this activation. Eleven different bacterial...... Escherichia coli K12, probiotic E. coli Nissle, EPEC) induced basolateral production of TNF-alpha, IFN-gamma, IL 6, 8, and 10. Gram-positive probiotics (Lactobacillus spp. and Bifidobacterium spp.) had virtually no effect. In addition, commensals (Enterococcus faecalis, Bacteroides vulgatus) and food...... (polymyxin, colistin) completely abrogated transepithelial activation of leukocytes. Enterobacteriaceae-type endotoxin is a crucial factor in transepithelial stimulation of leukocytes, regardless of whether it is produced by probiotics or other bacteria. Hence, transepithelial stimulation of leukocytes...

  9. Human Immunodeficiency Virus Type 1 Vpr Induces DNA Replication Stress In Vitro and In Vivo▿

    Science.gov (United States)

    Zimmerman, Erik S.; Sherman, Michael P.; Blackett, Jana L.; Neidleman, Jason A.; Kreis, Christophe; Mundt, Pamela; Williams, Samuel A.; Warmerdam, Maria; Kahn, James; Hecht, Frederick M.; Grant, Robert M.; de Noronha, Carlos M. C.; Weyrich, Andrew S.; Greene, Warner C.; Planelles, Vicente

    2006-01-01

    The human immunodeficiency virus type 1 (HIV-1) viral protein R (Vpr) causes cell cycle arrest in G2. Vpr-expressing cells display the hallmarks of certain forms of DNA damage, specifically activation of the ataxia telangiectasia mutated and Rad3-related kinase, ATR. However, evidence that Vpr function is relevant in vivo or in the context of viral infection is still lacking. In the present study, we demonstrate that HIV-1 infection of primary, human CD4+ lymphocytes causes G2 arrest in a Vpr-dependent manner and that this response requires ATR, as shown by RNA interference. The event leading to ATR activation in CD4+ lymphocytes is the accumulation of replication protein A in nuclear foci, an indication that Vpr likely induces stalling of replication forks. Primary macrophages are refractory to ATR activation by Vpr, a finding that is consistent with the lack of detectable ATR, Rad17, and Chk1 protein expression in these nondividing cells. These observations begin to explain the remarkable resilience of macrophages to HIV-1-induced cytopathicity. To study the in vivo consequences of Vpr function, we isolated CD4+ lymphocytes from HIV-1-infected individuals and interrogated the cell cycle status of anti-p24Gag-immunoreactive cells. We report that infected cells in vivo display an aberrant cell cycle profile whereby a majority of cells have a 4N DNA content, consistent with the onset of G2 arrest. PMID:16956949

  10. Acrylamide inhibits nerve sprouting induced by botulinum toxin type A

    Institute of Scientific and Technical Information of China (English)

    Hong Jiang; Yi Xiang; Xingyue Hu; Huaying Cai

    2014-01-01

    Botulinum toxin type A is a potent muscle relaxant that blocks the transmission and release of acetylcholine at the neuromuscular junction. Intramuscular injection of botulinum toxin type A has served as an effective and safe therapy for strabismus and focal dystonia. However, muscular weakness is temporary and after 3-4 months, muscle strength usually recovers because function-al recovery is mediated by nerve sprouting and reconstruction of the neuromuscular junction. Acrylamide may produce neurotoxic substances that cause retrograde necrotizing neuropathy and inhibit nerve sprouting caused by botulinum toxin type A. This study investigated whether acrylamide inhibits nerve sprouting after intramuscular injection of botulinum toxin type A. A tibial nerve sprouting model was established through local injection of botulinum toxin type A into the right gastrocnemius muscle of Sprague-Dawley rats. Following intramuscular injection, rats were given intraperitoneal injection of 3%acrylamide every 3 days for 21 days. Nerve sprout-ing appeared 2 weeks after intramuscular injection of botulinum toxin type A and single-fiber electromyography revealed abnormal conduction at the neuromuscular junction 1 week after intra-muscular injection of botulinum toxin type A. Following intraperitoneal injection of acrylamide, the peak muscle ifber density decreased. Electromyography jitter value were restored to normal levels 6 weeks after injection. This indicates that the maximal decrease in ifber density and the time at which functional conduction of neuromuscular junction was restored were delayed. Addition-ally, the increase in tibial nerve ifbers was reduced. Acrylamide inhibits nerve sprouting caused by botulinum toxin type A and may be used to prolong the clinical dosage of botulinum toxin type A.

  11. Protease-activated receptor 1 and 2 contribute to angiotensin II-induced activation of adventitial fibroblasts from rat aorta

    Energy Technology Data Exchange (ETDEWEB)

    He, Rui-Qing; Tang, Xiao-Feng; Zhang, Bao-Li [State Key Laboratory of Medical Genetics, Shanghai Key Laboratory of Hypertension and Department of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (China); Shanghai Institute of Hypertension, Shanghai (China); Li, Xiao-Dong [State Key Laboratory of Medical Genetics, Shanghai Key Laboratory of Hypertension and Department of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (China); Laboratory of Vascular Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai (China); Shanghai Institute of Hypertension, Shanghai (China); Hong, Mo-Na [State Key Laboratory of Medical Genetics, Shanghai Key Laboratory of Hypertension and Department of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (China); Shanghai Institute of Hypertension, Shanghai (China); Chen, Qi-Zhi [Shanghai Institute of Hypertension, Shanghai (China); Han, Wei-Qing, E-mail: whan020@gmail.com [State Key Laboratory of Medical Genetics, Shanghai Key Laboratory of Hypertension and Department of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (China); Laboratory of Vascular Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai (China); Shanghai Institute of Hypertension, Shanghai (China); Gao, Ping-Jin, E-mail: gaopingjin@sibs.ac.cn [State Key Laboratory of Medical Genetics, Shanghai Key Laboratory of Hypertension and Department of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (China); Laboratory of Vascular Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai (China); Shanghai Institute of Hypertension, Shanghai (China)

    2016-04-29

    Adventitial fibroblasts (AFs) can be activated by angiotensin II (Ang II) and exert pro-fibrotic and pro-inflammatory effects in vascular remodeling. Protease-activated receptor (PAR) 1 and 2 play a significant role in fibrogenic and inflammatory diseases. The present study hypothesized that PAR1 and PAR2 are involved in Ang II-induced AF activation and contribute to adventitial remodeling. We found that direct activation of PAR1 and PAR2 with PAR1-AP and PAR2-AP led to AF activation, including proliferation and differentiation of AFs, extracellular matrix synthesis, as well as production of pro-fibrotic cytokine TGF-β and pro-inflammatory cytokines IL-6 and MCP-1. Furthermore, PAR1 and PAR2 mediated Ang II-induced AF activation, since both PAR1 and PAR2 antagonists inhibited Ang II-induced proliferation, migration, differentiation, extracellular matrix synthesis and production of pro-fibrotic and pro-inflammatory cytokines in AFs. Finally, mechanistic study showed that Ang II, via Ang II type I receptor (AT1R), upregulated both PAR1 and PAR2 expression, and transactivated PAR1 and PAR2, as denoted by internalization of both proteins. In conclusion, our results suggest that PAR1 and PAR2 play a critical role in Ang II-induced AF activation, and this may contribute to adventitia-related pathological changes. - Highlights: • Direct activation of PAR1 and PAR2 led to adventitial fibroblast (AF) activation. • PAR1 and PAR2 antagonists attenuated Ang II-induced AF activation. • Ang II induced the upregulation and transactivation of PAR1/PAR2 in AFs.

  12. Ozone-Induced Nasal Type 2 Immunity in Mice Is Dependent on Innate Lymphoid Cells.

    Science.gov (United States)

    Kumagai, Kazuyoshi; Lewandowski, Ryan; Jackson-Humbles, Daven N; Li, Ning; Van Dyken, Steven J; Wagner, James G; Harkema, Jack R

    2016-06-01

    Epidemiological studies suggest that elevated ambient concentrations of ozone are associated with activation of eosinophils in the nasal airways of atopic and nonatopic children. Mice repeatedly exposed to ozone develop eosinophilic rhinitis and type 2 immune responses. In this study, we determined the role of innate lymphoid cells (ILCs) in the pathogenesis of ozone-induced eosinophilic rhinitis by using lymphoid-sufficient C57BL/6 mice, Rag2(-/-) mice that are devoid of T cells and B cells, and Rag2(-/-)Il2rg(-/-) mice that are depleted of all lymphoid cells including ILCs. The animals were exposed to 0 or 0.8 ppm ozone for 9 consecutive weekdays (4 h/d). Mice were killed 24 hours after exposure, and nasal tissues were selected for histopathology and gene expression analysis. ILC-sufficient C57BL/6 and Rag2(-/-) mice exposed to ozone developed marked eosinophilic rhinitis and epithelial remodeling (e.g., epithelial hyperplasia and mucous cell metaplasia). Chitinase-like proteins and alarmins (IL-33, IL-25, and thymic stromal lymphopoietin) were also increased morphometrically in the nasal epithelium of ozone-exposed C57BL/6 and Rag2(-/-) mice. Ozone exposure elicited increased expression of Il4, Il5, Il13, St2, eotaxin, MCP-2, Gob5, Arg1, Fizz1, and Ym2 mRNA in C57BL/6 and Rag2(-/-) mice. In contrast, ozone-exposed ILC-deficient Rag2(-/-)Il2rg(-/-) mice had no nasal lesions or overexpression of Th2- or ILC2-related transcripts. These results indicate that ozone-induced eosinophilic rhinitis, nasal epithelial remodeling, and type 2 immune activation are dependent on ILCs. To the best of our knowledge, this is the first study to demonstrate that ILCs play an important role in the nasal pathology induced by repeated ozone exposure.

  13. Plasminogen activator inhibitor (type-1) in rat adrenal medulla.

    Science.gov (United States)

    Eriksen, J; Kristensen, P; Pyke, C; Danø, K

    1989-01-01

    Plasminogen activator inhibitor type-1 (PAI-1) was identified in extracts of rat adrenal medulla, and its immunohistochemical localization was studied together with that of tissue-type plasminogen activator (t-PA). By staining of adjacent sections and by double-staining of the same section we demonstrate that the same cells of the adrenal medulla contain both PAI-1 and t-PA immunoreactivity in the cytoplasm. In addition a few ganglion cells of the adrenal medulla were found to contain PAI-1 but not t-PA. Neither of the components were found in the adrenal cortex. Analysis of extracts from isolated adrenal medulla using reverse zymography showed the presence of a plasminogen activator inhibitor with Mr approximately 46,000. The inhibitory activity disappeared when the extract was passed through a column with sepharose-coupled anti-PAI-1 IgG, while the run-through from a similar column coupled with preimmune IgG still contained the inhibitor. The present findings suggest that PAI-1 could play a role in the regulation of t-PA activity in the rat adrenal gland medullary cells.

  14. Graphene active plasmonic metamaterials for new types of terahertz lasers

    Science.gov (United States)

    Otsuji, Taiichi; Watanabe, Takayuki; Satou, Akira; Popov, Vyacheslav; Ryzhii, Victor

    2013-05-01

    This paper reviews recent advances in graphene active plasmonic metamaterials for new types of terahertz lasers. We theoretically discovered that when the population of Dirac Fermionic carriers in graphene are inverted by optical or electrical pumping the excitation of graphene plasmons by the THz photons results in propagating surface plasmon polaritons with giant gain in a wide THz range. Furthermore, when graphene is patterned in a micro- or nano-ribbon array by grating gate metallization, the structure acts as an active plasmonic metamaterial, providing a super-radiant plasmonic lasing with giant gain at the plasmon modes in a wide THz frequency range.

  15. New World hantaviruses activate IFNlambda production in type I IFN-deficient vero E6 cells.

    Directory of Open Access Journals (Sweden)

    Joseph Prescott

    Full Text Available Hantaviruses indigenous to the New World are the etiologic agents of hantavirus cardiopulmonary syndrome (HCPS. These viruses induce a strong interferon-stimulated gene (ISG response in human endothelial cells. African green monkey-derived Vero E6 cells are used to propagate hantaviruses as well as many other viruses. The utility of the Vero E6 cell line for virus production is thought to owe to their lack of genes encoding type I interferons (IFN, rendering them unable to mount an efficient innate immune response to virus infection. Interferon lambda, a more recently characterized type III IFN, is transcriptionally controlled much like the type I IFNs, and activates the innate immune system in a similar manner.We show that Vero E6 cells respond to hantavirus infection by secreting abundant IFNlambda. Three New World hantaviruses were similarly able to induce IFNlambda expression in this cell line. The IFNlambda contained within virus preparations generated with Vero E6 cells independently activates ISGs when used to infect several non-endothelial cell lines, whereas innate immune responses by endothelial cells are specifically due to viral infection. We show further that Sin Nombre virus replicates to high titer in human hepatoma cells (Huh7 without inducing ISGs.Herein we report that Vero E6 cells respond to viral infection with a highly active antiviral response, including secretion of abundant IFNlambda. This cytokine is biologically active, and when contained within viral preparations and presented to human epithelioid cell lines, results in the robust activation of innate immune responses. We also show that both Huh7 and A549 cell lines do not respond to hantavirus infection, confirming that the cytoplasmic RNA helicase pathways possessed by these cells are not involved in hantavirus recognition. We demonstrate that Vero E6 actively respond to virus infection and inhibiting IFNlambda production in these cells might increase their utility

  16. RIP3 induces apoptosis independent of pronecrotic kinase activity.

    Science.gov (United States)

    Mandal, Pratyusha; Berger, Scott B; Pillay, Sirika; Moriwaki, Kenta; Huang, Chunzi; Guo, Hongyan; Lich, John D; Finger, Joshua; Kasparcova, Viera; Votta, Bart; Ouellette, Michael; King, Bryan W; Wisnoski, David; Lakdawala, Ami S; DeMartino, Michael P; Casillas, Linda N; Haile, Pamela A; Sehon, Clark A; Marquis, Robert W; Upton, Jason; Daley-Bauer, Lisa P; Roback, Linda; Ramia, Nancy; Dovey, Cole M; Carette, Jan E; Chan, Francis Ka-Ming; Bertin, John; Gough, Peter J; Mocarski, Edward S; Kaiser, William J

    2014-11-20

    Receptor-interacting protein kinase 3 (RIP3 or RIPK3) has emerged as a central player in necroptosis and a potential target to control inflammatory disease. Here, three selective small-molecule compounds are shown to inhibit RIP3 kinase-dependent necroptosis, although their therapeutic value is undermined by a surprising, concentration-dependent induction of apoptosis. These compounds interact with RIP3 to activate caspase 8 (Casp8) via RHIM-driven recruitment of RIP1 (RIPK1) to assemble a Casp8-FADD-cFLIP complex completely independent of pronecrotic kinase activities and MLKL. RIP3 kinase-dead D161N mutant induces spontaneous apoptosis independent of compound, whereas D161G, D143N, and K51A mutants, like wild-type, only trigger apoptosis when compound is present. Accordingly, RIP3-K51A mutant mice (Rip3(K51A/K51A)) are viable and fertile, in stark contrast to the perinatal lethality of Rip3(D161N/D161N) mice. RIP3 therefore holds both necroptosis and apoptosis in balance through a Ripoptosome-like platform. This work highlights a common mechanism unveiling RHIM-driven apoptosis by therapeutic or genetic perturbation of RIP3.

  17. An Engineered Herpesvirus Activates Dendritic Cells and Induces Protective Immunity

    Science.gov (United States)

    Ma, Yijie; Chen, Min; Jin, Huali; Prabhakar, Bellur S.; Valyi-Nagy, Tibor; He, Bin

    2017-01-01

    Herpes simplex viruses (HSV) are human pathogens that switch between lytic and latent infection. While attenuated HSV is explored for vaccine, the underlying event remains poorly defined. Here we report that recombinant HSV-1 with a mutation in the γ134.5 protein, a virulence factor, stimulates dendritic cell (DC) maturation which is dependent on TANK-binding kinase 1 (TBK1). When exposed to CD11+ DCs, the mutant virus that lacks the amino terminus of γ134.5 undergoes temporal replication without production of infectious virus. Mechanistically, this leads to sequential phosphorylation of interferon regulatory factor 3 (IRF3) and p65/RelA. In correlation, DCs up-regulate the expression of co-stimulatory molecules and cytokines. However, selective inhibition of TBK1 precludes phosphorylation of IRF3 and subsequent DC activation by the γ134.5 mutant. Herein, the γ134.5 mutant is immune-stimulatory and non-destructive to DCs. Remarkably, upon immunization the γ134.5 mutant induces protection against lethal challenge by the wild type virus, indicative of its vaccine potential. Furthermore, CD11+ DCs primed by the γ134.5 mutant in vivo mediate protection upon adoptive transfer. These results suggest that activation of TBK1 by engineered HSV is crucial for DC maturation, which may contribute to protective immunity. PMID:28150813

  18. Verification of a characterization method of the laser-induced selective activation based on industrial lasers

    DEFF Research Database (Denmark)

    Zhang, Yang; Hansen, Hans Nørgaard; Tang, Peter T.

    2013-01-01

    In this article, laser-induced selective activation (LISA) for subsequent autocatalytic copper plating is performed by several types of industrial scale lasers, including a Nd:YAG laser, a UV laser, a fiber laser, a green laser, and a short pulsed laser. Based on analysis of all the laser-machine...

  19. Physical Activity: The Forgotten Tool for Type 2 Diabetes Management

    Directory of Open Access Journals (Sweden)

    Sheri R. Colberg

    2012-05-01

    Full Text Available Individuals who are currently sedentary, unfit, or overweight can benefit metabolically from simply taking breaks from sitting. Since avoidance of sedentary behavior appears to have a large impact on glycemic management, all individuals with type 2 diabetes should be encouraged to minimally engage in greater daily movement to better manage their diabetes and body weight. In addition, engaging in physical activity of any intensity (including low-intensity ones likely positively impacts insulin action and blood glucose control acutely. Moreover, as long as total caloric expenditure during exercise is matched (i.e., total exercise dose, daily exercise may be done every other day instead with the same glycemic results, although at least 150 minutes of weekly physical activity is recommended. Both aerobic and resistance training are important for individuals with diabetes, and ideally a program that combines the two types of training should be undertaken to achieve maximal glycemic and other benefits. Once individuals have successfully implemented more daily movement into their lifestyle, they will be more likely to participate in structured forms of physical activity to gain additional benefits. All clinicians working with individuals with either type 2 diabetes or prediabetes should consider incorporating these suggestions into care plans to improve their patients’ glycemic management.

  20. AMPK activation: a therapeutic target for type 2 diabetes?

    Directory of Open Access Journals (Sweden)

    Coughlan KA

    2014-06-01

    Full Text Available Kimberly A Coughlan, Rudy J Valentine, Neil B Ruderman, Asish K Saha Endocrinology and Diabetes, Department of Medicine, Boston University Medical Center, Boston, MA, USA Abstract: Type 2 diabetes (T2D is a metabolic disease characterized by insulin resistance, β-cell dysfunction, and elevated hepatic glucose output. Over 350 million people worldwide have T2D, and the International Diabetes Federation projects that this number will increase to nearly 600 million by 2035. There is a great need for more effective treatments for maintaining glucose homeostasis and improving insulin sensitivity. AMP-activated protein kinase (AMPK is an evolutionarily conserved serine/threonine kinase whose activation elicits insulin-sensitizing effects, making it an ideal therapeutic target for T2D. AMPK is an energy-sensing enzyme that is activated when cellular energy levels are low, and it signals to stimulate glucose uptake in skeletal muscles, fatty acid oxidation in adipose (and other tissues, and reduces hepatic glucose production. There is substantial evidence suggesting that AMPK is dysregulated in animals and humans with metabolic syndrome or T2D, and that AMPK activation (physiological or pharmacological can improve insulin sensitivity and metabolic health. Numerous pharmacological agents, natural compounds, and hormones are known to activate AMPK, either directly or indirectly – some of which (for example, metformin and thiazolidinediones are currently used to treat T2D. This paper will review the regulation of the AMPK pathway and its role in T2D, some of the known AMPK activators and their mechanisms of action, and the potential for future improvements in targeting AMPK for the treatment of T2D. Keywords: adenosine monophosphate-activated protein kinase, type 2 diabetes, insulin resistance, drug therapy

  1. TRAIL-Induced Caspase Activation Is a Prerequisite for Activation of the Endoplasmic Reticulum Stress-Induced Signal Transduction Pathways.

    Science.gov (United States)

    Lee, Dae-Hee; Sung, Ki Sa; Guo, Zong Sheng; Kwon, William Taehyung; Bartlett, David L; Oh, Sang Cheul; Kwon, Yong Tae; Lee, Yong J

    2016-05-01

    It is well known that tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis can be initially triggered by surface death receptors (the extrinsic pathway) and subsequently amplified through mitochondrial dysfunction (the intrinsic pathway). However, little is known about signaling pathways activated by the TRAIL-induced endoplasmic reticulum (ER) stress response. In this study, we report that TRAIL-induced apoptosis is associated with the endoplasmic reticulum (ER) stress response. Human colorectal carcinoma HCT116 cells were treated with TRAIL and the ER stress-induced signal transduction pathway was investigated. During TRAIL treatment, expression of ER stress marker genes, in particular the BiP (binding immunoglobulin protein) gene, was increased and activation of the PERK (PKR-like ER kinase)-eIF2α (eukaryotic initiation factor 2α)-ATF4 (activating transcription factor 4)-CHOP (CCAAT-enhancer-binding protein homologous protein) apoptotic signal transduction pathway occurred. Experimental data from use of a siRNA (small interfering RNA) technique, caspase inhibitor, and caspase-3-deficient cell line revealed that TRAIL-induced caspase activation is a prerequisite for the TRAIL-induced ER stress response. TRAIL-induced ER stress was triggered by caspase-8-mediated cleavage of BAP31 (B cell receptor-associated protein 31). The involvement of the proapoptotic PERK-CHOP pathway in TRAIL-induced apoptosis was verified by using a PERK knockout (PERK(-/-)) mouse embryo fibroblast (MEF) cell line and a CHOP(-/-) MEF cell line. These results suggest that TRAIL-induced the activation of ER stress response plays a role in TRAIL-induced apoptotic death.

  2. Increased melatonin synthesis in pineal glands of rats in streptozotocin induced type 1 diabetes.

    Science.gov (United States)

    Peschke, Elmar; Wolgast, Sabine; Bazwinsky, Ivonne; Pönicke, Klaus; Muhlbauer, Eckhard

    2008-11-01

    It is well-documented that melatonin influences insulin secretion. The effects are mediated by specific, high-affinity, pertussis-toxin-sensitive, G protein-coupled membrane receptors (MT(1) as well MT(2)), which are present in both the pancreatic tissue and islets of rats and humans, as well as in rat insulinoma cells (INS1). Via the Gi-protein-adenylatecyclase-3',5'-cyclic adenosine monophosphate (cAMP) and, possibly, the guanylatecyclase-cGMP pathways, melatonin decreases insulin secretion, whereas, by activating the Gq-protein-phospholipase C-IP(3) pathway, it has the opposite effect. For further analysis of the interactions between melatonin and insulin, diabetic rats were investigated with respect to melatonin synthesis in the pineal gland and plasma insulin levels. In this context, recent investigations have proven that type 2 diabetic rats and humans display decreased melatonin levels, whereas type 1 diabetic IDDM rats or those with diabetes induced by streptozotocin (STZ) of the present study show increased plasma melatonin levels and elevated AA-NAT-mRNA. Furthermore, the mRNA of pineal insulin receptors and beta1-adrenoceptors, including the clock genes Per1 and Bmal1 and the clock-controlled output gene Dbp, increases in both young and middle-aged STZ rats. The results therefore indicate that the decreased insulin levels in STZ-induced type 1 diabetes are associated with higher melatonin plasma levels. In good agreement with earlier investigations, it was shown that the elevated insulin levels observed in type 2 diabetes, are associated with decreased melatonin levels. The results thus prove that a melatonin-insulin antagonism exists. Astonishingly, notwithstanding the drastic metabolic disturbances in STZ-diabetic rats, the diurnal rhythms of the parameters investigated are maintained.

  3. Stress and radiation-induced activation of multiple intracellular signaling pathways.

    Science.gov (United States)

    Dent, Paul; Yacoub, Adly; Contessa, Joseph; Caron, Ruben; Amorino, George; Valerie, Kristoffer; Hagan, Michael P; Grant, Steven; Schmidt-Ullrich, Rupert

    2003-03-01

    Exposure of cells to a variety of stresses induces compensatory activations of multiple intracellular signaling pathways. These activations can play critical roles in controlling cell survival and repopulation effects in a stress-specific and cell type-dependent manner. Some stress-induced signaling pathways are those normally activated by mitogens such as the EGFR/RAS/PI3K-MAPK pathway. Other pathways activated by stresses such as ionizing radiation include those downstream of death receptors, including pro-caspases and the transcription factor NFKB. This review will attempt to describe some of the complex network of signals induced by ionizing radiation and other cellular stresses in animal cells, with particular attention to signaling by growth factor and death receptors. This includes radiation-induced signaling via the EGFR and IGFI-R to the PI3K, MAPK, JNK, and p38 pathways as well as FAS-R and TNF-R signaling to pro-caspases and NFKB. The roles of autocrine ligands in the responses of cells and bystander cells to radiation and cellular stresses will also be discussed. Based on the data currently available, it appears that radiation can simultaneously activate multiple signaling pathways in cells. Reactive oxygen and nitrogen species may play an important role in this process by inhibiting protein tyrosine phosphatase activity. The ability of radiation to activate signaling pathways may depend on the expression of growth factor receptors, autocrine factors, RAS mutation, and PTEN expression. In other words, just because pathway X is activated by radiation in one cell type does not mean that pathway X will be activated in a different cell type. Radiation-induced signaling through growth factor receptors such as the EGFR may provide radioprotective signals through multiple downstream pathways. In some cell types, enhanced basal signaling by proto-oncogenes such as RAS may provide a radioprotective signal. In many cell types, this may be through PI3K, in others

  4. Transforming growth factor β1 induces the expression of collagen type I by DNA methylation in cardiac fibroblasts.

    Directory of Open Access Journals (Sweden)

    Xiaodong Pan

    Full Text Available Transforming growth factor-beta (TGF-β, a key mediator of cardiac fibroblast activation, has a major influence on collagen type I production. However, the epigenetic mechanisms by which TGF-β induces collagen type I alpha 1 (COL1A1 expression are not fully understood. This study was designed to examine whether or not DNA methylation is involved in TGF-β-induced COL1A1 expression in cardiac fibroblasts. Cells isolated from neonatal Sprague-Dawley rats were cultured and stimulated with TGF-β1. The mRNA levels of COL1A1 and DNA methyltransferases (DNMTs were determined via quantitative polymerase chain reaction and the protein levels of collagen type I were determined via Western blot as well as enzyme-linked immunosorbent assay. The quantitative methylation of the COL1A1 promoter region was analyzed using the MassARRAY platform of Sequenom. Results showed that TGF-β1 upregulated the mRNA expression of COL1A1 and induced the synthesis of cell-associated and secreted collagen type I in cardiac fibroblasts. DNMT1 and DNMT3a expressions were significantly downregulated and the global DNMT activity was inhibited when treated with 10 ng/mL of TGF-β1 for 48 h. TGF-β1 treatment resulted in a significant reduction of the DNA methylation percentage across multiple CpG sites in the rat COL1A1 promoter. Thus, TGF-β1 can induce collagen type I expression through the inhibition of DNMT1 and DNMT3a expressions as well as global DNMT activity, thereby resulting in DNA demethylation of the COL1A1 promoter. These findings suggested that the DNMT-mediated DNA methylation is an important mechanism in regulating the TGF-β1-induced COL1A1 gene expression.

  5. Types of Tracking Errors Induced by Concurrent Secondary Manual Task

    Science.gov (United States)

    Klapp, S. T.; Kelly, P. A.; Battiste, V.; Dunbar, S.

    1984-01-01

    Future one-man helicopters may require the pilot to control flight with one hand, and simultaneously manipulate other instruments using the other hand. The nature of errors induced in a right hand tracking task (simulating flight control) when responses are required by the left hand are examined. The present experiment focused on detection of hesitations in which the tracking joy stick remained motionless for 1/3 sec. or longer.

  6. Physical activity maintains aortic endothelium-dependent relaxation in the obese type 2 diabetic OLETF rat.

    Science.gov (United States)

    Bunker, Aaron K; Arce-Esquivel, Arturo A; Rector, R Scott; Booth, Frank W; Ibdah, Jamal A; Laughlin, M Harold

    2010-06-01

    We tested the hypothesis that physical activity can attenuate the temporal decline of ACh-induced endothelium-dependent relaxation during type 2 diabetes mellitus progression in the Otsuka Long-Evans Tokushima fatty (OLETF) rat. Sedentary OLETF rats exhibited decreased ACh-induced abdominal aortic endothelium-dependent relaxation from 13 to 20 wk of age (20-35%) and from 13 to 40 wk of age (35-50%). ACh-induced endothelium-dependent relaxation was maintained in the physically active OLETF group and control sedentary Long-Evans Tokushima Otsuka (LETO) group from 13 to 40 wk of age. Aortic pretreatment with N(G)-nitro-l-arginine (l-NNA), indomethacin (Indo), and l-NNA + Indo did not alter the temporal decline in ACh-induced endothelium-dependent relaxation. Temporal changes in the protein expression of SOD isoforms in the aortic endothelium or smooth muscle did not contribute to the temporal decline in ACh-induced endothelium-dependent relaxation in sedentary OLETF rats. A significant increase in the 40-wk-old sedentary LETO and physically active OLETF rat aortic phosphorylated endothelial nitric oxide (p-eNOS)-to-eNOS ratio was observed versus 13- and 20-wk-old rats in each group that was not seen in the 40- versus 13- and 20-wk-old sedentary OLETF rats. These results suggest that temporal changes in the antioxidant system, EDHF, and cycloxygenase metabolite production in sedentary OLETF rat aortas do not contribute to the temporal decline in sedentary OLETF rat aortic ACh-induced endothelium-dependent relaxation seen with type 2 diabetes mellitus progression. We also report that physical activity in conjunction with aging in the OLETF rat results in a temporal increase in the aortic endothelial p-eNOS-to-eNOS ratio that was not seen in sedentary OLETF rats. These results suggest that the sustained aortic ACh-induced endothelium-dependent relaxation in aged physically active OLETF rats may be the result of an increase in active aortic eNOS.

  7. Mitogen-Activated Protein Kinase–Activated Protein Kinase 2 in Angiotensin II–Induced Inflammation and Hypertension

    Science.gov (United States)

    Ebrahimian, Talin; Li, Melissa Wei; Lemarié, Catherine A.; Simeone, Stefania M.C.; Pagano, Patrick J.; Gaestel, Matthias; Paradis, Pierre; Wassmann, Sven; Schiffrin, Ernesto L.

    2015-01-01

    Vascular oxidative stress and inflammation play an important role in angiotensin II–induced hypertension, and mitogen-activated protein kinases participate in these processes. We questioned whether mitogen-activated protein kinase–activated protein kinase 2 (MK2), a downstream target of p38 mitogen–activated protein kinase, is involved in angiotensin II–induced vascular responses. In vivo experiments were performed in wild-type and Mk2 knockout mice infused intravenously with angiotensin II. Angiotensin II induced a 30 mm Hg increase in mean blood pressure in wild-type that was delayed in Mk2 knockout mice. Angiotensin II increased superoxide production and vascular cell adhesion molecule-1 in blood vessels of wild-type but not in Mk2 knockout mice. Mk2 knockdown by small interfering RNA in mouse mesenteric vascular smooth muscle cells caused a 42% reduction in MK2 protein and blunted the angiotensin II–induced 40% increase of MK2 expression. Mk2 knockdown blunted angiotensin II–induced doubling of intracellular adhesion molecule-1 expression, 2.4-fold increase of nuclear p65, and 1.4-fold increase in Ets-1. Mk2 knockdown abrogated the angiotensin II–induced 4.7-fold and 1.3-fold increase of monocyte chemoattractant protein-1 mRNA and protein. Angiotensin II enhanced reactive oxygen species levels (by 29%) and nicotinamide adenine dinucleotide phosphate oxidase activity (by 48%), both abolished by Mk2 knockdown. Reduction of MK2 blocked angiotensin II–induced p47phox translocation to the membrane, associated with a 53% enhanced catalase expression. Angiotensin II–induced increase of MK2 was prevented by the nicotinamide adenine dinucleotide phosphate oxidase inhibitor Nox2ds-tat. Mk2 small interfering RNA prevented the angiotensin II–induced 30% increase of proliferation. In conclusion, MK2 plays a critical role in angiotensin II signaling, leading to hypertension, oxidative stress via activation of p47phox and inhibition of antioxidants, and

  8. Botulinum neurotoxin type A induces TLR2-mediated inflammatory responses in macrophages.

    Directory of Open Access Journals (Sweden)

    Yun Jeong Kim

    Full Text Available Botulinum neurotoxin type A (BoNT/A is the most potent protein toxin and causes fatal flaccid muscle paralysis by blocking neurotransmission. Application of BoNT/A has been extended to the fields of therapeutics and biodefense. Nevertheless, the global response of host immune cells to authentic BoNT/A has not been reported. Employing microarray analysis, we performed global transcriptional profiling of RAW264.7 cells, a murine alveolar macrophage cell line. We identified 70 genes that were modulated following 1 nM BoNT/A treatment. The altered genes were mainly involved in signal transduction, immunity and defense, protein metabolism and modification, neuronal activities, intracellular protein trafficking, and muscle contraction. Microarray data were validated with real-time RT-PCR for seven selected genes including tlr2, tnf, inos, ccl4, slpi, stx11, and irg1. Proinflammatory mediators such as nitric oxide (NO and tumor necrosis factor alpha (TNFα were induced in a dose-dependent manner in BoNT/A-stimulated RAW264.7 cells. Increased expression of these factors was inhibited by monoclonal anti-Toll-like receptor 2 (TLR2 and inhibitors specific to intracellular proteins such as c-Jun N-terminal kinase (JNK, extracellular signal-regulated kinase (ERK, and p38 mitogen-activated protein kinase (MAPK. BoNT/A also suppressed lipopolysaccharide-induced NO and TNFα production from RAW264.7 macrophages at the transcription level by blocking activation of JNK, ERK, and p38 MAPK. As confirmed by TLR2-/- knock out experiments, these results suggest that BoNT/A induces global gene expression changes in host immune cells and that host responses to BoNT/A proceed through a TLR2-dependent pathway, which is modulated by JNK, ERK, and p38 MAPK.

  9. Dichloroacetate Decreases Cell Health and Activates Oxidative Stress Defense Pathways in Rat Alveolar Type II Pneumocytes

    Directory of Open Access Journals (Sweden)

    Alexis Valauri-Orton

    2015-01-01

    Full Text Available Dichloroacetate (DCA is a water purification byproduct that is known to be hepatotoxic and hepatocarcinogenic and to induce peripheral neuropathy and damage macrophages. This study characterizes the effects of the haloacetate on lung cells by exposing rat alveolar type II (L2 cells to 0–24 mM DCA for 6–24 hours. Increasing DCA concentration and the combination of increasing DCA concentration plus longer exposures decrease measures of cellular health. Length of exposure has no effect on oxidative stress biomarkers, glutathione, SOD, or CAT. Increasing DCA concentration alone does not affect total glutathione or its redox ratio but does increase activity in the SOD/CAT oxidative stress defense pathway. These data suggest that alveolar type II cells rely on SOD and CAT more than glutathione to combat DCA-induced stress.

  10. Understanding Activity Cycles of Solar Type Stars with Kepler

    Science.gov (United States)

    Tovar, Guadalupe; Montet, Benjamin; Johnson, John A.

    2017-01-01

    As the era of exploring new worlds and systems advances we seek to answer the question: How common is our Sun? There is considerable evidence about the recurring activity cycles of our Sun but very little is known about the activity cycles of other stars. By calibrating the full frame images from the original Kepler mission that were taken once a month over the course of four years, we are able to do relative photometry on roughly 5 million stars. By building a model of the pixel response function we were able to achieve 0.8% precision photometry. We identify 50,000 solar type stars based on magnitude, surface gravity, and temperature cuts. We observe the relative increase and decrease in brightness of the stars indicating signs of activity cycles similar to our Sun. We continue to explore how a data driven pixel response function model could improve our precision to 0.1% photometry measurements.

  11. Muscle activation of paraspinal muscles in different types of high heels during standing.

    Science.gov (United States)

    Han, Dongwook

    2015-01-01

    [Purpose] This study researched the effects of different types of high heels on the muscles surrounding the cervical spine, the thoracic spine, and the lumbar spine by analyzing muscle activation of the paraspinal muscles during standing while wearing high heels. The high heels were all of the same height: 8 cm. [Subjects and Methods] The 28 subjects in this experiment were females in their 20s with a foot size of 225-230 mm and a normal gait pattern. To measure the muscle activation of the paraspinal muscles, EMG electrodes were attached on the paraspinal muscles around C6, T7, and L5. The muscle activation during standing while wearing 8-cm-high wedge heels, setback heels, and French heels was then measured. The measurements were performed 3 times each, and the mean value was used for analysis. [Results] The levels of muscle activation of the paraspinal muscles induced by standing on wedge heels, setback heels, and French heels in the cervical and lumbar areas were significantly higher than those induced by standing on bare feet. But there was no significant difference according to the heel types. [Conclusion] The height of the heels presented a greater variable than the width of the heels on the muscle activation of paraspinal muscles. Therefore, wearing high heels is not recommended for those who have pain or functional problems in the cervical and/or lumbar spine.

  12. AMPK activation: a therapeutic target for type 2 diabetes?

    Science.gov (United States)

    Coughlan, Kimberly A; Valentine, Rudy J; Ruderman, Neil B; Saha, Asish K

    2014-01-01

    Type 2 diabetes (T2D) is a metabolic disease characterized by insulin resistance, β-cell dysfunction, and elevated hepatic glucose output. Over 350 million people worldwide have T2D, and the International Diabetes Federation projects that this number will increase to nearly 600 million by 2035. There is a great need for more effective treatments for maintaining glucose homeostasis and improving insulin sensitivity. AMP-activated protein kinase (AMPK) is an evolutionarily conserved serine/threonine kinase whose activation elicits insulin-sensitizing effects, making it an ideal therapeutic target for T2D. AMPK is an energy-sensing enzyme that is activated when cellular energy levels are low, and it signals to stimulate glucose uptake in skeletal muscles, fatty acid oxidation in adipose (and other) tissues, and reduces hepatic glucose production. There is substantial evidence suggesting that AMPK is dysregulated in animals and humans with metabolic syndrome or T2D, and that AMPK activation (physiological or pharmacological) can improve insulin sensitivity and metabolic health. Numerous pharmacological agents, natural compounds, and hormones are known to activate AMPK, either directly or indirectly - some of which (for example, metformin and thiazolidinediones) are currently used to treat T2D. This paper will review the regulation of the AMPK pathway and its role in T2D, some of the known AMPK activators and their mechanisms of action, and the potential for future improvements in targeting AMPK for the treatment of T2D.

  13. Mitogen-activated protein kinases regulate susceptibility to ventilator-induced lung injury.

    Directory of Open Access Journals (Sweden)

    Tamás Dolinay

    Full Text Available BACKGROUND: Mechanical ventilation causes ventilator-induced lung injury in animals and humans. Mitogen-activated protein kinases have been implicated in ventilator-induced lung injury though their functional significance remains incomplete. We characterize the role of p38 mitogen-activated protein kinase/mitogen activated protein kinase kinase-3 and c-Jun-NH(2-terminal kinase-1 in ventilator-induced lung injury and investigate novel independent mechanisms contributing to lung injury during mechanical ventilation. METHODOLOGY AND PRINCIPLE FINDINGS: C57/BL6 wild-type mice and mice genetically deleted for mitogen-activated protein kinase kinase-3 (mkk-3(-/- or c-Jun-NH(2-terminal kinase-1 (jnk1(-/- were ventilated, and lung injury parameters were assessed. We demonstrate that mkk3(-/- or jnk1(-/- mice displayed significantly reduced inflammatory lung injury and apoptosis relative to wild-type mice. Since jnk1(-/- mice were highly resistant to ventilator-induced lung injury, we performed comprehensive gene expression profiling of ventilated wild-type or jnk1(-/- mice to identify novel candidate genes which may play critical roles in the pathogenesis of ventilator-induced lung injury. Microarray analysis revealed many novel genes differentially expressed by ventilation including matrix metalloproteinase-8 (MMP8 and GADD45alpha. Functional characterization of MMP8 revealed that mmp8(-/- mice were sensitized to ventilator-induced lung injury with increased lung vascular permeability. CONCLUSIONS: We demonstrate that mitogen-activated protein kinase pathways mediate inflammatory lung injury during ventilator-induced lung injury. C-Jun-NH(2-terminal kinase was also involved in alveolo-capillary leakage and edema formation, whereas MMP8 inhibited alveolo-capillary protein leakage.

  14. STAT5 activation induced by diabetic LDL depends on LDL glycation and occurs via src kinase activity.

    Science.gov (United States)

    Brizzi, Maria Felice; Dentelli, Patrizia; Gambino, Roberto; Cabodi, Sara; Cassader, Maurizio; Castelli, Ada; Defilippi, Paola; Pegoraro, Luigi; Pagano, Gianfranco

    2002-11-01

    Advanced glycation end products (AGEs) have been implicated in the accelerated vascular injury occurring in diabetes. We recently reported that LDL prepared from type 2 diabetic patients (dm-LDL), but not normal LDL (n-LDL) triggered signal transducers and activators of transcription STAT5 activation and p21(waf) expression in endothelial cells (ECs). The aims of the present study were to investigate the role of LDL glycation in dm-LDL- mediated signals and to analyze the molecular mechanisms leading to STAT5 activation. We found that glycated LDL (gly-LDL) triggered STAT5 activation, the formation of a prolactin inducible element (PIE)-binding complex containing STAT5, and increased p21(waf) expression through the activation of the receptor for AGE (RAGE). We also demonstrated that dm-LDL and gly-LDL, but not n-LDL treatment induced the formation of a stable complex containing the activated STAT5 and RAGE. Moreover, gly-LDL triggered src but not JAK2 kinase activity. Pretreatment with the src kinase inhibitor PP1 abrogated both STAT5 activation and the expression of p21(waf) induced by gly-LDL. Consistently, gly-LDL failed to activate STAT5 in src(-/-) fibroblasts. Collectively, our results provide evidence for the role of glycation in dm-LDL-mediated effects and for a specific role of src kinase in STAT5-dependent p21(waf) expression.

  15. Four possible types of pulses for self-induced transparency

    Science.gov (United States)

    Lee, C. T.

    1974-01-01

    Four types of steady-state solutions were derived for the coupled Maxwell-Bloch equations which describe highly intense pulse propagation in a resonant medium. Essential in the derivation procedures is the replacement of the usual slowly varying envelope approximation with an alternative procedure, the omission of possible nonresonant losses, and the assumption that the relaxation times are infinite.

  16. Macrophage activation induced by Brucella DNA suppresses bacterial intracellular replication via enhancing NO production.

    Science.gov (United States)

    Liu, Ning; Wang, Lin; Sun, Changjiang; Yang, Li; Tang, Bin; Sun, Wanchun; Peng, Qisheng

    2015-12-01

    Brucella DNA can be sensed by TLR9 on endosomal membrane and by cytosolic AIM2-inflammasome to induce proinflammatory cytokine production that contributes to partially activate innate immunity. Additionally, Brucella DNA has been identified to be able to act as a major bacterial component to induce type I IFN. However, the role of Brucella DNA in Brucella intracellular growth remains unknown. Here, we showed that stimulation with Brucella DNA promote macrophage activation in TLR9-dependent manner. Activated macrophages can suppresses wild type Brucella intracellular replication at early stage of infection via enhancing NO production. We also reported that activated macrophage promotes bactericidal function of macrophages infected with VirB-deficient Brucella at the early or late stage of infection. This study uncovers a novel function of Brucella DNA, which can help us further elucidate the mechanism of Brucella intracellular survival.

  17. The different neighbours around Type-1 and Type-2 active galactic nuclei

    CERN Document Server

    Villarroel, Beatriz

    2014-01-01

    One of the most intriguing open issues in galaxy evolution is the structure and evolution of active galactic nuclei (AGN) that emit intense light believed to come from an accretion disk near a super-massive black hole (Rees 1984, Lynden-Bell 1969). To understand the zoo of different AGN classes, it has been suggested that all AGN are the same type of object viewed from different angles (Antonucci 1993). This model -- called AGN unification -- has been successful in predicting e.g. the existence of hidden broad optical lines in the spectrum of many narrow-line AGN. But this model is not unchallenged (Tran 2001) and it is an open problem whether more than viewing angle separates the so-called Type-1 and Type-2 AGN. Here we report the first large-scale study that finds strong differences in the galaxy neighbours to Type-1 and Type-2 AGN with data from the Sloan Digital Sky Survey (SDSS) (York et al. 2000) Data Release 7 (DR7) (Abazajian et al. 2008) and Galaxy Zoo (Lintott et al, 2008, Lintott et al 2011). We fi...

  18. CD95/Fas Increases Stemness in Cancer Cells by Inducing a STAT1 Dependent Type I Interferon Response

    Science.gov (United States)

    Qadir, Abdul S.; Ceppi, Paolo; Brockway, Sonia; Law, Calvin; Mu, Liang; Khodarev, Nikolai N.; Kim, Jung; Zhao, Jonathan C.; Putzbach, William; Murmann, Andrea E.; Chen, Zhuo; Chen, Wenjing; Liu, Xia; Salomon, Arthur R.; Liu, Huiping; Weichselbaum, Ralph R.; Yu, Jindan; Peter, Marcus E.

    2017-01-01

    SUMMARY Stimulation of CD95/Fas drives and maintains cancer stem cells (CSCs). We now report that this involves activation of STAT1, induction of STAT1 regulated genes, and this process is inhibited by active caspases. STAT1 is enriched in CSCs in cancer cell lines, patient-derived human breast cancer, and CD95high expressing glioblastoma neurospheres. CD95 stimulation of cancer cells induced secretion of Type I interferons (IFNs) that bind to Type I IFN receptors, resulting in activation of JAK kinases, activation of STAT1, and induction of a number of STAT1-regulated genes that are part of a gene signature recently linked to therapy resistance in 5 primary human cancers. Consequently, we identified Type I IFNs as drivers of cancer stemness. Knockdown or knock-out of STAT1 resulted in a strongly reduced ability of CD95L or type I IFN to increase cancer stemness. This identifies STAT1 as a key regulator of the CSC-inducing activity of CD95. PMID:28273453

  19. T cells detect intracellular DNA but fail to induce type I IFN responses: implications for restriction of HIV replication.

    Directory of Open Access Journals (Sweden)

    Randi K Berg

    Full Text Available HIV infects key cell types of the immune system, most notably macrophages and CD4+ T cells. Whereas macrophages represent an important viral reservoir, activated CD4+ T cells are the most permissive cell types supporting high levels of viral replication. In recent years, it has been appreciated that the innate immune system plays an important role in controlling HIV replication, e.g. via interferon (IFN-inducible restriction factors. Moreover, innate immune responses are involved in driving chronic immune activation and the pathogenesis of progressive immunodeficiency. Several pattern recognition receptors detecting HIV have been reported, including Toll-like receptor 7 and Retinoic-inducible gene-I, which detects viral RNA. Here we report that human primary T cells fail to induce strong IFN responses, despite the fact that this cell type does express key molecules involved in DNA signaling pathways. We demonstrate that the DNA sensor IFI16 migrates to sites of foreign DNA localization in the cytoplasm and recruits the signaling molecules stimulator of IFN genes and Tank-binding kinase, but this does not result in expression of IFN and IFN-stimulated genes. Importantly, we show that cytosolic DNA fails to affect HIV replication. However, exogenous treatment of activated T cells with type I IFN has the capacity to induce expression of IFN-stimulated genes and suppress HIV replication. Our data suggest the existence of an impaired DNA signaling machinery in T cells, which may prevent this cell type from activating cell-autonomous anti-HIV responses. This phenomenon could contribute to the high permissiveness of CD4+ T cells for HIV-1.

  20. Excitotoxin-induced neuronal degeneration and seizure are mediated by tissue plasminogen activator.

    Science.gov (United States)

    Tsirka, S E; Gualandris, A; Amaral, D G; Strickland, S

    1995-09-28

    Neuronal degeneration in the hippocampus, a region of the brain important for acquisition of memory in humans, occurs in various pathological conditions, including Alzheimer's disease, brain ischaemia and epilepsy. When neuronal activity is stimulated in the adult rat and mouse hippocampus, tissue plasminogen activator (tPA), a serine protease that converts inactive plasminogen to the active protease plasmin, is transcriptionally induced. The activity of tPA in neural tissue is correlated with neurite outgrowth, regeneration and migration, suggesting that it might be involved in neuronal plasticity. Here we show that tPA is produced primarily by microglia in the hippocampus. Using excitotoxins to induce neuronal cell loss, we demonstrate that tPA-deficient mice are resistant to neuronal degeneration. These mice are also less susceptible to pharmacologically induced seizures than wild-type mice. These findings identify a role for tPA in neuronal degeneration and seizure.

  1. Epidermis-type lipoxygenase 3 regulates adipocyte differentiation and peroxisome proliferator-activated receptor gamma activity

    DEFF Research Database (Denmark)

    Hallenborg, Philip; Jørgensen, Claus; Petersen, Rasmus K

    2010-01-01

    differentiation has remained enigmatic. Previously, we showed that lipoxygenase (LOX) activity is involved in activation of PPAR gamma during the early stages of adipocyte differentiation. Of the seven known murine LOXs, only the unconventional LOX epidermis-type lipoxygenase 3 (eLOX3) is expressed in 3T3-L1...

  2. Exercise-induced stem cell activation and its implication for cardiovascular and skeletal muscle regeneration.

    Science.gov (United States)

    Wahl, Patrick; Brixius, Klara; Bloch, Wilhelm

    2008-01-01

    A number of publications have provided evidence that exercise and physical activity are linked to the activation, mobilization, and differentiation of various types of stem cells. Exercise may improve organ regeneration and function. This review summarizes mechanisms by which exercise contributes to stem cell-induced regeneration in the cardiovascular and the skeletal muscle system. In addition, it discusses whether exercise may improve and support stem cell transplantation in situations of cardiovascular disease or muscular dystrophy.

  3. c-Myc-Induced Extrachromosomal Elements Carry Active Chromatin

    Directory of Open Access Journals (Sweden)

    Greg Smith

    2003-03-01

    Full Text Available Murine Pre-13 lymphocytes with experimentally activated MycER show both chromosomal and extrachromosomal gene amplification. In this report, we have elucidated the size, structure, functional components of c-Myc-induced extrachromosomal elements (EEs. Scanning electron microscopy revealed that EEs isolated from MycER-activated Pre-B+ cells are an average of 10 times larger than EEs isolated from non-MycER-activated control Pre-B- cells. We demonstrate that these large c-Myc-induced EEs are associated with histone proteins, whereas EEs of non-MycER-activated Pre B- cells are not. Immunohistochemistry and Western blot analyses using pan -histone-specific, histone H3 phosphorylation-specific, histone H4 acetylation-specific antibodies indicate that a significant proportion of EEs analyzed from MycER-activated cells harbors transcriptionally competent and/or active chromatin. Moreover, these large, c-Myc-induced EEs carry genes. Whereas the total genetic make-up of these c-Myc-induced EEs is unknown, we found that 30.2% of them contain the dihydrofolate reductase (DHFR gene, whereas cyclin C (CCNC was absent. In addition, 50% of these c-Myc-activated Pre-B+ EEs incorporated bromodeoxyuridine (BrdU, identifying them as genetic structures that self-propagate. In contrast, EEs isolated from non-Myc-activated cells neither carry the DHFR gene nor incorporate BrdU, suggesting that c-Myc deregulation generates a new class of EEs.

  4. Interleukin-1-induced neurotoxicity is mediated by glia and requires caspase activation and free radical release.

    Science.gov (United States)

    Thornton, Peter; Pinteaux, Emmanuel; Gibson, Rosemary M; Allan, Stuart M; Rothwell, Nancy J

    2006-07-01

    Interleukin (IL)-1 expression is induced rapidly in response to diverse CNS insults and is a key mediator of experimentally induced neuronal injury. However, the mechanisms of IL-1-induced neurotoxicity are unknown. The aim of the present study was to examine the toxic effects of IL-1 on rat cortical cell cultures. Treatment with IL-1beta did not affect the viability of pure cortical neurones. However, IL-1 treatment of cocultures of neurones with glia or purified astrocytes induced caspase activation resulting in neuronal death. Neuronal cell death induced by IL-1 was prevented by pre-treatment with the IL-1 receptor antagonist, the broad spectrum caspase inhibitor Boc-Asp-(OMe)-CH(2)F or the antioxidant alpha-tocopherol. The NMDA receptor antagonist dizolcipine (MK-801) attenuated cell death induced by low doses of IL-1beta but the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor antagonist 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline (NBQX) had no effect. Inhibition of inducible nitric oxide synthase with N(omega)-nitro-l-arginine methyl ester had no effect on neuronal cell death induced by IL-1beta. Thus, IL-1 activates the IL-1 type 1 receptor in astrocytes to induce caspase-dependent neuronal death, which is dependent on the release of free radicals and may contribute to neuronal cell death in CNS diseases.

  5. Cell type-specific neuroprotective activity of untranslocated prion protein.

    Directory of Open Access Journals (Sweden)

    Elena Restelli

    Full Text Available BACKGROUND: A key pathogenic role in prion diseases was proposed for a cytosolic form of the prion protein (PrP. However, it is not clear how cytosolic PrP localization influences neuronal viability, with either cytotoxic or anti-apoptotic effects reported in different studies. The cellular mechanism by which PrP is delivered to the cytosol of neurons is also debated, and either retrograde transport from the endoplasmic reticulum or inefficient translocation during biosynthesis has been proposed. We investigated cytosolic PrP biogenesis and effect on cell viability in primary neuronal cultures from different mouse brain regions. PRINCIPAL FINDINGS: Mild proteasome inhibition induced accumulation of an untranslocated form of cytosolic PrP in cortical and hippocampal cells, but not in cerebellar granules. A cyclopeptolide that interferes with the correct insertion of the PrP signal sequence into the translocon increased the amount of untranslocated PrP in cortical and hippocampal cells, and induced its synthesis in cerebellar neurons. Untranslocated PrP boosted the resistance of cortical and hippocampal neurons to apoptotic insults but had no effect on cerebellar cells. SIGNIFICANCE: These results indicate cell type-dependent differences in the efficiency of PrP translocation, and argue that cytosolic PrP targeting might serve a physiological neuroprotective function.

  6. Regulation of Activation Induced Deaminase (AID) by Estrogen.

    Science.gov (United States)

    Pauklin, Siim

    2016-01-01

    Regulation of Activation Induced Deaminase (AID) by the hormone estrogen has important implications for understanding adaptive immune responses as well as the involvement of AID in autoimmune diseases and tumorigenesis. This chapter describes the general laboratory techniques for analyzing AID expression and activity induced by estrogen, focusing on the isolation and preparation of cells for hormone treatment and the subsequent analysis of AID responsiveness to estrogen at the RNA level and for determining the regulation of AID activity via estrogen by analyzing Ig switch circle transcripts and mutations in switch region loci.

  7. Protective Effects of Vildagliptin against Pioglitazone-Induced Bone Loss in Type 2 Diabetic Rats

    Science.gov (United States)

    Kwak, Kyung Min; Kim, Ju-Young; Yu, Seung Hee; Lee, Sihoon; Kim, Yeun Sun; Park, Ie Byung; Kim, Kwang-Won; Lee, Kiyoung

    2016-01-01

    Long-term use of thiazolidinediones (TZDs) is associated with bone loss and an increased risk of fracture in patients with type 2 diabetes (T2DM). Incretin-based drugs (glucagon-like peptide-1 (GLP-1) agonists and dipeptidylpeptidase-4 (DPP-4) inhibitors) have several benefits in many systems in addition to glycemic control. In a previous study, we reported that exendin-4 might increase bone mineral density (BMD) by decreasing the expression of SOST/sclerostin in osteocytes in a T2DM animal model. In this study, we investigated the effects of a DPP-4 inhibitor on TZD-induced bone loss in a T2DM animal model. We randomly divided 12-week-old male Zucker Diabetic Fatty (ZDF) rats into four groups; control, vildagliptin, pioglitazone, and vildagliptin and pioglitazone combination. Animals in each group received the respective treatments for 5 weeks. We performed an intraperitoneal glucose tolerance test (IPGTT) before and after treatment. BMD and the trabecular micro-architecture were measured by DEXA and micro CT, respectively, at the end of the treatment. The circulating levels of active GLP-1, bone turnover markers, and sclerostin were assayed. Vildagliptin treatment significantly increased BMD and trabecular bone volume. The combination therapy restored BMD, trabecular bone volume, and trabecular bone thickness that were decreased by pioglitazone. The levels of the bone formation marker, osteocalcin, decreased and that of the bone resorption marker, tartrate-resistant acid phosphatase (TRAP) 5b increased in the pioglitazone group. These biomarkers were ameliorated and the pioglitazone-induced increase in sclerostin level was lowered to control values by the addition of vildagliptin. In conclusion, our results indicate that orally administered vildagliptin demonstrated a protective effect on pioglitazone-induced bone loss in a type 2 diabetic rat model. PMID:27997588

  8. Gödel-type Spacetimes in Induced Matter Gravity Theory

    CERN Document Server

    Carrion, H L; Teixeira, A F F

    1999-01-01

    A five-dimensional (5D) generalized Gödel-type manifolds are examined in the light of the equivalence problem techniques, as formulated by Cartan. The necessary and sufficient conditions for local homogeneity of these 5D manifolds are derived. The local equivalence of these homogeneous Riemannian manifolds is studied. It is found that they are characterized by three essential parameters $k$, $m^2$ and $\\omega$: identical triads $(k, m^2, \\omega)$ correspond to locally equivalent 5D manifolds. An irreducible set of isometrically nonequivalent 5D locally homogeneous Riemannian generalized Gödel-type metrics are exhibited. A classification of these manifolds based on the essential parameters is presented, and the Killing vector fields as well as the corresponding Lie algebra of each class are determined. It is shown that the generalized Gödel-type 5D manifolds admit maximal group of isometry $G_r$ with $r=7$, $r=9$ or $r=15$ depending on the essential parameters $k$, $m^2$ and $\\omega$. The breakdown of causa...

  9. Eye Typing using Markov and Active Appearance Models

    DEFF Research Database (Denmark)

    Hansen, Dan Witzner; Hansen, John Paulin; Nielsen, Mads

    2002-01-01

    multi-modal interactions based on video tracking systems. Robust methods are needed to track the eyes using web cameras due to the poor image quality. A real-time tracking scheme using a mean-shift color tracker and an Active Appearance Model of the eye is proposed. It is possible from this model......We propose a non-intrusive eye tracking system intended for the use of everyday gaze typing using web cameras. We argue that high precision in gaze tracking is not needed for on-screen typing due to natural language redundancy. This facilitates the use of low-cost video components for advanced...... to infer the state of the eye such as eye corners and the pupil location under scale and rotational changes....

  10. EUV Flare Activity in Late-Type Stars

    CERN Document Server

    Audard, M; Drake, J J; Kashyap, V L; Audard, Marc; Guedel, Manuel; Drake, Jeremy J.

    2000-01-01

    \\textit{Extreme Ultraviolet Explorer} Deep Survey observations of cool stars (spectral type F to M) have been used to investigate the distribution of coronal flare rates in energy and its relation to activity indicators and rotation parameters. Cumulative and differential flare rate distributions were constructed and fitted with different methods. Power laws are found to approximately describe the distributions. A trend toward flatter distributions for later-type stars is suggested in our sample. Assuming that the power laws continue below the detection limit, we have estimated that the superposition of flares with radiated energies of about $10^{29}-10^{31}$ergs could explain the observed radiative power loss of these coronae, while the detected flares are contributing only $\\approx 10$%. While the power-law index is not correlated with rotation parameters (rotation period, projected rotational velocity, Rossby number) and only marginally with the X-ray luminosity, the flare occurrence rate is correlated wit...

  11. Antibacterial Activity of Germacrane Type Sesquiterpenes from Curcuma heyneana Rhizomes

    Directory of Open Access Journals (Sweden)

    Hartiwi Diastuti

    2014-03-01

    Full Text Available The isolation of terpenoids from C. heyneana rhizomes and their antibacterial activity have been conducted. The terpenoids were isolated by using vacuum liquid chromatography and radial chromatography. The structures of the compounds were determined based on spectroscopic data (1H-NMR, 13C-NMR (1D and 2D. The antibacterial activity was carried out by using microdilution method and evaluated against eight bacteria. Three germacrane type sesquiterpenes have been isolated from C. heyneana rhizhomes and were identified as germacrone, dehydrocurdione, and 1(10,4(5-diepoxygermacrone. Germacrone showed highest antibacterial activity against P. aeruginosa with MIC values of 15.6 µg/mL and MBC values 31.2 µg/mL. Dehydrocurdione showed highest antibacterial activity against B. subtilis with MIC values of 31.2 µg/mL and MBC values of 31.2 µg/mL. However, 1(10,4(5-diepoxygermacrone showed a weak antibacterial activity.

  12. An ultra fast detection method reveals strain-induced Ca(2+) entry via TRPV2 in alveolar type II cells.

    Science.gov (United States)

    Fois, Giorgio; Wittekindt, Oliver; Zheng, Xing; Felder, Erika Tatiana; Miklavc, Pika; Frick, Manfred; Dietl, Paul; Felder, Edward

    2012-09-01

    A commonly used technique to investigate strain-induced responses of adherent cells is culturing them on an elastic membrane and globally stretching the membrane. However, it is virtually impossible to acquire microscopic images immediately after the stretch with this method. Using a newly developed technique, we recorded the strain-induced increase of the cytoplasmic Ca(2+) concentration ([Ca(2+)](c)) in rat primary alveolar type II (ATII) cells at an acquisition rate of 30ms and without any temporal delay. We can show that the onset of the mechanically induced rise in [Ca(2+)](c) was very fast (<30 ms), and Ca(2+) entry was immediately abrogated when the stimulus was withdrawn. This points at a direct mechanical activation of an ion channel. RT-PCR revealed high expression of TRPV2 in ATII cells, and silencing TRPV2, as well as blocking TRPV channels with ruthenium red, significantly reduced the strain-induced Ca(2+) response. Moreover, the usually homogenous pattern of the strain-induced [Ca(2+)](c) increase was converted into a point-like response after both treatments. Also interfering with actin/myosin and integrin binding inhibited the strain-induced increase of [Ca(2)](c). We conclude that TRPV2 participates in strain-induced Ca(2+) entry in ATII cells and suggest a direct mechanical activation of the channel that depends on FAs and actin/myosin. Furthermore, our results underline the importance of cell strain systems that allow high temporal resolution.

  13. Dynamic changes of apoptosis in duck embryo fibroblasts induced by new type Gosling viral enteritis virus

    Institute of Scientific and Technical Information of China (English)

    Shun Chen; Anchun Cheng; Mingshu Wang; Xiaoyue Chen

    2008-01-01

    The monolayer duck embryo fibroblast (DEF) cells were experimentally infected with new type Gosling viral enteritis virus (NGVEV) and the dynamic changes of apoptosis were detected at different time points after NGVEV infection by transmission electron microscopy (TEM), DNA agarose gel electrophoresis and Annexin V-FITC/PI stained fluorescence-activated cell sorter (FACS). The result shows that NGVEV can induce infected cells undergoing apoptosis and changing regularly. A series of characteristic apoptotic morphological changes including shrinkage of the cells, chromatin condensation and margination, as well as formation of apoptotic bodies, wereobserved by TEM. The typical ladder pattern of DNA fragmentation was demonstrated by agarose gel electrophoresis. And using flow cytometry analysis of Annexin V-FITC/PI staining, the dead, viable, apoptotic and necrotic cells could be analyzed quantitatively.

  14. Resveratrol induces growth arrest and apoptosis through activation of FOXO transcription factors in prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Qinghe Chen

    Full Text Available BACKGROUND: Resveratrol, a naturally occurring phytopolyphenol compound, has attracted extensive interest in recent years because of its diverse pharmacological characteristics. Although resveratrol possesses chemopreventive properties against several cancers, the molecular mechanisms by which it inhibits cell growth and induces apoptosis have not been clearly understood. The present study was carried out to examine whether PI3K/AKT/FOXO pathway mediates the biological effects of resveratrol. METHODOLOGY/PRINCIPAL FINDINGS: Resveratrol inhibited the phosphorylation of PI3K, AKT and mTOR. Resveratrol, PI3K inhibitors (LY294002 and Wortmannin and AKT inhibitor alone slightly induced apoptosis in LNCaP cells. These inhibitors further enhanced the apoptosis-inducing potential of resveratrol. Overexpression of wild-type PTEN slightly induced apoptosis. Wild type PTEN and PTEN-G129E enhanced resveratrol-induced apoptosis, whereas PTEN-G129R had no effect on proapoptotic effects of resveratrol. Furthermore, apoptosis-inducing potential of resveratrol was enhanced by dominant negative AKT, and inhibited by wild-type AKT and constitutively active AKT. Resveratrol has no effect on the expression of FKHR, FKHRL1 and AFX genes. The inhibition of FOXO phosphorylation by resveratrol resulted in its nuclear translocation, DNA binding and transcriptional activity. The inhibition of PI3K/AKT pathway induced FOXO transcriptional activity resulting in induction of Bim, TRAIL, p27/KIP1, DR4 and DR5, and inhibition of cyclin D1. Similarly, resveratrol-induced FOXO transcriptional activity was further enhanced when activation of PI3K/AKT pathway was blocked. Over-expression of phosphorylation deficient mutants of FOXO proteins (FOXO1-TM, FOXO3A-TM and FOXO4-TM induced FOXO transcriptional activity, which was further enhanced by resveratrol. Inhibition of FOXO transcription factors by shRNA blocked resveratrol-induced upregulation of Bim, TRAIL, DR4, DR5, p27/KIP1 and

  15. Platelet Activation in Human Immunodeficiency Virus Type-1 Patients Is Not Altered with Cocaine Abuse.

    Directory of Open Access Journals (Sweden)

    Michelle Kiebala

    Full Text Available Recent work has indicated that platelets, which are anucleate blood cells, significantly contribute to inflammatory disorders. Importantly, platelets also likely contribute to various inflammatory secondary disorders that are increasingly associated with Human Immunodeficiency Virus Type-1 (HIV infection including neurological impairments and cardiovascular complications. Indeed, HIV infection is often associated with increased levels of platelet activators. Additionally, cocaine, a drug commonly abused by HIV-infected individuals, leads to increased platelet activation in humans. Considering that orchestrated signaling mechanisms are essential for platelet activation, and that nuclear factor-kappa B (NF-κB inhibitors can alter platelet function, the role of NF-κB signaling in platelet activation during HIV infection warrants further investigation. Here we tested the hypothesis that inhibitory kappa B kinase complex (IKK activation would be central for platelet activation induced by HIV and cocaine. Whole blood from HIV-positive and HIV-negative individuals, with or without cocaine abuse was used to assess platelet activation via flow cytometry whereas IKK activation was analyzed by performing immunoblotting and in vitro kinase assays. We demonstrate that increased platelet activation in HIV patients, as measured by CD62P expression, is not altered with reported cocaine use. Furthermore, cocaine and HIV do not activate platelets in whole blood when treated ex vivo. Finally, HIV-induced platelet activation does not involve the NF-κB signaling intermediate, IKKβ. Platelet activation in HIV patients is not altered with cocaine abuse. These results support the notion that non-IKK targeting approaches will be better suited for the treatment of HIV-associated inflammatory disorders.

  16. Transcriptional enhancers induce insertional gene deregulation independently from the vector type and design.

    Science.gov (United States)

    Maruggi, Giulietta; Porcellini, Simona; Facchini, Giulia; Perna, Serena K; Cattoglio, Claudia; Sartori, Daniela; Ambrosi, Alessandro; Schambach, Axel; Baum, Christopher; Bonini, Chiara; Bovolenta, Chiara; Mavilio, Fulvio; Recchia, Alessandra

    2009-05-01

    The integration characteristics of retroviral (RV) vectors increase the probability of interfering with the regulation of cellular genes, and account for a tangible risk of insertional mutagenesis in treated patients. To assess the potential genotoxic risk of conventional or self-inactivating (SIN) gamma-RV and lentiviral (LV) vectors independently from the biological consequences of the insertion event, we developed a quantitative assay based on real-time reverse transcriptase--PCR on low-density arrays to evaluate alterations of gene expression in individual primary T-cell clones. We show that the Moloney leukemia virus long terminal repeat (LTR) enhancer has the strongest activity in both a gamma-RV and a LV vector context, while an internal cellular promoter induces deregulation of gene expression less frequently, at a shorter range and to a lower extent in both vector types. Downregulation of gene expression was observed only in the context of LV vectors. This study indicates that insertional gene activation is determined by the characteristics of the transcriptional regulatory elements carried by the vector, and is largely independent from the vector type or design.

  17. L1 cell adhesion molecule induces melanoma cell motility by activation of mitogen-activated protein kinase pathways.

    Science.gov (United States)

    Yi, Young-Su; Baek, Kwang-Soo; Cho, Jae Youl

    2014-06-01

    L1 cell adhesion molecule (L1CAM) is highly expressed in various types of cancer cells and has been implicated in the control of cell proliferation and motility. Recently, L1CAM was reported to induce the motility of melanoma cells, but the mechanism of this induction remains poorly understood. In this study, we investigated the molecular mechanisms by which L1CAM induces the motility of melanoma cells. Unlike other types of cancer cells, B16F10 melanoma cells highly expressed L1CAM at both the RNA and protein levels, and the expression of L1CAM induced AP-1 activity. In accordance to AP-1 activation, MAPK signaling pathways were activated by L1CAM. Inhibition of L1CAM expression by L1CAM-specific siRNA suppressed the activation of MAPKs such as ERK and p38. However, no significant change was observed in JNK activation. As expected, upstream MAP2K, MKK3/6, MAP3K, and TAK1 were also deactivated by the inhibition of L1CAM expression. L1CAM induced the motility of B16F10 cells. Inhibition of L1CAM expression suppressed migration and invasion of B16F10 cells, but no suppressive effect was observed on their proliferation and anti-apoptotic resistance. Treatment of B16F10 cells with U0126, an ERK inhibitor, or SB203580, a p38 inhibitor, suppressed the migration and invasion abilities of B16F10 cells. Taken together, our results suggest that L1CAM induces the motility of B16F10 melanoma cells via the activation of MAPK pathways. This finding provides a more detailed molecular mechanism of L1CAM-mediated induction of melanoma cell motility.

  18. Water-soluble undenatured type II collagen ameliorates collagen-induced arthritis in mice.

    Science.gov (United States)

    Yoshinari, Orie; Shiojima, Yoshiaki; Moriyama, Hiroyoshi; Shinozaki, Junichi; Nakane, Takahisa; Masuda, Kazuo; Bagchi, Manashi

    2013-11-01

    Earlier studies have reported the efficacy of type II collagen (C II) in treating rheumatoid arthritis (RA). However, a few studies have investigated the ability of the antigenic collagen to induce oral tolerance, which is defined as active nonresponse to an orally administered antigen. We hypothesized that water-soluble undenatured C II had a similar effect as C II in RA. The present study was designed to examine the oral administration of a novel, water-soluble, undenatured C II (commercially known as NEXT-II) on collagen-induced arthritis (CIA) in mice. In addition, the underlying mechanism of NEXT-II was also identified. After a booster dose (collagen-Freund's complete adjuvant), mice were assigned to control CIA group, or NEXT-II treatment group, to which saline and NEXT-II were administered, respectively. The arthritis index in the NEXT-II group was significantly lower compared with the CIA group. Serum IL-6 levels in the NEXT-II group were significantly lower compared with the CIA group, while serum IL-2 level was higher. Furthermore, oral administration of NEXT-II enhanced the proportion of CD4+CD25+T (Treg) cells, and gene expressions of stimulated dendritic cells induced markers for regulatory T cells such as forkhead box p3 (Foxp3), transforming growth factor (TGF)-β1, and CD25. These results demonstrated that orally administered water-soluble undenatured C II (NEXT-II) is highly efficacious in the suppression of CIA by inducing CD4+CD25+ Treg cells.

  19. Activation of Nrf2 protects against triptolide-induced hepatotoxicity.

    Directory of Open Access Journals (Sweden)

    Jia Li

    Full Text Available Triptolide, the major active component of Tripterygium wilfordii Hook f. (TWHF, has a wide range of pharmacological activities. However, the toxicities of triptolide, particularly the hepatotoxicity, limit its clinical application. The hepatotoxicity of triptolide has not been well characterized yet. The aim of this study was to investigate the role of NF-E2-related factor 2 (Nrf2 in triptolide-induced toxicity and whether activation of Nrf2 could protect against triptolide-induced hepatotoxicity. The results showed that triptolide caused oxidative stress and cell damage in HepG2 cells, and these toxic effects could be aggravated by Nrf2 knockdown or be counteracted by overexpression of Nrf2. Treatment with a typical Nrf2 agonist, sulforaphane (SFN, attenuated triptolide-induced liver dysfunction, structural damage, glutathione depletion and decrease in antioxidant enzymes in BALB/C mice. Moreover, the hepatoprotective effect of SFN on triptolide-induced liver injury was associated with the activation of Nrf2 and its downstream targets. Collectively, these results indicate that Nrf2 activation protects against triptolide-induced hepatotoxicity.

  20. Several types of groupoids induced by two-variable functions.

    Science.gov (United States)

    Allen, P J; Kim, Hee Sik; Neggers, J

    2016-01-01

    In this paper, we introduce the concept of several types of groupoids related to semigroups, viz., twisted semigroups for which twisted versions of the associative law hold. Thus, if [Formula: see text] is a groupoid and if [Formula: see text] is a function [Formula: see text], then [Formula: see text] is a left-twisted semigroup with respect to [Formula: see text] if for all [Formula: see text], [Formula: see text]. Other types are right-twisted, middle-twisted and their duals, a dual left-twisted semigroup obeying the rule [Formula: see text] for all [Formula: see text]. Besides a number of examples and a discussion of homomorphisms, a class of groupoids of interest is the class of groupoids defined over a field [Formula: see text] via a formula [Formula: see text], with [Formula: see text], fixed structure constants. Properties of these groupoids as twisted semigroups are discussed with several results of interest obtained, e.g., that in this setting simultaneous left-twistedness and right-twistedness of [Formula: see text] implies the fact that [Formula: see text] is a semigroup.

  1. Longitudinal associations between activity and cognition vary by age, activity type, and cognitive domain.

    Science.gov (United States)

    Bielak, Allison A M; Gerstorf, Denis; Anstey, Kaarin J; Luszcz, Mary A

    2014-12-01

    The demonstration of correlated change is critical to understanding the relationship between activity engagement and cognitive functioning in older adulthood. Changes in activity have been shown to be related to changes in cognition, but little attention has been devoted to how this relationship may vary between specific activity types, cognitive domains, and age groups. Participants initially aged 65-98 years (M = 77.46 years) from the Australian Longitudinal Study of Ageing (n = 1,321) completed measurements of activity (i.e., cognitive, group social, one-on-one social, and physical) and cognition (i.e., perceptual speed, and immediate and delayed episodic memory) at baseline, 2, 8, 11, and 15 years later. Bivariate latent growth curve models covarying for education, sex, and baseline age and medical conditions revealed multiple positive-level relations between activity and cognitive performance, but activity level was not related to later cognitive change. Change in perceptual speed over 15 years was positively associated with change in cognitive activity, and change in immediate episodic memory was positively associated with change in one-on-one social activity. Old-old adults showed a stronger change-change covariance for mentally stimulating activity in relation to perceptual speed than did young-old adults. The differentiation by activity type, cognitive domain, and age contributes to the growing evidence that there is variation in the way cognitive ability at different ages is related to activity.

  2. Extract of Ginkgo Biloba Ameliorates Streptozotocin-Induced Type 1 Diabetes Mellitus and High-Fat Diet-Induced Type 2 Diabetes Mellitus in Mice.

    Science.gov (United States)

    Rhee, Ki-Jong; Lee, Chang Gun; Kim, Sung Woo; Gim, Dong-Hyeon; Kim, Hyun-Cheol; Jung, Bae Dong

    2015-01-01

    Diabetes mellitus (DM) is caused by either destruction of pancreatic β-cells (type 1 DM) or unresponsiveness to insulin (type 2 DM). Conventional therapies for diabetes mellitus have been developed but still needs improvement. Many diabetic patients have complemented conventional therapy with alternative methods including oral supplementation of natural products. In this study, we assessed whether Ginkgo biloba extract (EGb) 761 could provide beneficial effects in the streptozotocin-induced type 1 DM and high-fat diet-induced type 2 DM murine model system. For the type 1 DM model, streptozotocin-induced mice were orally administered EGb 761 for 10 days prior to streptozotocin injection and then again administered EGb 761 for an additional 10 days. Streptozotocin-treated mice administered EGb 761 exhibited lower blood triglyceride levels, lower blood glucose levels and higher blood insulin levels compared to streptozotocin-treated mice. Furthermore, liver LPL and liver PPAR-α were increased whereas IL-1β and TNF-α were decreased in streptozotocin-injected mice treated with EGb 761 compared to mice injected with streptozotocin alone. For the type 2 DM model, mice were given high-fat diet for 60 days and then orally administered EGb 761 every other day for 80 days. We found that mice given a high-fat diet and EGb 761 showed decreased blood triglyceride levels, increased liver LPL, increased liver PPAR-α and decreased body weight compared to mice given high-fat diet alone. These results suggest that EGb 761 can exert protective effects in both type 1 and type 2 DM murine models.

  3. Activation of transient receptor potential vanilloid type-1 channel prevents adipogenesis and obesity

    DEFF Research Database (Denmark)

    Zhang, Li Li; Yan Liu, Dao; Ma, Li Qun

    2007-01-01

    in visceral adipose tissue from obese humans was accompanied by reduced capsaicin-induced calcium influx. The oral administration of capsaicin for 120 days prevented obesity in male wild type mice but not in TRPV1 knockout mice assigned to high fat diet. We conclude that the activation of TRPV1 channels......We tested the hypothesis that activation of transient receptor potential vanilloid type-1 (TRPV1) by capsaicin prevents adipogenesis. TRPV1 channels in 3T3-L1-preadipocytes and visceral adipose tissue from mice and humans were detected by immunoblotting and quantitative real-time RT-PCR. The effect...... of TRPV1 on cytosolic calcium was determined fluorometrically in 3T3-L1-preadipocytes and in human visceral fat tissue. Adipogenesis in stimulated 3T3-L1-preadipocytes was determined by oil red O-staining of intracellular lipid droplets, triglyceride levels, expression of peroxisome proliferator...

  4. Activating PTEN by COX-2 inhibitors antagonizes radiation-induced AKT activation contributing to radiosensitization

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Zhen [Central Laboratory, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081 (China); Department of Oral & Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081 (China); Gan, Ye-Hua, E-mail: kqyehuagan@bjmu.edu.cn [Central Laboratory, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081 (China); Department of Oral & Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081 (China)

    2015-05-01

    Radiotherapy is still one of the most effective nonsurgical treatments for many tumors. However, radioresistance remains a major impediment to radiotherapy. Although COX-2 inhibitors can induce radiosensitization, the underlying mechanism is not fully understood. In this study, we showed that COX-2 selective inhibitor celecoxib enhanced the radiation-induced inhibition of cell proliferation and apoptosis in HeLa and SACC-83 cells. Treatment with celecoxib alone dephosphorylated phosphatase and tensin homolog deleted on chromosome ten (PTEN), promoted PTEN membrane translocation or activation, and correspondingly dephosphorylated or inactivated protein kinase B (AKT). By contrast, treatment with radiation alone increased PTEN phosphorylation, inhibited PTEN membrane translocation and correspondingly activated AKT in the two cell lines. However, treatment with celecoxib or another COX-2 selective inhibitor (valdecoxib) completely blocked radiation-induced increase of PTEN phosphorylation, rescued radiation-induced decrease in PTEN membrane translocation, and correspondingly inactivated AKT. Moreover, celecoxib could also upregulate PTEN protein expression by downregulating Sp1 expression, thereby leading to the activation of PTEN transcription. Our results suggested that COX-2 inhibitors could enhance radiosensitization at least partially by activating PTEN to antagonize radiation-induced AKT activation. - Highlights: • COX-2 inhibitor, celecoxib, could enhance radiosensitization. • Radiation induced PTEN inactivation (phosphorylation) and AKT activation. • COX-2 inhibitor induced PTEN expression and activation, and inactivated AKT. • COX-2 inhibitor enhanced radiosensitization through activating PTEN.

  5. Erythroid differentiation of human induced pluripotent stem cells is independent of donor cell type of origin

    OpenAIRE

    2015-01-01

    Epigenetic memory in induced pluripotent stem cells, which is related to the somatic cell type of origin of the stem cells, might lead to variations in the differentiation capacities of the pluripotent stem cells. In this context, induced pluripotent stem cells from human CD34+ hematopoietic stem cells might be more suitable for hematopoietic differentiation than the commonly used fibroblast-derived induced pluripotent stem cells. To investigate the influence of an epigenetic memory on the ex...

  6. Localization of type I interferon receptor limits interferon-induced TLR-3 in epithelial cells

    Science.gov (United States)

    This study aimed to expand on the role of type I IFNs in the influenza-induced upregulation of TLR3 and determine whether and how the localization of the IFN-alpha/beta receptor (IFNAR) in respiratory epithelial cells could modify IFN-induced responses. Using differentiated prima...

  7. Localization of type I interferon receptor limits interferon-induced TLR-3 in epithelial cells

    Science.gov (United States)

    This study aimed to expand on the role of type I IFNs in the influenza-induced upregulation of TLR3 and determine whether and how the localization of the IFN-alpha/beta receptor (IFNAR) in respiratory epithelial cells could modify IFN-induced responses. Using differentiated prima...

  8. Feedback activation of neurofibromin terminates growth factor-induced Ras activation

    OpenAIRE

    Hennig, Anne; Markwart, Robby; Wolff, Katharina; Schubert, Katja; Cui, Yan; Ian A Prior; Manuel A Esparza-Franco; Ladds, Graham; Rubio, Ignacio

    2016-01-01

    This is the final published version. It first appeared at http://biosignaling.biomedcentral.com/articles/10.1186/s12964-016-0128-z. Background Growth factors induce a characteristically short-lived Ras activation in cells emerging from quiescence. Extensive work has shown that transient as opposed to sustained Ras activation is critical for the induction of mitogenic programs. Mitogen-induced accumulation of active Ras-GTP results from increased nucleotide exchange driven by the nucleo...

  9. VEGF secretion during hypoxia depends on free radicals-induced Fyn kinase activity in mast cells

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Roman, Jonathan; Ibarra-Sanchez, Alfredo; Lamas, Monica [Departamento de Farmacobiologia, Centro de Investigacion y de Estudios Avanzados del IPN (Cinvestav, IPN) (Mexico); Gonzalez Espinosa, Claudia, E-mail: cgonzal@cinvestav.mx [Departamento de Farmacobiologia, Centro de Investigacion y de Estudios Avanzados del IPN (Cinvestav, IPN) (Mexico)

    2010-10-15

    Research highlights: {yields} Bone marrow-derived mast cells (BMMCs) secrete functional VEGF but do not degranulate after Cobalt chloride-induced hypoxia. {yields} CoCl{sub 2}-induced VEGF secretion in mast cells occurs by a Ca{sup 2+}-insensitive but brefeldin A and Tetanus toxin-sensitive mechanism. {yields} Trolox and N-acetylcysteine inhibit hypoxia-induced VEGF secretion but only Trolox inhibits Fc{epsilon}RI-dependent anaphylactic degranulation in mast cells. {yields} Src family kinase Fyn activation after free radical production is necessary for hypoxia-induced VEGF secretion in mast cells. -- Abstract: Mast cells (MC) have an important role in pathologic conditions such as asthma and chronic obstructive pulmonary disease (COPD), where hypoxia conduce to deleterious inflammatory response. MC contribute to hypoxia-induced angiogenesis producing factors such as vascular endothelial growth factor (VEGF), but the mechanisms behind the control of hypoxia-induced VEGF secretion in this cell type is poorly understood. We used the hypoxia-mimicking agent cobalt chloride (CoCl{sub 2}) to analyze VEGF secretion in murine bone marrow-derived mast cells (BMMCs). We found that CoCl{sub 2} promotes a sustained production of functional VEGF, able to induce proliferation of endothelial cells in vitro. CoCl{sub 2}-induced VEGF secretion was independent of calcium rise but dependent on tetanus toxin-sensitive vesicle-associated membrane proteins (VAMPs). VEGF exocytosis required free radicals formation and the activation of Src family kinases. Interestingly, an important deficiency on CoCl{sub 2}-induced VEGF secretion was observed in Fyn kinase-deficient BMMCs. Moreover, Fyn kinase was activated by CoCl{sub 2} in WT cells and this activation was prevented by treatment with antioxidants such as Trolox and N-acetylcysteine. Our results show that BMMCs are able to release VEGF under hypoxic conditions through a tetanus toxin-sensitive mechanism, promoted by free radicals

  10. Mitochondrial apoptosis of lymphocyte is induced in type 2 diabetes

    Institute of Scientific and Technical Information of China (English)

    Xu Hui; Chen Yanbo; Li Yanxiang; Xia Fangzhen; Han Bing; Zhang Huixin; Zhai Hualing

    2014-01-01

    Background Lymphocyte function and homeostasis is associated with immune defence to infection.Apoptosis of lymphocytes might be a considerably important component which has an impact on immunity to infections in people with hyperglycemia.The aim of this study was to explore the mitochondrial apoptosis pathway of lymphocyte in diabetic patients.Methods Sixty patients with type 2 diabetes mellitus and fifty healthy volunteers were included in this study.Annexin V and propidiumiodide (Pl) were joined in the isolated lymphocytes and the rate of lymphocyte apoptosis was calculated with flow cytometry.Observation of the lymphocytes was done using transmission electron microscopy; mitochondria had been extracted and then mitochondrial membrane potential (MMP) was detected to assess mitochondrial function; the mRNA level of Bcl-2,cytochrome c (Cyt-C),caspase-9 and caspase-3 were analyzed by real-time reverse transcriptionpolymerase chain reaction (RT-PCR).Results Apoptosis rate of lymphocyte was significantly higher in diabetic group than that in normal control group (P <0.05).Transmission electron microscopy showed lymphocyte shrinkage and breakage,chromatin condensation and less mitochondria; a fall in MMP levels was also evident; Bcl-2 concentration was reduced and the expressions of caspase-9,caspase-3 and Cyt-C were elevated (P <0.05) in diabetic patients.Conclusions The rate of lymphocyte apoptosis was significantly higher in type 2 diabetic patients than that in normal population.Mitochondrial apoptosis pathway may play a very important role in decreasing function of lymphocyte in diabetes.

  11. Cold suppresses agonist-induced activation of TRPV1.

    Science.gov (United States)

    Chung, M-K; Wang, S

    2011-09-01

    Cold therapy is frequently used to reduce pain and edema following acute injury or surgery such as tooth extraction. However, the neurobiological mechanisms of cold therapy are not completely understood. Transient receptor potential vanilloid 1 (TRPV1) is a capsaicin- and heat-gated nociceptive ion channel implicated in thermosensation and pathological pain under conditions of inflammation or injury. Although capsaicin-induced nociception, neuropeptide release, and ionic currents are suppressed by cold, it is not known if cold suppresses agonist-induced activation of recombinant TRPV1. We demonstrate that cold strongly suppressed the activation of recombinant TRPV1 by multiple agonists and capsaicin-evoked currents in trigeminal ganglia neurons under normal and phosphorylated conditions. Cold-induced suppression was partially impaired in a TRPV1 mutant that lacked heat-mediated activation and potentiation. These results suggest that cold-induced suppression of TRPV1 may share a common molecular basis with heat-induced potentiation, and that allosteric inhibition may contribute, in part, to the cold-induced suppression. We also show that combination of cold and a specific antagonist of TRPV1 can produce an additive suppression. Our results provide a mechanistic basis for cold therapy and may enhance anti-nociceptive approaches that target TRPV1 for managing pain under inflammation and tissue injury, including that from tooth extraction.

  12. Mucin-like peptides from Echinococcus granulosus induce antitumor activity.

    Science.gov (United States)

    Noya, Verónica; Bay, Sylvie; Festari, María Florencia; García, Enrique P; Rodriguez, Ernesto; Chiale, Carolina; Ganneau, Christelle; Baleux, Françoise; Astrada, Soledad; Bollati-Fogolín, Mariela; Osinaga, Eduardo; Freire, Teresa

    2013-09-01

    There is substantial evidence suggesting that certain parasites can have antitumor properties. We evaluated mucin peptides derived from the helminth Echinococcus granulosus (denominated Egmuc) as potential inducers of antitumor activity. We present data showing that Egmuc peptides were capable of inducing an increase of activated NK cells in the spleen of immunized mice, a fact that was correlated with the capacity of splenocytes to mediate killing of tumor cells. We demonstrated that Egmuc peptides enhance LPS-induced maturation of dendritic cells in vitro by increasing the production of IL-12p40p70 and IL-6 and that Egmuc-treated DCs may activate NK cells, as judged by an increased expression of CD69. This evidence may contribute to the design of tumor vaccines and open new horizons in the use of parasite-derived molecules in the fight against cancer.

  13. Aldehyde-induced xanthine oxidase activity in raw milk.

    Science.gov (United States)

    Steffensen, Charlotte L; Andersen, Henrik J; Nielsen, Jacob H

    2002-12-04

    In the present study, the aldehyde-induced pro-oxidative activity of xanthine oxidase was followed in an accelerated raw milk system using spin-trap electron spin resonance (ESR) spectroscopy. The aldehydes acetaldehyde, propanal, hexanal, trans-2-hexenal, trans-2-heptenal, trans-2-nonenal, and 3-methyl-2-butenal were all found to initiate radical reactions when added to milk. Formation of superoxide through aldehyde-induced xanthine oxidase activity is suggested as the initial reaction, as all tested aldehydes were shown to trigger superoxide formation in an ultrahigh temperature (UHT) milk model system with added xanthine oxidase. It was found that addition of aldehydes to milk initially increased the ascorbyl radical concentration with a subsequent decay due to ascorbate depletion, which renders the formation of superoxide in milk with added aldehyde. The present study shows for the first time potential acceleration of oxidative events in milk through aldehyde-induced xanthine oxidase activity.

  14. Activation of PPARα by Wy-14643 ameliorates systemic lipopolysaccharide-induced acute lung injury

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Seong Ho, E-mail: yoosh@snu.ac.kr [Seoul National University Hospital, Biomedical Research Institute and Institute of Forensic Medicine, Seoul National University College of Medicine, Seoul (Korea, Republic of); Abdelmegeed, Mohamed A. [Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD (United States); Song, Byoung-Joon, E-mail: bj.song@nih.gov [Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD (United States)

    2013-07-05

    Highlights: •Activation of PPARα attenuated LPS-mediated acute lung injury. •Pretreatment with Wy-14643 decreased the levels of IFN-γ and IL-6 in ALI. •Nitrosative stress and lipid peroxidation were downregulated by PPARα activation. •PPARα agonists may be potential therapeutic targets for acute lung injury. -- Abstract: Acute lung injury (ALI) is a major cause of mortality and morbidity worldwide. The activation of peroxisome proliferator-activated receptor-α (PPARα) by its ligands, which include Wy-14643, has been implicated as a potential anti-inflammatory therapy. To address the beneficial efficacy of Wy-14643 for ALI along with systemic inflammation, the in vivo role of PPARα activation was investigated in a mouse model of lipopolysaccharide (LPS)-induced ALI. Using age-matched Ppara-null and wild-type mice, we demonstrate that the activation of PPARα by Wy-14643 attenuated LPS-mediated ALI. This was evidenced histologically by the significant alleviation of inflammatory manifestations and apoptosis observed in the lung tissues of wild-type mice, but not in the corresponding Ppara-null mice. This protective effect probably resulted from the inhibition of LPS-induced increases in pro-inflammatory cytokines and nitroxidative stress levels. These results suggest that the pharmacological activation of PPARα might have a therapeutic effect on LPS-induced ALI.

  15. Proteases induce secretion of collagenase and plasminogen activator by fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Werb, Z.; Aggeler, J.

    1978-04-01

    We have observed that treatment of rabbit synovial fibroblasts with proteolytic enzymes can induce secretion of collagenase (EC 3.4.24.7) and plasminogen activator (EC 3.4.21.-). Cells treated for 2 to 24 hr with plasmin, trypsin, chymotrypsin, pancreatic elastase, papain, bromelain, thermolysin, or ..cap alpha..-protease but not with thrombin or neuraminidase secreted detectable amounts of collagenase within 16 to 48 hr. Treatment of fibroblasts with trypsin also induced secretion of plasminogen activator. Proteases initiated secretion of collagenase (up to 20 units per 10/sup 6/ cells per 24 hr) only when treatment produced decreased cell adhesion. Collagenase production did not depend on continued presence of proteolytic activity or on subsequent cell adhesion, spreading, or proliferation. Routine subculturing with crude trypsin also induced collagenase secretion by cells. Secretion of collagenase was prevented and normal spreading was obtained if the trypsinized cells were placed into medium containing fetal calf serum. Soybean trypsin inhibitor, ..cap alpha../sub 1/-antitrypsin, bovine serum albumin, collagen, and fibronectin did not inhibit collagenase production. Although proteases that induced collagenase secretion also removed surface glycoprotein, the kinetics of induction of cell protease secretion were different from those for removal of fibronectin. Physiological inducers of secretion of collagenase and plasminogen activator by cells have not been identified. These results suggest that extracellular proteases in conjunction with plasma proteins may govern protease secretion by cells.

  16. Propofol and magnesium attenuate isoflurane-induced caspase-3 activation via inhibiting mitochondrial permeability transition pore

    Directory of Open Access Journals (Sweden)

    Zhang Yiying

    2012-08-01

    Full Text Available Abstract Background The inhalation anesthetic isoflurane has been shown to open the mitochondrial permeability transition pore (mPTP and induce caspase activation and apoptosis, which may lead to learning and memory impairment. Cyclosporine A, a blocker of mPTP opening might attenuate the isoflurane-induced mPTP opening, lessening its ripple effects. Magnesium and anesthetic propofol are also mPTP blockers. We therefore set out to determine whether propofol and magnesium can attenuate the isoflurane-induced caspase activation and mPTP opening. Methods We investigated the effects of magnesium sulfate (Mg2+, propofol, and isoflurane on the opening of mPTP and caspase activation in H4 human neuroglioma cells stably transfected to express full-length human amyloid precursor protein (APP (H4 APP cells and in six day-old wild-type mice, employing Western blot analysis and flowcytometry. Results Here we show that Mg2+ and propofol attenuated the isoflurane-induced caspase-3 activation in H4-APP cells and mouse brain tissue. Moreover, Mg2+ and propofol, the blockers of mPTP opening, mitigated the isoflurane-induced mPTP opening in the H4-APP cells. Conclusion These data illustrate that Mg2+ and propofol may ameliorate the isoflurane-induced neurotoxicity by inhibiting its mitochondrial dysfunction. Pending further studies, these findings may suggest the use of Mg2+ and propofol in preventing and treating anesthesia neurotoxicity.

  17. Low-dose effect of ethanol on locomotor activity induced by activation of the mesolimbic system.

    Science.gov (United States)

    Milton, G V; Randall, P K; Erickson, C K

    1995-06-01

    Four experiments were designed to study the ability of 0.5 g/kg ethanol (EtOH) intraperitoneally to modify locomotor activity induced by drugs that interact with different sites in the mesolimbic system (MLS) of male Sprague-Dawley rats. Locomotor activity was measured in a doughnut-shaped circular arena after various treatments. EtOH alone did not alter locomotor activity in any of the experiments. Amphetamine (AMP, intraperitoneally or intraaccumbens) increased locomotor activity in a dose-dependent manner, and the presence of EtOH attenuated AMP-induced locomotor activity. Bilateral infusion of GABAA antagonist picrotoxin (PIC) into the ventral tegmental area also increased locomotor activity in a dose-dependent manner, and the presence of EtOH attenuated PIC-induced locomotor activity. On the other hand, the interaction between bilateral infusion of mu-receptor agonist Tyr-D-Ala-Gly-NMe-Phe-Gly-ol (DAGO) and EtOH on locomotor activity is complex. The highest dose of DAGO that significantly increased locomotor activity was not affected by the presence of EtOH. But, with lower doses of DAGO that either had no effect or a small increase in locomotor activity, the combination of EtOH and DAGO increased and attenuated locomotor activity, respectively. Results from this study support our hypothesis that a low dose of EtOH that does not modify behavior can interact with neurotransmitter systems in the brain and modify drug-induced locomotor activity. Modification of this drug-induced locomotor activity by a low dose of EtOH is dependent on the rate of ongoing locomotor behavior induced by drug and the neurotransmitter substrate that the drug modified to induce locomotor behavior.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. The coupling of acetylcholine-induced BK channel and calcium channel in guinea pig saccular type II vestibular hair cells.

    Science.gov (United States)

    Kong, Wei-Jia; Guo, Chang-Kai; Zhang, Xiao-Wen; Chen, Xiong; Zhang, Song; Li, Guan-Qiao; Li, Zhi-Wang; Van Cauwenberge, Paul

    2007-01-19

    Molecular biological studies and electrophysiological data have demonstrated that acetylcholine (ACh) is the principal cochlear and vestibular efferent neurotransmitter among mammalians. However, the functional roles of ACh in type II vestibular hair cells (VHCs II) among mammalians are still unclear, with the exception of the well-known alpha9-containing nicotinic ACh receptor (alpha9-containing nAChR)-activated small conductance, calcium-dependent potassium current (SK) in cochlear hair cells and frog saccular hair cells. The activation of SK current was necessary for the calcium influx through the alpha9-containing nAChR. Recently, we have demonstrated that ACh-induced big conductance, calcium-dependent potassium current (BK) was present in VHCs II of the vestibular end-organ of guinea pig. In this study, the nature of calcium influx for the activation of ACh-induced BK current in saccular VHCs II of guinea pig was investigated. Following extracellular perfusion of ACh, saccular VHCs II displayed a sustained outward current, which was sensitive to iberiotoxin (IBTX). High concentration of apamin failed to inhibit the current amplitude of ACh-induced outward current. Intracellular application of Cs(+) completely abolished the current evoked by ACh. ACh-induced current was potently inhibited by nifedipine, nimodipine, Cd(2+) and Ni(2+), respectively. The inhibition potency of these four calcium channel antagonists was nimodipine>nifedipine>cadmium>nickel. The L-type Ca(2+) channels agonist, (-)-Bay-K 8644 mimicked the effect of ACh and activated an IBTX-sensitive current. In addition, partial VHCs II displayed a biphasic waveform. In conclusion, the present data showed that in the guinea pig saccular VHCs II, ACh-induced BK channel was coupled with the calcium channel, but not the receptor. The perfusion of ACh will drive the opening of calcium channels; the influx of calcium ions will then activate the BK current.

  19. Aberrant glomerular filtration of urokinase-type plasminogen activator in nephrotic syndrome leads to amiloride-sensitive plasminogen activation in urine

    DEFF Research Database (Denmark)

    Staehr, Mette; Buhl, Kristian B; Andersen, René F

    2015-01-01

    (uPA) in vitro. It was hypothesized that uPA is abnormally filtered to pre-urine and is inhibited in urine by amiloride in nephrotic syndrome. This was tested by determination of Na+-balance, uPA protein and activity and amiloride concentration in urine from rats with puromycin aminonucleoside (PAN......In nephrotic syndrome, aberrant glomerular filtration of plasminogen and conversion to active plasmin in pre-urine is thought to activate proteolytically ENaC and contribute to sodium retention and edema. The ENaC blocker amiloride is an off-target inhibitor of urokinase-type plasminogen activator......) induced nephrotic syndrome. Urine samples from 6 adult and 18 pediatric patients with nephrotic syndrome were analyzed for uPA activity and protein. PAN-treatment induced significant proteinuria in rats which coincided with increased urine uPA protein and activity, increased urine protease activity...

  20. Mineral phosphate solubilization by wild type and radiation induced mutants of pantoea dispersa and pantoea terrae

    Energy Technology Data Exchange (ETDEWEB)

    Murugesan, Senthilkumar; Lee, Young Keun; Kim, Jung Hun [Korea Atomic Energy Research Institte, Jeongeup (Korea, Republic of)

    2009-03-15

    Three mineral phosphate solubilizing (MPS) bacteria where isolated from rhizosphere soil samples of common bean and weed plants. 16S rDNA analysis indicated that the isolate P2 and P3 are closely related to Pantoea dispersa while isolate P4 is closely related to Pantoea terrae. Islates P2 and P3 recorded 381.60 {mu}g ml{sup -1} of tricalcium phosphate (TCP) solubilization respectively on 3 days incubation. Isolate P4 recorded the TCP solubilization of 215.85 {mu}g ml{sup -1} and the pH was dropped to 4.44 on 24 h incubation. Further incubation of P4 sharply decreased the available phosphorous to 28.94 {mu}g ml{sup -1} and pH level was raised to 6.32. Gamma radiation induced mutagenesis was carried out at LD{sub 99} dose of the wild type strains. The total of 14 mutant clones with enhanced MPS activity and 4 clones with decreased activity were selected based on solubilization index (SI) and phosphate solubilization assay. Mutant P2-M1 recorded the highest P-solubilizing potential among any other wild or mutnat clones by releasing 504.21 {mu}g ml{sup -1} of phosphorous i.e. 35% higher than its wild type by the end of day 5. A comparative evaluation of TCP solubilization by wild type isolates of Pantoea and their mutants, led to select three MPS mutant clones such as P2-M1, P3-M2 and P3-M4 with a potential to release >471.67 {mu}g ml{sup {sub {sup 1}}} of phosphorous from TCP. These over expressing mutant clones are considered as suitable candidates for biofertilization.

  1. Treatment of Amiodarone-Induced Thyrotoxicosis Type 2 : A Randomized Clinical Trial

    NARCIS (Netherlands)

    Eskes, Silvia A.; Endert, Erik; Fliers, Eric; Geskus, Ronald B.; Dullaart, Robin P. F.; Links, Thera P.; Wiersinga, Wilmar M.

    2012-01-01

    Context: Amiodarone-induced thyrotoxicosis (AIT) type 2 is self-limiting in nature, but most physicians are reluctant to continue amiodarone. When prednisone fails to restore euthyroidism, possibly due to mixed cases of AIT type 1 and 2, perchlorate (ClO4) might be useful because ClO4 reduces the cy

  2. Antiviral activity of four types of bioflavonoid against dengue virus type-2

    Directory of Open Access Journals (Sweden)

    Zandi Keivan

    2011-12-01

    Full Text Available Abstract Background Dengue is a major mosquito-borne disease currently with no effective antiviral or vaccine available. Effort to find antivirals for it has focused on bioflavonoids, a plant-derived polyphenolic compounds with many potential health benefits. In the present study, antiviral activity of four types of bioflavonoid against dengue virus type -2 (DENV-2 in Vero cell was evaluated. Anti-dengue activity of these compounds was determined at different stages of DENV-2 infection and replication cycle. DENV replication was measured by Foci Forming Unit Reduction Assay (FFURA and quantitative RT-PCR. Selectivity Index value (SI was determined as the ratio of cytotoxic concentration 50 (CC50 to inhibitory concentration 50 (IC50 for each compound. Results The half maximal inhibitory concentration (IC50 of quercetin against dengue virus was 35.7 μg mL-1 when it was used after virus adsorption to the cells. The IC50 decreased to 28.9 μg mL-1 when the cells were treated continuously for 5 h before virus infection and up to 4 days post-infection. The SI values for quercetin were 7.07 and 8.74 μg mL-1, respectively, the highest compared to all bioflavonoids studied. Naringin only exhibited anti-adsorption effects against DENV-2 with IC50 = 168.2 μg mL-1 and its related SI was 1.3. Daidzein showed a weak anti-dengue activity with IC50 = 142.6 μg mL-1 when the DENV-2 infected cells were treated after virus adsorption. The SI value for this compound was 1.03. Hesperetin did not exhibit any antiviral activity against DENV-2. The findings obtained from Foci Forming Unit Reduction Assay (FFURA were corroborated by findings of the qRT-PCR assays. Quercetin and daidzein (50 μg mL-1 reduced DENV-2 RNA levels by 67% and 25%, respectively. There was no significant inhibition of DENV-2 RNA levels with naringin and hesperetin. Conclusion Results from the study suggest that only quercetin demonstrated significant anti-DENV-2 inhibitory activities. Other

  3. Different types of exercise induce differential effects on neuronal adaptations and memory performance.

    Science.gov (United States)

    Lin, Tzu-Wei; Chen, Shean-Jen; Huang, Tung-Yi; Chang, Chia-Yuan; Chuang, Jih-Ing; Wu, Fong-Sen; Kuo, Yu-Min; Jen, Chauying J

    2012-01-01

    Different exercise paradigms show differential effects on various forms of memory. We hypothesize that the differential effects of exercises on memory performance are caused by different neuroplasticity changes in relevant brain regions in response to different exercise trainings. We examined the effects of treadmill running (TR) and wheel running (WR) on the Pavlovian fear conditioning task that assesses learning and memory performance associated with the amygdala (cued conditioning) and both the amygdala and hippocampus (contextual conditioning). The skeletal muscle citrate synthase activity, an indicator of aerobic capacity, was elevated in rats received 4 w of TR, but not WR. While both TR and WR elevated the contextual conditional response, only TR facilitated the cued conditional response. Using a single-neuron labeling technique, we found that while both TR and MR enlarged the dendritic field and increased the spine density in hippocampal CA3 neurons, only TR showed these effects in basolateral amygdalar neurons. Moreover, both types of exercise upregulated synaptic proteins (i.e., TrkB and SNAP-25) in the hippocampus; however only TR showed similar effects in the amygdala. Injection of K252a, a TrkB kinase inhibitor, in the dorsal hippocampus or basolateral amygdala abolished the exercise-facilitated contextual or cued fear learning and memory performance, respectively, regardless of the types of exercise. In summary, our results supported that different types of exercise affect the performance of learning and memory via BDNF-TrkB signaling and neuroplasticity in specific brain regions. The brain region-specific neuronal adaptations are possibly induced by various levels of intensity/stress elicited by different types of exercise. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Variability of stellar granulation and convective blueshift with spectral type and magnetic activity. I. K and G main sequence stars

    OpenAIRE

    Meunier, N.; Lagrange, A. -M.; Kabuiku, L. Mbemba; Alex, M; Mignon, L.; Borgniet, S.

    2016-01-01

    In solar-type stars, the attenuation of convective blueshift by stellar magnetic activity dominates the RV variations over the low amplitude signal induced by low mass planets. Models of stars that differ from the Sun will require a good knowledge of the attenuation of the convective blueshift to estimate its impact on the variations. It is therefore crucial to precisely determine not only the amplitude of the convective blueshift for different types of stars, but also the dependence of this ...

  5. Activation-induced force enhancement in human adductor pollicis.

    Science.gov (United States)

    Oskouei, Ali E; Herzog, Walter

    2009-10-01

    It has been known for a long time that the steady-state isometric force after muscle stretch is bigger than the corresponding force obtained in a purely isometric contraction for electrically stimulated and maximal voluntary contractions (MVC). Recent studies using sub-maximal voluntary contractions showed that force enhancement only occurred in a sub-group of subjects suggesting that force enhancement for sub-maximal voluntary contractions has properties different from those of electrically-induced and maximal voluntary contractions. Specifically, force enhancement for sub-maximal voluntary contractions may contain an activation-dependent component that is independent of muscle stretching. To address this hypothesis, we tested for force enhancement using (i) sub-maximal electrically-induced contractions and stretch and (ii) using various activation levels preceding an isometric reference contraction at 30% of MVC (no stretch). All tests were performed on human adductor pollicis muscles. Force enhancement following stretching was found for all subjects (n=10) and all activation levels (10%, 30%, and 60% of MVC) for electrically-induced contractions. In contrast, force enhancement at 30% of MVC, preceded by 6s of 10%, 60%, and 100% of MVC was only found in a sub-set of the subjects and only for the 60% and 100% conditions. This result suggests that there is an activation-dependent force enhancement for some subjects for sub-maximal voluntary contractions. This activation-dependent force enhancement was always smaller than the stretch-induced force enhancement obtained at the corresponding activation levels. Active muscle stretching increased the force enhancement in all subjects, independent whether they showed activation dependence or not. It appears that post-activation potentiation, and the associated phosphorylation of the myosin light chains, might account for the stretch-independent force enhancement observed here.

  6. Distinct activities of Bartonella henselae type IV secretion effector proteins modulate capillary-like sprout formation.

    Science.gov (United States)

    Scheidegger, F; Ellner, Y; Guye, P; Rhomberg, T A; Weber, H; Augustin, H G; Dehio, C

    2009-07-01

    The zoonotic pathogen Bartonella henselae (Bh) can lead to vasoproliferative tumour lesions in the skin and inner organs known as bacillary angiomatosis and bacillary peliosis. The knowledge on the molecular and cellular mechanisms involved in this pathogen-triggered angiogenic process is confined by the lack of a suitable animal model and a physiologically relevant cell culture model of angiogenesis. Here we employed a three-dimensional in vitro angiogenesis assay of collagen gel-embedded endothelial cell (EC) spheroids to study the angiogenic properties of Bh. Spheroids generated from Bh-infected ECs displayed a high capacity to form sprouts, which represent capillary-like projections into the collagen gel. The VirB/VirD4 type IV secretion system and a subset of its translocated Bartonella effector proteins (Beps) were found to profoundly modulate this Bh-induced sprouting activity. BepA, known to protect ECs from apoptosis, strongly promoted sprout formation. In contrast, BepG, triggering cytoskeletal rearrangements, potently inhibited sprouting. Hence, the here established in vitro model of Bartonella- induced angiogenesis revealed distinct and opposing activities of type IV secretion system effector proteins, which together with a VirB/VirD4-independent effect may control the angiogenic activity of Bh during chronic infection of the vasculature.

  7. Critical role of p38 MAPK in IL-4-induced alternative activation of peritoneal macrophages.

    Science.gov (United States)

    Jiménez-Garcia, Lidia; Herránz, Sandra; Luque, Alfonso; Hortelano, Sonsoles

    2015-01-01

    Alternative activation of macrophages plays an important role in a range of physiological and pathological processes. This alternative phenotype, also known as M2 macrophages, is induced by type 2 cytokines such as IL-4. The binding of IL-4 to its receptor leads to activation of two major signaling pathways: STAT-6 and PI3K. However, recent studies have described that p38 MAPK might play a role in IL-4-dependent signaling in some cells, although its role in macrophages is still controversial. In this study, we investigated whether p38 MAPK plays a role in the polarization of macrophages in mice. Our results reveal that IL-4 induces phosphorylation of p38 MAPK in thioglycollate-elicited murine peritoneal macrophages, in addition to STAT-6 and PI3K activation. Furthermore, p38 MAPK inactivation, by gene silencing or pharmacological inhibition, suppressed IL-4-induced typical M2 markers, indicating the involvement of p38 MAPK in the signaling of IL-4 leading to M2-macrophage polarization. Moreover, p38 MAPK inhibition blocked phosphorylation of STAT-6 and Akt, suggesting that p38 MAPK is upstream of these signaling pathways. Finally, we show that in an in vivo model of chitin-induced M2 polarization, p38 MAPK inhibition also diminished activation of M2 markers. Taken together, our data establish a new role for p38 MAPK during IL-4-induced alternative activation of macrophages. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Paraptosis and NF-κB activation are associated with protopanaxadiol-induced cancer chemoprevention

    Directory of Open Access Journals (Sweden)

    Wang Chong-Zhi

    2013-01-01

    Full Text Available Abstract Background Protopanaxadiol (PPD is a triterpenoid that can be prepared from steamed ginseng. PPD possesses anticancer potential via caspase-dependent apoptosis. Whether paraptosis, a type of the caspase-independent cell death, is also induced by PPD has not been evaluated. Methods Cell death, the cell cycle and intracellular reactive oxygen species (ROS were analyzed by flow cytometry after staining with annexin V/PI, PI/RNase or H2DCFDA. We observed morphological changes by crystal violet staining assay. Mitochondrial swelling was measured by ultraviolet–visible spectrophotometry. The activation of NF-κB was measured by luciferase reporter assay. Results At comparable concentrations of 5-fluorouracil, PPD induced more cell death in human colorectal cancer cell lines HCT-116 and SW-480. We demonstrated that PPD induced paraptosis in these cancer cells. PPD treatment significantly increased the percentage of cancer cells with cytoplasmic vacuoles. After the cells were treated with PPD and cycloheximides, cytoplasmic vacuole generation was inhibited. The paraptotic induction effect of PPD was also supported by the results of the mitochondrial swelling assay. PPD induced ROS production in cancer cells, which activated the NF-κB pathway. Blockage of ROS by NAC or PS-1145 inhibited the activation of NF-κB signaling. Conclusions PPD induces colorectal cancer cell death in part by induction of paraptosis. The anticancer activity of PPD may be enhanced by antioxidants such as green tea, which also inhibit the activation of NF-κB signaling.

  9. Antidiabetic activity of Rheum emodi in Alloxan induced diabetic rats.

    Directory of Open Access Journals (Sweden)

    Radhika.R

    2010-09-01

    Full Text Available The present study was carried out to evaluate the antidiabetic effect of Rheum emodi rhizome extract and to study the activities of hexokinase, aldolase and phosphoglucoisomerase, and gluconeogenic enzymes such as glucose-6- phosphatase and fructose 1,6-diphosphatase in liver and kidney of normal and alloxan induced diabetic rats. Oral administration of 75 % ethanolic extract of R. emodi (250 mg/kg body weight for 30 days, resulted in decrease inthe activities of glucose-6-phosphatase, fructose-1,6-disphosphatase, aldolase and an increase in the activity of phosphoglucoisomerase and hexokinase in tissues. The study clearly shows that the R.emodi possesses antidiabetic activity.

  10. Regulation of programmed cell death by plasminogen activator inhibitor type 1 (PAI-1)

    DEFF Research Database (Denmark)

    Lademann, Ulrik Axel; Rømer, Maria Unni Koefoed

    2008-01-01

    PA) observed in tumours; however, several lines of evidence suggest that PAI-1 may contribute directly to the pathology of the disease. PAI-1 has been reported to have an effect on most of the basic cellular processes including cell adhesion, cell migration, cell invasion, and cell proliferation and increasing......Elevated levels of plasminogen activator inhibitor-1 (PAI-1) are associated with poor prognosis in cancer. An explanation to the elevated levels of PAI-1 could be a protective response to the increased proteolytic activity, caused by elevated levels of urokinase- type plasminogen activator (u...... numbers of reports suggest that PAI-1 also can regulate programmed cell death (PCD) in cancer cells and normal cells. A number of reports suggest that PAI-1 can inhibit PCD through its pro-adhesive/anti-proteolytic property whereas other reports suggest that PAI-1 induces PCD through its anti...

  11. Characterization and modelling of the boron-oxygen defect activation in compensated n-type silicon

    Energy Technology Data Exchange (ETDEWEB)

    Schön, J.; Niewelt, T.; Broisch, J.; Warta, W.; Schubert, M. C. [Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110 Freiburg (Germany)

    2015-12-28

    A study of the activation of the light-induced degradation in compensated n-type Czochralski grown silicon is presented. A kinetic model is established that verifies the existence of both the fast and the slow components known from p-type and proves the quadratic dependence of the defect generation rates of both defects on the hole concentration. The model allows for the description of lifetime degradation kinetics in compensated n-type silicon under various intensities and is in accordance with the findings for p-type silicon. We found that the final concentrations of the slow defect component in compensated n-type silicon only depend on the interstitial oxygen concentration and on neither the boron concentration nor the equilibrium electron concentration n{sub 0}. The final concentrations of the fast defect component slightly increase with increasing boron concentration. The results on n-type silicon give new insight to the origin of the BO defect and question the existing models for the defect composition.

  12. Effect of 2-hydroxychalcone on adiponectin level in type 2 diabetes induced experimentally in rats

    Directory of Open Access Journals (Sweden)

    Laila Ahmed Eissa

    2017-03-01

    Full Text Available Type 2 diabetes mellitus (T2DM is the most common type of diabetes, accounting for 90% of diabetic cases. It is characterized by chronic hyperglycemia which is caused by a combination of deficiency in insulin action and secretion. Adipose tissue regulates insulin sensitivity via the circulating adipocytokines, leptin, resistin and adiponectin. Hypoadiponectinemia contributes to the development of obesity and related disorders such as diabetes, hyperlipidemia and cardiovascular diseases. The present study aimed to evaluate the beneficial effect of flavonoid 2-hydroxychalcone in T2DM through its effect on peroxisome proliferator activated receptor gamma (PPAR-γ and adiponectin. T2DM was induced in male Wistar rats using high fat diet and low dose of streptozotocin (STZ, 35 mg/kg, i.p.. The flavonoid 2-hydroxychalcone was administered by oral tubes. Levels of PPAR-γ in sub abdominal adipose tissue, serum adiponectin, serum tumor necrosis factor-α (TNF-α and serum insulin levels were detected by ELISA. Moreover, malondialdehyde (MDA and reduced glutathione (GSH in sub abdominal adipose tissue, fasting serum glucose, serum triglycerides and serum total cholesterol levels were measured by colorimetric methods. Results showed that 2-hydroxychalcone attenuated changes induced by T2DM in rats. 2-Hydroxychalcone treatment increased PPAR-γ levels in adipose tissue, reduced oxidative stress, restored adiponectin levels and decreased high glucose levels in T2DM rats. In conclusion, 2-hydroxychalcone reduced hyperglycemia in T2DM by regulating adiponectin secretion. This effect involves PPAR-γ signaling pathway.

  13. Unexpected Activity of a Novel Kunitz-type Inhibitor

    Science.gov (United States)

    Smith, David; Tikhonova, Irina G.; Jewhurst, Heather L.; Drysdale, Orla C.; Dvořák, Jan; Robinson, Mark W.; Cwiklinski, Krystyna; Dalton, John P.

    2016-01-01

    Kunitz-type (KT) protease inhibitors are low molecular weight proteins classically defined as serine protease inhibitors. We identified a novel secreted KT inhibitor associated with the gut and parenchymal tissues of the infective juvenile stage of Fasciola hepatica, a helminth parasite of medical and veterinary importance. Unexpectedly, recombinant KT inhibitor (rFhKT1) exhibited no inhibitory activity toward serine proteases but was a potent inhibitor of the major secreted cathepsin L cysteine proteases of F. hepatica, FhCL1 and FhCL2, and of human cathepsins L and K (Ki = 0.4-27 nm). FhKT1 prevented the auto-catalytic activation of FhCL1 and FhCL2 and formed stable complexes with the mature enzymes. Pulldown experiments from adult parasite culture medium showed that rFhKT1 interacts specifically with native secreted FhCL1, FhCL2, and FhCL5. Substitution of the unusual P1 Leu15 within the exposed reactive loop of FhKT1 for the more commonly found Arg (FhKT1Leu15/Arg15) had modest adverse effects on the cysteine protease inhibition but conferred potent activity against the serine protease trypsin (Ki = 1.5 nm). Computational docking and sequence analysis provided hypotheses for the exclusive binding of FhKT1 to cysteine proteases, the importance of the Leu15 in anchoring the inhibitor into the S2 active site pocket, and the inhibitor's selectivity toward FhCL1, FhCL2, and human cathepsins L and K. FhKT1 represents a novel evolutionary adaptation of KT protease inhibitors by F. hepatica, with its prime purpose likely in the regulation of the major parasite-secreted proteases and/or cathepsin L-like proteases of its host. PMID:27422822

  14. Bicyclic Peptide Inhibitor of Urokinase-Type Plasminogen Activator

    DEFF Research Database (Denmark)

    Roodbeen, Renée; Paaske, Berit; Jiang, Longguang;

    2013-01-01

    The development of protease inhibitors for pharmacological intervention has taken a new turn with the use of peptidebased inhibitors. Here, we report the rational design of bicyclic peptide inhibitors of the serine protease urokinase-type plasminogen activator (uPA), based on the established...... monocyclic peptide, upain-2. It was successfully converted to a bicyclic peptide, without loss of inhibitory properties. The aim was to produce a peptide cyclised by an amide bond with an additional stabilising across-the-ring covalent bond. We expected this bicyclic peptide to exhibit a lower entropic...... burden upon binding. Two bicyclic peptides were synthesised with affinities similar to that of upain-2, and their binding energetics were evaluated by isothermal titration calorimetry. Indeed, compared to upain-2, the bicyclic peptides showed reduced loss of entropy upon binding to uPA. We also...

  15. H,K-ATPase type 2 contributes to salt-sensitive hypertension induced by K(+) restriction.

    Science.gov (United States)

    Walter, Christine; Tanfous, Mariem Ben; Igoudjil, Katia; Salhi, Amel; Escher, Geneviève; Crambert, Gilles

    2016-10-01

    In industrialized countries, a large part of the population is daily exposed to low K(+) intake, a situation correlated with the development of salt-sensitive hypertension. Among many processes, adaptation to K(+)-restriction involves the stimulation of H,K-ATPase type 2 (HKA2) in the kidney and colon and, in this study, we have investigated whether HKA2 also contributes to the determination of blood pressure (BP). By using wild-type (WT) and HKA2-null mice (HKA2 KO), we showed that after 4 days of K(+) restriction, WT remain normokalemic and normotensive (112 ± 3 mmHg) whereas HKA2 KO mice exhibit hypokalemia and hypotension (104 ± 2 mmHg). The decrease of BP in HKA2 KO is due to the absence of NaCl-cotransporter (NCC) stimulation, leading to renal loss of salt and decreased extracellular volume (by 20 %). These effects are likely related to the renal resistance to vasopressin observed in HKA2 KO that may be explained, in part by the increased production of prostaglandin E2 (PGE2). In WT, the stimulation of NCC induced by K(+)-restriction is responsible for the elevation in BP when salt intake increases, an effect blunted in HKA2-null mice. The presence of an activated HKA2 is therefore required to limit the decrease in plasma [K(+)] but also contributes to the development of salt-sensitive hypertension.

  16. Enhanced surface plasmon polariton propagation induced by active dielectrics

    OpenAIRE

    Athanasopoulos, C.; Mattheakis, M.; Tsironis, G. P.

    2013-01-01

    We present numerical simulations for the propagation of surface plasmon polaritons in a dielectric-metal-dielectric waveguide using COMSOL multiphysics software. We show that the use of an active dielectric with gain that compensates metal absorption losses enhances substantially plasmon propagation. Furthermore, the introduction of the active material induces, for a specific gain value, a root in the imaginary part of the propagation constant leading to infinite propagation of the surface pl...

  17. The influence of experimentally induced pain on shoulder muscle activity

    DEFF Research Database (Denmark)

    Diederichsen, L.P.; Winther, A.; Dyhre-Poulsen, P.

    2009-01-01

    muscles. EMG was recorded before pain, during pain and after pain had subsided and pain intensity was continuously scored on a visual analog scale (VAS). During abduction, experimentally induced pain in the supraspinatus muscle caused a significant decrease in activity of the anterior deltoid, upper...... in a way that protects the painful structure. Further, the changes in muscle activity following subacromial pain induction tend to expand the subacromial space and thereby decrease the load on the painful structures Udgivelsesdato: 2009/4...

  18. The influence of experimentally induced pain on shoulder muscle activity

    DEFF Research Database (Denmark)

    Diederichsen, Louise Pyndt; Winther, Annika; Dyhre-Poulsen, Poul

    2009-01-01

    . EMG was recorded before pain, during pain and after pain had subsided and pain intensity was continuously scored on a visual analog scale (VAS). During abduction, experimentally induced pain in the supraspinatus muscle caused a significant decrease in activity of the anterior deltoid, upper trapezius...... the painful structure. Further, the changes in muscle activity following subacromial pain induction tend to expand the subacromial space and thereby decrease the load on the painful structures....

  19. Activation-Induced Cytidine Deaminase Links Ovulation-Induced Inflammation and Serous Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Stav Sapoznik

    2016-02-01

    Full Text Available In recent years, the notion that ovarian carcinoma results from ovulation-induced inflammation of the fallopian tube epithelial cells (FTECs has gained evidence. However, the mechanistic pathway for this process has not been revealed yet. In the current study, we propose the mutator protein activation-induced cytidine deaminase (AID as a link between ovulation-induced inflammation in FTECs and genotoxic damage leading to ovarian carcinogenesis. We show that AID, previously shown to be functional only in B lymphocytes, is expressed in FTECs under physiological conditions, and is induced in vitro upon ovulatory-like stimulation and in vivo in carcinoma-associated FTECs. We also report that AID activity results in epigenetic, genetic and genomic damage in FTECs. Overall, our data provides new insights into the etiology of ovarian carcinogenesis and may set the ground for innovative approaches aimed at prevention and early detection.

  20. Zeeman-Doppler imaging of active young solar type stars

    CERN Document Server

    Hackman, Thomas; Rosén, Lisa; Kochukhov, Oleg; Käpylä, Maarit J

    2015-01-01

    By studying young magnetically active late-type stars, i.e. analogues to the young Sun, one can draw conclusions on the evolution of the solar dynamo. We determine the topology of the surface magnetic field and study the relation between the magnetic field and cool photospheric spots in three young late-type stars. High-resolution spectropolarimetry of the targets were obtained with the HARPSpol instrument mounted at the ESO 3.6 m telescope. The signal-to-noise ratio of the Stokes IV measurements were boosted by combining the signal from a large number of spectroscopic absorption lines through the least squares deconvolution technique. Surface brightness and magnetic field maps were calculated using the Zeeman-Doppler imaging technique. All the three targets show clear signs of both magnetic fields and cool spots. Only one of the targets, namely V1358 Ori, shows evidence of the dominance of non-axisymmetric modes. In two of the targets, the poloidal field is significantly stronger than the toroidal one, indic...

  1. Lotus hairy roots expressing inducible arginine decarboxylase activity.

    Science.gov (United States)

    Chiesa, María A; Ruiz, Oscar A; Sánchez, Diego H

    2004-05-01

    Biotechnological uses of plant cell-tissue culture usually rely on constitutive transgene expression. However, such expression of transgenes may not always be desirable. In those cases, the use of an inducible promoter could be an alternative approach. To test this hypothesis, we developed two binary vectors harboring a stress-inducible promoter from Arabidopsis thaliana, driving the beta-glucuronidase reporter gene and the oat arginine decarboxylase. Transgenic hairy roots of Lotus corniculatus were obtained with osmotic- and cold-inducible beta-glucuronidase and arginine decarboxylase activities. The increase in the activity of the latter was accompanied by a significant rise in total free polyamines level. Through an organogenesis process, we obtained L. corniculatus transgenic plants avoiding deleterious phenotypes frequently associated with the constitutive over-expression of arginine decarboxylation and putrescine accumulation.

  2. Low-Cytotoxic Synthetic Bromorutaecarpine Exhibits Anti-Inflammation and Activation of Transient Receptor Potential Vanilloid Type 1 Activities

    Directory of Open Access Journals (Sweden)

    Chi-Ming Lee

    2013-01-01

    Full Text Available Rutaecarpine (RUT, the major bioactive ingredient isolated from the Chinese herb Evodia rutaecarpa, possesses a wide spectrum of biological activities, including anti-inflammation and preventing cardiovascular diseases. However, its high cytotoxicity hampers pharmaceutical development. We designed and synthesized a derivative of RUT, bromo-dimethoxyrutaecarpine (Br-RUT, which showed no cytotoxicity at 20 μM. Br-RUT suppressed nitric oxide (NO production and tumor necrosis factor-α release in concentration-dependent (0~20 μM manners in lipopolysaccharide (LPS-treated RAW 264.7 macrophages; protein levels of inducible NO synthase (iNOS and cyclooxygenase-2 induced by LPS were downregulated. Br-RUT inhibited cell migration and invasion of ovarian carcinoma A2780 cells with 0~48 h of treatment. Furthermore, Br-RUT enhanced the expression of transient receptor potential vanilloid type 1 and activated endothelial NOS in human aortic endothelial cells. These results suggest that the synthetic Br-RUT possesses very low cytotoxicity but retains its activities against inflammation and vasodilation that could be beneficial for cardiovascular disease therapeutics.

  3. Caspase-9 mediates Puma activation in UCN-01-induced apoptosis.

    Science.gov (United States)

    Nie, C; Luo, Y; Zhao, X; Luo, N; Tong, A; Liu, X; Yuan, Z; Wang, C; Wei, Y

    2014-10-30

    The protein kinase inhibitor 7-hydroxystaurosporine (UCN-01) is one of the most potent and frequently used proapoptotic stimuli. The BH3-only molecule of Bcl-2 family proteins has been reported to contribute to UCN-01-induced apoptosis. Here we have found that UCN-01 triggers Puma-induced mitochondrial apoptosis pathway. Our data confirmed that Akt-FoxO3a pathway mediated Puma activation. Importantly, we elucidate the detailed mechanisms of Puma-induced apoptosis. Our data have also demonstrated that caspase-9 is a decisive molecule of Puma induction after UCN-01 treatment. Caspase-9 mediates apoptosis through two kinds of feedback loops. On the one hand, caspase-9 enhances Puma activation by cleaving Bcl-2 and Bcl-xL independent of caspase-3. On the other hand, caspase-9 directly activated caspase-3 in the presence of caspase-3. Caspase-3 could cleave XIAP in an another positive feedback loop to further sensitize cancer cells to UCN-01-induced apoptosis. Therefore, caspase-9 mediates Puma activation to determine the threshold for overcoming chemoresistance in cancer cells.

  4. Early autophagy activation inhibits podocytes from apoptosis induced by aldosterone

    Institute of Scientific and Technical Information of China (English)

    王文琰

    2013-01-01

    Objective To explore the protection of early autoph-agy activation on podocyte injury induced by aldosterone.Methods In vitro cultured mouse podocyte clones(MPC5) were treated with aldosterone for 6,12,24,48 hrespectively. Apoptosis of podocytes was detected by

  5. Relationship between ascorbyl radical intensity and apoptosis-inducing activity.

    Science.gov (United States)

    Sakagami, H; Satoh, K; Ohata, H; Takahashi, H; Yoshida, H; Iida, M; Kuribayashi, N; Sakagami, T; Momose, K; Takeda, M

    1996-01-01

    Ascorbic acid and its related compounds were compared for their ascorbyl radical intensity and apoptosis-inducing activity. Sodium L-ascorbate, L-ascorbic acid, D-isoascorbic acid, sodium 6-beta-O-galactosyl-L-ascorbate and sodium 5,6-benzylidene-L-ascorbate, at the concentration of 1-10 mM, induced apoptotic cell death characterized by cell shrinkage, nuclear fragmentation and internucleosomal DNA cleavage in human promyelocytic leukemic HL-60 cells. On the other hand, L-ascorbic acid-2-phosphate magnesium salt and L-ascorbic acid 2-sulfate did not induce any of these apoptosis-associated characteristics. ESR measurements revealed that all the active compounds were progressively degraded, producing the ascorbyl radical (g = 2.0064, hfc = 0.17 mT) in culture medium, whereas the inactive compounds were stable and did not produce the ascorbyl radical. Cytotoxicity began to appear when the radical intensity exceeded a certain threshold level. In the presence of N-acetyl-L-cysteine, both ascorbyl radical intensity and apoptosis-inducing activity were significantly reduced. These data suggest the possible involvement of the ascorbyl radical in apoptosis induction by ascorbic acid-related compounds. Exposure of HL-60 cells to ascorbic acid or its active derivatives resulted in the rapid elevation of intracellular Ca2+ concentration, which might serve as the initial signal leading to the cell death pathway.

  6. A comparative study examining the cytotoxicity of inducible gene expression system ligands in different cell types.

    Science.gov (United States)

    Xie, Jinger; Nair, Ayyappan; Hermiston, Terry W

    2008-02-01

    Inducible gene expression systems are being used in many in vitro and in vivo applications for target discovery, target validation and as components in exploratory therapeutic agents. Ideally, the ligands, which activate the systems, are benign so that the effects can be strictly attributed to the induced protein. As a first step to defining the potential effects of these inducers, we tested three of them, doxycycline, muristerone A and mifepristone (for tet-, ecdysone- and progesterone antagonist-inducible systems respectively), for toxicity across a panel of normal cells and cancer cell lines. In contrast to both muristerone A and mifepristone that showed no significant toxicity on any of the tested cells, we observed that doxycycline induced cell death in selected cancer and primary cell lines. The different susceptibility of cell lines to the ligands commonly used in these inducible systems suggests that it is important to consider the effects of the inducers prior to their use in experimental in vitro cell culture systems.

  7. Retinoid-induced differentiation of acute promyelocytic leukemia involves PML-RARalpha-mediated increase of type II transglutaminase.

    Science.gov (United States)

    Benedetti, L; Grignani, F; Scicchitano, B M; Jetten, A M; Diverio, D; Lo Coco, F; Avvisati, G; Gambacorti-Passerini, C; Adamo, S; Levin, A A; Pelicci, P G; Nervi, C

    1996-03-01

    All-trans retinoic acid (t-RA) administration leads to complete remission in acute promyelocytic leukemia (APL) patients by inducing growth arrest and differentiation of the leukemic clone. In the present study, we show that t-RA treatment dramatically induced type II transglutaminase (type II TGase) expression in cells carrying the t(15;17) translocation and expressing the PML-RARalpha product such as the APL-derived NB4 cell line and fresh leukemic cells from APL patients. This induction correlated with t-RA-induced growth arrest, granulocytic differentiation, and upregulation of the leukocyte adherence receptor beta subunit (CD18) gene expression. The increase in type II TGase was not abolished by cycloheximide treatment, suggesting that synthesis of a protein intermediate was not required for the induction. t-RA did not significantly alter the rate of growth arrest and did not stimulate differentiation and type II TGase activity in NB4.306 cells, a t-RA-resistant subclone of the NB4 cell line, or in leukemic cells derived from two patients morphologically defined as APL but lacking the t(15;17). However, in NB4.306 cells, t-RA treatment was able to increase CD18 mRNA expression in a manner similar to NB4 cells. The molecular mechanisms involved in the induction of these genes were investigated. In NB4 cells, using novel receptor-selective ligands such as 9-cis-RA, TTNPB, AM580, and SR11217, we found that RAR- and RARalpha-selective retinoids were able to induce growth arrest, granulocytic differentiation, and type II TGase, whereas the RXR-selective retinoid SR11217 was inactive. Moreover, an RAR alpha-antagonist completely inhibited the expression of type II TGase and CD18 induced by these selective retinoids in NB4 cells. In NB4.306 cells, an RARalpha-dependent signaling pathway was found involved in the modulation of CD18 expression. In addition, expression of the PML-RARalpha gene in myeloid U937 precursor cells resulted in the ability of these cells to

  8. Endostatin is protective against monocrotaline-induced right heart disease through the inhibition of T-type Ca(2+) channel.

    Science.gov (United States)

    Imoto, Keisuke; Kumatani, Sayaka; Okada, Muneyoshi; Yamawaki, Hideyuki

    2016-07-01

    Endostatin (ES), a C-terminal fragment of collagen XVIIIα1, has a potent anti-angiogenic effect. ES prevents tumor proliferation through inhibiting T-type Ca(2+) channel. T-type Ca(2+) channel is re-expressed during heart diseases including monocrotaline (MCT)-induced right heart failure. The present study aimed to clarify the effects of ES on T-type Ca(2+) channel and pathogenesis of MCT-induced right ventricular disease. MCT or saline was injected intraperitoneally to rats. After cardiomyocytes were isolated from right ventricles (RVs), T-type Ca(2+) channel current (I CaT) was measured by a patch-clamp method. After ES small interfering RNA (siRNA) or control siRNA (20 μg) was administrated for 1 week via the right jugular vein 1 week after MCT injection, echocardiography and histological analysis were done. I CaT was significantly increased in RV from MCT-injected rats, and ES significantly inhibited it. The survival rate of ES siRNA-administrated MCT rats (MCT ES si group) was decreased. In echocardiography, although ES siRNA did not affect pulmonary arterial pressure, RV systolic function was impaired in MCT ES si group compared with control siRNA-administrated MCT rats (MCT cont si group). In the histological analysis of RV, ES expression was increased in MCT cont si group, and ES siRNA inhibited it. Furthermore, although MCT cont si group showed only cardiomyocyte hypertrophy, MCT ES si group showed notable enlargement of intercellular spaces. The present study for the first time revealed that ES inhibits T-type Ca(2+) channel activity in RV from MCT-injected rats. ES gene knockdown deteriorates MCT-induced right heart disease. ES is thus cardioprotective possibly through inhibiting T-type Ca(2+) channel activity.

  9. Music-induced emotions can be predicted from a combination of brain activity and acoustic features.

    Science.gov (United States)

    Daly, Ian; Williams, Duncan; Hallowell, James; Hwang, Faustina; Kirke, Alexis; Malik, Asad; Weaver, James; Miranda, Eduardo; Nasuto, Slawomir J

    2015-12-01

    It is widely acknowledged that music can communicate and induce a wide range of emotions in the listener. However, music is a highly-complex audio signal composed of a wide range of complex time- and frequency-varying components. Additionally, music-induced emotions are known to differ greatly between listeners. Therefore, it is not immediately clear what emotions will be induced in a given individual by a piece of music. We attempt to predict the music-induced emotional response in a listener by measuring the activity in the listeners electroencephalogram (EEG). We combine these measures with acoustic descriptors of the music, an approach that allows us to consider music as a complex set of time-varying acoustic features, independently of any specific music theory. Regression models are found which allow us to predict the music-induced emotions of our participants with a correlation between the actual and predicted responses of up to r=0.234,pemotions can be predicted by their neural activity and the properties of the music. Given the large amount of noise, non-stationarity, and non-linearity in both EEG and music, this is an encouraging result. Additionally, the combination of measures of brain activity and acoustic features describing the music played to our participants allows us to predict music-induced emotions with significantly higher accuracies than either feature type alone (p<0.01).

  10. A novel mechanism of diabetic vascular endothelial dysfunction: Hypoadiponectinemia-induced NLRP3 inflammasome activation.

    Science.gov (United States)

    Zhang, Jinglong; Xia, Linying; Zhang, Fen; Zhu, Di; Xin, Chao; Wang, Helin; Zhang, Fuyang; Guo, Xian; Lee, Yan; Zhang, Ling; Wang, Shan; Guo, Xiong; Huang, Chong; Gao, Feng; Liu, Yi; Tao, Ling

    2017-02-12

    It has been well documented that hypoadiponectinemia is associated with impaired endothelium-dependent vasodilation. However, the exact molecular mechanism which mediates this process has not been fully described. The current study aimed to investigate the role of hypoadiponectinemia-induced NLRP3 inflammasome activation in diabetic vascular endothelial dysfunction and its molecular mechanism. Male adult adiponectin knockout mice and wild type mice were fed with a high fat diet to establish a type 2 diabetic mellitus model. In addition, human umbilical vein endothelial cells (HUVECs) were cultured and subjected to high glucose/high fat (HG/HF). The NLRP3 inflammasome activation was increased in type 2 diabetic mice and treatment of diabetic aortic segments with MCC950, a potent selective inhibitor of NLRP3 inflammasome ex vivo improved endothelial-dependent vasorelaxation. NLRP3 inflammasome activation and vascular endothelial injury were significantly increased in APN-KO mice compared with WT mice in diabetes and MCC950 decreased diabetic vascular endothelial dysfunction to comparable levels in APN-KO mice and WT mice. Adiponectin could decrease NLRP3 inflammasome activation and attenuate endothelial cell injury, which was abolished by NLRP3 inflammasome overexpression. Inhibition of peroxynitrite formation preferentially attenuated NLRP3 inflammasome activation in APN-KO diabetic mice. The current study demonstrated for the first time that hypoadiponectinemia-induced NLRP3 inflammasome activation was a novel mechanism of diabetic vascular endothelial dysfunction.

  11. Celiac Anti-Type 2 Transglutaminase Antibodies Induce Phosphoproteome Modification in Intestinal Epithelial Caco-2 Cells

    Science.gov (United States)

    Marabotti, Anna; Lepretti, Marilena; Salzano, Anna Maria; Scaloni, Andrea; Vitale, Monica; Zambrano, Nicola; Sblattero, Daniele; Esposito, Carla

    2013-01-01

    Background Celiac disease is an inflammatory condition of the small intestine that affects genetically predisposed individuals after dietary wheat gliadin ingestion. Type 2-transglutaminase (TG2) activity seems to be responsible for a strong autoimmune response in celiac disease, TG2 being the main autoantigen. Several studies support the concept that celiac anti-TG2 antibodies may contribute to disease pathogenesis. Our recent findings on the ability of anti-TG2 antibodies to induce a rapid intracellular mobilization of calcium ions, as well as extracellular signal-regulated kinase phosphorylation, suggest that they potentially act as signaling molecules. In line with this concept, we have investigated whether anti-TG2 antibodies can induce phosphoproteome modification in an intestinal epithelial cell line. Methods and Principal Findings We studied phosphoproteome modification in Caco-2 cells treated with recombinant celiac anti-TG2 antibodies. We performed a two-dimensional electrophoresis followed by specific staining of phosphoproteins and mass spectrometry analysis of differentially phosphorylated proteins. Of 14 identified proteins (excluding two uncharacterized proteins), three were hypophosphorylated and nine were hyperphosphorylated. Bioinformatics analyses confirmed the presence of phosphorylation sites in all the identified proteins and highlighted their involvement in several fundamental biological processes, such as cell cycle progression, cell stress response, cytoskeletal organization and apoptosis. Conclusions Identification of differentially phosphorylated proteins downstream of TG2-antibody stimulation suggests that in Caco-2 cells these antibodies perturb cell homeostasis by behaving as signaling molecules. We hypothesize that anti-TG2 autoantibodies may destabilize the integrity of the intestinal mucosa in celiac individuals, thus contributing to celiac disease establishment and progression. Since several proteins here identified in this study

  12. Celiac anti-type 2 transglutaminase antibodies induce phosphoproteome modification in intestinal epithelial Caco-2 cells.

    Directory of Open Access Journals (Sweden)

    Gaetana Paolella

    Full Text Available BACKGROUND: Celiac disease is an inflammatory condition of the small intestine that affects genetically predisposed individuals after dietary wheat gliadin ingestion. Type 2-transglutaminase (TG2 activity seems to be responsible for a strong autoimmune response in celiac disease, TG2 being the main autoantigen. Several studies support the concept that celiac anti-TG2 antibodies may contribute to disease pathogenesis. Our recent findings on the ability of anti-TG2 antibodies to induce a rapid intracellular mobilization of calcium ions, as well as extracellular signal-regulated kinase phosphorylation, suggest that they potentially act as signaling molecules. In line with this concept, we have investigated whether anti-TG2 antibodies can induce phosphoproteome modification in an intestinal epithelial cell line. METHODS AND PRINCIPAL FINDINGS: We studied phosphoproteome modification in Caco-2 cells treated with recombinant celiac anti-TG2 antibodies. We performed a two-dimensional electrophoresis followed by specific staining of phosphoproteins and mass spectrometry analysis of differentially phosphorylated proteins. Of 14 identified proteins (excluding two uncharacterized proteins, three were hypophosphorylated and nine were hyperphosphorylated. Bioinformatics analyses confirmed the presence of phosphorylation sites in all the identified proteins and highlighted their involvement in several fundamental biological processes, such as cell cycle progression, cell stress response, cytoskeletal organization and apoptosis. CONCLUSIONS: Identification of differentially phosphorylated proteins downstream of TG2-antibody stimulation suggests that in Caco-2 cells these antibodies perturb cell homeostasis by behaving as signaling molecules. We hypothesize that anti-TG2 autoantibodies may destabilize the integrity of the intestinal mucosa in celiac individuals, thus contributing to celiac disease establishment and progression. Since several proteins here

  13. Experimental Neuromyelitis Optica Induces a Type I Interferon Signature in the Spinal Cord

    Science.gov (United States)

    Kaufmann, Nathalie; Zeka, Bleranda; Schanda, Kathrin; Fujihara, Kazuo; Illes, Zsolt; Dahle, Charlotte; Reindl, Markus; Lassmann, Hans; Bradl, Monika

    2016-01-01

    Neuromyelitis optica (NMO) is an acute inflammatory disease of the central nervous system (CNS) which predominantly affects spinal cord and optic nerves. Most patients harbor pathogenic autoantibodies, the so-called NMO-IgGs, which are directed against the water channel aquaporin 4 (AQP4) on astrocytes. When these antibodies gain access to the CNS, they mediate astrocyte destruction by complement-dependent and by antibody-dependent cellular cytotoxicity. In contrast to multiple sclerosis (MS) patients who benefit from therapies involving type I interferons (I-IFN), NMO patients typically do not profit from such treatments. How is I-IFN involved in NMO pathogenesis? To address this question, we made gene expression profiles of spinal cords from Lewis rat models of experimental neuromyelitis optica (ENMO) and experimental autoimmune encephalomyelitis (EAE). We found an upregulation of I-IFN signature genes in EAE spinal cords, and a further upregulation of these genes in ENMO. To learn whether the local I-IFN signature is harmful or beneficial, we induced ENMO by transfer of CNS antigen-specific T cells and NMO-IgG, and treated the animals with I-IFN at the very onset of clinical symptoms, when the blood-brain barrier was open. With this treatment regimen, we could amplify possible effects of the I-IFN induced genes on the transmigration of infiltrating cells through the blood brain barrier, and on lesion formation and expansion, but could avoid effects of I-IFN on the differentiation of pathogenic T and B cells in the lymph nodes. We observed that I-IFN treated ENMO rats had spinal cord lesions with fewer T cells, macrophages/activated microglia and activated neutrophils, and less astrocyte damage than their vehicle treated counterparts, suggesting beneficial effects of I-IFN. PMID:26990978

  14. Type III secretion system genes of Dickeya dadantii 3937 are induced by plant phenolic acids.

    Directory of Open Access Journals (Sweden)

    Shihui Yang

    Full Text Available BACKGROUND: Dickeya dadantii is a broad-host range phytopathogen. D. dadantii 3937 (Ech3937 possesses a type III secretion system (T3SS, a major virulence factor secretion system in many gram-negative pathogens of plants and animals. In Ech3937, the T3SS is regulated by two major regulatory pathways, HrpX/HrpY-HrpS-HrpL and GacS/GacA-rsmB-RsmA pathways. Although the plant apoplast environment, low pH, low temperature, and absence of complex nitrogen sources in media have been associated with the induction of T3SS genes of phytobacteria, no specific inducer has yet been identified. METHODOLOGY/PRINCIPAL FINDINGS: In this work, we identified two novel plant phenolic compounds, o-coumaric acid (OCA and t-cinnamic acid (TCA, that induced the expression of T3SS genes dspE (a T3SS effector, hrpA (a structural protein of the T3SS pilus, and hrpN (a T3SS harpin in vitro. Assays by qRT-PCR showed higher amounts of mRNA of hrpL (a T3SS alternative sigma factor and rsmB (an untranslated regulatory RNA, but not hrpS (a sigma(54-enhancer binding protein of Ech3937 when these two plant compounds were supplemented into minimal medium (MM. However, promoter activity assays using flow cytometry showed similar promoter activities of hrpN in rsmB mutant Ech148 grown in MM and MM supplemented with these phenolic compounds. Compared with MM alone, only slightly higher promoter activities of hrpL were observed in bacterial cells grown in MM supplemented with OCA/TCA. CONCLUSION/SIGNIFICANCE: The induction of T3SS expression by OCA and TCA is moderated through the rsmB-RsmA pathway. This is the first report of plant phenolic compounds that induce the expression T3SS genes of plant pathogenic bacteria.

  15. Parallel activation of Ca(2+)-induced survival and death pathways in cardiomyocytes by sorbitol-induced hyperosmotic stress.

    Science.gov (United States)

    Chiong, M; Parra, V; Eisner, V; Ibarra, C; Maldonado, C; Criollo, A; Bravo, R; Quiroga, C; Contreras, A; Vicencio, J M; Cea, P; Bucarey, J L; Molgó, J; Jaimovich, E; Hidalgo, C; Kroemer, G; Lavandero, S

    2010-08-01

    Hyperosmotic stress promotes rapid and pronounced apoptosis in cultured cardiomyocytes. Here, we investigated if Ca(2+) signals contribute to this response. Exposure of cardiomyocytes to sorbitol [600 mosmol (kg water)(-1)] elicited large and oscillatory intracellular Ca(2+) concentration increases. These Ca(2+) signals were inhibited by nifedipine, Cd(2+), U73122, xestospongin C and ryanodine, suggesting contributions from both Ca(2+) influx through voltage dependent L-type Ca(2+) channels plus Ca(2+) release from intracellular stores mediated by IP(3) receptors and ryanodine receptors. Hyperosmotic stress also increased mitochondrial Ca(2+) levels, promoted mitochondrial depolarization, reduced intracellular ATP content, and activated the transcriptional factor cyclic AMP responsive element binding protein (CREB), determined by increased CREB phosphorylation and electrophoretic mobility shift assays. Incubation with 1 mM EGTA to decrease extracellular [Ca(2+)] prevented cardiomyocyte apoptosis induced by hyperosmotic stress, while overexpression of an adenoviral dominant negative form of CREB abolished the cardioprotection provided by 1 mM EGTA. These results suggest that hyperosmotic stress induced by sorbitol, by increasing Ca(2+) influx and raising intracellular Ca(2+) concentration, activates Ca(2+) release from stores and causes cell death through mitochondrial function collapse. In addition, the present results suggest that the Ca(2+) increase induced by hyperosmotic stress promotes cell survival by recruiting CREB-mediated signaling. Thus, the fate of cardiomyocytes under hyperosmotic stress will depend on the balance between Ca(2+)-induced survival and death pathways.

  16. Radiation-induced Sarcomas Occurring in Desmoid-type Fibromatosis Are Not Always Derived From the Primary Tumor.

    Science.gov (United States)

    Verschoor, Arie J; Cleton-Jansen, Anne-Marie; Wijers-Koster, Pauline; Coffin, Cheryl M; Lazar, Alexander J; Nout, Remi A; Rubin, Brian P; Gelderblom, Hans; Bovée, Judith V M G

    2015-12-01

    Desmoid-type fibromatosis is a rare, highly infiltrative, locally destructive neoplasm that does not metastasize, but recurs often after primary surgery. Activation of the Wnt/β-catenin pathway is the pathogenic mechanism, caused by an activating mutation in exon 3 of CTNNB1 (85% of the sporadic patients). Radiotherapy is a frequent treatment modality with a local control rate of approximately 80%. In very rare cases, this may result in the development of radiation-induced sarcoma. It is unclear whether these sarcomas develop from the primary tumor or arise de novo in normal tissue. In 4 tertiary referral centers for sarcoma, 6 cases of desmoid-type fibromatosis that subsequently developed sarcoma after radiotherapy were collected. The DNA sequence of CTNNB1 exon 3 in the desmoid-type fibromatosis and the subsequent postradiation sarcoma was determined. Sarcomas developed 5 to 21 years after the diagnosis of desmoid-type fibromatosis and included 2 osteosarcomas, 2 high-grade undifferentiated pleomorphic sarcomas, 1 fibrosarcoma, and 1 undifferentiated spindle cell sarcoma. Three patients showed a CTNNB1 hotspot mutation (T41A, S45F, or S45N) in both the desmoid-type fibromatosis and the radiation-induced sarcoma. The other 3 patients showed a CTNNB1 mutation in the original desmoid-type fibromatosis (2 with a T41A and 1 with an S45F mutation), which was absent in the sarcoma. In conclusion, postradiation sarcomas that occur in the treatment area of desmoid-type fibromatosis are extremely rare and can arise through malignant transformation of CTNNB1-mutated desmoid fibromatosis cells, but may also originate from CTNNB1 wild-type normal cells lying in the radiation field.

  17. Dependence of herpes simplex virus type 1-induced cell fusion on cell type

    Energy Technology Data Exchange (ETDEWEB)

    Bzik, D.J.; Person, S.

    1981-04-15

    Syncytial mutants of herpes simplex virus type 1 (HSV-1), such as syn20, cause extensive fusion of human embryonic lung (HEL) cells but only a small amount of fusion of human epidermoid carcinoma No. 2 (HEp-2) cells. In order to determine the cellular basis of this difference in fusion, sparse cultures of syn20-infected HEL or HEp-2 cells, previously labeled with (/sup 3/H)thymidine, were surrounded with uninfected, unlabeled HEL or HEp-2 cells. The fusion of radioactive with nonradioactive cells was determined at different times after infection using radioautography. The major difference in the fusion capacity of HEL and HEp-2 cells was not due to a difference in cell-surface receptors for a fusion factor in the two cell types. The process of infection of HEp-2 cells did not cause the plasma membranes of the cells to become refractory to fusion, because syn20-infected HEL cells fused equally well with either uninfected or infected HEp-2 cells. In a mixed infection with equal numbers of MP and its nonsyncytial parent, mP, extensive fusion was observed for infected HEL cells and significantly less fusion was observed for infected African green monkey (CV-1), baby hamster kidney (BHK-21), and HEp-2 cells.

  18. Lipoprotein-induced phenoloxidase-activity in tarantula hemocyanin.

    Science.gov (United States)

    Schenk, Sven; Schmidt, Juliane; Hoeger, Ulrich; Decker, Heinz

    2015-08-01

    Phenoloxidases play vital roles in invertebrate innate immune reactions, wound closure and sclerotization processes in arthropods. In chelicerates, where phenoloxidases are lacking, phenoloxidase-activity can be induced in the oxygen carrier hemocyanin in vitro by proteolytic cleavage, incubation with the artificial inducer SDS, or lipids. The role of protein-protein interaction has up to now received little attention. This is remarkable, as lipoproteins - complexes of proteins and lipids - are present at high concentrations in arthropod hemolymph. We characterized the three lipoproteins present in tarantula hemolymph, two high-density lipoproteins and one very high-density lipoprotein, and show that the two high-density lipoproteins have distinct structures: the more abundant high-density lipoprotein is an ellipsoid particle with axes of ~22.5 nm and ~16.8 nm, respectively. The second high-density lipoprotein, present only in trace amount, is a large discoidal lipoprotein with a diameter of ~38.4 nm and an on-edge thickness of ~7.1 nm. We further demonstrate that the interaction between lipoproteins and hemocyanin induces phenoloxidase activity in hemocyanin, and propose that this activation is due to protein-protein interaction rather than protein-lipid interaction, as neither lipid micelles nor lipid monomers were found to be activating. Activation was strongest in the presence of high-density lipoproteins; very high-density lipoproteins were found to be non-activating. This is the first time that the ability of lipoproteins to induce phenoloxidase activity of hemocyanin has been demonstrated, thus adding novel aspects to the function of lipoproteins apart from their known role in nutrient supply. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Plasminogen activator inhibitor type 1 regulates microglial motility and phagocytic activity

    Directory of Open Access Journals (Sweden)

    Jeon Hyejin

    2012-06-01

    Full Text Available Abstract Background Plasminogen activator inhibitor type 1 (PAI-1 is the primary inhibitor of urokinase type plasminogen activators (uPA and tissue type plasminogen activators (tPA, which mediate fibrinolysis. PAI-1 is also involved in the innate immunity by regulating cell migration and phagocytosis. However, little is known about the role of PAI-1 in the central nervous system. Methods In this study, we identified PAI-1 in the culture medium of mouse mixed glial cells by liquid chromatography and tandem mass spectrometry. Secretion of PAI-1 from glial cultures was detected by ELISA and western blotting analysis. Cell migration was evaluated by in vitro scratch-wound healing assay or Boyden chamber assay and an in vivo stab wound injury model. Phagocytic activity was measured by uptake of zymosan particles. Results The levels of PAI-1 mRNA and protein expression were increased by lipopolysaccharide and interferon-γ stimulation in both microglia and astrocytes. PAI-1 promoted the migration of microglial cells in culture via the low-density lipoprotein receptor-related protein (LRP 1/Janus kinase (JAK/signal transducer and activator of transcription (STAT1 axis. PAI-1 also increased microglial migration in vivo when injected into mouse brain. PAI-1-mediated microglial migration was independent of protease inhibition, because an R346A mutant of PAI-1 with impaired PA inhibitory activity also promoted microglial migration. Moreover, PAI-1 was able to modulate microglial phagocytic activity. PAI-1 inhibited microglial engulfment of zymosan particles in a vitronectin- and Toll-like receptor 2/6-dependent manner. Conclusion Our results indicate that glia-derived PAI-1 may regulate microglial migration and phagocytosis in an autocrine or paracrine manner. This may have important implications in the regulation of brain microglial activities in health and disease.

  20. Raised activity of L-type calcium channels renders neurons prone to form paroxysmal depolarization shifts.

    Science.gov (United States)

    Rubi, Lena; Schandl, Ulla; Lagler, Michael; Geier, Petra; Spies, Daniel; Gupta, Kuheli Das; Boehm, Stefan; Kubista, Helmut

    2013-09-01

    Neuronal L-type voltage-gated calcium channels (LTCCs) are involved in several physiological functions, but increased activity of LTCCs has been linked to pathology. Due to the coupling of LTCC-mediated Ca(2+) influx to Ca(2+)-dependent conductances, such as KCa or non-specific cation channels, LTCCs act as important regulators of neuronal excitability. Augmentation of after-hyperpolarizations may be one mechanism that shows how elevated LTCC activity can lead to neurological malfunctions. However, little is known about other impacts on electrical discharge activity. We used pharmacological up-regulation of LTCCs to address this issue on primary rat hippocampal neurons. Potentiation of LTCCs with Bay K8644 enhanced excitatory postsynaptic potentials to various degrees and eventually resulted in paroxysmal depolarization shifts (PDS). Under conditions of disturbed Ca(2+) homeostasis, PDS were evoked frequently upon LTCC potentiation. Exposing the neurons to oxidative stress using hydrogen peroxide also induced LTCC-dependent PDS. Hence, raising LTCC activity had unidirectional effects on brief electrical signals and increased the likeliness of epileptiform events. However, long-lasting seizure-like activity induced by various pharmacological means was affected by Bay K8644 in a bimodal manner, with increases in one group of neurons and decreases in another group. In each group, isradipine exerted the opposite effect. This suggests that therapeutic reduction in LTCC activity may have little beneficial or even adverse effects on long-lasting abnormal discharge activities. However, our data identify enhanced activity of LTCCs as one precipitating cause of PDS. Because evidence is continuously accumulating that PDS represent important elements in neuropathogenesis, LTCCs may provide valuable targets for neuroprophylactic therapy.

  1. Jealousy increased by induced relative left frontal cortical activity.

    Science.gov (United States)

    Kelley, Nicholas J; Eastwick, Paul W; Harmon-Jones, Eddie; Schmeichel, Brandon J

    2015-10-01

    Asymmetric frontal cortical activity may be one key to the process linking social exclusion to jealous feelings. The current research examined the causal role of asymmetric frontal brain activity in modulating jealousy in response to social exclusion. Transcranial direct-current stimulation (tDCS) over the frontal cortex to manipulate asymmetric frontal cortical activity was combined with a modified version of the Cyberball paradigm designed to induce jealousy. After receiving 15 min of tDCS, participants were excluded by a desired partner and reported how jealous they felt. Among individuals who were excluded, tDCS to increase relative left frontal cortical activity caused greater levels of self-reported jealousy compared to tDCS to increase relative right frontal cortical activity or sham stimulation. Limitations concerning the specificity of this effect and implications for the role of the asymmetric prefrontal cortical activity in motivated behaviors are discussed.

  2. Metformin attenuates pressure overload-induced cardiac hypertrophy via AMPK activation

    Institute of Scientific and Technical Information of China (English)

    Yong-nan FU; Han XIAO; Xiao-wei MA; Sheng-yang JIANG; Ming XU; You-yi ZHANG

    2011-01-01

    Aim: To identify the role of metformin in cardiac hypertrophy and investigate the possible mechanism underlying this effect.Methods: Wild type and AMPKα2 knockout (AMPKα2-/-) littermates were subjected to left ventricular pressure overload caused by evaluated using echocardiography and anatomic and histological methods. The antihypertrophic mechanism of metformin was analyzed using Western blotting.Results: Metformin significantly attenuated cardiac hypertrophy induced by pressure overload in wild type mice, but the antihypertrophic actions of metformin were ablated in AMPKx2-/- mice. Furthermore, metformin suppressed the phosphorylation of Akt/protein kinase B (AKT) and mammalian target of rapamycin (mTOR) in response to pressure overload in wild type mice, but not in AMPKα2-/-mice.Conclusion: Long-term administration of metformin may attenuate cardiac hypertrophy induced by pressure overload in nondiabetic mice, and this attenuation is highly dependent on AMPK activation. These findings may provide a potential therapy for patients at risk of developing pathological cardiac hypertrophy.

  3. Natural Product Vibsanin A Induces Differentiation of Myeloid Leukemia Cells through PKC Activation.

    Science.gov (United States)

    Yu, Zu-Yin; Xiao, He; Wang, Li-Mei; Shen, Xing; Jing, Yu; Wang, Lin; Sun, Wen-Feng; Zhang, Yan-Feng; Cui, Yu; Shan, Ya-Jun; Zhou, Wen-Bing; Xing, Shuang; Xiong, Guo-Lin; Liu, Xiao-Lan; Dong, Bo; Feng, Jian-Nan; Wang, Li-Sheng; Luo, Qing-Liang; Zhao, Qin-Shi; Cong, Yu-Wen

    2016-05-01

    All-trans retinoic acid (ATRA)-based cell differentiation therapy has been successful in treating acute promyelocytic leukemia, a unique subtype of acute myeloid leukemia (AML). However, other subtypes of AML display resistance to ATRA-based treatment. In this study, we screened natural, plant-derived vibsane-type diterpenoids for their ability to induce differentiation of myeloid leukemia cells, discovering that vibsanin A potently induced differentiation of AML cell lines and primary blasts. The differentiation-inducing activity of vibsanin A was mediated through direct interaction with and activation of protein kinase C (PKC). Consistent with these findings, pharmacological blockade of PKC activity suppressed vibsanin A-induced differentiation. Mechanistically, vibsanin A-mediated activation of PKC led to induction of the ERK pathway and decreased c-Myc expression. In mouse xenograft models of AML, vibsanin A administration prolonged host survival and inhibited PKC-mediated inflammatory responses correlated with promotion of skin tumors in mice. Collectively, our results offer a preclinical proof of concept for vibsanin A as a myeloid differentiation-inducing compound, with potential application as an antileukemic agent. Cancer Res; 76(9); 2698-709. ©2016 AACR.

  4. Antimicrobial Activity of UV-Induced Phenylamides from Rice Leaves

    Directory of Open Access Journals (Sweden)

    Hye Lin Park

    2014-11-01

    Full Text Available Rice produces a wide array of phytoalexins in response to pathogen attacks and UV-irradiation. Except for the flavonoid sakuranetin, most phytoalexins identified in rice are diterpenoid compounds. Analysis of phenolic-enriched fractions from UV-treated rice leaves showed that several phenolic compounds in addition to sakuranetin accumulated remarkably in rice leaves. We isolated two compounds from UV-treated rice leaves using silica gel column chromatography and preparative HPLC. The isolated phenolic compounds were identified as phenylamide compounds: N-trans-cinnamoyltryptamine and N-p-coumaroylserotonin. Expression analysis of biosynthetic genes demonstrated that genes for arylamine biosynthesis were upregulated by UV irradiation. This result suggested that phenylamide biosynthetic pathways are activated in rice leaves by UV treatment. To unravel the role of UV-induced phenylamides as phytoalexins, we examined their antimicrobial activity against rice fungal and bacterial pathogens. N-trans-Cinnamoyltryptamine inhibited the growth of rice brown spot fungus (Bipolaris oryzae. In addition to the known antifungal activity to the blast fungus, sakuranetin had antimicrobial activity toward B. oryzae and Rhizoctonia solani (rice sheath blight fungus. UV-induced phenylamides and sakuranetin also had antimicrobial activity against rice bacterial pathogens for grain rot (Burkholderia glumae, blight (Xanthomonas oryzae pv. oryzae and leaf streak (X. oryzae pv. oryzicola diseases. These findings suggested that the UV-induced phenylamides in rice are phytoalexins against a diverse array of pathogens.

  5. Calciumreleasing activity induced by nuclei of mouse fertilized early embryos

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    At fertilization, repetitive transient rises of intracellular calcium concentration occur in all mammals studied so far. It has been shown that calcium rises could be induced when mouse fertilized 1-, 2-cell nuclei were transplanted into unfertilized eggs and that the reconstituted embryo could be activated. However, whether the capability of inducing calcium rises occurs in all stages of mammalian embryos remains unknown. In this study, by using the nuclear transplantation technique and measurement of intracellular calcium rises in living cells, we showed that only the nuclei from mouse fertilized 1-cell and 2-cell embryos, neither the nuclei from 4-, 8-cell and ethanol activated parthenogenetic embryos nor 2 or 3 nuclei of electrofused 4-cell stage syncytium, have calcium-releasing activity when they were transferred into unfertilized mature oocytes. Our results indicate that the calcium-releasing activity in nuclei of 1-, 2-cell embryos is produced during fertilization and exists at the special stage of fertilized early embryos. These suggested that the capacity of inducing calcium release activity in fertilized early embryos is important for normal embryonic development.

  6. Characteristics of induced activity from medical linear accelerators.

    Science.gov (United States)

    Wang, Yi Zhen; Evans, Michael D C; Podgorsak, Ervin B

    2005-09-01

    A study of the induced activity in a medical linear accelerator (linac) room was carried out on several linac installations. Higher beam energy, higher dose rate, and larger field size generally result in higher activation levels at a given point of interest, while the use of multileaf collimators (MLC) can also increase the activation level at the isocenter. Both theoretical and experimental studies reveal that the activation level in the morning before any clinical work increases from Monday to Saturday and then decreases during the weekend. This weekly activation picture keeps stable from one week to another during standard clinical operation of the linac. An effective half-life for a given point in the treatment room can be determined from the measured or calculated activity decay curves. The effective half-life for points inside the treatment field is longer than that for points outside of the field in the patient plane, while a larger field and longer irradiation time can also make the effective half-life longer. The activation level reaches its practical saturation value after a 30 min continuous irradiation, corresponding to 12 000 MU at a "dose rate" of 400 MU/min. A "dose" of 300 MU was given 20 times in 15 min intervals to determine the trends in the activation level in a typical clinical mode. As well, a long-term (85 h over a long weekend) decay curve was measured to evaluate the long-term decay of room activation after a typical day of clinical linac use. A mathematical model for the activation level at the isocenter has been established and shown to be useful in explaining and predicting the induced activity levels for typical clinical and experimental conditions. The activation level for a 22 MeV electron beam was also measured and the result shows it is essentially negligible.

  7. Plasminogen activator inhibitor-1 polymers, induced by inactivating amphipathic organochemical ligands

    DEFF Research Database (Denmark)

    Pedersen, Katrine E; Einholm, Anja P; Christensen, Anni;

    2003-01-01

    -induced polymerization was observed only with PAI-1 and heparin cofactor II, which were also able to copolymerize. On the basis of these results, we suggest that the binding of ligands in a specific region of PAI-1 leads to so-called loop-sheet polymerization, in which the reactive centre loop of one molecule binds....... As compared with native PAI-1, the polymers exhibited an increased resistance to temperature-induced unfolding. Polymerization was associated with specific changes in patterns of digestion with non-target proteases. During incubation with urokinase-type plasminogen activator, the polymers were slowly...

  8. Oxidative stress plays a role in high glucose-induced activation of pancreatic stellate cells

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Gyeong Ryul; Lee, Esder; Chun, Hyun-Ji; Yoon, Kun-Ho; Ko, Seung-Hyun; Ahn, Yu-Bae; Song, Ki-Ho, E-mail: kihos@catholic.ac.kr

    2013-09-20

    Highlights: •High glucose increased production of reactive oxygen species in cultured pancreatic stellate cells. •High glucose facilitated the activation of these cells. •Antioxidant treatment attenuated high glucose-induced activation of these cells. -- Abstract: The activation of pancreatic stellate cells (PSCs) is thought to be a potential mechanism underlying islet fibrosis, which may contribute to progressive β-cell failure in type 2 diabetes. Recently, we demonstrated that antioxidants reduced islet fibrosis in an animal model of type 2 diabetes. However, there is no in vitro study demonstrating that high glucose itself can induce oxidative stress in PSCs. Thus, PSCs were isolated and cultured from Sprague Dawley rats, and treated with high glucose for 72 h. High glucose increased the production of reactive oxygen species. When treated with high glucose, freshly isolated PSCs exhibited myofibroblastic transformation. During early culture (passage 1), PSCs treated with high glucose contained an increased number of α-smooth muscle actin-positive cells. During late culture (passages 2–5), PSCs treated with high glucose exhibited increases in cell proliferation, the expression of fibronectin and connective tissue growth factor, release of interleukin-6, transforming growth factor-β and collagen, and cell migration. Finally, the treatment of PSCs with high glucose and antioxidants attenuated these changes. In conclusion, we demonstrated that high glucose increased oxidative stress in primary rat PSCs, thereby facilitating the activation of these cells, while antioxidant treatment attenuated high glucose-induced PSC activation.

  9. Neddylation is required for herpes simplex virus type I (HSV-1)-induced early phase interferon-beta production.

    Science.gov (United States)

    Zhang, Xueying; Ye, Zhenjie; Pei, Yujun; Qiu, Guihua; Wang, Qingyang; Xu, Yunlu; Shen, Beifen; Zhang, Jiyan

    2016-09-01

    Type I interferons such as interferon-beta (IFN-β) play essential roles in the host innate immune response to herpes simplex virus type I (HSV-1) infection. The transcription of type I interferon genes is controlled by nuclear factor-κB (NF-κB) and interferon regulatory factor (IRF) family members including IRF3. NF-κB activation depends on the phosphorylation of inhibitor of κB (IκB), which triggers its ubiqitination and degradation. It has been reported that neddylation inhibition by a pharmacological agent MLN4924 potently suppresses lipopolysaccharide (LPS)-induced proinflammatory cytokine production with the accumulation of phosphorylated IκBα. However, the role of neddylation in type I interferon expression remains unknown. Here, we report that neddylation inhibition with MLN4924 or upon UBA3 deficiency led to accumulation of phosphorylated IκBα, impaired IκBα degradation, and impaired NF-κB nuclear translocation in the early phase of HSV-1 infection even though phosphorylation and nuclear translocation of IRF3 were not affected. The blockade of NF-κB nuclear translocation by neddylation inhibition becomes less efficient at the later time points of HSV-1 infection. Consequently, HSV-1-induced early phase IFN-β production significantly decreased upon MLN4924 treatment and UBA3 deficiency. NF-κB inhibitor JSH-23 mimicked the effects of neddylation inhibition in the early phase of HSV-1 infection. Moreover, the effects of neddylation inhibition on HSV-1-induced early phase IFN-β production diminished in the presence of NF-κB inhibitor JSH-23. Thus, neddylation contributes to HSV-1-induced early phase IFN-β production through, at least partially, promoting NF-κB activation.

  10. Effects of spontaneously induced coherence on absorption of a ladder-type atom

    Institute of Scientific and Technical Information of China (English)

    Ma Hong-Mei; Gong Shang-Qing; Sun Zhen-Rong; Li Ru-Xin; Xu Zhi-Zhan

    2006-01-01

    This paper investigates the effects of spontaneously induced coherence on absorption properties in a nearly equispaced three-level ladder-type system driven by two coherent fields. It find that the absorption properties of this system with the probe field applied on the lower transition can be significantly modified if this coherence is optimized. In the case of small spontaneous decay rate in the upper excited state, it finds that such coherence does not destroy the electromagnetically induced transparency (EIT). Nevertheless, the absorption peak on both sides of zero detuning and the linewidth of absorption line become larger and narrower than those in the case corresponding to the effects of spontaneously induced coherence; while in the case of large decay rate, it finds that, instead of EIT with low resonant absorption, a sharp absorption peak at resonance appears. That is, electromagnetically induced absorption in the nearly equispaced ladder-type system can occur due to such coherent effects.

  11. New mechanism of radiation polarization in type 1 Seyfert active galactic nuclei

    Science.gov (United States)

    Silant'ev, N. A.; Gnedin, Yu. N.; Piotrovich, M. Yu.; Natsvlishvili, T. M.; Buliga, S. D.

    2016-10-01

    In most type 1 Seyfert active galactic nuclei (AGNs), the optical linear continuum polarization degree is usually small (less than 1 per cent) and the polarization position angle is nearly parallel to the AGN radio axis. However, there are many type 1 AGNs with unexplained intermediate values for both positional angles and polarization degrees. Our explanation of polarization degree and positional angle of type 1 Seyfert AGNs focuses on the reflection of non-polarized radiation from sub-parsec jets in optically thick accretion discs. The presence of a magnetic field surrounding the scattering media will induce Faraday rotation of the polarization plane, which may explain the intermediate values of positional angles if there is a magnetic field component normal to the accretion disc. The Faraday rotation depolarization effect in the disc diminishes the competition between polarization of the reflected radiation with the parallel component of polarization and the perpendicular polarization from internal radiation of the disc (the Milne problem) in favour of polarization of the reflected radiation. This effect allows us to explain the observed polarization of type 1 Seyfert AGN radiation even though the jet optical luminosity is much lower than the luminosity of the disc. We present the calculation of polarization degrees for a number of type 1 Seyfert AGNs.

  12. V-type electromagnetically induced transparency and saturation effect at the gas-solid interface

    CERN Document Server

    Meng, Tengfei; Ji, Zhonghua; Su, Dianqiang; Xiao, Liantuan; Jia, Suotang

    2015-01-01

    We theoretically study electromagnetically induced transparency (EIT) in reflection spectra of V-type system at the gas-solid interface. In addition to a narrow dip arising from the EIT effect, we find the other particular saturation effect induced by pump field, which does not exist in $\\Lambda$ or $\\Xi$ -type system reflection spectra. The saturation effect only induces an intensity decrement in the reflection spectra, and there is no influence on the narrow dip arising from the EIT effect. We detailedly calculate and analyze the dependence of V-type system reflection spectra on probe field intensity, pump field intensity, coherent decay rate, and the initial population after the collision between atoms and the interface.

  13. Effects of immunological challenge induced by lipopolysaccharide on skeletal muscle fiber type conversion of piglets.

    Science.gov (United States)

    Jia, A F; Feng, J H; Zhang, M H; Chang, Y; Li, Z Y; Hu, C H; Zhen, L; Zhang, S S; Peng, Q Q

    2015-11-01

    The objective of this study was to investigate the effects of immunological challenge on the skeletal muscle fiber type conversion of piglets. Sixteen Large White weaned barrows (28 ± 3 d, 8.22 ± 0.89 kg BW) were allotted by weight and litter to 2 groups: the control group and the lipopolysaccharide (LPS) group. Saline (control) or LPS was injected intravenously via a jugular catheter on d 1, 3, 5, 7, 9, 11, 13, and 15 at an initial dosage of 80 μg/kg BW, which was increased by 30% at each subsequent injection. Blood samples were collected via the jugular catheter 3 h after the LPS challenge on d -1, 1, 5, 9, and 13. Muscle tissue samples were collected from the LM after exsanguination on d 15. The LPS challenge increased the plasma IL-6, tumor necrosis factor-α (TNF-α), cortisol, IL-1β, and haptoglobin concentrations on d 1 and 5 ( 19.47% ( < 0.05) during d 1 to 4, d 5 to 8, and d 9 to 15, respectively. In the LM of LPS-challenged piglets, myosin heavy chain 1 (MyHC1) mRNA and protein expression tended to be reduced ( = 0.08, 0.09), whereas mRNA, mRNA, and MyHC2 protein expression increased ( < 0.05). The LPS challenge reduced succinic dehydrogenase (SDH) activity ( < 0.05) and increased lactate dehydrogenase (LDH) activity ( < 0.05) in the LM of piglets. Compared with those in the control group, transcriptional peroxisome proliferator-activated receptor coactivator-α () mRNA ( < 0.05), calcineurin (CaN) mRNA, and protein expression were reduced ( < 0.05), and PGC-α protein expression tended to be reduced ( = 0.08) in the LM of LPS-challenged piglets. These results show that immunological challenge induced by LPS resulted in a shift from type I to type II fibers in the LM of piglets, which may be mediated by the downregulation of the CaN/PGC-α signaling pathway.

  14. Acupuncture inhibits cue-induced heroin craving and brain activation

    Institute of Scientific and Technical Information of China (English)

    Xinghui Cai; Xiaoge Song; Chuanfu Li; Chunsheng Xu; Xiliang Li; Qi Lu

    2012-01-01

    Previous research using functional MRI has shown that specific brain regions associated with drug dependence and cue-elicited heroin craving are activated by environmental cues.Craving is an important trigger of heroin relapse,and acupuncture may inhibit craving.In this study,we performed functional MRI in heroin addicts and control subjects.We compared differences in brain activation between the two groups during heroin cue exposure,heroin cue exposure plus acupuncture at the Zusanli point(ST36)without twirling of the needle,and heroin cue exposure plus acupuncture at the Zusanli point with twirling of the needle.Heroin cue exposure elicited significant activation in craving-related brain regions mainly in the frontal lobes and callosal gyri.Acupuncture without twirling did not significantly affect the range of brain activation induced by heroin cue exposure,but significantly changed the extent of the activation in the heroin addicts group.Acupuncture at the Zusanli.point with twirling of the needle significantly decreased both the range and extent of activation induced by heroin cue exposure compared with heroin cue exposure plus acupuncture without twirling of the needle.These experimental findings indicate that presentation of heroin cues can induce activation in craving-related brain regions,which are involved in reward,learning and memory,cognition and emotion.Acupuncture at the Zusanli point can rapidly suppress the activation of specific brain regions related to craving,supporting its potential as an intervention for drug craving.

  15. Ionizing radiation induces astrocyte gliosis through microglia activation.

    Science.gov (United States)

    Hwang, So-Young; Jung, Jae-Seob; Kim, Tae-Hyun; Lim, Soo-Jeong; Oh, Eok-Soo; Kim, Joo-Young; Ji, Kyung-Ae; Joe, Eun-Hye; Cho, Kwan-Ho; Han, Inn-Oc

    2006-03-01

    The aim of this study was to investigate the role of microglia in radiation-induced astrocyte gliosis. We found that a single dose of 15 Gy radiation to a whole rat brain increased immunostaining of glial fibrillary acidic protein in astrocytes 6 h later, and even more so 24 h later, indicating the initiation of gliosis. While irradiation of cultured rat astrocytes had little effect, irradiation of microglia-astrocyte mixed-cultures displayed altered astrocyte phenotype into more processed, which is another characteristic of gliosis. Experiments using microglia-conditioned media indicated this astrocyte change was due to factors released from irradiated microglia. Irradiation of cultured mouse microglial cells induced a dose-dependent increase in mRNA levels for cyclooxygenase-2 (COX-2), interleukin (IL)-1beta, IL-6, IL-18, tumor necrosis factor-alpha and interferon-gamma-inducible protein-10, which are usually associated with microglia activation. Consistent with these findings, irradiation of microglia activated NF-kappaB, a transcription factor that regulates microglial activation. Addition of prostaglandin E2 (PGE2: a metabolic product of the COX-2 enzyme) to primary cultured rat astrocytes resulted in phenotypic changes similar to those observed in mixed-culture experiments. Therefore, it appears that PGE(2) released from irradiated microglia is a key mediator of irradiation-induced gliosis or astrocyte phenotype change. These data suggest that radiation-induced microglial activation and resultant production of PGE2 seems to be associated with an underlying cause of inflammatory complications associated with radiation therapy for malignant gliomas.

  16. Novel π-type vortex in a nanoscale extreme type-II superconductor: Induced by quantum-size effect

    Science.gov (United States)

    Huang, Haiyan; Liu, Qing; Zhang, Wenhui; Chen, Yajiang

    2016-11-01

    By numerically solving the Bogoliubov-de Gennes equations, we report a novel π-type vortex state whose order parameter near the core undergoes an extraordinary π-phase change for a quantum-confined extreme type-II s-wave superconductor. Its supercurrent behaves as the cube of the radial coordinate near the core, and its local density of states spectrum exhibits a significant negative-shifted zero-bias peak. Such π-type vortex state is induced by quantum-size effect, and can survive thermal smearing at temperatures up to a critical value Tτ. The Anderson's approximation indicates that the π-type vortex may remain stable under sufficiently week magnetic field in the case less deep in the type-II limit. Moreover, we find that its appearance is governed by the sample size and kFξ0 with kF the Fermi wave number and ξ0 the zero-temperature coherence length. Similar effects may be expected in quantum-confined ultracold superfluid Fermi gasses, or even high-Tc superconductors with proper kFξ0 value.

  17. Kaempferol induces chondrogenesis in ATDC5 cells through activation of ERK/BMP-2 signaling pathway.

    Science.gov (United States)

    Nepal, Manoj; Li, Liang; Cho, Hyoung Kwon; Park, Jong Kun; Soh, Yunjo

    2013-12-01

    Endochondral bone formation occurs when mesenchymal cells condense to differentiate into chondrocytes, the primary cell types of cartilage. The aim of the present study was to identify novel factors regulating chondrogenesis. We investigated whether kaempferol induces chondrogenic differentiation in clonal mouse chondrogenic ATDC5 cells. Kaempferol treatment stimulated the accumulation of cartilage nodules in a dose-dependent manner. Kaempferol-treated ATDC5 cells stained more intensely with alcian blue staining than control cells, suggesting greater synthesis of matrix proteoglycans in the kaempferol-treated cells. Similarly, kaempferol induced greater activation of alkaline phosphatase activity than control cells, and it enhanced the expression of chondrogenic marker genes, such as collagen type I, collagen type X, OCN, Runx2, and Sox9. Kaempferol induced an acute activation of extracellular signal-regulated kinase (ERK) but not c-jun N-terminal kinase or p38 MAP kinase. PD98059, an inhibitor of MAPK/ERK, decreased in stained cells treated with kaempferol. Furthermore, kaempferol greatly expressed the protein and mRNA levels of BMP-2, suggesting chondrogenesis was stimulated via a BMP-2 pathway. Taken together, our results suggest that kaempferol has chondromodulating effects via an ERK/BMP-2 signaling pathway and could potentially be used as a therapeutic agent for bone growth disorders.

  18. Identity, regulation, and activity of inducible diterpenoid phytoalexins in maize.

    Science.gov (United States)

    Schmelz, Eric A; Kaplan, Fatma; Huffaker, Alisa; Dafoe, Nicole J; Vaughan, Martha M; Ni, Xinzhi; Rocca, James R; Alborn, Hans T; Teal, Peter E

    2011-03-29

    Phytoalexins constitute a broad category of pathogen- and insect-inducible biochemicals that locally protect plant tissues. Because of their agronomic significance, maize and rice have been extensively investigated for their terpenoid-based defenses, which include insect-inducible monoterpene and sesquiterpene volatiles. Rice also produces a complex array of pathogen-inducible diterpenoid phytoalexins. Despite the demonstration of fungal-induced ent-kaur-15-ene production in maize over 30 y ago, the identity of functionally analogous maize diterpenoid phytoalexins has remained elusive. In response to stem attack by the European corn borer (Ostrinia nubilalis) and fungi, we observed the induced accumulation of six ent-kaurane-related diterpenoids, collectively termed kauralexins. Isolation and identification of the predominant Rhizopus microsporus-induced metabolites revealed ent-kaur-19-al-17-oic acid and the unique analog ent-kaur-15-en-19-al-17-oic acid, assigned as kauralexins A3 and B3, respectively. Encoding an ent-copalyl diphosphate synthase, fungal-induced An2 transcript accumulation precedes highly localized kauralexin production, which can eventually exceed 100 μg · g(-1) fresh weight. Pharmacological applications of jasmonic acid and ethylene also synergize the induced accumulation of kauralexins. Occurring at elevated levels in the scutella of all inbred lines examined, kauralexins appear ubiquitous in maize. At concentrations as low as 10 μg · mL(-1), kauralexin B3 significantly inhibited the growth of the opportunistic necrotroph R. microsporus and the causal agent of anthracnose stalk rot, Colletotrichum graminicola. Kauralexins also exhibited significant O. nubilalis antifeedant activity. Our work establishes the presence of diterpenoid defenses in maize and enables a more detailed analysis of their biosynthetic pathways, regulation, and crop defense function.

  19. Telmisartan prevention of LPS-induced microglia activation involves M2 microglia polarization via CaMKKβ-dependent AMPK activation.

    Science.gov (United States)

    Xu, Yuan; Xu, Yazhou; Wang, Yurong; Wang, Yunjie; He, Ling; Jiang, Zhenzhou; Huang, Zhangjian; Liao, Hong; Li, Jia; Saavedra, Juan M; Zhang, Luyong; Pang, Tao

    2015-11-01

    Brain inflammation plays an important role in the pathophysiology of many psychiatric and neurological diseases. During brain inflammation, microglia cells are activated, producing neurotoxic molecules and neurotrophic factors depending on their pro-inflammatory M1 and anti-inflammatory M2 phenotypes. It has been demonstrated that Angiotensin II type 1 receptor blockers (ARBs) ameliorate brain inflammation and reduce M1 microglia activation. The ARB telmisartan suppresses glutamate-induced upregulation of inflammatory genes in cultured primary neurons. We wished to clarify whether telmisartan, in addition, prevents microglia activation through polarization to an anti-inflammatory M2 phenotype. We found that telmisartan promoted M2 polarization and reduced M1 polarization in LPS-stimulated BV2 and primary microglia cells, effects partially dependent on PPARγ activation. The promoting effects of telmisartan on M2 polarization, were attenuated by an AMP-activated protein kinase (AMPK) inhibitor or AMPK knockdown, indicating that AMPK activation participates on telmisartan effects. Moreover, in LPS-stimulated BV2 cells, telmisartan enhancement of M2 gene expression was prevented by the inhibitor STO-609 and siRNA of calmodulin-dependent protein kinase kinase β (CaMKKβ), an upstream kinase of AMPK. Furthermore, telmisartan enhanced brain AMPK activation and M2 gene expression in a mouse model of LPS-induced neuroinflammation. In addition, telmisartan reduced the LPS-induced sickness behavior in this in vivo model, and this effect was prevented by prior administration of an AMPK inhibitor. Our results indicate that telmisartan can be considered as a novel AMPK activator, suppressing microglia activation by promoting M2 polarization. Telmisartan may provide a novel, safe therapeutic approach to treat brain disorders associated with enhanced inflammation.

  20. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes

    Science.gov (United States)

    Milne, Jill C.; Lambert, Philip D.; Schenk, Simon; Carney, David P.; Smith, Jesse J.; Gagne, David J.; Jin, Lei; Boss, Olivier; Perni, Robert B.; Vu, Chi B.; Bemis, Jean E.; Xie, Roger; Disch, Jeremy S.; Ng, Pui Yee; Nunes, Joseph J.; Lynch, Amy V.; Yang, Hongying; Galonek, Heidi; Israelian, Kristine; Choy, Wendy; Iffland, Andre; Lavu, Siva; Medvedik, Oliver; Sinclair, David A.; Olefsky, Jerrold M.; Jirousek, Michael R.; Elliott, Peter J.; Westphal, Christoph H.

    2009-01-01

    Calorie restriction extends lifespan and produces a metabolic profile desirable for treating diseases of ageing such as type 2 diabetes1,2. SIRT1, an NAD+-dependent deacetylase, is a principal modulator of pathways downstream of calorie restriction that produce beneficial effects on glucose homeostasis and insulin sensitivity3–9. Resveratrol, a polyphenolic SIRT1 activator, mimics the anti-ageing effects of calorie restriction in lower organisms and in mice fed a high-fat diet ameliorates insulin resistance, increases mitochondrial content, and prolongs survival10–14. Here we describe the identification and characterization of small molecule activators of SIRT1 that are structurally unrelated to, and 1,000-fold more potent than, resveratrol. These compounds bind to the SIRT1 enzyme—peptide substrate complex at an allosteric site amino-terminal to the catalytic domain and lower the Michaelis constant for acetylated substrates. In diet-induced obese and genetically obese mice, these compounds improve insulin sensitivity, lower plasma glucose, and increase mitochondrial capacity. In Zucker fa/fa rats, hyperinsulinaemic-euglycaemic clamp studies demonstrate that SIRT1 activators improve whole-body glucose homeostasis and insulin sensitivity in adipose tissue, skeletal muscle and liver. Thus, SIRT1 activation is a promising new therapeutic approach for treating diseases of ageing such as type 2 diabetes. PMID:18046409

  1. A Protective Role for Interleukin-1 Signaling during Mouse Adenovirus Type 1-Induced Encephalitis.

    Science.gov (United States)

    Castro-Jorge, Luiza A; Pretto, Carla D; Smith, Asa B; Foreman, Oded; Carnahan, Kelly E; Spindler, Katherine R

    2017-02-15

    Interleukin-1β (IL-1β), an inflammatory cytokine and IL-1 receptor ligand, has diverse activities in the brain. We examined whether IL-1 signaling contributes to the encephalitis observed in mouse adenovirus type 1 (MAV-1) infection, using mice lacking the IL-1 receptor (Il1r1(-/-) mice). Il1r1(-/-) mice demonstrated reduced survival, greater disruption of the blood-brain barrier (BBB), higher brain viral loads, and higher brain inflammatory cytokine and chemokine levels than control C57BL/6J mice. We also examined infections of mice defective in IL-1β production (Pycard(-/-) mice) and mice defective in trafficking of Toll-like receptors to the endosome (Unc93b1(-/-) mice). Pycard(-/-) and Unc93b1(-/-) mice showed lower survival (similar to Il1r1(-/-) mice) than control mice but, unlike Il1r1(-/-) mice, did not have increased brain viral loads or BBB disruption. Based on the brain cytokine levels, MAV-1-infected Unc93b1(-/-) mice had a very different inflammatory profile from infected Il1r1(-/-) and Pycard(-/-) mice. Histological examination demonstrated pathological findings consistent with encephalitis in control and knockout mice; however, intranuclear viral inclusions were seen only in Il1r1(-/-) mice. A time course of infection of control and Il1r1(-/-) mice evaluating the kinetics of viral replication and cytokine production revealed differences between the mouse strains primarily at 7 to 8 days after infection, when mice began succumbing to MAV-1 infection. In the absence of IL-1 signaling, we noted an increase in the transcription of type I interferon (IFN)-stimulated genes. Together, these results indicate that IL-1 signaling is important during MAV-1 infection and suggest that, in its absence, increased IFN-β signaling may result in increased neuroinflammation. The investigation of encephalitis pathogenesis produced by different viruses is needed to characterize virus and host-specific factors that contribute to disease. MAV-1 produces viral

  2. Severe hypoglycaemia during pregnancy in women with type 1 diabetes: possible role of renin-angiotensin system activity?

    DEFF Research Database (Denmark)

    Nielsen, L Ringholm; Pedersen-Bjergaard, U; Thorsteinsson, B;

    2009-01-01

    AIMS: To investigate whether increased risk of severe hypoglycaemia in early pregnancy is related to pregnancy-induced changes in renin-angiotensin system (RAS) activity in women with type 1 diabetes (T1DM). METHODS: Severe hypoglycaemic events the year preceding pregnancy were recorded...... preceding pregnancy and postpartum ACE activity (relative rate of severe hypoglycaemia above versus below median ACE activity: 4.4 (CI: 1.7-11.9), p=0.003). No association was found between severe hypoglycaemia during pregnancy and renin angiotensin system activity at 8 weeks. CONCLUSIONS: In early...

  3. Biosynthesis of Dictyostelium Discoideum Differentation-Inducing Factor by a Hybrid Type I Fatty Acid A-Type III polyketide synthase

    Energy Technology Data Exchange (ETDEWEB)

    Austin,M.; Saito, T.; Bowman, M.; Haydock, S.; Kato, A.; Moore, B.; Kay, R.; Noel, J.

    2006-01-01

    Differentiation-inducing factors (DIFs) are well known to modulate formation of distinct communal cell types from identical Dictyostelium discoideum amoebas, but DIF biosynthesis remains obscure. We report complimentary in vivo and in vitro experiments identifying one of two {approx}3,000-residue D. discoideum proteins, termed 'steely', as responsible for biosynthesis of the DIF acylphloroglucinol scaffold. Steely proteins possess six catalytic domains homologous to metazoan type I fatty acid synthases (FASs) but feature an iterative type III polyketide synthase (PKS) in place of the expected FAS C-terminal thioesterase used to off load fatty acid products. This new domain arrangement likely facilitates covalent transfer of steely N-terminal acyl products directly to the C-terminal type III PKS active sites, which catalyze both iterative polyketide extension and cyclization. The crystal structure of a steely C-terminal domain confirms conservation of the homodimeric type III PKS fold. These findings suggest new bioengineering strategies for expanding the scope of fatty acid and polyketide biosynthesis.

  4. Bone Morphogenetic Protein Type I Receptor Antagonists Decrease Growth and Induce Cell Death of Lung Cancer Cell Lines

    Science.gov (United States)

    Langenfeld, Elaine; Hong, Charles C.; Lanke, Gandhi; Langenfeld, John

    2013-01-01

    Bone morphogenetic proteins (BMPs) are highly conserved morphogens that are essential for normal development. BMP-2 is highly expressed in the majority of non-small cell lung carcinomas (NSCLC) but not in normal lung tissue or benign lung tumors. The effects of the BMP signaling cascade on the growth and survival of cancer cells is poorly understood. We show that BMP signaling is basally active in lung cancer cell lines, which can be effectively inhibited with selective antagonists of the BMP type I receptors. Lung cancer cell lines express alk2, alk3, and alk6 and inhibition of a single BMP receptor was not sufficient to decrease signaling. Inhibition of more than one type I receptor was required to decrease BMP signaling in lung cancer cell lines. BMP receptor antagonists and silencing of BMP type I receptors with siRNA induced cell death, inhibited cell growth, and caused a significant decrease in the expression of inhibitor of differentiation (Id1, Id2, and Id3) family members, which are known to regulate cell growth and survival in many types of cancers. BMP receptor antagonists also decreased clonogenic cell growth. Knockdown of Id3 significantly decreased cell growth and induced cell death of lung cancer cells. H1299 cells stably overexpressing Id3 were resistant to growth suppression and induction of cell death induced by the BMP antagonist DMH2. These studies suggest that BMP signaling promotes cell growth and survival of lung cancer cells, which is mediated through its regulation of Id family members. Selective antagonists of the BMP type I receptors represents a potential means to pharmacologically treat NSCLC and other carcinomas with an activated BMP signaling cascade. PMID:23593444

  5. Fha interaction with phosphothreonine of TssL activates type VI secretion in Agrobacterium tumefaciens.

    Science.gov (United States)

    Lin, Jer-Sheng; Wu, Hsin-Hui; Hsu, Pang-Hung; Ma, Lay-Sun; Pang, Yin-Yuin; Tsai, Ming-Daw; Lai, Erh-Min

    2014-03-01

    The type VI secretion system (T6SS) is a widespread protein secretion system found in many Gram-negative bacteria. T6SSs are highly regulated by various regulatory systems at multiple levels, including post-translational regulation via threonine (Thr) phosphorylation. The Ser/Thr protein kinase PpkA is responsible for this Thr phosphorylation regulation, and the forkhead-associated (FHA) domain-containing Fha-family protein is the sole T6SS phosphorylation substrate identified to date. Here we discovered that TssL, the T6SS inner-membrane core component, is phosphorylated and the phosphorylated TssL (p-TssL) activates type VI subassembly and secretion in a plant pathogenic bacterium, Agrobacterium tumefaciens. Combining genetic and biochemical approaches, we demonstrate that TssL is phosphorylated at Thr 14 in a PpkA-dependent manner. Further analysis revealed that the PpkA kinase activity is responsible for the Thr 14 phosphorylation, which is critical for the secretion of the T6SS hallmark protein Hcp and the putative toxin effector Atu4347. TssL phosphorylation is not required for the formation of the TssM-TssL inner-membrane complex but is critical for TssM conformational change and binding to Hcp and Atu4347. Importantly, Fha specifically interacts with phosphothreonine of TssL via its pThr-binding motif in vivo and in vitro and this interaction is crucial for TssL interaction with Hcp and Atu4347 and activation of type VI secretion. In contrast, pThr-binding ability of Fha is dispensable for TssM structural transition. In conclusion, we discover a novel Thr phosphorylation event, in which PpkA phosphorylates TssL to activate type VI secretion via its direct binding to Fha in A. tumefaciens. A model depicting an ordered TssL phosphorylation-induced T6SS assembly pathway is proposed.

  6. Immunoenhancing activity of protopanaxatriol-type ginsenoside-F3 in murine spleen cells

    Institute of Scientific and Technical Information of China (English)

    Jun-li YU; De-qiang DOU; Xiao-hong CHEN; Hong-zhen YANG; Na GUO; Gui-fang CHENG

    2004-01-01

    AIM: To investigate the immunoenhancing activity of ginsenoside-F3 in murine spleen cells and explore its mechanism.METHODS: The enhancing effect of ginsenoside-F3 on murine spleen cell proliferation was studied using [3H]thymidine incorporation assay. Effects of ginsenoside-F3 on the production of type 1 cytokines IL-2, IFN-γ, and type 2 cytokines IL-4 and IL-10 from murine spleen cells were detected by ELISA method. Effects of ginsenosideF3 on mRNA level of cytokines IL-4, IFN-γ, and transcription factors T-bet and GATA-3 were evaluated by RTPCR analysis. Effect of ginsenoside-F3 on NF-κB DNA binding activity in murine spleen cells was investigated by electrophoretic mobility shift assays (EMSA). RESULTS: Ginsenoside-F3 at 0.1-100μmol/L not only promoted the murine spleen cell proliferation, but also increased the production of IL-2 and IFN-γ, while decreased the production of IL-4 and IL-10 from murine spleen cells with the maximal effect at 10μmol/L. RT-PCR analysis displayed that ginsenoside-F3 enhanced the IFN-γ and T-bet gene expression and decreased IL-4 and GATA-3 gene expression. EMSA experiment showed that ginsenoside-F3 10μmol/L enhanced the NF-κB DNA binding activity induced by ConA in murine spleen cells. CONCLUSION: Ginsenoside-F3 has immunoenhancing activity by regulating production and gene expression of type 1 cytokines and type 2 cytokines in murine spleen cells.

  7. Galangin potentiates human breast cancer to apoptosis induced by TRAIL through activating AMPK.

    Science.gov (United States)

    Song, Wei; Yan, Chong-Yang; Zhou, Qian-Qian; Zhen, Lin-Lin

    2017-03-06

    Breast cancer is reported as the most frequent tumor with limited treatments among the female worldwide. Galangin, a natural active compound 3, 5, 7-trihydroxyflavone, is a type of bioflavonoid isolated from the Alpinia galangal root and suggested to induce apoptosis in various cancers. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is an effective anti-tumor agent for human breast cancer. Promoted expression of CHOP, a down-streaming transcription factor for endoplasmic reticulum stress (ER stress), enhanced death factor 4 (DR4) activity and accelerated reactive oxygen species (ROS) as well as cell death. Adenosine monophosphate-activated protein kinase (AMPK) is crucial for various cancers mortality. In the present study, galangin regulated ER stress to augment CHOP and DR4 expression levels, sensitizing TRAIL activity, leading to human breast cancer cell apoptosis through Caspase-3 activation, which was associated with AMPK phosphorylation. In addition, AMPK inhibition and silence reduced anti-cancer activity of galangin and TRAIL in combinational treatment. Hence, our study indicated that galangin could effectively stimulate human breast cancer cells to TRAIL-induced apoptosis through TRAIL/Caspase-3/AMPK signaling pathway. AMPK signaling pathway activation by galangin might be of benefit for promoting the effects of TRAIL-regulated anti-tumor therapeutic strategy.

  8. Inhibitory effect of rhubarb on intestinal α-glucosidase activity in type ...

    African Journals Online (AJOL)

    Keywords: Type 1 diabetes, α-Glucosidase activity, Acarbose®, Rhubarb, Postprandial glucose level ... intestinal absorption of carbohydrates [3]. Type 1 diabetes, which is caused by insulin deficiency ... novel drugs with high activity and low.

  9. Different activation signals induce distinct mast cell degranulation strategies

    Science.gov (United States)

    Sibilano, Riccardo; Marichal, Thomas; Reber, Laurent L.; Cenac, Nicolas; McNeil, Benjamin D.; Dong, Xinzhong; Hernandez, Joseph D.; Sagi-Eisenberg, Ronit; Hammel, Ilan; Roers, Axel; Valitutti, Salvatore; Tsai, Mindy

    2016-01-01

    Mast cells (MCs) influence intercellular communication during inflammation by secreting cytoplasmic granules that contain diverse mediators. Here, we have demonstrated that MCs decode different activation stimuli into spatially and temporally distinct patterns of granule secretion. Certain signals, including substance P, the complement anaphylatoxins C3a and C5a, and endothelin 1, induced human MCs rapidly to secrete small and relatively spherical granule structures, a pattern consistent with the secretion of individual granules. Conversely, activating MCs with anti-IgE increased the time partition between signaling and secretion, which was associated with a period of sustained elevation of intracellular calcium and formation of larger and more heterogeneously shaped granule structures that underwent prolonged exteriorization. Pharmacological inhibition of IKK-β during IgE-dependent stimulation strongly reduced the time partition between signaling and secretion, inhibited SNAP23/STX4 complex formation, and switched the degranulation pattern into one that resembled degranulation induced by substance P. IgE-dependent and substance P–dependent activation in vivo also induced different patterns of mouse MC degranulation that were associated with distinct local and systemic pathophysiological responses. These findings show that cytoplasmic granule secretion from MCs that occurs in response to different activating stimuli can exhibit distinct dynamics and features that are associated with distinct patterns of MC-dependent inflammation. PMID:27643442

  10. The influence of experimentally induced pain on shoulder muscle activity.

    Science.gov (United States)

    Diederichsen, Louise Pyndt; Winther, Annika; Dyhre-Poulsen, Poul; Krogsgaard, Michael R; Nørregaard, Jesper

    2009-04-01

    Muscle function is altered in painful shoulder conditions. However, the influence of shoulder pain on muscle coordination of the shoulder has not been fully clarified. The aim of the present study was to examine the effect of experimentally induced shoulder pain on shoulder muscle function. Eleven healthy men (range 22-27 years), with no history of shoulder or cervical problems, were included in the study. Pain was induced by 5% hypertonic saline injections into the supraspinatus muscle or subacromially. Seated in a shoulder machine, subjects performed standardized concentric abduction (0 degrees -105 degrees) at a speed of approximately 120 degrees/s, controlled by a metronome. During abduction, electromyographic (EMG) activity was recorded by intramuscular wire electrodes inserted in two deeply located shoulder muscles and by surface-electrodes over six superficially located shoulder muscles. EMG was recorded before pain, during pain and after pain had subsided and pain intensity was continuously scored on a visual analog scale (VAS). During abduction, experimentally induced pain in the supraspinatus muscle caused a significant decrease in activity of the anterior deltoid, upper trapezius and the infraspinatus and an increase in activity of lower trapezius and latissimus dorsi muscles. Following subacromial injection a significantly increased muscle activity was seen in the lower trapezius, the serratus anterior and the latissimus dorsi muscles. In conclusion, this study shows that acute pain both subacromially and in the supraspinatus muscle modulates coordination of the shoulder muscles during voluntary movements. During painful conditions, an increased activity was detected in the antagonist (latissimus), which support the idea that localized pain affects muscle activation in a way that protects the painful structure. Further, the changes in muscle activity following subacromial pain induction tend to expand the subacromial space and thereby decrease the load

  11. Materials design data for reduced activation martensitic steel type EUROFER

    Science.gov (United States)

    Tavassoli, A.-A. F.; Alamo, A.; Bedel, L.; Forest, L.; Gentzbittel, J.-M.; Rensman, J.-W.; Diegele, E.; Lindau, R.; Schirra, M.; Schmitt, R.; Schneider, H. C.; Petersen, C.; Lancha, A.-M.; Fernandez, P.; Filacchioni, G.; Maday, M. F.; Mergia, K.; Boukos, N.; Baluc; Spätig, P.; Alves, E.; Lucon, E.

    2004-08-01

    Materials design limits derived so far from the data generated in Europe for the reduced activation ferritic/martensitic (RAFM) steel type Eurofer are presented. These data address the short-term needs of the ITER Test Blanket Modules and a DEMOnstration fusion reactor. Products tested include plates, bars, tubes, TIG and EB welds, as well as powder consolidated blocks and solid-solid HIP joints. Effects of thermal ageing and low dose neutron irradiation are also included. Results are sorted and screened according to design code requirements before being introduced in reference databases. From the physical properties databases, variations of magnetic properties, modulus of elasticity, density, thermal conductivity, thermal diffusivity, specific heat, mean and instantaneous linear coefficients of thermal expansion versus temperature are derived. From the tensile and creep properties databases design allowable stresses are derived. From the instrumented Charpy impact and fracture toughness databases, ductile to brittle transition temperature, toughness and behavior of materials in different fracture modes are evaluated. From the fatigue database, total strain range versus number of cycles to failure curves are plotted and used to derive fatigue design curves. Cyclic curves are also derived and compared with monotonic hardening curves. Finally, irradiated and aged materials data are compared to ensure that the safety margins incorporated in unirradiated design limits are not exceeded.

  12. Type I Interferon Supports Inducible Nitric Oxide Synthase in Murine Hepatoma Cells and Hepatocytes and during Experimental Acetaminophen-Induced Liver Damage.

    Science.gov (United States)

    Bachmann, Malte; Waibler, Zoe; Pleli, Thomas; Pfeilschifter, Josef; Mühl, Heiko

    2017-01-01

    Cytokine regulation of high-output nitric oxide (NO) derived from inducible NO synthase (iNOS) is critically involved in inflammation biology and host defense. Herein, we set out to characterize the role of type I interferon (IFN) as potential regulator of hepatic iNOS in vitro and in vivo. In this regard, we identified in murine Hepa1-6 hepatoma cells a potent synergism between pro-inflammatory interleukin-β/tumor necrosis factor-α and immunoregulatory IFNβ as detected by analysis of iNOS expression and nitrite release. Upregulation of iNOS by IFNβ coincided with enhanced binding of signal transducer and activator of transcription-1 to a regulatory region at the murine iNOS promoter known to support target gene expression in response to this signaling pathway. Synergistic iNOS induction under the influence of IFNβ was confirmed in alternate murine Hepa56.1D hepatoma cells and primary hepatocytes. To assess iNOS regulation by type I IFN in vivo, murine acetaminophen (APAP)-induced sterile liver inflammation was investigated. In this model of acute liver injury, excessive necroinflammation drives iNOS expression in diverse liver cell types, among others hepatocytes. Herein, we demonstrate impaired iNOS expression in type I IFN receptor-deficient mice which associated with diminished APAP-induced liver damage. Data presented indicate a vital role of type I IFN within the inflamed liver for fine-tuning pathological processes such as overt iNOS expression.

  13. Type I Interferon Supports Inducible Nitric Oxide Synthase in Murine Hepatoma Cells and Hepatocytes and during Experimental Acetaminophen-Induced Liver Damage

    Science.gov (United States)

    Bachmann, Malte; Waibler, Zoe; Pleli, Thomas; Pfeilschifter, Josef; Mühl, Heiko

    2017-01-01

    Cytokine regulation of high-output nitric oxide (NO) derived from inducible NO synthase (iNOS) is critically involved in inflammation biology and host defense. Herein, we set out to characterize the role of type I interferon (IFN) as potential regulator of hepatic iNOS in vitro and in vivo. In this regard, we identified in murine Hepa1-6 hepatoma cells a potent synergism between pro-inflammatory interleukin-β/tumor necrosis factor-α and immunoregulatory IFNβ as detected by analysis of iNOS expression and nitrite release. Upregulation of iNOS by IFNβ coincided with enhanced binding of signal transducer and activator of transcription-1 to a regulatory region at the murine iNOS promoter known to support target gene expression in response to this signaling pathway. Synergistic iNOS induction under the influence of IFNβ was confirmed in alternate murine Hepa56.1D hepatoma cells and primary hepatocytes. To assess iNOS regulation by type I IFN in vivo, murine acetaminophen (APAP)-induced sterile liver inflammation was investigated. In this model of acute liver injury, excessive necroinflammation drives iNOS expression in diverse liver cell types, among others hepatocytes. Herein, we demonstrate impaired iNOS expression in type I IFN receptor-deficient mice which associated with diminished APAP-induced liver damage. Data presented indicate a vital role of type I IFN within the inflamed liver for fine-tuning pathological processes such as overt iNOS expression. PMID:28824623

  14. Convoluted dislocation loops induced by helium irradiation in reduced-activation martensitic steel and their impact on mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Fengfeng [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory, School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Yao, Z. [Department of Mechanical and Materials Engineering, Queen' s University, Kingston, ON, Canada K7L 3N6 (Canada); Guo, Liping, E-mail: guolp@whu.edu.cn [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory, School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Suo, Jinping [State Key Laboratory of Mould Technology, Institute of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Wen, Yongming [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory, School of Physics and Technology, Wuhan University, Wuhan 430072 (China)

    2014-06-01

    Helium irradiation induced dislocation loops in reduced-activation martensitic steels were investigated using transmission electron microscopy. The specimens were irradiated with 100 keV helium ions to 0.8 dpa at 350 °C. Unexpectedly, very large dislocation loops were found, significantly larger than that induced by other types of irradiations under the same dose. Moreover, the large loops were convoluted and formed interesting flower-like shape. The large loops were determined as interstitial type. Loops with the Burgers vectors of b=〈100〉 were only observed. Furthermore, irradiation induced hardening caused by these large loops was observed using the nano-indentation technique.

  15. Self-regulation as a type of managerial activity.

    Directory of Open Access Journals (Sweden)

    Anna Algazina

    2017-01-01

    Full Text Available УДК 342.9The subject. In the context of the ongoing administrative reform in the Russian Federation the issue of self-regulation is becoming increasingly important.Introduction of Institute of self-regulation is intended to reduce the degree of state intervention in private spheres of professional activity, to eliminate excessive administrative barriers, reduce government expenditures on regulation and control in their respective areas of operation, which is especially important in the current economic conditions.However, in Russian legal science is no recognized definition of "self-regulation", but a unity of views on the question of the relationship between self-regulation and state regulation of business relations.In this regard, the author attempts to examine the concept of "self-regulation" through the prism of knowledge about public administration.The purpose of the article is to identify the essential features and to articulate the concept of self-regulation by comparing it with other varieties of regulation.Methodology. The methodological basis for the study: general scientific methods (analysis, synthesis, comparison, description; private and academic (interpretation, formal-legal.Results, scope. Based on the analysis allocated in the science of administrative law approaches to the system of public administration justifies the conclusion that the notion "regulation" is specific in relation to the generic concept of "management" and is a kind of management, consisting in the drafting of rules of conduct and sanctions for non-compliance or inadequate performance.In addition, the article highlights the problem of the genesis of self-regulation, building a system of principles of self-regulation, comparison of varieties of self-regulatory organizations among themselves.Conclusions. The comparison of self-regulation other types of regulation (such as state regulation and co-regulation highlighted the essential features of this phenomenon

  16. Molecular advances in plasminogen activator inhibitor 1 interaction with thrombin and tissue-type plasminogen activator.

    Science.gov (United States)

    Stoop, A; van Meijer, M; Horrevoets, A J; Pannekoek, H

    1997-02-01

    Plasminogen activator inhibitor 1 (PAI-1) is a glycoprotein that controls the activity of the key enzymes of the fibrinolytic system, the serine proteases tissue-type plasminogen activator (t-PA) and urokinase-type plasminogen activator (u-PA). Inhibition is accomplished by rapid formation of inactive, equimolar PAI-1/PA complexes. The physiological importance of PAI-1 for the fibrinolytic system has been underscored by the observation that in humans, a homozygous defect results in hemorrhagic episodes. In addition to its function in surveillance of the integrity of clots, PAI-1 efficiently inhibits the serine protease thrombin in vitro, provided that either the high molecular weight glycosaminoglycan heparin or the glycoprotein vitronectin is present. These cofactors accelerate the rate of thrombin inhibition by PAI-1 by more than two orders of magnitude. Inhibition of thrombin by PAI-1 proceeds according to a "suicide substrate mechanism," typified by a branched reaction pathway, leading either to stable PAI-1/thrombin complexes or to degradation of the inhibitor and recycling of enzyme. The cofactors heparin and vitronectin, although increasing inhibition through different mechanisms, essentially promote PAI-1 degradation by thrombin. In view of the multitude of functions attributed to thrombin, the authors propose that the relevance of thrombin inhibition by PAI-1 is to restrict its mitogenic activity, rather than to affect its coagulation function in plasma. (Trends Cardiovasc Med 1997;7:47-51). © 1997, Elsevier Science Inc.

  17. PIDDosome Expression and the Role of Caspase-2 Activation for Chemotherapy-Induced Apoptosis in RCCs

    Directory of Open Access Journals (Sweden)

    Sebastian Heikaus

    2010-01-01

    Full Text Available Background: The importance of caspase-2 activation for mediating apoptosis in cancer is not clear and seems to differ between different tumour types. Furthermore, only few data have been obtained concerning the expression of caspase-2, which can be alternatively spliced into caspase-2L and caspase-2S, and the other PIDDosome members PIDD and RAIDD in human tumours in vivo. We, therefore, investigated their expression in renal cell carcinomas (RCCs of the clear cell type in vivo and analysed the role of caspase-2 in chemotherapy-induced apoptosis in RCCs in vitro.

  18. Cyclic GMP-AMP Synthase is a Cytosolic DNA Sensor that Activates the Type-I Interferon Pathway

    Science.gov (United States)

    Sun, Lijun; Wu, Jiaxi; Du, Fenghe; Chen, Xiang; Chen, Zhijian J.

    2013-01-01

    The presence of DNA in the cytoplasm of mammalian cells is a danger signal that triggers the host immune responses such as the production of type-I interferons (IFN). Cytosolic DNA induces IFN through the production of cyclic-GMP-AMP (cGAMP), which binds to and activates the adaptor protein STING. Through biochemical fractionation and quantitative mass spectrometry, we identified a cGAMP synthase (cGAS), which belongs to the nucleotidyltransferase family. Overexpression of cGAS activated the transcription factor IRF3 and induced IFNβ in a STING-dependent manner. Knockdown of cGAS inhibited IRF3 activation and IFNβ induction by DNA transfection or DNA virus infection. cGAS bound to DNA in the cytoplasm and catalyzed cGAMP synthesis. These results indicate that cGAS is a cytosolic DNA sensor that induces interferons by producing the second messenger cGAMP. PMID:23258413

  19. Neutron activation analysis at the Livermore pool-type reactor for the environmental research program. [Identification of trace element contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Ragaini, R.C.; Heft, R.E.; Garvis, D.

    1976-07-02

    Instrumental neutron activation analysis is a technique of trace analysis using measurements of radioactivity induced in the sample by exposure to a source of neutrons. The induced activity is measured by the emitted gamma radiation. Each gamma emitter can then be identified by the energy of the photopeaks produced as the nuclide decays and by the half-life of the neutron-induced activity. A complex computer program GAMANAL has been used to accomplish the major tasks of nuclide identification and quantification. The nuclide data output from GAMANAL is processed by a second computer code NADAC, which develops elemental abundance data from disintegration rates observed. The methods are those employed at the Livermore Pool-Type Reactor in support of the environmental research trace element analysis program. Among the procedures described and discussed are sample preparation, irradiation, analysis, and application of the technique.

  20. Autophagy is involved in anti-viral activity of pentagalloylglucose (PGG) against Herpes simplex virus type 1 infection in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Ying, E-mail: peiying-19802@163.com [Biomedicine Research and Development Center of Jinan University, Guangzhou, Guangdong 510632 (China); Chen, Zhen-Ping, E-mail: 530670663@qq.com [Biomedicine Research and Development Center of Jinan University, Guangzhou, Guangdong 510632 (China); Ju, Huai-Qiang, E-mail: 344464448@qq.com [Biomedicine Research and Development Center of Jinan University, Guangzhou, Guangdong 510632 (China); Komatsu, Masaaki, E-mail: komatsu-ms@igakuken.or.jp [Laboratory of Frontier Science, Tokyo Metropolitan Institute of Medical Science, Bunkyo-ku, Tokyo 113-8613 (Japan); Ji, Yu-hua, E-mail: tjyh@jnu.edu.cn [Institute of Tissue Transplantation and Immunology, College of Life Science and Technology, Jinan University, Guangzhou 510632 (China); Liu, Ge, E-mail: lggege_15@hotmail.com [Division of Molecular Pharmacology of Infectious agents, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521 (Japan); Guo, Chao-wan, E-mail: chaovan_kwok@hotmail.com [Division of Molecular Pharmacology of Infectious agents, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521 (Japan); Zhang, Ying-Jun, E-mail: zhangyj@mail.kib.ac.cn [Kunming Institute of Botany, the Chinese Academy of Sciences, Yunnan, Kunming 650204 (China); Yang, Chong-Ren, E-mail: cryang@mail.kib.ac.cn [Kunming Institute of Botany, the Chinese Academy of Sciences, Yunnan, Kunming 650204 (China); Wang, Yi-Fei, E-mail: twang-yf@163.com [Biomedicine Research and Development Center of Jinan University, Guangzhou, Guangdong 510632 (China); Kitazato, Kaio, E-mail: kkholi@msn.com [Division of Molecular Pharmacology of Infectious agents, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521 (Japan)

    2011-02-11

    Research highlights: {yields} We showed PGG has anti-viral activity against Herpes simplex virus type 1 (HSV-1) and can induce autophgy. {yields} Autophagy may be a novel and important mechanism mediating PGG anti-viral activities. {yields} Inhibition of mTOR pathway is an important mechanism of induction of autophagy by PGG. -- Abstract: Pentagalloylglucose (PGG) is a natural polyphenolic compound with broad-spectrum anti-viral activity, however, the mechanisms underlying anti-viral activity remain undefined. In this study, we investigated the effects of PGG on anti-viral activity against Herpes simplex virus type 1 (HSV-1) associated with autophagy. We found that the PGG anti-HSV-1 activity was impaired significantly in MEF-atg7{sup -/-} cells (autophagy-defective cells) derived from an atg7{sup -/-} knockout mouse. Transmission electron microscopy revealed that PGG-induced autophagosomes engulfed HSV-1 virions. The mTOR signaling pathway, an essential pathway for the regulation of autophagy, was found to be suppressed following PGG treatment. Data presented in this report demonstrated for the first time that autophagy induced following PGG treatment contributed to its anti-HSV activity in vitro.

  1. Erythroid differentiation of human induced pluripotent stem cells is independent of donor cell type of origin.

    Science.gov (United States)

    Dorn, Isabel; Klich, Katharina; Arauzo-Bravo, Marcos J; Radstaak, Martina; Santourlidis, Simeon; Ghanjati, Foued; Radke, Teja F; Psathaki, Olympia E; Hargus, Gunnar; Kramer, Jan; Einhaus, Martin; Kim, Jeong Beom; Kögler, Gesine; Wernet, Peter; Schöler, Hans R; Schlenke, Peter; Zaehres, Holm

    2015-01-01

    Epigenetic memory in induced pluripotent stem cells, which is related to the somatic cell type of origin of the stem cells, might lead to variations in the differentiation capacities of the pluripotent stem cells. In this context, induced pluripotent stem cells from human CD34(+) hematopoietic stem cells might be more suitable for hematopoietic differentiation than the commonly used fibroblast-derived induced pluripotent stem cells. To investigate the influence of an epigenetic memory on the ex vivo expansion of induced pluripotent stem cells into erythroid cells, we compared induced pluripotent stem cells from human neural stem cells and human cord blood-derived CD34(+) hematopoietic stem cells and evaluated their potential for differentiation into hematopoietic progenitor and mature red blood cells. Although genome-wide DNA methylation profiling at all promoter regions demonstrates that the epigenetic memory of induced pluripotent stem cells is influenced by the somatic cell type of origin of the stem cells, we found a similar hematopoietic induction potential and erythroid differentiation pattern of induced pluripotent stem cells of different somatic cell origin. All human induced pluripotent stem cell lines showed terminal maturation into normoblasts and enucleated reticulocytes, producing predominantly fetal hemoglobin. Differences were only observed in the growth rate of erythroid cells, which was slightly higher in the induced pluripotent stem cells derived from CD34(+) hematopoietic stem cells. More detailed methylation analysis of the hematopoietic and erythroid promoters identified similar CpG methylation levels in the induced pluripotent stem cell lines derived from CD34(+) cells and those derived from neural stem cells, which confirms their comparable erythroid differentiation potential.

  2. Dual-induced multifractality of human online activity

    CERN Document Server

    Qin, Yuhao; Cai, Shimin; Gao, Liang

    2014-01-01

    Recent discoveries of human activity reveal the existence of long-term correlation and its relation with the fat-tailed distribution of inter-event times, which imply that there exists the fractality of human activity. However, works further analyzing the type of fractality and its origin still lack. Herein, DFA and MFDFA methods are applied in the analysis of time series of online reviewing activity from Movielens and Netflix. Results show the long-term correlation at individual and whole community level, while the strength of such correlation at individual level is restricted to activity level. Such long-term correlation reveals the fractality of online reviewing activity. In our further investigation of this fractality, we \\emph{first} demonstrate it is multifractality, which results from the dual effect of broad probability density function and long-term correlation of time series in online reviewing activity. This result is also verified by three synthesized series. Therefore, we conclude that the combin...

  3. Chymase activities and survival in endotoxin-induced human chymase transgenic mice.

    Science.gov (United States)

    Rafiq, Kazi; Fan, Yu-Yan; Sherajee, Shamshad J; Takahashi, Yoshimasa; Matsuura, Junji; Hase, Naoki; Mori, Hirohito; Nakano, Daisuke; Kobara, Hideki; Hitomi, Hirofumi; Masaki, Tsutomu; Urata, Hidenori; Nishiyama, Akira

    2014-01-01

    We examined the effects of overexpressed human chymase on survival and activity in lipopolysaccharide (LPS)-treated mice. Human chymase transgenic (Tg) and wild-type C57BL/6 (WT) mice were treated with LPS (0.03, 0.1 and 0.3 mg/day; intraperitoneal) for 2 weeks. Treatment with 0.03 mg LPS did not affect survival in either WT or Tg mice. WT mice were not affected by 0.1 mg/day of LPS, whereas 25% of Tg mice died. Survival of mice treated with 0.3 mg/day of LPS was 87.5% and 0% in WT and Tg, respectively. LPS-induced increases in chymase activity in the heart and skin were significantly greater in Tg than WT mice. These data suggest a possible contribution of human chymase activation to LPS-induced mortality.

  4. Cytotoxin-induced NADPH oxides activation: roles in regulation of cell death.

    Science.gov (United States)

    Zhang, Yongtao; Bi, Xiaolei; Jiang, Fan

    2015-07-01

    Numerous studies have shown that a variety of cytotoxic agents can activate the NADPH oxidase system and induce redox-dependent regulation of cellular functions. Cytotoxin-induced NADPH oxidase activation may either exert cytoprotective actions (e.g., survival, proliferation, and stress tolerance) or cause cell death. Here we summarize the experimental evidence showing the context-dependent dichotomous effects of NADPH oxidase on cell fate under cytotoxic stress conditions and the potential redox signaling mechanisms underlying this phenomenon. Clearly, it is difficult to create a unified paradigm on the toxicological implications of NADPH oxidase activation in response to cytotoxic stimuli. We suggest that interventional strategies targeting the NADPH oxidase system to prevent the adverse impacts of cytotoxins need to be contemplated in a stimuli- and cell type-specific manner.

  5. Etoposide Induces ATM-Dependent Mitochondrial Biogenesis through AMPK Activation

    Science.gov (United States)

    Lyu, Yi Lisa; Liu, Leroy F.; Qi, Haiyan

    2008-01-01

    Background DNA damage such as double-stranded DNA breaks (DSBs) has been reported to stimulate mitochondrial biogenesis. However, the underlying mechanism is poorly understood. The major player in response to DSBs is ATM (ataxia telangiectasia mutated). Upon sensing DSBs, ATM is activated through autophosphorylation and phosphorylates a number of substrates for DNA repair, cell cycle regulation and apoptosis. ATM has been reported to phosphorylate the α subunit of AMP-activated protein kinase (AMPK), which senses AMP/ATP ratio in cells, and can be activated by upstream kinases. Here we provide evidence for a novel role of ATM in mitochondrial biogenesis through AMPK activation in response to etoposide-induced DNA damage. Methodology/Principal Findings Three pairs of human ATM+ and ATM- cells were employed. Cells treated with etoposide exhibited an ATM-dependent increase in mitochondrial mass as measured by 10-N-Nonyl-Acridine Orange and MitoTracker Green FM staining, as well as an increase in mitochondrial DNA content. In addition, the expression of several known mitochondrial biogenesis regulators such as the major mitochondrial transcription factor NRF-1, PGC-1α and TFAM was also elevated in response to etoposide treatment as monitored by RT-PCR. Three pieces of evidence suggest that etoposide-induced mitochondrial biogenesis is due to ATM-dependent activation of AMPK. First, etoposide induced ATM-dependent phosphorylation of AMPK α subunit at Thr172, indicative of AMPK activation. Second, inhibition of AMPK blocked etoposide-induced mitochondrial biogenesis. Third, activation of AMPK by AICAR (an AMP analogue) stimulated mitochondrial biogenesis in an ATM-dependent manner, suggesting that ATM may be an upstream kinase of AMPK in the mitochondrial biogenesis pathway. Conclusions/Significance These results suggest that activation of ATM by etoposide can lead to mitochondrial biogenesis through AMPK activation. We propose that ATM-dependent mitochondrial

  6. Etoposide induces ATM-dependent mitochondrial biogenesis through AMPK activation.

    Directory of Open Access Journals (Sweden)

    Xuan Fu

    Full Text Available BACKGROUND: DNA damage such as double-stranded DNA breaks (DSBs has been reported to stimulate mitochondrial biogenesis. However, the underlying mechanism is poorly understood. The major player in response to DSBs is ATM (ataxia telangiectasia mutated. Upon sensing DSBs, ATM is activated through autophosphorylation and phosphorylates a number of substrates for DNA repair, cell cycle regulation and apoptosis. ATM has been reported to phosphorylate the alpha subunit of AMP-activated protein kinase (AMPK, which senses AMP/ATP ratio in cells, and can be activated by upstream kinases. Here we provide evidence for a novel role of ATM in mitochondrial biogenesis through AMPK activation in response to etoposide-induced DNA damage. METHODOLOGY/PRINCIPAL FINDINGS: Three pairs of human ATM+ and ATM- cells were employed. Cells treated with etoposide exhibited an ATM-dependent increase in mitochondrial mass as measured by 10-N-Nonyl-Acridine Orange and MitoTracker Green FM staining, as well as an increase in mitochondrial DNA content. In addition, the expression of several known mitochondrial biogenesis regulators such as the major mitochondrial transcription factor NRF-1, PGC-1alpha and TFAM was also elevated in response to etoposide treatment as monitored by RT-PCR. Three pieces of evidence suggest that etoposide-induced mitochondrial biogenesis is due to ATM-dependent activation of AMPK. First, etoposide induced ATM-dependent phosphorylation of AMPK alpha subunit at Thr172, indicative of AMPK activation. Second, inhibition of AMPK blocked etoposide-induced mitochondrial biogenesis. Third, activation of AMPK by AICAR (an AMP analogue stimulated mitochondrial biogenesis in an ATM-dependent manner, suggesting that ATM may be an upstream kinase of AMPK in the mitochondrial biogenesis pathway. CONCLUSIONS/SIGNIFICANCE: These results suggest that activation of ATM by etoposide can lead to mitochondrial biogenesis through AMPK activation. We propose that ATM

  7. The CXXC finger 5 protein is required for DNA damage-induced p53 activation

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The tumor suppressor p53 is a critical component of the DNA damage response pathway that induces a set of genes responsible for cell cycle arrest,senescence,apoptosis,and DNA repair.The ataxia te-langiectasia mutated protein kinase(ATM) responds to DNA-damage stimuli and signals p53 stabiliza-tion and activation,thereby facilitating transactivation of p53 inducible genes and maintainence of genome integrity.In this study,we identified a CXXC zinc finger domain containing protein termed CF5 as a critical component in the DNA damage signaling pathway.CF5 induces p53 transcriptional activity and apoptosis in cells expressing wild type p53 but not in p53-deficient cells.Knockdown of CF5 in-hibits DNA damage-induced p53 activation as well as cell cycle arrest.Furthermore,CF5 physically interacts with ATM and is required for DNA damage-induced ATM phosphorylation but not its recruitment to chromatin.These findings suggest that CF5 plays a crucial role in ATM-p53 signaling in response to DNA damage.

  8. Activated Rho kinase mediates diabetes-induced elevation of vascular arginase activation and contributes to impaired corpora cavernosa relaxation: possible involvement of p38 MAPK activation.

    Science.gov (United States)

    Toque, Haroldo A; Nunes, Kenia P; Yao, Lin; Liao, James K; Webb, R Clinton; Caldwell, Ruth B; Caldwell, R William

    2013-06-01

    Activated RhoA/Rho kinase (ROCK) has been implicated in diabetes-induced erectile dysfunction. Earlier studies have demonstrated involvement of ROCK pathway in the activation of arginase in endothelial cells. However, signaling pathways activated by ROCK in the penis remain unclear. We tested whether ROCK and p38 MAPK are involved in the elevation of arginase activity and subsequent impairment of corpora cavernosal (CC) relaxation in diabetes. Eight weeks after streptozotocin-induced diabetes, vascular functional studies, arginase activity assay, and protein expression of RhoA, ROCK, phospho-p38 MAPK, p38 MAPK, phospho-MYPT-1(Thr850), MYPT-1 and arginase levels were assessed in CC tissues from nondiabetic wild type (WT), diabetic (D) WT (WT + D), partial ROCK 2(+/-) knockout (KO), and ROCK 2(+/-) KO + D mice. The expression of RhoA, ROCK 1 and 2, phosphorylation of MYPT-1(Thr850) and p38 MAPK, arginase activity/expression, endothelial- and nitrergic-dependent relaxation of CC was assayed. Diabetes significantly reduced maximum relaxation (Emax ) to both endothelium-dependent acetylcholine (WT + D: Emax; 61 ± 4% vs. WT: Emax; 75 ± 2%) and nitrergic nerve stimulation. These effects were associated with increased expression of active RhoA, ROCK 2, phospho-MYPT-1(Thr850), phospho-p38 MAPK, arginase II, and activity of corporal arginase (1.6-fold) in WT diabetic CC. However, this impairment in CC of WT + D mice was absent in heterozygous ROCK 2(+/-) KO + D mice for acetylcholine (Emax : 80 ± 5%) and attenuated for nitrergic nerve-induced relaxation. CC of ROCK 2(+/-) KO + D mice showed much less ROCK activity, did not exhibit p38 MAPK activation, and had reduced arginase activity and arginase II expression. These findings indicate that ROCK 2 mediates diabetes-induced elevation of arginase activity. Additionally, pretreatment of WT diabetic CC with inhibitors of arginase (ABH) or p38 MAPK (SB203580) partially prevented impairment of ACh- and nitrergic nerve-induced

  9. Herpes simplex virus type 1 ribonucleotide reductase null mutants induce lesions in guinea pigs.

    Science.gov (United States)

    Turk, S R; Kik, N A; Birch, G M; Chiego, D J; Shipman, C

    1989-12-01

    Two herpes simplex virus type 1 ribonucleotide reductase null mutants, hrR3 and ICP6 delta, produced cutaneous lesions in guinea pigs as severe as those of wild-type strains. The lesions induced by hrR3 resulted from in vivo replication of the mutant virus, suggesting that this virus-encoded enzyme is nonessential for virus replication in guinea pigs.

  10. Protein kinase C-associated kinase regulates NF-κB activation through inducing IKK activation.

    Science.gov (United States)

    Kim, Sang-Woo; Schifano, Matthew; Oleksyn, David; Jordan, Craig T; Ryan, Daniel; Insel, Richard; Zhao, Jiyong; Chen, Luojing

    2014-10-01

    Activation of the transcription factor NF-κB induced by extracellular stimuli requires IKKα and IKKβ kinase activity. How IKKα and IKKβ are activated by various upstream signaling molecules is not fully understood. We previously showed that protein kinase C-associated kinase (PKK, also known as DIK/RIP4), which belongs to the receptor-interacting protein (RIP) kinase family, mediates the B cell activating factor of the TNF family (BAFF)-induced NF-κB activation in diffuse large B cell lymphoma (DLBCL) cell lines. Here we have investigated the mechanism underlying NF-κB activation regulated by PKK. Our results suggest that PKK can activate both the classical and the alternative NF-κB activation pathways. PKK associates with IKKα and IKKβ in mammalian cells and induces activation of both IKKα and IKKβ via phosphorylation of their serine residues 176/180 and 177/181, respectively. Unlike other members of the RIP family that activate NF-κB through a kinase-independent pathway, PKK appears to activate IKK and NF-κB mainly in a kinase-dependent manner. Suppression of PKK expression by RNA interference inhibits phosphorylation of IKKα and IKKβ as well as activation of NF-κB in human cancer cell lines. Thus, PKK regulates NF-κB activation by modulating activation of IKKα and IKKβ in mammalian cells. We propose that PKK may provide a critical link between IKK activation and various upstream signaling cascades, and may represent a potential target for inhibiting abnormal NF-κB activation in human cancers.

  11. Acetaminophen induces human neuroblastoma cell death through NFKB activation.

    Directory of Open Access Journals (Sweden)

    Inmaculada Posadas

    Full Text Available Neuroblastoma resistance to apoptosis may contribute to the aggressive behavior of this tumor. Therefore, it would be relevant to activate endogenous cellular death mechanisms as a way to improve neuroblastoma therapy. We used the neuroblastoma SH-SY5Y cell line as a model to study the mechanisms involved in acetaminophen (AAP-mediated toxicity by measuring CYP2E1 enzymatic activity, NFkB p65 subunit activation and translocation to the nucleus, Bax accumulation into the mitochondria, cytochrome c release and caspase activation. AAP activates the intrinsic death pathway in the SH-SY5Y human neuroblastoma cell line. AAP metabolism is partially responsible for this activation, because blockade of the cytochrome CYP2E1 significantly reduced but did not totally prevent, AAP-induced SH-SY5Y cell death. AAP also induced NFkB p65 activation by phosphorylation and its translocation to the nucleus, where NFkB p65 increased IL-1β production. This increase contributed to neuroblastoma cell death through a mechanism involving Bax accumulation into the mitochondria, cytochrome c release and caspase3 activation. Blockade of NFkB translocation to the nucleus by the peptide SN50 prevented AAP-mediated cell death and IL-1β production. Moreover, overexpression of the antiapoptotic protein Bcl-x(L did not decrease AAP-mediated IL-1β production, but prevented both AAP and IL-1β-mediated cell death. We also confirmed the AAP toxic actions on SK-N-MC neuroepithelioma and U87MG glioblastoma cell lines. The results presented here suggest that AAP activates the intrinsic death pathway in neuroblastoma cells through a mechanism involving NFkB and IL-1β.

  12. Tau oligomers and fibrils induce activation of microglial cells.

    Science.gov (United States)

    Morales, Inelia; Jiménez, José M; Mancilla, Marcela; Maccioni, Ricardo B

    2013-01-01

    Neuroinflammation is a process related to the onset of several neurodegenerative disorders, including Alzheimer's disease (AD). Increasing sets of evidence support the major role of deregulation of the interaction patterns between glial cells and neurons in the pathway toward neuronal degeneration, a process we are calling neuroimmunomodulation in AD. On the basis of the hypothesis that pathological tau aggregates induce microglial activation with the subsequent events of the neuroinflammatory cascade, we have studied the effects of tau oligomeric species and filamentous structures over microglial cells in vitro. Tau oligomers and fibrils were induced by arachidonic acid and then their actions assayed upon addition to microglial cells. We showed activation of the microglia, with significant morphological alterations as analyzed by immunofluorescence. The augmentation of nitrites and the proinflammatory cytokine IL-6 was evaluated in ELISA assays. Furthermore, conditioned media of stimulated microglia cells were exposed to hippocampal neurons generating altered patterns in these cells, including shortening of neuritic processes and cytoskeleton reorganization.

  13. Radiation-induced mating-type switching in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Luggen-Hölscher, J; Kiefer, J

    1988-09-01

    Haploid yeast cells possess two different mating types which are controlled genetically by the MAT locus. Information of the opposite mating type is stored on the same chromosome but not expressed. Radiation may initiate a gene conversion event leading to 'mating-type switching'. This was studied by using X-rays and 254 nm ultraviolet light. X-ray-induced mating type switching shows an oxygen enhancement ratio of 2.9 which is higher than that for survival (1.8) and equals that for double-strand break induction. Mating-type switching by UV is not photoreactivable and depends on a functioning excision repair system. The results are compatible with the interpretation that mating type switching is initiated by a double-strand break in the MAT coding region.

  14. Antioxidant activity of simvastatin prevents ifosfamide-induced nephrotoxicity.

    Science.gov (United States)

    Mhaidat, Nizar Mahmoud; Ali, Reem Mustafa; Shotar, Ali Muhammad; Alkaraki, Almuthanna Khalaf

    2016-03-01

    Ifosfamide is an anticancer agent used largely in treatment of solid tumors. The mainstay dose-limiting toxicity of ifosfamide is nephrotoxicity. This is largely believde to be a result of ifosfamide-induced oxidative stress. In this study, we investigated the antioxidant activity of simvastatin and the possible protective role of simvastatin against ifosfamide induced nephrotoxicity. Thirty Sprague-Dawely rats were divided into five groups and given orally different drug combinations. Group I and II were regarded as control groups and received 0.1% DMSO and normal saline, respectively. Group III received ifosfamide at 50 mg/kg, group IV received simvastatin at 0.3 mg/kg and group V received both ifosfamide and simvastatin. All animals were decapitated 2 days after the last ifosfamide administration. Findings revealed that ifosfamide induced nephrotoxicity as indicated by a significant increase in plasma creatinine and lipid per oxidation. This increase was significantly inhibited in animals pretreated with simvastatin. Histopathological observations were in correlation with the biochemical parameters in that simvastatin minimized ifosfamide-induced renal tubular damage. The above results promote a future use of simvastatin in combination with ifosfamide in treatment of cancer patients to indicate that simvastatin protectics against ifosfamide-induced nephrotoxicity in terms of oxidative stress and might be given in combination.

  15. Iron K$\\alpha$ emission in type-I and type-II Active Galactic Nuclei

    CERN Document Server

    Ricci, Claudio; Paltani, Stephane; Ichikawa, Kohei; Gandhi, Poshak; Awaki, Hisamitsu

    2014-01-01

    The narrow Fe K$\\alpha$ line is one of the main signatures of the reprocessing of X-ray radiation from the material surrounding supermassive black holes, and it has been found to be omnipresent in the X-ray spectra of active galactic nuclei (AGN). In this work we study the characteristics of the narrow Fe K$\\alpha$ line in different types of AGN. Using the results of a large Suzaku study we find that Seyfert 2s have on average lower Fe K$\\alpha$ luminosities than Seyfert 1s for the same 10-50 keV continuum luminosity. Simulating dummy Sy1s and Sy2s populations using physical torus models of X-ray reflected emission, we find that this difference can be explained by means of different average inclination angles with respect to the torus, as predicted by the unified model. Alternative explanations include differences in the intensities of Compton humps or in the photon index distributions. We show that the ratio between the flux of the broad and narrow Fe K$\\alpha$ line in the 6.35-6.45 keV range depends on the ...

  16. Mechanical stretch induces MMP-2 release and activation in lung endothelium: role of EMMPRIN.

    Science.gov (United States)

    Haseneen, Nadia A; Vaday, Gayle G; Zucker, Stanley; Foda, Hussein D

    2003-03-01

    High-volume mechanical ventilation leads to ventilator-induced lung injury. This type of lung injury is accompanied by an increased release and activation of matrix metalloproteinases (MMPs). To investigate the mechanism leading to the increased MMP release, we systematically studied the effect of mechanical stretch on human microvascular endothelial cells isolated from the lung. We exposed cells grown on collagen 1 BioFlex plates to sinusoidal cyclic stretch at 0.5 Hz using the Flexercell system with 17-18% elongation of cells. After 4 days of cell stretching, conditioned media and cell lysate were collected and analyzed by gelatin, casein, and reverse zymograms as well as Western blotting. RT-PCR of mRNA extracted from stretched cells was performed. Our results show that 1) cyclic stretch led to increased release and activation of MMP-2 and MMP-1; 2) the activation of MMP-2 was accompanied by an increase in membrane type-1 MMP (MT1-MMP) and inhibited by a hydroxamic acid-derived inhibitor of MMPs (Prinomastat, AG3340); and 3) the MMP-2 release and activation were preceded by an increase in production of extracellular MMP inducer (EMMPRIN). These results suggest that cyclic mechanical stretch leads to MMP-2 activation through an MT1-MMP mechanism. EMMPRIN may play an important role in the release and activation of MMPs during lung injury.

  17. Pattern of Stress-Induced Hyperglycemia according to Type of Diabetes: A Predator Stress Model

    Directory of Open Access Journals (Sweden)

    Jin-Sun Chang

    2013-12-01

    Full Text Available BackgroundWe aimed to quantify stress-induced hyperglycemia and differentiate the glucose response between normal animals and those with diabetes. We also examined the pattern in glucose fluctuation induced by stress according to type of diabetes.MethodsTo load psychological stress on animal models, we used a predator stress model by exposing rats to a cat for 60 minutes and measured glucose level from the beginning to the end of the test to monitor glucose fluctuation. We induced type 1 diabetes model (T1D for ten Sprague-Dawley rats using streptozotocin and used five Otsuka Long-Evans Tokushima Fatty rats as obese type 2 diabetes model (OT2D and 10 Goto-Kakizaki rats as nonobese type 2 diabetes model (NOT2D. We performed the stress loading test in both the normal and diabetic states and compared patterns of glucose fluctuation among the three models. We classified the pattern of glucose fluctuation into A, B, and C types according to speed of change in glucose level.ResultsIncrease in glucose, total amount of hyperglycemic exposure, time of stress-induced hyperglycemia, and speed of glucose increase were significantly increased in all models compared to the normal state. While the early increase in glucose after exposure to stress was higher in T1D and NOT2D, it was slower in OT2D. The rate of speed of the decrease in glucose level was highest in NOT2D and lowest in OT2D.ConclusionThe diabetic state was more vulnerable to stress compared to the normal state in all models, and the pattern of glucose fluctuation differed among the three types of diabetes. The study provides basic evidence for stress-induced hyperglycemia patterns and characteristics used for the management of diabetes patients.

  18. Vascular relaxation induced by C-type natriuretic peptide involves the ca2+/NO-synthase/NO pathway.

    Directory of Open Access Journals (Sweden)

    Fernanda A Andrade

    Full Text Available AIMS: C-type natriuretic peptide (CNP and nitric oxide (NO are endothelium-derived factors that play important roles in the regulation of vascular tone and arterial blood pressure. We hypothesized that NO produced by the endothelial NO-synthase (NOS-3 contributes to the relaxation induced by CNP in isolated rat aorta via activation of endothelial NPR-C receptor. Therefore, the aim of this study was to investigate the putative contribution of NO through NPR-C activation in the CNP induced relaxation in isolated conductance artery. MAIN METHODS: Concentration-effect curves for CNP were constructed in aortic rings isolated from rats. Confocal microscopy was used to analyze the cytosolic calcium mobilization induced by CNP. The phosphorylation of the residue Ser1177 of NOS was analyzed by Western blot and the expression and localization of NPR-C receptors was analyzed by immunohistochemistry. KEY FINDINGS: CNP was less potent in inducing relaxation in denuded endothelium aortic rings than in intact ones. L-NAME attenuated the potency of CNP and similar results were obtained in the presence of hydroxocobalamin, an intracellular NO0 scavenger. CNP did not change the phosphorylation of Ser1177, the activation site of NOS-3, when compared with control. The addition of CNP produced an increase in [Ca2+]c in endothelial cells and a decrease in [Ca2+]c in vascular smooth muscle cells. The NPR-C-receptors are expressed in endothelial and adventitial rat aortas. SIGNIFICANCE: These results suggest that CNP-induced relaxation in intact aorta isolated from rats involves NO production due to [Ca2+]c increase in endothelial cells possibly through NPR-C activation expressed in these cells. The present study provides a breakthrough in the understanding of the close relationship between the vascular actions of nitric oxide and CNP.

  19. Protective Effect of Carvedilol on Abnormality of L-type Calcium Current Induced by Oxygen Free Radical in Cardiomyocytes

    Institute of Scientific and Technical Information of China (English)

    刘念; 喻荣辉; 阮燕菲; 周强; 卜军; 李泱

    2004-01-01

    The protective effect of carvedilol on abnormality of L-type calcium current induced by oxygen free radical in single guinea pig ventricular myocytes was studied. Whole-cell patch clamp technique was used to study the effect of H2 O2 (0.5 mmol/L) on L-type calcium current in single guinea pig ventricular myocytes and the action of pretreatment with carvedilol (0.5 μmol/L). 0.5μmol/L carvedilol had no significant effect on ICa,L and its channel dynamics. In the presence of 0.5 mmol/L H2O2, peak current of ICa,L was reduced significantly (P<0.001), the I-V curve of Ica,L was shifted upward, steady-state activation curve and steady-state deactivation curve of ICa,L were shifted left and recovery time of ICa,L was delayed significantly (P<0. 001). 0. 5 μmol/L carvedilol significantly alleviated the inhibitory effect of H2O2 on ICa,L as compared with that in H2O2 group (P<0.01). In addition, carvedilol reversed the changes of dynamics of ICa,L induced by H2O2. It was concluded that carvedilol could alleviate the abnormality of L-type calcium current induced by oxygen free radical in cardiomyocytes. It shows partly the possible mechanism of the special availability of carvedilol in chronic heart failure.

  20. Overinhibition of Mitogen-Activated Protein Kinase Inducing Tau Hyperphosphorylation

    Institute of Scientific and Technical Information of China (English)

    LI Hong-lian; CHEN Juan; LIU Shi-jie; ZHANG Jia-yu; WANG Qun; WANG Jian-zhi

    2005-01-01

    To reveal the relationship between mitogen-activated protein kinase (MAPK) and tau phosphorylation, we used different concentration of PD98059, an inhibitor of MEK (MAPK kinase), to treat mice neuroblastma (N2a) cell line for 6 h. It showed that the activity of MAPK decreased in a dose-dependent manner. But Western blot and immunofluorescence revealed that just when the cells were treated with 16 μmol/L PD98059, tau was hyperphosphorylated at Ser396/404 and Ser199/202 sites. We obtained the conclusion that overinhibited MAPK induced tau hyperphosphorylation at Ser396/404 and Ser199/202 sites.

  1. Competence-induced type VI secretion might foster intestinal colonization by Vibrio cholerae: Intestinal interbacterial killing by competence-induced V. cholerae.

    Science.gov (United States)

    Blokesch, Melanie

    2015-11-01

    The human pathogen Vibrio cholerae exhibits two distinct lifestyles: one in the aquatic environment where it often associates with chitinous surfaces and the other as the causative agent of the disease cholera. While much of the research on V. cholerae has focused on the host-pathogen interaction, knowledge about the environmental lifestyle of the pathogen remains limited. We recently showed that the polymer chitin, which is extremely abundant in aquatic environments, induces natural competence as a mode of horizontal gene transfer and that this competence regulon also includes the type VI secretion system (T6SS), a molecular killing device. Here, I discuss the putative consequences that chitin-induced T6SS activation could have on intestinal colonization and how the transmission route might influence disease outcome. Moreover, I propose that common infant animal models for cholera might not sufficiently take into account T6SS-mediated interbacterial warfare between V. cholerae and the intestinal microbiota.

  2. The equine arteritis virus induces apoptosis via caspase-8 and mitochondria-dependent caspase-9 activation.

    Science.gov (United States)

    St-Louis, Marie-Claude; Archambault, Denis

    2007-10-10

    We have previously showed that equine arteritis virus (EAV), an arterivirus, induces apoptosis in vitro. To determine the caspase activation pathways involved in EAV-induced apoptosis, target cells were treated with peptide inhibitors of apoptosis Z-VAD-FMK (pan-caspase inhibitor), Z-IETD-FMK (caspase-8-specific inhibitor) or Z-LEHD-FMK (caspase-9-specific inhibitor) 4 h prior to infection with the EAV T1329 Canadian isolate. Significant inhibition of apoptosis was obtained with all peptide inhibitors used. Furthermore, apoptosis was inhibited in cells expressing the R1 subunit of herpes simplex virus type 2 ribonucleotide reductase (HSV2-R1) or hsp70, two proteins which are known to inhibit apoptosis associated with caspase-8 activation and cytochrome c release-dependent caspase-9 activation, respectively. Given the activation of Bid and the translocation of cytochrome c within the cytoplasm, the overall results indicate that EAV induces apoptosis initiated by caspase-8 activation and subsequent mitochondria-dependent caspase-9 activation.

  3. Activation-induced cell death in B lymphocytes

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Upon encountering the antigen (Ag), the immune system can either develop a specific immune response or enter a specific state of unresponsiveness, tolerance. The response of B cells to their specific Ag can be activation and proliferation, leading to the immune response, or anergy and activation-induced cell death (AICD), leading to tolerance. AICD in B lymphocytes is a highly regulated event initiated by crosslinking of the B cell receptor (BCR). BCR engagement initiates several signaling events such as activation of PLCγ, Ras, and PI3K, which generally speaking, lead to survival However, in the absence of survival signals (CD40 or IL-4R engagement), BCR crosslinking can also promote apoptotic signal transduction pathways such as activation of effector caspases, expression of pro-apoptotic genes, and inhibition of pro-survival genes. The complex interplay between survival and death signals determines the B cell fate and, consequently, the immune response.

  4. A novel PRD I and TG binding activity involved in virus-induced transcription of IFN-A genes.

    Science.gov (United States)

    Génin, P; Bragança, J; Darracq, N; Doly, J; Civas, A

    1995-01-01

    Comparative analysis of the inducible elements of the mouse interferon A4 and A11 gene promoters (IE-A4 and IE-A11) by transient transfection experiments, DNase 1 footprinting and electrophoretic mobility shift assays resulted in identification of a virus-induced binding activity suggested to be involved in NDV-induced activation of transcription of these genes. The virus-induced factor, termed VIF, is activated early by contact of virions with cells. It specifically recognizes the PRD I-like domain shared by both inducible elements, as well as the TG-like domain of IE-A4. This factor, distinct from the IRF-1, IRF-2 and the alpha F1 binding proteins and presenting a different affinity pattern from that of the TG protein, is proposed as a candidate for IFN-type I gene regulation. Images PMID:8559665

  5. Repetitive transcranial magnetic stimulation regulates L-type Ca(2+) channel activity inhibited by early sevoflurane exposure.

    Science.gov (United States)

    Liu, Yang; Yang, Huiyun; Tang, Xiaohong; Bai, Wenwen; Wang, Guolin; Tian, Xin

    2016-09-01

    Sevoflurane might be harmful to the developing brain. Therefore, it is essential to reverse sevoflurane-induced brain injury. This study aimed to determine whether low-frequency repetitive transcranial magnetic stimulation (rTMS) can regulate L-type Ca(2+) channel activity, which is inhibited by early sevoflurane exposure. Rats were randomly divided into three groups: control, sevoflurane, and rTMS groups. A Whole-cell patch clamp technique was applied to record L-type Ca(2+) channel currents. The I-V curve, steady-state activation and inactivation curves were studied in rats of each group at different ages (1 week, 2 weeks, 3 weeks, 4 weeks and 5 weeks old). In the control group, L-type Ca(2+) channel current density significantly increased from week 2 to week 3. Compared with the control group, L-type Ca(2+) channel currents of rats in the sevoflurane group were significantly inhibited from week 1 to week 3. Activation curves of L-type Ca(2+) channel shifted significantly towards depolarization at week 1 and week 2. Moreover, steady-state inactivation curves shifted towards hyperpolarization from week 1 to week 3. Compared with the sevoflurane group, rTMS significantly increased L-type Ca(2+) channel currents at week 2 and week 3. Activation curves of L-type Ca(2+) channel significantly shifted towards hyperpolarization at week 2. Meanwhile, steady-state inactivation curves significantly shifted towards depolarization at week 2. The period between week 2 and week 3 is critical for the development of L-type Ca(2+) channels. Early sevoflurane exposure inhibits L-type Ca(2+) channel activity and rTMS can regulate L-type Ca(2+) channel activity inhibited by sevoflurane. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Amelioration of altered antioxidant enzyme activity by Satureja khuzistanica essential oil in alloxan-induced diabetic rats.

    Science.gov (United States)

    Ahmadvand, Hassan

    2014-09-01

    To examine the possible protective effect of Satureja khuzistanica essential oil (SKE) on antioxidant enzyme activity in alloxan-induced Type 1 diabetic rats. Thirty Sprague-Dawley male rats were divided into three groups randomly; group one as control, group two diabetic, with no treatment, and group three treatment with SKE at 500 ppm in drinking water, respectively. Diabetes was induced in the second and third groups by alloxan injection subcutaneously. After eight weeks, animals were anaesthetized. Blood samples were also collected before killing to measure antioxidant enzymes activity. SKE significantly increased the serum level of glutathione and the serum activity of glutathione peroxidase, superoxide dismutase, and catalase in the treated group compared with the diabetic untreated group. The findings showed that SKE exerts beneficial effects on the antioxidant enzymes activity in alloxan-induced Type 1 diabetic rats. Copyright © 2014 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  7. Serum Amyloid A Induces Inflammation, Proliferation and Cell Death in Activated Hepatic Stellate Cells.

    Directory of Open Access Journals (Sweden)

    Sören V Siegmund

    Full Text Available Serum amyloid A (SAA is an evolutionary highly conserved acute phase protein that is predominantly secreted by hepatocytes. However, its role in liver injury and fibrogenesis has not been elucidated so far. In this study, we determined the effects of SAA on hepatic stellate cells (HSCs, the main fibrogenic cell type of the liver. Serum amyloid A potently activated IκB kinase, c-Jun N-terminal kinase (JNK, Erk and Akt and enhanced NF-κB-dependent luciferase activity in primary human and rat HSCs. Serum amyloid A induced the transcription of MCP-1, RANTES and MMP9 in an NF-κB- and JNK-dependent manner. Blockade of NF-κB revealed cytotoxic effects of SAA in primary HSCs with signs of apoptosis such as caspase 3 and PARP cleavage and Annexin V staining. Serum amyloid A induced HSC proliferation, which depended on JNK, Erk and Akt activity. In primary hepatocytes, SAA also activated MAP kinases, but did not induce relevant cell death after NF-κB inhibition. In two models of hepatic fibrogenesis, CCl4 treatment and bile duct ligation, hepatic mRNA levels of SAA1 and SAA3 were strongly increased. In conclusion, SAA may modulate fibrogenic responses in the liver in a positive and negative fashion by inducing inflammation, proliferation and cell death in HSCs.

  8. Explosive type of moderate-resistance training induces functional, cardiovascular, and molecular adaptations in the elderly.

    Science.gov (United States)

    Beltran Valls, Maria Reyes; Dimauro, Ivan; Brunelli, Andrea; Tranchita, Eliana; Ciminelli, Emanuela; Caserotti, Paolo; Duranti, Guglielmo; Sabatini, Stefania; Parisi, Paolo; Parisi, Attilio; Caporossi, Daniela

    2014-04-01

    Current recommendations aimed at reducing neuromuscular and functional loss in aged muscle have identified muscle power as a key target for intervention trials, although little is known about the biological and cardiovascular systemic response in the elderly. This study investigated the effects of 12 weeks of low-frequency, moderate-intensity, explosive-type resistance training (EMRT) on muscle strength and power in old community-dwelling people (70-75 years), monitoring functional performance linked to daily living activities (ADL) and cardiovascular response, as well as biomarkers of muscle damage, cardiovascular risk, and cellular stress response. The present study provides the first evidence that EMRT was highly effective in achieving a significant enhancement in muscular strength and power as well as in functional performance without causing any detrimental modification in cardiovascular, inflammatory, and damage parameters. Moreover, trained elderly subjects showed an adaptive response at both systemic and cellular levels by modulation of antioxidant and stress-induced markers such as myeloperoxidase (MPO), heat shock protein 70 (Hsp70) and 27 (Hsp27), and thioredoxin reductase 1 (TrxR1).

  9. TYK2 kinase activity is required for functional type I interferon responses in vivo.

    Directory of Open Access Journals (Sweden)

    Michaela Prchal-Murphy

    Full Text Available Tyrosine kinase 2 (TYK2 is a member of the Janus kinase (JAK family and is involved in cytokine signalling. In vitro analyses suggest that TYK2 also has kinase-independent, i.e., non-canonical, functions. We have generated gene-targeted mice harbouring a mutation in the ATP-binding pocket of the kinase domain. The Tyk2 kinase-inactive (Tyk2(K923E mice are viable and show no gross abnormalities. We show that kinase-active TYK2 is required for full-fledged type I interferon- (IFN induced activation of the transcription factors STAT1-4 and for the in vivo antiviral defence against viruses primarily controlled through type I IFN actions. In addition, TYK2 kinase activity was found to be required for the protein's stability. An inhibitory function was only observed upon over-expression of TYK2(K923Ein vitro. Tyk2(K923E mice represent the first model for studying the kinase-independent function of a JAK in vivo and for assessing the consequences of side effects of JAK inhibitors.

  10. Low density lipoprotein induces upregulation of vasoconstrictive endothelin type B receptor expression

    DEFF Research Database (Denmark)

    Xu, Cang-Bao; Zheng, Jian-Pu; Zhang, Wei

    2014-01-01

    Vasoconstrictive endothelin type B (ET(B)) receptors promote vasospasm and ischemic cerebro- and cardiovascular diseases. The present study was designed to examine if low density lipoprotein (LDL) induces upregulation of vasoconstrictive ET(B) receptor expression and if extracellular signal...

  11. Induced pluripotent stem cell - derived neurons for the study of spinocerebellar ataxia type 3

    DEFF Research Database (Denmark)

    Hansen, Susanne Kofoed; Stummann, Tina C.; Madsen, Helena Borland

    2016-01-01

    The neurodegenerative disease spinocerebellar ataxia type 3 (SCA3) is caused by a CAG-repeat expansion in the ATXN3 gene. In this study, induced pluripotent stem cell (iPSC) lines were established from two SCA3 patients. Dermal fibroblasts were reprogrammed using an integration-free method...

  12. Electromagnetically-induced transparency in a multi-V-type system in cesium atomic vapour

    Institute of Scientific and Technical Information of China (English)

    赵建明; 尹王保; 汪丽蓉; 肖连团; 贾锁堂

    2002-01-01

    Electromagnetically-induced transparency is observed in a three-level multi-V-type system in cesium vapour atroom temperature. The absorption property is measured and the hyperfine structures of atomic states can be determined.The results of the experiment agree with the theoretical analysis.

  13. Histone deacetylase inhibitor suppresses virus-induced proinflammatory responses and type 1 diabetes

    NARCIS (Netherlands)

    Hara, N.; Alkanani, A.K.; Dinarello, C.A.; Zipris, D.

    2014-01-01

    Microbial infections are hypothesized to play a key role in the mechanism leading to type 1 diabetes (T1D). We used the LEW1.WR1 rat model of Kilham rat virus (KRV)-induced islet destruction to better understand how virus infection triggers T1D. Inoculation of the LEW1.WR1 rat with KRV results in sy

  14. UV-inducible DNA exchange in hyperthermophilic archaea mediated by type IV pili

    NARCIS (Netherlands)

    Ajon, Malgorzata; Froels, Sabrina; van Wolferen, Marleen; Stoecker, Kilian; Teichmann, Daniela; Driessen, Arnold J. M.; Grogan, Dennis W.; Albers, Sonja-Verena; Schleper, Christa; Ajon, Małgorzata

    2011-01-01

    Archaea, like bacteria and eukaryotes, contain proteins involved in various mechanisms of DNA repair, highlighting the importance of these processes for all forms of life. Species of the order Sulfolobales of hyperthermophilic crenarchaeota are equipped with a strongly UV-inducible type IV pilus sys

  15. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation.

    Science.gov (United States)

    Liu, Siqi; Cai, Xin; Wu, Jiaxi; Cong, Qian; Chen, Xiang; Li, Tuo; Du, Fenghe; Ren, Junyao; Wu, You-Tong; Grishin, Nick V; Chen, Zhijian J

    2015-03-13

    During virus infection, the adaptor proteins MAVS and STING transduce signals from the cytosolic nucleic acid sensors RIG-I and cGAS, respectively, to induce type I interferons (IFNs) and other antiviral molecules. Here we show that MAVS and STING harbor two conserved serine and threonine clusters that are phosphorylated by the kinases IKK and/or TBK1 in response to stimulation. Phosphorylated MAVS and STING then bind to a positively charged surface of interferon regulatory factor 3 (IRF3) and thereby recruit IRF3 for its phosphorylation and activation by TBK1. We further show that TRIF, an adaptor protein in Toll-like receptor signaling, activates IRF3 through a similar phosphorylation-dependent mechanism. These results reveal that phosphorylation of innate adaptor proteins is an essential and conserved mechanism that selectively recruits IRF3 to activate the type I IFN pathway. Copyright © 2015, American Association for the Advancement of Science.

  16. Proton and Fe Ion-Induced Early and Late Chromosome Aberrations in Different Cell Types

    Science.gov (United States)

    Lu, Tao; Zhang, Ye; Yeshitla, Samrawit; Bowler, Deborah; Kadhim, Munira; Wilson, Bobby; Wu, Honglu

    2016-01-01

    Genomic instability, induced by various metabolic, genetic, and environmental factors, is the driving force of tumorigenesis. Radiation exposure from different types of radiation sources induces different types of DNA damages, increases mutation and chromosome aberration rates, and increases cellular transformation in vitro and in vivo experiments. The cell survival rates and frequency of chromosome aberrations depend on the genetic background and radiation sources. To further understand genomic instability induced by charged particles, we exposed human lymphocytes ex vivo, human fibroblast cells, human mammary epithelial cells, and bone marrow cells isolated from CBA/CaH and C57BL/6 mice to high energy protons and Fe ions, and collected chromosomes at different generations after exposure. Chromosome aberrations were analyzed with fluorescent in situ hybridization with whole chromosome specific probes.

  17. Creatine kinase activity in dogs with experimentally induced acute inflammation

    Directory of Open Access Journals (Sweden)

    Dimitrinka Zapryanova

    2013-01-01

    Full Text Available The main purpose of this study was to investigate the effect of acute inflammation on total creatine kinase (CK activity in dogs. In these animals, CK is an enzyme found predominantly in skeletal muscle and significantly elevated serum activity is largely associated with muscle damage. Plasma increases in dogs are associated with cell membrane leakage and will therefore be seen in any condition associated with muscular inflammation. The study was induced in 15 mongrel male dogs (n=9 in experimental group and n=6 in control group at the age of two years and body weight 12-15 kg. The inflammation was reproduced by inoculation of 2 ml turpentine oil subcutaneously in lumbar region. The plasma activity of creatine kinase was evaluated at 0, 6, 24, 48, 72 hours after inoculation and on days 7, 14 and 21 by a kit from Hospitex Diagnostics. In the experimental group, the plasma concentrations of the CK-activity were increased at the 48th hour (97.48±6.92 U/L and remained significantly higher (p<0.05 at the 72 hour (97.43±2.93 U/L compared to the control group (77.08±5.27 U/L. The results of this study suggest that the evaluation of creatine kinase in dogs with experimentally induced acute inflammation has a limited diagnostic value. It was observed that the creatine kinase activity is slightly affected by the experimentally induced acute inflammation in dogs.

  18. Activation-induced cytidine deaminase induces reproducible DNA breaks at many non-Ig Loci in activated B cells.

    Science.gov (United States)

    Staszewski, Ori; Baker, Richard E; Ucher, Anna J; Martier, Raygene; Stavnezer, Janet; Guikema, Jeroen E J

    2011-01-21

    After immunization or infection, activation-induced cytidine deaminase (AID) initiates diversification of immunoglobulin (Ig) genes in B cells, introducing mutations within the antigen-binding V regions (somatic hypermutation, SHM) and double-strand DNA breaks (DSBs) into switch (S) regions, leading to antibody class switch recombination (CSR). We asked if, during B cell activation, AID also induces DNA breaks at genes other than IgH genes. Using a nonbiased genome-wide approach, we have identified hundreds of reproducible, AID-dependent DSBs in mouse splenic B cells shortly after induction of CSR in culture. Most interestingly, AID induces DSBs at sites syntenic with sites of translocations, deletions, and amplifications found in human B cell lymphomas, including within the oncogene B cell lymphoma11a (bcl11a)/evi9. Unlike AID-induced DSBs in Ig genes, genome-wide AID-dependent DSBs are not restricted to transcribed regions and frequently occur within repeated sequence elements, including CA repeats, non-CA tandem repeats, and SINEs.

  19. Niemann-Pick Type C2 Protein Mediates Hepatic Stellate Cells Activation by Regulating Free Cholesterol Accumulation

    Directory of Open Access Journals (Sweden)

    Yuh-Ching Twu

    2016-07-01

    Full Text Available In chronic liver diseases, regardless of their etiology, the development of fibrosis is the first step toward the progression to cirrhosis, portal hypertension, and hepatocellular carcinoma. Hepatic stellate cells (HSCs are the main profibrogenic cells that promote the pathogenesis of liver fibrosis, and so it is important to identify the molecules that regulate HSCs activation and liver fibrosis. Niemann-Pick type C2 (NPC2 protein plays an important role in the regulation of intracellular cholesterol homeostasis by directly binding with free cholesterol. However, the roles of NPC2 in HSCs activation and liver fibrosis have not been explored in detail. Since a high-cholesterol diet exacerbates liver fibrosis progression in both rodents and humans, we propose that the expression of NPC2 affects free cholesterol metabolism and regulates HSCs activation. In this study, we found that NPC2 is decreased in both thioacetamide- and carbon tetrachloride-induced liver fibrosis tissues. In addition, NPC2 is expressed in quiescent HSCs, but its activation status is down-regulated. Knockdown of NPC2 in HSC-T6 cells resulted in marked increases in transforming growth factor-β1 (TGF-β1-induced collagen type 1 α1 (Col1a1, α-smooth muscle actin (α-SMA expression, and Smad2 phosphorylation. In contrast, NPC2 overexpression decreased TGF-β1-induced HSCs activation. We further demonstrated that NPC2 deficiency significantly increased the accumulation of free cholesterol in HSCs, increasing Col1a1 and α-SMA expression and activating Smad2, and leading to sensitization of HSCs to TGF-β1 activation. In contrast, overexpression of NPC2 decreased U18666A-induced free cholesterol accumulation and inhibited the subsequent HSCs activation. In conclusion, our study has demonstrated that NPC2 plays an important role in HSCs activation by regulating the accumulation of free cholesterol. NPC2 overexpression may thus represent a new treatment strategy for liver fibrosis.

  20. Niemann-Pick Type C2 Protein Mediates Hepatic Stellate Cells Activation by Regulating Free Cholesterol Accumulation.

    Science.gov (United States)

    Twu, Yuh-Ching; Lee, Tzong-Shyuan; Lin, Yun-Lian; Hsu, Shih-Ming; Wang, Yuan-Hsi; Liao, Chia-Yu; Wang, Chung-Kwe; Liang, Yu-Chih; Liao, Yi-Jen

    2016-07-13

    In chronic liver diseases, regardless of their etiology, the development of fibrosis is the first step toward the progression to cirrhosis, portal hypertension, and hepatocellular carcinoma. Hepatic stellate cells (HSCs) are the main profibrogenic cells that promote the pathogenesis of liver fibrosis, and so it is important to identify the molecules that regulate HSCs activation and liver fibrosis. Niemann-Pick type C2 (NPC2) protein plays an important role in the regulation of intracellular cholesterol homeostasis by directly binding with free cholesterol. However, the roles of NPC2 in HSCs activation and liver fibrosis have not been explored in detail. Since a high-cholesterol diet exacerbates liver fibrosis progression in both rodents and humans, we propose that the expression of NPC2 affects free cholesterol metabolism and regulates HSCs activation. In this study, we found that NPC2 is decreased in both thioacetamide- and carbon tetrachloride-induced liver fibrosis tissues. In addition, NPC2 is expressed in quiescent HSCs, but its activation status is down-regulated. Knockdown of NPC2 in HSC-T6 cells resulted in marked increases in transforming growth factor-β1 (TGF-β1)-induced collagen type 1 α1 (Col1a1), α-smooth muscle actin (α-SMA) expression, and Smad2 phosphorylation. In contrast, NPC2 overexpression decreased TGF-β1-induced HSCs activation. We further demonstrated that NPC2 deficiency significantly increased the accumulation of free cholesterol in HSCs, increasing Col1a1 and α-SMA expression and activating Smad2, and leading to sensitization of HSCs to TGF-β1 activation. In contrast, overexpression of NPC2 decreased U18666A-induced free cholesterol accumulation and inhibited the subsequent HSCs activation. In conclusion, our study has demonstrated that NPC2 plays an important role in HSCs activation by regulating the accumulation of free cholesterol. NPC2 overexpression may thus represent a new treatment strategy for liver fibrosis.

  1. Cytotoxic activity of interferon alpha induced dendritic cells as a biomarker of glioblastoma

    Science.gov (United States)

    Mishinov, S. V.; Stupak, V. V.; Tyrinova, T. V.; Leplina, O. Yu.; Ostanin, A. A.; Chernykh, E. R.

    2016-08-01

    Dendritic cells (DCs) are the most potent antigen presenting cells that can play direct role in anti-tumor immune response as killer cells. DC tumoricidal activity can be stimulated greatly by type I IFN (IFNα and IFNβ). In the present study, we examined cytostatic and cytotoxic activity of monocyte-derived IFNα-induced DCs generated from patients with brain glioma and evaluated the potential use of these parameters in diagnostics of high-grade gliomas. Herein, we demonstrated that patient DCs do not possess the ability to inhibit the growth of tumor HEp-2 cell line but low-grade and high-grade glioma patients do not differ significantly in DC cytostatic activity. However, glioma patient DCs are characterized by reduced cytotoxic activity against HEp-2 cells. The impairment of DC cytotoxic function is observed mainly in glioblastoma patients. The cytotoxic activity of DCs against HEp-2 cells below 9% is an informative marker for glioblastomas.

  2. In vivo anticancer and immunomodulating activities of mannogalactoglucan-type polysaccharides from Lentinus edodes (Berkeley) Singer.

    Science.gov (United States)

    Jeff, Iteku Bekomo; Fan, Enxue; Tian, Meihong; Song, Chenyang; Yan, Jingmin; Zhou, Yifa

    2016-01-01

    There is considerable interest in the potential of mushrooms in modulating the immune system and/or suppressing tumor growth. Among the studied bioactive compounds in mushrooms, polysaccharides are the most important. Nontoxic fungal polysaccharides have a more important role in immunomodulating and antitumor activities which are related to their effects to act of immune effecter cells such as lymphocytes, macrophages, dendritic cells, and natural killer cells involved in the innate and adaptive immunity. Two mannogalactoglucan-type polysaccharides (WPLE-N-2 and WPLE-A0.5-2), purified from the fruiting bodies of Lentinus edodes, were evaluated for their effects on the cellular immune response of Sarcoma 180 (S-180)-bearing mice. Mice were treated with 100 mg/kg body weight of the polysaccharides for 10 days. Significant tumor regressions of the polysaccharide groups' mice were observed compared to the control group. These polysaccharides could induce an increase in nitrite oxide (NO) production in peritoneal macrophages, significantly increase macrophage phagocytosis of tumor-bearing mice and augment concanavalin (ConA) and lipopolysaccharide (LPS)-induced splenocytes proliferation. Our results indicated that immunomodulating activity occurred through host mediation in response to lymphocyte proliferation, macrophage phago