WorldWideScience

Sample records for activation chemical

  1. Existing chemicals: international activities.

    Science.gov (United States)

    Purchase, J F

    1989-01-01

    The standards of care used in the protection of the health and safety of people exposed to chemicals has increased dramatically in the last decade. Standards imposed by regulation and those adopted by industry have required a greater level of knowledge about the hazards of chemicals. In the E.E.C., the 6th amendment of the dangerous substances directive imposed the requirement that al new chemicals should be tested according to prescribed programme before introduction on to the market. The development of a European inventory of existing chemicals was an integral part of the 6th amendment. It has now become clear that increased standards of care referred to above must be applied to the chemicals on the inventory list. There is, however, a considerable amount of activity already under way in various international agencies. The OECD Chemicals Programme has been involved in considering the problem of existing chemicals for some time, and is producing a priority list and action programme. The International Programme on Chemical Safety produces international chemical safety cards, health and safety guides and environmental health criteria documents. The international register of potentially toxic compounds (part of UNEP) has prepared chemical data profiles on 990 compounds. The International Agency for Research on Cancer prepared monographs on the carcinogenic risk of chemicals to man. So far 42 volumes have been prepared covering about 900 substances. IARC and IPCS also prepare periodic reports on ongoing research on carcinogenicity or toxicity (respectively) of chemicals. The chemical industry through ECETOC (the European Chemical Industry Ecology and Toxicology Centre) has mounted a major initiative on existing chemicals. Comprehensive reviews of the toxicity of selected chemicals are published (Joint Assessment of Commodity Chemicals). In its technical report no. 30 ECETOC lists reviews and evaluations by major national and international organisations, which provides

  2. Current Chemical Risk Reduction Activities

    Science.gov (United States)

    EPA's existing chemicals programs address pollution prevention, risk assessment, hazard and exposure assessment and/or characterization, and risk management for chemicals substances in commercial use.

  3. Inorganic chemically active adsorbents (ICAAs)

    Energy Technology Data Exchange (ETDEWEB)

    Ally, M.R. [Oak Ridge National Lab., TN (United States); Tavlarides, L.

    1997-10-01

    Oak Ridge National Laboratory (ORNL) researchers are developing a technology that combines metal chelation extraction technology and synthesis chemistry. They begin with a ceramic substrate such as alumina, titanium oxide or silica gel because they provide high surface area, high mechanical strength, and radiolytic stability. One preparation method involves silylation to hydrophobize the surface, followed by chemisorption of a suitable chelation agent using vapor deposition. Another route attaches newly designed chelating agents through covalent bonding by the use of coupling agents. These approaches provide stable and selective, inorganic chemically active adsorbents (ICAAs) tailored for removal of metals. The technology has the following advantages over ion exchange: (1) higher mechanical strength, (2) higher resistance to radiation fields, (3) higher selectivity for the desired metal ion, (4) no cation exchange, (5) reduced or no interference from accompanying anions, (6) faster kinetics, and (7) easy and selective regeneration. Target waste streams include metal-containing groundwater/process wastewater at ORNL`s Y-12 Plant (multiple metals), Savannah River Site (SRS), Rocky Flats (multiple metals), and Hanford; aqueous mixed wastes at Idaho National Engineering Laboratory (INEL); and scrubber water generated at SRS and INEL. Focus Areas that will benefit from this research include Mixed Waste, and Subsurface Contaminants.

  4. Linking algal growth inhibition to chemical activity

    DEFF Research Database (Denmark)

    Schmidt, Stine N.; Mayer, Philipp

    to chemical activity, as opposed to e.g. the total concentration. Baseline toxicity (narcosis) for neutral hydrophobic organic compounds has been shown to initiate in the narrow chemical activity range of 0.01 to 0.1. This presentation focuses on linking algal growth inhibition to chemical activity....... High-quality toxicity data are carefully selected from peer-reviewed scientific literature and QSAR databases. This presentation shows how the chemical activity concept can be used to compare and combine toxicity data across compounds and species in order to characterize toxicity – and further how...

  5. Activated coconut shell charcoal carbon using chemical-physical activation

    Science.gov (United States)

    Budi, Esmar; Umiatin, Nasbey, Hadi; Bintoro, Ridho Akbar; Wulandari, Futri; Erlina

    2016-02-01

    The use of activated carbon from natural material such as coconut shell charcoal as metal absorbance of the wastewater is a new trend. The activation of coconut shell charcoal carbon by using chemical-physical activation has been investigated. Coconut shell was pyrolized in kiln at temperature about 75 - 150 °C for about 6 hours in producing charcoal. The charcoal as the sample was shieved into milimeter sized granule particle and chemically activated by immersing in various concentration of HCl, H3PO4, KOH and NaOH solutions. The samples then was physically activated using horizontal furnace at 400°C for 1 hours in argon gas environment with flow rate of 200 kg/m3. The surface morphology and carbon content of activated carbon were characterized by using SEM/EDS. The result shows that the pores of activated carbon are openned wider as the chemical activator concentration is increased due to an excessive chemical attack. However, the pores tend to be closed as further increasing in chemical activator concentration due to carbon collapsing.

  6. Chemical analyses, antibacterial activity and genetic diversity ...

    African Journals Online (AJOL)

    SAM

    2014-06-25

    Jun 25, 2014 ... Key words: Citrus, genetic diversity, ISSR markers, chemical analyses, antibacterial. ... ment of DNA based marker systems has advanced our ... Total acidity of the juices was determined by titration method as ... Greek compressed C. sinensis. 37 163 ..... flavonoids have a large spectrum of biological activity.

  7. Activity Therapy Services and Chemical Dependency Rehabilitation.

    Science.gov (United States)

    James, Mark R.; Townsley, Robin K.

    1989-01-01

    Discusses how music, occupational, and recreation therapies can contribute to comprehensive treatment programs for chemical dependency. Sees prime contribution of activity therapy as lying in nature of experiential education, applying insight gained in counseling sessions and discussion groups to practical real-life situations. (Author/NB)

  8. Mechanism of chemical activation of Nrf2.

    Directory of Open Access Journals (Sweden)

    Yun Li

    Full Text Available NF-E2 related factor-2 (Nrf2 promotes the transcription of many cytoprotective genes and is a major drug target for prevention of cancer and other diseases. Indeed, the cancer-preventive activities of several well-known chemical agents were shown to depend on Nrf2 activation. It is well known that chemopreventive Nrf2 activators stabilize Nrf2 by blocking its ubiquitination, but previous studies have indicated that this process occurs exclusively in the cytoplasm. Kelch-like ECH-associated protein 1 (Keap1 binds to Nrf2 and orchestrates Nrf2 ubiquitination, and it has been a widely-held view that inhibition of Nrf2 ubiquitination by chemopreventive agents results from the dissociation of Nrf2 from its repressor Keap1. Here, we show that while the activation of Nrf2 by prototypical chemical activators, including 5,6-dihydrocyclopenta-1,2-dithiole-3-thione (CPDT and sulforaphane (SF, results solely from inhibition of its ubiquitination, such inhibition occurs predominantly in the nucleus. Moreover, the Nrf2 activators promote Nrf2 association with Keap1, rather than disassociation, which appears to result from inhibition of Nrf2 phosphorylation at Ser40. Available evidence suggests the Nrf2 activators may block Nrf2 ubiquitination by altering Keap1 conformation via reaction with the thiols of specific Keap1 cysteines. We further show that while the inhibitory effects of CPDT and SF on Nrf2 ubiquitination depend entirely on Keap1, Nrf2 is also degraded by a Keap1-independent mechanism. These findings provide significant new insight about Nrf2 activation and suggest that exogenous chemical activators of Nrf2 enter the nucleus to exert most of their inhibitory impact on Nrf2 ubiquitination and degradation.

  9. Antitumor activity of chemical modified natural compounds

    Directory of Open Access Journals (Sweden)

    Marilda Meirelles de Oliveira

    1991-01-01

    Full Text Available Search of new activity substances starting from chemotherapeutic agents, continously appears in international literature. Perhaps this search has been done more frequently in the field of anti-tumor chemotherapy on account of the unsuccess in saving advanced stage patients. The new point in this matter during the last decade was computer aid in planning more rational drugs. In near future "the accessibility of supercomputers and emergence of computer net systems, willopen new avenues to rational drug design" (Portoghese, P. S. J. Med. Chem. 1989, 32, 1. Unknown pharmacological active compounds synthetized by plants can be found even without this eletronic devices, as tradicional medicine has pointed out in many contries, and give rise to a new drug. These compounds used as found in nature or after chemical modifications have produced successful experimental medicaments as FAA, "flavone acetic acid" with good results as inibitors of slow growing animal tumors currently in preclinical evaluation for human treatment. In this lecture some international contributions in the field of chemical modified compounds as antineoplasic drugs will be examined, particularly those done by Brazilian researches.

  10. Active Chemical Thermodynamics promoted by activity of cortical actin

    Science.gov (United States)

    Bhattacharya, Bhaswati; Chaudhuri, Abhishek; Gowrishankar, Kripa; Rao, Madan

    2011-03-01

    The spatial distribution and dynamics of formation and breakup of the nanoclusters of cell surface proteins is controlled by the active remodeling dynamics of the underlying cortical actin. To explain these observations, we have proposed a novel mechanism of nanoclustering, involving the transient binding to and advection along constitutively occuring ``asters'' of cortical actin. We study the consequences of such active actin-based clustering, in the context of chemical reactions involving conformational changes of cell surface proteins. We find that the active remodeling of cortical actin, can give rise to a dramatic increase in efficiency and extent of conformational spread, even at low levels of expression at the cell surface. We define a activity temperature (τa) arising due to actin activities which can be used to describe chemical thermodynamics of the system. We plot TTT (time-temparature-transformation) curves and compute the Arrhenius factors which depend on τa . With this, the active asters can be treated as enzymes whose enzymatic reaction rate can be related to the activity.

  11. Foundational aspects of the concept of chemical activity

    DEFF Research Database (Denmark)

    Mayer, Philipp

    2015-01-01

    -dwelling organisms and differences in chemical activity determine the direction and extent of diffusion between environmental compartments [1,2]. This makes chemical activity a meaningfull and well-defined exposure parameter that is closely linked to fugacity and freely dissolved concentration [2]. Classical...... toxicological studies have provided the first indication that narcosis occurs within a relatively narrow band of chemical activity [3-5], and during the last 10 years several studies have confirmed this for the „baseline toxicity“ of non-polar organic chemicals and their mixtures [6-8]. The first aim...

  12. ILO activities in the area of chemical safety.

    Science.gov (United States)

    Obadia, Isaac

    2003-08-21

    The ILO has been active in the area of safety in the use of chemicals at work since the year of its creation in 1919, including the development of international treaties and other technical instruments, the provision of technical assistance to its member States, and the development of chemical safety information systems. The two key ILO standards in this area are the Conventions on safety in the use of chemicals at work (No. 170, 1990), and the Prevention of Major Industrial Accidents (No. 174, 1993). The ILO Programme on occupational safety, health and environment (Safe Work) is currently responsible for ILO chemical safety activities. In the past two decades, most of ILO work in this area has been carried out within the context of inter-agency collaboration frameworks linking the ILO, WHO, UNEP, FAO, UNIDO, UNITAR, and the OECD, including the International Programme on Chemical Safety (IPCS), the Inter-Organisation Programme for the Sound Management of Chemicals (IOMC), and the Intergovernmental Forum on Chemical Safety (IFCS). Apart from the regular development, updating and dissemination of chemical safety information data bases such as the IPCS International Chemical Cards, the elaboration of a Globally harmonized system for the classification and labelling of Chemicals (GHS) has been the most outstanding achievement of this international collaboration on chemical safety.

  13. Activating secondary metabolism with stress and chemicals.

    Science.gov (United States)

    Yoon, Vanessa; Nodwell, Justin R

    2014-02-01

    The available literature on the secondary or nonessential metabolites of the streptomycetes bacteria suggests that there may be poorly expressed or "cryptic" compounds that have yet to be identified and that may have significant medical utility. In addition, it is clear that there is a large and complex regulatory network that controls the production of these molecules in the laboratory and in nature. Two approaches that have been taken to manipulating the yields of secondary metabolites are the use of various stress responses and, more recently, the use of precision chemical probes. Here, we review the status of this work and outline the challenges and opportunities afforded by each of them.

  14. TSCA Chemical Data Reporting Fact Sheet: Reporting Manufactured Chemical Substances from Metal Mining and Related Activities

    Science.gov (United States)

    This fact sheet provides guidance on the Chemical Data Reporting (CDR) rule requirements related to the reporting of mined metals, intermediates, and byproducts manufactured during metal mining and related activities.

  15. Red propolis: Chemical composition and pharmacological activity

    Directory of Open Access Journals (Sweden)

    Luciane Corbellini Rufatto

    2017-07-01

    Full Text Available Propolis has been used worldwide for years in folk medicine and currently marketed by the pharmaceutical industry. In Brazil, propolis was classified into 13 groups based on their organoleptics and physicochemical characteristics. The 13th type named red propolis has been an important source of investigation since late 90s. Their property comes from the countless compounds, including terpenes, pterocarpans, prenylated benzophenones and especially the flavonoids. This last compound class has been indicated as the responsible for its potent pharmacological actions, highlighting the antimicrobial, anti-inflammatory, antioxidant, healing and antiproliferative activities. The red propolis can also be found in other countries, especially Cuba, which has similar features as the Brazilian. Therefore, with the compilation of 80 papers, this review aims to provide a key reference for researchers interested in natural products and discovery of new active compounds, such as from propolis.

  16. Active disturbance rejection controller for chemical reactor

    Energy Technology Data Exchange (ETDEWEB)

    Both, Roxana; Dulf, Eva H.; Muresan, Cristina I., E-mail: roxana.both@aut.utcluj.ro [Technical University of Cluj-Napoca, 400114 Cluj-Napoca (Romania)

    2015-03-10

    In the petrochemical industry, the synthesis of 2 ethyl-hexanol-oxo-alcohols (plasticizers alcohol) is of high importance, being achieved through hydrogenation of 2 ethyl-hexenal inside catalytic trickle bed three-phase reactors. For this type of processes the use of advanced control strategies is suitable due to their nonlinear behavior and extreme sensitivity to load changes and other disturbances. Due to the complexity of the mathematical model an approach was to use a simple linear model of the process in combination with an advanced control algorithm which takes into account the model uncertainties, the disturbances and command signal limitations like robust control. However the resulting controller is complex, involving cost effective hardware. This paper proposes a simple integer-order control scheme using a linear model of the process, based on active disturbance rejection method. By treating the model dynamics as a common disturbance and actively rejecting it, active disturbance rejection control (ADRC) can achieve the desired response. Simulation results are provided to demonstrate the effectiveness of the proposed method.

  17. Tetrapleura tetraptera: molluscicidal activity and chemical constituents.

    Science.gov (United States)

    Aladesanmi, Adetunji J

    2006-08-28

    Tetrapleura tetraptera (Schumach. And Thonn) Taub, Mimosaceae, commonly known as Aridan (fruit), A single stemmed, robust, perennial tree of about 30 m. It has a grey/brown, smooth/rough bark with glabrous yound branchlets. The flower is yellow/pink and racemes white the fruit has dark brown, four winged pods 12-25 x 3.5-6.5 cm. It is generally found in the lowland forest of tropical Africa. The fruit consists of a fleshy pulp with small, brownish-black seeds. The fruit possesses a fragrant, characteristically pungent aromatic odour, which is attributed to its insect repellent property. It is used as spices and aroma (exotic tropical scents) and fish poisoning. It is one of the molluscicidal medicinal plants of Nigeria, also useful in the management of convulsions, leprosy, inflammation and/or rheumatoid pains. The documented biological and-or pharmacological activities are found to be molluscicidal, cardio-vascular, neuromuscular, hypotensive, anti-convulsant, trypanocidal, hirudinicidal, schistosomiasis control, anti-ulcerative, ectoxicity, anti-inflammatory, hypoglycaemic, anti-microbial, emulsifying property, birth control, food value and the control of intestinal parasites. Activity-guided fractionation of the methanol extract of the fruits of T. tetraptera led to the isolation of a saponin glycoside with an oleanolic acid aglycone, a monodesmosidic diglycoside of the rare sapogenin 27-hydroxyolean-12 (13)-en-28-oic acid; echinocystic acid-3-0-sodium sulfate from the stembark, umbelliferone and ferulic acid from the leaves and branches respectively. Also isolated from the fruits were aridanin and three of its olean-12-en-28-oic acid derivatives. All the compounds isolated either from the fruits or other parts were found to exhibit strong molluscicidal properties against the schistosomiasis-transmitting snails Biomphalaria glabrata.

  18. Guiding catalytically active particles with chemically patterned surfaces

    CERN Document Server

    Uspal, W E; Dietrich, S; Tasinkevych, M

    2016-01-01

    Catalytically active Janus particles suspended in solution create gradients in the chemical composition of the solution along their surfaces, as well as along any nearby container walls. The former leads to self-phoresis, while the latter gives rise to chemi-osmosis, providing an additional contribution to self-motility. Chemi-osmosis strongly depends on the molecular interactions between the diffusing chemical species and the wall. We show analytically, using an approximate "point-particle" approach, that by chemically patterning a planar substrate one can direct the motion of Janus particles: the induced chemi-osmotic flows can cause particles to either "dock" at the chemical step between the two materials, or to follow a chemical stripe. These theoretical predictions are confirmed by full numerical calculations. Generically, docking occurs for particles which tend to move away from their catalytic caps, while stripe-following occurs in the opposite case. Our analysis reveals the physical mechanisms governi...

  19. Quantitative genetic activity graphical profiles for use in chemical evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Waters, M.D. [Environmental Protection Agency, Washington, DC (United States); Stack, H.F.; Garrett, N.E.; Jackson, M.A. [Environmental Health Research and Testing, Inc., Research Triangle Park, NC (United States)

    1990-12-31

    A graphic approach, terms a Genetic Activity Profile (GAP), was developed to display a matrix of data on the genetic and related effects of selected chemical agents. The profiles provide a visual overview of the quantitative (doses) and qualitative (test results) data for each chemical. Either the lowest effective dose or highest ineffective dose is recorded for each agent and bioassay. Up to 200 different test systems are represented across the GAP. Bioassay systems are organized according to the phylogeny of the test organisms and the end points of genetic activity. The methodology for producing and evaluating genetic activity profile was developed in collaboration with the International Agency for Research on Cancer (IARC). Data on individual chemicals were compiles by IARC and by the US Environmental Protection Agency (EPA). Data are available on 343 compounds selected from volumes 1-53 of the IARC Monographs and on 115 compounds identified as Superfund Priority Substances. Software to display the GAPs on an IBM-compatible personal computer is available from the authors. Structurally similar compounds frequently display qualitatively and quantitatively similar profiles of genetic activity. Through examination of the patterns of GAPs of pairs and groups of chemicals, it is possible to make more informed decisions regarding the selection of test batteries to be used in evaluation of chemical analogs. GAPs provided useful data for development of weight-of-evidence hazard ranking schemes. Also, some knowledge of the potential genetic activity of complex environmental mixtures may be gained from an assessment of the genetic activity profiles of component chemicals. The fundamental techniques and computer programs devised for the GAP database may be used to develop similar databases in other disciplines. 36 refs., 2 figs.

  20. Active colloids in the context of chemical kinetics

    Science.gov (United States)

    Oshanin, G.; Popescu, M. N.; Dietrich, S.

    2017-03-01

    We study a mesoscopic model of a chemically active colloidal particle which on certain parts of its surface promotes chemical reactions in the surrounding solution. For reasons of simplicity and conceptual clarity, we focus on the case in which only electrically neutral species are present in the solution and on chemical reactions which are described by first order kinetics. Within a self-consistent approach we explicitly determine the steady state product and reactant number density fields around the colloid as functionals of the interaction potentials of the various molecular species in solution with the colloid. By using a reciprocal theorem, this allows us to compute and to interpret—in a transparent way in terms of the classical Smoluchowski theory of chemical kinetics—the external force needed to keep such a catalytically active colloid at rest (stall force) or, equivalently, the corresponding velocity of the colloid if it is free to move. We use the particular case of triangular-well interaction potentials as a benchmark example for applying the general theoretical framework developed here. For this latter case, we derive explicit expressions for the dependences of the quantities of interest on the diffusion coefficients of the chemical species, the reaction rate constant, the coverage by catalyst, the size of the colloid, as well as on the parameters of the interaction potentials. These expressions provide a detailed picture of the phenomenology associated with catalytically-active colloids and self-diffusiophoresis.

  1. Chemical profiling and antioxidant activity of Bolivian propolis.

    Science.gov (United States)

    Nina, Nélida; Quispe, Cristina; Jiménez-Aspee, Felipe; Theoduloz, Cristina; Giménez, Alberto; Schmeda-Hirschmann, Guillermo

    2016-04-01

    Propolis is a relevant research subject worldwide. However, there is no information so far on Bolivian propolis. Ten propolis samples were collected from regions with high biodiversity in the main honey production places in Bolivia and were analyzed for their total phenolics (TP), flavonoids (TF) and antioxidant activity. The chemical profiles of the samples were assessed by TLC, HPLC-DAD, HPLC-DAD-MS/MS(n) and NMR analysis. TP, TF, TLC and NMR analysis showed significant chemical differences between the samples. Isolation of the main constituents by chromatography and identification by HPLC-DAD-MS/MS(n) achieved more than 35 constituents. According to their profiles, the Bolivian propolis can be classified into phenolic-rich and triterpene-rich samples. Propolis from the valleys (Cochabamba, Chuquisaca and Tarija) contained mainly prenylated phenylpropanoids, while samples from La Paz and Santa Cruz contained cycloartane and pentacyclic triterpenes. Phenolic-rich samples presented moderate to strong antioxidant activity while the triterpene-rich propolis were weakly active. High chemical diversity and differential antioxidant effects were found in Bolivian propolis. Our results provide additional evidence on the chemical composition and bioactivity of South American propolis. © 2015 Society of Chemical Industry.

  2. Predicting of bactericidal activity of chemical disinfectants using disinfection activity coefficient of solution

    OpenAIRE

    Gjorgjeska, Biljana

    2011-01-01

    There is the need for defining standard technique for quantitative determination of bactericidal activity of chemical disinfectant substances, as well as the need for defining parameter for comparing various chemical disinfectants. The methods which are usually used for evaluation of antiseptic activity of disinfectant aqueous solutions are microbiological.

  3. Chemical constituents, antimicrobial and antimalarial activities of Zanthoxylum monophyllum.

    Science.gov (United States)

    Rodríguez-Guzmán, Raquel; Fulks, Laura C Johansmann; Radwan, Mohamed M; Burandt, Charles L; Ross, Samir A

    2011-09-01

    From the leaves and bark of Zanthoxylum monophyllum, a new lignan, 3-methoxy-3',4'-methylenedioxylignan-4,8,9,9'-tetraol (1), has been isolated along with 22 known compounds (2- 23), fifteen of them reported for the first time from Z. monophyllum. Their chemical structures were elucidated using detailed spectroscopic studies and chemical analysis. All compounds were evaluated for antimicrobial and antiprotozoal activities. Alkaloids BIS-[6-(5,6-dihydro-chelerythrinyl)] ether (2) and 6-ethoxy-chelerythrine (4) exhibited strong activity against Aspergillus fumigatus and methicillin-resistant Staphylococcus aureus (MRSA). Compound 4-methoxy-N-methyl-2-quinolone (9) exhibited significant activity against MRSA (IC50 value of 8.0 µM) while compound 5,8,4'-trihydroxy-3,7,3'-trimethoxyflavone (10) showed weak activity against Plasmodium falciparum. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Chemical composition and biological activity of the plum seed extract

    OpenAIRE

    Savić, Ivan M.; Nikolić, Vesna D.; Savić-Gajić, Ivana M.; Kundaković, Tatjana D.; Stanojković, Tatjana P.; Najman, Stevo J.; id_orcid 0000-0002-2411-9802

    2016-01-01

    The aim of this paper was to estimate the biological activity of the plum seed extract and to define the chemical composition by using the ESI-MS method. During the investigation of the antioxidant activity, the extract showed a better ability to inhibit DPPH radicals compared with amygdalin standard. The results of the antimicrobial study indicate that the extract has a greater effect on Gram-negative bacteria compared with amygdalin. Gram-positive bacteria and fungi remained resistant in bo...

  5. Structure activity relationships to assess new chemicals under TSCA

    Energy Technology Data Exchange (ETDEWEB)

    Auletta, A.E. [Environmental Protection Agency, Washington, DC (United States)

    1990-12-31

    Under Section 5 of the Toxic Substances Control Act (TSCA), manufacturers must notify the US Environmental Protection Agency (EPA) 90 days before manufacturing, processing, or importing a new chemical substance. This is referred to as a premanufacture notice (PMN). The PMN must contain certain information including chemical identity, production volume, proposed uses, estimates of exposure and release, and any health or environmental test data that are available to the submitter. Because there is no explicit statutory authority that requires testing of new chemicals prior to their entry into the market, most PMNs are submitted with little or no data. As a result, EPA has developed special techniques for hazard assessment of PMN chemicals. These include (1) evaluation of available data on the chemical itself, (2) evaluation of data on analogues of the PMN, or evaluation of data on metabolites or analogues of metabolites of the PMN, (3) use of quantitative structure activity relationships (QSARs), and (4) knowledge and judgement of scientific assessors in the interpretation and integration of the information developed in the course of the assessment. This approach to evaluating potential hazards of new chemicals is used to identify those that are most in need of addition review of further testing. It should not be viewed as a replacement for testing. 4 tabs.

  6. Guiding catalytically active particles with chemically patterned surfaces

    Science.gov (United States)

    Uspal, William; Popescu, Mihail; Dietrich, Siegfried; Tasinkevych, Mykola

    Catalytically active Janus particles in solution create gradients in the chemical composition of the solution along their surfaces, as well as along any nearby container walls. The former leads to self-phoresis, while the latter gives rise to chemi-osmosis, providing an additional contribution to self-motility. Chemi-osmosis strongly depends on the molecular interactions between the diffusing chemical species and the wall. We show analytically, using an approximate ``point-particle'' approach, that by chemically patterning a planar substrate (e.g., by adsorbing two different materials) one can direct the motion of Janus particles: the induced chemi-osmotic flows can cause particles to either ``dock'' at a chemical step between the two materials, or to follow a chemical stripe. These theoretical predictions are confirmed by full numerical calculations. Generically, docking occurs for particles which tend to move away from their catalytic caps, while stripe-following occurs in the opposite case. Our analysis reveals the physical mechanisms governing this behavior.

  7. Chemical composition and biological activities of the Agaricus mushrooms

    Directory of Open Access Journals (Sweden)

    L Munkhgerel

    2014-10-01

    Full Text Available Two species of Agaricus mushroom grown in Mongolia were analyzed for their element content. Biological activity and chemical components study of Agaricus, grown in the Mongolian flora has been investigated for the first time. The ethanol extracts of dried Agaricus sp. mushrooms were analyzed for antioxidant activity on 1,1-diphenyl-2- picrylhydrazyl (DPPH radicals and interferon-like activity. The ethanol extracts from Agaricus arvensis showed the most potent radical scavenging activity. The IC50 of A. silvaticus and A. arvensis were 216 and 17.75 g/ml respectively. Among the twenty three mushroom extracts, the extracts from A. silvatisus and A. arvensis have shown the interferon-like activity. DOI: http://dx.doi.org/10.5564/mjc.v14i0.197Mongolian Journal of Chemistry 14 (40, 2013, p41-45

  8. Risk assessment of endocrine active chemicals: identifying chemicals of regulatory concern.

    Science.gov (United States)

    Bars, Remi; Fegert, Ivana; Gross, Melanie; Lewis, Dick; Weltje, Lennart; Weyers, Arnd; Wheeler, James R; Galay-Burgos, Malyka

    2012-10-01

    The European regulation on plant protection products (1107/2009) (EC, 2009a), the revisions to the biocides Directive (COM[2009]267) (EC, 2009b), and the regulation concerning chemicals (Regulation (EC) No. 1907/2006 'REACH') (EC.2006) only support the marketing and use of chemical products on the basis that they do not induce endocrine disruption in humans or wildlife species. In the absence of agreed guidance on how to identify and evaluate endocrine activity and disruption within these pieces of legislation a European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC) task force was formed to provide scientific criteria that may be used within the context of these three legislative documents. The resulting ECETOC technical report (ECETOC, 2009a) and the associated workshop (ECETOC, 2009b) presented a science-based concept on how to identify endocrine activity and disrupting properties of chemicals for both human health and the environment. The synthesis of the technical report and the workshop report was published by the ECETOC task force (Bars et al., 2011a,b). Specific scientific criteria for the determination of endocrine activity and disrupting properties that integrate information from both regulatory (eco)toxicity studies and mechanistic/screening studies were proposed. These criteria combined the nature of the adverse effects detected in studies which give concern for endocrine toxicity with an understanding of the mode of action of toxicity so that adverse effects can be explained scientifically. A key element in the data evaluation is the consideration of all available information in a weight-of-evidence approach. However, to be able to discriminate chemicals with endocrine properties of low concern from those of higher concern (for regulatory purposes), the task force recognised that the concept needed further refinement. Following a discussion of the key factors at a second workshop of invited regulatory, academic and industry scientists

  9. Mining Chemical Activity Status from High-Throughput Screening Assays

    KAUST Repository

    Soufan, Othman

    2015-12-14

    High-throughput screening (HTS) experiments provide a valuable resource that reports biological activity of numerous chemical compounds relative to their molecular targets. Building computational models that accurately predict such activity status (active vs. inactive) in specific assays is a challenging task given the large volume of data and frequently small proportion of active compounds relative to the inactive ones. We developed a method, DRAMOTE, to predict activity status of chemical compounds in HTP activity assays. For a class of HTP assays, our method achieves considerably better results than the current state-of-the-art-solutions. We achieved this by modification of a minority oversampling technique. To demonstrate that DRAMOTE is performing better than the other methods, we performed a comprehensive comparison analysis with several other methods and evaluated them on data from 11 PubChem assays through 1,350 experiments that involved approximately 500,000 interactions between chemicals and their target proteins. As an example of potential use, we applied DRAMOTE to develop robust models for predicting FDA approved drugs that have high probability to interact with the thyroid stimulating hormone receptor (TSHR) in humans. Our findings are further partially and indirectly supported by 3D docking results and literature information. The results based on approximately 500,000 interactions suggest that DRAMOTE has performed the best and that it can be used for developing robust virtual screening models. The datasets and implementation of all solutions are available as a MATLAB toolbox online at www.cbrc.kaust.edu.sa/dramote and can be found on Figshare.

  10. Mining Chemical Activity Status from High-Throughput Screening Assays.

    Directory of Open Access Journals (Sweden)

    Othman Soufan

    Full Text Available High-throughput screening (HTS experiments provide a valuable resource that reports biological activity of numerous chemical compounds relative to their molecular targets. Building computational models that accurately predict such activity status (active vs. inactive in specific assays is a challenging task given the large volume of data and frequently small proportion of active compounds relative to the inactive ones. We developed a method, DRAMOTE, to predict activity status of chemical compounds in HTP activity assays. For a class of HTP assays, our method achieves considerably better results than the current state-of-the-art-solutions. We achieved this by modification of a minority oversampling technique. To demonstrate that DRAMOTE is performing better than the other methods, we performed a comprehensive comparison analysis with several other methods and evaluated them on data from 11 PubChem assays through 1,350 experiments that involved approximately 500,000 interactions between chemicals and their target proteins. As an example of potential use, we applied DRAMOTE to develop robust models for predicting FDA approved drugs that have high probability to interact with the thyroid stimulating hormone receptor (TSHR in humans. Our findings are further partially and indirectly supported by 3D docking results and literature information. The results based on approximately 500,000 interactions suggest that DRAMOTE has performed the best and that it can be used for developing robust virtual screening models. The datasets and implementation of all solutions are available as a MATLAB toolbox online at www.cbrc.kaust.edu.sa/dramote and can be found on Figshare.

  11. Mining Chemical Activity Status from High-Throughput Screening Assays.

    Science.gov (United States)

    Soufan, Othman; Ba-alawi, Wail; Afeef, Moataz; Essack, Magbubah; Rodionov, Valentin; Kalnis, Panos; Bajic, Vladimir B

    2015-01-01

    High-throughput screening (HTS) experiments provide a valuable resource that reports biological activity of numerous chemical compounds relative to their molecular targets. Building computational models that accurately predict such activity status (active vs. inactive) in specific assays is a challenging task given the large volume of data and frequently small proportion of active compounds relative to the inactive ones. We developed a method, DRAMOTE, to predict activity status of chemical compounds in HTP activity assays. For a class of HTP assays, our method achieves considerably better results than the current state-of-the-art-solutions. We achieved this by modification of a minority oversampling technique. To demonstrate that DRAMOTE is performing better than the other methods, we performed a comprehensive comparison analysis with several other methods and evaluated them on data from 11 PubChem assays through 1,350 experiments that involved approximately 500,000 interactions between chemicals and their target proteins. As an example of potential use, we applied DRAMOTE to develop robust models for predicting FDA approved drugs that have high probability to interact with the thyroid stimulating hormone receptor (TSHR) in humans. Our findings are further partially and indirectly supported by 3D docking results and literature information. The results based on approximately 500,000 interactions suggest that DRAMOTE has performed the best and that it can be used for developing robust virtual screening models. The datasets and implementation of all solutions are available as a MATLAB toolbox online at www.cbrc.kaust.edu.sa/dramote and can be found on Figshare.

  12. [Advances of chemical constituents and pharmacological activities of Myristica genus].

    Science.gov (United States)

    Zhang, Yong; Zhang, Juan-Juan; Kang, Wen-Yi; Yan, Wen-Yi

    2014-07-01

    The genus Myristica (Myristicaceae) consists of 120 species, which were distributed in South Asia, from west Polynesia, Oceania, eastern India to the Philippines. Phytochemical studies showed that 164 compounds including a majority of lignans, along with phenglpropanoids, flavonoids and phenolics, have been isolated from this genus, which exhibited anti-microbial, anti-inflammatory, anticancer, hyperglycemic and hepatic protective activities. This article summarizes research progress of the chemical compositions and their pharmacological activities from this genus, which could provide reference for the in-depth development and utilization of the Myristica plants.

  13. Anti-inflammatory activity and chemical profile of Galphimia glauca.

    Science.gov (United States)

    González-Cortazar, Manasés; Herrera-Ruiz, Maribel; Zamilpa, Alejandro; Jiménez-Ferrer, Enrique; Marquina, Silvia; Alvarez, Laura; Tortoriello, Jaime

    2014-01-01

    Galphimia glauca, commonly known as "flor de estrella", is a plant species used in Mexican traditional medicine for the treatment of different diseases that have an acute or chronic inflammatory process in common. Aerial parts of this plant contain nor-seco-triterpenoids with anxiolytic properties, which have been denominated galphimines. Other compounds identified in the plant are tetragalloyl-quinic acid, gallic acid, and quercetin, which are able to inhibit the bronchial obstruction induced by platelet-activating factor. The objective of this work was to evaluate the anti-inflammatory effect of crude extracts from G. glauca and, by means of bioguided chemical separation, to identify the compounds responsible for this pharmacological activity. n-Hexane, ethyl acetate, dichloromethane, and methanol extracts showed an important anti-inflammatory effect. Chemical separation of the active methanol extract allowed us to identify the nor-seco-triterpenes galphimine-A (1) and galphimine-E (3) as the anti-inflammatory principles. Analysis of structure-activity relationships evidenced that the presence of an oxygenated function in C6 is absolutely necessary to show activity. In this work, the isolation and structural elucidation of two new nor-seco-triterpenes denominated as galphimine-K (4) and galphimine-L (5), together with different alkanes, fatty acids, as well as three flavonoids (17-19), are described, to our knowledge for the first time, from Galphimia glauca.

  14. Chemical composition and larvicidal activity of Rollinia leptopetala (Annonaceae)

    Energy Technology Data Exchange (ETDEWEB)

    Feitosa, Edinilza M.A.; Arriaga, Angela M.C.; Lemos, Telma L.G.; Oliveira, M. Conceicao F. de; Vasnconcelos, Jackson Nunes e; Lima, Jefferson Q.; Malcher, Grazielle T. [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Quimica Organica e Inorganica]. E-mail: angelamcarriaga@yahoo.com.br; Santiago, Gilvandete M.P. [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Farmacia; Nascimento, Ronaldo F. do [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Quimica Analitica e Fisico-Quimica; Braz-Filho, Raimundo [Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacases, RJ (Brazil). Setor de Quimica de Produtos Naturais. Lab. de Ciencias Quimicas

    2009-07-01

    The aim of present study was to describe the chemical composition of the essential oils from the leaf and stem of Rollinia leptopetala R. E. Fries (Annonaceae) and to evaluate the larvicidal activities of these essential oils, of the methanol extract from roots of this plant and of the oxoaporphine alkaloid, liriodenine (1) against the third-instar of Aedes aegypti larvae. The methanol extract from the roots showed larvicidal activity with LC{sub 50} 64.6 {+-} 1.5 ppm. Higher activity was observed for the isolated alkaloid liriodenine (1), LC{sub 50} 3.6 {+-} 0.4 ppm. The essential oils from the leaves and stems, also exhibited larvicidal activity with LC{sub 50} 104.7 {+-} 0.2 and 34.7 {+-} 0.3 ppm, respectively. These results suggest R. leptopetala as a source of natural larvicidal compounds. This is the first report about the chemical composition and larvicidal activity of the leaf and stem essential oils of R. leptopetala. (author)

  15. Improvement of Chemically-activated Luciferase Gene Expression Bioassay for Detection of Dioxin-like Chemicals

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    To improve the chemically-activated luciferase expression (CALUX)bioassay for detection of dioxin-like chemicals (DLCs) based on the toxicity mechanisms of DLCs. Method A recombinant vector was constructed and used to transfect human hepatoma (HepG2). The expression of this vector was 10-100 folds higher than that of pGL2used in previous experiments. The transfected cells showed aromatic hydrocarbon receptor (AhR)-meditated luciferase gene expression. The reliability of luciferase induction in this cell line as a reporter of AhR-mediated toxicity was evaluated, the optimal detection time was examined and a comparison was made by using the commonly used ethoxyresoufin-Odeethylase (EROD) activity induction assay. Result The results suggested that the luciferase activity in recombinant cells was peaked at about 4 h and then decreased to a stable activity by 14 h after TCDD treatment. The detection limit of this cell line was 0.1 lpmol/L, or 10-fold lower than in previous studies, with a linear range from 1 to 100pmol/L, related coefficient of 0.997, and the coefficient of variability (CV) of 15-30%,Conclusion The luciferase induction is 30-fold more sensitive than EROD induction, the detection time is 68 h shorter and the detection procedure is also simpler.

  16. Antimicrobial activity of Iranian propolis and its chemical composition

    Directory of Open Access Journals (Sweden)

    Yaghoubi M.J.

    2007-04-01

    Full Text Available The objective of this study was to investigate the antimicrobial activity of ethanol extract of Iranian propolis on some microorganisms using disc diffusion method. The chemical composition of the propolis was also investigated using thin layer chromatography and spectrophotometric methods. Ethanol extract of propolis showed activity only against Gram-positives and fungi, whereas no activity was observed against Gram-negatives. Thin layer chromatography screening revealed the presence of pinocembrine, caffeic acid, kaempferol, phenethyl caffeate, chrysin, and galangin in Iranian propolis. The total flavonoid and phenolic contents were 7.3% and 36%, respectively, which suggests that the strong antimicrobial activity of Iranian propolis may be due to high levels of phenolic and flavonoid compounds.

  17. CHEMICAL COMPOSITION AND ANTI-INFLAMMATORY ACTIVITY OF Roldana platanifolia

    Directory of Open Access Journals (Sweden)

    Amira Arciniegas

    2015-11-01

    Full Text Available The chemical study of Roldana platanifolia led to the isolation of β-caryophyllene, five eremophilanolides, chlorogenic acid, and a mixture of β-sitosterol-stigmasterol, β-sitosteryl glucopyranoside, and sucrose. The anti-inflammatory activities of the extracts and isolated products were tested using the 12-O-tetradecanoylphorbol-13-acetate (TPA model of induced acute inflammation. The acetone and methanol extracts showed dose dependent activities (ID50 0.21 and 0.32 mg/ear, respectively, while none of the isolated compounds exhibited relevant edema inhibition. The active extracts were also evaluated with the myeloperoxidase assay technique (MPO to determine their ability to prevent neutrophil infiltration. Results showed that the anti-inflammatory activity was related to the compound’s ability to inhibit pro-inflammatory mediators such as neutrophils.

  18. Chemical constituents from Cornus officinalis and their biological activity 1

    Directory of Open Access Journals (Sweden)

    Zhan-Ying Ma

    2012-01-01

    Full Text Available Objective: To study the chemical constituents from Cornus officinalis Sieb., Et Zucc, and their peroxisome proliferator-activated receptors (PPARs agonist activity. Materials and Methods: The leaves of C. officinalis were extracted three times with 90% EtOH at room temperature. The ethanol extracts were combined and concentrated under reduced pressure to yield residue, which was isolated and purified by silica gel and reverse-phase C 18 column chromatography. The structures were elucidated on the basis of spectroscopic evidence and their physiochemical characteristics. Cell-based luciferase reporter gene assays were used to evaluate PPARα/γ agonistic activities. Results: Five compounds were isolated and elucidated as 10-hydroxyhastatoside (1, β-dihydrocornin (2, isoquercitrin (3, loganin (4 and oleanolic acid (5. Conclusion: Compounds 1 and 2 were obtained from C. officinalis for the first time. Compound 3 exhibited moderate agonistic activities for PPARα, with EC 50 values of 29.5 μM.

  19. Chemical characterization, antioxidant and cytotoxic activities of Brazilian red propolis.

    Science.gov (United States)

    Frozza, Caroline Olivieri da Silva; Garcia, Charlene Silvestrin Celi; Gambato, Gabriela; de Souza, Marcia Denize Oliveira; Salvador, Mirian; Moura, Sidnei; Padilha, Francine Ferreira; Seixas, Fabiana Kömmling; Collares, Tiago; Borsuk, Sibele; Dellagostin, Odir Antonio; Henriques, João Antonio Pêgas; Roesch-Ely, Mariana

    2013-02-01

    Propolis is known for a long time for its health benefits and biological activities. Here, the red variety from the northeast of Brazil was chemically analyzed and extracts were investigated regarding their antioxidant and antitumor activity. Hydroalcoholic extracts, obtained from the red propolis, revealed polyphenol content, 2,2-diphenyl-1-picrylhydrazyl scavenging potential and enzymatic activities for catalase-like and superoxide dismutase-like. Cytotoxic activity was evaluated for human laryngeal epidermoid carcinoma cell (Hep-2), human cervical adenocarcinoma (HeLa) and human normal epithelial embryonic kidney (Hek-293). Survival analysis for non-tumor cell line showed greater IC50 compared to tumor cell lines, suggesting an increased sensitivity that may correlate with the higher proliferative index of the tumor vs. normal cells. Our results indicate that the Brazilian red propolis is capable of inhibiting cancer cell growth and constitutes an excellent source of antioxidant and antitumor natural agent. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. ANTICANCER ACTIVITY OF ISOLATED CHEMICAL CONSTITUENTS FROM MILIUSA SMITHIAE

    Directory of Open Access Journals (Sweden)

    Chonthicha Naphong

    2013-01-01

    Full Text Available Miliusa plants belonging to the family Annonaceae are found in Thailand and have been used as Thai traditional medicines. There have been a few previously reports on the chemical constituents of plants in this genus, describing the presence of aporphine alkaloids, terpenoids, flavonoids, phenylpropanoids, styrylpyrones, bis-styryls and homogentisic acid derivatives. Miliusa smithiae, a new species for Thailand and world, has not been studied chemical composition. The present study described phytochemical study of the leaves and twigs of M. smithiae together with their cytotoxicity. The M. smithiae was selected and percolated with hexane, ethyl acetate, acetone and methanol. The extracts were purified and elucidated chemical structures. The constituent of ethyl acetate extract of M. smithiae has been investigated. We isolated and identified two flavonoid derivatives, 5-hydroxy-3,7,4′-trimetoxyflavone (1 and 5,3′-dihydroxy-3,7,4′-trimetoxyflavone (2. The structures of these compounds were elucidated on the basis of spectroscopic evidence. Studies on ethyl acetate extract of M. smithiae has now resulted the isolation and structural characterization of two flavonoids. Their anticancer activities were evaluated using SRB assays. In this method, compound 2 showed potential activity in cell lines.

  1. Active hydrothermal and non-active massive sulfide mound investigation using a new multiparameter chemical sensor

    Science.gov (United States)

    Han, C.; Wu, G.; Qin, H.; Wang, Z.

    2012-12-01

    Investigation of active hydrothermal mound as well as non-active massive sulfide mound are studied recently. However, there is still lack of in-situ detection method for the non-active massive sulfide mound. Even though Transient ElectroMagnetic (TEM) and Electric Self-potential (SP) methods are good, they both are labour, time and money cost work. We proposed a new multiparameter chemical sensor method to study the seafloor active hydrothermal mound as well as non-active massive sulfide mound. This sensor integrates Eh, S2- ions concentration and pH electrochemical electrodes together, and could found chemical change caused by the active hydrothermal vent, even weak chemical abnormalities by non-active massive sulfide hydrothermal mound which MARP and CTD sometimes cannot detect. In 2012, the 1st Leg of the Chinese 26th cruise, the multiparameter chemical sensor was carried out with the deepsea camera system over the Carlsberg Ridge in Indian Ocean by R/V DAYANGYIHAO. It was shown small Eh and S2- ions concentration abnormal around a site at Northwest Indian ridge. This site was also evidenced by the TV grab. In the 2nd Leg of the same cruise in June, this chemical sensor was carried out with TEM and SP survey system. The chemical abnormalities are matched very well with both TEM and SP survey results. The results show that the multiparameter chemical sensor method not only can detect active hydrothermal mound, but also can find the non-active massive sulfide hydrothermal mound.

  2. Carbon dioxide adsorption in chemically activated carbon from sewage sludge.

    Science.gov (United States)

    de Andrés, Juan Manuel; Orjales, Luis; Narros, Adolfo; de la Fuente, María del Mar; Encarnación Rodríguez, María

    2013-05-01

    In this work, sewage sludge was used as precursor in the production of activated carbon by means of chemical activation with KOH and NaOH. The sludge-based activated carbons were investigated for their gaseous adsorption characteristics using CO2 as adsorbate. Although both chemicals were effective in the development of the adsorption capacity, the best results were obtained with solid NaOH (SBA(T16)). Adsorption results were modeled according to the Langmuir and Freundlich models, with resulting CO2 adsorption capacities about 56 mg/g. The SBA(T16) was characterized for its surface and pore characteristics using continuous volumetric nitrogen gas adsorption and mercury porosimetry. The results informed about the mesoporous character of the SBA(T16) (average pore diameter of 56.5 angstroms). The Brunauer-Emmett-Teller (BET) surface area of the SBA(T16) was low (179 m2/g) in comparison with a commercial activated carbon (Airpel 10; 1020 m2/g) and was mainly composed of mesopores and macropores. On the other hand, the SBA(T16) adsorption capacity was higher than that of Airpel 10, which can be explained by the formation of basic surface sites in the SBA(T16) where CO2 experienced chemisorption. According to these results, it can be concluded that the use of sewage-sludge-based activated carbons is a promising option for the capture of CO2. Adsorption methods are one of the current ways to reduce CO2 emissions. Taking this into account, sewage-sludge-based activated carbons were produced to study their CO2 adsorption capacity. Specifically, chemical activation with KOH and NaOH of previously pyrolyzed sewage sludge was carried out. The results obtained show that even with a low BET surface area, the adsorption capacity of these materials was comparable to that of a commercial activated carbon. As a consequence, the use of sewage-sludge-based activated carbons is a promising option for the capture of CO2 and an interesting application for this waste.

  3. Antibacterial activity of chemical constituents isolated from Asparagus racemosus

    Directory of Open Access Journals (Sweden)

    Muhammad Abdullah Shah

    2014-03-01

    Full Text Available Asparagus racemosus is a medical extensively used in traditional medicine for various disorders including its use in infectious. So far work has been done to identify its active constituents responsible for antiseptic folk use of this plant. In the current investigation, we have made an effort to identify its chemical constituents that might be partly responsible for antimicrobial properties. Extraction and isolation of plant extract lead to isolation of two nor-lignans and two steroidal triterpenes (compound 1 to 4. All compound showed considerable antibacterial activities against E. coli and S. aureus while no significant activity was observed against S. typhi. This study highlighted the potential of A. racemosus to be further explored as a source of bioactive natural products.

  4. Pereskia aculeata Muller (Cactaceae Leaves: Chemical Composition and Biological Activities

    Directory of Open Access Journals (Sweden)

    Lucèia Fàtima Souza

    2016-09-01

    Full Text Available The aims of this work were to study the chemical composition of the essential oil from the leaves of Pereskia aculeata and to evaluate some biological activities of three leaf extracts. The phenolic content, antioxidant activity, and in vitro antimicrobial and antifungal activities were determined. The methanol extract showed antioxidant activity (EC50 7.09 mg/mL and high polyphenols content (15.04 ± 0.31 mg gallic acid equivalents (GAE/g. The petroleum ether extract exhibited potent antibacterial activity against Escherichia coli, whereas the chloroform extract showed inhibitory activity against Bacillus cereus and Staphylococcus aureus. The petroleum ether and methanol extracts were more effective in inhibiting the growth of Aspergillus versicolor. The possible cytotoxicity of extracts on neuroblastoma SH-SY5Y cancer cell line and the influence on adenylate cyclase (ADCY expression was also studied. P. aculeata chloroform extract showed antiproliferative activity with an IC50 value of 262.83 µg/mL. Treatments of SH-SY5Y neuroblastoma cells with 100 µg/mL of methanol extract significantly reduced ADCY1 expression.

  5. Pereskia aculeata Muller (Cactaceae) Leaves: Chemical Composition and Biological Activities.

    Science.gov (United States)

    Souza, Lucèia Fàtima; Caputo, Lucia; Inchausti De Barros, Ingrid Bergman; Fratianni, Florinda; Nazzaro, Filomena; De Feo, Vincenzo

    2016-09-03

    The aims of this work were to study the chemical composition of the essential oil from the leaves of Pereskia aculeata and to evaluate some biological activities of three leaf extracts. The phenolic content, antioxidant activity, and in vitro antimicrobial and antifungal activities were determined. The methanol extract showed antioxidant activity (EC50 7.09 mg/mL) and high polyphenols content (15.04 ± 0.31 mg gallic acid equivalents (GAE)/g). The petroleum ether extract exhibited potent antibacterial activity against Escherichia coli, whereas the chloroform extract showed inhibitory activity against Bacillus cereus and Staphylococcus aureus. The petroleum ether and methanol extracts were more effective in inhibiting the growth of Aspergillus versicolor. The possible cytotoxicity of extracts on neuroblastoma SH-SY5Y cancer cell line and the influence on adenylate cyclase (ADCY) expression was also studied. P. aculeata chloroform extract showed antiproliferative activity with an IC50 value of 262.83 µg/mL. Treatments of SH-SY5Y neuroblastoma cells with 100 µg/mL of methanol extract significantly reduced ADCY1 expression.

  6. Active membrane having uniform physico-chemically functionalized ion channels

    Science.gov (United States)

    Gerald, II, Rex E; Ruscic, Katarina J; Sears, Devin N; Smith, Luis J; Klingler, Robert J; Rathke, Jerome W

    2012-09-24

    The present invention relates to a physicochemically-active porous membrane for electrochemical cells that purports dual functions: an electronic insulator (separator) and a unidirectional ion-transporter (electrolyte). The electrochemical cell membrane is activated for the transport of ions by contiguous ion coordination sites on the interior two-dimensional surfaces of the trans-membrane unidirectional pores. One dimension of the pore surface has a macroscopic length (1 nm-1000 .mu.m) and is directed parallel to the direction of an electric field, which is produced between the cathode and the anode electrodes of an electrochemical cell. The membrane material is designed to have physicochemical interaction with ions. Control of the extent of the interactions between the ions and the interior pore walls of the membrane and other materials, chemicals, or structures contained within the pores provides adjustability of the ionic conductivity of the membrane.

  7. Evaluation of antiseptic antiviral activity of chemical agents.

    Science.gov (United States)

    Geller, Chloé; Finance, Chantal; Duval, Raphaël Emmanuel

    2011-06-01

    Antiviral antisepsis and disinfection are crucial for preventing the environmental spread of viral infections. Emerging viruses and associated diseases, as well as nosocomial viral infections, have become a real issue in medical fields, and there are very few efficient and specific treatments available to fight most of these infections. Another issue is the potential environmental resistance and spread of viral particles. Therefore, it is essential to properly evaluate the efficacy of antiseptics-disinfectants (ATS-D) on viruses. ATS-D antiviral activity is evaluated by (1) combining viruses and test product for an appropriately defined and precise contact time, (2) neutralizing product activity, and (3) estimating the loss of viral infectivity. A germicide can be considered to have an efficient ATS-D antiviral activity if it induces a >3 or >4 log(10) reduction (American and European regulatory agency requirements, respectively) in viral titers in a defined contact time. This unit describes a global methodology for evaluating chemical ATS-D antiviral activity.

  8. Chemical composition and antibacterial activity of Gongronema latifolium

    Institute of Scientific and Technical Information of China (English)

    ELEYINMI Afolabi F.

    2007-01-01

    Chemical composition of Gongronema latifolium leaves was determined using standard methods. Aqueous and methanol G. latifolium extracts were tested against thirteen pathogenic bacterial isolates. Crude protein, lipid extract, ash, crude fibre and nitrogen free extractives obtained are: 27.2%, 6.07%, 11.6%, 10.8% and 44.3% dry matter respectively. Potassium,sodium, calcium, phosphorus and cobalt contents are 332, 110, 115, 125 and 116 mg/kg respectively. Dominant essential amino acids are leucine, valine and phenylalanine. Aspartic acid, glutamic acid and glycine are 13.8%, 11.9% and 10.3% respectively of total amino acid. Saturated and unsaturated fatty acids are 50.2% and 39.4% of the oil respectively. Palmitic acid makes up 36% of the total fatty acid. Extracts show no activity against E. faecalis, Y. enterolytica, E. aerogenes, B. cereus and E. agglomerans.Methanol extracts were active against S. enteritidis, S. cholerasius ser typhimurium and P. aeruginosa (minimum inhibitory concentration (MIC) 1 mg; zone of growth inhibition 7, 6.5 and 7 mm respectively). Aqueous extracts show activity against E. coli (MIC 5 mg) and P. aeruginosa (MIC 1 mg) while methanol extracts are active against P. aeruginosa and L. monocytogenes. G.latifolium has potential food and antibacterial uses.

  9. Antimicrobial, antioxidant activities and chemical composition of selected Thai spices

    Directory of Open Access Journals (Sweden)

    Juraithip Wungsintaweekul

    2010-12-01

    Full Text Available Nine volatile oils and six methanol extracts from Ocimum americanum, O. basilicum, O. sanctum, Citrus hystrix,Alpinia galanga, Curcuma zedoaria, Kaempferia parviflora and Zingiber cassumunar were assessed for antimicrobial andantioxidant activities. The volatile oils and extracts were investigated against eight bacteria and three fungi. The resultsillustrated that O. americanum volatile oil exhibited broad spectrum activity against tested bacteria with the MICs ranging1.4-3.6 mg/ml and Candida spp. with the MICs ranging from 0.5-0.6 mg/ml. The O. sanctum volatile oil showed a considerableactivity against only Candida spp. with the MICs ranging from 0.8-1.4 mg/ml. Interestingly, growth of Mycobacteriumphlei was inhibited by the volatiles of O. americanum, C. hystrix peel, and C. zedoaria with MIC of 1.7, 3.5 and 1.2 mg/ml,respectively. For antioxidant activity evaluation, the methanol extracts of C. hystrix (leaf and peel and K. parviflora hadpotent antioxidant activity by the radical-scavenging DPPH method with IC50 of 24.6, 66.3 and 61.5 mg/ml, respectively.GC-MS analysis revealed the typical chemical profiles of the volatile oils. The major component showed the characteristicsof the volatile oils and was probably responsible for the antimicrobial effect.

  10. Wound Healing Activity and Chemical Standardization of Eugenia pruniformis Cambess

    Science.gov (United States)

    de Albuquerque, Ricardo Diego Duarte Galhardo; Perini, Jamila Alessandra; Machado, Daniel Escorsim; Angeli-Gamba, Thaís; Esteves, Ricardo dos Santos; Santos, Marcelo Guerra; Oliveira, Adriana Passos; Rocha, Leandro

    2016-01-01

    Background: Eugenia pruniformis is an endemic species from Brazil. Eugenia genus has flavonoids as one of the remarkable chemical classes which are related to the improvement of the healing process. Aims: To evaluate of wound healing activity of E. pruniformis leaves and to identify and quantify its main flavonoids compounds. Materials And Methods: Wound excision model in rats was used to verify the hydroethanolic and ethyl acetate extracts potential. The animals were divided in four groups of six and the samples were evaluated until the 15° day of treatment. Hydroxyproline dosage and histological staining with hematoxilin-eosin and Sirius Red were used to observe the tissue organization and quantify the collagen deposition, respectively. Chemical compounds of the ethyl acetate extract were identified by chromatographic techniques and mass spectrometry analysis and total flavonoids content was determined by spectrophotometric method. The antioxidant activity was determined by oxygen radical absorbing capacity (ORAC) and 2,2-diphenyl-1-picrylhydrazylhydrate radical photometric (DPPH) assays. Results: The treated group with the ethyl acetate extract showed collagen deposition increase, higher levels of hidroxyproline, better tissue reorganization and complete remodeling of epidermis. Quercetin, kaempferol and hyperoside were identified as main compounds and flavonoids content value was 43% (w/w). The ORAC value of the ethyl acetate extract was 0.81± 0.05 mmol TE/g whereas the concentration to produce 50% reduction of the DPPH was 7.05± 0.09 μg/mL. Conclusion: The data indicate a wound healing and antioxidant activities of E. pruniformis. This study is the first report of flavonoids and wound healing activity of E. pruniformis. KEY MESSAGES Eugenia pruniformis extract accelerates wound healing in skin rat model, probably due to its involvement with the collagen deposition increase, higher levels of hidroxyproline, dermal remodelling and potent antioxidant activity

  11. Antibacterial activity and biodegradability assessment of chemically grafted nanofibrillated cellulose.

    Science.gov (United States)

    Missoum, Karim; Sadocco, Patrizia; Causio, Jessica; Belgacem, Mohamed Naceur; Bras, Julien

    2014-12-01

    Nanofibrillated cellulose (NFC) and their derivatives were prepared using three chemical surface modification strategies. All grafting was characterized by FTIR and contact angle measurements in order to evaluate the efficiency of grafting. Antibacterial activities of neat and grafted samples were investigated against two kinds of bacteria (i.e. Gram+ (Staphylococcus aureus) and Gram- (Klebsiella pneumoniae)). All the grafted samples displayed promising results with at least bacteriostatic effect or bactericidal properties. They also strongly enhanced the photo-catalytic antimicrobial effect of TiO2. This study proves that it is better to use grafted NFC either alone or for functionalization with TiO2 if anti-bacterial properties are desired. The cellulose backbone is known to be easily biodegradable in different biodegradation conditions and environments. The chemical surface modifications applied on NFC in the present work did not negatively influence this valuable property of cellulose but help for monitoring this property, which could be very useful for paper, packaging and composites. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Chemical Constituents and Antimicrobial Activity of Salix subserrata

    Directory of Open Access Journals (Sweden)

    Hidayat Hussain

    2011-01-01

    Full Text Available The leaf and bark extracts of Salix subserrata showed promising antibacterial, antifungal, and antialgal activities. The bio-guided study of the chemical constituents of the bark and leaves of Salixsubserrata (Salicaceae has resulted in the isolation and characterization of eight compounds. These six compounds were identified as (+ catechin ( 1, 1,2-benzenedicarboxylic acid, bis (2-ethylhexyl ester ( 2, saligenin (3, methyl 1-hydroxy-6-oxocyclohex-2-enecarboxylate (4, catechol (5, propyl acetate ( 6, β-sitosterol (7, and β-sitosterol glucopyranoside ( 8, were isolated for the first time from Salixsubserrata. The above compounds were individually identified by spectroscopic analyses and comparisons with reported data . Preliminary studies indicated that compound 1, mixture of compounds 3/4, and 7 showed good antibacterial, fungicidal, and algicidal properties.

  13. Advances in the Chemical Analysis and Biological Activities of Chuanxiong

    Directory of Open Access Journals (Sweden)

    Jin-Ao Duan

    2012-09-01

    Full Text Available Chuanxiong Rhizoma (Chuan-Xiong, CX, the dried rhizome of Ligusticum chuanxiong Hort. (Umbelliferae, is one of the most popular plant medicines in the World. Modern research indicates that organic acids, phthalides, alkaloids, polysaccharides, ceramides and cerebrosides are main components responsible for the bioactivities and properties of CX. Because of its complex constituents, multidisciplinary techniques are needed to validate the analytical methods that support CX’s use worldwide. In the past two decades, rapid development of technology has advanced many aspects of CX research. The aim of this review is to illustrate the recent advances in the chemical analysis and biological activities of CX, and to highlight new applications and challenges. Emphasis is placed on recent trends and emerging techniques.

  14. Biphasic flow in a chemically active porous medium

    CERN Document Server

    Darmon, Alexandre; Salez, Thomas; Dauchot, Olivier

    2014-01-01

    We study the problem of the transformation of a given reactant species into an immiscible product species, as they flow through a chemically active porous medium. We derive the equation governing the evolution of the volume fraction of the species -- in a one-dimensional macroscopic description --, identify the relevant dimensionless numbers, and provide simple models for capillary pressure and relative permeabilities, which are quantities of crucial importance when tackling multiphase flows in porous media. We set the domain of validity of our models and discuss the importance of viscous coupling terms in the extended Darcy's law. We investigate numerically the steady regime and demonstrate that the spatial transformation rate of the species along the reactor is non-monotonous, as testified by the existence of an inflection point in the volume fraction profiles. We obtain the scaling of the location of this inflection point with the dimensionless lengths of the problem. Eventually, we provide key elements fo...

  15. Generator of chemically active low-temperature plasma

    Science.gov (United States)

    Tyuftyaev, A. S.; Gadzhiev, M. Kh; Sargsyan, M. A.; Demirov, N. A.; Spector, N. O.

    2016-11-01

    A new generator of high enthalpy (H 0 > 40 kJ/g), chemically active nitrogen and air plasmas was designed and constructed. Main feature of the generator is an expanding channel of an output electrode; the generator belongs to the class of DC plasma torches with thermionic cathode with an efficiency of 80%. The generator ensures the formation of a slightly divergent plasma jet (2α = 12°) with a diameter of D = 10-12 mm, an electric arc maximum power of 20-50 kW, plasma forming gas flow rate 1.0-2.0 g/s, and the average plasma temperature at an outlet of 8000-11000 K.

  16. Organizational and activational effects of estrogenic endocrine disrupting chemicals

    Directory of Open Access Journals (Sweden)

    Silbergeld Ellen K.

    2002-01-01

    Full Text Available Endocrine disruption is a hypothesis of common mode of action that may define a set of structurally varied chemicals, both natural and synthetic. Their common mode of action may suggest that they produce or contribute to similar toxic effects, although this has been difficult to demonstrate. Insights from developmental biology suggest that development of hormone sensitive systems, such as the brain and the genitourinary tract, may be particularly sensitive to EDCs. Because these systems are both organized and later activated by hormones, the brain and vagina may be valuable model systems to study the toxicity of EDCs in females and to elucidate mechanisms whereby early exposures appear to affect long term function.

  17. Thymus vulgaris essential oil: chemical composition and antimicrobial activity.

    Science.gov (United States)

    Borugă, O; Jianu, C; Mişcă, C; Goleţ, I; Gruia, A T; Horhat, F G

    2014-01-01

    The study was designed to determine the chemical composition and antimicrobial properties of the essential oil of Thymus vulgaris cultivated in Romania. The essential oil was isolated in a yield of 1.25% by steam distillation from the aerial part of the plant and subsequently analyzed by GC-MS. The major components were p-cymene (8.41%), γ-terpinene (30.90%) and thymol (47.59%). Its antimicrobial activity was evaluated on 7 common food-related bacteria and fungus by using the disk diffusion method. The results demonstrate that the Thymus vulgaris essential oil tested possesses strong antimicrobial properties, and may in the future represent a new source of natural antiseptics with applications in the pharmaceutical and food industry.

  18. Chemical weapons detection by fast neutron activation analysis techniques

    Science.gov (United States)

    Bach, P.; Ma, J. L.; Froment, D.; Jaureguy, J. C.

    1993-06-01

    A neutron diagnostic experimental apparatus has been tested for nondestructive verification of sealed munitions. Designed to potentially satisfy a significant number of van-mobile requirements, this equipment is based on an easy to use industrial sealed tube neutron generator that interrogates the munitions of interest with 14 MeV neutrons. Gamma ray spectra are detected with a high purity germanium detector, especially shielded from neutrons and gamma ray background. A mobile shell holder has been used. Possible configurations allow the detection, in continuous or in pulsed modes, of gamma rays from neutron inelastic scattering, from thermal neutron capture, and from fast or thermal neutron activation. Tests on full scale sealed munitions with chemical simulants show that those with chlorine (old generation materials) are detectable in a few minutes, and those including phosphorus (new generation materials) in nearly the same time.

  19. Antibacterial activity of silver bionanocomposites synthesized by chemical reduction route

    Directory of Open Access Journals (Sweden)

    Bin Ahmad Mansor

    2012-09-01

    Full Text Available Abstract Background The aim of this study is to investigate the functions of polymers and size of nanoparticles on the antibacterial activity of silver bionanocomposites (Ag BNCs. In this research, silver nanoparticles (Ag NPs were incorporated into biodegradable polymers that are chitosan, gelatin and both polymers via chemical reduction method in solvent in order to produce Ag BNCs. Silver nitrate and sodium borohydride were employed as a metal precursor and reducing agent respectively. On the other hand, chitosan and gelatin were added as a polymeric matrix and stabilizer. The antibacterial activity of different sizes of silver nanoparticles was investigated against Gram-positive and Gram-negative bacteria by the disk diffusion method using Mueller-Hinton Agar. Results The properties of Ag BNCs were studied as a function of the polymer weight ratio in relation to the use of chitosan and gelatin. The morphology of the Ag BNCs films and the distribution of the Ag NPs were also characterized. The diameters of the Ag NPs were measured and their size is less than 20 nm. The antibacterial trait of silver/chitosan/gelatin bionanocomposites was investigated. The silver ions released from the Ag BNCs and their antibacterial activities were scrutinized. The antibacterial activities of the Ag BNC films were examined against Gram-negative bacteria (E. coli and P. aeruginosa and Gram-positive (S. aureus and M. luteus by diffusion method using Muller-Hinton agar. Conclusions The antibacterial activity of Ag NPs with size less than 20 nm was demonstrated and showed positive results against Gram-negative and Gram-positive bacteria. The Ag NPs stabilized well in the polymers matrix.

  20. Chemical composition and leishmanicidal activity of Pulicaria gnaphalodes essential oil

    Directory of Open Access Journals (Sweden)

    G. Asghari

    2014-10-01

    Full Text Available Background and objectives: Several natural compounds have been identified for the treatment ofleishmaniasis. Due to a few safe drugs and the side effects caused by available chemotherapy, some new drugs for treatment of leishmaniasis are requested.  The genus Pulicaria (Asteraceae is represented in the flora of Iran by five species. Phytochemical studies on Pulicaria species have revealed some flavonoids and terpenoids with leishmanicidal activity. In the present investigation chemical composition and leishmanicidal activity of Pulicaria gnaphalodes essential oil have been studied. Methods: The essential oil of the aerial parts of the plant was obtained by Clevenger apparatus and was analyzed by GC/MS. Antileishmanil activity was assessed against promastigoes of Leishmania major. Results:The major components from P. gnaphalodes essential oil have been reported to be geraniol, 1,8-cineole, chrysanthenone, α-pinene, chrystanthenone, α-terpineol and filifolone. The alcohol monoterpenes with contribution of 25.04% constituted the major portion of the essential oil, while hydrocarbon monoterpenes and hydrocarbon sesquiterpenes with contribution of 7.08% and 2.38%, respectively occupied the next rates.In the present experiment the essential oil of P. gnaphalodes progressively inhibited Leishmania major growth in concentrations ranging from 0.125 to 50 µL/mL (parasite culture in 24 h. The essential oil at 50 µL/mL eliminated the promastigotes at the beginning of treatment. It showed antileishmanial activity in concentration of 1.06 µL/mL and destroyed all parasits in 24 h.  Conclusion: Pulicaria gnaphalodes antileishmanial activity, could suggest the species and constituents as possible lead structures for antileishmanial drug discovery.

  1. Chemical composition and antioxidant activity of berry fruits

    Directory of Open Access Journals (Sweden)

    Stajčić Slađana M.

    2012-01-01

    Full Text Available The main chemical composition, contents of total phenolic (TPh, total flavonoid (TF, and total monomeric anthocyianin (TMA, as well as the antioxidant activity of two raspberry cultivars (Meeker and Willamette, two blackberry cultivars (Čačanska bestrna and Thornfree and wild bilberry were studied. The raspberry cultivars had the highest total solids among fruits investigated. Bilberry fruits had the highest sugar-to-acid ratio. Blackberry fruits were richer in crude fibers (cellulose in comparison to raspberry and bilberry fruits. The content of pectic substances was highest in the bilberry. Also, bilberry had a highest content of TPh (808.12 mg GAE/100 g FW, TF (716.31 mg RE/100 g FW and TMA (447.83 mg CGE/100 g FW. The antioxidant activity was evaluated spectrophotometrically, using 2,2-diphenyl-1-picrylhydrazyl (DPPH radical scavenging activity assay. The DPPH free radical scavenging activity, expressed as the EC50 value (in mg of fresh weight of berry fruit per ml of the reaction mixture, of bilberry (0.3157 ± 0.0145 mg/ml was the highest. These results also showed that the antioxidant value of 100 g FW bilberry, raspberry - Willamette, raspberry - Meeker, blackberry - Čačanska bestrna and blackberry - Thornfree is equivalent to 576.50 mg, 282.74 mg, 191.58 mg, 222.28 mg and 272.01 mg of vitamin C, respectively. There was a significant positive correlation between the antioxidant activities and content of total phenolics (RTPh 2=0.9627, flavonoids (RTF 2=0.9598 and anthocyanins (RTMA 2=0.9496 in berry fruits. [Projekat Ministarstva nauke Republike Srbije, br. TR 31044

  2. Application of the Activity Framework for Assessing Aquatic Ecotoxicology Data for Organic Chemicals

    DEFF Research Database (Denmark)

    Thomas, Paul; Dawick, James; Lampi, Mark;

    2015-01-01

    Toxicological research in the 1930s gave the first indications of the link between narcotic toxicity and the chemical activity of organic chemicals. More recently, chemical activity has been proposed as a novel exposure parameter that describes the fraction of saturation and that quantifies the p...

  3. Chemical properties and antioxidant and antimicrobial activities of Slovenian propolis.

    Science.gov (United States)

    Mavri, Ana; Abramovič, Helena; Polak, Tomaž; Bertoncelj, Jasna; Jamnik, Polona; Smole Možina, Sonja; Jeršek, Barbara

    2012-08-01

    The chemical composition as well as the antioxidant and antimicrobial activities of two EtOH extracts of propolis (PEEs) from Slovenia were determined. EtOH was used as extracting solvent at 70 and 96%, providing the extracts PEE70 and PEE96, respectively. The extraction with 70% EtOH was more efficient than that with 96% EtOH, as the PEE70 was richer in total phenolic compounds than the PEE96. The Slovenian propolis was characterized by different phenolic acids and flavonoids. The PEE96 was slightly richer in three specific compounds, i.e., caffeic acid, ferulic acid, and luteolin, while all other substances detected showed higher contents in the PEE70. The PEE70 showed a stronger reducing power and ability to scavenge free radicals and metal ions than the PEE96. Both PEEs were in the main more effective against Gram-positive bacteria than against fungi and Gram-negative bacteria like Salmonella and Escherichia coli, with the exception of Campylobacter. The PEE96 decreased the intracellular oxidation in Saccharomyces cerevisiae in a dose-dependent manner. The antimicrobial activities and antioxidant properties were related to the total phenolic contents. The two PEEs have the potential for use as natural antimicrobial and antioxidant additives in foods.

  4. Salacia crassifolia (Celastraceae: CHEMICAL CONSTITUENTS AND ANTIMICROBIAL ACTIVITY

    Directory of Open Access Journals (Sweden)

    Vanessa G. Rodrigues

    2015-02-01

    Full Text Available The phytochemical study of hexane extract from leaves of Salacia crassifolia resulted in the isolation of 3β-palmitoxy-urs-12-ene, 3-oxofriedelane, 3β-hydroxyfriedelane, 3-oxo-28-hydroxyfriedelane, 3-oxo-29-hydroxyfriedelane, 28,29-dihydroxyfriedelan-3-one, 3,4-seco-friedelan-3-oic acid, 3β-hydroxy-olean-9(11:12-diene and the mixture of α-amirin and β-amirin. β-sitosterol, the polymer gutta-percha, squalene and eicosanoic acid were also isolated. The chemical structures of these constituents were established by IR, 1H and 13C NMR spectral data. Crude extracts and the triterpenes were tested against Entamoeba histolytica, Giardia lamblia and Trichomonas vaginalis and no activity was observed under the in vitro assay conditions. The hexane, chloroform, ethyl acetate and ethanol crude extracts, and the constituent 3,4-seco-friedelan-3-oic acid and 28,29-dihydroxyfriedelan-3-one showed in vitro antimicrobial activity against Salmonella typhimurium, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus cereus, Listeria monocytogenes, Streptococcus sanguinis and Candida albicans.

  5. Chemical Composition, Antifungal and Insecticidal Activities of Hedychium Essential Oils

    Directory of Open Access Journals (Sweden)

    Kanniah Rajasekaran

    2013-04-01

    Full Text Available The antimicrobial properties of essential oils have been documented, and their use as “biocides” is gaining popularity. The aims of this study were to analyze the chemical composition and assess the biological activities of Hedychium essential oils. Oils from 19 Hedychium species and cultivars were analyzed by gas chromatography (GC and gas chromatography-mass spectrometry (GC-MS techniques. The antifungal and insecticidal activities of these oils were tested against Colletotrichum acutatum, C. fragariae, and C. gloeosporioides, and three insects, the azalea lace bug (Stephanitis pyrioides, the yellow fever mosquito (Aedes aegypti, and the red imported fire ant (Solenopsis invicta. Hedychium oils were rich in monoterpenes and sesquiterpenes, especially 1,8-cineole (0.1%–42%, linalool (<0.1%–56%, a-pinene (3%–17%, b-pinene (4%–31%, and (E-nerolidol (0.1%–20%. Hedychium oils had no antifungal effect on C. gloeosporioides, C. fragariae, and C. acutatum, but most Hedychium oils effectively killed azalea lace bugs. The oils also show promise as an adult mosquito repellent, but they would make rather poor larvicides or adulticides for mosquito control. Hedychium oils acted either as a fire ant repellent or attractant, depending on plant genotype and oil concentration.

  6. Brazilian Propolis: Correlation between Chemical Composition and Antimicrobial Activity

    Directory of Open Access Journals (Sweden)

    Kelly Salomão

    2008-01-01

    Full Text Available The chemical composition of ethanol extracts from samples of Brazilian propolis (EEPs determined by HPLC and their activity against Trypanosoma cruzi, Staphylococcus aureus, Streptococcus pneumoniae, Klebisiella pneumoniae, Candida albicans, Sporothrix schenckii and Paracoccidioides brasiliensis were determined. Based on the predominant botanical origin in the region of samples' collection, the 10 extracts were separated into three groups: A (B. dracunculifolia + Auraucaria spp, B (B. dracunculifolia and C (Araucaria spp. Analysis by the multiple regression of all the extracts together showed a positive correlation, higher concentrations leading to higher biological effect, of S. aureus with p-coumaric acid (PCUM and 3-(4-hydroxy-3-(oxo-butenyl-phenylacrylic acid (DHCA1 and of trypomastigotes of T. cruzi with 3,5-diprenyl-4-hydroxycinnamic acid derivative 4 (DHCA4 and 2,2-dimethyl-6-carboxyethenyl-2H-1-benzopyran (DCBEN. When the same approach was employed for each group, due to the small number of observations, the statistical test gave unreliable results. However, an overall analysis revealed for group A an association of S. aureus with caffeic acid (CAF and dicaffeoylquinic acid 3 (CAFQ3, of S. pneumoniae with CAFQ3 and monocaffeoylquinic acid 2 (CAFQ2 and of T. cruzi also with CAFQ3. For group B, a higher activity against S. pneumoniae was associated DCBEN and for T. cruzi with CAF. For group C no association was observed between the anitmicrobial effect and any component of the extracts. The present study reinforces the relevance of PCUM and derivatives, especially prenylated ones and also of caffeolyquinic acids, on the biological activity of Brazilian propolis.

  7. Chemical composition and antioxidant activities of Broussonetia papyrifera fruits.

    Directory of Open Access Journals (Sweden)

    Jie Sun

    Full Text Available Fruits of Broussonetia papyrifera from South China were analyzed for their total chemical composition, and antioxidant activities in ethanol and aqueous extracts. In the fruit of this plant, the crude protein, crude fat and carbohydrates was 7.08%, 3.72% and 64.73% of dry weight, respectively. The crude protein, crude fat and carbohydrates were 15.71%, 20.51% and 36.09% of dry weight, respectively. Fatty acid and amino acid composition of the fruit were analyzed. Unsaturated fatty acid concentration was 70.6% of the total fatty acids. The percentage of the essential amino acids (EAAs was 40.60% of the total amino acids. Furthermore, B. papyrifera fruit are rich in many mineral elements and vitamins. Total phenolic content was assessed using the Folin-Ciocalteau assay, whereas antioxidant activities were assessed by measuring the ability of the two extracts to scavenge DPPH radicals, inhibit peroxidation, and chelate ferric ions. Their reducing power was also assessed. Results indicated that the aqueous extract of B. papyrifera was a more potent reducing agent and radical-scavenger than the ethanol extract. GC-MS analysis of the ethanol extract showed the presence of some acid-containing compounds. The changes in total phenolic content and antioxidant capacity in B. papyrifera from four different regions grown under normal conditions were assessed. The antioxidant activity of different extracts was positively associated with their total phenolic content. These results suggest that the fruit of B. papyrifera could be used in dietary supplement preparations, or as a food additive, for nutritional gain, or to prevent oxidation in food products.

  8. Secondary organic aerosols. Chemical aging, hygroscopicity, and cloud droplet activation

    Energy Technology Data Exchange (ETDEWEB)

    Buchholz, Angela

    2011-07-06

    functional groups in this compound was adjusted to reproduce the observed growth curves. However, further information on surface tension and the ratio of the molecular mass and density of the solute is needed to predict activation behavior from hygroscopic growth measurements. A dependence of {kappa} on the ratio of primarily produced OH to initial VOC level was observed. The higher {kappa} values for low precursor concentrations could be attributed to a higher OH/VOC level. The detailed chemical composition of the gas-phase precursors had only little effect on {kappa}. In long term experiments there was no significant effect of the observed chemical aging of the particles on {kappa}. The observed low variability of {kappa} for biogenic SOA particles simplifies their treatment in global models as an average value of {kappa} = 0.1 can be used. (orig.)

  9. Thymus mastichina: chemical constituents and their anti-cancer activity.

    Science.gov (United States)

    Gordo, Joana; Máximo, Patrícia; Cabrita, Eurico; Lourenço, Ana; Oliva, Abel; Almeida, Joana; Filipe, Mariana; Cruz, Pedro; Barcia, Rita; Santos, Miguel; Cruz, Helder

    2012-11-01

    The cytotoxicity-guided study of the dichloromethane and ethanol extracts of Thymus mastichina L. using the HCT colon cancer cell line allowed the identification of nine compounds, sakuranetin (1), sterubin (2), oleanolic acid (3), ursolic acid (4), lutein (5), beta-sitosterol (6), rosmarinic acid (7), 6-hydroxyluteolin-7-O-beta-glucopyranoside (8), and 6-hydroxyapigenin-7-O-beta-glucopyranoside (9). All compounds were tested for their cytotoxicity against the HCT colon cancer cell line. Compound 4 showed cytotoxicity with GI50 value of 6.8 microg/mL. A fraction composed of a mixture (1:1) of triterpenoid acids 3 and 4 displayed improved cytotoxicity with a GI50 of 2.8 microg/mL suggesting a synergistic behavior. This is the first report on the chemical constituents of Thymus mastichina L. based on structural assignments by spectroscopic analysis. The presence of these constituents identified by colon cancer cytotoxicity-guided activity indicates that extracts of T. mastichina L. may have a protective effect against colon cancers.

  10. Plant polyphenols: chemical properties, biological activities, and synthesis.

    Science.gov (United States)

    Quideau, Stéphane; Deffieux, Denis; Douat-Casassus, Céline; Pouységu, Laurent

    2011-01-17

    Eating five servings of fruits and vegetables per day! This is what is highly recommended and heavily advertised nowadays to the general public to stay fit and healthy! Drinking green tea on a regular basis, eating chocolate from time to time, as well as savoring a couple of glasses of red wine per day have been claimed to increase life expectancy even further! Why? The answer is in fact still under scientific scrutiny, but a particular class of compounds naturally occurring in fruits and vegetables is considered to be crucial for the expression of such human health benefits: the polyphenols! What are these plant products really? What are their physicochemical properties? How do they express their biological activity? Are they really valuable for disease prevention? Can they be used to develop new pharmaceutical drugs? What recent progress has been made toward their preparation by organic synthesis? This Review gives answers from a chemical perspective, summarizes the state of the art, and highlights the most significant advances in the field of polyphenol research. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Heat-activated Plasmonic Chemical Sensors for Harsh Environments

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, Michael [SUNY Polytechnic Inst., Albany, NY (United States); Oh, Sang-Hyun [Univ. of Minnesota, Minneapolis, MN (United States)

    2015-12-01

    A passive plasmonics based chemical sensing system to be used in harsh operating environments was investigated and developed within this program. The initial proposed technology was based on combining technologies developed at the SUNY Polytechnic Institute Colleges of Nanoscale Science and Engineering (CNSE) and at the University of Minnesota (UM). Specifically, a passive wireless technique developed at UM was to utilize a heat-activated plasmonic design to passively harvest the thermal energy from within a combustion emission stream and convert this into a narrowly focused light source. This plasmonic device was based on a bullseye design patterned into a gold film using focused ion beam methods (FIB). Critical to the design was the use of thermal stabilizing under and overlayers surrounding the gold film. These stabilizing layers were based on both atomic layer deposited films as well as metal laminate layers developed by United Technologies Aerospace Systems (UTAS). While the bullseye design was never able to be thermally stabilized for operating temperatures of 500oC or higher, an alternative energy harvesting design was developed by CNSE within this program. With this new development, plasmonic sensing results are presented where thermal energy is harvested using lithographically patterned Au nanorods, replacing the need for an external incident light source. Gas sensing results using the harvested thermal energy are in good agreement with sensing experiments, which used an external incident light source. Principal Component Analysis (PCA) was used to reduce the wavelength parameter space from 665 variables down to 4 variables with similar levels of demonstrated selectivity. The method was further improved by patterning rods which harvested energy in the near infrared, which led to a factor of 10 decrease in data acquisition times as well as demonstrated selectivity with a reduced wavelength data set. The combination of a plasmonic-based energy harvesting

  12. Microbial dechlorination activity during and after chemical oxidant treatment

    Energy Technology Data Exchange (ETDEWEB)

    Doğan-Subaşı, Eylem [Flemish Institute for Technological Research (VITO), Separation and Conversion Technology, Boeretang 200, 2400 Mol (Belgium); Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, 9000 Gent (Belgium); Bastiaens, Leen, E-mail: leen.bastiaens@vito.be [Flemish Institute for Technological Research (VITO), Separation and Conversion Technology, Boeretang 200, 2400 Mol (Belgium); Boon, Nico [Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, 9000 Gent (Belgium); Dejonghe, Winnie [Flemish Institute for Technological Research (VITO), Separation and Conversion Technology, Boeretang 200, 2400 Mol (Belgium)

    2013-11-15

    Highlights: • Combined treatment was possible below 0.5 g/L of KMnO{sub 4} and 1 g/L of Na{sub 2}S{sub 2}O{sub 8}. • By-products SO{sub 4}{sup 2−} and MnO{sub 2(s)} had inhibitory effects on dehalogenating bacteria. • Oxidation reduction potential (ORP) was identified as a crucial parameter for recovery of oxidant exposed cells. • Bioaugmentation is a necessity at 0.5 g/L of KMnO{sub 4} and 1 g/L of Na{sub 2}S{sub 2}O{sub 8} and above. -- Abstract: Potassium permanganate (PM) and sodium persulfate (PS) are used in soil remediation, however, their compatibility with a coinciding or subsequent biotreatment is poorly understood. In this study, different concentrations of PM (0.005–2 g/L) and PS (0.01–4.52 g/L) were applied and their effects on the abundance, activity, and reactivation potential of a dechlorinating enrichment culture were investigated. Expression of the tceA, vcrA and 16S rRNA genes of Dehalococcoides spp. were detected at 0.005–0.01 g/L PM and 0.01–0.02 g/L PS. However, with 0.5–2 g/L PM and 1.13–4.52 g/L PS no gene expression was recorded, neither were indicator molecules for total cell activity (Adenosine triphosphate, ATP) detected. Dilution did not promote the reactivation of the microbial cells when the redox potential was above −100 mV. Similarly, inoculated cells did not dechlorinate trichloroethene (TCE) above −100 mV. When the redox potential was decreased to −300 mV and the reactors were bioaugmented for a second time, dechlorination activity recovered, but only in the reactors with 1.13 and 2.26 g/L PS. In conclusion, our results show that chemical oxidants can be combined with a biotreatment at concentrations below 0.5 g/L PM and 1 g/L PS.

  13. Phthalides: Distribution in Nature, Chemical Reactivity, Synthesis, and Biological Activity.

    Science.gov (United States)

    León, Alejandra; Del-Ángel, Mayela; Ávila, José Luis; Delgado, Guillermo

    oxidation, reduction, addition, elimination, and cycloaddition reactions, and treatments with Lewis acids of (Z)-ligustilide have afforded linear dimers. Some intramolecular condensations and differentiated cyclizations of the dimeric phthalides have been carried out, providing evidences for the particular chemical reactivity of these compounds.Several structural modifications of phthalides have been carried out subjecting them to microbial transformations by different species of bacteria, fungi and algae, and these included resolutions of racemic mixtures and oxidations, among others.The [π4s + π2s] and [π2s + π2s] cycloadditions of (Z)-ligustilide for the synthesis of dimeric phthalides have been reported, and different approaches involving cyclizations, Alder-Rickert reactions, Sharpless asymmetric hydroxylations, or Grignard additions have been used for the synthesis of monomeric phthalides. The use of phthalides as building blocks for divergent oriented synthesis has been proven.Many of the naturally occurring phthalides display different biological activities including antibacterial, antifungal, insecticidal, cytotoxic, and anti-inflammatory effects, among many others, with a considerable recent research on the topic. In the case of compounds isolated from the Apiaceae, the bioactivities correlate with the traditional medicinal uses of the natural sources. Some monomeric phthalides have shown their ability to attenuate certain neurological diseases, including stroke, Alzheimer's and Parkinson's diseases.The present contribution covers the distribution of phthalides in nature and the findings in the structural diversity, chemical reactivity, biotransformations, syntheses, and bioactivity of natural and semisynthetic phthalides.

  14. Combined Chemical Activation and Fenton Degradation to Convert Waste Polyethylene into High-Value Fine Chemicals.

    Science.gov (United States)

    Chow, Cheuk-Fai; Wong, Wing-Leung; Ho, Keith Yat-Fung; Chan, Chung-Sum; Gong, Cheng-Bin

    2016-07-04

    Plastic waste is a valuable organic resource. However, proper technologies to recover usable materials from plastic are still very rare. Although the conversion/cracking/degradation of certain plastics into chemicals has drawn much attention, effective and selective cracking of the major waste plastic polyethylene is extremely difficult, with degradation of C-C/C-H bonds identified as the bottleneck. Pyrolysis, for example, is a nonselective degradation method used to crack plastics, but it requires a very high energy input. To solve the current plastic pollution crisis, more effective technologies are needed for converting plastic waste into useful substances that can be fed into the energy cycle or used to produce fine chemicals for industry. In this study, we demonstrate a new and effective chemical approach by using the Fenton reaction to convert polyethylene plastic waste into carboxylic acids under ambient conditions. Understanding the fundamentals of this new chemical process provides a possible protocol to solve global plastic-waste problems.

  15. Chemical profiling of Centella asiatica under different extraction solvents and its antibacterial activity, antioxidant activity

    Directory of Open Access Journals (Sweden)

    Supawan Rattanakom

    2015-12-01

    Full Text Available Centella asiatica (L urban, synonym Hydrocotyle asiatica, is found almost all over the world. This plant is famous in Ayurvedic medicine and used in the management of central nervous system, skin and gastrointestinal disorder. Thus this research had been done to evaluate the effect of solvent extraction (Ethanol, Chloroform and Hexane of C. asiatica on chemical profile, antioxidant activity and antibacterial activity against some foodborne pathogens. The result showed that all solvents (ethanol, chloroform and hexane used in extraction showed antibacterial activity against Salmonella enterica Typhimurium U302, S. enterica Enteritidis, S. enterica 4,5,12:I human (US clone, Bacillus cereus and B. subtilis at 50mg/ml concentration. In antioxidant part, ethanolic extract gave highest phenolic content and FRAP value. The results also showed that different extraction solvent gave different chemical profile. Hexane extract C. asiatica showed lowest in both antibacterial and antioxidant activity. Ethanolic and chloroform extract of C. asiatica showed promising potential in both antibacterial and antioxidant activity.

  16. Advanced deposition model for thermal activated chemical vapor deposition

    Science.gov (United States)

    Cai, Dang

    Thermal Activated Chemical Vapor Deposition (TACVD) is defined as the formation of a stable solid product on a heated substrate surface from chemical reactions and/or dissociation of gaseous reactants in an activated environment. It has become an essential process for producing solid film, bulk material, coating, fibers, powders and monolithic components. Global market of CVD products has reached multi billions dollars for each year. In the recent years CVD process has been extensively used to manufacture semiconductors and other electronic components such as polysilicon, AlN and GaN. Extensive research effort has been directed to improve deposition quality and throughput. To obtain fast and high quality deposition, operational conditions such as temperature, pressure, fluid velocity and species concentration and geometry conditions such as source-substrate distance need to be well controlled in a CVD system. This thesis will focus on design of CVD processes through understanding the transport and reaction phenomena in the growth reactor. Since the in situ monitor is almost impossible for CVD reactor, many industrial resources have been expended to determine the optimum design by semi-empirical methods and trial-and-error procedures. This approach has allowed the achievement of improvements in the deposition sequence, but begins to show its limitations, as this method cannot always fulfill the more and more stringent specifications of the industry. To resolve this problem, numerical simulation is widely used in studying the growth techniques. The difficulty of numerical simulation of TACVD crystal growth process lies in the simulation of gas phase and surface reactions, especially the latter one, due to the fact that very limited kinetic information is available in the open literature. In this thesis, an advanced deposition model was developed to study the multi-component fluid flow, homogeneous gas phase reactions inside the reactor chamber, heterogeneous surface

  17. Chemical constituents and antihistamine activity of Bixa orellana leaf extract

    Directory of Open Access Journals (Sweden)

    Yong Yoke Keong

    2013-02-01

    Full Text Available Abstract Background Bixa orellana L. has been traditionally used in Central and South America to treat a number of ailments, including internal inflammation, and in other tropical countries like Malaysia as treatment for gastric ulcers and stomach discomfort. The current study aimed to determine the major chemical constituents of the aqueous extract of B. orellana (AEBO and to evaluate the antihistamine activity of AEBO during acute inflammation induced in rats. Methods Acute inflammation was produced by subplantar injection of 0.1 mL of 0.1% histamine into the right hind paw of each rat in the control and treatment groups. The degree of edema was measured before injection and at the time points of 30, 60, 120, 180, 240 and 300 min after injection. Changes of peritoneal vascular permeability were studied using Evans blue dye as a detector. Vascular permeability was evaluated by the amount of dye leakage into the peritoneal cavity in rats. To evaluate the inhibitory effect of AEBO on biochemical mediators of vascular permeability, the levels of nitric oxide (NO and vascular endothelial growth factor (VEGF were determined in histamine-treated paw tissues. The major constituents of AEBO were determined by gas chromatography–mass spectrometry (GC-MS analysis. Results AEBO produced a significant inhibition of histamine-induced paw edema starting at 60 min time point, with maximal percentage of inhibition (60.25% achieved with a dose of 150 mg/kg of AEBO at 60 min time point. Up to 99% of increased peritoneal vascular permeability produced by histamine was successfully suppressed by AEBO. The expression of biochemical mediators of vascular permeability, NO and VEGF, was also found to be downregulated in the AEBO treated group. Gas chromatography–mass spectrometry (GC-MS analysis revealed that the major constituent in AEBO was acetic acid. Conclusions The experimental findings demonstrated that the anti-inflammatory activity of AEBO was

  18. Evaluation of Biological Activities of Extracts and Chemical ...

    African Journals Online (AJOL)

    1School of Chemical Sciences, 2School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia,. 3Faculty of Forestry, University of Khartoum, ..... Taraporevala Sons & Co. Private Ltd,Bombay,. 1962; pp 158-159. 4.

  19. Chemical composition and antioxidant activity of essential oil ...

    African Journals Online (AJOL)

    LACPREENE

    2012-08-12

    Aug 12, 2012 ... The chemical composition of C. ladanifer essential oil was characterized by high ... Analysis of essential oils was carried out by GC–MS using a .... with literature shows important qualitative and quantita- tive differences in ...

  20. Chemical surface tuning electrocatalysis of redox-active nanoparticles

    DEFF Research Database (Denmark)

    Zhu, Nan; Ulstrup, Jens; Chi, Qijin

    This work focuses on electron transfer (ET) and electrocatalysis of inorganic hybrid Prussian blue nanoparticles (PBNPs, 6 nm) immobilized on different chemical surfaces. Through surface self-assembly chemistry, we have enabled to tune chemical properties of the electrode surface. Stable immobili......This work focuses on electron transfer (ET) and electrocatalysis of inorganic hybrid Prussian blue nanoparticles (PBNPs, 6 nm) immobilized on different chemical surfaces. Through surface self-assembly chemistry, we have enabled to tune chemical properties of the electrode surface. Stable...... distance, with a decay factor (β) of ca. 0.9, 1.1, 1.3 per CH2, respectively. This feature suggests a tunneling mechanism adopted by the nanoparticles, resembling that for metalloproteins in a similar assembly. High-efficient electrocatalysis towards the reduction of H2O2 is observed, and possible...

  1. Chemical composition and antifungal activity of essential oils of ...

    African Journals Online (AJOL)

    patrick

    2015-03-25

    Mar 25, 2015 ... chemical composition of the species of Algerian citrus. (Baaliouamer, 1987). ... Osbeck), Bigaradier (Citrus aurantium), lemon (Citrus limonum) and ..... The fungi anti capacities of essential oils of the Algerian citrus proved to ...

  2. CHEMICALS

    CERN Document Server

    Medical Service

    2002-01-01

    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or service.medical@cern.ch Chemistry Service : TIS-GS-GC : 78546

  3. Effect of activation agents on the surface chemical properties and desulphurization performance of activated carbon

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Flue gas pollution is a serious environmental problem that needs to be solved for the sustainable development of China.The surface chemical properties of carbon have great influence on its desulphurization performance.A series of activated carbons (ACs) were prepared using HNO3,H2O2,NH3·H2O and steam as activation agents with the aim to introduce functional groups to carbon surface in the ACs preparation process.The ACs were physically and chemically characterized by iodine and SO2 adsorption,ultimate analysis,Boehm titration,and temperature-programmed reduction (TPR).Results showed that the iodine number and desulphurization capacity of NH3·H2O activated carbon (AC-NH3) increase with both activation time,and its desulphurization capacity also increases with the concentration of activation agent.However,HNO3 activated carbon (AC-HNO3) and H2O2 activated carbon (AC-H2O2) exhibit more complex behavior.Only their iodine numbers increase monotonously with activation time.Compared with steam activated AC (AC-H2O),the nitrogen content increases 0.232% in AC-NH3 and 0.077% in AC-HNO3.The amount of total basic site on AC-HNO3 is 0.19 mmol·g-1 higher than that on AC-H2O.H2O2 activation introduces an additional 0.08 mmol·g-1 carboxyl groups to AC surface than that introduced by steam activation.The desulphurization capacity of ACs in simulate flue gas desulphurization decreases as follows: AC-NH3 > AC-HNO3 > AC-H2O2 > AC-H2O.This sequence is in accord with the SO2 catalytic oxidation/oxidation ratio in the absence of oxygen and the oxidation property reflected by TPR.In the presence of oxygen,all adsorbed SO2 on ACs can be oxidized into SO3.The desulphurization capacity increases differently according to the activation agents;the desulphurization capacity of AC-NH3 and AC-HNO3 improves by 4.8 times,yet AC-H2O increases only by 2.62 as compared with the desulphurization of corresponding ACs in absence of oxygen.

  4. 75 FR 6386 - Pesticide Products; Registration Applications for a New Active Ingredient Chemical; Demiditraz

    Science.gov (United States)

    2010-02-09

    ... register pesticide products containing active ingredients not included in any previously registered pesticide products. Pursuant to the provisions of section 3(c)(4) of the Federal Insecticide, Fungicide, and... AGENCY Pesticide Products; Registration Applications for a New Active Ingredient Chemical;...

  5. [Advances in studies on chemical constituents and biological activities of Desmodium species].

    Science.gov (United States)

    Liu, Chao; Wu, Ying; Zhang, Qian-Jun; Kang, Wen-Yi; Zhang, Long; Zhou, Qing-Di

    2013-12-01

    The chemical constituents isolated from Desmodium species (Leguminosae) included terpenoids, flavonoids, steroids, alkaloids compounds. Modem pharmacological studies have showed that the Desmodium species have antioxidant, antibacterial, anti-inflammatory, hepatoprotective, diuretic, antipyretic, analgesic and choleretic activity. This article mainly has reviewed the research advances of chemical constituents and biological activities of Desmodium species since 2003.

  6. The screening of chemicals for juvenoid-related endocrine activity using the water flea Daphnia magna.

    Science.gov (United States)

    Wang, Helen Ying; Olmstead, Allen W; Li, Hong; Leblanc, Gerald A

    2005-09-10

    U.S. Environmental Protection Agency is charged with developing a screening and testing paradigm for detecting endocrine toxicity of chemicals that are subject to regulation under the Food Quality Protection and the Safe Drinking Water Acts. In this study, we developed and evaluated a screening assay that could be employed to detect juvenoid-related endocrine-modulating activity in an invertebrate species. Juvenoid activity, anti-juvenoid activity, and juvenoid potentiator activity of chemicals was assessed using the water flea Daphnia magna. Male sex determination is under the regulatory control of juvenoid hormone, presumably methyl farnesoate, and this endpoint was used to detect juvenoid modulating activity of chemicals. Eighteen chemicals were evaluated for juvenoid agonist activity. Positive responses were detected with the juvenoid hormones methyl farnesoate and juvenile hormone III along with the insect growth regulating insecticides pyriproxyfen, fenoxycarb, and methoprene. Weak juvenoid activity also was detected with the cyclodiene insecticide dieldrin. Assays performed repetitively with compounds that gave either strong positive, weak positive, or negative response were 100% consistent indicating that the assay is not prone to false positive or negative responses. Five candidate chemicals were evaluated for anti-juvenoid activity and none registered positive. Four chemicals (all trans-retinoic acid, methoprene, kinoprene, bisphenol A) also were evaluated for their ability to potentiate the activity of methyl farnesoate. All registered positive. Results demonstrate that an in vivo assay with a crustacean species customarily employed in toxicity testing can be used to effectively screen chemicals for juvenoid-modulating activity.

  7. Structure and biological activity of chemically modified nisin A species

    NARCIS (Netherlands)

    Rollema, Harry S.; Metzger, Jörg W.; Both, Paula; Kuipers, Oscar P.; Siezen, Roland J.

    1996-01-01

    Nisin, a 34-residue peptide bacteriocin, contains the less common amino acids lanthionine, β-methyllanthionine, dehydroalanine (Dha), and dehydrobutyrine (Dhb). Several chemically modified nisin A species were purified by reverse-phase HPLC and characterized by two-dimensional NMR and electrospray m

  8. The chemical composition and biological activities of essential oil ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-12-15

    Dec 15, 2009 ... INTRODUCTION. Schinus terebinthifolius ... belongs to the Anacardiaceae family of plants (Manrique et al., 2008). ... among some of the ancient Chilean Amerindians. In ..... tation to a specific habitat, many plants produce chemical compounds ... London, U.K.: Crown Agents for Overseas Governments and.

  9. Structure and biological activity of chemically modified nisin A species

    NARCIS (Netherlands)

    Rollema, Harry S.; Metzger, Jörg W.; Both, Paula; Kuipers, Oscar P.; Siezen, Roland J.

    1996-01-01

    Nisin, a 34-residue peptide bacteriocin, contains the less common amino acids lanthionine, β-methyllanthionine, dehydroalanine (Dha), and dehydrobutyrine (Dhb). Several chemically modified nisin A species were purified by reverse-phase HPLC and characterized by two-dimensional NMR and electrospray m

  10. Adsorption studies of methylene blue and phenol onto vetiver roots activated carbon prepared by chemical activation

    Energy Technology Data Exchange (ETDEWEB)

    Altenor, Sandro [COVACHIMM, EA 3592 Universite des Antilles et de la Guyane, BP 250, 97157 Pointe a Pitre Cedex, Guadeloupe (France); LAQUE, Universite Quisqueya d' Haiti, Port-au-Prince (Haiti); Carene, Betty [COVACHIMM, EA 3592 Universite des Antilles et de la Guyane, BP 250, 97157 Pointe a Pitre Cedex, Guadeloupe (France); Emmanuel, Evens [LAQUE, Universite Quisqueya d' Haiti, Port-au-Prince (Haiti); Lambert, Jacques; Ehrhardt, Jean-Jacques [Laboratoire de Chimie Physique et Microbiologie pour l' Environnement, UMR 7564 CNRS-Nancy Universities, 405 rue de Vandoeuvre, F 54600 Villers-les-Nancy Cedex (France); Gaspard, Sarra, E-mail: sgaspard@univ-ag.fr [COVACHIMM, EA 3592 Universite des Antilles et de la Guyane, BP 250, 97157 Pointe a Pitre Cedex, Guadeloupe (France)

    2009-06-15

    Vetiver roots have been utilized for the preparation of activated carbon (AC) by chemical activation with different impregnation ratios of phosphoric acid, X{sub P} (g H{sub 3}PO{sub 4}/g precursor): 0.5:1; 1:1 and 1.5:1. Textural characterization, determined by nitrogen adsorption at 77 K shows that mixed microporous and mesoporous structures activated carbons (ACs) with high surface area (>1000 m{sup 2}/g) and high pore volume (up to 1.19 cm{sup 3}/g) can be obtained. The surface chemical properties of these ACs were investigated by X-ray photoelectron spectroscopy (XPS) and Boehm titration. Their textural and chemical characteristics were compared to those of an AC sample obtained by steam activation of vetiver roots. Classical molecules used for characterizing liquid phase adsorption, phenol and methylene blue (MB), were used. Adsorption kinetics of MB and phenol have been studied using commonly used kinetic models, i.e., the pseudo-first-order model, the pseudo-second-order model, the intraparticle diffusion model and as well the fractal, BWS (Brouers, Weron and Sotolongo) kinetic equation. The correlation coefficients (R{sup 2}) and the normalized standard deviation {Delta}q (%) were determined showing globally, that the recently derived fractal kinetic equation could best describe the adsorption kinetics for the adsorbates tested here, indicating a complex adsorption mechanism. The experimental adsorption isotherms of these molecules on the activated carbon were as well analysed using four isotherms: the classical Freundlich, Langmuir, Redlich-Peterson equations, but as well the newly published deformed Weibull Brouers-Sotolongo isotherm. The results obtained from the application of the equations show that the best fits were achieved with the Brouers-Sotolongo equation and with the Redlich-Peterson equation. Influence of surface functional groups towards MB adsorption is as well studied using various ACs prepared from vetiver roots and sugar cane bagasse

  11. Adsorption studies of methylene blue and phenol onto vetiver roots activated carbon prepared by chemical activation.

    Science.gov (United States)

    Altenor, Sandro; Carene, Betty; Emmanuel, Evens; Lambert, Jacques; Ehrhardt, Jean-Jacques; Gaspard, Sarra

    2009-06-15

    Vetiver roots have been utilized for the preparation of activated carbon (AC) by chemical activation with different impregnation ratios of phosphoric acid, X(P) (gH(3)PO(4)/g precursor): 0.5:1; 1:1 and 1.5:1. Textural characterization, determined by nitrogen adsorption at 77K shows that mixed microporous and mesoporous structures activated carbons (ACs) with high surface area (>1000 m(2)/g) and high pore volume (up to 1.19 cm(3)/g) can be obtained. The surface chemical properties of these ACs were investigated by X-ray photoelectron spectroscopy (XPS) and Boehm titration. Their textural and chemical characteristics were compared to those of an AC sample obtained by steam activation of vetiver roots. Classical molecules used for characterizing liquid phase adsorption, phenol and methylene blue (MB), were used. Adsorption kinetics of MB and phenol have been studied using commonly used kinetic models, i.e., the pseudo-first-order model, the pseudo-second-order model, the intraparticle diffusion model and as well the fractal, BWS (Brouers, Weron and Sotolongo) kinetic equation. The correlation coefficients (R(2)) and the normalized standard deviation Deltaq (%) were determined showing globally, that the recently derived fractal kinetic equation could best describe the adsorption kinetics for the adsorbates tested here, indicating a complex adsorption mechanism. The experimental adsorption isotherms of these molecules on the activated carbon were as well analysed using four isotherms: the classical Freundlich, Langmuir, Redlich-Peterson equations, but as well the newly published deformed Weibull Brouers-Sotolongo isotherm. The results obtained from the application of the equations show that the best fits were achieved with the Brouers-Sotolongo equation and with the Redlich-Peterson equation. Influence of surface functional groups towards MB adsorption is as well studied using various ACs prepared from vetiver roots and sugar cane bagasse. Opposite effects governing MB

  12. Activated carbon fibers with a high heteroatom content by chemical activation of PBO with phosphoric acid.

    Science.gov (United States)

    Vázquez-Santos, M B; Suárez-García, F; Martínez-Alonso, A; Tascón, J M D

    2012-04-03

    The preparation of activated carbon fibers (ACFs) by phosphoric acid activation of poly(p-phenylene benzobisoxazole) (PBO) fibers was studied, with particular attention to the effects of impregnation ratio and carbonization temperature on porous texture. Phosphoric acid has a strong effect on PBO degradation, lowering the temperature range at which the decomposition takes place and changing the number of mass loss steps. Chemical analysis results indicated that activation with phosphoric acid increases the concentration of oxygenated surface groups; the resulting materials also exhibiting high nitrogen content. ACFs are obtained with extremely high yields; they have well-developed porosity restricted to the micropore and narrow mesopore range and with a significant concentration of phosphorus incorporated homogeneously in the form of functional groups. An increase in the impregnation ratio leads to increases in both pore volume and pore size, maximum values of surface area (1250 m(2)/g) and total pore volume (0.67 cm(3)/g) being attained at the highest impregnation ratio (210 wt % H(3)PO(4)) and lowest activation temperature (650 °C) used; the corresponding yield was as large as 83 wt %. The obtained surface areas and pore volumes were higher than those achieved in previous works by physical activation with CO(2) of PBO chars.

  13. Chemical Constituents and Biological Activities of Artemisia herba-alba

    Directory of Open Access Journals (Sweden)

    Abou El-Hamd H. Mohamed

    2010-01-01

    Full Text Available Artemisia, one of the larger genera in the family Asteraceae and the largest genus in the tribe Anthemideae, comprises from 200 to more than 500 taxa at the specific or subspecific level. Many Artemisia species have a high economic value in several fields, as food plants and as antihelminthic and antimalaria in medicine. Artemisia herba-alba was known for its therapeutic and medicinal properties, it was used in both traditional and modern medicine. Several papers have been published on the chemical composition of specimens of A. herba-alba. The aim of this work is to review all available scientific literature published on A. herba-alba. The focus will be on the chemical constitutions which have been identified from this species, in addition to all of the reported biological activites of this species have been included as well as the pharmacology and toxicology

  14. Identification of chemical modulators of the constitutive activated receptor (CAR) in a gene expression compendium

    OpenAIRE

    Oshida, Keiyu; Vasani, Naresh; Jones, Carlton; Moore, Tanya; Hester, Susan; Nesnow, Stephen; Auerbach, Scott; Geter, David R.; Aleksunes, Lauren M; Thomas, Russell S.; Applegate, Dawn; Klaassen, Curtis D.; Corton, J. Christopher

    2015-01-01

    The nuclear receptor family member constitutive activated receptor (CAR) is activated by structurally diverse drugs and environmentally-relevant chemicals leading to transcriptional regulation of genes involved in xenobiotic metabolism and transport. Chronic activation of CAR increases liver cancer incidence in rodents, whereas suppression of CAR can lead to steatosis and insulin insensitivity. Here, analytical methods were developed to screen for chemical treatments in a gene expression comp...

  15. Immunologically driven chemical engineering of antibodies for catalytic activity.

    Science.gov (United States)

    Dias, Sonia; Jovic, Florence; Renard, Pierre-Yves; Taran, Fréderic; Créminon, Christophe; Mioskowski, Charles; Grassi, Jacques

    2002-11-01

    We describe a new strategy for the preparation of catalytic antibodies based on a two-step procedure. Firstly, monoclonal antibodies are selected only if displaying the following binding features: binding both the substrate and a reactive group in such a way that the two groups are in a reactive position towards each other. Secondly, the selected monoclonal antibodies (mAbs) are chemically engineered by covalently binding the reactive group into the binding pocket of the antibody. Using previously isolated monoclonal antibodies, we have focused our studies on the control of this second step.

  16. Data on chemical activation of Wnt/β-catenin during axolotl limb regeneration

    Directory of Open Access Journals (Sweden)

    Sabina Wischin

    2017-04-01

    Full Text Available Limb amputation in axolotls was performed to obtain data demonstrating that a chemical agonist of Wnt (int-related protein/β-catenin signalling can have a role in axolotl limb regeneration (Wischin et al., 2017 [1]. The data revealed that active β-catenin protein was present during limb regeneration in some Leydig cells in the epithelium; after the chemical treatment, it was observed in more Leydig cells. In addition, the chemical agonist of Wnt generated distinct limb malformation.

  17. Recovery of microbial diversity and activity during bioremediation following chemical oxidation of diesel contaminated soils

    NARCIS (Netherlands)

    Sutton, N.B.; Langenhoff, A.A.M.; Hidalgo Lasso, D.; Zaan, van der B.M.; Gaans, van P.; Maphosa, F.; Smidt, H.; Grotenhuis, J.T.C.; Rijnaarts, H.H.M.

    2014-01-01

    To improve the coupling of in situ chemical oxidation and in situ bioremediation, a systematic analysis was performed of the effect of chemical oxidation with Fenton's reagent, modified Fenton's reagent, permanganate, or persulfate, on microbial diversity and activity during 8 weeks of incubation in

  18. Recovery of microbial diversity and activity during bioremediation following chemical oxidation of diesel contaminated soils

    NARCIS (Netherlands)

    Sutton, N.B.; Langenhoff, A.A.M.; Hidalgo Lasso, D.; Zaan, van der B.M.; Gaans, van P.; Maphosa, F.; Smidt, H.; Grotenhuis, J.T.C.; Rijnaarts, H.H.M.

    2014-01-01

    To improve the coupling of in situ chemical oxidation and in situ bioremediation, a systematic analysis was performed of the effect of chemical oxidation with Fenton's reagent, modified Fenton's reagent, permanganate, or persulfate, on microbial diversity and activity during 8 weeks of incubation in

  19. Chemical Constituents of Descurainia sophia L. and its Biological Activity

    Directory of Open Access Journals (Sweden)

    Nawal H. Mohamed

    2009-01-01

    Full Text Available Seven coumarin compounds were isolated for the first time from the aerial parts of DescurainiaSophia L. identified as scopoletine, scopoline, isoscopoline, xanthtoxol, xanthtoxin, psoralene and bergaptane.Three flavonoids namely kaempferol, quercetine and isorhamnetine and three terpenoid compounds -sitosterol-amyrine and cholesterol were also isolated and identified by physical and chemical methods; melting point, Rfvalues, UV and 1H NMR spectroscopy. Qualitative and quantitative analyses of free and protein amino acidsusing amino acid analyzer were performed. The plant contains 15 amino acids as free and protein amino acidswith different range of concentrations. Fatty acid analysis using GLC, revealed the presence of 10 fatty acids,the highest percentage was palmitic acid (27.45 % and the lowest was lauric acid (0.13%. Biological screeningof alcoholic extract showed that the plant is highly safe and has analgesic, antipyretic and anti-inflammatoryeffects.

  20. Chemical Constituents and Antioxidant Activity of Geranium wallichianum

    Directory of Open Access Journals (Sweden)

    Muhammad I. Choudhary

    2009-10-01

    Full Text Available The study of the chemical constituents of the whole plant of Geranium wallichianum (Geraniaceae has resulted in the isolation and characterization of six compounds. These six compounds were identified as ursolic acid (1, β-sitosterol (2, stigmasterol (3,b-sitosterol galactoside (4, herniarin (5, and 2,4,6-trihydroxyethylbenzoate (6 which were isolated for the first time from Geranium wallichianum. The above compounds were individually identified by spectroscopic analyses and comparisons with reported data. The antioxidant potential of Geranium wallichianum extracts has been investigated by DPPH radical scavenging assay and EtOAc extract was found to be most potent with IC50 19.05 ug/mL

  1. Chemical Characterization, Antioxidant and Enzymatic Activity of Brines from Scandinavian Marinated Herring Products

    DEFF Research Database (Denmark)

    Gringer, Nina; Osman, Ali; Nielsen, Henrik Hauch

    2014-01-01

    Brines generated during the last marination step in the production of marinated herring (Clupea harengus) were chemically characterized and analyzed for antioxidant and enzyme activities. The end-products were vinegar cured, spice cured and traditional barrel-salted herring with either salt...... or spices. The chemical characterization encompassed pH, dry matter, ash, salt, fatty acids, protein, polypeptide pattern, iron and nitrogen. The antioxidant activity was tested with three assays measuring: iron chelation, reducing power and radical scavenging activity. The enzymatic activity for peroxidase...... with biological activity from brines from the marinated herring production was demonstrated in this work....

  2. Hydrogeology, chemical and microbial activity measurement through deep permafrost

    Energy Technology Data Exchange (ETDEWEB)

    Stotler, R.L.; Frape, S.K.; Freifeld, B.M.; Holden, B.; Onstott, T.C.; Ruskeeniemi, T.; Chan, E.

    2010-04-01

    Little is known about hydrogeochemical conditions beneath thick permafrost, particularly in fractured crystalline rock, due to difficulty in accessing this environment. The purpose of this investigation was to develop methods to obtain physical, chemical, and microbial information about the subpermafrost environment from a surface-drilled borehole. Using a U-tube, gas and water samples were collected, along with temperature, pressure, and hydraulic conductivity measurements, 420 m below ground surface, within a 535 m long, angled borehole at High Lake, Nunavut, Canada, in an area with 460-m-thick permafrost. Piezometric head was well above the base of the permafrost, near land surface. Initial water samples were contaminated with drill fluid, with later samples <40% drill fluid. The salinity of the non-drill fluid component was <20,000 mg/L, had a Ca/Na ratio above 1, with {delta}{sup 18}O values {approx}5{per_thousand} lower than the local surface water. The fluid isotopic composition was affected by the permafrost-formation process. Nonbacteriogenic CH{sub 4} was present and the sample location was within methane hydrate stability field. Sampling lines froze before uncontaminated samples from the subpermafrost environment could be obtained, yet the available time to obtain water samples was extended compared to previous studies. Temperature measurements collected from a distributed temperature sensor indicated that this issue can be overcome easily in the future. The lack of methanogenic CH{sub 4} is consistent with the high sulfate concentrations observed in cores. The combined surface-drilled borehole/U-tube approach can provide a large amount of physical, chemical, and microbial data from the subpermafrost environment with few, controllable, sources of contamination.

  3. Chemical Constituents and Biological Activities of Strobilanthes crispus L.

    Directory of Open Access Journals (Sweden)

    Yen Chin Koay

    2013-01-01

    Full Text Available Phytochemical investigation of Strobilanthes crispus has led to the isolation of 1-heptacosanol (1, tetracosanoic acid (2, stigmasterol (3 from the hexane extract, a mixture of four C 20-C 24 fatty acid esters of β-amyrin (4, taraxerol (5, taraxerone (6, a mixture of two C 22 and C 24 fatty acid esters of taraxerol (7 from the dichloromethane extract, 4-acetyl-2,7-dihydroxy-1,4,8-triphenyloctane-3,5-dione (8 and stigmasterol β- D -glucopyranoside (9 from the methanol extract. T he dichloromethane and methanol crude extracts together with the isolated compounds (4- 9 were tested for antibacterial activity using the determination of minimum inhibitory concentration assay and acetylcholinesterase inhibitory activity using the micro-plate assay . The majority of the samples tested indicated good activity against the Gram-positive bacteria (7.8─125.0 μg/mL, and moderate to weak activity against the Gram-negative bacteria (31.0─250.0 μg/mL employed. Moderate to weak activity was observed against acetylcholinesterase. Compound (8 showedexcellentantibacterialactivity against Bacillus subtilis and Staphylococcus aureus , with MIC values of 15.6 and 7.8 μg/mL, respectively, and significant activity against Escherichia coli and Salmonella typhimurium , with MIC values of 62.5 and 31.0 μg/mL, respectively. Compound (8 also showed the highest acetylcholinesterase inhibitory activity, with an IC 50 value of 31.0 μg/mL. This is the first report describing the antibacterial and acetylcholinesterase inhibitory activities of S. crispus on the basis of the isolated constituents. This research work has provided scientific proof of the traditional medicinal use of the leaves of S. crispus.

  4. Application of the Activity Framework for Assessing Aquatic Ecotoxicology Data for Organic Chemicals.

    Science.gov (United States)

    Thomas, Paul; Dawick, James; Lampi, Mark; Lemaire, Philippe; Presow, Shaun; van Egmond, Roger; Arnot, Jon A; Mackay, Donald; Mayer, Philipp; Galay Burgos, Malyka

    2015-10-20

    Toxicological research in the 1930s gave the first indications of the link between narcotic toxicity and the chemical activity of organic chemicals. More recently, chemical activity has been proposed as a novel exposure parameter that describes the fraction of saturation and that quantifies the potential for partitioning and diffusive uptake. In the present study, more than 2000 acute and chronic algal, aquatic invertebrates and fish toxicity data, as well as water solubility and melting point values, were collected from a series of sources. The data were critically reviewed and grouped by mode of action (MoA). We considered 660 toxicity data to be of acceptable quality. The 328 data which applied to the 72 substances identified as MoA 1 were then evaluated within the activity-toxicity framework: EC50 and LC50 values for all three taxa correlated generally well with (subcooled) liquid solubilities. Acute toxicity was typically exerted within the chemical activity range of 0.01-0.1, whereas chronic toxicity was exerted in the range of 0.001-0.01. These results confirm that chemical activity has the potential to contribute to the determination, interpretation and prediction of toxicity to aquatic organisms. It also has the potential to enhance regulation of organic chemicals by linking results from laboratory tests, monitoring and modeling programs. The framework can provide an additional line of evidence for assessing aquatic toxicity, for improving the design of toxicity tests, reducing animal usage and addressing chemical mixtures.

  5. Chemical composition and antibacterial activity of essential oils against human pathogenic bacteria

    NARCIS (Netherlands)

    Sokovic, M.; Marin, P.D.; Brkic, D.; Griensven, van L.J.L.D.

    2008-01-01

    The chemical composition and antibacterial activity of essential oils from 10 aromatic plants Matricaria chamommilla, Mentha piperita, M. spicata, Lavandula angustifolia, Ocimum basilicum, Thymus vulgaris, Origanum vulgare, Salvia officinalis, Citrus limon and C. aurantium have been determined. Anti

  6. Chemical composition and antibacterial activity of essential oils against human pathogenic bacteria

    NARCIS (Netherlands)

    Sokovic, M.; Marin, P.D.; Brkic, D.; Griensven, van L.J.L.D.

    2008-01-01

    The chemical composition and antibacterial activity of essential oils from 10 aromatic plants Matricaria chamommilla, Mentha piperita, M. spicata, Lavandula angustifolia, Ocimum basilicum, Thymus vulgaris, Origanum vulgare, Salvia officinalis, Citrus limon and C. aurantium have been determined.

  7. Chemical activation of MgH2; a new route to superior hydrogen storage materials.

    Science.gov (United States)

    Johnson, Simon R; Anderson, Paul A; Edwards, Peter P; Gameson, Ian; Prendergast, James W; Al-Mamouri, Malek; Book, David; Harris, I Rex; Speight, John D; Walton, Allan

    2005-06-14

    We report the discovery of a new, chemical route for 'activating' the hydrogen store MgH2, that results in highly effective hydrogen uptake/release characteristics, comparable to those obtained from mechanically-milled material.

  8. Foeniculum vulgare essential oils: chemical composition, antioxidant and antimicrobial activities.

    Science.gov (United States)

    Miguel, Maria Graça; Cruz, Cláudia; Faleiro, Leonor; Simões, Mariana T F; Figueiredo, Ana Cristina; Barroso, José G; Pedro, Luis G

    2010-02-01

    The essential oils from Foeniculum vulgare commercial aerial parts and fruits were isolated by hydrodistillation, with different distillation times (30 min, 1 h, 2 h and 3 h), and analyzed by GC and GC-MS. The antioxidant ability was estimated using four distinct methods. Antibacterial activity was determined by the agar diffusion method. Remarkable differences, and worrying from the quality and safety point of view, were detected in the essential oils. trans-Anethole (31-36%), alpha-pinene (14-20%) and limonene (11-13%) were the main components of the essentials oil isolated from F. vulgare dried aerial parts, whereas methyl chavicol (= estragole) (79-88%) was dominant in the fruit oils. With the DPPH method the plant oils showed better antioxidant activity than the fruits oils. With the TBARS method and at higher concentrations, fennel essential oils showed a pro-oxidant activity. None of the oils showed a hydroxyl radical scavenging capacity > 50%, but they showed an ability to inhibit 5-lipoxygenase. The essential oils showed a very low antimicrobial activity. In general, the essential oils isolated during 2 h were as effective, from the biological activity point of view, as those isolated during 3 h.

  9. Chemical Characterization and Antioxidant, Antimicrobial, and Anti-Inflammatory Activities of South Brazilian Organic Propolis

    OpenAIRE

    Tiveron, Ana Paula; Rosalen, Pedro Luiz; Franchin, Marcelo; Lacerda, Risia Cristina Coelho; Bueno-Silva, Bruno; Benso, Bruna; Denny, Carina; Ikegaki, Masaharu; de Alencar, Severino Matias

    2016-01-01

    South Brazilian organic propolis (OP), which has never been studied before, was assessed and its chemical composition, scavenging potential of reactive oxygen species, antimicrobial and anti-inflammatory activities are herein presented. Based on the chemical profile obtained using HPLC, OP was grouped into seven variants (OP1–OP7) and all of them exhibited high scavenging activity, mainly against superoxide and hypochlorous acid species. OP1, OP2, and OP3 had the smallest minimal inhibitory c...

  10. Chemical Analysis and Biological Activity of Jordanian Chamomile Extracts

    Directory of Open Access Journals (Sweden)

    Nawal Hassan Al Bahtiti

    2012-02-01

    Full Text Available The Jordanian chamomile (Matricaria chamomilla has been researched more thoroughly to evaluate its useful properties. It is investigated and found that Jordanian chamomile is rich in phenolic compounds, with beneficial biological activities. By applying the most promising HPLC method, the content of total phenolics in methanolic extract was determined according to the Folin-Clocalteu procedure, and was found (GAE>20 mg/g. The flavonoid types were found as flavones and flavonolos.The minimum inhibitory concentration values for methanolic extracts of Jordanian chamomile were determined for different kinds of bacteria. The extracts have activity against Staphylococcus aurous, candida albicans, Esherichia Coli, Betula pubescens and Pinus sylvestris. The activity has been observed to be due to the tannins and a pigenin present in the extract. To utilize these significant sources of natural compounds, further characterization of phenolic composition is needed.

  11. Antioxidant Activities of Chemical Constituents Isolated from Echinops orientalis Trauv.

    Directory of Open Access Journals (Sweden)

    Ramazan Erenler

    2014-01-01

    Full Text Available The genus Echinops belonging to the Asteraceae family comprises 130 species. The dried leaves and seeds of Echinops orientalis Trauv. were extracted separately with methanol. Apigenin-7-O-(6"-trans-p-coumaroyl- b -D-glucopyranoside 1, and Apigenin-7-O- b -D glucoside 2 were isolated from leaves and 1-methoxycarbonylindole 3 and beta-sitositerol 4 were isolated from seeds. The compounds were isolated by chromatographic techniques, based on column chromatography, preparative TLC and identified by spectroscopic methods including 1D-, 2D-NMR, UV, IR, HPLC-QTOF/MS. Isolated compounds and extracts were applied to antioxidant activity tests. While s eeds and leaves extracts have high DPPH and moderate ABTS radical scavenging activities, the isolated flavones exhibited high cation radical scavenging activities.

  12. Chemical Composition and Antimicrobial Activity of Artemisiatschernieviana Besser from Iran

    Directory of Open Access Journals (Sweden)

    Masoud Kazemi

    2009-01-01

    Full Text Available The oil obtained from hydrodistillation of the aerial parts of Artemisia tschernieviana was analyzed by GC and GC/MS. The main constituents of the 30 identified components were p-cymene (21.3%, β-pinene (17.8%, α-pinene (9.4%, γ-terpinene (9.1%, (Z-cis-ocimene (8.8%, and α-cadinol (8.1%. This species is rich in monoterpenes. Antimicrobial activity was determined against six bacterial strains and one fungal strain. The results show that this oil is active against all the tested strains.

  13. Chemical constituents of Lecythis pisonis and cytotoxic activity

    Directory of Open Access Journals (Sweden)

    Jocélia P. C. Oliveira

    2012-10-01

    Full Text Available The phytochemical investigation of the ethanol extract from leaves of Lecythis pisonis Cambess., Lecythidaceae, resulted in the isolation of seven triterpenes: α- and β-amyrin, uvaol and erythrodiol, ursolic and oleanolic acids and 3β-friedelinol, as well as a mixture of sitosterol and stigmasterol steroids and a diterpene (E-phytol. The structures of these compounds were identified by¹H and 13C NMR spectral analysis and compared with literature data. The mixture of triterpenes ursolic and oleanolic acids isolated from the active ethereal fraction showed moderate cytotoxic activity. This paper describes for the first time the phytochemical and cytotoxic study of Lecythis pisonis' leaves.

  14. Textural and chemical characterization of activated carbon prepared from shell of african palm (Elaeis guineensis by chemical activation with CaCl2 and MgCl2

    Directory of Open Access Journals (Sweden)

    Sergio Acevedo

    2015-09-01

    Full Text Available Activated carbons through chemical activation of African palm shells (Elaeis guineensis with magnesium chloride and calcium chloride solutions at different concentrations were obtained. The prepared materials were characterized textural and chemically. The results show that activated carbons with higher values of surface area and pore volume are obtained when solutions with lower concentrations of the activating agent are used. The obtained activated carbons have surface areas and pore volumes with values between 10 and 501 m2 /g and 0.01 and 0.29 cm3 /g respectively. Immersion enthalpies values of solids in water were between -14.3 and -32.8 J/g and benzene between -13.9 and -38.6 J/g. Total acidity and basicity of the activated carbons had values between 23 and 262 μmol/g 123 and 1724 μmol/g respectively. pH at the point of zero charge was also determined with values between 4.08 and 9.92 for set of activated carbons . The results show that activation with CaCl2 and MgCl2 salts produce activated carbons with pores in the range of mesopores for facilitate entry of the adsorbate into the materials.

  15. Wellbore stability analysis in chemically active shale formations

    Directory of Open Access Journals (Sweden)

    Shi Xiang-Chao

    2016-01-01

    Full Text Available Maintaining wellbore stability involves significant challenges when drilling in low-permeability reactive shale formations. In the present study, a non-linear thermo-chemo-poroelastic model is provided to investigate the effect of chemical, thermal, and hydraulic gradients on pore pressure and stress distributions near the wellbores. The analysis indicates that when the solute concentration of the drilling mud is higher than that of the formation fluid, the pore pressure and the effective radial and tangential stresses decrease, and v. v. Cooling of the lower salinity formation decreases the pore pressure, radial and tangential stresses. Hole enlargement is the combined effect of shear and tensile failure when drilling in high-temperature shale formations. The shear and tensile damage indexes reveal that hole enlargement occurs in the vicinity of the wellbore at an early stage of drilling. This study also demonstrates that shale wellbore stability exhibits a time-delay effect due to changes in the pore pressure and stress. The delay time computed with consideration of the strength degradation is far less than that without strength degradation.

  16. International activities in chemical thermodynamics of nuclear materials

    Energy Technology Data Exchange (ETDEWEB)

    Navratil, J.D.; Oetting, F.L.; O' Hare, P.A.G.

    1982-01-01

    For over twenty years, the International Atomic Energy Agency has played a major role in furthering the exchange of information on the thermodynamics of nuclear materials between scientists all over the world. The methodology used by the Agency to achieve this exchange has been to convene five international symposia on the thermodynamics of nuclear materials (1962, 1965, 1967, 1974 and 1979). These symposia not only served as a means for scientific exchange of experimental results, but also provided a mechanism whereby various scientists could collaborate on pertinent topics. Under the sponsorship of the Agency, several panels have been held resulting in the publication of several technical reports specifically related to thermochemical assessment, e.g. UC and PuC (1962), UO/sub 2/ (1964), and PuO/sub 2/ and UPuO/sub 2/ (1964). On a broader front, publication of two series of monographs on thermodynamic assessment has recently been undertaken; one consists of a special series of the Atomic Energy Review and the other is a series on The Chemical Thermodynamics of Actinide Elements and Compounds. During the past three years, the Agency has also sponsored a coordinated research programme between Member States. It deals with thermodynamic and transport properties of nuclear materials.

  17. Antifungal activities and chemical composition of some medicinal plants.

    Science.gov (United States)

    Mohammadi, A; Nazari, H; Imani, S; Amrollahi, H

    2014-06-01

    The use of and search for drugs and dietary supplements derived from plants have accelerated in recent years. Ethnopharmacologists, botanists, microbiologists and natural-products scientists are combing the earth for phytochemicals and leads, which could be developed for treatment of infectious diseases. The aim of this study was to investigate the antifungal activities of the essential oils of some medicinal plants such as Stachys pubescens, Thymus kotschyanus, Thymus daenensis and Bupleurum falcatum against Fusarium oxysporum, Aspergillus flavus and Alternaria alternata. The essential oils were used to evaluate their MICs and MFCs compared to the amphotricin B as a standard drug. The essential oils were also analyzed by GC/MS. Essential oils isolated from the S. pubescens, T. kotschyanus and B. falcatum showed strong antifungal activities. The essential oil of T. daenensis exhibited a moderate activity against the selected fungi in comparison with the other plants' essential oils. In addition, the results showed that 26, 23, 22 and 15 components were identified from the essential oils of T. kotschyanus, S. pubescens, T. daenensis and B. falcatum, respectively. These oils exhibited a noticeable antifungal activity against the selected fungi. Regarding obtained results and that natural antimicrobial substances are inexpensive and have fewer side effects, they convey potential for implementation in fungal pathogenic systems. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  18. Chemical Modification of Papain and Subtilisin: An Active Site Comparison

    Science.gov (United States)

    St-Vincent, Mireille; Dickman, Michael

    2004-01-01

    An experiment using methyle methanethiosulfonate (MMTS) and phenylmethylsulfonyl flouride (PMSF) to specifically modify the cysteine and serine residues in the active sites of papain and subtilism respectively is demonstrated. The covalent modification of these enzymes and subsequent rescue of papain shows the beginning biochemist that proteins…

  19. Incorporating Nondrug Social & Recreational Activities in Outpatient Chemical Dependency Treatment

    Science.gov (United States)

    Siporin, Sheldon; Baron, Lisa

    2012-01-01

    "Contingency Management programs (CMP) and non-drug social and recreational activities (NDSRA) are interventions premised on behavior theory that rely on external sources of reinforcement alternative to drug-based forms to decrease drug use. CMP usually employs vouchers as reinforcement for negative toxicologies. Despite research support, CMP…

  20. Chemical Constituents in Essential Oils from Elsholtzia ciliata and Their Antimicrobial Activities

    Institute of Scientific and Technical Information of China (English)

    TIAN Guang-hui

    2013-01-01

    Objective To compare the chemical constituents in the essential oils from the leaves,flowers,and seeds of Elsholtzia ciliata and their antimicrobial activities.Methods The chemical constituents in essential oils were extracted by the hydro-distillation method and analyzed by GC-MS.The chemical constituents in essential oils were identified on the basis of comparison on their retention indices and MS spectrum with published data.Moreover,the antimicrobial activities of the chemical constituents in the oils against the growth of six bacteria strains and one pathogenic yeast strain were evaluated by using minimum inhibitory concentration and minimum bactericidal concentration methods.Results A total of 58 compounds were identified,while compounds 31,35,and 36 were identified in the essential oils from the leaves,flowers,and seeds,respectively.Fifteen compounds were identified as shared constituents in the leaves,flowers,and seeds.The chemical constituents in the essential oils showed the inhibitory activities against the six bacteria strains and the yeast strain.Conclusion The major constituents are different in the essential oils of the leaves,flowers,and seeds.The major chemical constituents in the essential oils are monoterpenoids and sesquiterpenoids.And the chemical constituents in the essential oils obtained from the leaves show higher inhibitory activities especially against Bacillus subtillis CMCC63501 and Escherichia coli ATCC25922.

  1. Antimicrobial Activity and Chemical Composition of Albanian Oregano

    Directory of Open Access Journals (Sweden)

    EDLIRA NEZA

    2015-12-01

    Full Text Available ATCC 25922, Staphylococcus aureus ATCC 6538, Pseudomonas spp, Candida albicans ATCC 10231, Listeria monocytogenes ATCC 19111 and Salmonella typhimurium ATCC 14028. Antimicrobial activity of oregano essential oil was also tested against: E. coli, P. aeruginosa, S. aureus and C. albicans. Only oregano essential oil was active against microorganisms selected. Essential oil of oregano was analysed by GC-MS. Eighteen components were identified representing 99.48 % of the oil. Monoterpenes phenols and derivatives (borneol, 4-terpineol, carvacrol methyl ether, thymoquinone, thymol, carvacrol represented 74.66 % of essential oil. Carvacrol, p-cymene, thymol and γ-terpinene were the main components. Sesquiterpenes such as trans-caryophyllene, α-humulene, β-bisabolene, δ- Cadinene, caryophyllene oxide were also found.

  2. Antimicrobial activity and chemical investigation of Brazilian Drosera

    Directory of Open Access Journals (Sweden)

    Dalva Trevisan Ferreira

    2004-11-01

    Full Text Available The antimicrobial activity of three different extracts (hexanic, ethyl acetate, methanol obtained from Brazilian Drosera species (D. communis, D. montana var. montana, D. brevifolia, D. villosa var. graomogolensis, D. villosa var. villosa, Drosera sp. 1, and Drosera sp. 2 were tested against Staphylococcus aureus (ATCC 25923, Enterococcus faecium (ATCC23212, Pseudomonas aeruginosa (ATCC27853, Escherichia coli (ATCC11229, Salmonella choleraesuis (ATCC10708, Klebsiella pneumoniae (ATCC13883, and Candida albicans (a human isolate. Better antimicrobial activity was observed with D. communis and D. montana var. montana ethyl acetate extracts. Phytochemical analyses from D. communis, D. montana var. montana and D. brevifolia yielded 5-hydroxy-2-methyl-1,4-naphthoquinone (plumbagin; long chain aliphatic hydrocarbons were isolated from D. communis and from D. villosa var. villosa, a mixture of long chain aliphatic alcohols and carboxylic acids, was isolated from D. communis and 3b-O-acetylaleuritolic acid from D. villosa var. villosa.

  3. Hangman Catalysis for Photo- and Photoelectro- Chemical Activation of Water

    Energy Technology Data Exchange (ETDEWEB)

    Nocera, Daniel

    2014-04-15

    The focus of this DOE program is solar fuels – specifically the chemistry for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) from water and the oxygen reduction reaction (ORR) to water These three reactions are at the heart of renewable energy conversion. The bond-making and bond-breaking chemistry that underpins these transformations is not well understood. We are developing insight into such chemistry by creating a series of ligand constructs that poise an acid-base functionality over a redox active metal platform. These “hangman” ligands utilize the acid-base functionality to form a secondary coordination sphere that can assist proton movement and facilitate substrate assembly and activation within the molecular cleft. The grant period funding cycle focused on synthesis and reactivity of hangman porphyrins and corroles for HER, OER and ORR.

  4. Hematite Surface Activation by Chemical Addition of Tin Oxide Layer.

    Science.gov (United States)

    Carvalho, Waldemir M; Souza, Flavio L

    2016-09-05

    In this study, the effect of tin (Sn(4+) ) modification on the surface of hematite electrodes synthesized by an aqueous solution route at different times (2, 5, 10, 18, and 24 h) is investigated. As confirmed from X-ray diffraction results, the as-synthesized electrode exhibits an oxyhydroxide phase, which is converted into a pure hematite phase after being subjected to additional thermal treatment at 750 °C for 30 min. The tin-modified hematite electrode is prepared by depositing a solution of Sn(4+) precursor on the as-synthesized electrode, followed by thermal treatment under the same abovementioned conditions. This modification results in an enhancement of the photocurrent response for all hematite electrodes investigated and attains the highest values of around 1.62 and 2.3 mA cm(-2) at 1.23 and 1.4 V versus RHE, respectively, for electrodes obtained in short synthesis times (2 h). Contact angle measurements suggest that the deposition of Sn(4+) on the hematite electrode provides a more hydrophilic surface, which favors a chemical reaction at the interface between the electrode and electrolyte. This result generates new perspectives for understanding the deposition of Sn(4+) on the hematite electrode surface, which is in contrast with several studies previously reported; these studies state that the enhancement in photocurrent density is related to either the induction of an increased donor charge density or shift in the flat-band potential, which favors charge separation.

  5. Chemical properties and toxicity of soils contaminated by mining activity.

    Science.gov (United States)

    Agnieszka, Baran; Tomasz, Czech; Jerzy, Wieczorek

    2014-09-01

    This research is aimed at assessing the total content and soluble forms of metals (zinc, lead and cadmium) and toxicity of soils subjected to strong human pressure associated with mining of zinc and lead ores. The research area lay in the neighbourhood of the Bolesław Mine and Metallurgical Plant in Bukowno (Poland). The study obtained total cadmium concentration between 0.29 and 51.91 mg, zinc between 7.90 and 3,614 mg, and that of lead between 28.4 and 6844 mg kg(-1) of soil d.m. The solubility of the heavy metals in 1 mol dm(-3) NH4NO3 was 1-49% for zinc, 5-45% for cadmium, and Toxicity assessment of the soil samples was performed using two tests, Phytotoxkit and Microtox(®). Germination index values were between 22 and 75% for Sinapis alba, between 28 and 100% for Lepidium sativum, and between 10 and 28% for Sorghum saccharatum. Depending on the studied soil sample, Vibrio fischeri luminescence inhibition was 20-96%. The sensitivity of the test organisms formed the following series: S. saccharatum > S. alba = V. fischeri > L. sativum. Significant positive correlations (p ≤ 0.05) of the total and soluble contents of the metals with luminescence inhibition in V. fischeri and root growth inhibition in S. saccharatum were found. The general trend observed was an increase in metal toxicity measured by the biotest with increasing available metal contents in soils. All the soil samples were classified into toxicity class III, which means that they are toxic and present severe danger. Biotest are a good complement to chemical analyses in the assessment of quality of soils as well as in properly managing them.

  6. Evaluation of Biological Activities of Chemically Synthesized Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ashraf A. Mostafa

    2015-01-01

    Full Text Available Silver nanoparticles were synthesized by the earlier reported methods. The synthesized nanoparticles were characterized using ultraviolet-visible spectrophotometry (UV/Vis, transmission electron microscopy (TEM, energy dispersive X-ray spectroscopy (EDX, and X-ray powder diffraction (XRD. The synthesized materials were also evaluated for their antibacterial activity against Gram positive and Gram negative bacterial strains. TEM micrograph showed the spherical morphology of AgNPs with size range of 40–60 nm. The synthesized nanoparticles showed a strong antimicrobial activity and their effect depends upon bacterial strain as AgNPs exhibited greater inhibition zone for Pseudomonas aeruginosa (19.1 mm followed by Staphylococcus aureus (14.8 mm and S. pyogenes (13.6 mm while the least activity was observed for Salmonella typhi (12.5 mm at concentration of 5 µg/disc. The minimum inhibitory concentration (MIC of AgNPs against S. aureus was 2.5 µg/disc and less than 2.5 µg/disc for P. aeruginosa. These results suggested that AgNPs can be used as an effective antiseptic agent for infectious control in medical field.

  7. Chemical or biological activity in open chaotic flows

    Energy Technology Data Exchange (ETDEWEB)

    Karolyi, G. [Department of Civil Engineering Mechanics, Technical University of Budapest, Muegyetem rkp. 3, H-1521 Budapest (Hungary); Pentek, A. [Marine Physical Laboratory, University of California at San Diego, La Jolla, California 92093-0238 (United States); Toroczkai, Z. [Center for Stochastic Processes in Science and Engineering and Department of Physics, Virginia Polytechnic Institute, Blacksburg, Virgina 24061-0435 (United States); Toroczkai, Z.; Tel, T. [Institute for Theoretical Physics, Eoetvoes University, P.O. Box 32, H-1518 Budapest (Hungary); Grebogi, C. [Institute for Plasma Research, University of Maryland, College Park, Maryland 20742 (United States)

    1999-05-01

    We investigate the evolution of particle ensembles in open chaotic hydrodynamical flows. Active processes of the type A+B{r_arrow}2B and A+B{r_arrow}2C are considered in the limit of weak diffusion. As an illustrative advection dynamics we consider a model of the von K{acute a}rm{acute a}n vortex street, a time-periodic two-dimensional flow of a viscous fluid around a cylinder. We show that a fractal unstable manifold acts as a catalyst for the process, and the products cover fattened-up copies of this manifold. This may account for the observed filamental intensification of activity in environmental flows. The reaction equations valid in the wake are derived either in the form of dissipative maps or differential equations depending on the regime under consideration. They contain terms that are not present in the traditional reaction equations of the same active process: the decay of the products is slower while the productivity is much faster than in homogeneous flows. Both effects appear as a consequence of underlying fractal structures. In the long time limit, the system locks itself in a dynamic equilibrium state synchronized to the flow for both types of reactions. For particles of finite size an emptying transition might also occur leading to no products left in the wake. {copyright} {ital 1999} {ital The American Physical Society}

  8. Chemical or Biological Activity in Open Chaotic Flows

    CERN Document Server

    Karolyi, G; Toroczkai, Z; Tél, T; Grebogi, C; Karolyi, Gy.

    1999-01-01

    We investigate the evolution of particle ensembles in open chaotic hydrodynamical flows. Active processes of the type A+B --> 2B and A+B --> 2C are considered in the limit of weak diffusion. As an illustrative advection dynamics we consider a model of the von Kármán vortex street, a time periodic two-dimensional flow of a viscous fluid around a cylinder. We show that a fractal unstable manifold acts as a catalyst for the process, and the products cover fattened-up copies of this manifold. This may account for the observed filamental intensification of activity in environmental flows. The reaction equations valid in the wake are derived either in the form of dissipative maps or differential equations depending on the regime under consideration. They contain terms that are not present in the traditional reaction equations of the same active process: the decay of the products is slower while the productivity is much faster than in homogeneous flows. Both effects appear as a consequence of underlying fractal st...

  9. Extended Functional Groups (EFG: An Efficient Set for Chemical Characterization and Structure-Activity Relationship Studies of Chemical Compounds

    Directory of Open Access Journals (Sweden)

    Elena S. Salmina

    2015-12-01

    Full Text Available The article describes a classification system termed “extended functional groups” (EFG, which are an extension of a set previously used by the CheckMol software, that covers in addition heterocyclic compound classes and periodic table groups. The functional groups are defined as SMARTS patterns and are available as part of the ToxAlerts tool (http://ochem.eu/alerts of the On-line CHEmical database and Modeling (OCHEM environment platform. The article describes the motivation and the main ideas behind this extension and demonstrates that EFG can be efficiently used to develop and interpret structure-activity relationship models.

  10. Effects of predator chemical cues and behavioral biorhythms on foraging activity of terrestrial salamanders.

    Science.gov (United States)

    Maerz, J C; Panebianco, N L; Madison, D M

    2001-07-01

    Red-backed salamanders, Plethodon cinereus, show a variety of alarm responses to chemical cues from eastern garter snakes, Thamnophis sirtalis. We measured the foraging activity of red-backed salamanders exposed to water soiled by a garter snake (fed P. cinereus) or to unsoiled water. Salamanders exposed to snake-soiled water showed less foraging activity than salamanders exposed to unsoiled water; therefore, predators could have nonlethal effects on salamander populations. Our results also show additional factors influenced salamander foraging activity. Salamander foraging activity and responsiveness to chemical cues do not appear to have been affected by sex or food deprivation. Salamander foraging activity does appear to have been influenced by activity biorhythms. Foraging activity of animals in both treatments showed a bimodal periodicity that is consistent with natural activity patterns controlled by internal biorhythms. Exposure to snake-soiled water significantly reduced foraging activity during periods of peak foraging activity, but had a subtler effect on foraging activity during natural lulls in activity. We suggest that both activity biorhythms and exposure to chemical cues are important factors affecting salamander foraging behavior.

  11. Chemical enhanced oil recovery (EOR) activities in Indonesia: How it's future

    Science.gov (United States)

    Abdurrahman, Muslim

    2017-05-01

    Enhanced oil recovery (EOR) is a proven method for increasing oil production in many oil fields in the world. Huge oil remaining in the reservoir after primary and secondary recovery stage are the main reason for developing EOR methods. Approximately of 49.50 billion barrels oil as a candidate for EOR activities in Indonesia. This present study focuses on the chemical EOR activities involved surfactant and polymer. This research based on pertinent information from various resources such as journal papers, conference papers, and report from the government. Based on this information, this paper explain in detail the progress of each project and it shows the potential oil field employ chemical EOR in the near future. Generally, the EOR activities can be categorized into two phases such as preliminary study phase and field implementation phase. In the preliminary study, the activities simply involve experimental and/or simulation works. Following the preliminary is the field implementation phase which can be categorized into three phases such as field trial, pilot project, and full-scale. In fact, several activities have been conducted by Lemigas (government oil and gas research center), Institut Teknologi Bandung, Institut Pertanian Bogor. These activities focused on laboratory and simulation work. Those institutions have been developing the chemical formula collaborating with oil companies for applying the EOR method in their oil fields. Currently, status of chemical EOR activities include 5 oil fields under pilot project and 12 oil fields under field trial. There are 7 oil fields applying surfactant, 4 oil fields by alkaline-surfactant-polymer (ASP), 2 oil fields by polymer, 1 oil field by surfactant polymer (SP), and 1 oil field by caustic. According to this information, we will have insight knowledge about the EOR current activities, the main issues, future activities on chemical EOR in Indonesia. Moreover, this study can became the preliminary information for

  12. [Chemical constituents of Jasminum giraldii and their antioxidant activity].

    Science.gov (United States)

    Zhang, Xiu-Peng; Qin, Hui; Yang, Fang; Chai, Jiang; Wang, Xin; Song, Xiao-Mei; Mei, Qi-Bing; Feng, Feng; Yue, Zheng-Gang

    2014-06-01

    Ten compounds were isolated from the barks of Jasminum giraldii by means of various of chromatographic techniques such as silica gel, Sephadex LH-20 and Rp-HPLC. Their structures were identified by spectroscopic data analysis as (+)-medioresinol (1), (+) -syringaresinol (2), syringaresinol-4'-O-beta-D-glucopyranoside (3), oleanic acid (4), 3-methoxy-4-hydroxy-trans-cinnamaldehyde (5), trans-sinapaldehyde (6), syringaldehyde (7), 1-(4-methoxy -phenyl) -ethanol (8), trans-cinnamic acid (9), and 4-(1-methoxyethyl) -phenol (10). Among them, compounds 1-3, 5-8 and 10 were isolated from the J. genus for the first time and compounds 4 and 9 were obtained from J. giraldii for the first time. In the DPPH free radical scavenging assay, compound 1 exhibited significant activity (IC50 55.1 micromol x L(-1)), compared with vitamin C(IC50 59.9 micromol x L(-1)); and compound 2 showed moderate activity (IC50 79.0 micromol x L(-1)), compared with 2, 6-di-tert-butyl4-methylphenol (IC50 236 micromol x L(-1)).

  13. Chemical constituents and antioxidant activity of Mallotus roxburghianus leaves.

    Science.gov (United States)

    Rana, Virendra S; Rawat, Mohan S M; Pant, Geeta; Nagatsu, Akito

    2005-06-01

    Mallotus roxburghianus is used in the traditional medicine in North-Eastern India, but previously no work has been done on the identification of bioactive compounds. Two new compounds, 3-(1-C-beta-D-glucopyranosyl)-2,6-dihydroxy-5-methoxybenzoic acid (6) and 2,4,8,9,10-pentahydroxy-3,7-dimethoxyanthracene-6-O-beta-D-rhamnopyranoside (7) together with beta-sitosterol (1), stigmasterol (2), betulinic acid (3), 4-hydroxybenzoic acid (4), beta-sitosterol-beta-D-glucoside (5), and bergenin (8) were isolated and identified from the leaves of M. roxburghianus. The chloroform soluble portion of the alcoholic extract of leaf, and compounds 3, 6, 7, and 8 exhibited encouraging antioxidant activities.

  14. Influence of chemical agents on the surface area and porosity of active carbon hollow fibers

    Directory of Open Access Journals (Sweden)

    LJILJANA M. KLJAJEVIĆ

    2011-09-01

    Full Text Available Active carbon hollow fibers were prepared from regenerated polysulfone hollow fibers by chemical activation using: disodium hydrogen phosphate 2-hydrate, disodium tetraborate 10-hydrate, hydrogen peroxide, and diammonium hydrogen phosphate. After chemical activation fibers were carbonized in an inert atmosphere. The specific surface area and porosity of obtained carbons were studied by nitrogen adsorption–desorption isotherms at 77 K, while the structures were examined with scanning electron microscopy and X-ray diffraction. The activation process increases these adsorption properties of fibers being more pronounced for active carbon fibers obtained with disodium tetraborate 10-hydrate and hydrogen peroxide as activator. The obtained active hollow carbons are microporous with different pore size distribution. Chemical activation with phosphates produces active carbon material with small surface area but with both mesopores and micropores. X-ray diffraction shows that besides turbostratic structure typical for carbon materials, there are some peaks which indicate some intermediate reaction products when sodium salts were used as activating agent. Based on data from the electrochemical measurements the activity and porosity of the active fibers depend strongly on the oxidizing agent applied.

  15. New propolis type from north-east Brazil: chemical composition, antioxidant activity and botanical origin.

    Science.gov (United States)

    Ferreira, Joselena M; Fernandes-Silva, Caroline C; Salatino, Antonio; Negri, Giuseppina; Message, Dejair

    2017-08-01

    Propolis is a bee product with wide diversity of biological activity. It has a complex composition, which is dependent on its botanical source. The present study aimed to determine the chemical profile, antioxidant activity and botanical origin of two samples of a propolis type from two locations of the state of Rio Grande do Norte (RN, north-east Brazil). The standard chemical characteristics of the RN propolis are similar or superior to the internationally marketed Brazilian green propolis. RN propolis from two locations have high antioxidant activity, corresponding to 10% (municipality of Afonso Bezerra) and 13% (municipality of Alto do Rodrigues) of quercetin activity by the 2,2-diphenyl-1-picrylhydrazyl method and to 15% (both locations) by the β-carotene discoloration method. High-performance liquid chromatography with diode array detection (HPLC-DAD)-electrospray ionization-tandem mass spectrometry analyses revealed that most constituents of the RN propolis are flavonoids, mainly flavonols and chalcones. HPLC-DAD analysis of ethanol extracts revealed a great similarity between the chemical profile of RN propolis and shoot apices of 'jurema-preta' (Mimosa tenuiflora, Leguminosae, Mimosoideae). 'Jurema-preta' shoot apices are likely resin sources of RN propolis. The chemical characteristics and antioxidant property of RN propolis provide promising prospects for the introduction of this type of propolis into the apicultural market. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  16. CO2 adsorption on chemically modified activated carbon.

    Science.gov (United States)

    Caglayan, Burcu Selen; Aksoylu, A Erhan

    2013-05-15

    CO2 adsorption capacity of a commercial activated carbon was improved by using HNO3 oxidation, air oxidation, alkali impregnation and heat treatment under helium gas atmosphere. The surface functional groups produced were investigated by diffuse reflectance infrared Fourier transform spectrometer (DRIFTS). CO2 adsorption capacities of the samples were determined by gravimetric analyses for 25-200°C temperature range. DRIFTS studies revealed the formation of carboxylic acid groups on the HNO3 oxidized adsorbents. Increased aromatization and uniform distribution of the Na particles were observed on the samples prepared by Na2CO3 impregnation onto HNO3 oxidized AC support. The adsorption capacities of the nonimpregnated samples were increased by high temperature helium treatments or by increasing the adsorption temperature; both leading to decomposition of surface oxygen groups, forming sites that can easily adsorb CO2. The adsorption capacity loss due to cyclic adsorption/desorption procedures was overcome with further surface stabilization of Na2CO3 modified samples with high temperature He treatments. With Na2CO3 impregnation the mass uptakes of the adsorbents at 20 bars and 25 °C were improved by 8 and 7 folds and at 1 bar were increased 15 and 16 folds, on the average, compared to their air oxidized and nitric acid oxidized supports, respectively.

  17. Physico Chemical Properties and Antioxidant Activity of Roselle Seed Extracts

    Directory of Open Access Journals (Sweden)

    Abdoulaye Idrissa Cissouma

    2013-11-01

    Full Text Available The aim of this research was to extract phenolic compounds from defatted Roselle (Hibiscus sabdariffaL. seed and assess their antioxidant potential. Water, ethanol (30%, methanol (30% and acetone (30% were used as solvent for extraction. The proximate composition, total phenolic content and extraction yield were analyzed. Antioxidant efficacies of Roselle seed extract were tested by using 1, 1-Diphenyl-2-Picrylhydrazyl (DPPH, hydroxyl, 2, 2’-azinobis-3-ethylbenzothiaz oline-6-sulfonic acid (ABTS radicals scavenging capacities and reducing power analysis. Roselle seeds were found to be rich in protein (27.745%, carbohydrates (40.45% and oil (20.83%. The total phenolic content ranged from 1.66±0.03 to 1.99±0.01 (GAE mg/g using water and 30% acetone respectively. The highest inhibitory capacity on DPPH and ABTS radicals was observed in 30% acetone extract and was at 3 mg/mL for DPPH and 6 mg/mL for ABTS respectively. Ethanol extract showed the highest hydroxyl radical scavenging ability value of 66.36 at 20 mg/mL, followed by methanol (57.27, acetone (56.36 and water (30. The reducing potential of the different extracts was concentration dependent and increased with increase in concentration. These results indicate that substantial antioxidant activity can be obtained from Roselle seed phenolic compounds extract by using 30% acetone.

  18. Polysaccharides from Arctium lappa L.: Chemical structure and biological activity.

    Science.gov (United States)

    Carlotto, Juliane; de Souza, Lauro M; Baggio, Cristiane H; Werner, Maria Fernanda de P; Maria-Ferreira, Daniele; Sassaki, Guilherme L; Iacomini, Marcello; Cipriani, Thales R

    2016-10-01

    The plant Arctium lappa L. is popularly used to relieve symptoms of inflammatory disorders. A crude polysaccharide fraction (SAA) resulting of aqueous extraction of A. lappa leaves showed a dose dependent anti-edematogenic activity on carrageenan-induced paw edema, which persisted for up to 48h. Sequential fractionation by ultrafiltration at 50kDa and 30kDa cut-off membranes yielded three fractions, namely RF50, RF30, and EF30. All these maintained the anti-edematogenic effect, but RF30 showed a more potent action, inhibiting 57% of the paw edema at a dose of 4.9mg/kg. The polysaccharide RF30 contained galacturonic acid, galactose, arabinose, rhamnose, glucose, and mannose in a 7:4:2:1:2:1 ratio and had a Mw of 91,000g/mol. Methylation analysis and NMR spectroscopy indicated that RF30 is mainly constituted by a type I rhamnogalacturonan branched by side chains of types I and II arabinogalactans, and arabinan.

  19. Regeneration of bleaching clay waste by chemical activation with chloride salts.

    Science.gov (United States)

    Tsai, W T; Chen, H P; Hsieh, M F; Sun, H F; Lai, C W

    2003-04-01

    Spent bleaching earth (SBE) was regenerated by chemical activation with low cost and low pollution chlorides as activating agents. Under the conditions of activation temperature of 600d egrees C and holding time of 1 h investigated, results show that fresh bleaching earth and regenerated bleaching earth are type IV with hysteresis loops corresponding to type H3 from nitrogen adsorption-desorption isotherms, indicating slit-shaped mesoporous structure. It is also found that the effect of the regeneration treatment studied in the present work on the pore structures and chemical properties of the resulting solids is negligible compared to the fresh bleaching earth. On the other hand, the pore properties of these chemically activated solids are higher than those of the sample regenerated from heat regeneration, but only approximate 45% of surface area are reclaimed. It implies that the carbon residues could be retained within pores and/or clogs the entrance of pores, resulting in a decrease in pore properties.

  20. 75 FR 53691 - Pesticide Products; Registration Applications for a New Active Ingredient Chemical Sedaxane

    Science.gov (United States)

    2010-09-01

    ... AGENCY Pesticide Products; Registration Applications for a New Active Ingredient Chemical Sedaxane AGENCY... pesticide products containing an active ingredient not included in any previously registered pesticide products. Pursuant to the provisions of section 3(c)(4) of the Federal Insecticide, Fungicide,...

  1. CHARACTERIZATION OF ACTIVATED CARBONS' PHYSICAL AND CHEMICAL PROPERTIES IN RELATION TO THEIR MERCURY ADSORPTION

    Science.gov (United States)

    The paper gives results of a characterization of the physical and chemical properties of the activated carbons used for elemental mercury (Hgo) adsorption, in order to understand the role of oxygen surface functional groups on the mechanism of Hgo adsorption by activated carbons....

  2. Using Laboratory Chemicals to Imitate Illicit Drugs in a Forensic Chemistry Activity

    Science.gov (United States)

    Hasan, Shawn; Bromfield-Lee, Deborah; Oliver-Hoyo, Maria T.; Cintron-Maldonado, Jose A.

    2008-01-01

    This forensic chemistry activity utilizes presumptive forensic testing procedures and laboratory chemicals that produce screening results similar to controlled substances. For obvious reasons, obtaining heavily regulated controlled substances to create an undergraduate student activity is not practical for most educational institutions. We were…

  3. Differential effects of environmental chemicals and food contaminants on adipogenesis, biomarker release and PPARγ activation

    DEFF Research Database (Denmark)

    Taxvig, Camilla; Sørensen, Karin Dreisig; Boberg, Julie

    2012-01-01

    and resistin from the cells. Butylparaben activated PPARγ as well, which may be a mediator of the adipogenic effect. Polychlorinated biphenyl (PCB)153 also stimulate adipogenesis and biomarker release, but did not affect PPARs. The data indicates that PPARγ activating chemicals often stimulate adipocyte...

  4. Using Laboratory Chemicals to Imitate Illicit Drugs in a Forensic Chemistry Activity

    Science.gov (United States)

    Hasan, Shawn; Bromfield-Lee, Deborah; Oliver-Hoyo, Maria T.; Cintron-Maldonado, Jose A.

    2008-01-01

    This forensic chemistry activity utilizes presumptive forensic testing procedures and laboratory chemicals that produce screening results similar to controlled substances. For obvious reasons, obtaining heavily regulated controlled substances to create an undergraduate student activity is not practical for most educational institutions. We were…

  5. Chemical structures and biological activities of bis- and tetrakis-acridine derivatives: A review

    Science.gov (United States)

    Nowak, Katarzyna

    2017-10-01

    A review of the literature on the biological activity of bis-acridines (diacridines) and tetrakis-acridines (tetra-acridines) is presented. Chemical structures of the most active derivatives are provided. In particular, the last decade's literature on the subject is discussed.

  6. Orientation of sustainable management of chemical company with international activity

    Directory of Open Access Journals (Sweden)

    Valéria da Veiga Dias

    2013-04-01

    Full Text Available The search for new business possibilities, either through international activities and capture niche markets appear as a distinct trend among organizations that target growth. For this growing number of organizations intent on investing in new issues related to values such as citizenship, ethics and environmental concerns. There is the adoption of a more responsive to the community or even the acceptance of responsibility for the impacts of their production processes, inserting themselves in what was initially called the Social Responsibility within the business context and developed the concept of Elkington (1998 generated a discussion about a new movement that was called a sustainable paradigm. It was observed generally that sustainable management is still very close to supporting tools and not as part of the construction of corporate strategy although it is possible to realize that they seek a greater involvement in this direction when they start to review their strategies. This question can be perceived at different levels between the companies, but which shows the issue is the lack of direct indicators for investment and sustainable return. Sustainable management proved to be a source of opportunity for overseas business for the companies studied, as preparation for work with environmental legislation, global requirements, raw materials and environmentally friendly processes organizations prepared to market in the global sphere, and Brazil note that the innovative products for their production process and / or alternative raw material still do not get the spotlight. Acting in a sustainable manner enables the development of strategies agreed with conscious posture and changes in cultural terms in general, which can create new opportunities for those who can keep up with the global business scenario.

  7. Chemical composition and antioxidant activity of certain Morus species.

    Science.gov (United States)

    Imran, Mohammad; Khan, Hamayun; Shah, Mohibullah; Khan, Rasool; Khan, Faridullah

    2010-12-01

    In the present work, the fruits of four Morus species, namely Morus alba (white mulberry), Morus nigra (black mulberry), Morus laevigata (large white fruit), and Morus laevigata (large black fruit), were analyzed for proximate composition, essential minerals, and antioxidant potentials. For this purpose, the ripe fruits were collected from the northern regions of Pakistan. The major nutritional components (moisture, ash, lipids, proteins, fibres, carbohydrates, and total sugar) were found to be in the suitable range along with good computed energy. Total dry weight, pH, and titratable acidity (percent citric acid) were (17.60±1.94)-(21.97±2.34) mg/100 g, (3.20±0.07)-(4.78±0.15), and (0.84±0.40)%-(2.00±0.08)%, respectively. Low riboflavin (vitamin B(2)) and niacin (vitamin B(3)) contents were recorded in all the fruits, while ascorbic acid (vitamin C) was in the range from (15.20±1.25) to (17.03±1.71) mg/100 g fresh weight (FW). The mulberry fruits were rich with regard to the total phenol and alkaloid contents, having values of (880±7.20)-(1650±12.25) mg/100 g FW and (390±3.22)-(660±5.25) mg/100 g FW, respectively. Sufficient quantities of essential macro-(K, Ca, Mg, and Na) and micro-(Fe, Zn, and Ni) elements were found in all the fruits. K was the predominant element with concentration ranging from (1270±9.36) to (1731±11.50) mg/100 g, while Ca, Na, and Mg contents were (440±3.21)-(576±7.37), (260±3.86)-(280±3.50), and (240±3.51)-(360±4.20) mg/100 g, respectivly. The decreasing order of micro-minerals was Fe>Zn>Ni. The radical scavenging activity of methanolic extract of fruits was concentration-dependent and showed a correlation with total phenolic constituents of the respective fruits. Based on the results obtained, mulberry fruits were found to serve as a potential source of food diet and natural antioxidants.

  8. Improved Chemical Structure-Activity Modeling Through Data Augmentation.

    Science.gov (United States)

    Cortes-Ciriano, Isidro; Bender, Andreas

    2015-12-28

    Extending the original training data with simulated unobserved data points has proven powerful to increase both the generalization ability of predictive models and their robustness against changes in the structure of data (e.g., systematic drifts in the response variable) in diverse areas such as the analysis of spectroscopic data or the detection of conserved domains in protein sequences. In this contribution, we explore the effect of data augmentation in the predictive power of QSAR models, quantified by the RMSE values on the test set. We collected 8 diverse data sets from the literature and ChEMBL version 19 reporting compound activity as pIC50 values. The original training data were replicated (i.e., augmented) N times (N ∈ 0, 1, 2, 4, 6, 8, 10), and these replications were perturbed with Gaussian noise (μ = 0, σ = σnoise) on either (i) the pIC50 values, (ii) the compound descriptors, (iii) both the compound descriptors and the pIC50 values, or (iv) none of them. The effect of data augmentation was evaluated across three different algorithms (RF, GBM, and SVM radial) and two descriptor types (Morgan fingerprints and physicochemical-property-based descriptors). The influence of all factor levels was analyzed with a balanced fixed-effect full-factorial experiment. Overall, data augmentation constantly led to increased predictive power on the test set by 10-15%. Injecting noise on (i) compound descriptors or on (ii) both compound descriptors and pIC50 values led to the highest drop of RMSEtest values (from 0.67-0.72 to 0.60-0.63 pIC50 units). The maximum increase in predictive power provided by data augmentation is reached when the training data is replicated one time. Therefore, extending the original training data with one perturbed repetition thereof represents a reasonable trade-off between the increased performance of the models and the computational cost of data augmentation, namely increase of (i) model complexity due to the need for optimizing

  9. Investigation of the chemical composition-antibacterial activity relationship of essential oils by chemometric methods.

    Science.gov (United States)

    Miladinović, Dragoljub L; Ilić, Budimir S; Mihajilov-Krstev, Tatjana M; Nikolić, Nikola D; Miladinović, Ljiljana C; Cvetković, Olga G

    2012-05-01

    The antibacterial effects of Thymus vulgaris (Lamiaceae), Lavandula angustifolia (Lamiaceae), and Calamintha nepeta (Lamiaceae) Savi subsp. nepeta var. subisodonda (Borb.) Hayek essential oils on five different bacteria were estimated. Laboratory control strain and clinical isolates from different pathogenic media were researched by broth microdilution method, with an emphasis on a chemical composition-antibacterial activity relationship. The main constituents of thyme oil were thymol (59.95%) and p-cymene (18.34%). Linalool acetate (38.23%) and β-linalool (35.01%) were main compounds in lavender oil. C. nepeta essential oil was characterized by a high percentage of piperitone oxide (59.07%) and limonene (9.05%). Essential oils have been found to have antimicrobial activity against all tested microorganisms. Classification and comparison of essential oils on the basis of their chemical composition and antibacterial activity were made by utilization of appropriate chemometric methods. The chemical principal component analysis (PCA) and hierachical cluster analysis (HCA) separated essential oils into two groups and two sub-groups. Thyme essential oil forms separate chemical HCA group and exhibits highest antibacterial activity, similar to tetracycline. Essential oils of lavender and C. nepeta in the same chemical HCA group were classified in different groups, within antibacterial PCA and HCA analyses. Lavender oil exhibits higher antibacterial ability in comparison with C. nepeta essential oil, probably based on the concept of synergistic activity of essential oil components.

  10. Chemically active colloids near osmotic-responsive walls with surface-chemistry gradients

    Science.gov (United States)

    Popescu, M. N.; Uspal, W. E.; Dietrich, S.

    2017-04-01

    Chemically active colloids move by creating gradients in the composition of the surrounding solution and by exploiting the differences in their interactions with the various molecular species in solution. If such particles move near boundaries, e.g. the walls of the container confining the suspension, gradients in the composition of the solution are also created along the wall. This give rise to chemi-osmosis (via the interactions of the wall with the molecular species forming the solution), which drives flows coupling back to the colloid and thus influences its motility. Employing an approximate ‘point-particle’ analysis, we show analytically that—owing to this kind of induced active response (chemi-osmosis) of the wall—such chemically active colloids can align with, and follow, gradients in the surface chemistry of the wall. In this sense, these artificial ‘swimmers’ exhibit a primitive form of thigmotaxis with the meaning of sensing the proximity of a (not necessarily discontinuous) physical change in the environment. We show that the alignment with the surface-chemistry gradient is generic for chemically active colloids as long as they exhibit motility in an unbounded fluid, i.e. this phenomenon does not depend on the exact details of the propulsion mechanism. The results are discussed in the context of simple models of chemical activity, corresponding to Janus particles with ‘source’ chemical reactions on one half of the surface and either ‘inert’ or ‘sink’ reactions over the other half.

  11. Chemically active colloids near osmotic-responsive walls with surface-chemistry gradients.

    Science.gov (United States)

    Popescu, M N; Uspal, W E; Dietrich, S

    2017-04-05

    Chemically active colloids move by creating gradients in the composition of the surrounding solution and by exploiting the differences in their interactions with the various molecular species in solution. If such particles move near boundaries, e.g. the walls of the container confining the suspension, gradients in the composition of the solution are also created along the wall. This give rise to chemi-osmosis (via the interactions of the wall with the molecular species forming the solution), which drives flows coupling back to the colloid and thus influences its motility. Employing an approximate 'point-particle' analysis, we show analytically that-owing to this kind of induced active response (chemi-osmosis) of the wall-such chemically active colloids can align with, and follow, gradients in the surface chemistry of the wall. In this sense, these artificial 'swimmers' exhibit a primitive form of thigmotaxis with the meaning of sensing the proximity of a (not necessarily discontinuous) physical change in the environment. We show that the alignment with the surface-chemistry gradient is generic for chemically active colloids as long as they exhibit motility in an unbounded fluid, i.e. this phenomenon does not depend on the exact details of the propulsion mechanism. The results are discussed in the context of simple models of chemical activity, corresponding to Janus particles with 'source' chemical reactions on one half of the surface and either 'inert' or 'sink' reactions over the other half.

  12. Chemical composition and antibacterial activity of essential oils from the Tunisian Allium nigrum L.

    OpenAIRE

    Rouis-Soussi, Lamia Sakka; Ayeb-Zakhama, El Asma; Mahjoub, Aouni; Flamini, Guido; Jannet, Hichem Ben; Harzallah-Skhiri, Fethia

    2014-01-01

    The chemical composition of the essential oils of different Allium nigrum L. organs and the antibacterial activity were evaluated. The study is particularly interesting because hitherto there are no reports on the antibacterial screening of this species with specific chemical composition. Therefore, essential oils from different organs (flowers, stems, leaves and bulbs) obtained separately by hydrodistillation were analyzed using gas chromatography–mass spectrometry (GC–MS). The antibacterial...

  13. Fault Diagnosis Based on Chemical Sensor Data with an Active Deep Neural Network.

    Science.gov (United States)

    Jiang, Peng; Hu, Zhixin; Liu, Jun; Yu, Shanen; Wu, Feng

    2016-10-13

    Big sensor data provide significant potential for chemical fault diagnosis, which involves the baseline values of security, stability and reliability in chemical processes. A deep neural network (DNN) with novel active learning for inducing chemical fault diagnosis is presented in this study. It is a method using large amount of chemical sensor data, which is a combination of deep learning and active learning criterion to target the difficulty of consecutive fault diagnosis. DNN with deep architectures, instead of shallow ones, could be developed through deep learning to learn a suitable feature representation from raw sensor data in an unsupervised manner using stacked denoising auto-encoder (SDAE) and work through a layer-by-layer successive learning process. The features are added to the top Softmax regression layer to construct the discriminative fault characteristics for diagnosis in a supervised manner. Considering the expensive and time consuming labeling of sensor data in chemical applications, in contrast to the available methods, we employ a novel active learning criterion for the particularity of chemical processes, which is a combination of Best vs. Second Best criterion (BvSB) and a Lowest False Positive criterion (LFP), for further fine-tuning of diagnosis model in an active manner rather than passive manner. That is, we allow models to rank the most informative sensor data to be labeled for updating the DNN parameters during the interaction phase. The effectiveness of the proposed method is validated in two well-known industrial datasets. Results indicate that the proposed method can obtain superior diagnosis accuracy and provide significant performance improvement in accuracy and false positive rate with less labeled chemical sensor data by further active learning compared with existing methods.

  14. Fault Diagnosis Based on Chemical Sensor Data with an Active Deep Neural Network

    Directory of Open Access Journals (Sweden)

    Peng Jiang

    2016-10-01

    Full Text Available Big sensor data provide significant potential for chemical fault diagnosis, which involves the baseline values of security, stability and reliability in chemical processes. A deep neural network (DNN with novel active learning for inducing chemical fault diagnosis is presented in this study. It is a method using large amount of chemical sensor data, which is a combination of deep learning and active learning criterion to target the difficulty of consecutive fault diagnosis. DNN with deep architectures, instead of shallow ones, could be developed through deep learning to learn a suitable feature representation from raw sensor data in an unsupervised manner using stacked denoising auto-encoder (SDAE and work through a layer-by-layer successive learning process. The features are added to the top Softmax regression layer to construct the discriminative fault characteristics for diagnosis in a supervised manner. Considering the expensive and time consuming labeling of sensor data in chemical applications, in contrast to the available methods, we employ a novel active learning criterion for the particularity of chemical processes, which is a combination of Best vs. Second Best criterion (BvSB and a Lowest False Positive criterion (LFP, for further fine-tuning of diagnosis model in an active manner rather than passive manner. That is, we allow models to rank the most informative sensor data to be labeled for updating the DNN parameters during the interaction phase. The effectiveness of the proposed method is validated in two well-known industrial datasets. Results indicate that the proposed method can obtain superior diagnosis accuracy and provide significant performance improvement in accuracy and false positive rate with less labeled chemical sensor data by further active learning compared with existing methods.

  15. Chemical Composition and Antioxidant Activity of Euterpe oleracea Roots and Leaflets

    OpenAIRE

    2016-01-01

    Euterpe oleracea (açaí) is a palm tree well known for the high antioxidant activity of its berries used as dietary supplements. Little is known about the biological activity and the composition of its vegetative organs. The objective of this study was to investigate the antioxidant activity of root and leaflet extracts of Euterpe oleracea (E. oleracea) and characterize their phytochemicals. E. oleracea roots and leaflets extracts were screened in different chemical antioxidant assays (DPPH—2,...

  16. [Relationship among soil enzyme activities, vegetation state, and soil chemical properties of coal cinder yard].

    Science.gov (United States)

    Wang, Youbao; Zhang, Li; Liu, Dengyi

    2003-01-01

    From field investigation and laboratory analysis, the relationships among soil enzyme activities, vegetation state and soil chemical properties of coal cinder yard in thermal power station were studied. The results showed that vegetation on coal cinder yard was distributed in scattered patch mainly with single species of plant, and herbs were the dominant species. At the same time, the activity of three soil enzymes had a stronger relativity to environment conditions, such as vegetation state and soil chemical properties. The sensitivity of three soil enzymes to environmental stress was in order of urease > sucrase > catalase. The relativity of three soil enzymes to environmental factor was in order of sucrase > urease > catalase. Because of urease being the most susceptible enzyme to environmental conditions, and it was marked or utmost marked interrelated with vegetation state and soil chemical properties, urease activity could be used as an indicator for the reclamation of wasteland.

  17. Analysis and classification of physical and chemical methods of fuel activation

    Directory of Open Access Journals (Sweden)

    Fedorchak Viktoriya

    2015-12-01

    Full Text Available The offered article explores various research studies, developed patents in terms of physical and chemical approaches to the activation of fuel. In this regard, national and foreign researches in the field of fuels activators with different principles of action were analysed, evaluating their pros and cons. The article also intends to classify these methods and compare them regarding diverse desired results and types of fuels used. In terms of physical and chemical influences on fuels and the necessity of making constructive changes in the fuel system of internal combustion engines, an optimal approach was outlined.

  18. Advances in Methane Activation Studies at Dalian Institute of Chemical Physics

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Following successful implementation of selective oxida-tion of methane into methanol at low temperature (80℃) through setting up a circulating system of multiple electron pairs the Dalian Institute of Chemical Physics (DICP) has made new stride in the fundamental research on direct acti-vation of methane. This institute by means of collaboration with the US West Pacific National Laboratory has acquired the complete information on the structure of active centers of solid catalysts with the relevant results published in the latest issue of Journal of American Chemical Society.

  19. Mathematical Modeling of Tin-Free Chemically-Active Antifouling Paint Behavior

    DEFF Research Database (Denmark)

    Yebra, Diego Meseguer; Kiil, Søren; Dam-Johansen, Kim

    2006-01-01

    Mathematical modeling has been used to characterize and validate the working mechanisms of tin-free, chemically-active antifouling (AF) paints. The model-based analysis of performance data from lab-scale rotary experiments has shown significant differences between antifouling technologies...... as regards the biocide leaching and the surface polishing processes. Hence, the modeling framework developed in this work is built so as to describe any generic, chemically-active AF paint through model parameters, the values of which can be obtained or adjusted from relatively fast measurements...

  20. Analysis of essential oils from Voacanga africana seeds at different hydrodistillation extraction stages: chemical composition, antioxidant activity and antimicrobial activity.

    Science.gov (United States)

    Liu, Xiong; Yang, Dongliang; Liu, Jiajia; Ren, Na

    2015-01-01

    In this study, essential oils from Voacanga africana seeds at different extraction stages were investigated. In the chemical composition analysis, 27 compounds representing 86.69-95.03% of the total essential oils were identified and quantified. The main constituents in essential oils were terpenoids, alcohols and fatty acids accounting for 15.03-24.36%, 21.57-34.43% and 33.06-57.37%, respectively. Moreover, the analysis also revealed that essential oils from different extraction stages possessed different chemical compositions. In the antioxidant evaluation, all analysed oils showed similar antioxidant behaviours, and the concentrations of essential oils providing 50% inhibition of DPPH-scavenging activity (IC50) were about 25 mg/mL. In the antimicrobial experiments, essential oils from different extraction stages exhibited different antimicrobial activities. The antimicrobial activity of oils was affected by extraction stages. By controlling extraction stages, it is promising to obtain essential oils with desired antimicrobial activities.

  1. A Global Genomic Screening Strategy Reveals Genetic and Chemical Activators ofPeroxisome Proliferator-Activated Receptor alpha (PPARalpha)

    Science.gov (United States)

    A comprehensive survey of chemical, diet and genetic perturbations that activate PPARalpha in the mouse liver has not been carried out but would be useful to identify the factors that may contribute to PPARalpha-dependent liver tumors. A gene signature dependent on PPARalpha ac...

  2. Gamma irradiation effect on the chemical composition and the antioxidant activity of Ipomoea batatas L

    Energy Technology Data Exchange (ETDEWEB)

    Tahir, D., E-mail: dtahir@fmipa.unhas.ac.id; Halide, H., E-mail: dtahir@fmipa.unhas.ac.id; Kurniawan, D. [Department of Physics, Hasanuddin University, Makassar 90245 (Indonesia); Wahab, A. W. [Department of Chemistry, Hasanuddin University, Makassar 90245 (Indonesia)

    2014-09-25

    The chemical composition and antioxidant activity of Ipomoea batatas L. (sweet potato) were studied by x-ray fluorescence (XRF) spectroscopy, Fourier transform infrared spectroscopy, and by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging capacity. The irradiation treatment was performed by using Cs-137 as a gamma sources in experimental equipment. Treatment by irradiation emerges as a possible conservation technique that has been tested successfully in several food products. The amount of chemical composition was changed and resulting new chemical for absorbed dose 40 mSv. Interestingly, it was found that gamma irradiation significantly increased the antioxidant activity, as measured by DPPH radical scavenging capacity. The antioxidant activity of Ipomoea batatas L. extract was dramatically increased in the non-irradiated sample to the sample irradiated at 40 mSv. These results indicate that gamma irradiation of Ipomoea batatas L. extract can enhance its antioxidant activity through the formation of a new chemical compound. Based on these results, increased antioxidant activity of Ipomoea batatas L. extracts by gamma rays can be applied to various industries, especially cosmetics, foodstuffs, and pharmaceuticals.

  3. Gamma irradiation effect on the chemical composition and the antioxidant activity of Ipomoea batatas L.

    Science.gov (United States)

    Tahir, D.; Halide, H.; Wahab, A. W.; Kurniawan, D.

    2014-09-01

    The chemical composition and antioxidant activity of Ipomoea batatas L. (sweet potato) were studied by x-ray fluorescence (XRF) spectroscopy, Fourier transform infrared spectroscopy, and by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging capacity. The irradiation treatment was performed by using Cs-137 as a gamma sources in experimental equipment. Treatment by irradiation emerges as a possible conservation technique that has been tested successfully in several food products. The amount of chemical composition was changed and resulting new chemical for absorbed dose 40 mSv. Interestingly, it was found that gamma irradiation significantly increased the antioxidant activity, as measured by DPPH radical scavenging capacity. The antioxidant activity of Ipomoea batatas L. extract was dramatically increased in the non-irradiated sample to the sample irradiated at 40 mSv. These results indicate that gamma irradiation of Ipomoea batatas L. extract can enhance its antioxidant activity through the formation of a new chemical compound. Based on these results, increased antioxidant activity of Ipomoea batatas L. extracts by gamma rays can be applied to various industries, especially cosmetics, foodstuffs, and pharmaceuticals.

  4. Chemical features of Ganoderma polysaccharides with antioxidant, antitumor and antimicrobial activities.

    Science.gov (United States)

    Ferreira, Isabel C F R; Heleno, Sandrina A; Reis, Filipa S; Stojkovic, Dejan; Queiroz, Maria João R P; Vasconcelos, M Helena; Sokovic, Marina

    2015-06-01

    Ganoderma genus comprises one of the most commonly studied species worldwide, Ganoderma lucidum. However, other Ganoderma species have been also reported as important sources of bioactive compounds. Polysaccharides are important contributors to the medicinal properties reported for Ganoderma species, as demonstrated by the numerous publications, including reviews, on this matter. Yet, what are the chemical features of Ganoderma polysaccharides that have bioactivity? In the present manuscript, the chemical features of Ganoderma polysaccharides with reported antioxidant, antitumor and antimicrobial activities (the most studied worldwide) are analyzed in detail. The composition of sugars (homo- versus hetero-glucans and other polysaccharides), type of glycosidic linkages, branching patterns, and linkage to proteins are discussed. Methods for extraction, isolation and identification are evaluated and, finally, the bioactivity of polysaccharidic extracts and purified compounds are discussed. The integration of data allows deduction of structure-activity relationships and gives clues to the chemical aspects involved in Ganoderma bioactivity.

  5. Clustering and rule-based classifications of chemical structures evaluated in the biological activity space.

    Science.gov (United States)

    Schuffenhauer, Ansgar; Brown, Nathan; Ertl, Peter; Jenkins, Jeremy L; Selzer, Paul; Hamon, Jacques

    2007-01-01

    Classification methods for data sets of molecules according to their chemical structure were evaluated for their biological relevance, including rule-based, scaffold-oriented classification methods and clustering based on molecular descriptors. Three data sets resulting from uniformly determined in vitro biological profiling experiments were classified according to their chemical structures, and the results were compared in a Pareto analysis with the number of classes and their average spread in the profile space as two concurrent objectives which were to be minimized. It has been found that no classification method is overall superior to all other studied methods, but there is a general trend that rule-based, scaffold-oriented methods are the better choice if classes with homogeneous biological activity are required, but a large number of clusters can be tolerated. On the other hand, clustering based on chemical fingerprints is superior if fewer and larger classes are required, and some loss of homogeneity in biological activity can be accepted.

  6. A thermodynamical formulation for chemically active multi-phase turbulent flows

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadi, G.; Cao, J.

    1995-03-01

    A generalized thermodynamics for chemically active multiphase solid-fluid mixtures in turbulent state of motion is formulated. The global equations of balance for each phase are ensemble averaged and the local conservation laws for the mean motions are derived. The averaged and the local conservation laws for the mean motions are derived. The averaged form of the Clausius-Duhem inequality is used and the thermodynamics of the chemically active mixtures in turbulent motion is studied. Particular attention is given to the species concentration and chemical reaction effects, in addition to transport and interaction of the phasic fluctuation energies. Based on the averaged entropy inequality, constitutive equations for the stresses, energy, heat and mass fluxes of various species are developed. The explicit governing equations of motion are derived and discussed.

  7. Identification of chemical modulators of the constitutive activated receptor (CAR) in a gene expression compendium.

    Science.gov (United States)

    Oshida, Keiyu; Vasani, Naresh; Jones, Carlton; Moore, Tanya; Hester, Susan; Nesnow, Stephen; Auerbach, Scott; Geter, David R; Aleksunes, Lauren M; Thomas, Russell S; Applegate, Dawn; Klaassen, Curtis D; Corton, J Christopher

    2015-01-01

    The nuclear receptor family member constitutive activated receptor (CAR) is activated by structurally diverse drugs and environmentally-relevant chemicals leading to transcriptional regulation of genes involved in xenobiotic metabolism and transport. Chronic activation of CAR increases liver cancer incidence in rodents, whereas suppression of CAR can lead to steatosis and insulin insensitivity. Here, analytical methods were developed to screen for chemical treatments in a gene expression compendium that lead to alteration of CAR activity. A gene expression biomarker signature of 83 CAR-dependent genes was identified using microarray profiles from the livers of wild-type and CAR-null mice after exposure to three structurally-diverse CAR activators (CITCO, phenobarbital, TCPOBOP). A rank-based algorithm (Running Fisher's algorithm (p-value ≤ 10(-4))) was used to evaluate the similarity between the CAR biomarker signature and a test set of 28 and 32 comparisons positive or negative, respectively, for CAR activation; the test resulted in a balanced accuracy of 97%. The biomarker signature was used to identify chemicals that activate or suppress CAR in an annotated mouse liver/primary hepatocyte gene expression database of ~1850 comparisons. CAR was activated by 1) activators of the aryl hydrocarbon receptor (AhR) in wild-type but not AhR-null mice, 2) pregnane X receptor (PXR) activators in wild-type and to lesser extents in PXR-null mice, and 3) activators of PPARα in wild-type and PPARα-null mice. CAR was consistently activated by five conazole fungicides and four perfluorinated compounds. Comparison of effects in wild-type and CAR-null mice showed that the fungicide propiconazole increased liver weight and hepatocyte proliferation in a CAR-dependent manner, whereas the perfluorinated compound perfluorooctanoic acid (PFOA) increased these endpoints in a CAR-independent manner. A number of compounds suppressed CAR coincident with increases in markers of

  8. Modeling Chemical Detection Sensitivities of Active and Passive Remote Sensing Systems

    Energy Technology Data Exchange (ETDEWEB)

    Scharlemann, E T

    2003-07-28

    During nearly a decade of remote sensing programs under the auspices of the U. S. Department of Energy (DOE), LLNL has developed a set of performance modeling codes--called APRS--for both Active and Passive Remote Sensing systems. These codes emphasize chemical detection sensitivity in the form of minimum detectable quantities with and without background spectral clutter and in the possible presence of other interfering chemicals. The codes have been benchmarked against data acquired in both active and passive remote sensing programs at LLNL and Los Alamos National Laboratory (LANL). The codes include, as an integral part of the performance modeling, many of the data analysis techniques developed in the DOE's active and passive remote sensing programs (e.g., ''band normalization'' for an active system, principal component analysis for a passive system).

  9. The performance of supercapacitor electrodes developed from chemically activated carbon produced from waste tea

    Science.gov (United States)

    Inal, I. Isil Gurten; Holmes, Stuart M.; Banford, Anthony; Aktas, Zeki

    2015-12-01

    Highly microporous and mesoporous activated carbons were produced from waste tea for application as supercapacitor electrodes, utilising a chemical activation method involving treatment with either K2CO3 or H3PO4. The area, pore structure characteristics and surface functionality of the activated carbons were evaluated to investigate the influence on electrochemical performance. The performance of the activated carbons as supercapacitor electrodes was tested by cyclic voltammetry (CV), impedance spectroscopy (EIS) and galvanostatic charge-discharge (GCD) measurements, in an aqueous electrolyte. The results showed that the pore structure and type of the activated carbon have significant impact on the supercapacitor performance. Both waste tea-based activated carbon electrodes showed good cyclic stability. However, despite its lower specific surface area the highly microporous activated carbon produced with K2CO3, exhibited much better capacitive performance than that of the mesoporous activated carbon produced with H3PO4.

  10. Functional, photochemically active, and chemically asymmetric membranes by interfacial polymerization of derivatized multifunctional prepolymers

    Energy Technology Data Exchange (ETDEWEB)

    Lonsdale, H.K.; Wamser, C.C.

    1990-04-17

    The preparation of a novel class of thin film membranes by interfacial polymerization is disclosed, said membranes incorporating as part of their polymeric structure the functionality of monomeric or oligomeric precursors. Specific embodiments include porphyrin and phthalocyanine derivatives that are photochemically or electrochemically active, as well as chemically asymmetric membranes.

  11. Functional, photochemically active, and chemically asymmetric membranes by interfacial polymerization of derivatized multifunctional prepolymers

    Science.gov (United States)

    Lonsdale, Harold K.; Wamser, Carl C.

    1988-01-01

    The preparation of a novel class of thin film membranes by interfacial polymerization is disclosed, said membanes incorporating as part of their polymeric structure the functionality of monomeric or oligomeric precursors. Specific embodiments include porphyrin and phthalocyanime derivatives that are photochemically or electrochemically active, as well as chemically asymmetric membranes.

  12. Fenton-Driven Chemical Regeneration of MTBE-Spent Granular Activated Carbon -- A Pilot Study

    Science.gov (United States)

    MTBE-spent granular activated carbon (GAC) underwent 3 adsorption/oxidation cycles. Pilot-scale columns were intermittently placed on-line at a ground water pump and treat facility, saturated with MTBE, and regenerated with H2O2 under different chemical, physical, and operational...

  13. Active-site residues of procarboxypeptidase Y are accessible to chemical modification

    DEFF Research Database (Denmark)

    Sørensen, S O; Winther, Jakob R.

    1994-01-01

    The accessibility of the active-site cleft of procarboxypeptidase Y from Saccharomyces cerevisiae has been studied by chemical modifications of two specific amino-acid residues. Previous studies have shown that these residues, Cys-341 and Met-398 in the mature enzyme, are located in the S1 and S'1...

  14. Lantana montevidensis Essential Oil: Chemical Composition and Mosquito Repellent Activity against Aedes aegypti

    Science.gov (United States)

    The essential oil (EO) of Lantana montevidensis (Spreng.) Briq. (L. sellowiana Link & Otto) was investigated for its chemical composition and mosquito repellent activity. The essential oil obtained by hydrodistillation of aerial plant parts was analyzed by GC-FID and GC-MS. The major constituents we...

  15. Phoenix dactylifera L. spathe essential oil: Chemical composition and repellent activity against the yellow fever mosquito

    Science.gov (United States)

    Date palm, Phoenix dactylifera L. (Arecaceae), grows commonly in the Arabian Peninsula and is traditionally used to treat various diseases. The aim of the present study was to identify chemical composition of the essential oil and to investigate the repellent activity. The essential oil of P. dacty...

  16. Fluorinated Alcohols as Activators for the Solvent-Free Chemical Fixation of Carbon Dioxide into Epoxides.

    Science.gov (United States)

    Gennen, Sandro; Alves, Margot; Méreau, Raphaël; Tassaing, Thierry; Gilbert, Bernard; Detrembleur, Christophe; Jerome, Christine; Grignard, Bruno

    2015-06-01

    The addition of fluorinated alcohols to onium salts provides highly efficient organocatalysts for the chemical fixation of CO2 into epoxides under mild experimental conditions. The combination of online kinetic studies, NMR titrations and DFT calculations allows understanding this synergistic effect that provides an active organocatalyst for CO2 /epoxides coupling.

  17. 76 FR 7841 - Agency Information Collection Activities; Proposed Collections; Toxic Chemical Release Reporting...

    Science.gov (United States)

    2011-02-11

    ... AGENCY Agency Information Collection Activities; Proposed Collections; Toxic Chemical Release Reporting... codes other than SIC codes 20 through 39): 212111, 212112, 212113 (correspond to SIC 12, Coal Mining (except 1241)); or 212221, 212222, 212231, 212234, 212299 (correspond to SIC 10, Metal Mining (except...

  18. Ascaroside activity in Caenorhabditis elegans is highly dependent on chemical structure

    OpenAIRE

    Hollister, Kyle A.; Conner, Elizabeth S.; Zhang, Xinxing; Spell, Mark; Bernard, Gary M.; Patel, Pratik; de Carvalho, Ana Carolina G.V.; Butcher, Rebecca A.; Ragains, Justin R.

    2013-01-01

    The nematode Caenorhabditis elegans secretes ascarosides, structurally diverse derivatives of the 3,6-dideoxysugar ascarylose, and uses them in chemical communication. At high population densities, specific ascarosides, which are together known as the dauer pheromone, trigger entry into the stress-resistant dauer larval stage. In order to study the structure-activity relationships for the ascarosides, we synthesized a panel of ascarosides and tested them for dauer-inducing activity. This pane...

  19. The Electrochemical Characteristics of Hybrid Capacitor Prepared by Chemical Activation of NaOH

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jeong Eun; Bae, Ga Yeong; Yang, Jeong Min; Lee, Jong Dae [Chungbuk National Univ., Chungju (Korea, Republic of)

    2013-06-15

    Active carbons with high specific surface area and micro pore structure were prepared from the coconut shell char using the chemical activation method of NaOH. The preparation process has been optimized through the analysis of experimental variables such as activating chemical agents to char ratio and the flow rate of gas during carbonization. The active carbons with the surface area (2,481m{sup 2}/g) and mean pore size (2.32 nm) were obtained by chemical activation with NaOH. The electrochemical performances of hybrid capacitor were investigated using LiMn{sub 2}O{sub 4}, LiCoO{sub 2} as the positive electrode and prepared active carbon as the negative electrode. The electrochemical behaviors of hybrid capacitor using organic electrolytes (LiPF{sub 6}, TEABF{sub 4}) were characterized by constant current charge/discharge, cyclic voltammetry, cycle and leakage tests. The hybrid capacitor using LiMn{sub 2}O{sub 4}/AC electrodes had better capacitance than other hybrid systems and was able to deliver a specific energy as high as 131 Wh/kg at a specific power of 1,448 W/kg.

  20. Recovery of microbial diversity and activity during bioremediation following chemical oxidation of diesel contaminated soils.

    Science.gov (United States)

    Sutton, Nora B; Langenhoff, Alette A M; Lasso, Daniel Hidalgo; van der Zaan, Bas; van Gaans, Pauline; Maphosa, Farai; Smidt, Hauke; Grotenhuis, Tim; Rijnaarts, Huub H M

    2014-03-01

    To improve the coupling of in situ chemical oxidation and in situ bioremediation, a systematic analysis was performed of the effect of chemical oxidation with Fenton's reagent, modified Fenton's reagent, permanganate, or persulfate, on microbial diversity and activity during 8 weeks of incubation in two diesel-contaminated soils (peat and fill). Chemical oxidant and soil type affected the microbial community diversity and biodegradation activity; however, this was only observed following treatment with Fenton's reagent and modified Fenton's reagent, and in the biotic control without oxidation. Differences in the highest overall removal efficiencies of 69 % for peat (biotic control) and 59 % for fill (Fenton's reagent) were partially explained by changes in contaminant soil properties upon oxidation. Molecular analysis of 16S rRNA and alkane monooxygenase (alkB) gene abundances indicated that oxidation with Fenton's reagent and modified Fenton's reagent negatively affected microbial abundance. However, regeneration occurred, and final relative alkB abundances were 1-2 orders of magnitude higher in chemically treated microcosms than in the biotic control. 16S rRNA gene fragment fingerprinting with DGGE and prominent band sequencing illuminated microbial community composition and diversity differences between treatments and identified a variety of phylotypes within Alpha-, Beta-, and Gammaproteobacteria. Understanding microbial community dynamics during coupled chemical oxidation and bioremediation is integral to improved biphasic field application.

  1. GABA-A receptor antagonists increase firing, bursting and synchrony of spontaneous activity in neuronal networks grown on microelectrode arrays: a step towards chemical "fingerprinting"

    Science.gov (United States)

    Assessment of effects on spontaneous network activity in neurons grown on MEAs is a proposed method to screen chemicals for potential neurotoxicity. In addition, differential effects on network activity (chemical "fingerprints") could be used to classify chemical modes of action....

  2. A coupled theory for chemically active and deformable solids with mass diffusion and heat conduction

    Science.gov (United States)

    Zhang, Xiaolong; Zhong, Zheng

    2017-10-01

    To analyse the frequently encountered thermo-chemo-mechanical problems in chemically active material applications, we develop a thermodynamically-consistent continuum theory of coupled deformation, mass diffusion, heat conduction and chemical reaction. Basic balance equations of force, mass and energy are presented at first, and then fully coupled constitutive laws interpreting multi-field interactions and evolving equations governing irreversible fluxes are constructed according to the energy dissipation inequality and the chemical kinetics. To consider the essential distinction between mass diffusion and chemical reactions in affecting free energy and dissipations of a highly coupled system, we regard both the concentrations of diffusive species and the extent of reaction as independent state variables. This new formulation then distinguishes between the energy contribution from the diffusive species entering the solid and that from the subsequent chemical reactions occurring among these species and the host solid, which not only interact with stresses or strains in different manners and on different time scales, but also induce different variations of solid microstructures and material properties. Taking advantage of this new description, we further establish a specialized isothermal model to predict precisely the transient chemo-mechanical response of a swelling solid with a proposed volumetric constraint that accounts for material incompressibility. Coupled kinetics is incorporated to capture the volumetric swelling of the solid caused by imbibition of external species and the simultaneous dilation arised from chemical reactions between the diffusing species and the solid. The model is then exemplified with two numerical examples of transient swelling accompanied by chemical reaction. Various ratios of characteristic times of diffusion and chemical reaction are taken into account to shed light on the dependency on kinetic time scales of evolution patterns for

  3. Physical and chemical properties and adsorption type of activated carbon prepared from plum kernels by NaOH activation.

    Science.gov (United States)

    Tseng, Ru-Ling

    2007-08-25

    Activated carbon was prepared from plum kernels by NaOH activation at six different NaOH/char ratios. The physical properties including the BET surface area, the total pore volume, the micropore ratio, the pore diameter, the burn-off, and the scanning electron microscope (SEM) observation as well as the chemical properties, namely elemental analysis and temperature programmed desorption (TPD), were measured. The results revealed a two-stage activation process: stage 1 activated carbons were obtained at NaOH/char ratios of 0-1, surface pyrolysis being the main reaction; stage 2 activated carbons were obtained at NaOH/char ratios of 2-4, etching and swelling being the main reactions. The physical properties of stage 2 activated carbons were similar, and specific area was from 1478 to 1887m(2)g(-1). The results of reaction mechanism of NaOH activation revealed that it was apparently because of the loss ratio of elements C, H, and O in the activated carbon, and the variations in the surface functional groups and the physical properties. The adsorption of the above activated carbons on phenol and three kinds of dyes (MB, BB1, and AB74) were used for an isotherm equilibrium adsorption study. The data fitted the Langmuir isotherm equation. Various kinds of adsorbents showed different adsorption types; separation factor (R(L)) was used to determine the level of favorability of the adsorption type. In this work, activated carbons prepared by NaOH activation were evaluated in terms of their physical properties, chemical properties, and adsorption type; and activated carbon PKN2 was found to have most application potential.

  4. Physical and chemical properties and adsorption type of activated carbon prepared from plum kernels by NaOH activation

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, R.-L. [Department of Safety, Health and Environmental Engineering, National United University, Miao-Li 360, Taiwan (China)]. E-mail: trl@nuu.edu.tw

    2007-08-25

    Activated carbon was prepared from plum kernels by NaOH activation at six different NaOH/char ratios. The physical properties including the BET surface area, the total pore volume, the micropore ratio, the pore diameter, the burn-off, and the scanning electron microscope (SEM) observation as well as the chemical properties, namely elemental analysis and temperature programmed desorption (TPD), were measured. The results revealed a two-stage activation process: stage 1 activated carbons were obtained at NaOH/char ratios of 0-1, surface pyrolysis being the main reaction; stage 2 activated carbons were obtained at NaOH/char ratios of 2-4, etching and swelling being the main reactions. The physical properties of stage 2 activated carbons were similar, and specific area was from 1478 to 1887 m{sup 2} g{sup -1}. The results of reaction mechanism of NaOH activation revealed that it was apparently because of the loss ratio of elements C, H, and O in the activated carbon, and the variations in the surface functional groups and the physical properties. The adsorption of the above activated carbons on phenol and three kinds of dyes (MB, BB1, and AB74) were used for an isotherm equilibrium adsorption study. The data fitted the Langmuir isotherm equation. Various kinds of adsorbents showed different adsorption types; separation factor (R {sub L}) was used to determine the level of favorability of the adsorption type. In this work, activated carbons prepared by NaOH activation were evaluated in terms of their physical properties, chemical properties, and adsorption type; and activated carbon PKN2 was found to have most application potential.

  5. Chemical activation of C(1)-C(2) spinal neurons modulates activity of thoracic respiratory interneurons in rats.

    Science.gov (United States)

    Qin, C; Farber, J P; Chandler, M J; Foreman, R D

    2002-10-01

    Discharge patterns of thoracic dorsal horn neurons are influenced by chemical activation of cell bodies in cervical spinal segments C(1)-C(2). The present aim was to examine whether such activation would specifically affect thoracic respiratory interneurons (TRINs) of the deep dorsal horn and intermediate zone in pentobarbital sodium-anesthetized, paralyzed, artificially ventilated rats. We also characterized discharge patterns and pathways of TRIN activation in rats. A total of 77 cells were classified as TRINs by location, continued burst activity related to phrenic discharge when the respirator was stopped, and lack of antidromic response from selected pathways. A variety of respiration-phased discharge patterns was documented whose pathways were interrupted by ipsilateral C(1) transection. Glutamate pledgets (1 M, 1 min) on the dorsal surface of the spinal cord inhibited 22/49, excited 15/49, or excited/inhibited 3/49 tested cells. Incidence of responses did not depend on whether the phase of TRIN discharge was inspiratory, expiratory, or biphasic. Phrenic nerve activity was unaffected by chemical activation of C(1)-C(2) in this preparation. Besides supraspinal input, TRIN activity may be influenced by upper cervical modulatory pathways.

  6. Increasing the reliability and quality of important cast products made of chemically active metals and alloys

    Science.gov (United States)

    Varfolomeev, M. S.; Moiseev, V. S.; Shcherbakova, G. I.

    2017-01-01

    A technology is developed to produce highly thermoresistant ceramic monoxide corundum molds using investment casting and an aluminum-organic binder. This technology is a promising trend in creating ceramic molds for precision complex-shape casting of important ingots made of high-alloy steels, high-temperature and titanium alloys, and refractory metals. The use of the casting molds that have a high thermal and chemical resistance to chemically active metals and alloys under high-temperature casting minimizes the physicochemical interaction and substantially decreases the depth of the hard-to-remove metal oxide layer on important products, which increases their service properties.

  7. Chemical Composition and Antimicrobial Activity of Echinophora spinosa L. (Apiaceae Essential Oil

    Directory of Open Access Journals (Sweden)

    Jasmina M. Glamočlija

    2011-01-01

    Full Text Available The present study was undertaken to investigate the chemical composition and effectiveness of the essential oil isolated from Echinophora spinosa on different bacterial and fungal species. Chemical analysis (GC/MS showed that δ³-carene (60,86 %, α-phellandrene (7,12%, p-cymene (6,22 %, myrcene (4,82 % and β-phellandrene (2,73 % were dominant components in this oil. Essential oil tested showed good antimicrobial activity. Antimicrobial potential of this oil was higher than potential of commercial antimicrobial drugs tested, streptomycin, bifonozole and ketoconazole.

  8. Comparison on pore development of activated carbon produced by chemical and physical activation from palm empty fruit bunch

    Science.gov (United States)

    Hidayat, A.; Sutrisno, B.

    2016-11-01

    It is well-known that activated carbon is considered to be the general adsorbent due to the large range of applications. Numerous works are being continuously published concerning its use as adsorbent for: treatment of potable water; purification of air; retention of toxins by respirators; removal of organic and inorganic pollutants from flue gases and industrial waste gases and water; recuperation of solvents and hydrocarbons volatilized from petroleum derivatives; catalysis; separation of gas mixtures (molecularsieve activated carbons); storage of natural gas and hydrogen; energy storage in supercapacitors; recovery of gold, silver and othernoble metals; etc. This work presents producing activated carbons from palm empty fruit bunch using both physical activation with CO2 and chemical activation with KOH. The resultant activated carbons were characterized by measuring their porosities and pore size distributions. A comparison of the textural characteristics and surface chemistry of the activated carbon from palm empty fruit bunch by the CO2 and the KOH activation leads to the following findings: An activated carbon by the CO2 activation under the optimum conditions has a BET surface area of 717 m2/g, while that by the KOH activation has a BET surface area of 613 m2/g. The CO2 activation generated a highly microporous carbon (92%) with a Type-I isotherm, while the KOH activation generated a mesoporous one (70%) with a type-IV isotherm, the pore volumes are 0.2135 and 0.7426 cm3.g-1 respectively. The average pore size of the activated carbons is 2.72 and 2.56 nm for KOH activation and CO2 activation, respectively. The FT-IR spectra indicated significant variation in the surface functional groups are quite different for the KOH activated and CO2 activated carbons.

  9. Characteristics, chemical compositions and biological activities of propolis from Al-Bahah, Saudi Arabia

    Science.gov (United States)

    Elnakady, Yasser A.; Rushdi, Ahmed I.; Franke, Raimo; Abutaha, Nael; Ebaid, Hossam; Baabbad, Mohannad; Omar, Mohamed O. M.; Al Ghamdi, Ahmad A.

    2017-02-01

    Propolis has been used to treat several diseases since ancient times, and is an important source of bioactive natural compounds and drug derivatives. These properties have kept the interest of investigators around the world, leading to the investigation of the chemical and biological properties and application of propolis. In this report, the chemical constituents that are responsible for the anticancer activities of propolis were analyzed. The propolis was sourced from Al-Baha in the southern part of the Kingdom of Saudi Arabia. Standard protocols for chemical fractionation and bioactivity-guided chemical analysis were used to identify the bio-active ethyl acetate fraction. The extraction was performed in methanol and then analyzed by gas chromatography-mass spectrometry (GC-MS). The major compounds are triterpenoids, with a relative concentration of 74.0%; steroids, with a relative concentration of 9.8%; and diterpenoids, with a relative concentration of 7.9%. The biological activity was characterized using different approaches and cell-based assays. Propolis was found to inhibit the proliferation of cancer cells in a concentration-dependent manner through apoptosis. Immunofluorescence staining with anti-α-tubulin antibodies and cell cycle analysis indicated that tubulin and/or microtubules are the cellular targets of the L-acetate fraction. This study demonstrates the importance of Saudi propolis as anti-cancer drug candidates.

  10. Chemically active colloids near osmotic-responsive walls with surface-chemistry gradients

    CERN Document Server

    Popescu, M N; Dietrich, S

    2016-01-01

    Chemically active colloids move by creating gradients in the composition of the surrounding solution and by exploiting the differences in their interactions with the various molecular species in solution. If such particles move near boundaries, e.g., the walls of the container confining the suspension, gradients in the composition of the solution are also created along the wall. This give rise to chemi-osmosis (via the interactions of the wall with the molecular species forming the solution), which drives flows coupling back to the colloid and thus influences its motility. Employing an approximate "point-particle" analysis, we show analytically that -- owing to this kind of induced active response (chemi-osmosis) of the wall -- such chemically active colloids can align with, and follow, gradients in the surface chemistry of the wall. In this sense, these artificial "swimmers" exhibit a primitive form of thigmotaxis with the meaning of sensing the proximity of a (not necessarily discontinuous) physical change ...

  11. Chemical composition and antibacterial activity of the essential oil from Pyrrosia tonkinensis (Giesenhagen) Ching.

    Science.gov (United States)

    Xin, Xiaowei; Liu, Qingshen; Zhang, Yingying; Gao, Demin

    2016-01-01

    The present study aimed to analyse the chemical components of the essential oil from Pyrrosia tonkinensis by GC-MS and evaluate the in vitro antibacterial activity. Twenty-eight compounds, representing 88.1% of the total essential oil, were identified and the major volatile components were trans-2-hexenal (22.1%), followed by nonanal (12.8%), limonene (9.6%), phytol (8.4%), 1-hexanol (3.8%), 2-furancarboxaldehyde (3.5%) and heptanal (3.1%). The antibacterial assays showed that the essential oil of P. tonkinensis had good antibacterial activities against all the tested microorganisms. This paper first reported the chemical composition and antimicrobial activity of the essential oil from P. tonkinensis.

  12. Antibacterial activity of coffee extracts and selected coffee chemical compounds against enterobacteria.

    Science.gov (United States)

    Almeida, Ana Amélia P; Farah, Adriana; Silva, Daniela A M; Nunan, Elzíria A; Glória, M Beatriz A

    2006-11-15

    The in vitro antimicrobial activity of commercial coffee extracts and chemical compounds was investigated on nine strains of enterobacteria. The antimicrobial activity investigated by the disc diffusion method was observed in both the extracts and tested chemical compounds. Even though pH, color, and the contents of trigonelline, caffeine, and chlorogenic acids differed significantly among the coffee extracts, no significant differences were observed in their antimicrobial activity. Caffeic acid and trigonelline showed similar inhibitory effect against the growth of the microorganisms. Caffeine, chlorogenic acid, and protocatechuic acid showed particularly strong effect against Serratia marcescens and Enterobacter cloacae. The IC(50) and IC(90) for the compounds determined by the microtiter plate method indicated that trigonelline, caffeine, and protocatechuic acids are potential natural antimicrobial agents against Salmonella enterica. The concentrations of caffeine found in coffee extracts are enough to warrant 50% of the antimicrobial effect against S. enterica, which is relevant to human safety.

  13. Chemical composition and antibacterial activity of Opuntia ficus-indica f. inermis (cactus pear) flowers.

    Science.gov (United States)

    Ennouri, Monia; Ammar, Imene; Khemakhem, Bassem; Attia, Hamadi

    2014-08-01

    Opuntia ficus-indica f. inermis (cactus pear) flowers have wide application in folk medicine. However, there are few reports focusing on their biological activity and were no reports on their chemical composition. The nutrient composition and hexane extracts of Opuntia flowers at 4 flowering stages and their antibacterial and antifungal activities were investigated. The chemical composition showed considerable amounts of fiber, protein, and minerals. Potassium (K) was the predominant mineral followed by calcium (Ca), magnesium (Mg), sodium (Na), iron (Fe), and zinc (Zn). The main compounds in the various hexane extracts were 9.12-octadecadienoic acid (29-44%) and hexadecanoic acid (8.6-32%). The antibacterial activity tests showed that O. inermis hexane extracts have high effectiveness against Escherichia coli and Staphylococcus aureus, making this botanical source a potential contender as a food preservative or food control additive.

  14. Chemical composition of the volatile oil from Zanthoxylum avicennae and antimicrobial activities and cytotoxicity

    Directory of Open Access Journals (Sweden)

    Yin Lin

    2014-01-01

    Full Text Available Background: Through literature retrieval, there has been no report on the research of the chemical components in Zanthoxylum avicennae (Lam. DC. This paper extracted and determined the chemical components of the volatile oil in Z. avicennae, and at the same time, measured and evaluated the bioactivity of the volatile oil in Z. avicennae. Materials and Methods: We extract the volatile oil in Z. avicennae by steam distillation method, determined the chemical composition of the volatile oil by GC-MS coupling technique, and adopt the peak area normalization method to measured the relative percentage of each chemical composition in the volatile oil. Meanwhile, we use the Lethal-to-prawn larva bioactivity experiment to screen the cytotoxicity activities of the volatile oil in Z. avicennae, and using the slanting test-tube experiment to determine and evaluate its antibacterial activities in vitro for the eight kinds of plant pathogenic fungi in the volatile oil of the Z. avicennae. Results: The results show that 68 kinds of compounds are determined from the volatile oil of Z. avicennae. The determined part takes up 97.89% of the total peak area. The main ingredients in the volatile oil of Z. avicennae are sesquiterpenoids and monoterpene. The test results show that the volatile oil in Z. avicennae has strong antibacterial activities and cytotoxicity, with the strongest antibacterial activity against the Rhizoctonia solani AG1-1A. Conclusion: This research results will provide reference data for understanding the chemical composition of the volatile oil in the aromatic plant of Z. avicennae and its bioactivity, and for its further development and application.

  15. Seasonal Variation, Chemical Composition and Antioxidant Activity of Brazilian Propolis Samples

    Directory of Open Access Journals (Sweden)

    Érica Weinstein Teixeira

    2010-01-01

    Full Text Available Total phenolic contents, antioxidant activity and chemical composition of propolis samples from three localities of Minas Gerais state (southeast Brazil were determined. Total phenolic contents were determined by the Folin–Ciocalteau method, antioxidant activity was evaluated by DPPH, using BHT as reference, and chemical composition was analyzed by GC/MS. Propolis from Itapecerica and Paula Cândido municipalities were found to have high phenolic contents and pronounced antioxidant activity. From these extracts, 40 substances were identified, among them were simple phenylpropanoids, prenylated phenylpropanoids, sesqui- and diterpenoids. Quantitatively, the main constituent of both samples was allyl-3-prenylcinnamic acid. A sample from Virginópolis municipality had no detectable phenolic substances and contained mainly triterpenoids, the main constituents being α- and β-amyrins. Methanolic extracts from Itapecerica and Paula Cândido exhibited pronounced scavenging activity towards DPPH, indistinguishable from BHT activity. However, extracts from Virginópolis sample exhibited no antioxidant activity. Total phenolic substances, GC/MS analyses and antioxidant activity of samples from Itapecerica collected monthly over a period of 1 year revealed considerable variation. No correlation was observed between antioxidant activity and either total phenolic contents or contents of artepillin C and other phenolic substances, as assayed by CG/MS analysis.

  16. Influence of copper nanoparticles on the physical-chemical properties of activated sludge.

    Science.gov (United States)

    Chen, Hong; Zheng, Xiong; Chen, Yinguang; Li, Mu; Liu, Kun; Li, Xiang

    2014-01-01

    The physical-chemical properties of activated sludge, such as flocculating ability, hydrophobicity, surface charge, settleability, dewaterability and bacteria extracellular polymer substances (EPS), play vital roles in the normal operation of wastewater treatment plants (WWTPs). The nanoparticles released from commercial products will enter WWTPs and can induce potential adverse effects on activated sludge. This paper focused on the effects of copper nanoparticles (CuNPs) on these specific physical-chemical properties of activated sludge. It was found that most of these properties were unaffected by the exposure to lower CuNPs concentration (5 ppm), but different observation were made at higher CuNPs concentrations (30 and 50 ppm). At the higher CuNPs concentrations, the sludge surface charge increased and the hydrophobicity decreased, which were attributed to more Cu2+ ions released from the CuNPs. The carbohydrate content of EPS was enhanced to defense the toxicity of CuNPs. The flocculating ability was found to be deteriorated due to the increased cell surface charge, the decreased hydrophobicity, and the damaged cell membrane. The worsened flocculating ability made the sludge flocs more dispersed, which further increased the toxicity of the CuNPs by increasing the availability of the CuNPs to the bacteria present in the sludge. Further investigation indicated that the phosphorus removal efficiency decreased at higher CuNPs concentrations, which was consistent with the deteriorated physical-chemical properties of activated sludge. It seems that the physical-chemical properties can be used as an indicator for determining CuNPs toxicity to the bacteria in activated sludge. This work is important because bacteria toxicity effects to the activated sludge caused by nanoparticles may lead to the deteriorated treatment efficiency of wastewater treatment, and it is therefore necessary to find an easy way to indicate this toxicity.

  17. Thermally activated reaction–diffusion-controlled chemical bulk reactions of gases and solids

    Directory of Open Access Journals (Sweden)

    S. Möller

    2015-01-01

    Full Text Available The chemical kinetics of the reaction of thin films with reactive gases is investigated. The removal of thin films using thermally activated solid–gas to gas reactions is a method to in-situ control deposition inventory in vacuum and plasma vessels. Significant scatter of experimental deposit removal rates at apparently similar conditions was observed in the past, highlighting the need for understanding the underlying processes. A model based on the presence of reactive gas in the films bulk and chemical kinetics is presented. The model describes the diffusion of reactive gas into the film and its chemical interaction with film constituents in the bulk using a stationary reaction–diffusion equation. This yields the reactive gas concentration and reaction rates. Diffusion and reaction rate limitations are depicted in parameter studies. Comparison with literature data on tokamak co-deposit removal results in good agreement of removal rates as a function of pressure, film thickness and temperature.

  18. Chemical composition measurements of the low activity waste (LAW) EPA-Series glasses

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-03-01

    In this report, the Savannah River National Laboratory provides chemical analysis results for a series of simulated low activity waste glasses provided by Pacific Northwest National Laboratory as part of an ongoing development task. The measured chemical composition data are reported and compared with the targeted values for each component for each glass. A detailed review showed no indications of errors in the preparation or measurement of the study glasses. All of the measured sums of oxides for the study glasses fell within the interval of 100.2 to 100.8 wt %, indicating recovery of all components. Comparisons of the targeted and measured chemical compositions showed that the measured values for the glasses met the targeted concentrations within 10% for those components present at more than 5 wt %.

  19. Effect of mechanical activation on structure changes and reactivity in further chemical modification of lignin.

    Science.gov (United States)

    Zhao, Xiaohong; Zhang, Yanjuan; Hu, Huayu; Huang, Zuqiang; Yang, Mei; Chen, Dong; Huang, Kai; Huang, Aimin; Qin, Xingzhen; Feng, Zhenfei

    2016-10-01

    Lignin was treated by mechanical activation (MA) in a customized stirring ball mill, and the structure and reactivity in further esterification were studied. The chemical structure and morphology of MA-treated lignin and the esterified products were analyzed by chemical analysis combined with UV/vis spectrometer, FTIR,NMR, SEM and particle size analyzer. The results showed that MA contributed to the increase of aliphatic hydroxyl, phenolic hydroxyl, carbonyl and carboxyl groups but the decrease of methoxyl groups. Moreover, MA led to the decrease of particle size and the increase of specific surface area and roughness of surface in lignin. The reactivity of lignin was enhanced significantly for the increase of hydroxyl content and the improvement of mass transfer in chemical reaction caused by the changes of molecular structure and morphological structure. The process of MA is green and simple, and is an effective method for enhancing the reactivity of lignin. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. TEXTURAL AND CHEMICAL CHARACTERISATION OF ACTIVATED CARBONS PREPARED FROM RICE HUSK (ORYZA SATIVA USING A TWO- STAGE ACTIVATION PROCESS

    Directory of Open Access Journals (Sweden)

    JOSEPH G. COLLIN

    2008-12-01

    Full Text Available Activated carbons from agro-industrial wastes; rice husk; were prepared by physical and chemical activation using phosphoric acid as the dehydrating agent. A two-stage activation process method was used; with semi-carbonisation stage at 200oC for 15 minutes as the first stage followed by an activation stage at 500oC for 45 minutes as the second stage. The precursor material with the impregnation agent was exposed straightaway to semi-carbonization and activation temperature unlike the specific temperature progression as reported in the literature. All experiments were conducted in a laboratory scale muffle furnace under static conditions in a self generated atmosphere covering process parameters such as impregnation ratios. We found that by using this method, the AC5 had the highest iodine number and methylene blue adsorption capacity which was 506.6 mg/g and 319.0 mg/g respectively.

  1. A thermodynamic framework for thermo-chemo-elastic interactions in chemically active materials

    Science.gov (United States)

    Zhang, XiaoLong; Zhong, Zheng

    2017-08-01

    In this paper, a general thermodynamic framework is developed to describe the thermo-chemo-mechanical interactions in elastic solids undergoing mechanical deformation, imbibition of diffusive chemical species, chemical reactions and heat exchanges. Fully coupled constitutive relations and evolving laws for irreversible fluxes are provided based on entropy imbalance and stoichiometry that governs reactions. The framework manifests itself with a special feature that the change of Helmholtz free energy is attributed to separate contributions of the diffusion-swelling process and chemical reaction-dilation process. Both the extent of reaction and the concentrations of diffusive species are taken as independent state variables, which describe the reaction-activated responses with underlying variation of microstructures and properties of a material in an explicit way. A specialized isothermal formulation for isotropic materials is proposed that can properly account for volumetric constraints from material incompressibility under chemo-mechanical loadings, in which inhomogeneous deformation is associated with reaction and diffusion under various kinetic time scales. This framework can be easily applied to model the transient volumetric swelling of a solid caused by imbibition of external chemical species and simultaneous chemical dilation arising from reactions between the diffusing species and the solid.

  2. Chemical constituents and anti-tuberculosis activity of ink extracts of cuttlefish, Sepiella inermis

    Institute of Scientific and Technical Information of China (English)

    Muthusamy Ravichandiran; Selvam Thiripurasalini; Vaithilingam Ravitchandirane; Srinivasa Gopalane; Chelladurai Stella

    2013-01-01

    Objective: To study the chemical constituents and the anti-tuberculosis activity of methanol and chloroform ink extracts of Sepiella inermis.Methods:Chemical analysis was carried out by UV-VIS spectrophotometer, FT-IR and GC-MS. Crude extracts Pulverized ink powder was extracted separately with chloroform and methanol. were tested in vitro for their activity against Mycobacterium tuberculosis using Lowenstein Jensen (L-J) medium. Activity in L-J medium was assessed by mean reduction in number of colonies on extract containing bottles as compared to extract free controls.Results:octadecadienoic acid, 9-octadecenoic acid and octadecanoic acid. The chloroform extract GC-MS of methanol extract revealed four compounds viz. hexadecanoic acid, 9, 12-containing fourteen compounds. The methanol extract exhibited anti-tuberculosis activity in L-J medium at 64 µg/mL with the observed inhibition of 14 CFU. Chloroform extract displayed a weak activity against Mycobacterium tuberculosis.Conclusions:Mycobacterium tuberculosis than chloroform extract. Since ink of sepia is available abundantly as This investigation showed the methanol extract exhibited significant activity against a waste material, further studies aimed at isolation and efficacy of active substances pave the way for new anti-tuberculosis drugs.

  3. Chemical stability of a cold-active cellulase with high tolerance toward surfactants and chaotropic agent

    Directory of Open Access Journals (Sweden)

    Thaís V. Souza

    2016-03-01

    Full Text Available CelE1 is a cold-active endo-acting glucanase with high activity at a broad temperature range and under alkaline conditions. Here, we examined the effects of pH on the secondary and tertiary structures, net charge, and activity of CelE1. Although variation in pH showed a small effect in the enzyme structure, the activity was highly influenced at acidic conditions, while reached the optimum activity at pH 8. Furthermore, to estimate whether CelE1 could be used as detergent additives, CelE1 activity was evaluated in the presence of surfactants. Ionic and nonionic surfactants were not able to reduce CelE1 activity significantly. Therefore, CelE1 was found to be promising candidate for use as detergent additives. Finally, we reported a thermodynamic analysis based on the structural stability and the chemical unfolding/refolding process of CelE1. The results indicated that the chemical unfolding proceeds as a reversible two-state process. These data can be useful for biotechnological applications.

  4. Chemical constituents and anti-tuberculosis activity of ink extracts of cuttlefish, Sepiella inermis

    Directory of Open Access Journals (Sweden)

    Muthusamy Ravichandiran

    2013-11-01

    Full Text Available Objective: To study the chemical constituents and the anti-tuberculosis activity of methanol and chloroform ink extracts of Sepiella inermis. Methods: Pulverized ink powder was extracted separately with chloroform and methanol. Chemical analysis was carried out by UV-VIS spectrophotometer, FT-IR and GC-MS. Crude extracts were tested in vitro for their activity against Mycobacterium tuberculosis using Lowenstein Jensen (L-J medium. Activity in L-J medium was assessed by mean reduction in number of colonies on extract containing bottles as compared to extract free controls. Results: GC-MS of methanol extract revealed four compounds viz. hexadecanoic acid, 9, 12- octadecadienoic acid, 9-octadecenoic acid and octadecanoic acid. The chloroform extract containing fourteen compounds. The methanol extract exhibited anti-tuberculosis activity in L-J medium at 64 µg/mL with the observed inhibition of 14 CFU. Chloroform extract displayed a weak activity against Mycobacterium tuberculosis. Conclusions: This investigation showed the methanol extract exhibited significant activity against Mycobacterium tuberculosis than chloroform extract. Since ink of sepia is available abundantly as a waste material, further studies aimed at isolation and efficacy of active substances pave the way for new anti-tuberculosis drugs.

  5. Clusia criuva Cambess. (Clusiaceae): anatomical characterization, chemical prospecting and antioxidant activity.

    Science.gov (United States)

    Silva, Karla M M DA; Nóbrega, Andrea B DA; Lessa, Bruno; Anholeti, Maria Carolina; Lobão, Adriana Q; Valverde, Alessandra L; Paiva, Selma R DE; Joffily, Ana

    2017-07-31

    This study aims the anatomical description and chemical characterization of aerial parts of Clusia criuva Cambess., Clusiaceae in addition to the evaluation of the antioxidant activity of crude extracts, correlated to the flavonoid content. The morphological characterization was performed using traditional techniques of plant anatomy. For phytochemical studies, crude extracts were obtained by static maceration and analyzed by thin layer chromatography. The antioxidant activity and the flavonoids content were determined by colorimetric methods involving, respectively, 2,2-diphenyl-1-picrylhydrazyl free radical and aluminum chloride. C. criuva has uniseriate epidermis, paracytic stomata, hypostomatic leaves, cuticular flanges and cordiform vascular cylinder with accessory bundles. Chemical prospecting confirmed the abundant presence of terpenes and phenols in the extracts of leaves and of fruits. The methanolic extract of seeds showed the lowest EC50 value, but the methanolic extract of pericarps exhibited the highest maximum antioxidant activity. The results suggested a high percentage of flavonoids in the hexanic extract of pericarps, however, this could represent, in fact, the presence of benzophenones. Secretory ducts and the shape of the midrib are diagnostic for C. criuva. The antioxidant activity is not directly related to the flavonoids. The results indicate the importance of future studies with C. criuva chemical constituents.

  6. Clusia criuva Cambess. (Clusiaceae: anatomical characterization, chemical prospecting and antioxidant activity

    Directory of Open Access Journals (Sweden)

    KARLA M.M. DA SILVA

    Full Text Available ABSTRACT This study aims the anatomical description and chemical characterization of aerial parts of Clusia criuva Cambess., Clusiaceae in addition to the evaluation of the antioxidant activity of crude extracts, correlated to the flavonoid content. The morphological characterization was performed using traditional techniques of plant anatomy. For phytochemical studies, crude extracts were obtained by static maceration and analyzed by thin layer chromatography. The antioxidant activity and the flavonoids content were determined by colorimetric methods involving, respectively, 2,2-diphenyl-1-picrylhydrazyl free radical and aluminum chloride. C. criuva has uniseriate epidermis, paracytic stomata, hypostomatic leaves, cuticular flanges and cordiform vascular cylinder with accessory bundles. Chemical prospecting confirmed the abundant presence of terpenes and phenols in the extracts of leaves and of fruits. The methanolic extract of seeds showed the lowest EC50 value, but the methanolic extract of pericarps exhibited the highest maximum antioxidant activity. The results suggested a high percentage of flavonoids in the hexanic extract of pericarps, however, this could represent, in fact, the presence of benzophenones. Secretory ducts and the shape of the midrib are diagnostic for C. criuva. The antioxidant activity is not directly related to the flavonoids. The results indicate the importance of future studies with C. criuva chemical constituents.

  7. Chemical composition and lipoxygenase activity in soybeans (Glycine max L. Merr.) submitted to gamma irradiation

    Science.gov (United States)

    Barros, Érica Amanda de; Broetto, Fernando; Bressan, Dayanne F.; Sartori, Maria M. P.; Costa, Vladimir E.

    2014-05-01

    Soybeans are an important food due to their functional and nutritional characteristics. However, consumption by western populations is limited by the astringent taste of soybeans and their derivatives which results from the action of lipoxygenase, an enzyme activated during product processing. The aim of this study was to evaluate the effect of gamma irradiation on the chemical composition and specific activity of lipoxygenase in different soybean cultivars. Soybeans were stored in plastic bags and irradiated with doses of 2.5, 5 and 10 kGy. The chemical composition (moisture, protein, lipids, ashes, crude fiber, and carbohydrates) and lipoxygenase specific activity were determined for each sample. Gamma irradiation induced a small increase of protein and lipid content in some soybean cultivars, which did not exceed the highest content of 5% and 26%, respectively, when compared to control. Lipoxygenase specific activity decreased in the three cultivars with increasing gamma irradiation dose. In conclusion, the gamma irradiation doses used are suitable to inactivate part of lipoxygenase while not causing expressive changes in the chemical composition of the cultivars studied.

  8. Chemical constituents, physicochemical properties and antibacterial activity of leaves essential oil of Ocimum urticifolium

    Directory of Open Access Journals (Sweden)

    Ketema Alemayehu

    2016-11-01

    Full Text Available Objective: To determine chemical compositions, physicochemical properties and evaluating antibacterial activities of essential oils extracted from leaves of Ocimum urticifolium (O. urticifolium. Methods: Essential oil of O. urticifolium was extracted by hydrodistillation technique. A number of phytochemical screening tests were applied to identify the classes of compounds in the leaves extract of O. urticifolium. Gas chromatography and gas chromatography/mass spectrometry were used to characterize the chemical components in the essential oil. The agar diffusion method was used to evaluate the antibacterial activity as per of standard procedure. Results: Phytochemical screening of crude extract revealed that the presence of tannins, glycosides, saponins, flavonoids, steroids, terpenoids and phenols. The obtained oil yield is (0.33 ± 0.11 % (v/w. Analysis of oil using gas chromatography and gas chromatography/ mass spectrometry showed a total of 22 components, the abundance of monoterpene and sesquiterpenes (98.99%. The percentage composition of monoterpene in the oil was α-pinene (22.105%, eugenol (21.099%, while sesquiterpenes α-cubebene (11.341%, α-bisabolene (9.945%, α-caryophyllene (7.709%, α-caryophyllene oxide (5.754%, and copaene (3.594%. The oil inhibited the growth of Staphylococcus aureus and Escherichia coli, while no activity was shown to Salmonella typhi. Conclusions: The O. urticifolium is a rich source of various classes of chemical constituents and the antibacterial activity of the oil could be attributed mainly to these compounds.

  9. Chemical Structure-Biological Activity Models for Pharmacophores’ 3D-Interactions

    Directory of Open Access Journals (Sweden)

    Mihai V. Putz

    2016-07-01

    Full Text Available Within medicinal chemistry nowadays, the so-called pharmaco-dynamics seeks for qualitative (for understanding and quantitative (for predicting mechanisms/models by which given chemical structure or series of congeners actively act on biological sites either by focused interaction/therapy or by diffuse/hazardous influence. To this aim, the present review exposes three of the fertile directions in approaching the biological activity by chemical structural causes: the special computing trace of the algebraic structure-activity relationship (SPECTRAL-SAR offering the full analytical counterpart for multi-variate computational regression, the minimal topological difference (MTD as the revived precursor for comparative molecular field analyses (CoMFA and comparative molecular similarity indices analysis (CoMSIA; all of these methods and algorithms were presented, discussed and exemplified on relevant chemical medicinal systems as proton pump inhibitors belonging to the 4-indolyl,2-guanidinothiazole class of derivatives blocking the acid secretion from parietal cells in the stomach, the 1-[(2-hydroxyethoxy-methyl]-6-(phenylthiothymine congeners’ (HEPT ligands antiviral activity against Human Immunodeficiency Virus of first type (HIV-1 and new pharmacophores in treating severe genetic disorders (like depression and psychosis, respectively, all involving 3D pharmacophore interactions.

  10. Chemical Structure-Biological Activity Models for Pharmacophores’ 3D-Interactions

    Science.gov (United States)

    Putz, Mihai V.; Duda-Seiman, Corina; Duda-Seiman, Daniel; Putz, Ana-Maria; Alexandrescu, Iulia; Mernea, Maria; Avram, Speranta

    2016-01-01

    Within medicinal chemistry nowadays, the so-called pharmaco-dynamics seeks for qualitative (for understanding) and quantitative (for predicting) mechanisms/models by which given chemical structure or series of congeners actively act on biological sites either by focused interaction/therapy or by diffuse/hazardous influence. To this aim, the present review exposes three of the fertile directions in approaching the biological activity by chemical structural causes: the special computing trace of the algebraic structure-activity relationship (SPECTRAL-SAR) offering the full analytical counterpart for multi-variate computational regression, the minimal topological difference (MTD) as the revived precursor for comparative molecular field analyses (CoMFA) and comparative molecular similarity indices analysis (CoMSIA); all of these methods and algorithms were presented, discussed and exemplified on relevant chemical medicinal systems as proton pump inhibitors belonging to the 4-indolyl,2-guanidinothiazole class of derivatives blocking the acid secretion from parietal cells in the stomach, the 1-[(2-hydroxyethoxy)-methyl]-6-(phenylthio)thymine congeners’ (HEPT ligands) antiviral activity against Human Immunodeficiency Virus of first type (HIV-1) and new pharmacophores in treating severe genetic disorders (like depression and psychosis), respectively, all involving 3D pharmacophore interactions. PMID:27399692

  11. Determining the chemical activity of hydrophobic organic compounds in soil using polymer coated vials

    Directory of Open Access Journals (Sweden)

    Jönsson Jan-Åke

    2008-05-01

    Full Text Available Abstract Background In soils contaminated by hydrophobic organic compounds, the concentrations are less indicative of potential exposure and distribution than are the associated chemical activities, fugacities and freely dissolved concentrations. The latter can be measured by diffusive sampling into thin layers of polymer, as in, for example, solid phase micro-extraction. Such measurements require equilibrium partitioning of analytes into the polymer while ensuring that the sample is not depleted. We introduce the validation of these requirements based on parallel sampling into polymer layers of different thicknesses. Results Equilibrium sampling devices were made by coating glass vials internally with 3–12 μm thick layers of polydimethylsiloxane (PDMS. These were filled with slurries of a polluted soil and gently agitated for 5 days. The concentrations of 7 polycyclic aromatic hydrocarbons (PAHs in the PDMS were measured. Validation confirmed fulfilment of the equilibrium sampling requirements and high measurement precision. Finally, chemical activities of the PAHs in the soil were determined from their concentrations and activity coefficients in the PDMS. Conclusion PAHs' thermodynamic activities in a soil test material were determined via a method of uptake into PDMS. This can be used to assess chemical exposure and predict diffusion and partitioning processes.

  12. Metabolomic Assessment of Induced and Activated Chemical Defence in the Invasive Red Alga Gracilaria vermiculophylla

    Science.gov (United States)

    Nylund, Göran M.; Weinberger, Florian; Rempt, Martin; Pohnert, Georg

    2011-01-01

    In comparison with terrestrial plants the mechanistic knowledge of chemical defences is poor for marine macroalgae. This restricts our understanding in the chemically mediated interactions that take place between algae and other organisms. Technical advances such as metabolomics, however, enable new approaches towards the characterisation of the chemically mediated interactions of organisms with their environment. We address defence responses in the red alga Gracilaria vermiculophylla using mass spectrometry based metabolomics in combination with bioassays. Being invasive in the north Atlantic this alga is likely to possess chemical defences according to the prediction that well-defended exotics are most likely to become successful invaders in systems dominated by generalist grazers, such as marine macroalgal communities. We investigated the effect of intense herbivore feeding and simulated herbivory by mechanical wounding of the algae. Both processes led to similar changes in the metabolic profile. Feeding experiments with the generalist isopod grazer Idotea baltica showed that mechanical wounding caused a significant increase in grazer resistance. Structure elucidation of the metabolites of which some were up-regulated more than 100 times in the wounded tissue, revealed known and novel eicosanoids as major components. Among these were prostaglandins, hydroxylated fatty acids and arachidonic acid derived conjugated lactones. Bioassays with pure metabolites showed that these eicosanoids are part of the innate defence system of macroalgae, similarly to animal systems. In accordance with an induced defence mechanism application of extracts from wounded tissue caused a significant increase in grazer resistance and the up-regulation of other pathways than in the activated defence. Thus, this study suggests that G. vermiculophylla chemically deters herbivory by two lines of defence, a rapid wound-activated process followed by a slower inducible defence. By unravelling

  13. Metabolomic assessment of induced and activated chemical defence in the invasive red alga Gracilaria vermiculophylla.

    Directory of Open Access Journals (Sweden)

    Göran M Nylund

    Full Text Available In comparison with terrestrial plants the mechanistic knowledge of chemical defences is poor for marine macroalgae. This restricts our understanding in the chemically mediated interactions that take place between algae and other organisms. Technical advances such as metabolomics, however, enable new approaches towards the characterisation of the chemically mediated interactions of organisms with their environment. We address defence responses in the red alga Gracilaria vermiculophylla using mass spectrometry based metabolomics in combination with bioassays. Being invasive in the north Atlantic this alga is likely to possess chemical defences according to the prediction that well-defended exotics are most likely to become successful invaders in systems dominated by generalist grazers, such as marine macroalgal communities. We investigated the effect of intense herbivore feeding and simulated herbivory by mechanical wounding of the algae. Both processes led to similar changes in the metabolic profile. Feeding experiments with the generalist isopod grazer Idotea baltica showed that mechanical wounding caused a significant increase in grazer resistance. Structure elucidation of the metabolites of which some were up-regulated more than 100 times in the wounded tissue, revealed known and novel eicosanoids as major components. Among these were prostaglandins, hydroxylated fatty acids and arachidonic acid derived conjugated lactones. Bioassays with pure metabolites showed that these eicosanoids are part of the innate defence system of macroalgae, similarly to animal systems. In accordance with an induced defence mechanism application of extracts from wounded tissue caused a significant increase in grazer resistance and the up-regulation of other pathways than in the activated defence. Thus, this study suggests that G. vermiculophylla chemically deters herbivory by two lines of defence, a rapid wound-activated process followed by a slower inducible

  14. Modeling the effect of water activity and storage temperature on chemical stability of coffee brews.

    Science.gov (United States)

    Manzocco, Lara; Nicoli, Maria Cristina

    2007-08-08

    This work was addressed to study the chemical stability of coffee brew derivatives as a function of water activity (aw) and storage temperature. To this purpose, coffee brew was freeze-dried, equilibrated at increasing aw values, and stored for up to 10 months at different temperatures from -30 to 60 degrees C. The chemical stability of the samples was assessed by measuring H3O+ formation during storage. Independently of storage temperature, the rate of H3O+ formation was considerably low only when aw was reduced below 0.5 (94% w/w). Beyond this critical boundary, the rate increased, reaching a maximum value at ca. 0.8 aw (78% w/w). Further hydration up to the aw of the freshly prepared beverage significantly increased chemical stability. It was suggested that mechanisms other than lactones' hydrolysis, probably related to nonenzymatic browning pathways, could contribute to the observed increase in acidity during coffee staling. The temperature dependence of H3O+ formation was well-described by the Arrhenius equation in the entire aw range considered. However, aw affected the apparent activation energy and frequency factor. These effects were described by simple equations that were used to set up a modified Arrhenius equation. This model was validated by comparing experimental values, not used to generate the model, with those estimated by the model itself. The model allowed efficient prediction of the chemical stability of coffee derivatives on the basis of only the aw value and storage temperature.

  15. [Advances in research of chemical constituents and pharmacological activities of common used spices].

    Science.gov (United States)

    Sun, Chao-nan; Zhu, Yuan; Xu, Xi-ming; Yu, Jiang-nan

    2014-11-01

    Spices have enjoyed a long history and a worldwide application. Of particular interest is the pharmaceutical value of spices in addition to its basic seasoning function in cooking. Concretely, equipped with complex chemical compositions, spices are of significant importance in pharmacologic actions, like antioxidant, antibacterial, antitumor, as well as therapeutical effects in gastrointestinal disorders and cardiovascular disease. Although increasing evidences in support of its distinct role in the medical field has recently reported, little information is available for substantive, thorough and sophisticated researches on its chemical constituents and pharmacological activities, especially mechanism of these actions. Therefore, in popular wave of studies directed at a single spice, this review presents systematic studies on the chemical constituents and pharmacological activities associated with common used spices, together with current typical individual studies on functional mechanism, in order to pave the way for the exploitation and development of new medicines derived from the chemical compounds of spice (such as, piperine, curcumin, geniposide, cinnamaldehyde, cinnamic acid, linalool, estragole, perillaldehyde, syringic acid, crocin).

  16. Offgas Analysis and Pyrolysis Mechanism of Activated Carbon from Bamboo Sawdust by Chemical Activation With KOH

    Institute of Scientific and Technical Information of China (English)

    TIAN Yong; LIU Ping; WANG Xiufang; ZHONG Guoying; CHEN Guanke

    2011-01-01

    Bamboo sawdust was used as the precursor for the multipurpose use of waste.Offgases released during the activation process of bamboo by KOH were investigated quantitatively and qualitatively by a gas analyzer. TG/DTG curves during the pyrolysis process with different impregnation weight ratios (KOH to bamboo) were obtained by a thermogravimetric analyzer. Pyrolysis mechanism of bamboo was proposed. The results showed that the offgases were composed of CO, NO,SO2 and hydrocarbon with the concentration of 1 372, 37, 86, 215 mg/L, respectively. Thermogravimetric analysis indicated that the pyrolytic process mainly experienced two steps. The first was the low temperature activation step (lower than 300 ℃), which was the pre-activation and induction period.The second was the high temperature activation step(higher than 550 ℃), which was a radial activation followed by pore production. The second process was the key to control the pore distribution of the final product.

  17. Chemical composition and antimicrobial activity of the essential oils of Pinus pinaster

    Institute of Scientific and Technical Information of China (English)

    Nouara Ait Mimoune; Djouher Ait Mimoune; Aziza Yataghene

    2013-01-01

    Objective: To investigate the antimicrobial activity and chemical composition of essential oils ofPinus pinaster. Methods: Essential oils were extracted from the needles by hydrodistillation. The chemical composition of the obtained essential oils was analyzed using GC-MS technique. The antimicrobial potential has been tested against six microorganisms performing the disc diffusion assay.Results:Twenty-three components have been identified. β-caryophyllene (30.9%) and β-selinene (13.45%) were predominant compounds. The essential oil exhibited a moderate activity againstStaphylococcus aureus, Bacillus subtilis and Escherichia coli, but did not affect the growth of Erwinia amylovora. Aspergillus flavus and Aspergillus niger were not inhibited by maritime pine essential oils.Conclusions:The essential oils from Pinus pinaster can be used as an antibacterial agent.

  18. QSAR classification of metabolic activation of chemicals into covalently reactive species.

    Science.gov (United States)

    Liew, Chin Yee; Pan, Chuen; Tan, Andre; Ang, Ke Xin Magneline; Yap, Chun Wei

    2012-05-01

    Metabolic activation of chemicals into covalently reactive species might lead to toxicological consequences such as tissue necrosis, carcinogenicity, teratogenicity, or immune-mediated toxicities. Early prediction of this undesirable outcome can help in selecting candidates with increased chance of success, thus, reducing attrition at all stages of drug development. The ensemble modelling of mixed features was used for the development of a model to classify the metabolic activation of chemicals into covalently reactive species. The effects of the quality of base classifiers and performance measure for sorting were examined. An ensemble model of 13 naive Bayes classifiers was built from a diverse set of 1,479 compounds. The ensemble model was validated internally with five-fold cross validation and it has achieved sensitivity of 67.4% and specificity of 93.4% when tested on the training set. The final ensemble model was made available for public use.

  19. Chemical Composition and Antibacterial Activity of Essential Oils of Two Species of Lamiaceae against Phytopathogenic Bacteria.

    Science.gov (United States)

    Gormez, Arzu; Bozari, Sedat; Yanmis, Derya; Gulluce, Medine; Sahin, Fikrettin; Agar, Guleray

    2015-01-01

    In this study, we aimed to determine chemical composition and antibacterial activities of Satureja hortensis and Calamintha nepeta against to 20 phytopathogenic bacteria causing serious crop loss. The essential oils of S. hortensis and C. nepeta were isolated by the hydrodistillation method and the chemical composition of the essential oils were analyzed by GC-MS. The antibacterial properties of the essential oils were evaluated against 20 phytopathogenic bacteria through Disc diffusion assay and micro dilution assay. The results revealed that the essential oils of S. hortensis and C. nepeta have significant antibacterial activity. Furthermore, the findings of the study are valuable for future investigations focusing on the alternative natural compounds to control plant diseases.

  20. Chemical composition and antimicrobial activity of the essential oils of Pinus pinaster

    Directory of Open Access Journals (Sweden)

    Nouara Ait Mimoune

    2013-08-01

    Full Text Available Objective: To investigate the antimicrobial activity and chemical composition of essential oils of Pinus pinaster. Methods: Essential oils were extracted from the needles by hydrodistillation. The chemical composition of the obtained essential oils was analyzed using GC-MS technique. The antimicrobial potential has been tested against six microorganisms performing the disc diffusion assay. Results: Twenty-three components have been identified. β-caryophyllene (30.9% and β-selinene (13.45% were predominant compounds. The essential oil exhibited a moderate activity against Staphylococcus aureus, Bacillus subtilis and Escherichia coli, but did not affect the growth of Erwinia amylovora. Aspergillus flavus and Aspergillus niger were not inhibited by maritime pine essential oils. Conclusions: The essential oils from Pinus pinaster can be used as an antibacterial agent.

  1. Chemical composition and antibacterial activity of essential oils from Myrcia alagoensis (Myrtaceae).

    Science.gov (United States)

    Silva, Aline do N; Uetanabaro, Ana Paula T; Lucchese, Angélica M

    2013-02-01

    The chemical composition and antibacterial activity of essential oils obtained from fresh and dried leaves of Myrcia alagoensis O. Berg, collected in a secondary forest remnant in north-eastern Brazil, was compared. The essential oils were obtained by hydrodistillation from fresh and dried leaves, and analysed by GC/FID and GC/MS. The antimicrobial properties of the oils were investigated against five bacteria by determination of the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC). The essential oils were rich in cyclic sesquiterpenes, such as germacrene B, with antibiotic action against Gram-positive and Gram-negative bacteria. The drying process after collection interfered with the chemical composition and antibacterial activity of the assessed samples.

  2. Chemical Constituents and Antioxidant Activity from the Stems of Alyxia reinwardtii

    Directory of Open Access Journals (Sweden)

    Jurairat Rattanapan

    2012-03-01

    Full Text Available Eight compounds were isolated from the stems of Alyxia reinwardtii, namely coumarin (1, 3-hydroxycoumarin (2, 6-hydroxycoumarin (3, 8-hydroxycoumarin (4, scopoletin (5, (+-pinoresinol (6, zhebeiresinol (7 and p-hydroxybenzoic acid (8. The structures of all compounds were characterized by means of NMR, MS, chemical analysis and comparison with the literature data. The structure of compound 7 was also confirmed by X-ray crystallography. To the best of our knowledge, compounds 2-3, 5 and 7-8 have been isolated for the first time from this species. In terms of antioxidant activity, the isolated compounds were evaluated by various in vitro model assays, which include the DPPH radical scavenging activity, xanthine oxidase-related activity (superoxide scavenging activity and inhibitory effect on xanthine oxidase and lipid peroxidation inhibitory activity.

  3. Immobilization of chemically modified horse radish peroxidase within activated alginate beads

    Directory of Open Access Journals (Sweden)

    Spasojević Dragica

    2014-01-01

    Full Text Available Immobilization of horse radish peroxidase (HRP within alginate beads was improved by chemical modification of the enzyme and polysaccharide chains. HRP and alginate were oxidized by periodate and subsequently modified with ethylenediamine. Highest specific activity of 0.43 U/ml of gel and 81 % of bound enzyme activity was obtained using aminated HRP and alginate oxidized by periodate. Immobilized enzyme retained 75 % of original activity after 2 days of incubation in 80 % (v/v dioxane and had increased activity at basic pH values compared to native enzyme. During repeated use in batch reactor for pyrogallol oxidation immobilized peroxidase retained 75 % of original activity. [Projekat Ministarstva nauke Republike Srbije, br. ON173017 i br. ON172049

  4. Chemical Composition, Antioxidant and Anticholinesterase Activities of the Essential oil of Origanum rotundifolium Boiss. from Turkey

    Directory of Open Access Journals (Sweden)

    Hilal Özbek

    2017-09-01

    Full Text Available The essential oil was obtained by hydrodistillation from the aerial parts of Origanum rotundifolium Boiss. Its chemical content and composition were analyzed by using a gas chromatography (GC-FID and gas chromatography-mass spectrometry (GC-MS. Total phenolic content of the essential oil was determined as 132.39 µg gallic acid equivalent by Folin–Ciocalteu’s method and the major component was identified as carvacrol (56.8 % along with p-cymene (13.1 %, (Z- b -ocimene (5.4 %, b -caryophyllene (3.9 %, borneol (3.4 % and thymol (3.2 %. After chemical characterization, the essential oil was evaluated for its antioxidant activity by DPPH free radical, superoxide anion radical and hydrogen peroxide scavenging activities as well as ferrous ion-chelating power test, ABTS radical cation decolorization assay and ferric thiocyanate methods. Besides antioxidant activity, acetylcholinesterase and butyrylcholinesterase inhibitory activities of the essential oil were also evaluated by Ellman’s method. It demonstrated inhibitory activities on AChE and BuChE, key enzymes in the pathogenesis of Alzheimer’s disease (AD, in addition to significant antioxidant activity.

  5. Antimicrobial activity of Algerian propolis in foodborne pathogens and its quantitative chemical composition

    Directory of Open Access Journals (Sweden)

    Neila Nedji

    2014-12-01

    Full Text Available Objective: To evaluate the antimicrobial activity of propolis samples collected from different regions of Algeria and their chemical composition. Methods: The antibacterial activity of ethanolic extract of Algerian propolis against Bacillus cereus (IPA, Staphylococcus aureus (ATCC25923R, Escherichia coli (ATCC25922 and Pseudomonas aeruginosa (ATCC27893R was evaluated by the disc diffusion method and determined as an equivalent of the inhibition zones diameters after incubation of the cultures at 37 °C for 24 h. The investigation of the polyphenol and flavonoid contents was done spectrophotometrically. Results: The ethanolic extract of Algerian propolis samples inhibited the growth of all examined microorganisms with the highest antimicrobial activity against the Gram-positive bacteria. Polyphenol and flavonoids contents were variable, depending on the propolis samples and a positive correlation between antimicrobial activity and chemical composition was observed. Conclusions: Antimicrobial activity, polyphenol and flavonoid contents were variable, depending on the propolis sample. The strong antimicrobial activity of Algerian propolis may be due to high total phenolic and flavonoid contents and this study suggests potential use of propolis in foods.

  6. Chemical composition and antibacterial activity of essential oil of Pulicaria odora L.

    Science.gov (United States)

    Hanbali, Fadwa E L; Akssira, Mohamed; Ezoubeiri, Aicha; Gadhi, Chems Eddoha A; Mellouki, Fouad; Benherraf, Ahmed; Blazquez, Amparo M; Boira, Herminio

    2005-07-14

    The chemical composition of the volatile oil constituent from Pulicaria odora L. roots has been analyzed by GC/MS. Twenty-seven components were identified, being thymol (47.83%) and its derivative isobutyrate (30.05%) the main constituents in the oil. Furthermore, the oil was tested against seven bacteria at different concentrations. Results showed that the oil exhibited a significant antibacterial activity.

  7. Physico-Chemical Properties, Antioxidant Activity and Mineral Contents of Pineapple Genotypes Grown in China

    OpenAIRE

    Xin-Hua Lu; De-Quan Sun; Qing-Song Wu; Sheng-Hui Liu; Guang-Ming Sun

    2014-01-01

    The fruit physico-chemical properties, antioxidant activity and mineral contents of 26 pineapple [Ananas comosus (L.) Merr.] genotypes grown in China were measured. The results showed great quantitative differences in the composition of these pineapple genotypes. Sucrose was the dominant sugar in all 26 genotypes, while citric acid was the principal organic acid. Potassium, calcium and magnesium were the major mineral constituents. The ascorbic acid (AsA) content ranged from 5.08 to 33.57 mg/...

  8. Chemical composition, antimicrobial, antioxidant and cytotoxic activity of Rosa centifolia L. essential oil

    OpenAIRE

    Nikolić, Miloš; Isabel C. F. R. Ferreira; Calhelha, Ricardo C.; Ângela FERNANDES; Marković, Dejan; Marković, Tatjana; Ćirić, Ana; Glamočlija, Jasmina; Soković, Marina

    2013-01-01

    The genus Rosa comprises more than 200 species appreciated for their use in perfume and cosmetic industry. The aim of this study was to investigate chemical composition, antimicrobial, antioxidant and cytotoxic activities of Rosa centifolia L. essential oil, in an attempt to contribute to the use of this plant as alternative product for microbial control and cancer therapy. The results of GC/MS analysis showed the presence of 12 components. The major constituents were: phenyl ethyl alcohol (5...

  9. Chemical Composition and Biological Activities of Fragrant Mexican Copal (Bursera spp.).

    Science.gov (United States)

    Gigliarelli, Giulia; Becerra, Judith X; Curini, Massimo; Marcotullio, Maria Carla

    2015-12-12

    Copal is the Spanish word used to describe aromatic resins from several genera of plants. Mexican copal derives from several Bursera spp., Protium copal, some Pinus spp. (e.g., P. pseudostrobus) and a few Fabaceae spp. It has been used for centuries as incense for religious ceremonies, as a food preservative, and as a treatment for several illnesses. The aim of this review is to analyze the chemical composition and biological activity of commercial Mexican Bursera copal.

  10. Chemical Composition and Biological Activities of Fragrant Mexican Copal (Bursera spp.

    Directory of Open Access Journals (Sweden)

    Giulia Gigliarelli

    2015-12-01

    Full Text Available Copal is the Spanish word used to describe aromatic resins from several genera of plants. Mexican copal derives from several Bursera spp., Protium copal, some Pinus spp. (e.g., P. pseudostrobus and a few Fabaceae spp. It has been used for centuries as incense for religious ceremonies, as a food preservative, and as a treatment for several illnesses. The aim of this review is to analyze the chemical composition and biological activity of commercial Mexican Bursera copal.

  11. Chemical Composition and Antifungal Activity of Ocimum basilicum L. Essential Oil

    OpenAIRE

    Neveen Helmy Abou El-Soud; Mohamed Deabes; Lamia Abou El-Kassem; Mona Khalil

    2015-01-01

    BACKGROUND: The leaves of Ocimum basilicum L. (basil) are used in traditional cuisine as spices; its essential oil has found a wide application in perfumery, dental products as well as antifungal agents. AIM: To assess the chemical composition as well as the in vitro antifungal activity of O. basilicum L. essential oil against Aspergillus flavus fungal growth and aflatoxin B1 production. MATERIAL AND METHODS: The essential oil of O. basilicum was obtained by hydrodistillation and anal...

  12. Chemical composition and antimicrobial activity of the essential oils of Pistacia lentiscus var. chia.

    Science.gov (United States)

    Magiatis, P; Melliou, E; Skaltsounis, A L; Chinou, I B; Mitaku, S

    1999-12-01

    The chemical composition of the three essential oils obtained by steam distillation of the mastic gum, leaves and twigs of Pistacia lentiscus var. chia, was studied by GC/MS. Sixty nine constituents were identified from the oils. alpha-Pinene, myrcene, trans-caryophyllene and germacrene D were found to be the major components. The in vitro antimicrobial activity of the three essential oils and of the resin (total, acid and neutral fraction) against six bacteria and three fungi is reported.

  13. Chemical study of extracted rockrose and of chars and activated carbons prepared at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Pastor-Villegas, J.; Gomez-Serrano, V.; Duran-Valle, C.J.; Higes-Rolando, F.J. [Departamento de Quimica Inorganica, Universidad de Extremadura, Badajoz (Spain)

    1999-04-01

    This paper discusses the chemical composition and chemical structure of rockrose (Cistus ladaniferus L.) extracted into petroleum ether and resulting chars as well as activated carbons. The isothermal temperature of carbonization of extracted rockrose (Jex) in N{sub 2} ranged between 600 and 1000C. The char (C{sub Jex}-600) employed in the preparation of activated carbons was prepared by treatment of Jex at 30-600C. This char was heated in N{sub 2} before activation, which was carried out in CO{sub 2} or steam at 700-950C to 40% burn-off. Chemical analyses, Fourier transform infrared spectroscopy, thermogravimetry and X-ray diffraction techniques have been applied. The extraction does not exert a significant influence on the organic chemical structure of raw material. In ash prepared at 600C from Jex (ash content 1.29%), the major elements are Ca, K, Mg and P; calcite is the main component. When this ash is heated at 950C, lime is the main component. The chars and activated carbons contain carbon-carbon double bonds and ether structures; C{sub Jex}-600 also contains carbonyl groups. The ether groups decrease with the temperature increase. The analyses of chars and activated carbons show an ash content close to 6-8%, and calcite as the main component. The presence of whewellite, CaC{sub 2}O{sub 4}{center_dot}H{sub 2}O, indicates that the pyrolysis is delayed in the preparation of C{sub Jex}-600, that a partial calcium-carboxylate association occurs, and that hydration takes place during storage period. The mineral matter of the activated carbons prepared at 700C depends on the activating agent: calcite is the only component identified using CO{sub 2}, whereas lime, portlandite and vaterite are also identified using steam. At higher temperatures, the mineral matter is practically independent of the activating agent. Probably, CaO transforms into Ca(OH){sub 2} and CaCO{sub 3} during the char and activated carbon storage periods

  14. Chemical composition and biological activity of ripe pumpkin fruits (Cucurbita pepo L.) cultivated in Egyptian habitats.

    Science.gov (United States)

    Badr, Sherif E A; Shaaban, Mohamed; Elkholy, Yehya M; Helal, Maher H; Hamza, Akila S; Masoud, Mohamed S; El Safty, Mounir M

    2011-09-01

    The chemical composition and biological activity of three parts (rind, flesh and seeds) of pumpkin fruits (Cucurbita pepo L.) cultivated in Egypt were studied. Chemical analysis of fibre, protein, β-carotene, carbohydrates, minerals and fatty acids present in the rind, flesh, seeds and defatted seeds meal was conducted. Chemical, GC-MS and biological assays of organic extracts of the main fruit parts, rind and flesh established their unique constituents. Chromatographic purification of the extracts afforded triglyceride fatty acid mixture (1), tetrahydro-thiophene (2), linoleic acid (3), calotropoleanly ester (4), cholesterol (5) and 13(18)-oleanen-3-ol (6). GC-MS analysis of the extract's unpolar fraction revealed the existence of dodecane and tetradecane. Structures of the isolated compounds (1-6) were confirmed by NMR and EI-MS spectrometry. Antimicrobial, antiviral and antitumour activities of the fruit parts were discussed. The promising combined extract of rind and flesh was biologically studied for microbial and cytotoxic activities in comparison with the whole isolated components.

  15. Tracking SERS-active nanoprobe intracellular uptake for chemical and biological sensing

    Science.gov (United States)

    Gregas, Molly K.; Yan, Fei; Scaffidi, Jonathan; Wang, Hsin-Neng; Khoury, Christopher; Zhang, Yan; Vo-Dinh, Tuan

    2007-09-01

    A critical aspect of the use of nanoprobes for intracellular studies in chemical and biological sensing involves a fundamental understanding of their uptake and trajectory in cells. In this study, we describe experiments using surface-enhanced Raman scattering (SERS) spectroscopy and mapping to track cellular uptake of plasmonics-active labeled nanoparticles. Three different Raman-active labels with positive, negative, and neutral charges were conjugated to silver colloidal nanoparticles with the aim of spatially and temporally profiling intracellular delivery and tracking of nanoprobes during uptake in single mammalian cells. 1-D Raman spectra and 2-D Raman mapping are used to identify and locate the probes via their SERS signal intensities. Because Raman spectroscopy is very specific for identification of chemical and molecular signatures, the development of functionalized plasmonics-active nanoprobes capable of exploring intracellular spaces and processes has the ability to provide specific information on the effects of biological and chemical pollutants in the intracellular environment. The results indicate that this technique will allow study of when, where, and how these substances affect cells and living organisms.

  16. NMR crystallography of enzyme active sites: probing chemically detailed, three-dimensional structure in tryptophan synthase.

    Science.gov (United States)

    Mueller, Leonard J; Dunn, Michael F

    2013-09-17

    NMR crystallography--the synergistic combination of X-ray diffraction, solid-state NMR spectroscopy, and computational chemistry--offers unprecedented insight into three-dimensional, chemically detailed structure. Initially, researchers used NMR crystallography to refine diffraction data from organic and inorganic solids. Now we are applying this technique to explore active sites in biomolecules, where it reveals chemically rich detail concerning the interactions between enzyme site residues and the reacting substrate. Researchers cannot achieve this level of detail from X-ray, NMR,or computational methodologies in isolation. For example, typical X-ray crystal structures (1.5-2.5 Å resolution) of enzyme-bound intermediates identify possible hydrogen-bonding interactions between site residues and substrate but do not directly identify the protonation states. Solid-state NMR can provide chemical shifts for selected atoms of enzyme-substrate complexes, but without a larger structural framework in which to interpret them only empirical correlations with local chemical structure are possible. Ab initio calculations and molecular mechanics can build models for enzymatic processes, but they rely on researcher-specified chemical details. Together, however, X-ray diffraction, solid-state NMR spectroscopy, and computational chemistry can provide consistent and testable models for structure and function of enzyme active sites: X-ray crystallography provides a coarse framework upon which scientists can develop models of the active site using computational chemistry; they can then distinguish these models by comparing calculated NMR chemical shifts with the results of solid-state NMR spectroscopy experiments. Conceptually, each technique is a puzzle piece offering a generous view of the big picture. Only when correctly pieced together, however, can they reveal the big picture at the highest possible resolution. In this Account, we detail our first steps in the development of

  17. Synthesis of sulfonated porous carbon nanospheres solid acid by a facile chemical activation route

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Binbin, E-mail: changbinbin806@163.com; Guo, Yanzhen; Yin, Hang; Zhang, Shouren; Yang, Baocheng, E-mail: baochengyang@yahoo.com

    2015-01-15

    Generally, porous carbon nanospheres materials are usually prepared via a template method, which is a multi-steps and high-cost strategy. Here, we reported a porous carbon nanosphere solid acid with high surface area and superior porosity, as well as uniform nanospheical morphology, which prepared by a facile chemical activation with ZnCl{sub 2} using resorcinol-formaldehyde (RF) resins spheres as precursor. The activation of RF resins spheres by ZnCl{sub 2} at 400 °C brought high surface area and large volume, and simultaneously retained numerous oxygen-containing and hydrogen-containing groups due to the relatively low processing temperature. The presence of these functional groups is favorable for the modification of –SO{sub 3}H groups by a followed sulfonation treating with sulphuric acid and organic sulfonic acid. The results of N{sub 2} adsorption–desorption and electron microscopy clearly showed the preservation of porous structure and nanospherical morphology. Infrared spectra certified the variation of surface functional groups after activation and the successful modification of –SO{sub 3}H groups after sulfonation. The acidities of catalysts were estimated by an indirect titration method and the modified amount of –SO{sub 3}H groups were examined by energy dispersive spectra. The results suggested sulfonated porous carbon nanospheres catalysts possessed high acidities and –SO{sub 3}H densities, which endowed their significantly catalytic activities for biodiesel production. Furthermore, their excellent stability and recycling property were also demonstrated by five consecutive cycles. - Graphical abstract: Sulfonated porous carbon nanospheres with high surface area and superior catalytic performance were prepared by a facile chemical activation route. - Highlights: • Porous carbon spheres solid acid prepared by a facile chemical activation. • It owns high surface area, superior porosity and uniform spherical morphology. • It possesses

  18. Chemical and biochemical activities of sonochemically synthesized poly(N-isopropyl acrylamide)/silica nanocomposite

    Science.gov (United States)

    Chowdhury, Pranesh; Saha, Swadhin Kr; Guha, Arun; Saha, Samar Kr

    2012-11-01

    Poly(N-isopropyl acrylamide) (PNIPA) grafted mesoporous silica nanoparticles (MPSNP) leading to novel inorganic/organic core-shell nanocomposite has been synthesized sonochemically in an aqueous medium without additives like cross-linker, hydrophobic agent, organic solvent. The colloidal stability of MPSNP is enhanced significantly due to encapsulation of the polymer. The composites are characterized by TEM, FTIR and TGA. The chemical and biochemical activities of the sonochemically synthesized materials have been studied in the light of reaction with acid-base, protein adsorption, antimicrobial activity, biocompatibility and nonthrombogenic property. Advantages of sonochemical synthesis compared to other techniques have been evaluated.

  19. Chemical Constituents and their DPPH Radical Scavenging Activity of Nepalese Crude Drug Begonia picta

    Directory of Open Access Journals (Sweden)

    Khem Raj Joshi

    2015-04-01

    Full Text Available Vitexin (1, isovitexin (2, orientin (3, isoorientin (4 and 1, 3 - dih y d roxy - 6, 7 - dimethoxyxanthone (5 were isolated from the whole plant of Begonia picta , a Nepalese crude drug commonly known as “ Magarkaanche ”. Structures were elucidated on the basis of chemical and spectroscopic methods. All of these compounds were isolated for the first time from B. picta and their in vitro antioxidant activity was evaluated by diphenyl-2-picrylhydrazyl ( DPPH free radical scavenging assay. Compounds 3 and 4 showed significant free radical scavenging activity.

  20. Chemical Composition and Biological Activities of Essential Oil from the Rhizomes of Iris bulleyana

    Institute of Scientific and Technical Information of China (English)

    DENG Guo-bin; ZHANG Han-bo; XUE Hong-fen; CHEN Shan-na; CHEN Xiao-lan

    2009-01-01

    Iris bulleyana has long been used as a remedy for detoxication and detumescence.Hydrodistillation was used to extract the essential oil from its rhizomes,and 0.23% oil yield was obtained.Using gas chromatography-mass spectrometry (GCMS) analysis,31 chemicals including aristolone,euparene,β-gurjunene,δ-amorphene,α-muurolene,α-cadinol,camphor,γ-elemene,and τ-eadinol were identified.The essential oil exhibited antibacterial activity against Acetobacter calcoacetica,Bacillus subtillis,Clostridium sporogenes,Clostridium perfringens,Escherichia coli,Salmonella typhii,Staphylococcus aureus,and Yersinia enterocolitica.Its antifungal and antioxidant activities were also tested.

  1. Essential Oils’ Chemical Characterization and Investigation of Some Biological Activities: A Critical Review

    Science.gov (United States)

    Dhifi, Wissal; Bellili, Sana; Jazi, Sabrine; Bahloul, Nada; Mnif, Wissem

    2016-01-01

    This review covers literature data summarizing, on one hand, the chemistry of essential oils and, on the other hand, their most important activities. Essential oils, which are complex mixtures of volatile compounds particularly abundant in aromatic plants, are mainly composed of terpenes biogenerated by the mevalonate pathway. These volatile molecules include monoterpenes (hydrocarbon and oxygenated monoterpens), and also sesquiterpenes (hydrocarbon and oxygenated sesquiterpens). Furthermore, they contain phenolic compounds, which are derived via the shikimate pathway. Thanks to their chemical composition, essential oils possess numerous biological activities (antioxidant, anti-inflammatory, antimicrobial, etc…) of great interest in food and cosmetic industries, as well as in the human health field. PMID:28930135

  2. Preparation of porous bio-char and activated carbon from rice husk by leaching ash and chemical activation.

    Science.gov (United States)

    Ahiduzzaman, Md; Sadrul Islam, A K M

    2016-01-01

    Preparation porous bio-char and activated carbon from rice husk char study has been conducted in this study. Rice husk char contains high amount silica that retards the porousness of bio-char. Porousness of rice husk char could be enhanced by removing the silica from char and applying heat at high temperature. Furthermore, the char is activated by using chemical activation under high temperature. In this study no inert media is used. The study is conducted at low oxygen environment by applying biomass for consuming oxygen inside reactor and double crucible method (one crucible inside another) is applied to prevent intrusion of oxygen into the char. The study results shows that porous carbon is prepared successfully without using any inert media. The adsorption capacity of material increased due to removal of silica and due to the activation with zinc chloride compared to using raw rice husk char. The surface area of porous carbon and activated carbon are found to be 28, 331 and 645 m(2) g(-1) for raw rice husk char, silica removed rice husk char and zinc chloride activated rice husk char, respectively. It is concluded from this study that porous bio-char and activated carbon could be prepared in normal environmental conditions instead of inert media. This study shows a method and possibility of activated carbon from agro-waste, and it could be scaled up for commercial production.

  3. Biological activities and chemical constituents of some mangrove species from Sundarban estuary: An overview

    Directory of Open Access Journals (Sweden)

    Aritra Simlai

    2013-01-01

    Full Text Available This review represents the studies performed on some beneficial mangrove plants such as Ceriops decandra, Xylocarpus granatum, Xylocarpus moluccensis, Excoecaria agallocha, Sarcolobus globosus, Sonneratia caseolaris and Acanthus ilicifolius from the Sundarban estuary spanning India and Bangladesh with regard to their biological activities and chemical investigations till date. Sundarban is the largest single chunk of mangrove forest in the world. The forest is a source of livelihood to numerous people of the region. Several of its plant species have very large applications in the traditional folk medicine; various parts of these plants are used by the local people as cure for various ailments. Despite such enormous potential, remarkably few reports are available on these species regarding their biological activities and the active principles responsible for such activities. Though some chemical studies have been made on the mangrove plants of this estuary, reports pertaining to their activity-structure relationship are few in number. An attempt has been made in this review to increase the awareness for the medicinal significance as well as conservation and utilization of these mangrove species as natural rich sources of novel bioactive agents.

  4. Chemically and biologically modified activated carbon sorbents for the removal of lead ions from aqueous media.

    Science.gov (United States)

    Mahmoud, Mohamed E; Abdel-Fattah, Tarek M; Osman, Maher M; Ahmed, Somia B

    2012-01-01

    A method is described for hybridization of the adsorption and biosorption characteristics of chemically treated commercial activated carbon and baker's yeast, respectively, for the formation of environmental friendly multifunctional sorbents. Activated carbon was loaded with baker's yeast after acid-base treatment. Scanning Electron Microscopy (SEM) and Fourier Transform Infrared (FTIR) Spectroscopy were used to characterize these sorbents. Moreover, the sorption capabilities for lead (II) ions were evaluated. A value of 90 μmol g(-1) was identified as the maximum sorption capacity of activated carbon. Acid-base treatment of activated carbon was found to double the sorption capacity (140-180 μmol g(-1)). Immobilization of baker's yeast on the surface of activated carbon sorbents was found to further improve the sorption capacity efficiency of lead to 360, 510 and 560 μmol g(-1), respectively. Several important factors such as pH, contact time, sorbent dose, lead concentration and interfering ions were examined. Lead sorption process was studied and evaluated by several adsorption isotherms and found to follow the Langmuir and BET models. The potential applications of various chemically and biologically modified sorbents and biosorbents for removal of lead from real water matrices were also investigated via multistage micro-column technique and the results referred to excellent recovery values of lead (95.0-99.0 ± 3.0-5.0 %).

  5. Chemical characterization and antioxidant activity of Eryngium campestre L., Apiaceae from Kosovo

    Directory of Open Access Journals (Sweden)

    Flurim Nebija

    2009-12-01

    Full Text Available This study is outlined to define the chemical composition and in vitro antioxidant activity of the extracts of aerial part and root of Eryngium campestre L. (Apiaceae from Kosovo. Analysis of the chemical composition include determination of total ash, ash insoluble in hydrochloric acid, loss on drying and the content of water extract, as well as determination of flavonoids in aerial part and hemolytic activity of the root. The mineral composition (Zn, Fe, Cu, Mn, Ni, K, Co, Pb, Cd and Cr in aerial parts and root has been studied using atomic absorption spectroscopy (AAS and ETAAS. Different part of E. campestre accumulate different amounts of investigated minerals. Antioxidant activity was determined by four various testing systems: DPPH assay, inhibition of production of hydroxyl radical, β-carotenebleaching assay, and inhibition of lipid peroxidation (TBA test. In DPPH system, ethanol extract of root of E. campestre exhibited higher radical-scavenging activity (IC50 = 0.72 mg ml-1 compared to the extract of the aerial part (IC50 = 1.14 mg ml-1. On the other hand, aerial part ethanol extract has exhibited stronger inhibition capacity on the production of hydroxyl radical in deoxyribose system than the root extract (50% and 45%, respectively. However, both ethanol extracts of E. campestre exhibited low antioxidant activity in β-carotenebleaching assay as well as, low capacity for inhibition of spontaneous lipid peroxidation in rat liver homogenate.

  6. Chemical Composition and Biological Activities of Mono- and Heterofloral Bee Pollen of Different Geographical Origins

    Science.gov (United States)

    Araújo, Jucilene Silva; Chambó, Emerson Dechechi; Costa, Maria Angélica Pereira de Carvalho; Cavalcante da Silva, Samira Maria Peixoto; Lopes de Carvalho, Carlos Alfredo; M. Estevinho, Leticia

    2017-01-01

    Recent research shows variations in pollen chemical constituents and, consequently, in their therapeutic properties. Mono and multifloral bee pollen extracts were investigated for antioxidant and enzyme inhibitory activity properties, phenolic compounds and fatty acid composition. Generally, Eucalyptus spp. and multifloral extracts exhibited potent inhibitory activity against α-amylase, acetylcholinesterase, tyrosinase, lipoxygenase, lipase and hyaluronidase. On the other hand, Miconia spp. demonstrated higher antihemolytic activity. Cocos nucifera and Miconia spp. extracts exhibited important antioxidant properties in the different assays (ABTS, DPPH, β-carotene/linoleic acid and reducing power). Moreover, these extracts had greater amounts of total phenols and flavonoids in comparison to others. The increase in antioxidant activity (decrease in EC50 values) was accompanied by an increase in the amount of total phenols in the extracts. The pollen extracts contained linoleic acid and α-linolenic acid as major fatty acids, followed by palmitic acid, and oleic acid. In this study, differences were observed in both chemical constituents and biological activities of the samples related to the geographical and botanical origin of bee pollen. PMID:28448467

  7. Chemical Composition, Antimicrobial and Antioxidant Activities of the Volatile Oil of Ganoderma pfeifferi Bres

    Directory of Open Access Journals (Sweden)

    Mohamed Al-Fatimi

    2016-04-01

    Full Text Available In a first study of the volatile oil of the mushroom basidiomycete Ganoderma pfeifferi Bres., the chemical composition and antimicrobial and antioxidant activities of the oil were investigated. The volatile oil was obtained from the fresh fruiting bodies of Ganoderma pfeifferi Bres. By hydrodistillation extraction and analyzed by GC-MS. The antimicrobial activity of the oil was evaluated against five bacteria strains and two types of fungi strains, using disc diffusion and broth microdilution methods. In addition, the antioxidant activity of the oil was determined using DPPH assay. Four volatile compounds representing 90.5% of the total oil were identified. The majority of the essential oil was dominated by 1-octen-3-ol (amyl vinyl carbinol 1 (73.6% followed by 1-octen-3-ol acetate 2 (12.4%, phenylacetaldehyde 3 (3.0% and 6-camphenol 4 (1.5%. The results showed that the Gram-positive bacteria species are more sensitive to the essential oil than Gram-negative bacteria. The oil showed strong antimicrobial activity against Staphylococcus aureus as well as Candida albicans. Moreover, the oil exhibited strong radical scavenging activity in the DPPH assay. This first report on the chemical composition and biological properties of G. pfeifferi volatile oil makes its pharmaceutical uses rational and provides a basis in the biological and phytochemical investigations of the volatile oils of Ganodermataceae species.

  8. High surface area activated carbon prepared from cassava peel by chemical activation.

    Science.gov (United States)

    Sudaryanto, Y; Hartono, S B; Irawaty, W; Hindarso, H; Ismadji, S

    2006-03-01

    Cassava is one of the most important commodities in Indonesia, an agricultural country. Cassava is one of the primary foods in our country and usually used for traditional food, cake, etc. Cassava peel is an agricultural waste from the food and starch processing industries. In this study, this solid waste was used as the precursor for activated carbon preparation. The preparation process consisted of potassium hydroxide impregnation at different impregnation ratio followed by carbonization at 450-750 degrees C for 1-3 h. The results revealed that activation time gives no significant effect on the pore structure of activated carbon produced, however, the pore characteristic of carbon changes significantly with impregnation ratio and carbonization temperature. The maximum surface area and pore volume were obtained at impregnation ratio 5:2 and carbonization temperature 750 degrees C.

  9. Can vaccinia virus be replaced by MVA virus for testing virucidal activity of chemical disinfectants?

    Directory of Open Access Journals (Sweden)

    Rapp Ingrid

    2010-06-01

    Full Text Available Abstract Background Vaccinia virus strain Lister Elstree (VACV is a test virus in the DVV/RKI guidelines as representative of the stable enveloped viruses. Since the potential risk of laboratory-acquired infections with VACV persists and since the adverse effects of vaccination with VACV are described, the replacement of VACV by the modified vaccinia Ankara strain (MVA was studied by testing the activity of different chemical biocides in three German laboratories. Methods The inactivating properties of different chemical biocides (peracetic acid, aldehydes and alcohols were tested in a quantitative suspension test according to the DVV/RKI guideline. All tests were performed with a protein load of 10% fetal calf serum with both viruses in parallel using different concentrations and contact times. Residual virus was determined by endpoint dilution method. Results The chemical biocides exhibited similar virucidal activity against VACV and MVA. In three cases intra-laboratory differences were determined between VACV and MVA - 40% (v/v ethanol and 30% (v/v isopropanol are more active against MVA, whereas MVA seems more stable than VACV when testing with 0.05% glutardialdehyde. Test accuracy across the three participating laboratories was high. Remarkably inter-laboratory differences in the reduction factor were only observed in two cases. Conclusions Our data provide valuable information for the replacement of VACV by MVA for testing chemical biocides and disinfectants. Because MVA does not replicate in humans this would eliminate the potential risk of inadvertent inoculation with vaccinia virus and disease in non-vaccinated laboratory workers.

  10. Chemical reactivity and biological activity of chalcones and other α,β-unsaturated carbonyl compounds.

    Science.gov (United States)

    Maydt, Daniela; De Spirt, Silke; Muschelknautz, Christian; Stahl, Wilhelm; Müller, Thomas J J

    2013-08-01

    Abstract 1. Chalcones are structural analogues of benzalacetophenone (BAP). Several derivatives have been identified in plants and anticarcinogenic and anti-inflammatory properties were attributed to the compounds, probably related to their direct antioxidant activity or stimulatory effects on the expression of endogenous defence enzymes like hemeoxygenase-1 (HO-1). HO-1 expression is triggered by the Nrf2-Keap1 signalling pathway, initiated by the addition of chalcones to thiol groups of Keap1 via Michael-type reaction. 2. The present study used a model system estimating the reactivity of different synthetic chalcones and other α,β-unsaturated carbonyl compounds with thiols and compared the chemical reactivity with the biological activity, measured by HO-1 expression in human dermal fibroblasts. 3. Chemical reactivity with the thiol group of N-acetylcysteine was determined with 5,5'-dithiobis-(2-nitrobenzoic acid) and followed chemical principles of structure-reactivity relationship. Most reactive were sulforaphane, dimethylfumarate, chalcone 3 ((2E)-1-phenyl-3-pyrimidin-2-ylprop-2-en-1-one) and chalcone 7 (1,3-diphenylprop-2-yn-1-one). This result demonstrates that α,β-unsaturated carbonyl derivatives react with thiols differently. All compounds were also biologically active; however, expression of HO-1 was not only related to the chemical reactivity but also to the lipophilicity of the molecules which likely affected transmembrane uptake. Most efficient inducers of HO-1 expression were BAP, 4-hydroxynonenal and chalcone 1 (4-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]benzonitrile), chalcone 5 ((2E)-1-phenyl-3-[4-(trifluoromethyl)-phenyl]prop-2-en-1-one) and chalcone 7.

  11. Chemical compatibility study of lithium titanate with Indian reduced activation ferritic martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Sonak, Sagar, E-mail: sagarsonak@gmail.com [Fusion Reactor Materials Section, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Jain, Uttam [Fusion Reactor Materials Section, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Haldar, Rumu [Material Science Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Kumar, Sanjay [Fusion Reactor Materials Section, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2015-11-15

    Highlights: • Chemical compatibility between Li{sub 2}TiO{sub 3} and Indian RAFM steel has been studied at ITER operating temperature. • The lithium titanate chemically reacted with ferritic martensitic steel to form a brittle and non-adherent oxide layer. • The layer grew in a parabolic manner as a function of heating time. • Diffusion of oxygen (from Li{sub 2}TiO{sub 3}) appears to be controlling the oxide layer. - Abstract: Chemical compatibility between lithium titanate and Indian reduced activation ferritic-martensitic steel (In-RAFMS) was studied for the first time under ITER operating temperature. Lithium titanate required for the study was synthesized in-house. Coupons of In-RAFMS were packed inside lithium titanate powder and heated at 550 °C up to 900 h under inert argon atmosphere. The lithium titanate chemically reacted with ferritic martensitic steel to form a brittle and non-adherent oxide layer. The layer grew in a parabolic manner as a function of heating time. Microstructural and phase evolution of this oxide layer was studied using XRD, SEM and EPMA. Iron and chromium enriched zones were found within the oxide layer. Diffusion of oxygen (from Li{sub 2}TiO{sub 3}) appears to be controlling the oxide layer.

  12. Force-activated reactivity switch in a bimolecular chemical reaction at the single molecule level

    Science.gov (United States)

    Szoszkiewicz, Robert; Garcia-Manyes, Sergi; Liang, Jian; Kuo, Tzu-Ling; Fernandez, Julio M.

    2010-03-01

    Mechanical force can deform the reacting molecules along a well-defined direction of the reaction coordinate. However, the effect of mechanical force on the free-energy surface that governs a chemical reaction is still largely unknown. The combination of protein engineering with single-molecule AFM force-clamp spectroscopy allows us to study the influence of mechanical force on the rate at which a protein disulfide bond is reduced by some reducing agents in a bimolecular substitution reaction (so-called SN2). We found that cleavage of a protein disulfide bond by hydroxide anions exhibits an abrupt reactivity ``switch'' at 500 pN, after which the accelerating effect of force on the rate of an SN2 chemical reaction greatly diminishes. We propose that an abrupt force-induced conformational change of the protein disulfide bond shifts its ground state, drastically changing its reactivity in SN2 chemical reactions. Our experiments directly demonstrate the action of a force-activated switch in the chemical reactivity of a single molecule. References: Sergi Garcia-Manyes, Jian Liang, Robert Szoszkiewicz, Tzu-Ling Kuo and Julio M. Fernandez, Nature Chemistry, 1, 236-242, 2009.

  13. Synthesis, characterization, biocompatible and anticancer activity of green and chemically synthesized silver nanoparticles - A comparative study.

    Science.gov (United States)

    Kummara, Sivaiah; Patil, Mrityunjaya B; Uriah, Tiewlasubon

    2016-12-01

    Silver nanoparticles (AgNPs) are superior cluster of nanomaterials that are recently recognized for their different applications in various pharmaceutical and clinical settings. The objective of this work deals with novel method for biosynthesis of AgNPs using Azadirachta indica (neem) leaf extract as reducing agent. These bio and chemical synthesized nanoparticles were characterized with the help of UV-vis Spectroscopy, Nanotarc, Dynamic light scattering (DLS), Zeta Potential (ZP), Transmission Electron Microscopy and Fourier transform infrared spectroscopy (FTIR). The obtained results from Nanotrac and TEM revealed that the synthesized AgNPs possess spherical shape with a mean diameter at 94nm for green and 104nm for chemical method, the zeta potential values was -12.02mV for green AgNPs and -10.4mV for chemical AgNPs. In addition, FT-IR measurement analysis was conceded out to identify the Ag(+) ions reduced from the specific functional groups on the AgNPs, which increased the stability of the particles. Further, we compared the toxicities of green and chemical AgNPs against human skin dermal fibroblast (HDFa) and brine shrimp followed by anticancer activity in NCI-H460 cells. We observed green AgNPs cause dose-dependent decrease in cell viability and increase in reactive oxygen species (ROS) generation. Further, we proved to exhibit excellent cytotoxic effect and induction of cellular apoptosis in NCI-H460 cells. Furthermore, green AgNPs had no significant changes in cell viability, ROS production and apoptotic changes in HDFa cells. In contrary, we observed that the chemical AgNPs possess significant toxicities in HDFa cells. Hence, the green AgNPs were able to induce selective toxicity in cancer cells than the chemical AgNPs. Furthermore, green AgNPs exhibit less toxic effects against human red blood cells and brine shrimp (Artemia salina) nauplii than the chemical AgNPs. It was concluded, that apart from being superior over chemical AgNPs, the green Ag

  14. CHEMICAL COMPOSITION AND ANTIOXIDANT ACTIVITY OF ESSENTIAL OIL FROM CURCUMA AMADA ROXB.

    Directory of Open Access Journals (Sweden)

    Vishnupriya.M

    2012-06-01

    Full Text Available This study was designed to examine the chemical composition and in vitro antioxidant activity of essential oil of Curcuma amada Roxb. The GC- MS analysis of the oil resulted in the identification of 12 compounds. β-myrcene (63.85% and α-asarone (30.27% were the two major components identified. The sample was subjected to screening for their possible antioxidant activity by using 2, 2-diphenyl-1-picrylhydrazyl (DPPH radical, ABTS radical, Ferric reducing antioxidant power and β-Carotene bleaching assay. Results showed that the essential oil possessed a strong degree of antioxidant activity in terms of β-Carotene bleaching capacity followed by ABTS radical, ferric reducing power and a moderate DPPH radical scavenging activity. This study concludes that the essential oil from Curcuma amada Roxb could serve as an important bioresource of antioxidants for using in food and pharmaceutical industry.

  15. Chemical composition and antibacterial activity of essential oils from different parts of Leonurus japonicus Houtt.

    Science.gov (United States)

    Xiong, Liang; Peng, Cheng; Zhou, Qin-Mei; Wan, Feng; Xie, Xiao-Fang; Guo, Li; Li, Xiao-Hong; He, Cheng-Jun; Dai, Ou

    2013-01-14

    The herb and fruits of Leonurus japonicus Houtt., named "Yimucao" and "Chongweizi", respectively, in Chinese, have been widely used in China as gynecological medicines. The components of the essential oils obtained by hydrodistillation were investigated by GC-MS. The antibacterial activity of the essential oils was determined by micro-dilution assay. The results showed large variations in the chemical composition and antibacterial activity of the oils. The oil of "Yimucao" showed antibacterial activity against various Gram-positive bacteria and consisted mainly of sesquiterpenes and diterpenes, with phytone, phytol, caryophyllene oxide and β-caryophyllene being the most significant constituents, whereas the oil of "Chongweizi", mainly made up of bornyl acetate and aliphatic hydrocarbons, was inactive in the antibacterial assay. Further study of the main compounds in "Yimucao oil" showed that β-caryophyllene had wide-spectrum activity against Gram-positive bacteria.

  16. Chemical composition, antimicrobial, antiradical and anticholinesterase activity of the essential oil of Pulicaria stephanocarpa from Soqotra.

    Science.gov (United States)

    Ali, Nasser A Awadh; Crouch, Rebecca A; Al-Fatimi, Mohamed A; Arnold, Norbert; Teichert, Axel; Setzer, William N; Wessjohann, Ludger

    2012-01-01

    The chemical composition of the hydrodistilled leaf essential oil from Pulicaria stephanocarpa Balf. Fil was determined by GC-MS analysis, and its antimicrobial, antioxidant and anticholinesterase (AChE) activities were evaluated. Eighty-three compounds were identified representing 97.2% of the total oil. (E)-Caryophyllene 13.4%, (E)-nerolidol 8.5%, caryophyllene oxide 8.5%, alpha-cadinol 8.2% spathulenol 6.8% and tau-cadinol 4.7%, were the main components. Antimicrobial activity of the oil, evaluated using the disc diffusion and broth dilution methods, demonstrated the highest susceptibility on Gram-positive bacteria and Candida albicans. The free radical scavenging ability of the oil was assessed by the DPPH assay to show antiradical activity with IC50 of 330 microg/mL. Moreover, the oil revealed an AChE inhibitory activity of 47% at a concentration of 200 microg/mL using Ellman's method.

  17. Chemical constituents of the essential oil and antibacterial activity of Zingiber wrayi var. halabala

    Directory of Open Access Journals (Sweden)

    Wiratda Wichaporn

    2005-07-01

    Full Text Available Zingiber wrayi var. halabala, a local herb from the Bala Forest in Narathiwat, was investigated for its chemical constituents and antibacterial activity. The essential oil was obtained by steam distillation of fresh rhizomes in 3.6 % yield. The GC-MS data indicated the presence of four compounds including trans-anethole, estragol, camphor and m-phenylphenol. Further quantitative analysis showed the essential oil to contain 96.8% w/w of trans-anethole. The oil, together with petroleum ether, dichloromethane and methanol extracts, were assayed for antibacterial activity. The essential oil, petroleum ether and dichloromethane extracts exhibited antibacterial activity against Bacillus substilis, Escherichia coli, Staphylococcus aureus and Sarcina sp. However, none of the extracts was active against Pseudomonas aeruginosa.

  18. Chemical composition and in vitro antitrypanosomal activity of fractions of essential oil from Cymbopogon nardus L.

    Science.gov (United States)

    Muhd Haffiz, J; Norhayati, I; Getha, K; Nor Azah, M A; Mohd Ilham, A; Lili Sahira, H; Roshan Jahn, M S; Muhd Syamil, A

    2013-03-01

    Essential oil from Cymbopogon nardus was evaluated for activity against Trypanosoma brucei brucei BS221 (IC50 = 0.31 ± 0.03 μg/mL) and cytotoxic effect on normal kidney (Vero) cells (IC50 = >100 μg/mL). The crude essential oil was subjected to various chromatography techniques afforded active sub fractions with antitrypanosomal activity; F4 (IC50 = 0.61 ± 0.06 μg/mL), F6 (IC50= 0.73 ± 0.33 μg/mL), F7 (IC50 = 1.15 ± 0 μg/mL) and F8 (IC50 = 1.11 ± 0.01 μg/mL). These active fractions did not exhibit any toxic effects against Vero cell lines and the chemical profiles investigation indicated presence of α-and γ-eudesmol, elemol, α-cadinol and eugenol by GC/MS analysis.

  19. Chemical Composition, Antimicrobial and Antioxidant Activities of Essential Oils from Organically Cultivated Fennel Cultivars

    Directory of Open Access Journals (Sweden)

    Mahmoud A. Saleh

    2011-02-01

    Full Text Available Essential oils of the fruits of three organically grown cultivars of Egyptian fennel (Foeniculum vulgare var. azoricum, Foeniculum vulgare var. dulce and Foeniculum vulgare var. vulgare were examined for their chemical constituents, antimicrobial and antioxidant activities. Gas chromatography/mass spectrometry analysis of the essential oils revealed the presence of 18 major monoterpenoids in all three cultivars but their percentage in each oil were greatly different. trans-Anethole, estragole, fenchone and limonene were highly abundant in all of the examined oils. Antioxidant activities of the essential oils were evaluated using the DPPH radical scavenging, lipid peroxidation and metal chelating assays. Essential oils from the azoricum and dulce cultivars were more effective antioxidants than that from the vulgare cultivar. Antimicrobial activities of each oil were measured against two species of fungi, two species of Gram negative and two species of Gram positive bacteria. All three cultivars showed similar antimicrobial activity.

  20. Ascaroside activity in Caenorhabditis elegans is highly dependent on chemical structure.

    Science.gov (United States)

    Hollister, Kyle A; Conner, Elizabeth S; Zhang, Xinxing; Spell, Mark; Bernard, Gary M; Patel, Pratik; de Carvalho, Ana Carolina G V; Butcher, Rebecca A; Ragains, Justin R

    2013-09-15

    The nematode Caenorhabditis elegans secretes ascarosides, structurally diverse derivatives of the 3,6-dideoxysugar ascarylose, and uses them in chemical communication. At high population densities, specific ascarosides, which are together known as the dauer pheromone, trigger entry into the stress-resistant dauer larval stage. In order to study the structure-activity relationships for the ascarosides, we synthesized a panel of ascarosides and tested them for dauer-inducing activity. This panel includes a number of natural ascarosides that were detected in crude pheromone extract, but as yet have no assigned function, as well as many unnatural ascaroside derivatives. Most of these ascarosides, some of which have significant structural similarity to the natural dauer pheromone components, have very little dauer-inducing activity. Our results provide a primer to ascaroside structure-activity relationships and suggest that slight modifications to ascaroside structure dramatically influence binding to the relevant G protein-coupled receptors that control dauer formation.

  1. Changes in the amino acid composition of buffalo milk after chemical activation of its lactoperoxidase system

    Directory of Open Access Journals (Sweden)

    M. Tsankova

    2010-02-01

    Full Text Available The amino acid content of bulked buffalo milk, collected from 130 buffaloes reared at a buffalo farm in the settlement of Dimitrievo, Stara Zagora region, was investigated during the period January-April 2006. The activation of the lactoperoxidase system (LPS was done by supplementation of sodium percarbonate, providing 16 ppm active oxygen and 10 ppm thiocyanate to 1 l of milk. The amino acid content was assayed by an amino acid analyzer. It was found out that the total content of amino acids in inactivated milk was insignificantly lower than that in activated one. More considerable increase was established for the amino acids valine, methionine, and lysine, but the differences were not statistically significant. The total amount of essential amino acids was higher in the milk with chemically activated LPS. The limiting essential amino acid in the studied buffalo milk was methionine.

  2. Chemical composition and genotoxic activity of petroleum derivatives collected in two working environments

    Energy Technology Data Exchange (ETDEWEB)

    Pasquini, R.; Taningher, M.; Monarca, S.; Pala, M.; Angeli, G.

    1989-01-01

    Pitch and bitumen, two complex petroleum derivative mixtures, were studied for both their chemical composition and their mutagenic/DNA damaging activity. While bitumen revealed no genotoxic effect and low polycyclic aromatic hydrocarbons (PAHs) concentration, petroleum pitch showed a high concentration of mutagenic/carcinogenic PAHs, and also an elevated mutagenic activity when assayed by the Ames test, in the presence of postmitochondrial rat liver fractions. The in vitro mutagenic activity was detectable as frameshift mutation by assaying the pitch both as an in toto mixture and after HPLC fractionation, the most polar fractions being the most active. In contrast, both derivatives showed no in vivo DNA damage in rat liver, using the DNA alkaline elution technique and the fluorometric assay of DNA unwinding.

  3. Ozonation of benzothiazole saturated-activated carbons: Influence of carbon chemical surface properties

    Energy Technology Data Exchange (ETDEWEB)

    Valdes, H. [Facultad de Ingenieria, Universidad Catolica de la Santisima Concepcion, Caupolican 491, Concepcion (Chile)]. E-mail: hvaldes@ucsc.cl; Zaror, C.A. [Departamento de Ingenieria Quimica (F. Ingenieria), Universidad de Concepcion, Correo 3, Casilla 160-C, Concepcion (Chile)

    2006-09-21

    The combined or sequential use of ozone and activated carbon to treat toxic effluents has increased in recent years. However, little is known about the influence of carbon surface active sites on ozonation of organic adsorbed pollutants. This paper presents experimental results on the effect of metal oxides and oxygenated surface groups on gaseous ozonation of spent activated carbons. Benzothiazole (BT) was selected as a target organic compound in this study due to its environmental concern. Activated carbons with different chemical surface composition were prepared from a Filtrasorb-400 activated carbon. Pre-treatment included: ozonation, demineralisation, and deoxygenation of activated carbon. Ozonation experiments of BT saturated-activated carbons were conducted in a fixed bed reactor loaded with 2 g of carbon samples. The reactor was fed with an O{sub 2}/O{sub 3} gas mixture (2 dm{sup 3}/min, 5 g O{sub 3}/h), for a given exposure time, in the range 10-120 min, at 298 K and 1 atm. Results show that extended gaseous ozonation of activated carbon saturated with BT led to the effective destruction of the adsorbate by oxidation reactions. Oxidation of BT adsorbed on activated carbon seemed to occur via both direct reaction with ozone molecules, and by oxygen radical species generated by catalytic ozone decomposition on metallic surface sites.

  4. Eupatorium capillifolium essential oil: chemical composition antifungal activity and insecticidal activity

    Science.gov (United States)

    Natural plant extracts often contain compounds that are useful in pest management applications. The essential oil of Eupatorium capillifolium (dog-fennel) was investigated for antifungal and insecticidal activities. Essential oil obtained by hydrodistillation of aerial parts was analyzed by gas chro...

  5. Altering the interfacial activation mechanism of a lipase by solid-phase selective chemical modification.

    Science.gov (United States)

    López-Gallego, Fernando; Abian, Olga; Guisán, Jose Manuel

    2012-09-04

    This study presents a combined protein immobilization, directed mutagenesis, and site-selective chemical modification approach, which was used to create a hyperactivated semisynthetic variant of BTL2. Various alkane chains were tethered at three different positions in order to mimic the lipase interfacial activation exogenously triggered by detergents. Optimum results were obtained when a dodecane chain was introduced at position 320 by solid-phase site-selective chemical modification. The resulting semisynthetic variant showed a 2.5-fold higher activity than the wild-type nonmodified variant in aqueous conditions. Remarkably, this is the maximum hyperactivation ever observed for BTL2 in the presence of detergents such as Triton X-100. We present evidence to suggest that the endogenous dodecane chain hyperactivates the enzyme in a similar fashion as an exogenous detergent molecule. In this way, we also observe a faster irreversible enzyme inhibition and an altered detergent sensitivity profile promoted by the site-selective chemical modification. These findings are also supported by fluorescence studies, which reveal that the structural conformation changes of the semisynthetic variant are different to those of the wild type, an effect that is more pronounced in the presence of detergent. Finally, the optimal immobilized semisynthetic variant was successfully applied to the selective synthesis of oxiran-2-yl butyrate. Significantly, this biocatalyst is 12-fold more efficient than the immobilized wild-type enzyme, producing the S-enantiomer with higher enantiospecificity (ee = 92%).

  6. Activities of the Institute of Chemical Processing of Coal at Zabrze

    Energy Technology Data Exchange (ETDEWEB)

    Dreszer, K.

    1995-12-31

    The Institute of Chemical Processing of Coal at Zabrze was established in 1955. The works on carbochemical technologies have been, therefore, carried out at the Institute for 40 years. The targets of the Institute`s activities are research, scientific and developing works regarding a sensible utilization of fuels via their processing into more refined forms, safe environment, highly efficient use of energy carriers and technological products of special quality. The Institute of Chemical Processing of Coal has been dealing with the following: optimized use of home hard coals; improvement of classic coal coking technologies, processing and utilization of volatile coking products; production technologies of low emission rate fuels for communal management; analyses of coal processing technologies; new technologies aimed at increasing the efficiency of coal utilization for energy-generating purposes, especially in industry and studies on the ecological aspects of these processes; production technologies of sorbents and carbon activating agents and technologies of the utilization; rationalization of water and wastes management in the metallurgical and chemical industries in connection with removal of pollution especially dangerous to the environment from wastes; utilization technologies of refined materials (electrode cokes, binders, impregnating agents) for making electrodes, refractories and new generation construction carbon materials; production technologies of high quality bituminous and bituminous and resin coating, anti-corrosive and insulation materials; environmentally friendly utilization technologies for power station, mine and other wastes, and dedusting processes in industrial gas streams.

  7. Chemically derived luminescent graphene oxide nanosheets and its sunlight driven photocatalytic activity against methylene blue dye

    Science.gov (United States)

    Kumar, Sumeet; Kumar, Ashok

    2016-12-01

    In the present work, graphene oxide (GO) nanosheets (NSs) have been synthesized with precise control over their thickness and molecular structure. The existence of oxygen containing functional groups on GO NSs through chemical treatment confers remarkable optical properties on GO. XRD, TEM, Raman and FTIR techniques were used to confirm the phase and degree of oxidation, morphology, structural information and chemical structure of the synthesized GO NSs. UV-Vis. spectroscopy was employed to study the optical absorption properties of the synthesized GO NSs. The excitation wavelength dependent PL measurements of the synthesized GO NSs were carried out which could be useful for the design and development of GO based next generation optoelectronic devices. The most fascinating luminescent property of synthesized GO NSs is that its luminescence peak position can be easily tuned by only varying the excitation wavelength without significant changes in its size and chemical composition. In order to study the photocatalytic degradation of methylene blue (MB) dye using GO NSs as a photocatalyst, a sunlight driven photocatalytic activity has been performed. The degradation rate of MB dye becomes fast when GO NSs are added to the dye solution. The photodegradation efficiency of GO NSs is calculated to be 60%. The present results indicate that synthesized GO NSs can be used as sunlight active photocatalyst. The optimistic response to sunlight irradiation validates the potential of GO NSs in solar energy conversion.

  8. Chemical composition and antioxidant activity of a Lebanese plant Euphorbia macroclada schyzoceras

    Institute of Scientific and Technical Information of China (English)

    Hussein Farhan; Hassan Rammal; Akram Hijazi; Ahmad Daher; Mohamad Reda; Hussein Annan; Ali Chokr; Ali Bassal; Bassam Badran

    2013-01-01

    Objective:To determine the chemical composition, total phenolic and total flavonoid contents of the crude extracts from leaves and stems of a Lebanese plant Euphorbia macroclada schyzoceras (E. macroclada), and to evaluate their antioxidant potential using DPPH, H2O2, and chelating of ferrous ions tests. Methods:Quantification of the total phenolic and total flavonoid contents of the crude extracts from leaves and stems and the antioxidant activities were evaluated using spectrophotometric analyses. The chemical composition has been estimated using different techniques such as IR, LC/MS and NMR. Results:Ethanolic extract from leaves of E. macroclada was better than aqueous extract and showed higher content in total phenolic and total flavonoid than found in the stems. On the other hand, using DPPH and H2O2 tests, this extract from leaves showed higher antioxidant capacity than aqueous extract. However, using the chelating of ferrous ions test, the antioxidant activity of the aqueous extract of both stems and leaves was stronger than that of ethanolic once. The chemical composition of the whole plant showed the presence of some aromatic compounds and fatty acids. Conclusions:Both ethanolic and water extracts from both parts of this plant are effective and have good antioxidant power. So, this plant can be used in the prevention of a number of diseases related to oxidative stress.

  9. Resonant photoactivation of cadmium sulfide and its effect on the surface chemical activity

    Science.gov (United States)

    Giberti, Alessio; Fabbri, Barbara; Gaiardo, Andrea; Guidi, Vincenzo; Malagù, Cesare

    2014-06-01

    Photo-enhanced surface chemical activity of cadmium sulfide gives rise to a wide class of surface-dependent phenomena, such as heterogeneous photocatalysis, chemoresistivity, and chemiluminescence, which have several technological and scientific applications. In this work, the photochemical properties of nanostructured cadmium sulfide films are investigated by means of electrical conductance measurements in controlled atmosphere, while irradiated by light of wavelengths ranging from 400 to 645 nm. Chemisorption of benzene, carbon monoxide, methane, ethanol, and hydrogen sulfide onto CdS surface has been analyzed as a function of the wavelength, in a gas concentration range of the order of parts per million. It resulted that the increase of photoconductance with gas adsorption is resonant with the bandgap energy. It turns out that this resonant enhancement of the surface chemical activity can be of advantage for all the optical and chemical mechanisms that depend upon it. An interpretation of these results, in terms of electronic optical transitions and Fermi level shift induced by light, is proposed.

  10. Expanding current knowledge on the chemical composition and antioxidant activity of the genus Lactarius.

    Science.gov (United States)

    Vieira, Vanessa; Barros, Lillian; Martins, Anabela; Ferreira, Isabel C F R

    2014-12-10

    Despite the presence of toxic compounds in inedible mushrooms, the question whether the chemical nutrients and non-nutrients compositions in edible and inedible Lactarius species are similar remains unanswered. To answer this question, Lactarius citriolens Pouzar and Lactarius turpis (Weinm.) Fr., two inedible species, were studied in order to obtain information about their chemical composition and bioactivity. Free sugars, fatty acids, tocopherols, organic and phenolic acids were analysed by chromatographic techniques coupled to different detectors. L. citriolens and L. turpis methanolic extracts were tested regarding antioxidant potential (reducing power, radical scavenging activity and lipid peroxidation inhibition). The composition of macronutrients varied among the two species, but the profiles were similar between them and among other Lactarius species; L. citriolens gave the highest energy contribution, saturated fatty acids and organic acids, while the L. turpis sample was richer in free sugars, mono- and polyunsaturated fatty acids, tocopherols and phenolic compounds. L. turpis methanolic extract showed the highest antioxidant activity. The absence of hepatoxicity of the methanolic extracts was confirmed in porcine liver primary cells (in vitro conditions). The present study provided new information about wild L. citriolens and L. turpis, comparing their chemical composition and antioxidant properties with other Lactarius species, and expanding the knowledge about this genus.

  11. Chemical Diversity, Biological Activity, and Genetic Aspects of Three Ocotea Species from the Amazon.

    Science.gov (United States)

    da Silva, Joyce Kelly; da Trindade, Rafaela; Moreira, Edith Cibelle; Maia, José Guilherme S; Dosoky, Noura S; Miller, Rebecca S; Cseke, Leland J; Setzer, William N

    2017-05-18

    Ocotea species present economic importance and biological activities attributed to their essential oils (EOs) and extracts. For this reason, various strategies have been developed for their conservation. The chemical compositions of the essential oils and matK DNA sequences of O. caudata, O. cujumary, and O. caniculata were subjected to comparison with data from O. floribunda, O. veraguensis, and O. whitei, previously reported. The multivariate analysis of chemical composition classified the EOs into two main clusters. Group I was characterized by the presence of α-pinene (9.8-22.5%) and β-pinene (9.7-21.3%) and it includes O. caudata, O. whitei, and O. floribunda. In group II, the oils of O. cujumary and O. caniculata showed high similarity due amounts of β-caryophyllene (22.2% and 18.9%, respectively). The EO of O. veraguensis, rich in p-cymene (19.8%), showed minor similarity among all samples. The oils displayed promising antimicrobial and cytotoxic activities against Escherichia coli (minimum inhibitory concentration (MIC) < 19.5 µg·mL(-1)) and MCF-7 cells (median inhibitory concentration (IC50) ≅ 65.0 µg·mL(-1)), respectively. The analysis of matK gene displayed a good correlation with the main class of chemical compounds present in the EOs. However, the matK gene data did not show correlation with specific compounds.

  12. Antimicrobial Activity and Chemical Composition of Three Essential Oils Extracted from Mediterranean Aromatic Plants.

    Science.gov (United States)

    Elshafie, Hazem S; Sakr, Shimaa; Mang, Stefania M; Belviso, Sandra; De Feo, Vincenzo; Camele, Ippolito

    2016-11-01

    There is a growing interest in essential oils (EOs) as possible alternatives for traditional chemical pesticides. This study was carried out to characterize the chemical composition of the three EOs extracted from Verbena officinalis, Majorana hortensis, and Salvia officinalis using gas chromatography (GC) and GC-mass spectrometry (GC-MS) and to evaluate in vitro their efficacy against some phyto or human pathogens. The antifungal activity was investigated against Colletotrichum acutatum and Botrytis cinerea in comparison with Azoxystrobin as a large spectrum fungicide. Antibacterial activity was evaluated against Bacillus megaterium, Bacillus mojavensis, and Clavibacter michiganensis (G+ve) and Escherichia coli, Xanthomonas campestris, Pseudomonas savastanoi, and P. syringae pv. phaseolicola (G-ve) compared to a synthetic antibiotic tetracycline. Minimum inhibitory concentration was evaluated against the above tested fungi using 96-well microplate method. Results showed that the chemical structure of the three studied EOs was mainly composed of monoterpene compounds and all oils belong to the chemotype carvacrol/thymol. Results of GC analysis identified 64 compounds, which were identified based on their mass to charge ratio. Furthermore, the different concentrations of studied EOs inhibited the growth of tested microorganism in a dose-dependent manner.

  13. Chemical composition and in vitro antimicrobial activity of essential oil of Melissa officinalis L. from Romania.

    Science.gov (United States)

    Hăncianu, Monica; Aprotosoaie, Ana Clara; Gille, Elvira; Poiată, Antonia; Tuchiluş, Cristina; Spac, A; Stănescu, Ursula

    2008-01-01

    Melissa officinalis L. (lemon balm) is used in traditional medicine to treat insomnia, anxiety, gastric conditions, psychiatric conditions, migraines, hypertension and bronchial conditions. Natural essential oils (mixtures of fragrant chemical) obtained from various parts of plants are efficient active antimicrobial agents. The widespread use of antimicrobial agents selects resistant bacterial strains, which seriously compromise the effectiveness of antibiotic treatment. The use of herbal medicines might be a precautionary measure to prevent the development of lack of susceptibility to synthetic antibiotics that is associated with therapeutic failures. In this work, the chemical composition and the antimicrobial properties of essential oil from romanian Melissa officinalis were determined. Therefore, the purpose of this study was to evaluate in vitro antimicrobial activity of lemon balm oil by comparison with lavender essential oil, which is also utilised for its antimicrobial properties in folk medicine. The most important identified compounds, well known for their antimicrobial effects were citral (neral and geranial) (16.10%), citronellal (3.76%) and trans-caryophyllene (3.57%).The lemon balm oil sample exhibited a higher degree antibacterial activity than did Lavandula oil against Gram-positive strains. The both oil samples tested has shown a high activity against Candida albicans. The gram-negative bacteria were not affected by the lemon balm oil.

  14. Automated Structure-Activity Relationship Mining: Connecting Chemical Structure to Biological Profiles.

    Science.gov (United States)

    Wawer, Mathias J; Jaramillo, David E; Dančík, Vlado; Fass, Daniel M; Haggarty, Stephen J; Shamji, Alykhan F; Wagner, Bridget K; Schreiber, Stuart L; Clemons, Paul A

    2014-06-01

    Understanding the structure-activity relationships (SARs) of small molecules is important for developing probes and novel therapeutic agents in chemical biology and drug discovery. Increasingly, multiplexed small-molecule profiling assays allow simultaneous measurement of many biological response parameters for the same compound (e.g., expression levels for many genes or binding constants against many proteins). Although such methods promise to capture SARs with high granularity, few computational methods are available to support SAR analyses of high-dimensional compound activity profiles. Many of these methods are not generally applicable or reduce the activity space to scalar summary statistics before establishing SARs. In this article, we present a versatile computational method that automatically extracts interpretable SAR rules from high-dimensional profiling data. The rules connect chemical structural features of compounds to patterns in their biological activity profiles. We applied our method to data from novel cell-based gene-expression and imaging assays collected on more than 30,000 small molecules. Based on the rules identified for this data set, we prioritized groups of compounds for further study, including a novel set of putative histone deacetylase inhibitors.

  15. Chemical Characterization and Antioxidant, Antimicrobial, and Anti-Inflammatory Activities of South Brazilian Organic Propolis.

    Science.gov (United States)

    Tiveron, Ana Paula; Rosalen, Pedro Luiz; Franchin, Marcelo; Lacerda, Risia Cristina Coelho; Bueno-Silva, Bruno; Benso, Bruna; Denny, Carina; Ikegaki, Masaharu; Alencar, Severino Matias de

    2016-01-01

    South Brazilian organic propolis (OP), which has never been studied before, was assessed and its chemical composition, scavenging potential of reactive oxygen species, antimicrobial and anti-inflammatory activities are herein presented. Based on the chemical profile obtained using HPLC, OP was grouped into seven variants (OP1-OP7) and all of them exhibited high scavenging activity, mainly against superoxide and hypochlorous acid species. OP1, OP2, and OP3 had the smallest minimal inhibitory concentration (MIC) against Gram-positive bacteria Streptococcus mutans, Streptococcus oralis, and Streptococcus aureus (12.5-100 μg/mL). OP1, OP2, OP3, and OP4 were more effective against Pseudomonas aeruginosa (Gram-negative), with MIC values ranging from 100 to 200 μg/mL. OP6 showed anti-inflammatory activity by decreasing NF-kB activation and TNF-α release in RAW 264.7 macrophages, and expressing the NF-κB-luciferase reporter stable gene. Therefore, south Brazilian OP can be considered an excellent source of bioactive compounds with great potential of application in the pharmaceutical and food industry.

  16. Chemical Characterization and Antioxidant, Antimicrobial, and Anti-Inflammatory Activities of South Brazilian Organic Propolis

    Science.gov (United States)

    Tiveron, Ana Paula; Rosalen, Pedro Luiz; Franchin, Marcelo; Lacerda, Risia Cristina Coelho; Bueno-Silva, Bruno; Benso, Bruna; Denny, Carina; Ikegaki, Masaharu; de Alencar, Severino Matias

    2016-01-01

    South Brazilian organic propolis (OP), which has never been studied before, was assessed and its chemical composition, scavenging potential of reactive oxygen species, antimicrobial and anti-inflammatory activities are herein presented. Based on the chemical profile obtained using HPLC, OP was grouped into seven variants (OP1–OP7) and all of them exhibited high scavenging activity, mainly against superoxide and hypochlorous acid species. OP1, OP2, and OP3 had the smallest minimal inhibitory concentration (MIC) against Gram-positive bacteria Streptococcus mutans, Streptococcus oralis, and Streptococcus aureus (12.5–100 μg/mL). OP1, OP2, OP3, and OP4 were more effective against Pseudomonas aeruginosa (Gram-negative), with MIC values ranging from 100 to 200 μg/mL. OP6 showed anti-inflammatory activity by decreasing NF-kB activation and TNF-α release in RAW 264.7 macrophages, and expressing the NF-κB-luciferase reporter stable gene. Therefore, south Brazilian OP can be considered an excellent source of bioactive compounds with great potential of application in the pharmaceutical and food industry. PMID:27802316

  17. A New 'Semi-Active' Method for Chemical Standoff Detection

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Timothy J.; Roberts, Bruce A.; Morgen, Gerald P.; Hughes, Michael A.; Heitschmidt, Corey D.; Kelly, James F.; James O. Jensen, Jean-Marc Theriault

    2003-10-01

    Pacific Northwest National Laboratory (PNNL) has recently developed a hybrid infrared technique for standoff chemical detection. Active infrared detection typically involves a sender and receiver telescope separated by (100's) of meters and is quite sensitive, but is extremely cumbersome to align and is extremely sensitive to misalignment as the two telescopes must not only be parallel, but coaxial. Passive infrared sensing offers facile alignment (simply point the input optics), but relies on a happenstance temperature difference T between the chemical plume and its background. Often times the T found in the field is only 1 or 2 K, and the passive method is thus not very sensitive in many cases. The ''semi-active'' technique creates a large temperature difference T by placing an extended blackbody source at some distance away from the receiver telescope. The blackbody is designed to fill the telescope's FOV at a typical distance of 100 m, and provides a typical temperature difference T on the order of 80 to 100 K. Design considerations and experimental results in a direct comparison of passive, active, and semi-active measurements will be discussed

  18. Chemical compositions and antimicrobial activities of four different Anatolian propolis samples.

    Science.gov (United States)

    Uzel, Ataç; Sorkun, Kadriye; Onçağ, Ozant; Cogŭlu, Dilşah; Gençay, Omür; Salih, Bekir

    2005-01-01

    Propolis means a gum that is gathered by bees from various plants. It is known for its biological properties, having antibacterial, antifungal and healing properties. The aims of this study were to evaluate the antimicrobial activity of four different Anatolian propolis samples on different groups of microorganisms including some oral pathogens and comparison between their chemical compositions. Ethanol extracts of propolis (EEP) were prepared from four different Anatolian propolis samples and examined whether EEP inhibit the growth of the test microorganisms or not. For the antimicrobial activity assays, minimum inhibitory concentrations (MIC) were determined by using macrodilution method. The MIC values of the most effective propolis (TB) were 2 microg/ml for Streptococcus sobrinus and Enterococcus faecalis, 4 microg/ml for Micrococcus luteus, Candida albicans and C. krusei, 8 microg/ml for Streptococcus mutans, Staphylococcus aureus, Staphylococcus epidermidis and Enterobacter aerogenes, 16 microg/ml for Escherichia coli and C. tropicalis and 32 microg/ml for Salmonella typhimurium and Pseudomonas aeruginosa. The chemical compositions of EEP's were determined by high-temperature high-resolution gas chromatography coupled to mass spectrometry. The main compounds of four Anatolian propolis samples were flavonoids such as pinocembrin, pinostropin, isalpinin, pinobanksin, quercetin, naringenin, galangine and chrysin. Although propolis samples were collected from different regions of Anatolia all showed significant antimicrobial activity against the Gram positive bacteria and yeasts. Propolis can prevent dental caries since it demonstrated significant antimicrobial activity against the microorganisms such as Streptococcus mutans, Streptococcus sobrinus and C. albicans, which involves in oral diseases.

  19. Comparative Study of Chemical Composition and Biological Activity of Yellow, Green, Brown, and Red Brazilian Propolis

    Science.gov (United States)

    Machado, Christiane Schineider; Mokochinski, João Benhur; de Lira, Tatiana Onofre; de Oliveira, Fátima de Cassia Evangelista; Cardoso, Magda Vieira; Ferreira, Roseane Guimarães; Sawaya, Alexandra Christine Helena Frankland; Ferreira, Antonio Gilberto; Pessoa, Cláudia; Cuesta-Rubio, Osmany; Monteiro, Marta Chagas; de Campos, Mônica Soares

    2016-01-01

    The chemical composition and biological activity of a sample of yellow propolis from Mato Grosso do Sul, Brazil (EEP-Y MS), were investigated for the first time and compared with green, brown, and red types of Brazilian propolis and with a sample of yellow propolis from Cuba. Overall, EEP-Y MS had different qualitative chemical profiles, as well as different cytotoxic and antimicrobial activities when compared to the other types of propolis assessed in this study and it is a different chemotype of Brazilian propolis. Absence of phenolic compounds and the presence of mixtures of aliphatic compounds in yellow propolis were determined by analysing 1H-NMR spectra and fifteen terpenes were identified by GC-MS. EEP-Y MS showed cytotoxic activity against human tumour strain OVCAR-8 but was not active against Gram-negative or Gram-positive bacteria. Our results confirm the difficulty of establishing a uniform quality standard for propolis from diverse geographical origins. The most appropriate pharmacological applications of yellow types of propolis must be further investigated. PMID:27525023

  20. Comparative Study of Chemical Composition and Biological Activity of Yellow, Green, Brown, and Red Brazilian Propolis.

    Science.gov (United States)

    Machado, Christiane Schineider; Mokochinski, João Benhur; de Lira, Tatiana Onofre; de Oliveira, Fátima de Cassia Evangelista; Cardoso, Magda Vieira; Ferreira, Roseane Guimarães; Sawaya, Alexandra Christine Helena Frankland; Ferreira, Antonio Gilberto; Pessoa, Cláudia; Cuesta-Rubio, Osmany; Monteiro, Marta Chagas; de Campos, Mônica Soares; Torres, Yohandra Reyes

    2016-01-01

    The chemical composition and biological activity of a sample of yellow propolis from Mato Grosso do Sul, Brazil (EEP-Y MS), were investigated for the first time and compared with green, brown, and red types of Brazilian propolis and with a sample of yellow propolis from Cuba. Overall, EEP-Y MS had different qualitative chemical profiles, as well as different cytotoxic and antimicrobial activities when compared to the other types of propolis assessed in this study and it is a different chemotype of Brazilian propolis. Absence of phenolic compounds and the presence of mixtures of aliphatic compounds in yellow propolis were determined by analysing (1)H-NMR spectra and fifteen terpenes were identified by GC-MS. EEP-Y MS showed cytotoxic activity against human tumour strain OVCAR-8 but was not active against Gram-negative or Gram-positive bacteria. Our results confirm the difficulty of establishing a uniform quality standard for propolis from diverse geographical origins. The most appropriate pharmacological applications of yellow types of propolis must be further investigated.

  1. Comparative Study of Chemical Composition and Biological Activity of Yellow, Green, Brown, and Red Brazilian Propolis

    Directory of Open Access Journals (Sweden)

    Christiane Schineider Machado

    2016-01-01

    Full Text Available The chemical composition and biological activity of a sample of yellow propolis from Mato Grosso do Sul, Brazil (EEP-Y MS, were investigated for the first time and compared with green, brown, and red types of Brazilian propolis and with a sample of yellow propolis from Cuba. Overall, EEP-Y MS had different qualitative chemical profiles, as well as different cytotoxic and antimicrobial activities when compared to the other types of propolis assessed in this study and it is a different chemotype of Brazilian propolis. Absence of phenolic compounds and the presence of mixtures of aliphatic compounds in yellow propolis were determined by analysing 1H-NMR spectra and fifteen terpenes were identified by GC-MS. EEP-Y MS showed cytotoxic activity against human tumour strain OVCAR-8 but was not active against Gram-negative or Gram-positive bacteria. Our results confirm the difficulty of establishing a uniform quality standard for propolis from diverse geographical origins. The most appropriate pharmacological applications of yellow types of propolis must be further investigated.

  2. Chemical Composition and Biological Activities of Allium roseum L. var. grandiflorum Briq. Essential Oil.

    Science.gov (United States)

    Touihri, Imen; Boukhris, Maher; Marrakchi, Naziha; Luis, José; Hanchi, Belgacem; Kallech-Ziri, Olfa

    2015-01-01

    Allium roseum L. (Alliaceae) endemic mediterranean specie was represented in the North Africa by 12 different taxa. In the present study, chemical composition, antiproliferative, antioxidant and antimicrobial activities of the essential oil extracted from A. roseum var. grandiflorum Briq. bulbs collected in the North of Tunisia were investigated. Chemical characterization has shown methyl methanethiosulfinate as major sulphurous compounds. A. roseum bulbs essential oil provides interesting antiproliferative activity against two human colonic adenocarcinoma HT29 and CACO2 cell lines in dose-dependent manner with a half-maximal inhibition (IC50) of 4.64 µg/mL and 8.22 µg/mL respectively. The antioxidant activity, as determined by FRAP assay, was 285 µmol equivalent Trolox/g of essential oil. The scavenging effect on DPPH radicals of essential oil was estimated as IC50 values at 156 µg/mL. The inhibition of superoxide anion production in a model of cancer cell lines was significant for both lines HT29 and CACO2 with IC50 of 20.25 µg/mL and 29.12 µg/mL respectively. Allium roseum essential oil exhibited antibacterial and antifungal activities with a high effectiveness against Candida albicans given by an MIC value of 0.019 mg/mL. This biological effect appears to be related mainly to the presence of organosulfur compounds.

  3. Chemical Composition and Antioxidant and Antimicrobial Activities of Wormwood (Artemisia absinthium L. Essential Oils and Phenolics

    Directory of Open Access Journals (Sweden)

    Kamel Msaada

    2015-01-01

    Full Text Available The aim of this study was to determine the chemical variability of wormwood extracts as affected by the growing region. Antioxidant and antimicrobial activities were also investigated. The essential oil composition variability of A. absinthium L. aerial parts collected from four different Tunisian regions was assessed by gas chromatography (GC/FID and by gas chromatography mass spectrometry (GC/MS. In addition, total polyphenols, flavonoids, and condensed tannins as well as antioxidant, antibacterial, and antifungal activities of methanolic extract and essential oils were undertaken. Chromatographic analysis of wormwood essential oils showed the predominance of monoterpene hydrocarbons represented mainly by chamazulene. RP-HPLC analysis of wormwood methanolic extract revealed the predominance of phenolic acids. Antiradical activity was region-dependant and the methanolic extract of Bou Salem region has the strongest activity (CI50=9.38±0.82 µg/mL. Concerning the reducing power, the methanolic extract of Bou Salem, Jérissa, and Boukornine regions was more active than the positive control. Obtained results of antimicrobial activities showed that wormwood essential oil is endowed with important antibacterial activity which was strongly related to the organoleptic quality of oil which appeared strongly region-dependant. A. absinthium L. EOs investigated are quite interesting from a pharmaceutical standpoint because of their biological activities.

  4. MORPHO-CHEMICAL DESCRIPTION AND ANTIMICROBIAL ACTIVITY OF DIFFERENT OCIMUM SPECIES

    Directory of Open Access Journals (Sweden)

    KAKARAPARTHI PANDU SASTRY

    2012-12-01

    Full Text Available Basil is a popular medicinal and culinary herb, and its essential oils have been used extensively for many years in food products, perfumery, dental and oral products. Basil essential oils and their principal constituents were found to exhibit antimicrobial activity against a wide range of Gram-negative and Gram-positive bacteria, yeast, and mould. The essential oils obtained from aerial parts of three different species of Ocimum comprising twenty one germplasm lines were investigated for their essential oil composition and antimicrobial activity during 2010. Essential oils from seventeen germplasm lines in Ocimum basilicum and two each in Ocimum tenuiflorum and Ocimum gratissimum were investigated for anti-microbial activity against four bacterial strains (Staphylococcus aureus, Bacillus sps., Escherichia coli and Pseudomonas aeruginosa. The morpho-chemotypes exhibited wide variability for morphological and chemical traits. Anti-bacterial activity was found to be high for Staphylococcus aureus, moderate for Escherichia coli, low for Bacillus and Pseudomonas aeruginosa was highly resistant. The essential oils of Pale Green-Broad Leaves (O. basilicum and CIM Ayu (O. gratissimum exhibited significant antibacterial activity against both S. aureus and E. coli signifying them promising for anti-bacterial activity. No relationship was observed between chemotype specificity and anti-bacterial activity, indicating that apart from major components of essential oil, minor components and other factors may be responsible for anti-microbial activities.

  5. Effects of chemical activation and season on birth efficiency of cloned pigs

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The effects of chemical activation on birth efficiency of cloned pigs were studied by investigating the developmental process from porcine oocyte activation to birth of cloned pigs.Three different activation methods were used:(i) Electroporation(Ele);(ii) Ele followed by incubation with 6-dimethylaminopurine(6-DMAP);and(iii) Ele followed by a treatment with cycloheximide(CHX).In experiment 1,the rates of cleavage,developmental rates and cell number of porcine parthenogenetic(PA) embryos were investigated in the three treatment groups.In experiment 2,NT embryos produced by the three different activation treatments were compared for the rates of cleavage,development and cell number.Finally,the effects of Ele and Ele+CHX activation methods on birth efficiency of cloned pigs were compared.The activated oocytes treated by combination activation generally showed a higher(P<0.05) blastocyst rate and produced more expanded blastocysts than oocytes activated with Ele.The rates of cleavage and total cell number of parthenotes were not significantly different.Parthenogenetic embryos activated with 6-DMAP developed into blastocyst and expanded blastocyst stages at a significantly(P<0.05) higher rate than those treated with Ele,but the developmental capability was dramatically decreased in NT embryos.With the CHX activation method,the NT embryo blastocyst rate was substantially(P<0.05) increased although the production of expanded blastocysts was not significantly different from that by the other two methods.The birth rate of cloned pigs increased in the CHX group,though the rate was not significantly different from Ele.The effects of season on developmental rate of the porcine PA embryos and birth rate of cloned pigs were also examined in our study.Porcine oocytes collected in the spring had higher developmental capabilities than those collected in the winter.However,no difference in birth rate of the cloned pigs was found between the oocytes collected in the two seasons

  6. Effects of chemical activation and season on birth efficiency of cloned pigs

    Institute of Scientific and Technical Information of China (English)

    MA YuFang; LI Yan; WEI HengXi; LI QiuYan; FANG Rui; ZHAO Rui; ZHANG Kun; XUE Kai; LOU YanKun; DAI YunPing; LIAN LinSheng; LI Ning

    2009-01-01

    The effects of chemical activation on birth efficiency of cloned pigs were studied by investigating the developmental process from porcine oocyte activation to birth of cloned pigs. Three different activation methods were used: (i) Electroporation (Ele); (ii) Ele followed by incubation with 6-dimethylaminopurine (6-DMAP); and (iii) Ele followed by a treatment with cycloheximide (CHX). In experiment 1, the rates of cleavage, developmental rates and cell number of porcine parthenogenetic (PA) embryos were investigated in the three treatment groups. In experiment 2, NT embryos produced by the three different activation treatments were compared for the rates of cleavage, development and cell number. Finally, the effects of Eie and Ele+CHX activation methods on birth efficiency of cloned pigs were compared. The activated oocytes treated by combination activation generally showed a higher (P<0.05) blastocyst rate and produced more expanded blastocysts than oocytes activated with Ele. The rates of cleavage and total cell number of parthenotes were not significantly different. Parthenogenetic embryos activated with 6-DMAP developed into blastocyst and expanded blsstocyst stages at a significantly (P<0.05) higher rate than those treated with Ele, but the developmental capability was dramatically decreased In NT embryos. With the CHX activation method, the NT embryo blastocyst rate was substantially (P<0.05) increased although the production of expanded blastocysts was not significantly different from that by the other two methods. The birth rate of cloned pigs increased in the CHX group, though the rate was not significantly different from Ele. The effects of season on developmental rate of the porcine PA embryos and birth rate of cloned pigs were also examined in our study. Porcine oocytes collected in the spring had higher developmental capabilities than those collected in the winter. However, no difference in birth rate of the cloned pigs was found between the oocytes

  7. Antiviral activity of Ageratina havanensis and major chemical compounds from the most active fraction

    Directory of Open Access Journals (Sweden)

    Gloria del Barrio

    2011-10-01

    Full Text Available The antiviral activity of extracts obtained from Ageratina havanensis (Kunth R.M.King & H.Rob., Asteraceae, against rabbit vesivirus (RaV (Caliciviridae and human herpes simplex viruses type 1 and 2 (HSV-1, HSV-2 (Herpesviridae were analyzed, and the main metabolites from the most active extract were isolated and characterized. The antiviral properties were investigated by measuring the inhibition of viral-induced cytopathic effect in Vero cells. The strongest inhibitory effects were found for ethyl acetate extract from leaves (SI=5 for RaV and SI=5.4 for HSV-1. The crude ethyl acetate extract was further fractionated by chromatographic methods and the structures of isolated compounds were established through comprehensive spectroscopic analyses, including IR, 2D NMR and MS. Four flavonoids were identified: 5,4'-dihydroxy-7-methoxyflavanone (sakuranetin, 3,5,4'-trihydroxy-7-methoxyflavanone (7-methoxyaromadendrin, 4'-O-β-D-glucosyl-5,3'-dihydroxy-7-methoxyflavanone (4'-O-β-D-glucosyl-7-methoxy-eriodictyol and 4'-O-β-D-glucosyl-5-hydroxy-7-methoxyflavanone (4'-O-β-D-glucosylsakuranetin. This is the first report on antiviral activity for Ageratina havanensis.

  8. Chemical contents in Lygeum spartum L. using instrumental neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nedjimi, Bouzid [Djelfa Univ. (Algeria). Lab. of Exploration and Valorization of Steppe Ecosystem; Beladel, Brahim [Djelfa Univ. (Algeria)

    2015-09-01

    The present investigation was conducted to determine the chemical contents of Lygeum spartum L. (Poaceae). Samples were analyzed in order to determine essential (Ca, K, Na, Fe, Co) and some potentially toxic elements (Eu, Sb, Tb) using instrumental neutron activation analysis (INAA). In general chemical element contents were in substantial amounts to meet adult sheep requirements. Potential intake of Ca, K, Zn, Co and Fe by ruminant weighing 50 kg BW consuming 2.0 kg per day DM was sufficient to satisfy their requirements. However, only Na level was still insufficient to meet the requirements for grazing ruminants. Potential toxic elements in this species were within the safety baseline of all the assayed elements recommended by NRC. Na supplementation would seem to be necessary in this zone, for optimum productivity of grazing animals.

  9. Metal Oxide Nanoparticle Growth on Graphene via Chemical Activation with Atomic Oxygen

    Science.gov (United States)

    Johns, James E.; Alaboson, Justice M. P.; Patwardhan, Sameer; Ryder, Christopher R.; Schatz, George C.

    2013-01-01

    Chemically interfacing the inert basal plane of graphene with other materials has limited the development of graphene-based catalysts, composite materials, and devices. Here, we overcome this limitation by chemically activating epitaxial graphene on SiC(0001) using atomic oxygen. Atomic oxygen produces epoxide groups on graphene, which act as reactive nucleation sites for zinc oxide nanoparticle growth using the atomic layer deposition precursor diethyl zinc. In particular, exposure of epoxidized graphene to diethyl zinc abstracts oxygen, creating mobile species which diffuse on the surface to form metal oxide clusters. This mechanism is corroborated with a combination of scanning probe microscopy, Raman spectroscopy, and density functional theory, and can likely be generalized to a wide variety of related surface reactions on graphene. PMID:24206242

  10. Effects of coal rank on the chemical composition and toxicological activity of coal liquefaction materials

    Energy Technology Data Exchange (ETDEWEB)

    Wright, C.W.; Dauble, D.D.

    1986-05-01

    This report presents data from the chemical analysis and toxicological testing of coal liquefaction materials from the EDS and H-Coal processes operated using different ranks of coal. Samples of recycle solvent from the bottoms recycle mode of the EDS direct coal liquefaction process derived from bituminous, sub-bituminous, and lignite coals were analyzed. In addition, the H-Coal heavy fuel oils derived from bituminous and sub-bituminous coals were analyzed. Chemical methods of analysis included adsoprtion column chromatography, high-resolution gas chromatography, gas chromatography/mass spectrometry, and low-voltage probe-inlet mass spectrometry. The toxicological activity of selected samples was evaluated using the standard microbial mutagenicity assay, an initiation/promotion assay for mouse-skin tumorigenicity, and a static bioassy with Daphnia magna for aquatic toxicity of the water-soluble fractions. 22 refs., 16 figs., 14 tabs.

  11. Metal oxide nanoparticle growth on graphene via chemical activation with atomic oxygen.

    Science.gov (United States)

    Johns, James E; Alaboson, Justice M P; Patwardhan, Sameer; Ryder, Christopher R; Schatz, George C; Hersam, Mark C

    2013-12-04

    Chemically interfacing the inert basal plane of graphene with other materials has limited the development of graphene-based catalysts, composite materials, and devices. Here, we overcome this limitation by chemically activating epitaxial graphene on SiC(0001) using atomic oxygen. Atomic oxygen produces epoxide groups on graphene, which act as reactive nucleation sites for zinc oxide nanoparticle growth using the atomic layer deposition precursor diethyl zinc. In particular, exposure of epoxidized graphene to diethyl zinc abstracts oxygen, creating mobile species that diffuse on the surface to form metal oxide clusters. This mechanism is corroborated with a combination of scanning probe microscopy, Raman spectroscopy, and density functional theory and can likely be generalized to a wide variety of related surface reactions on graphene.

  12. Real-Time Measurement of Volatile Chemicals Released by Bed Bugs during Mating Activities

    DEFF Research Database (Denmark)

    Kilpinen, Ole Østerlund; Liu, Dezhao; Adamsen, Anders Peter

    2012-01-01

    In recent years, bed bug (Hemiptera: Cimicidae) problems have increased dramatically in many parts of the world, leading to a renewed interest in their chemical ecology. Most studies of bed bug semiochemicals have been based on the collection of volatiles over a period of time followed by chemical...... analysis. Here we present for the first time, a combination of proton transfer reaction mass spectrometry and video analysis for real-time measurement of semiochemicals emitted by isolated groups of bed bugs during specific behavioural activities. The most distinct peaks in the proton transfer reaction...... mass spectrometry recordings were always observed close to the termination of mating attempts, corresponding to the defensive emissions that bed bugs have been suspected to exploit for prevention of unwanted copulations. The main components of these emissions were (E)-2-hexenal and (E)-2-octenal...

  13. Effects of a chemically derived homo zwitterionic polysaccharide on immune activation in mice

    Institute of Scientific and Technical Information of China (English)

    Chun Meng; Xu Peng; Xian'ai Shi; Hang Wang; Yanghao Guo

    2009-01-01

    In this study, a chemically modified homo zwitterionic polysaccharide (ZPS), sulfated chitosan, was used to examine its effects on murine immune response. The results showed that homoZPS could markedly promote the proliferation of both splenic T/B cells and adhesive cells. In particular, flow cytometry assay demonstrated that the sulfated chitosan could non-specifically activate CD3+ and CD8+ T cells proliferation in vitro. The effectiveness of sulfated chitosan as adjuvant was tested using bovine serum albumin (BSA) and diphtheria toxin (DT) as antigens and compared with that of aluminum hydroxide. The levels of specific antibodies to BSA and DT significantly increased after homoZPS vaccination. Both homoZPS and aluminum hydroxide adjuvants could protect mice against the attack of DT from edemas of spleen and tail. The present findings demonstrated the chemically derived homoZPS could be a potential candidate in the development of T-lym-phocyte dependent vaccine adjuvants.

  14. Identification of structure-activity relationships from screening a structurally compact DNA-encoded chemical library.

    Science.gov (United States)

    Franzini, Raphael M; Ekblad, Torun; Zhong, Nan; Wichert, Moreno; Decurtins, Willy; Nauer, Angela; Zimmermann, Mauro; Samain, Florent; Scheuermann, Jörg; Brown, Peter J; Hall, Jonathan; Gräslund, Susanne; Schüler, Herwig; Neri, Dario

    2015-03-23

    Methods for the rapid and inexpensive discovery of hit compounds are essential for pharmaceutical research and DNA-encoded chemical libraries represent promising tools for this purpose. We here report on the design and synthesis of DAL-100K, a DNA-encoded chemical library containing 103 200 structurally compact compounds. Affinity screening experiments and DNA-sequencing analysis provided ligands with nanomolar affinities to several proteins, including prostate-specific membrane antigen and tankyrase 1. Correlations of sequence counts with binding affinities and potencies of enzyme inhibition were observed and enabled the identification of structural features critical for activity. These results indicate that libraries of this type represent a useful source of small-molecule binders for target proteins of pharmaceutical interest and information on structural features important for binding. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Activity-Independent Discovery of Secondary Metabolites Using Chemical Elicitation and Cheminformatic Inference.

    Science.gov (United States)

    Pimentel-Elardo, Sheila M; Sørensen, Dan; Ho, Louis; Ziko, Mikaela; Bueler, Stephanie A; Lu, Stella; Tao, Joe; Moser, Arvin; Lee, Richard; Agard, David; Fairn, Greg; Rubinstein, John L; Shoichet, Brian K; Nodwell, Justin R

    2015-11-20

    Most existing antibiotics were discovered through screens of environmental microbes, particularly the streptomycetes, for the capacity to prevent the growth of pathogenic bacteria. This "activity-guided screening" method has been largely abandoned because it repeatedly rediscovers those compounds that are highly expressed during laboratory culture. Most of these metabolites have already been biochemically characterized. However, the sequencing of streptomycete genomes has revealed a large number of "cryptic" secondary metabolic genes that are either poorly expressed in the laboratory or that have biological activities that cannot be discovered through standard activity-guided screens. Methods that reveal these uncharacterized compounds, particularly methods that are not biased in favor of the highly expressed metabolites, would provide direct access to a large number of potentially useful biologically active small molecules. To address this need, we have devised a discovery method in which a chemical elicitor called Cl-ARC is used to elevate the expression of cryptic biosynthetic genes. We show that the resulting change in product yield permits the direct discovery of secondary metabolites without requiring knowledge of their biological activity. We used this approach to identify three rare secondary metabolites and find that two of them target eukaryotic cells and not bacterial cells. In parallel, we report the first paired use of cheminformatic inference and chemical genetic epistasis in yeast to identify the target. In this way, we demonstrate that oxohygrolidin, one of the eukaryote-active compounds we identified through activity-independent screening, targets the V1 ATPase in yeast and human cells and secondarily HSP90.

  16. Chemical composition, antimicrobial and antioxidant activity of essential oils from cumin and ajowan

    Directory of Open Access Journals (Sweden)

    SAHADEO D. PATIL

    2016-01-01

    Full Text Available Abstract. Patil SD, Maknikar PP, Wankhade SJ, Ukesh CS, Rai MK. 2016. Chemical composition, antimicrobial and antioxidant activity of essential oils from cumin and ajowan. Nusantara Bioscience 8: 60-65. Plant essential oils have gained importance as alternative remedies for treatment of many infectious diseases and food preservatives. In the present study, we have determined the chemical composition of the essential oils (EOs from two Indian spices Cuminum cyminum (cumin and Trachyspermum ammi (ajowan of family Apiaceae by gas chromatography-mass spectrometry (GC-MS. Moreover, the antimicrobial potential of these oils was evaluated against several Gram-positive and Gram-negative bacteria using disc diffusion and broth microdilution methods. A Total of 20 major chemical components were analyzed by GC-MS studies and were found to be cuminaldehyde (36.67% and caren-10-al (21.34% in case of cumin essential oil while p-cymene (15.54% and thymol (15.48% were found to be present in ajowan essential oil. Both the EOs exhibited potent antibacterial effect against most of the tested pathogens. Furthermore, cumin and ajowan EOs demonstrated remarkable antibacterial activity against Salmonella typhi with an inhibition zone diameter of 54 and 60 mm respectively with identical MIC value of 12.5 µl/ml. Ajowan EO was found to exhibit wide spectrum activity against both the Gram-positive and Gram-negative organisms when compared with cumin. Both the essential oils were more potent than standard antibiotic chloramphenicol except cumin against Escherichia coli and Enterobacter aerogenes. Antioxidant activity of cumin was weaker (12.36% and ajowan was stronger (71.68% than standard ascorbic acid (20.24% at 1000 µg/ml concentration when assessed by DPPH radical scavenging assay. Our study suggests that, spice essential oils have significant potential in controlling the human and foodborne pathogens.

  17. THE CHEMICAL CHARACTERISTICS AND ANTIOXIDANT ACTIVITY OF STARCH FROM SAGO BARUK PITH (Arenga microcarpha

    Directory of Open Access Journals (Sweden)

    Lidya Irma Momuat

    2016-11-01

    Full Text Available Sago Baruk (Arenga microcarpha is one of endemic crop type of Archipelago of Sangihe Talaud, North Sulawesi and potential as source bioactivities including antioxidant. The objectives of this research were to determine the chemical characteristics and antioxidant activity of starch sago baruk which was sequentially extracted with water and filtrate. The sago trunks pith was sequentially extracted with water and filtrate at room temparature for 1 hour. After that, starch of sago baruk were analyzed for their chemical composition (moisture, fat, protein, ash crude fiber and charbohydrate and total phenolic and tannin condensed content. Antioxidant activity of each sago flour were evaluated in 1,1-diphenyl-2-picrylhydrazyl (DPPH radical scavenging and total antioxidant capacity. After that, the starch was characterized by IR spectroscopic technique. The sequential extraction result indicated percentage yield of starch I and starch II were 41.39% and 38.21%. The chemical characteristics of starch I revealed that percentage protein, ash, crude fibre and fat were below 1% than starch II especially protein and fiber crude. The starch I had highest total phenolic and tannin condensed content than starch II and starch K. The starch I also showed the highest free radical scavenging activity in 1,1-diphenyl-2-picrylhydrazyl (DPPH radical than starch II and starch K. The result also showed that starch I has strongest total antioxidant capacity than starch II and starch K at all concentration level. Antioxidant activity of three starch increased with the increase in concentration of the samples. The three starch showed of hidroxy (OH, carbonyl (C=O, ether (C-O and aliphatic group (C-C. It is concluded that starch sago baruk especially the starch I are very rich in antioxidant substituens.

  18. Chemical constituents, physicochemical properties and antibacterial activity of leaves essential oil of Ocimum urticifolium

    Institute of Scientific and Technical Information of China (English)

    Ketema Alemayehu; Mathewos Anza; Destaw Engdaw; Abedelfeta Mohammed

    2016-01-01

    ABSTRACT Objective:To determine chemical compositions, physicochemical properties and evaluating antibacterial activities of essential oils extracted from leaves ofOcimum urticifolium(O. urticifolium). Methods: Essential oil ofO. urticifolium was extracted by hydrodistillation technique. A number of phytochemical screening tests were applied to identify the classes of compounds in the leaves extract ofO. urticifolium. Gas chromatography and gas chromatography/mass spectrometry were used to characterize the chemical components in the essential oil. The agar diffusion method was used to evaluate the antibacterial activity as per of standard procedure. Results:Phytochemical screening of crude extract revealed that the presence of tannins, glycosides, saponins, flavonoids, steroids, terpenoids and phenols. The obtained oil yield is (0.33 ± 0.11) % (v/w). Analysis of oil using gas chromatography and gas chromatography/mass spectrometry showed a total of 22 components, the abundance of monoterpene and sesquiterpenes (98.99%). The percentage composition of monoterpene in the oil wasα-pinene (22.105%), eugenol (21.099%), while sesquiterpenesα-cubebene (11.341%),α-bisabolene (9.945%),α-caryophyllene (7.709%),α-caryophyllene oxide (5.754%), and copaene (3.594%). The oil inhibited the growth ofStaphylococcus aureus andEscherichia coli, while no activity was shown toSalmonella typhi. Conclusions: TheO. urticifolium is a rich source of various classes of chemical constituents and the antibacterial activity of the oil could be attributed mainly to these compounds.

  19. Neem cake: chemical composition and larvicidal activity on Asian tiger mosquito.

    Science.gov (United States)

    Nicoletti, Marcello; Mariani, Susanna; Maccioni, Oliviero; Coccioletti, Tiziana; Murugan, Kardaray

    2012-07-01

    New pesticides based on natural products are urgently needed, in consideration of their environmental care and lower collateral effects. Neem oil, the main product obtained from Azadiractha indica A. Juss, commonly known as neem tree, is mainly used in medical devices, cosmetics and soaps, as well as important insecticide. Manufacturing of neem oil first includes the collection of the neem seeds as raw material used for the extraction. Neem cake is the waste by-product remaining after extraction processes. The quality of the oil, as that of the cake, strictly depends from the quality of seeds as well as from the type of extraction processes used, which strongly influences the chemical composition of the product. Currently, the different types of commercial neem cake on the market are roughly identified as oiled and deoiled cake, but several other differences can be detected. The differences are relevant and must be determined, to obtain the necessary correlation between chemical constitution and larvicidal activities. Six different batches of neem cake, marketed by several Indian and European companies, were analyzed by HPLC and HPTLC, and their fingerprints compared, obtaining information about the different compositions, focusing in particular on nortriterpenes, considered as the main active components of neem oil. Therefore, the chemical composition of each cake was connected with the biological activitiy, i.e., the effects of the extracts of the six neem cakes were tested on eggs and larvae of Aedes albopictus (Stegomyia albopicta) (Diptera: Culicidae), commonly known as Asian tiger mosquito. The results confirmed the previously reported larvicide effects of neem cake that, however, can now be related to the chemical composition, in particular with nortriterpenes, allowing in that way to discriminate between the quality of the various marketed products, as potential domestic insecticides.

  20. Relating particle hygroscopicity and CCN activity to chemical composition during the HCCT-2010 field campaign

    Directory of Open Access Journals (Sweden)

    Z. J. Wu

    2013-03-01

    Full Text Available Particle hygroscopic growth at RH =90%, cloud condensation nuclei (CCN activity, and size-resolved chemical composition were concurrently measured in the Thüringer Wald mid-level mountain range in central Germany in fall season of 2010. The median hygroscopicity parameter values, κ, of 50, 75, 100, 150, 200, and 250 nm particles derived from hygroscopicity measurements are respectively 0.14, 0.14, 0.17, 0.21, 0.24, and 0.28 during the sampling period. The closure between HTDMA-measured (κHTDMA and chemical composition-derived (κchem hygroscopicity parameters was performed based on the Zdanovskii–Stokes–Robinson (ZSR mixing rule. Using size-averaged chemical composition, the κ values are substantially overpredicted (30% and 40% for 150 and 100 nm particles. Introducing size-resolved chemical composition substantially improved closure, and the differences between κHTDMA and κchem are within 10%. We found that the evaporation of NH4NO3, which may happen in H-TDMA system, could lead to a discrepancy in predicted and measured particle hygroscopic growth. The hygroscopic parameter of the organic fraction, κorg is positively correlated with the O : C ratio (κorg =0.19 · (O : C−0.03. Such correlation is helpful to define the κorg value in the closure study. κ derived from CCN measurement was around 30% (varied with particle diameters higher than that determined from particle hygroscopic growth measurements (here, hydrophilic mode is considered only. This difference might be explained by the surface tension effects, solution non-ideality, and the partial solubility of constituents or non-dissolved particle matter. However, due to these effects being included in HTDMA-derived κ calculations, we could not distinguish the specific roles of these effects in creating this gap. Therefore, extrapolating from HTDMA data to properties at the point of activation should be done with great care. Finally, closure study between CCNc-measured (κ

  1. Screening of 397 chemicals and development of a quantitative structure-activity relationship model for androgen receptor antagonism

    DEFF Research Database (Denmark)

    Vinggaard, Annemarie; Niemelä, Jay Russell; Wedebye, Eva Bay;

    2008-01-01

    We have screened 397 chemicals for human androgen receptor (AR) antagonism by a sensitive reporter gene assay to generate data for the development of a quantitative structure-activity relationship (QSAR) model. A total of 523 chemicals comprising data on 292 chemicals from our laboratory and data...... by the synthetic androgen R1881. The MultiCASE expert system was used to construct a QSAR model for AR antagonizing potential. A "5 Times, 2-Fold 50% Cross Validation" of the model showed a sensitivity of 64%, a specificity of 84%, and a concordance of 76%. Data for 102 chemicals were generated for an external...... validation of the model resulting in a sensitivity of 57%, a specificity of 98%, and a concordance of 92% of the model. The model was run on a set of 176103 chemicals, and 47% were within the domain of the model. Approximately 8% of chemicals was predicted active for AR antagonism. We conclude...

  2. A carbamate-based approach to primaquine prodrugs: antimalarial activity, chemical stability and enzymatic activation.

    Science.gov (United States)

    Mata, Graça; do Rosário, Virgílio E; Iley, Jim; Constantino, Luís; Moreira, Rui

    2012-01-15

    O-Alkyl and O-aryl carbamate derivatives of the antimalarial drug primaquine were synthesised as potential prodrugs that prevent oxidative deamination to the inactive metabolite carboxyprimaquine. Both O-alkyl and O-aryl carbamates undergo hydrolysis in alkaline and pH 7.4 phosphate buffers to the parent drug, with O-aryl carbamates being ca. 10(6)-10(10) more reactive than their O-alkyl counterparts. In human plasma O-alkyl carbamates were stable, whereas in contrast their O-aryl counterparts rapidly released the corresponding phenol product, with primaquine being released only slowly over longer incubation periods. Activation of the O-aryl carbamates in human plasma appears to be catalysed by butyrylcholinesterase (BuChE), which leads to carbamoylation of the catalytic serine of the enzyme followed by subsequent slow enzyme reactivation and release of parent drug. Most of the O-aryl and O-alkyl carbamates are activated in rat liver homogenates with half-lives ranging from 9 to 15 h, while the 4-nitrophenyl carbamate was hydrolysed too rapidly to determine an accurate rate constant. Antimalarial activity was studied using a model consisting of Plasmodium berghei, Balb C mice and Anopheles stephensi mosquitoes. When compared to controls, ethyl and n-hexyl carbamates were able to significantly reduce the percentage of infected mosquitos as well as the mean number of oocysts per infected mosquito, thus indicating that O-alkyl carbamates of primaquine have the potential to be developed as transmission-blocking antimalarial agents. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Predicting allergic contact dermatitis: a hierarchical structure activity relationship (SAR) approach to chemical classification using topological and quantum chemical descriptors

    Science.gov (United States)

    Basak, Subhash C.; Mills, Denise; Hawkins, Douglas M.

    2008-06-01

    A hierarchical classification study was carried out based on a set of 70 chemicals—35 which produce allergic contact dermatitis (ACD) and 35 which do not. This approach was implemented using a regular ridge regression computer code, followed by conversion of regression output to binary data values. The hierarchical descriptor classes used in the modeling include topostructural (TS), topochemical (TC), and quantum chemical (QC), all of which are based solely on chemical structure. The concordance, sensitivity, and specificity are reported. The model based on the TC descriptors was found to be the best, while the TS model was extremely poor.

  4. SYNTHESIS OF SILVER NANOPARTICLES BY CHEMICAL REDUCTION METHOD AND THEIR ANTIFUNGAL ACTIVITY

    Directory of Open Access Journals (Sweden)

    Shenava Aashritha

    2013-10-01

    Full Text Available The aim of this study was to evaluate the antimicrobial activity of silvercolloidal nanoparticles which were synthesised by chemical reduction. Silver nanoparticles were synthesized by reduction of silver nitrate with sodium citrate. The presence of silver nanoparticles was detected by atomic absorption spectroscopy. Antifungal activity of silver nanoparticles was detected by the zone of inhibition. Silver nanoparticles exhibited a characteristic surface plasmon resonance band that is measured by UV-Vis spectroscopy, showing a typical absorbance peak for nanoparticles centred at 430 nm. The antifungal activity of silver nanoparticles was measured by the zones of inhibition by Kirby Bauer sensitivity testing which were measured after 24 h of incubation at 370C of Candida albicans growth on sabouraud dextrose agar. This study, integrates nanotechnology leading to possible advances in the formulation of new types of fungicide.

  5. Chemical composition and antimicrobial activity of essential oil isolated from the cultured mycelia of Ganoderma japonicum

    Institute of Scientific and Technical Information of China (English)

    Dandan Liu; Zheng Hu; Zhigang Liu; Bo Yang; Wenjuan Tu; Liang Li

    2009-01-01

    Objective:To explore a new natural antibiotic. Methods:The chemical composition of the essential oil from Ganoderma japonicum (G. japonicum) mycelia was analyzed by gas chromatography-mass spectrometry(GC-MS). The antimicrobial activity of the oil was evaluated against eighteen microorganisms, including bacteria, mildew and yeast by using a disc diffusion method. Furthermore, the minimum inhibitory concentrations(MIC) and the minimum bactericidal concentrations(MBC) of the essential oil against twelve clinical pathogens were determined. Results:The main components of the oil were nerolidol, decadienal, linaiool and benzyl alcohol. The antimicrobial results indicated that the oil inhibited all the tested bacterium, especially Methicillin-resistant Staphylococcus aureus (MRSA) in which the antibacterial activity exhibited a MBC of 1.03 mg/ml. Conclusion: The essential oil of G.japonicum mycelium has significant inhibitory activity. It is a potential medicinal resource that can be used as a natural antibiotic.

  6. Antimycobacterial activity of chemically defined natural substances from the Caribbean flora in Guadeloupe.

    Science.gov (United States)

    Rastogi, N; Abaul, J; Goh, K S; Devallois, A; Philogène, E; Bourgeois, P

    1998-04-01

    Eight chemically defined, naturally occurring compounds were extracted from the tropical flora of the Caribbean island of Guadeloupe: pilocarpine, an alkaloid from Pilocarpus racemosus; heraclenol and isomeranzin, coumarins from Triphasia trifolia; lochnerin, an indole alkaloid from Rauwolfia biauriculata; ibogaine and voacangine, indole alkaloids from Tabernaemontana citrifolia; texalin, an oxazole from Amyris elemifera; and canellal, a sesquiterpene dialdehyde from Canella winterana. An essential oil fraction from Canella winterana was also tested. The antimycobacterial activity of these substances was tested against Mycobacterium tuberculosis, M. avium and M. kansasii using the Middlebrook 7H11 agar medium, the Bactec 460-TB radiometric methodology, and determination of bacterial viable counts. Three compounds, namely ibogaine, voacangine and texalin, showed antimycobacterial activity. Investigations on the structure-modification and structure-activity relationships of these compounds may help determine new targets for future drug development.

  7. Biochemical activities of berberine, palmatine and sanguinarine mediating chemical defence against microorganisms and herbivores.

    Science.gov (United States)

    Schmeller, T; Latz-Brüning, B; Wink, M

    1997-01-01

    The alkaloids berberine, palmatine and sanguinarine are toxic to insects and vertebrates and inhibit the multiplication of bacteria, fungi and viruses. Biochemical properties which may contribute to these allelochemical activities were analysed. Acetylcholine esterase, butyrylcholinesterase, choline acetyl transferase, alpha 1- and alpha 2-adrenergic, nicotinergic, muscarinergic and serotonin2 receptors were substantially affected. Sanguinarine appears to be the most effective inhibitor of choline acetyl-transferase (IC50 284 nM), while the protoberberines were inactive at this target. Berberine and palmatine were most active at the alpha 2-receptor (binding with IC50 476 and 956 nM, respectively). Furthermore, berberine and sanguinarine intercalate DNA, inhibit DNA synthesis and reverse transcriptase. In addition, sanguinarine (but not berberine) affects membrane permeability and berberine protein biosynthesis. In consequence, these biochemical activities may mediate chemical defence against microorganisms, viruses and herbivores in the plants producing these alkaloids.

  8. Chemical composition and antibacterial activities of the essential oils isolated from Juniperus thurifera L. var. Africana.

    Science.gov (United States)

    Bahri, F; Harrak, R; Achak, N; Romane, A

    2013-01-01

    This study describes the chemical composition and antibacterial activities of essential oils of Moroccan Juniperus thurifera L. var. Africana (Cupressaceae). The essential oil of dried leaves was isolated by hydrodistillation, vapohydrodistillation and microwaves. Sixty-four compounds in J. thurifera L. var. Africana oils were identified (79.9%, 92.4% and 98.4% of the oil, respectively). The most abundant compound in J. thurifera L. var. Africana oils is sabinene (38%, 36.2% and 39.4%). Antibacterial activities of J. thurifera essential oils was tested against bacteria Gram ( - ) and Gram (+). The oil is very active against all bacteria tested except Pseudomonas, which turned out to be very resistant.

  9. Chemical Composition and Antimicrobial Activity of Thymus praecox Opiz ssp. polytrichus Essential Oil from Serbia

    Directory of Open Access Journals (Sweden)

    Nada V. Petrović

    2016-03-01

    Full Text Available Chemical composition and antimicrobial activity of the essential oil of wild growing Thymus praecox Opiz ssp. polytrichus were studied. trans-Nerolidol (19.79%, germacrene D (18.48% and thymol (9.62% were the main components in essential oil. This study is the first report of the antimicrobial activity of essential oil obtained from the T. praecox Opiz ssp. polytrichus. Antimicrobial activity of essential oil was investigated on Bacillus cereus, Micrococcus flavus, Staphylococcus aureus, Listeria monocytogenes, Escherichia coli, Pseudomonas aeruginosa, Enterobacter cloacae, Salmonella typhimurium, Aspergillus fumigatus, A. versicolor, A. ochraceus, A. niger, Trichoderma viride, Penicillium funiculosum, P. ochrochloron, and P. verrucosum var. cyclopium strains. In the antimicrobial assays, essential oil showed high antimicrobial potential (MIC 19–150 m g/mL, MBC 39–300 m g/mL for bacteria; and MIC 19.5–39 m g/mL, MFC 39–78 m g/mL for fungi.

  10. Chemical composition and antimicrobial activity of essential oil of Cupressus atlantica.

    Science.gov (United States)

    Arjouni, My Youssef; Bahri, Fouad; Romane, Abderrahmane; El Fels, M Ahmed El Alaoui

    2011-10-01

    Cupressus atlantica Gaussen, an endemic species from Morocco, is used in traditional medicine. The chemical composition of the essential oil isolated by hydrodistillation from the leaves was investigated by capillary gas chromatography and gas chromatography/mass spectrometry, and also evaluated for in vitro antimicrobial activity. Sixty-one components, representing 98.1% of the total, were detected of which fifty-seven were identified. Germacrene D (34.8%), alpha-pinene (13.6%), delta-cadinene (6.1%), alpha-phellandrene (5.5%), gamma-cadinene (5.0%), beta-caryophyllene (4.8%) and alpha-humulene (4.4%) were the predominant compounds. The oil was characterized by a relatively high amount of oxygenated monoterpenes (66.5%). The oil, screened for antimicrobial activity against both Gram-positive and Gram-negative, showed pronounced activity against all the microbes tested, except Pseudomonas, which showed resistance.

  11. "Chemical composition and antimicrobial activity of the essential oil of Ferulago Bernardii Tomk. and M. Pimen"

    Directory of Open Access Journals (Sweden)

    "Farahnaz Khalighi-Sigaroodi

    2005-05-01

    Full Text Available The chemical composition of the essential oil of the aerial parts of Ferulago Bernardii from Iran was analysed by GC and GC/MS. Sixty constituents were found representing 87.9% of the oil. The main constituents of the essential oil were 2,4,5-trimethyl-benzaldehyde (21.2%, α-pinene (17.0%,spathulenol (5.0%, cis-chrysanthenyl acetate (4.4% and caryophyllene oxide (3.2%. Antimicrobial activity of the essential oil of Ferulago Bernardii by the broth dilution method in comparison with Gentamycin and Fluconazole as standard showed weak activity against Staphylococcus aureus, Bacilus subtilis, Escherichia coli, Candida albicans and Aspergillus niger. The essential oil did not show any activity against Pseudomonas aeruginosa.

  12. Helichrysum gymnocephalum Essential Oil: Chemical Composition and Cytotoxic, Antimalarial and Antioxidant Activities, Attribution of the Activity Origin by Correlations

    Directory of Open Access Journals (Sweden)

    François Couderc

    2011-09-01

    Full Text Available Helichrysum gymnocephalum essential oil (EO was prepared by hydrodistillation of its leaves and characterized by GC-MS and quantified by GC-FID. Twenty three compounds were identified. 1,8-Cineole (47.4%, bicyclosesquiphellandrene (5.6%, γ-curcumene (5.6%, α-amorphene (5.1% and bicyclogermacrene (5% were the main components. Our results confirmed the important chemical variability of H. gymnocephalum. The essential oil was tested in vitro for cytotoxic (on human breast cancer cells MCF-7, antimalarial (Plasmodium falciparum: FcB1-Columbia strain, chloroquine-resistant and antioxidant (ABTS and DPPH assays activities. H. gymnocephalum EO was found to be active against MCF-7 cells, with an IC50 of 16 ± 2 mg/L. The essential oil was active against P. falciparum (IC50 = 25 ± 1 mg/L. However, the essential oil exhibited a poor antioxidant activity in the DPPH (IC50 value > 1,000 mg/L and ABTS (IC50 value = 1,487.67 ± 47.70 mg/L assays. We have reviewed the existing results on the anticancer activity of essential oils on MCF-7 cell line and on their antiplasmodial activity against the P. falciparum. The aim was to establish correlations between the identified compounds and their biological activities (antiplasmodial and anticancer. β-Selinene (R² = 0.76, α-terpinolene (R² = 0.88 and aromadendrene (R² = 0.90 presented a higher relationship with the anti-cancer activity. However, only calamenene (R² = 0.70 showed a significant correlation for the antiplasmodial activity.

  13. Chemical profile and antimicrobial activity of Boldo (Peumus boldus Molina) extracts obtained by compressed carbon dioxide extraction

    OpenAIRE

    Mazutti,M.; Mossi,A. J.; CANSIAN,R.L.; Corazza,M. L.; Dariva,C.; Vladimir Oliveira,J.

    2008-01-01

    This work reports the effects of temperature (20 to 50ºC) and pressure (100 to 250 bar) on the extraction yield, chemical characteristics and antimicrobial activity of extracts of Peumus boldus Molina obtained by compressed carbon dioxide extraction. Results showed that the extraction variables affect the extraction yield and the chemical distribution of the major compounds present in the extracts. The extracts were chemically analyzed with regard to 1,8-cineole, trans-sabinene, pinocarveol, ...

  14. Chemical profile and antimicrobial activity of Boldo (Peumus boldus Molina) extracts obtained by compressed carbon dioxide extraction

    OpenAIRE

    Mazutti,M.; A J Mossi; CANSIAN,R.L.; M. L. Corazza; Dariva,C.; J. Vladimir Oliveira

    2008-01-01

    This work reports the effects of temperature (20 to 50ºC) and pressure (100 to 250 bar) on the extraction yield, chemical characteristics and antimicrobial activity of extracts of Peumus boldus Molina obtained by compressed carbon dioxide extraction. Results showed that the extraction variables affect the extraction yield and the chemical distribution of the major compounds present in the extracts. The extracts were chemically analyzed with regard to 1,8-cineole, trans-sabinene, pinocarveol, ...

  15. Chemical Compositions, Antioxidant and Antimicrobial Activities of Essential Oils of Piper caninum Blume

    Directory of Open Access Journals (Sweden)

    Hasnah Mohd Sirat

    2011-11-01

    Full Text Available Chemical composition, antioxidant and antimicrobial activities of the fresh leaves and stems oils of Piper caninum were investigated. A total of forty eight constituents were identified in the leaves (77.9% and stems (87.0% oil which were characterized by high proportions of phenylpropanoid, safrole with 17.1% for leaves and 25.5% for stems oil. Antioxidant activities were evaluated by using β-carotene/linoleic acid bleaching, DPPH radical scavenging and total phenolic content. Stems oil showed the highest inhibitory activity towards lipid peroxidation (114.9 ± 0.9%, compared to BHT (95.5 ± 0.5%, while leaves oil showed significant total phenolic content (27.4 ± 0.5 mg GA/g equivalent to gallic acid. However, the essential oils showed weak activity towards DPPH free-radical scavenging. Evaluation of antimicrobial activity revealed that both oils exhibited strong activity against all bacteria strains with MIC values in the range 62.5 to 250 µg/mL, but weak activity against fungal strains. These findings suggest that the essential oils can be used as antioxidant and antimicrobial agents for therapeutic, nutraceutical industries and food manufactures.

  16. Chemical composition and antimicrobial activity of hexane leaf extract of Anisopus mannii (Asclepiadaceae

    Directory of Open Access Journals (Sweden)

    Aliyu Muhammad Musa

    2015-06-01

    Full Text Available Objective: To determine the chemical constituents and antimicrobial activity of the hexane leaf extract of Anisopus mannii against a wide range of human pathogenic microorganisms. Methods: The chemical constituents of the hexane leaf extract was determined using gas chromatography-mass spectrometry (GC-MS analysis; and the antimicrobial activity was evaluated on clinical susceptible and resistant bacterial and fungal isolates using the disc diffusion and broth micro dilution methods. Results: GC-MS analysis of the hexane leaf extract revealed 32 compounds, representing 73.8% of the identified components. The major compounds were hexadecanoic acid, ethyl ester (34%, oxirane, hexadecyl- (11% and 9, 12, 15-octadecatrienoic acid, ethyl ester, (Z, Z, Z (9.6%. Results from the antimicrobial activity demonstrated higher inhibition zones against B. cereus (29 mm, followed by S. pyogenes (28 mm. Other notable inhibitions were observed with E. faecalis (27 mm, P. vulgaris (26 mm and MRSA (25 mm. The MIC values ranged from 0.625 mg/mL to 1.25 mg/mL while the MBC/MFC values ranged from 2.5 mg/mL to 5.0 mg/mL. Conclusion: These results support the traditional use of the plant and demonstrate the huge potential of A. mannii as a source of antimicrobial compounds. [J Intercult Ethnopharmacol 2015; 4(2.000: 129-133

  17. Chemical Variability and Biological Activities of Essential Oils of Micromeria inodora (Desf.) Benth. from Algeria.

    Science.gov (United States)

    Benomari, Fatima Zahra; Djabou, Nassim; Medbouhi, Ali; Khadir, Abdelmounaim; Bendahou, Mourad; Selles, Chaouki; Desjobert, Jean-Marie; Costa, Jean; Muselli, Alain

    2016-11-01

    The chemical composition of the essential oils isolated from the aerial parts of Micromeria inodora (Desf.) Benth. collected in 24 Algerian localities was investigated from the first time using GC-FID, GC/MS and (13) C-NMR. Altogether, 83 components which accounted for 94.7% of the total oil composition were identified. The main compounds were trans-sesquisabinene hydrate (1; 20.9%), α-terpinyl acetate (2; 19.8%), globulol (3; 4.9%), caryophyllene oxide (4; 4.3%), β-bisabolol (5; 2.9%) and trans-7-epi-sesquisabinene hydrate (6; 2.6%). Comparison with the literature highlighted the originality of the Algerian M. inodora oil and indicated that 1 might be used as taxonomical marker. The study of the chemical variability allowed the discrimination of two main clusters confirming that there is a relation between the essential-oil compositions and the soil nature of the harvest locations. Biological activity of M. inodora essential oil was assessed against fourteen species of microorganisms involved in nosocomial infections using paper disc diffusion and dilution agar assays. The in vitro study demonstrated a good activity against Gram-positive strains such as Staphylococcus aureus, Bacillus cereus, Bacillus subtilis, and Enterococcus faecalis, and moderate activity against Candida albicans. These results might be useful for the future commercial valorization of M. inodora essential oil as a promising source of natural products with potential against various nosocomial community and toxinic infections.

  18. Activation of "synthetic ambient" aerosols - Relation to chemical composition of particles <100 nm

    Science.gov (United States)

    Burkart, J.; Hitzenberger, R.; Reischl, G.; Bauer, H.; Leder, K.; Puxbaum, H.

    2012-07-01

    Cloud condensation nuclei (CCN) are an important fraction of atmospheric aerosols because of their role in cloud formation. Experimental studies focus either on direct field measurements of complex ambient aerosols or laboratory investigations on well defined aerosols produced from single substances or substance mixtures. In this study, we focussed on the ultrafine aerosol because in terms of number concentration, the majority of the CCN are expected to have sizes in this range. A field study was performed from July 2007 to October 2008 to investigate the activation behaviour of the atmospheric aerosol in Vienna (Burkart et al., 2011). Filter samples of the aerosol aerosol in a nebulizer. Chemical analyses of the ultrafine water soluble material were also performed. The CCN properties of the "synthetic ambient" aerosol were obtained using the University of Vienna CCN counter (Giebl et al., 2002; Dusek et al., 2006b) at a nominal supersaturation (SS) of 0.5%. Activation diameters dact ranged from 54.5 nm to 66 nm, were larger than dact of typical single inorganic salts and showed no seasonal pattern in contrast to the fraction of water soluble organic carbon (WSOC), which ranged from 44% in spring to 15% in winter. The average hygroscopicity parameter κ (Petters and Kreidenweis, 2007) obtained from the activation curves ranged from 0.20 to 0.30 (average 0.24), which was significantly lower than κchem calculated from the chemical composition (0.43 ± 0.07).

  19. Chemical composition and antimicrobial activity of the essential oil from leaves of Algerian Melissa officinalis L.

    Science.gov (United States)

    Abdellatif, Fahima; Boudjella, Hadjira; Zitouni, Abdelghani; Hassani, Aicha

    2014-01-01

    The essential oil obtained from leaves of Melissa officinalis L. (Family of Lamiaceae) growing in Algeria, was investigated for its chemical composition and in vitro antimicrobial activity. The chemical composition was determined by hydrodistillation and analyzed by GC/MS and GC-FID. Sixty-three compounds were identified in the essential oil, representing 94.10 % of the total oil and the yields were 0.34 %. The major component was geranial (44.20 %). Other predominant components were neral (30.20 %) and citronellal (6.30 %). The in vitro antimicrobial activity was determined by paper disk agar diffusion testing and minimum inhibitory concentration (MIC) using 7 bacteria (3 Gram-positive and 4 Gram-negative), 2 yeasts and 3 fungi. The results showed that the essential oil presented high antimicrobial activity against all microorganisms targeted mainly against five human pathogenic bacteria, one yeast Candida albicans and two phytopathogenic fungi tested. The minimum inhibitory concentrations (MIC) ranged from 1.00 to 5.00 µL/mL. PMID:26417300

  20. Chemical composition and antimicrobial activity of the essential oil from leaves of Algerian Melissa officinalis L.

    Science.gov (United States)

    Abdellatif, Fahima; Boudjella, Hadjira; Zitouni, Abdelghani; Hassani, Aicha

    2014-01-01

    The essential oil obtained from leaves of Melissa officinalis L. (Family of Lamiaceae) growing in Algeria, was investigated for its chemical composition and in vitro antimicrobial activity. The chemical composition was determined by hydrodistillation and analyzed by GC/MS and GC-FID. Sixty-three compounds were identified in the essential oil, representing 94.10 % of the total oil and the yields were 0.34 %. The major component was geranial (44.20 %). Other predominant components were neral (30.20 %) and citronellal (6.30 %). The in vitro antimicrobial activity was determined by paper disk agar diffusion testing and minimum inhibitory concentration (MIC) using 7 bacteria (3 Gram-positive and 4 Gram-negative), 2 yeasts and 3 fungi. The results showed that the essential oil presented high antimicrobial activity against all microorganisms targeted mainly against five human pathogenic bacteria, one yeast Candida albicans and two phytopathogenic fungi tested. The minimum inhibitory concentrations (MIC) ranged from 1.00 to 5.00 µL/mL.

  1. Larvicidal activities and chemical composition of essential oils from Piper klotzschianum (Kunth) C. DC. (Piperaceae).

    Science.gov (United States)

    do Nascimento, Jeferson C; David, Jorge M; Barbosa, Luiz C A; de Paula, Vanderlucia F; Demuner, Antonio J; David, Juceni P; Conserva, Lucia M; Ferreira, Jésu C; Guimarães, Elsie F

    2013-11-01

    Volatile oils from fresh roots, stems, leaves and seeds of Piper klotzschianum (Piperaceae) were obtained by hydrodistillation and analysed by GC-FID and GC-MS. In total, 25 components, representing more than 95% of the examined oils, were identified. The essential oils were evaluated against Artemia salina Leach nauplii and fourth-instar Aedes aegypti larvae. The major chemical constituents that were identified from various parts of this plant were 1-butyl-3,4-methylenedioxybenzene and 2,4,5-trimethoxy-1-propenylbenzene in the root, 1-butyl-3,4-methylenedioxybenzene in the stems and leaves and 1-butyl-3,4-methylenedioxybenzene, limonene and α-phellandrene in the seeds. The biological activities of these essential oils generally exhibited high toxicity against A. salina, with LC50 values that ranged from 7.06 to 15.43 µg mL(-1), and significant larvicidal activity against fourth-instar A. aegypti larvae was observed in the essential oils from the seeds (LC50 of 13.27 µg mL(-1)) and roots (LC50 of 10.0 µg mL(-1)) of the plant. The present study indicates that both essential oil of P. klotzsdhianum and the isolate 1-butyl-3,4-methylenedioxybenzene are potential resources for A. aegypti larva control. This is the first report of the biological activities of the oil and isolated compound. © 2013 Society of Chemical Industry.

  2. Chemical composition and antioxidant activities of essential oils from different parts of the oregano.

    Science.gov (United States)

    Han, Fei; Ma, Guang-Qiang; Yang, Ming; Yan, Li; Xiong, Wei; Shu, Ji-Cheng; Zhao, Zhi-Dong; Xu, Han-Lin

    This research was undertaken in order to characterize the chemical compositions and evaluate the antioxidant activities of essential oils obtained from different parts of the Origanum vulgare L. It is a medicinal plant used in traditional Chinese medicine for the treatment of heat stroke, fever, vomiting, acute gastroenteritis, and respiratory disorders. The chemical compositions of the three essential oils from different parts of the oregano (leaves-flowers, stems, and roots) were identified by gas chromatography-mass spectrometry (GC-MS). The antioxidant activity of each essential oil was assessed using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay and reducing the power test. Among the essential oils from different parts of the oregano, the leaf-flower oils have the best antioxidant activities, whereas the stem oils are the worst. The results of the DPPH free radical scavenging assay showed that the half maximal inhibitory concentration (IC50) values of the essential oils were (0.332±0.040) mg/ml (leaves-flowers), (0.357±0.031) mg/ml (roots), and (0.501±0.029) mg/ml (stems), respectively. Interestingly, the results of reducing the power test also revealed that when the concentration exceeded 1.25 mg/ml, the leaf-flower oils had the highest reducing power; however, the stem oils were the lowest.

  3. Dittrichia graveolens (L.) Greuter Essential Oil: Chemical Composition, Multivariate Analysis, and Antimicrobial Activity.

    Science.gov (United States)

    Mitic, Violeta; Stankov Jovanovic, Vesna; Ilic, Marija; Jovanovic, Olga; Djordjevic, Aleksandra; Stojanovic, Gordana

    2016-01-01

    The chemical composition and in vitro antimicrobial activities of Dittrichia graveolens (L.) Greuter essential oil was studied. Moreover, using agglomerative hierarchical cluster (AHC) and principal component analyses (PCA), the interrelationships of the D. graveolens essential-oil profiles characterized so far (including the sample from this study) were investigated. To evaluate the chemical composition of the essential oil, GC-FID and GC/MS analyses were performed. Altogether, 54 compounds were identified, accounting for 92.9% of the total oil composition. The D. graveolens oil belongs to the monoterpenoid chemotype, with monoterpenoids comprising 87.4% of the totally identified compounds. The major components were borneol (43.6%) and bornyl acetate (38.3%). Multivariate analysis showed that the compounds borneol and bornyl acetate exerted the greatest influence on the spatial differences in the composition of the reported oils. The antimicrobial activity against five bacterial and one fungal strain was determined using a disk-diffusion assay. The studied essential oil was active only against Gram-positive bacteria.

  4. Fast and efficient adsorption of methylene green 5 on activated carbon prepared from new chemical activation method.

    Science.gov (United States)

    Tran, Hai Nguyen; You, Sheng-Jie; Chao, Huan-Ping

    2017-03-01

    Activated carbon (AC) was synthesized from golden shower (GS) through a new chemical activation process. The three-stage process comprised (1) hydrothermal carbonization of GS to produce hydrochar, (2) pyrolysis of hydrochar to produce biochar, and (3) subsequent chemical activation of biochar with K2CO3 to obtain GSHBAC. The traditional synthesis processes (i.e., one-stage and two-stage) were also examined for comparison. In the one-stage process, GS that was impregnated with K2CO3 was directly pyrolyzed (GSAC), and the two-stage process consisted of (1) pyrolytic or hydrothermal carbonization to produce biochar or hydrochar and (2) subsequent chemical activation was defined as GSBAC and GSHAC, respectively. The synthesized ACs were characterized by scanning electron microscope, Brunauer-Emmett-Teller (BET) surface area analysis, Fourier transform infrared spectrometry, point zero charge, and Boehm titration. The adsorption results demonstrated that the MG5 adsorption process was not remarkably affected by neither the solution pH (2.0-10) nor ionic strength (0-0.5 M NaCl). Kinetic studies showed that the adsorption equilibrium was quickly established, with a low activation energy required for adsorption (Ea; 3.30-27.8 kJ/mol), and the ACs removed 50-73% of the MG5 concentration from solution within 01 min. Desorption studies confirmed the adsorption was irreversible. Thermodynamic experiments suggested that the MG5 adsorption was spontaneous (-ΔG°) and endothermic (+ΔH°), and increased the randomness (+ΔS°) in the system. Although the specific surface areas of the ACs followed the order GSAC (1,413) > GSHAC (1,238) > GSHBAC (903) > GSBAC (812 m(2)/g), the maximum adsorption capacities determined from the Langmuir model (Q(o)max) at 30 °C exhibited the following order: GSHBAC (531) > GSAC (344) > GSHAC (332) > GSBAC (253 mg/g). Oxygenation of the ACs' surface through a hydrothermal process with acrylic acid resulted in a decrease in MG5

  5. Heat and mass transfer in unsteady rotating fluid flow with binary chemical reaction and activation energy.

    Directory of Open Access Journals (Sweden)

    Faiz G Awad

    Full Text Available In this study, the Spectral Relaxation Method (SRM is used to solve the coupled highly nonlinear system of partial differential equations due to an unsteady flow over a stretching surface in an incompressible rotating viscous fluid in presence of binary chemical reaction and Arrhenius activation energy. The velocity, temperature and concentration distributions as well as the skin-friction, heat and mass transfer coefficients have been obtained and discussed for various physical parametric values. The numerical results obtained by (SRM are then presented graphically and discussed to highlight the physical implications of the simulations.

  6. Chemical variability and antioxidant activity of the leaves of chosen highbush blueberry (Vaccinium corymbosum L. cultivars

    Directory of Open Access Journals (Sweden)

    Małgorzata Janiuk

    2013-04-01

    Full Text Available The paper deals with the chemical composition and antioxidant activity of aqueous extracts from leaves of two highbush blueberry varieties: ‘Bluecrop’ and ‘Northland’. The study revealed differences in the content of the analyzed components. Leaves of cv. ‘Bluecrop’ were characterized by a higher content of chlorophyll, flavonoids and anthocyanins, while the leaves of cv. ‘Northland’ contained more reducing sugars and total phenolic acids, tannins, and essential oils. Capacity of neutralizing the free radicals (DPPH in leaves of both tested cultivars was found at comparable levels.

  7. Studies on Medicago lupulina saponins. 6. Some chemical characteristics and biological activity of root saponins

    Directory of Open Access Journals (Sweden)

    Wiesław Oleszek

    2014-01-01

    Full Text Available The saponin fraction of black medic trefoil (Medicago lupulina roots was isolated and purified. Its hydrolysis afforded several aglycones that have been identified by spectral and chemical properties as medicagenic acid, hederagenine and soyasapogenols: B, C, D, E and F. They made up, respectively. 46.9 and 45% of total sapogenins isolated. Two-dimensional TLC of M. lupulina root saponins revealed fourteen compounds, two of which were medicagenic acid glycosides. The haemolytic, antifungal and allelopathic activities of M. lupulina and M. media roots are compared and discussed.

  8. Chemical Constituents from Sonneratia ovata Backer and their in vitro Cytotoxicity and Acetylcholinesterase Inhibitory Activities

    DEFF Research Database (Denmark)

    Nguyen, Thi Hoai Thu; Huu Viet Thong, Phamb; Nguyen, KimTuyen Phamc

    2015-01-01

    -benzyl-β-d-glucopyranose (21) isolated from the leaves of Sonneratia ovata. Their chemical structures were established by spectroscopic data, as well as high resolution mass spectra and comparison with literature data. The in vitro acetylcholinesterase (AChE) inhibition and cytotoxic activities against HeLa (human epithelial...... carcinoma), NCI-H460 (human lung cancer), MCF-7 (human breast cancer) cancer cell lines and PHF (primary human fibroblast) cell were evaluated on some extracts and purified compounds at a concentration of 100 μg/mL. Compounds (5, 6, 23) exhibited cytotoxicity against the MCF-7 cell line with the IC50 values...

  9. Chemical composition and antibacterial activity of the essential oil from Mentha requienii Bentham.

    Science.gov (United States)

    Chessa, Mario; Sias, Angela; Piana, Andrea; Mangano, Giuseppe Salvatore; Petretto, Giacomo Luigi; Masia, Maria Dolores; Tirillini, Bruno; Pintore, Giorgio

    2013-01-01

    The chemical composition of essential oil obtained by hydrodistillation of the fresh aerial parts of Mentha requienii Bentham (Lamiaceae) collected on the Gennargentu Mountains (Sardinia, Italy) has been investigated by gas chromatography and gas chromatography-mass spectrometry. The main constituents that resulted were pulegone (78%), menthone (0.5%), isomenthone (18%), isopulegone (1.3%) and limonene (1.76%). In vitro antifungal activity is evaluated in order to identify new means that could be helpful in the prevention of contamination in indoor environments.

  10. Tuning the chemical activity through PtAu nanoalloying: a first principles study

    KAUST Repository

    Mokkath, Junais Habeeb

    2013-06-21

    The electronic structure and adsorption properties of 1.5 nm sized Pt, Au, and PtAu nanoclusters are studied by density functional theory. We explain the recent experimental finding that 20% Au content in PtAu nanoparticles is optimal to induce a dramatically different catalytic behavior. Our results show that the d-band center together with the density of states at the Fermi energy can be used as an indicator of the chemical activity of PtAu nanoclusters. The most favorable adsorption sites on the cluster surfaces as a function of the Pt/Au ratio are identified using atomic H as a probe.

  11. Design and Activation of a LOX/GH Chemical Steam Generator

    Science.gov (United States)

    Saunders, G. P.; Mulkey, C. A.; Taylor, S. A.

    2009-01-01

    The purpose of this paper is to give a detailed description of the design and activation of the LOX/GH fueled chemical steam generator installed in Cell 2 of the E3 test facility at Stennis Space Center, MS (SSC). The steam generator uses a liquid oxygen oxidizer with gaseous hydrogen fuel. The combustion products are then quenched with water to create steam at pressures from 150 to 450 psig at temperatures from 350 to 750 deg F (from saturation to piping temperature limits).

  12. The biological activities and chemical composition of Pereskia species (Cactaceae)--a review.

    Science.gov (United States)

    Pinto, Nícolas de Castro Campos; Scio, Elita

    2014-09-01

    The exploration of nature as a source of sustainable, novel bioactive substances continues to grow as natural products play a significant role in the search for new therapeutic and agricultural agents. In this context, plants of the genus Pereskia (Cactaceae) have been studied for their biological activities, and are evolving as an interesting subject in the search for new, bioactive compounds. These species are commonly used as human foodstuffs and in traditional medicine to treat a variety of diseases. This review focuses on the bioactivity and chemical composition of the genus Pereskia, and aims to stimulate further studies on the chemistry and biological potential of the genus.

  13. Chemical Constituents from Andrographis echioides and Their Anti-Inflammatory Activity

    Directory of Open Access Journals (Sweden)

    De-Yang Shen

    2012-12-01

    Full Text Available Phytochemical investigation of the whole plants of Andrographis echioides afforded two new 2'-oxygenated flavonoids (1 and (2, two new phenyl glycosides (3 and (4, along with 37 known structures. The structures of new compounds were elucidated by spectral analysis and chemical transformation studies. Among the isolated compounds, (1–2 and (6–19 were subjected into the examination for their iNOS inhibitory bioactivity. The structure-activity relationships of the flavonoids for their inhibition of NO production were also discussed.

  14. Chemical composition and possible in vitro phytotoxic activity of Helichrsyum italicum (Roth) Don ssp. italicum.

    Science.gov (United States)

    Mancini, Emilia; De Martino, Laura; Marandino, Aurelio; Scognamiglio, Maria Rosa; De Feo, Vincenzo

    2011-09-08

    The chemical composition of the essential oil of Helichrysum italicum (Roth) Don ssp. italicum, collected in the National Park of Cilento and Diano Valley, Southern Italy, was studied by means of GC and GC/MS. Forty four compounds of 45 constituents were identified in the oil, mainly oxygenated sesquiterpenes. The essential oil was evaluated for its potential in vitro phytotoxic activity against germination and early radicle elongation of radish and garden cress. The radicle elongation of radish was significantly inhibited at the highest doses tested, while germination of both seeds was not affected.

  15. Chemical Composition of the Essential Oil from Croton oblongifolius and its Antibacterial Activity against Propionibacterium acnes.

    Science.gov (United States)

    Athikomkulchai, Sirivan; Tadtong, Sarin; Ruangrungsi, Nijsiri; Hongratanaworakit, Tapanee

    2015-08-01

    The essential oil of C. oblongifolius Roxb. stem bark was obtained by hydrodistillation. Chemical analysis by GC-MS identified 29 compounds. Terpinen-4-ol (17.8%) was a major component, together with α-guaiene (7.9%), E-caryophyllene (7.0%), myrcene (6.7%), (+)-cyclosativene (5.1%), sabinene (4.8%), aciphyllene (4.7%), pogostol (4.6%), gamma-terpinene (3.4%), α-muurolol (3.2%) and germecrene D (3.2%). The essential oil exhibited antibacterial activity against Propionibacterium acnes ATCC 6919 with an MIC of 0.125%, v/v.

  16. Fungi as chemical industries and genetic engineering for the production of biologically active secondary metabolites

    Institute of Scientific and Technical Information of China (English)

    Abid; Ali; Khan; Nafees; Bacha; Bashir; Ahmad; Ghosia; Lutfullah; Umar; Farooq; Russell; John; Cox

    2014-01-01

    Fungi is somewhere in between the micro and macro organisms which is a good source of producing biologically active secondary metabolites.Fungi have been used as tool for producing different types of secondary metabolites by providing different nutrients at different laboratory conditions.The fungi have been engineered for the desired secondary metabolites by using different laboratory techniques,for example,homologous and heterologous expressions.This review reported how the fungi are used as chemical industry for the production of secondary metabolites and how they are engineered in laboratory for the production of desirable metabolites:also the biosynthetic pathways of the bio-organic-molecules were reported.

  17. Fungi as chemical industries and genetic engineering for the production of biologically active secondary metabolites

    Institute of Scientific and Technical Information of China (English)

    Abid Ali Khan; Nafees Bacha; Bashir Ahmad; Ghosia Lutfullah; Umar Farooq; Russell John Cox

    2014-01-01

    Fungi is somewhere in between the micro and macro organisms which is a good source of producing biologically active secondary metabolites. Fungi have been used as tool for producing different types of secondary metabolites by providing different nutrients at different laboratory conditions. The fungi have been engineered for the desired secondary metabolites by using different laboratory techniques, for example, homologous and heterologous expressions. This review reported how the fungi are used as chemical industry for the production of secondary metabolites and how they are engineered in laboratory for the production of desirable metabolites;also the biosynthetic pathways of the bio-organic-molecules were reported.

  18. Low dose effects and non-monotonic dose responses for endocrine active chemicals: Science to practice workshop: Workshop summary

    DEFF Research Database (Denmark)

    Beausoleil, Claire; Ormsby, Jean-Nicolas; Gies, Andreas

    2013-01-01

    A workshop was held in Berlin September 12–14th 2012 to assess the state of the science of the data supporting low dose effects and non-monotonic dose responses (“low dose hypothesis”) for chemicals with endocrine activity (endocrine disrupting chemicals or EDCs). This workshop consisted...

  19. First satellite measurements of chemical changes in coincidence with sprite activity

    Science.gov (United States)

    Arnone, Enrico; São Sabbas, Fernanda; Kero, Antti; Soula, Serge; Carlotti, Massimo; Chanrion, Olivier; Dinelli, Bianca Maria; Papandrea, Enzo; Castelli, Elisa; Neubert, Torsten

    2010-05-01

    The last twenty years have seen the discovery of electric discharges in the Earth's atmosphere above thunderstorms, the so-called sprites and jets. It has been suggested that they impact the atmospheric chemistry and possibly affect the ozone layer through their repeated occurrence. Whereas theoretical studies and laboratory experiments suggest enhancement of such gasses as nitrogen oxides by up to hundreds of percent within sprites, a definitive detection of their chemical effects have to date been unsuccessful. In this paper, we report on the first measurements of atmospheric chemical perturbations recorded in coincidence with sprite activity. A striking event occurred on 25 August 2003 when the MIPAS spectrometer onboard the Envisat satellite recorded spectroscopic measurements soon after a sequence of 11 sprites observed above Corsica (France) by Eurosprite ground facilities (details of the convective system are discussed in a companion paper by São Sabbas et al.). The measurements show an enhancement of ambient nitrous oxide by 80% at 52 km altitude in the region above the parent thunderstorm. The recorded chemical changes imply sprites can exert significant modification of the atmospheric chemistry at a regional scale, confirming model and laboratory predictions of sprite-chemistry, and requiring a new estimate of their global impact. The results of the analysis and their implications are discussed.

  20. Micro-poromechanics model of fluid-saturated chemically active fibrous media.

    Science.gov (United States)

    Misra, Anil; Parthasarathy, Ranganathan; Singh, Viraj; Spencer, Paulette

    2015-02-01

    We have developed a micromechanics based model for chemically active saturated fibrous media that incorporates fiber network microstructure, chemical potential driven fluid flow, and micro-poromechanics. The stress-strain relationship of the dry fibrous media is first obtained by considering the fiber behavior. The constitutive relationships applicable to saturated media are then derived in the poromechanics framework using Hill's volume averaging. The advantage of this approach is that the resultant continuum model accounts for the discrete nature of the individual fibers while retaining a form suitable for porous materials. As a result, the model is able to predict the influence of micro-scale phenomena, such as the fiber pre-strain caused by osmotic effects and evolution of fiber network structure with loading, on the overall behavior and in particular, on the poromechanics parameters. Additionally, the model can describe fluid-flow related rate-dependent behavior under confined and unconfined conditions and varying chemical environments. The significance of the approach is demonstrated by simulating unconfined drained monotonic uniaxial compression under different surrounding fluid bath molarity, and fluid-flow related creep and relaxation at different loading-levels and different surrounding fluid bath molarity. The model predictions conform to the experimental observations for saturated soft fibrous materials. The method can potentially be extended to other porous materials such as bone, clays, foams and concrete.

  1. Chemical Composition and Antioxidant Activity of Euterpe oleracea Roots and Leaflets

    Directory of Open Access Journals (Sweden)

    Christel Brunschwig

    2016-12-01

    Full Text Available Euterpe oleracea (açaí is a palm tree well known for the high antioxidant activity of its berries used as dietary supplements. Little is known about the biological activity and the composition of its vegetative organs. The objective of this study was to investigate the antioxidant activity of root and leaflet extracts of Euterpe oleracea (E. oleracea and characterize their phytochemicals. E. oleracea roots and leaflets extracts were screened in different chemical antioxidant assays (DPPH—2,2-diphenyl-1-picrylhydrazyl, FRAP—ferric feducing antioxidant power, and ORAC—oxygen radical absorbance capacity, in a DNA nicking assay and in a cellular antioxidant activity assay. Their polyphenolic profiles were determined by UV and LC-MS/MS. E. oleracea leaflets had higher antioxidant activity than E. oleracea berries, and leaflets of Oenocarpus bacaba and Oenocarpus bataua, as well as similar antioxidant activity to green tea. E. oleracea leaflet extracts were more complex than root extracts, with fourteen compounds, including caffeoylquinic acids and C-glycosyl derivatives of apigenin and luteolin. In the roots, six caffeoylquinic and caffeoylshikimic acids were identified. Qualitative compositions of E. oleracea, Oenocarpus bacaba and Oenocarpus bataua leaflets were quite similar, whereas the quantitative compositions were quite different. These results provide new prospects for the valorization of roots and leaflets of E. oleracea in the pharmaceutical, food or cosmetic industry, as they are currently by-products of the açaí industry.

  2. Chemical Composition and Antioxidant Activity of Euterpe oleracea Roots and Leaflets

    Science.gov (United States)

    Brunschwig, Christel; Leba, Louis-Jérôme; Saout, Mona; Martial, Karine; Bereau, Didier; Robinson, Jean-Charles

    2016-01-01

    Euterpe oleracea (açaí) is a palm tree well known for the high antioxidant activity of its berries used as dietary supplements. Little is known about the biological activity and the composition of its vegetative organs. The objective of this study was to investigate the antioxidant activity of root and leaflet extracts of Euterpe oleracea (E. oleracea) and characterize their phytochemicals. E. oleracea roots and leaflets extracts were screened in different chemical antioxidant assays (DPPH—2,2-diphenyl-1-picrylhydrazyl, FRAP—ferric feducing antioxidant power, and ORAC—oxygen radical absorbance capacity), in a DNA nicking assay and in a cellular antioxidant activity assay. Their polyphenolic profiles were determined by UV and LC-MS/MS. E. oleracea leaflets had higher antioxidant activity than E. oleracea berries, and leaflets of Oenocarpus bacaba and Oenocarpus bataua, as well as similar antioxidant activity to green tea. E. oleracea leaflet extracts were more complex than root extracts, with fourteen compounds, including caffeoylquinic acids and C-glycosyl derivatives of apigenin and luteolin. In the roots, six caffeoylquinic and caffeoylshikimic acids were identified. Qualitative compositions of E. oleracea, Oenocarpus bacaba and Oenocarpus bataua leaflets were quite similar, whereas the quantitative compositions were quite different. These results provide new prospects for the valorization of roots and leaflets of E. oleracea in the pharmaceutical, food or cosmetic industry, as they are currently by-products of the açaí industry. PMID:28036089

  3. Anti-angiogenic activity of Morinda citrifolia extracts and its chemical constituents.

    Science.gov (United States)

    Beh, Hooi-Kheng; Seow, Lay-Jing; Asmawi, Mohd Zaini; Abdul Majid, Amin Malik Shah; Murugaiyah, Vikneswaran; Ismail, Norhayati; Ismail, Zhari

    2012-01-01

    Morinda citrifolia L. has been used for the treatment of a wide variety of diseases, including cancer. This study was undertaken to evaluate the anti-angiogenic effect of M. citrifolia fruits and leaves. Anti-angiogenic activity was evaluated in vivo using the chick chorioallantoic membrane assay. Bioactivity-guided fractionation and isolation were performed to identify the active constituent, and high-performance liquid chromatography analysis was then used to quantify the amount of this active constituent in the active extracts and fraction. The methanol extracts of fruits and leaves of M. citrifolia and the subsequent chloroform fraction of the fruit methanolic extract were found to have potential anti-angiogenic activity and were more potent compared to suramin. Scopoletin was identified as one of the chemical constituents that may be partly responsible for the anti-angiogenic activity of M. citrifolia fruits. The present findings further support the use of M. citrifolia in cancer or other pathological conditions related to angiogenesis.

  4. Importance of surface chemical properties in catalytic ozonation of benzothiazole promoted by activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Valdes, H.; Zaror, C.A. [Chemical Eng. Dept., Univ. of Concepcion, Concepcion (Chile)

    2003-07-01

    The combined use of ozone and activated carbon to treat toxic effluents has increased in recent years. Activated carbon has been shown to enhance ozone oxidation of organic compounds. However, little is known about the influence of carbon surface active sites on ozonation of organic pollutants. This paper presents experimental results on the effect of metal oxides and oxygenated surface groups on such reaction. Benzothiazole (BT) was selected as a target organic compound in this study due its environmental concern. Activated carbons with different surface chemical composition were prepared from a filtrasorb-400 activated carbon. Pre-treatment included ozonation, demineralisation and deoxygenation of activated carbon. BT degradation experiments were conducted in a fixed bed reactor loaded with 2 g of carbon samples. The reactor was fed with an O{sub 2}/O{sub 3} mixture (2 dm{sup 3}/min, 5 g O{sub 3}/h), for a given exposure time, in the range 10-120 min, at 298 K and 1 atm. The results suggest that high electron density from the carbon basal planes and surface metal oxides are primarily responsible for increase in the overall BT oxidation rate; whereas high surface concentration of electron withdrawing groups such as carboxylic acids, and carboxylic anhydrides retarded the overall BT oxidation rate. (orig.)

  5. Chemical composition and antioxidant and antimycobacterial activities of Bromelia balansae (Bromeliaceae).

    Science.gov (United States)

    Coelho, Roberta Gomes; Honda, Neli Kika; Vieira, Maria do Carmo; Brum, Rosenei Louzada; Pavan, Fernando Rogério; Leite, Clarice Queico Fujimura; Cardoso, Claudia Andréa Lima

    2010-10-01

    Bromelia balansae (Family Bromeliaceae) is a medicinal plant commonly used in the central region of Brazil as a cough syrup and also eaten roasted. The methanolic extract of ripe fruits was analyzed by chromatographic methods and spectrometrically. Four glycoside flavonols were isolated: kaempferol-3-O-α-L-rhamnopyranoside (1), kaempferol-3-O-α-L-rhamnopyranosyl-(1-->6)-ß-D-glucopyranoside (2), quercetin-3-O-α-L-rhamnopyranosyl-(1-->6)-ß-d-glucopyranoside (3), and kaempferol 3,7-di-O-α-L-rhamnopyranoside (4). The resazurin microtiter assay was used to measure the biological activity in vitro against Mycobacterium tuberculosis. The results showed a moderate activity of the methanolic extract with a minimal inhibitory concentration of 128 μg/mL. Antioxidant activity was evaluated as free radical scavenging capacity and inhibition of peroxidation. Free radical scavenging capacity was assessed by measuring the scavenging activity of methanolic extract and methanolic fraction on 2,2-diphenyl-1-picrylhydrazyl radical. The methanolic extract showed low values of antioxidant activities, whereas the methanolic fraction exhibited free radical scavenging activity ranging from 20.2% to 91.1%, and the inhibition of peroxidation values ranging from 5.6% to 27.5%. This is the first chemical study reported in the literature about this species.

  6. Effect of phosphogypsum amendment on soil physico-chemical properties, microbial load and enzyme activities.

    Science.gov (United States)

    Nayak, Soumya; Mishra, C S K; Guru, B C; Rath, Monalisa

    2011-09-01

    Phosphogypsum (PG) is produced as a solid waste from phosphatic fertilizer plants. The waste slurry is disposed off in settling ponds or in heaps. This solid waste is now increasingly being used as a calcium supplement in agriculture. This study reports the effectof PG amendmenton soil physico chemical properties, bacterial and fungal count and activities of soil enzymes such as invertase, cellulase and amylase over an incubation period of 28 days. The highest mean percent carbon loss (55.98%) was recorded in 15% PG amended soil followed by (55.28%) in 10% PG amended soil and the minimum (1.68%) in control soil. The highest number of bacterial colonies (47.4 CFU g(-1) soil), fungal count (17.8 CFU g(-1) soil), highest amylase activity (38.4 microg g(-1) soil hr(-1)) and cellulase activity (38.37 microg g(-1) soil hr(-1)) were recorded in 10% amended soil. Statistically significant difference (p<0.05) has been recorded in the activities of amylase and cellulase over the period of incubation irrespective of amendments. Considering the bacterial and fungal growth and the activities of the three soil enzymes in the control and amended sets, it appears that 10% PG amendment is optimal for microbial growth and soil enzyme activities.

  7. Chemical composition and biological activity of a new type of Brazilian propolis: red propolis.

    Science.gov (United States)

    Alencar, S M; Oldoni, T L C; Castro, M L; Cabral, I S R; Costa-Neto, C M; Cury, J A; Rosalen, P L; Ikegaki, M

    2007-09-05

    Propolis has been used as a medicinal agent to treat infections and promote wound healing for centuries. The aim of the present study was to test the antimicrobial, antioxidant, and cytotoxic activities of a new type of Brazilian propolis, popularly called red propolis, as well as to analyze its chemical composition. The antimicrobial activity against Staphylococcus aureus ATCC 25923 and Staphylococcus mutans UA159 was evaluated and the chloroform fraction (Chlo-fr) was the most active with lower MIC ranging from 25 to 50 microg/ml. The hexane fraction (H-fr), having the highest concentration of total flavonoids, showed the best sequestrating activity for the free radical DPPH. The ethanolic extract of propolis (EEP) showed cytotoxic activity for the HeLa tumor cells with an IC(50) of 7.45 microg/ml. When the EEP was analyzed by GC-MS, seven new compounds were found, among which four were isoflavones. Our results showed that the red propolis has biologically active compounds that had never been reported in other types of Brazilian propolis.

  8. Chemical composition and biological activities of Eruca vesicaria subsp. longirostris essential oils.

    Science.gov (United States)

    Omri Hichri, Amel; Mosbah, Habib; Majouli, Kaouther; Besbes Hlila, Malek; Ben Jannet, Hichem; Flamini, Guido; Aouni, Mahjoub; Selmi, Boulbaba

    2016-10-01

    Context To date, there are no reports to validate the Tunisian traditional and folklore claims of Eruca vesicaria (L) Cav. subsp. longirostris (Brassicaceae) for the treatment of disease. Objective Investigation of the chemical composition antimicrobial and antioxidant activity of essential oils from Eruca longirostris leaves, stems, roots and fruits. Materials and methods The essential oils of E. longirostris from leaves, stems, roots and fruits were obtained after 4 h of hydrodistillation. Chemical compositions were determined using a combination of GC/FID and GC/MS. The in vitro antimicrobial activity of the volatile constituents of E. longirostris was performed in sterile 96-well microplates against three Gram-positive, four Gram-negative bacteria and one strain as yeast. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration values were reported. Furthermore, the antioxidant activity was evaluated by DPPH and ABTS assays. Results The main compound for fruits, stems and roots was the erucin (96.6%, 85.3% and 83.7%, respectively), while β-elemene (35.7%), hexahydrofarnesylacetone (23.9%), (E)-β-damascone (15.4%), erucin (10.6%) and α-longipinene (9.6%) constituted the major compounds in the essential oil of the leaves. The experimental results showed that in all tests, essential oil of fruits showed the better antioxidant activity than the others. On the other hand, the oils of stems, fruits and roots showed significant antimicrobial activity with MIC values ranging from 0.125 to 0.31 mg/mL against Candida species, Gram-positive and Gram-negative bacteria, mainly Salmonella enterica. Conclusions The present results indicate that essential oils of E. longirostris can be used as a source of erucin.

  9. Thermal analysis of physical and chemical changes occuring during regeneration of activated carbon

    Directory of Open Access Journals (Sweden)

    Radić Dejan B.

    2017-01-01

    Full Text Available High-temperature thermal process is a commercial way of regeneration of spent granular activated carbon. The paper presents results of thermal analysis conducted in order to examine high-temperature regeneration of spent activated carbon, produced from coconut shells, previously used in drinking water treatment. Results of performed thermogravimetric analysis, derivative thermogravimetric analysis, and differential thermal analysis, enabled a number of hypotheses to be made about different phases of activated carbon regeneration, values of characteristic parameters during particular process phases, as well as catalytic impact of inorganic materials on development of regeneration process. Samples of activated carbon were heated up to 1000°C in thermogravimetric analyser while maintaining adequate oxidizing or reducing conditions. Based on diagrams of thermal analysis for samples of spent activated carbon, temperature intervals of the first intense mass change phase (180-215°C, maximum of exothermic processes (400-450°C, beginning of the second intense mass change phase (635-700°C, and maximum endothermic processes (800-815°C were deter-mined. Analysing and comparing the diagrams of thermal analysis for new, previously regenerated and spent activated carbon, hypothesis about physical and chemical transformations of organic and inorganic adsorbate in spent activated carbon are given. Transformation of an organic adsorbate in the pores of activated carbon, results in loss of mass and an exothermic reaction with oxygen in the vapour phase. The reactions of inorganic adsorbate also result the loss of mass of activated carbon during its heating and endothermic reactions of their degradation at high temperatures.

  10. Differentiation of chemical reaction activity of various carbon nanotubes using redox potential: Classification by physical and chemical structures.

    Science.gov (United States)

    Tsuruoka, Shuji; Matsumoto, Hidetoshi; Castranova, Vincent; Porter, Dale W; Yanagisawa, Takashi; Saito, Naoto; Kobayashi, Shinsuke; Endo, Morinobu

    2015-12-01

    The present study systematically examined the kinetics of a hydroxyl radical scavenging reaction of various carbon nanotubes (CNTs) including double-walled and multi-walled carbon nanotubes (DWCNTs and MWCNTs), and carbon nano peapods (AuCl3@DWCNT). The theoretical model that we recently proposed based on the redox potential of CNTs was used to analyze the experimental results. The reaction kinetics for DWCNTs and thin MWCNTs agreed well with the theoretical model and was consistent with each other. On the other hand, thin and thick MWCNTs behaved differently, which was consistent with the theory. Additionally, surface morphology of CNTs substantially influenced the reaction kinetics, while the doped particles in the center hollow parts of CNTs (AuCl3@DWCNT) shifted the redox potential in a different direction. These findings make it possible to predict the chemical and biological reactivity of CNTs based on the structural and chemical nature and their influence on the redox potential.

  11. Toxicity challenges in environmental chemicals: Prediction of human plasma protein binding through quantitative structure-activity relationship (QSAR) models

    Science.gov (United States)

    The present study explores the merit of utilizing available pharmaceutical data to construct a quantitative structure-activity relationship (QSAR) for prediction of the fraction of a chemical unbound to plasma protein (Fub) in environmentally relevant compounds. Independent model...

  12. Chemical composition and biological activity of essential oils of Dracocephalum heterophyllum and Hyssopus officinalis from Western Himalaya

    Science.gov (United States)

    The essential oils of two representatives of the Lamiaceae-family, Dracocephalum heterophyllum Benth. and Hyssopus officinalis L., are described for their antifungal, antibacterial and larvicidal as well as biting deterrent activities. Additionally, the essential oils’ chemical compositions, analyze...

  13. Estrogen and androgen receptor activities of hydraulic fracturing chemicals and surface and ground water in a drilling-dense region

    Science.gov (United States)

    Kassotis, Christopher D.; Tillitt, Donald E.; Davis, J. Wade; Hormann, Anette M.; Nagel, Susan C.

    2014-01-01

    The rapid rise in natural gas extraction using hydraulic fracturing increases the potential for contamination of surface and ground water from chemicals used throughout the process. Hundreds of products containing more than 750 chemicals and components are potentially used throughout the extraction process, including more than 100 known or suspected endocrine-disrupting chemicals. We hypothesized thataselected subset of chemicalsusedin natural gas drilling operationsandalso surface and ground water samples collected in a drilling-dense region of Garfield County, Colorado, would exhibit estrogen and androgen receptor activities. Water samples were collected, solid-phase extracted, and measured for estrogen and androgen receptor activities using reporter gene assays in human cell lines. Of the 39 unique water samples, 89%, 41%, 12%, and 46% exhibited estrogenic, antiestrogenic, androgenic, and antiandrogenic activities, respectively. Testing of a subset of natural gas drilling chemicals revealed novel antiestrogenic, novel antiandrogenic, and limited estrogenic activities. The Colorado River, the drainage basin for this region, exhibited moderate levels of estrogenic, antiestrogenic, and antiandrogenic activities, suggesting that higher localized activity at sites with known natural gas–related spills surrounding the river might be contributing to the multiple receptor activities observed in this water source. The majority of water samples collected from sites in a drilling-dense region of Colorado exhibited more estrogenic, antiestrogenic, or antiandrogenic activities than reference sites with limited nearby drilling operations. Our data suggest that natural gas drilling operationsmayresult in elevated endocrine-disrupting chemical activity in surface and ground water.

  14. Mitochondrial activation chemicals synergize with surface receptor PD-1 blockade for T cell-dependent antitumor activity

    Science.gov (United States)

    Chamoto, Kenji; Chowdhury, Partha S.; Kumar, Alok; Sonomura, Kazuhiro; Matsuda, Fumihiko; Fagarasan, Sidonia; Honjo, Tasuku

    2017-01-01

    Although immunotherapy by PD-1 blockade has dramatically improved the survival rate of cancer patients, further improvement in efficacy is required to reduce the fraction of less sensitive patients. In mouse models of PD-1 blockade therapy, we found that tumor-reactive cytotoxic T lymphocytes (CTLs) in draining lymph nodes (DLNs) carry increased mitochondrial mass and more reactive oxygen species (ROS). We show that ROS generation by ROS precursors or indirectly by mitochondrial uncouplers synergized the tumoricidal activity of PD-1 blockade by expansion of effector/memory CTLs in DLNs and within the tumor. These CTLs carry not only the activation of mechanistic target of rapamycin (mTOR) and AMP-activated protein kinase (AMPK) but also an increment of their downstream transcription factors such as PPAR-gamma coactivator 1α (PGC-1α) and T-bet. Furthermore, direct activators of mTOR, AMPK, or PGC-1α also synergized the PD-1 blockade therapy whereas none of above-mentioned chemicals alone had any effects on tumor growth. These findings will pave a way to developing novel combinatorial therapies with PD-1 blockade. PMID:28096382

  15. Chemical Composition, Antioxidant, and Antibacterial Activity of Wood Vinegar from Litchi chinensis

    Directory of Open Access Journals (Sweden)

    Jyh-Ferng Yang

    2016-08-01

    Full Text Available The antioxidant and antibacterial activities of wood vinegar from Litchi chinensis, and its components have been studied. The chemical compositions of wood vinegar were analyzed by gas chromatography-mass spectrometry (GC-MS. A total of 17 chemical compounds were identified, representing 83.96% of the compositions in the wood vinegar. Three major components, included 2,6-dimethoxyphenol (syringol, 29.54%, 2-methoxyphenol (guaiacol, 12.36%, and 3,5-dimethoxy-4-hydroxytoluene (11.07%, were found in the wood vinegar. Antioxidant activities of the acids were investigated from the aspects of 1,1-Diphyl-2-picrylhydrazyl (DPPH free radicals scavenging capacity, superoxide anion radical scavenging capacity, and reducing power. The pyroligneous acid exhibited high antioxidant activity which was comparable to the reference standards (vitamin C and butylated hydroxyl toluene at the same dose with IC50 values of 36.5 ppm calculated by the DPPH radical scavenging assay, 38.38 g Trolox equivalent/100 g DW by the trolox equivalent antioxidant capacity (TEAC assay, and 67.9 by the reducing power analysis. Antibacterial activity was evaluated using the disc diffusion and microdilution methods against a group of clinically antibiotic resistant isolates. The major components exhibited broad spectrum inhibition against all the bacterial strains with a range of disc inhibition zoon between 15–19 mm. The minimum inhibition concentration and minimum bactericide concentration against the test strains was ranging in 0.95–3.80 μL/100 μL and 1.90–3.80 μL/100 μL, respectively. Most of the antibiotic resistant strains were more susceptible to the wood vinegar than the non-antibiotic resistant strain except the strain of ornithine resistant Staphylococcus aureus. Based on the chemical profile, it was considered that the strongest antioxidant and antibacterial activity of Litchi chinensis wood vinegar was due to its highly phenolic compositions. This study revealed

  16. Theoretical studies of chemical reactivity of metabolically activated forms of aromatic amines toward DNA.

    Science.gov (United States)

    Shamovsky, Igor; Ripa, Lena; Blomberg, Niklas; Eriksson, Leif A; Hansen, Peter; Mee, Christine; Tyrchan, Christian; O'Donovan, Mike; Sjö, Peter

    2012-10-15

    The metabolism of aromatic and heteroaromatic amines (ArNH₂) results in nitrenium ions (ArNH⁺) that modify nucleobases of DNA, primarily deoxyguanosine (dG), by forming dG-C8 adducts. The activated amine nitrogen in ArNH⁺ reacts with the C8 of dG, which gives rise to mutations in DNA. For the most mutagenic ArNH₂, including the majority of known genotoxic carcinogens, the stability of ArNH⁺ is of intermediate magnitude. To understand the origin of this observation as well as the specificity of reactions of ArNH⁺ with guanines in DNA, we investigated the chemical reactivity of the metabolically activated forms of ArNH₂, that is, ArNHOH and ArNHOAc, toward 9-methylguanine by DFT calculations. The chemical reactivity of these forms is determined by the rate constants of two consecutive reactions leading to cationic guanine intermediates. The formation of ArNH⁺ accelerates with resonance stabilization of ArNH⁺, whereas the formed ArNH⁺ reacts with guanine derivatives with the constant diffusion-limited rate until the reaction slows down when ArNH⁺ is about 20 kcal/mol more stable than PhNH⁺. At this point, ArNHOH and ArNHOAc show maximum reactivity. The lowest activation energy of the reaction of ArNH⁺ with 9-methylguanine corresponds to the charge-transfer π-stacked transition state (π-TS) that leads to the direct formation of the C8 intermediate. The predicted activation barriers of this reaction match the observed absolute rate constants for a number of ArNH⁺. We demonstrate that the mutagenic potency of ArNH₂ correlates with the rate of formation and the chemical reactivity of the metabolically activated forms toward the C8 atom of dG. On the basis of geometric consideration of the π-TS complex made of genotoxic compounds with long aromatic systems, we propose that precovalent intercalation in DNA is not an essential step in the genotoxicity pathway of ArNH₂. The mechanism-based reasoning suggests rational design strategies to

  17. Induced sporicidal activity of chlorhexidine against Clostridium difficile spores under altered physical and chemical conditions.

    Directory of Open Access Journals (Sweden)

    Michelle M Nerandzic

    Full Text Available Chlorhexidine is a broad-spectrum antimicrobial commonly used to disinfect the skin of patients to reduce the risk of healthcare-associated infections. Because chlorhexidine is not sporicidal, it is not anticipated that it would have an impact on skin contamination with Clostridium difficile, the most important cause of healthcare-associated diarrhea. However, although chlorhexidine is not sporicidal as it is used in healthcare settings, it has been reported to kill spores of Bacillus species under altered physical and chemical conditions that disrupt the spore's protective barriers (e.g., heat, ultrasonication, alcohol, or elevated pH. Here, we tested the hypothesis that similarly altered physical and chemical conditions result in enhanced sporicidal activity of chlorhexidine against C. difficile spores.C. difficile spores became susceptible to heat killing at 80 °C within 15 minutes in the presence of chlorhexidine, as opposed to spores suspended in water which remained viable. The extent to which the spores were reduced was directly proportional to the concentration of chlorhexidine in solution, with no viable spores recovered after 15 minutes of incubation in 0.04%-0.0004% w/v chlorhexidine solutions at 80 °C. Reduction of spores exposed to 4% w/v chlorhexidine solutions at moderate temperatures (37 °C and 55 °C was enhanced by the presence of 70% ethanol. However, complete elimination of spores was not achieved until 3 hours of incubation at 55 °C. Elevating the pH to ≥9.5 significantly enhanced the killing of spores in either aqueous or alcoholic chlorhexidine solutions.Physical and chemical conditions that alter the protective barriers of C. difficile spores convey sporicidal activity to chlorhexidine. Further studies are necessary to identify additional agents that may allow chlorhexidine to reach its target within the spore.

  18. Chemical composition and antimicrobial activity of peppermint (Mentha piperita L. Essential oil

    Directory of Open Access Journals (Sweden)

    Mohaddese Mahboubi

    2014-02-01

    Full Text Available Peppermint with antiseptic and known healing properties is a plant from the Labiatae family. In this study, we analyzed the chemical composition of essential oil from the flowering aerial part of peppermint by GC and GC/MS. Its antimicrobial activity was evaluated against bacteria, fungi and yeast by micro broth dilution assay. The fractional inhibitory concentration (FIC and FIC Index (FICI and related isobologram curve were determined by check board micro titer assay. The results exhibited that the MIC, MLC value of peppermint oil against different kinds of microorganisms were in the range of 0.125-2 and 0.125- >64 µl/ml, respectively. Candida albicans was the most sensitive microorganism and Pseudomonas aeruginosa was the less sensitive ones. The oil showed synergistic activities with vancomycin, gentamycin, and amphotericin B with the FICI less of 0.5. This oil could be used as natural antibiotics and may decrease the effective dose of antibiotics.

  19. Chemical composition, antioxidant and antimicrobial activities of the edible medicinal Ononis natrix growing wild in Tunisia.

    Science.gov (United States)

    Mhamdi, Baya; Abbassi, Feten; Abdelly, Chedly

    2015-01-01

    Results showed that leaf methanolic extract of Ononis natrix has important total phenol (51 mg GAE/g DW) and flavonoid (14.76 CE/g DW) contents. The chemical composition of O. natrix leaf revealed the presence of quercitine (24.5%), amentoflavone (14.1%), flavones (11.3%) and kaempferol (10.5%). The leaf extract showed a high total antioxidant activity with 60.94 mg of GAE/g DW, displayed a high 2,2-diphenyl-1-picrylhydrazyl scavenging ability with low IC50 value (29 μg/mL) and a great reducing power (EC50 = 100 μg/mL). O. natrix leaf extract exhibited a significant broad spectrum activity against all tested microorganisms with bacterial inhibition zone sizes ranging from 8.5 to 17 mm in diameter.

  20. A pressure recovery system for chemical oxygen-iodine laser based on an active diffuser

    Science.gov (United States)

    Malkov, V. M.; Kiselev, I. A.; Orlov, A. E.; Shatalov, I. V.

    2011-09-01

    An open-type pressure recovery system (PRS) for chemical oxygen-iodine laser was designed and fabricated. As a first stage, an active diffuser was used in which the ejecting gas supply was organized through nozzles disposed around the channel periphery. The second stage was a supersonic ejector. Numerical simulation data for the viscous turbulent flow with heat release through the diffuser gas-dynamic channel, and also data obtained by testing the active diffuser in operation on a model facility equipped with a vacuum chamber, are reported. The obtained data were used to develop a full-scale setup with exhaust of laser gas into the atmosphere; this has allowed us to optimize the performance characteristics of the setup and substantially improve its mass-dimensional characteristics. Special attention was paid to parameter matching and synchronization of laser start with the operation of PRS components.

  1. Antioxidant activity and chemical composition of three Tunisian Cistus: Cistus monspeliensis, Cistus villosus and Cistus libanotis.

    Science.gov (United States)

    Nicoletti, Marcello; Toniolo, Chiara; Venditti, Alessandro; Bruno, Maurizio; Ben Jemia, Mariem

    2015-02-01

    The chemical composition of three rockrose Cistus species, Cistus monspeliensis, Cistus libanotis and Cistus villosus, collected in Tunisia, was studied by HPTLC, focusing on the terpenes and phenols constituents. Diterpenes of Cistus are important as the main constituents of the leaf sticky aromatic resin, known as labdanum, which are highly appreciated in perfumery. Polyphenols in the methanolic extracts of each species were identified, quantified as total and as flavonoids and tannins, and tested for antioxidant activity. Diterpenes were evident in C. libanotis and C. monspeliensis, whereas they were practically absent in C. villosus; C. libanotis had higher phenolic amount, whereas antioxidant activities were important, but different according to the following tests: DPPH radical scavenging, conversion of the Fe(3+/)ferricyanide complex and inhibition of β-carotene bleaching. The reported data confirm the validity of utilisation of Cistus sp. in marketed herbal products, as well as the relevant presence of diterpenes in species actually not used for labdanum production.

  2. Decontamination of adsorbed chemical warfare agents on activated carbon using hydrogen peroxide solutions.

    Science.gov (United States)

    Osovsky, Ruth; Kaplan, Doron; Nir, Ido; Rotter, Hadar; Elisha, Shmuel; Columbus, Ishay

    2014-09-16

    Mild treatment with hydrogen peroxide solutions (3-30%) efficiently decomposes adsorbed chemical warfare agents (CWAs) on microporous activated carbons used in protective garments and air filters. Better than 95% decomposition of adsorbed sulfur mustard (HD), sarin, and VX was achieved at ambient temperatures within 1-24 h, depending on the H2O2 concentration. HD was oxidized to the nontoxic HD-sulfoxide. The nerve agents were perhydrolyzed to the respective nontoxic methylphosphonic acids. The relative rapidity of the oxidation and perhydrolysis under these conditions is attributed to the microenvironment of the micropores. Apparently, the reactions are favored due to basic sites on the carbon surface. Our findings suggest a potential environmentally friendly route for decontamination of adsorbed CWAs, using H2O2 without the need of cosolvents or activators.

  3. Chemical composition and cytotoxic and antimicrobial activity of Calycotome villosa (Poiret) link leaves.

    Science.gov (United States)

    Loy, G; Cottiglia, F; Garau, D; Deidda, D; Pompei, R; Bonsignore, L

    2001-01-01

    The chemical composition of the essential oil and methanol extract of Calycotome villosa (Poiret) Link leaves collected in Sardinia (Italy) has been studied by analytical and spectroscopic methods. Falcarinol and some alcohols, terpenes, furan derivatives, and paraffins have been isolated from the essential oil. Thirteen alkaloids and falcarinol have been identified in the chloroform fraction of the basic methanol extract. Six flavonoids and four anthraquinones have been isolated in the chloroform fraction after acidification of the basic methanol extract. The cytotoxic and antimicrobial activities have also been evaluated. The essential oil, the methanol extract in toto, and the fraction of the basic extract showed strong cytotoxicity, whereas the fraction of the acid extract showed lower cytotoxicity. Furthermore, this fraction showed good antibacterial activity against Staphylococcus aureus, Bacillus lentus, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Providencia rettgeri, and Morganella morganii. It can therefore be stated that this plant's cytotoxicity is prevalently due to falcarinol.

  4. Chemical Constituents of Jacaranda oxyphylla and their Acetylcholinesterase Inhibitory and Antimicrobial Activities

    Directory of Open Access Journals (Sweden)

    Vinicius Viana Pereira

    2016-05-01

    Full Text Available This study evaluated chemical composition of Jacaranda oxyphylla, acetylcholinesterase inhibitory and antimicrobial activities of the isolated compounds. Phytochemical investigation of leaves extract yielded three classes of substances: fatty compounds, sterols and triterpenes. Butyl hexadecanoate (1, fatty alcohol (2, 2-(4-hydroxyphenylethyl triacontanoate (3, β -sitosterol (4, sitosterol-3-O- β- D -glucoside (5, 6'-palmitoyl-sitosterol-3-O- β- D -glucoside (6, oleanolic acid (7, ursolic acid (8 and corosolic acid (9 were obtained from n-hexane, CHCl 3 and EtOH extracts of J. oxyphylla. It was found a pronounced acetylcholinesterase inhibitory activity for the fatty compounds 1-3 and sterols 5 and 6, with values between 60 to 77%. Substances 7-9 presented a high antibacterial action against Bacillus cereus and Salmonella typhimurium, with values of growth inhibition in the range of 84 to 90%.

  5. Antimicrobial Activity and Chemical Constituents of the Extract from Jatropha curcas Fruit

    Directory of Open Access Journals (Sweden)

    Kanda Saosoong

    2016-05-01

    Full Text Available The antimicrobial activity and chemical constituents of the methanolic extract from J. curcas fruit were evaluated in this study. The crude extract was achieved by extraction with 60 % (v/v methanol. It showed the potencies of antimicrobial activity against P. putida, P. syringae pv. sesami, X. campestris, X. campestris pv. glycines, X. campestris pv. vesicatoria and R. solanacearum with the presence of inhibition zone in the range of 8.0 ± 0.0 to 13.7 ± 0.6 mm and MIC value at 214.29 ± 0.00 mg/mL. Furthermore, flavone compound can be proposed by the analysis of gas chromatography-mass spectrometry (GC-MS. According to the group of flavonoid compounds have strong bioactive properties; the results suggested that J. curcas fruit has highly potential as effective natural bioactive sources.

  6. Chemical Composition, Antioxidant Potential, and Antibacterial Activity of Essential Oil Cones of Tunisian Cupressus sempervirens

    Directory of Open Access Journals (Sweden)

    Aicha Ben Nouri

    2015-01-01

    Full Text Available The extraction yield of the essential oil (EO extracted by hydrodistillation from the cones of Tunisian Cupressus sempervirens L. was of 0.518%. The chemical composition was analyzed by GC-MS. Results showed that this essential oil was mainly composed of monoterpene hydrocarbons (65% with α-pinene as the major constituent (47.51%. Its antioxidant activity was ascertained by evaluating the total antioxidant capacity and also by evaluating its inhibitory effect against DPPH and ABTS radicals. In addition, it showed a strong antioxidant power against the DPPH (IC50 = 151 µg/mL and ABTS (IC50 = 176.454 µg/mL radicals scavenging. Moreover, its antibacterial activity was tested against different species of pathogenic bacteria (three Gram-positive and eight Gram-negative bacteria. The bacterial strains susceptible to the evaluated oil were Bacillus subtilis, Escherichia coli, Klebsiella oxytoca, Morganella morganii, Shigella, and Vibrio cholerae.

  7. Chemical markers and antifungal activity of red propolis from Sergipe, Brazil

    Directory of Open Access Journals (Sweden)

    Lucyana Santos de Mendonça

    2015-06-01

    Full Text Available The aim of this study was to analyze the physicochemical properties and antifungal activities of the red propolis samples from Sergipe, Brazil, and also evaluate their variability throughout the year. The characterization of the hydroalcoholic extract (HPE of the red propolis samples was performed monthly from October 2009 to September 2010. The concentrations of the bioactive compounds varied during the year, but their chromatographic profiles were similar. Four compounds were identified by comparison with authentic standards. Formononetin was one of the predominant compounds in all propolis extracts. In our study, it was observed that all the propolis samples inhibited the growth of Candida species. Multivariate analysis confirmed the variations in chemical composition and color of the HPEs throughout the year. The biological activities of the HPEs were statistically significant (p<0.05, and all samples exhibited antifungal properties.

  8. Evaluation of antioxidant activity of crocin, podophyllotoxin and kaempferol by chemical, biochemical and electrochemical assays

    Directory of Open Access Journals (Sweden)

    Riyaz A. Dar

    2017-02-01

    Full Text Available The present study was designed to evaluate the antioxidant potential of three natural origin drugs, namely crocin, kaempferol and podophyllotoxin by chemical, biochemical and electrochemical assays. The chemical assay was carried out by DPPH and reducing power assays while the biochemical assay evaluated the lipid peroxidation inhibition capacity, using brain cells as models; the electrochemical characterization was performed by cyclic voltammetry and differential pulse voltammetry using multi-walled carbon nanotube paste electrode (MWCNTPE in 0.02 M acetate buffer (pH 4.5. The superoxide radical scavenging activity was performed at dropping mercury electrode (DME in 0.1 M KCl. All the species proved to have antioxidant activity, and particularly, by the electrochemical techniques, it has been shown that these drugs showed scavenging ability on superoxide anion produced by electrochemical reduction of oxygen. The highest scavenging property of crocin may be due to the hydroxyl and glucose moieties that could provide the necessary component as a radical scavenger.

  9. Biological effects of activation products and other chemicals released from fusion power plants

    Energy Technology Data Exchange (ETDEWEB)

    Strand, J.A.; Poston, T.M.

    1976-09-01

    Literature reviews indicate that existing information is incomplete, often contradictory, and of questionable value for the prediction and assessment of ultimate impact from fusion-associated activation products and other chemical releases. It is still uncertain which structural materials will be used in the blanket and first wall of fusion power plants. However, niobium, vanadium, vanadium-chromium alloy, vanadium-titanium alloy, sintered aluminum product, and stainless steel have been suggested. The activation products of principal concern will be the longer-lived isotopes of /sup 26/Al, /sup 49/V, /sup 51/Cr, /sup 54/Mn, /sup 55/Fe, /sup 58/Co, /sup 60/Co, /sup 93/Nb, and /sup 94/Nb. Lithium released to the environment either during the mining cycle, from power plant operation or accident, may be in the form of a number of compound types varying in solubility and affinity for biological organisms. The effects of a severe liquid metal fire or explosion involving Na or K will vary according to inherent abiotic and biotic features of the affected site. Saline, saline-alkaline, and sodic soils of arid lands would be particularly susceptible to alkaline stress. Beryllium released to the environment during the mining cycle or reactor accident situation could be in the form of a number of compound types. Adverse effects to aquatic species from routine chemical releases (biocides, corrosion inhibitors, dissolution products) may occur in the discharge of both fission and fusion power plant designs.

  10. Chemical characterization and insecticidal activity of Calotropis gigantea L. flower extract against Tribolium castaneum (Herbst

    Directory of Open Access Journals (Sweden)

    Muhammad Rowshanul Habib

    2016-12-01

    Full Text Available Objective: To test the insecticidal activity of ethyl acetate extract of Calotropis gigantea L. flower (designated as EECF against stored grain pest Tribolium castaneum (Herbst of different larval and adult stages. Methods: Residual film method was used here to study the toxicity of EECF against Tribolium castaneum and gas chromatography-mass spectrometer analysis was also performed to characterize the chemicals of EECF. Results: In residual film bioassay, EECF showed lowest LD50 (0.134 mg/cm2 against 1st instar larvae of Tribolium castaneum and this finding ultimately revealed that the insect of initial stage was more susceptible than other stages. From the results of this study, it was found that with the increasing of age, Tribolium castaneum showed some extent of resistance against the toxicity of EECF. Moreover, chemical profiles of EECF identified by gas chromatography-mass spectrometer analysis were also found to consistent with its insecticidal activity. Conclusions: So, the overall results suggested that extracts of Calotropis gigantea L. flower have potential insecticidal effect which might be used in pest control.

  11. STUDIES ON THE CHEMICAL STRUCTURES OF ACTIVATED CARBON FIBERS BY SOLID STATE NMR

    Institute of Scientific and Technical Information of China (English)

    FURuowen; HuangWenqiang; 等

    1999-01-01

    The solid state C13-NMR spectra of different ACFs from various precursor fibers were recorded in this paper,The effects of activation conditions on chemical structures of ACFs,as well as the changes of chemical structures during carbonization and redox reaction were inverstigated by NMR technique,At same time,the soild state P31-NMR spectra of ACFS are studied.The C13-NMR spectra of ACFs can be divided into six bands that are assigned to methyl and methylene groups,hydroxyl and ether groups.acetal (or methylenedioxy) carbon,graphite-like aromatic carbon structure,phenol,and quinone groups,respectively.Only phosphorous pentoxide exists on ACFs and CFs.Moreover,most of them are stuck over the crystal face but not at the edge of graphite-like micro-crystal.The carbonization and activation conditions affect the C13-NMR spectra of ACFs.The experimental rsults indicate that the redox reaction of ACFs with oxidants greatly consumes C-H group.

  12. Real-time measurement of volatile chemicals released by bed bugs during mating activities.

    Directory of Open Access Journals (Sweden)

    Ole Kilpinen

    Full Text Available In recent years, bed bug (Hemiptera: Cimicidae problems have increased dramatically in many parts of the world, leading to a renewed interest in their chemical ecology. Most studies of bed bug semiochemicals have been based on the collection of volatiles over a period of time followed by chemical analysis. Here we present for the first time, a combination of proton transfer reaction mass spectrometry and video analysis for real-time measurement of semiochemicals emitted by isolated groups of bed bugs during specific behavioural activities. The most distinct peaks in the proton transfer reaction mass spectrometry recordings were always observed close to the termination of mating attempts, corresponding to the defensive emissions that bed bugs have been suspected to exploit for prevention of unwanted copulations. The main components of these emissions were (E-2-hexenal and (E-2-octenal recorded in ratios between 1:3 and 3:1. In the current study, the quantity varied over 1000 fold for both of the compounds with up to 40 µg total release in a single emission. Males also emit defensive compounds due to homosexual copulation attempts by other males, and no significant differences were observed in the ratio or the amount of the two components released from males or females. In summary, this study has demonstrated that combining proton-transfer-reaction mass spectrometry with video analysis can provide detailed information about semiochemicals emitted during specific behavioural activities.

  13. Real-time measurement of volatile chemicals released by bed bugs during mating activities.

    Science.gov (United States)

    Kilpinen, Ole; Liu, Dezhao; Adamsen, Anders Peter S

    2012-01-01

    In recent years, bed bug (Hemiptera: Cimicidae) problems have increased dramatically in many parts of the world, leading to a renewed interest in their chemical ecology. Most studies of bed bug semiochemicals have been based on the collection of volatiles over a period of time followed by chemical analysis. Here we present for the first time, a combination of proton transfer reaction mass spectrometry and video analysis for real-time measurement of semiochemicals emitted by isolated groups of bed bugs during specific behavioural activities. The most distinct peaks in the proton transfer reaction mass spectrometry recordings were always observed close to the termination of mating attempts, corresponding to the defensive emissions that bed bugs have been suspected to exploit for prevention of unwanted copulations. The main components of these emissions were (E)-2-hexenal and (E)-2-octenal recorded in ratios between 1:3 and 3:1. In the current study, the quantity varied over 1000 fold for both of the compounds with up to 40 µg total release in a single emission. Males also emit defensive compounds due to homosexual copulation attempts by other males, and no significant differences were observed in the ratio or the amount of the two components released from males or females. In summary, this study has demonstrated that combining proton-transfer-reaction mass spectrometry with video analysis can provide detailed information about semiochemicals emitted during specific behavioural activities.

  14. Chemical composition, antioxidant and antimicrobial activities of basil (Ocimum basilicum) essential oils depends on seasonal variations.

    Science.gov (United States)

    Hussain, Abdullah Ijaz; Anwar, Farooq; Hussain Sherazi, Syed Tufail; Przybylski, Roman

    2008-06-01

    Chemical composition, antioxidant and antimicrobial activities of the essential oils from aerial parts of basil (Ocimum basilicum L.) as affected by four seasonal, namely summer, autumn, winter and spring growing variation were investigated. The hydro-distilled essential oils content ranged from 0.5% to 0.8%, the maximum amounts were observed in winter while minimum in summer. The essential oils consisted of linalool as the most abundant component (56.7-60.6%), followed by epi-α-cadinol (8.6-11.4%), α-bergamotene (7.4-9.2%) and γ-cadinene (3.2-5.4%). Samples collected in winter were found to be richer in oxygenated monoterpenes (68.9%), while those of summer were higher in sesquiterpene hydrocarbons (24.3%). The contents of most of the chemical constituents varied significantly (pMucor mucedo, Fusarium solani, Botryodiplodia theobromae, Rhizopus solani was assessed by disc diffusion method and measurement of determination of minimum inhibitory concentration. The results of antimicrobial assays indicated that all the tested microorganisms were affected. Both the antioxidant and antimicrobial activities of the oils varied significantly (p<0.05), as seasons changed.

  15. Aged nano-structured platinum based catalyst: effect of chemical treatment on adsorption and catalytic activity.

    Science.gov (United States)

    Shim, Wang Geun; Nahm, Seung Won; Park, Hyuk Ryeol; Yun, Hyung Sun; Seo, Seong Gyu; Kim, Sang Chai

    2011-02-01

    To examine the effect of chemical treatment on the adsorption and catalytic activity of nanostructured platinum based catalyst, the aged commercial Pt/AC catalyst was pretreated with sulfuric acid (H2SO4) and a cleaning agent (Hexane). Several reliable methods such as nitrogen adsorption, X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and inductively coupled plasma (ICP) were employed to characterize the aged Pt/AC catalyst and its chemically pretreated Pt/AC catalysts. The catalytic and adsorption activities of nano-structured heterogeneous Pt/AC catalyst were investigated on the basis of toluene oxidation and adsorption isotherm data. In addition, the adsorption isotherms of toluene were used to calculate the adsorption energy distribution functions for the parent catalyst and its pre-treated nano-structured Pt/AC catalysts. It was found that sulfuric acid aqueous treatment can enhance the catalytic performance of aged Pt/AC catalyst toward catalytic oxidation of toluene. It was also shown that a comparative analysis of the energy distribution functions for nano-structured Pt/AC catalysts as well as the pore size distribution provides valuable information about their structural and energetic heterogeneity.

  16. Production of bioelectricity, bio-hydrogen, high value chemicals and bioinspired nanomaterials by electrochemically active biofilms.

    Science.gov (United States)

    Kalathil, Shafeer; Khan, Mohammad Mansoob; Lee, Jintae; Cho, Moo Hwan

    2013-11-01

    Microorganisms naturally form biofilms on solid surfaces for their mutual benefits including protection from environmental stresses caused by contaminants, nutritional depletion or imbalances. The biofilms are normally dangerous to human health due to their inherited robustness. On the other hand, a recent study suggested that electrochemically active biofilms (EABs) generated by electrically active microorganisms have properties that can be used to catalyze or control the electrochemical reactions in a range of fields, such as bioenergy production, bioremediation, chemical/biological synthesis, bio-corrosion mitigation and biosensor development. EABs have attracted considerable attraction in bioelectrochemical systems (BESs), such as microbial fuel cells and microbial electrolysis cells, where they act as living bioanode or biocathode catalysts. Recently, it was reported that EABs can be used to synthesize metal nanoparticles and metal nanocomposites. The EAB-mediated synthesis of metal and metal-semiconductor nanocomposites is expected to provide a new avenue for the greener synthesis of nanomaterials with high efficiency and speed than other synthetic methods. This review covers the general introduction of EABs, as well as the applications of EABs in BESs, and the production of bio-hydrogen, high value chemicals and bio-inspired nanomaterials.

  17. Chemical composition and antioxidant, anti-inflammatory, and antiproliferation activities of pomegranate (Punica granatum) flowers.

    Science.gov (United States)

    Bekir, Jalila; Mars, Mohamed; Vicendo, Patricia; Fterrich, Amira; Bouajila, Jalloul

    2013-06-01

    The chemical composition, antioxidant (DPPH and ABTS assays), anti-inflammatory (5-LOX), and cytotoxic (MCF-7) activities from flowers of seven pomegranate varieties (Punica granatum) were investigated. The highest phenolics (330.9±11.3 mg gallic acid equivalent/g dry weight (dw)), flavonoids (29.5±0.8 mg quercetin equivalent/g dw), tannins (30.6±0.6 mg catechin equivalent/g dw), and anthocyanins (0.70±0.03 mg cyanidin-3-glucoside equivalent/g dw) content were determined in the Chetoui (CH) variety. It was found that Garsi (GR) (IC₅₀=4.9±0.2 mg/L by ABTS assay) and Zaghwani (ZG) (IC₅₀=3.9±0.2 mg/L by ABTS assay) varieties exhibited the highest antioxidant activity. For the anti-inflammatory activity, all varieties were active; the ZH variety was the strongest (2.5±0.1 mg/L). The CH, ES, and RA pomegranate varieties were not active against human breast cancer cells MCF-7, whereas inhibition was more evident with extracts from ZH and GR varieties (IC₅₀=33.00±2.64 and 35.00±4.58 mg/L, respectively). Statistical analysis showed that the variety factor influenced significantly (Ppomegranate flowers.

  18. Measurement of natural radioactivity in chemical fertilizer and agricultural soil: evidence of high alpha activity.

    Science.gov (United States)

    Ghosh, Dipak; Deb, Argha; Bera, Sukumar; Sengupta, Rosalima; Patra, Kanchan Kumar

    2008-02-01

    People are exposed to ionizing radiation from the radionuclides that are present in different types of natural sources, of which phosphate fertilizer is one of the most important sources. Radionuclides in phosphate fertilizer belonging to 232Th and 238U series as well as radioisotope of potassium (40K) are the major contributors of outdoor terrestrial natural radiation. The study of alpha activity in fertilizers, which is the first ever in West Bengal, has been performed in order to determine the effect of the use of phosphate fertilizers on human health. The data have been compared with the alpha activity of different types of chemical fertilizers. The measurement of alpha activity in surface soil samples collected from the cultivated land was also performed. The sampling sites were randomly selected in the cultivated land in the Midnapore district, which is the largest district in West Bengal. The phosphate fertilizer is widely used for large agricultural production, mainly potatoes. The alpha activities have been measured using solid-state nuclear track detectors (SSNTD), a very sensitive detector for alpha particles. The results show that alpha activity of those fertilizer and soil samples varies from 141 Bq/kg to 2,589 Bq/kg and from 109 Bq/kg to 660 Bq/kg, respectively. These results were used to estimate environmental radiation exposure on human health contributed by the direct application of fertilizers.

  19. Studies on Chemical Composition, Antimicrobial and Antioxidant Activities of Five Thymus vulgaris L. Essential Oils.

    Science.gov (United States)

    Mancini, Emilia; Senatore, Federica; Del Monte, Donato; De Martino, Laura; Grulova, Daniela; Scognamiglio, Mariarosa; Snoussi, Mejdi; De Feo, Vincenzo

    2015-07-01

    This study is aimed at assessing the essential oil composition, total phenolic content, antimicrobial and antioxidant activities of Thymus vulgaris collected in five different area of the Campania Region, Southern Italy. The chemical composition of the essential oils was studied by GC-flame ionization detector (FID) and GC/MS; the biological activities were evaluated through determination of MIC and minimum bactericidal concentration (MBC) and evaluation of antioxidant activity. In total, 134 compounds were identified. The oils were mainly composed of phenolic compounds, and all oils belonged to the chemotype thymol. The antimicrobial activity of the five oils was assayed against ten bacterial strains. The oils showed different inhibitory activity against some Gram-positive pathogens. The total phenol content in the essential oils ranged from 77.6-165.1 mg gallic acid equivalents (GAE)/g. The results reported here may help to shed light on the complex chemotaxonomy of the genus Thymus. These oils could be used in many fields as natural preservatives of food and as nutraceuticals.

  20. Chemical constituents of the essential oil, antioxidant and antibacterial activities from Elettariopsis curtisii Baker.

    Directory of Open Access Journals (Sweden)

    Vanida Chairgulprasert

    2008-08-01

    Full Text Available Elettariopsis curtisii Baker, the culinary and medicinal herb, was investigated to elucidate its chemical constituents and determine antioxidant and antibacterial activities. The essential oil of E. curtisii was obtained by steam distillation of fresh rhizomes in a maximum yield of 0.63%. GC-MS data indicated the presence of six compounds, of which trans-2-decenal (78.03% was the principal constituent. The essential oils and also the hexane, dichloromethane and methanol extracts from the rhizomes and leaves were assessed for antioxidant and antibacterial activities. In an evaluation of antioxidant activity, the crude dichloromethane extract of the leaves exhibited the highest scavenging effect on the DPPH radicalwith an EC50 of 0.28+0.01 mg/mL. The leaf dichloromethane extract also had the highest total phenol concentration, (73.4+2.80 mg GA/g of extract whereas the crude methanol extract from the rhizomes had the highest reducing power with an EC50 of 2.07+0.06 mg/mL. In terms of antibacterial activity, the essential oil (distilled from either the leaves or the rhizomesdisplayed the highest inhibitory activity, with the same MID value of 1 mg/disc against 5 strains of bacteria, Bacillus subtilis,Escherichia coli, Staphylococcus aureus, Sarcina sp. and Pseudomonas aeruginosa.

  1. Chemical Composition and Antioxidant/Antimicrobial Activities in Supercritical Carbon Dioxide Fluid Extract of Gloiopeltis tenax

    Directory of Open Access Journals (Sweden)

    Jiaojiao Zheng

    2012-11-01

    Full Text Available Gloiopeltis tenax (G. tenax is widely distributed along the Chinese coastal areas and is commonly used in the treatment of diarrhea and colitis. This study aimed at investigating the bioactivities of the volatile constituents in G. tenax. We extracted the essential constituents of G. tenax by supercritical carbon dioxide extraction (CO2-SFE, then identified and analyzed the constituents by gas chromatography-mass spectrometry (GC-MS. In total, 30 components were identified in the G. tenax extract. The components showed remarkable antioxidant activity (radical scavenging activity of 2,2-diphenyl-1-picrylhydrazyl (DPPH, lipid peroxidation inhibition capacity (in a β-carotene/linoleic acid-coupled oxidation reaction, and hydroxyl radical-scavenging activity (by deoxyribose degradation by iron-dependent hydroxyl radical, compared to butylated hydroxytoluene. In microdilution assays, G. tenax extracts showed a moderate inhibitory effects on Staphyloccocus aureus (minimum inhibitory concentration (MIC = 3.9 mg/mL, Enterococcus faecalis (7.8 mg/mL, Pseudomonas aeruginosa (15.6 mg/mL, and Escherichia coli (3.9 mg/mL. Antioxidant and antimicrobial activities of G. tenax were related to the active chemical composition. These results suggest that the CO2-SFE extract from G. tenax has potential to be used as a natural antioxidant and antimicrobial agent in food processing.

  2. Chemical composition and antiprotozoal activities of Colombian Lippia spp essential oils and their major components

    Directory of Open Access Journals (Sweden)

    Patricia Escobar

    2010-03-01

    Full Text Available The chemical composition and biological activities of 19 essential oils and seven of their major components were tested against free and intracellular forms of Leishmania chagasi and Trypanosoma cruzi parasites as well as Vero and THP-1 mammalian cell lines. The essential oils were obtained from different species of Lippia, a widely distributed genus of Colombian plants. They were extracted by microwave radiation-assisted hydro-distillation and characterised by GC-FID and GC-MS. The major components were geranial, neral, limonene, nerol, carvacrol, p-cymene, γ-terpinene, carvone and thymol. The essential oil of Lippia alba exhibited the highest activity against T. cruzi epimastigotes and intracellular amastigotes with an IC50 of 5.5 μg/mL and 12.2 μg/mL, respectively. The essential oil of Lippia origanoides had an IC50 of 4.4 μg/mL in L. chagasi promastigotes and exhibited no toxicity in mammalian cells. Thymol (IC50 3.2 ± 0.4 μg/mL and S-carvone (IC50 6.1 ± 2.2 μg/mL, two of the major components of the active essential oils, were active on intracellular amastigotes of T. cruziinfected Vero cells, with a selective index greater than 10. None of the essential oils or major components tested in this study was active on amastigotes of L. chagasi infected THP-1 cells.

  3. What are the active carbon species during graphene chemical vapor deposition growth?

    Science.gov (United States)

    Shu, Haibo; Tao, Xiao-Ming; Ding, Feng

    2015-02-01

    The dissociation of carbon feedstock is a crucial step for understanding the mechanism of graphene chemical vapor deposition (CVD) growth. Using first-principles calculations, we performed a comprehensive theoretical study for the population of various active carbon species, including carbon monomers and various radicals, CHi (i = 1, 2, 3, 4), on four representative transition-metal surfaces, Cu(111), Ni(111), Ir(111) and Rh(111), under different experimental conditions. On the Cu surface, which is less active, the population of CH and C monomers at the subsurface is found to be very high and thus they are the most important precursors for graphene CVD growth. On the Ni surface, which is more active than Cu, C monomers at the subsurface dominate graphene CVD growth under most experimental conditions. In contrast, on the active Ir and Rh surfaces, C monomers on the surfaces are found to be very stable and thus are the main precursors for graphene growth. This study shows that the mechanism of graphene CVD growth depends on the activity of catalyst surfaces and the detailed graphene growth process at the atomic level can be controlled by varying the temperature or partial pressure of hydrogen.

  4. Characterization of mesoporous carbon prepared from date stems by H3PO4 chemical activation

    Science.gov (United States)

    Hadoun, H.; Sadaoui, Z.; Souami, N.; Sahel, D.; Toumert, I.

    2013-09-01

    The present work was focused on the determination of texture, morphology, crystanillity and oxygenated surface groups characteristics of an activated carbon prepared from date stems. Chemical activation of this precursor at different temperatures (450, 550 and 650 °C) was adopted using phosphoric acid as dehydrating agent at (2/1) impregnation ratio. Fourier transform infrared spectroscopy study was carried out to identify surface groups in date stems activated carbons. The microscopic structure was examined by nitrogen adsorption at 77 K. The interlayer spacing (d200 and d100), stack height (Lc), stack width (La) and effective dimension L of the turbostratic crystallites (microcrystallite) in the date stems activated carbons were estimated from X-ray diffraction data (XRD). Results yielded a surface area, SBET, and total pore volume of 682, 1455, 1319 m2/g and 0,343, 1,045 and 0.735 cm3/g, for the carbon prepared at 450, 550 and 650 °C, respectively. Scanning electron microscopy exhibits a highly developed porosity which is in good agreement with the porous texture derived from gas adsorption data and these results confirm that the activated carbon is dominated by network of slit-shaped mesopores morphology and in some cases by varied micropores morphologies.

  5. Chemical composition and phagocyte immunomodulatory activity of Ferula iliensis essential oils.

    Science.gov (United States)

    Özek, Gulmira; Schepetkin, Igor A; Utegenova, Gulzhakhan A; Kirpotina, Liliya N; Andrei, Spencer R; Özek, Temel; Başer, Kemal Hüsnü Can; Abidkulova, Karime T; Kushnarenko, Svetlana V; Khlebnikov, Andrei I; Damron, Derek S; Quinn, Mark T

    2017-06-01

    Essential oil extracts from Ferula iliensis have been used traditionally in Kazakhstan for treatment of inflammation and other illnesses. Because little is known about the biologic activity of these essential oils that contributes to their therapeutic properties, we analyzed their chemical composition and evaluated their phagocyte immunomodulatory activity. The main components of the extracted essential oils were (E)-propenyl sec-butyl disulfide (15.7-39.4%) and (Z)-propenyl sec-butyl disulfide (23.4-45.0%). Ferula essential oils stimulated [Ca(2+)]i mobilization in human neutrophils and activated ROS production in human neutrophils and murine bone marrow phagocytes. Activation of human neutrophil [Ca(2+)]i flux by Ferula essential oils was dose-dependently inhibited by capsazepine, a TRPV1 channel antagonist, indicating that TRPV1 channels mediate this response. Furthermore, Ferula essential oils stimulated Ca(2+) influx in TRPV1 channel-transfected HEK293 cells and desensitized the capsaicin-induced response in these cells. Additional molecular modeling with known TRPV1 channel agonists suggested that the active component is likely to be (Z)-propenyl sec-butyl disulfide. Our results provide a cellular and molecular basis to explain at least part of the beneficial therapeutic properties of FEOs. © Society for Leukocyte Biology.

  6. Studies on Chemical Composition, Antimicrobial and Antioxidant Activities of Five Thymus vulgaris L. Essential Oils

    Directory of Open Access Journals (Sweden)

    Emilia Mancini

    2015-07-01

    Full Text Available This study is aimed at assessing the essential oil composition, total phenolic content, antimicrobial and antioxidant activities of Thymus vulgaris collected in five different area of the Campania Region, Southern Italy. The chemical composition of the essential oils was studied by GC-flame ionization detector (FID and GC/MS; the biological activities were evaluated through determination of MIC and minimum bactericidal concentration (MBC and evaluation of antioxidant activity. In total, 134 compounds were identified. The oils were mainly composed of phenolic compounds, and all oils belonged to the chemotype thymol. The antimicrobial activity of the five oils was assayed against ten bacterial strains. The oils showed different inhibitory activity against some Gram-positive pathogens. The total phenol content in the essential oils ranged from 77.6–165.1 mg gallic acid equivalents (GAE/g. The results reported here may help to shed light on the complex chemotaxonomy of the genus Thymus. These oils could be used in many fields as natural preservatives of food and as nutraceuticals.

  7. Chemical modification of an alpha 3-fucosyltransferase; definition of amino acid residues essential for enzyme activity.

    Science.gov (United States)

    Britten, C J; Bird, M I

    1997-02-11

    The biosynthesis of the carbohydrate antigen sialyl Lewis X (sLe(x)) is dependent on the activity of an alpha 3-fucosyltransferase (EC 2.4.1.152, GDP-fucose:Gal beta (1-4)GlcNAc-R alpha (1-3)fucosyltransferase). This enzyme catalyses the transfer of fucose from GDP-beta-fucose to the 3-OH of N-acetylglucosamine present in lactosamine acceptors. In this report, we have investigated the amino acids essential for the activity of a recombinant alpha 3-fucosyltransferase (FucT-VI) through chemical modification of the enzyme with group-selective reagents. FucT-VI activity was found to be particularly sensitive to the histidine-selective reagent diethylpyrocarbonate and the cysteine reagent N-ethylmaleimide, with IC50 values of less than 200 microM. Reagents selective for arginine and lysine had no effect on enzyme activity. The inclusion of GDP-beta-fucose during preincubation with NEM reduces the rate of inactivation whereas inclusion of an acceptor saccharide for the enzyme, Gal beta (1-4)GlcNAc, had no effect. No protective effect with either GDP-beta-fucose or Gal beta (1-4)GlcNAc was observed on treatment of the enzyme with diethylpyrocarbonate. These data suggest that in addition to an NEM-reactive cysteine in, or adjacent to, the substrate-binding site of the enzyme, FucT-VI possesses histidine residue(s) that are essential for enzyme activity.

  8. Chemical composition and antiprotozoal activities of Colombian Lippia spp essential oils and their major components.

    Science.gov (United States)

    Escobar, Patricia; Milena Leal, Sandra; Herrera, Laura Viviana; Martinez, Jairo Rene; Stashenko, Elena

    2010-03-01

    The chemical composition and biological activities of 19 essential oils and seven of their major components were tested against free and intracellular forms of Leishmania chagasi and Trypanosoma cruzi parasites as well as Vero and THP-1 mammalian cell lines. The essential oils were obtained from different species of Lippia, a widely distributed genus of Colombian plants. They were extracted by microwave radiation-assisted hydro-distillation and characterised by GC-FID and GC-MS. The major components were geranial, neral, limonene, nerol, carvacrol, p-cymene, gamma-terpinene, carvone and thymol. The essential oil of Lippia alba exhibited the highest activity against T. cruzi epimastigotes and intracellular amastigotes with an IC50 of 5.5 microg/mL and 12.2 microg/mL, respectively. The essential oil of Lippia origanoides had an IC50 of 4.4 microg/mL in L. chagasi promastigotes and exhibited no toxicity in mammalian cells. Thymol (IC50 3.2 +/- 0.4 microg/mL) and S-carvone (IC50 6.1 +/- 2.2 microg/mL), two of the major components of the active essential oils, were active on intracellular amastigotes of T. cruziinfected Vero cells, with a selective index greater than 10. None of the essential oils or major components tested in this study was active on amastigotes of L. chagasi infected THP-1 cells.

  9. Isolation, chemical characterization, and immunomodulatory activity of naturally acetylated hemicelluloses from bamboo shavings.

    Science.gov (United States)

    Huang, Ju-Qing; Qi, Rui-Ting; Pang, Mei-Rong; Liu, Cong; Li, Guang-Yu; Zhang, Ying

    Bamboo shavings, the outer or intermediate layer of bamboo stems, are the bulk of by-products produced in bamboo processing. In this study we investigated the isolation, chemical characterization, and immunostimulatory activity in vitro of the hemicelluloses from bamboo shavings. Shavings were first pretreated by steam explosion. The optimal pretreatment was found to be steam explosion at 2.2 MPa for 1 min. Following this pretreatment, the yield of hemicelluloses reached (2.05±0.22)% (based on the dry dewaxed raw materials), which was 5.7-fold higher than that of untreated samples. Bamboo-shavings hemicellulose (BSH) was then prepared by hot water extraction and ethanol precipitation from the steam-exploded shavings. Purification of BSH by anion-exchange chromatography of diethylaminoethanol (DEAE)-sepharose Fast Flow resulted in a neutral fraction (BSH-1, purity of 95.3%, yield of 1.06%) and an acidic fraction (BSH-2, purity of 92.5%, yield of 0.79%). The weight-average molecular weights (Mw) of BSH-1 and BSH-2 were 12 800 and 11 300 g/mol, respectively. Chemical and structural analyses by Fourier transform infrared spectroscopy (FT-IR), 1D ((1)H and (13)C) and 2D (heteronuclear single quantum correlation (HSQC)) nuclear magnetic resonance (NMR) spectra revealed that BSH-1 was O-acetylated-arabinoxylan and BSH-2 was O-acetylated-(4-O-methylglucurono)-arabinoxylan. BSH-1 had a higher content of acetyl groups than BSH-2. For the immunomodulatory activity in vitro, BSH and BSH-2 significantly stimulated mouse splenocyte proliferation while BSH-1 had no effect; BSH, BSH-1, and BSH-2 markedly enhanced the phagocytosis activity and nitric oxide production of the murine macrophage RAW264.7 in a dose-dependent manner. Our results suggest that the water-extractable hemicelluloses from steam-exploded bamboo shavings are naturally acetylated and have immunostimulatory activity.

  10. Isolation, chemical characterization, and immunomodulatory activity of naturally acetylated hemicelluloses from bamboo shavings* #

    Science.gov (United States)

    Huang, Ju-qing; Qi, Rui-ting; Pang, Mei-rong; Liu, Cong; Li, Guang-yu; Zhang, Ying

    2017-01-01

    Bamboo shavings, the outer or intermediate layer of bamboo stems, are the bulk of by-products produced in bamboo processing. In this study we investigated the isolation, chemical characterization, and immunostimulatory activity in vitro of the hemicelluloses from bamboo shavings. Shavings were first pretreated by steam explosion. The optimal pretreatment was found to be steam explosion at 2.2 MPa for 1 min. Following this pretreatment, the yield of hemicelluloses reached (2.05±0.22)% (based on the dry dewaxed raw materials), which was 5.7-fold higher than that of untreated samples. Bamboo-shavings hemicellulose (BSH) was then prepared by hot water extraction and ethanol precipitation from the steam-exploded shavings. Purification of BSH by anion-exchange chromatography of diethylaminoethanol (DEAE)-sepharose Fast Flow resulted in a neutral fraction (BSH-1, purity of 95.3%, yield of 1.06%) and an acidic fraction (BSH-2, purity of 92.5%, yield of 0.79%). The weight-average molecular weights (M w) of BSH-1 and BSH-2 were 12 800 and 11 300 g/mol, respectively. Chemical and structural analyses by Fourier transform infrared spectroscopy (FT-IR), 1D (1H and 13C) and 2D (heteronuclear single quantum correlation (HSQC)) nuclear magnetic resonance (NMR) spectra revealed that BSH-1 was O-acetylated-arabinoxylan and BSH-2 was O-acetylated-(4-O-methylglucurono)-arabinoxylan. BSH-1 had a higher content of acetyl groups than BSH-2. For the immunomodulatory activity in vitro, BSH and BSH-2 significantly stimulated mouse splenocyte proliferation while BSH-1 had no effect; BSH, BSH-1, and BSH-2 markedly enhanced the phagocytosis activity and nitric oxide production of the murine macrophage RAW264.7 in a dose-dependent manner. Our results suggest that the water-extractable hemicelluloses from steam-exploded bamboo shavings are naturally acetylated and have immunostimulatory activity. PMID:28124842

  11. Determination of antibacterial, antifungal activity and chemical composition of essential oil portion of unani formulation kulzam

    Directory of Open Access Journals (Sweden)

    K Ashok Kumar

    2011-01-01

    Full Text Available Kulzam is a popular unani, liquid formulation; indicated for several minor ailments like cough, cold, running nose, sore throat, insect bites, earache, tooth ache, etc. by the manufacturer. However, this over the counter formulation has not been scientifically evaluated for its claimed uses. Hence in the present study an attempt has been to check the chemical composition, antibacterial and antifungal activity as most of the above-mentioned conditions are underpinned by microbial activity. The antibacterial and antifungal activity of the formulation was carried out on human pathogenic bacteria Pseudomonas aerogenousa, Escherichia coli, Staphylococcus aureus, Corynebacterium and fungi Candida albicans, Aspergillus fumigates and was compared with standards ciprofloxacin and clotrimazole. Kulzam exhibited strong in vitro inhibition of growth against all the test micro-organisms at both 100 and 150 μl levels of undiluted formulation (test sample and more than that of standard at 150 μl level. The chemical composition of essential oil of the formulation was determined by gas chromatography−mass spectroscopy (GC-MS analysis. Thirteen compounds constituting about 93.56% of the essential oil were identified. The main components were Camphor, menthol, thymol, 2-propenal 3-phenyl-, eugenol, trans-caryophyllene, p-allylanisole, linalool, eucalyptol, l-limonene, 1-methyl-2-isopropylbenzene, and 1S-alpha-pinene. The outcome of this study shows that kulzam contain terpenes and their oxygenated derivatives, which are believed to be highly effective antibacterial, antifungal, analgesic, anti-inflammatory, antioxidant, spasmolytic and immunomodulatory agents. The formulation has been found to possess strong antibacterial and antifungal properties, and it becomes very difficult to pin point the specific compound responsible for studied activities. However, the study positively motivates the use of kulzam for common ailments.

  12. [Effects of combined application of biogas slurry and chemical fertilizer on winter wheat rhizosphere soil microorganisms and enzyme activities].

    Science.gov (United States)

    Feng, Wei; Guan, Tao; Wang, Xiao-yu; Zhu, Yun-ji; Guo, Tian-cai

    2011-04-01

    This paper studied the effects of combined application of biogas slurry and chemical fertilizer under same N application rate on the quantities of bacteria, actinomycetes and fungi as well as the activities of urease, protease and catalase in winter wheat rhizosphere soil. With the growth of winter wheat, the quantities of test microorganisms and the activities of urease and catalase showed a trend of increasing after an initial decrease, while the protease activity showed an S-type change. Combined application of biogas slurry and chemical fertilizer increased the quantities of test microorganisms significantly, and improved the activities of soil urease and protease. Applying 50% biogas slurry N as basal plus 50% chemical N as topdressing and applying 25% biogas slurry N as basal plus 75% chemical N as topdressing had the best effect, while applying single conventional urea or biogas slurry had the worst effect. At all growth stages, the activity of soil catalase was the highest in treatments 25% biogas slurry N as basal plus 75% chemical N as topdressing and single biogas slurry, but had greater differences in other treatments among the growth stages. The results suggested that proper biogas slurry application combined with chemical fertilization could increase the microbial quantity and enzyme activities in winter wheat rhizosphere soil.

  13. Chemical design of a radiolabeled gelatinase inhibitor peptide for the imaging of gelatinase activity in tumors

    Energy Technology Data Exchange (ETDEWEB)

    Hanaoka, Hirofumi [Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida Shimoadachi-cho, Kyoto 606-8501 (Japan); Graduate School of Medicine, Gunma University, Maebashi 371-8511 (Japan); Mukai, Takahiro [Graduate School of Medicine, Kyoto University, Kyoto 606-8507 (Japan); Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582 (Japan); Habashita, Sayo [Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida Shimoadachi-cho, Kyoto 606-8501 (Japan); Asano, Daigo [Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida Shimoadachi-cho, Kyoto 606-8501 (Japan); Ogawa, Kazuma [Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida Shimoadachi-cho, Kyoto 606-8501 (Japan); Kuroda, Yoshihiro [Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida Shimoadachi-cho, Kyoto 606-8501 (Japan); Akizawa, Hiromichi [Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675 (Japan); Iida, Yasuhiko [Graduate School of Medicine, Gunma University, Maebashi 371-8511 (Japan); Endo, Keigo [Graduate School of Medicine, Gunma University, Maebashi 371-8511 (Japan); Saga, Tsuneo [Graduate School of Medicine, Kyoto University, Kyoto 606-8507 (Japan); Saji, Hideo [Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida Shimoadachi-cho, Kyoto 606-8501 (Japan)]. E-mail: hsaji@pharm.kyoto-u.ac.jp

    2007-07-15

    Since elevated levels of gelatinases [matrix metalloproteinase (MMP)-2 and MMP-9] are associated with a poor prognosis in cancer patients, these enzymes are potential targets for tumor imaging. In the present study, a cyclic decapeptide, cCTTHWGFTLC (CTT), was selected as a mother compound because of its selective inhibitory activity toward gelatinases. For imaging gelatinase activity in tumors, we designed a CTT-based radiopharmaceutical taking into consideration that (1) the HWGF motif of the peptide is important for the activity (2) hydrophilic radiolabeled peptides show low-level accumulation in the liver and (3) an increase in the negative charge of radiolabeled peptides is effective in reducing renal accumulation. Thus, a highly hydrophilic and negatively charged radiolabel, indiun-111-diethylenetriaminepentaacetic acid ({sup 111}In-DTPA), was attached to an N-terminal residue distant from the HWGF motif ({sup 111}In-DTPA-CTT). In MMP-2 inhibition assays, In-DTPA-CTT significantly inhibited the proteolytic activity in a concentration-dependent fashion. When injected into normal mice, {sup 111}In-DTPA-CTT showed low levels of radioactivity in the liver and kidney. A comparison of the pharmacokinetic characteristics of {sup 111}In-DTPA-CTT with those of other CTT derivatives having different physicochemical properties revealed that the increase in hydrophilicity and negative charge caused by the conjugation of {sup 111}In-DTPA reduced levels of radioactivity in the liver and kidney. In tumor-bearing mice, a significant correlation was observed between the accumulation in the tumor as well as tumor-to-blood ratio of {sup 111}In-DTPA-CTT and gelatinase activity. These findings support the validity of the chemical design of {sup 111}In-DTPA-CTT for reducing accumulation in nontarget tissues and maintaining the inhibitory activity of the mother compound. Furthermore, {sup 111}In-DTPA-CTT derivatives would be potential radiopharmaceuticals for the imaging of

  14. Chemical Composition of Propolis from Different Regions in Java and their Cytotoxic Activity

    Directory of Open Access Journals (Sweden)

    Syamsudin

    2009-01-01

    Full Text Available Problem statement: Propolis samples from tropical zones, such as Java (Indonesia with its vast biodiversity, have become a subject of increasing scientific and economic attention. The association of the chemical composition of propolis from different geographic regions with cytotoxic activities lead to the identification of active principles, a fundamental tool to achieve standardization of this bee product. Approach: The purpose of this research was evaluate the quality of propolis collected at different places in Java (Indonesia based on cytotoxic activity. The ethanolic extracts of propolis from different areas in Java were tested for cytotoxicity against tumor cell lines (T47D, MCF-7, Hela, Myeloma and Vero using MTT assay. Propolis samples were collected from Batang (Central Java, Lawang (East Java and Sukabumi (West Java. Results: The extract of propolis from Batang showed the most potent activity of T47D and MCF-7 with IC50 34.67±8.3 and 37.8±.5 µg mL-1. The extract of propolis from Sukabumi showed the most potent activity of Hela cell with IC50 147.34±8.9. However, all propolis extract did not show activity of myeloma and Vero cells. Conclusion: Ethanolics extract of three propolis samples from Batang (Central Java, Lawang (East Java and Sukabumi (West Java regions in Java were investigated using GC-MS. From 37 compounds identified, 7 among of them were found for the first time in propolis. This indicated that the secondary metabolite extract of propolis from Batang (Central Java obtained in the study has antiproliferative activity of breast carcinoma cells (T47D and MCF-7.

  15. Chemical composition and some biological activities of the essential oils from basil Ocimum different cultivars.

    Science.gov (United States)

    Avetisyan, Arpi; Markosian, Anahit; Petrosyan, Margarit; Sahakyan, Naira; Babayan, Anush; Aloyan, Samvel; Trchounian, Armen

    2017-01-19

    The plants belonging to the Ocimum genus of the Lamiaceae family are considered to be a rich source of essential oils which have expressed biological activity and use in different area of human activity. There is a great variety of chemotypes within the same basil species. Essential oils from three different cultivars of basil, O. basilicum var. purpureum, O. basilicum var. thyrsiflora, and O. citriodorum Vis. were the subjects of our investigations. The oils were obtained by steam distillation in a Clevenger-type apparatus. The gas chromatography mass selective analysis was used to determine their chemical composition. The antioxidant activities of these essential oils were measured using 1,1-diphenyl-2-picrylhydrazyl assays; the tyrosinase inhibition abilities of the given group of oils were also assessed spectophotometrically, and the antimicrobial activity of the essential oils was determined by the agar diffusion method, minimal inhibitory concentrations were expressed. According to the results, the qualitative and quantitative composition of essential oils was quite different: O. basilicum var. purpureum essential oil contained 57.3% methyl-chavicol (estragol); O. basilicum var. thyrsiflora oil had 68.0% linalool. The main constituents of O. citriodorum oil were nerol (23.0%) and citral (20.7%). The highest antioxidant activity was demonstrated by O. basilicum var. thyrsiflora essential oil. This oil has also exhibited the highest tyrosinase inhibition level, whereas the oil from O. citriodorum cultivar demonstrated the highest antimicrobial activity. The results obtained indicate that these essential oils have antioxidant, antibacterial and antifungal activity and can be used as natural antioxidant and antimicrobial agents in medicine, food industry and cosmetics.

  16. Activation of chemical biological defense mechanisms and remission of vital oxidative injury by low dose radiation

    Energy Technology Data Exchange (ETDEWEB)

    Yamaoka, K. [Okayama University Medical School, Okayama (Japan); Nomura, T. [Central Research Institute of Electric Power Industry, Tokyo (Japan); Kojima, S. [Science University of Tokyo, Chiba (Japan)

    2000-05-01

    Excessive active oxygen produced in vivo by various causes is toxic. Accumulation of oxidation injuries due to excessive active causes cell and tissue injuries, inducing various pathologic conditions such as aging and carcinogenesis. On the other hand, there are chemical defense mechanisms in the body that eliminate active oxygen or repair damaged molecules, defending against resultant injury. It is interesting reports that appropriate oxidation stress activate the chemical biological defense mechanisms. In this study, to elucidate these phenomena and its mechanism by low dose radiation, we studied on the below subjects. Activation of chemical biological defense mechanisms by low dose radiation: (1) The effects radiation on lipid peroxide (LPO) levels in the organs, membrane fluidity and the superoxide dismutase (SOD) activity were examined in rats and rabbits. Rats were irradiated with low dose X-ray over their entire bodies, and rabbits inhaled vaporized radon spring water, which primarily emitted {alpha}-ray. The following results were obtained. Unlike high dose X-ray, low dose X-ray and radon inhalation both reduced LPO levels and made the state of the SH-group on membrane-bound proteins closer to that of juvenile animals, although the sensitivity to radioactivity varied depending on the age of the animals and among different organs and tissues. The SOD activity was elevated, suggesting that low dose X-ray and radon both activate the host defensive function. Those changes were particularly marked in the organs related to immune functions of the animals which received low dose X-ray, while they were particularly marked in the brain after radon inhalation. It was also found that those changes continued for longer periods after low dose X-irradiation. (2) Since SOD is an enzyme that mediates the dismutation of O{sub 2}- to H{sub 2}O{sub 2}, the question as to whether the resultant H{sub 2}O{sub 2} is further detoxicated into H{sub 2}O and O{sub 2} or not must

  17. Studies of Chemical Constituents and Their Antioxidant Activities From Astragalus mongholicus Bunge

    Institute of Scientific and Technical Information of China (English)

    DE-HONG YU; YONG-MING BAO; CHAO-LIANG WEI; LI-JIA AN

    2005-01-01

    Objective To evaluate the antioxidant activities of different chemical constituents from Astragalus mongholicus Bunge and their protection against xanthine (XA)/xanthine oxidase (XO)-induced toxicity in PC12 cells. Methods The compounds of Astragalus mongholicus Bunge were isolated by chromatography and the structures were elucidated on the basis of spectral data interpretation. Their antioxidant activities were detected by 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activities in a cell-free system. Meanwhile, the effects against XA/XO-induced toxicity were assessed using MTT assay in PC12 cells. Results Ten principal constituents were isolated and identified as formononetin (I), ononin (II), calycosin (III), calycosin-7-O-β-D-glucoside (IV), 9,10-dimethoxypterocarpan-3-O-β-D-glucoside (V), adenosine (VI), pinitol (VII), daucosterol (VIII), β-sitoster (IX) and saccharose (X) from Astragalus mongholicus Bunge. The compounds I, III, and IV scavenged DPPH free radicals in vitro. Formononetin and calycosin were found to inhibit XA/XO-induced cell injury significantly, with an estimated EC50 of 50 ng/mL. Conclusion Compound Ⅱ, Ⅵ, and Ⅶ are first reported in this plant. Calycosin exhibits the most potent antioxidant activity both in the cell-free system and in the cell system.

  18. Biological Activities and Chemical Characterization of Cordia verbenacea DC. as Tool to Validate the Ethnobiological Usage

    Science.gov (United States)

    Matias, Edinardo Fagner Ferreira; Alves, Erivânia Ferreira; Santos, Beatriz Sousa; Sobral de Souza, Celestina Elba; de Alencar Ferreira, João Victor; Santos de Lavor, Anne Karyzia Lima; Figueredo, Fernando Gomes; Ferreira de Lima, Luciene; Vieira dos Santos, Francisco Antônio; Neves Peixoto, Flórido Sampaio; Viana Colares, Aracélio; Augusti Boligon, Aline; Saraiva, Rogério de Aquino; Athayde, Margareth Linde; da Rocha, João Batista Teixeira; Alencar Menezes, Irwin Rose; Douglas Melo Coutinho, Henrique; da Costa, José Galberto Martins

    2013-01-01

    Knowledge of medicinal plants is often the only therapeutic resource of many communities and ethnic groups. “Erva-baleeira”, Cordia verbenacea DC., is one of the species of plants currently exploited for the purpose of producing a phytotherapeutic product extracted from its leaves. In Brazil, its major distribution is in the region of the Atlantic Forest and similar vegetation. The crude extract is utilized in popular cultures in the form of hydroalcoholic, decoctions and infusions, mainly as antimicrobial, anti-inflammatory and analgesic agents. The aim of the present study was to establish a chemical and comparative profile of the experimental antibacterial activity and resistance modifying activity with ethnopharmacological reports. Phytochemical prospecting and HPLC analysis of the extract and fractions were in agreement with the literature with regard to the presence of secondary metabolites (tannins and flavonoids). The extract and fraction tested did not show clinically relevant antibacterial activity, but a synergistic effect was observed when combined with antibiotic, potentiating the antibacterial effect of aminoglycosides. We conclude that tests of antibacterial activity and modulating the resistance presented in this work results confirm the ethnobotanical and ethnopharmacological information, serving as a parameter in the search for new alternatives for the treatment of diseases. PMID:23818919

  19. Synthesis of sulfonated porous carbon nanospheres solid acid by a facile chemical activation route

    Science.gov (United States)

    Chang, Binbin; Guo, Yanzhen; Yin, Hang; Zhang, Shouren; Yang, Baocheng

    2015-01-01

    Generally, porous carbon nanospheres materials are usually prepared via a template method, which is a multi-steps and high-cost strategy. Here, we reported a porous carbon nanosphere solid acid with high surface area and superior porosity, as well as uniform nanospheical morphology, which prepared by a facile chemical activation with ZnCl2 using resorcinol-formaldehyde (RF) resins spheres as precursor. The activation of RF resins spheres by ZnCl2 at 400 °C brought high surface area and large volume, and simultaneously retained numerous oxygen-containing and hydrogen-containing groups due to the relatively low processing temperature. The presence of these functional groups is favorable for the modification of -SO3H groups by a followed sulfonation treating with sulphuric acid and organic sulfonic acid. The results of N2 adsorption-desorption and electron microscopy clearly showed the preservation of porous structure and nanospherical morphology. Infrared spectra certified the variation of surface functional groups after activation and the successful modification of -SO3H groups after sulfonation. The acidities of catalysts were estimated by an indirect titration method and the modified amount of -SO3H groups were examined by energy dispersive spectra. The results suggested sulfonated porous carbon nanospheres catalysts possessed high acidities and -SO3H densities, which endowed their significantly catalytic activities for biodiesel production. Furthermore, their excellent stability and recycling property were also demonstrated by five consecutive cycles.

  20. Gymnema sylvestre R. Br., an Indian medicinal herb: traditional uses, chemical composition, and biological activity.

    Science.gov (United States)

    Di Fabio, Giovanni; Romanucci, Valeria; Di Marino, Cinzia; Pisanti, Antonio; Zarrelli, Armando

    2015-01-01

    Gymnema sylvestre R. Br. is one of the most important medicinal plants that grows in tropical forests in India and South East Asia. Its active ingredients and extracts of leaves and roots are used in traditional medicine to treat various ailments and they are present in the market for pharmaceutical and parapharmaceutical products. Commercial products based on substances of plant origin that are generally connoted as natural have to be subjected to monitoring and evaluation by health authorities for their potential impacts on public health. The monitoring and evaluation of these products are critical because the boundary between a therapeutic action and a functional or healthy activity has not yet been defined in a clear and unambiguous way. Therefore, these products are considered borderline products, and they require careful and rigorous studies, in order to use them as complement and/or even replacement of synthetic drugs that are characterized by side effects and high economic costs. This review explores the traditional uses, chemical composition and biological activity of G. sylvestre extracts, providing a general framework on the most interesting extracts and what are the necessary studies for a complete definition of the range of activities.

  1. Diarylheptanoids, new phytoestrogens from the rhizomes of Curcuma comosa: Isolation, chemical modification and estrogenic activity evaluation.

    Science.gov (United States)

    Suksamrarn, Apichart; Ponglikitmongkol, Mathurose; Wongkrajang, Kanjana; Chindaduang, Anon; Kittidanairak, Suthadta; Jankam, Aroon; Yingyongnarongkul, Boon-ek; Kittipanumat, Narin; Chokchaisiri, Ratchanaporn; Khetkam, Pichit; Piyachaturawat, Pawinee

    2008-07-15

    Three new diarylheptanoids, a 1:2 mixture of (3S)- and (3R)-1-(4-methoxyphenyl)-7-phenyl-(6E)-6-hepten-3-ol (13a and 13b) and 1-(4-hydroxyphenyl)-7-phenyl-(6E)-6-hepten-3-one (15), together with two synthetically known diarylheptanoids 1,7-diphenyl-(1E,3E,5E)-1,3,5-triene (9) and 1-(4-hydroxyphenyl)-7-phenyl-(4E,6E)-4,6-heptadien-3-one (16), and nine known diarylheptanoids, 2, 8, 10-12, 14, a 3:1 mixture of 17a and 17b, and 18, were isolated from the rhizomes of Curcuma comosa Roxb. The absolute stereochemistry of the isolated compounds has also been determined using the modified Mosher's method. The isolated compounds and the chemically modified analogues were evaluated for their estrogenic-like transcriptional activity using RT-PCR in HeLa cell line. Some of the isolated diarylheptanoids and their modified analogues exhibited estrogenic activity comparable to or higher than that of the phytoestrogen genistein. Based on the transcriptional activation of both estrogenic targets, Bcl-xL and ERbeta gene expression, the structural features for a diarylheptanoid to exhibit high estrogenic activity are the presence of an olefinic function conjugated with the aromatic ring at the 7-position, a keto group at the 3-position, and a phenolic hydroxyl group at the p-position of the aromatic ring attached to the 1-position of the heptyl chain.

  2. Comparison of different methods for extraction from Tetraclinis articulata: yield, chemical composition and antioxidant activity.

    Science.gov (United States)

    Herzi, Nejia; Bouajila, Jalloul; Camy, Séverine; Romdhane, Mehrez; Condoret, Jean-Stéphane

    2013-12-15

    In the present study, three techniques of extraction: hydrodistillation (HD), solvent extraction (conventional 'Soxhlet' technique) and an innovative technique, i.e., the supercritical fluid extraction (SFE), were applied to ground Tetraclinis articulata leaves and compared for extraction duration, extraction yield, and chemical composition of the extracts as well as their antioxidant activities. The extracts were analyzed by GC-FID and GC-MS. The antioxidant activity was measured using two methods: ABTS(•+) and DPPH(•). The yield obtained using HD, SFE, hexane and ethanol Soxhlet extractions were found to be 0.6, 1.6, 40.4 and 21.2-27.4 g/kg respectively. An original result of this study is that the best antioxidant activity was obtained with an SFE extract (41 mg/L). The SFE method offers some noteworthy advantages over traditional alternatives, such as shorter extraction times, low environmental impact, and a clean, non-thermally-degraded final product. Also, a good correlation between the phenolic contents and the antioxidant activity was observed with extracts obtained by SFE at 9 MPa.

  3. Chemical composition and mosquito larvicidal activity of essential oils from leaves of different Cinnamomum osmophloeum provenances.

    Science.gov (United States)

    Cheng, Sen-Sung; Liu, Ju-Yun; Tsai, Kun-Hsien; Chen, Wei-June; Chang, Shang-Tzen

    2004-07-14

    Chemical compositions of leaf essential oils from eight provenances of indigenous cinnamon (Cinnamomum osmophloeum Kaneh.) were compared. According to GC-MS and cluster analyses, the leaf essential oils of the eight provenances and their relative contents were classified into five chemotypes-cinnamaldehyde type, linalool type, camphor type, cinnamaldehyde/cinnamyl acetate type, and mixed type. The larvicidal activities of leaf essential oils and their constituents from the five chemotypes of indigenous cinnamon trees were evaluated by mosquito larvicidal assay. Results of larvicidal tests demonstrated that the leaf essential oils of cinnamaldehyde type and cinnamaldehyde/cinnamyl acetate type had an excellent inhibitory effect against the fourth-instar larvae of Aedes aegypti. The LC(50) values for cinnamaldehyde type and cinnamaldehyde/cinnamyl acetate type against A. aegypti larvae in 24 h were 36 ppm (LC(90) = 79 ppm) and 44 ppm (LC(90) = 85 ppm), respectively. Results of the 24-h mosquito larvicidal assays also showed that the effective constituents in leaf essential oils were cinnamaldehyde, eugenol, anethole, and cinnamyl acetate and that the LC(50) values of these constituents against A. aegypti larvae were <50 ppm. Cinnamaldehyde had the best mosquito larvicidal activity, with an LC(50) of 29 ppm (LC(90) = 48 ppm) against A. aegypti. Comparisons of mosquito larvicidal activity of cinnamaldehyde congeners revealed that cinnamaldehyde exhibited the strongest mosquito larvicidal activity.

  4. Chemical composition and biological activity of essential oil from Pulicaria undulata from Yemen.

    Science.gov (United States)

    Ali, Nasser A Awadh; Sharopov, Farukh S; Alhaj, Mehdi; Hill, Gabrielle M; Porzel, Andrea; Arnold, Norbert; Setzer, William N; Schmidt, Jürgen; Wessjohann, Ludger

    2012-02-01

    The chemical composition of the essential oil obtained from the leaves of Pulicaria undulata Gamal Ed Din (syn P. orientalis sensu Schwartz and P. jaubertii Gamal Ed Din) was analyzed by GC-MS. Major compounds of P. undulata oil were the oxygenated monoterpenenes, carvotanacetone (91.4%) and 2,5-dimethoxy-p-cymene (2.6.%). The antimicrobial activity of the essential oil was evaluated against six microorganisms, Escherichia coli Pseudomonas aeruginosa, Staphylococcus aureus, methicillin-resistant S. aureus, Bacillus subtilis, and Candida albicans, using disc diffusion and broth microdilution methods. The oil showed the strongest bactericidal activity against Staphylococcus aureus and methicillin-resistant S. aureus, as well as Candida albicans. The essential oil showed moderate cytotoxic activity against MCF-7 breast tumor cells, with an IC50 of 64.6 +/- 13.7 microg/mL. Bioautographic assays were used to evaluate the acetylcholinesterase inhibitory effect as well as antifungal activity of the oil against Cladosporium cucumerinum.

  5. Chemical composition, cytotoxic and antioxidative activities of ethanolic extracts of propolis on HCT-116 cell line.

    Science.gov (United States)

    Žižić, Jovana B; Vuković, Nenad L; Jadranin, Milka B; Anđelković, Boban D; Tešević, Vele V; Kacaniova, Miroslava M; Sukdolak, Slobodan B; Marković, Snežana D

    2013-09-01

    Propolis is a complex resinous sticky substance that honeybees collect from buds and exudates of various plants. Owing to its versatile biological and pharmacological activities, propolis is widely used in medicines, cosmetics and foods. The aim of this study was to evaluate the cytotoxic and antioxidative effects of various ethanolic extracts of propolis (EEPs) on human colon cancer cell line HCT-116 and compare them with their composition determined by HPLC-DAD. The most abundant flavonoids in all samples were chrysin, pinocembrin and galangin (12.697-40.811 µg mg⁻¹), while the main phenolic acids were caffeic acid, ferulic acid and isoferulic acid. Dose- and time-dependent inhibition of growth of HCT-116 cells was observed for all propolis samples, with IC₅₀ values ranging from 26.33 to 143.09 µg mL⁻¹. Differences in cytotoxic activity of propolis samples were associated with differences in their composition. All EEP samples reduced both superoxide anion radical and nitrite levels and also had strong DPPH-scavenging activity. All tested propolis samples had pronounced cytotoxic and antioxidative activities. © 2013 Society of Chemical Industry.

  6. Effect of vegetation cycle on chemical content and antibacterial activity of Satureja montana L.

    Directory of Open Access Journals (Sweden)

    Damjanović-Vratnica Biljana

    2011-01-01

    Full Text Available Effect of vegetation cycle on phytochemical composition of the essential oil obtained from the aerial parts of wild-growing winter savory (Satureja montana L. from Montenegro was analysed by GC-MS and its antibacterial activity tested at different oil concentrations. A total of 36 and 34 constituents were identified in the hydrodistilled oil obtained from herb before flowering and during flowering stage, with major components: thymol (37,36% and 27,68%, carvacrol (15,47% and 4,40%, γ-terpinene (11,75% and 8.66% and p-cymene (7,86% and 31, 37%, respectively. The gained results revealed that essential oil of S. montana has rather significant antibacterial activity against chosen bacteria Staphylococcus aureus, Escherichia coli and Bacillus subtilis. Also, it was found that vegetation cycle affects the chemical composition and antibacterial activity of savory essential oil. Essential oil gained prior to herb flowering period showed stronger antibacterial activity in comparison with the oil gained during herb flowering.

  7. Chemical Composition and Acetylcholinesterase Inhibitory Activity of Essential Oils from Piper Species.

    Science.gov (United States)

    Xiang, Cai-Peng; Han, Jia-Xin; Li, Xing-Cong; Li, Yun-Hui; Zhang, Yi; Chen, Lin; Qu, Yan; Hao, Chao-Yun; Li, Hai-Zhou; Yang, Chong-Ren; Zhao, San-Jun; Xu, Min

    2017-05-10

    The essential oils (EOs) derived from aromatic plants such as Piper species are considered to play a role in alleviating neuronal ailments that are associated with inhibition of acetylcholinesterase (AChE). The chemical compositions of 23 EOs prepared from 16 Piper spp. were analyzed by both gas chromatography with a flame ionization detector (GC-FID) and gas chromatography-mass spectrometry (GC-MS). A total of 76 compounds were identified in the EOs from the leaves and stems of 19 samples, while 30 compounds were detected in the EOs from the fruits of four samples. Sesquiterpenes and phenylpropanoids were found to be rich in these EOs, of which asaricin, caryophyllene, caryophyllene oxide, isospathulenol, (+)-spathulenol, and β-bisabolene are the major constituents. The EOs from the leaves and stems of Piper austrosinense, P. puberulum, P. flaviflorum, P. betle, and P. hispidimervium showed strong AChE inhibitory activity with IC50 values in the range of 1.51 to 13.9 mg/mL. A thin-layer chromatography (TLC) bioautography assay was employed to identify active compound(s) in the most active EO from P. hispidimervium. The active compound was isolated and identified as asaricin, which gave an IC50 value of 0.44 ± 0.02 mg/mL against AChE, comparable to galantamine with an IC50 0.15 ± 0.01 mg/mL.

  8. Chemical constituents with free-radical-scavenging activities from the stem of Fissistigma polyanthum

    Directory of Open Access Journals (Sweden)

    Hua Fan

    2012-01-01

    Full Text Available Background: Fissistigma polyanthum is a liane belonging to the Annonaceae family and it is one of the most important crude drugs in traditional Chinese medicine. Objective: The objective was to describe the structural elucidation and the free-radical-scavenging activities of the isolated compounds from Fissistigma polyanthum. Material and Methods: The chemical constituents were isolated and purified by normal, reverse column chromatography and HPLC. Their structures were identified by spectroscopic methods ( 1 H NMR and 13 C NMR and by comparison with literature values, and the free-radical-scavenging activities of these two compounds were also evaluated through three in vitro model systems (DPPH, trolox equivalent antioxidant capacity (TEAC and Co (II EDTA-induced luminol chemiluminescence by flow injection. Results: Two known compounds, named kanakugiol (1 and teutenone A (2, were isolated from the stem of Fissistigma polyanthum for the first time, and compound 1 exhibited moderate free-radical-scavenging activity. Conclusion: Fissistigma polyanthum, which has traditionally been used as an important Chinese medicine, showed a certain free-radical-scavenging activity.

  9. Biological Activities and Chemical Characterization of Cordia verbenacea DC. as Tool to Validate the Ethnobiological Usage

    Directory of Open Access Journals (Sweden)

    Edinardo Fagner Ferreira Matias

    2013-01-01

    Full Text Available Knowledge of medicinal plants is often the only therapeutic resource of many communities and ethnic groups. “Erva-baleeira”, Cordia verbenacea DC., is one of the species of plants currently exploited for the purpose of producing a phytotherapeutic product extracted from its leaves. In Brazil, its major distribution is in the region of the Atlantic Forest and similar vegetation. The crude extract is utilized in popular cultures in the form of hydroalcoholic, decoctions and infusions, mainly as antimicrobial, antiinflammatory and analgesic agents. The aim of the present study was to establish a chemical and comparative profile of the experimental antibacterial activity and resistance modifying activity with ethnopharmacological reports. Phytochemical prospecting and HPLC analysis of the extract and fractions were in agreement with the literature with regard to the presence of secondary metabolites (tannins and flavonoids. The extract and fraction tested did not show clinically relevant antibacterial activity, but a synergistic effect was observed when combined with antibiotic, potentiating the antibacterial effect of aminoglycosides. We conclude that tests of antibacterial activity and modulating the resistance presented in this work results confirm the ethnobotanical and ethnopharmacological information, serving as a parameter in the search for new alternatives for the treatment of diseases.

  10. Evaluation of Antioxidant Activities of Some Small Fruits Containing Anthocyanins Using Electrochemical and Chemical Methods

    Directory of Open Access Journals (Sweden)

    Adina Căta

    2016-06-01

    Full Text Available The objective of this work was to estimate the antioxidant capacity of some fruits extracts containing anthocyanins (strawberry, raspberry, elderberry, mulberry, blackberry, bilberry, black and red currant using an electrochemical technique and three classical chemical methods based on reaction between antioxidants and a chromogen compound. evaluation of antioxidant activities of extracts was performed by using FRAP (ferric reducing/antioxidant capacity, ABTS (2,2’-azinobis[3-ethylbenzothiazoline-6-sulphonate] and DPPH (2,2-diphenyl-1-picrylhydrazyl assays. Antioxidant activities of the extracts were correlated with their content of monomeric anthocyanins and total phenolics. Good correlations were obtained especially between antioxidant activities and total phenolics content. Cyclic voltammetry was used for the evaluation of overall reducing capacity of the extracts using a glassy carbon electrode. Reducing capacity of selected fruits extracts was assessed based on the half-peak potential (E1/2 of the first oxidation peak. The oxidation potentials characterized by E1/2 value were not correlated with the antioxidant activities evaluated by the classical methods. This work is licensed under a Creative Commons Attribution 4.0 International License.

  11. Chemical constituents of Phragmanthera austroarabica A. G. Mill and J. A. Nyberg with potent antioxidant activity

    Directory of Open Access Journals (Sweden)

    Jihan M Badr

    2015-01-01

    Full Text Available Background: Phragmanthera austroarabica A.G. Mill. and J. A. Nyberg is a semi parasitic plant belonging to family Loranthaceae. It was collected from Saudi Arabia. It is widely used in folk medicine among the kingdom in treatment of various diseases including diabetes mellitus. Objective: The total alcoholic extract of P. austroarabica collected from Saudi Arabia was investigated for the chemical structure and prominent biological activity of the main constituents. Materials and Methods: Isolation of the active constituents was performed using different chromatographic techniques including column chromatography packed with silica or sephadex and preparative thin layer chromatography. The structures of the isolated compounds were established based on different spectroscopic data as mass spectrum, one-dimensional and two-dimensional nuclear magnetic resonance (correlation spectroscopy, heteronuclear single quantum coherence, and heteronuclear multiple-bond correlation. Results: Phytochemical investigation of the plant resulted in isolation of 12 compounds. The isolated compounds were identified as chrysophanic acid, emodin, chrysophanic acid-8-O-glucoside, emodin-8-O-glucoside, pectolinarigenin, quercetin, dillenetin-3-O-glucoside, catechin, catechin-4′-O-gallate, methyl gallate, lupeol and ursolic acid. All the isolated phenolic compounds revealed significant free radical scavenging activities when tested using 2,2-diphenyl-1-picrylhydrazyl reagent. Conclusion: The antioxidant activities of the isolated compounds can justify the use of P. austroarabica in traditional medicine for treatment of diabetes and verify its possible application as an antihyperglycemic drug.

  12. Antioxidant activity and chemical composition of Juniperus excelsa ssp. polycarpos wood extracts.

    Science.gov (United States)

    Hosseinihashemi, S K; Dadpour, A; Lashgari, A

    2017-03-01

    Extracts from the wood of Juniperus excelsa ssp. polycarpos were analysed for their antioxidant activity using the DPPH method and compared with ascorbic acid and butylated hydroxytoluene. The most active extracts were analysed for their chemical composition using gas chromatography-mass spectrometry. Acetone extract was found to be moderately active as an antioxidant agent at 58.38%, which was lower than the value of vitamin C (98.56%) at the concentration of 14.20 mg/mL. The major components identified in the acetone extract as trimethylsilyl (TMS) derivatives were pimaric acid TMS (24.56%), followed by α-d-glucopyranoside,1,3,4,6-tetrakis-O-(TMS)-β-d-fructofuranosyl 2,3,4,6-tetrakis-O-(TMS) (21.39%), triflouromethyl-bis-(TMS)methyl ketone (9.32%), and cedrol (0.72%). The dissolved water:methanol (1:1 v/v) partitioned from acetone extract afforded 12 fractions; among them, the F9 fraction was found to have good antioxidant activity (88.49%) at the concentration of 14.20 mg/mL. The major compounds identified in F9 fraction were α-d-glucopyranoside, 1,3,4,6-tetrakis-O-(TMS) (20.22%) and trifluoromethyl-bis-(TMS)methyl ketone (5.10%).

  13. Antifungal activity, toxicity and chemical composition of the essential oil of Coriandrum sativum L. fruits.

    Science.gov (United States)

    Soares, Bruna V; Morais, Selene M; dos Santos Fontenelle, Raquel Oliveira; Queiroz, Vanessa A; Vila-Nova, Nadja S; Pereira, Christiana M C; Brito, Edy S; Neto, Manoel A S; Brito, Erika H S; Cavalcante, Carolina S P; Castelo-Branco, Débora S C M; Rocha, Marcos F G

    2012-07-11

    The aims of this study were to test the antifungal activity, toxicity and chemical composition of essential oil from C. sativum L. fruits. The essential oil, obtained by hydro-distillation, was analyzed by gas chromatography/mass spectroscopy. Linalool was the main constituent (58.22%). The oil was considered bioactive, showing an LC₅₀ value of 23 μg/mL in the Artemia salina lethality test. The antifungal activity was evaluated against Microsporum canis and Candida spp. by the agar-well diffusion method and the minimum inhibitory concentration (MIC) and the minimum fungicidal concentration (MFC) were established by the broth microdilution method. The essential oil induced growth inhibition zones of 28 ± 5.42 and 9.25 ± 0.5 for M. canis and Candida spp. respectively. The MICs and MFCs for M. canis strains ranged from 78 to 620 and 150 to 1,250 μg/mL, and the MICs and MFCs for Candida spp strains ranged from 310 to 620 and 620 to 1,250 μg/mL, respectively. C. sativum essential oil is active in vitro against M. canis and Candida spp. demonstrating good antifungal activity.

  14. Chemical Composition and Nematicidal Activity of Essential Oil of Agastache rugosa against Meloidogyne incognita

    Directory of Open Access Journals (Sweden)

    Zhi Wei Deng

    2013-04-01

    Full Text Available The aim of this research was to determine the chemical composition and nematicidal activity of essential oil of Agastache rugosa flowering aerial parts against the root knot nematode, Meloidogyne incognita, and to isolate and identify any nematicidal constituents from the essential oil. The essential oil of A. rugosa aerial parts was obtained by hydrodistillation and analyzed by GC-FID and GC-MS. A total of 37 components of the essential oil were identified, with the principal compounds being methyleugenol (50.51%, estragole (8.55%, and eugenol (7.54%, followed by thymol (3.62%, pulegone (2.56%, limonene (2.49% and caryophyllene (2.38%. Based on bioactivity-guided fractionation, the three active constituents were isolated from the essential oil and identified as methyleugenol, estragole and eugenol. The essential oil of A. rugosa exhibited strong nematicidal activity against M. incognita, with a LC50 value of 47.3 μg/mL. The components eugenol (LC50 = 66.6 μg/mL and methyleugenol (LC50 = 89.4 μg/mL exhibited stronger nematicidal activity against M. incognita (LC50 = 185.9 μg/mL. The results indicate that the essential oil of A. rugosa aerial parts and its constituent compounds have potential for development into natural nematicides for control of the root knot nematode.

  15. Chemical use

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This is a summary of research and activities related to chemical use on Neal Smith National Wildlife Refuge between 1992 and 2009. The chemicals used on the Refuge...

  16. Activation of cellular oncogenes by chemical carcinogens in Syrian hamster embryo fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, R.; Reiss, E.; Roellich, G.; Schiffmann, D. (Univ. of Wuerzburg (West Germany)); Barrett, J.C.; Wiseman, R.W. (National Institute of Environmental Health Sciences, Research Triangle Park, NC (USA)); Pechan, R.

    1990-08-01

    Carcinogen-induced point mutations resulting in activation of ras oncogenes have been demonstrated in various experimental systems such as skin carcinogenesis, mammary, and liver carcinogenesis. In many cases, the data support the conclusion that these point mutations are critical changes in the initiation of these tumors. The Syrian hamster embryo (SHE) cell transformation model system has been widely used to study the multistep process of chemically induced neoplastic transformation. Recent data suggest that activation of the Ha-ras gene via point mutation is one of the crucial events in the transformation of these cells. The authors have now cloned the c-Ha-ras proto-oncogene from SHE cDNA-libraries, and we have performed polymerase chain reaction and direct sequencing to analyze tumor cell lines induced by different chemical carcinogens for the presence of point mutations. No changes were detectable at codons 12, 13, 59, 61, and 117 or adjacent regions in tumor cell lines induced by diethylstilbestrol, asbestos, benzo(a)pyrene, trenbolone, or aflatoxin B{sub 1}. Thus, it is not known whether point mutations in the Ha-ras proto-oncogene are essential for the acquisition of the neoplastic phenotype of SHE cells. Activation of other oncogenes or inactivation of tumor suppressor genes may be responsible for the neoplastic progression of these cells. However, in SHE cells neoplastically transformed by diethylstilbestrol or trenbolone, a significant elevation of the c-Ha-ras expression was observed. Enhanced expression of c-myc was detected in SHE cells transformed by benzo(a)pyrene or trenbolone.

  17. Antioxidant Activity of Caffeic Acid against Iron-Induced Free Radical Generation--A Chemical Approach.

    Directory of Open Access Journals (Sweden)

    Thiago C Genaro-Mattos

    Full Text Available Caffeic acid (CA is a phenolic compound widely found in coffee beans with known beneficial effects in vivo. Many studies showed that CA has anti-inflammatory, anti-mutagenic, antibacterial and anti-carcinogenic properties, which could be linked to its antioxidant activity. Taking in consideration the reported in vitro antioxidant mechanism of other polyphenols, our working hypothesis was that the CA antioxidant activity could be related to its metal-chelating property. With that in mind, we sought to investigate the chemical antioxidant mechanism of CA against in vitro iron-induced oxidative damage under different assay conditions. CA was able to prevent hydroxyl radical formation promoted by the classical Fenton reaction, as determined by 2-deoxyribose (2-DR oxidative degradation and DMPO hydroxylation. In addition to its ability to prevent hydroxyl radical formation, CA had a great inhibition of membrane lipid peroxidation. In the lipid peroxidation assays CA acted as both metal-chelator and as hydrogen donor, preventing the deleterious action promoted by lipid-derived peroxyl and alkoxyl radicals. Our results indicate that the observed antioxidant effects were mostly due to the formation of iron-CA complexes, which are able to prevent 2-DR oxidation and DMPO hydroxylation. Noteworthy, the formation of iron-CA complexes and prevention of oxidative damage was directly related to the pH of the medium, showing better antioxidant activity at higher pH values. Moreover, in the presence of lipid membranes the antioxidant potency of CA was much higher, indicating its enhanced effectiveness in a hydrophobic environment. Overall, our results show that CA acts as an antioxidant through an iron chelating mechanism, preventing the formation of free hydroxyl radicals and, therefore, inhibiting Fenton-induced oxidative damage. The chemical properties of CA described here--in association with its reported signaling effects--could be an explanation to its

  18. Antioxidant Activity of Caffeic Acid against Iron-Induced Free Radical Generation—A Chemical Approach

    Science.gov (United States)

    Genaro-Mattos, Thiago C.; Maurício, Ângelo Q.; Rettori, Daniel; Alonso, Antonio; Hermes-Lima, Marcelo

    2015-01-01

    Caffeic acid (CA) is a phenolic compound widely found in coffee beans with known beneficial effects in vivo. Many studies showed that CA has anti-inflammatory, anti-mutagenic, antibacterial and anti-carcinogenic properties, which could be linked to its antioxidant activity. Taking in consideration the reported in vitro antioxidant mechanism of other polyphenols, our working hypothesis was that the CA antioxidant activity could be related to its metal-chelating property. With that in mind, we sought to investigate the chemical antioxidant mechanism of CA against in vitro iron-induced oxidative damage under different assay conditions. CA was able to prevent hydroxyl radical formation promoted by the classical Fenton reaction, as determined by 2-deoxyribose (2-DR) oxidative degradation and DMPO hydroxylation. In addition to its ability to prevent hydroxyl radical formation, CA had a great inhibition of membrane lipid peroxidation. In the lipid peroxidation assays CA acted as both metal-chelator and as hydrogen donor, preventing the deleterious action promoted by lipid-derived peroxyl and alkoxyl radicals. Our results indicate that the observed antioxidant effects were mostly due to the formation of iron-CA complexes, which are able to prevent 2-DR oxidation and DMPO hydroxylation. Noteworthy, the formation of iron-CA complexes and prevention of oxidative damage was directly related to the pH of the medium, showing better antioxidant activity at higher pH values. Moreover, in the presence of lipid membranes the antioxidant potency of CA was much higher, indicating its enhanced effectiveness in a hydrophobic environment. Overall, our results show that CA acts as an antioxidant through an iron chelating mechanism, preventing the formation of free hydroxyl radicals and, therefore, inhibiting Fenton-induced oxidative damage. The chemical properties of CA described here—in association with its reported signaling effects—could be an explanation to its beneficial effects

  19. A Study on an Executive Technique and Activation of Clean Production in Chemical Industry

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Seong Yong; Lee, Hee Seok; Kim, Kang Seok [Korea Environment Institute, Seoul (Korea)

    2000-12-01

    Clean production does not only make the sustainable development possible through preventing the deterioration of the environmental pollution from the expansion of industrialization but also enhance the company's competitiveness. Clean production is required by all industrial fields but is the most important in chemical industry. The Government has made efforts to change the domestic industrial structure to the environmental-friendly structure through developing the research. However, the domestic industry has not yet activated overall except some large companies, which has concretized the activation of clean production. Especially, the medium and small companies are more sluggish due to the inferiority of capital and technology. With recognizing that the main body of clean production is a company, the effort based on the Government and the academic world, without companies' positive, will cannot help being limited in effects. Therefore, it is necessary to trigger the schemes that urge the companies' motivation to show the effects from the support that have concentrated in hardware like technology until now. It seems to be very important that the guidebook for clean production, which a company can easily adopt, is developed and spread. This report provides the guidebook for clean production that managers and engineers can easily understand and approach in a producing field and presents the scheme to promote clean production, for chemical industry that is seriously required clean production. Even if the presented contents are not perfect, they can be applied to the development of the Government's policy and the administrative activities of companies for clean production as a useful data. 53 refs., 5 figs., 30 tabs.

  20. Chemical composition and biological activities of essential oils of Azadirachta indica A. Juss.

    Directory of Open Access Journals (Sweden)

    S S El-Hawary

    2013-09-01

    Full Text Available Summary. Essential oils of Neem, Azadirachta indica A. Juss. (family Meliaceae leaves and flowers were prepared by hydrodistillation method. The chemical composition of the oil samples was investigated by GC/MS. Hydrocarbon constituted 85.36% of the leaves oil .The major compounds were β-Elemene (33.39%, γ- Elemene (9.89%, Germacrene D (9.72%, Caryophyllene (6.8% and Bicyclogermacrene (5.23% while the percent of the oxygenated compounds were (5.04% mainly attributed to sesquiterpene oxide. On the other hand, flowers oil hydrocarbons constituted 63.22% composed mainly of pentacosane (18.58%, tetracosane (10.65%, β-germacrene (9.73%, β- caryophyllene (5.84% and dodecene (4.54% while the percent of the oxygenated compounds were 28.3% mainly attributed to octadecanol (16.7%, verdiflorol (5.32%, farnesol (1.63% and α– terpineol (1.51%. The antioxidant properties determined by 2, 2-diphenyl-1-picrylhydrazyl assays, antibacterial activity against Gram-positive and Gram-negative, antifungal and larvicidal activities were promising and in relation with the chemical composition of the essential oils. The results indicated that essential oil of flowers could be especially promising as an inexpensive source of effective antioxidant /antimicrobial /larvicidal agents tantamount to fixed oil of the neem seeds.Industrial relevance. The use of medicinal plants is a universal phenomenon. Natural products from plants are rich source to identify, select and process new drugs for medicinal use. Most of research focused on fixed oil of neem seeds but very little was concerned about volatile oils of leaves and flowers. The diverse biological activities of Neem essential oils can be applied on a large scale as antioxidant, antimicrobial and larvicidal agents comprising many important benefits including their volatility, lower level of risk to the environment than with synthetic ones.Keywords. Azadirachta indica; Neem; essential oil; GC/MS; antioxidant

  1. Antimicrobial activity and chemical composition of the essential oils of Portuguese Foeniculum vulgare fruits.

    Science.gov (United States)

    Mota, Ana S; Martins, M Rosário; Arantes, Sílvia; Lopes, Violeta R; Bettencourt, Eliseu; Pombal, Sofia; Gomes, Arlindo C; Silva, Lúcia A

    2015-04-01

    The aim of this study was to investigate the chemical composition and antimicrobial activity of essential oils obtained by hydrodistillation from fruits of six fennel accessions collected from wild populations occurring in the centre and south of Portugal. Composition of essential oils was established by Gas Chromatography-Flame Ionization Detector (GC-FID) and Gas Chromatography-Mass Spectrometry (GC-MS) analysis. The obtained yields of the essential oils were found to vary greatly in the range of 1.1 to 2.9% (v/w) and the chemical composition varied with the region of collection. A total of 16 compounds were identified. The main compounds were fenchone (16.9 - 34.7%), estragole (2.5 - 66.0%) and trans-anethole (7.9 - 77.7%). The percentages of these three main compounds were used to determine the relationship between the different oil samples and to group them into four different chemotypes: anethole/fenchone; anethole; estragole and anethole/estragole. Antifungal activity of essential oils was evaluated against six food spoilage fungi: Aspergillus niger, A. japonicus, A. oryzae, Fusarium oxysporum, Rhizophus oryzae and R. stolonifer. Antibacterial activity was assessed against three Gram-positive strains: Enterococcus faecalis ATCC 29212, Staphylococcus epidermidis ATCC 12228 and S. aureus ATCC 28213; and against six Gram-negative strains: Escherichia coli ATCC 25922; Morganella morganii LFG 08; Proteus mirabilis LFG 04; Salmonella enteritidis LFG 05; S. entiritidis serovar typhimurium LFG 06 and Pseudomonas aeruginosa ATCC 27853 by the disc diffusion agar method; the minimal inhibitory concentration (MIC) was determined using the broth macro-dilution method. The MIC values varied from 62.5 (E. coli ATCC 25922) to 2000 µmL (P. aeruginosa ATCC 27853).

  2. Disposal of chemical agents and munitions stored at Umatilla Depot Activity, Hermiston, Oregon

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, G.P.; Hillsman, E.L.; Johnson, R.O.; Miller, R.L.; Patton, T.G.; Schoepfle, G.M.; Tolbert, V.R.; Feldman, D.L.; Hunsaker, D.B. Jr.; Kroodsma, R.L.; Morrissey, J.; Rickert, L.W.; Staub, W.P.; West, D.C.

    1993-02-01

    The Umatilla Depot Activity (UMDA) near Hermiston, Oregon, is one of eight US Army installations in the continental United States where lethal unitary chemical agents and munitions are stored, and where destruction of agents and munitions is proposed under the Chemical Stockpile Disposal Program (CSDP). The chemical agent inventory at UMDA consists of 11.6%, by weight, of the total US stockpile. The destruction of the stockpile is necessary to eliminate the risk to the public from continued storage and to dispose of obsolete and leaking munitions. In 1988 the US Army issued a Final Programmatic Environmental Impact Statement (FPEIS) for the CSDP that identified on-site disposal of agents and munitions as the environmentally preferred alternative (i.e., the alternative with the least potential to cause significant adverse impacts), using a method based on five measures of risk for potential human health and ecosystem/environmental effects; the effectiveness and adequacy of emergency preparedness capabilities also played a key role in the FPEIS selection methodology. In some instances, the FPEIS included generic data and assumptions that were developed to allow a consistent comparison of potential impacts among programmatic alternatives and did not include detailed conditions at each of the eight installations. The purpose of this Phase 1 report is to examine the proposed implementation of on-site disposal at UMDA in light of more recent and more detailed data than those included in the FPEIS. Specifically, this Phase 1 report is intended to either confirm or reject the validity of on-site disposal for the UMDA stockpile. Using the same computation methods as in the FPEIS, new population data were used to compute potential fatalities from hypothetical disposal accidents. Results indicate that onsite disposal is clearly preferable to either continued storage at UMDA or transportation of the UMDA stockpile to another depot for disposal.

  3. Chemical Oxidation of Complex PAH Mixtures by Base-activated Sodium Persulfate

    Science.gov (United States)

    Hauswirth, S.; Miller, C. T.

    2013-12-01

    In situ chemical oxidation (ISCO) is an attractive approach for the remediation of recalcitrant soil and groundwater contaminants. One oxidant that has received significant recent attention is sodium persulfate, which has several advantages, including a relatively long lifetime in porous media, the ability to destroy a wide-range of chemical contaminants, and a high oxidation potential. In this study, we investigated the chemical mechanisms associated with base-activated persulfate oxidation of polycyclic aromatic hydrocarbons (PAHs) and assessed the applicability of persulfate to the remediation of porous media contaminated with non-aqueous phase liquid (NAPL) PAH mixtures. Batch experiments were conducted to determine the oxidation kinetics for individual PAH compounds, synthetic PAH mixtures, and manufactured gas plant (MGP) tars. Additional experiments were conducted with added surfactants (Triton X-100, Triton X-45, and Tween 80) to increase PAH mass transfer from the NAPL to the aqueous phase, and with radical scavengers (ethanol and tert-butyl alcohol) to identify the reactive species responsible for degradation. Degradation of total PAHs in the NAPL experiments was as high as 70%. The addition of surfactant increased initial PAH degradation rates, but also greatly increased the rate of base consumption, thereby reducing the overall fraction degraded. The degradation of individual PAHs within the NAPLs varied significantly, with the masses of some compounds remaining largely unchanged. The results of the radical scavenger and single PAH experiments suggest that the observed pattern of degradation in PAH mixtures is the result of a combination of mass transfer considerations and competition for radical species.

  4. Endocrine-disrupting activity of hydraulic fracturing chemicals and adverse health outcomes after prenatal exposure in male mice

    Science.gov (United States)

    Kassotis, Christopher D.; Klemp, Kara C.; Vu, Danh C.; Lin, Chung-Ho; Meng, Chun-Xia; Besch-Williford, Cynthia L.; Pinatti, Lisa; Zoeller, R. Thomas; Drobnis, Erma Z.; Balise, Victoria D.; Isiguzo, Chiamaka J.; Williams, Michelle A.; Tillitt, Donald E.; Nagel, Susan C.

    2015-01-01

    Oil and natural gas operations have been shown to contaminate surface and ground water with endocrine-disrupting chemicals. In the current study, we fill several gaps in our understanding of the potential environmental impacts related to this process. We measured the endocrine-disrupting activities of 24 chemicals used and/or produced by oil and gas operations for five nuclear receptors using a reporter gene assay in human endometrial cancer cells. We also quantified the concentration of 16 of these chemicals in oil and gas wastewater samples. Finally, we assessed reproductive and developmental outcomes in male C57BL/6J mice after the prenatal exposure to a mixture of these chemicals. We found that 23 commonly used oil and natural gas operation chemicals can activate or inhibit the estrogen, androgen, glucocorticoid, progesterone, and/or thyroid receptors, and mixtures of these chemicals can behave synergistically, additively, or antagonistically in vitro. Prenatal exposure to a mixture of 23 oil and gas operation chemicals at 3, 30, and 300 μg/kg · d caused decreased sperm counts and increased testes, body, heart, and thymus weights and increased serum testosterone in male mice, suggesting multiple organ system impacts. Our results suggest possible adverse developmental and reproductive health outcomes in humans and animals exposed to potential environmentally relevant levels of oil and gas operation chemicals.

  5. Endocrine-Disrupting Activity of Hydraulic Fracturing Chemicals and Adverse Health Outcomes After Prenatal Exposure in Male Mice.

    Science.gov (United States)

    Kassotis, Christopher D; Klemp, Kara C; Vu, Danh C; Lin, Chung-Ho; Meng, Chun-Xia; Besch-Williford, Cynthia L; Pinatti, Lisa; Zoeller, R Thomas; Drobnis, Erma Z; Balise, Victoria D; Isiguzo, Chiamaka J; Williams, Michelle A; Tillitt, Donald E; Nagel, Susan C

    2015-12-01

    Oil and natural gas operations have been shown to contaminate surface and ground water with endocrine-disrupting chemicals. In the current study, we fill several gaps in our understanding of the potential environmental impacts related to this process. We measured the endocrine-disrupting activities of 24 chemicals used and/or produced by oil and gas operations for five nuclear receptors using a reporter gene assay in human endometrial cancer cells. We also quantified the concentration of 16 of these chemicals in oil and gas wastewater samples. Finally, we assessed reproductive and developmental outcomes in male C57BL/6J mice after the prenatal exposure to a mixture of these chemicals. We found that 23 commonly used oil and natural gas operation chemicals can activate or inhibit the estrogen, androgen, glucocorticoid, progesterone, and/or thyroid receptors, and mixtures of these chemicals can behave synergistically, additively, or antagonistically in vitro. Prenatal exposure to a mixture of 23 oil and gas operation chemicals at 3, 30, and 300 μg/kg · d caused decreased sperm counts and increased testes, body, heart, and thymus weights and increased serum testosterone in male mice, suggesting multiple organ system impacts. Our results suggest possible adverse developmental and reproductive health outcomes in humans and animals exposed to potential environmentally relevant levels of oil and gas operation chemicals.

  6. Chemical composition, antioxidative and antimicrobial activity of essential oil Ocimum sanctum L.

    Directory of Open Access Journals (Sweden)

    Beatović Damir V.

    2013-01-01

    Full Text Available Ocimum sanctum L. (Lamiaceae sin. Ocimum tenuiflorum L. or Tulsi basil is a plant originating from tropical and subtropical areas of India. It is used in both the traditional and official medicine in India. Tulsi is a type of basil that is insufficiently explored and studied in Europe. The goal of this paper is to determine the chemical composition, antioxidative, and antimicrobial activity of the essential oil Ocimum sanctum L. grown in Serbia. The quantity of essential oil in 100 g of herb (v/w is 0.68%, with 41 components identified in the tested essential oil. The most represented chemical group are sesquiturpene hydrocarbonates with 80.47%. Other groups were much less represented. Sesquiturpene hydrocarbonate β-cariophyllene is a predominant component in the essential oil with 63.80%. The quantity of tested essential oil needed to achieve 50% of inhibition of DPPH radicals is 0.35 μg/ml, and it has high potential to neutralize free radicals. The essential oil exhibited antibacterial activity to all tested strains of bacteria, both Gram-positive and Gram-negative. It affected all strains in an inhibitory way in the interval 0.34-41.50 μl/ml, and in a bactericide way within the range 22.50-124.5 μl/ml. The most sensitive strains of bacteria are Salmonella typhimurium and Escherichia coli, while Listeria monocytogenes and Enterococus faecalis showed greatest resistance. The essential oil exhibited antifugal activity on all tested fungi. It affected all tested fungi in an inhibitory way in the interval 4.42-8.83 μl/ml, and in a microbicide way within the range 10.00-50.00 μl/ml. The most sensitive fungi are: Aspergillus ochraceus, Penicillium ochrochloron and Penicilium funiculosum, while the most resistent one is Aspergillus niger. The tested basil essential oil Ocimum sanctum demonstrated significant antioxidative and antimicrobial effect and may be used as a raw material in food, pharmaceutical and chemical industries.

  7. Chemical Analysis and Biological Activity of the Essential Oils of Two Endemic Soqotri Commiphora Species

    Directory of Open Access Journals (Sweden)

    Wulf Schultze

    2010-02-01

    Full Text Available The barks of two endemic Commiphora species namely, Commiphora ornifolia (Balf.f. Gillett and Commiphora parvifolia Engl., were collected from Soqotra Island in Yemen and their essential oils were obtained by hydrodistillation. The chemical composition of both oils was investigated by GC and GC-MS. Moreover, the essential oils were evaluated for their antimicrobial activity against two Gram-positive bacteria, two Gram-negative bacteria and one yeast species by using a broth micro-dilution assay for minimum inhibitory concentrations (MIC and for their antioxidant activity by measuring the DPPH radical scavenging activity. A total of 45 constituents of C. ornifolia (85.6% and 44 constituents of C. parvifolia (87.1% were identified. The oil of C. ornifolia was characterized by a high content of oxygenated monoterpenes (56.3%, of which camphor (27.3%, α-fenchol (15.5%, fenchone (4.4% and borneol (2.9% were identified as the main components. High contents of oxygenated sesquiterpenes (36.1% and aliphatic acids (22.8% were found in C. parvifolia oil, in which caryophyllene oxide (14.2%, β-eudesmol (7.7%, bulnesol (5.7%, T-cadinol (3.7% and hexadecanoic acid (18.4% predominated. The results of the antimicrobial assay showed that both oils exhibited moderate to high antibacterial activity especially against Gram-positive bacteria. C. ornifolia oil was the most active. In addition, the DPPH-radical scavenging assay exhibited only weak antioxidant activities for both oils at the high concentration tested.

  8. Chemical compositions and biological activities of the essential oils of Beilschmiedia madang Blume (Lauraceae).

    Science.gov (United States)

    Salleh, Wan Mohd Nuzul Hakimi Wan; Ahmad, Farediah; Yen, Khong Heng

    2015-04-01

    The present study aimed to examine the chemical compositions of the essential oils of Beilschmiedia madang and their antioxidant, antibacterial, antifungal, anticholinesterase and anti-tyrosinase activities. The major constituents of the essential oils of leaf and bark of B. madang were δ-cadinene (17.0 and 20.5 %), β-caryophyllene (10.3 and 6.7 %), α-cubebene (11.3 and 15.6 %), and α-cadinol (5.8 and 10.6 %). The essential oils were screened for their antioxidant activities using 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, β-carotene/linoleic acid bleaching, and total phenolic content. The bark oil showed the highest β-carotene/linoleic acid bleaching (90.3 % ± 0.2) and DPPH radical scavenging (IC50 212.0 µg/mL), while the highest phenolic content was exhibited by the leaf oil (94.5 % ± 0.3 mg GA/g). The antibacterial and antifungal activities were investigated by the disc diffusion and micro dilution method. The leaf and bark oils showed moderate activity towards Bacillus subtilis and Staphylococcus aureus with minimum inhibitory concentration (MIC) value 125 µg/mL. For antifungal assay, the bark oil showed strong activity towards Aspergillus niger and Aspergillus fumigatus with MIC value 62.5 µg/mL. Anticholinesterase and anti-tyrosinase activities were evaluated against Ellman method and mushroom tyrosinase, respectively. The results showed that leaf oil gave significant percentage inhibition (I%: acetylcholinesterase 55.2 %, butyrylcholinesterase 60.4 %, tyrosinase 53.1 %).

  9. Chemical Composition, Antioxidant, Anti-Inflammatory, and Antiproliferative Activities of the Plant Lebanese Crataegus Azarolus L.

    Science.gov (United States)

    Kallassy, Hany; Fayyad-Kazan, Mohammad; Makki, Rawan; El-Makhour, Yolla; Hamade, Eva; Rammal, Hasan; Leger, David Y; Sol, Vincent; Fayyad-Kazan, Hussein; Liagre, Bertrand; Badran, Bassam

    2017-08-03

    BACKGROUND In the present study, phytochemical screening, antioxidant, anti-inflammatory, and antiproliferative capacities of 3 extracts from leaves of Lebanese Crataegus azarolus L. were evaluated. MATERIAL AND METHODS Fresh leaves were dissolved in 3 different solvents: distilled water, ethanol, and methanol. The chemical composition was determined using high-performance liquid chromatography (HPLC) and the content of essential oil of this plant was examined by gas chromatography (GC) coupled with mass spectrometry (MS). The antioxidant potential was evaluated using DPPH radical scavenging and Fe2+ chelating activity assays. Anti-inflammatory effect was investigated by measuring the secreted amounts of the proinflammatory mediator PGE2 using ELISA technique, as well as by assaying the mRNA levels of the proinflammatory cytokines (IL-α, IL-β, and Il-6), chemokines (CCL3 and CCL4) and inflammation-sensitive COX2 and iNOS enzymes using quantitative real-time PCR (qRT-PCR). The antiproliferative effect was evaluated using the XTT viability assay. RESULTS The obtained results show that alcohol (methanol and ethanol) extracts were rich in bioactive molecules with medical relevance and exerted substantial antioxidant, anti-inflammatory, and antiproliferative capacities. On the other hand, aqueous extract contained fewer chemical components and exhibited less therapeutic efficiency. CONCLUSIONS Our observations indicate that Crataegus azarolus L. could be used for treating diseases related to oxidative stress, inflammatory reactions, and uncontrolled cell growth.

  10. Bioorthogonal chemical imaging of metabolic activities in live mammalian hippocampal tissues with stimulated Raman scattering

    Science.gov (United States)

    Hu, Fanghao; Lamprecht, Michael R.; Wei, Lu; Morrison, Barclay; Min, Wei

    2016-12-01

    Brain is an immensely complex system displaying dynamic and heterogeneous metabolic activities. Visualizing cellular metabolism of nucleic acids, proteins, and lipids in brain with chemical specificity has been a long-standing challenge. Recent development in metabolic labeling of small biomolecules allows the study of these metabolisms at the global level. However, these techniques generally require nonphysiological sample preparation for either destructive mass spectrometry imaging or secondary labeling with relatively bulky fluorescent labels. In this study, we have demonstrated bioorthogonal chemical imaging of DNA, RNA, protein and lipid metabolism in live rat brain hippocampal tissues by coupling stimulated Raman scattering microscopy with integrated deuterium and alkyne labeling. Heterogeneous metabolic incorporations for different molecular species and neurogenesis with newly-incorporated DNA were observed in the dentate gyrus of hippocampus at the single cell level. We further applied this platform to study metabolic responses to traumatic brain injury in hippocampal slice cultures, and observed marked upregulation of protein and lipid metabolism particularly in the hilus region of the hippocampus within days of mechanical injury. Thus, our method paves the way for the study of complex metabolic profiles in live brain tissue under both physiological and pathological conditions with single-cell resolution and minimal perturbation.

  11. Hancornia speciosa latex for biomedical applications: physical and chemical properties, biocompatibility assessment and angiogenic activity.

    Science.gov (United States)

    Almeida, Luciane Madureira; Floriano, Juliana Ferreira; Ribeiro, Thuanne Pires; Magno, Lais Nogueira; da Mota, Lígia Souza Lima Silveira; Peixoto, Nei; Mrué, Fátima; Melo-Reis, Paulo; Lino Junior, Ruy de Souza; Graeff, Carlos Frederico de Oliveira; Gonçalves, Pablo José

    2014-09-01

    The latex obtained from Hancornia speciosa is used in folk medicine for treatment of several diseases, such as acne, warts, diabetes, gastritis and inflammation. In this work, we describe the biocompatibility assessment and angiogenic properties of H. speciosa latex and its potential application in medicine. The physical-chemical characterization was carried out following different methodologies (CHN elemental analyses; thermogravimetric analyses and Fourier transform infrared spectroscopy). The biocompatibility was evaluated through cytotoxicity and genotoxicity tests in fibroblast mouse cells and the angiogenic properties were evaluated using the chick chorioallantoic membrane (CAM) assay model. The physical-chemical results showed that the structure of Hancornia speciosa latex biomembrane is very similar to that of Hevea brasiliensis (commercially available product). Moreover, the cytotoxicity and genotoxicity assays showed that H. speciosa latex is biocompatible with life systems and can be a good biomaterial for medical applications. The CAM test showed the efficient ability of H. speciosa latex in neovascularization of tissues. The histological analysis was in accordance with the results obtained in the CAM assay. Our data indicate that the latex obtained from H. speciosa and eluted in water showed significant angiogenic activity without any cytotoxic or genotoxic effects on life systems. The same did not occur with H. speciosa latex stabilized with ammonia. Addition of ammonia does not have significant effects on the structure of biomembranes, but showed a smaller cell survival and a significant genotoxicity effect. This study contributes to the understanding of the potentialities of H. speciosa latex as a source of new phytomedicines.

  12. Plasma Enhanced Chemical Vapor Deposition Nanocrystalline Tungsten Carbide Thin Film and Its Electro-catalytic Activity

    Institute of Scientific and Technical Information of China (English)

    Huajun ZHENG; Chunan MA; Jianguo HUANG; Guohua LI

    2005-01-01

    Nanocrystalline tungsten carbide thin films were fabricated on graphite substrates by plasma enhanced chemical vapor deposition (PECVD) at H2 and Ar atmosphere, using WF6 and CH4 as precursors. The crystal phase, structure and chemical components of the films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive spectrometer (EDS), respectively. The results show that the film prepared at CH4/WF6concentration ratio of 20 and at 800℃ is composed of spherical particles with a diameter of 20~35 nm. Electrochemical investigations show that the electrochemical real surface area of electrode of the film is large, and the electrode of the film exhibits higher electro-catalytic activity in the reaction of methanol oxidation. The designated constant current of the film catalyst is 123.6 mA/cm2 in the mixture solution of H2SO4 and CH3OH at the concentration of 0.5 and 2.0 mol/L at 70℃, and the designated constant potential is only 0.306 V (vs SCE).

  13. CHEMICAL ACTIVATION OF MOLECULES BY METALS: EXPERIMENTAL STUDIES OF ELECTRON DISTRIBUTIONS AND BONDING

    Energy Technology Data Exchange (ETDEWEB)

    LICHTENBERGER, DENNIS L.

    2002-03-26

    This research program is directed at obtaining detailed experimental information on the electronic interactions between metals and organic molecules. These interactions provide low energy pathways for many important chemical and catalytic processes. A major feature of the program is the continued development and application of our special high-resolution valence photoelectron spectroscopy (UPS), and high-precision X-ray core photoelectron spectroscopy (XPS) instrumentation for study of organometallic molecules in the gas phase. The study involves a systematic approach towards understanding the interactions and activation of bound carbonyls, C-H bonds, methylenes, vinylidenes, acetylides, alkenes, alkynes, carbenes, carbynes, alkylidenes, alkylidynes, and others with various monometal, dimetal, and cluster metal species. Supporting ligands include -aryls, alkoxides, oxides, and phosphines. We are expanding our studies of both early and late transition metal species and electron-rich and electron-poor environments in order to more completely understand the electronic factors that serve to stabilize particular organic fragments and intermediates on metals. Additional new directions for this program are being taken in ultra-high vacuum surface UPS, XPS, scanning tunneling microscopy (STM) and atomic force microscopy (AFM) experiments on both physisorbed and chemisorbed organometallic thin films. The combination of these methods provides additional electronic structure information on surface-molecule and molecule-molecule interactions. A very important general result emerging from this program is the identification of a close relationship between the ionization energies of the species and the thermodynamics of the chemical and catalytic reactions of these systems.

  14. Synthesis of CuS nanoparticles by a wet chemical route and their photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Mou; Mathews, N. R. [Universidad Nacional Autónoma de México, Instituto de Energías Renovables (Mexico); Sanchez-Mora, E.; Pal, U. [Instituto de Física, BUAP (Mexico); Paraguay-Delgado, F. [Centro de Investigación en Materiales Avanzados (CIMAV), Departamento de Materiales Nanoestructurados (Mexico); Mathew, X., E-mail: xm@ier.unam.mx [Universidad Nacional Autónoma de México, Instituto de Energías Renovables (Mexico)

    2015-07-15

    CuS nanoparticles (NPs) of few nanometers in size were prepared by a wet chemical method. The structural, compositional, and optical properties of the NPs were characterized by X-ray diffraction (XRD), scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, micro Raman and Fourier transform infrared spectroscopy, N{sub 2} adsorption–desorption isotherms, and UV–Vis diffuse reflectance spectroscopy. The XRD pattern proved the presence of hexagonal phase of CuS particles which was further supported by Raman spectrum. The estimated band gap energy of 2.05 eV for the slightly sulfur-rich CuS NPs is relatively larger than that of bulk CuS (1.85 eV), indicating the small size effect. As-prepared NPs showed excellent photocatalytic activity for the degradation of methylene blue (MB) under visible light. The surface-bound OH{sup −} ions at the CuS nanostructures help adsorb MB molecules facilitating their degradation process under visible light illumination. The studies presented in this paper suggest that the synthesized CuS NPs are promising, efficient, stable, and visible-light-sensitive photocatalyst for the remediation of wastewater polluted by chemically stable azo dyes such as MB.

  15. Studies on the synthesis of europium activated yttrium oxide by wet-chemical method

    Energy Technology Data Exchange (ETDEWEB)

    Muresan, Laura [Raluca Ripan Institute for Research in Chemistry, Fantanele 30, 400294 Cluj-Napoca (Romania)], E-mail: laura_muresan2003@yahoo.com; Popovici, Elisabeth-Jeanne; Grecu, Rodica [Raluca Ripan Institute for Research in Chemistry, Fantanele 30, 400294 Cluj-Napoca (Romania); Tudoran, Lucian Barbu [Electronic Microscopy Center, Babes-Bolyai University, 400028 Cluj-Napoca (Romania)

    2009-03-05

    Europium activated yttrium oxide phosphor powders (Y{sub 2}O{sub 3}:Eu{sup 3+}) were prepared from yttrium-europium precursors obtained by wet-chemical method. With this purpose in view, precursors were prepared using the reagent simultaneous addition SimAdd technique from yttrium-europium nitrate and chloride as rare-earth supplier and urea, ammonium oxalate, ammonium carbonate and oxalic acid as precipitating agents. Precursors, obtained under controlled concentration, temperature and pH conditions, were fired at 1200 deg. C in order to generate Y{sub 2}O{sub 3}:Eu{sup 3+} phosphor powders. Yttrium-europium precursors and Y{sub 2}O{sub 3}:Eu{sup 3+} phosphor powders were investigated by FTIR, TGA-DTA, X-ray diffraction (XRD), scanning electronic microscopy (SEM) and photoluminescence spectroscopy (PL) in order to put in evidence the influence of the quality of yttrium-europium precursors obtained by wet-chemical method, using the SimAdd technique on the properties of Y{sub 2}O{sub 3}:Eu{sup 3+} phosphor powders.

  16. Pharmacological evaluation and chemical standardization of an ayurvedic formulation for wound healing activity.

    Science.gov (United States)

    Gangopadhyay, Karuna Sagar; Khan, Madhuchanda; Pandit, Srikanta; Chakrabarti, Shrabana; Mondal, Tapan Kumar; Biswas, Tuhin Kanti

    2014-03-01

    Wound healing is a topic of substantial prominence in Ayurveda, the Indian traditional system of medicine. Test drug Kshatantak Malam (KM), otherwise named as Baharer Nani, is described in Ayurveda since a long time for wound healing activity but necessitates scientific base. The test drug was prepared in the form of natural ointment with the plants like Achyranthes aspera, Allium cepa, and Canabis sativa under the base of butter in a specialized form of preparation. Chemical standardization was made on the basis of the physical character, rancidity test, extractive value, thin-layer chromatography, and gas chromatography. An 8-mm-diameter full-thickness punch was produced in Wistar rats. The test drug was applied topically and compared with standard comparators like framycetin ointment and povidone iodine ointment. Effects were observed on the basis of physical parameters like wound contraction size (mm(2)), wound index, healing period (days), tensile strength (g) and biochemical parameters like tissue DNA (mg/g), RNA (mg/g), total protein (mg/g), hydroxyproline (mg/g), PAGE study, and histopathological observations. Significant results (P wound model on the basis of various physical, biochemical, and histopathological parameters. The drug was found to be safe in acute and chronic toxicity models in animals. Chemically it is enriched with fatty substances.

  17. Traditional uses, chemical composition and biological activities of Sideritis raeseri Boiss. & Heldr.

    Science.gov (United States)

    Romanucci, Valeria; Di Fabio, Giovanni; D'Alonzo, Daniele; Guaragna, Annalisa; Scapagnini, Giovanni; Zarrelli, Armando

    2017-01-01

    Sideritis species have been used in folk medicine for their antimicrobial, antiulcerogenic, digestive and anti-inflammatory properties. Over the years, the phytochemistry of the genus Sideritis has been studied, and various terpenoids, sterols, coumarins and especially flavonoid aglycones and glycosides have been identified. In particular, species from the Balkan Peninsula have been studied and were found to be rich in flavonoids, with valuable antioxidant activity. In the folk medicine of the Balkan countries, Sideritis raeseri is used as a herbal tea in the treatment of inflammation, gastrointestinal disorders and coughs, and also as a tonic, whereas extracts are used as a component of dietary supplements for anaemia. Its dried inflorescences are used to prepare a beverage called 'mountain tea'. In light of the considerable interest generated in the chemistry, pharmacological properties and commercial value of S. raeseri Boiss. & Heldr., we review and summarise the available literature on these plants. The review details the chemical composition of the essential oil, its mineral and polyphenol contents, the naming of these plants and their physicochemical characterisation, and the nuclear magnetic resonance spectral data and biological properties associated with the plant extracts, with a focus on their potential chemotherapeutic applications. © 2016 Society of Chemical Industry.

  18. [Relation between oxygen uptake rate and biosorption of activated sludge against chemical substance].

    Science.gov (United States)

    Mihara, Yuichi; Inoue, Tatsuaki; Yokota, Katsushi

    2005-02-01

    In this study, the elucidation of the toxicity mechanism was undertaken regarding the IC(50) of the oxygen uptake rate (OUR) with relevance to the biosorption as a toxicity evaluation of chemical substances for activated sludge (AS). At the IC(50) oflinear alkyl benzene sulfonate (LAS), alkyl ethoxy sulfonate (AES), alpha-olefine sulfonate (AOS), sodium dodecyl sulfate (SDS), formaldehyde (FA), benzalkonium chloride (BZaC), benzethonium chloride (BZeC), rhodamine 6G (R-6G) and fuchsine (Fuc) in which the IC(50) belonged to the 100-1000 mg/l group, when it was compared with CV and MG. In ethanol (EtOH), isopropanol (PrOH), nile blue (NB), evans blue (EB), methylene blue (MB), methyl orange (MO), paraquat (PQ), chlorophyllin (Chl) and auramine (Aur), the IC(50) was large, and the biosorption of AS was weak at 0-15%. The biosorption of MG for AS followed the adsorption isotherm equation Y=0.002X(0.511) of Freundrich. The correlation coefficient was gamma=0.998 (n=8), and a very high correlation was obtained. In the qualitative OUR curve by AS pretreated with MG or CV which belonged to the IC(50) small group, the inhibition of remarkable OUR was observed. Therefore, the findings of the present investigation suggest that the inhibition of the OUR for AS by the tested chemical substances was markedly affected by the biosorption.

  19. Anticoagulant activity of native and partially degraded glycoglucuronomannan after chemical sulfation.

    Science.gov (United States)

    de Oliveira Barddal, Helyn Priscila; Gracher, Ana Helena Pereira; Simas-Tosin, Fernanda Fogagnoli; Iacomini, Marcello; Cipriani, Thales Ricardo

    2015-09-01

    Heparin has great clinical importance as anticoagulant and antithrombotic agent. However, because of its risks of causing bleeding and contamination by animal pathogens, several studies aim to obtain alternatives to heparin. In the search for anticoagulant and antithrombotic agents from a non-animal source, a glycoglucuronomannan from the gum exudate of the plant Vochysia thyrsoidea was partially hydrolyzed, and both native and partially degraded polysaccharides were chemically sulfated, yielding VThS and Ph-VThS respectively. Methylation analysis indicated that sulfation occurred preferentially at the O-5 position of arabinose units in the VThS and at the O-6 position of mannose units in Ph-VThS. In vitro aPTT assay showed that VThS and Ph-VThS have anticoagulant activity, which could be controlled by protamine, and ex vivo aPTT assay demonstrated that Ph-VThS is absorbed by subcutaneous route. Like heparin, they were able to inhibit α-thrombin and factor Xa by a serpin-dependent mechanism. In vivo, VThS and Ph-VThS reduced thrombus formation by approximately 50% at a dose of 40 IU/kg, similarly to heparin. The results demonstrated that the chemically sulfated polysaccharides are promising anticoagulant and antithrombotic agents.

  20. Chemical analysis and antihyperglycemic activity of an original extract from burdock root (Arctium lappa).

    Science.gov (United States)

    Tousch, Didier; Bidel, Luc P R; Cazals, Guillaume; Ferrare, Karine; Leroy, Jeremy; Faucanié, Marie; Chevassus, Hugues; Tournier, Michel; Lajoix, Anne-Dominique; Azay-Milhau, Jacqueline

    2014-08-06

    In the present study, we obtained a dried burdock root extract (DBRE) rich in caffeoylquinic acids derivatives. We performed the chemical characterization of DBRE and explored its antihyperglycemic potential in both in vitro and in vivo experiments. Chemical analysis of DBRE using LC-MS and GC-MS revealed the presence of a great majority of dicaffeoylquinic acid derivatives (75.4%) of which 1,5-di-O-caffeoyl-4-O-maloylquinic acid represents 44% of the extract. In the in vitro experiments, DBRE is able to increase glucose uptake in cultured L6 myocytes and to decrease glucagon-induced glucose output from rat isolated hepatocytes together with a reduction of hepatic glucose 6-phosphatase activity. DBRE did not increase insulin secretion in the INS-1 pancreatic β-cell line. In vivo, DBRE improves glucose tolerance both after intraperitoneal and oral subchronic administration. In conclusion, our data demonstrate that DBRE constitutes an original set of caffeoylquinic acid derivatives displaying antihyperglycemic properties.

  1. Chemical characterization and antiherpes activity of sulfated polysaccharides from Lithothamnion muelleri.

    Science.gov (United States)

    Malagoli, Bruna G; Cardozo, Francielle T G S; Gomes, Jose Hugo S; Ferraz, Vany P; Simões, Cláudia M O; Braga, Fernão C

    2014-05-01

    We report herein the chemical characterization and antiherpes activity of polysaccharides from the red alga Lithothamnion muelleri (Hapalidiaceae). The polysaccharide-rich fractions B1 and B2 were obtained by extraction with Na2CO3 and were purified by size exclusion chromatography to afford Fra-B1 and Fra-B2. The polysaccharides were characterized by FT-IR and chemical analysis (total contents of carbohydrates, proteins, sulfate and uronic acid), whereas their average molecular weights were estimated by high performance gel permeation chromatography. The monosaccharide analysis detected galactose, glucose, xylose, mannose, rhamnose and arabinose in the four polysaccharide samples. Antiherpetic in vitro assays showed that B1 and B2 inhibited Herpes Simplex Virus types 1 and 2 (HSV-1 and HSV-2) when added simultaneously to viral infection affording selectivity indices (SI=CC50/EC50) higher than 20. Investigation of the mechanism of action indicated that B1 and B2 act on the initial steps of HSV replication, mainly inhibiting viral adsorption but also viral penetration into the cells.

  2. Comprehensive chemical characterization of industrial PM2.5 from steel industry activities

    Science.gov (United States)

    Sylvestre, Alexandre; Mizzi, Aurélie; Mathiot, Sébastien; Masson, Fanny; Jaffrezo, Jean L.; Dron, Julien; Mesbah, Boualem; Wortham, Henri; Marchand, Nicolas

    2017-03-01

    Industrial sources are among the least documented PM (Particulate Matter) source in terms of chemical composition, which limits our understanding of their effective impact on ambient PM concentrations. We report 4 chemical emission profiles of PM2.5 for multiple activities located in a vast metallurgical complex. Emissions profiles were calculated as the difference of species concentrations between an upwind and a downwind site normalized by the absolute PM2.5 enrichment between both sites. We characterized the PM2.5 emissions profiles of the industrial activities related to the cast iron (complex 1) and the iron ore conversion processes (complex 2), as well as 2 storage areas: a blast furnace slag area (complex 3) and an ore terminal (complex 4). PM2.5 major fractions (Organic Carbon (OC) and Elemental Carbon (EC), major ions), organic markers as well as metals/trace elements are reported for the 4 industrial complexes. Among the trace elements, iron is the most emitted for the complex 1 (146.0 mg g-1 of PM2.5), the complex 2 (70.07 mg g-1) and the complex 3 (124.4 mg g-1) followed by Al, Mn and Zn. A strong emission of Polycyclic Aromatic Hydrocarbons (PAH), representing 1.3% of the Organic Matter (OM), is observed for the iron ore transformation complex (complex 2) which merges the activities of coke and iron sinter production and the blast furnace processes. In addition to unsubstituted PAHs, sulfur containing PAHs (SPAHs) are also significantly emitted (between 0.011 and 0.068 mg g-1) by the complex 2 and could become very useful organic markers of steel industry activities. For the complexes 1 and 2 (cast iron and iron ore converters), a strong fraction of sulfate ranging from 0.284 to 0.336 g g-1) and only partially neutralized by ammonium, is observed indicating that sulfates, if not directly emitted by the industrial activity, are formed very quickly in the plume. Emission from complex 4 (Ore terminal) are characterized by high contribution of Al (125.7 mg

  3. Chemical stress induced by heliotrope (Heliotropium europaeum L.) allelochemicals and increased activity of antioxidant enzymes.

    Science.gov (United States)

    Abdulghader, Kalantar; Nojavan, Majid; Naghshbandi, Nabat

    2008-03-15

    The aims of this study were to evaluate the allelopathic potential of heliotrope on some biochemical processes of dodder. The preliminary experiments revealed that the effect of aqueous extract of leaves of heliotrope is higher than its seeds and roots. So, the aqueous extract of leaves was used in remaining experiments. Leaf extracts of 5 g powder per 100 mL H2O inhibited the germination of dodder seeds up to 95% and that of radish up to 100%. While, the aqueous extract of vine leaves which is a non-allelopathic plant did not have any inhibitory effect on these seeds. Vine leaf was used as a control to show that the inhibitory effect of heliotrope is due to an inhibitory compound but not due to the concentration. The leaf extract of heliotrope at 0.0, 0.1, 1.0, 2, 3, 4 and 5 g powder per 100 mL H2O reduced the radish seedling growth from 14 cm to about 0.5 cm and that of dodder from 7.5 cm to about 0.25 cm. The effects of heliotrope allelochemicals on some physiological and biochemical processes of radish was also Investigated. The activity of auxin oxidase increased in leaves and roots of radish. Suggesting that the reduced radish growth is due to the decreased active auxin levels in its leaves and roots. The activity of alpha-amylase was reduced, so reduction of starch degradation and lack of respiratory energy is the prime reason of germination inhibition in dodder and radish seeds. The level of soluble sugars increased. This is an indication of reduction of the activity of some respiratory enzymes and reduced consumption of these sugars. Proline levels were also increased, indicating that, the chemical stress is induced by leaf extract. Finally, the activities of GPX and CAT which are antioxidant enzymes were increased, along with increased extract concentration. These finding shows that the chemical stress induced by leaf extract produces super oxide (O2*) and H2O2, which is neutralized to H2O and O2 by these enzymes.

  4. Chemical Constituents of the Culture Broth of Phellinus linteus and Their Antioxidant Activity.

    Science.gov (United States)

    Lee, Myeong-Seok; Hwang, Byung Soon; Lee, In-Kyoung; Seo, Geon-Sik; Yun, Bong-Sik

    2015-03-01

    The medicinal fungus Phellinus linteus, in the family Hymenochaetaceae, has been used as a traditional medicine for the treatment of various diseases. In this study, the chemical constituents of the culture broth of P. linteus were investigated. P. linteus was cultured in potato dextrose broth medium, and the culture broth was extracted with ethyl acetate. The ethyl acetate-soluble portion was concentrated and subjected to ODS column chromatography, followed by Sephadex LH-20 column chromatography. Six compounds (1~6) were purified by preparative reversed-phase high-performance liquid chromatography. Spectroscopic methods identified their structures as caffeic acid (1), inotilone (2), 4-(3,4-dihydroxyphenyl)-3-buten-2-one (3), phellilane H (4), (2E,4E)-(+)-4'-hydroxy-γ-ionylideneacetic acid (5), and (2E,4E)-γ-ionylideneacetic acid (6). Compounds 1, 2, and 3 exhibited potent dose-dependent antioxidant activity.

  5. Can phylogeny predict chemical diversity and potential medicinal activity of plants? A case study of Amaryllidaceae

    DEFF Research Database (Denmark)

    Rønsted, Nina; Symonds, Matthew RE; Birkholm, Trine;

    2012-01-01

    a predictive approach enabling more efficient selection of plants for the development of traditional medicine and lead discovery. However, this relationship has rarely been rigorously tested and the potential predictive power is consequently unknown. Results: We produced a phylogenetic hypothesis...... for the medicinally important plant subfamily Amaryllidoideae (Amaryllidaceae) based on parsimony and Bayesian analysis of nuclear, plastid, and mitochondrial DNA sequences of over 100 species. We tested if alkaloid diversity and activity in bioassays related to the central nervous system are significantly correlated......Background: During evolution, plants and other organisms have developed a diversity of chemical defences, leading to the evolution of various groups of specialized metabolites selected for their endogenous biological function. A correlation between phylogeny and biosynthetic pathways could offer...

  6. Chemical composition and antigerminative activity of the essential oils from five Salvia species.

    Science.gov (United States)

    De Martino, Laura; Roscigno, Graziana; Mancini, Emilia; De Falco, Enrica; De Feo, Vincenzo

    2010-02-01

    The chemical composition of the essential oils of Salvia africana L., Salvia elegans Vahl, Salvia greggii A. Gray, Salvia mellifera Green and Salvia munzii Epling, cultivated in Eboli (Salerno, Southern Italy), was studied by means of GC and GC-MS analyses. In all, 88 compounds were identified, 54 for S. africana, accounting for 95.4% of the total oil, 55 for S. elegans (92.9%), 50 for S. greggii (96.9%), 54 for S. mellifera (90.4%) and 47 for S. munzii (97.5%), respectively. In S. africana,the amount of monoterpenoids and sesquiterpenoids is very similar. For other species, the monoterpenoid percentage is greater than the amount of sesquiterpenoids. The oils of S. elegans, S. greggii and S. munzii were active inhibitors of germination and radical elongation of Raphanus sativus L. and Lepidium sativum L.

  7. Chemical Composition and Antigerminative Activity of the Essential Oils from Five Salvia Species

    Directory of Open Access Journals (Sweden)

    Vincenzo De Feo

    2010-02-01

    Full Text Available The chemical composition of the essential oils of Salvia africana L., Salvia elegans Vahl, Salvia greggii A. Gray, Salvia mellifera Green and Salvia munzii Epling, cultivated in Eboli (Salerno, Southern Italy, was studied by means of GC and GC-MS analyses. In all, 88 compounds were identified, 54 for S. africana, accounting for 95.4% of the total oil, 55 for S. elegans (92.9%, 50 for S. greggii (96.9%, 54 for S. mellifera (90.4% and 47 for S. munzii (97.5%, respectively. In S. africana,the amount of monoterpenoids and sesquiterpenoids is very similar. For other species, the monoterpenoid percentage is greater than the amount of sesquiterpenoids. The oils of S. elegans, S. greggii and S. munzii were active inhibitors of germination and radical elongation of Raphanus sativus L. and Lepidium sativum L.

  8. Chemical Composition and Antibacterial Activity of the Essential Oil of Lippia multiflora Moldenke from Nigeria

    Directory of Open Access Journals (Sweden)

    Moses S. Owolabi

    2009-10-01

    Full Text Available The steam distilled volatile oil obtained from dried Lippia multiflora Moldenke was examined by gas chromatography-mass spectrometry (GC-MS. The major components were 1,8-cineole (60.5%, sabinene (16.9%, α-terpineol (14.1% and α-pinene (4.4%. The oil displayed no antibacterial activity against either gram positive Bacillus cereus or Staphylococcus aureus or gram negative Escherichia coli, (MIC = 1250 µg/mL. A cluster analysis was performed for comparison and characterization of L. multiflora essential oil from Nigeria with other oils reported in the literature from different locations across central Africa, and reveals much chemical variation in this species with at least 13 different chemotypes.

  9. A chemical activity evaluation of two dental calcium silicate-based materials

    Directory of Open Access Journals (Sweden)

    Chalas Renata

    2015-06-01

    Full Text Available Calcium silicate-based materials are interesting products widely used in dentistry. The study was designed to compare the chemical reaction between analyzed two preparates and dentin during cavity lining. In our work, dentinal discs were prepared from human extracted teeth filled with Biodentine and MTA+. The samples were then analyzed by way of SEM, EDS and Raman spectroscopy. The obtained results revealed differences in elemental composition between both materials. Biodentine showed higher activity in contact with dentine. Moreover, the interfacial layer in the tooth filled by Biodentine was wider than that in the tooth filled with MTA+. The applied methods of analysis confirmed that both materials have a bioactive potential which is a promising ability.

  10. Partial chemical composition and antimicrobial activity of Daucus crinitus Desf. extracts

    Energy Technology Data Exchange (ETDEWEB)

    Dib, M. A.; Bendahou, M.; Bendiabdellah, A.; Djabou, N.; Allali, H.; Tabti, B.; Paolini, J.; Costa, J.

    2010-07-01

    The chemical composition of fatty acids and the unsaponifiable fraction of the roots, leaves and stems from Daucus crinitus Desf. were, determined using gas chromatography (GC) and gas chromatography-Mass Spectrometry (GC-MS). The fatty acid fractions of different organs (leaves, stems and roots) were characterized by lauric acid (17.9, 17.5 and 18.1 % respectively) and other long chain fatty acids (until C22). Qualitative and quantitative differences were reported between the unsaponifiable fractions of different organs from D. crinitus. The unsaponifiable fractions of the leaves, roots and stem showed high amounts of aliphatic components (83.4%, 87.2% and 91.4%, respectively). The monoterpen, diterpen and sesquiterpen components were only present in small percentages. The antimicrobial properties of the D. critinus extracts were tested on four different microorganisms. These extracts were found to be active against Bacillus cereus, Staphylococcus aureus, Escherichia coli and Candida albicans. (Author) 35 refs.

  11. Chemical constituents and biological activities of species of Justicia: a review

    Directory of Open Access Journals (Sweden)

    Geone M. Corrêa

    2012-02-01

    Full Text Available The Acanthaceae family is an important source of therapeutic drugs, and the ethnopharmacological knowledge of this family requires urgent documentation as several of its species are near extinction. Justicia is the largest genus of Acanthaceae, with approximately 600 species. The present work provides a review addressing the chemistry and pharmacology of the genus Justicia. In addition, the biological activities of compounds isolated from the genus are also covered. The chemical and pharmacological information in the present work may inspire new biomedical applications for the species of Justicia, considering atom economy, the synthesis of environmentally benign products without producing toxic by-products, the use of renewable sources of raw materials, and the search for processes with maximal efficiency of energy.

  12. Influence of the physico-chemical characteristics of chito-oligosaccharides (COS) on antioxidant activity.

    Science.gov (United States)

    Mengíbar, Marian; Mateos-Aparicio, Inmaculada; Miralles, Beatriz; Heras, Angeles

    2013-09-12

    Chito-oligosaccharides (COS) are being used as important functional materials for many applications due to their bioactivities. The aim of this research has been to assess the relationship between the physico-chemical characteristics, average molecular weight (Mw), acetylation degree (DA), polymerization degree (DP) and specially sequence composition determined by MALDI-TOF MS and the antioxidant properties of COS. These oligosaccharides were obtained by enzymatic depolymerization with chitosanase and lysozyme using a specific chitosan and its reacetylated product. The COS fraction below 5 kDa obtained from chitosanase depolymerization showed the highest capacity to scavenge DPPH radicals and to reduce Fe(3+). A correlation was found between the relative amount of molecules with a given A/D (acetylated vs deacetylated units) ratio within the COS and their antioxidant activity, which could be used to predict the antioxidant behavior of a fraction of chito-oligosaccharides.

  13. On the formation of new ignition kernels in the chemically active dispersed mixtures

    Science.gov (United States)

    Ivanov, M. F.; Kiverin, A. D.

    2015-11-01

    The specific features of the combustion waves propagating through the channels filled with chemically active gaseous mixture and non-uniformly suspended micro particles are studied numerically. It is shown that the heat radiated by the hot products, absorbed by the micro particles and then transferred to the environmental fresh mixture can be the source of new ignition kernels in the regions of particles' clusters. Herewith the spatial distribution of the particles determines the features of combustion regimes arising in these kernels. One can highlight the multi-kernel ignition in the polydisperse mixtures and ignition of the combustion regimes with shocks and detonation formation in the mixtures with pronounced gradients of microparticles concentration.

  14. Effect of Spent Mushroom Substrate on Physical and Chemical Properties and Enzymic Activity of Rice

    Institute of Scientific and Technical Information of China (English)

    Hairu YU; Xue LI; Xin ZHANG; Changming GE; Renzhe PIAO; Meishan LI; Zongjun CUI; Hongyan ZHAO

    2016-01-01

    In order to explore the substitution substrate for rice seedling on upland fields,this paper uses spent mushroom substrate to study the physical and chemical properties of substrate,enzymic activity and number of tillers during the cultivation of rice seedling on upland fields.The results show that at the three stages of rice seedling cultivation( two-leaf stage,three-leaf stage,four-leaf stage),the content of organic matter and EC in spent mushroom substrate is higher than in the control soil,p H is within the range suitable for the growth of rice,and other nutrients( total nitrogen,total phosphorus,total potassium,available nitrogen,available phosphorus) are slightly different in different periods;except phosphatase,there are significant differences in urease,catalase and sucrase between spent mushroom substrate and the control soil; the number of tillers under spent mushroom substrate is larger than under the control.

  15. Bio-antioxidants - a chemical base of their antioxidant activity and beneficial effect on human health.

    Science.gov (United States)

    Kancheva, V D; Kasaikina, O T

    2013-01-01

    The paradox of aerobic life is that higher eukaryotic organisms cannot exist without oxygen, yet oxygen is inherently dangerous to their existence. Autoxidation of organic substances frequently occurs via free radical mechanism which generates different active radicals and peroxides OH(•), O2 (•-), LO2 (•), HOOH, LOOH, so called reactive oxygen species (ROS), which appear to be responsible for oxygen toxicity. To survive in such an unfriendly oxygen environment, living organisms generate - or obtain from food - a variety of water- and lipid-soluble antioxidant compounds. Biologically active compounds with antioxidant potential, i.e. bio-antioxidants (natural and their synthetic analogues) have a wide range of applications. They are important drugs, antibiotics, agrochemical substitutes, and food preservatives. Many of the drugs today are synthetic modifications of naturally obtained substances. This review presents information about the chemical base of antioxidant activities and beneficial effects on human health of known and new bio-antioxidants. There is abundant literature on the phenolic antioxidants and tocopherols in particular. In this review the following bio-antioxidants are considered: A) Carotenoids, B) Cathecholamines, C) Phospholipids, D) Chalcones, E) Coumarins, F) Phenolic acids, G) Flavonoids, H) Lignans, and I) Tannins.

  16. Chemical composition and antibacterial activity of the essential oil of Ambrosia peruviana Willd. from Venezuelan plains

    Directory of Open Access Journals (Sweden)

    Carlos A. Yánez C.

    2011-08-01

    Full Text Available In Venezuela, are currently exploring new sources of natural antibacterial agents, due to increased bacterial resistance, including essential oils derived from plants. For this reason in the present study we determined the chemical composition of essential oil obtained from leaves collected on Ambrosia peruviana Willd Guasdualito, Apure State, Venezuela. The volatile compounds were isolated by hydrodistillation in a Clevenger trap and then subjected to qualitative analysis and quantitative by gas chromatography-mass spectrometry (GC / MS on an HP GC-MS System, model 5973, finding as the major compound gamma-curcumeno (23.99% followed by curcumeno-ar (14.08%, bornyl acetate (10.35%, camphor (5.03% and epoxide oximene (4.79%. The antibacterial activity of essential oil by the agar diffusion method with discs against Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, Klebsiella pneumoniae, Salmonella typhi and Pseudomonas aeruginosa showed activity against S. aureus, E. faecalis, E. coli and S. Typhi, with MIC values of 350-500 micrograms/ mL. This research represents the first report of antibacterial activity of A. peruviana.

  17. Chemical composition, and antioxidant and antimicrobial activities of three hazelnut (Corylus avellana L.) cultivars.

    Science.gov (United States)

    Oliveira, Ivo; Sousa, Anabela; Morais, Jorge Sá; Ferreira, Isabel C F R; Bento, Albino; Estevinho, Letícia; Pereira, José Alberto

    2008-05-01

    Hazelnut (Corylus avellana L.) is a very popular dry fruit in the world being consumed in different form and presentations. In the present work, three hazelnut cultivars (cv. Daviana, Fertille de Coutard and M. Bollwiller) produced in Portugal, were characterized in respect to their chemical composition, antioxidant potential and antimicrobial activity. The samples were analysed for proximate constituents (moisture, fat, crude protein, ash), nutritional value and fatty acids profile by GC/FID. Antioxidant potential was accessed by the reducing power assay, the scavenging effect on DPPH (2,2-diphenyl-1-picrylhydrazyl) radicals and beta-carotene linoleate model system. Their antimicrobial capacity was also checked against Gram positive (Bacillus cereus, B. subtilis, Staphylococcus aureus) and Gram negative bacteria (Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae) and fungi (Candida albicans, Cryptococcus neoformans). Results showed that the main constituent of fruits was fat ranging from 56% to 61%, being the nutritional value around 650 kcal per 100 g of fruits. Oleic was the major fatty acid varying between 80.67% in cv. F. Coutard and 82.63% in cv. Daviana, followed by linoleic, palmitic, and stearic acids. Aqueous hazelnut extract presented antioxidant activity in a concentration-dependent way, in general with similar behaviour for all cultivars. Hazelnut extracts revealed a high antimicrobial activity against Gram positive bacteria (MIC 0.1 mg/mL) showing a good bioactivity of these fruits.

  18. An active film-coating approach to enhance chemical stability of a potent drug molecule.

    Science.gov (United States)

    Desai, Divyakant; Rao, Venkatramana; Guo, Hang; Li, Danping; Stein, Daniel; Hu, Frank Y; Kiesnowski, Chris

    2012-01-01

    Peliglitazar, a PPAR α/γ agonist, was found to undergo acid as well as base catalyzed degradation. The acid catalyzed degradation led to the formation of benzylic alcohol and glycine carbamate and the base catalyzed degradation led to formation of p-hydroxyanisole and an amine degradant. In capsule formulations, the capsules with the lowest drug-loading exhibited maximum instability even at 25 °C/60% RH storage condition. Incorporation of pH-modifiers to maintain 'micro-environmental pH' acidic did not prevent the formation of the base-catalyzed degradants. Traditional dry granulated tablet formulation which is qualitatively similar to the capsule formulations showed the presence of acid-catalyzed degradants even without the presence of an acidifying agent. On the other hand, traditional wet granulated tablet formulation showed mainly base-catalyzed degradants. Stability problems of the tablet formulation were aggravated because the potent molecule required low tablet strengths which resulted in low drug to excipient ratio. To stabilize the molecule, an active film-coating approach was explored. In this approach, the drug was sprayed with the coating material onto non-active containing tablet cores. This approach of trapping the drug particles into the coating material provided tablets with satisfactory chemical stability. The stability enhancement observed in the active coating approach is attributed to the higher drug to excipient ratio in the film coat of non-reactive coating material compared to that in the traditional dry or wet granulated formulations.

  19. Chemical Composition, Antibacterial and Antioxidant Activities of Six Essentials Oils from the Alliaceae Family

    Directory of Open Access Journals (Sweden)

    Dima Mnayer

    2014-12-01

    Full Text Available Six essential oils (EOs from the Alliaceae family, namely garlic (Allium sativum, onion (Allium cepa, leek (Allium porrum, Chinese chive (Allium tuberosum, shallot (Allium ascalonicum and chive (Allium schoenoprasum were characterized by GC and GC-MS and evaluated for their functional food properties. Antibacterial properties were tested on five food-borne pathogens: Two Gram-positive Staphylococcus aureus (ATCC 25923, Listeria monocytogenes (ATCC 19115 and three Gram-negative Salmonella Typhimurium (ATCC 14028, Escherichia coli (ATCC 8739 and Campylobacter jejuni (ATCC 33291 bacteria. Antioxidant and radical-scavenging properties were tested by means of Folin-Ciocalteu and 2,2-diphenyl-1-picrylhydrazyl (DPPH assays. Garlic, Chinese chive and onion EOs had the highest antibacterial activity whereas shallot and leek EOs were the strongest antioxidants. Heating caused a decrease in the antioxidant activity of these Eos, as shown in the Total Polar Materials (TPM test. Suggestions on relationships between chemical composition and biological activities are presented. Results show that the EOs could be of value in the food industry as alternatives to synthetic antioxidants.

  20. Chemical composition and antioxidant activity of jatobá-do-cerrado (Hymenaea stigonocarpa Mart. flour

    Directory of Open Access Journals (Sweden)

    Cintia Pereira Da Silva

    2014-09-01

    Full Text Available The Brazilian Savannah, known as "Cerrado," has an extensive biodiversity, but it is under explored. Among the native vegetables is the jatobá-do-cerrado (Hymenaea stigonocarpa Mart., a legume with great potential for exploration for its content of dietary fiber. Legumes are an important source of nutrient compounds, such as phenolic compounds and vitamins that have antioxidant properties. This study aimed at determining the chemical composition and antioxidant activity of the jatobá flour. The jatobá flour showed high fiber content (insoluble and soluble fiber 47.8 and 12.8 g.100 g- 1, respectively, significant amounts of carotenoids such as beta-carotene and lutein, and some minerals such as calcium: 145 mg.100 g- 1, magnesium: 125 mg.100 g- 1, and potassium: 1352 mg.100 g- 1. The jatobá flour extracted with different solvents (water, methanol, and acetone exhibited antioxidant activity by the DPPH, FRAP, and ORAC methods. The solvent used in the extraction affected the total phenolic content and antioxidant activity. Acetone extraction produced the best results. Therefore, the jatobá flour is an ingredient that can be used to develop new products with properties that promote health.

  1. CHEMICAL ANALYSIS AND ANTIOXIDANT ACTIVITY OF “NERIUM OLEANDER” LEAVES

    Directory of Open Access Journals (Sweden)

    Lakhmili Siham

    2014-01-01

    Full Text Available The phenolic products of medicinal plants have a great pharmacological interest. This product gives the powers of medicinal plants. They are the source of several active principles widely used in modern medicine. The use of Nerium oleander in Moroccan traditional medicine is very common. Few studies have focused on the chemical analysis and phenolic compounds of this plant. For this, we investigated the mineral composition and phenolic combination of the leaves oleander and the study of the antioxidant activity. The mineral analysis shows a very high level of potassium and protein. The biochemical studies revealed a very high quantity of polyphenols in the leaves. Thus, the HPLC analysis of the phenolic fraction shows great variability of substances. The cinnamic acid is the majors compounds identified in the phenolic fraction. The other compounds identified are catechin, epicatechine, chlorogenic acid. This present study which is made for the first time showed a very important antioxidant effect, the value of IC50 (The half maximal inhibitory concentration of DPPH is 0,43 mg mL-1 for the phenolic fraction. On the other hand, the antioxydant activity of the organic extract, the methanolique fraction, n-butanolique fraction and the decoction, has a percentage of inhibition of DPPH over than 90% at a concentration of µg/mL. IC50% values are respectively 0,005 mg mL-1; 0,018 mg mL-1 and 0,005 mg mL-1.

  2. Study of the cytotoxic activity of Styrax camporum extract and its chemical markers, egonol and homoegonol.

    Science.gov (United States)

    de Oliveira, Pollyanna Francielli; Damasceno, Jaqueline Lopes; Bertanha, Camila Spereta; Araújo, Alba Regina Barbosa; Pauletti, Patrícia Mendonça; Tavares, Denise Crispim

    2016-08-01

    The benzofuran lignans egonol and homoegonol are found in all species of the genus Styrax. Since natural products are important sources of new anticancer drugs, this study evaluated the cytotoxic activity of a hydroalcoholic extract of the stems of S. camporum (SCHE) and their chemical markers, egonol (EG) and homoegonol (HE), against different tumor cell lines (B16F10, MCF-7, HeLa, HepG2, and MO59J). A normal human cell line (GM07492A) was included. Cytotoxic activity was evaluated at different treatment times (24, 48 and 72 h) using the XTT assay. More effective results were observed after 72 h of treatment. The lowest IC50 values were found for the HepG2 cell line, ranging from 11.2 to 55.0 µg/mL. The combination of EG and HE exerted higher cytotoxic activity than SCHE or treatment with either lignan alone, with the lowest IC50 (13.31 µg/mL) being observed for the MCF-7 line. Furthermore, treatment with these lignans was significantly more cytotoxic for some tumor cell lines compared to the normal cell line, GM07492A, indicating selectivity. These results suggest that these lignans may be used to treat cancer without affecting normal cells.

  3. Chemically derived defects in zinc oxide nanocrystals and their enhanced photo-electrocatalytic activities.

    Science.gov (United States)

    Prakash, Anand; Bahadur, D

    2014-10-21

    This paper reports the influence of surface defects on the photocatalytic degradation of methylene blue (MB) for zinc oxide (ZnO) nanocrystals (NCs) synthesized in different organic solvents. A simple chemical approach has been adopted for the promotion of oxygen vacancies in pristine ZnO using solvents namely dimethylformamide (DMF), N-methyl-2-pyrrolidone (NMP) and dimethylsulfoxide (DMSO). This alters the growth of NCs through the promotion of oxygen vacancies depending on the fact that the solvent with minimum viscosity supports faster nucleation and growth exhibiting maximum surface defects. DMF with minimum viscosity results in largest particle size and superior photocatalytic activity. Further, X-ray diffraction, UV-visible reflectance spectroscopy and transmission electron microscopy confirm that the DMF supports the faster growth of NCs as compared to NMP and DMSO. Electron paramagnetic resonance, Raman, X-ray photoelectron, and photoluminescence spectroscopies confirm different states of oxygen vacancies in the NCs and their dependence on the nature of solvents. The photocatalytic activities of these NCs were investigated against the degradation of MB as a model dye. The results show that the oxygen defects at the surface of NCs are more responsible for higher photocatalytic activity than the specific surface area of NCs. The electrochemical investigations of MB degradation suggest that these defects upon interaction with MB influence the storage capacity and charge-discharge profiles of NCs. During degradation, MB passivates these defects, which has been explained in terms of increased charge-discharge time and storage capacity.

  4. Antibacterial activity and chemical compounds of leaves and branches of Protium hebetatum

    Directory of Open Access Journals (Sweden)

    G.G. CONRADO

    2015-01-01

    Full Text Available ABSTRACT The extracts and fractions of leaves and branches of Protium hebetatum D. C. Daly (Burseraceae were investigated for their antibacterial activity and chemical composition. The methanol extract of branches (EMG was considered active against the Escherichia coli and the Proteus vulgaris, showing an inhibition zone of 13 mm, and was selected for bioassay-guided phytochemical fractionation. From the technique of broth microdilution, the extract was considered a moderate inhibitor against Staphylococcus aureus, Pseudomonas aeruginosa and Enterococcus faecalis, with a minimum inhibitory concentration (MIC of 1 mg/mL. The dichloromethane fraction was considered a moderate inhibitor against S. aureus (MIC of 1 mg/mL and a potent inhibitor against E. faecalis (MIC of 0.5 mg/mL. F1, F2, F5 and F6 from chromatographic column of dichloromethane fraction were considered moderate inhibitors against S. aureus (MIC of 1 mg/mL. Through analysis by a gas chromatography mass spectrometry, eighteen compounds were identified, from which thirteen (isoeugenol, p-vinylguaiacol, metoxyeugenol, coumarin, 5-hydroxy-scopoletin, 4,7-dihydroxy-6-metoxicromam-2-one, 4[(1E]-3-hydroxy-1-propenyl-2-methoxyphenol, piperonal, scoparon, o-guaiacol, spathulenol, seringol and antiarol are unprecedented in these species. We also identified the triterpenes α-amyrin and β-amyrin, the steroids stigmasterol and sitosterol and the coumarin scopoletin, which was closely linked to the antibacterial activity of the samples.

  5. Evaluation of Chemical Composition and Antileishmanial and Antituberculosis Activities of Essential Oils of Piper Species

    Directory of Open Access Journals (Sweden)

    Karine Zanoli Bernuci

    2016-12-01

    Full Text Available Essential oils from fresh Piperaceae leaves were obtained by hydrodistillation and analyzed by gas chromatography mass spectrometry (GC–MS, and a total of 68 components were identified. Principal components analysis results showed a chemical variability between species, with sesquiterpene compounds predominating in the majority of species analyzed. The composition of the essential oil of Piper mosenii was described for the first time. The cytotoxicity of the essential oils was evaluated in peritoneal macrophages and the oils of P. rivinoides, P. arboretum, and P. aduncum exhibited the highest values, with cytotoxic concentration at 50% (CC50 > 200 µg/mL. Both P. diospyrifolium and P. aduncum displayed activity against Leishmania amazonensis, and were more selective for the parasite than for the macrophages, with a selectivity index (SI of 2.35 and >5.52, respectively. These SI values were greater than the 1 for the standard drug pentamidine. The antileishmanial activity of the essential oils of P. diospyrifolium and P. aduncum was described for the first time. P. rivinoides, P. cernuum, and P. diospyrifolium displayed moderate activity against the Mycobacterium tuberculosis H37Rv bacillus, with a minimum inhibitory concentration (MIC of 125 µg/mL. These results are relevant and suggests their potential for therapeutic purposes. Nevertheless, further studies are required to explain the exact mechanism of action of these essential oils.

  6. Chemical composition and antioxidant activity of Origanum vulgare subsp. vulgare essential oil from Iran

    Directory of Open Access Journals (Sweden)

    M. Vazirian

    2015-12-01

    Full Text Available Background and Objectives: Essential oils are very complex mixture of components and their composition may vary in different species or varieties or even within the same variety. Origanum vulgare L. subsp. vulgare is one of the most distributed subspecies within the genus Origanum and has been found to be a poor-oil, categorized in cymyl, bornane or sabinyl chemotypes with higher proportion of sesquiterpenes. In this experiment, the Iranian sample was studied for the chemical composition of the oil and evaluation of its antioxidant activity. Methods: Essential oil was obtained by hydro-distillation and analyzed by GC/MS for determination of components. Antioxidant activity was evaluated by radical scavenging ability (DPPH method and reducing power (FRAP assay. Results: The sample belonged to “thymol” chemotype with the main components as thymol (37.13%, gama-terpinene (9.67%, carvacrol (9.57%, carvacrol methyl ether (6.88, cis-alpha-bisabolene (6.80%, eucalyptol (3.82%, p-cymene (3.58% and elemol (2.04%. The oil of plant showed very strong antioxidant activity (IC50=2.5 µg/mL in DPPH method, which was stronger than the standard antioxidants (Vit E and BHA, p

  7. Effects of serpentinite fertilizer on the chemical properties and enzyme activity of young spruce soils

    Science.gov (United States)

    Błońska, Ewa; Januszek, Kazimierz; Małek, Stanisław; Wanic, Tomasz

    2016-10-01

    The experimental plots used in the study were located in the middle forest zone (elevation: 900-950 m a.s.l.) on two nappes of the flysch Carpathians in southern Poland. The aim of this study was to assess the effects of serpentinite in combination with nitrogen, phosphorus, and potassium fertilizers on selected chemical properties of the soil and activity of dehydrogenase and urease in the studied soils. All fertilizer treatments significantly enriched the tested soils in magnesium. The use of serpentinite as a fertilizer reduced the molar ratio of exchangeable calcium to magnesium, which facilitated the uptake of magnesium by tree roots due to competition between calcium and magnesium. After one year of fertilization on the Wisła experimental plot, the pH of the Ofh horizon increased, while the pH of the mineral horizons significantly decreased. Enrichment of serpentinite with nitrogen, phosphorus, and potassium fertilizers stimulated the dehydrogenase activity in the studied organic horizon. The lack of a negative effect of the serpentinite fertilizer on enzyme activity in the spruce stand soil showed that the concentrations of the heavy metals added to the soil were not high enough to be toxic and indicated the feasibility of using this fertilizer in forestry.

  8. Study on antibacterial activity of chemically synthesized PANI-Ag-Au nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Boomi, Pandi [Department of Industrial Chemistry, School of Chemical Sciences, Alagappa University, Karaikudi 630 003, Tamil Nadu (India); Prabu, Halliah Gurumallesh, E-mail: hgprabu2010@gmail.com [Department of Industrial Chemistry, School of Chemical Sciences, Alagappa University, Karaikudi 630 003, Tamil Nadu (India); Manisankar, Paramasivam [Department of Industrial Chemistry, School of Chemical Sciences, Alagappa University, Karaikudi 630 003, Tamil Nadu (India); Ravikumar, Sundaram [Department of Oceanography and Coastal Area Studies, School of Marine Sciences, Alagappa University, Thondi Campus 623 409, Tamil Nadu (India)

    2014-05-01

    Graphical abstract: - Highlights: • New method of synthesizing PANI-Ag-Au nanocomposite. • Surface Plasmon resonance and formation of composite at nano level were analyzed. • HR-TEM study revealed uniform distribution of nanoparticles. • PANI-Ag-Au nanocomposite exhibited good antibacterial activity. - Abstract: Pristine polyaniline (PANI), PANI-Ag, PANI-Au and PANI-Ag-Au nanocomposites have been successfully synthesized by chemical oxidative polymerization method using aniline as monomer, ammonium persulphate as oxidant and metal (Ag, Au and Ag-Au) colloids. UV-Vis analysis exhibited surface Plasmon resonances of Ag, Au, Ag-Au nanoparticles. FT-IR spectra revealed the shift in peak position of N-H stretching. X-ray diffraction (XRD) results confirm the presence of Ag, Au and Au-Ag nanoparticles. HR-TEM images show nanosizes of Ag, Au, Ag-Au and the incorporation of such nanoparticles into the PANI matrix. Pristine PANI, PANI-Ag, PANI-Au and PANI-Ag-Au nanocomposites were tested for antibacterial activity by agar well diffusion method. PANI-Ag-Au nanocomposite exhibited higher antibacterial activity against both gram-positive [Streptococcus sp. (MTCC 890), Staphylococcus sp. (MTCC 96)] and gram-negative bacteria [Escherichia coli (MTCC 1671) and Klebsiella sp. (MTCC 7407)] when compared with PANI-Ag nanocomposite, PANI-Au nanocomposite and pristine PANI. The novelty of this study is the polymer-bimetal synthesis and its antibacterial potential.

  9. Chemical composition and antimicrobial activity of essential oil of different parts of Seseli rigidum.

    Science.gov (United States)

    Marcetić, Mirjana; Bozić, Dragana; Milenković, Marina; Lakusić, Branislava; Kovacević, Nada

    2012-08-01

    The chemical composition and antimicrobial activity of the essential oil of the Balkan endemic species Seseli rigidum Waldst. & Kit. (Apiaceae) was investigated. The monoterpene alpha-pinene was predominant in the volatile oil from aerial parts (57.4%) and fruit (23.3%). In the essential oil of the aerial parts limonene (6.7%), camphene (5.8%) and sabinene (5.5%) were also present in high amounts, and in the fruit oil, beta-phellandrene (17.4%) and sabinene (12.9%). On the contrary, the root essential oil was composed almost entirely of the polyacetylene falcarinol (88.8%). The antimicrobial activity of the root essential oil was significant against Staphylococcus aureus, S. epidermidis, Micrococcus luteus and Enterococcus faecalis (MICs 6.25-25.00 microg/mL). Volatile constituents from the root strongly inhibited the growth of methicillin-resistant strains of S. aureus (MICs 6.25-50.00 microg/mL). Anti-staphylococcal activity can be attributed to the main volatile constituent ofS. rigidum root, falcarinol.

  10. CHEMICALLY FABRICATED SILVER NANOPARTICLES ENHANCES THE ACTIVITY OF ANTIBIOTICS AGAINST SELECTED HUMAN BACTERIAL PATHOGENS

    Directory of Open Access Journals (Sweden)

    S. Thangapandiyan and P. Prema*

    2012-05-01

    Full Text Available Due to the outbreak of infectious diseases caused by different pathogenic bacteria and the development of antibiotic resistance, the pharmaceutical companies and the researchers are now searching for new unconventional antibacterial agents. Nanotechnology represents a modern and innovative approach to develop new formulations based on metallic nanoparticles with antimicrobial properties. The potential bioactivity of chemically fabricated silver nanoparticles has been extensively studied. However, the antibacterial activity of silver nanoparticles individually or in combination with different antibiotics has not been demonstrated. In the present investigations, the effect of silver nanoparticles on the antibacterial activity of different antibiotics was evaluated against selected human bacterial pathogens such as Staphylococcus aureus, Streptococcus epidermis, Escherichia coli, Pseudomonas aeruginosa, and Bacillus cereus by disc diffusion method. In the presence of sub - inhibitory concentration of silver nanoparticles (100µL/disc, the antibacterial activities of all antibiotics are increased from 1 mm to 10 mm. The maximum fold increase was noticed for vancomycin against Pseudomonas aeruginosa (66.67%, Escherichia coli (62.50%, and Staphylococcus aureus (46% followed by rifampicin against Bacillus cereus (66.67% and kanamycin against Streptococcus epidermis (25%. These results signify that the silver nanoparticles showed potential antibacterial action of ß-lactams, glycopeptides, aminoglycosides, sulphonamides suggesting a possible utilization of silver nanocompounds in combination therapy against selected pathogens used in the experiment.

  11. Chemical Composition and Antibacterial Activity of Essential Oil of Cosmos bipinnatus Cav. Leaves from South Africa.

    Science.gov (United States)

    Olajuyigbe, Olufunmiso; Ashafa, Anofi

    2014-01-01

    The chemical composition of essential oils isolated from the leaves of Cosmos bipinnatus and its antibacterial activity were analyzed by GC-MS and microbroth dilution assay respectively. The essential oil extracted from this plant was predominantly composed of monoterpenes (69.62%) and sesquiterpenes (22.73%). The antibacterial assay showed that the oil had significant inhibitory effects against both Gram-negative and Gram-positive bacteria isolates. The MIC of Gram-positive strains ranged between 0.16 and 0.31 mg/mL while those of Gram-negative bacteria ranged between 0.31 and 0.63 mg/mL. The Gram-positive bacteria were more susceptible to the essential oil than the Gram-negative bacteria. Most of the major components of this oil in other plants have been reported for antimicrobial activities. The antibacterial activity can be attributed to effects of the combination of several components of the oil. The results indicate that the C. bipinnatus might be exploited as natural antibacterial agent and have application in the treatment of several infectious diseases caused by these bacteria. Since this species is endemic to the eastern Free State, the plant could be collected during its bloom and used efficiently in the management of bacterial infections in South Africa.

  12. Evaluation of Chemical Composition and Antileishmanial and Antituberculosis Activities of Essential Oils of Piper Species.

    Science.gov (United States)

    Bernuci, Karine Zanoli; Iwanaga, Camila Cristina; Fernandez-Andrade, Carla Maria Mariano; Lorenzetti, Fabiana Brusco; Torres-Santos, Eduardo Caio; Faiões, Viviane Dos Santos; Gonçalves, José Eduardo; do Amaral, Wanderlei; Deschamps, Cícero; Scodro, Regiane Bertin de Lima; Cardoso, Rosilene Fressatti; Baldin, Vanessa Pietrowski; Cortez, Diógenes Aparício Garcia

    2016-12-12

    Essential oils from fresh Piperaceae leaves were obtained by hydrodistillation and analyzed by gas chromatography mass spectrometry (GC-MS), and a total of 68 components were identified. Principal components analysis results showed a chemical variability between species, with sesquiterpene compounds predominating in the majority of species analyzed. The composition of the essential oil of Piper mosenii was described for the first time. The cytotoxicity of the essential oils was evaluated in peritoneal macrophages and the oils of P. rivinoides, P. arboretum, and P. aduncum exhibited the highest values, with cytotoxic concentration at 50% (CC50) > 200 µg/mL. Both P. diospyrifolium and P. aduncum displayed activity against Leishmania amazonensis, and were more selective for the parasite than for the macrophages, with a selectivity index (SI) of 2.35 and >5.52, respectively. These SI values were greater than the 1 for the standard drug pentamidine. The antileishmanial activity of the essential oils of P. diospyrifolium and P. aduncum was described for the first time. P. rivinoides, P. cernuum, and P. diospyrifolium displayed moderate activity against the Mycobacterium tuberculosis H37Rv bacillus, with a minimum inhibitory concentration (MIC) of 125 µg/mL. These results are relevant and suggests their potential for therapeutic purposes. Nevertheless, further studies are required to explain the exact mechanism of action of these essential oils.

  13. Chemical Composition and Antioxidant Activity of Essential Oils from Cinnamodendron dinisii Schwacke and Siparuna guianensis Aublet

    Directory of Open Access Journals (Sweden)

    Milene Aparecida Andrade

    2013-11-01

    Full Text Available The objectives of this study were to chemically characterize and evaluate the antioxidant activity of essential oils Cinnamodendron dinisii Schwacke (pepper and Siparuna guianensis Aublet (negramina. The essential oil was isolated by hydrodistillation using a Clevenger modified apparatus, and the identification and quantification of constituents, through GC/MS and GC-FID analysis. The antioxidant activity was evaluated using β-carotene/linoleic acid system and the DPPH radical sequestering method. In chromatographic analysis, the majority constituents found in the essential oil of C. dinisii were bicyclic monoterpenes, α-pinene (35.41%, β-pinene (17.81%, sabinene (12.01% and sesquiterpene bicyclogermacrene (7.59%. In the essential oil of the fresh leaves of Siparuna guianensis Aublet, acyclic monoterpene, β-myrcene (13.14%, and sesquiterpenes, germacrene-D (8.68% and bicyclogermacrene (16.71% were identified. The antioxidant activity was low by the β-carotene/linoleic acid test and was not evidenced by the DPPH test, for both oils evaluated.

  14. Chemical Composition and Antimicrobial Activities of Essential Oils of Some Coniferous Plants Cultivated in Egypt.

    Science.gov (United States)

    Ibrahim, Taghreed A; El-Hela, Atef A; El-Hefnawy, Hala M; Al-Taweel, Areej M; Perveen, Shagufta

    2017-01-01

    Family Cupressaceae is the largest coniferous plant family. Essential oils of many species belonging to family Cupressaceae are known to have several biological activities specially antimicrobial activity. The essential oils from aerial parts of Calocedrus decurrens Torr., Cupressus sempervirens stricta L. and Tetraclinis articulata (Vahl) Mast. were prepared by hydrodistillation. The chemical composition of the essential oils has been elucidated by gas chromatography-mass spectroscopy analysis. The prepared essential oils were examined against selected species of Gram-positive, Gram-negative bacteria and Candida species. Broth dilution methods were used to detect minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and minimum fungicidal concentration (MFC). Sixteen compounds were identified in the essential oils of both Calocedrus decurrens and Cupressus sempervirens L. and fifteen compounds were identified in the essential oil of Tetraclinis articulata. δ-3-Carene (43.10%), (+)-Cedrol (74.03%) and Camphor (21.23%) were the major constituents in the essential oils of Calocedrus decurrens, Cupressus sempervirens L. and Tetraclinis articulata, respectively. The essential oils showed strong antimicrobial activities against the selected microorganisms in concentration range 0.02 3- 3.03 µL/mL. This study could contribute to the chemotaxonomic characterization of family Cupressaceae. In addition, it proved that the essential oils under investigation possess potential antimicrobial properties.

  15. Antibiotic pigment from desert soil actinomycetes; biological activity, purification and chemical screening

    Directory of Open Access Journals (Sweden)

    Selvameenal L

    2009-01-01

    Full Text Available An actinomycete strain, Streptomyces hygroscopicus subsp. ossamyceticus (strain D10 was isolated from Thar Desert soil, Rajasthan during the year 2006 and found to produce a yellow color pigment with antibiotic activity. Crude pigment was produced from strain D10 by solid state fermentation using wheat bran medium followed by extraction with ethyl acetate. The antimicrobial activity of the crude pigment was evaluated against drug resistant pathogens such as methicillin-resistant Staphylococcus aureus, vancomycin-resistant Staphylococcus aureus, extended spectrum b-lactamase producing cultures of Escherichia coli, Pseudomonas aeruginosa and Klebsiella sp. About 420 mg of crude pigment was produced per 10 g of wheat bran medium. In the disc diffusion method the crude ethyl acetate extract showed a minimum of 10 mm inhibition against Klebsiella sp. and maximum of 19 mm of inhibition against Escherichia coli. The crude pigment was partially purified using thin layer chromatography with the solvent system chloroform:methanol (30:70 and the Rf value was calculated as 0.768. Antimicrobial activity of the partially purified compound from thin layer chromatography was determined using the bioautography method. The purified pigment showed minimum of 15 mm inhibition against Klebsiella sp. and a maximum of 23 mm of inhibition against vancomycin-resistant Staphylococcus aureus in the disc diffusion method. Based on the results of chemical screening, the pigment was tentatively identified as group of sugar containing molecules.

  16. Chemical analysis and toxicity of seaweed extracts with inhibitory activity against tropical fruit anthracnose fungi.

    Science.gov (United States)

    Machado, Levi Pompermayer; Matsumoto, Silvia Tamie; Jamal, Claudia Masrouah; da Silva, Marcelo Barreto; Centeno, Danilo da Cruz; Colepicolo Neto, Pio; de Carvalho, Luciana Retz; Yokoya, Nair S

    2014-07-01

    Banana and papaya are among the most important crops in the tropics, with a value amounting to millions of dollars per year. However, these fruits suffer significant losses due to anthracnose, a fungal disease. It is well known that certain seaweed extracts possess antifungal activity, but no published data appear to exist on the practical application of this property. In the present study, five organic Brazilian seaweed extracts were screened for their activity against banana and papaya anthracnose fungi. Furthermore, cytotoxic and mutagenic effects of the extracts were evaluated by the brine shrimp lethality assay and the Allium cepa root-tip mutagenicity test respectively, while their major components were identified by gas chromatography/mass spectrometry. Strong fungus-inhibitory effects of Ochtodes secundiramea and Laurencia dendroidea extracts were observed on both papaya (100 and 98% respectively) and banana (89 and 78% respectively). This impressive activity could be associated with halogenated terpenes, the major components of both extracts. Only Hypnea musciformis extract showed cytotoxic and mutagenic effects. The results of this study suggest the potential use of seaweed extracts as a source of antifungal agents with low toxicity to control anthracnose in papaya and banana during storage. © 2013 Society of Chemical Industry.

  17. Chemical constituents and anti-inflammatory activities of Maqian (Zanthoxylum myriacanthum var. pubescens) bark extracts.

    Science.gov (United States)

    Zhang, Huan-Li; Gan, Xiao-Qing; Fan, Qing-Fei; Yang, Jing-Jing; Zhang, Ping; Hu, Hua-Bin; Song, Qi-Shi

    2017-04-06

    In this study, 44 compounds in the petroleum ether extract of Maqian (Zanthoxylum myriacanthum var. pubescens) bark, a traditional Dai herbal medicine, were identified by GC-MS. Major components included 3(2H)-benzofuranone, asarinin and (dimethoxymethyl)-3-methoxy-benzene. A total of 18 compounds were isolated from the ethyl acetate extracts of Maqian bark by column chromatography and identified by chemical and spectral analyses. Rhoifoline B, zanthoxyline dimethoxy derivative, N-nortidine, nitidine, decarine are the major alkaloids. Both the petroleum ether and ethyl acetate extracts showed significant inhibition on NO production, which imply anti-inflammatory activity, in lipopolysaccharide-induced RAW 264.7 cells without cell toxicity. Decarine is the major anti-inflammatory constituent with NO IC50 values of 48.43 μM on RAW264.7 cells. The petroleum ether extract, the ethyl acetate extract and decarine showed anti-inflammatory activities through inhibiting TNF-α and IL-1β production in lipopolysaccharide-stimulated THP-1 cells without cell toxicity too. Decarine showed anti-inflammatory activity on human colon cells by reducing IL-6 and IL-8 production in TNF-α+IL-1β-induced Caco-2 cells. These results support the use of Maqian bark as a remedy for enteritis and colitis recorded by Dai medicine in China, and elucidate the major pharmacological compounds in Maqian bark.

  18. Chemical Sensor Platform for Non-Invasive Monitoring of Activity and Dehydration

    Directory of Open Access Journals (Sweden)

    Dmitry Solovei

    2015-01-01

    Full Text Available A non-invasive solution for monitoring of the activity and dehydration of organisms is proposed in the work. For this purpose, a wireless standalone chemical sensor platform using two separate measurement techniques has been developed. The first approach for activity monitoring is based on humidity measurement. Our solution uses new humidity sensor based on a nanostructured TiO2 surface for sweat rate monitoring. The second technique is based on monitoring of potassium concentration in urine. High level of potassium concentration denotes clear occurrence of dehydration. Furthermore, a Wireless Body Area Network (WBAN was developed for this sensor platform to manage data transfer among devices and the internet. The WBAN coordinator controls the sensor devices and collects and stores the measured data. The collected data is particular to individuals and can be shared with physicians, emergency systems or athletes’ coaches. Long-time monitoring of activity and potassium concentration in urine can help maintain the appropriate water intake of elderly people or athletes and to send warning signals in the case of near dehydration. The created sensor system was calibrated and tested in laboratory and real conditions as well. The measurement results are discussed.

  19. Anticonvulsant activity of B2, an adenosine analog, on chemical convulsant-induced seizures.

    Directory of Open Access Journals (Sweden)

    Min Li

    Full Text Available Epilepsy is a chronic neurological disorder characterized by recurrent seizures. However, approximately one-third of epilepsy patients still suffer from uncontrolled seizures. Effective treatments for epilepsy are yet to be developed. N (6-(3-methoxyl-4-hydroxybenzyl adenine riboside (B2 is a N(6-substitued adenosine analog. Here we describe an investigation of the effects and mechanisms of B2 on chemical convulsant-induced seizures. Seizures were induced in mice by administration of 4-aminopyridine (4-AP, pentylenetetrazol (PTZ, picrotoxin, kainite acid (KA, or strychnine. B2 has a dose-related anticonvulsant effect in these chemical-induced seizure models. The protective effects of B2 include increased latency of seizure onset, decreased seizure occurrence, shorter seizure duration and reduced mortality rate. Radioligand binding and cAMP accumulation assays indicated that B2 might be a functional ligand for both adenosine A1 and A2A receptors. Furthermore, DPCPX, a selective A1 receptor antagonist, but not SCH58261, a selective A2A receptor antagonist, blocked the anticonvulsant effect of B2 on PTZ-induced seizure. c-Fos is a cellular marker for neuronal activity. Immunohistochemical and western blot analyses indicated that B2 significantly reversed PTZ-induced c-Fos expression in the hippocampus. Together, these results indicate that B2 has significant anticonvulsant effects. The anticonvulsant effects of B2 may be attributed to adenosine A1 receptor activation and reduced neuronal excitability in the hippocampus. These observations also support that the use of adenosine receptor agonist may be a promising approach for the treatment of epilepsy.

  20. Advanced Chemical Reduction of Reduced Graphene Oxide and Its Photocatalytic Activity in Degrading Reactive Black 5

    Directory of Open Access Journals (Sweden)

    Christelle Pau Ping Wong

    2015-10-01

    Full Text Available Textile industries consume large volumes of water for dye processing, leading to undesirable toxic dyes in water bodies. Dyestuffs are harmful to human health and aquatic life, and such illnesses as cholera, dysentery, hepatitis A, and hinder the photosynthetic activity of aquatic plants. To overcome this environmental problem, the advanced oxidation process is a promising technique to mineralize a wide range of dyes in water systems. In this work, reduced graphene oxide (rGO was prepared via an advanced chemical reduction route, and its photocatalytic activity was tested by photodegrading Reactive Black 5 (RB5 dye in aqueous solution. rGO was synthesized by dispersing the graphite oxide into the water to form a graphene oxide (GO solution followed by the addition of hydrazine. Graphite oxide was prepared using a modified Hummers’ method by using potassium permanganate and concentrated sulphuric acid. The resulted rGO nanoparticles were characterized using ultraviolet-visible spectrophotometry (UV-Vis, X-ray powder diffraction (XRD, Raman, and Scanning Electron Microscopy (SEM to further investigate their chemical properties. A characteristic peak of rGO-48 h (275 cm−1 was observed in the UV spectrum. Further, the appearance of a broad peak (002, centred at 2θ = 24.1°, in XRD showing that graphene oxide was reduced to rGO. Based on our results, it was found that the resulted rGO-48 h nanoparticles achieved 49% photodecolorization of RB5 under UV irradiation at pH 3 in 60 min. This was attributed to the high and efficient electron transport behaviors of rGO between aromatic regions of rGO and RB5 molecules.

  1. Chemical characterisation of Nigerian red propolis and its biological activity against Trypanosoma Brucei.

    Science.gov (United States)

    Omar, Ruwida M K; Igoli, John; Gray, Alexander I; Ebiloma, Godwin Unekwuojo; Clements, Carol; Fearnley, James; Ebel, Ru Angeli Edrada; Zhang, Tong; De Koning, Harry P; Watson, David G

    2016-01-01

    A previous study showed the unique character of Nigerian red propolis from Rivers State, Nigeria (RSN), with regards to chemical composition and activity against Trypanosoma brucei in comparison with other African propolis. To carry out fractionation and biological testing of Nigerian propolis in order to isolate compounds with anti-trypanosomal activity. To compare the composition of the RSN propolis with the composition of Brazilian red propolis. Profiling was carried out using HPLC-UV-ELSD and HPLC-Orbitrap-FTMS on extracts of two samples collected from RSN with data extraction using MZmine software. Isolation was carried out by normal phase and reversed phase MPLC. Elucidation of the compounds with a purity > 95% was performed by 1D/2D NMR HRMS and HRLC-MS(n) . Ten phenolic compounds were isolated or in the case of liquiritigenin partially purified. Data for nine of these correlated with literature reports of known compounds i.e. one isoflavanone, calycosin (1); two flavanones, liquiritigenin (2) and pinocembrin (5); an isoflavan, vestitol (3); a pterocarpan, medicarpin (4); two prenylflavanones, 8-prenylnaringenin (7) and 6-prenylnaringenin (8); and two geranyl flavonoids, propolin D (9) and macarangin (10). The tenth was elucidated as a previously undescribed dihydrobenzofuran (6). The isolated compounds were tested against Trypanosoma brucei and displayed moderate to high activity. Some of the compounds tested had similar activity against wild type T. brucei and two strains displaying pentamidine resistance. Nigerian propolis from RSN has some similarities with Brazilian red propolis. The propolis displayed anti-trypanosomal activity at a potentially useful level. Copyright © 2015 John Wiley & Sons, Ltd.

  2. Chemical composition, antioxidant and antibacterial activities of essential oils from Ferulago angulata.

    Science.gov (United States)

    Ghasemi Pirbalouti, Abdollah; Izadi, Arezo; Malek Poor, Fatemeh; Hamedi, Behzad

    2016-11-01

    Ferulago angulata Boiss. (Apiaceae), a perennial aromatic herb, grows wild in Iran. The aerial parts of F. angulata are used as a flavouring in foods, especially dairy foods by indigenous people in western and southwestern Iran. This study investigates variation in chemical compositions, antioxidant and antibacterial activities of the essential oils from F. angulata collected from natural habitats in the alpine regions of southwestern Iran. The antimicrobial activity, minimum inhibitory concentration (MIC) and minimum bactericidal (MBC) of the essential oils were evaluated against four bacteria (Bacillus cereus, Listeria monocytogenes, Staphylococcus aureus and Salmonella typhimurium). Antioxidant activity of the oils was determined by DPPH assay. The essential oils were analyzed by GC-FID and GC/MS, which 49 volatile components were identified. There were significant differences between the various populations for oil yield and some main compounds. The major constituents of the essential oils from F. angulata were α-pinene, and cis-β-ocimene. The MICs of the essential oils were within concentration ranges from 62 to 250 μg/mL and the respective MBCs were 125 to > 500 μg/mL. Generally, the oils from F. angulata indicated weak to moderate inhibitory activities against bacteria, especially against Listeria monocytogenes. The highest antioxidant activity was obtained from the oil of the Kallar population (IC50 value = 488 μg/mL) and BHT as positive control (IC50  value = 321 μg/mL). The essential oil of F. angulata could be serving as a potential source of α-pinene and cis-β-ocimene for use in the food, cosmetic and pharmaceutical industries.

  3. Matching Element Symbols with State Abbreviations: A Fun Activity for Browsing the Periodic Table of Chemical Elements

    Science.gov (United States)

    Woelk, Klaus

    2009-01-01

    A classroom activity is presented in which students are challenged to find matches between the United States two-letter postal abbreviations for states and chemical element symbols. The activity aims to lessen negative apprehensions students might have when the periodic table of the elements with its more than 100 combinations of letters is first…

  4. Matching Element Symbols with State Abbreviations: A Fun Activity for Browsing the Periodic Table of Chemical Elements

    Science.gov (United States)

    Woelk, Klaus

    2009-01-01

    A classroom activity is presented in which students are challenged to find matches between the United States two-letter postal abbreviations for states and chemical element symbols. The activity aims to lessen negative apprehensions students might have when the periodic table of the elements with its more than 100 combinations of letters is first…

  5. Insecticidal activities and chemical components of alcohol extract from leaves of Rhodendron dauricum L.

    Institute of Scientific and Technical Information of China (English)

    SUN Mo-long; WANG Tian-miao

    2011-01-01

    The extract from leaves of Rhododendron dauricum L. was extracted with 95% alcohol by common method for studying its insecticidal activities. The chemical components of the alcohol extract and relative contents were analyzed by GC-MS. The insecticidal activities of the alcohol extract were tested on the 2nd-3rd instar larvae of Lymantria dispar L. for five days. Five concentrations of the extract samples were designed as 50, 10, 5, 1, and 0.5 g·L-1. The results show that the alcohol extracts from leaves of R. dauricum exhibited insecticidal activities against larvae of L. dispar. The corrected mortality of larvae of L. dispar for was over 50% for both contact toxicity and stomach toxicity at the extract concentration of ≥ 5 g·L-1 after five days of application. The insecticidal activity in contact toxicity is more effect than stomach toxicity for the alcohol extract. Twenty compounds, with total GC relative contents of 93.81% in the alcohol extract from leaves of R. dauricum were identified. The main chemical components in the cxtract are: (1) 4,5-Dihydro-5-oxo-3-(p-tolyl) isoxazole, with a relative content of 40.03%; (2) 1,3-Benzenediol, 5-methyl-2-(3,7,11-trimethyl-2,6,10-dodecatrienyl)-, (E,E)-, the relative content 18.27%; (3) 3,6-Diphenyl-1,2,3,4,5,6,7,8-octahydro-l,8-acridinedione, the relative content 3.89%;(4) 6H-[l ,2,4]Triazolo[1,5-a]indole, 4a,5,7,8,8a,9-hexahydro-9-methylene-, the relative content 2.99%; (5) 7-Amino-4-methyl-l,8-naphthyridino2-ol, the relative content 2.64%; (6) 4-Methyl-2,6-dihydroxyquinoline, the relative content 2.63%; (7) 2,4,6-Triaminoquilazoline, the relative content 2.27%; (8) 2(1H)-Quinolinone,4-hydroxy-1-methyl-, the relative content 2.02%.

  6. Towards Cluster-Assembled Materials of True Monodispersity in Size and Chemical Environment: Synthesis, Dynamics and Activity

    Science.gov (United States)

    2016-10-27

    pathway Status: not yet published Diverse technologies, from catalyst coking to graphene synthesis , entail hydrocarbon dehydrogena- tion and...AFRL-AFOSR-UK-TR-2016-0037 Towards cluster-assembled materials of true monodispersity in size and chemical environment: Synthesis , Dynamics and...Towards cluster-assembled materials of true monodispersity in size and chemical environment: synthesis , dynamics and activity 5a.  CONTRACT NUMBER 5b

  7. Phoenix dactylifera L. spathe essential oil: chemical composition and repellent activity against the yellow fever mosquito.

    Science.gov (United States)

    Demirci, Betül; Tsikolia, Maia; Bernier, Ulrich R; Agramonte, Natasha M; Alqasoumi, Saleh I; Al-Yahya, Mohammed A; Al-Rehaily, Adnan J; Yusufoglu, Hasan S; Demirci, Fatih; Başer, K Hüsnü Can; Khan, Ikhlas A; Tabanca, Nurhayat

    2013-12-01

    Date palm, Phoenix dactylifera L. (Arecaceae), grows commonly in the Arabian Peninsula and is traditionally used to treat various diseases. The aim of the present study was to identify chemical composition of the essential oil and to investigate the repellent activity. The essential oil of P. dactylifera was obtained by hydrodistillation from the spathe, a specialized leaf structure that surrounds the pollinating organs of the palm. The oil was subsequently analyzed by GC-FID and GC-MS. The oil showed promising repellent activity against yellow fever mosquito - Aedes aegypti. Sixteen components were characterized, constituting 99% of the oil. The main components were 3,4-dimethoxytoluene (73.5%), 2,4-dimethoxytoluene (9.5%), β-caryophyllene (5.5%), p-cresyl methyl ether (3.8%), and caryophyllene oxide (2.4%). The minimum effective dosage (MED) for repellency for the P. dactylifera oil was 0.051mg/cm(2), which had moderately lower potency compared to reference standard N,N-diethyl-3-methylbenzamide, DEET (0.018mg/cm(2)) in the "cloth patch assay". The five major compounds were individually assayed for repellency to determine to what extent each is responsible for repellency from the oil. 3,4-Dimethoxytoluene and 2,4-dimethoxytoluene showed the best repellent activity with the same MED value of 0.063mg/cm(2), respectively. The results indicate that these two constituents which comprise a large proportion of the P. dactylifera oil (83%) are likely responsible for the observed repellent activity. In this aspect, the P. dactylifera spathe oil is a sustainable, promising new source of natural repellents.

  8. Physico-chemical characteristics and antioxidant activity of goji fruits jam and jelly during storage

    Directory of Open Access Journals (Sweden)

    Daniela ISTRATI

    2013-12-01

    Full Text Available Since the 1990s, when the news about antioxidants and their benefits to health has begun to spread to the general public, statements about the benefits of antioxidants ranged from preventing colds to cancer treatment. Fruits and vegetables are excellent sources of antioxidants. Since the beginning of the 21st century, goji berries have become increasingly popular in Europe and North America and have been promoted in advertisements and in the media as an anti-aging remedy. Goji is a relatively new name given to Lycium Barbarum and Lycium chinense, two nearby species, with a long history of use as medicinal and food plants in East Asia, particularly in China. In the present paper are presented analysis results of Goji fruits and food products made from goji fruits (jam and jelly. Storage conditions are important factors for jams and jelly quality. The objective of this study was to monitor the physicochemical stability, antioxidant activity and sensorial profile of goji fruits jam and jelly. Special attention was paid to total phenolic and flavonoid content, antioxidant activity, total soluble solids, titratable acidity, pH and sensorial characteristics. Our results showed the antioxidant activity of the goji fruit, values which correlate well with the results obtained for total phenolic (351±7.25 mg GAE/100g and flavonoid content (53.06±1.23 mg QE/100g. The antioxidant activity of the goji fruits was maintained also in the finished products obtained in the present study jam (60.98 % and jelly (41.96 %. Both goji fruits jam and goji fruits jelly showed no significant variations of physico-chemical characteristics and sensorial parameter scores after storage at refrigeration temperature for 10 days.

  9. Chemical Constituents from the Branches of Carpinus turczaninowii with Antioxidative Activities

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Ha Na; Kim, Jung Mi; Bu, Hee Jung; Lee, Nam Ho [Jeju National Univ., Jeju (Korea, Republic of)

    2013-08-15

    Eight compounds were identified in ethanol extracts prepared from the branches of C. turczaninowii. The compounds, besides 5 and 6, were isolated for the first time from this woody plant. Pyracrenic acid (4) and quercitrin (8) showed potent DPPH free radical scavenging activities with SC{sub 50} values of 55.2 and 62.4 μM, respectively, where ascorbic acid (SC{sub 50} 43.5 μM) was used as a positive control. Compounds 4, 5, 6 and 8 showed strong activities in ABTS{sup +} radical scavenging assay, with SC{sub 50} values of 34.1, 42.1, 45.8 and 29.6 μM, respectively. These activities are comparable in potency to ascorbic acid (SC{sub 50} 31.6 μM). Based on these results, C. turczaninowii extracts are expected to be useful antioxidative agents, potentially applicable in food or cosmetic industries, based on the results of further studies. Korean hornbeam Carpinus turczaninowii is a deciduous woody plant belonging to the family Betulaceae. This flora is endemic to Korea, and can reach a height of 15 m. In the autumn, the fallen leaves of C. turczaninowii display a beautiful orange-red color and the tree is commonly used for bonsai in Korea. The wood is very hard, dense and fine textured, and has been used for making agricultural tools and furniture. Previous chemical investigation on this plant indicated only the existence of flavonoids such as naringenin and quercetin glycosides from the leaves. We have recently reported the isolation diarylheptanoids possessing anti-inflammatory activities from the ethanol extract of C. turczaninowii.

  10. Chemical characterization and antioxidant activities comparison in fresh, dried, stir-frying and carbonized ginger.

    Science.gov (United States)

    Li, Yuxin; Hong, Yan; Han, Yanquan; Wang, Yongzhong; Xia, Lunzhu

    2016-02-01

    Ginger (Zingiber officinale Rosc.) is a common dietary adjunct that contributes to the taste and flavor of foods, and is also an important Traditional Chinese medicine (TCM). Different processing methods can produce different processed gingers with dissimilar chemical constituents and pharmacological activities. In this study, an ultra-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry (UPLC/QTOF-MS) was applied to identify the complicated components from fresh, dried, stir-frying and carbonized ginger extracts. All of the 27 compounds were identified from four kinds of ginger samples (fresh, dried, stir-frying and carbonized ginger). Five main constituents (zingerone, 6-gingerol, 8-gingero