WorldWideScience

Sample records for activating transcription factor

  1. Human cytomegalovirus IE2 protein interacts with transcription activating factors

    Institute of Scientific and Technical Information of China (English)

    徐进平; 叶林柏

    2002-01-01

    The human cytomegalovirus (HCMV) IE86 Cdna was cloned into Pgex-2T and fusion protein GST-IE86 was expressed in E. Coli. SDS-PAGE and Western blot assay indicated that fusion protein GST-IE86 with molecular weight of 92 ku is soluble in the supernatant of cell lysate. Protein GST and fusion protein GST-IE86 were purified by affinity chromatography. The technology of co-separation and specific affinity chromatography was used to study the interactions of HCMV IE86 protein with some transcriptional regulatory proteins and transcriptional factors. The results indicated that IE86 interacts separately with transcriptional factor TFIIB and promoter DNA binding transcription trans-activating factors SP1, AP1 and AP2 to form a heterogenous protein complex. These transcriptional trans-activating factors, transcriptional factor and IE86 protein were adsorbed and retained in the affinity chromatography simultaneously. But IE86 protein could not interact with NF-Кb, suggesting that the function of IE86 protein that can interact with transcriptional factor and transcriptional trans-activating factors has no relevance to protein glycosylation. IE86 protein probably has two domains responsible for binding transcriptional trans-activating regulatory proteins and transcriptional factors respectively, thus activating the transcription of many genes. The interactions accelerated the assembly of the transcriptional initiation complexes.

  2. Potential Role of Activating Transcription Factor 5 during Osteogenesis

    Directory of Open Access Journals (Sweden)

    Luisa Vicari

    2016-01-01

    Full Text Available Human adipose-derived stem cells are an abundant population of stem cells readily isolated from human adipose tissue that can differentiate into connective tissue lineages including bone, cartilage, fat, and muscle. Activating transcription factor 5 is a transcription factor of the ATF/cAMP response element-binding protein (CREB family. It is transcribed in two types of mRNAs (activating transcription factor 5 isoform 1 and activating transcription factor 5 isoform 2, encoding the same single 30-kDa protein. Although it is well demonstrated that it regulates the proliferation, differentiation, and apoptosis, little is known about its potential role in osteogenic differentiation. The aim of this study was to evaluate the expression levels of the two isoforms and protein during osteogenic differentiation of human adipose-derived stem cells. Our data indicate that activating transcription factor 5 is differentially expressed reaching a peak of expression at the stage of bone mineralization. These findings suggest that activating transcription factor 5 could play an interesting regulatory role during osteogenesis, which would provide a powerful tool to study bone physiology.

  3. Plant NAC-type transcription factor proteins contain a NARD domain for repression of transcriptional activation.

    Science.gov (United States)

    Hao, Yu-Jun; Song, Qing-Xin; Chen, Hao-Wei; Zou, Hong-Feng; Wei, Wei; Kang, Xu-Sheng; Ma, Biao; Zhang, Wan-Ke; Zhang, Jin-Song; Chen, Shou-Yi

    2010-10-01

    Plant-specific transcription factor NAC proteins play essential roles in many biological processes such as development, senescence, morphogenesis, and stress signal transduction pathways. In the NAC family, some members function as transcription activators while others act as repressors. In the present study we found that though the full-length GmNAC20 from soybean did not have transcriptional activation activity, the carboxy-terminal activation domain of GmNAC20 had high transcriptional activation activity in the yeast assay system. Deletion experiments revealed an active repression domain with 35 amino acids, named NARD (NAC Repression Domain), in the d subdomain of NAC DNA-binding domain. NARD can reduce the transcriptional activation ability of diverse transcription factors when fused to either the amino-terminal or the carboxy-terminal of the transcription factors. NARD-like sequences are also present in other NAC family members and they are functional repression domain when fused to VP16 in plant protoplast assay system. Mutation analysis of conserved amino acid residues in NARD showed that the hydrophobic LVFY motif may partially contribute to the repression function. It is hypothesized that the interactions between the repression domain NARD and the carboxy-terminal activation domain may finally determine the ability of NAC family proteins to regulate downstream gene expressions.

  4. Activation of archaeal transcription mediated by recruitment of transcription factor B.

    Science.gov (United States)

    Ochs, Simon M; Thumann, Sybille; Richau, Renate; Weirauch, Matt T; Lowe, Todd M; Thomm, Michael; Hausner, Winfried

    2012-05-25

    Archaeal promoters consist of a TATA box and a purine-rich adjacent upstream sequence (transcription factor B (TFB)-responsive element (BRE)), which are bound by the transcription factors TATA box-binding protein (TBP) and TFB. Currently, only a few activators of archaeal transcription have been experimentally characterized. The best studied activator, Ptr2, mediates activation by recruitment of TBP. Here, we present a detailed biochemical analysis of an archaeal transcriptional activator, PF1088, which was identified in Pyrococcus furiosus by a bioinformatic approach. Operon predictions suggested that an upstream gene, pf1089, is polycistronically transcribed with pf1088. We demonstrate that PF1088 stimulates in vitro transcription by up to 7-fold when the pf1089 promoter is used as a template. By DNase I and hydroxyl radical footprinting experiments, we show that the binding site of PF1088 is located directly upstream of the BRE of pf1089. Mutational analysis indicated that activation requires the presence of the binding site for PF1088. Furthermore, we show that activation of transcription by PF1088 is dependent upon the presence of an imperfect BRE and is abolished when the pf1089 BRE is replaced with a BRE from a strong archaeal promoter. Gel shift experiments showed that TFB recruitment to the pf1089 operon is stimulated by PF1088, and TFB seems to stabilize PF1088 operator binding even in the absence of TBP. Taken together, these results represent the first biochemical evidence for a transcriptional activator working as a TFB recruitment factor in Archaea, for which the designation TFB-RF1 is suggested. PMID:22496454

  5. The EDLL motif: a potent plant transcriptional activation domain from AP2/ERF transcription factors.

    Science.gov (United States)

    Tiwari, Shiv B; Belachew, Alemu; Ma, Siu Fong; Young, Melinda; Ade, Jules; Shen, Yu; Marion, Colleen M; Holtan, Hans E; Bailey, Adina; Stone, Jeffrey K; Edwards, Leslie; Wallace, Andreah D; Canales, Roger D; Adam, Luc; Ratcliffe, Oliver J; Repetti, Peter P

    2012-06-01

    In plants, the ERF/EREBP family of transcriptional regulators plays a key role in adaptation to various biotic and abiotic stresses. These proteins contain a conserved AP2 DNA-binding domain and several uncharacterized motifs. Here, we describe a short motif, termed 'EDLL', that is present in AtERF98/TDR1 and other clade members from the same AP2 sub-family. We show that the EDLL motif, which has a unique arrangement of acidic amino acids and hydrophobic leucines, functions as a strong activation domain. The motif is transferable to other proteins, and is active at both proximal and distal positions of target promoters. As such, the EDLL motif is able to partly overcome the repression conferred by the AtHB2 transcription factor, which contains an ERF-associated amphiphilic repression (EAR) motif. We further examined the activation potential of EDLL by analysis of the regulation of flowering time by NF-Y (nuclear factor Y) proteins. Genetic evidence indicates that NF-Y protein complexes potentiate the action of CONSTANS in regulation of flowering in Arabidopsis; we show that the transcriptional activation function of CONSTANS can be substituted by direct fusion of the EDLL activation motif to NF-YB subunits. The EDLL motif represents a potent plant activation domain that can be used as a tool to confer transcriptional activation potential to heterologous DNA-binding proteins.

  6. Activating transcription factor 6 derepression mediates neuroprotection in Huntington disease

    Science.gov (United States)

    Naranjo, José R.; Zhang, Hongyu; Villar, Diego; González, Paz; Dopazo, Xose M.; Morón-Oset, Javier; Higueras, Elena; Oliveros, Juan C.; Arrabal, María D.; Prieto, Angela; Cercós, Pilar; González, Teresa; De la Cruz, Alicia; Casado-Vela, Juan; Rábano, Alberto; Valenzuela, Carmen; Gutierrez-Rodriguez, Marta; Li, Jia-Yi; Mellström, Britt

    2016-01-01

    Deregulated protein and Ca2+ homeostasis underlie synaptic dysfunction and neurodegeneration in Huntington disease (HD); however, the factors that disrupt homeostasis are not fully understood. Here, we determined that expression of downstream regulatory element antagonist modulator (DREAM), a multifunctional Ca2+-binding protein, is reduced in murine in vivo and in vitro HD models and in HD patients. DREAM downregulation was observed early after birth and was associated with endogenous neuroprotection. In the R6/2 mouse HD model, induced DREAM haplodeficiency or blockade of DREAM activity by chronic administration of the drug repaglinide delayed onset of motor dysfunction, reduced striatal atrophy, and prolonged life span. DREAM-related neuroprotection was linked to an interaction between DREAM and the unfolded protein response (UPR) sensor activating transcription factor 6 (ATF6). Repaglinide blocked this interaction and enhanced ATF6 processing and nuclear accumulation of transcriptionally active ATF6, improving prosurvival UPR function in striatal neurons. Together, our results identify a role for DREAM silencing in the activation of ATF6 signaling, which promotes early neuroprotection in HD. PMID:26752648

  7. Activating transcription factor 6 derepression mediates neuroprotection in Huntington disease.

    Science.gov (United States)

    Naranjo, José R; Zhang, Hongyu; Villar, Diego; González, Paz; Dopazo, Xose M; Morón-Oset, Javier; Higueras, Elena; Oliveros, Juan C; Arrabal, María D; Prieto, Angela; Cercós, Pilar; González, Teresa; De la Cruz, Alicia; Casado-Vela, Juan; Rábano, Alberto; Valenzuela, Carmen; Gutierrez-Rodriguez, Marta; Li, Jia-Yi; Mellström, Britt

    2016-02-01

    Deregulated protein and Ca2+ homeostasis underlie synaptic dysfunction and neurodegeneration in Huntington disease (HD); however, the factors that disrupt homeostasis are not fully understood. Here, we determined that expression of downstream regulatory element antagonist modulator (DREAM), a multifunctional Ca2+-binding protein, is reduced in murine in vivo and in vitro HD models and in HD patients. DREAM downregulation was observed early after birth and was associated with endogenous neuroprotection. In the R6/2 mouse HD model, induced DREAM haplodeficiency or blockade of DREAM activity by chronic administration of the drug repaglinide delayed onset of motor dysfunction, reduced striatal atrophy, and prolonged life span. DREAM-related neuroprotection was linked to an interaction between DREAM and the unfolded protein response (UPR) sensor activating transcription factor 6 (ATF6). Repaglinide blocked this interaction and enhanced ATF6 processing and nuclear accumulation of transcriptionally active ATF6, improving prosurvival UPR function in striatal neurons. Together, our results identify a role for DREAM silencing in the activation of ATF6 signaling, which promotes early neuroprotection in HD. PMID:26752648

  8. Activating transcription factor 6 derepression mediates neuroprotection in Huntington disease.

    Science.gov (United States)

    Naranjo, José R; Zhang, Hongyu; Villar, Diego; González, Paz; Dopazo, Xose M; Morón-Oset, Javier; Higueras, Elena; Oliveros, Juan C; Arrabal, María D; Prieto, Angela; Cercós, Pilar; González, Teresa; De la Cruz, Alicia; Casado-Vela, Juan; Rábano, Alberto; Valenzuela, Carmen; Gutierrez-Rodriguez, Marta; Li, Jia-Yi; Mellström, Britt

    2016-02-01

    Deregulated protein and Ca2+ homeostasis underlie synaptic dysfunction and neurodegeneration in Huntington disease (HD); however, the factors that disrupt homeostasis are not fully understood. Here, we determined that expression of downstream regulatory element antagonist modulator (DREAM), a multifunctional Ca2+-binding protein, is reduced in murine in vivo and in vitro HD models and in HD patients. DREAM downregulation was observed early after birth and was associated with endogenous neuroprotection. In the R6/2 mouse HD model, induced DREAM haplodeficiency or blockade of DREAM activity by chronic administration of the drug repaglinide delayed onset of motor dysfunction, reduced striatal atrophy, and prolonged life span. DREAM-related neuroprotection was linked to an interaction between DREAM and the unfolded protein response (UPR) sensor activating transcription factor 6 (ATF6). Repaglinide blocked this interaction and enhanced ATF6 processing and nuclear accumulation of transcriptionally active ATF6, improving prosurvival UPR function in striatal neurons. Together, our results identify a role for DREAM silencing in the activation of ATF6 signaling, which promotes early neuroprotection in HD.

  9. The CREB Transcription Factor Controls Transcriptional Activity of the Human RIC8B Gene.

    Science.gov (United States)

    Maureira, Alejandro; Sánchez, Rodolfo; Valenzuela, Nicole; Torrejón, Marcela; Hinrichs, María V; Olate, Juan; Gutiérrez, José L

    2016-08-01

    Proper regulation of gene expression is essential for normal development, cellular growth, and differentiation. Differential expression profiles of mRNA coding for vertebrate Ric-8B during embryo and adult stages have been observed. In addition, Ric-8B is expressed in few cerebral nuclei subareas. These facts point to a dynamic control of RIC8B gene expression. In order to understand the transcriptional regulation of this gene, we searched for cis-elements in the sequence of the human RIC8B promoter region, identifying binding sites for the basic/leucine zipper (bZip) CREB transcription factor family (CRE sites) and C/EBP transcription factor family (C/EBP sites). CRE sites were found clustered near the transcription start site, while the C/EBP sites were found clustered at around 300 bp upstream the CRE sites. Here, we demonstrate the ability of CREB1 and C/EBPβ to bind their respective elements identified in the RIC8B promoter. Comparative protein-DNA interaction analyses revealed only the proximal elements as high affinity sites for CREB1 and only the distal elements as high affinity sites for C/EBPβ. Chromatin immunoprecipitation analyses, carried out using a human neuroblastoma cell line, confirmed the preferential association of CREB to the proximal region of the RIC8B promoter. By performing luciferase reporter assays, we found the CRE sites as the most relevant elements for its transcriptional activity. Taken together, these data show the existence of functional CREB and C/EBP binding sites in the human RIC8B gene promoter, a particular distribution of these sites and demonstrate a relevant role of CREB in stimulating transcriptional activity of this gene. J. Cell. Biochem. 117: 1797-1805, 2016. © 2016 Wiley Periodicals, Inc. PMID:26729411

  10. Bidirectional Transcription Arises from Two Distinct Hubs of Transcription Factor Binding and Active Chromatin.

    Science.gov (United States)

    Scruggs, Benjamin S; Gilchrist, Daniel A; Nechaev, Sergei; Muse, Ginger W; Burkholder, Adam; Fargo, David C; Adelman, Karen

    2015-06-18

    Anti-sense transcription originating upstream of mammalian protein-coding genes is a well-documented phenomenon, but remarkably little is known about the regulation or function of anti-sense promoters and the non-coding RNAs they generate. Here we define at nucleotide resolution the divergent transcription start sites (TSSs) near mouse mRNA genes. We find that coupled sense and anti-sense TSSs precisely define the boundaries of a nucleosome-depleted region (NDR) that is highly enriched in transcription factor (TF) motifs. Notably, as the distance between sense and anti-sense TSSs increases, so does the size of the NDR, the level of signal-dependent TF binding, and gene activation. We further discover a group of anti-sense TSSs in macrophages with an enhancer-like chromatin signature. Interestingly, this signature identifies divergent promoters that are activated during immune challenge. We propose that anti-sense promoters serve as platforms for TF binding and establishment of active chromatin to further regulate or enhance sense-strand mRNA expression.

  11. Transcription factor PIF4 controls the thermosensory activation of flowering

    KAUST Repository

    Kumar, S. Vinod

    2012-03-21

    Plant growth and development are strongly affected by small differences in temperature. Current climate change has already altered global plant phenology and distribution, and projected increases in temperature pose a significant challenge to agriculture. Despite the important role of temperature on plant development, the underlying pathways are unknown. It has previously been shown that thermal acceleration of flowering is dependent on the florigen, FLOWERING LOCUS T (FT). How this occurs is, however, not understood, because the major pathway known to upregulate FT, the photoperiod pathway, is not required for thermal acceleration of flowering. Here we demonstrate a direct mechanism by which increasing temperature causes the bHLH transcription factor PHYTOCHROME INTERACTING FACTOR4 (PIF4) to activate FT. Our findings provide a new understanding of how plants control their timing of reproduction in response to temperature. Flowering time is an important trait in crops as well as affecting the life cycles of pollinator species. A molecular understanding of how temperature affects flowering will be important for mitigating the effects of climate change. © 2012 Macmillan Publishers Limited. All rights reserved.

  12. Thioredoxin interacting protein inhibits hypoxia-inducible factor transcriptional activity

    OpenAIRE

    Farrell, Michael R; Rogers, Lynette K.; Liu, Yusen; Welty, Stephen E.; Tipple, Trent E.

    2010-01-01

    Vascular endothelial growth factor (VEGF) is required for proper lung development and is transcriptionally regulated in alveolar epithelial cells by hypoxia inducible factor (HIF). Previous findings in a newborn mouse model of bronchopulmonary dysplasia (BPD) suggest that thioredoxin interacting protein (Txnip) is a novel regulator of VEGF expression. The present studies were designed to test the hypothesis that Txnip negatively regulates VEGF through effects on HIF-mediated gene expression. ...

  13. Expression of Activated Epidermal Growth Factor Receptor and Transcription Factor E2F in Condyloma Accuminata

    Institute of Scientific and Technical Information of China (English)

    俞小虹; 程浩; 郑伟

    2003-01-01

    Objective: To study the expression of activated epi-dermal growth factor receptor (EGFR) and transcrip-tion factor E2F (E2F) in Condyloma Accuminata(CA) patients. Methods: Immunofluorescent techniques were used to investigate the expression of activated EGFR and E2F in CA patients. Results: The expression of activated EGFR on the membrane of epithelial cells in CA lesions was sig-nificantly greater compared to expression levers in the control group (P<0.01). Moreover, the co-expres-sion of activated EGFR and E2F was significantly in-creased compared to the control group (P<0.01).Conclusion: Our observations suggest that the in-crease in activated EGFR expression may stimulate hyperplasia in CA patients through the activation of transcription factor E2F.

  14. Building gene expression signatures indicative of transcription factor activation to predict AOP modulation

    Science.gov (United States)

    Building gene expression signatures indicative of transcription factor activation to predict AOP modulation Adverse outcome pathways (AOPs) are a framework for predicting quantitative relationships between molecular initiatin...

  15. Variable Glutamine-Rich Repeats Modulate Transcription Factor Activity

    OpenAIRE

    Gemayel, Rita; Chavali, Sreenivas; Pougach, Ksenia; Legendre, Matthieu; Zhu, Bo; Boeynaems, Steven; van der Zande, Elisa; Gevaert, Kris; Rousseau, Frederic; Schymkowitz, Joost; Babu, M Madan; Verstrepen, Kevin J.

    2015-01-01

    Summary Excessive expansions of glutamine (Q)-rich repeats in various human proteins are known to result in severe neurodegenerative disorders such as Huntington’s disease and several ataxias. However, the physiological role of these repeats and the consequences of more moderate repeat variation remain unknown. Here, we demonstrate that Q-rich domains are highly enriched in eukaryotic transcription factors where they act as functional modulators. Incremental changes in the number of repeats i...

  16. Prediction of Pathway Activation by Xenobiotic-Responsive Transcription Factors in the Mouse Liver

    Science.gov (United States)

    Many drugs and environmentally-relevant chemicals activate xenobioticresponsive transcription factors (TF). Identification of target genes of these factors would be useful in predicting pathway activation in in vitro chemical screening. Starting with a large compendium of Affymet...

  17. Inferring yeast cell cycle regulators and interactions using transcription factor activities

    Directory of Open Access Journals (Sweden)

    Galbraith Simon J

    2005-06-01

    Full Text Available Abstract Background Since transcription factors are often regulated at the post-transcriptional level, their activities, rather than expression levels may provide valuable information for investigating functions and their interactions. The recently developed Network Component Analysis (NCA and its generalized form (gNCA provide a robust framework for deducing the transcription factor activities (TFAs from various types of DNA microarray data and transcription factor-gene connectivity. The goal of this work is to demonstrate the utility of TFAs in inferring transcription factor functions and interactions in Saccharomyces cerevisiae cell cycle regulation. Results Using gNCA, we determined 74 TFAs from both wild type and fkh1 fkh2 deletion mutant microarray data encompassing 1529 ORFs. We hypothesized that transcription factors participating in the cell cycle regulation exhibit cyclic activity profiles. This hypothesis was supported by the TFA profiles of known cell cycle factors and was used as a basis to uncover other potential cell cycle factors. By combining the results from both cluster analysis and periodicity analysis, we recovered nearly 90% of the known cell cycle regulators, and identified 5 putative cell cycle-related transcription factors (Dal81, Hap2, Hir2, Mss11, and Rlm1. In addition, by analyzing expression data from transcription factor knockout strains, we determined 3 verified (Ace2, Ndd1, and Swi5 and 4 putative interaction partners (Cha4, Hap2, Fhl1, and Rts2 of the forkhead transcription factors. Sensitivity of TFAs to connectivity errors was determined to provide confidence level of these predictions. Conclusion By subjecting TFA profiles to analyses based upon physiological signatures we were able to identify cell cycle related transcription factors consistent with current literature, transcription factors with potential cell cycle dependent roles, and interactions between transcription factors.

  18. Characterization of the transcriptional activation domains of human TEF3-1 (transcription enhancer factor 3 isoform 1).

    Science.gov (United States)

    Qiao, Cheng; Jiang, Yajie; Deng, Cuilan; Huang, Zebo; Teng, Kaixuan; Chen, Lan; Liu, Xin

    2015-03-01

    TEF3-1 (transcription enhancer factor 3 isoform 1) is a human transcriptional factor, which has a N-terminal TEA/ATTS domain supposedly for DNA binding and C-terminal PRD and STY domains for transcriptional activation. Taking advantage of the efficient reporter design of yeast two-hybrid system, we characterized the TEF3-1 domains in activating gene expression. Previously study usually mentioned that the C-terminal domain of TEF3-1 has the transcriptional activity, however, our data shows that the peptides TEF3-11-66 and TEF3-1197-434 functioned as two independent activation domains, suggesting that N-terminal domain of TEF3-1 also has transcriptional activation capacity. Additionally, more deletions of amino acids 197-434 showed that only the peptides TEF3-1197-265 contained the minimum sequences for the C-terminal transcriptional activation domain. The protein structure is predicted to contain a helix-turn-helix structure in TEF3-11-66 and four β sheets in TEF3-1197-265. Finally, after the truncated fragments of TEF3-1 were expressed in HUVEC cells, the whole TEF3-1 and the two activation domains could increase F-actin stress fiber, cell proliferation, migration and targeted gene expression. Further analysis and characterization of the activation domains in TEF3-1 may broaden our understanding of the gene involved in angiogenesis and other pathological processes.

  19. WRKY Transcription Factors Involved in Activation of SA Biosynthesis Genes

    Directory of Open Access Journals (Sweden)

    Bol John F

    2011-05-01

    Full Text Available Abstract Background Increased defense against a variety of pathogens in plants is achieved through activation of a mechanism known as systemic acquired resistance (SAR. The broad-spectrum resistance brought about by SAR is mediated through salicylic acid (SA. An important step in SA biosynthesis in Arabidopsis is the conversion of chorismate to isochorismate through the action of isochorismate synthase, encoded by the ICS1 gene. Also AVRPPHB SUSCEPTIBLE 3 (PBS3 plays an important role in SA metabolism, as pbs3 mutants accumulate drastically reduced levels of SA-glucoside, a putative storage form of SA. Bioinformatics analysis previously performed by us identified WRKY28 and WRKY46 as possible regulators of ICS1 and PBS3. Results Expression studies with ICS1 promoter::β-glucuronidase (GUS genes in Arabidopsis thaliana protoplasts cotransfected with 35S::WRKY28 showed that over expression of WRKY28 resulted in a strong increase in GUS expression. Moreover, qRT-PCR analyses indicated that the endogenous ICS1 and PBS3 genes were highly expressed in protoplasts overexpressing WRKY28 or WRKY46, respectively. Electrophoretic mobility shift assays indentified potential WRKY28 binding sites in the ICS1 promoter, positioned -445 and -460 base pairs upstream of the transcription start site. Mutation of these sites in protoplast transactivation assays showed that these binding sites are functionally important for activation of the ICS1 promoter. Chromatin immunoprecipitation assays with haemagglutinin-epitope-tagged WRKY28 showed that the region of the ICS1 promoter containing the binding sites at -445 and -460 was highly enriched in the immunoprecipitated DNA. Conclusions The results obtained here confirm results from our multiple microarray co-expression analyses indicating that WRKY28 and WRKY46 are transcriptional activators of ICS1 and PBS3, respectively, and support this in silico screening as a powerful tool for identifying new components of stress

  20. The HMG-box mitochondrial transcription factor xl-mtTFA binds DNA as a tetramer to activate bidirectional transcription.

    OpenAIRE

    Antoshechkin, I; Bogenhagen, D F; Mastrangelo, I A

    1997-01-01

    The mitochondrial HMG-box transcription factor xl-mtTFA activates bidirectional transcription by binding to a site separating two core promoters in Xenopus laevis mitochondrial DNA (mtDNA). Three independent approaches were used to study the higher order structure of xl-mtTFA binding to this site. First, co-immunoprecipitation of differentially tagged recombinant mtTFA derivatives established that the protein exists as a multimer. Second, in vitro chemical cross-linking experiments provided e...

  1. Cloned yeast and mammalian transcription factor TFIID gene products support basal but not activated metallothionein gene transcription

    International Nuclear Information System (INIS)

    Transcription factor IID (TFIID), the TATA binding factor, is thought to play a key role in the regulation of eukaryotic transcriptional initiation. The authors studied the role of TFIID in the transcription of the yeast metallothionein gene, which is regulated by the copper-dependent activator protein ACE1. Both basal and induced transcription of the metallothionein gene require TFIID and a functional TATA binding site. Crude human and mouse TFIID fractions, prepared from mammalian cells, respond to stimulation by ACE1, In contrast, human and yeast TFIID proteins expressed from the cloned genes do not respond to ACE1, except in the presence of what germ or yeast total cell extracts. These results indicate that the cloned TFIID gene products lack a component(s) or modifications(s) that is required for regulated as compared to basal transription

  2. Building predictive gene signatures through simultaneous assessment of transcription factor activation and gene expression.

    Science.gov (United States)

    Building predictive gene signatures through simultaneous assessment of transcription factor activation and gene expression Exposure to many drugs and environmentally-relevant chemicals can cause adverse outcomes. These adverse outcomes, such as cancer, have been linked to mol...

  3. Thyroid Transcription Factor 1 Reprograms Angiogenic Activities of Secretome.

    Science.gov (United States)

    Wood, Lauren W; Cox, Nicole I; Phelps, Cody A; Lai, Shao-Chiang; Poddar, Arjun; Talbot, Conover; Mu, David

    2016-01-01

    Through both gain- and loss-of-TTF-1 expression strategies, we show that TTF-1 positively regulates vascular endothelial growth factor (VEGF) and that the VEGF promoter element contains multiple TTF-1-responsive sequences. The major signaling receptor for VEGF, i.e VEGFR2, also appears to be under a direct and positive regulation of TTF-1. The TTF-1-dependent upregulation of VEGF was moderately sensitive to rapamycin, implicating a partial involvement of mammalian target of rapamycin (mTOR). However, hypoxia did not further increase the secreted VEGF level of the TTF-1(+) lung cancer cells. The TTF-1-induced VEGF upregulation occurs in both compartments (exosomes and exosome-depleted media (EDM)) of the conditioned media. Surprisingly, the EDM of TTF-1(+) lung cancer cells (designated EDM-TTF-1(+)) displayed an anti-angiogenic activity in the endothelial cell tube formation assay. Mechanistic studies suggest that the increased granulocyte-macrophage colony-stimulating factor (GM-CSF) level in the EDM-TTF-1(+) conferred the antiangiogenic activities. In human lung cancer, the expression of TTF-1 and GM-CSF exhibits a statistically significant and positive correlation. In summary, this study provides evidence that TTF-1 may reprogram lung cancer secreted proteome into an antiangiogenic state, offering a novel basis to account for the long-standing observation of favorable prognosis associated with TTF-1(+) lung adenocarcinomas. PMID:26912193

  4. EGF activates TTP expression by activation of ELK-1 and EGR-1 transcription factors

    Directory of Open Access Journals (Sweden)

    Florkowska Magdalena

    2012-03-01

    Full Text Available Abstract Background Tristetraprolin (TTP is a key mediator of processes such as inflammation resolution, the inhibition of autoimmunity and in cancer. It carries out this role by the binding and degradation of mRNA transcripts, thereby decreasing their half-life. Transcripts modulated by TTP encode proteins such as cytokines, pro-inflammatory agents and immediate-early response proteins. TTP can also modulate neoplastic phenotypes in many cancers. TTP is induced and functionally regulated by a spectrum of both pro- and anti-inflammatory cytokines, mitogens and drugs in a MAPK-dependent manner. So far the contribution of p38 MAPK to the regulation of TTP expression and function has been best described. Results Our results demonstrate the induction of the gene coding TTP (ZFP36 by EGF through the ERK1/2-dependent pathway and implicates the transcription factor ELK-1 in this process. We show that ELK-1 regulates ZFP36 expression by two mechanisms: by binding the ZFP36 promoter directly through ETS-binding site (+ 883 to +905 bp and by inducing expression of EGR-1, which in turn increases ZFP36 expression through sequences located between -111 and -103 bp. Conclusions EGF activates TTP expression via ELK-1 and EGR-1 transcription factors.

  5. Encoding four gene expression programs in the activation dynamics of a single transcription factor.

    Science.gov (United States)

    Hansen, Anders S; O'Shea, Erin K

    2016-04-01

    Cellular signaling response pathways often exhibit a bow-tie topology [1,2]: multiple upstream stress signals converge on a single shared transcription factor, which is thought to induce different downstream gene expression programs (Figure 1A). However, if several different signals activate the same transcription factor, can each signal then induce a specific gene expression response? A growing body of literature supports a temporal coding theory where information about environmental signals can be encoded, at least partially, in the temporal dynamics of the shared transcription factor [1,2]. For example, in the case of the budding yeast transcription factor Msn2, different stresses induce distinct Msn2 activation dynamics: Msn2 shows pulsatile nuclear activation with dose-dependent frequency under glucose limitation, but sustained nuclear activation with dose-dependent amplitude under oxidative stress [3]. These dynamic patterns can then lead to differential gene expression responses [3-5], but it is not known how much specificity can be obtained. Thus, a major question of this temporal coding theory is how many gene response programs or cellular functions can be robustly encoded by dynamic control of a single transcription factor. Here we provide the first direct evidence that, simply by regulating the activation dynamics of a single transcription factor, it is possible to preferentially induce four distinct gene expression programs. PMID:27046808

  6. A New Microsphere-Based Immunoassay for Measuring the Activity of Transcription Factors

    Directory of Open Access Journals (Sweden)

    Tsai Chueh-Jen

    2010-01-01

    Full Text Available Abstract There are several traditional and well-developed methods for analyzing the activity of transcription factors, such as EMSA, enzyme-linked immunosorbent assay, and reporter gene activity assays. All of these methods have their own distinct disadvantages, but none can analyze the changes in transcription factors in the few cells that are cultured in the wells of 96-well titer plates. Thus, a new microsphere-based immunoassay to measure the activity of transcription factors (MIA-TF was developed. In MIA-TF, NeutrAvidin-labeled microspheres were used as the solid phase to capture biotin-labeled double-strand DNA fragments which contain certain transcription factor binding elements. The activity of transcription factors was detected by immunoassay using a transcription factor-specific antibody to monitor the binding with the DNA probe. Next, analysis was performed by flow cytometry. The targets hypoxia-inducible factor-1α (HIF-1α and nuclear factor-kappa B (NF-κB were applied and detected in this MIA-TF method; the results that we obtained demonstrated that this method could be used to monitor the changes of NF-κB or HIF within 50 or 100 ng of nuclear extract. Furthermore, MIA-TF could detect the changes in NF-κB or HIF in cells that were cultured in wells of a 96-well plate without purification of the nuclear protein, an important consideration for applying this method to high-throughput assays in the future. The development of MIA-TF would support further progress in clinical analysis and drug screening systems. Overall, MIA-TF is a method with high potential to detect the activity of transcription factors.

  7. Arabidopsis sigma factor binding proteins are activators of the WRKY33 transcription factor in plant defense.

    Science.gov (United States)

    Lai, Zhibing; Li, Ying; Wang, Fei; Cheng, Yuan; Fan, Baofang; Yu, Jing-Quan; Chen, Zhixiang

    2011-10-01

    Necrotrophic pathogens are important plant pathogens that cause many devastating plant diseases. Despite their impact, our understanding of the plant defense response to necrotrophic pathogens is limited. The WRKY33 transcription factor is important for plant resistance to necrotrophic pathogens; therefore, elucidation of its functions will enhance our understanding of plant immunity to necrotrophic pathogens. Here, we report the identification of two WRKY33-interacting proteins, nuclear-encoded SIGMA FACTOR BINDING PROTEIN1 (SIB1) and SIB2, which also interact with plastid-encoded plastid RNA polymerase SIGMA FACTOR1. Both SIB1 and SIB2 contain an N-terminal chloroplast targeting signal and a putative nuclear localization signal, suggesting that they are dual targeted. Bimolecular fluorescence complementation indicates that WRKY33 interacts with SIBs in the nucleus of plant cells. Both SIB1 and SIB2 contain a short VQ motif that is important for interaction with WRKY33. The two VQ motif-containing proteins recognize the C-terminal WRKY domain and stimulate the DNA binding activity of WRKY33. Like WRKY33, both SIB1 and SIB2 are rapidly and strongly induced by the necrotrophic pathogen Botrytis cinerea. Resistance to B. cinerea is compromised in the sib1 and sib2 mutants but enhanced in SIB1-overexpressing transgenic plants. These results suggest that dual-targeted SIB1 and SIB2 function as activators of WRKY33 in plant defense against necrotrophic pathogens.

  8. Hypoxia-Inducible Factor 3 Is an Oxygen-Dependent Transcription Activator and Regulates a Distinct Transcriptional Response to Hypoxia

    Directory of Open Access Journals (Sweden)

    Peng Zhang

    2014-03-01

    Full Text Available Hypoxia-inducible factors (HIFs play key roles in the cellular response to hypoxia. It is widely accepted that whereas HIF-1 and HIF-2 function as transcriptional activators, HIF-3 inhibits HIF-1/2α action. Contrary to this idea, we show that zebrafish Hif-3α has strong transactivation activity. Hif-3α is degraded under normoxia. Mutation of P393, P493, and L503 inhibits this oxygen-dependent degradation. Transcriptomics and chromatin immunoprecipitation analyses identify genes that are regulated by Hif-3α, Hif-1α, or both. Under hypoxia or when overexpressed, Hif-3α binds to its target gene promoters and upregulates their expression. Dominant-negative inhibition and knockdown of Hif-3α abolish hypoxia-induced Hif-3α-promoter binding and gene expression. Hif-3α not only mediates hypoxia-induced growth and developmental retardation but also possesses hypoxia-independent activities. Importantly, transactivation activity is conserved and human HIF-3α upregulates similar genes in human cells. These findings suggest that Hif-3 is an oxygen-dependent transcription factor and activates a distinct transcriptional response to hypoxia.

  9. O-GlcNAc modification of Sp3 and Sp4 transcription factors negatively regulates their transcriptional activities.

    Science.gov (United States)

    Ha, Changhoon; Lim, Kihong

    2015-11-13

    The addition of O-linked N-acetylglucosamine (O-GlcNAc) on serine or threonine modifies a myriad of proteins and regulates their function, stability and localization. O-GlcNAc modification is common among chromosome-associated proteins, such as transcription factors, suggesting its extensive involvement in gene expression regulation. In this study, we demonstrate the O-GlcNAc status of the Sp family members of transcription factors and the functional impact on their transcriptional activities. We highlight the presence of O-GlcNAc residues in Sp3 and Sp4, but not Sp2, as demonstrated by their enrichment in GlcNAc positive protein fractions and by detection of O-GlcNAc residues on Sp3 and Sp4 co-expressed in Escherichia coli together with O-GlcNAc transferase (OGT) using an O-GlcNAc-specific antibody. Deletion mutants of Sp3 and Sp4 indicate that the majority of O-GlcNAc sites reside in their N-terminal transactivation domain. Overall, using reporter gene assays and co-immunoprecipitations, we demonstrate a functional inhibitory role of O-GlcNAc modifications in Sp3 and Sp4 transcription factors. Thereby, our study strengthens the current notion that O-GlcNAc modification is an important regulator of protein interactome.

  10. PEA3/ETV4-related transcription factors coupled with active ERK signalling are associated with poor prognosis in gastric adenocarcinoma

    LENUS (Irish Health Repository)

    Keld, R

    2011-06-28

    Background: Transcription factors often play important roles in tumourigenesis. Members of the PEA3 subfamily of ETS-domain transcription factors fulfil such a role and have been associated with tumour metastasis in several different cancers. Moreover, the activity of the PEA3 subfamily transcription factors is potentiated by Ras-ERK pathway signalling, which is itself often deregulated in tumour cells.\\r\

  11. SUMOylation can regulate the activity of ETS-like transcription factor 4.

    Science.gov (United States)

    Kaikkonen, Sanna; Makkonen, Harri; Rytinki, Miia; Palvimo, Jorma J

    2010-08-01

    ETS-like transcription factor 4 (ELK4) (a.k.a. serum response factor accessory protein 1) belongs to the ternary complex factor (TCF) subfamily of E twenty-six (ETS) domain transcription factors. Compared to the other TCF subfamily members, ELK1 and ELK3 (NET), there is limited information of the mechanisms regulating the ELK4 activity. Here, we show that the ELK4 can be covalently modified (SUMOylated) by small ubiquitin-related modifier (SUMO) 1 protein, an important regulator of signaling and transcription. SUMOylation of ELK4 was reversed by SUMO-specific proteases (SENP) 1 and 2 and stimulated by SUMO E3 ligase PIAS3. Conserved lysine residue 167 that is located in the NET inhibitory domain of ELK4 was identified as the main site of SUMO-1 conjugation. Interestingly, mutation of the K167 disrupting the SUMOylation markedly enhanced the transcriptional activity of the ELK4, but weakened its repressive function on c-fos promoter. In conclusion, our results suggest that covalent modification by SUMO-1 can regulate the activity of ELK4, contributing to the transcriptional repression by the ELK4. PMID:20637912

  12. Role of SIRT1 and FOXO factors in eNOS transcriptional activation by resveratrol.

    Science.gov (United States)

    Xia, Ning; Strand, Susanne; Schlufter, Frank; Siuda, Daniel; Reifenberg, Gisela; Kleinert, Hartmut; Förstermann, Ulrich; Li, Huige

    2013-08-01

    Many of the cardiovascular protective effects of resveratrol are attributable to an enhanced production of nitric oxide (NO) by the endothelial NO synthase (eNOS). Resveratrol has been shown to enhance eNOS gene expression as well as eNOS enzymatic activity. The aim of the present study was to analyze the molecular mechanisms of eNOS transcriptional activation by resveratrol. Treatment of human EA.hy 926 endothelial cells with resveratrol led to a concentration-dependent upregulation of eNOS expression. In luciferase reporter gene assay, resveratrol enhanced the activity of human eNOS promoter fragments (3500, 1600, 633 and 263bp in length, respectively), indicating that the proximal promoter region is required for resveratrol-induced eNOS transcriptional activation. Knockdown of the NAD(+)-dependent protein deacetylase sirtuin 1 (SIRT1) by siRNA prevented the upregulation of eNOS mRNA and protein by resveratrol. Forkhead box O (FOXO) transcription factors are established downstream targets of SIRT1. siRNA-mediated knockdown of FOXO1 and FOXO3a abolished the effect of resveratrol on eNOS expression, indicating the involvement of these factors. Resveratrol treatment enhanced the expression of FOXO1 and FOXO3a in EA.hy 926 cells. Reporter gene assay using promoter containing forkhead response elements showed increased FOXO factor activity by resveratrol. In electrophoretic mobility shift assay, the enhanced binding of nuclear proteins to the eNOS promoter regions by resveratrol could be blocked by antibodies against FOXO1 and FOXO3a. In conclusion, resveratrol enhances the expression and activity of FOXO transcription factors. The SIRT1/FOXO factor axis is involved in resveratrol-induced eNOS transcriptional activation.

  13. Elk3 from hamster--a ternary complex factor with strong transcriptional repressor activity.

    Science.gov (United States)

    Hjortoe, Gertrud Malene; Weilguny, Dietmar; Willumsen, Berthe Marie

    2005-01-01

    Elk3 belongs to the Ets family of transcription factors, which are regulated by the Ras/mitogen-activated protein kinase-signaling pathway. In the absence of Ras, this protein is a strong inhibitor of transcription and may be directly involved in regulation of growth by downregulating the transcription of genes that are activated during entry into G1. We have isolated the Cricetulus griseus Elk3 gene from the Chinese hamster ovary (CHO) cell line and investigated the transcriptional potential of this factor. Transient transfections revealed that, in addition to its regulation of the c-fos promoter, Elk3 from CHO cells seems to inhibit other promoters controlling expression of proteins involved in G1/S phase progression; Cyclin D1 and DHFR. As has been described for the Elk3 homologs Net (Mouse) and Sap-2 (Human), the results of the present study further indicate that hamster Elk3 is a target of the Ras-Raf-MAPK pathway, and cotransfections with constitutively active H-ras relieves its negative transcriptional activity. No cells stably expressing exogenous Elk3 could be obtained, possibly due to an unspecified toxic or growth retarding effect. These findings support a possible role for Elk3 in growth regulation and reveal a high degree of homology for this protein across species. PMID:15684718

  14. Nucleocytoplasmic shuttling of transcription factors

    DEFF Research Database (Denmark)

    Cartwright, P; Helin, K

    2000-01-01

    To elicit the transcriptional response following intra- or extracellular stimuli, the signals need to be transmitted to their site of action within the nucleus. The nucleocytoplasmic shuttling of transcription factors is a mechanism mediating this process. The activation and inactivation...... of the transcriptional response is essential for cells to progress through the cell cycle in a normal manner. The involvement of cytoplasmic and nuclear accessory molecules, and the general nuclear membrane transport components, are essential for this process. Although nuclear import and export for different...... transcription factor families are regulated by similar mechanisms, there are several differences that allow for the specific activation of each transcription factor. This review discusses the general import and export pathways found to be common amongst many different transcription factors, and highlights...

  15. Peroxisome proliferator-activated receptor gamma recruits the positive transcription elongation factor b complex to activate transcription and promote adipogenesis

    DEFF Research Database (Denmark)

    Iankova, Irena; Petersen, Rasmus K; Annicotte, Jean-Sébastien;

    2006-01-01

    in adipogenesis. In this study we show that the expression of the cdk9 p55 isoform is highly regulated during 3T3-L1 adipocyte differentiation at RNA and protein levels. Furthermore, cdk9, as well as cyclin T1 and cyclin T2, shows differences in nuclear localization at distinct stages of adipogenesis...... with and phosphorylation of peroxisome proliferator-activated receptor gamma (PPARgamma), which is the master regulator of this process, on the promoter of PPARgamma target genes. PPARgamma-cdk9 interaction results in increased transcriptional activity of PPARgamma and therefore increased adipogenesis....

  16. The transcription factor DBP affects circadian sleep consolidation and rhythmic EEG activity

    OpenAIRE

    Franken, Paulus; Lopez Molina, Luis; Marcacci, Lysiane; Schibler, Ulrich; Tafti, Mehdi

    2000-01-01

    Albumin D-binding protein (DBP) is a PAR leucine zipper transcription factor that is expressed according to a robust circadian rhythm in the suprachiasmatic nuclei, harboring the circadian master clock, and in most peripheral tissues. Mice lacking DBP display a shorter circadian period in locomotor activity and are less active. Thus, although DBP is not essential for circadian rhythm generation, it does modulate important clock outputs. We studied the role of DBP in the circadian and homeosta...

  17. Resveratrol inhibits growth of orthotopic pancreatic tumors through activation of FOXO transcription factors.

    Directory of Open Access Journals (Sweden)

    Sanjit K Roy

    Full Text Available BACKGROUND: The forkhead transcription factors of the O class (FOXO play a direct role in cellular proliferation, oxidative stress response, and tumorigenesis. The objectives of this study were to examine whether FOXOs regulate antitumor activities of resveratrol in pancreatic cancer cells in vitro and in vivo. METHODOLOGY/PRINCIPAL FINDINGS: Pancreatic cancer cell lines were treated with resveratrol. Cell viability, colony formation, apoptosis and cell cycle were measured by XTT, soft agar, TUNEL and flow cytometry assays, respectively. FOXO nuclear translocation, DNA binding and transcriptional activities were measured by fluorescence technique, gelshift and luciferase assay, respectively. Mice were orthotopically implanted with PANC1 cells and orally gavaged with resveratrol. The components of PI3K and ERK pathways, FOXOs and their target gene expressions were measured by the Western blot analysis. Resveratrol inhibited cell viability and colony formations, and induced apoptosis through caspase-3 activation in four pancreatic cancer cell lines (PANC-1, MIA PaCa-2, Hs766T, and AsPC-1. Resveratrol induced cell cycle arrest by up-regulating the expression of p21/CIP1, p27/KIP1 and inhibiting the expression of cyclin D1. Resveratrol induced apoptosis by up-regulating Bim and activating caspase-3. Resveratrol inhibited phosphorylation of FOXOs, and enhanced their nuclear translocation, FOXO-DNA binding and transcriptional activities. The inhibition of PI3K/AKT and MEK/ERK pathways induced FOXO transcriptional activity and apoptosis. Furthermore, deletion of FOXO genes abrogated resveratrol-induced cell cycle arrest and apoptosis. Finally, resveratrol-treated mice showed significant inhibition in tumor growth which was associated with reduced phosphorylation of ERK, PI3K, AKT, FOXO1 and FOXO3a, and induction of apoptosis and FOXO target genes. CONCLUSIONS: These data suggest that inhibition of ERK and AKT pathways act together to activate FOXO

  18. Genetic factors affecting gene transcription and catalytic activity of UDP-glucuronosyltransferases in human liver.

    Science.gov (United States)

    Liu, Wanqing; Ramírez, Jacqueline; Gamazon, Eric R; Mirkov, Snezana; Chen, Peixian; Wu, Kehua; Sun, Chang; Cox, Nancy J; Cook, Edwin; Das, Soma; Ratain, Mark J

    2014-10-15

    The aim of this study was to discover cis- and trans-acting factors significantly affecting mRNA expression and catalytic activity of human hepatic UDP-glucuronosyltransferases (UGTs). Transcription levels of five major hepatic UGT1A (UGT1A1, UGT1A3, UGT1A4, UGT1A6 and UGT1A9) and five UGT2B (UGT2B4, UGT2B7, UGT2B10, UGT2B15 and UGT2B17) genes were quantified in human liver tissue samples (n = 125) using real-time PCR. Glucuronidation activities of 14 substrates were measured in 47 livers. We genotyped 167 tagSNPs (single-nucleotide polymorphisms) in UGT1A (n = 43) and UGT2B (n = 124), as well as the known functional UGT1A1*28 and UGT2B17 CNV (copy number variation) polymorphisms. Transcription levels of 15 transcription factors (TFs) known to regulate these UGTs were quantified. We found that UGT expression and activity were highly variable among the livers (median and range of coefficient of variations: 135%, 74-217% and 52%, 39-105%, respectively). CAR, PXR and ESR1 were found to be the most important trans-regulators of UGT transcription (median and range of correlation coefficients: 46%, 6-58%; 47%, 9-58%; and 52%, 24-75%, respectively). Hepatic UGT activities were mainly determined by UGT gene transcription levels. Twenty-one polymorphisms were significantly (FDR-adjusted P transcription and testosterone glucuronidation rate, in addition to that attributable to the UGT2B17 CNV. Our study discovered novel pharmacogenetic markers and provided detailed insight into the genetic network regulating hepatic UGTs.

  19. The Transcription Factor Encyclopedia

    DEFF Research Database (Denmark)

    Yusuf, Dimas; Butland, Stefanie L; Swanson, Magdalena I;

    2012-01-01

    ABSTRACT: Here we present the Transcription Factor Encyclopedia (TFe), a new web-based compendium of mini review articles on transcription factors (TFs) that is founded on the principles of open access and collaboration. Our consortium of over 100 researchers has collectively contributed over 130...

  20. An Efficient Method to Identify Conditionally Activated Transcription Factors and their Corresponding Signal Transduction Pathway Segments

    Directory of Open Access Journals (Sweden)

    Haiyan Hu

    2009-11-01

    Full Text Available A signal transduction pathway (STP is a cascade composed of a series of signal transferring steps, which often activate one or more transcription factors (TFs to control the transcription of target genes. Understanding signaling pathways is important to our understanding of the molecular mechanisms of disease. Many condition-annotated pathways have been deposited in public databases. However, condition-annotated pathways are far from complete, considering the large number of possible conditions. Computational methods to assist in the identification of conditionally activated pathways are greatly needed. In this paper, we propose an efficient method to identify conditionally activated pathway segments starting from the identification of conditionally activated TFs, by incorporating protein-DNA binding data, gene expression data and protein interaction data. Applying our methods on several microarray datasets, we have discovered many significantly activated TFs and their corresponding pathway segments, which are supported by evidence in the literature.

  1. Protease footprinting reveals a surface on transcription factor TFIIB that serves as an interface for activators and coactivators.

    OpenAIRE

    Hori, R; Pyo, S.; Carey, M

    1995-01-01

    Transcriptional stimulation by the model activator GAL4-VP16 (a chimeric protein consisting of the DNA-binding domain of the yeast activator GAL4 and the acidic activation domain of the herpes simplex virus protein VP16) involves a series of poorly understood protein-protein interactions between the VP16 activation domain and components of the RNA polymerase II general transcription machinery. One of these interactions is the VP16-mediated binding and recruitment of transcription factor TFIIB...

  2. Multiple steps in the regulation of transcription-factor level and activity

    NARCIS (Netherlands)

    Calkhoven, CF; Ab, G

    1996-01-01

    This review focuses on the regulation of transcription factors, many of which are DNA-binding proteins that recognize cis-regulatory elements of target genes and are the most direct regulators of gene transcription. Transcription factors serve as integration centres of the different signal-transduct

  3. The activity-dependent transcription factor NPAS4 regulates domain-specific inhibition

    OpenAIRE

    Bloodgood, Brenda L.; Sharma, Nikhil; Browne, Heidi Adlman; Trepman, Alissa Z.; Greenberg, Michael E.

    2013-01-01

    A heterogeneous population of inhibitory neurons controls the flow of information through a neural circuit1–3. Inhibitory synapses that form on pyramidal neuron dendrites modulate the summation of excitatory synaptic potentials4–6 and prevent the generation of dendritic calcium spikes7,8. Precisely timed somatic inhibition limits both the number of action potentials and the time window during which firing can occur8,9. The activity-dependent transcription factor NPAS4 regulates inhibitory syn...

  4. Activating transcription factor 3 is a negative regulator of allergic pulmonary inflammation

    OpenAIRE

    Gilchrist, Mark; Henderson, William R.; Clark, April E.; Simmons, Randi M.; Ye, Xin; Smith, Kelly D.; Aderem, Alan

    2008-01-01

    We recently demonstrated the pivotal role of the transcription factor (TF) activating TF 3 (ATF3) in dampening inflammation. We demonstrate that ATF3 also ameliorates allergen-induced airway inflammation and hyperresponsiveness in a mouse model of human asthma. ATF3 expression was increased in the lungs of mice challenged with ovalbumin allergen, and this was associated with its recruitment to the promoters of genes encoding Th2-associated cytokines. ATF3-deficient mice developed significantl...

  5. Combinatorial activation and repression by seven transcription factors specify Drosophila odorant receptor expression.

    Directory of Open Access Journals (Sweden)

    Shadi Jafari

    Full Text Available The mechanism that specifies olfactory sensory neurons to express only one odorant receptor (OR from a large repertoire is critical for odor discrimination but poorly understood. Here, we describe the first comprehensive analysis of OR expression regulation in Drosophila. A systematic, RNAi-mediated knock down of most of the predicted transcription factors identified an essential function of acj6, E93, Fer1, onecut, sim, xbp1, and zf30c in the regulation of more than 30 ORs. These regulatory factors are differentially expressed in antennal sensory neuron classes and specifically required for the adult expression of ORs. A systematic analysis reveals not only that combinations of these seven factors are necessary for receptor gene expression but also a prominent role for transcriptional repression in preventing ectopic receptor expression. Such regulation is supported by bioinformatics and OR promoter analyses, which uncovered a common promoter structure with distal repressive and proximal activating regions. Thus, our data provide insight into how combinatorial activation and repression can allow a small number of transcription factors to specify a large repertoire of neuron classes in the olfactory system.

  6. 24. The transcription factors and the relevant signaling pathways activated by low concentration MNNG

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Aims: To explore the transcription factors and related signal transduction pathways activated in the alkylating agents N-methyl-N'-nitro-N-nitrosoguanindine (MNNG) exposed cells which may involved in the mechanism of MNNG induced changes of gene expression, especially the elevation of DNA polymerase β expression and also the consequence of JNK kinase activation which were reported previously in this lab. Methods: Clontech Mercury pathway profiling system containing 8 different vectors in which a specific response element is located upstream from the SEAP-reporter gene were employed to detect the transcription factor activation in Vero cells treated with 0.2 μmol/L MNNG for 2 hours. Thoroughly, CREB phosphorylation, protein kinase A (PKA) and the cellular cAMP content were also assayed with PhosphoPlus CREB (ser-133) antibody kit, protein kinase assay kit and cAMP RIA kit respectively. Results: Among 8 different response elements, the expression of the reporter gene governed by the transcription factors CREB (cAMP response element binding protein), AP1 (activator protein 1), NF-κB (nuclear factor κ B) were elevated by 1.3, 1.4 and 1.3 times higber than control respectively. The level of activated CREB by Ser-133 phosphorylation was 2.08 times higher than control in cells treated with MNNG for 60 min, as measured by immunoblotting. The activity of CREB upstream kinase protein kinase A (PKA), which can phosphorylate CREB on ser-133 was also activated, and the activation peaked at 60 min (11.03±2.80 arbitrary units vs 0.86±0.43 of control). Also, cAMP levels were significantly raised after 60-minute-treatment, 1.52 times higher vs those in solvent control. Conclusion: In addition of previously reported JNK activation, we show here that low concentration alkylating agent MNNG can also activate the cAMP-PKA and NF-κB pathway. These in consequence induce the activation of transcription factors APl, CREB and NF-κB, which may related to the MNNG induced changes in

  7. MYRF is a membrane-associated transcription factor that autoproteolytically cleaves to directly activate myelin genes.

    Directory of Open Access Journals (Sweden)

    Helena Bujalka

    Full Text Available The myelination of axons is a crucial step during vertebrate central nervous system (CNS development, allowing for rapid and energy efficient saltatory conduction of nerve impulses. Accordingly, the differentiation of oligodendrocytes, the myelinating cells of the CNS, and their expression of myelin genes are under tight transcriptional control. We previously identified a putative transcription factor, Myelin Regulatory Factor (Myrf, as being vital for CNS myelination. Myrf is required for the generation of CNS myelination during development and also for its maintenance in the adult. It has been controversial, however, whether Myrf directly regulates transcription, with reports of a transmembrane domain and lack of nuclear localization. Here we show that Myrf is a membrane-associated transcription factor that undergoes an activating proteolytic cleavage to separate its transmembrane domain-containing C-terminal region from a nuclear-targeted N-terminal region. Unexpectedly, this cleavage event occurs via a protein domain related to the autoproteolytic intramolecular chaperone domain of the bacteriophage tail spike proteins, the first time this domain has been found to play a role in eukaryotic proteins. Using ChIP-Seq we show that the N-terminal cleavage product directly binds the enhancer regions of oligodendrocyte-specific and myelin genes. This binding occurs via a defined DNA-binding consensus sequence and strongly promotes the expression of target genes. These findings identify Myrf as a novel example of a membrane-associated transcription factor and provide a direct molecular mechanism for its regulation of oligodendrocyte differentiation and CNS myelination.

  8. SENSITIVE TO PROTON RHIZOTOXICITY1, CALMODULIN BINDING TRANSCRIPTION ACTIVATOR2, and other transcription factors are involved in ALUMINUM-ACTIVATED MALATE TRANSPORTER1 expression.

    Science.gov (United States)

    Tokizawa, Mutsutomo; Kobayashi, Yuriko; Saito, Tatsunori; Kobayashi, Masatomo; Iuchi, Satoshi; Nomoto, Mika; Tada, Yasuomi; Yamamoto, Yoshiharu Y; Koyama, Hiroyuki

    2015-03-01

    In Arabidopsis (Arabidopsis thaliana) the root apex is protected from aluminum (Al) rhizotoxicity by excretion of malate, an Al chelator, by ALUMINUM-ACTIVATED MALATE TRANSPORTER1 (AtALMT1). AtALMT1 expression is fundamentally regulated by the SENSITIVE TO PROTON RHIZOTOXICITY1 (STOP1) zinc finger protein, but other transcription factors have roles that enable Al-inducible expression with a broad dynamic range. In this study, we characterized multiple cis-elements in the AtALMT1 promoter that interact with transcription factors. In planta complementation assays of AtALMT1 driven by 5' truncated promoters of different lengths showed that the promoter region between -540 and 0 (the first ATG) restored the Al-sensitive phenotype of atalm1 and thus contains cis-elements essential for AtALMT1 expression for Al tolerance. Computation of overrepresented octamers showed that eight regions in this promoter region contained potential cis-elements involved in Al induction and STOP1 regulation. Mutation in a position around -297 from the first ATG completely inactivated AtALMT1 expression and Al response. In vitro binding assays showed that this region contained the STOP1 binding site, which accounted for the recognition by four zinc finger domains of the protein. Other positions were characterized as cis-elements that regulated expression by repressors and activators and a transcription factor that determines root tip expression of AtALMT1. From the consensus of known cis-elements, we identified CALMODULIN-BINDING TRANSCRIPTION ACTIVATOR2 to be an activator of AtALMT1 expression. Al-inducible expression of AtALMT1 changed transcription starting sites, which increased the abundance of transcripts with a shortened 5' untranslated region. The present analyses identified multiple mechanisms that regulate AtALMT1 expression.

  9. Construction and Activity Assay of the Activating Transcription Factor 3 Reporter Vector pATF/CRE-luc

    Institute of Scientific and Technical Information of China (English)

    Jun-Qing XU; Jing-Lan DENG; You-Sheng WU; Han-Yan FU; Rui-Hua WANG; Jian ZHANG; Fan LU; Zhong-Liang ZHAO

    2006-01-01

    Activating transcription factor 3 (ATF3), a member of the activating transcription factor/cAMP responsive element binding protein (ATF/CREB) family of transcription factors, is induced by many physiological stresses. To investigate the activity of ATF/CREB in cells with physiological stresses, we developed a practical reporter vector, the plasmid pATF/CRE-luc, bearing activating transcription factor/cAMP responsive element (ATF/CRE) binding sites. This plasmid was constructed by inserting three repeats of the ATF/CRE binding element into the plasmid pG51uc, replacing the GAL-4 binding sites. The plasmids pACT/ATF3 and pATF/CRE-luc were transfected into HeLa and NIH3T3 cells, respectively, and the results showed that the expression of luciferase was increased in a dose-dependent manner on plasmid pACT/ATF3. The data suggested that the plasmid pATF/CRE-luc could be used as a sensitive and convenient reporter system of ATF3 activity.

  10. Resveratrol induces growth arrest and apoptosis through activation of FOXO transcription factors in prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Qinghe Chen

    Full Text Available BACKGROUND: Resveratrol, a naturally occurring phytopolyphenol compound, has attracted extensive interest in recent years because of its diverse pharmacological characteristics. Although resveratrol possesses chemopreventive properties against several cancers, the molecular mechanisms by which it inhibits cell growth and induces apoptosis have not been clearly understood. The present study was carried out to examine whether PI3K/AKT/FOXO pathway mediates the biological effects of resveratrol. METHODOLOGY/PRINCIPAL FINDINGS: Resveratrol inhibited the phosphorylation of PI3K, AKT and mTOR. Resveratrol, PI3K inhibitors (LY294002 and Wortmannin and AKT inhibitor alone slightly induced apoptosis in LNCaP cells. These inhibitors further enhanced the apoptosis-inducing potential of resveratrol. Overexpression of wild-type PTEN slightly induced apoptosis. Wild type PTEN and PTEN-G129E enhanced resveratrol-induced apoptosis, whereas PTEN-G129R had no effect on proapoptotic effects of resveratrol. Furthermore, apoptosis-inducing potential of resveratrol was enhanced by dominant negative AKT, and inhibited by wild-type AKT and constitutively active AKT. Resveratrol has no effect on the expression of FKHR, FKHRL1 and AFX genes. The inhibition of FOXO phosphorylation by resveratrol resulted in its nuclear translocation, DNA binding and transcriptional activity. The inhibition of PI3K/AKT pathway induced FOXO transcriptional activity resulting in induction of Bim, TRAIL, p27/KIP1, DR4 and DR5, and inhibition of cyclin D1. Similarly, resveratrol-induced FOXO transcriptional activity was further enhanced when activation of PI3K/AKT pathway was blocked. Over-expression of phosphorylation deficient mutants of FOXO proteins (FOXO1-TM, FOXO3A-TM and FOXO4-TM induced FOXO transcriptional activity, which was further enhanced by resveratrol. Inhibition of FOXO transcription factors by shRNA blocked resveratrol-induced upregulation of Bim, TRAIL, DR4, DR5, p27/KIP1 and

  11. Inhibition of hepatocyte nuclear factor 4 transcriptional activity by the nuclear factor {kappa}B pathway

    OpenAIRE

    Nikolaidou-Neokosmidou, Varvara; Zannis, Vassilis I.; Kardassis, Dimitris

    2006-01-01

    Abstract Hepatocyte Nuclear Factor 4 (HNF-4) is a key regulator of liver specific gene expression in mammals. We have shown previously that the activity of the human apolipoprotein C-III (APOC3) promoter is positively regulated by the anti-inflammatory cytokine Transforming Growth Factor {beta} (TGF{beta}) and its effectors Smad3 and Smad4 proteins via physical and functional interactions between Smads and HNF-4. We now show that the pro-inflammatory cytokine Tumor Necrosis Factor ...

  12. Molecular genetic analysis of activation-tagged transcription factors thought to be involved in photomorphogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Neff, Michael M.

    2011-06-23

    This is a final report for Department of Energy Grant No. DE-FG02-08ER15927 entitled “Molecular Genetic Analysis of Activation-Tagged Transcription Factors Thought to be Involved in Photomorphogenesis”. Based on our preliminary photobiological and genetic analysis of the sob1-D mutant, we hypothesized that OBP3 is a transcription factor involved in both phytochrome and cryptochrome-mediated signal transduction. In addition, we hypothesized that OBP3 is involved in auxin signaling and root development. Based on our preliminary photobiological and genetic analysis of the sob2-D mutant, we also hypothesized that a related gene, LEP, is involved in hormone signaling and seedling development.

  13. Differential expression of two activating transcription factor 5 isoforms in papillary thyroid carcinoma

    Science.gov (United States)

    Vicari, Luisa; La Rosa, Cristina; Forte, Stefano; Calabrese, Giovanna; Colarossi, Cristina; Aiello, Eleonora; Salluzzo, Salvatore; Memeo, Lorenzo

    2016-01-01

    Background Activating transcription factor 5 (ATF5) is a member of the activating transcription/cAMP response element-binding protein family of basic leucine zipper proteins that plays an important role in cell survival, differentiation, proliferation, and apoptosis. The ATF5 gene generates two transcripts: ATF5 isoform 1 and ATF5 isoform 2. A number of studies indicate that ATF5 could be an attractive target for therapeutic intervention in several tumor types; however, so far, the role of ATF5 has not been investigated in papillary thyroid carcinoma (PTC). Methods Quantitative real-time reverse transcription polymerase chain reaction and immuno-histochemical staining were used to study ATF5 mRNA and protein expression in PTC. Results We report here that ATF5 is expressed more in PTC tissue than in normal thyroid tissue. Furthermore, this is the first study that describes the presence of both ATF5 isoforms in PTC. Conclusion These findings could provide potential applications in PTC cancer treatment.

  14. A Modified Reverse One-Hybrid Screen Identifies Transcriptional Activation Domains in PHYTOCHROME-INTERACTING FACTOR 3.

    Science.gov (United States)

    Dalton, Jutta C; Bätz, Ulrike; Liu, Jason; Curie, Gemma L; Quail, Peter H

    2016-01-01

    Transcriptional activation domains (TADs) are difficult to predict and identify, since they are not conserved and have little consensus. Here, we describe a yeast-based screening method that is able to identify individual amino acid residues involved in transcriptional activation in a high throughput manner. A plant transcriptional activator, PIF3 (phytochrome interacting factor 3), was fused to the yeast GAL4-DNA-binding Domain (BD), driving expression of the URA3 (Orotidine 5'-phosphate decarboxylase) reporter, and used for negative selection on 5-fluroorotic acid (5FOA). Randomly mutagenized variants of PIF3 were then selected for a loss or reduction in transcriptional activation activity by survival on FOA. In the process, we developed a strategy to eliminate false positives from negative selection that can be used for both reverse-1- and 2-hybrid screens. With this method we were able to identify two distinct regions in PIF3 with transcriptional activation activity, both of which are functionally conserved in PIF1, PIF4, and PIF5. Both are collectively necessary for full PIF3 transcriptional activity, but neither is sufficient to induce transcription autonomously. We also found that the TAD appear to overlap physically with other PIF3 functions, such as phyB binding activity and consequent phosphorylation. Our protocol should provide a valuable tool for identifying, analyzing and characterizing novel TADs in eukaryotic transcription factors, and thus potentially contribute to the unraveling of the mechanism underlying transcriptional activation. PMID:27379152

  15. A Modified Reverse One-Hybrid Screen Identifies Transcriptional Activation Domains in PHYTOCHROME-INTERACTING FACTOR 3.

    Science.gov (United States)

    Dalton, Jutta C; Bätz, Ulrike; Liu, Jason; Curie, Gemma L; Quail, Peter H

    2016-01-01

    Transcriptional activation domains (TADs) are difficult to predict and identify, since they are not conserved and have little consensus. Here, we describe a yeast-based screening method that is able to identify individual amino acid residues involved in transcriptional activation in a high throughput manner. A plant transcriptional activator, PIF3 (phytochrome interacting factor 3), was fused to the yeast GAL4-DNA-binding Domain (BD), driving expression of the URA3 (Orotidine 5'-phosphate decarboxylase) reporter, and used for negative selection on 5-fluroorotic acid (5FOA). Randomly mutagenized variants of PIF3 were then selected for a loss or reduction in transcriptional activation activity by survival on FOA. In the process, we developed a strategy to eliminate false positives from negative selection that can be used for both reverse-1- and 2-hybrid screens. With this method we were able to identify two distinct regions in PIF3 with transcriptional activation activity, both of which are functionally conserved in PIF1, PIF4, and PIF5. Both are collectively necessary for full PIF3 transcriptional activity, but neither is sufficient to induce transcription autonomously. We also found that the TAD appear to overlap physically with other PIF3 functions, such as phyB binding activity and consequent phosphorylation. Our protocol should provide a valuable tool for identifying, analyzing and characterizing novel TADs in eukaryotic transcription factors, and thus potentially contribute to the unraveling of the mechanism underlying transcriptional activation.

  16. A Modified Reverse One-Hybrid Screen Identifies Transcriptional Activation Domains in PHYTOCHROME-INTERACTING FACTOR 3

    Science.gov (United States)

    Dalton, Jutta C.; Bätz, Ulrike; Liu, Jason; Curie, Gemma L.; Quail, Peter H.

    2016-01-01

    Transcriptional activation domains (TADs) are difficult to predict and identify, since they are not conserved and have little consensus. Here, we describe a yeast-based screening method that is able to identify individual amino acid residues involved in transcriptional activation in a high throughput manner. A plant transcriptional activator, PIF3 (phytochrome interacting factor 3), was fused to the yeast GAL4-DNA-binding Domain (BD), driving expression of the URA3 (Orotidine 5′-phosphate decarboxylase) reporter, and used for negative selection on 5-fluroorotic acid (5FOA). Randomly mutagenized variants of PIF3 were then selected for a loss or reduction in transcriptional activation activity by survival on FOA. In the process, we developed a strategy to eliminate false positives from negative selection that can be used for both reverse-1- and 2-hybrid screens. With this method we were able to identify two distinct regions in PIF3 with transcriptional activation activity, both of which are functionally conserved in PIF1, PIF4, and PIF5. Both are collectively necessary for full PIF3 transcriptional activity, but neither is sufficient to induce transcription autonomously. We also found that the TAD appear to overlap physically with other PIF3 functions, such as phyB binding activity and consequent phosphorylation. Our protocol should provide a valuable tool for identifying, analyzing and characterizing novel TADs in eukaryotic transcription factors, and thus potentially contribute to the unraveling of the mechanism underlying transcriptional activation. PMID:27379152

  17. Molecular genetics of blood-fleshed peach reveals activation of anthocyanin biosynthesis by NAC transcription factors.

    Science.gov (United States)

    Zhou, Hui; Lin-Wang, Kui; Wang, Huiliang; Gu, Chao; Dare, Andrew P; Espley, Richard V; He, Huaping; Allan, Andrew C; Han, Yuepeng

    2015-04-01

    Anthocyanin pigmentation is an important consumer trait in peach (Prunus persica). In this study, the genetic basis of the blood-flesh trait was investigated using the cultivar Dahongpao, which shows high levels of cyanidin-3-glucoside in the mesocarp. Elevation of anthocyanin levels in the flesh was correlated with the expression of an R2R3 MYB transcription factor, PpMYB10.1. However, PpMYB10.1 did not co-segregate with the blood-flesh trait. The blood-flesh trait was mapped to a 200-kb interval on peach linkage group (LG) 5. Within this interval, a gene encoding a NAC domain transcription factor (TF) was found to be highly up-regulated in blood-fleshed peaches when compared with non-red-fleshed peaches. This NAC TF, designated blood (BL), acts as a heterodimer with PpNAC1 which shows high levels of expression in fruit at late developmental stages. We show that the heterodimer of BL and PpNAC1 can activate the transcription of PpMYB10.1, resulting in anthocyanin pigmentation in tobacco. Furthermore, silencing the BL gene reduces anthocyanin pigmentation in blood-fleshed peaches. The transactivation activity of the BL-PpNAC1 heterodimer is repressed by a SQUAMOSA promoter-binding protein-like TF, PpSPL1. Low levels of PpMYB10.1 expression in fruit at early developmental stages is probably attributable to lower levels of expression of PpNAC1 plus the presence of high levels of repressors such as PpSPL1. We present a mechanism whereby BL is the key gene for the blood-flesh trait in peach via its activation of PpMYB10.1 in maturing fruit. Partner TFs such as basic helix-loop-helix proteins and NAC1 are required, as is the removal of transcriptional repressors.

  18. Molecular genetics of blood-fleshed peach reveals activation of anthocyanin biosynthesis by NAC transcription factors.

    Science.gov (United States)

    Zhou, Hui; Lin-Wang, Kui; Wang, Huiliang; Gu, Chao; Dare, Andrew P; Espley, Richard V; He, Huaping; Allan, Andrew C; Han, Yuepeng

    2015-04-01

    Anthocyanin pigmentation is an important consumer trait in peach (Prunus persica). In this study, the genetic basis of the blood-flesh trait was investigated using the cultivar Dahongpao, which shows high levels of cyanidin-3-glucoside in the mesocarp. Elevation of anthocyanin levels in the flesh was correlated with the expression of an R2R3 MYB transcription factor, PpMYB10.1. However, PpMYB10.1 did not co-segregate with the blood-flesh trait. The blood-flesh trait was mapped to a 200-kb interval on peach linkage group (LG) 5. Within this interval, a gene encoding a NAC domain transcription factor (TF) was found to be highly up-regulated in blood-fleshed peaches when compared with non-red-fleshed peaches. This NAC TF, designated blood (BL), acts as a heterodimer with PpNAC1 which shows high levels of expression in fruit at late developmental stages. We show that the heterodimer of BL and PpNAC1 can activate the transcription of PpMYB10.1, resulting in anthocyanin pigmentation in tobacco. Furthermore, silencing the BL gene reduces anthocyanin pigmentation in blood-fleshed peaches. The transactivation activity of the BL-PpNAC1 heterodimer is repressed by a SQUAMOSA promoter-binding protein-like TF, PpSPL1. Low levels of PpMYB10.1 expression in fruit at early developmental stages is probably attributable to lower levels of expression of PpNAC1 plus the presence of high levels of repressors such as PpSPL1. We present a mechanism whereby BL is the key gene for the blood-flesh trait in peach via its activation of PpMYB10.1 in maturing fruit. Partner TFs such as basic helix-loop-helix proteins and NAC1 are required, as is the removal of transcriptional repressors. PMID:25688923

  19. Interaction of the transcription start site core region and transcription factor YY1 determine ascorbate transporter SVCT2 exon 1a promoter activity.

    Directory of Open Access Journals (Sweden)

    Huan Qiao

    Full Text Available Transcription of the ascorbate transporter, SVCT2, is driven by two distinct promoters in exon 1 of the transporter sequence. The exon 1a promoter lacks a classical transcription start site and little is known about regulation of promoter activity in the transcription start site core (TSSC region. Here we present evidence that the TSSC binds the multifunctional initiator-binding protein YY1. Electrophoresis shift assays using YY1 antibody showed that YY1 is present as one of two major complexes that specifically bind to the TSSC. The other complex contains the transcription factor NF-Y. Mutations in the TSSC that decreased YY1 binding also impaired the exon 1a promoter activity despite the presence of an upstream activating NF-Y/USF complex, suggesting that YY1 is involved in the regulation of the exon 1a transcription. Furthermore, YY1 interaction with NF-Y and/or USF synergistically enhanced the exon 1a promoter activity in transient transfections and co-activator p300 enhanced their synergistic activation. We propose that the TSSC plays a vital role in the exon 1a transcription and that this function is partially carried out by the transcription factor YY1. Moreover, co-activator p300 might be able to synergistically enhance the TSSC function via a "bridge" mechanism with upstream sequences.

  20. Dynamic transcription factor activity and networks during ErbB2 breast oncogenesis and targeted therapy.

    Science.gov (United States)

    Weiss, M S; Peñalver Bernabé, B; Shin, S; Asztalos, S; Dubbury, S J; Mui, M D; Bellis, A D; Bluver, D; Tonetti, D A; Saez-Rodriguez, J; Broadbelt, L J; Jeruss, J S; Shea, L D

    2014-12-01

    Tissue development and disease progression are multi-stage processes controlled by an evolving set of key regulatory factors, and identifying these factors necessitates a dynamic analysis spanning relevant time scales. Current omics approaches depend on incomplete biological databases to identify critical cellular processes. Herein, we present TRACER (TRanscriptional Activity CEll aRrays), which was employed to quantify the dynamic activity of numerous transcription factor (TFs) simultaneously in 3D and networks for TRACER (NTRACER), a computational algorithm that allows for cellular rewiring to establish dynamic regulatory networks based on activity of TF reporter constructs. We identified major hubs at various stages of culture associated with normal and abnormal tissue growth (i.e., ELK-1 and E2F1, respectively) and the mechanism of action for a targeted therapeutic, lapatinib, through GATA-1, which were confirmed in human ErbB2 positive breast cancer patients and human ErbB2 positive breast cancer cell lines that were either sensitive or resistant to lapatinib.

  1. (-)-Epicatechin gallate (ECG) stimulates osteoblast differentiation via Runt-related transcription factor 2 (RUNX2) and transcriptional coactivator with PDZ-binding motif (TAZ)-mediated transcriptional activation.

    Science.gov (United States)

    Byun, Mi Ran; Sung, Mi Kyung; Kim, A Rum; Lee, Cham Han; Jang, Eun Jung; Jeong, Mi Gyeong; Noh, Minsoo; Hwang, Eun Sook; Hong, Jeong-Ho

    2014-04-01

    Osteoporosis is a degenerative bone disease characterized by low bone mass and is caused by an imbalance between osteoblastic bone formation and osteoclastic bone resorption. It is known that the bioactive compounds present in green tea increase osteogenic activity and decrease the risk of fracture by improving bone mineral density. However, the detailed mechanism underlying these beneficial effects has yet to be elucidated. In this study, we investigated the osteogenic effect of (-)-epicatechin gallate (ECG), a major bioactive compound found in green tea. We found that ECG effectively stimulates osteoblast differentiation, indicated by the increased expression of osteoblastic marker genes. Up-regulation of osteoblast marker genes is mediated by increased expression and interaction of the transcriptional coactivator with PDZ-binding motif (TAZ) and Runt-related transcription factor 2 (RUNX2). ECG facilitates nuclear localization of TAZ through PP1A. PP1A is essential for osteoblast differentiation because inhibition of PP1A activity was shown to suppress ECG-mediated osteogenic differentiation. Taken together, the results showed that ECG stimulates osteoblast differentiation through the activation of TAZ and RUNX2, revealing a novel mechanism for green tea-stimulated osteoblast differentiation.

  2. Nerve growth factor enhances the CRE-dependent transcriptional activity activated by nobiletin in PC12 cells.

    Science.gov (United States)

    Takito, Jiro; Kimura, Junko; Kajima, Koji; Uozumi, Nobuyuki; Watanabe, Makoto; Yokosuka, Akihito; Mimaki, Yoshihiro; Nakamura, Masanori; Ohizumi, Yasushi

    2016-07-01

    Prevention and treatment of Alzheimer disease are urgent problems for elderly people in developed countries. We previously reported that nobiletin, a poly-methoxylated flavone from the citrus peel, improved the symptoms in various types of animal models of memory loss and activated the cAMP responsive element (CRE)-dependent transcription in PC12 cells. Nobiletin activated the cAMP/PKA/MEK/Erk/MAPK signaling pathway without using the TrkA signaling activated by nerve growth factor (NGF). Here, we examined the effect of combination of nobiletin and NGF on the CRE-dependent transcription in PC12 cells. Although NGF alone had little effect on the CRE-dependent transcription, NGF markedly enhanced the CRE-dependent transcription induced by nobiletin. The NGF-induced enhancement was neutralized by a TrkA antagonist, K252a. This effect of NGF was effective on the early signaling event elicited by nobiletin. These results suggested that there was crosstalk between NGF and nobiletin signaling in activating the CRE-dependent transcription in PC12 cells. PMID:27128150

  3. An inducible transcription factor activates expression of human immunodeficiency virus in T cells

    Science.gov (United States)

    Nabel, Gary; Baltimore, David

    1987-04-01

    Human immunodeficiency virus (HIV) production from latently infected T lymphocytes can be induced with compounds that activate the cells to secrete lymphokines1,2. The elements in the HIV genome which control activation are not known but expression might be regulated through a variety of DNA elements. The cis-acting control elements of the viral genome are enhancer and promoter regions. The virus also encodes trans-acting factors specified by the tat-III (refs 3-6) and art genes7. We have examined whether products specific to activated T cells might stimulate viral transcription by binding to regions on viral DNA. Activation of T cells, which increases HIV expression up to 50-fold, correlated with induction of a DNA binding protein indistinguishable from a recognized transcription factor, called NF-κB (ref. 8), with binding sites in the viral enhancer. Mutation of these binding sites abolished inducibility. That NF-κB acts in synergy with the viral tat-III gene product to enhance HIV expression in T cells may have implications for the pathogenesis of AIDS (acquired immune deficiency syndrome).

  4. Effects of calmodulin on DNA-binding activity of heat shock transcription factor in vitro

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The DNA-binding activity of heat shock transcription factor (HSF) was induced by heat shock (HS) of a whole cell extract. Addition of antiserum, specific to CaM, to a whole cell extract reduced bind of the HSF to the heat shock element (HSE) with maize, and the re-addition of CaM to the sample restored the activity of the HSF for binding to HSE. In addition, DNA-binding activity of the HSF was also induced by directly adding CaM to a whole cell extract at non-HS temperature with maize. Similar results were obtained with wheat and tomato. Our observations provide the first example of the involvement of CaM in regulation of the DNA-binding activity of the HSF.

  5. The Transcriptional Activator Krüppel-like Factor-6 Is Required for CNS Myelination

    Science.gov (United States)

    Mariani, John N.; Zhang, Jingya; Liu, Jia; Sawai, Setsu; Chapouly, Candice; Horng, Sam; Kramer, Elisabeth G.; Loo, Hannah; Burlant, Natalie; Nudelman, German; Lee, Young-Min; Braun, David A.; Lu, Q. Richard; Narla, Goutham; Raine, Cedric S.; Friedman, Scott L.; Casaccia, Patrizia; John, Gareth R.

    2016-01-01

    Growth factors of the gp130 family promote oligodendrocyte differentiation, and viability, and myelination, but their mechanisms of action are incompletely understood. Here, we show that these effects are coordinated, in part, by the transcriptional activator Krüppel-like factor-6 (Klf6). Klf6 is rapidly induced in oligodendrocyte progenitors (OLP) by gp130 factors, and promotes differentiation. Conversely, in mice with lineage-selective Klf6 inactivation, OLP undergo maturation arrest followed by apoptosis, and CNS myelination fails. Overlapping transcriptional and chromatin occupancy analyses place Klf6 at the nexus of a novel gp130-Klf-importin axis, which promotes differentiation and viability in part via control of nuclear trafficking. Klf6 acts as a gp130-sensitive transactivator of the nuclear import factor importin-α5 (Impα5), and interfering with this mechanism interrupts step-wise differentiation. Underscoring the significance of this axis in vivo, mice with conditional inactivation of gp130 signaling display defective Klf6 and Impα5 expression, OLP maturation arrest and apoptosis, and failure of CNS myelination. PMID:27213272

  6. Negative regulation of TLR-signaling pathways by activating transcription factor-3.

    Science.gov (United States)

    Whitmore, Mark M; Iparraguirre, Amaya; Kubelka, Lindsey; Weninger, Wolfgang; Hai, Tsonwin; Williams, Bryan R G

    2007-09-15

    Activating transcription factor-3 (ATF3) is rapidly induced by LPS in mouse macrophages and regulates TLR4 responses. We show that ATF3 is rapidly induced by various TLRs in mouse macrophages and plasmacytoid dendritic cells (DCs), as well as plasmacytoid and myeloid subsets of human DCs. In primary macrophages from mice with a targeted deletion of the atf3 gene (ATF3-knockout (KO)), TLR-stimulated levels of IL-12 and IL-6 were elevated relative to responses in wild-type macrophages. Similarly, targeted deletion of atf3 correlated with enhanced responsiveness of myeloid DCs to TLR activation as measured by IL-12 secretion. Ectopic expression of ATF3 antagonized TLR-stimulated IL-12p40 activation in a reporter assay. In vivo, CpG-oligodeoxynucleotide, a TLR9 agonist, given i.p. to ATF3-KO mice resulted in enhanced cytokine production from splenocytes. Furthermore, while ATF3-KO mice challenged with a sublethal dose of PR8 influenza virus were delayed in body weight recovery in comparison to wild type, the ATF3-KO mice showed higher titers of serum neutralizing Ab against PR8 5 mo postinfection. Thus, ATF3 behaves as a negative regulatory transcription factor in TLR pathways and, accordingly, deficiency in atf3 alters responses to immunological challenges in vivo. ATF3 dysregulation merits further exploration in diseases such as type I diabetes and cancer, where altered innate immunity has been implicated in their pathogenesis.

  7. Germ cell nuclear factor directly represses the transcription of peroxisome proliferator-activated receptor delta gene

    Institute of Scientific and Technical Information of China (English)

    Chengqiang He; Naizheng Ding; Jie Kang

    2008-01-01

    Germ cell nuclear factor (GCNF) is a transcription factor that can repress gene transcription and plays an important role during spermatogenesis. Peroxisome proliferator-activated receptor delta (PPARδ) is a nuclear hormone receptor belonging to the steroid receptor superfamily.It can activate the expression of many genes,including those involved in lipid metabolism.In this report,we showed that GCNF specifically interacts with PPARδ promoter.Overexpression of GCNF in African green monkey SV40 transformed kidney fibroblast COS7 cells and mouse embryo fibroblast NIH 3T3 cells represses the activity of PPARδ promoter.The mutation of GCNF response element in PPARδ promoter relieves the repression in NIH 3T3 cells and mouse testis.Moreover,we showed that GCNF in nuclear extracts of mouse testis is able to bind to PPARδ promoter directly.We also found that GCNF and PPARδ mRNA were expressed with different patterns in mouse testis by in situ hybridization.These results suggested that GCNF might be a negative regulator of PPARδ gene expression through its direct interaction with PPARδ promoter in mouse testis.

  8. Conserved and Diverged Functions of the Calcineurin-Activated Prz1 Transcription Factor in Fission Yeast.

    Science.gov (United States)

    Chatfield-Reed, Kate; Vachon, Lianne; Kwon, Eun-Joo Gina; Chua, Gordon

    2016-04-01

    Gene regulation in response to intracellular calcium is mediated by the calcineurin-activated transcription factor Prz1 in the fission yeastSchizosaccharomyces pombe Genome-wide studies of theCrz1and CrzA fungal orthologs have uncovered numerous target genes involved in conserved and species-specific cellular processes. In contrast, very few target genes of Prz1 have been published. This article identifies an extensive list of genes using transcriptome and ChIP-chip analyses under inducing conditions of Prz1, including CaCl2and tunicamycin treatment, as well as a∆pmr1genetic background. We identified 165 upregulated putative target genes of Prz1 in which the majority contained a calcium-dependent response element in their promoters, similar to that of theSaccharomyces cerevisiaeorthologCrz1 These genes were functionally enriched forCrz1-conserved processes such as cell-wall biosynthesis. Overexpression ofprz1(+)increased resistance to the cell-wall degradation enzyme zymolyase, likely from upregulation of theO-mannosyltransferase encoding geneomh1(+) Loss ofomh1(+)abrogates this phenotype. We uncovered a novel inhibitory role in flocculation for Prz1. Loss ofprz1(+)resulted in constitutive flocculation and upregulation of genes encoding the flocculins Gsf2 and Pfl3, as well as the transcription factor Cbf12. The constitutive flocculation of the∆prz1strain was abrogated by the loss ofgsf2(+)orcbf12(+) This study reveals that Prz1 functions as a positive and negative transcriptional regulator of genes involved in cell-wall biosynthesis and flocculation, respectively. Moreover, comparison of target genes betweenCrz1/CrzA and Prz1 indicate some conservation in DNA-binding specificity, but also substantial rewiring of the calcineurin-mediated transcriptional regulatory network. PMID:26896331

  9. The transcription factor encyclopedia.

    Science.gov (United States)

    Yusuf, Dimas; Butland, Stefanie L; Swanson, Magdalena I; Bolotin, Eugene; Ticoll, Amy; Cheung, Warren A; Zhang, Xiao Yu Cindy; Dickman, Christopher T D; Fulton, Debra L; Lim, Jonathan S; Schnabl, Jake M; Ramos, Oscar H P; Vasseur-Cognet, Mireille; de Leeuw, Charles N; Simpson, Elizabeth M; Ryffel, Gerhart U; Lam, Eric W-F; Kist, Ralf; Wilson, Miranda S C; Marco-Ferreres, Raquel; Brosens, Jan J; Beccari, Leonardo L; Bovolenta, Paola; Benayoun, Bérénice A; Monteiro, Lara J; Schwenen, Helma D C; Grontved, Lars; Wederell, Elizabeth; Mandrup, Susanne; Veitia, Reiner A; Chakravarthy, Harini; Hoodless, Pamela A; Mancarelli, M Michela; Torbett, Bruce E; Banham, Alison H; Reddy, Sekhar P; Cullum, Rebecca L; Liedtke, Michaela; Tschan, Mario P; Vaz, Michelle; Rizzino, Angie; Zannini, Mariastella; Frietze, Seth; Farnham, Peggy J; Eijkelenboom, Astrid; Brown, Philip J; Laperrière, David; Leprince, Dominique; de Cristofaro, Tiziana; Prince, Kelly L; Putker, Marrit; del Peso, Luis; Camenisch, Gieri; Wenger, Roland H; Mikula, Michal; Rozendaal, Marieke; Mader, Sylvie; Ostrowski, Jerzy; Rhodes, Simon J; Van Rechem, Capucine; Boulay, Gaylor; Olechnowicz, Sam W Z; Breslin, Mary B; Lan, Michael S; Nanan, Kyster K; Wegner, Michael; Hou, Juan; Mullen, Rachel D; Colvin, Stephanie C; Noy, Peter John; Webb, Carol F; Witek, Matthew E; Ferrell, Scott; Daniel, Juliet M; Park, Jason; Waldman, Scott A; Peet, Daniel J; Taggart, Michael; Jayaraman, Padma-Sheela; Karrich, Julien J; Blom, Bianca; Vesuna, Farhad; O'Geen, Henriette; Sun, Yunfu; Gronostajski, Richard M; Woodcroft, Mark W; Hough, Margaret R; Chen, Edwin; Europe-Finner, G Nicholas; Karolczak-Bayatti, Magdalena; Bailey, Jarrod; Hankinson, Oliver; Raman, Venu; LeBrun, David P; Biswal, Shyam; Harvey, Christopher J; DeBruyne, Jason P; Hogenesch, John B; Hevner, Robert F; Héligon, Christophe; Luo, Xin M; Blank, Marissa Cathleen; Millen, Kathleen Joyce; Sharlin, David S; Forrest, Douglas; Dahlman-Wright, Karin; Zhao, Chunyan; Mishima, Yuriko; Sinha, Satrajit; Chakrabarti, Rumela; Portales-Casamar, Elodie; Sladek, Frances M; Bradley, Philip H; Wasserman, Wyeth W

    2012-01-01

    Here we present the Transcription Factor Encyclopedia (TFe), a new web-based compendium of mini review articles on transcription factors (TFs) that is founded on the principles of open access and collaboration. Our consortium of over 100 researchers has collectively contributed over 130 mini review articles on pertinent human, mouse and rat TFs. Notable features of the TFe website include a high-quality PDF generator and web API for programmatic data retrieval. TFe aims to rapidly educate scientists about the TFs they encounter through the delivery of succinct summaries written and vetted by experts in the field. TFe is available at http://www.cisreg.ca/tfe.

  10. The transcription factor Sox11 promotes nerve regeneration through activation of the regeneration-associated gene Sprr1a

    OpenAIRE

    Jing, Xiaotang; Wang, Ting; Huang, Shaohua; Glorioso, Joseph C.; Albers, Kathryn M.

    2011-01-01

    Factors that enhance the intrinsic growth potential of adult neurons are key players in the successful repair and regeneration of neurons following injury. Injury-induced activation of transcription factors has a central role in this process because they regulate expression of regeneration-associated genes. Sox11 is a developmentally expressed transcription factor that is significantly induced in adult neurons in response to injury. Its function in injured neurons is however undefined. Here, ...

  11. The oncoprotein HBXIP upregulates PDGFB via activating transcription factor Sp1 to promote the proliferation of breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yingyi; Zhao, Yu; Li, Leilei; Shen, Yu; Cai, Xiaoli [Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin 300071 (China); Zhang, Xiaodong, E-mail: zhangxd@nankai.edu.cn [Department of Cancer Research, Institute for Molecular Biology, College of Life Sciences, Nankai University, Tianjin 300071 (China); Ye, Lihong, E-mail: yelihong@nankai.edu.cn [Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin 300071 (China)

    2013-05-03

    Highlights: •HBXIP is able to upregulate the expression of PDGFB in breast cancer cells. •HBXIP serves as a coactivator of activating transcription factor Sp1. •HBXIP stimulates the PDGFB promoter via activating transcription factor Sp1. •HBXIP promotes the proliferation of breast cancer cell via upregulating PDGFB. -- Abstract: We have reported that the oncoprotein hepatitis B virus X-interacting protein (HBXIP) acts as a novel transcriptional coactivator to promote proliferation and migration of breast cancer cells. Previously, we showed that HBXIP was able to activate nuclear factor-κB (NF-κB) in breast cancer cells. As an oncogene, the platelet-derived growth factor beta polypeptide (PDGFB) plays crucial roles in carcinogenesis. In the present study, we found that both HBXIP and PDGFB were highly expressed in breast cancer cell lines. Interestingly, HBXIP was able to increase transcriptional activity of NF-κB through PDGFB, suggesting that HBXIP is associated with PDGFB in the cells. Moreover, HBXIP was able to upregulate PDGFB at the levels of mRNA, protein and promoter in the cells. Then, we identified that HBXIP stimulated the promoter of PDGFB through activating transcription factor Sp1. In function, HBXIP enhanced the proliferation of breast cancer cells through PDGFB in vitro. Thus, we conclude that HBXIP upregulates PDGFB via activating transcription factor Sp1 to promote proliferation of breast cancer cells.

  12. A modified reverse one-hybrid screen identifies transcriptional activation in Phyochrome-Interacting Factor 3

    Science.gov (United States)

    Transcriptional activation domains (TAD) are difficult to predict and identify, since they are not conserved and have little consensus. Here, we describe a yeast-based screening method that is able to identify individual amino acid residues involved in transcriptional activation in a high throughput...

  13. Regulation of WRKY46 transcription factor function by mitogen-activated protein kinases in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Arsheed Hussain Sheikh

    2016-02-01

    Full Text Available AbstractMitogen-activated protein kinase (MAPK cascades are central signalling pathways activated in plants after sensing internal developmental and external stress cues. Knowledge about the downstream substrate proteins of MAPKs is still limited in plants. We screened Arabidopsis WRKY transcription factors as potential targets downstream of MAPKs, and concentrated on characterizing WRKY46 as a substrate of the MAPK, MPK3. Mass spectrometry revealed in vitro phosphorylation of WRKY46 at amino acid position S168 by MPK3. However, mutagenesis studies showed that a second phosphosite, S250, can also be phosphorylated. Elicitation with pathogen-associated molecular patterns (PAMPs, such as the bacterial flagellin-derived flg22 peptide led to in vivo destabilization of WRKY46 in Arabidopsis protoplasts. Mutation of either phosphorylation site reduced the PAMP-induced degradation of WRKY46. Furthermore, the protein for the double phosphosite mutant is expressed at higher levels compared to wild-type proteins or single phosphosite mutants. In line with its nuclear localization and predicted function as a transcriptional activator, overexpression of WRKY46 in protoplasts raised basal plant defence as reflected by the increase in promoter activity of the PAMP-responsive gene, NHL10, in a MAPK-dependent manner. Thus, MAPK-mediated regulation of WRKY46 is a mechanism to control plant defence.

  14. Regulation of WRKY46 Transcription Factor Function by Mitogen-Activated Protein Kinases in Arabidopsis thaliana.

    Science.gov (United States)

    Sheikh, Arsheed H; Eschen-Lippold, Lennart; Pecher, Pascal; Hoehenwarter, Wolfgang; Sinha, Alok K; Scheel, Dierk; Lee, Justin

    2016-01-01

    Mitogen-activated protein kinase (MAPK) cascades are central signaling pathways activated in plants after sensing internal developmental and external stress cues. Knowledge about the downstream substrate proteins of MAPKs is still limited in plants. We screened Arabidopsis WRKY transcription factors as potential targets downstream of MAPKs, and concentrated on characterizing WRKY46 as a substrate of the MAPK, MPK3. Mass spectrometry revealed in vitro phosphorylation of WRKY46 at amino acid position S168 by MPK3. However, mutagenesis studies showed that a second phosphosite, S250, can also be phosphorylated. Elicitation with pathogen-associated molecular patterns (PAMPs), such as the bacterial flagellin-derived flg22 peptide led to in vivo destabilization of WRKY46 in Arabidopsis protoplasts. Mutation of either phosphorylation site reduced the PAMP-induced degradation of WRKY46. Furthermore, the protein for the double phosphosite mutant is expressed at higher levels compared to wild-type proteins or single phosphosite mutants. In line with its nuclear localization and predicted function as a transcriptional activator, overexpression of WRKY46 in protoplasts raised basal plant defense as reflected by the increase in promoter activity of the PAMP-responsive gene, NHL10, in a MAPK-dependent manner. Thus, MAPK-mediated regulation of WRKY46 is a mechanism to control plant defense. PMID:26870073

  15. Reinstate the Damaged VEGF Signaling Pathway with VEGF-activating Transcription Factor

    Institute of Scientific and Technical Information of China (English)

    Yao-guo Yang; Heng Guan; Chang-wei Liu; Yong-jun Li

    2009-01-01

    Objective To investigate the role of vascular endothelial growth factor-activating transcriptional factor(VEGF-ATF)on the VEGF signaling pathway in diabetes mellitus.Methods Totally,20 C57BL/6 mice fed with high fat diet was induced into diabetes mellitus.Ten diabetes mellitus mice received a lower limb muscle injection with VEGF-ATF plasmid,and another ten were as control.VEGF-ATF is an engineered transcription factor designed to increase VEGF expression.Three days later,mice were sacrificed and the injected gastrocnemius was used for analysis.VEGF mRNA and protein expressions were examined by real-time PCR and ELISA respectively.VEGF receptor 2 mRNA expression was tested with RT-PCR.Phosphorylated Akt,Akt,endothelial nitric oxide synthase(eNOS),and phosphorylated eNOS were assessed by western blot.Results At 3 days post-injection,in mice with diabetes mellitus,VEGF gene transfer increased VEGF mRNA copies and VEGF protein expression in injected muscles compared with control;and reinstated the impaired VEGF signaling pathway with increasing the ratios of phosphorylated Akt/Akt and phosphorylated eNOS/eNOS.However,it did not affect the expression of VEGF receptor 2 mRNA.Conclusion Gene transfer with VEGF-ATF is able to reinstate the impaired VEGF downstream pathway,and potentially promote therapeutic angiogenesis in mice with diabetes mcllitus.

  16. Nuclear factor I revealed as family of promoter binding transcription activators

    Directory of Open Access Journals (Sweden)

    Plasari Genta

    2011-04-01

    Full Text Available Abstract Background Multiplex experimental assays coupled to computational predictions are being increasingly employed for the simultaneous analysis of many specimens at the genome scale, which quickly generates very large amounts of data. However, inferring valuable biological information from the comparisons of very large genomic datasets still represents an enormous challenge. Results As a study model, we chose the NFI/CTF family of mammalian transcription factors and we compared the results obtained from a genome-wide study of its binding sites with chromatin structure assays, gene expression microarray data, and in silico binding site predictions. We found that NFI/CTF family members preferentially bind their DNA target sites when they are located around transcription start sites when compared to control datasets generated from the random subsampling of the complete set of NFI binding sites. NFI proteins preferably associate with the upstream regions of genes that are highly expressed and that are enriched in active chromatin modifications such as H3K4me3 and H3K36me3. We postulate that this is a causal association and that NFI proteins mainly act as activators of transcription. This was documented for one member of the family (NFI-C, which revealed as a more potent gene activator than repressor in global gene expression analysis. Interestingly, we also discovered the association of NFI with the tri-methylation of lysine 9 of histone H3, a chromatin marker previously associated with the protection against silencing of telomeric genes by NFI. Conclusion Taken together, we illustrate approaches that can be taken to analyze large genomic data, and provide evidence that NFI family members may act in conjunction with specific chromatin modifications to activate gene expression.

  17. hypoxia-inducible factors activate CD133 promoter through ETS family transcription factors.

    Directory of Open Access Journals (Sweden)

    Shunsuke Ohnishi

    Full Text Available CD133 is a cellular surface protein that has been reported to be a cancer stem cell marker, and thus it is considered to be a potential target for cancer treatment. However, the mechanism regulating CD133 expression is not yet understood. In this study, we analyzed the activity of five putative promoters (P1-P5 of CD133 in human embryonic kidney (HEK 293 cells and colon cancer cell line WiDr, and found that the activity of promoters, particularly of P5, is elevated by overexpression of hypoxia-inducible factors (HIF-1α and HIF-2α. Deletion and mutation analysis identified one of the two E-twenty six (ETS binding sites (EBSs in the P5 region as being essential for its promoter activity induced by HIF-1α and HIF-2α. In addition, a chromatin imunoprecipitation assay demonstrated that HIF-1α and HIF-2α bind to the proximal P5 promoter at the EBSs. The immunoprecipitation assay showed that HIF-1α physically interacts with Elk1; however, HIF-2α did not bind to Elk1 or ETS1. Furthermore, knockdown of both HIF-1α and HIF-2α resulted in a reduction of CD133 expression in WiDr. Taken together, our results revealed that HIF-1α and HIF-2α activate CD133 promoter through ETS proteins.

  18. Hypoxia-Inducible Factor 1 Is an Inductor of Transcription Factor Activating Protein 2 Epsilon Expression during Chondrogenic Differentiation

    Directory of Open Access Journals (Sweden)

    Stephan Niebler

    2015-01-01

    Full Text Available The transcription factor AP-2ε (activating enhancer-binding protein epsilon is expressed in cartilage of humans and mice. However, knowledge about regulatory mechanisms influencing AP-2ε expression is limited. Using quantitative real time PCR, we detected a significant increase in AP-2ε mRNA expression comparing initial and late stages of chondrogenic differentiation processes in vitro and in vivo. Interestingly, in these samples the expression pattern of the prominent hypoxia marker gene angiopoietin-like 4 (Angptl4 strongly correlated with that of AP-2ε suggesting that hypoxia might represent an external regulator of AP-2ε expression in mammals. In order to show this, experiments directly targeting the activity of hypoxia-inducible factor-1 (HIF1, the complex mediating responses to oxygen deprivation, were performed. While the HIF1-activating compounds 2,2′-dipyridyl and desferrioxamine resulted in significantly enhanced mRNA concentration of AP-2ε, siRNA against HIF1α led to a significantly reduced expression rate of AP-2ε. Additionally, we detected a significant upregulation of the AP-2ε mRNA level after oxygen deprivation. In sum, these different experimental approaches revealed a novel role for the HIF1 complex in the regulation of the AP-2ε gene in cartilaginous cells and underlined the important role of hypoxia as an important external regulatory stimulus during chondrogenic differentiation modulating the expression of downstream transcription factors.

  19. Differential binding activity of the transcription factor LIL-Stat in immature and differentiated normal and leukemic myeloid cells

    NARCIS (Netherlands)

    Tuyt, LML; Bregman, K; Lummen, C; Dokter, WHA; Vellenga, E

    1998-01-01

    Cytokines and growth factors induce activation of the family of signal transducers and activators of transcription (Stats) that directly activate gene expression. Recently, constitutively activated Stat1, Stat3, and Stat5 were identified in nuclear extracts of acute myeloid leukemia (AML) patients,

  20. A Global Genomic and Genetic Strategy to Predict Pathway Activation of Xenobiotic Responsive Transcription Factors in the Mouse Liver

    Science.gov (United States)

    Many drugs and environmentally-relevant chemicals activate xenobiotic-responsive transcription factors(TF). Identification of target genes of these factors would be useful in predicting pathway activation in in vitro chemical screening. Starting with a large compendium of Affymet...

  1. Nε-lysine acetylation of a bacterial transcription factor inhibits Its DNA-binding activity.

    Directory of Open Access Journals (Sweden)

    Sandy Thao

    Full Text Available Evidence suggesting that eukaryotes and archaea use reversible N(ε-lysine (N(ε-Lys acetylation to modulate gene expression has been reported, but evidence for bacterial use of N(ε-Lys acetylation for this purpose is lacking. Here, we report data in support of the notion that bacteria can control gene expression by modulating the acetylation state of transcription factors (TFs. We screened the E. coli proteome for substrates of the bacterial Gcn5-like protein acetyltransferase (Pat. Pat acetylated four TFs, including the RcsB global regulatory protein, which controls cell division, and capsule and flagellum biosynthesis in many bacteria. Pat acetylated residue Lys180 of RcsB, and the NAD(+-dependent Sir2 (sirtuin-like protein deacetylase (CobB deacetylated acetylated RcsB (RcsB(Ac, demonstrating that N(ε-Lys acetylation of RcsB is reversible. Analysis of RcsB(Ac and variant RcsB proteins carrying substitutions at Lys180 provided biochemical and physiological evidence implicating Lys180 as a critical residue for RcsB DNA-binding activity. These findings further the likelihood that reversible N(ε-Lys acetylation of transcription factors is a mode of regulation of gene expression used by all cells.

  2. Dynamic, large-scale profiling of transcription factor activity from live cells in 3D culture.

    Directory of Open Access Journals (Sweden)

    Michael S Weiss

    Full Text Available BACKGROUND: Extracellular activation of signal transduction pathways and their downstream target transcription factors (TFs are critical regulators of cellular processes and tissue development. The intracellular signaling network is complex, and techniques that quantify the activities of numerous pathways and connect their activities to the resulting phenotype would identify the signals and mechanisms regulating tissue development. The ability to investigate tissue development should capture the dynamic pathway activity and requires an environment that supports cellular organization into structures that mimic in vivo phenotypes. Taken together, our objective was to develop cellular arrays for dynamic, large-scale quantification of TF activity as cells organized into spherical structures within 3D culture. METHODOLOGY/PRINCIPAL FINDINGS: TF-specific and normalization reporter constructs were delivered in parallel to a cellular array containing a well-established breast cancer cell line cultured in Matrigel. Bioluminescence imaging provided a rapid, non-invasive, and sensitive method to quantify luciferase levels, and was applied repeatedly on each sample to monitor dynamic activity. Arrays measuring 28 TFs identified up to 19 active, with 13 factors changing significantly over time. Stimulation of cells with β-estradiol or activin A resulted in differential TF activity profiles evolving from initial stimulation of the ligand. Many TFs changed as expected based on previous reports, yet arrays were able to replicate these results in a single experiment. Additionally, arrays identified TFs that had not previously been linked with activin A. CONCLUSIONS/SIGNIFICANCE: This system provides a method for large-scale, non-invasive, and dynamic quantification of signaling pathway activity as cells organize into structures. The arrays may find utility for investigating mechanisms regulating normal and abnormal tissue growth, biomaterial design, or as a

  3. The ERF11 Transcription Factor Promotes Internode Elongation by Activating Gibberellin Biosynthesis and Signaling1[OPEN

    Science.gov (United States)

    Zhou, Xin; Zhang, Zhong-Lin; Tyler, Ludmila; Yusuke, Jikumaru; Qiu, Kai; Lumba, Shelley; Desveaux, Darrell; McCourt, Peter; Sun, Tai-ping

    2016-01-01

    The phytohormone gibberellin (GA) plays a key role in promoting stem elongation in plants. Previous studies show that GA activates its signaling pathway by inducing rapid degradation of DELLA proteins, GA signaling repressors. Using an activation-tagging screen in a reduced-GA mutant ga1-6 background, we identified AtERF11 to be a novel positive regulator of both GA biosynthesis and GA signaling for internode elongation. Overexpression of AtERF11 partially rescued the dwarf phenotype of ga1-6. AtERF11 is a member of the ERF (ETHYLENE RESPONSE FACTOR) subfamily VIII-B-1a of ERF/AP2 transcription factors in Arabidopsis (Arabidopsis thaliana). Overexpression of AtERF11 resulted in elevated bioactive GA levels by up-regulating expression of GA3ox1 and GA20ox genes. Hypocotyl elongation assays further showed that overexpression of AtERF11 conferred elevated GA response, whereas loss-of-function erf11 and erf11 erf4 mutants displayed reduced GA response. In addition, yeast two-hybrid, coimmunoprecipitation, and transient expression assays showed that AtERF11 enhances GA signaling by antagonizing the function of DELLA proteins via direct protein-protein interaction. Interestingly, AtERF11 overexpression also caused a reduction in the levels of another phytohormone ethylene in the growing stem, consistent with recent finding showing that AtERF11 represses transcription of ethylene biosynthesis ACS genes. The effect of AtERF11 on promoting GA biosynthesis gene expression is likely via its repressive function on ethylene biosynthesis. These results suggest that AtERF11 plays a dual role in promoting internode elongation by inhibiting ethylene biosynthesis and activating GA biosynthesis and signaling pathways. PMID:27255484

  4. Regulation of selected genome loci using de novo-engineered transcription activator-like effector (TALE)-type transcription factors.

    Science.gov (United States)

    Morbitzer, Robert; Römer, Patrick; Boch, Jens; Lahaye, Thomas

    2010-12-14

    Proteins that can be tailored to bind desired DNA sequences are key tools for molecular biology. Previous studies suggested that DNA-binding specificity of transcription activator-like effectors (TALEs) from the bacterial genus Xanthomonas is defined by repeat-variable diresidues (RVDs) of tandem-arranged 34/35-amino acid repeat units. We have studied chimeras of two TALEs differing in RVDs and non-RVDs and found that, in contrast to the critical contributions by RVDs, non-RVDs had no major effect on the DNA-binding specificity of the chimeras. This finding suggests that one needs only to modify the RVDs to generate designer TALEs (dTALEs) to activate transcription of user-defined target genes. We used the scaffold of the TALE AvrBs3 and changed its RVDs to match either the tomato Bs4, the Arabidopsis EGL3, or the Arabidopsis KNAT1 promoter. All three dTALEs transcriptionally activated the desired promoters in a sequence-specific manner as mutations within the targeted DNA sequences abolished promoter activation. This study is unique in showing that chromosomal loci can be targeted specifically by dTALEs. We also engineered two AvrBs3 derivatives with four additional repeat units activating specifically either the pepper Bs3 or UPA20 promoter. Because AvrBs3 activates both promoters, our data show that addition of repeat units facilitates TALE-specificity fine-tuning. Finally, we demonstrate that the RVD NK mediates specific interaction with G nucleotides that thus far could not be targeted specifically by any known RVD type. In summary, our data demonstrate that the TALE scaffold can be tailored to target user-defined DNA sequences in whole genomes.

  5. Transcriptional activation of human CDCA8 gene regulated by transcription factor NF-Y in embryonic stem cells and cancer cells.

    Science.gov (United States)

    Dai, Can; Miao, Cong-Xiu; Xu, Xiao-Ming; Liu, Lv-Jun; Gu, Yi-Fan; Zhou, Di; Chen, Lian-Sheng; Lin, Ge; Lu, Guang-Xiu

    2015-09-11

    The cell division cycle associated 8 (CDCA8) gene plays an important role in mitosis. Overexpression of CDCA8 was reported in some human cancers and is required for cancer growth and progression. We found CDCA8 expression was also high in human ES cells (hESCs) but dropped significantly upon hESC differentiation. However, the regulation of CDCA8 expression has not yet been studied. Here, we characterized the CDCA8 promoter and identified its cis-elements and transcription factors. Three transcription start sites were identified. Reporter gene assays revealed that the CDCA8 promoter was activated in hESCs and cancer cell lines. The promoter drove the reporter expression specifically to pluripotent cells during early mouse embryo development and to tumor tissues in tumor-bearing mice. These results indicate that CDCA8 is transcriptionally activated in hESCs and cancer cells. Mechanistically, two key activation elements, bound by transcription factor NF-Y and CREB1, respectively, were identified in the CDCA8 basic promoter by mutation analyses and electrophoretic motility shift assays. NF-Y binding is positively correlated with promoter activities in different cell types. Interestingly, the NF-YA subunit, binding to the promoter, is primarily a short isoform in hESCs and a long isoform in cancer cells, indicating a different activation mechanism of the CDCA8 transcription between hESCs and cancer cells. Finally, enhanced CDCA8 promoter activities by NF-Y overexpression and reduced CDCA8 transcription by NF-Y knockdown further verified that NF-Y is a positive regulator of CDCA8 transcription. Our study unearths the molecular mechanisms underlying the activation of CDCA8 expression in hESCs and cancer cells, which provides a better understanding of its biological functions.

  6. Transcription factor-based biosensor

    Science.gov (United States)

    Dietrich, Jeffrey A; Keasling, Jay D

    2013-10-08

    The present invention provides for a system comprising a BmoR transcription factor, a .sigma..sup.54-RNA polymerase, and a pBMO promoter operatively linked to a reporter gene, wherein the pBMO promoter is capable of expression of the reporter gene with an activated form of the BmoR and the .sigma..sup.54-RNA polymerase.

  7. Krüppel-like factor 4, a novel transcription factor regulates microglial activation and subsequent neuroinflammation

    Directory of Open Access Journals (Sweden)

    Das Sulagna

    2010-10-01

    Full Text Available Abstract Background Activation of microglia, the resident macrophages of the central nervous system (CNS, is the hallmark of neuroinflammation in neurodegenerative diseases and other pathological conditions associated with CNS infection. The activation of microglia is often associated with bystander neuronal death. Nuclear factor-κB (NF-κB is one of the important transcription factors known to be associated with microglial activation which upregulates the expression of inducible nitric oxide synthase (iNOS, cyclooxygenase-2 (Cox-2 and other pro-inflammatory cytokines. Recent studies have focused on the role of Krüppel-like factor 4 (Klf4, one of the zinc-finger transcription factors, in mediating inflammation. However, these studies were limited to peripheral system and its role in CNS is not understood. Our studies focused on the possible role of Klf4 in mediating CNS inflammation. Methods For in vitro studies, mouse microglial BV-2 cell lines were treated with 500 ng/ml Salmonella enterica lipopolysacchride (LPS. Brain tissues were isolated from BALB/c mice administered with 5 mg/kg body weight of LPS. Expressions of Klf4, Cox-2, iNOS and pNF-κB were evaluated using western blotting, quantitative real time PCR, and reverse transcriptase polymerase chain reactions (RT-PCRs. Klf4 knockdown was carried out using SiRNA specific for Klf4 mRNA and luciferase assays and electromobility shift assay (EMSA were performed to study the interaction of Klf4 to iNOS promoter elements in vitro. Co-immunoprecipitation of Klf4 and pNF-κB was done in order to study a possible interaction between the two transcription factors. Results LPS stimulation increased Klf4 expression in microglial cells in a time- and dose-dependent manner. Knockdown of Klf4 resulted in decreased levels of the pro-inflammatory cytokines TNF-α, MCP-1 and IL-6, along with a significant decrease in iNOS and Cox-2 expression. NO production also decreased as a result of Klf4 knockdown

  8. A Nonradioactive Method for Detecting DNA-binding Activity of Nuclear Transcription Factors

    Institute of Scientific and Technical Information of China (English)

    张宁; 徐永健; 张珍祥; 熊维宁

    2003-01-01

    To determine the feasibility of a nonradioactive electrophoresis mobility shift assay fordetecting nuclear transcription factor, double-stranded oligonucleotides encoding the consensus tar-get sequence of NF-κB were labled with DIG by terminal transferase. After nuclear protein stimula-ted with phorbol 12-myristate 13-acetate (PMA) or PMA and pyrrolidine dithiocarbamate (PDT C)electrophoresed on 8 % nondenaturing poliacrylamide gel together with oligeonucleotide probe, theywere electro-blotted nylon membrane positively charged. Anti-DIG-AP antibody catalyzed chemilu-minescent substrate CSPD to image on X-film. The results showed that nuclear proteins binded spe-cifically to the NF-κB consensus sequence in the EMSA by chemiluminescent technique method andthe activity of NF-κB in PMA group was more than that in PMA+PDTC group. It is suggestedthat detection of NF-κB by EMSA with chemiluminescent technique is feasible and simple, whichcan be performed in ordinary laboratories.

  9. Nuclear factor RIP140 modulates transcriptional activation by the estrogen receptor.

    OpenAIRE

    Cavaillès, V; Dauvois, S; L'Horset, F; Lopez, G; Hoare, S.; Kushner, P J; Parker, M G

    1995-01-01

    A conserved region in the hormone-dependent activation domain AF2 of nuclear receptors plays an important role in transcriptional activation. We have characterized a novel nuclear protein, RIP140, that specifically interacts in vitro with this domain of the estrogen receptor. This interaction was increased by estrogen, but not by anti-estrogens and the in vitro binding capacity of mutant receptors correlates with their ability to stimulate transcription. RIP140 also interacts with estrogen re...

  10. Arabidopsis Actin-Depolymerizing Factor-4 links pathogen perception, defense activation and transcription to cytoskeletal dynamics.

    Directory of Open Access Journals (Sweden)

    Katie Porter

    Full Text Available The primary role of Actin-Depolymerizing Factors (ADFs is to sever filamentous actin, generating pointed ends, which in turn are incorporated into newly formed filaments, thus supporting stochastic actin dynamics. Arabidopsis ADF4 was recently shown to be required for the activation of resistance in Arabidopsis following infection with the phytopathogenic bacterium Pseudomonas syringae pv. tomato DC3000 (Pst expressing the effector protein AvrPphB. Herein, we demonstrate that the expression of RPS5, the cognate resistance protein of AvrPphB, was dramatically reduced in the adf4 mutant, suggesting a link between actin cytoskeletal dynamics and the transcriptional regulation of R-protein activation. By examining the PTI (PAMP Triggered Immunity response in the adf4 mutant when challenged with Pst expressing AvrPphB, we observed a significant reduction in the expression of the PTI-specific target gene FRK1 (Flg22-Induced Receptor Kinase 1. These data are in agreement with recent observations demonstrating a requirement for RPS5 in PTI-signaling in the presence of AvrPphB. Furthermore, MAPK (Mitogen-Activated Protein Kinase-signaling was significantly reduced in the adf4 mutant, while no such reduction was observed in the rps5-1 point mutation under similar conditions. Isoelectric focusing confirmed phosphorylation of ADF4 at serine-6, and additional in planta analyses of ADF4's role in immune signaling demonstrates that nuclear localization is phosphorylation independent, while localization to the actin cytoskeleton is linked to ADF4 phosphorylation. Taken together, these data suggest a novel role for ADF4 in controlling gene-for-gene resistance activation, as well as MAPK-signaling, via the coordinated regulation of actin cytoskeletal dynamics and R-gene transcription.

  11. Intermedin/adrenomedullin 2 is a stress-inducible gene controlled by activating transcription factor 4.

    Science.gov (United States)

    Kovaleva, Irina E; Garaeva, Alisa A; Chumakov, Peter M; Evstafieva, Alexandra G

    2016-09-15

    Intermedin or adrenomedullin 2 is a set of calcitonin-related peptides with a putative tumor angiogenesis promoting activity that are formed by proteolytic processing of the ADM2 gene product. It has been proposed that the ADM2 gene is regulated by the estrogen response element (ERE) and hypoxia response elements (HRE) found within its promoter region. In the present study we reveal a functional mechanism by which ADM2 participates in the unfolded protein response (UPR) and in responses to the mitochondrial respiration chain inhibition. We show that the ADM2 gene is controlled by activating transcription factor 4 (ATF4), the principal regulator of the integrated stress response (ISR). The upregulation of ADM2 mRNA could be prevented by the pharmacological ISR inhibitor ISRIB and by the downregulation of ATF4 with specific shRNA, while ectopic expression of ATF4 cDNA resulted in a notable increase in ADM2 gene transcription. A potential ATF4-binding site was identified in the coding region of the ADM2 gene and the requirement of this site during the ATF4-mediated ADM2 gene promoter activation was validated by the luciferase reporter assay. Mutagenesis of the putative ATF4-response element prevented the induction of luciferase activity in response to ATF4 overproduction, as well as in response to mitochondrial electron transfer chain inhibition by piericidin A and ER stress induction by tunicamycin and brefeldin A. Since ADM2 was shown to inhibit ATF4 expression during myocardial ER stress, a feedback mechanism could be proposed for the ADM2 regulation under ER stress conditions. PMID:27328454

  12. Structural basis for S-adenosylmethionine binding and methyltransferase activity by mitochondrial transcription factor B1.

    Science.gov (United States)

    Guja, Kip E; Venkataraman, Krithika; Yakubovskaya, Elena; Shi, Hui; Mejia, Edison; Hambardjieva, Elena; Karzai, A Wali; Garcia-Diaz, Miguel

    2013-09-01

    Eukaryotic transcription factor B (TFB) proteins are homologous to KsgA/Dim1 ribosomal RNA (rRNA) methyltransferases. The mammalian TFB1, mitochondrial (TFB1M) factor is an essential protein necessary for mitochondrial gene expression. TFB1M mediates an rRNA modification in the small ribosomal subunit and thus plays a role analogous to KsgA/Dim1 proteins. This modification has been linked to mitochondrial dysfunctions leading to maternally inherited deafness, aminoglycoside sensitivity and diabetes. Here, we present the first structural characterization of the mammalian TFB1 factor. We have solved two X-ray crystallographic structures of TFB1M with (2.1 Å) and without (2.0 Å) its cofactor S-adenosyl-L-methionine. These structures reveal that TFB1M shares a conserved methyltransferase core with other KsgA/Dim1 methyltransferases and shed light on the structural basis of S-adenosyl-L-methionine binding and methyltransferase activity. Together with mutagenesis studies, these data suggest a model for substrate binding and provide insight into the mechanism of methyl transfer, clarifying the role of this factor in an essential process for mitochondrial function. PMID:23804760

  13. Molecular imaging of nuclear factor-Y transcriptional activity maps proliferation sites in live animals.

    Science.gov (United States)

    Goeman, Frauke; Manni, Isabella; Artuso, Simona; Ramachandran, Balaji; Toietta, Gabriele; Bossi, Gianluca; Rando, Gianpaolo; Cencioni, Chiara; Germoni, Sabrina; Straino, Stefania; Capogrossi, Maurizio C; Bacchetti, Silvia; Maggi, Adriana; Sacchi, Ada; Ciana, Paolo; Piaggio, Giulia

    2012-04-01

    In vivo imaging involving the use of genetically engineered animals is an innovative powerful tool for the noninvasive assessment of the molecular and cellular events that are often targets of therapy. On the basis of the knowledge that the activity of the nuclear factor-Y (NF-Y) transcription factor is restricted in vitro to proliferating cells, we have generated a transgenic reporter mouse, called MITO-Luc (for mitosis-luciferase), in which an NF-Y-dependent promoter controls luciferase expression. In these mice, bioluminescence imaging of NF-Y activity visualizes areas of physiological cell proliferation and regeneration during response to injury. Using this tool, we highlight for the first time a role of NF-Y activity on hepatocyte proliferation during liver regeneration. MITO-Luc reporter mice should facilitate investigations into the involvement of genes in cell proliferation and provide a useful model for studying aberrant proliferation in disease pathogenesis. They should be also useful in the development of new anti/proproliferative drugs and assessment of their efficacy and side effects on nontarget tissues. PMID:22379106

  14. Interaction with general transcription factor IIF (TFIIF) is required for the suppression of activated transcription by RPB5-mediating protein(RMP)

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    RMP was reported to regulate transcription via competing with HBx to bind the general transcription factor IIB (TFIIB) and interacting with RPB5 subunit of RNA polymerase Ⅱ as a corepressor of transcription regulator. However, our present research uncovered that RMP also regulates the transcription through interaction with the general transcription factors IIF (TFIIF), which assemble in the preinitiation complex and function in both transcription initiation and elongation. With in vitro pull-down assay and Far-Western analysis, we demonstrated that RMP could bind with bacterially expressed recombinant RAP30 and RAP74of TFIIF subunits. In the immunoprecipitation assay in COS 1 cells cotransfected with FLAG-tagged RMP or its mutants, GST-fused RAP30 and RAP74 were co-immunoprecipitated with RMP in approximately equal molar ratio, which suggests that RAP30 and RAP74 interact with RMP as a TFIIF complex. Interestingly both RAP30 and RAP74 interact with the same domain (D5) of the C-terminal RMP of 118-amino-acid residuals which overlaps with its TFIIB-binding domain. Internal deletion of D5 region of RMP abolished its binding ability with both subunits of TFIIF, while D5 domain alone was sufficient to interact with TFIIF subunits. The result of luciferase assay showed that overexpression of RMP, but not the mutant RMP lacking D5 region, suppressed the transcription activated by Gal-VP16, suggesting that interaction with TFIIF is required for RMP to suppress the activated transcription. The interaction between RMP and TFIIF may be an additional passway for RMP to regulate the transcription, or alternatively TFIIF may cooperate with RPB5 and TFIIB for the corepressor function of RMP.

  15. The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation.

    Science.gov (United States)

    Zhong, Bo; Yang, Yan; Li, Shu; Wang, Yan-Yi; Li, Ying; Diao, Feici; Lei, Caoqi; He, Xiao; Zhang, Lu; Tien, Po; Shu, Hong-Bing

    2008-10-17

    Viral infection triggers activation of transcription factors such as NF-kappaB and IRF3, which collaborate to induce type I interferons (IFNs) and elicit innate antiviral response. Here, we identified MITA as a critical mediator of virus-triggered type I IFN signaling by expression cloning. Overexpression of MITA activated IRF3, whereas knockdown of MITA inhibited virus-triggered activation of IRF3, expression of type I IFNs, and cellular antiviral response. MITA was found to localize to the outer membrane of mitochondria and to be associated with VISA, a mitochondrial protein that acts as an adaptor in virus-triggered signaling. MITA also interacted with IRF3 and recruited the kinase TBK1 to the VISA-associated complex. MITA was phosphorylated by TBK1, which is required for MITA-mediated activation of IRF3. Our results suggest that MITA is a critical mediator of virus-triggered IRF3 activation and IFN expression and further demonstrate the importance of certain mitochondrial proteins in innate antiviral immunity.

  16. EGF activates TTP expression by activation of ELK-1 and EGR-1 transcription factors

    OpenAIRE

    Florkowska Magdalena; Tymoszuk Piotr; Balwierz Aleksandra; Skucha Anna; Kochan Jakub; Wawro Mateusz; Stalinska Krystyna; Kasza Aneta

    2012-01-01

    Abstract Background Tristetraprolin (TTP) is a key mediator of processes such as inflammation resolution, the inhibition of autoimmunity and in cancer. It carries out this role by the binding and degradation of mRNA transcripts, thereby decreasing their half-life. Transcripts modulated by TTP encode proteins such as cytokines, pro-inflammatory agents and immediate-early response proteins. TTP can also modulate neoplastic phenotypes in many cancers. TTP is induced and functionally regulated by...

  17. Protolichesterinic acid derivatives: α-methylene-γ-lactones as potent dual activators of PPARγ and Nrf2 transcriptional factors.

    Science.gov (United States)

    Le Lamer, Anne-Cécile; Authier, Hélène; Rouaud, Isabelle; Coste, Agnès; Boustie, Joël; Pipy, Bernard; Gouault, Nicolas

    2014-08-15

    PPARγ and Nrf2 are important transcriptional factors involved in many signaling pathways, especially in the anti-infectious response of macrophages. Compounds bearing a Michael acceptor moiety are well known to activate such transcriptional factors, we thus evaluated the potency of α,β-unsaturated lactones synthesized using fluorous phase organic synthesis. Compounds were first screened for their cytotoxicity in order to select lactones for PPARγ and Nrf2 activation evaluation. Among them, two α-methylene-γ-lactones were identified as potent dual activators of PPARγ and Nrf2 in macrophages. PMID:25027935

  18. In Vitro Anticancer Activity of Phlorofucofuroeckol A via Upregulation of Activating Transcription Factor 3 against Human Colorectal Cancer Cells

    Directory of Open Access Journals (Sweden)

    Hyun Ji Eo

    2016-03-01

    Full Text Available Phlorofucofuroeckol A (PFF-A, one of the phlorotannins found in brown algae, has been reported to exert anti-cancer property. However, the molecular mechanism for the anti-cancer effect of PFF-A has not been known. Activating transcription factor 3 (ATF3 has been reported to be associated with apoptosis in colorectal cancer. The present study was performed to investigate the molecular mechanism by which PFF-A stimulates ATF3 expression and apoptosis in human colorectal cancer cells. PFF-A decreased cell viability through apoptosis of human colorectal cancer cells. PFF-A increased ATF3 expression through regulating transcriptional activity. The responsible cis-element for ATF3 transcriptional activation by PFF-A was cAMP response element binding protein (CREB, located between positions −147 and −85 of the ATF3 promoter. Inhibition of p38, c-Jun N-terminal kinases (JNK, glycogen synthase kinase (GSK 3β, and IκB kinase (IKK-α blocked PFF-A-mediated ATF3 expression. ATF3 knockdown by ATF3 siRNA attenuated the cleavage of poly (ADP-ribose polymerase (PARP by PFF-A, while ATF3 overexpression increased PFF-A-mediated cleaved PARP. These results suggest that PFF-A may exert anti-cancer property through inducing apoptosis via the ATF3-mediated pathway in human colorectal cancer cells.

  19. The AP-1 transcription factor homolog Pf-AP-1 activates transcription of multiple biomineral proteins and potentially participates in Pinctada fucata biomineralization

    OpenAIRE

    Xiangnan Zheng; Minzhang Cheng; Liang Xiang; Jian Liang; Liping Xie; Rongqing Zhang

    2015-01-01

    Activator protein-1 (AP-1) is an important bZIP transcription factor that regulates a series of physiological processes by specifically activating transcription of several genes, and one of its well-chartered functions in mammals is participating in bone mineralization. We isolated and cloned the complete cDNA of a Jun/AP-1 homolog from Pinctada fucata and called it Pf-AP-1. Pf-AP-1 had a highly conserved bZIP region and phosphorylation sites compared with those from mammals. A tissue distrib...

  20. Nuclear factor-κB p65 (RelA) transcription factor is constitutively activated in human colorectal carcinoma tissue

    Institute of Scientific and Technical Information of China (English)

    Liang-Liang Yu; Hong-Gang Yu; Jie-Ping Yu; He-Sheng Luo; Xi-Ming Xu; Jun-Hua Li

    2004-01-01

    AIM: Activation of transcription factor nuclear factor-κB (NF-κB) has been shown to play a role in cell proliferation,apoptosis, cytokine production, and oncogenesis. The purpose of this study was to determine whether NF-κB was constitutively activated in human colorectal tumor tissues and, if so, to determine the role of NF-κB in colorectal tumorigenesis, and furthermore, to determine the association of RelA expression with tumor cell apoptosis and the expression of Bcl-2 and Bcl-xL.METHODS: Paraffin sections of normal epithelial, adenomatous and adenocarcinoma tissues were analysed immunohistochemically for expression of RelA, Bcl-2 and Bcl-xL proteins.Electrophoretic mobility shift assay (EMSA) was used to confirm the increased nuclear translocation of RelA in colorectal tumor tissues. The mRNA expressions of Bcl-2 and Bcl-xL were determined by reverse transcription polymerase chain reaction (RT-PCR) analysis. Apoptotic cells were detected by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate fluorescence nick end labeling (TUNEL) method.RESULTS: The activity of NF-κB was significantly higher in adenocarcinoma tissue in comparison with that in adenomatous and normal epithelial tissues. The apoptotic index (AI)significantly decreased in the transition from adenoma to adenocarcinoma. Meanwhile, the expressions of Bcl-2 and Bcl-xL protein and their mRNAs were significantly higher in adenocarcinoma tissues than that in adenomatous and normal epithelial tissues.CONCLUSION: NF-κB may inhibit apoptosis via enhancing the expression of the apoptosis genes Bcl-2 and BCl-xL. And the increased expression of RelA/nuclear factor-κB plays an important rote in the pathogenesis of colorectal carcinoma.

  1. The Journey of a Transcription Factor

    DEFF Research Database (Denmark)

    Pireyre, Marie

    Plants have developed astonishing networks regulating their metabolism to adapt to their environment. The complexity of these networks is illustrated by the expansion of families of regulators such as transcription factors in the plant kingdom. Transcription factors specifically impact...... transcriptional networks by integrating exogenous and endogenous stimuli and regulating gene expression accordingly. Regulation of transcription factors and their activation is thus highly important to modulate the transcriptional programs and increase fitness of the plant in a given environment. Plant metabolism...... MYBs to activate transcription of GLS biosynthetic genes. A lot is known about transcriptional regulation of these nine GLS regulators. This thesis aimed at identifying regulatory mechanisms at the protein level, allowing rapid and specific regulation of transcription factors using GLS as a model...

  2. Number of active transcription factor binding sites is essential for the Hes7 oscillator

    Directory of Open Access Journals (Sweden)

    de Angelis Martin

    2006-02-01

    Full Text Available Abstract Background It is commonly accepted that embryonic segmentation of vertebrates is regulated by a segmentation clock, which is induced by the cycling genes Hes1 and Hes7. Their products form dimers that bind to the regulatory regions and thereby repress the transcription of their own encoding genes. An increase of the half-life of Hes7 protein causes irregular somite formation. This was shown in recent experiments by Hirata et al. In the same work, numerical simulations from a delay differential equations model, originally invented by Lewis, gave additional support. For a longer half-life of the Hes7 protein, these simulations exhibited strongly damped oscillations with, after few periods, severely attenuated the amplitudes. In these simulations, the Hill coefficient, a crucial model parameter, was set to 2 indicating that Hes7 has only one binding site in its promoter. On the other hand, Bessho et al. established three regulatory elements in the promoter region. Results We show that – with the same half life – the delay system is highly sensitive to changes in the Hill coefficient. A small increase changes the qualitative behaviour of the solutions drastically. There is sustained oscillation and hence the model can no longer explain the disruption of the segmentation clock. On the other hand, the Hill coefficient is correlated with the number of active binding sites, and with the way in which dimers bind to them. In this paper, we adopt response functions in order to estimate Hill coefficients for a variable number of active binding sites. It turns out that three active transcription factor binding sites increase the Hill coefficient by at least 20% as compared to one single active site. Conclusion Our findings lead to the following crucial dichotomy: either Hirata's model is correct for the Hes7 oscillator, in which case at most two binding sites are active in its promoter region; or at least three binding sites are active, in which

  3. Activating transcription factor 4 and X box binding protein 1 of Litopenaeus vannamei transcriptional regulated white spot syndrome virus genes Wsv023 and Wsv083.

    Directory of Open Access Journals (Sweden)

    Xiao-Yun Li

    Full Text Available In response to endoplasmic reticulum (ER stress, the signaling pathway termed unfolded protein response (UPR is activated. To investigate the role of UPR in Litopenaeus vannamei immunity, the activating transcription factor 4 (designated as LvATF4 which belonged to a branch of the UPR, the [protein kinase RNA (PKR-like ER kinase, (PERK]-[eukaryotic initiation factor 2 subunit alpha (eIF2α] pathway, was identified and characterized. The full-length cDNA of LvATF4 was 1972 bp long, with an open reading frame of 1299 bp long that encoded a 432 amino acid protein. LvATF4 was highly expressed in gills, intestines and stomach. For the white spot syndrome virus (WSSV challenge, LvATF4 was upregulated in the gills after 3 hpi and increased by 1.9-fold (96 hpi compared to the mock-treated group. The LvATF4 knock-down by RNA interference resulted in a lower cumulative mortality of L. vannamei under WSSV infection. Reporter gene assays show that LvATF4 could upregulate the expression of the WSSV gene wsv023 based on the activating transcription factor/cyclic adenosine 3', 5'-monophosphate response element (ATF/CRE. Another transcription factor of L. vannamei, X box binding protein 1 (designated as LvXBP1, has a significant function in [inositol-requiring enzyme-1(IRE1 - (XBP1] pathway. This transcription factor upregulated the expression of the WSSV gene wsv083 based on the UPR element (UPRE. These results suggest that in L. vannamei UPR signaling pathway transcription factors are important for WSSV and might facilitate WSSV infection.

  4. Resveratrol enhances antitumor activity of TRAIL in prostate cancer xenografts through activation of FOXO transcription factor.

    Directory of Open Access Journals (Sweden)

    Suthakar Ganapathy

    Full Text Available BACKGROUND: Resveratrol (3, 4', 5 tri-hydroxystilbene, a naturally occurring polyphenol, exhibits anti-inflammatory, antioxidant, cardioprotective and antitumor activities. We have recently shown that resveratrol can enhance the apoptosis-inducing potential of TRAIL in prostate cancer cells through multiple mechanisms in vitro. Therefore, the present study was designed to validate whether resveratrol can enhance the apoptosis-inducing potential of TRAIL in a xenograft model of prostate cancer. METHODOLOGY/PRINCIPAL FINDINGS: Resveratrol and TRAIL alone inhibited growth of PC-3 xenografts in nude mice by inhibiting tumor cell proliferation (PCNA and Ki67 staining and inducing apoptosis (TUNEL staining. The combination of resveratrol and TRAIL was more effective in inhibiting tumor growth than single agent alone. In xenografted tumors, resveratrol upregulated the expressions of TRAIL-R1/DR4, TRAIL-R2/DR5, Bax and p27(/KIP1, and inhibited the expression of Bcl-2 and cyclin D1. Treatment of mice with resveratrol and TRAIL alone inhibited angiogenesis (as demonstrated by reduced number of blood vessels, and VEGF and VEGFR2 positive cells and markers of metastasis (MMP-2 and MMP-9. The combination of resveratrol with TRAIL further inhibited number of blood vessels in tumors, and circulating endothelial growth factor receptor 2-positive endothelial cells than single agent alone. Furthermore, resveratrol inhibited the cytoplasmic phosphorylation of FKHRL1 resulting in its enhanced activation as demonstrated by increased DNA binding activity. CONCLUSIONS/SIGNIFICANCE: These data suggest that resveratrol can enhance the apoptosis-inducing potential of TRAIL by activating FKHRL1 and its target genes. The ability of resveratrol to inhibit tumor growth, metastasis and angiogenesis, and enhance the therapeutic potential of TRAIL suggests that resveratrol alone or in combination with TRAIL can be used for the management of prostate cancer.

  5. Role of hypoxia-inducible factor-1 in transcriptional activation of ceruloplasmin by iron deficiency

    Science.gov (United States)

    Mukhopadhyay, C. K.; Mazumder, B.; Fox, P. L.

    2000-01-01

    A role of the copper protein ceruloplasmin (Cp) in iron metabolism is suggested by its ferroxidase activity and by the tissue iron overload in hereditary Cp deficiency patients. In addition, plasma Cp increases markedly in several conditions of anemia, e.g. iron deficiency, hemorrhage, renal failure, sickle cell disease, pregnancy, and inflammation. However, little is known about the cellular and molecular mechanism(s) involved. We have reported that iron chelators increase Cp mRNA expression and protein synthesis in human hepatocarcinoma HepG2 cells. Furthermore, we have shown that the increase in Cp mRNA is due to increased rate of transcription. We here report the results of new studies designed to elucidate the molecular mechanism underlying transcriptional activation of Cp by iron deficiency. The 5'-flanking region of the Cp gene was cloned from a human genomic library. A 4774-base pair segment of the Cp promoter/enhancer driving a luciferase reporter was transfected into HepG2 or Hep3B cells. Iron deficiency or hypoxia increased luciferase activity by 5-10-fold compared with untreated cells. Examination of the sequence showed three pairs of consensus hypoxia-responsive elements (HREs). Deletion and mutation analysis showed that a single HRE was necessary and sufficient for gene activation. The involvement of hypoxia-inducible factor-1 (HIF-1) was shown by gel-shift and supershift experiments that showed HIF-1alpha and HIF-1beta binding to a radiolabeled oligonucleotide containing the Cp promoter HRE. Furthermore, iron deficiency (and hypoxia) did not activate Cp gene expression in Hepa c4 hepatoma cells deficient in HIF-1beta, as shown functionally by the inactivity of a transfected Cp promoter-luciferase construct and by the failure of HIF-1 to bind the Cp HRE in nuclear extracts from these cells. These results are consistent with in vivo findings that iron deficiency increases plasma Cp and provides a molecular mechanism that may help to understand these

  6. Identification and characterization a novel transcription factor activator protein-1 in the sea cucumber Apostichopus japonicus.

    Science.gov (United States)

    Yang, Limeng; Li, Chenghua; Chang, Yaqing; Gao, Yinxue; Wang, Yi; Wei, Jing; Song, Jian; Sun, Ping

    2015-08-01

    The transcription factor activator protein-1 (AP-1) is an important gene expression regulator with typical Jun and region-leucine zipper (bZIP) domains and can respond to a plethora of physiological and pathological stimulus. In this study, we identified a novel AP-1 gene in Apostichopus japonicus by transcriptome sequencing and RACE approaches (designated as AjAP-1). The full-length of AjAP-1 was of 2944 bp including a 5' untranslated region (UTR) of 201 bp, a 3' UTR of 1753 bp and a putative open reading frame of 990 bp encoding a polypeptide of 329 amino acid residues. Two representative domains of Jun and bZIP as well as two nuclear localization signals (NLSs) were also detected in deduced amino acid of AjAP-1. Spatial distribution expression indicated that AjAP-1 was ubiquitously expressed in all examined tissues with predominant expression in the body wall, moderate in the tube feet, respiratory tree and colemocytes and slightly weak in the intestine and longitudinal muscle. Time-course expression analysis in intestine and coelomocytes revealed that AjAP-1 both reached its peak expression at 4 h after Vibrio splendidus challenge with a 2.6 and 8.2-fold increase compared to their control groups, respectively. Taken together, all these results suggested that AjAP-1 was a novel immune factor and might be involved in the processes of anti-bacteria response in sea cucumber. PMID:26093208

  7. Human Mitochondrial Transcription Factor B1 Interacts with the C-Terminal Activation Region of h-mtTFA and Stimulates Transcription Independently of Its RNA Methyltransferase Activity

    OpenAIRE

    McCulloch, Vicki; Shadel, Gerald S.

    2003-01-01

    A significant advancement in understanding mitochondrial gene expression is the recent identification of two new human mitochondrial transcription factors, h-mtTFB1 and h-mtTFB2. Both proteins stimulate transcription in collaboration with the high-mobility group box transcription factor, h-mtTFA, and are homologous to rRNA methyltransferases. In fact, the dual-function nature of h-mtTFB1 was recently demonstrated by its ability to methylate a conserved rRNA substrate. Here, we demonstrate tha...

  8. The loss of activating transcription factor 4 (ATF4) reduces bone toughness and fracture toughness.

    Science.gov (United States)

    Makowski, Alexander J; Uppuganti, Sasidhar; Wadeer, Sandra A; Whitehead, Jack M; Rowland, Barbara J; Granke, Mathilde; Mahadevan-Jansen, Anita; Yang, Xiangli; Nyman, Jeffry S

    2014-05-01

    Even though age-related changes to bone tissue affecting fracture risk are well characterized, only a few matrix-related factors have been identified as important to maintaining fracture resistance. As a gene critical to osteoblast differentiation, activating transcription factor 4 (ATF4) is possibly one of these important factors. To test the hypothesis that the loss of ATF4 affects the fracture resistance of bone beyond bone mass and structure, we harvested bones from Atf4+/+ and Atf4-/- littermates at 8 and 20 weeks of age (n≥9 per group) for bone assessment across several length scales. From whole bone mechanical tests in bending, femurs from Atf4-/- mice were found to be brittle with reduced toughness and fracture toughness compared to femurs from Atf4+/+ mice. However, there were no differences in material strength and in tissue hardness, as determined by nanoindentation, between the genotypes, irrespective of age. Tissue mineral density of the cortex at the point of loading as determined by micro-computed tomography was also not significantly different. However, by analyzing local composition by Raman Spectroscopy (RS), bone tissue of Atf4-/- mice was found to have higher mineral to collagen ratio compared to wild-type tissue, primarily at 20 weeks of age. From RS analysis of intact femurs at 2 orthogonal orientations relative to the polarization axis of the laser, we also found that the organizational-sensitive peak ratio, ν1Phosphate per Amide I, changed to a greater extent upon bone rotation for Atf4-deficient tissue, implying bone matrix organization may contribute to the brittleness phenotype. Target genes of ATF4 activity are not only important to osteoblast differentiation but also in maintaining bone toughness and fracture toughness.

  9. Using in vivo electroporation to identify hepatic LDL receptor promoter elements and transcription factors mediating activation of transcription by T3

    Directory of Open Access Journals (Sweden)

    Dayami Lopez

    2012-12-01

    Full Text Available The technique of in vivo electroporation was adapted to investigate the promoter elements and transcription factors mediating the rapid induction of hepatic LDL receptor expression in response to thyroid hormone. Direct comparisons between wild type and mutant promoter constructs were made within the same animal. It was demonstrated that both TREs at bp −612 and −156 were required for the l-triiodothyronine (T3 response. ChIP analysis showed that binding of TRβ1 to the −612 and −156 TREs was markedly stimulated by T3 in vivo. Introduction of siRNAs against TRβ1/RXRα with LDL receptor promoter-luciferase construct by in vivo electroporation demonstrated that these transcription factors play the major physiological role in the activation of hepatic LDL receptor transcription. The findings agree with those made by transfecting H4IIE cells in vitro thus validating this technique for in vivo studies of mechanisms of transcriptional regulation. The findings reported herein also indicated, for the first time, that PPARα and USF-2 were required for maximum transcriptional activation of the LDL receptor in response to T3 treatment.

  10. Structural basis for S-adenosylmethionine binding and methyltransferase activity by mitochondrial transcription factor B1

    OpenAIRE

    Guja, Kip E.; Venkataraman, Krithika; Yakubovskaya, Elena; Hui SHI; Mejia, Edison; Hambardjieva, Elena; Karzai, A. Wali; Garcia-Diaz, Miguel

    2013-01-01

    Eukaryotic transcription factor B (TFB) proteins are homologous to KsgA/Dim1 ribosomal RNA (rRNA) methyltransferases. The mammalian TFB1, mitochondrial (TFB1M) factor is an essential protein necessary for mitochondrial gene expression. TFB1M mediates an rRNA modification in the small ribosomal subunit and thus plays a role analogous to KsgA/Dim1 proteins. This modification has been linked to mitochondrial dysfunctions leading to maternally inherited deafness, aminoglycoside sensitivity and di...

  11. Evaluating Transcription Factor Activity Changes by Scoring Unexplained Target Genes in Expression Data

    Science.gov (United States)

    Berchtold, Evi; Csaba, Gergely; Zimmer, Ralf

    2016-01-01

    Several methods predict activity changes of transcription factors (TFs) from a given regulatory network and measured expression data. But available gene regulatory networks are incomplete and contain many condition-dependent regulations that are not relevant for the specific expression measurement. It is not known which combination of active TFs is needed to cause a change in the expression of a target gene. A method to systematically evaluate the inferred activity changes is missing. We present such an evaluation strategy that indicates for how many target genes the observed expression changes can be explained by a given set of active TFs. To overcome the problem that the exact combination of active TFs needed to activate a gene is typically not known, we assume a gene to be explained if there exists any combination for which the predicted active TFs can possibly explain the observed change of the gene. We introduce the i-score (inconsistency score), which quantifies how many genes could not be explained by the set of activity changes of TFs. We observe that, even for these minimal requirements, published methods yield many unexplained target genes, i.e. large i-scores. This holds for all methods and all expression datasets we evaluated. We provide new optimization methods to calculate the best possible (minimal) i-score given the network and measured expression data. The evaluation of this optimized i-score on a large data compendium yields many unexplained target genes for almost every case. This indicates that currently available regulatory networks are still far from being complete. Both the presented Act-SAT and Act-A* methods produce optimal sets of TF activity changes, which can be used to investigate the difficult interplay of expression and network data. A web server and a command line tool to calculate our i-score and to find the active TFs associated with the minimal i-score is available from https://services.bio.ifi.lmu.de/i-score. PMID:27723775

  12. Band-pass processing in a GPCR signaling pathway selects for NFAT transcription factor activation.

    Science.gov (United States)

    Sumit, M; Neubig, R R; Takayama, S; Linderman, J J

    2015-11-01

    Many biological processes are rhythmic and proper timing is increasingly appreciated as being critical for development and maintenance of physiological functions. To understand how temporal modulation of an input signal influences downstream responses, we employ microfluidic pulsatile stimulation of a G-protein coupled receptor, the muscarinic M3 receptor, in single cells with simultaneous real-time imaging of both intracellular calcium and NFAT nuclear localization. Interestingly, we find that reduced stimulation with pulses of ligand can give more efficient transcription factor activation, if stimuli are timed appropriately. Our experiments and computational analyses show that M3 receptor-induced calcium oscillations form a low pass filter while calcium-induced NFAT translocation forms a high pass filter. The combination acts as a band-pass filter optimized for intermediate frequencies of stimulation. We demonstrate that receptor desensitization and NFAT translocation rates determine critical features of the band-pass filter and that the band-pass may be shifted for different receptors or NFAT dynamics. As an example, we show that the two NFAT isoforms (NFAT4 and NFAT1) have shifted band-pass windows for the same receptor. While we focus specifically on the M3 muscarinic receptor and NFAT translocation, band-pass processing is expected to be a general theme that applies to multiple signaling pathways. PMID:26374065

  13. Transcription factors GAF and HSF act at distinct regulatory steps to modulate stress-induced gene activation

    Science.gov (United States)

    Fuda, Nicholas J.; Mahat, Dig B.; Core, Leighton J.; Guertin, Michael J.

    2016-01-01

    The coordinated regulation of gene expression at the transcriptional level is fundamental to development and homeostasis. Inducible systems are invaluable when studying transcription because the regulatory process can be triggered instantaneously, allowing the tracking of ordered mechanistic events. Here, we use precision run-on sequencing (PRO-seq) to examine the genome-wide heat shock (HS) response in Drosophila and the function of two key transcription factors on the immediate transcription activation or repression of all genes regulated by HS. We identify the primary HS response genes and the rate-limiting steps in the transcription cycle that GAGA-associated factor (GAF) and HS factor (HSF) regulate. We demonstrate that GAF acts upstream of promoter-proximally paused RNA polymerase II (Pol II) formation (likely at the step of chromatin opening) and that GAF-facilitated Pol II pausing is critical for HS activation. In contrast, HSF is dispensable for establishing or maintaining Pol II pausing but is critical for the release of paused Pol II into the gene body at a subset of highly activated genes. Additionally, HSF has no detectable role in the rapid HS repression of thousands of genes. PMID:27492368

  14. Profiling of histone H3 lysine 9 trimethylation levels predicts transcription factor activity and survival in acute myeloid leukemia

    DEFF Research Database (Denmark)

    Müller-Tidow, Carsten; Klein, Hans-Ulrich; Hascher, Antje;

    2010-01-01

    . The altered genomic regions showed an overrepresentation of cis-binding sites for ets and c-AMP response elements (CREs) for transcription factors of the CREB/CREM/ATF1 family. The decrease in H3K9me3 levels at CREs was associated with increased CRE-driven promoter activity in AML blasts in vivo. AML......Acute Myeloid Leukemia (AML) is commonly associated with alterations in transcription factors due to altered expression or gene mutations. These changes might induce leukemia- specific patterns of histone modifications. We used ChIP-Chip to analyze histone H3 Lysine 9 trimethylation (H3K9me3...

  15. Transcription Factors Bind Thousands of Active and InactiveRegions in the Drosophila Blastoderm

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiao-Yong; MacArthur, Stewart; Bourgon, Richard; Nix, David; Pollard, Daniel A.; Iyer, Venky N.; Hechmer, Aaron; Simirenko, Lisa; Stapleton, Mark; Luengo Hendriks, Cris L.; Chu, Hou Cheng; Ogawa, Nobuo; Inwood, William; Sementchenko, Victor; Beaton, Amy; Weiszmann, Richard; Celniker, Susan E.; Knowles, David W.; Gingeras, Tom; Speed, Terence P.; Eisen, Michael B.; Biggin, Mark D.

    2008-01-10

    Identifying the genomic regions bound by sequence-specific regulatory factors is central both to deciphering the complex DNA cis-regulatory code that controls transcription in metazoans and to determining the range of genes that shape animal morphogenesis. Here, we use whole-genome tiling arrays to map sequences bound in Drosophila melanogaster embryos by the six maternal and gap transcription factors that initiate anterior-posterior patterning. We find that these sequence-specific DNA binding proteins bind with quantitatively different specificities to highly overlapping sets of several thousand genomic regions in blastoderm embryos. Specific high- and moderate-affinity in vitro recognition sequences for each factor are enriched in bound regions. This enrichment, however, is not sufficient to explain the pattern of binding in vivo and varies in a context-dependent manner, demonstrating that higher-order rules must govern targeting of transcription factors. The more highly bound regions include all of the over forty well-characterized enhancers known to respond to these factors as well as several hundred putative new cis-regulatory modules clustered near developmental regulators and other genes with patterned expression at this stage of embryogenesis. The new targets include most of the microRNAs (miRNAs) transcribed in the blastoderm, as well as all major zygotically transcribed dorsal-ventral patterning genes, whose expression we show to be quantitatively modulated by anterior-posterior factors. In addition to these highly bound regions, there are several thousand regions that are reproducibly bound at lower levels. However, these poorly bound regions are, collectively, far more distant from genes transcribed in the blastoderm than highly bound regions; are preferentially found in protein-coding sequences; and are less conserved than highly bound regions. Together these observations suggest that many of these poorly-bound regions are not involved in early

  16. Transcription factor activating protein 2 beta (TFAP2B) mediates noradrenergic neuronal differentiation in neuroblastoma.

    Science.gov (United States)

    Ikram, Fakhera; Ackermann, Sandra; Kahlert, Yvonne; Volland, Ruth; Roels, Frederik; Engesser, Anne; Hertwig, Falk; Kocak, Hayriye; Hero, Barbara; Dreidax, Daniel; Henrich, Kai-Oliver; Berthold, Frank; Nürnberg, Peter; Westermann, Frank; Fischer, Matthias

    2016-02-01

    Neuroblastoma is an embryonal pediatric tumor that originates from the developing sympathetic nervous system and shows a broad range of clinical behavior, ranging from fatal progression to differentiation into benign ganglioneuroma. In experimental neuroblastoma systems, retinoic acid (RA) effectively induces neuronal differentiation, and RA treatment has been therefore integrated in current therapies. However, the molecular mechanisms underlying differentiation are still poorly understood. We here investigated the role of transcription factor activating protein 2 beta (TFAP2B), a key factor in sympathetic nervous system development, in neuroblastoma pathogenesis and differentiation. Microarray analyses of primary neuroblastomas (n = 649) demonstrated that low TFAP2B expression was significantly associated with unfavorable prognostic markers as well as adverse patient outcome. We also found that low TFAP2B expression was strongly associated with CpG methylation of the TFAP2B locus in primary neuroblastomas (n = 105) and demethylation with 5-aza-2'-deoxycytidine resulted in induction of TFAP2B expression in vitro, suggesting that TFAP2B is silenced by genomic methylation. Tetracycline inducible re-expression of TFAP2B in IMR-32 and SH-EP neuroblastoma cells significantly impaired proliferation and cell cycle progression. In IMR-32 cells, TFAP2B induced neuronal differentiation, which was accompanied by up-regulation of the catecholamine biosynthesizing enzyme genes DBH and TH, and down-regulation of MYCN and REST, a master repressor of neuronal genes. By contrast, knockdown of TFAP2B by lentiviral transduction of shRNAs abrogated RA-induced neuronal differentiation of SH-SY5Y and SK-N-BE(2)c neuroblastoma cells almost completely. Taken together, our results suggest that TFAP2B is playing a vital role in retaining RA responsiveness and mediating noradrenergic neuronal differentiation in neuroblastoma. PMID:26598443

  17. Transforming growth factor β signaling upregulates the expression of human GDP-fucose transporter by activating transcription factor Sp1.

    Science.gov (United States)

    Xu, Yu-Xin; Ma, Anna; Liu, Li

    2013-01-01

    GDP-fucose transporter plays a crucial role in fucosylation of glycoproteins by providing activated fucose donor, GDP-fucose, for fucosyltransferases in the lumen of the Golgi apparatus. Fucose-containing glycans are involved in many biological processes, which are essential for growth and development. Mutations in the GDP-fucose transporter gene cause leukocyte adhesion deficiency syndrome II, a disease characterized by slow growth, mental retardation and immunodeficiency. However, no information is available regarding its transcriptional regulation. Here, by using human cells, we show that TGF-β1 specifically induces the GDP-fucose transporter expression, but not other transporters tested such as CMP-sialic acid transporter, suggesting a diversity of regulatory pathways for the expression of these transporters. The regulatory elements that are responsive to the TGF-β1 stimulation are present in the region between bp -330 and -268 in the GDP-fucose transporter promoter. We found that this region contains two identical octamer GC-rich motifs (GGGGCGTG) that were demonstrated to be essential for the transporter expression. We also show that the transcription factor Sp1 specifically binds to the GC-rich motifs in vitro and Sp1 coupled with phospho-Smad2 is associated with the promoter region covering the Sp1-binding motifs in vivo using chromatin immunoprecipitation (ChIP) assays. In addition, we further confirmed that Sp1 is essential for the GDP-fucose transporter expression stimulated by TGF-β1 using a luciferase reporter system. These results highlight the role of TGF-β signaling in regulation of the GDP-fucose transporter expression via activating Sp1. This is the first transcriptional study for any nucleotide sugar transporters that have been identified so far. Notably, TGF-β1 receptor itself is known to be modified by fucosylation. Given the essential role of GDP-fucose transporter in fucosylation, the finding that TGF-β1 stimulates the expression of

  18. A Global Genomic and Genetic Strategy to Identify, Validate and Use Gene Signatures of Xenobiotic-Responsive Transcription Factors in Prediction of Pathway Activation in the Mouse Liver

    Science.gov (United States)

    Many drugs and environmentally-relevant chemicals activate xenobiotic-responsive transcription factors. Identification of target genes of these factors would be useful in predicting pathway activation in in vitro chemical screening as well as their involvement in disease states. ...

  19. Fungal-specific transcription factor AbPf2 activates pathogenicity in Alternaria brassicicola

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yangrae; Ohm, Robin A.; Grigoriev, Igor V.; Srivastava, Akhil

    2012-12-03

    Alternaria brassicicola is a successful saprophyte and necrotrophic plant pathogen. To identify molecular determinants of pathogenicity, we created non-pathogenic mutants of a transcription factor-encoding gene, AbPf2. The frequency and timing of germination and appressorium formation on host plants were similar between the non-pathogenic abpf2 mutants and wild-type A. brassicicola. The mutants were also similar in vitro to wild-type A. brassicicola in terms of vegetative growth, conidium production, and responses to a phytoalexin, reactive oxygen species and osmolites. The hyphae of the mutants grew slowly but did not cause disease symptoms on the surface of host plants. Transcripts of the AbPf2 gene increased exponentially soon after wild-type conidia contacted their host plants . A small amount of AbPf2 protein, as monitored using GFP fusions, was present in young, mature conidia. The protein level decreased during saprophytic growth, but increased and was located primarily in fungal nuclei during pathogenesis. Levels of the proteins and transcripts sharply decreased following colonization of host tissues beyond the initial infection site. When expression of the transcription factor was induced in the wild-type during early pathogenesis, 106 fungal genes were also induced in the wild-type but not in the abpf2 mutants. Notably, 33 of the 106 genes encoded secreted proteins, including eight putative effector proteins. Plants inoculated with abpf2 mutants expressed higher levels of genes associated with photosynthesis, the pentose phosphate pathway and primary metabolism, but lower levels of defense-related genes. Our results suggest that AbPf2 is an important regulator of pathogenesis, but does not affect other cellular processes in A. brassicicola.

  20. Aldehyde dehydrogenase 1A1 stabilizes transcription factor Gli2 and enhances the activity of Hedgehog signaling in hepatocellular cancer.

    Science.gov (United States)

    Yan, Zhengwei; Xu, Liyao; Zhang, Junyan; Lu, Quqin; Luo, Shiwen; Xu, Linlin

    2016-03-18

    The Gli transcription factors are primary transcriptional regulators that mediate the activation of Hedgehog (Hh) signaling. Recent studies have revealed that Gli proteins are also regulated transcriptionally and post-translationally through noncanonical mechanisms, independent of Hh signaling. However, the precise mechanisms involved in the regulation of Gli proteins remain unclear. Using a differential mass-spectrometry approach, we found that aldehyde dehydrogenase 1A1 (ALDH1A1) is associated with transcription factor Gli2. Overexpression of ALDH1A1 increased Gli2 protein levels; in contrast, ALDH1A1 depletion facilitated Gli2 degradation. In addition, Gli2 mRNA expression was not affected by ectopic expression of ALDH1A1, indicating the role of ALDH1A1 in the stabilization of Gli2. Further investigation showed that ALDH1A1 prolonged the stability of Gli2 protein in a catalytic-independent manner. Finally, we showed that overexpression of ALDH1A1 activated the Hh signaling pathway and promoted cell growth, migration and invasion in hepatocellular cancer cells. Together, these results illustrate regulatory roles of ALDH1A1 in the activation of the Hh signaling pathway and highlight a novel mechanism for the aberrant activation of the Hh signaling pathway in hepatocellular cancer cells. PMID:26896768

  1. Thanatos-associated protein 7 associates with template activating factor-Ibeta and inhibits histone acetylation to repress transcription.

    Science.gov (United States)

    Macfarlan, Todd; Parker, J Brandon; Nagata, Kyosuke; Chakravarti, Debabrata

    2006-02-01

    The posttranslational modifications of histones on chromatin or a lack thereof is critical in transcriptional regulation. Emerging studies indicate a role for histone-binding proteins in transcriptional activation and repression. We have previously identified template-activating factor-Ibeta (TAF-Ibeta, also called PHAPII, SET, and I(2)(pp2A)) as a component of a cellular complex called inhibitor of acetyltransferases (INHAT) that masks histone acetylation in vitro and blocks histone acetyltransferase (HAT)-dependent transcription in living cells. TAF-Ibeta has also been shown to associate with transcription factors, including nuclear receptors, to regulate their activities. To identify novel interactors of TAF-Ibeta, we employed a yeast two-hybrid screen and identified a previously uncharacterized human protein called thanatos-associated protein-7 (THAP7), a member of a large family of THAP domain-containing putative DNA-binding proteins. In this study we demonstrate that THAP7 associates with TAF-Ibeta in vitro and map their association domains to a C-terminal predicted coiled-coil motif on THAP7 and the central region of TAF-Ibeta. Similarly, stably transfected THAP7 associates with endogenous TAF-Ibeta in intact cells. Like TAF-Ibeta, THAP7 associates with histone H3 and histone H4 and inhibits histone acetylation. The histone-interacting domain of THAP7 is sufficient for this activity in vitro. Promoter-targeted THAP7 can also recruit TAF-Ibeta and silencing mediator of retinoid and thyroid receptors/nuclear hormone receptor corepressor (NCoR) proteins to promoters, and knockdown of TAF-Ibeta by small interfering RNA relieves THAP7-mediated repression, indicating that, like nuclear hormone receptors, THAP7 may represent a novel class of transcription factor that uses TAF-Ibeta as a corepressor to maintain histones in a hypoacetylated, repressed state. PMID:16195249

  2. Post-translational Control of the Temporal Dynamics of Transcription Factor Activity Regulates Neurogenesis.

    Science.gov (United States)

    Quan, Xiao-Jiang; Yuan, Liqun; Tiberi, Luca; Claeys, Annelies; De Geest, Natalie; Yan, Jiekun; van der Kant, Rob; Xie, Wei R; Klisch, Tiemo J; Shymkowitz, Joost; Rousseau, Frederic; Bollen, Mathieu; Beullens, Monique; Zoghbi, Huda Y; Vanderhaeghen, Pierre; Hassan, Bassem A

    2016-01-28

    Neurogenesis is initiated by the transient expression of the highly conserved proneural proteins, bHLH transcriptional regulators. Here, we discover a conserved post-translational switch governing the duration of proneural protein activity that is required for proper neuronal development. Phosphorylation of a single Serine at the same position in Scute and Atonal proneural proteins governs the transition from active to inactive forms by regulating DNA binding. The equivalent Neurogenin2 Threonine also regulates DNA binding and proneural activity in the developing mammalian neocortex. Using genome editing in Drosophila, we show that Atonal outlives its mRNA but is inactivated by phosphorylation. Inhibiting the phosphorylation of the conserved proneural Serine causes quantitative changes in expression dynamics and target gene expression resulting in neuronal number and fate defects. Strikingly, even a subtle change from Serine to Threonine appears to shift the duration of Atonal activity in vivo, resulting in neuronal fate defects. PMID:26824657

  3. Protein intrinsic disorder in Arabidopsis NAC transcription factors: transcriptional activation by ANAC013 and ANAC046 and their interactions with RCD1.

    Science.gov (United States)

    O'Shea, Charlotte; Kryger, Mikael; Stender, Emil G P; Kragelund, Birthe B; Willemoës, Martin; Skriver, Karen

    2015-01-15

    Protein ID (intrinsic disorder) plays a significant, yet relatively unexplored role in transcription factors (TFs). In the present paper, analysis of the transcription regulatory domains (TRDs) of six phylogenetically representative, plant-specific NAC [no apical meristem, ATAF (Arabidopsis transcription activation factor), cup-shaped cotyledon] TFs shows that the domains are present in similar average pre-molten or molten globule-like states, but have different patterns of order/disorder and MoRFs (molecular recognition features). ANAC046 (Arabidopsis NAC 046) was selected for further studies because of its simple MoRF pattern and its ability to interact with RCD1 (radical-induced cell death 1). Experiments in yeast and thermodynamic characterization suggest that its single MoRF region is sufficient for both transcriptional activation and interaction with RCD1. The remainder of the large regulatory domain is unlikely to contribute to the interaction, since the domain and truncations thereof have similar affinities for RCD1, which are also similar for ANAC013-RCD1 interactions. However, different enthalpic and entropic contributions to binding were revealed for ANAC046 and ANAC013, suggestive of differences in binding mechanisms. Although substitution of both hydrophobic and acidic residues of the ANAC046 MoRF region abolished binding, substitution of other residues, even with α-helix-breaking proline, was less disruptive. Together, the biophysical analyses suggest that RCD1-ANAC046 complex formation does not involve folding-upon-binding, but rather fuzziness or an unknown structure in ANAC046. We suggest that the ANAC046 regulatory domain functions as an entropic chain with a terminal hot spot interacting with RCD1. RCD1, a cellular hub, may be able to interact with many different TFs by exploiting their ID-based flexibility, as demonstrated for its interactions with ANAC046 and ANAC013.

  4. TRAP/SMCC/Mediator-Dependent Transcriptional Activation from DNA and Chromatin Templates by Orphan Nuclear Receptor Hepatocyte Nuclear Factor 4

    OpenAIRE

    Malik, Sohail; Wallberg, Annika E.; Kang, Yun Kyoung; Roeder, Robert G.

    2002-01-01

    The orphan nuclear receptor hepatocyte nuclear factor 4 (HNF-4) regulates the expression of many liver-specific genes both during development and in the adult animal. Towards understanding the molecular mechanisms by which HNF-4 functions, we have established in vitro transcription systems that faithfully recapitulate HNF-4 activity. Here we have focused on the coactivator requirements for HNF-4, especially for the multicomponent TRAP/SMCC/Mediator complex that has emerged as the central regu...

  5. Activating Transcription Factor 4 Confers a Multidrug Resistance Phenotype to Gastric Cancer Cells through Transactivation of SIRT1 Expression

    OpenAIRE

    Hongwu Zhu; Limin Xia; Yongguo Zhang; Honghong Wang; Wenjing Xu; Hao Hu; Jing Wang; Jing Xin; Yi Gang; Sumei Sha; Bin Xu; Daiming Fan; Yongzhan Nie; Kaichun Wu

    2012-01-01

    BACKGROUND: Multidrug resistance (MDR) in gastric cancer remains a major challenge to clinical treatment. Activating transcription factor 4 (ATF4) is a stress response gene involved in homeostasis and cellular protection. However, the expression and function of ATF4 in gastric cancer MDR remains unknown. In this study, we investigate whether ATF4 play a role in gastric cancer MDR and its potential mechanisms. METHODOLOGY/PRINCIPAL FINDINGS: We demonstrated that ATF4 overexpression confered th...

  6. Activating transcription factor-4 promotes mineralization in vascular smooth muscle cells

    Science.gov (United States)

    Masuda, Masashi; Miyazaki-Anzai, Shinobu; Keenan, Audrey L.; Shiozaki, Yuji; Okamura, Kayo; Chick, Wallace S.; Williams, Kristina; Zhao, Xiaoyun; Rahman, Shaikh Mizanoor; Tintut, Yin; Adams, Christopher M.

    2016-01-01

    Emerging evidence indicates that upregulation of the ER stress–induced pro-osteogenic transcription factor ATF4 plays an important role in vascular calcification, a common complication in patients with aging, diabetes, and chronic kidney disease (CKD). In this study, we demonstrated the pathophysiological role of ATF4 in vascular calcification using global Atf4 KO, smooth muscle cell–specific (SMC-specific) Atf4 KO, and transgenic (TG) mouse models. Reduced expression of ATF4 in global ATF4-haplodeficient and SMC-specific Atf4 KO mice reduced medial and atherosclerotic calcification under normal kidney and CKD conditions. In contrast, increased expression of ATF4 in SMC-specific Atf4 TG mice caused severe medial and atherosclerotic calcification. We further demonstrated that ATF4 transcriptionally upregulates the expression of type III sodium-dependent phosphate cotransporters (PiT1 and PiT2) by interacting with C/EBPβ. These results demonstrate that the ER stress effector ATF4 plays a critical role in the pathogenesis of vascular calcification through increased phosphate uptake in vascular SMCs. PMID:27812542

  7. Cocaine induces cell death and activates the transcription nuclear factor kappa-B in PC12 cells.

    Science.gov (United States)

    Lepsch, Lucilia B; Munhoz, Carolina D; Kawamoto, Elisa M; Yshii, Lidia M; Lima, Larissa S; Curi-Boaventura, Maria F; Salgado, Thais M L; Curi, Rui; Planeta, Cleopatra S; Scavone, Cristoforo

    2009-01-01

    Cocaine is a worldwide used drug and its abuse is associated with physical, psychiatric and social problems. The mechanism by which cocaine causes neurological damage is very complex and involves several neurotransmitter systems. For example, cocaine increases extracellular levels of dopamine and free radicals, and modulates several transcription factors. NF-kappaB is a transcription factor that regulates gene expression involved in cellular death. Our aim was to investigate the toxicity and modulation of NF-kappaB activity by cocaine in PC 12 cells. Treatment with cocaine (1 mM) for 24 hours induced DNA fragmentation, cellular membrane rupture and reduction of mitochondrial activity. A decrease in Bcl-2 protein and mRNA levels, and an increase in caspase 3 activity and cleavage were also observed. In addition, cocaine (after 6 hours treatment) activated the p50/p65 subunit of NF-kappaB complex and the pretreatment of the cells with SCH 23390, a D1 receptor antagonist, attenuated the NF-kappaB activation. Inhibition of NF-kappaB activity by using PDTC and Sodium Salicilate increased cell death caused by cocaine. These results suggest that cocaine induces cell death (apoptosis and necrosis) and activates NF-kappaB in PC12 cells. This activation occurs, at least partially, due to activation of D1 receptors and seems to have an anti-apoptotic effect on these cells. PMID:19183502

  8. Cocaine induces cell death and activates the transcription nuclear factor kappa-b in pc12 cells

    Directory of Open Access Journals (Sweden)

    Lepsch Lucilia B

    2009-02-01

    Full Text Available Abstract Cocaine is a worldwide used drug and its abuse is associated with physical, psychiatric and social problems. The mechanism by which cocaine causes neurological damage is very complex and involves several neurotransmitter systems. For example, cocaine increases extracellular levels of dopamine and free radicals, and modulates several transcription factors. NF-κB is a transcription factor that regulates gene expression involved in cellular death. Our aim was to investigate the toxicity and modulation of NF-κB activity by cocaine in PC 12 cells. Treatment with cocaine (1 mM for 24 hours induced DNA fragmentation, cellular membrane rupture and reduction of mitochondrial activity. A decrease in Bcl-2 protein and mRNA levels, and an increase in caspase 3 activity and cleavage were also observed. In addition, cocaine (after 6 hours treatment activated the p50/p65 subunit of NF-κB complex and the pretreatment of the cells with SCH 23390, a D1 receptor antagonist, attenuated the NF-κB activation. Inhibition of NF-κB activity by using PDTC and Sodium Salicilate increased cell death caused by cocaine. These results suggest that cocaine induces cell death (apoptosis and necrosis and activates NF-κB in PC12 cells. This activation occurs, at least partially, due to activation of D1 receptors and seems to have an anti-apoptotic effect on these cells.

  9. Estradiol repression of tumor necrosis factortranscription requires estrogen receptor activation function-2 and is enhanced by coactivators

    OpenAIRE

    An, Jinping; Ribeiro, Ralff C. J.; Webb, Paul; Gustafsson, Jan-Åke; Kushner, Peter J.; Baxter, John D.; Leitman, Dale C.

    1999-01-01

    The tumor necrosis factor-α (TNF-α) promoter was used to explore the molecular mechanisms of estradiol (E2)-dependent repression of gene transcription. E2 inhibited basal activity and abolished TNF-α activation of the TNF-α promoter. The E2-inhibitory element was mapped to the −125 to −82 region of the TNF-α promoter, known as the TNF-responsive element (TNF-RE). An AP-1-like site in the TNF-RE is essential for repression activity. Estrogen receptor (ER) β is more potent than ERα at repressin...

  10. Effects of chronic renal failure rat serum on histone acetyltransferase p300 and activation of activating transcription factor 4 of arterial smooth muscle cells cultured in vitro

    Institute of Scientific and Technical Information of China (English)

    张耀全

    2014-01-01

    Objective To investigate the effects of the rat serum with chronic renal failure(CRF)on ubiquitin-proteasome pathway,histone acetyltransferase p300 and activation of activating transcription factor 4(ATF4)of rat arterial vascular smooth muscle cells(VSMCs)cultured in vitro,and explore the possible mechanism.Methods Objective To establish the rat model of

  11. The leucine zipper domains of the transcription factors GCN4 and c-Jun have ribonuclease activity.

    Directory of Open Access Journals (Sweden)

    Yaroslav Nikolaev

    Full Text Available Basic-region leucine zipper (bZIP proteins are one of the largest transcription factor families that regulate a wide range of cellular functions. Owing to the stability of their coiled coil structure leucine zipper (LZ domains of bZIP factors are widely employed as dimerization motifs in protein engineering studies. In the course of one such study, the X-ray structure of the retro-version of the LZ moiety of yeast transcriptional activator GCN4 suggested that this retro-LZ may have ribonuclease activity. Here we show that not only the retro-LZ but also the authentic LZ of GCN4 has weak but distinct ribonuclease activity. The observed cleavage of RNA is unspecific, it is not suppressed by the ribonuclease A inhibitor RNasin and involves the breakage of 3',5'-phosphodiester bonds with formation of 2',3'-cyclic phosphates as the final products as demonstrated by HPLC/electrospray ionization mass spectrometry. Several mutants of the GCN4 leucine zipper are catalytically inactive, providing important negative controls and unequivocally associating the enzymatic activity with the peptide under study. The leucine zipper moiety of the human factor c-Jun as well as the entire c-Jun protein are also shown to catalyze degradation of RNA. The presented data, which was obtained in the test-tube experiments, adds GCN4 and c-Jun to the pool of proteins with multiple functions (also known as moonlighting proteins. If expressed in vivo, the endoribonuclease activity of these bZIP-containing factors may represent a direct coupling between transcription activation and controlled RNA turnover. As an additional result of this work, the retro-leucine zipper of GCN4 can be added to the list of functional retro-peptides.

  12. LIM homeobox transcription factor Lhx2 inhibits skeletal muscle differentiation in part via transcriptional activation of Msx1 and Msx2.

    Science.gov (United States)

    Kodaka, Yusaku; Tanaka, Kiyoko; Kitajima, Kenji; Tanegashima, Kosuke; Matsuda, Ryoichi; Hara, Takahiko

    2015-02-15

    LIM homeobox transcription factor Lhx2 is known to be an important regulator of neuronal development, homeostasis of hair follicle stem cells, and self-renewal of hematopoietic stem cells; however, its function in skeletal muscle development is poorly understood. In this study, we found that overexpression of Lhx2 completely inhibits the myotube-forming capacity of C2C12 cells and primary myoblasts. The muscle dedifferentiation factors Msx1 and Msx2 were strongly induced by the Lhx2 overexpression. Short interfering RNA-mediated knockdown of Lhx2 in the developing limb buds of mouse embryos resulted in a reduction in Msx1 and Msx2 mRNA levels, suggesting that they are downstream target genes of Lhx2. We found two Lhx2 consensus-binding sites in the -2097 to -1189 genomic region of Msx1 and two additional sites in the -536 to +73 genomic region of Msx2. These sequences were shown by luciferase reporter assay to be essential for Lhx2-mediated transcriptional activation. Moreover, electrophoretic mobility shift assays and chromatin immunoprecipitation assays showed that Lhx2 is present in chromatin DNA complexes bound to the enhancer regions of the Msx1 and Msx2 genes. These data demonstrate that Msx1 and Msx2 are direct transcriptional targets of Lhx2. In addition, overexpression of Lhx2 significantly enhanced the mRNA levels of bone morphogenetic protein 4 and transforming growth factor beta family genes. We propose that Lhx2 is involved in the early stage of skeletal muscle development by inducing multiple differentiation inhibitory factors.

  13. Intrinsic transcript cleavage activity of RNA polymerase.

    OpenAIRE

    Orlova, M; Newlands, J; Das, A; Goldfarb, A; Borukhov, S

    1995-01-01

    The GreA and GreB transcript cleavage factors of Escherichia coli suppress elongation arrest and may have a proofreading role in transcription. With the use of E. coli greA-greB- mutant, RNA polymerase is demonstrated to possess substantial intrinsic transcript cleavage activity. Mildly alkaline pH mimics the effect of the Gre proteins by inducing transcript cleavage in ternary complexes and antagonizing elongation arrest through a cleavage-and-restart reaction. Thus, transcript cleavage cons...

  14. Functional interplay of SP family members and nuclear factor Y is essential for transcriptional activation of the human Calreticulin gene.

    Science.gov (United States)

    Schardt, Julian A; Keller, Manuela; Seipel, Katja; Pabst, Thomas

    2015-09-01

    Calreticulin (CALR) is a highly conserved, multifunctional protein involved in a variety of cellular processes including the maintenance of intracellular calcium homeostasis, proper protein folding, differentiation and immunogenic cell death. More recently, a crucial role for CALR in the pathogenesis of certain hematologic malignancies was discovered: in clinical subgroups of acute myeloid leukemia, CALR overexpression mediates a block in differentiation, while somatic mutations have been found in the majority of patients with myeloproliferative neoplasms with nonmutated Janus kinase 2 gene (JAK2) or thrombopoietin receptor gene (MPL). However, the mechanisms underlying CALR promoter activation have insufficiently been investigated so far. By dissecting the core promoter region, we could identify a functional TATA-box relevant for transcriptional activation. In addition, we characterized two evolutionary highly conserved cis-regulatory modules (CRMs) within the proximal promoter each composed of one binding site for the transcription factors SP1 and SP3 as well as for the nuclear transcription factor Y (NFY) and we verified binding of these factors to their cognate sites in vitro and in vivo.

  15. Structure and regulatory function of plant transcription factors

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The expression of inducible genes in plants is regulated byspecific transcription factors at the transcriptional level. A typical transcription factor usually contains a DNA-binding domain, a transcription regulation domain, a dimerization site and a nuclear localization domain. These functional domains define the characteristic, localization and regulatory role of a transcription factor. Transcription factors recognize and bind to specific cis-acting elements or interact with other proteins, and then activate or repress the transcription of target genes by their functional domains. In recent years, elucidation on the structure and function of transcription factors has become an important subject in plant molecular biology.

  16. New Role for Kruppel-like Factor 14 as a Transcriptional Activator Involved in the Generation of Signaling Lipids*

    Science.gov (United States)

    de Assuncao, Thiago M.; Lomberk, Gwen; Cao, Sheng; Yaqoob, Usman; Mathison, Angela; Simonetto, Douglas A.; Huebert, Robert C.; Urrutia, Raul A.; Shah, Vijay H.

    2014-01-01

    Sphingosine kinase 1 (SK1) is an FGF-inducible gene responsible for generation of sphingosine-1-phosphate, a critical lipid signaling molecule implicated in diverse endothelial cell functions. In this study, we identified SK1 as a target of the canonical FGF2/FGF receptor 1 activation pathway in endothelial cells and sought to identify novel transcriptional pathways that mediate lipid signaling. Studies using the 1.9-kb SK1 promoter and deletion mutants revealed that basal and FGF2-stimulated promoter activity occurred through two GC-rich regions located within 633 bp of the transcription start site. Screening for GC-rich binding transcription factors that could activate this site demonstrated that KLF14, a gene implicated in obesity and the metabolic syndrome, binds to this region. Congruently, overexpression of KLF14 increased basal and FGF2-stimulated SK1 promoter activity by 3-fold, and this effect was abrogated after mutation of the GC-rich sites. In addition, KLF14 siRNA transfection decreased SK1 mRNA and protein levels by 3-fold. Congruently, SK1 mRNA and protein levels were decreased in livers from KLF14 knock-out mice. Combined, luciferase, gel shift, and chromatin immunoprecipitation assays showed that KLF14 couples to p300 to increase the levels of histone marks associated with transcriptional activation (H4K8ac and H3K14ac), while decreasing repressive marks (H3K9me3 and H3K27me3). Collectively, the results demonstrate a novel mechanism whereby SK1 lipid signaling is regulated by epigenetic modifications conferred by KLF14 and p300. Thus, this is the first description of the activity and mechanisms underlying the function of KLF14 as an activator protein and novel regulator of lipid signaling. PMID:24759103

  17. New role for Kruppel-like factor 14 as a transcriptional activator involved in the generation of signaling lipids.

    Science.gov (United States)

    de Assuncao, Thiago M; Lomberk, Gwen; Cao, Sheng; Yaqoob, Usman; Mathison, Angela; Simonetto, Douglas A; Huebert, Robert C; Urrutia, Raul A; Shah, Vijay H

    2014-05-30

    Sphingosine kinase 1 (SK1) is an FGF-inducible gene responsible for generation of sphingosine-1-phosphate, a critical lipid signaling molecule implicated in diverse endothelial cell functions. In this study, we identified SK1 as a target of the canonical FGF2/FGF receptor 1 activation pathway in endothelial cells and sought to identify novel transcriptional pathways that mediate lipid signaling. Studies using the 1.9-kb SK1 promoter and deletion mutants revealed that basal and FGF2-stimulated promoter activity occurred through two GC-rich regions located within 633 bp of the transcription start site. Screening for GC-rich binding transcription factors that could activate this site demonstrated that KLF14, a gene implicated in obesity and the metabolic syndrome, binds to this region. Congruently, overexpression of KLF14 increased basal and FGF2-stimulated SK1 promoter activity by 3-fold, and this effect was abrogated after mutation of the GC-rich sites. In addition, KLF14 siRNA transfection decreased SK1 mRNA and protein levels by 3-fold. Congruently, SK1 mRNA and protein levels were decreased in livers from KLF14 knock-out mice. Combined, luciferase, gel shift, and chromatin immunoprecipitation assays showed that KLF14 couples to p300 to increase the levels of histone marks associated with transcriptional activation (H4K8ac and H3K14ac), while decreasing repressive marks (H3K9me3 and H3K27me3). Collectively, the results demonstrate a novel mechanism whereby SK1 lipid signaling is regulated by epigenetic modifications conferred by KLF14 and p300. Thus, this is the first description of the activity and mechanisms underlying the function of KLF14 as an activator protein and novel regulator of lipid signaling. PMID:24759103

  18. A single, specific thymine mutation in the ComK-Binding site severely decreases binding and transcription activation by the competence transcription factor ComK of Bacillus subtilis

    NARCIS (Netherlands)

    Susanna, Kim A.; Mironczuk, Aleksandra M.; Smits, Wiep Klaas; Hamoen, Leendert W.; Kuipers, Oscar P.

    2007-01-01

    The competence transcription factor ComK plays a central role in competence development in Bacillus subtilis by activating the transcription of the K regulon. ComK-activated genes are characterized by the presence of a specific sequence to which ComK binds, a K-box, in their upstream DNA region. Eac

  19. Mechanism of transcription activation at the comG promoter by the competence transcription factor ComK of Bacillus subtilis

    NARCIS (Netherlands)

    Susanna, KA; van der Werff, AF; den Hengst, CD; Calles, B; Salas, M; Venema, G; Hamoen, LW; Kuipers, OP

    2004-01-01

    The development of genetic competence in Bacillus subtilis is regulated by a complex signal transduction cascade, which results in the synthesis of the competence transcription factor, encoded by comK. ComK is required for the transcription of the late competence genes that encode the DNA binding an

  20. pRB binds to and modulates the transrepressing activity of the E1A-regulated transcription factor p120E4F

    NARCIS (Netherlands)

    Fajas, L.; Paul, C.; Zugasti, O.; Cam, L. Le; Polanowska, J.; Fabbrizio, E.; Medema, R.H.; Vignais, M.-L.; Sardet, C.

    2000-01-01

    The retinoblastoma protein pRB is involved in the transcriptional control of genes essential for cell cycle progression and differentiation. pRB interacts with different transcription factors and thereby modulates their activity by sequestration, corepression, or activation. We report that pRB, but

  1. High throughput assays for analyzing transcription factors.

    Science.gov (United States)

    Li, Xianqiang; Jiang, Xin; Yaoi, Takuro

    2006-06-01

    Transcription factors are a group of proteins that modulate the expression of genes involved in many biological processes, such as cell growth and differentiation. Alterations in transcription factor function are associated with many human diseases, and therefore these proteins are attractive potential drug targets. A key issue in the development of such therapeutics is the generation of effective tools that can be used for high throughput discovery of the critical transcription factors involved in human diseases, and the measurement of their activities in a variety of disease or compound-treated samples. Here, a number of innovative arrays and 96-well format assays for profiling and measuring the activities of transcription factors will be discussed. PMID:16834538

  2. The role of factor inhibiting HIF (FIH-1 in inhibiting HIF-1 transcriptional activity in glioblastoma multiforme.

    Directory of Open Access Journals (Sweden)

    Enfeng Wang

    Full Text Available Glioblastoma multiforme (GBM accounts for about 38% of primary brain tumors in the United States. GBM is characterized by extensive angiogenesis induced by vascular growth factors and cytokines. The transcription of these growth factors and cytokines is regulated by the Hypoxia-Inducible-Factor-1(HIF-1, which is a key regulator mediating the cellular response to hypoxia. It is known that Factor Inhibiting HIF-1, or FIH-1, is also involved in the cellular response to hypoxia and has the capability to physically interact with HIF-1 and block its transcriptional activity under normoxic conditions. Delineation of the regulatory role of FIH-1 will help us to better understand the molecular mechanism responsible for tumor growth and progression and may lead to the design of new therapies targeting cellular pathways in response to hypoxia. Previous studies have shown that the chromosomal region of 10q24 containing the FIH-1 gene is often deleted in GBM, suggesting a role for the FIH-1 in GBM tumorigenesis and progression. In the current study, we found that FIH-1 is able to inhibit HIF-mediated transcription of GLUT1 and VEGF-A, even under hypoxic conditions in human glioblastoma cells. FIH-1 has been found to be more potent in inhibiting HIF function than PTEN. This observation points to the possibility that deletion of 10q23-24 and loss or decreased expression of FIH-1 gene may lead to a constitutive activation of HIF-1 activity, an alteration of HIF-1 targets such as GLUT-1 and VEGF-A, and may contribute to the survival of cancer cells in hypoxia and the development of hypervascularization observed in GBM. Therefore FIH-1 can be potential therapeutic target for the treatment of GBM patients with poor prognosis.

  3. Analysis of the DNA-binding and dimerization activities of Neurospora crassa transcription factor NUC-1.

    Science.gov (United States)

    Peleg, Y; Metzenberg, R L

    1994-12-01

    NUC-1, a positive regulatory protein of Neurospora crassa, controls the expression of several unlinked target genes involved in phosphorus acquisition. The carboxy-terminal end of the NUC-1 protein has sequence similarity to the helix-loop-helix family of transcription factors. Bacterially expressed and in vitro-synthesized proteins, which consist of the carboxy-terminal portion of NUC-1, bind specifically to upstream sequences of two of its target genes, pho2+ and pho-4+. These upstream sequences contain the core sequence, CACGTG, a target for many helix-loop-helix proteins. A large loop region (47 amino acids) separates the helix I and helix II domains. Mutations and deletion within the loop region did not interfere with the in vitro or in vivo functions of the protein. Immediately carboxy-proximal to the helix II domain, the NUC-1 protein contains an atypical zipper domain which is essential for function. This domain consists of a heptad repeat of alanine and methionine rather than leucine residues. Analysis of mutant NUC-1 proteins suggests that the helix II and the zipper domains are essential for the protein dimerization, whereas the basic and the helix I domains are involved in DNA binding. The helix I domain, even though likely to participate in dimer formation while NUC-1 is bound to DNA, is not essential for in vitro dimerization.

  4. Lipotoxic brain microvascular injury is mediated by activating transcription factor 3-dependent inflammatory and oxidative stress pathways.

    Science.gov (United States)

    Aung, Hnin Hnin; Altman, Robin; Nyunt, Tun; Kim, Jeffrey; Nuthikattu, Saivageethi; Budamagunta, Madhu; Voss, John C; Wilson, Dennis; Rutledge, John C; Villablanca, Amparo C

    2016-06-01

    Dysfunction of the cerebrovasculature plays an important role in vascular cognitive impairment (VCI). Lipotoxic injury of the systemic endothelium in response to hydrolyzed triglyceride-rich lipoproteins (TGRLs; TGRL lipolysis products) or a high-fat Western diet (WD) suggests similar mechanisms may be present in brain microvascular endothelium. We investigated the hypothesis that TGRL lipolysis products cause lipotoxic injury to brain microvascular endothelium by generating increased mitochondrial superoxide radical generation, upregulation of activating transcription factor 3 (ATF3)-dependent inflammatory pathways, and activation of cellular oxidative stress and apoptotic pathways. Human brain microvascular endothelial cells were treated with human TGRL lipolysis products that induced intracellular lipid droplet formation, mitochondrial superoxide generation, ATF3-dependent transcription of proinflammatory, stress response, and oxidative stress genes, as well as activation of proapoptotic cascades. Male apoE knockout mice were fed a high-fat/high-cholesterol WD for 2 months, and brain microvessels were isolated by laser capture microdissection. ATF3 gene transcription was elevated 8-fold in the hippocampus and cerebellar brain region of the WD-fed animals compared with chow-fed control animals. The microvascular injury phenotypes observed in vitro and in vivo were similar. ATF3 plays an important role in mediating brain microvascular responses to acute and chronic lipotoxic injury and may be an important preventative and therapeutic target for endothelial dysfunction in VCI. PMID:27087439

  5. The Pioneer Transcription Factor FoxA Maintains an Accessible Nucleosome Configuration at Enhancers for Tissue-Specific Gene Activation.

    Science.gov (United States)

    Iwafuchi-Doi, Makiko; Donahue, Greg; Kakumanu, Akshay; Watts, Jason A; Mahony, Shaun; Pugh, B Franklin; Lee, Dolim; Kaestner, Klaus H; Zaret, Kenneth S

    2016-04-01

    Nuclear DNA wraps around core histones to form nucleosomes, which restricts the binding of transcription factors to gene regulatory sequences. Pioneer transcription factors can bind DNA sites on nucleosomes and initiate gene regulatory events, often leading to the local opening of chromatin. However, the nucleosomal configuration of open chromatin and the basis for its regulation is unclear. We combined low and high levels of micrococcal nuclease (MNase) digestion along with core histone mapping to assess the nucleosomal configuration at enhancers and promoters in mouse liver. We find that MNase-accessible nucleosomes, bound by transcription factors, are retained more at liver-specific enhancers than at promoters and ubiquitous enhancers. The pioneer factor FoxA displaces linker histone H1, thereby keeping enhancer nucleosomes accessible in chromatin and allowing other liver-specific transcription factors to bind and stimulate transcription. Thus, nucleosomes are not exclusively repressive to gene regulation when they are retained with, and exposed by, pioneer factors.

  6. Signal transducers and activators of transcription 3 (STAT3) inhibits transcription of the inducible nitric oxide synthase gene by interacting with nuclear factor kappaB.

    Science.gov (United States)

    Yu, Zhiyuan; Zhang, Wenzheng; Kone, Bruce C

    2002-01-01

    Prolific generation of NO by inducible nitric oxide synthase (iNOS) can cause unintended injury to host cells during glomerulonephritis and other inflammatory diseases. While much is known about the mechanisms of iNOS induction, few transcriptional repressors have been found. We explored the role of signal transducers and activators of transcription 3 (STAT3) proteins in interleukin (IL)-1beta- and lipopolysaccharide (LPS)+interferon (IFN)-gamma-mediated iNOS induction in murine mesangial cells. Both stimuli induced rapid phosphorylation of STAT3 and sequence-specific STAT3 DNA-binding activity. Supershift assays with a STAT3 element probe demonstrated that nuclear factor kappaB (NF-kappaB) p65 and p50 complexed with STAT3 in the DNA-protein complex. The direct interaction of STAT3 and NF-kappaB p65 was verified in vivo by co-immunoprecipitation and in vitro by pull-down assays with glutathione S-transferase-NF-kappaB p65 fusion protein and in vitro -translated STAT3alpha. Overexpression of STAT3 dramatically inhibited IL-1beta- or LPS+IFN-gamma-mediated induction of iNOS promoter-luciferase constructs that contained the wild-type iNOS promoter or ones harbouring mutated STAT-binding elements. In tests of indirect inhibitory effects of STAT3, overexpression of STAT3 dramatically inhibited the activity of an NF-kappaB-dependent promoter devoid of STAT-binding elements without affecting NF-kappaB DNA-binding activity. Thus STAT3, via direct interactions with NF-kappaB p65, serves as a dominant-negative inhibitor of NF-kappaB activity to suppress indirectly cytokine induction of the iNOS promoter in mesangial cells. These results provide a new model for the termination of NO production by activated iNOS following exposure to pro-inflammatory stimuli. PMID:12057007

  7. Functional characterization of NAC55 transcription factor from oilseed rape (Brassica napus L.) as a novel transcriptional activator modulating reactive oxygen species accumulation and cell death.

    Science.gov (United States)

    Niu, Fangfang; Wang, Chen; Yan, Jingli; Guo, Xiaohua; Wu, Feifei; Yang, Bo; Deyholos, Michael K; Jiang, Yuan-Qing

    2016-09-01

    NAC transcription factors (TFs) are plant-specific and play important roles in development, responses to biotic and abiotic cues and hormone signaling. So far, only a few NAC genes have been reported to regulate cell death. In this study, we identified and characterized a NAC55 gene isolated from oilseed rape (Brassica napus L.). BnaNAC55 responds to multiple stresses, including cold, heat, abscisic acid (ABA), jasmonic acid (JA) and a necrotrophic fungal pathogen Sclerotinia sclerotiorum. BnaNAC55 has transactivation activity and is located in the nucleus. BnaNAC55 is able to form homodimers in planta. Unlike ANAC055, full-length BnaNAC55, but not either the N-terminal NAC domain or C-terminal regulatory domain, induces ROS accumulation and hypersensitive response (HR)-like cell death when expressed both in oilseed rape protoplasts and Nicotiana benthamiana. Furthermore, BnaNAC55 expression causes obvious nuclear DNA fragmentation. Moreover, quantitative reverse transcription PCR (qRT-PCR) analysis identified that the expression levels of multiple genes regulating ROS production and scavenging, defense response as well as senescence are significantly induced. Using a dual luciferase reporter assay, we further confirm that BnaNAC55 could activate the expression of a few ROS and defense-related gene expression. Taken together, our work has identified a novel NAC TF from oilseed rape that modulates ROS accumulation and cell death. PMID:27312204

  8. TFIIB-directed transcriptional activation by the orphan nuclear receptor hepatocyte nuclear factor 4.

    OpenAIRE

    Malik, S; Karathanasis, S K

    1996-01-01

    The orphan nuclear receptor hepatocyte nuclear factor 4 (HNF-4) is required for development and maintenance of the liver phenotype. HNF-4 activates several hepatocyte-specific genes, including the gene encoding apolipoprotein AI (apoAI), the major protein component of plasma high-density lipoprotein. The apoAI gene is activated by HNF-4 through a nuclear receptor binding element (site A) located in its liver-specific enhancer. To decipher the mechanism whereby HNF-4 enhances apoAI gene transc...

  9. Development of a fluorescent microsphere-based multiplexed high-throughput assay system for profiling of transcription factor activation.

    Science.gov (United States)

    Yaoi, Takuro; Jiang, Xin; Li, Xianqiang

    2006-06-01

    Transcription factors (TFs), which play crucial roles in the regulation of gene expression in the human genome, are highly regulated by a variety of mechanisms. A single extracellular stimulus can trigger multiple signaling pathways, and these in turn can activate multiple TFs to mediate the inducible expression of target genes. Alterations in the activities of TFs are often associated with human diseases, such as altered activating factor 1, estrogen receptor, and p53 function in cancer, nuclear factor kappaB in inflammatory diseases, and peroxisome proliferator-activated receptor gamma in obesity. A systematic assay for profiling the activation of TFs will aid in elucidating the mechanisms of TF activation, reveal altered TFs associated with human diseases, and aid in developing assays for drug discovery. Here, we developed a 24-plex fluorescent microsphere-based TF activation assay system with a 96-well plate format. The assay system enabled high-throughput profiling of the DNA binding activity of TFs in multiple samples with high sensitivity. PMID:16834534

  10. Synergy between estrogen receptor α activation functions AF1 and AF2 mediated by transcription intermediary factor TIF2

    OpenAIRE

    Benecke, Arndt; Chambon, Pierre; Gronemeyer, Hinrich

    2000-01-01

    The activation function AF2 in the ligand-binding domain of estrogen receptors ERα and ERβ signals through the recruitment of nuclear receptor coactivators. Recent evidence indicates that coactivators, such as the transcription intermediary factor TIF2, also bind to and transactivate the N-terminal AF1 function of the two ERs. We have generated TIF2 mutant proteins that are deficient in either AF1 or AF2 interaction and use these mutants to investigate the relative contribution of both AFs to...

  11. Host-cell positive transcription elongation factor b kinase activity is essential and limiting for HIV type 1 replication

    OpenAIRE

    Flores, Osvaldo; Lee, Gary; Kessler, Joseph; Miller, Michael; Schlief, William; Tomassini, Joanne; Hazuda, Daria

    1999-01-01

    HIV-1 gene expression and viral replication require the viral transactivator protein Tat. The RNA polymerase II transcriptional elongation factor P-TEFb (cyclin-dependent kinase 9/cyclin T) is a cellular protein kinase that has recently been shown to be a key component of the Tat-transactivation process. For this report, we studied the requirement for P-TEFb in HIV-1 infection, and we now show that P-TEFb is both essential and limiting for HIV-1 replication. Attenuation of P-TEFb kinase activ...

  12. A Taiwanese Propolis Derivative Induces Apoptosis through Inducing Endoplasmic Reticular Stress and Activating Transcription Factor-3 in Human Hepatoma Cells

    Directory of Open Access Journals (Sweden)

    Fat-Moon Suk

    2013-01-01

    Full Text Available Activating transcription factor-(ATF- 3, a stress-inducible transcription factor, is rapidly upregulated under various stress conditions and plays an important role in inducing cancer cell apoptosis. NBM-TP-007-GS-002 (GS-002 is a Taiwanese propolin G (PPG derivative. In this study, we examined the antitumor effects of GS-002 in human hepatoma Hep3B and HepG2 cells in vitro. First, we found that GS-002 significantly inhibited cell proliferation and induced cell apoptosis in dose-dependent manners. Several main apoptotic indicators were found in GS-002-treated cells, such as the cleaved forms of caspase-3, caspase-9, and poly(ADP-ribose polymerase (PARP. GS-002 also induced endoplasmic reticular (ER stress as evidenced by increases in ER stress-responsive proteins including glucose-regulated protein 78 (GRP78, growth arrest- and DNA damage-inducible gene 153 (GADD153, phosphorylated eukaryotic initiation factor 2α (eIF2α, phosphorylated protein endoplasmic-reticular-resident kinase (PERK, and ATF-3. The induction of ATF-3 expression was mediated by mitogen-activated protein kinase (MAPK signaling pathways in GS-002-treated cells. Furthermore, we found that GS-002 induced more cell apoptosis in ATF-3-overexpressing cells. These results suggest that the induction of apoptosis by the propolis derivative, GS-002, is partially mediated through ER stress and ATF-3-dependent pathways, and GS-002 has the potential for development as an antitumor drug.

  13. Human NCU-G1 can function as a transcription factor and as a nuclear receptor co-activator

    Directory of Open Access Journals (Sweden)

    Bakke Oddmund

    2007-11-01

    Full Text Available Abstract Background Novel, uncharacterised proteins represent a challenge in biochemistry and molecular biology. In this report we present an initial functional characterization of human kidney predominant protein, NCU-G1. Results NCU-G1 was found to be a highly conserved nuclear protein rich in proline with a molecular weight of approximately 44 kDa. It is localized on chromosome 1 and consists of 6 exons. Analysis of the amino acid sequence revealed no known transcription activation domains or DNA binding regions, however, four nuclear receptor boxes (LXXLL, and four SH3-interaction motives in addition to numerous potential phosphorylation sites were found. Two nuclear export signals were identified, but no nuclear localization signal. In man, NCU-G1 was found to be widely expressed at the mRNA level with especially high levels detected in prostate, liver and kidney. Electrophoretic mobility shift analysis showed specific binding of NCU-G1 to an oligonucleotide representing the footprint 1 element of the human cellular retinol-binding protein 1 gene promoter. NCU-G1 was found to activate transcription from this promoter and required presence of the footprint 1 element. In transiently transfected Drosophila Schneider S2 cells, we demonstrated that NCU-G1 functions as a co-activator for ligand-activated PPAR-alpha, resulting in an increased expression of a CAT reporter gene under control of the peroxisome proliferator-activated receptor-alpha responsive acyl-CoA oxidase promoter. Conclusion We propose that NCU-G1 is a dual-function protein capable of functioning as a transcription factor as well as a nuclear receptor co-activator.

  14. Menin and RNF20 recruitment is associated with dynamic histone modifications that regulate signal transducer and activator of transcription 1 (STAT1-activated transcription of the interferon regulatory factor 1 gene (IRF1

    Directory of Open Access Journals (Sweden)

    Buro Lauren J

    2010-09-01

    Full Text Available Abstract Background Signal transducer and activator of transcription (STAT activation of gene expression is both rapid and transient, and when properly executed it affects growth, differentiation, homeostasis and the immune response, but when dysregulated it contributes to human disease. Transcriptional activation is regulated by alterations to the chromatin template. However, the role of histone modification at gene loci that are activated for transcription in response to STAT signaling is poorly defined. Results Using chromatin immunoprecipitation, we profiled several histone modifications during STAT1 activation of the interferon regulatory factor 1 gene (IRF1. Methylated lysine histone proteins H3K4me2, H3K4me3, H3K79me3, H3K36me3 and monoubiquitinated histone ubH2B are dynamic and correlate with interferon (IFNγ induction of STAT1 activity. Chemical inhibition of H3K4 methylation downregulates IRF1 transcription and decreases RNA polymerase II (Pol II occupancy at the IRF1 promoter. MEN1, a component of a complex proteins associated with Set1 (COMPASS-like complex and the hBRE1 component, RNF20, are localized to IRF1 in the uninduced state and are further recruited when IRF1 is activated. RNAi-mediated depletion of RNF20 lowers both ubH2B and H3K4me3, but surprisingly, upregulates IFNγ induced IRF1 transcription. The dynamics of phosphorylation in the C-terminal domain (CTD of Pol II are disrupted during gene activation as well. Conclusions H2B monoubiquitination promotes H3K4 methylation, but the E3 ubiquitin ligase, RNF20, is repressive of inducible transcription at the IRF1 gene locus, suggesting that ubH2B can, directly or indirectly, affect Pol II CTD phosphorylation cycling to exert control on ongoing transcription.

  15. Transcriptional activation of cyclooxygenase-2 by tumor suppressor p53 requires nuclear factor-kappaB

    OpenAIRE

    Benoit, Valérie; Moraes, E.; Dar, N A; Taranchon, E.; Bours, Vincent; Hautefeuille, A.; Taniere, P; Chariot, Alain; Scoazec, J Y; Gallo, C. V. D.; Merville, Marie-Paule; Hainaut, Pierre

    2006-01-01

    Overexpression of cyclooxygenase-2 (Cox-2) is thought to exert antiapoptotic effects in cancer. Here we show that the tumor suppressor p53 upregulated Cox-2 in esophageal and colon cancer cell lines by inducing the binding of nuclear factor-kappaB (NF-kappaB) to its response element in the COX-2 promoter. Inhibition of NF-kappaB prevented p53 induction of Cox-2 expression. Cooperation between p53 and NF-kappaB was required for activation of COX-2 promoter in response to daunomycin, a DNA-dama...

  16. Endothelial cell activation by antiphospholipid antibodies is modulated by Krüppel-like transcription factors

    OpenAIRE

    Allen, Kristi L.; Hamik, Anne; Jain, Mukesh K.; McCrae, Keith R

    2011-01-01

    Antiphospholipid syndrome is characterized by thrombosis and/or recurrent pregnancy loss in the presence of antiphospholipid antibodies (APLAs). The majority of APLAs are directed against phospholipid-binding proteins, particularly β2-glycoprotein I (β2GPI). Anti-β2GPI antibodies activate endothelial cells in a β2GPI-dependent manner through a pathway that involves NF-κB. Krüppel-like factors (KLFs) play a critical role in regulating the endothelial response to inflammatory stimuli. We hypoth...

  17. Signals leading to the activation of NF-kappa B transcription factor are stronger in neonatal than adult T lymphocytes.

    Science.gov (United States)

    Kilpinen, S; Henttinen, T; Lahdenpohja, N; Hulkkonen, J; Hurme, M

    1996-07-01

    The molecular background of the defects in the immune reactivity of human neonates has not been fully elucidated. As the NF-kappa B transcription factor has a central role in the control of transcription of several genes involved in immune and inflammatory responses, the authors have analysed the activation of NF-kappa B in human umbilical cord T lymphocytes. The activity was tested by quantitating the nuclear proteins binding to an oligonucleotide containing the consensus kappa B binding sequence (electrophoretic mobility shift assay). The data obtained demonstrate that phorbol dibutyrate/calcium ionophore A23187 (PDBu/iono) combination induced a clearly higher nuclear translocation of NF-kappa B in neonatal than adult T cells. This higher NF-kappa B activity was restricted to the CD4+ T-cell subset. Analysis of the nuclear extracts with antibodies directed against the major components of NF-kappa B the p50 and RelA (p65) proteins, indicated that the composition of NF-kappa B was similar in neonatal and adult cells. These results suggest that neonatal T cells are exposed to oxidative stress-inducing signals during delivery and/or are inherently more sensitive to NF-kappa B activating signals than adult T cells. PMID:8693296

  18. SUMOylation of the Forkhead transcription factor FOXL2 promotes its stabilization/activation through transient recruitment to PML bodies.

    Directory of Open Access Journals (Sweden)

    Adrien Georges

    Full Text Available BACKGROUND: FOXL2 is a transcription factor essential for ovarian development and maintenance. It is mutated in the genetic condition called Blepharophimosis Ptosis Epicantus inversus Syndrome (BPES and in cases of isolated premature ovarian failure. We and others have previously shown that FOXL2 undergoes several post-translational modifications. METHODS AND PRINCIPAL FINDINGS: Here, using cells in culture, we show that interference with FOXL2 SUMOylation leads to a robust inhibition of its transactivation ability, which correlates with a decreased stability. Interestingly, FOXL2 SUMOylation promotes its transient recruitment to subnuclear structures that we demonstrate to be PML (Promyelocytic Leukemia Nuclear Bodies. Since PML bodies are known to be sites where post-translational modifications of nuclear factors take place, we used tandem mass spectrometry to identify new post-translational modifications of FOXL2. Specifically, we detected four phosphorylated, one sulfated and three acetylated sites. CONCLUSIONS: By analogy with other transcription factors, we propose that PML Nuclear Bodies might transiently recruit FOXL2 to the vicinity of locally concentrated enzymes that could be involved in the post-translational maturation of FOXL2. FOXL2 acetylation, sulfation, phosphorylation as well as other modifications yet to be discovered might alter the transactivation capacity of FOXL2 and/or its stability, thus modulating its global intracellular activity.

  19. Integration of G-Protein Coupled Receptor Signaling Pathways for Activation of a Transcription Factor (EGR-3)

    Institute of Scientific and Technical Information of China (English)

    Xuehai Tan; Pam Sanders; Jack Bolado Jr.; Mike Whitney

    2003-01-01

    We recently reported the use of a gene-trapping approach to isolate cell clones in which a reporter gene had integrated into genes modulated by T-cell activation. We have now tested a panel of clones from that report and identified the one that responds to a variety of G-protein coupled receptors (GPCR). The βlactamase tagged EGR-3 Jurkat cell was used to dissect specific GPCR signaling in vivo. Three GPCRs were studied, including the chemokine receptor CXCR4 (Gicoupled) that was endogenously expressed, the platelet activation factor (PAF) receptor (Gq-coupled), andβ2 adrenergic receptor (Gs-coupled) that was both stably transfected. Agonists for each receptor activated transcription of theβ-lactamase tagged EGR-3 gene. Induction of EGR-3 through CXCR4 was blocked by pertussis toxin and PD58059, a specific inhibitor of MEK (MAPK/ERK kinase). Neither of these inhibitors blocked isoproterenol or PAF-mediated activation of EGR-3. Conversely, β2- and PAF-mediated EGR-3 activation was blocked by the p38, specific inhibitor SB580. In addition, bothβ2- and PAF-mediated EGR-3 activation could be synergistically activated by CXCR4 activation. This combined result indicates that EGR-3 can be activated through distinct signal transduction pathways by different GPCRs and that signals can be integrated and amplified to efficiently tune the level of activation.

  20. A novel dual kinase function of the RET proto-oncogene negatively regulates activating transcription factor 4-mediated apoptosis.

    Science.gov (United States)

    Bagheri-Yarmand, Rozita; Sinha, Krishna M; Gururaj, Anupama E; Ahmed, Zamal; Rizvi, Yasmeen Q; Huang, Su-Chen; Ladbury, John E; Bogler, Oliver; Williams, Michelle D; Cote, Gilbert J; Gagel, Robert F

    2015-05-01

    The RET proto-oncogene, a tyrosine kinase receptor, is widely known for its essential role in cell survival. Germ line missense mutations, which give rise to constitutively active oncogenic RET, were found to cause multiple endocrine neoplasia type 2, a dominant inherited cancer syndrome that affects neuroendocrine organs. However, the mechanisms by which RET promotes cell survival and prevents cell death remain elusive. We demonstrate that in addition to cytoplasmic localization, RET is localized in the nucleus and functions as a tyrosine-threonine dual specificity kinase. Knockdown of RET by shRNA in medullary thyroid cancer-derived cells stimulated expression of activating transcription factor 4 (ATF4), a master transcription factor for stress-induced apoptosis, through activation of its target proapoptotic genes NOXA and PUMA. RET knockdown also increased sensitivity to cisplatin-induced apoptosis. We observed that RET physically interacted with and phosphorylated ATF4 at tyrosine and threonine residues. Indeed, RET kinase activity was required to inhibit the ATF4-dependent activation of the NOXA gene because the site-specific substitution mutations that block threonine phosphorylation increased ATF4 stability and activated its targets NOXA and PUMA. Moreover, chromatin immunoprecipitation assays revealed that ATF4 occupancy increased at the NOXA promoter in TT cells treated with tyrosine kinase inhibitors or the ATF4 inducer eeyarestatin as well as in RET-depleted TT cells. Together these findings reveal RET as a novel dual kinase with nuclear localization and provide mechanisms by which RET represses the proapoptotic genes through direct interaction with and phosphorylation-dependent inactivation of ATF4 during the pathogenesis of medullary thyroid cancer.

  1. Transcription Factors in Xylem Development. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sederoff, Ronald; Whetten, Ross; O' Malley, David; Campbell, Malcolm

    1999-07-01

    Answers to the following questions are answered in this report. do the two pine Byb proteins previously identified as candidate transcription factors bind to DNA and activate transcription? In what cell types are tehse Myb proteins expressed? Are these proteins localized to the nucleus? Do other proteins in pine xylem interact with these Myb proteins? Does altered expression of these genes have an impact on xylogenesis, specifically the expression of monolignol biosynthetic genes?

  2. Transcriptional activation of cyclooxygenase-2 by tumor suppressor p53 requires nuclear factor-kappaB.

    Science.gov (United States)

    Benoit, V; de Moraes, E; Dar, N A; Taranchon, E; Bours, V; Hautefeuille, A; Tanière, P; Chariot, A; Scoazec, J-Y; de Moura Gallo, C V; Merville, M-P; Hainaut, P

    2006-09-21

    Overexpression of cyclooxygenase-2 (Cox-2) is thought to exert antiapoptotic effects in cancer. Here we show that the tumor suppressor p53 upregulated Cox-2 in esophageal and colon cancer cell lines by inducing the binding of nuclear factor-kappaB (NF-kappaB) to its response element in the COX-2 promoter. Inhibition of NF-kappaB prevented p53 induction of Cox-2 expression. Cooperation between p53 and NF-kappaB was required for activation of COX-2 promoter in response to daunomycin, a DNA-damaging agent. Pharmacological inhibition of Cox-2 enhanced apoptosis in response to daunomycin, in particular in cells containing active p53. In esophageal cancer, there was a correlation between Cox-2 expression and wild-type TP53 in Barrett's esophagus (BE) and in adenocarcinoma, but not in squamous cell carcinoma (P<0.01). These results suggest that p53 and NF-kappaB cooperate in upregulating Cox-2 expression, promoting cell survival in inflammatory precursor lesions such as BE. PMID:16682957

  3. Common and distinct DNA-binding and regulatory activities of the BEN-solo transcription factor family.

    Science.gov (United States)

    Dai, Qi; Ren, Aiming; Westholm, Jakub O; Duan, Hong; Patel, Dinshaw J; Lai, Eric C

    2015-01-01

    Recently, the BEN (BANP, E5R, and NAC1) domain was recognized as a new class of conserved DNA-binding domain. The fly genome encodes three proteins that bear only a single BEN domain ("BEN-solo" factors); namely, Insensitive (Insv), Bsg25A (Elba1), and CG9883 (Elba2). Insv homodimers preferentially bind CCAATTGG palindromes throughout the genome to mediate transcriptional repression, whereas Bsg25A and Elba2 heterotrimerize with their obligate adaptor, Elba3 (i.e., the ELBA complex), to recognize a CCAATAAG motif in the Fab-7 insulator. While these data suggest distinct DNA-binding properties of BEN-solo proteins, we performed reporter assays that indicate that both Bsg25A and Elba2 can individually recognize Insv consensus sites efficiently. We confirmed this by solving the structure of Bsg25A complexed to the Insv site, which showed that key aspects of the BEN:DNA recognition strategy are similar between these proteins. We next show that both Insv and ELBA proteins are competent to mediate transcriptional repression via Insv consensus sequences but that the ELBA complex appears to be selective for the ELBA site. Reciprocally, genome-wide analysis reveals that Insv exhibits significant cobinding to class I insulator elements, indicating that it may also contribute to insulator function. Indeed, we observed abundant Insv binding within the Hox complexes with substantial overlaps with class I insulators, many of which bear Insv consensus sites. Moreover, Insv coimmunoprecipitates with the class I insulator factor CP190. Finally, we observed that Insv harbors exclusive activity among fly BEN-solo factors with respect to regulation of Notch-mediated cell fate choices in the peripheral nervous system. This in vivo activity is recapitulated by BEND6, a mammalian BEN-solo factor that conserves the Notch corepressor function of Insv but not its capacity to bind Insv consensus sites. Altogether, our data define an array of common and distinct biochemical and functional

  4. Diphenylarsinic Acid Induced Activation of Cultured Rat Cerebellar Astrocytes: Phosphorylation of Mitogen-Activated Protein Kinases, Upregulation of Transcription Factors, and Release of Brain-Active Cytokines.

    Science.gov (United States)

    Negishi, Takayuki; Matsumoto, Mami; Kojima, Mikiya; Asai, Ryota; Kanehira, Tomoko; Sakaguchi, Fumika; Takahata, Kazuaki; Arakaki, Rina; Aoyama, Yohei; Yoshida, Hikari; Yoshida, Kenji; Yukawa, Kazunori; Tashiro, Tomoko; Hirano, Seishiro

    2016-03-01

    Diphenylarsinic acid (DPAA) was detected as the primary compound responsible for the arsenic poisoning that occurred in Kamisu, Ibaraki, Japan, where people using water from a well that was contaminated with a high level of arsenic developed neurological (mostly cerebellar) symptoms and dysregulation of regional cerebral blood flow. To understand the underlying molecular mechanism of DPAA-induced cerebellar symptoms, we focused on astrocytes, which have a brain-protective function. Incubation with 10 µM DPAA for 96 h promoted cell proliferation, increased the expression of antioxidative stress proteins (heme oxygenase-1 and heat shock protein 70), and induced the release of cytokines (MCP-1, adrenomedullin, FGF2, CXCL1, and IL-6). Furthermore, DPAA overpoweringly increased the phosphorylation of three major mitogen-activated protein kinases (MAPKs) (ERK1/2, p38MAPK, and SAPK/JNK), which indicated MAPK activation, and subsequently induced expression and/or phosphorylation of transcription factors (Nrf2, CREB, c-Jun, and c-Fos) in cultured rat cerebellar astrocytes. Structure-activity relationship analyses of DPAA and other related pentavalent organic arsenicals revealed that DPAA at 10 µM activated astrocytes most effective among organic arsenicals tested at the same dose. These results suggest that in a cerebellum exposed to DPAA, abnormal activation of the MAPK-transcription factor pathway and irregular secretion of these neuroactive, glioactive, and/or vasoactive cytokines in astrocytes can be the direct/indirect cause of functional abnormalities in surrounding neurons, glial cells, and vascular cells: This in turn might lead to the onset of cerebellar symptoms and disruption of cerebral blood flow.

  5. Diphenylarsinic Acid Induced Activation of Cultured Rat Cerebellar Astrocytes: Phosphorylation of Mitogen-Activated Protein Kinases, Upregulation of Transcription Factors, and Release of Brain-Active Cytokines.

    Science.gov (United States)

    Negishi, Takayuki; Matsumoto, Mami; Kojima, Mikiya; Asai, Ryota; Kanehira, Tomoko; Sakaguchi, Fumika; Takahata, Kazuaki; Arakaki, Rina; Aoyama, Yohei; Yoshida, Hikari; Yoshida, Kenji; Yukawa, Kazunori; Tashiro, Tomoko; Hirano, Seishiro

    2016-03-01

    Diphenylarsinic acid (DPAA) was detected as the primary compound responsible for the arsenic poisoning that occurred in Kamisu, Ibaraki, Japan, where people using water from a well that was contaminated with a high level of arsenic developed neurological (mostly cerebellar) symptoms and dysregulation of regional cerebral blood flow. To understand the underlying molecular mechanism of DPAA-induced cerebellar symptoms, we focused on astrocytes, which have a brain-protective function. Incubation with 10 µM DPAA for 96 h promoted cell proliferation, increased the expression of antioxidative stress proteins (heme oxygenase-1 and heat shock protein 70), and induced the release of cytokines (MCP-1, adrenomedullin, FGF2, CXCL1, and IL-6). Furthermore, DPAA overpoweringly increased the phosphorylation of three major mitogen-activated protein kinases (MAPKs) (ERK1/2, p38MAPK, and SAPK/JNK), which indicated MAPK activation, and subsequently induced expression and/or phosphorylation of transcription factors (Nrf2, CREB, c-Jun, and c-Fos) in cultured rat cerebellar astrocytes. Structure-activity relationship analyses of DPAA and other related pentavalent organic arsenicals revealed that DPAA at 10 µM activated astrocytes most effective among organic arsenicals tested at the same dose. These results suggest that in a cerebellum exposed to DPAA, abnormal activation of the MAPK-transcription factor pathway and irregular secretion of these neuroactive, glioactive, and/or vasoactive cytokines in astrocytes can be the direct/indirect cause of functional abnormalities in surrounding neurons, glial cells, and vascular cells: This in turn might lead to the onset of cerebellar symptoms and disruption of cerebral blood flow. PMID:26645585

  6. RNA helicase HEL-1 promotes longevity by specifically activating DAF-16/FOXO transcription factor signaling in Caenorhabditis elegans.

    Science.gov (United States)

    Seo, Mihwa; Seo, Keunhee; Hwang, Wooseon; Koo, Hee Jung; Hahm, Jeong-Hoon; Yang, Jae-Seong; Han, Seong Kyu; Hwang, Daehee; Kim, Sanguk; Jang, Sung Key; Lee, Yoontae; Nam, Hong Gil; Lee, Seung-Jae V

    2015-08-01

    The homeostatic maintenance of the genomic DNA is crucial for regulating aging processes. However, the role of RNA homeostasis in aging processes remains unknown. RNA helicases are a large family of enzymes that regulate the biogenesis and homeostasis of RNA. However, the functional significance of RNA helicases in aging has not been explored. Here, we report that a large fraction of RNA helicases regulate the lifespan of Caenorhabditis elegans. In particular, we show that a DEAD-box RNA helicase, helicase 1 (HEL-1), promotes longevity by specifically activating the DAF-16/forkhead box O (FOXO) transcription factor signaling pathway. We find that HEL-1 is required for the longevity conferred by reduced insulin/insulin-like growth factor 1 (IGF-1) signaling (IIS) and is sufficient for extending lifespan. We further show that the expression of HEL-1 in the intestine and neurons contributes to longevity. HEL-1 enhances the induction of a large fraction of DAF-16 target genes. Thus, the RNA helicase HEL-1 appears to promote longevity in response to decreased IIS as a transcription coregulator of DAF-16. Because HEL-1 and IIS are evolutionarily well conserved, a similar mechanism for longevity regulation via an RNA helicase-dependent regulation of FOXO signaling may operate in mammals, including humans.

  7. NAC transcription factors in senescence

    DEFF Research Database (Denmark)

    Podzimska-Sroka, Dagmara; O'Shea, Charlotte; Gregersen, Per L.;

    2015-01-01

    Within the last decade, NAC transcription factors have been shown to play essential roles in senescence, which is the focus of this review. Transcriptome analyses associate approximately one third of Arabidopsis NAC genes and many crop NAC genes with senescence, thereby implicating NAC genes...... as important regulators of the senescence process. The consensus DNA binding site of the NAC domain is used to predict NAC target genes, and protein interaction sites can be predicted for the intrinsically disordered transcription regulatory domains of NAC proteins. The molecular characteristics...

  8. Increased accumulation of hypoxia-inducible factor-1α with reduced transcriptional activity mediates the antitumor effect of triptolide

    Directory of Open Access Journals (Sweden)

    Li Zheng

    2010-10-01

    Full Text Available Abstract Background Hypoxia-inducible factor-1α (HIF-1α, a critical transcription factor to reduced O2 availability, has been demonstrated to be extensively involved in tumor survival, aggressive progression, drug resistance and angiogenesis. Thus it has been considered as a potential anticancer target. Triptolide is the main principle responsible for the biological activities of the Traditional Chinese Medicine tripterygium wilfordii Hook F. Triptolide possesses great chemotherapy potential for cancer with its broad-spectrum anticancer, antiangiogenesis, and drug-resistance circumvention activities. Numerous biological molecules inhibited by triptolide have been viewed as its possible targets. However, the anticancer action mechanisms of triptolide remains to be further investigated. Here we used human ovarian SKOV-3 cancer cells as a model to probe the effect of triptolide on HIF-1α. Results Triptolide was observed to inhibit the proliferation of SKOV-3 cells, and meanwhile, to enhance the accumulation of HIF-1α protein in SKOV-3, A549 and DU145 cells under different conditions. Triptolide did not change the kinetics or nuclear localization of HIF-1α protein or the 26 S proteasome activity in SKOV-3 cells. However, triptolide was found to increase the levels of HIF-1α mRNA. Unexpectedly, the HIF-1α protein induced by triptolide appeared to lose its transcriptional activity, as evidenced by the decreased mRNA levels of its target genes including VEGF, BNIP3 and CAIX. The results were further strengthened by the lowered secretion of VEGF protein, the reduced sprout outgrowth from the rat aorta rings and the inhibitory expression of the hypoxia responsive element-driven luciferase reporter gene. Moreover, the silencing of HIF-1α partially prevented the cytotoxicity and apoptosis triggered by triptolide. Conclusions The potent induction of HIF-1α protein involved in its cytotoxicity, together with the suppression of HIF-1 transcriptional

  9. Endoplasmic Reticulum Stress-Induced Activation of Activating Transcription Factor 6 Decreases Insulin Gene Expression via Up-Regulation of Orphan Nuclear Receptor Small Heterodimer Partner

    OpenAIRE

    Seo, Hye-Young; Kim, Yong Deuk; Lee, Kyeong-Min; Min, Ae-Kyung; Kim, Mi-Kyung; Kim, Hye-Soon; Won, Kyu-Chang; Park, Joong-Yeol; Lee, Ki-Up; Choi, Hueng-Sik; Park, Keun-Gyu; Lee, In-Kyu

    2008-01-01

    The highly developed endoplasmic reticulum (ER) structure of pancreatic β-cells is a key factor in β-cell function. Here we examined whether ER stress-induced activation of activating transcription factor (ATF)-6 impairs insulin gene expression via up-regulation of the orphan nuclear receptor small heterodimer partner (SHP; NR0B2), which has been shown to play a role in β-cell dysfunction. We examined whether ER stress decreases insulin gene expression, and this process is mediated by ATF6. A...

  10. Activation of the Long Terminal Repeat of Human Endogenous Retrovirus K by Melanoma-Specific Transcription Factor MITF-M

    Directory of Open Access Journals (Sweden)

    Iyoko Katoh

    2011-11-01

    Full Text Available The human and Old World primate genomes possess conserved endogenous retrovirus sequences that have been implicated in evolution, reproduction, and carcinogenesis. Human endogenous retrovirus (HERV-K with 5′LTR-gag-pro-pol-env-rec/np9-3′LTR sequences represents the newest retrovirus family that integrated into the human genome 1 to 5 million years ago. Although a high-level expression of HERV-K in melanomas, breast cancers, and terato-carcinomas has been demonstrated, the mechanism of the lineage-specific activation of the long terminal repeat (LTR remains obscure. We studied chromosomal HERV-K expression in MeWo melanoma cells in comparison with the basal expression in human embryonic kidney 293 (HEK293 cells. Cloned LTR of HERV-K (HML-2.HOM was also characterized by mutation and transactivation experiments. We detected multiple transcriptional initiator (Inr sites in the LTR by rapid amplification of complementary DNA ends (5′ RACE. HEK293 and MeWo showed different Inr usage. The most potent Inr was associated with a TATA box and three binding motifs of microphthalmia-associated transcription factor (MITF. Both chromosomal HERV-K expression and the cloned LTR function were strongly activated in HEK293 by transfection with MITF-M, a melanocyte/melanoma–specific isoform of MITF. Coexpression of MITF and the HERV-K core antigen was detected in retinal pigmented epithelium by an immunofluorescence analysis. Although malignant melanoma lines MeWo, G361, and SK-MEL-28 showed enhanced HERV-K transcription compared with normal melanocytes, the level of MITF-M messenger RNA persisted from normal to transformed melanocytes. Thus, MITF-M may be a prerequisite for the pigmented cell lineage–specific function of HERV-K LTR, leading to the high-level expression in malignant melanomas.

  11. Transcription factor CTCF and mammalian genome organization

    Directory of Open Access Journals (Sweden)

    Kotova E. S.

    2014-07-01

    Full Text Available The CTCF transcription factor is thought to be one of the main participants in various gene regulatory networks including transcription activation and repression, formation of independently functioning chromatin domains, regulation of imprinting etc. Sequencing of human and other genomes opened up a possibility to ascertain the genomic distribution of CTCF binding sites and to identify CTCF-dependent cis-regulatory elements, including insulators. In the review, we summarized recent data on CTCF functioning within a framework of the chromatin loop domain hypothesis of large-scale regulation of the genome activity. Its fundamental properties allow CTCF to serve as a transcription factor, an insulator protein and a dispersed genome-wide demarcation tool able to recruit various factors that emerge in response to diverse external and internal signals, and thus to exert its signal-specific function(s.

  12. Dopamine receptor regulating factor, DRRF: A zinc finger transcription factor

    OpenAIRE

    Hwang, Cheol Kyu; D'Souza, Ursula M.; Eisch, Amelia J.; Yajima, Shunsuke; Lammers, Claas-Hinrich; Yang, Young; Lee, Sang-Hyeon; Kim, Yong-Man; Nestler, Eric J.; Mouradian, M. Maral

    2001-01-01

    Dopamine receptor genes are under complex transcription control, determining their unique regional distribution in the brain. We describe here a zinc finger type transcription factor, designated dopamine receptor regulating factor (DRRF), which binds to GC and GT boxes in the D1A and D2 dopamine receptor promoters and effectively displaces Sp1 and Sp3 from these sequences. Consequently, DRRF can modulate the activity of these dopamine receptor promoters. Highest DRRF mRNA levels are found in ...

  13. Unbiased identification of signal-activated transcription factors by barcoded synthetic tandem repeat promoter screening (BC-STAR-PROM).

    Science.gov (United States)

    Gosselin, Pauline; Rando, Gianpaolo; Fleury-Olela, Fabienne; Schibler, Ueli

    2016-08-15

    The discovery of transcription factors (TFs) controlling pathways in health and disease is of paramount interest. We designed a widely applicable method, dubbed barcorded synthetic tandem repeat promoter screening (BC-STAR-PROM), to identify signal-activated TFs without any a priori knowledge about their properties. The BC-STAR-PROM library consists of ∼3000 luciferase expression vectors, each harboring a promoter (composed of six tandem repeats of synthetic random DNA) and an associated barcode of 20 base pairs (bp) within the 3' untranslated mRNA region. Together, the promoter sequences encompass >400,000 bp of random DNA, a sequence complexity sufficient to capture most TFs. Cells transfected with the library are exposed to a signal, and the mRNAs that it encodes are counted by next-generation sequencing of the barcodes. This allows the simultaneous activity tracking of each of the ∼3000 synthetic promoters in a single experiment. Here we establish proof of concept for BC-STAR-PROM by applying it to the identification of TFs induced by drugs affecting actin and tubulin cytoskeleton dynamics. BC-STAR-PROM revealed that serum response factor (SRF) is the only immediate early TF induced by both actin polymerization and microtubule depolymerization. Such changes in cytoskeleton dynamics are known to occur during the cell division cycle, and real-time bioluminescence microscopy indeed revealed cell-autonomous SRF-myocardin-related TF (MRTF) activity bouts in proliferating cells.

  14. Unbiased identification of signal-activated transcription factors by barcoded synthetic tandem repeat promoter screening (BC-STAR-PROM).

    Science.gov (United States)

    Gosselin, Pauline; Rando, Gianpaolo; Fleury-Olela, Fabienne; Schibler, Ueli

    2016-08-15

    The discovery of transcription factors (TFs) controlling pathways in health and disease is of paramount interest. We designed a widely applicable method, dubbed barcorded synthetic tandem repeat promoter screening (BC-STAR-PROM), to identify signal-activated TFs without any a priori knowledge about their properties. The BC-STAR-PROM library consists of ∼3000 luciferase expression vectors, each harboring a promoter (composed of six tandem repeats of synthetic random DNA) and an associated barcode of 20 base pairs (bp) within the 3' untranslated mRNA region. Together, the promoter sequences encompass >400,000 bp of random DNA, a sequence complexity sufficient to capture most TFs. Cells transfected with the library are exposed to a signal, and the mRNAs that it encodes are counted by next-generation sequencing of the barcodes. This allows the simultaneous activity tracking of each of the ∼3000 synthetic promoters in a single experiment. Here we establish proof of concept for BC-STAR-PROM by applying it to the identification of TFs induced by drugs affecting actin and tubulin cytoskeleton dynamics. BC-STAR-PROM revealed that serum response factor (SRF) is the only immediate early TF induced by both actin polymerization and microtubule depolymerization. Such changes in cytoskeleton dynamics are known to occur during the cell division cycle, and real-time bioluminescence microscopy indeed revealed cell-autonomous SRF-myocardin-related TF (MRTF) activity bouts in proliferating cells. PMID:27601530

  15. Transcription Factor ZBED6 Mediates IGF2 Gene Expression by Regulating Promoter Activity and DNA Methylation in Myoblasts

    Science.gov (United States)

    Huang, Yong-Zhen; Zhang, Liang-Zhi; Lai, Xin-Sheng; Li, Ming-Xun; Sun, Yu-Jia; Li, Cong-Jun; Lan, Xian-Yong; Lei, Chu-Zhao; Zhang, Chun-Lei; Zhao, Xin; Chen, Hong

    2014-04-01

    Zinc finger, BED-type containing 6 (ZBED6) is an important transcription factor in placental mammals, affecting development, cell proliferation and growth. In this study, we found that the expression of the ZBED6 and IGF2 were upregulated during C2C12 differentiation. The IGF2 expression levels were negatively associated with the methylation status in beef cattle (P assay for the IGF2 intron 3 and P3 promoter showed that the mutant-type 439 A-SNP-pGL3 in driving reporter gene transcription is significantly higher than that of the wild-type 439 G-SNP-pGL3 construct (P assay revealed that ZBED6 regulate IGF2 expression and promote myoblast differentiation. Furthermore, knockdown of ZBED6 led to IGF2 expression change in vitro. Taken together, these results suggest that ZBED6 inhibits IGF2 activity and expression via a G to A transition disrupts the interaction. Thus, we propose that ZBED6 plays a critical role in myogenic differentiation.

  16. Use of green fluorescent fusion protein to track activation of the transcription factor osterix during early osteoblast differentiation

    International Nuclear Information System (INIS)

    Osterix (Osx) is a transcription factor required for the differentiation of preosteoblasts into fully functioning osteoblasts. However, the pattern of Osx activation during preosteoblast differentiation and maturation has not been clearly defined. Our aim was to study Osx activation during these processes in osteoblasts differentiating from murine and human embryonic stem cells (ESC). To do this, we constructed an Osx-GFP fusion protein reporter system to track Osx translocation within the cells. The distribution of Osx-GFP at representative stages of differentiation was also investigated by screening primary osteoblasts, mesenchymal stem cells, synoviocytes, and pre-adipocytes. Our experiments revealed that Osx-GFP protein was detectable in the cytoplasm of cultured, differentiated ESC 4 days after plating of enzymatically dispersed embryoid bodies. Osterix-GFP protein became translocated into the nucleus on day 7 following transfer of differentiated ESC to osteogenic medium. After 14 days of differentiation, cells showing nuclear translocation of Osx-GFP formed rudimentary bone nodules that continued to increase in number over the following weeks (through day 21). We also found that Osx translocated into the nuclei of mesenchymal stem cells (C3H10T1/2) and pre-osteoblasts (MC3T3-E1) and showed partial activation in pre-adipocytes (MC3T3-L1). These data suggest that Osx activation occurs at a very early point in the differentiation of the mesenchymal-osteoblastic lineage

  17. Hepatitis C virus nonstructural protein-5A activates sterol regulatory element-binding protein-1c through transcription factor Sp1

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Zhonghua; Qiao, Ling; Zhou, Yan [Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E3 (Canada); Babiuk, Lorne A. [University of Alberta, Edmonton, Alberta (Canada); Liu, Qiang, E-mail: qiang.liu@usask.ca [Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E3 (Canada)

    2010-11-19

    Research highlights: {yields} A chimeric subgenomic HCV replicon expresses HCV-3a NS5A in an HCV-1b backbone. {yields} HCV-3a NS5A increases mature SREBP-1c protein level. {yields} HCV-3a NS5A activates SREBP-1c transcription. {yields} Domain II of HCV-3a NS5A is more effective in SREBP-1c promoter activation. {yields} Transcription factor Sp1 is required for SREBP-1c activation by HCV-3a NS5A. -- Abstract: Steatosis is an important clinical manifestation of hepatitis C virus (HCV) infection. The molecular mechanisms of HCV-associated steatosis are not well understood. Sterol regulatory element-binding protein-1c (SREBP-1c) is a key transcription factor which activates the transcription of lipogenic genes. Here we showed that the nuclear, mature SREBP-1c level increases in the nucleus of replicon cells expressing HCV-3a nonstructural protein-5A (NS5A). We further showed that HCV-3a NS5A up-regulates SREBP-1c transcription. Additional analysis showed that transcriptional factor Sp1 is involved in SREBP-1c activation by HCV-3a NS5A because inhibition of Sp1 activity by mithramycin A or a dominant-negative Sp1 construct abrogated SREBP-1c promoter activation by HCV-3a NS5A. In addition, chromatin immunoprecipitation (ChIP) assay demonstrated enhanced binding of Sp1 on the SREBP-1c promoter in HCV-3a NS5A replicon cells. These results showed that HCV-3a NS5A activates SREBP-1c transcription through Sp1. Taken together, our results suggest that HCV-3a NS5A is a contributing factor for steatosis caused by HCV-3a infection.

  18. Activation of nuclear transcription factor-kappaB in mouse brain induced by a simulated microgravity environment

    Science.gov (United States)

    Wise, Kimberly C.; Manna, Sunil K.; Yamauchi, Keiko; Ramesh, Vani; Wilson, Bobby L.; Thomas, Renard L.; Sarkar, Shubhashish; Kulkarni, Anil D.; Pellis, Neil R.; Ramesh, Govindarajan T.

    2005-01-01

    Microgravity induces inflammatory responses and modulates immune functions that may increase oxidative stress. Exposure to a microgravity environment induces adverse neurological effects; however, there is little research exploring the etiology of these effects resulting from exposure to such an environment. It is also known that spaceflight is associated with increase in oxidative stress; however, this phenomenon has not been reproduced in land-based simulated microgravity models. In this study, an attempt has been made to show the induction of reactive oxygen species (ROS) in mice brain, using ground-based microgravity simulator. Increased ROS was observed in brain stem and frontal cortex with concomitant decrease in glutathione, on exposing mice to simulated microgravity for 7 d. Oxidative stress-induced activation of nuclear factor-kappaB was observed in all the regions of the brain. Moreover, mitogen-activated protein kinase kinase was phosphorylated equally in all regions of the brain exposed to simulated microgravity. These results suggest that exposure of brain to simulated microgravity can induce expression of certain transcription factors, and these have been earlier argued to be oxidative stress dependent.

  19. Plakophilin-3 catenin associates with the ETV1/ER81 transcription factor to positively modulate gene activity.

    Directory of Open Access Journals (Sweden)

    William A Munoz

    Full Text Available Members of the plakophilin-catenin sub-family (Pkp-1, -2, and -3 facilitate the linkage of desmosome junctional components to each other (e.g. desmosomal cadherins to desmoplakin and the intermediate-filament cytoskeleton. Pkps also contribute to desmosomal stabilization and the trafficking of its components. The functions of Pkps outside of the desmosome are less well studied, despite evidence suggesting their roles in mRNA regulation, small-GTPase modulation (e.g. mid-body scission during cell division, and cell survival following DNA damage. Pkp-catenins are further believed to have roles in the nucleus given their nuclear localization in some contexts and the known nuclear roles of structurally related catenins, such as beta-catenin and p120-catenin. Further, Pkp-catenin activities in the nuclear compartment have become of increased interest with the identification of interactions between Pkp2-catenin and RNA Pol III and Pkp1 with single-stranded DNA. Consistent with earlier reports suggesting possible nuclear roles in development, we previously demonstrated prominent nuclear localization of Pkp3 in Xenopus naïve ectoderm ("animal cap" cells and recently resolved a similar localization in mouse embryonic stem cells. Here, we report the association and positive functional interaction of Pkp3 with a transcription factor, Ets variant gene 1 (ETV1, which has critical roles in neural development and prominent roles in human genetic disease. Our results are the first to report the interaction of a sequence-specific transcription factor with any Pkp. Using Xenopus laevis embryos and mammalian cells, we provide evidence for the Pkp3:ETV1 complex on both biochemical and functional levels.

  20. Polyphenol Compound as a Transcription Factor Inhibitor

    Directory of Open Access Journals (Sweden)

    Seyeon Park

    2015-10-01

    Full Text Available A target-based approach has been used to develop novel drugs in many therapeutic fields. In the final stage of intracellular signaling, transcription factor–DNA interactions are central to most biological processes and therefore represent a large and important class of targets for human therapeutics. Thus, we focused on the idea that the disruption of protein dimers and cognate DNA complexes could impair the transcriptional activation and cell transformation regulated by these proteins. Historically, natural products have been regarded as providing the primary leading compounds capable of modulating protein–protein or protein-DNA interactions. Although their mechanism of action is not fully defined, polyphenols including flavonoids were found to act mostly as site-directed small molecule inhibitors on signaling. There are many reports in the literature of screening initiatives suggesting improved drugs that can modulate the transcription factor interactions responsible for disease. In this review, we focus on polyphenol compound inhibitors against dimeric forms of transcription factor components of intracellular signaling pathways (for instance, c-jun/c-fos (Activator Protein-1; AP-1, c-myc/max, Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB and β-catenin/T cell factor (Tcf.

  1. Transcription factor network downstream of protease activated receptors (PARs modulating mouse bladder inflammation

    Directory of Open Access Journals (Sweden)

    Hurst Robert E

    2007-08-01

    Full Text Available Abstract Background All four PARs are present in the urinary bladder, and their expression is altered during inflammation. In order to search for therapeutic targets other than the receptors themselves, we set forth to determine TFs downstream of PAR activation in the C57BL/6 urinary bladders. Methods For this purpose, we used a protein/DNA combo array containing 345 different TF consensus sequences. Next, the TF selected was validated by EMSA and IHC. As mast cells seem to play a fundamental role in bladder inflammation, we determined whether c-kit receptor deficient (Kitw/Kitw-v mice have an abrogated response to PAR stimulation. Finally, TFEB antibody was used for CHIP/Q-PCR assay and revealed up-regulation of genes known to be downstream of TFEB. Results TFEB, a member of the MiTF family of basic helix-loop-helix leucine zipper, was the only TF commonly up-regulated by all PAR-APs. IHC results confirm a correlation between inflammation and TFEB expression in C57BL/6 mice. In contrast, Kitw/Kitw-v mice did not exhibit inflammation in response to PAR activation. EMSA results confirmed the increased TFEB binding activity in C57BL/6 but not in Kitw/Kitw-v mice. Conclusion This is the first report describing the increased expression of TFEB in bladder inflammation in response to PAR activation. As TFEB belongs to a family of TFs essential for mast cell survival, our findings suggest that this molecule may influence the participation of mast cells in PAR-mediated inflammation and that targeting TFEB/MiTF activity may be a novel approach for the treatment of bladder inflammatory disorders.

  2. Modulation of Transcriptional Activation and Coactivator Interaction by a Splicing Variation in the F Domain of Nuclear Receptor Hepatocyte Nuclear Factor 4α1

    OpenAIRE

    Sladek, Frances M.; Ruse, Michael D.; Nepomuceno, Luviminda; Huang, Shih-Ming; Stallcup, Michael R.

    1999-01-01

    Transcription factors, such as nuclear receptors, often exist in various forms that are generated by highly conserved splicing events. Whereas the functional significance of these splicing variants is often not known, it is known that nuclear receptors activate transcription through interaction with coactivators. The parameters, other than ligands, that might modulate those interactions, however, are not well characterized, nor is the role of splicing variants. In this study, transient transf...

  3. Activating transcription factor 6 poly morphisms and haplotypes ars associated with impaired glucose homeostasis ans type 2 diabetis in dutch Caucasians

    NARCIS (Netherlands)

    Meex, S.J.; Greevenbroek, van M.M.J.; Ayoubi, T.A.; Vlietinck, R.; Vliet-Ostaptchouk, J.V.; Hofker, M.H.; Vermeulen, V.; Schalkwijk, C.G.; Feskens, E.J.M.; Boer, J.M.A.; Stehouwer, C.D.A.; Kallen, van der C.J.H.; Bruin, de T.W.A.

    2007-01-01

    Context: Activating transcription factor 6 (ATF6) is critical for initiation and full activation of the unfolded protein response. An association between genetic variation in ATF6 and type 2 diabetes (DM2) was recently reported in Pima Indians. Objectives: To investigate the broader significance of

  4. The p38 MAP kinase inhibitor SB203580 enhances nuclear factor-kappa B transcriptional activity by a non-specific effect upon the ERK pathway

    NARCIS (Netherlands)

    Birkenkamp, KU; Tuyt, LML; Lummen, C; Wierenga, LTJ; Kruijer, W; Vellenga, E

    2000-01-01

    1 In the present study we investigated a possible role for the p38 mitogen-activated protein (MAP) kinase pathway in mediating nuclear factor-kappa B (NF-kappa B) transcriptional activity in the erythroleukaemic cell line TF-1. 2 TF-1 cells stimulated with the phosphatase inhibitor okadaic acid (OA)

  5. Activation of the glycoprotein hormone alpha-subunit promoter by a LIM-homeodomain transcription factor.

    OpenAIRE

    Roberson, M S; Schoderbek, W E; Tremml, G; Maurer, R A

    1994-01-01

    Recently, a pituitary-specific enhancer was identified within the 5' flanking region of the mouse glycoprotein hormone alpha-subunit gene. This enhancer is active in pituitary cells of the gonadotrope and thyrotrope lineages and has been designated the pituitary glycoprotein hormone basal element (PGBE). In the present studies, we sought to isolate and characterize proteins which interact with the PGBE. Mutagenesis experiments identified a 14-bp imperfect palindrome that is required for bindi...

  6. Mitotic Transcriptional Activation: Clearance of Actively Engaged Pol II via Transcriptional Elongation Control in Mitosis.

    Science.gov (United States)

    Liang, Kaiwei; Woodfin, Ashley R; Slaughter, Brian D; Unruh, Jay R; Box, Andrew C; Rickels, Ryan A; Gao, Xin; Haug, Jeffrey S; Jaspersen, Sue L; Shilatifard, Ali

    2015-11-01

    Although it is established that some general transcription factors are inactivated at mitosis, many details of mitotic transcription inhibition (MTI) and its underlying mechanisms are largely unknown. We have identified mitotic transcriptional activation (MTA) as a key regulatory step to control transcription in mitosis for genes with transcriptionally engaged RNA polymerase II (Pol II) to activate and transcribe until the end of the gene to clear Pol II from mitotic chromatin, followed by global impairment of transcription reinitiation through MTI. Global nascent RNA sequencing and RNA fluorescence in situ hybridization demonstrate the existence of transcriptionally engaged Pol II in early mitosis. Both genetic and chemical inhibition of P-TEFb in mitosis lead to delays in the progression of cell division. Together, our study reveals a mechanism for MTA and MTI whereby transcriptionally engaged Pol II can progress into productive elongation and finish transcription to allow proper cellular division.

  7. Protein Kinases and Transcription Factors Activation in Response to UV-Radiation of Skin: Implications for Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Laurence A. Marchat

    2011-12-01

    Full Text Available Solar ultraviolet (UV radiation is an important environmental factor that leads to immune suppression, inflammation, photoaging, and skin carcinogenesis. Here, we reviewed the specific signal transduction pathways and transcription factors involved in the cellular response to UV-irradiation. Increasing experimental data supporting a role for p38, MAPK, JNK, ERK1/2, and ATM kinases in the response network to UV exposure is discussed. We also reviewed the participation of NF-κB, AP-1, and NRF2 transcription factors in the control of gene expression after UV-irradiation. In addition, we discussed the promising chemotherapeutic intervention of transcription factors signaling by natural compounds. Finally, we focused on the review of data emerging from the use of DNA microarray technology to determine changes in global gene expression in keratinocytes and melanocytes in response to UV treatment. Efforts to obtain a comprehensive portrait of the transcriptional events regulating photodamage of intact human epidermis after UV exposure reveals the existence of novel factors participating in UV-induced cell death. Progress in understanding the multitude of mechanisms induced by UV-irradiation could lead to the potential use of protein kinases and novel proteins as specific targets for the prevention and control of skin cancer.

  8. Interaction of Restin with transcription factors

    Institute of Scientific and Technical Information of China (English)

    WU; Yousheng; LU; Fan; QI; Yinxin; WANG; Ruihua; ZHANG; Jia

    2005-01-01

    Restin, a member of melanoma-associated antigen superfamily gene, was first cloned from differentiated leukemia cell induced by all trans-retinoic acid, and was able to inhibit cell proliferation, but the molecular mechanism was not clear. Since Restin was localized in cell nucleus, and its homolog member, Necdin (neuronal growth suppressor factor), could interact with transcription factors p53 and E2F1, we proposed that Restin might also function as Necdin through interacting with some transcription factors. In this study, transcription factors p53, AP1,ATFs and E2Fs were cloned and used in the mammalian two-hybrid system to identify their interaction with Restin. The results showed that only ATF3 had a strong interaction with Restin. It is interesting to know that ATF3 was an important transcription factor for G1 cell cycle initiation in physiological stress response. It was possible that the inhibition of cell proliferation by Restin might be related with the inhibition of ATF3 activity.

  9. Arabidopsis IRE1 catalyses unconventional splicing of bZIP60 mRNA to produce the active transcription factor

    KAUST Repository

    Nagashima, Yukihiro

    2011-07-01

    IRE1 plays an essential role in the endoplasmic reticulum (ER) stress response in yeast and mammals. We found that a double mutant of Arabidopsis IRE1A and IRE1B (ire1a/ire1b) is more sensitive to the ER stress inducer tunicamycin than the wild-type. Transcriptome analysis revealed that genes whose induction was reduced in ire1a/ire1b largely overlapped those in the bzip60 mutant. We observed that the active form of bZIP60 protein detected in the wild-type was missing in ire1a/ire1b. We further demonstrated that bZIP60 mRNA is spliced by ER stress, removing 23 ribonucleotides and therefore causing a frameshift that replaces the C-terminal region of bZIP60 including the transmembrane domain (TMD) with a shorter region without a TMD. This splicing was detected in ire1a and ire1b single mutants, but not in the ire1a/ire1b double mutant. We conclude that IRE1A and IRE1B catalyse unconventional splicing of bZIP60 mRNA to produce the active transcription factor.

  10. Structural basis of transcription activation.

    Science.gov (United States)

    Feng, Yu; Zhang, Yu; Ebright, Richard H

    2016-06-10

    Class II transcription activators function by binding to a DNA site overlapping a core promoter and stimulating isomerization of an initial RNA polymerase (RNAP)-promoter closed complex into a catalytically competent RNAP-promoter open complex. Here, we report a 4.4 angstrom crystal structure of an intact bacterial class II transcription activation complex. The structure comprises Thermus thermophilus transcription activator protein TTHB099 (TAP) [homolog of Escherichia coli catabolite activator protein (CAP)], T. thermophilus RNAP σ(A) holoenzyme, a class II TAP-dependent promoter, and a ribotetranucleotide primer. The structure reveals the interactions between RNAP holoenzyme and DNA responsible for transcription initiation and reveals the interactions between TAP and RNAP holoenzyme responsible for transcription activation. The structure indicates that TAP stimulates isomerization through simple, adhesive, stabilizing protein-protein interactions with RNAP holoenzyme. PMID:27284196

  11. Rac1/p21-activated kinase pathway controls retinoblastoma protein phosphorylation and E2F transcription factor activation in B lymphocytes.

    Science.gov (United States)

    Zaldua, Natalia; Llavero, Francisco; Artaso, Alain; Gálvez, Patricia; Lacerda, Hadriano M; Parada, Luis A; Zugaza, José L

    2016-02-01

    Small GTPases of the Ras superfamily are capable of activating E2F-dependent transcription leading to cell proliferation, but the molecular mechanisms are poorly understood. In this study, using immortalized chicken DT40 B cell lines to investigate the role of the Vav/Rac signalling cascade on B cell proliferation, it is shown that the proliferative response triggered by B cell receptor activation is dramatically reduced in the absence of Vav3 expression. Analysis of this proliferative defect shows that in the absence of Vav3 expression, retinoblastoma protein (RB) phosphorylation and the subsequent E2F activation do not take place. By combining pharmacological and genetic approaches, phosphatidylinositol-3-kinase and phospholipase Cγ2 (PLCγ2) were identified as the key regulatory signalling molecules upstream of the Vav3/Rac pathway leading to RB phosphorylation and E2F transcription factor activation. Additionally, vav3(-/-) and plcγ2(-/-) DT40 B cells were not able to activate the RB-E2F complex wild-type phenotype when these genetically modified cells were transfected with constitutively active forms of RhoA or Cdc42. However, when these knockout cells were transfected with different constitutively active versions of PLCγ, Vav or Rac1, not only activation of the RB-E2F complex wild-type phenotype was recovered but also the cellular proliferation. Furthermore, by evaluating the effect of two known effector mutants of Rac1 (Rac1(Q61L/F37A) and Rac1(Q61L/Y40C) ), the RB-E2F complex activation dependency on p21-activated kinase (PAK) and protein kinase Cε (PKCε) activities was established, being independent of both actin cytoskeleton reorganization and Ras activity. These results suggest that PAK1 and PKCε may be potential therapeutic targets to stop uncontrolled B cell proliferation mediated by the Vav/Rac pathway.

  12. Elevated SP-1 transcription factor expression and activity drives basal and hypoxia-induced vascular endothelial growth factor (VEGF) expression in non-small cell lung cancer.

    Science.gov (United States)

    Deacon, Karl; Onion, David; Kumari, Rajendra; Watson, Susan A; Knox, Alan J

    2012-11-16

    VEGF plays a central role in angiogenesis in cancer. Non-small cell lung cancer (NSCLC) tumors have increased microvascular density, localized hypoxia, and high VEGF expression levels; however, there is a lack of understanding of how oncogenic and tumor microenvironment changes such as hypoxia lead to greater VEGF expression in lung and other cancers. We show that NSCLC cells secreted higher levels of VEGF than normal airway epithelial cells. Actinomycin D inhibited all NSCLC VEGF secretion, and VEGF minimal promoter-luciferase reporter constructs were constitutively active until the last 85 base pairs before the transcription start site containing three SP-1 transcription factor-binding sites; mutation of these VEGF promoter SP-1-binding sites eliminated VEGF promoter activity. Furthermore, dominant negative SP-1, mithramycin A, and SP-1 shRNA decreased VEGF promoter activity, whereas overexpression of SP-1 increased VEGF promoter activity. Chromatin immunoprecipitation assays demonstrated SP-1, p300, and PCA/F histone acetyltransferase binding and histone H4 hyperacetylation at the VEGF promoter in NSCLC cells. Cultured NSCLC cells expressed higher levels of SP-1 protein than normal airway epithelial cells, and double-fluorescence immunohistochemistry showed a strong correlation between SP-1 and VEGF in human NSCLC tumors. In addition, hypoxia-driven VEGF expression in NSCLC cells was SP-1-dependent, with hypoxia increasing SP-1 activity and binding to the VEGF promoter. These studies are the first to demonstrate that overexpression of SP-1 plays a central role in hypoxia-induced VEGF secretion. PMID:22992725

  13. Transgenic Mice with Cardiac-Specific Expression of Activating Transcription Factor 3, a Stress-Inducible Gene, Have Conduction Abnormalities and Contractile Dysfunction

    OpenAIRE

    Okamoto, Yoshichika; Chaves, Alysia; Chen, Jingchun; Kelley, Robert; Jones, Keith; Weed, Harrison G.; Gardner, Kevin L.; Gangi, Lisa; Yamaguchi, Mamoru; Klomkleaw, Wuthichai; Nakayama, Tomohiro; HAMLIN, Robert L.; Carnes, Cynthia; Altschuld, Ruth; Bauer, John

    2001-01-01

    Activating transcription factor 3 (ATF3) is a member of the CREB/ATF family of transcription factors. Previously, we demonstrated that the expression of the ATF3 gene is induced by many stress signals. In this report, we demonstrate that expression of ATF3 is induced by cardiac ischemia coupled with reperfusion (ischemia-reperfusion) in both cultured cells and an animal model. Transgenic mice expressing ATF3 under the control of the α-myosin heavy chain promoter have atrial enlargement, and a...

  14. Polymorphisms in SREBF1 and SREBF2, two antipsychotic-activated transcription factors controlling cellular lipogenesis, are associated with schizophrenia in German and Scandinavian samples

    DEFF Research Database (Denmark)

    Le Hellard, S; Mühleisen, T W; Djurovic, S;

    2010-01-01

    in glial cell lines that antipsychotic drugs induce the expression of genes involved in cholesterol and fatty acids biosynthesis through activation of the sterol regulatory element binding protein (SREBP) transcription factors, encoded by the sterol regulatory element binding transcription factor 1 (SREBF1...... collaboration of psychiatric etiology study, SCOPE) replicated the association for the five SREBF1 markers and for two markers in SREBF2. A combined analysis of all samples resulted in highly significant genotypic P-values of 9 x 10(-4) for SREBF1 (rs11868035, odd ration (OR)=1.26, 95% confidence interval (CI...

  15. In vivo identification of promoter elements and transcription factors mediating activation of hepatic HMG-CoA reductase by T3

    International Nuclear Information System (INIS)

    The promoter elements and transcription factors necessary for triiodothyronine (T3) induction of hepatic HMG-CoA reductase (HMGR) were investigated by transfecting rat livers with wild type and mutant HMGR promoter-luciferase constructs using in vivo electroporation. Mutations in the sterol response element (SRE), nuclear factor-y (NF-Y) site, and the newly identified upstream transcription factor-2 (USF-2) site essentially abolished the T3 response. Chromatin immunoprecipitation (ChIP) analysis demonstrated that T3 treatment caused a 4-fold increase in in vivo binding of USF-2 to the HMGR promoter. Co-transfection of the wild type HMGR promoter with siRNAs to USF-2, SREBP-2, or NF-Y nearly abolished the T3 induction, as measured by promoter activity. These data provide in vivo evidence for functional roles for USF-2, SREBP-2, and NF-Y in mediating the T3-induction of hepatic HMGR transcription.

  16. Transcription factor activity of estrogen receptor α activation upon nonylphenol or bisphenol A treatment enhances the in vitro proliferation, invasion, and migration of neuroblastoma cells

    Science.gov (United States)

    Ma, Hongda; Yao, Yao; Wang, Changli; Zhang, Liyu; Cheng, Long; Wang, Yiren; Wang, Tao; Liang, Erguang; Jia, Hui; Ye, Qinong; Hou, Mingxiao; Feng, Fan

    2016-01-01

    Many kinds of endocrine-disrupting chemicals (EDCs), for example, the environmental estrogens bisphenol A and nonylphenol, may regulate the activity of estrogen receptor α (ERα) and therefore induce potential disruption of normal endocrine function. However, the involvement of EDCs in human cancers, especially in endocrine-related cancer neuroblastoma regulation, is not very clear. In this work, results showed that upon bisphenol A or nonylphenol treatment, the transcription factor activity of ERα was significantly increased in neuroblastoma cell line SH-SY5Y. Bisphenol A and nonylphenol could enhance ERα activity via recruiting it to the target gene promoter. Furthermore, treatment of bisphenol A and nonylphenol enhanced the in vitro proliferation, invasion, and migration ability of neuroblastoma cells. By investigating the role of EDC-induced ERα upregulation, our data extend the understanding of the function of EDCs and further suggest that ERα might be a potential therapeutic target in human neuroblastoma treatment. PMID:27366082

  17. Core promoter-specific gene regulation: TATA box selectivity and Initiator-dependent bi-directionality of serum response factor-activated transcription.

    Science.gov (United States)

    Xu, Muyu; Gonzalez-Hurtado, Elsie; Martinez, Ernest

    2016-04-01

    Gene-specific activation by enhancers involves their communication with the basal RNA polymerase II transcription machinery at the core promoter. Core promoters are diverse and may contain a variety of sequence elements such as the TATA box, the Initiator (INR), and the downstream promoter element (DPE) recognized, respectively, by the TATA-binding protein (TBP) and TBP-associated factors of the TFIID complex. Core promoter elements contribute to the gene selectivity of enhancers, and INR/DPE-specific enhancers and activators have been identified. Here, we identify a TATA box-selective activating sequence upstream of the human β-actin (ACTB) gene that mediates serum response factor (SRF)-induced transcription from TATA-dependent but not INR-dependent promoters and requires the TATA-binding/bending activity of TBP, which is otherwise dispensable for transcription from a TATA-less promoter. The SRF-dependent ACTB sequence is stereospecific on TATA promoters but activates in an orientation-independent manner a composite TATA/INR-containing promoter. More generally, we show that SRF-regulated genes of the actin/cytoskeleton/contractile family tend to have a TATA box. These results suggest distinct TATA-dependent and INR-dependent mechanisms of TFIID-mediated transcription in mammalian cells that are compatible with only certain stereospecific combinations of activators, and that a TBP-TATA binding mechanism is important for SRF activation of the actin/cytoskeleton-related gene family.

  18. Transcriptional activation is a conserved feature of the early embryonic factor Zelda that requires a cluster of four zinc fingers for DNA binding and a low-complexity activation domain.

    Science.gov (United States)

    Hamm, Danielle C; Bondra, Eliana R; Harrison, Melissa M

    2015-02-01

    Delayed transcriptional activation of the zygotic genome is a nearly universal phenomenon in metazoans. Immediately following fertilization, development is controlled by maternally deposited products, and it is not until later stages that widespread activation of the zygotic genome occurs. Although the mechanisms driving this genome activation are currently unknown, the transcriptional activator Zelda (ZLD) has been shown to be instrumental in driving this process in Drosophila melanogaster. Here we define functional domains of ZLD required for both DNA binding and transcriptional activation. We show that the C-terminal cluster of four zinc fingers mediates binding to TAGteam DNA elements in the promoters of early expressed genes. All four zinc fingers are required for this activity, and splice isoforms lacking three of the four zinc fingers fail to activate transcription. These truncated splice isoforms dominantly suppress activation by the full-length, embryonically expressed isoform. We map the transcriptional activation domain of ZLD to a central region characterized by low complexity. Despite relatively little sequence conservation within this domain, ZLD orthologs from Drosophila virilis, Anopheles gambiae, and Nasonia vitripennis activate transcription in D. melanogaster cells. Transcriptional activation by these ZLD orthologs suggests that ZLD functions through conserved interactions with a protein cofactor(s). We have identified distinct DNA-binding and activation domains within the critical transcription factor ZLD that controls the initial activation of the zygotic genome.

  19. Transforming Growth Factor β Signaling Upregulates the Expression of Human GDP-Fucose Transporter by Activating Transcription Factor Sp1

    OpenAIRE

    Yu-Xin Xu; Anna Ma; Li Liu

    2013-01-01

    GDP-fucose transporter plays a crucial role in fucosylation of glycoproteins by providing activated fucose donor, GDP-fucose, for fucosyltransferases in the lumen of the Golgi apparatus. Fucose-containing glycans are involved in many biological processes, which are essential for growth and development. Mutations in the GDP-fucose transporter gene cause leukocyte adhesion deficiency syndrome II, a disease characterized by slow growth, mental retardation and immunodeficiency. However, no inform...

  20. The wing in yeast heat shock transcription factor (HSF) DNA-binding domain is required for full activity

    OpenAIRE

    Cicero, Marco P.; T. Hubl, Susan; Harrison, Celia J.; Littlefield, Otis; Hardy, Jeanne A.; Nelson, Hillary C. M.

    2001-01-01

    The yeast heat shock transcription factor (HSF) belongs to the winged helix family of proteins. HSF binds DNA as a trimer, and additional trimers can bind DNA co-operatively. Unlike other winged helix–turn–helix proteins, HSF’s wing does not appear to contact DNA, as based on a previously solved crystal structure. Instead, the structure implies that the wing is involved in protein–protein interactions, possibly within a trimer or between adjacent trimers. To unders...

  1. Searching for transcription factor binding sites in vector spaces

    OpenAIRE

    Lee Chih; Huang Chun-Hsi

    2012-01-01

    Abstract Background Computational approaches to transcription factor binding site identification have been actively researched in the past decade. Learning from known binding sites, new binding sites of a transcription factor in unannotated sequences can be identified. A number of search methods have been introduced over the years. However, one can rarely find one single method that performs the best on all the transcription factors. Instead, to identify the best method for a particular trans...

  2. The activation of peroxisome proliferator-activated receptor γ is regulated by Krüppel-like transcription factors 6 & 9 under steatotic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Escalona-Nandez, Ivonne; Guerrero-Escalera, Dafne; Estanes-Hernández, Alma [Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15 Sección XVI, Tlalpan, 14000, México, D.F. (Mexico); Ortíz-Ortega, Victor; Tovar, Armando R. [Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15 Sección XVI, Tlalpan, 14000, México, D.F. (Mexico); Pérez-Monter, Carlos, E-mail: carlos.perezm@incmnsz.mx [Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15 Sección XVI, Tlalpan, 14000, México, D.F. (Mexico)

    2015-03-20

    Liver steatosis is characterised by lipid droplet deposition in hepatocytes that can leads to an inflammatory and fibrotic phenotype. Peroxisome proliferator-activated receptors (PPARs) play key roles in energetic homeostasis by regulating lipid metabolism in hepatic tissue. In adipose tissue PPARγ regulates the adipocyte differentiation by promoting the expression of lipid-associated genes. Within the liver PPARγ is up-regulated under steatotic conditions; however, which transcription factors participate in its expression is not completely understood. Krüppel-like transcription factors (KLFs) regulate various cellular mechanisms, such as cell proliferation and differentiation. KLFs are key components of adipogenesis by regulating the expression of PPARγ and other proteins such as the C-terminal enhancer binding protein (C/EBP). Here, we demonstrate that the transcript levels of Klf6, Klf9 and Pparγ are increased in response to a steatotic insult in vitro. Chromatin immunoprecipitation (ChIp) experiments showed that klf6 and klf9 are actively recruited to the Pparγ promoter region under these conditions. Accordingly, the loss-of-function experiments reduced cytoplasmic triglyceride accumulation. Here, we demonstrated that KLF6 and KLF9 proteins directly regulate PPARγ expression under steatotic conditions. - Highlights: • Palmitic acid promotes expression of KlF6 & KLF9 in HepG2 cells. • KLF6 and KLF9 promote the expression of PPARγ in response to palmitic acid. • Binding of KLF6 and KLF9 to the PPARγ promoter promotes steatosis in HepG2 cells. • KLF6 and KLF9 loss-of function diminishes the steatosis in HepG2 cells.

  3. Extent of liver resection modulates the activation of transcription factors and the production of cytokines involved in liver regeneration

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    AIM: To investigate the molecular events involved in liver regeneration following subtotal hepatectomy (SH) as previous studies have largely focused on partial hepatectomy (PH).METHODS: Male Wistar rats were subjected to 70% PH or 90% SH, respectively, and sacrificed at different times after surgery. Untreated and sham-operated animals served as controls. Serum and liver samples were obtained to investigate liver function, apoptosis (TUNEL assay) and transcription factors (NF-κB, Stat3; ELISA) or cytokines (HGF, TNF-α, IL-6, TGF-α, TGF-β; quantitative RT-PCR) involved in liver regeneration. RESULTS: Serum levels of ALT and AST in animals with 70% PH differed significantly from sham-operated and control animals. We found that the peak concentration 12 h after surgery returned to control levels 7 d after surgery. LDH was increased only at 12 h after 70% PH compared to sham. Bilirubin showed no differences between the sham and 70% resection. After PH, early NF-κB activation was detected 12 h after surgery (313.21 ± 17.22 ng/mL), while there was no activation after SH (125.22 ± 44.36 ng/mL) compared to controls (111.43 ± 32.68 ng/mL) at this time point. In SH, however, NF-κB activation was delayed until 24 h (475.56 ± 144.29 ng/mL). Star3 activation was similar in both groups. These findings correlated with suppressed and delayed induction of regenerative genes after SH (i.e. TNF-α 24 h postoperatively: 2375 ± 1220 in 70% and 88±31 in 90%; IL-6 12 h postoperatively: 2547 ± 441 in 70% and 173 ± 82 in 90%). TUNEL staining revealed elevated apoptosis rates in SH (0.44% at 24 h; 0.63% at 7 d) compared to PH (0.27% at 24 h; 0.15% at 7 d). CONCLUSION: The molecular events involved in liver regeneration are significantly influenced by the extent of resection as SH leads to suppression and delay of liver regeneration compared to PH, which is associated with delayed activation of NF-κB and suppression of proregenerative cytokines.

  4. Polymerase (Pol) III TATA Box-Binding Protein (TBP)-Associated Factor Brf Binds to a Surface on TBP Also Required for Activated Pol II Transcription

    OpenAIRE

    Shen, Yuhong; Kassavetis, George A.; Bryant, Gene O.; Berk, Arnold J.

    1998-01-01

    The TATA box-binding protein (TBP) plays an essential role in transcription by all three eukaryotic nuclear RNA polymerases, polymerases (Pol) I, II, and III. In each case, TBP interacts with class-specific TBP-associated factors (TAFs) to form class-specific transcription initiation factors. For yeast Pol III transcription, TBP associates with Brf (from TFIIB-related factor) and B", two Pol III TAFs, to form Pol III transcription factor TFIIIB. Here, we identify TBP surface residues that are...

  5. Distal Interleukin-1β (IL-1β) Response Element of Human Matrix Metalloproteinase-13 (MMP-13) Binds Activator Protein 1 (AP-1) Transcription Factors and Regulates Gene Expression*

    Science.gov (United States)

    Schmucker, Adam C.; Wright, Jason B.; Cole, Michael D.; Brinckerhoff, Constance E.

    2012-01-01

    The collagenase matrix metalloproteinase-13 (MMP-13) plays an important role in the destruction of cartilage in arthritic joints. MMP-13 expression is strongly up-regulated in arthritis, largely because of stimulation by inflammatory cytokines such as IL-1β. Treatment of chondrocytes with IL-1β induces transcription of MMP-13 in vitro. IL-1β signaling converges upon the activator protein-1 transcription factors, which have been shown to be required for IL-1β-induced MMP-13 gene expression. Using chromatin immunoprecipitation (ChIP), we detected activator protein-1 binding within an evolutionarily conserved DNA sequence ∼20 kb 5′ relative to the MMP-13 transcription start site (TSS). Also using ChIP, we detected histone modifications and binding of RNA polymerase II within this conserved region, all of which are consistent with transcriptional activation. Chromosome conformation capture indicates that chromosome looping brings this region in close proximity with the MMP-13 TSS. Finally, a luciferase reporter construct driven by a component of the conserved region demonstrated an expression pattern similar to that of endogenous MMP-13. These data suggest that a conserved region at 20 kb upstream from the MMP-13 TSS includes a distal transcriptional response element of MMP-13, which contributes to MMP-13 gene expression. PMID:22102411

  6. Transcription Factor ZBED6 Mediates IGF2 Gene Expression by Regulating Promoter Activity and DNA Methylation in Myoblasts

    OpenAIRE

    Huang, Yong-Zhen; Liang-zhi ZHANG; Lai, Xin-Sheng; Li, Ming-xun; Sun, Yu-Jia; Li, Cong-jun; Lan, Xian-yong; Lei, Chu-Zhao; Zhang, Chun-Lei; Zhao, Xin; Chen, Hong

    2014-01-01

    Zinc finger, BED-type containing 6 (ZBED6) is an important transcription factor in placental mammals, affecting development, cell proliferation and growth. In this study, we found that the expression of the ZBED6 and IGF2 were upregulated during C2C12 differentiation. The IGF2 expression levels were negatively associated with the methylation status in beef cattle (P < 0.05). A luciferase assay for the IGF2 intron 3 and P3 promoter showed that the mutant-type 439 A-SNP-pGL3 in driving reporter...

  7. Role of Transcription Factors in Peripheral Nerve Regeneration

    OpenAIRE

    Patodia, Smriti; Raivich, Gennadij

    2012-01-01

    Following axotomy, the activation of multiple intracellular signaling cascades causes the expression of a cocktail of regeneration-associated transcription factors which interact with each other to determine the fate of the injured neurons. The nerve injury response is channeled through manifold and parallel pathways, integrating diverse inputs, and controlling a complex transcriptional output. Transcription factors form a vital link in the chain of regeneration, converting injury-induced str...

  8. Role of Transcription Factors in Peripheral Nerve Regeneration

    OpenAIRE

    Smriti ePatodia; Gennadij eRaivich

    2012-01-01

    Following axotomy, the activation of multiple intracellular signalling cascades causes the expression of a cocktail of regeneration-associated transcription factors which interact with each other and the extracellular environment to determine the fate of the injured neurons. The nerve injury response is channelled through manifold and parallel pathways, integrating diverse inputs and controlling a complex transcriptional output. Transcription factors form a vital link in the chain of regenera...

  9. Activation of transcription factor AP-2 mediates UVA radiation- and singlet oxygen-induced expression of the human intercellular adhesion molecule 1 gene

    Energy Technology Data Exchange (ETDEWEB)

    Grether-Beck, S.; Olaizola-Horn, S.; Schmitt, H.; Grewe, M. [Clinical and Experimental Photodermatology, Duesseldorf (Germany)] [and others

    1996-12-10

    UVA radiation is the major component of the UV solar spectrum that reaches the earth, and the therapeutic application of UVA radiation is increasing in medicine. Analysis of the cellular effects of UVA radiation has revealed that exposure of human cells to UVA radiation at physiological doses leads to increased gene expression and that this UVA response is primarily mediated through the generation of singlet oxygen. In this study, the mechanisms by which UVA radiation induces transcriptional activation of the human intercellular adhesion molecule 1 (ICAM-1) were examined. UVA radiation was capable of inducing activation of the human ICAM-1 promoter and increasing OCAM-1 mRNA and protein expression. These UVA radiation effects were inhibited by singlet oxygen quenchers, augmented by enhancement of singlet oxygen life-time, and mimicked in unirradiated cells by a singlet oxygen-generating system. UVA radiation as well as singlet oxygen-induced ICAM-1 promoter activation required activation of the transcription factor AP-2. Accordingly, both stimuli activated AP-2, and deletion of the putative AP-2-binding site abrogated ICAM-1 promoter activation in this system. This study identified the AP-2 site as the UVA radiation- and singlet oxygen-responsive element of the human ICAM-1 gene. The capacity of UVA radiation and/or singlet oxygen to induce human gene expression through activation of AP-2 indicates a previously unrecognized role of this transcription factor in the mammalian stress response. 38 refs., 3 figs., 3 tabs.

  10. Selective activation of tumor growth-promoting Ca2+ channel MS4A12 in colon cancer by caudal type homeobox transcription factor CDX2

    Directory of Open Access Journals (Sweden)

    Huber Christoph

    2009-09-01

    Full Text Available Abstract Colon cancer-associated MS4A12 is a novel colon-specific component of store-operated Ca2+ (SOC entry sensitizing cells for epidermal growth factor (EGF-mediated effects on proliferation and chemotaxis. In the present study, we investigated regulation of the MS4A12 promoter to understand the mechanisms responsible for strict transcriptional restriction of this gene to the colonic epithelial cell lineage. DNA-binding assays and luciferase reporter assays showed that MS4A12 promoter activity is governed by a single CDX homeobox transcription factor binding element. RNA interference (RNAi-mediated silencing of intestine-specific transcription factors CDX1 and CDX2 and chromatin immunoprecipitation (ChIP in LoVo and SW48 colon cancer cells revealed that MS4A12 transcript and protein expression is essentially dependent on the presence of endogenous CDX2. In summary, our findings provide a rationale for colon-specific expression of MS4A12. Moreover, this is the first report establishing CDX2 as transactivator of tumor growth-promoting gene expression in colon cancer, adding to untangle the complex and conflicting biological functions of CDX2 in colon cancer and supporting MS4A12 as important factor for normal colonic development as well as for the biology and treatment of colon cancer.

  11. RelA Is a Component of the Nutritional Stress Activation Pathway of the Bacillus subtilis Transcription Factor σB

    OpenAIRE

    Zhang, Shuyu; Haldenwang, W G

    2003-01-01

    The general stress regulon of Bacillus subtilis is induced by the activation of the σB transcription factor. Activation of σB occurs when one of two phosphatases (RsbU and RsbP), each responding to a unique type of stress, actuates a positive regulator of σB by dephosphorylation. Nutritional stress triggers the RsbP phosphatase. The mechanism by which RsbP becomes active is unknown; however, its activation coincides with culture conditions that are likely to reduce the cell's levels of high-e...

  12. ZIP4 Regulates Pancreatic Cancer Cell Growth by Activating IL-6/STAT3 Pathway via Zinc Finger Transcription Factor CREB

    Science.gov (United States)

    Zhang, Yuqing; Bharadwaj, Uddalak; Logsdon, Craig D.; Chen, Changyi; Yao, Qizhi; Li, Min

    2010-01-01

    Purpose Recent studies indicate a strong correlation of zinc transporter ZIP4 and pancreatic cancer progression; however, the underlying mechanisms are unclear. We have recently found that ZIP4 is overexpressed in pancreatic cancer. In this study, we investigated the signaling pathway through which ZIP4 regulates pancreatic cancer growth. Experimental Design The expression of cyclin D1, IL-6, and STAT3 in pancreatic cancer xenografts and cells were examined by real time PCR, Bio-Plex cytokine assay, and Western blot, respectively. The activity of CREB is examined by a promoter activity assay. Results Cyclin D1 was significantly increased in the ZIP4 overexpressing MIA PaCa-2 cells (MIA-ZIP4)-injected orthotopic xenografts and was downregulated in the ZIP4 silenced ASPC-1 (ASPC-shZIP4) group. The phosphorylation of signal transducer and activator of transcription 3 (STAT3), an upstream activator of cyclin D1, was increased in MIA-ZIP4 cells, and decreased in ASPC-shZIP4 cells. IL-6, a known upstream activator for STAT3, was also found to be significantly increased in the MIA-ZIP4 cells and xenografts, and decreased in the ASPC-shZIP4 group. Overexpression of ZIP4 led to a 75% increase of IL-6 promoter activity, and caused increased phosphorylation of cAMP response element binding protein (CREB). Conclusions Our study suggest that ZIP4 overexpression causes increased IL-6 transcription via CREB, which in turn activates STAT3, and leads to increased cyclin D1 expression, resulting in increased cell proliferation and tumor progression in pancreatic cancer. These results elucidated a novel pathway in ZIP4-mediated pancreatic cancer growth, and suggest new therapeutic targets including ZIP4, IL-6, and STAT3 in pancreatic cancer treatment. PMID:20160059

  13. Prunus transcription factors: Breeding perspectives

    Directory of Open Access Journals (Sweden)

    Valmor João Bianchi

    2015-06-01

    Full Text Available Many plant processes depend on differential gene expression, which is generally controlled by complex proteins called transcription factors (TFs. In peach, 1,533 TFs have been identified, accounting for about 5.5% of the 27,852 protein-coding genes. These TFs are the reference for the rest of the Prunus species. TF studies in Prunus have been performed on the gene expression analysis of different agronomic traits, including control of the flowering process, fruit quality, and biotic and abiotic stress resistance. These studies, using quantitative RT-PCR, have mainly been performed in peach, and to a lesser extent in other species, including almond, apricot, black cherry, Fuji cherry, Japanese apricot, plum, and sour and sweet cherry. Other tools have also been used in TF studies, including cDNA-AFLP, LC-ESI-MS, RNA and DNA blotting or mapping. More recently, new tools assayed include microarray and high-throughput DNA sequencing (DNA-Seq and RNA sequencing (RNA-Seq. New functional genomics opportunities include genome resequencing and the well-known synteny among Prunus genomes and transcriptomes. These new functional studies should be applied in breeding programs in the development of molecular markers. With the genome sequences available, some strategies that have been used in model systems (such as SNP genotyping assays and genotyping-by-sequencing may be applicable in the functional analysis of Prunus TFs as well. In addition, the knowledge of the gene functions and position in the peach reference genome of the TFs represents an additional advantage. These facts could greatly facilitate the isolation of genes via QTL (quantitative trait loci map-based cloning in the different Prunus species, following the association of these TFs with the identified QTLs using the peach reference genome.

  14. The NAC transcription factors of barley

    DEFF Research Database (Denmark)

    Wagner, Michael; Holm, Preben Bach; Gregersen, Per L.

    2011-01-01

    It is now 15 years ago the first NAC transcription factor was described in the literature (Souer et al. 1996), since then a number of plant species have been fully sequenced revealing the NAC gene family to be one of the largest families of transcription factors in plants (Shen et al 2009). The NAC...

  15. An AP2 transcription factor is required for a sleep-active neuron to induce sleep-like quiescence in C. elegans.

    OpenAIRE

    Turek, M.; Lewandrowski, I.; Bringmann, H.

    2013-01-01

    Background: Sleep is an essential behavior that is found in all animals that have a nervous system. Neural activity is thought to control sleep, but little is known about the identity and the function of neural circuits underlying sleep. Lethargus is a developmentally regulated period of behavioral quiescence in C. elegans larvae that has sleep-like properties. Results: We studied sleep-like behavior in C. elegans larvae and found that it requires a highly conserved AP2 transcription factor, ...

  16. Id-1 is induced in MDCK epithelial cells by activated Erk/MAPK pathway in response to expression of the Snail and E47 transcription factors

    International Nuclear Information System (INIS)

    Id-1, a member of the helix-loop-helix transcription factor family has been shown to be involved in cell proliferation, angiogenesis and invasion of many types of human cancers. We have previously shown that stable expression of E47 and Snail repressors of the E-cadherin promoter in MDCK epithelial cell line triggers epithelial mesenchymal transition (EMT) concomitantly with changes in gene expression. We show here that both factors activate the Id-1 gene promoter and induce Id-1 mRNA and protein. The upregulation of the Id-1 gene occurs through the transactivation of the promoter by the Erk/MAPK signaling pathway. Moreover, oncogenic Ras is also able to activate Id-1 promoter in MDCK cells in the absence of both E47 and Snail transcription factors. Several transcriptionally active regulatory elements have been identified in the proximal promoter, including AP-1, Sp1 and four putative E-boxes. By EMSA, we only detected an increased binding to Sp1 and AP-1 elements in E47- and Snail-expressing cells. Binding is affected by the treatment of cells with PD 98059 MEK inhibitor, suggesting that MAPK/Erk contributes to the recruitment or assembly of proteins to Id-1 promoter. Small interfering RNA directed against Sp1 reduced Id-1 expression and the upregulation of the promoter, indicating that Sp1 is required for Id-1 induction in E47- and Snail-expressing cells. Our results provide new insights into how some target genes are activated during and/or as a consequence of the EMT triggered by both E47 and Snail transcription factors

  17. The activity of Mblk-1, a mushroom body-selective transcription factor from the honeybee, is modulated by the ras/MAPK pathway.

    Science.gov (United States)

    Park, Jung-Min; Kunieda, Takekazu; Kubo, Takeo

    2003-05-16

    We previously identified a gene, termed Mblk-1, that encodes a putative transcription factor with two DNA-binding motifs expressed preferentially in the mushroom body of the honeybee brain, and its preferred binding sequence, termed Mblk-1-binding element (MBE) (Takeuchi, H., Kage, E., Sawata, M., Kamikouchi, A., Ohashi, K., Ohara, M., Fujiyuki, T., Kunieda, T., Sekimizu, K., Natori, S., and Kubo, T. (2001) Insect Mol Biol 10, 487-494; Park, J.-M., Kunieda. T., Takeuchi, H., and Kubo, T. (2002) Biochem. Biophys. Res. Commun. 291, 23-28). In the present study, the effect of Mblk-1 on transcription of genes containing MBE in Drosophila Schneider's Line 2 cells was examined using a luciferase assay. Mblk-1 expression transactivated promoters containing MBEs approximately 2-7-fold. Deletion experiments revealed that RHF2, the second DNA-binding domain of Mblk-1, was necessary for the transcriptional activity. Furthermore, mitogen-activated protein kinase (MAPK) phosphorylated Mblk-1 at Ser-444 in vitro, and the Mblk-1-induced transactivation was stimulated by phosphorylation of Ser-444 by the Ras/MAPK pathway in the luciferase assay. These results suggest that Mblk-1 is a transcription factor that might function in the mushroom body neuronal circuits downstream of the Ras/MAPK pathway in the honeybee brain.

  18. Transcription Factors Ets2 and Sp1 Act Synergistically with Histone Acetyltransferase p300 in Activating Human Interleukin-12 p40 Promoter

    Institute of Scientific and Technical Information of China (English)

    Hai-Jing SUN; Xin XU; Xiu-Li WANG; Liang WEI; Fen LI; Jun LU; Bai-Qu HUANG

    2006-01-01

    There has been considerable interest in researching the regulatory mechanisms that control the synthesis of interleukin (IL)-12, which plays a central role in the differentiation of T-helper-1 cells. In this study, we performed a series of transient transfection experiments designed to elucidate the functional relationship between the IL-12 promoter-specific transcription factors (Ets2 and Spl) and histone acetylation modification in IL-12 regulation mediated by p300 and various histone deacetylases (HDACs). Results presented in this report demonstrated that the transcription factors Ets2 and Spl acted synergistically with p300to activate the human IL-12 promoter. The histone acetyltransferase (HAT) activity of p300 was required for this synergic effect, because the adenovirus E1A protein inhibited the synergy. Conversely, HDACs repressed the synergic effect of transcription factors and histone acetylation on the activation of IL-12, while p300 was able to rectify it. These data indicated that Ets2 and Sp1 worked concertedly and synergistically with p300 in the regulation of human IL-12 expression.

  19. YB-1 gene expression is kept constant during myocyte differentiation through replacement of different transcription factors and then falls gradually under the control of neural activity.

    Science.gov (United States)

    Kobayashi, Shunsuke; Tanaka, Toru; Moue, Masamitsu; Ohashi, Sachiyo; Nishikawa, Taishi

    2015-11-01

    We have previously reported that translation of acetylcholine receptor α-subunit (AChR α) mRNA in skeletal muscle cells is regulated by Y-box binding protein 1 (YB-1) in response to neural activity, and that in the postnatal mouse developmental changes in the amount of YB-1 mRNA are similar to those of AChR α mRNA, which is known to be regulated by myogenic transcription factors. Here, we examined transcriptional regulation of the YB-1 gene in mouse skeletal muscle and differentiating C2C12 myocytes. Although neither YB-1 nor AChR α was detected at either the mRNA or protein level in adult hind limb muscle, YB-1 expression was transiently activated in response to denervation of the sciatic nerve and completely paralleled that of AChR α, suggesting that these genes are regulated by the same transcription factors. However, during differentiation of C2C12 cells to myotubes, the level of YB-1 remained constant even though the level of AChR α increased markedly. Reporter gene, gel mobility shift and ChIP assays revealed that in the initial stage of myocyte differentiation, transcription of the YB-1 gene was regulated by E2F1 and Sp1, and was then gradually replaced under the control of both MyoD and myogenin through an E-box sequence in the proximal region of the YB-1 gene promoter. These results suggest that transcription factors for the YB-1 gene are exchanged during skeletal muscle cell differentiation, perhaps playing a role in translational control of mRNAs by YB-1 in both myotube formation and the response of skeletal muscle tissues to neural stimulation.

  20. Promoter of CaZF, a chickpea gene that positively regulates growth and stress tolerance, is activated by an AP2-family transcription factor CAP2.

    Directory of Open Access Journals (Sweden)

    Deepti Jain

    Full Text Available Plants respond to different forms of stresses by inducing transcription of a common and distinct set of genes by concerted actions of a cascade of transcription regulators. We previously reported that a gene, CaZF encoding a C2H2-zinc finger family protein from chickpea (Cicer arietinum imparted high salinity tolerance when expressed in tobacco plants. We report here that in addition to promoting tolerance against dehydration, salinity and high temperature, the CaZF overexpressing plants exhibited similar phenotype of growth and development like the plants overexpressing CAP2, encoding an AP2-family transcription factor from chickpea. To investigate any relationship between these two genes, we performed gene expression analysis in the overexpressing plants, promoter-reporter analysis and chromatin immunoprecipitation. A number of transcripts that exhibited enhanced accumulation upon expression of CAP2 or CaZF in tobacco plants were found common. Transient expression of CAP2 in chickpea leaves resulted in increased accumulation of CaZF transcript. Gel mobility shift and transient promoter-reporter assays suggested that CAP2 activates CaZF promoter by interacting with C-repeat elements (CRTs in CaZF promoter. Chromatin immunoprecipitation (ChIP assay demonstrated an in vivo interaction of CAP2 protein with CaZF promoter.

  1. Involvement of serotonergic pathways in mediating the neuronal activity and genetic transcription of neuroendocrine corticotropin-releasing factor in the brain of systemically endotoxin-challenged rats

    Energy Technology Data Exchange (ETDEWEB)

    Laflamme, N.; Feuvrier, E.; Richard, D.; Rivest, S. [Laboratory of Molecular Endocrinology, CHUL Research Center and Department of Anatomy and Physiology, Laval University, 2705 boul. Laurier, Ste-Foy Quebec (Canada)

    1999-01-01

    The present study investigated the effect of serotonin depletion on the neuronal activity and transcription of corticotropin-releasing factor in the rat brain during the acute-phase response. Conscious male rats received an intraperitoneal (i.p.) injection with the immune activator lipopolysaccaride (25 {mu}g/100 g body wt) after being treated for three consecutive days with para-chlorophenylalanine (30 mg/100 g/day). This irreversible inhibitor of tryptophane-5-hydroxylase decreased hypothalamic serotonin levels by 96%. One, 3 and 6 h after a single i.p. injection of lipopolysaccharide or vehicle solution, rats were killed and their brains cut in 30-{mu}m coronal sections. Messenger RNAs encoding c-fos, nerve-growth factor inducible-B gene, corticotropin-releasing factor and the heteronuclear RNA encoding corticotropin-releasing factor primary transcript were assayed by in situ hybridization using {sup 35}S-labeled riboprobes, whereas Fos-immunoreactive nuclei were labeled by immunocytochemistry. Lipopolysaccharide induced a wide neuronal activation indicated by the expression of both immediate-early gene transcripts and Fos protein in numerous structures of the brain. The signal for both immediate-early gene transcripts was low to moderate 1 h after lipopolysaccharide administration, maximal at 3 h and decline at 6 h post-injection, whereas at that time, Fos-immunoreactive nuclei were still detected in most of the c-fos messenger RNA-positive structures. Interestingly, the strong and widespread induction of both immediate-early gene transcripts was almost totally inhibited by para-chlorophenylalanine treatment; in the hypothalamic paraventricular nucleus for example, c-fos messenger RNA signal and the number of Fos-immunoreactive positive cells were reduced by 80 and 48%, respectively, in serotonin-depleted rats treated with the bacterial endotoxin. This blunted neuronal response was also associated with an attenuated stimulation of neuroendocrine corticotropin

  2. Transcriptional factors, Mafs and their biological roles

    Institute of Scientific and Technical Information of China (English)

    Mariko Tsuchiya; Ryoichi Misaka; Kosaku Nitta; Ken Tsuchiya

    2015-01-01

    The Maf family of transcription factors is characterizedby a typical bZip structure; these transcription factorsact as important regulators of the development anddifferentiation of many organs and tissues, includingthe kidney. The Maf family consists of two subgroupsthat are characterized according to their structure largeMaf transcription factors and small Maf transcriptionfactors. The large Maf subgroup consists of fourproteins, designated as MAFA, MAFB, c-MAF and neuralretina-specific leucine zipper. In particular, MAFA is adistinct molecule that has been attracting the attentionof researchers because it acts as a strong transactivatorof insulin, suggesting that Maf transcription factors arelikely to be involved in systemic energy homeostasis. Inthis review, we focused on the regulation of glucose/energy balance by Maf transcription factors in variousorgans.

  3. Transgenic mice with cardiac-specific expression of activating transcription factor 3, a stress-inducible gene, have conduction abnormalities and contractile dysfunction.

    Science.gov (United States)

    Okamoto, Y; Chaves, A; Chen, J; Kelley, R; Jones, K; Weed, H G; Gardner, K L; Gangi, L; Yamaguchi, M; Klomkleaw, W; Nakayama, T; Hamlin, R L; Carnes, C; Altschuld, R; Bauer, J; Hai, T

    2001-08-01

    Activating transcription factor 3 (ATF3) is a member of the CREB/ATF family of transcription factors. Previously, we demonstrated that the expression of the ATF3 gene is induced by many stress signals. In this report, we demonstrate that expression of ATF3 is induced by cardiac ischemia coupled with reperfusion (ischemia-reperfusion) in both cultured cells and an animal model. Transgenic mice expressing ATF3 under the control of the alpha-myosin heavy chain promoter have atrial enlargement, and atrial and ventricular hypertrophy. Microscopic examination showed myocyte degeneration and fibrosis. Functionally, the transgenic heart has reduced contractility and aberrant conduction. Interestingly, expression of sorcin, a gene whose product inhibits the release of calcium from sarcoplasmic reticulum, is increased in these transgenic hearts. Taken together, our results indicate that expression of ATF3, a stress-inducible gene, in the heart leads to altered gene expression and impaired cardiac function. PMID:11485922

  4. Chromatin structure near transcriptionally active genes

    International Nuclear Information System (INIS)

    Hypersensitive domains are the most prominent features of transcriptionally active chromatin. In the case of the β/sup A/-globin gene, it seems likely that two or more protein factors are capable of binding to the DNA so tightly that the nucleosome is prevented from binding. We have shown that nucleosomes, once bound in the assembly process in vitro, cannot be displaced. The interaction of the 5S gene transcription factor TFIIIA with its target DNA also is blocked by histones, and it has been suggested that the activation of the gene must occur during replication, before histones are reassembled on the DNA. We suppose that a similar mechanism may govern the binding of the hypersensitivity factors. It should be noted that nucleosomes are excluded not only from the sites to which the factors bind, but also from the regions between the two domains and at either side. 12 refs., 6 figs

  5. Transcription factors in the maintenance and survival of primordial follicles

    OpenAIRE

    Lim, Eun-Jin; Choi, Youngsok

    2012-01-01

    Primordial follicles are formed prenatally in mammalian ovaries, and at birth they are fated to be activated to primary follicles, to be dormant, or to die. During the early stage of folliclulogenesis, the oocyte undergoes dynamic alterations in expression of numerous genes, which are regulated by transcription factors. Several germ-cell specific transcriptional regulators are critical for formation and maintenance of follicles. These transcriptional regulators include: Figla, Lhx8, Nobox, So...

  6. Yin Yang 1: a multifaceted protein beyond a transcription factor.

    Science.gov (United States)

    Deng, Zhiyong; Cao, Paul; Wan, Mei Mei; Sui, Guangchao

    2010-01-01

    As a transcription factor, Yin Yang 1 (YY1) regulates the transcription of a dazzling list of genes and the number of its targets still mounts. Recent studies revealed that YY1 possesses functions independent of its DNA binding activity and its regulatory role in tumorigenesis has started to emerge.

  7. Transcriptional Regulation of Urokinase-type Plasminogen Activator Receptor by Hypoxia-Inducible Factor 1 Is Crucial for Invasion of Pancreatic and Liver Cancer

    Directory of Open Access Journals (Sweden)

    Peter Büchler

    2009-02-01

    Full Text Available Angioinvasion is critical for metastasis with urokinase-type plasminogen activator receptor (uPAR and tumor hypoxia-activated hypoxia-inducible factor 1 (HIF-1 as key players. Transcriptional control of uPAR expression by HIF has never been reported. The aim of the present study, therefore, was to test whether tumor hypoxia-induced HIF expression may be linked to transcriptional activation of uPAR and dependent angioinvasion. We used human pancreatic cancer cells and a model of parental and derived HIF-1β-deficient mouse liver cancer cell lines and performed Northern blot analysis, nuclear runoff assays, electrophoretic mobility shift assay, polymerase chain reaction-generated deletion mutants, luciferase assays, Matrigel invasion assays, and in vivo angioinvasion assays in the chorioallantoic membrane of fertilized chicken eggs. Urokinase-type plasminogen activator receptor promoter analysis resulted in four putative HIF binding sites. Hypoxia strongly induced de novo transcription of uPAR mRNA. With sequential deletion mutants of the uPAR promoter, it was possible to identify one HIF binding site causing a nearly 200-fold increase in luciferase activity. Hypoxia enhanced the number of invading tumor cells in vitro and in vivo. In contrast, HIF-1β-deficient cells failed to upregulate uPAR expression, to activate luciferase activity, and to invade on hypoxia. Taken together, we show for the first time that uPAR is under transcriptional control of HIF and that this is important for hypoxia-induced metastasis.

  8. Differential Requirement of the Transcription Factor Mcm1 for Activation of the Candida albicans Multidrug Efflux Pump MDR1 by Its Regulators Mrr1 and Cap1▿

    OpenAIRE

    Mogavero, Selene; Tavanti, Arianna; Senesi, Sonia; Rogers, P. David; Morschhäuser, Joachim

    2011-01-01

    Overexpression of the multidrug efflux pump Mdr1 causes increased fluconazole resistance in the pathogenic yeast Candida albicans. The transcription factors Mrr1 and Cap1 mediate MDR1 upregulation in response to inducing stimuli, and gain-of-function mutations in Mrr1 or Cap1, which render the transcription factors hyperactive, result in constitutive MDR1 overexpression. The essential MADS box transcription factor Mcm1 also binds to the MDR1 promoter, but its role in inducible or constitutive...

  9. NAC transcription factors: structurally distinct, functionally diverse

    DEFF Research Database (Denmark)

    Olsen, Addie Nina; Ernst, Heidi A; Leggio, Leila Lo;

    2005-01-01

    NAC proteins constitute one of the largest families of plant-specific transcription factors, and the family is present in a wide range of land plants. Here, we summarize the biological and molecular functions of the NAC family, paying particular attention to the intricate regulation of NAC protein...... level and localization, and to the first indications of NAC participation in transcription factor networks. The recent determination of the DNA and protein binding NAC domain structure offers insight into the molecular functions of the protein family. Research into NAC transcription factors has...

  10. Distinct mechanism of activation of two transcription factors, AmyR and MalR, involved in amylolytic enzyme production in Aspergillus oryzae.

    Science.gov (United States)

    Suzuki, Kuta; Tanaka, Mizuki; Konno, Yui; Ichikawa, Takanori; Ichinose, Sakurako; Hasegawa-Shiro, Sachiko; Shintani, Takahiro; Gomi, Katsuya

    2015-02-01

    The production of amylolytic enzymes in Aspergillus oryzae is induced in the presence of starch or maltose, and two Zn2Cys6-type transcription factors, AmyR and MalR, are involved in this regulation. AmyR directly regulates the expression of amylase genes, and MalR controls the expression of maltose-utilizing (MAL) cluster genes. Deletion of malR gene resulted in poor growth on starch medium and reduction in α-amylase production level. To elucidate the activation mechanisms of these two transcription factors in amylase production, the expression profiles of amylases and MAL cluster genes under carbon catabolite derepression condition and subcellular localization of these transcription factors fused with a green fluorescent protein (GFP) were examined. Glucose, maltose, and isomaltose induced the expression of amylase genes, and GFP-AmyR was translocated from the cytoplasm to nucleus after the addition of these sugars. Rapid induction of amylase gene expression and nuclear localization of GFP-AmyR by isomaltose suggested that this sugar was the strongest inducer for AmyR activation. In contrast, GFP-MalR was constitutively localized in the nucleus and the expression of MAL cluster genes was induced by maltose, but not by glucose or isomaltose. In the presence of maltose, the expression of amylase genes was preceded by MAL cluster gene expression. Furthermore, deletion of the malR gene resulted in a significant decrease in the α-amylase activity induced by maltose, but had apparently no effect on the expression of α-amylase genes in the presence of isomaltose. These results suggested that activation of AmyR and MalR is regulated in a different manner, and the preceding activation of MalR is essential for the utilization of maltose as an inducer for AmyR activation.

  11. An Estrogen Receptor-α/p300 Complex Activates the BRCA-1 Promoter at an AP-1 Site That Binds Jun/Fos Transcription Factors: Repressive Effects of p53 on BRCA-1 Transcription

    Directory of Open Access Journals (Sweden)

    Brandon D. Jeffy

    2005-09-01

    Full Text Available One of the puzzles in cancer predisposition is that women carrying BRCA-1 mutations preferentially develop tumors in epithelial tissues of the breast, ovary. Moreover, sporadic breast tumors contain lower levels of BRCA-1 in the absence of mutations in the BRCA-1 gene. The problem of tissue specificity requires analysis of factors that are unique to tissues of the breast. For example, the expression of estrogen receptor-α (ERα is inversely correlated with breast cancer risk, 90% of BRCA-1 tumors are negative for ERα. Here, we show that estrogen stimulates BRCA-1 promoter activity in transfected cells, the recruitment of ERα, its cofactor p300 to an AP-1 site that binds Jun/Fos transcription factors. The recruitment of ERα/dp300 coincides with accumulation in the S-phase of the cell cycle, is antagonized by the antiestrogen tamoxifen. Conversely, we document that overexpression of wild-type p53 prevents the recruitment of ERα to the AP-1 site, represses BRCA-1 promoter activity. Taken together, our findings support a model in which an ERα/AP-1 complex modulates BRCA-1 transcription under conditions of estrogen stimulation. Conversely, the formation of this transcription complex is abrogated in cells overexpressing p53.

  12. Differential expression of brain-derived neurotrophic factor transcripts after pilocarpine-induced seizure-like activity is related to mode of Ca2+ entry

    DEFF Research Database (Denmark)

    Poulsen, F R; Lauterborn, J; Zimmer, J;

    2004-01-01

    Activity-dependent brain-derived neurotrophic factor (BDNF) expression is Ca2+-dependent, yet little is known about the Ca2+ channel contributions that might direct selective expression of the multiple BDNF transcripts. Here, effects of pilocarpine-induced seizure activity on total BDNF expression...... and on the individual sensitivity of BDNF transcripts to glutamate receptor and Ca2+ channel blockers were evaluated using hippocampal slice cultures and in situ hybridization of transcript-specific cRNA probes directed against mRNAs for the four 5' exons (I-IV) of the BDNF gene. mRNAs for nerve growth factor (NGF......) and tyrosine kinase B (trkB) also were studied. Pilocarpine (5 mM) induced a dose- and time-dependent increase in total BDNF (exon V) mRNA expression in the dentate granule cells and CA3-CA1 pyramidal cells with maximal effects at 6 and 24 h, respectively. Increases were blocked by co-treatment with the alpha...

  13. In vivo identification of promoter elements and transcription factors mediating activation of hepatic HMG-CoA reductase by T{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Boone, Lindsey R.; Niesen, Melissa I. [Department of Molecular Medicine, College of Medicine, University of South Florida, Tampa, FL (United States); Jaroszeski, Mark [Department of Chemical and Biomedical Engineering, College of Engineering, University of South Florida, Tampa, FL (United States); Ness, Gene C., E-mail: gness@hsc.usf.edu [Department of Molecular Medicine, College of Medicine, University of South Florida, Tampa, FL (United States)

    2009-07-31

    The promoter elements and transcription factors necessary for triiodothyronine (T{sub 3}) induction of hepatic HMG-CoA reductase (HMGR) were investigated by transfecting rat livers with wild type and mutant HMGR promoter-luciferase constructs using in vivo electroporation. Mutations in the sterol response element (SRE), nuclear factor-y (NF-Y) site, and the newly identified upstream transcription factor-2 (USF-2) site essentially abolished the T{sub 3} response. Chromatin immunoprecipitation (ChIP) analysis demonstrated that T{sub 3} treatment caused a 4-fold increase in in vivo binding of USF-2 to the HMGR promoter. Co-transfection of the wild type HMGR promoter with siRNAs to USF-2, SREBP-2, or NF-Y nearly abolished the T{sub 3} induction, as measured by promoter activity. These data provide in vivo evidence for functional roles for USF-2, SREBP-2, and NF-Y in mediating the T{sub 3}-induction of hepatic HMGR transcription.

  14. Transcription factors as targets of anticancer drugs.

    Science.gov (United States)

    Gniazdowski, M; Czyz, M

    1999-01-01

    Several general and gene- and cell-selective transcription factors are required for specific transcription to occur. Many of them exert their functions through specific contacts either in the promoter region or at distant sequences regulating the initiation. These contacts may be altered by anticancer drugs which form non-covalent complexes with DNA. Covalent modifications of DNA by alkylating agents may prevent transcription factors from recognizing their specific sequences or may constitute multiple "unnatural" binding sites in DNA which attract the factors thus decreasing their availability in the cell. The anticancer drug-transcription factor interplay which is based on specific interactions with DNA may contribute to pharmacological properties of the former and provide a basis for the search for new drugs. PMID:10547027

  15. Prostaglandin F2a activates stress response signaling and induces expression of activating transcription factor 3 (ATF3) in bovine large luteal cells

    Science.gov (United States)

    The pulsatile uterine secretion of prostaglandin F2 alpha (PGF) triggers the regression of the corpus luteum (CL). Recent studies have explored global changes in gene expression in response to PGF that may contribute to structural and functional regression of the CL. Activating transcription facto...

  16. Transcription factor activity of estrogen receptor α activation upon nonylphenol or bisphenol A treatment enhances the in vitro proliferation, invasion, and migration of neuroblastoma cells

    Directory of Open Access Journals (Sweden)

    Ma H

    2016-06-01

    Full Text Available Hongda Ma,1 Yao Yao,2 Changli Wang,1 Liyu Zhang,3 Long Cheng,4 Yiren Wang,5 Tao Wang,6 Erguang Liang,6 Hui Jia,1 Qinong Ye,4 Mingxiao Hou,1 Fan Feng11Department of Pharmacy, General Hospital of Shenyang Military Area Command, Shenyang, 2Department of Pharmacy, Women & Infants Hospital of Zhengzhou, Zhengzhou, 3Shaanxi Institute of Pediatric Disease, Xi’an Children’s Hospital, Xi’an, 4Institute of Biotechnology, Chinese Military Medical Science Academy, Beijing, 5School of Life Science, Shenyang Pharmaceutical University, Shenyang, 6Institute of Toxicology and Pharmacology, Chinese Military Medical Science Academy, Beijing, People’s Republic of ChinaAbstract: Many kinds of endocrine-disrupting chemicals (EDCs, for example, the environmental estrogens bisphenol A and nonylphenol, may regulate the activity of estrogen receptor α (ERα and therefore induce potential disruption of normal endocrine function. However, the involvement of EDCs in human cancers, especially in endocrine-related cancer neuroblastoma regulation, is not very clear. In this work, results showed that upon bisphenol A or nonylphenol treatment, the transcription factor activity of ERα was significantly increased in neuroblastoma cell line SH-SY5Y. Bisphenol A and nonylphenol could enhance ERα activity via recruiting it to the target gene promoter. Furthermore, treatment of bisphenol A and nonylphenol enhanced the in vitro proliferation, invasion, and migration ability of neuroblastoma cells. By investigating the role of EDC-induced ERα upregulation, our data extend the understanding of the function of EDCs and further suggest that ERα might be a potential therapeutic target in human neuroblastoma treatment.Keywords: neuroblastoma, endocrine-disrupting chemicals, environmental estrogens, bisphenol A and nonylphenol, proliferation and metastasis

  17. Serine Arginine-Rich Splicing Factor 1 (SRSF1) Contributes to the Transcriptional Activation of CD3ζ in Human T Cells.

    Science.gov (United States)

    Moulton, Vaishali R; Gillooly, Andrew R; Perl, Marcel A; Markopoulou, Anastasia; Tsokos, George C

    2015-01-01

    T lymphocytes from many patients with systemic lupus erythematosus (SLE) express decreased levels of the T cell receptor (TCR)-associated CD3 zeta (ζ) signaling chain, a feature directly linked to their abnormal phenotype and function. Reduced mRNA expression partly due to defective alternative splicing, contributes to the reduced expression of CD3ζ chain. We previously identified by oligonucleotide pulldown and mass spectrometry approaches, the serine arginine-rich splicing factor 1 (SRSF1) binding to the 3' untranslated region (UTR) of CD3ζ mRNA. We showed that SRSF1 regulates alternative splicing of the 3'UTR of CD3ζ to promote expression of the normal full length 3`UTR over an unstable splice variant in human T cells. In this study we show that SRSF1 regulates transcriptional activation of CD3ζ. Specifically, overexpression and silencing of SRSF1 respectively increases and decreases CD3ζ total mRNA and protein expression in Jurkat and primary T cells. Using promoter-luciferase assays, we show that SRSF1 enhances transcriptional activity of the CD3ζ promoter in a dose dependent manner. Chromatin immunoprecipitation assays show that SRSF1 is recruited to the CD3ζ promoter. These results indicate that SRSF1 contributes to transcriptional activation of CD3ζ. Thus our study identifies a novel mechanism whereby SRSF1 regulates CD3ζ expression in human T cells and may contribute to the T cell defect in SLE.

  18. Comparison of Transcription Factor Binding Site Models

    KAUST Repository

    Bhuyan, Sharifulislam

    2012-05-01

    Modeling of transcription factor binding sites (TFBSs) and TFBS prediction on genomic sequences are important steps to elucidate transcription regulatory mechanism. Dependency of transcription regulation on a great number of factors such as chemical specificity, molecular structure, genomic and epigenetic characteristics, long distance interaction, makes this a challenging problem. Different experimental procedures generate evidence that DNA-binding domains of transcription factors show considerable DNA sequence specificity. Probabilistic modeling of TFBSs has been moderately successful in identifying patterns from a family of sequences. In this study, we compare performances of different probabilistic models and try to estimate their efficacy over experimental TFBSs data. We build a pipeline to calculate sensitivity and specificity from aligned TFBS sequences for several probabilistic models, such as Markov chains, hidden Markov models, Bayesian networks. Our work, containing relevant statistics and evaluation for the models, can help researchers to choose the most appropriate model for the problem at hand.

  19. NAC Transcription Factors in Stress Responses and Senescence

    DEFF Research Database (Denmark)

    O'Shea, Charlotte

    of these studies have also revealed emerging gene regulatory networks and protein-protein interaction networks. However, structural studies relating structure to function are lagging behind. Structure-function analysis of the NAC transcription factors has therefore been the main focus of this PhD thesis....... A systematic analysis has been performed of protein intrinsic disorder (ID), referring to the lack of a fixed tertiary structure, in NAC transcription factors. The transcription regulatory domains (TRDs) from six phylogenetically representative Arabidopsis thaliana NAC transcription factors have a similarly......RF is a functional hotspot for both transcriptional activity and interaction with the cellular hub protein Radical Induced Cell Death1 (RCD1). Specific amino acid residues essential for the interaction were identified. These studies and structural analysis suggested that RCD1-ANAC046 complex formation does...

  20. Entinostat up-regulates the CAMP gene encoding LL-37 via activation of STAT3 and HIF-1α transcription factors.

    Science.gov (United States)

    Miraglia, Erica; Nylén, Frank; Johansson, Katarina; Arnér, Elias; Cebula, Marcus; Farmand, Susan; Ottosson, Håkan; Strömberg, Roger; Gudmundsson, Gudmundur H; Agerberth, Birgitta; Bergman, Peter

    2016-01-01

    Bacterial resistance against classical antibiotics is a growing problem and the development of new antibiotics is limited. Thus, novel alternatives to antibiotics are warranted. Antimicrobial peptides (AMPs) are effector molecules of innate immunity that can be induced by several compounds, including vitamin D and phenyl-butyrate (PBA). Utilizing a luciferase based assay, we recently discovered that the histone deacetylase inhibitor Entinostat is a potent inducer of the CAMP gene encoding the human cathelicidin LL-37. Here we investigate a mechanism for the induction and also find that Entinostat up-regulates human β-defensin 1. Analysis of the CAMP promoter sequence revealed binding sites for the transcription factors STAT3 and HIF-1α. By using short hairpin RNA and selective inhibitors, we found that both transcription factors are involved in Entinostat-induced expression of LL-37. However, only HIF-1α was found to be recruited to the CAMP promoter, suggesting that Entinostat activates STAT3, which promotes transcription of CAMP by increasing the expression of HIF-1α. Finally, we provide in vivo relevance to our findings by showing that Entinostat-elicited LL-37 expression was impaired in macrophages from a patient with a STAT3-mutation. Combined, our findings support a role for STAT3 and HIF-1α in the regulation of LL-37 expression. PMID:27633343

  1. Negative Example Aided Transcription Factor Binding Site Search

    OpenAIRE

    Lee, Chih; Huang, Chun-Hsi

    2011-01-01

    Computational approaches to transcription factor binding site identification have been actively researched for the past decade. Negative examples have long been utilized in de novo motif discovery and have been shown useful in transcription factor binding site search as well. However, understanding of the roles of negative examples in binding site search is still very limited. We propose the 2-centroid and optimal discriminating vector methods, taking into account negative examples. Cross-val...

  2. Induction of Fibronectin Adhesins in Quinolone-Resistant Staphylococcus aureus by Subinhibitory Levels of Ciprofloxacin or by Sigma B Transcription Factor Activity Is Mediated by Two Separate Pathways

    Science.gov (United States)

    Li, Dongmei; Renzoni, Adriana; Estoppey, Tristan; Bisognano, Carmelo; Francois, Patrice; Kelley, William L.; Lew, Daniel P.; Schrenzel, Jacques; Vaudaux, Pierre

    2005-01-01

    We recently reported on the involvement of a RecA-LexA-dependent pathway in the ciprofloxacin-triggered upregulation of fibronectin-binding proteins (FnBPs) by fluoroquinolone-resistant Staphylococcus aureus. The potential additional contribution of the transcription factor sigma B (SigB) to the ciprofloxacin-triggered upregulation of FnBPs was studied in isogenic mutants of fluoroquinolone-resistant strain RA1 (a topoisomerase IV gyrase double mutant of S. aureus NCTC strain 8325), which exhibited widely different levels of SigB activity, as assessed by quantitative reverse transcription-PCR of their respective sigB and SigB-dependent asp23 transcript levels. These mutants were Tn551 insertion sigB strain TE1 and rsbU+ complemented strain TE2, which exhibited a wild-type SigB operon. Levels of FnBP surface display and fibronectin-mediated adhesion were lower in sigB mutant TE1 or higher in the rsbU+-restored strain TE2 compared to their sigB+ but rsbU parent, strain RA1, exhibiting low levels of SigB activity. Steady-state fnbA and fnbB transcripts levels were similar in strains TE1 and RA1 but increased by 4- and 12-fold, respectively, in strain TE2 compared to those in strain RA1. In contrast, fibronectin-mediated adhesion of strains TE1, RA1, and TE2 was similarly enhanced by growth in the presence of one-eighth the MIC of ciprofloxacin, which led to a significantly higher increase in their fnbB transcript levels compared to the increase in their fnbA transcript levels. Increased SigB levels led to a significant reduction in agr RNAIII; in contrast, it led to a slight increase in sarA transcript levels. In conclusion, upregulation of FnBPs by increased SigB levels and ciprofloxacin exposure in fluoroquinolone-resistant S. aureus occurs via independent pathways whose concerted actions may significantly promote bacterial adhesion and colonization. PMID:15728884

  3. Research progress of activator of transcription factor Krox-20%转录激活因子Krox-20

    Institute of Scientific and Technical Information of China (English)

    马凯丽; 李聪; 刘增力; 王志钢

    2013-01-01

    早期生长应答基因2(early growth response 2,EGR2/Krox-20)是血清诱导的立早基因(immediate early)家族成员之一,其编码的蛋白质有3个锌指结构,可以与特异DNA序列结合,起转录激活作用.Krox-20的表达受多个信号通路的调控,进而对动物脂肪细胞的分化及神经系统的发育产生影响.对转基因鼠的研究表明,Krox-20可以促进动物脂肪形成及毛发生长等生理过程相关基因的表达,从而改良性状.本文概述了Krox-20的研究现状.%Early growth response 2 (EGR2/Krox-20) gene is one member of the immediate early gene family which is transiently activated after serum stimulation,and the Krox-20 protein,with three zinc fingers,can combine to specific DNA sequence and play the role of transcriptional activation.Its expression is regulated by multiple signaling pathways,and it is involved in animal fat cell differentiation as well as the development of nervous system.Studies on transgenic mice have indicated that Krox-20 specifically promotes the expression of certain genes which are related to the formation of animal fat,the development of hair follicle and other physiological processes.This review provides an overview of advance in study of Krox-20.

  4. Induction of sensitivity to the cytotoxic action of tumor necrosis factor alpha by adenovirus E1A is independent of transformation and transcriptional activation.

    Science.gov (United States)

    Ames, R S; Holskin, B; Mitcho, M; Shalloway, D; Chen, M J

    1990-09-01

    We have previously shown that expression of the adenovirus E1A 12S or 13S products in NIH 3T3 fibroblasts induces susceptibility to the cytotoxic actions of tumor necrosis factor alpha (TNF alpha). A large number of studies have mapped the multiple biological functions of the 12S and 13S products to three highly conserved regions (CR) within the E1A sequence. Here we used plasmids coding for E1A deletion and point mutants in these regions to generate target cell lines for TNF alpha cytotoxicity assays to determine which regions and functions are necessary for the induction of TNF alpha sensitivity. Expression of CR1 was required for the induction of TNF alpha sensitivity. This finding did not reflect a requirement for transforming or transcriptional repression activity, since some mutants that were defective in both of these properties were able to induce TNF alpha sensitivity. CR2 transformation-defective point mutants, but not a CR2/3 region deletion mutant, were also able to induce sensitivity. In addition, NIH 3T3 cells expressing the retroviral transcription activators tat from human immunodeficiency virus type 1 and tax from human T-lymphotropic virus type I were not sensitive to TNF alpha. However, the possibility that E1A-mediated transcriptional activation can augment the induction of TNF alpha sensitivity is not excluded. Comparison of data from previous biological studies with the TNF alpha cytotoxicity assays presented here suggested that the mechanism by which E1A induces sensitivity to TNF alpha in NIH 3T3 cells is independent of many of the known E1A biological functions, including transformation in cooperation with ras, immortalization, induction of DNA synthesis in quiescent cells, and transcriptional repression. A novel E1A-mediated effect may be involved, although our data do not exclude the possibility that sensitization to TNF alpha is mediated through E1A binding to cellular proteins. PMID:2143540

  5. Role of transcription factors in peripheral nerve regeneration.

    Science.gov (United States)

    Patodia, Smriti; Raivich, Gennadij

    2012-01-01

    Following axotomy, the activation of multiple intracellular signaling cascades causes the expression of a cocktail of regeneration-associated transcription factors which interact with each other to determine the fate of the injured neurons. The nerve injury response is channeled through manifold and parallel pathways, integrating diverse inputs, and controlling a complex transcriptional output. Transcription factors form a vital link in the chain of regeneration, converting injury-induced stress signals into downstream protein expression via gene regulation. They can regulate the intrinsic ability of axons to grow, by controlling expression of whole cassettes of gene targets. In this review, we have investigated the functional roles of a number of different transcription factors - c-Jun, activating transcription factor 3, cAMP response element binding protein, signal transducer, and activator of transcription-3, CCAAT/enhancer binding proteins β and δ, Oct-6, Sox11, p53, nuclear factor kappa-light-chain-enhancer of activated B cell, and ELK3 - in peripheral nerve regeneration. Studies involving use of conditional mutants, microarrays, promoter region mapping, and different injury paradigms, have enabled us to understand their distinct as well as overlapping roles in achieving anatomical and functional regeneration after peripheral nerve injury. PMID:22363260

  6. Different TBP-associated factors are required for mediating the stimulation of transcription in vitro by the acidic transactivator GAL-VP16 and the two nonacidic activation functions of the estrogen receptor.

    OpenAIRE

    Brou, C; J. Wu; Ali, S; Scheer, E; Lang, C.; Davidson, I; P. Chambon; Tora, L

    1993-01-01

    The estrogen receptor (ER) contains two nonacidic transcriptional activation functions, AF-1 and AF-2 (formerly TAF-1 and TAF-2). In this study we show that AF-1 and AF-2 are able to stimulate transcription in vitro in a HeLa cell system when fused to the DNA binding domain of the yeast activator GAL4. We also demonstrate that a factor(s) required for the function of the ER AFs is chromatographically separable from a factor(s) necessary for the activity of the acidic activation domain of VP16...

  7. [The Effect of Transcription on Enhancer Activity in Drosophila melanogaster].

    Science.gov (United States)

    Erokhin, M M; Davydova, A I; Lomaev, D V; Georgiev, P G; Chetverina, D A

    2016-01-01

    In higher eukaryotes, the level of gene transcription is under the control of DNA regulatory elements, such as promoter, from which transcription is initiated with the participation of RNA polymerase II and general transcription factors, as well as the enhancer, which increase the rate of transcription with the involvement of activator proteins and cofactors. It was demonstrated that enhancers are often located in the transcribed regions of the genome. We showed earlier that transcription negatively affected the activity of enhancers in Drosophila in model transgenic systems. In this study, we tested the effect of the distance between the leading promoter, enhancer, and target promoter on the inhibitory effect of transcriptions of different strengths. It was demonstrated that the negative effect of transcription remained, but weakened with increased distance between the leading promoter and enhancer and with decreased distance between the enhancer and target promoter. Thus, transcription can modulate the activity of enhancers by controlling its maximum level.

  8. BjMYB1, a transcription factor implicated in plant defence through activating BjCHI1 chitinase expression by binding to a W-box-like element

    Science.gov (United States)

    Gao, Ying; Jia, Shuangwei; Wang, Chunlian; Wang, Fujun; Wang, Fajun; Zhao, Kaijun

    2016-01-01

    We previously identified the W-box-like-4 (Wbl-4) element (GTAGTGACTCAT), one of six Wbl elements in the BjC-P promoter of the unusual chitinase gene BjCHI1 from Brassica juncea, as the core element responsive to fungal infection. Here, we report the isolation and characterization of the cognate transcription factor interacting with the Wbl-4 element. Using Wbl-4 as a target, we performed yeast one-hybrid screening of a B. juncea cDNA library and isolated an R2R3-MYB transcription factor designated as BjMYB1. BjMYB1 was localized in the nucleus of plant cells. EMSA assays confirmed that BjMYB1 binds to the Wbl-4 element. Transiently expressed BjMYB1 up-regulated the activity of the BjC-P promoter through its binding to the Wbl-4 element in tobacco (Nicotiana benthamiana) leaves. In B. juncea, BjMYB1 displayed a similar induced expression pattern as that of BjCHI1 upon infection by the fungus Botrytis cinerea. Moreover, heterogeneous overexpression of BjMYB1 significantly elevated the resistance of transgenic Arabidopsis thaliana to the fungus B. cinerea. These results suggest that BjMYB1 is potentially involved in host defence against fungal attack through activating the expression of BjCHI1 by binding to the Wbl-4 element in the BjC-P promoter. This finding demonstrates a novel DNA target of plant MYB transcription factors. PMID:27353280

  9. Transcription factors as targets for DNA-interacting drugs.

    Science.gov (United States)

    Gniazdowski, Marek; Denny, William A; Nelson, Stephanie M; Czyz, Malgorzata

    2003-06-01

    Gene expression, both tissue specific or inducible, is controlled at the level of transcription by various transcription factors interacting with specific sequences of DNA. Anticancer drugs and other potential therapeutic agents alter interactions of regulatory proteins with DNA by a variety of different mechanisms. The main ones, considered in the review, are: i) competition for the transcription factor DNA binding sequences by drugs that interact non-covalently with DNA (e.g. anthracyclines, acridines, actinomycin D, pyrrole antibiotics and their polyamide derivatives); ii) covalent modifications of DNA by alkylating agents (e.g. nitrogen mustards, cisplatin) that prevent transcription factors from recognizing their specific sequences, or that result in multiple "unnatural" binding sites in DNA which hijack the transcription factors, thus decreasing their availability in the nucleus; iii) competition with binding sites on the transcription factors by synthetic oligonucleotides or peptide nucleic acids in an antigene strategy. The latter compounds may also compete for binding sites on regulatory proteins, acting as decoys to lower their active concentration in the cell. In this review, we have summarized recent advances which have been made towards understanding the above mechanisms by which small molecules interfere with the function of transcription factors. PMID:12678680

  10. ETS transcription factors in embryonic vascular development.

    Science.gov (United States)

    Craig, Michael P; Sumanas, Saulius

    2016-07-01

    At least thirteen ETS-domain transcription factors are expressed during embryonic hematopoietic or vascular development and potentially function in the formation and maintenance of the embryonic vasculature or blood lineages. This review summarizes our current understanding of the specific roles played by ETS factors in vasculogenesis and angiogenesis and the implications of functional redundancies between them.

  11. The NAD-Dependent Deacetylase Sirtuin-1 Regulates the Expression of Osteogenic Transcriptional Activator Runt-Related Transcription Factor 2 (Runx2 and Production of Matrix Metalloproteinase (MMP-13 in Chondrocytes in Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Koh Terauchi

    2016-06-01

    Full Text Available Aging is one of the major pathologic factors associated with osteoarthritis (OA. Recently, numerous reports have demonstrated the impact of sirtuin-1 (Sirt1, which is the NAD-dependent deacetylase, on human aging. It has been demonstrated that Sirt1 induces osteogenic and chondrogenic differentiation of mesenchymal stem cells. However, the role of Sirt1 in the OA chondrocytes still remains unknown. We postulated that Sirt1 regulates a hypertrophic chondrocyte lineage and degeneration of articular cartilage through the activation of osteogenic transcriptional activator Runx2 and matrix metalloproteinase (MMP-13 in OA chondrocytes. To verify whether sirtuin-1 (Sirt1 regulates chondrocyte activity in OA, we studied expressions of Sirt1, Runx2 and production of MMP-13, and their associations in human OA chondrocytes. The expression of Sirt1 was ubiquitously observed in osteoarthritic chondrocytes; in contrast, Runx2 expressed in the osteophyte region in patients with OA and OA model mice. OA relating catabolic factor IL-1βincreased the expression of Runx2 in OA chondrocytes. OA chondrocytes, which were pretreated with Sirt1 inhibitor, inhibited the IL-1β-induced expression of Runx2 compared to the control. Since the Runx2 is a promotor of MMP-13 expression, Sirt1 inactivation may inhibit the Runx2 expression and the resultant down-regulation of MMP-13 production in chondrocytes. Our findings suggest thatSirt1 may regulate the expression of Runx2, which is the osteogenic transcription factor, and the production of MMP-13 from chondrocytes in OA. Since Sirt1 activity is known to be affected by several stresses, including inflammation and oxidative stress, as well as aging, SIRT may be involved in the development of OA.

  12. Antioxidative Activities of Both Oleic Acid and Camellia tenuifolia Seed Oil Are Regulated by the Transcription Factor DAF-16/FOXO in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Chia-Cheng Wei

    Full Text Available Tea seed oil is a high quality edible oil, yet lacking sufficient scientific evidences to support the nutritional and medical purposes. We identified major and minor components in Camellia tenuifolia seed oil and investigated the antioxidative activity and its underlying mechanisms in Caenorhabditis elegans.The results showed that the major constitutes in C. tenuifolia seed oil were unsaturated fatty acids (~78.4%. Moreover, two minor compounds, β-amyrin and β-sitosterol, were identified and their antioxidative activity was examined. We found that oleic acid was the major constitute in C. tenuifolia seed oil and plays a key role in the antioxidative activity of C. tenuifolia seed oil in C. elegans.This study found evidences that the transcription factor DAF-16/FOXO was involved in both oleic acid- and C. tenuifolia seed oil-mediated oxidative stress resistance in C. elegans. This study suggests the potential of C. tenuifolia seed oil as nutrient or functional foods.

  13. Advanced glycation end-products induce heparanase expression in endothelial cells by the receptor for advanced glycation end products and through activation of the FOXO4 transcription factor.

    Science.gov (United States)

    An, Xiao-Fei; Zhou, Lei; Jiang, Peng-Jun; Yan, Ming; Huang, Yu-Jun; Zhang, Su-Na; Niu, Yun-Fei; Ten, Shi-Chao; Yu, Jiang-Yi

    2011-08-01

    As an endo-β (1-4)-D: -glucuronidase, heparanase can specifically cleave carbohydrate chains of heparan sulfate (HS) and has been implicated in development of endothelial cells dsyfunction. The advanced glycation end products (AGEs) play a pivotal role in the pathology of diabetic complications. In the present study, we investigated the effect of AGE-bovine serum albumin (AGE-BSA) on heparanase expression in human microvascular endothelial cells (HMVECs) and the underlying molecular mechanisms. The results indicated that in vitro direct exposure of HMVECs to AGE-BSA (300, 1000, and 3000 μg/ml) could increase heparanase mRNA and protein expression in a dose and time-dependent manner. The effect of 1000 μg/ml AGE-BSA could be abolished by neutralization with antibody of the receptor for advanced glycation end products (RAGE). Moreover, pretreatment with inhibitors of nuclear factor-κB (NF-κB) or PI3-kinase did not affect heparanase expression induced by AGE-BSA. Nevertheless, small interference RNA (siRNA) for transcriptional factor FOXO4 could reduce the increase of heparanase expression in HMVECs induced by 1000 μg/ml AGE-BSA. These results suggest that AGEs could induce heparanase expression in HMVECs by RAGE and predominantly through activation of the FOXO4 transcription factor.

  14. Program-specific distribution of a transcription factor dependent on partner transcription factor and MAPK signaling.

    Science.gov (United States)

    Zeitlinger, Julia; Simon, Itamar; Harbison, Christopher T; Hannett, Nancy M; Volkert, Thomas L; Fink, Gerald R; Young, Richard A

    2003-05-01

    Specialized gene expression programs are induced by signaling pathways that act on transcription factors. Whether these transcription factors can function in multiple developmental programs through a global switch in promoter selection is not known. We have used genome-wide location analysis to show that the yeast Ste12 transcription factor, which regulates mating and filamentous growth, is bound to distinct program-specific target genes dependent on the developmental condition. This condition-dependent distribution of Ste12 requires concurrent binding of the transcription factor Tec1 during filamentation and is differentially regulated by the MAP kinases Fus3 and Kss1. Program-specific distribution across the genome may be a general mechanism by which transcription factors regulate distinct gene expression programs in response to signaling. PMID:12732146

  15. The role of mitogen-activated protein (MAP) kinase signalling components and the Ste12 transcription factor in germination and pathogenicity of Botrytis cinerea.

    Science.gov (United States)

    Schamber, Astrid; Leroch, Michaela; Diwo, Janine; Mendgen, Kurt; Hahn, Matthias

    2010-01-01

    In all fungi studied so far, mitogen-activated protein (MAP) kinase cascades serve as central signalling complexes that are involved in various aspects of growth, stress response and infection. In this work, putative components of the yeast Fus3/Kss1-type MAP kinase cascade and the putative downstream transcription factor Ste12 were analysed in the grey mould fungus Botrytis cinerea. Deletion mutants of the MAP triple kinase Ste11, the MAP kinase kinase Ste7 and the MAP kinase adaptor protein Ste50 all resulted in phenotypes similar to that of the previously described BMP1 MAP kinase mutant, namely defects in germination, delayed vegetative growth, reduced size of conidia, lack of sclerotia formation and loss of pathogenicity. Mutants lacking Ste12 showed normal germination, but delayed infection as a result of low penetration efficiency. Two differently spliced ste12 transcripts were detected, and both were able to complement the ste12 mutant, except for a defect in sclerotium formation, which was only corrected by the full-sized transcript. Overexpression of the smaller ste12 transcript resulted in delayed germination and strongly reduced infection. Bc-Gas2, a homologue of Magnaporthe grisea Gas2 that is required for appressorial function, was found to be non-essential for growth and infection, but its expression was under the control of both Bmp1 and Ste12. In summary, the role and regulatory connections of the Fus3/Kss1-type MAP kinase cascade in B. cinerea revealed both common and unique properties compared with those of other plant pathogenic fungi, and provide evidence for a regulatory link between the BMP1 MAP kinase cascade and Ste12. PMID:20078780

  16. Triptolide inhibits B7-H1 expression on proinflammatory factor activated renal tubular epithelial cells by decreasing NF-kappaB transcription.

    Science.gov (United States)

    Chen, Yongwen; Zhang, Jingbo; Li, Jingyi; Zhao, Tingting; Zou, Liyun; Tang, Yan; Zhang, Xiaoping; Wu, Yuzhang

    2006-03-01

    Triptolide has been used extensively in China for the treatment of autoimmune diseases and tumor for many centuries. Nevertheless, little is known about its exact immunosuppressive and anti-inflammatory properties. Increasing recognition of the importance of renal tubular epithelial cells (TECs) in renal diseases raises the question whether triptolide can regulate TEC activity. In this study, various cultured human and murine TECs were exposed to tumor necrotic factor-alpha (TNF-alpha) and triptolide, followed to examine the expression of B7-H1 and B7-DC. Flow cytometric analysis revealed that B7-H1 but not B7-DC constitutively expresses on TECs, and the B7-H1 protein expression was profoundly up-regulated by the stimulation of TNF-alpha with a dose-dependent manner. However, triptolide under non-cytotoxic concentration could down-regulate B7-H1 expression on activated TECs at both mRNA and protein level. This effect was transcription factor NF-kappaB dependent. Interestingly, the significant damping effect of triptolide on B7-H1 signal could promote interleukin-2 production by T cell hybridoma (C10) after antigen presentation and enhance cytokine (IFN-gamma and IL-2) secretion by anti-CD3 activated T cells. Our results indicated that triptolide could regulate TEC activity via B7-H1, in addition to previously reported it directly affects the production of some inflammatory factors by T cells, tumor cells and peripheral blood mononuclear cells. PMID:16129490

  17. Oct-2 transcription factor binding activity and expression up-regulation in rat cerebral ischaemia is associated with a diminution of neuronal damage in vitro.

    Science.gov (United States)

    Camós, Susanna; Gubern, Carme; Sobrado, Mónica; Rodríguez, Rocío; Romera, Víctor G; Moro, María Ángeles; Lizasoain, Ignacio; Serena, Joaquín; Mallolas, Judith; Castellanos, Mar

    2014-06-01

    Brain plasticity provides a mechanism to compensate for lesions produced as a result of stroke. The present study aims to identify new transcription factors (TFs) following focal cerebral ischaemia in rat as potential therapeutic targets. A transient focal cerebral ischaemia model was used for TF-binding activity and TF-TF interaction profile analysis. A permanent focal cerebral ischaemia model was used for the transcript gene analysis and for the protein study. The identification of TF variants, mRNA analysis, and protein study was performed using conventional polymerase chain reaction (PCR), qPCR, and Western blot and immunofluorescence, respectively. Rat cortical neurons were transfected with small interfering RNA against the TF in order to study its role. The TF-binding analysis revealed a differential binding activity of the octamer family in ischaemic brain in comparison with the control brain samples both in acute and late phases. In this study, we focused on Oct-2 TF. Five of the six putative Oct-2 transcript variants are expressed in both control and ischaemic rat brain, showing a significant increase in the late phase of ischaemia. Oct-2 protein showed neuronal localisation both in control and ischaemic rat brain cortical slices. Functional studies revealed that Oct-2 interacts with TFs involved in important brain processes (neuronal and vascular development) and basic cellular functions and that Oct-2 knockdown promotes neuronal injury. The present study shows that Oct-2 expression and binding activity increase in the late phase of cerebral ischaemia and finds Oct-2 to be involved in reducing ischaemic-mediated neuronal injury.

  18. Loss of Interdependent Binding by the FoxO1 and FoxA1/A2 Forkhead Transcription Factors Culminates in Perturbation of Active Chromatin Marks and Binding of Transcriptional Regulators at Insulin-sensitive Genes.

    Science.gov (United States)

    Yalley, Akua; Schill, Daniel; Hatta, Mitsutoki; Johnson, Nicole; Cirillo, Lisa Ann

    2016-04-15

    FoxO1 binds to insulin response elements located in the promoters of insulin-like growth factor-binding protein 1 (IGFBP1) and glucose-6-phosphatase (G6Pase), activating their expression. Insulin-mediated phosphorylation of FoxO1 promotes cytoplasmic translocation, inhibiting FoxO1-mediated transactivation. We have previously demonstrated that FoxO1 opens and remodels chromatin assembled from the IGFBP1 promoter via a highly conserved winged helix motif. This finding, which established FoxO1 as a "pioneer" factor, suggested a model whereby FoxO1 chromatin remodeling at regulatory targets facilitates binding and recruitment of additional regulatory factors. However, the impact of FoxO1 phosphorylation on its ability to bind chromatin and the effect of FoxO1 loss on recruitment of neighboring transcription factors at its regulatory targets in liver chromatin is unknown. In this study, we demonstrate that an amino acid substitution that mimics insulin-mediated phosphorylation of a serine in the winged helix DNA binding motif curtails FoxO1 nucleosome binding. We also demonstrate that shRNA-mediated loss of FoxO1 binding to the IGFBP1 and G6Pase promoters in HepG2 cells significantly reduces binding of RNA polymerase II and the pioneer factors FoxA1/A2. Knockdown of FoxA1 similarly reduced binding of RNA polymerase II and FoxO1. Reduction in acetylation of histone H3 Lys-27 accompanies loss of FoxO1 and FoxA1/A2 binding. Interdependent binding of FoxO1 and FoxA1/A2 possibly entails cooperative binding because FoxO1 and FoxA1/A2 facilitate one another's binding to IGFPB1 promoter DNA. These results illustrate how transcription factors can nucleate transcriptional events in chromatin in response to signaling events and suggest a model for regulation of hepatic glucose metabolism through interdependent FoxO/FoxA binding.

  19. Keap1 silencing boosts lipopolysaccharide-induced transcription of interleukin 6 via activation of nuclear factor κB in macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Peng [Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China); Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC 27709 (United States); Xue, Peng; Dong, Jian [Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC 27709 (United States); Peng, Hui [Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC 27709 (United States); Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences (China); Clewell, Rebecca [Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC 27709 (United States); Wang, Aiping [Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China); Wang, Yue [Institute for Medical Device Standardization Administration, National Institutes for Food and Drug Control, Beijing (China); Peng, Shuangqing [Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences (China); Qu, Weidong [Key Laboratory of the Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai (China); Zhang, Qiang; Andersen, Melvin E. [Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC 27709 (United States); Pi, Jingbo, E-mail: jpi@thehamner.org [Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC 27709 (United States)

    2013-11-01

    Interleukin-6 (IL6) is a multifunctional cytokine that regulates immune and inflammatory responses. Multiple transcription factors, including nuclear factor κB (NF-κB) and nuclear factor E2-related factor 2 (Nrf2), regulate IL6 transcription. Kelch-like ECH-associated protein 1 (Keap1) is a substrate adaptor protein for the Cullin 3-dependent E3 ubiquitin ligase complex, which regulates the degradation of many proteins, including Nrf2 and IκB kinase β (IKKβ). Here, we found that stable knockdown of Keap1 (Keap1-KD) in RAW 264.7 (RAW) mouse macrophages and human monocyte THP-1 cells significantly increased expression of Il6, and Nrf2-target genes, under basal and lipopolysaccharide (LPS, 0.001–0.1 μg/ml)-challenged conditions. However, Nrf2 activation alone, by tert-butylhydroquinone treatment of RAW cells, did not increase expression of Il6. Compared to cells transduced with scrambled non-target negative control shRNA, Keap1-KD RAW cells showed enhanced protein levels of IKKβ and increased expression and phosphorylation of NF-κB p65 under non-stressed and LPS-treated conditions. Because the expression of Il6 in Keap1-KD RAW cells was significantly attenuated by silencing of Ikkβ, but not Nrf2, it appears that stabilized IKKβ is responsible for the enhanced transactivation of Il6 in Keap1-KD cells. This study demonstrated that silencing of Keap1 in macrophages boosts LPS-induced transcription of Il6 via NF-κB activation. Given the importance of IL6 in the inflammatory response, the Keap1–IKKβ–NF-κB pathway may be a novel target for treatment and prevention of inflammation and associated disorders. - Highlights: • Knockdown of Keap1 increases expression of Il6 in macrophages. • Silencing of Keap1 results in protein accumulation of IKKβ and NF-κB p65. • Induction of Il6 resulting from Keap1 silencing is attributed to NF-κB activation.

  20. CCAAT/enhancer-binding protein delta activates insulin-like growth factor-I gene transcription in osteoblasts. Identification of a novel cyclic AMP signaling pathway in bone

    Science.gov (United States)

    Umayahara, Y.; Ji, C.; Centrella, M.; Rotwein, P.; McCarthy, T. L.

    1997-01-01

    Insulin-like growth factor-I (IGF-I) plays a key role in skeletal growth by stimulating bone cell replication and differentiation. We previously showed that prostaglandin E2 (PGE2) and other cAMP-activating agents enhanced IGF-I gene transcription in cultured primary rat osteoblasts through promoter 1, the major IGF-I promoter, and identified a short segment of the promoter, termed HS3D, that was essential for hormonal regulation of IGF-I gene expression. We now demonstrate that CCAAT/enhancer-binding protein (C/EBP) delta is a major component of a PGE2-stimulated DNA-protein complex involving HS3D and find that C/EBPdelta transactivates IGF-I promoter 1 through this site. Competition gel shift studies first indicated that a core C/EBP half-site (GCAAT) was required for binding of a labeled HS3D oligomer to osteoblast nuclear proteins. Southwestern blotting and UV-cross-linking studies showed that the HS3D probe recognized a approximately 35-kDa nuclear protein, and antibody supershift assays indicated that C/EBPdelta comprised most of the PGE2-activated gel-shifted complex. C/EBPdelta was detected by Western immunoblotting in osteoblast nuclear extracts after treatment of cells with PGE2. An HS3D oligonucleotide competed effectively with a high affinity C/EBP site from the rat albumin gene for binding to osteoblast nuclear proteins. Co-transfection of osteoblast cell cultures with a C/EBPdelta expression plasmid enhanced basal and PGE2-activated IGF-I promoter 1-luciferase activity but did not stimulate a reporter gene lacking an HS3D site. By contrast, an expression plasmid for the related protein, C/EBPbeta, did not alter basal IGF-I gene activity but did increase the response to PGE2. In osteoblasts and in COS-7 cells, C/EBPdelta, but not C/EBPbeta, transactivated a reporter gene containing four tandem copies of HS3D fused to a minimal promoter; neither transcription factor stimulated a gene with four copies of an HS3D mutant that was unable to bind osteoblast

  1. Runx transcription factors in neuronal development

    Directory of Open Access Journals (Sweden)

    Shiga Takashi

    2008-08-01

    Full Text Available Abstract Runt-related (Runx transcription factors control diverse aspects of embryonic development and are responsible for the pathogenesis of many human diseases. In recent years, the functions of this transcription factor family in the nervous system have just begun to be understood. In dorsal root ganglion neurons, Runx1 and Runx3 play pivotal roles in the development of nociceptive and proprioceptive sensory neurons, respectively. Runx appears to control the transcriptional regulation of neurotrophin receptors, numerous ion channels and neuropeptides. As a consequence, Runx contributes to diverse aspects of the sensory system in higher vertebrates. In this review, we summarize recent progress in determining the role of Runx in neuronal development.

  2. Characterization of factors that direct transcription of rat ribosomal DNA.

    OpenAIRE

    Smith, S D; Oriahi, E; Lowe, D.; Yang-Yen, H F; O'Mahony, D.; Rose, K.; Chen, K.; Rothblum, L I

    1990-01-01

    The protein components that direct and activate accurate transcription by rat RNA polymerase I were studied in extracts of Novikoff hepatoma ascites cells. A minimum of at least two components, besides RNA polymerase I, that are necessary for efficient utilization of templates were identified. The first factor, rat SL-1, is required for species-specific recognition of the rat RNA polymerase I promoter and may be sufficient to direct transcription by pure RNA polymerase I. Rat SL-1 directed th...

  3. Activity of transcription factor JACKDAW is essential for SHR/SCR-dependent activation of SCARECROW and MAGPIE and is modulated by reciprocal interactions with MAGPIE, SCARECROW and SHORT ROOT.

    Science.gov (United States)

    Ogasawara, Hiromi; Kaimi, Ryuji; Colasanti, Joseph; Kozaki, Akiko

    2011-11-01

    Two GRAS family transcription factors, SHORT-ROOT (SHR) and SCARECROW (SCR), are required for ground tissue and quiescent center formation in Arabidopsis roots. The action of SHR and SCR is regulated by two INDETERMINATE DOMAIN (IDD) family proteins, JACKDAW (JKD) and MAGPIE (MGP). Although the reciprocal interaction of these transcription factors is considered to be involved in the modulation of SHR and SCR action by JKD and MGP, the underlying mechanism remains unclear. In this study, we use a transient assay with Arabidopsis culture cells to show that the physical interaction of these transcription factors modulate their transcriptional activity. Transient expression of LUC reporter genes with the proximal sequences upstream from the ATG codon of SCR and MGP in protoplasts were activated by JKD. Moreover, promoter activities were enhanced further by the addition of SHR and SCR to JKD, but not by the combination of SHR and SCR in the absence of JKD. Yeast one-hybrid analysis showed that JKD binds to the SCR and MGP promoter sequences, indicating the existence of another binding sequences of JKD different from the previously determined IDD binding sequence. Our findings suggest that JKD directly regulates SCR and MGP expression in cooperation with SHR, SCR and MGP.

  4. Contact sensitizer nickel sulfate activates the transcription factors NF-kB and AP-1 and increases the expression of nitric oxide synthase in a skin dendritic cell line

    OpenAIRE

    Cruz, M. Teresa; Gonçalo, Margarida; Figueiredo, Américo; Carvalho, Arsélio P.; Duarte, Carlos B.; Lopes, M. Celeste

    2004-01-01

    Nuclear factor kappa B (NF-kB) and activating protein-1 (AP-1) transcription factors are ubiquitously expressed signaling molecules known to regulate the transcription of a large number of genes involved in immune responses, namely the inducible isoform of nitric oxide synthase (iNOS). In this study, we demonstrate that a fetal skin-derived dendritic cell line (FSDC) produces nitric oxide (NO) in response to the contact sensitizer nickel sulfate (NiSO4) and increases the ...

  5. Transcriptional activation of hypoxia-inducible factor-1 (HIF-1) in myeloid cells promotes angiogenesis through VEGF and S100A8.

    Science.gov (United States)

    Ahn, G-One; Seita, Jun; Hong, Beom-Ju; Kim, Young-Eun; Bok, Seoyeon; Lee, Chan-Ju; Kim, Kwang Soon; Lee, Jerry C; Leeper, Nicholas J; Cooke, John P; Kim, Hak Jae; Kim, Il Han; Weissman, Irving L; Brown, J Martin

    2014-02-18

    Emerging evidence indicates that myeloid cells are essential for promoting new blood vessel formation by secreting various angiogenic factors. Given that hypoxia-inducible factor (HIF) is a critical regulator for angiogenesis, we questioned whether HIF in myeloid cells also plays a role in promoting angiogenesis. To address this question, we generated a unique strain of myeloid-specific knockout mice targeting HIF pathways using human S100A8 as a myeloid-specific promoter. We observed that mutant mice where HIF-1 is transcriptionally activated in myeloid cells (by deletion of the von Hippel-Lindau gene) resulted in erythema, enhanced neovascularization in matrigel plugs, and increased production of vascular endothelial growth factor (VEGF) in the bone marrow, all of which were completely abrogated by either genetic or pharmacological inactivation of HIF-1. We further found that monocytes were the major effector producing VEGF and S100A8 proteins driving neovascularization in matrigel. Moreover, by using a mouse model of hindlimb ischemia we observed significantly improved blood flow in mice intramuscularly injected with HIF-1-activated monocytes. This study therefore demonstrates that HIF-1 activation in myeloid cells promotes angiogenesis through VEGF and S100A8 and that this may become an attractive therapeutic strategy to treat diseases with vascular defects.

  6. ZCT1 and ZCT2 transcription factors repress the activity of a gene promoter from the methyl erythritol phosphate pathway in Madagascar periwinkle cells.

    Science.gov (United States)

    Chebbi, Mouadh; Ginis, Olivia; Courdavault, Vincent; Glévarec, Gaëlle; Lanoue, Arnaud; Clastre, Marc; Papon, Nicolas; Gaillard, Cécile; Atanassova, Rossitza; St-Pierre, Benoit; Giglioli-Guivarc'h, Nathalie; Courtois, Martine; Oudin, Audrey

    2014-10-15

    In Catharanthus roseus, accumulating data highlighted the existence of a coordinated transcriptional regulation of structural genes that takes place within the secoiridoid biosynthetic branch, including the methyl erythritol phosphate (MEP) pathway and the following steps leading to secologanin. To identify transcription factors acting in these pathways, we performed a yeast one-hybrid screening using as bait a promoter region of the hydroxymethylbutenyl 4-diphosphate synthase (HDS) gene involved in the responsiveness of C. roseus cells to hormonal signals inducing monoterpene indole alkaloid (MIA) production. We identified that ZCT2, one of the three members of the zinc finger Catharanthus protein (ZCT) family, can bind to a HDS promoter region involved in hormonal responsiveness. By trans-activation assays, we demonstrated that ZCT1 and ZCT2 but not ZCT3 repress the HDS promoter activity. Gene expression analyses in C. roseus cells exposed to methyljasmonate revealed a persistence of induction of ZCT2 gene expression suggesting the existence of feed-back regulatory events acting on HDS gene expression in correlation with the MIA production. PMID:25108262

  7. Activating transcription factor 4 mediates a multidrug resistance phenotype of esophageal squamous cell carcinoma cells through transactivation of STAT3 expression.

    Science.gov (United States)

    Zhu, Hongwu; Chen, Xiong; Chen, Bin; Chen, Bei; Fan, Jianyong; Song, Weibing; Xie, Ziying; Jiang, Dan; Li, Qiuqiong; Zhou, Meihua; Sun, Dayong; Zhao, Yagang

    2014-11-01

    Multidrug resistance (MDR) is a major challenge to the clinical treatment of esophageal cancer. The stress response gene activating transcription factor 4 (ATF4) is involved in homeostasis and cellular protection. However, relatively little is known about the expression and function of ATF4 in esophageal squamous cell carcinoma (ESCC) MDR. In this study, we investigate the potential role and mechanisms of ATF4 in ESCC MDR. We demonstrated that overexpression of ATF4 promotes the MDR phenotype in ESCC cells, while depletion of ATF4 in the MDR ESCC cell line induces drug re-sensitization. We also demonstrated that ATF4 transactivates STAT3 expression by directly binding to the signal transducers and activators of transcription 3 (STAT3) promoter, resulting in MDR in ESCC cells. Significantly, inhibition of STAT3 by small interfering RNA (siRNA) or a selective inhibitor (JSI-124) reintroduces therapeutic sensitivity. In addition, increased Bcl-2, survivin, and MRP1 expression levels were observed in ATF4-overexpressing cells. In conclusion, ATF4 may promote MDR in ESCC cells through the up-regulation of STAT3 expression, and thus is an attractive therapeutic target to combat therapeutic resistance in ESCC.

  8. Dopamine receptor regulating factor, DRRF: a zinc finger transcription factor.

    Science.gov (United States)

    Hwang, C K; D'Souza, U M; Eisch, A J; Yajima, S; Lammers, C H; Yang, Y; Lee, S H; Kim, Y M; Nestler, E J; Mouradian, M M

    2001-06-19

    Dopamine receptor genes are under complex transcription control, determining their unique regional distribution in the brain. We describe here a zinc finger type transcription factor, designated dopamine receptor regulating factor (DRRF), which binds to GC and GT boxes in the D1A and D2 dopamine receptor promoters and effectively displaces Sp1 and Sp3 from these sequences. Consequently, DRRF can modulate the activity of these dopamine receptor promoters. Highest DRRF mRNA levels are found in brain with a specific regional distribution including olfactory bulb and tubercle, nucleus accumbens, striatum, hippocampus, amygdala, and frontal cortex. Many of these brain regions also express abundant levels of various dopamine receptors. In vivo, DRRF itself can be regulated by manipulations of dopaminergic transmission. Mice treated with drugs that increase extracellular striatal dopamine levels (cocaine), block dopamine receptors (haloperidol), or destroy dopamine terminals (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) show significant alterations in DRRF mRNA. The latter observations provide a basis for dopamine receptor regulation after these manipulations. We conclude that DRRF is important for modulating dopaminergic transmission in the brain. PMID:11390978

  9. C-peptide increases Na,K-ATPase expression via PKC- and MAP kinase-dependent activation of transcription factor ZEB in human renal tubular cells.

    Directory of Open Access Journals (Sweden)

    Dana Galuska

    Full Text Available BACKGROUND: Replacement of proinsulin C-peptide in type 1 diabetes ameliorates nerve and kidney dysfunction, conditions which are associated with a decrease in Na,K-ATPase activity. We determined the molecular mechanism by which long term exposure to C-peptide stimulates Na,K-ATPase expression and activity in primary human renal tubular cells (HRTC in control and hyperglycemic conditions. METHODOLOGY/PRINCIPAL FINDINGS: HRTC were cultured from the outer cortex obtained from patients undergoing elective nephrectomy. Ouabain-sensitive rubidium ((86Rb(+ uptake and Na,K-ATPase activity were determined. Abundance of Na,K-ATPase was determined by Western blotting in intact cells or isolated basolateral membranes (BLM. DNA binding activity was determined by electrical mobility shift assay (EMSA. Culturing of HRTCs for 5 days with 1 nM, but not 10 nM of human C-peptide leads to increase in Na,K-ATPase α(1-subunit protein expression, accompanied with increase in (86Rb(+ uptake, both in normal- and hyperglycemic conditions. Na,K-ATPase α(1-subunit expression and Na,K-ATPase activity were reduced in BLM isolated from cells cultured in presence of high glucose. Exposure to1 nM, but not 10 nM of C-peptide increased PKCε phosphorylation as well as phosphorylation and abundance of nuclear ERK1/2 regardless of glucose concentration. Exposure to 1 nM of C-peptide increased DNA binding activity of transcription factor ZEB (AREB6, concomitant with Na,K-ATPase α(1-subunit mRNA expression. Effects of 1 nM C-peptide on Na,K-ATPase α(1-subunit expression and/or ZEB DNA binding activity in HRTC were abolished by incubation with PKC or MEK1/2 inhibitors and ZEB siRNA silencing. CONCLUSIONS/SIGNIFICANCE: Despite activation of ERK1/2 and PKC by hyperglycemia, a distinct pool of PKCs and ERK1/2 is involved in regulation of Na,K-ATPase expression and activity by C-peptide. Most likely C-peptide stimulates sodium pump expression via activation of ZEB, a transcription

  10. Role of Flightless-I (Drosophila) homolog in the transcription activation of type I collagen gene mediated by transforming growth factor beta

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Mi-Sun; Jeong, Kwang Won, E-mail: kwjeong@gachon.ac.kr

    2014-11-21

    Highlights: • FLII activates TGFβ-mediated expression of COL1A2 gene. • TGFβ induces the association of FLII with SMAD3 and BRG1 in A549 cells. • FLII is required for the recruitment of SWI/SNF complex and chromatin accessibility to COL1A2 promoter. - Abstract: Flightless-I (Drosophila) homolog (FLII) is a nuclear receptor coactivator that is known to interact with other transcriptional regulators such as the SWI/SNF complex, an ATP-dependent chromatin-remodeling complex, at the promoter or enhancer region of estrogen receptor (ER)-α target genes. However, little is known about the role of FLII during transcription initiation in the transforming growth factor beta (TGFβ)/SMAD-dependent signaling pathway. Here, we demonstrate that FLII functions as a coactivator in the expression of type I collagen gene induced by TGFβ in A549 cells. FLII activates the reporter gene driven by COL1A2 promoter in a dose-dependent manner. Co-expression of GRIP1, CARM1, or p300 did not show any synergistic activation of transcription. Furthermore, the level of COL1A2 expression correlated with the endogenous level of FLII mRNA level. Depletion of FLII resulted in a reduction of TGFβ-induced expression of COL1A2 gene. In contrast, over-expression of FLII caused an increase in the endogenous expression of COL1A2. We also showed that FLII is associated with Brahma-related gene 1 (BRG1) as well as SMAD in A549 cells. Notably, the recruitment of BRG1 to the COL1A2 promoter region was decreased in FLII-depleted A549 cells, suggesting that FLII is required for TGFβ-induced chromatin remodeling, which is carried out by the SWI/SNF complex. Furthermore, formaldehyde-assisted isolation of regulatory elements (FAIRE)-quantitative polymerase chain reaction (qPCR) experiments revealed that depletion of FLII caused a reduction in chromatin accessibility at the COL1A2 promoter. These results suggest that FLII plays a critical role in TGFβ/SMAD-mediated transcription of the COL1A2 gene

  11. TOBFAC: the database of tobacco transcription factors

    Directory of Open Access Journals (Sweden)

    Brannock Jennifer F

    2008-01-01

    Full Text Available Abstract Background Regulation of gene expression at the level of transcription is a major control point in many biological processes. Transcription factors (TFs can activate and/or repress the transcriptional rate of target genes and vascular plant genomes devote approximately 7% of their coding capacity to TFs. Global analysis of TFs has only been performed for three complete higher plant genomes – Arabidopsis (Arabidopsis thaliana, poplar (Populus trichocarpa and rice (Oryza sativa. Presently, no large-scale analysis of TFs has been made from a member of the Solanaceae, one of the most important families of vascular plants. To fill this void, we have analysed tobacco (Nicotiana tabacum TFs using a dataset of 1,159,022 gene-space sequence reads (GSRs obtained by methylation filtering of the tobacco genome. An analytical pipeline was developed to isolate TF sequences from the GSR data set. This involved multiple (typically 10–15 independent searches with different versions of the TF family-defining domain(s (normally the DNA-binding domain followed by assembly into contigs and verification. Our analysis revealed that tobacco contains a minimum of 2,513 TFs representing all of the 64 well-characterised plant TF families. The number of TFs in tobacco is higher than previously reported for Arabidopsis and rice. Results TOBFAC: the database of tobacco transcription factors, is an integrative database that provides a portal to sequence and phylogeny data for the identified TFs, together with a large quantity of other data concerning TFs in tobacco. The database contains an individual page dedicated to each of the 64 TF families. These contain background information, domain architecture via Pfam links, a list of all sequences and an assessment of the minimum number of TFs in this family in tobacco. Downloadable phylogenetic trees of the major families are provided along with detailed information on the bioinformatic pipeline that was used to find

  12. Positive regulation by γ-aminobutyric acid B receptor subunit-1 of chondrogenesis through acceleration of nuclear translocation of activating transcription factor-4.

    Science.gov (United States)

    Takahata, Yoshifumi; Hinoi, Eiichi; Takarada, Takeshi; Nakamura, Yukari; Ogawa, Shinya; Yoneda, Yukio

    2012-09-28

    A view that signaling machineries for the neurotransmitter γ-aminobutyric acid (GABA) are functionally expressed by cells outside the central nervous system is now prevailing. In this study, we attempted to demonstrate functional expression of GABAergic signaling molecules by chondrocytes. In cultured murine costal chondrocytes, mRNA was constitutively expressed for metabotropic GABA(B) receptor subunit-1 (GABA(B)R1), but not for GABA(B)R2. Immunohistochemical analysis revealed the predominant expression of GABA(B)R1 by prehypertrophic to hypertrophic chondrocytes in tibial sections of newborn mice. The GABA(B)R agonist baclofen failed to significantly affect chondrocytic differentiation determined by Alcian blue staining and alkaline phosphatase activity in cultured chondrocytes, whereas newborn mice knocked out of GABA(B)R1 (KO) showed a decreased body size and delayed calcification in hyoid bone and forelimb and hindlimb digits. Delayed calcification was also seen in cultured metatarsals from KO mice with a marked reduction of Indian hedgehog gene (Ihh) expression. Introduction of GABA(B)R1 led to synergistic promotion of the transcriptional activity of activating transcription factor-4 (ATF4) essential for normal chondrogenesis, in addition to facilitating ATF4-dependent Ihh promoter activation. Although immunoreactive ATF4 was negligibly detected in the nucleus of chondrocytes from KO mice, ATF4 expression was again seen in the nucleus and cytoplasm after the retroviral introduction of GABA(B)R1 into cultured chondrocytes from KO mice. In nuclear extracts of KO chondrocytes, a marked decrease was seen in ATF4 DNA binding. These results suggest that GABA(B)R1 positively regulates chondrogenesis through a mechanism relevant to the acceleration of nuclear translocation of ATF4 for Ihh expression in chondrocytes. PMID:22879594

  13. XRP44X, an Inhibitor of Ras/Erk Activation of the Transcription Factor Elk3, Inhibits Tumour Growth and Metastasis in Mice

    Science.gov (United States)

    Cheung, Henry; Tourrette, Yves; Maas, Peter; Schalken, Jack A; van der Pluijm, Gabri

    2016-01-01

    Transcription factors have an important role in cancer but are difficult targets for the development of tumour therapies. These factors include the Ets family, and in this study Elk3 that is activated by Ras oncogene /Erk signalling, and is involved in angiogenesis, malignant progression and epithelial-mesenchymal type processes. We previously described the identification and in-vitro characterisation of an inhibitor of Ras / Erk activation of Elk3 that also affects microtubules, XRP44X. We now report an initial characterisation of the effects of XRP44X in-vivo on tumour growth and metastasis in three preclinical models mouse models, subcutaneous xenografts, intra-cardiac injection-bone metastasis and the TRAMP transgenic mouse model of prostate cancer progression. XRP44X inhibits tumour growth and metastasis, with limited toxicity. Tumours from XRP44X-treated animals have decreased expression of genes containing Elk3-like binding motifs in their promoters, Elk3 protein and phosphorylated Elk3, suggesting that perhaps XRP44X acts in part by inhibiting the activity of Elk3. Further studies are now warranted to develop XRP44X for tumour therapy. PMID:27427904

  14. XRP44X, an Inhibitor of Ras/Erk Activation of the Transcription Factor Elk3, Inhibits Tumour Growth and Metastasis in Mice.

    Science.gov (United States)

    Semenchenko, Kostyantyn; Wasylyk, Christine; Cheung, Henry; Tourrette, Yves; Maas, Peter; Schalken, Jack A; van der Pluijm, Gabri; Wasylyk, Bohdan

    2016-01-01

    Transcription factors have an important role in cancer but are difficult targets for the development of tumour therapies. These factors include the Ets family, and in this study Elk3 that is activated by Ras oncogene /Erk signalling, and is involved in angiogenesis, malignant progression and epithelial-mesenchymal type processes. We previously described the identification and in-vitro characterisation of an inhibitor of Ras / Erk activation of Elk3 that also affects microtubules, XRP44X. We now report an initial characterisation of the effects of XRP44X in-vivo on tumour growth and metastasis in three preclinical models mouse models, subcutaneous xenografts, intra-cardiac injection-bone metastasis and the TRAMP transgenic mouse model of prostate cancer progression. XRP44X inhibits tumour growth and metastasis, with limited toxicity. Tumours from XRP44X-treated animals have decreased expression of genes containing Elk3-like binding motifs in their promoters, Elk3 protein and phosphorylated Elk3, suggesting that perhaps XRP44X acts in part by inhibiting the activity of Elk3. Further studies are now warranted to develop XRP44X for tumour therapy. PMID:27427904

  15. Purple foliage coloration in tea (Camellia sinensis L.) arises from activation of the R2R3-MYB transcription factor CsAN1.

    Science.gov (United States)

    Sun, Binmei; Zhu, Zhangsheng; Cao, Panrong; Chen, Hao; Chen, Changming; Zhou, Xin; Mao, Yanhui; Lei, Jianjun; Jiang, Yanpin; Meng, Wei; Wang, Yingxi; Liu, Shaoqun

    2016-01-01

    Purple foliage always appears in Camellia sinensis families; however, the transcriptional regulation of anthocyanin biosynthesis is unknown. The tea bud sport cultivar 'Zijuan' confers an abnormal pattern of anthocyanin accumulation, resulting in a mutant phenotype that has a striking purple color in young foliage and in the stem. In this study, we aimed to unravel the underlying molecular mechanism of anthocyanin biosynthetic regulation in C. sinensis. Our results revealed that activation of the R2R3-MYB transcription factor (TF) anthocyanin1 (CsAN1) specifically upregulated the bHLH TF CsGL3 and anthocyanin late biosynthetic genes (LBGs) to confer ectopic accumulation of pigment in purple tea. We found CsAN1 interacts with bHLH TFs (CsGL3 and CsEGL3) and recruits a WD-repeat protein CsTTG1 to form the MYB-bHLH-WDR (MBW) complex that regulates anthocyanin accumulation. We determined that the hypomethylation of a CpG island in the CsAN1 promoter is associated with the purple phenotype. Furthermore, we demonstrated that low temperature and long illumination induced CsAN1 promoter demethylation, resulting in upregulated expression to promote anthocyanin accumulation in the foliage. The successful isolation of CsAN1 provides important information on the regulatory control of anthocyanin biosynthesis in C. sinensis and offers a genetic resource for the development of new varieties with enhanced anthocyanin content. PMID:27581206

  16. Death-domain associated protein-6 (DAXX) mediated apoptosis in hantavirus infection is counter-balanced by activation of interferon-stimulated nuclear transcription factors

    Energy Technology Data Exchange (ETDEWEB)

    Khaiboullina, Svetlana F., E-mail: sv.khaiboullina@gmail.com [Whittemore Peterson Institute, University of Nevada-Reno, Reno (United States); Morzunov, Sergey P. [Department of Pathology and Nevada State Health Laboratory, University of Nevada-Reno, Reno (United States); Boichuk, Sergei V. [Kazan State Medical University, Kazan (Russian Federation); Palotás, András [Asklepios-Med (private medical practice and research center), Szeged (Hungary); Jeor, Stephen St. [Department of Microbiology and Immunology, University of Nevada-Reno, Reno (United States); Lombardi, Vincent C. [Whittemore Peterson Institute, University of Nevada-Reno, Reno (United States); Rizvanov, Albert A. [Department of Genetics, Kazan (Volga Region) Federal University, Kazan (Russian Federation)

    2013-09-01

    Hantaviruses are negative strand RNA species that replicate predominantly in the cytoplasm. They also activate numerous cellular responses, but their involvement in nuclear processes is yet to be established. Using human umbilical vein endothelial cells (HUVECs), this study investigates the molecular finger-print of nuclear transcription factors during hantavirus infection. The viral-replication-dependent activation of pro-myelocytic leukemia protein (PML) was followed by subsequent localization in nuclear bodies (NBs). PML was also found in close proximity to activated Sp100 nuclear antigen and interferon-stimulated gene 20 kDa protein (ISG-20), but co-localization with death-domain associated protein-6 (DAXX) was not observed. These data demonstrate that hantavirus triggers PML activation and localization in NBs in the absence of DAXX-PLM-NB co-localization. The results suggest that viral infection interferes with DAXX-mediated apoptosis, and expression of interferon-activated Sp100 and ISG-20 proteins may indicate intracellular intrinsic antiviral attempts.

  17. GABP Transcription Factor (Nuclear Respiratory Factor 2) Is Required for Mitochondrial Biogenesis

    OpenAIRE

    Yang, Zhong-Fa; Drumea, Karen; Mott, Stephanie; Wang, Junling; Rosmarin, Alan G.

    2014-01-01

    Mitochondria are membrane-bound cytoplasmic organelles that serve as the major source of ATP production in eukaryotic cells. GABP (also known as nuclear respiratory factor 2) is a nuclear E26 transformation-specific transcription factor (ETS) that binds and activates mitochondrial genes that are required for electron transport and oxidative phosphorylation. We conditionally deleted Gabpa, the DNA-binding component of this transcription factor complex, from mouse embryonic fibroblasts (MEFs) t...

  18. FOXA and master transcription factors recruit Mediator and Cohesin to the core transcriptional regulatory circuitry of cancer cells

    Science.gov (United States)

    Fournier, Michèle; Bourriquen, Gaëlle; Lamaze, Fabien C.; Côté, Maxime C.; Fournier, Éric; Joly-Beauparlant, Charles; Caron, Vicky; Gobeil, Stéphane; Droit, Arnaud; Bilodeau, Steve

    2016-01-01

    Controlling the transcriptional program is essential to maintain the identity and the biological functions of a cell. The Mediator and Cohesin complexes have been established as central cofactors controlling the transcriptional program in normal cells. However, the distribution, recruitment and importance of these complexes in cancer cells have not been fully investigated. Here we show that FOXA and master transcription factors are part of the core transcriptional regulatory circuitry of cancer cells and are essential to recruit M ediator and Cohesin. Indeed, Mediator and Cohesin occupied the enhancer and promoter regions of actively transcribed genes and maintained the proliferation and colony forming potential. Through integration of publically available ChIP-Seq datasets, we predicted the core transcriptional regulatory circuitry of each cancer cell. Unexpectedly, for all cells investigated, the pioneer transcription factors FOXA1 and/or FOXA2 were identified in addition to cell-specific master transcription factors. Loss of both types of transcription factors phenocopied the loss of Mediator and Cohesin. Lastly, the master and pioneer transcription factors were essential to recruit Mediator and Cohesin to regulatory regions of actively transcribed genes. Our study proposes that maintenance of the cancer cell state is dependent on recruitment of Mediator and Cohesin through FOXA and master transcription factors. PMID:27739523

  19. Adaptive evolution of transcription factor binding sites

    Directory of Open Access Journals (Sweden)

    Berg Johannes

    2004-10-01

    Full Text Available Abstract Background The regulation of a gene depends on the binding of transcription factors to specific sites located in the regulatory region of the gene. The generation of these binding sites and of cooperativity between them are essential building blocks in the evolution of complex regulatory networks. We study a theoretical model for the sequence evolution of binding sites by point mutations. The approach is based on biophysical models for the binding of transcription factors to DNA. Hence we derive empirically grounded fitness landscapes, which enter a population genetics model including mutations, genetic drift, and selection. Results We show that the selection for factor binding generically leads to specific correlations between nucleotide frequencies at different positions of a binding site. We demonstrate the possibility of rapid adaptive evolution generating a new binding site for a given transcription factor by point mutations. The evolutionary time required is estimated in terms of the neutral (background mutation rate, the selection coefficient, and the effective population size. Conclusions The efficiency of binding site formation is seen to depend on two joint conditions: the binding site motif must be short enough and the promoter region must be long enough. These constraints on promoter architecture are indeed seen in eukaryotic systems. Furthermore, we analyse the adaptive evolution of genetic switches and of signal integration through binding cooperativity between different sites. Experimental tests of this picture involving the statistics of polymorphisms and phylogenies of sites are discussed.

  20. Transcription factors in pancreatic development. Animal models.

    Science.gov (United States)

    Martin, Merce; Hauer, Viviane; Messmer, Mélanie; Orvain, Christophe; Gradwohl, Gérard

    2007-01-01

    Through the analysis of genetically modified mice a hierarchy of transcription factors regulating pancreas specification, endocrine destiny as well as endocrine subtype specification and differentiation has been established. In addition to conventional approaches such as transgenic technologies and gene targeting, recombinase fate mapping in mice has been key in establishing the lineage relationship between progenitor cells and their progeny in understanding pancreas formation. Moreover, the design of specific mouse models to conditionally express transcription factors in different populations of progenitor cells has revealed to what extent transcription factors required for islet cell development are also sufficient to induce endocrine differentiation and the importance of the competence of progenitor cells to respond to the genetic program implemented by these factors. Taking advantage of this basic science knowledge acquired in rodents, immature insulin-producing cells have recently been differentiated in vitro from human embryonic stem cells. Taken together these major advances emphasize the need to gain further in-depth knowledge of the molecular and cellular mechanisms controlling beta-cell differentiation in mice to generate functional beta-cells in the future that could be used for cell therapy in diabetes. PMID:17923766

  1. Role of cysteines in the stability and DNA-binding activity of the hypochlorite-specific transcription factor HypT.

    Directory of Open Access Journals (Sweden)

    Adrian Drazic

    Full Text Available Reactive oxygen species are important components of the immune response. Hypochlorite (HOCl is produced by neutrophils to kill invading microorganisms. The bactericidal activity of HOCl is due to proteome-wide unfolding and oxidation of proteins at cysteine and methionine residues. Escherichia coli cells are protected from HOCl-killing by the previously identified dodecameric transcription factor HypT (YjiE. Here, we aimed to unravel whether HOCl activates HypT directly or via a reaction product of HOCl with a cellular component. Bacterial viability assays and analysis of target gene regulation indicate that HypT is highly specific to activation by HOCl and that no reaction products of HOCl such as monochloramine, hydroxyl radicals, or methionine sulfoxide activate HypT in vivo. Surprisingly, purified HypT lost its DNA-binding activity upon incubation with HOCl or reaction products that oxidize HypT to form a disulfide-linked dimer, and regained DNA-binding activity upon reduction. Thus, we postulate that the cysteines in HypT contribute to control the DNA-binding activity of HypT in vitro. HypT contains five cysteine residues; a HypT mutant with all cysteines substituted by serine is aggregation-prone and forms tetramers in addition to the typical dodecamers. Using single and multiple cysteine-to-serine mutants, we identified Cys150 to be required for stability and Cys4 being important for oligomerization of HypT to dodecamers. Further, oxidation of Cys4 is responsible for the loss of DNA-binding of HypT upon oxidation in vitro. It appears that Cys4 oxidation upon conditions that are insufficient to stimulate the DNA-binding activity of HypT prevents unproductive interactions of HypT with DNA. Thus, Cys4 oxidation may be a check point in the activation process of HypT.

  2. Differential Expression of the Activator Protein 1 Transcription Factor Regulates Interleukin-1ß Induction of Interleukin 6 in the Developing Enterocyte.

    Directory of Open Access Journals (Sweden)

    Catherine M Cahill

    Full Text Available The innate immune response is characterized by activation of transcription factors, nuclear factor kappa B and activator protein-1 and their downstream targets, the pro-inflammatory cytokines including interleukin 1β and interleukin 6. Normal development of this response in the intestine is critical to survival of the human neonate and delays can cause the onset of devastating inflammatory diseases such as necrotizing enterocolitis. Previous studies have addressed the role of nuclear factor kappa B in the development of the innate immune response in the enterocyte, however despite its central role in the control of multiple pro-inflammatory cytokine genes, little is known on the role of Activator Protein 1 in this response in the enterocyte. Here we show that the canonical Activator Protein 1 members, cJun and cFos and their upstream kinases JNK and p38 play an essential role in the regulation of interleukin 6 in the immature enterocyte. Our data supports a model whereby the cFos/cJun heterodimer and the more potent cJun homodimer downstream of JNK are replaced by less efficient JunD containing dimers, contributing to the decreased responsiveness to interleukin 1β and decreased interleukin 6 secretion observed in the mature enterocyte. The tissue specific expression of JunB in colonocytes and colon derived tissues together with its ability to repress Interleukin-1β induction of an Interleukin-6 gene reporter in the NCM-460 colonocyte suggests that induction of JunB containing dimers may offer an attractive therapeutic strategy for the control of IL-6 secretion during inflammatory episodes in this area of the intestine.

  3. Effect of All-Trans Retinoic Acid (ATRA on Viability, Proliferation, Activation and Lineage-Specific Transcription Factors of CD4+ T Cells

    Directory of Open Access Journals (Sweden)

    Katayoon Bidad

    2011-12-01

    Full Text Available All-trans retinoic acid (ATRA, as an active metabolite of vitamin A, has been shown to affect immune cells. This study was performed to evaluate the effect of ATRA on viability, proliferation, activation and lineage-specific transcription factors of CD4+ T cells. CD4+ T cells were  separated  from  heparinized  blood  of  healthy  donors  and  were  cultured  in conditions, some with, some without ATRA.Viability was assessed by PI  flowcytometry and proliferation was measured by MTT assay. CD69 expression was determined by flowcytometry as a measure of cell activation. Lineage-specific transcription  factors  (FOXP3,  RORγt  and  T-bet  were  examined  by intracellular staining and flowcytometry. High doses of ATRA (0.1-1 mM caused extensive cell death in both PBMCs and CD4+ T cells. Doses of ATRA equal to or lower than 10 µM did not  adversely affect cell viability and proliferation in comparison to  culture medium without ATRA.Doses of ATRA between 10 µM and 1nM significantly increased cell activation when compared  to  culture medium without  ATRA. ATRA could increase FOXP3+  and also FOXP3+RORγt+ T cells while it decreased RORγt+ and T-bet+ T cells. This study showed that doses of ATRA up to 10 µM are safe when using with CD4+  T cells in terms of cell viability, proliferation and activation.We  could  also  show  that  ATRA  diverts  the  human  immune  response  in  neutral conditions (without adding polarizing cytokines by increasing FOXP3+  cells and decreasing RORγt+  cells. ATRA could be regarded as a potential therapy in inflammatory conditions and autoimmunities.

  4. Plumbagin Promotes the Generation of Astrocytes from Rat Spinal Cord Neural Progenitors Via Activation of the Transcription Factor Stat3

    OpenAIRE

    Luo, Yongquan; Mughal, Mohamed; Ouyang, Xin; Jiang, Haiyang; Luo, Tae-Gen Son Weiming; Yu, Qian-sheng; Greig, Nigel H.; Mattson, Mark P

    2010-01-01

    Plumbagin (5-hydroxy-2-methyl-1,4 naphthoquinone) is a naturally occurring low molecular weight lipophilic phytochemical derived from roots of plants of the Plumbago genus. Plumbagin has been reported to have several clinically relevant biological activities in non-neural cells including antiatherosclerotic, anticoagulant, anticarcinogenic, antitumor and bactericidal effects. In a recent screen of a panel of botanical pesticides we identified plumbagin as having neuroprotective activity. In t...

  5. Systematic genetic analysis of transcription factors to map the fission yeast transcription-regulatory network.

    Science.gov (United States)

    Chua, Gordon

    2013-12-01

    Mapping transcriptional-regulatory networks requires the identification of target genes, binding specificities and signalling pathways of transcription factors. However, the characterization of each transcription factor sufficiently for deciphering such networks remains laborious. The recent availability of overexpression and deletion strains for almost all of the transcription factor genes in the fission yeast Schizosaccharomyces pombe provides a valuable resource to better investigate transcription factors using systematic genetics. In the present paper, I review and discuss the utility of these strain collections combined with transcriptome profiling and genome-wide chromatin immunoprecipitation to identify the target genes of transcription factors.

  6. Activation of BmGSTd1 promoter and regulation by transcription factor Krüppel (Kr) in silkworm, Bombyx mori.

    Science.gov (United States)

    Zhao, Guodong; Wang, Binbin; Liu, Yunlei; Du, Jie; Li, Bing; Chen, Yuhua; Xu, Yaxiang; Shen, Weide; Xia, Qingyou; Wei, Zhengguo

    2014-11-10

    The Glutathione S-transferases (GSTs) are a large family of multifunctional enzymes, many of which play an important role in the detoxification of endogenous and exogenous toxic substances. In this research, firstly, we measured the rutin-induced transcriptional level of BmGSTd1 gene by using real-time quantitative RT-PCR method and dual spike-in strategy. The activities of the BmGSTd1 promoter in various tissues of silkworm were measured by firefly luciferase activity and normalized by the Renilla luciferase activity. Results showed that the activity of the BmGSTd1 promoter were highest in Malpighian tubule, followed by fat body, silk gland, hemocyte, epidermis, and midgut. The essential region for basal and rutin-induced transcriptional activity was -1573 to -931bp in Malpighian tubule and fat body of silkworm. Promoter truncation analysis using a dual-luciferase reporter assay in BmN cells showed that the region -1288 to -1202bp for BmGSTd1 gene was essential for basal and rutin-induced transcriptional activity. Sequence analysis of this region revealed several potential transcriptional regulatory elements such as Bcd and Kr. The mutation of core base of Kr site demonstrated that Kr functioned positively in rutin-mediated BmGSTd1 transcription.

  7. Cooperative antiproliferative signaling by aspirin and indole-3-carbinol targets microphthalmia-associated transcription factor gene expression and promoter activity in human melanoma cells.

    Science.gov (United States)

    Poindexter, Kevin M; Matthew, Susanne; Aronchik, Ida; Firestone, Gary L

    2016-04-01

    Antiproliferative signaling of combinations of the nonsteroidal anti-inflammatory drug acetylsalicylic acid (aspirin) and indole-3-carbinol (I3C), a natural indolecarbinol compound derived from cruciferous vegetables, was investigated in human melanoma cells. Melanoma cell lines with distinct mutational profiles were sensitive to different extents to the antiproliferative response of aspirin, with oncogenic BRAF-expressing G361 cells and wild-type BRAF-expressing SK-MEL-30 cells being the most responsive. I3C triggered a strong proliferative arrest of G361 melanoma cells and caused only a modest decrease in the proliferation of SK-MEL-30 cells. In both cell lines, combinations of aspirin and I3C cooperatively arrested cell proliferation and induced a G1 cell cycle arrest, and nearly ablated protein and transcript levels of the melanocyte master regulator microphthalmia-associated transcription factor isoform M (MITF-M). In melanoma cells transfected with a -333/+120-bp MITF-M promoter-luciferase reporter plasmid, treatment with aspirin and I3C cooperatively disrupted MITF-M promoter activity, which accounted for the loss of MITF-M gene products. Mutational analysis revealed that the aspirin required the LEF1 binding site, whereas I3C required the BRN2 binding site to mediate their combined and individual effects on MITF-M promoter activity. Consistent with LEF1 being a downstream effector of Wnt signaling, aspirin, but not I3C, downregulated protein levels of the Wnt co-receptor LDL receptor-related protein-6 and β-catenin and upregulated the β-catenin destruction complex component Axin. Taken together, our results demonstrate that aspirin-regulated Wnt signaling and I3C-targeted signaling pathways converge at distinct DNA elements in the MITF-M promoter to cooperatively disrupt MITF-M expression and melanoma cell proliferation. PMID:27055402

  8. The liver-enriched transcription factor CREBH is nutritionally regulated and activated by fatty acids and PPAR{alpha}

    Energy Technology Data Exchange (ETDEWEB)

    Danno, Hirosuke; Ishii, Kiyo-aki; Nakagawa, Yoshimi; Mikami, Motoki; Yamamoto, Takashi; Yabe, Sachiko; Furusawa, Mika; Kumadaki, Shin; Watanabe, Kazuhisa; Shimizu, Hidehisa; Matsuzaka, Takashi; Kobayashi, Kazuto; Takahashi, Akimitsu; Yatoh, Shigeru; Suzuki, Hiroaki; Yamada, Nobuhiro [Department of Internal Medicine (Endocrinology and Metabolism), Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba Ibaraki 305-8575 (Japan); Shimano, Hitoshi, E-mail: hshimano@md.tsukuba.ac.jp [Department of Internal Medicine (Endocrinology and Metabolism), Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba Ibaraki 305-8575 (Japan)

    2010-01-08

    To elucidate the physiological role of CREBH, the hepatic mRNA and protein levels of CREBH were estimated in various feeding states of wild and obesity mice. In the fast state, the expression of CREBH mRNA and nuclear protein were high and profoundly suppressed by refeeding in the wild-type mice. In ob/ob mice, the refeeding suppression was impaired. The diet studies suggested that CREBH expression was activated by fatty acids. CREBH mRNA levels in the mouse primary hepatocytes were elevated by addition of the palmitate, oleate and eicosapenonate. It was also induced by PPAR{alpha} agonist and repressed by PPAR{alpha} antagonist. Luciferase reporter gene assays indicated that the CREBH promoter activity was induced by fatty acids and co-expression of PPAR{alpha}. Deletion studies identified the PPRE for PPAR{alpha} activation. Electrophoretic mobility shift assay and chromatin immunoprecipitation (ChIP) assay confirmed that PPAR{alpha} directly binds to the PPRE. Activation of CREBH at fasting through fatty acids and PPAR{alpha} suggest that CREBH is involved in nutritional regulation.

  9. Insulin-like growth factor 1 receptor and p38 mitogen-activated protein kinase signals inversely regulate signal transducer and activator of transcription 3 activity to control human dental pulp stem cell quiescence, propagation, and differentiation.

    Science.gov (United States)

    Vandomme, Jerome; Touil, Yasmine; Ostyn, Pauline; Olejnik, Cecile; Flamenco, Pilar; El Machhour, Raja; Segard, Pascaline; Masselot, Bernadette; Bailliez, Yves; Formstecher, Pierre; Polakowska, Renata

    2014-04-15

    Dental pulp stem cells (DPSCs) remain quiescent until activated in response to severe dental pulp damage. Once activated, they exit quiescence and enter regenerative odontogenesis, producing reparative dentin. The factors and signaling molecules that control the quiescence/activation and commitment to differentiation of human DPSCs are not known. In this study, we determined that the inhibition of insulin-like growth factor 1 receptor (IGF-1R) and p38 mitogen-activated protein kinase (p38 MAPK) signaling commonly activates DPSCs and promotes their exit from the G0 phase of the cell cycle as well as from the pyronin Y(low) stem cell compartment. The inhibition of these two pathways, however, inversely determines DPSC fate. In contrast to p38 MAPK inhibitors, IGF-1R inhibitors enhance dental pulp cell sphere-forming capacity and reduce the cells' colony-forming capacity without inducing cell death. The inverse cellular changes initiated by IGF-1R and p38 MAPK inhibitors were accompanied by inverse changes in the levels of active signal transducer and activator of transcription 3 (STAT3) factor, inactive glycogen synthase kinase 3, and matrix extracellular phosphoglycoprotein, a marker of early odontoblast differentiation. Our data suggest that there is cross talk between the IGF-1R and p38 MAPK signaling pathways in DPSCs and that the signals provided by these pathways converge at STAT3 and inversely regulate its activity to maintain quiescence or to promote self-renewal and differentiation of the cells. We propose a working model that explains the possible interactions between IGF-1R and p38 MAPK at the molecular level and describes the cellular consequences of these interactions. This model may inspire further fundamental study and stimulate research on the clinical applications of DPSC in cellular therapy and tissue regeneration. PMID:24266654

  10. Insulin-Like Growth Factor 1 Receptor and p38 Mitogen-Activated Protein Kinase Signals Inversely Regulate Signal Transducer and Activator of Transcription 3 Activity to Control Human Dental Pulp Stem Cell Quiescence, Propagation, and Differentiation

    Science.gov (United States)

    Vandomme, Jerome; Touil, Yasmine; Ostyn, Pauline; Olejnik, Cecile; Flamenco, Pilar; El Machhour, Raja; Segard, Pascaline; Masselot, Bernadette; Bailliez, Yves; Formstecher, Pierre

    2014-01-01

    Dental pulp stem cells (DPSCs) remain quiescent until activated in response to severe dental pulp damage. Once activated, they exit quiescence and enter regenerative odontogenesis, producing reparative dentin. The factors and signaling molecules that control the quiescence/activation and commitment to differentiation of human DPSCs are not known. In this study, we determined that the inhibition of insulin-like growth factor 1 receptor (IGF-1R) and p38 mitogen-activated protein kinase (p38 MAPK) signaling commonly activates DPSCs and promotes their exit from the G0 phase of the cell cycle as well as from the pyronin Ylow stem cell compartment. The inhibition of these two pathways, however, inversely determines DPSC fate. In contrast to p38 MAPK inhibitors, IGF-1R inhibitors enhance dental pulp cell sphere-forming capacity and reduce the cells' colony-forming capacity without inducing cell death. The inverse cellular changes initiated by IGF-1R and p38 MAPK inhibitors were accompanied by inverse changes in the levels of active signal transducer and activator of transcription 3 (STAT3) factor, inactive glycogen synthase kinase 3, and matrix extracellular phosphoglycoprotein, a marker of early odontoblast differentiation. Our data suggest that there is cross talk between the IGF-1R and p38 MAPK signaling pathways in DPSCs and that the signals provided by these pathways converge at STAT3 and inversely regulate its activity to maintain quiescence or to promote self-renewal and differentiation of the cells. We propose a working model that explains the possible interactions between IGF-1R and p38 MAPK at the molecular level and describes the cellular consequences of these interactions. This model may inspire further fundamental study and stimulate research on the clinical applications of DPSC in cellular therapy and tissue regeneration. PMID:24266654

  11. Activating transcription factor-3 induction is involved in the anti-inflammatory action of berberine in RAW264.7 murine macrophages.

    Science.gov (United States)

    Bae, Young-An; Cheon, Hyae Gyeong

    2016-07-01

    Berberine is an isoquinoline alkaloid found in Rhizoma coptidis, and elicits anti-inflammatory effects through diverse mechanisms. Based on previous reports that activating transcription factor-3 (ATF-3) acts as a negative regulator of LPS signaling, the authors investigated the possible involvement of ATF-3 in the anti-inflammatory effects of berberine. It was found berberine concentration-dependently induced the expressions of ATF-3 at the mRNA and protein levels and concomitantly suppressed the LPS-induced productions of proinflammatory cytokines (TNF-α, IL-6, and IL-1β). In addition, ATF-3 knockdown abolished the inhibitory effects of berberine on LPS-induced proinflammatory cytokine production, and prevented the berberine-induced suppression of MAPK phosphorylation, but had little effect on AMPK phosphorylation. On the other hand, the effects of berberine, that is, ATF-3 induction, proinflammatory cytokine inhibition, and MAPK inactivation, were prevented by AMPK knockdown, suggesting ATF-3 induction occurs downstream of AMPK activation. The in vivo administration of berberine to mice with LPS-induced endotoxemia increased ATF-3 expression and AMPK phosphorylation in spleen and lung tissues, and concomitantly reduced the plasma and tissue levels of proinflammatory cytokines. These results suggest berberine has an anti-inflammatory effect on macrophages and that this effect is attributable, at least in part, to pathways involving AMPK activation and ATF-3 induction. PMID:27382358

  12. Antioxidative Activities of Both Oleic Acid and Camellia tenuifolia Seed Oil Are Regulated by the Transcription Factor DAF-16/FOXO in Caenorhabditis elegans

    Science.gov (United States)

    Wei, Chia-Cheng; Yen, Pei-Ling; Chang, Shang-Tzen; Cheng, Pei-Ling; Lo, Yi-Chen; Liao, Vivian Hsiu-Chuan

    2016-01-01

    Background Tea seed oil is a high quality edible oil, yet lacking sufficient scientific evidences to support the nutritional and medical purposes. We identified major and minor components in Camellia tenuifolia seed oil and investigated the antioxidative activity and its underlying mechanisms in Caenorhabditis elegans. Principal Findings The results showed that the major constitutes in C. tenuifolia seed oil were unsaturated fatty acids (~78.4%). Moreover, two minor compounds, β-amyrin and β-sitosterol, were identified and their antioxidative activity was examined. We found that oleic acid was the major constitute in C. tenuifolia seed oil and plays a key role in the antioxidative activity of C. tenuifolia seed oil in C. elegans. Conclusions This study found evidences that the transcription factor DAF-16/FOXO was involved in both oleic acid- and C. tenuifolia seed oil-mediated oxidative stress resistance in C. elegans. This study suggests the potential of C. tenuifolia seed oil as nutrient or functional foods. PMID:27275864

  13. Up-regulation of activating transcription factor 4 induces severe loss of dopamine nigral neurons in a rat model of Parkinson's disease.

    Science.gov (United States)

    Gully, Joseph C; Sergeyev, Valeriy G; Bhootada, Yogesh; Mendez-Gomez, Hector; Meyers, Craig A; Zolotukhin, Sergey; Gorbatyuk, Marina S; Gorbatyuk, Oleg S

    2016-08-01

    Activating transcription factor 4 (ATF4) is a member of the PERK signaling pathway, which directly binds endoplasmic reticulum stress target genes and plays a crucial role in both adaptations to stress and activation of apoptosis. Previous publications demonstrated conflicting evidence on the role of ATF4 in the pathogenesis of neurodegenerative disorders. In this study, we used recombinant adeno-associate virus (rAAV)-mediated gene transfer to investigate if the sustained up-regulation of ATF4 launches a pro-survival or pro-death trend in the dopamine (DA) cells of the substantia nigra pars compacta in a rat model of Parkinson-like neurodegeneration induced by human alpha-synuclein (αS) overexpression. We showed that ATF4 does not protect nigral DA neurons against an αS-induced pathology. Moreover, the rAAV-mediated overexpression of ATF4 resulted in severe nigra-striatal degeneration via activation of caspases 3/7. PMID:27233218

  14. Cooperative binding of transcription factors promotes bimodal gene expression response.

    Directory of Open Access Journals (Sweden)

    Pablo S Gutierrez

    Full Text Available In the present work we extend and analyze the scope of our recently proposed stochastic model for transcriptional regulation, which considers an arbitrarily complex cis-regulatory system using only elementary reactions. Previously, we determined the role of cooperativity on the intrinsic fluctuations of gene expression for activating transcriptional switches, by means of master equation formalism and computer simulation. This model allowed us to distinguish between two cooperative binding mechanisms and, even though the mean expression levels were not affected differently by the acting mechanism, we showed that the associated fluctuations were different. In the present generalized model we include other regulatory functions in addition to those associated to an activator switch. Namely, we introduce repressive regulatory functions and two theoretical mechanisms that account for the biphasic response that some cis-regulatory systems show to the transcription factor concentration. We have also extended our previous master equation formalism in order to include protein production by stochastic translation of mRNA. Furthermore, we examine the graded/binary scenarios in the context of the interaction energy between transcription factors. In this sense, this is the first report to show that the cooperative binding of transcription factors to DNA promotes the "all-or-none" phenomenon observed in eukaryotic systems. In addition, we confirm that gene expression fluctuation levels associated with one of two cooperative binding mechanism never exceed the fluctuation levels of the other.

  15. Heterodimerization of the transcription factors E2F-1 and DP-1 leads to cooperative trans-activation

    DEFF Research Database (Denmark)

    Helin, K; Wu, C L; Fattaey, A R;

    1993-01-01

    the hypophosphorylated form of the retinoblastoma protein (pRB). The other protein, murine DP-1, was purified from an E2F DNA-affinity column, and it was subsequently shown to bind the consensus E2F DNA-binding site. To study a possible interaction between E2F-1 and DP-1, we have now isolated a cDNA for the human...... is required for stable interaction with pRB in vivo and that trans-activation by E2F-1/DP-1 heterodimers is inhibited by pRB. We suggest that "E2F" is the activity that is formed when an E2F-1-related protein and a DP-1-related protein dimerize....

  16. Regulation of neural gene transcription by optogenetic inhibition of the RE1-silencing transcription factor.

    Science.gov (United States)

    Paonessa, Francesco; Criscuolo, Stefania; Sacchetti, Silvio; Amoroso, Davide; Scarongella, Helena; Pecoraro Bisogni, Federico; Carminati, Emanuele; Pruzzo, Giacomo; Maragliano, Luca; Cesca, Fabrizia; Benfenati, Fabio

    2016-01-01

    Optogenetics provides new ways to activate gene transcription; however, no attempts have been made as yet to modulate mammalian transcription factors. We report the light-mediated regulation of the repressor element 1 (RE1)-silencing transcription factor (REST), a master regulator of neural genes. To tune REST activity, we selected two protein domains that impair REST-DNA binding or recruitment of the cofactor mSin3a. Computational modeling guided the fusion of the inhibitory domains to the light-sensitive Avena sativa light-oxygen-voltage-sensing (LOV) 2-phototrophin 1 (AsLOV2). By expressing AsLOV2 chimeras in Neuro2a cells, we achieved light-dependent modulation of REST target genes that was associated with an improved neural differentiation. In primary neurons, light-mediated REST inhibition increased Na(+)-channel 1.2 and brain-derived neurotrophic factor transcription and boosted Na(+) currents and neuronal firing. This optogenetic approach allows the coordinated expression of a cluster of genes impinging on neuronal activity, providing a tool for studying neuronal physiology and correcting gene expression changes taking place in brain diseases.

  17. The role of FOXO and PPAR transcription factors in diet-mediated inhibition of PDC activation and carbohydrate oxidation during exercise in humans and the role of pharmacological activation of PDC in overriding these changes.

    Science.gov (United States)

    Constantin-Teodosiu, Dumitru; Constantin, Despina; Stephens, Francis; Laithwaite, David; Greenhaff, Paul L

    2012-05-01

    High-fat feeding inhibits pyruvate dehydrogenase complex (PDC)-controlled carbohydrate (CHO) oxidation, which contributes to muscle insulin resistance. We aimed to reveal molecular changes underpinning this process in resting and exercising humans. We also tested whether pharmacological activation of PDC overrides these diet-induced changes. Healthy males consumed a control diet (CD) and on two further occasions an isocaloric high-fat diet (HFD). After each diet, subjects cycled for 60 min after intravenous infusion with saline (CD and HFD) or dichloroacetate (HFD+DCA). Quadriceps muscle biopsies obtained before and after 10 and 60 min of exercise were used to estimate CHO use, PDC activation, and mRNAs associated with insulin, fat, and CHO signaling. Compared with CD, HFD increased resting pyruvate dehydrogenase kinase 2 (PDK2), PDK4, forkhead box class O transcription factor 1 (FOXO1), and peroxisome proliferator-activated receptor transcription factor α (PPARα) mRNA and reduced PDC activation. Exercise increased PDC activation and whole-body CHO use in HFD, but to a lower extent than in CD. Meanwhile PDK4 and FOXO1, but not PPARα or PDK2, mRNA remained elevated. HFD+DCA activated PDC throughout and restored whole-body CHO use during exercise. FOXO1 appears to play a role in HFD-mediated muscle PDK4 upregulation and inhibition of PDC and CHO oxidation in humans. Also, pharmacological activation of PDC restores HFD-mediated inhibition of CHO oxidation during exercise. PMID:22315317

  18. Mechanisms Underlying the Delayed Activation of the Cap1 Transcription Factor in Candida albicans following Combinatorial Oxidative and Cationic Stress Important for Phagocytic Potency

    Science.gov (United States)

    Kos, Iaroslava; Patterson, Miranda J.; Znaidi, Sadri; Kaloriti, Despoina; da Silva Dantas, Alessandra; Herrero-de-Dios, Carmen M.; d’Enfert, Christophe; Brown, Alistair J. P.

    2016-01-01

    ABSTRACT Following phagocytosis, microbes are exposed to an array of antimicrobial weapons that include reactive oxygen species (ROS) and cationic fluxes. This is significant as combinations of oxidative and cationic stresses are much more potent than the corresponding single stresses, triggering the synergistic killing of the fungal pathogen Candida albicans by “stress pathway interference.” Previously we demonstrated that combinatorial oxidative plus cationic stress triggers a dramatic increase in intracellular ROS levels compared to oxidative stress alone. Here we show that activation of Cap1, the major regulator of antioxidant gene expression in C. albicans, is significantly delayed in response to combinatorial stress treatments and to high levels of H2O2. Cap1 is normally oxidized in response to H2O2; this masks the nuclear export sequence, resulting in the rapid nuclear accumulation of Cap1 and the induction of Cap1-dependent genes. Here we demonstrate that following exposure of cells to combinatorial stress or to high levels of H2O2, Cap1 becomes trapped in a partially oxidized form, Cap1OX-1. Notably, Cap1-dependent gene expression is not induced when Cap1 is in this partially oxidized form. However, while Cap1OX-1 readily accumulates in the nucleus and binds to target genes following high-H2O2 stress, the nuclear accumulation of Cap1OX-1 following combinatorial H2O2 and NaCl stress is delayed due to a cationic stress-enhanced interaction with the Crm1 nuclear export factor. These findings define novel mechanisms that delay activation of the Cap1 transcription factor, thus preventing the rapid activation of the stress responses vital for the survival of C. albicans within the host. PMID:27025253

  19. Cdk phosphorylation of the Ste11 transcription factor constrains differentiation-specific transcription to G1

    DEFF Research Database (Denmark)

    Kjaerulff, Søren; Andersen, Nicoline Resen; Borup, Mia Trolle;

    2007-01-01

    Eukaryotic cells normally differentiate from G(1); here we investigate the mechanism preventing expression of differentiation-specific genes outside G(1). In fission yeast, induction of the transcription factor Ste11 triggers sexual differentiation. We find that Ste11 is only active in G(1) when...... S phase. When we mutated T82 to aspartic acid, mimicking constant phosphorylation, cells no longer underwent differentiation. Conversely, changing T82 to alanine rendered Ste11-controlled transcription constitutive through the cell cycle, and allowed mating from S phase with increased frequency...

  20. Uncovering Transcriptional Regulatory Networks by Sparse Bayesian Factor Model

    Science.gov (United States)

    Meng, Jia; Zhang, Jianqiu(Michelle); Qi, Yuan(Alan); Chen, Yidong; Huang, Yufei

    2010-12-01

    The problem of uncovering transcriptional regulation by transcription factors (TFs) based on microarray data is considered. A novel Bayesian sparse correlated rectified factor model (BSCRFM) is proposed that models the unknown TF protein level activity, the correlated regulations between TFs, and the sparse nature of TF-regulated genes. The model admits prior knowledge from existing database regarding TF-regulated target genes based on a sparse prior and through a developed Gibbs sampling algorithm, a context-specific transcriptional regulatory network specific to the experimental condition of the microarray data can be obtained. The proposed model and the Gibbs sampling algorithm were evaluated on the simulated systems, and results demonstrated the validity and effectiveness of the proposed approach. The proposed model was then applied to the breast cancer microarray data of patients with Estrogen Receptor positive ([InlineEquation not available: see fulltext.]) status and Estrogen Receptor negative ([InlineEquation not available: see fulltext.]) status, respectively.

  1. Uncovering Transcriptional Regulatory Networks by Sparse Bayesian Factor Model

    Directory of Open Access Journals (Sweden)

    Qi Yuan(Alan

    2010-01-01

    Full Text Available Abstract The problem of uncovering transcriptional regulation by transcription factors (TFs based on microarray data is considered. A novel Bayesian sparse correlated rectified factor model (BSCRFM is proposed that models the unknown TF protein level activity, the correlated regulations between TFs, and the sparse nature of TF-regulated genes. The model admits prior knowledge from existing database regarding TF-regulated target genes based on a sparse prior and through a developed Gibbs sampling algorithm, a context-specific transcriptional regulatory network specific to the experimental condition of the microarray data can be obtained. The proposed model and the Gibbs sampling algorithm were evaluated on the simulated systems, and results demonstrated the validity and effectiveness of the proposed approach. The proposed model was then applied to the breast cancer microarray data of patients with Estrogen Receptor positive ( status and Estrogen Receptor negative ( status, respectively.

  2. Nuclear epidermal growth factor receptor (EGFR) interacts with signal transducer and activator of transcription 5 (STAT5) in activating Aurora-A gene expression

    OpenAIRE

    Hung, Liang-Yi; Tseng, Joseph T.; Lee, Yi-Chao; Xia, Weiya; Wang, Ying-Nai; Wu, Min-Li; Chuang, Yu-Hsuan; Lai, Chein-Hsien; Chang, Wen-Chang

    2008-01-01

    Loss of the maintenance of genetic material is a critical step leading to tumorigenesis. It was reported that overexpression of Aurora-A and the constitutive activation of the epidermal growth factor (EGF) receptor (EGFR) are implicated in chromosome instability. In this study, we examined that when cells treated with EGF result in centrosome amplification and microtubule disorder, which are critical for genetic instability. Interestingly, the expression of Aurora-A was also increased by EGF ...

  3. A Computational Drug Repositioning Approach for Targeting Oncogenic Transcription Factors.

    Science.gov (United States)

    Gayvert, Kaitlyn M; Dardenne, Etienne; Cheung, Cynthia; Boland, Mary Regina; Lorberbaum, Tal; Wanjala, Jackline; Chen, Yu; Rubin, Mark A; Tatonetti, Nicholas P; Rickman, David S; Elemento, Olivier

    2016-06-14

    Mutations in transcription factor (TF) genes are frequently observed in tumors, often leading to aberrant transcriptional activity. Unfortunately, TFs are often considered undruggable due to the absence of targetable enzymatic activity. To address this problem, we developed CRAFTT, a computational drug-repositioning approach for targeting TF activity. CRAFTT combines ChIP-seq with drug-induced expression profiling to identify small molecules that can specifically perturb TF activity. Application to ENCODE ChIP-seq datasets revealed known drug-TF interactions, and a global drug-protein network analysis supported these predictions. Application of CRAFTT to ERG, a pro-invasive, frequently overexpressed oncogenic TF, predicted that dexamethasone would inhibit ERG activity. Dexamethasone significantly decreased cell invasion and migration in an ERG-dependent manner. Furthermore, analysis of electronic medical record data indicates a protective role for dexamethasone against prostate cancer. Altogether, our method provides a broadly applicable strategy for identifying drugs that specifically modulate TF activity. PMID:27264179

  4. The AP-2 family of transcription factors

    OpenAIRE

    Eckert, Dawid; Buhl, Sandra; Weber, Susanne; Jäger, Richard; Schorle, Hubert

    2005-01-01

    The AP-2 family of transcription factors consists of five different proteins in humans and mice: AP-2α, AP-2β, AP-2γ, AP-2δ and AP-2ε. Frogs and fish have known orthologs of some but not all of these proteins, and homologs of the family are also found in protochordates, insects and nematodes. The proteins have a characteristic helix-span-helix motif at the carboxyl terminus, which, together with a central basic region, mediates dimerization and DNA binding. The amino terminus contains the tra...

  5. Graded Proteasome Dysfunction in Caenorhabditis elegans Activates an Adaptive Response Involving the Conserved SKN-1 and ELT-2 Transcription Factors and the Autophagy-Lysosome Pathway.

    Directory of Open Access Journals (Sweden)

    Scott A Keith

    2016-02-01

    Full Text Available The maintenance of cellular proteins in a biologically active and structurally stable state is a vital endeavor involving multiple cellular pathways. One such pathway is the ubiquitin-proteasome system that represents a major route for protein degradation, and reductions in this pathway usually have adverse effects on the health of cells and tissues. Here, we demonstrate that loss-of-function mutants of the Caenorhabditis elegans proteasome subunit, RPN-10, exhibit moderate proteasome dysfunction and unexpectedly develop both increased longevity and enhanced resistance to multiple threats to the proteome, including heat, oxidative stress, and the presence of aggregation prone proteins. The rpn-10 mutant animals survive through the activation of compensatory mechanisms regulated by the conserved SKN-1/Nrf2 and ELT-2/GATA transcription factors that mediate the increased expression of genes encoding proteasome subunits as well as those mediating oxidative- and heat-stress responses. Additionally, we find that the rpn-10 mutant also shows enhanced activity of the autophagy-lysosome pathway as evidenced by increased expression of the multiple autophagy genes including atg-16.2, lgg-1, and bec-1, and also by an increase in GFP::LGG-1 puncta. Consistent with a critical role for this pathway, the enhanced resistance of the rpn-10 mutant to aggregation prone proteins depends on autophagy genes atg-13, atg-16.2, and prmt-1. Furthermore, the rpn-10 mutant is particularly sensitive to the inhibition of lysosome activity via either RNAi or chemical means. We also find that the rpn-10 mutant shows a reduction in the numbers of intestinal lysosomes, and that the elt-2 gene also plays a novel and vital role in controlling the production of functional lysosomes by the intestine. Overall, these experiments suggest that moderate proteasome dysfunction could be leveraged to improve protein homeostasis and organismal health and longevity, and that the rpn-10 mutant

  6. Graded Proteasome Dysfunction in Caenorhabditis elegans Activates an Adaptive Response Involving the Conserved SKN-1 and ELT-2 Transcription Factors and the Autophagy-Lysosome Pathway.

    Science.gov (United States)

    Keith, Scott A; Maddux, Sarah K; Zhong, Yayu; Chinchankar, Meghna N; Ferguson, Annabel A; Ghazi, Arjumand; Fisher, Alfred L

    2016-02-01

    The maintenance of cellular proteins in a biologically active and structurally stable state is a vital endeavor involving multiple cellular pathways. One such pathway is the ubiquitin-proteasome system that represents a major route for protein degradation, and reductions in this pathway usually have adverse effects on the health of cells and tissues. Here, we demonstrate that loss-of-function mutants of the Caenorhabditis elegans proteasome subunit, RPN-10, exhibit moderate proteasome dysfunction and unexpectedly develop both increased longevity and enhanced resistance to multiple threats to the proteome, including heat, oxidative stress, and the presence of aggregation prone proteins. The rpn-10 mutant animals survive through the activation of compensatory mechanisms regulated by the conserved SKN-1/Nrf2 and ELT-2/GATA transcription factors that mediate the increased expression of genes encoding proteasome subunits as well as those mediating oxidative- and heat-stress responses. Additionally, we find that the rpn-10 mutant also shows enhanced activity of the autophagy-lysosome pathway as evidenced by increased expression of the multiple autophagy genes including atg-16.2, lgg-1, and bec-1, and also by an increase in GFP::LGG-1 puncta. Consistent with a critical role for this pathway, the enhanced resistance of the rpn-10 mutant to aggregation prone proteins depends on autophagy genes atg-13, atg-16.2, and prmt-1. Furthermore, the rpn-10 mutant is particularly sensitive to the inhibition of lysosome activity via either RNAi or chemical means. We also find that the rpn-10 mutant shows a reduction in the numbers of intestinal lysosomes, and that the elt-2 gene also plays a novel and vital role in controlling the production of functional lysosomes by the intestine. Overall, these experiments suggest that moderate proteasome dysfunction could be leveraged to improve protein homeostasis and organismal health and longevity, and that the rpn-10 mutant provides a unique

  7. Promoter proximal polyadenylation sites reduce transcription activity

    DEFF Research Database (Denmark)

    Andersen, Pia Kjølhede; Lykke-Andersen, Søren; Jensen, Torben Heick

    2012-01-01

    Gene expression relies on the functional communication between mRNA processing and transcription. We previously described the negative impact of a point-mutated splice donor (SD) site on transcription. Here we demonstrate that this mutation activates an upstream cryptic polyadenylation (CpA) site...

  8. Footprinting of ribosomal RNA genes by transcription initiation factor and RNA polymerase I.

    OpenAIRE

    Bateman, E.; Iida, C T; Kownin, P; Paule, M R

    1985-01-01

    The binding of a species-specific transcription initiation factor (TIF) and purified RNA polymerase I to the promoter region of the 39S ribosomal RNA gene from Acanthamoeba were studied by using DNase I "footprinting." Conditions were chosen such that the footprints obtained could be correlated with the transcriptional activity of the TIF-containing fractions used and that the labeled DNA present would itself serve as a template for transcription. The transcription factor binds upstream from ...

  9. Hydrogen peroxide sensing, signaling and regulation of transcription factors

    Directory of Open Access Journals (Sweden)

    H. Susana Marinho

    2014-01-01

    Full Text Available The regulatory mechanisms by which hydrogen peroxide (H2O2 modulates the activity of transcription factors in bacteria (OxyR and PerR, lower eukaryotes (Yap1, Maf1, Hsf1 and Msn2/4 and mammalian cells (AP-1, NRF2, CREB, HSF1, HIF-1, TP53, NF-κB, NOTCH, SP1 and SCREB-1 are reviewed. The complexity of regulatory networks increases throughout the phylogenetic tree, reaching a high level of complexity in mammalians. Multiple H2O2 sensors and pathways are triggered converging in the regulation of transcription factors at several levels: (1 synthesis of the transcription factor by upregulating transcription or increasing both mRNA stability and translation; (ii stability of the transcription factor by decreasing its association with the ubiquitin E3 ligase complex or by inhibiting this complex; (iii cytoplasm–nuclear traffic by exposing/masking nuclear localization signals, or by releasing the transcription factor from partners or from membrane anchors; and (iv DNA binding and nuclear transactivation by modulating transcription factor affinity towards DNA, co-activators or repressors, and by targeting specific regions of chromatin to activate individual genes. We also discuss how H2O2 biological specificity results from diverse thiol protein sensors, with different reactivity of their sulfhydryl groups towards H2O2, being activated by different concentrations and times of exposure to H2O2. The specific regulation of local H2O2 concentrations is also crucial and results from H2O2 localized production and removal controlled by signals. Finally, we formulate equations to extract from typical experiments quantitative data concerning H2O2 reactivity with sensor molecules. Rate constants of 140 M−1 s−1 and ≥1.3 × 103 M−1 s−1 were estimated, respectively, for the reaction of H2O2 with KEAP1 and with an unknown target that mediates NRF2 protein synthesis. In conclusion, the multitude of H2O2 targets and mechanisms provides an opportunity for

  10. Interference with Activator Protein-2 transcription factors leads to induction of apoptosis and an increase in chemo- and radiation- sensitivity in breast cancer cells

    LENUS (Irish Health Repository)

    Thewes, Verena

    2010-05-11

    Abstract Background Activator Protein-2 (AP-2) transcription factors are critically involved in a variety of fundamental cellular processes such as proliferation, differentiation and apoptosis and have also been implicated in carcinogenesis. Expression of the family members AP-2α and AP-2γ is particularly well documented in malignancies of the female breast. Despite increasing evaluation of single AP-2 isoforms in mammary tumors the functional role of concerted expression of multiple AP-2 isoforms in breast cancer remains to be elucidated. AP-2 proteins can form homo- or heterodimers, and there is growing evidence that the net effect whether a cell will proliferate, undergo apoptosis or differentiate is partly dependent on the balance between different AP-2 isoforms. Methods We simultaneously interfered with all AP-2 isoforms expressed in ErbB-2-positive murine N202.1A breast cancer cells by conditionally over-expressing a dominant-negative AP-2 mutant. Results We show that interference with AP-2 protein function lead to reduced cell number, induced apoptosis and increased chemo- and radiation-sensitivity. Analysis of global gene expression changes upon interference with AP-2 proteins identified 139 modulated genes (90 up-regulated, 49 down-regulated) compared with control cells. Gene Ontology (GO) investigations for these genes revealed Cell Death and Cell Adhesion and Migration as the main functional categories including 25 and 12 genes, respectively. By using information obtained from Ingenuity Pathway Analysis Systems we were able to present proven or potential connections between AP-2 regulated genes involved in cell death and response to chemo- and radiation therapy, (i.e. Ctgf, Nrp1, Tnfaip3, Gsta3) and AP-2 and other main apoptosis players and to create a unique network. Conclusions Expression of AP-2 transcription factors in breast cancer cells supports proliferation and contributes to chemo- and radiation-resistance of tumor cells by impairing the

  11. Influence of the valine zipper region on the structure and aggregation of the basic leucine zipper (bZIP) domain of activating transcription factor 5 (ATF5).

    Science.gov (United States)

    Ciaccio, Natalie A; Reynolds, T Steele; Middaugh, C Russell; Laurence, Jennifer S

    2012-11-01

    Protein aggregation is a major problem for biopharmaceuticals. While the control of aggregation is critically important for the future of protein pharmaceuticals, mechanisms of aggregate assembly, particularly the role that structure plays, are still poorly understood. Increasing evidence indicates that partially folded intermediates critically influence the aggregation pathway. We have previously reported the use of the basic leucine zipper (bZIP) domain of activating transcription factor 5 (ATF5) as a partially folded model system to investigate protein aggregation. This domain contains three regions with differing structural propensity: a N-terminal polybasic region, a central helical leucine zipper region, and a C-terminal extended valine zipper region. Additionally, a centrally positioned cysteine residue readily forms an intermolecular disulfide bond that reduces aggregation. Computational analysis of ATF5 predicts that the valine zipper region facilitates self-association. Here we test this hypothesis using a truncated mutant lacking the C-terminal valine zipper region. We compare the structure and aggregation of this mutant to the wild-type (WT) form under both reducing and nonreducing conditions. Our data indicate that removal of this region results in a loss of α-helical structure in the leucine zipper and a change in the mechanism of self-association. The mutant form displays increased association at low temperature but improved resistance to thermally induced aggregation. PMID:23067245

  12. Influence of the valine zipper region on the structure and aggregation of the basic leucine zipper (bZIP) domain of activating transcription factor 5 (ATF5).

    Science.gov (United States)

    Ciaccio, Natalie A; Reynolds, T Steele; Middaugh, C Russell; Laurence, Jennifer S

    2012-11-01

    Protein aggregation is a major problem for biopharmaceuticals. While the control of aggregation is critically important for the future of protein pharmaceuticals, mechanisms of aggregate assembly, particularly the role that structure plays, are still poorly understood. Increasing evidence indicates that partially folded intermediates critically influence the aggregation pathway. We have previously reported the use of the basic leucine zipper (bZIP) domain of activating transcription factor 5 (ATF5) as a partially folded model system to investigate protein aggregation. This domain contains three regions with differing structural propensity: a N-terminal polybasic region, a central helical leucine zipper region, and a C-terminal extended valine zipper region. Additionally, a centrally positioned cysteine residue readily forms an intermolecular disulfide bond that reduces aggregation. Computational analysis of ATF5 predicts that the valine zipper region facilitates self-association. Here we test this hypothesis using a truncated mutant lacking the C-terminal valine zipper region. We compare the structure and aggregation of this mutant to the wild-type (WT) form under both reducing and nonreducing conditions. Our data indicate that removal of this region results in a loss of α-helical structure in the leucine zipper and a change in the mechanism of self-association. The mutant form displays increased association at low temperature but improved resistance to thermally induced aggregation.

  13. Hair dyes resorcinol and lawsone reduce production of melanin in melanoma cells by tyrosinase activity inhibition and decreasing tyrosinase and microphthalmia-associated transcription factor (MITF) expression.

    Science.gov (United States)

    Lee, Shu-Mei; Chen, Yi-Shyan; Lin, Chih-Chien; Chen, Kuan-Hung

    2015-01-01

    Hair coloring products are one of the most important cosmetics for modern people; there are three major types of hair dyes, including the temporary, semi-permanent and permanent hair dyes. The selected hair dyes (such as ammonium persulfate, sodium persulfate, resorcinol and lawsone) are the important components for hair coloring products. Therefore, we analyzed the effects of these compounds on melanogenesis in B16-F10 melanoma cells. The results proved that hair dyes resorcinol and lawsone can reduce the production of melanin. The results also confirmed that resorcinol and lawsone inhibit mushroom and cellular tyrosinase activities in vitro. Resorcinol and lawsone can also downregulate the protein levels of tyrosinase and microphthalmia-associated transcription factor (MITF) in B16-F10 cells. Thus, we suggest that frequent use of hair dyes may have the risk of reducing natural melanin production in hair follicles. Moreover, resorcinol and lawsone may also be used as hypopigmenting agents to food, agricultural and cosmetic industry in the future. PMID:25584612

  14. Myxoma virus attenuates expression of activating transcription factor 4 (ATF4 which has implications for the treatment of proteasome inhibitor–resistant multiple myeloma

    Directory of Open Access Journals (Sweden)

    Dunlap KM

    2015-01-01

    Full Text Available Katherine M Dunlap, Mee Y Bartee, Eric Bartee Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA Abstract: The recent development of chemotherapeutic proteasome inhibitors, such as bortezomib, has improved the outcomes of patients suffering from the plasma cell malignancy multiple myeloma. Unfortunately, many patients treated with these drugs still suffer relapsing disease due to treatment-induced upregulation of the antiapoptotic protein Mcl1. We have recently demonstrated that an oncolytic poxvirus, known as myxoma, can rapidly eliminate primary myeloma cells by inducing cellular apoptosis. The efficacy of myxoma treatment on proteasome inhibitor–relapsed or –refractory myeloma, however, remains unknown. We now demonstrate that myxoma-based elimination of myeloma is not affected by cellular resistance to proteasome inhibitors. Additionally, myxoma virus infection specifically prevents expression of Mcl1 following induction of the unfolded protein response, by blocking translation of the unfolded protein response activating transcription factor (ATF4. These results suggest that myxoma-based oncolytic therapy represents an attractive option for myeloma patients whose disease is refractory to chemotherapeutic proteasome inhibitors due to upregulation of Mcl1. Keywords: drug resistance, oncolytic

  15. Hair Dyes Resorcinol and Lawsone Reduce Production of Melanin in Melanoma Cells by Tyrosinase Activity Inhibition and Decreasing Tyrosinase and Microphthalmia-Associated Transcription Factor (MITF Expression

    Directory of Open Access Journals (Sweden)

    Shu-Mei Lee

    2015-01-01

    Full Text Available Hair coloring products are one of the most important cosmetics for modern people; there are three major types of hair dyes, including the temporary, semi-permanent and permanent hair dyes. The selected hair dyes (such as ammonium persulfate, sodium persulfate, resorcinol and lawsone are the important components for hair coloring products. Therefore, we analyzed the effects of these compounds on melanogenesis in B16-F10 melanoma cells. The results proved that hair dyes resorcinol and lawsone can reduce the production of melanin. The results also confirmed that resorcinol and lawsone inhibit mushroom and cellular tyrosinase activities in vitro. Resorcinol and lawsone can also downregulate the protein levels of tyrosinase and microphthalmia-associated transcription factor (MITF in B16-F10 cells. Thus, we suggest that frequent use of hair dyes may have the risk of reducing natural melanin production in hair follicles. Moreover, resorcinol and lawsone may also be used as hypopigmenting agents to food, agricultural and cosmetic industry in the future.

  16. Plant polyphenols differentially modulate inflammatory responses of human keratinocytes by interfering with activation of transcription factors NFκB and AhR and EGFR-ERK pathway

    International Nuclear Information System (INIS)

    Molecular mechanisms underlying modulation of inflammatory responses in primary human keratinocytes by plant polyphenols (PPs), namely the glycosylated phenylpropanoid verbascoside, the stilbenoid resveratrol and its glycoside polydatin, and the flavonoid quercetin and its glycoside rutin were evaluated. As non-lethal stimuli, the prototypic ligand for epidermal growth factor receptor (EGFR) transforming growth factor alpha (TGFalpha), the combination of tumor necrosis factor (TNFalpha) and interferon (IFNgamma) (T/I), UVA + UVB irradiation, and bacterial lipopolysaccharide (LPS) were used. We demonstrated differential modulation of inflammatory responses in keratinocytes at signal transduction, gene transcription, and protein synthesis levels as a function of PP chemical structure, the pro-inflammatory trigger used, and PP interaction with intracellular detoxifying systems. The PPs remarkably inhibited constitutive, LPS- and T/I-induced but not TGFalpha-induced ERK phosphorylation. They also suppressed NFkappaB activation by LPS and T/I. Verbascoside and quercetin invariably impaired EGFR phosphorylation and UV-associated aryl hydrocarbon receptor (AhR)-mediated signaling, while rutin, polydatin and resveratrol did not affect EGFR phosphorylation and further activated AhR machinery in UV-exposed keratinocytes. In general, PPs down-regulated gene expression of pro-inflammatory cytokines/enzymes, except significant up-regulation of IL-8 observed under stimulation with TGFalpha. Both spontaneous and T/I-induced release of IL-8 and IP-10 was suppressed, although 50 μM resveratrol and polydatin up-regulated IL-8. At this concentration, resveratrol activated both gene expression and de novo synthesis of IL-8 and AhR-mediated mechanisms were involved. We conclude that PPs differentially modulate the inflammatory response of human keratinocytes through distinct signal transduction pathways, including AhR and EGFR. - Graphical abstract: Display Omitted Highlights:

  17. Contact sensitizer nickel sulfate activates the transcription factors NF-kB and AP-1 and increases the expression of nitric oxide synthase in a skin dendritic cell line

    OpenAIRE

    Cruz, MT; Gonçalo, Margarida; A. Figueiredo; Carvalho, AP; Duarte, CB

    2004-01-01

    Nuclear factor kappa B (NF-kB) and activating protein-1 (AP-1) transcription factors are ubiquitously expressed signaling molecules known to regulate the transcription of a large number of genes involved in immune responses, namely the inducible isoform of nitric oxide synthase (iNOS). In this study, we demonstrate that a fetal skin-derived dendritic cell line (FSDC) produces nitric oxide (NO) in response to the contact sensitizer nickel sulfate (NiSO(4)) and increases the expression of the i...

  18. Transcriptional and post-transcriptional regulation of a NAC1 transcription factor in Medicago truncatula roots.

    Science.gov (United States)

    D'haeseleer, Katrien; Den Herder, Griet; Laffont, Carole; Plet, Julie; Mortier, Virginie; Lelandais-Brière, Christine; De Bodt, Stefanie; De Keyser, Annick; Crespi, Martin; Holsters, Marcelle; Frugier, Florian; Goormachtig, Sofie

    2011-08-01

    • Legume roots develop two types of lateral organs, lateral roots and nodules. Nodules develop as a result of a symbiotic interaction with rhizobia and provide a niche for the bacteria to fix atmospheric nitrogen for the plant. • The Arabidopsis NAC1 transcription factor is involved in lateral root formation, and is regulated post-transcriptionally by miRNA164 and by SINAT5-dependent ubiquitination. We analyzed in Medicago truncatula the role of the closest NAC1 homolog in lateral root formation and in nodulation. • MtNAC1 shows a different expression pattern in response to auxin than its Arabidopsis homolog and no changes in lateral root number or nodulation were observed in plants affected in MtNAC1 expression. In addition, no interaction was found with SINA E3 ligases, suggesting that post-translational regulation of MtNAC1 does not occur in M. truncatula. Similar to what was found in Arabidopsis, a conserved miR164 target site was retrieved in MtNAC1, which reduced protein accumulation of a GFP-miR164 sensor. Furthermore, miR164 and MtNAC1 show an overlapping expression pattern in symbiotic nodules, and overexpression of this miRNA led to a reduction in nodule number. • This work suggests that regulatory pathways controlling a conserved transcription factor are complex and divergent between M. truncatula and Arabidopsis.

  19. Bayesian non-negative factor analysis for reconstructing transcription factor mediated regulatory networks

    Directory of Open Access Journals (Sweden)

    Chen Yidong

    2011-10-01

    Full Text Available Abstract Background Transcriptional regulation by transcription factor (TF controls the time and abundance of mRNA transcription. Due to the limitation of current proteomics technologies, large scale measurements of protein level activities of TFs is usually infeasible, making computational reconstruction of transcriptional regulatory network a difficult task. Results We proposed here a novel Bayesian non-negative factor model for TF mediated regulatory networks. Particularly, the non-negative TF activities and sample clustering effect are modeled as the factors from a Dirichlet process mixture of rectified Gaussian distributions, and the sparse regulatory coefficients are modeled as the loadings from a sparse distribution that constrains its sparsity using knowledge from database; meantime, a Gibbs sampling solution was developed to infer the underlying network structure and the unknown TF activities simultaneously. The developed approach has been applied to simulated system and breast cancer gene expression data. Result shows that, the proposed method was able to systematically uncover TF mediated transcriptional regulatory network structure, the regulatory coefficients, the TF protein level activities and the sample clustering effect. The regulation target prediction result is highly coordinated with the prior knowledge, and sample clustering result shows superior performance over previous molecular based clustering method. Conclusions The results demonstrated the validity and effectiveness of the proposed approach in reconstructing transcriptional networks mediated by TFs through simulated systems and real data.

  20. Mapping functional regions of transcription factor TFIIIA.

    Science.gov (United States)

    Vrana, K E; Churchill, M E; Tullius, T D; Brown, D D

    1988-04-01

    Functional deletion mutants of the trans-acting factor TFIIIA, truncated at both ends of the molecule, have been expressed by in vitro transcription of a cDNA clone and subsequent cell-free translation of the synthetic mRNAs. A region of TFIIIA 19 amino acids or less, near the carboxyl terminus, is critical for maximal transcription and lies outside the DNA-binding domain. The elongated protein can be aligned over the internal control region (ICR) of the Xenopus 5S RNA gene with its carboxyl terminus oriented toward the 5' end of the gene and its amino terminus oriented toward the 3' end of the gene. The nine "zinc fingers" and the linkers that separate them comprise 80% of the protein mass and correspond to the DNA-binding domain of TFIIIA. The zinc fingers near the amino terminus of the protein contribute more to the overall binding energy of the protein to the ICR than do the zinc fingers near the carboxyl end. The most striking feature of TFIIIA is its modular structure. This is demonstrated by the fact that each zinc finger binds to just one of three short nucleotide sequences within the ICR.

  1. Human mediator subunit MED15 promotes transcriptional activation.

    Science.gov (United States)

    Nakatsubo, Takuya; Nishitani, Saori; Kikuchi, Yuko; Iida, Satoshi; Yamada, Kana; Tanaka, Aki; Ohkuma, Yoshiaki

    2014-10-01

    In eukaryotes, the Mediator complex is an essential transcriptional cofactor of RNA polymerase II (Pol II). In humans, it contains up to 30 subunits and consists of four modules: head, middle, tail, and CDK/Cyclin. One of the subunits, MED15, is located in the tail module, and was initially identified as Gal11 in budding yeast, where it plays an essential role in the transcriptional regulation of galactose metabolism with the potent transcriptional activator Gal4. For this reason, we investigated the function of the human MED15 subunit (hMED15) in transcriptional activation. First, we measured the effect of hMED15 knockdown on cell growth in HeLa cells. The growth rate was greatly reduced. By immunostaining, we observed the colocalization of hMED15 with the general transcription factors TFIIE and TFIIH in the nucleus. We measured the effects of siRNA-mediated knockdown of hMED15 on transcriptional activation using two different transcriptional activators, VP16 and SREBP1a. Treatment with siRNAs reduced transcriptional activation, and this reduction could be rescued by overexpression of HA/Flag-tagged, wild-type hMED15. To investigate hMED15 localization, we treated human MCF-7 cells with the MDM2 inhibitor Nutlin-3, thus inducing p21 transcription. We found that hMED15 localized to both the p53 binding site and the p21 promoter region, along with TFIIE and TFIIH. These results indicate that hMED15 promotes transcriptional activation.

  2. Role of Transcription Factors in Peripheral Nerve Regeneration

    Directory of Open Access Journals (Sweden)

    Smriti ePatodia

    2012-02-01

    Full Text Available Following axotomy, the activation of multiple intracellular signalling cascades causes the expression of a cocktail of regeneration-associated transcription factors which interact with each other and the extracellular environment to determine the fate of the injured neurons. The nerve injury response is channelled through manifold and parallel pathways, integrating diverse inputs and controlling a complex transcriptional output. Transcription factors form a vital link in the chain of regeneration, converting injury-induced stress signals into downstream protein expression via gene regulation. They can regulate the intrinsic ability of axons to grow, by controlling expression of whole cassettes of gene targets. In this review, we have investigated the functional role of a number of different transcription factors – c-jun, ATF3, CREB, STAT3, C/EBP β & δ, Oct-6, Sox11, p53, NFκB, and ELK3 – in peripheral nerve regeneration. Studies involving use of conditional mutants, microarrays, promoter region mapping and different injury paradigms, have enabled us to understand their distinct as well as overlapping roles in achieving functional and anatomical regeneration after peripheral nerve injury.

  3. Determination of specificity influencing residues for key transcription factor families

    DEFF Research Database (Denmark)

    Patel, Ronak Y.; Garde, Christian; Stormo, Gary D.

    2015-01-01

    Transcription factors (TFs) are major modulators of transcription and subsequent cellular processes. The binding of TFs to specific regulatory elements is governed by their specificity. Considering the gap between known TFs sequence and specificity, specificity prediction frameworks are highly...

  4. Understanding Transcription Factor Regulation by Integrating Gene Expression and DNase I Hypersensitive Sites

    Directory of Open Access Journals (Sweden)

    Guohua Wang

    2015-01-01

    Full Text Available Transcription factors are proteins that bind to DNA sequences to regulate gene transcription. The transcription factor binding sites are short DNA sequences (5–20 bp long specifically bound by one or more transcription factors. The identification of transcription factor binding sites and prediction of their function continue to be challenging problems in computational biology. In this study, by integrating the DNase I hypersensitive sites with known position weight matrices in the TRANSFAC database, the transcription factor binding sites in gene regulatory region are identified. Based on the global gene expression patterns in cervical cancer HeLaS3 cell and HelaS3-ifnα4h cell (interferon treatment on HeLaS3 cell for 4 hours, we present a model-based computational approach to predict a set of transcription factors that potentially cause such differential gene expression. Significantly, 6 out 10 predicted functional factors, including IRF, IRF-2, IRF-9, IRF-1 and IRF-3, ICSBP, belong to interferon regulatory factor family and upregulate the gene expression levels responding to the interferon treatment. Another factor, ISGF-3, is also a transcriptional activator induced by interferon alpha. Using the different transcription factor binding sites selected criteria, the prediction result of our model is consistent. Our model demonstrated the potential to computationally identify the functional transcription factors in gene regulation.

  5. CREB in the pathophysiology of cancer: implications for targeting transcription factors for cancer therapy

    OpenAIRE

    Sakamoto, Kathleen M.; Frank, David A.

    2009-01-01

    Transcription factors are key regulators of the pattern of gene expression in a cell and directly control central processes such as proliferation, survival, self-renewal, and invasion. Given this critical role, the function of transcription factors is normally regulated closely, often through transient phosphorylation. Although transcription factors are not often directly modified by mutations in cancer cells, they frequently become activated constitutively through mutations affecting “upstre...

  6. The YEATS family member GAS41 interacts with the general transcription factor TFIIF

    OpenAIRE

    Ruggieri Alessia; Schuetz Nicole; Habel Nunja C; Heisel Sabrina; Meese Eckart

    2010-01-01

    Abstract Background In eukaryotes the transcription initiation by RNA polymerase II requires numerous general and regulatory factors including general transcription factors. The general transcription factor TFIIF controls the activity of the RNA polymerase II both at the initiation and elongation stages. The glioma amplified sequence 41 (GAS41) has been associated with TFIIF via its YEATS domain. Results Using GST pull-down assays, we demonstrated that GAS41 binds to both, the small subunit (...

  7. IL-2 expression in activated human memory FOXP3+ cells critically depends on the cellular levels of FOXP3 as well as of four transcription factors of T cell activation

    Directory of Open Access Journals (Sweden)

    Hanna eBendfeldt

    2012-08-01

    Full Text Available The human CD4+FOXP3+ T cell population is heterogeneous and consists of various subpopulations which remain poorly defined. Anergy and suppression are two main functional characteristics of FOXP3+Treg cells. We used the anergic behavior of FOXP3+Treg cells for a better discrimination and characterization of such subpopulations. We compared IL-2-expressing with IL-2-nonexpressing cells within the memory FOXP3+ T cell population. In contrast to IL-2 nonexpressing FOXP3+ cells, IL-2-expressing FOXP3+ cells exhibit intermediate characteristics of Treg and Th cells concerning the Treg cell markers CD25, GITR, and Helios. Besides lower levels of FOXP3, they also have higher levels of the transcription factors NFATc2, c-Fos, NF-Bp65, and c-Jun. An approach combining flow cytometric measurements with statistical interpretation for quantitative transcription factor analysis suggest that the physiological expression levels not only of FOXP3 but also of NFATc2, c-Jun, c-Fos, and NF-Bp65 are limiting for the decision whether IL-2 is expressed or not in activated peripheral human memory FOXP3+ cells. These findings demonstrate that concomitant high levels of NFATc2, c-Jun, c-Fos, and NF-Bp65 lead in addition to potential IL-2 expression in those FOXP3+ cells with low levels of FOXP3. We hypothesize that not only the level of FOXP3 expression but also the amounts of the four transcription factors studied represent determining factors for the anergic phenotype of FOXP3+ Treg cells.

  8. Oncovirus Kaposi sarcoma herpesvirus (KSHV) represses tumor suppressor PDLIM2 to persistently activate nuclear factor κB (NF-κB) and STAT3 transcription factors for tumorigenesis and tumor maintenance.

    Science.gov (United States)

    Sun, Fan; Xiao, Yadong; Qu, Zhaoxia

    2015-03-20

    Kaposi sarcoma herpesvirus (KSHV) is the most common cause of malignancies among AIDS patients. However, how KSHV induces tumorigenesis remains largely unknown. Here, we demonstrate that one important mechanism underlying the tumorigenesis of KSHV is through transcriptional repression of the tumor suppressor gene PDZ-LIM domain-containing protein 2 (PDLIM2). PDLIM2 expression is repressed in KSHV-transformed human umbilical vascular endothelial cells as well as in KSHV-associated cancer cell lines and primary tumors. Importantly, PDLIM2 repression is essential for KSHV-induced persistent activation of nuclear factor κB (NF-κB) and signal transducer and activator of transcription 3 (STAT3) and subsequent tumorigenesis and tumor maintenance. Our mechanistic studies indicate that PDLIM2 repression by KSHV involves DNA methylation. Notably, the epigenetic repression of PDLIM2 can be reversed by 5-aza-2-deoxycytidine and vitamin D to suppress KSHV-associated cancer cell growth. These studies not only improve our understanding of KSHV pathogenesis but also provide immediate therapeutic strategies for KSHV-mediated cancers, particularly those associated with AIDS.

  9. An upstream activation element exerting differential transcriptional activation on an archaeal promoter

    DEFF Research Database (Denmark)

    Peng, Nan; Xia, Qiu; Chen, Zhengjun;

    2009-01-01

    (UAS) ara-box activated the basal promoter by recruiting transcription factor B to its BRE. While this UAS ensured a general expression from an inactive or weak basal promoter in the presence of other tested carbon resources, it exhibited a strong arabinose-responsive transcriptional activation. To our...

  10. Platelet-activating factor and hydrogen peroxide exert a dual modulatory effect on the transcription of LXRα and its target genes in human neutrophils.

    Science.gov (United States)

    Reyes-Quiroz, María E; Alba, Gonzalo; Sáenz, Javier; Geniz, Isabel; Jiménez, Juan; Martín-Nieto, José; Santa-María, Consuelo; Sobrino, Francisco

    2016-09-01

    Liver X receptors (LXRs) are ligand-activated nuclear receptors involved mainly in the regulation of cholesterol metabolism in many organs, including liver and intestine, as well as in macrophages and neutrophils. Besides, both anti-inflammatory and pro-inflammatory properties have been ascribed to LXRs. The effect of the inflammatory condition on the expression of LXRα and its target genes has not been previously addressed in human neutrophils. We have described that platelet-activating factor (PAF) and hydrogen peroxide (H2O2) are potent pro-inflammatory mediators that link the haemostatic and innate immune systems. In this work we report that H2O2 at low doses (1 pM-1μM) exerts an inhibitory effect on TO901317-induced mRNA expression of LXRα and of its target genes encoding the ATP-binding cassette (ABC) transporters ABCA1 and ABCG1, and the sterol regulatory element-binding protein 1c (SREBP1c). However, an opposite behaviour, i.e., a transcription-enhancing effect, was found at higher H2O2 doses (100-500μM) on most of these genes. A similar dual effect was observed when the pro-inflammatory molecule PAF was used. Interestingly, H2O2 production separately elicited by 10nM PAF or 1μM H2O2 was similarly low, and analogously, H2O2 production levels elicited by 5μM PAF or 100μM H2O2 were similarly high when they were compared. On the other hand, low doses of PAF or H2O2 induced phosphorylation of extracellular signal-regulated kinases 1 and 2 (ERK 1/2) and NF-κB activation, However, PAF or H2O2 at high doses did not produce changes in NF-κB activation levels. In summary, our results show that H2O2, either exogenous or PAF-induced, exerts a dual regulation on mRNA expression of LXRα and its target genes. PMID:27351826

  11. Effects of cytosine methylation on transcription factor binding sites

    KAUST Repository

    Medvedeva, Yulia A

    2014-03-26

    Background: DNA methylation in promoters is closely linked to downstream gene repression. However, whether DNA methylation is a cause or a consequence of gene repression remains an open question. If it is a cause, then DNA methylation may affect the affinity of transcription factors (TFs) for their binding sites (TFBSs). If it is a consequence, then gene repression caused by chromatin modification may be stabilized by DNA methylation. Until now, these two possibilities have been supported only by non-systematic evidence and they have not been tested on a wide range of TFs. An average promoter methylation is usually used in studies, whereas recent results suggested that methylation of individual cytosines can also be important.Results: We found that the methylation profiles of 16.6% of cytosines and the expression profiles of neighboring transcriptional start sites (TSSs) were significantly negatively correlated. We called the CpGs corresponding to such cytosines " traffic lights" We observed a strong selection against CpG " traffic lights" within TFBSs. The negative selection was stronger for transcriptional repressors as compared with transcriptional activators or multifunctional TFs as well as for core TFBS positions as compared with flanking TFBS positions.Conclusions: Our results indicate that direct and selective methylation of certain TFBS that prevents TF binding is restricted to special cases and cannot be considered as a general regulatory mechanism of transcription. 2013 Medvedeva et al.; licensee BioMed Central Ltd.

  12. Aldosterone stimulates nuclear factor-kappa B activity and transcription of intercellular adhesion molecule-1 and connective tissue growth factor in rat mesangial cells via serum- and glucocorticoid-inducible protein kinase-1.

    Science.gov (United States)

    Terada, Yoshio; Ueda, Satoko; Hamada, Kazu; Shimamura, Yoshiko; Ogata, Koji; Inoue, Kosuke; Taniguchi, Yoshinori; Kagawa, Toru; Horino, Taro; Takao, Toshihiro

    2012-02-01

    Several clinical and experimental data support the hypothesis that aldosterone contributes to the progression of renal injury. To determine the signaling pathway of aldosterone in relation to fibrosis and inflammation in mesangial cells, we investigated the effects of aldosterone on expression and activation of serum- and glucocorticoid-inducible protein kinase-1 (SGK1), the activation of nuclear factor-kappa B (NF-κB activation, and the expressions of intercellular adhesion molecule-1 (ICAM-1) and connective tissue growth factor (CTGF). Aldosterone stimulated SGK1 expression, phosphorylation (Ser-256), and kinase activity. The increments of phosphorylation and expression of SGK1 induced by aldosterone were inhibited by mineralocorticoid receptor (MR) inhibitor (eplerenone). Aldosterone stimulated NF-κB activity measured by NF-κB responsive elements, luciferase assay, and the levels of inhibitor of kappa B (IκB) phosphorylation. This aldosterone-induced activation of NF-κB was inhibited by the transfection of dominant-negative SGK1. Furthermore, aldosterone augmented the promoter activities and protein expressions of ICAM-1 and CTGF. The effects of aldosterone on ICAM-1 and CTGF promoter activities and protein expressions were inhibited by the transfection of dominant-negative SGK1 and dominant-negative IκBα. We also found that the MR antagonist significantly ameliorated the glomerular injury and enhancements in SGK1, ICAM-1, and CTGF expressions induced by 1% sodium chloride and aldosterone in vivo. In conclusion, our findings suggest that aldosterone stimulates ICAM-1 and CTGF transcription via activation of SGK1 and NF-κB, which may be involved in the progression of aldosterone-induced mesangial fibrosis and inflammation. MR antagonists may serve as useful therapeutic targets for the treatment of glomerular inflammatory disease.

  13. Iroquois homeobox transcription factor (Irx5) promotes G1/S-phase transition in vascular smooth muscle cells by CDK2-dependent activation.

    Science.gov (United States)

    Liu, Dong; Pattabiraman, Vaishnavi; Bacanamwo, Methode; Anderson, Leonard M

    2016-08-01

    The Iroquois homeobox (Irx5) gene is essential in embryonic development and cardiac electrophysiology. Although recent studies have reported that IRX5 protein is involved in regulation of the cell cycle and apoptosis in prostate cancer cells, little is known about the role of IRX5 in the adult vasculature. Here we report novel observations on the role of IRX5 in adult vascular smooth muscle cells (VSMCs) during proliferation in vitro and in vivo. Comparative studies using primary human endothelial cells, VSMCs, and intact carotid arteries to determine relative expression of Irx5 in the peripheral vasculature demonstrate significantly higher expression in VSMCs. Sprague-Dawley rat carotid arteries were subjected to balloon catherization, and the presence of IRX5 was examined by immunohistochemistry after 2 wk. Results indicate markedly elevated IRX5 signal at 14 days compared with uninjured controls. Total RNA was isolated from injured and uninjured arteries, and Irx5 expression was measured by RT-PCR. Results demonstrate a significant increase in Irx5 expression at 3-14 days postinjury compared with controls. Irx5 genetic gain- and loss-of-function studies using thymidine and 5-bromo-2'-deoxyuridine incorporation assays resulted in modulation of DNA synthesis in primary rat aortic VSMCs. Quantitative RT-PCR results revealed modulation of cyclin-dependent kinase inhibitor 1B (p27(kip1)), E2F transcription factor 1 (E2f1), and proliferating cell nuclear antigen (Pcna) expression in Irx5-transduced VSMCs compared with controls. Subsequently, apoptosis was observed and confirmed by morphological observation, caspase-3 cleavage, and enzymatic activation compared with control conditions. Taken together, these results indicate that Irx5 plays an important role in VSMC G1/S-phase cell cycle checkpoint control and apoptosis. PMID:27170637

  14. Insect neuropeptide bursicon homodimers induce innate immune and stress genes during molting by activating the NF-κB transcription factor Relish.

    Directory of Open Access Journals (Sweden)

    Shiheng An

    Full Text Available BACKGROUND: Bursicon is a heterodimer neuropeptide composed of two cystine knot proteins, bursicon α (burs α and bursicon β (burs β, that elicits cuticle tanning (melanization and sclerotization through the Drosophila leucine-rich repeats-containing G protein-coupled receptor 2 (DLGR2. Recent studies show that both bursicon subunits also form homodimers. However, biological functions of the homodimers have remained unknown until now. METHODOLOGY/PRINCIPAL FINDINGS: In this report, we show in Drosophila melanogaster that both bursicon homodimers induced expression of genes encoding antimicrobial peptides (AMPs in neck-ligated adults following recombinant homodimer injection and in larvae fat body after incubation with recombinant homodimers. These AMP genes were also up-regulated in 24 h old unligated flies (when the endogenous bursicon level is low after injection of recombinant homodimers. Up-regulation of AMP genes by the homodimers was accompanied by reduced bacterial populations in fly assay preparations. The induction of AMP expression is via activation of the NF-κB transcription factor Relish in the immune deficiency (Imd pathway. The influence of bursicon homodimers on immune function does not appear to act through the heterodimer receptor DLGR2, i.e. novel receptors exist for the homodimers. CONCLUSIONS/SIGNIFICANCE: Our results reveal a mechanism of CNS-regulated prophylactic innate immunity during molting via induced expression of genes encoding AMPs and genes of the Turandot family. Turandot genes are also up-regulated by a broader range of extreme insults. From these data we infer that CNS-generated bursicon homodimers mediate innate prophylactic immunity to both stress and infection during the vulnerable molting cycle.

  15. Transcriptional interference by RNA polymerase pausing and dislodgement of transcription factors.

    Science.gov (United States)

    Palmer, Adam C; Egan, J Barry; Shearwin, Keith E

    2011-01-01

    Transcriptional interference is the in cis suppression of one transcriptional process by another. Mathematical modeling shows that promoter occlusion by elongating RNA polymerases cannot produce strong interference. Interference may instead be generated by (1) dislodgement of slow-to-assemble pre-initiation complexes and transcription factors and (2) prolonged occlusion by paused RNA polymerases.

  16. Subgroup-specific intrinsic disorder profiles of arabidopsis NAC transcription factors

    DEFF Research Database (Denmark)

    Stender, Emil G.; O'Shea, Charlotte; Skriver, Karen

    2015-01-01

    Protein intrinsic disorder (ID), referring to the lack of a fixed tertiary structure, is significant in signaling and transcription. We recently characterized ID in 6 phylogenetically representative Arabidopsis thaliana NAC transcription factors. Their transcription regulatory domains are mostly.......g. transcriptional activation and interactions. Based on our analysis, we suggest that ID profiling of regulatory proteins in general can be used to guide identification of interaction partners of network proteins....

  17. Pathologically Relevant Prelamin A Interactions with Transcription Factors.

    Science.gov (United States)

    Infante, Arantza; Rodríguez, Clara I

    2016-01-01

    LMNA-linked laminopathies are a group of rare human diseases caused by mutations in LMNA or by disrupted posttranslational processing of its largest encoded isoform, prelamin A. The accumulation of mutated or immature forms of farnesylated prelamin A, named progerin or prelamin A, respectively, dominantly disrupts nuclear lamina structure with toxic effects in cells. One hypothesis is that aberrant lamin filament networks disrupt or "trap" proteins such as transcription factors, thereby interfering with their normal activity. Since laminopathies mainly affect tissues of mesenchymal origin, we tested this hypothesis by generating an experimental model of laminopathy by inducing prelamin A accumulation in human mesenchymal stem cells (hMSCs). We provide detailed protocols for inducing and detecting prelamin A accumulation in hMSCs, and describe the bioinformatic analysis and in vitro assays of transcription factors potentially affected by prelamin A accumulation.

  18. Archaeal Transcription: Function of an Alternative Transcription Factor B from Pyrococcus furiosus▿

    OpenAIRE

    Micorescu, Michael; Grünberg, Sebastian; Franke, Andreas; Cramer, Patrick; Thomm, Michael; Bartlett, Michael

    2007-01-01

    The genome of the hyperthermophile archaeon Pyrococcus furiosus encodes two transcription factor B (TFB) paralogs, one of which (TFB1) was previously characterized in transcription initiation. The second TFB (TFB2) is unusual in that it lacks recognizable homology to the archaeal TFB/eukaryotic TFIIB B-finger motif. TFB2 functions poorly in promoter-dependent transcription initiation, but photochemical cross-linking experiments indicated that the orientation and occupancy of transcription com...

  19. Transcription factor cooperativity in early adipogenic hotspots and super-enhancers

    DEFF Research Database (Denmark)

    Siersbæk, Rasmus; Rabiee, Atefeh; Nielsen, Ronni;

    2014-01-01

    It is becoming increasingly clear that transcription factors operate in complex networks through thousands of genomic binding sites, many of which bind several transcription factors. However, the extent and mechanisms of crosstalk between transcription factors at these hotspots remain unclear....... Using a combination of advanced proteomics and genomics approaches, we identify ∼12,000 transcription factor hotspots (∼400 bp) in the early phase of adipogenesis, and we find evidence of both simultaneous and sequential binding of transcription factors at these regions. We demonstrate that hotspots...... are highly enriched in large super-enhancer regions (several kilobases), which drive the early adipogenic reprogramming of gene expression. Our results indicate that cooperativity between transcription factors at the level of hotspots as well as super-enhancers is very important for enhancer activity...

  20. Dual-level regulation of ACC synthase activity by MPK3/MPK6 cascade and its downstream WRKY transcription factor during ethylene induction in Arabidopsis.

    Science.gov (United States)

    Li, Guojing; Meng, Xiangzong; Wang, Ruigang; Mao, Guohong; Han, Ling; Liu, Yidong; Zhang, Shuqun

    2012-06-01

    Plants under pathogen attack produce high levels of ethylene, which plays important roles in plant immunity. Previously, we reported the involvement of ACS2 and ACS6, two Type I ACS isoforms, in Botrytis cinerea-induced ethylene biosynthesis and their regulation at the protein stability level by MPK3 and MPK6, two Arabidopsis pathogen-responsive mitogen-activated protein kinases (MAPKs). The residual ethylene induction in the acs2/acs6 double mutant suggests the involvement of additional ACS isoforms. It is also known that a subset of ACS genes, including ACS6, is transcriptionally induced in plants under stress or pathogen attack. However, the importance of ACS gene activation and the regulatory mechanism(s) are not clear. In this report, we demonstrate using genetic analysis that ACS7 and ACS11, two Type III ACS isoforms, and ACS8, a Type II ACS isoform, also contribute to the B. cinerea-induced ethylene production. In addition to post-translational regulation, transcriptional activation of the ACS genes also plays a critical role in sustaining high levels of ethylene induction. Interestingly, MPK3 and MPK6 not only control the stability of ACS2 and ACS6 proteins via direct protein phosphorylation but also regulate the expression of ACS2 and ACS6 genes. WRKY33, another MPK3/MPK6 substrate, is involved in the MPK3/MPK6-induced ACS2/ACS6 gene expression based on genetic analyses. Furthermore, chromatin-immunoprecipitation assay reveals the direct binding of WRKY33 to the W-boxes in the promoters of ACS2 and ACS6 genes in vivo, suggesting that WRKY33 is directly involved in the activation of ACS2 and ACS6 expression downstream of MPK3/MPK6 cascade in response to pathogen invasion. Regulation of ACS activity by MPK3/MPK6 at both transcriptional and protein stability levels plays a key role in determining the kinetics and magnitude of ethylene induction.

  1. Phosphorylation Regulates Functions of ZEB1 Transcription Factor.

    Science.gov (United States)

    Llorens, M Candelaria; Lorenzatti, Guadalupe; Cavallo, Natalia L; Vaglienti, Maria V; Perrone, Ana P; Carenbauer, Anne L; Darling, Douglas S; Cabanillas, Ana M

    2016-10-01

    ZEB1 transcription factor is important in both development and disease, including many TGFβ-induced responses, and the epithelial-to-mesenchymal transition (EMT) by which many tumors undergo metastasis. ZEB1 is differentially phosphorylated in different cell types; however the role of phosphorylation in ZEB1 activity is unknown. Luciferase reporter studies and electrophoresis mobility shift assays (EMSA) show that a decrease in phosphorylation of ZEB1 increases both DNA-binding and transcriptional repression of ZEB1 target genes. Functional analysis of ZEB1 phosphorylation site mutants near the second zinc finger domain (termed ZD2) show that increased phosphorylation (due to either PMA plus ionomycin, or IGF-1) can inhibit transcriptional repression by either a ZEB1-ZD2 domain clone, or full-length ZEB1. This approach identifies phosphosites that have a substantial effect regulating the transcriptional and DNA-binding activity of ZEB1. Immunoprecipitation with anti-ZEB1 antibodies followed by western analysis with a phospho-Threonine-Proline-specific antibody indicates that the ERK consensus site at Thr-867 is phosphorylated in ZEB1. In addition to disrupting in vitro DNA-binding measured by EMSA, IGF-1-induced MEK/ERK phosphorylation is sufficient to disrupt nuclear localization of GFP-ZEB1 fusion clones. These data suggest that phosphorylation of ZEB1 integrates TGFβ signaling with other signaling pathways such as IGF-1. J. Cell. Physiol. 231: 2205-2217, 2016. © 2016 Wiley Periodicals, Inc. PMID:26868487

  2. PTS regulation domain-containing transcriptional activator CelR and sigma factor σ(54) control cellobiose utilization in Clostridium acetobutylicum.

    Science.gov (United States)

    Nie, Xiaoqun; Yang, Bin; Zhang, Lei; Gu, Yang; Yang, Sheng; Jiang, Weihong; Yang, Chen

    2016-04-01

    The phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) regulation domain (PRD)-containing enhancer binding proteins (EBPs) are an important class of σ(54) -interacting transcriptional activators. Although PRD-containing EBPs are present in many Firmicutes, most of their regulatory functions remain unclear. In this study, the transcriptional regulons of about 50 PRD-containing EBPs in diverse Firmicutes species are reconstructed by using a comparative genomic approach, which contain the genes associated with utilization of β-glucosides, fructose/levan, mannose/glucose, pentitols, and glucosamine/fructosamine. We then present experimental evidence that the cel operon involved in cellobiose utilization is directly regulated by CelR and σ(54) (SigL) in Clostridium acetobutylicum. The predicted three CelR-binding sites and σ(54) promoter elements upstream of the cel operon are verified by in vitro binding assays. We show that CelR has an ATPase activity, which is strongly stimulated by the presence of DNA containing the CelR-binding sites. Moreover, mutations in any one of the three CelR-binding sites significantly decreased the cel promoter activity probably due to the need for all three DNA sites for maximal ATPase activity of CelR. It is suggested that CelR is regulated by PTS-mediated phosphorylation at His-551 and His-829, which exerts a positive effect and an inhibitory effect, respectively, on the CelR activity. PMID:26691835

  3. The solution configurations of inactive and activated DntR have implications for the sliding dimer mechanism of LysR transcription factors

    Science.gov (United States)

    Lerche, Michael; Dian, Cyril; Round, Adam; Lönneborg, Rosa; Brzezinski, Peter; Leonard, Gordon A.

    2016-01-01

    LysR Type Transcriptional Regulators (LTTRs) regulate basic metabolic pathways or virulence gene expression in prokaryotes. Evidence suggests that the activation of LTTRs involves a conformational change from an inactive compact apo- configuration that represses transcription to an active, expanded holo- form that promotes it. However, no LTTR has yet been observed to adopt both configurations. Here, we report the results of structural studies of various forms of the LTTR DntR. Crystal structures of apo-DntR and of a partially autoinducing mutant H169T-DntR suggest that active and inactive DntR maintain a compact homotetrameric configuration. However, Small Angle X-ray Scattering (SAXS) studies on solutions of apo-, H169T- and inducer-bound holo-DntR indicate a different behaviour, suggesting that while apo-DntR maintains a compact configuration in solution both H169T- and holo-DntR adopt an expanded conformation. Models of the SAXS-obtained solution conformations of apo- and holo-DntR homotetramers in complex with promoter-operator region DNA are consistent with previous observations of a shifting of LTTR DNA binding sites upon activation and a consequent relaxation in the bend of the promoter-operator region DNA. Our results thus provide clear evidence at the molecular level which strongly supports the ‘sliding dimer’ hypothesis concerning LTTR activation mechanisms. PMID:26817994

  4. Induction of Fibronectin Adhesins in Quinolone-Resistant Staphylococcus aureus by Subinhibitory Levels of Ciprofloxacin or by Sigma B Transcription Factor Activity Is Mediated by Two Separate Pathways

    OpenAIRE

    Li, Dongmei; Renzoni, Adriana; Estoppey, Tristan; Bisognano, Carmelo; Francois, Patrice; Kelley, William L; Lew, Daniel P.; Schrenzel, Jacques; Vaudaux, Pierre

    2005-01-01

    We recently reported on the involvement of a RecA-LexA-dependent pathway in the ciprofloxacin-triggered upregulation of fibronectin-binding proteins (FnBPs) by fluoroquinolone-resistant Staphylococcus aureus. The potential additional contribution of the transcription factor sigma B (SigB) to the ciprofloxacin-triggered upregulation of FnBPs was studied in isogenic mutants of fluoroquinolone-resistant strain RA1 (a topoisomerase IV gyrase double mutant of S. aureus NCTC strain 8325), which exh...

  5. The Functional Consequences of Variation in Transcription Factor Binding

    Science.gov (United States)

    Cusanovich, Darren A.; Pavlovic, Bryan; Pritchard, Jonathan K.; Gilad, Yoav

    2014-01-01

    One goal of human genetics is to understand how the information for precise and dynamic gene expression programs is encoded in the genome. The interactions of transcription factors (TFs) with DNA regulatory elements clearly play an important role in determining gene expression outputs, yet the regulatory logic underlying functional transcription factor binding is poorly understood. Many studies have focused on characterizing the genomic locations of TF binding, yet it is unclear to what extent TF binding at any specific locus has functional consequences with respect to gene expression output. To evaluate the context of functional TF binding we knocked down 59 TFs and chromatin modifiers in one HapMap lymphoblastoid cell line. We then identified genes whose expression was affected by the knockdowns. We intersected the gene expression data with transcription factor binding data (based on ChIP-seq and DNase-seq) within 10 kb of the transcription start sites of expressed genes. This combination of data allowed us to infer functional TF binding. Using this approach, we found that only a small subset of genes bound by a factor were differentially expressed following the knockdown of that factor, suggesting that most interactions between TF and chromatin do not result in measurable changes in gene expression levels of putative target genes. We found that functional TF binding is enriched in regulatory elements that harbor a large number of TF binding sites, at sites with predicted higher binding affinity, and at sites that are enriched in genomic regions annotated as “active enhancers.” PMID:24603674

  6. The functional consequences of variation in transcription factor binding.

    Directory of Open Access Journals (Sweden)

    Darren A Cusanovich

    2014-03-01

    Full Text Available One goal of human genetics is to understand how the information for precise and dynamic gene expression programs is encoded in the genome. The interactions of transcription factors (TFs with DNA regulatory elements clearly play an important role in determining gene expression outputs, yet the regulatory logic underlying functional transcription factor binding is poorly understood. Many studies have focused on characterizing the genomic locations of TF binding, yet it is unclear to what extent TF binding at any specific locus has functional consequences with respect to gene expression output. To evaluate the context of functional TF binding we knocked down 59 TFs and chromatin modifiers in one HapMap lymphoblastoid cell line. We then identified genes whose expression was affected by the knockdowns. We intersected the gene expression data with transcription factor binding data (based on ChIP-seq and DNase-seq within 10 kb of the transcription start sites of expressed genes. This combination of data allowed us to infer functional TF binding. Using this approach, we found that only a small subset of genes bound by a factor were differentially expressed following the knockdown of that factor, suggesting that most interactions between TF and chromatin do not result in measurable changes in gene expression levels of putative target genes. We found that functional TF binding is enriched in regulatory elements that harbor a large number of TF binding sites, at sites with predicted higher binding affinity, and at sites that are enriched in genomic regions annotated as "active enhancers."

  7. Digital gene expression analysis of male and female bud transition in Metasequoia reveals high activity of MADS-box transcription factors and hormone-mediated sugar pathways

    Directory of Open Access Journals (Sweden)

    Ying eZhao

    2015-06-01

    Full Text Available Metasequoiaglyptostroboidies is a famous redwood tree of ecological and economic importance, and requires more than 20 years of juvenile-to-adult transition before producing female and male cones. Previously, we induced reproductive buds using a hormone solution in juvenile Metasequoia trees as young as5-to-7years old. In the current study, hormone-treated shoots found in female and male buds were used to identify candidate genes involved in reproductive bud transition in Metasequoia. Samples from hormone-treated cone reproductive shoots and naturally occurring non-cone setting shoots were analyzed using 24 digital gene expression (DGE tag profiles using Illumina, generating a total of 69,520 putative transcripts. Next, 32 differentially and specifically expressed transcripts were determined using quantitative real-time polymerase chain reaction, including the upregulation of MADS-box transcription factors involved in male bud transition and flowering time control proteins involved in female bud transition. These differentially expressed transcripts were associated with 243 KEGG pathways. Among the significantly changed pathways, sugar pathways were mediated by hormone signals during the vegetative-to-reproductive phase transition, including glycolysis/gluconeogenesis and sucrose and starch metabolism pathways. Key enzymes were identified in these pathways, including alcohol dehydrogenase (NAD and glutathione dehydrogenase for the glycolysis/gluconeogenesis pathway, and glucanphosphorylase for sucrose and starch metabolism pathways. Our results increase our understanding of the reproductive bud transition in gymnosperms. In addition, these studies on hormone-mediated sugar pathways increase our understanding of the relationship between sugar and hormone signaling during female and male bud initiation in Metasequoia.

  8. Negative transcriptional regulation of mitochondrial transcription factor A (TFAM) by nuclear TFAM

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Jin; Kang, Young Cheol; Park, Wook-Ha; Jeong, Jae Hoon; Pak, Youngmi Kim, E-mail: ykpak@khu.ac.kr

    2014-07-18

    Highlights: • TFAM localizes in nuclei and mitochondria of neuronal cells. • Nuclear TFAM does not bind the Tfam promoter. • Nuclear TFAM reduced the Tfam promoter activity via suppressing NRF-1 activity. • A novel self-negative feedback regulation of Tfam gene expression is explored. • FAM may play different roles depending on its subcellular localizations. - Abstract: The nuclear DNA-encoded mitochondrial transcription factor A (TFAM) is synthesized in cytoplasm and transported into mitochondria. TFAM enhances both transcription and replication of mitochondrial DNA. It is unclear, however, whether TFAM plays a role in regulating nuclear gene expression. Here, we demonstrated that TFAM was localized to the nucleus and mitochondria by immunostaining, subcellular fractionation, and TFAM-green fluorescent protein hybrid protein studies. In HT22 hippocampal neuronal cells, human TFAM (hTFAM) overexpression suppressed human Tfam promoter-mediated luciferase activity in a dose-dependent manner. The mitochondria targeting sequence-deficient hTFAM also repressed Tfam promoter activity to the same degree as hTFAM. It indicated that nuclear hTFAM suppressed Tfam expression without modulating mitochondrial activity. The repression required for nuclear respiratory factor-1 (NRF-1), but hTFAM did not bind to the NRF-1 binding site of its promoter. TFAM was co-immunoprecipitated with NRF-1. Taken together, we suggest that nuclear TFAM down-regulate its own gene expression as a NRF-1 repressor, showing that TFAM may play different roles depending on its subcellular localizations.

  9. Negative transcriptional regulation of mitochondrial transcription factor A (TFAM) by nuclear TFAM

    International Nuclear Information System (INIS)

    Highlights: • TFAM localizes in nuclei and mitochondria of neuronal cells. • Nuclear TFAM does not bind the Tfam promoter. • Nuclear TFAM reduced the Tfam promoter activity via suppressing NRF-1 activity. • A novel self-negative feedback regulation of Tfam gene expression is explored. • FAM may play different roles depending on its subcellular localizations. - Abstract: The nuclear DNA-encoded mitochondrial transcription factor A (TFAM) is synthesized in cytoplasm and transported into mitochondria. TFAM enhances both transcription and replication of mitochondrial DNA. It is unclear, however, whether TFAM plays a role in regulating nuclear gene expression. Here, we demonstrated that TFAM was localized to the nucleus and mitochondria by immunostaining, subcellular fractionation, and TFAM-green fluorescent protein hybrid protein studies. In HT22 hippocampal neuronal cells, human TFAM (hTFAM) overexpression suppressed human Tfam promoter-mediated luciferase activity in a dose-dependent manner. The mitochondria targeting sequence-deficient hTFAM also repressed Tfam promoter activity to the same degree as hTFAM. It indicated that nuclear hTFAM suppressed Tfam expression without modulating mitochondrial activity. The repression required for nuclear respiratory factor-1 (NRF-1), but hTFAM did not bind to the NRF-1 binding site of its promoter. TFAM was co-immunoprecipitated with NRF-1. Taken together, we suggest that nuclear TFAM down-regulate its own gene expression as a NRF-1 repressor, showing that TFAM may play different roles depending on its subcellular localizations

  10. In vivo delivery of transcription factors with multifunctional oligonucleotides

    Science.gov (United States)

    Lee, Kunwoo; Rafi, Mohammad; Wang, Xiaojian; Aran, Kiana; Feng, Xuli; Lo Sterzo, Carlo; Tang, Richard; Lingampalli, Nithya; Kim, Hyun Jin; Murthy, Niren

    2015-07-01

    Therapeutics based on transcription factors have the potential to revolutionize medicine but have had limited clinical success as a consequence of delivery problems. The delivery of transcription factors is challenging because it requires the development of a delivery vehicle that can complex transcription factors, target cells and stimulate endosomal disruption, with minimal toxicity. Here, we present a multifunctional oligonucleotide, termed DARTs (DNA assembled recombinant transcription factors), which can deliver transcription factors with high efficiency in vivo. DARTs are composed of an oligonucleotide that contains a transcription-factor-binding sequence and hydrophobic membrane-disruptive chains that are masked by acid-cleavable galactose residues. DARTs have a unique molecular architecture, which allows them to bind transcription factors, trigger endocytosis in hepatocytes, and stimulate endosomal disruption. The DARTs have enhanced uptake in hepatocytes as a result of their galactose residues and can disrupt endosomes efficiently with minimal toxicity, because unmasking of their hydrophobic domains selectively occurs in the acidic environment of the endosome. We show that DARTs can deliver the transcription factor nuclear erythroid 2-related factor 2 (Nrf2) to the liver, catalyse the transcription of Nrf2 downstream genes, and rescue mice from acetaminophen-induced liver injury.

  11. Fungal mediator tail subunits contain classical transcriptional activation domains.

    Science.gov (United States)

    Liu, Zhongle; Myers, Lawrence C

    2015-04-01

    Classical activation domains within DNA-bound eukaryotic transcription factors make weak interactions with coactivator complexes, such as Mediator, to stimulate transcription. How these interactions stimulate transcription, however, is unknown. The activation of reporter genes by artificial fusion of Mediator subunits to DNA binding domains that bind to their promoters has been cited as evidence that the primary role of activators is simply to recruit Mediator. We have identified potent classical transcriptional activation domains in the C termini of several tail module subunits of Saccharomyces cerevisiae, Candida albicans, and Candida dubliniensis Mediator, while their N-terminal domains are necessary and sufficient for their incorporation into Mediator but do not possess the ability to activate transcription when fused to a DNA binding domain. This suggests that Mediator fusion proteins actually are functioning in a manner similar to that of a classical DNA-bound activator rather than just recruiting Mediator. Our finding that deletion of the activation domains of S. cerevisiae Med2 and Med3, as well as C. dubliniensis Tlo1 (a Med2 ortholog), impairs the induction of certain genes shows these domains function at native promoters. Activation domains within coactivators are likely an important feature of these complexes and one that may have been uniquely leveraged by a common fungal pathogen.

  12. 转录因子NF-κB 活性检测技术%Techniques for assaying the activity of transcription factor NF-κB

    Institute of Scientific and Technical Information of China (English)

    凌小倩; 王进科

    2013-01-01

    NF-κB 是一种诱导性转录因子,广泛存在于各种细胞,在细胞受到各种刺激时可被激活,调节大量靶基 因,因此在很多重要细胞进程,如细胞生长、分化、凋亡和癌变中均发挥重要作用.自其发现以来的25 年中,NF-κB 是生物医学科学各领域中被持续大量深入研究的前沿热点转录因子,同时也是疾病治疗和药物筛选的重 要靶点.NF-κB 的活性检测是研究其活化和功能首当其冲的实验内容,因此NF-κB 的活性检测技术历来受到重 视和不断发展.特别是近几年来,随着各学科的发展,出现了多种NF-κB 活性检测新技术,如基于双链DNA 修饰微孔板的类ELISA 分析、膜结合分析、各种荧光共振能量转移分析、基于内外切酶保护的荧光报告及核 酸扩增分析、基于免疫微球的质谱及流式细胞分析,以及物理化学分析等.其中有些技术已经对NF-κB 的研究 发挥了重要作用.文章对近年来发展的各种检测技术进行了分类综述,以便从事NF-κB 相关研究的科研人员对 该种转录因子的检测分析技术有一个全貌的了解,并有益于在其研究中选择恰当合适的实验方法.此外,对这 些技术的学习和理解,可能激发研究人员对现有技术的改进和发展新的技术.%NF-κB is a stimulatory transcription factor that is ubiquitous in almost all kinds of cells. When cells are under various stimuli, NF-κB is activated and regulates large numbers of target genes, and thus controls important cellular processes, ranging from cell growth and differentiation to apoptosis and cancer. Therefore, NF-κB is a forefront hotspot transcription factor that is intensively studied in virtually all fields of biomedical sciences, and becomes a promising target for disease therapy and drug screening. The activity detection is the first and inevitable step for the studies of NF-κB activation and function.Therefore, the techniques for detection of

  13. Characterization of Evolutionarily ConservedMotifs Involved in Activity and Regulation of theABA-INSENSITIVE (ABI) 4 Transcription Factor

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    In recent years, the transcription factor ABI4 has emerged as an important node of integration for externaland internal signals such as nutrient status and hormone signaling that modulates critical transitions during the growthand development of plants. For this reason, understanding the mechanism of action and regulation of this protein rep-resents an important step towards the elucidation of crosstalk mechanisms in plants. However, this understanding hasbeen hindered due to the negligible levels of this protein as a result of multiple posttranscriptional regulations. To betterunderstand the function and regulation of the ABI4 protein in this work, we performed a functional analysis of severalevolutionarily conserved motifs. Based on these conserved motifs, we identified ortholog genes of ABI4 in differentplant species. The functionality of the putative ortholog from Theobroma cacao was demonstrated in transient expres-sion assays and in complementation studies in plants. The function of the highly conserved motifs was analyzed aftertheir deletion or mutagenesis in the Arabidopsis ABI4 sequence using mesophyll protoplasts. This approach permitted usto immunologically detect the ABI4 protein and identify some of the mechanisms involved in its regulation. We identi-fied sequences required for the nuclear localization (AP2-associated motif) as well as those for transcriptional activationfunction (LRP motif). Moreover, this approach showed that the protein stability of this transcription factor is controlledthrough protein degradation and subcellular localization and involves the AP2-associated and the PEST motifs. We dem-onstrated that the degradation of ABI4 protein through the PEST motif is mediated by the 26S proteasome in responseto changes in the sugar levels.

  14. Identification of uniquely expressed transcription factors in highly purified B-cell lymphoma samples

    DEFF Research Database (Denmark)

    Andréasson, Ulrika; Edén, Patrik; Peterson, Carsten;

    2010-01-01

    Transcription factors (TFs) are critical for B-cell differentiation, affecting gene expression both by repression and transcriptional activation. Still, this information is not used for classification of B-cell lymphomas (BCLs). Traditionally, BCLs are diagnosed based on a phenotypic resemblance......). The identified transcription factors influence both the global and specific gene expression of the BCLs and have possible implications for diagnosis and treatment....

  15. First Exon Length Controls Active Chromatin Signatures and Transcription

    Directory of Open Access Journals (Sweden)

    Nicole I. Bieberstein

    2012-07-01

    Full Text Available Here, we explore the role of splicing in transcription, employing both genome-wide analysis of human ChIP-seq data and experimental manipulation of exon-intron organization in transgenic cell lines. We show that the activating histone modifications H3K4me3 and H3K9ac map specifically to first exon-intron boundaries. This is surprising, because these marks help recruit general transcription factors (GTFs to promoters. In genes with long first exons, promoter-proximal levels of H3K4me3 and H3K9ac are greatly reduced; consequently, GTFs and RNA polymerase II are low at transcription start sites (TSSs and exhibit a second, promoter-distal peak from which transcription also initiates. In contrast, short first exons lead to increased H3K4me3 and H3K9ac at promoters, higher expression levels, accuracy in TSS usage, and a lower frequency of antisense transcription. Therefore, first exon length is predictive for gene activity. Finally, splicing inhibition and intron deletion reduce H3K4me3 levels and transcriptional output. Thus, gene architecture and splicing determines transcription quantity and quality as well as chromatin signatures.

  16. Microphthalmia transcription factor regulates pancreatic β-cell function.

    Science.gov (United States)

    Mazur, Magdalena A; Winkler, Marcus; Ganic, Elvira; Colberg, Jesper K; Johansson, Jenny K; Bennet, Hedvig; Fex, Malin; Nuber, Ulrike A; Artner, Isabella

    2013-08-01

    Precise regulation of β-cell function is crucial for maintaining blood glucose homeostasis. Pax6 is an essential regulator of β-cell-specific factors like insulin and Glut2. Studies in the developing eye suggest that Pax6 interacts with Mitf to regulate pigment cell differentiation. Here, we show that Mitf, like Pax6, is expressed in all pancreatic endocrine cells during mouse postnatal development and in the adult islet. A Mitf loss-of-function mutation results in improved glucose tolerance and enhanced insulin secretion but no increase in β-cell mass in adult mice. Mutant β-cells secrete more insulin in response to glucose than wild-type cells, suggesting that Mitf is involved in regulating β-cell function. In fact, the transcription of genes critical for maintaining glucose homeostasis (insulin and Glut2) and β-cell formation and function (Pax4 and Pax6) is significantly upregulated in Mitf mutant islets. The increased Pax6 expression may cause the improved β-cell function observed in Mitf mutant animals, as it activates insulin and Glut2 transcription. Chromatin immunoprecipitation analysis shows that Mitf binds to Pax4 and Pax6 regulatory regions, suggesting that Mitf represses their transcription in wild-type β-cells. We demonstrate that Mitf directly regulates Pax6 transcription and controls β-cell function. PMID:23610061

  17. Transcription Factors Exhibit Differential Conservation in Bacteria with Reduced Genomes.

    Science.gov (United States)

    Galán-Vásquez, Edgardo; Sánchez-Osorio, Ismael; Martínez-Antonio, Agustino

    2016-01-01

    The description of transcriptional regulatory networks has been pivotal in the understanding of operating principles under which organisms respond and adapt to varying conditions. While the study of the topology and dynamics of these networks has been the subject of considerable work, the investigation of the evolution of their topology, as a result of the adaptation of organisms to different environmental conditions, has received little attention. In this work, we study the evolution of transcriptional regulatory networks in bacteria from a genome reduction perspective, which manifests itself as the loss of genes at different degrees. We used the transcriptional regulatory network of Escherichia coli as a reference to compare 113 smaller, phylogenetically-related γ-proteobacteria, including 19 genomes of symbionts. We found that the type of regulatory action exerted by transcription factors, as genomes get progressively smaller, correlates well with their degree of conservation, with dual regulators being more conserved than repressors and activators in conditions of extreme reduction. In addition, we found that the preponderant conservation of dual regulators might be due to their role as both global regulators and nucleoid-associated proteins. We summarize our results in a conceptual model of how each TF type is gradually lost as genomes become smaller and give a rationale for the order in which this phenomenon occurs.

  18. Transcription Factors Exhibit Differential Conservation in Bacteria with Reduced Genomes.

    Directory of Open Access Journals (Sweden)

    Edgardo Galán-Vásquez

    Full Text Available The description of transcriptional regulatory networks has been pivotal in the understanding of operating principles under which organisms respond and adapt to varying conditions. While the study of the topology and dynamics of these networks has been the subject of considerable work, the investigation of the evolution of their topology, as a result of the adaptation of organisms to different environmental conditions, has received little attention. In this work, we study the evolution of transcriptional regulatory networks in bacteria from a genome reduction perspective, which manifests itself as the loss of genes at different degrees. We used the transcriptional regulatory network of Escherichia coli as a reference to compare 113 smaller, phylogenetically-related γ-proteobacteria, including 19 genomes of symbionts. We found that the type of regulatory action exerted by transcription factors, as genomes get progressively smaller, correlates well with their degree of conservation, with dual regulators being more conserved than repressors and activators in conditions of extreme reduction. In addition, we found that the preponderant conservation of dual regulators might be due to their role as both global regulators and nucleoid-associated proteins. We summarize our results in a conceptual model of how each TF type is gradually lost as genomes become smaller and give a rationale for the order in which this phenomenon occurs.

  19. Transcription Factors Exhibit Differential Conservation in Bacteria with Reduced Genomes.

    Science.gov (United States)

    Galán-Vásquez, Edgardo; Sánchez-Osorio, Ismael; Martínez-Antonio, Agustino

    2016-01-01

    The description of transcriptional regulatory networks has been pivotal in the understanding of operating principles under which organisms respond and adapt to varying conditions. While the study of the topology and dynamics of these networks has been the subject of considerable work, the investigation of the evolution of their topology, as a result of the adaptation of organisms to different environmental conditions, has received little attention. In this work, we study the evolution of transcriptional regulatory networks in bacteria from a genome reduction perspective, which manifests itself as the loss of genes at different degrees. We used the transcriptional regulatory network of Escherichia coli as a reference to compare 113 smaller, phylogenetically-related γ-proteobacteria, including 19 genomes of symbionts. We found that the type of regulatory action exerted by transcription factors, as genomes get progressively smaller, correlates well with their degree of conservation, with dual regulators being more conserved than repressors and activators in conditions of extreme reduction. In addition, we found that the preponderant conservation of dual regulators might be due to their role as both global regulators and nucleoid-associated proteins. We summarize our results in a conceptual model of how each TF type is gradually lost as genomes become smaller and give a rationale for the order in which this phenomenon occurs. PMID:26766575

  20. Step out of the groove : Epigenetic gene control systems and engineered transcription factors

    NARCIS (Netherlands)

    Verschure, Pernette J.; Visser, Astrid E.; Rots, Marianne G.; Hall, JC; Dunlap, JC; Friedmann, T; VanHeyningen,

    2006-01-01

    At the linear DNA level, gene activity is believed to be driven by binding of transcription factors, which subsequently recruit the RNA polymerase to the gene promoter region. However, it has become clear that transcriptional activation involves large complexes of many different proteins, which not

  1. Distinct motifs in the intracellular domain of human CD30 differentially activate canonical and alternative transcription factor NF-κB signaling.

    Directory of Open Access Journals (Sweden)

    Sarah L Buchan

    Full Text Available The TNF-receptor superfamily member CD30 is expressed on normal and malignant lymphocytes, including anaplastic large cell lymphoma (ALCL cells. CD30 transmits multiple effects, including activation of NF-κB signaling, cell proliferation, growth arrest and apoptosis. How CD30 generates these pleiotropic effects is currently unknown. Herein we describe ALCL cells expressing truncated forms of the CD30 intracellular domain that allowed us to identify the key regions responsible for transmitting its biological effects in lymphocytes. The first region (CD30(519-537 activated both the alternative and canonical NF-κB pathways as detected by p100 and IκBα degradation, IKKβ-dependent transcription of both IκBα and the cyclin-dependent kinase inhibitor p21(WAF1/CIP1 and induction of cell cycle arrest. In contrast, the second region of CD30 (CD30(538-595 induced some aspects of canonical NF-κB activation, including transcription of IκBα, but failed to activate the alternative NF-κB pathway or drive p21(WAF1/CIP1-mediated cell-cycle arrest. Direct comparison of canonical NF-κB activation by the two motifs revealed 4-fold greater p65 nuclear translocation following CD30(519-537 engagement. These data reveal that independent regions of the CD30 cytoplasmic tail regulate the magnitude and type of NF-κB activation and additionally identify a short motif necessary for CD30-driven growth arrest signals in ALCL cells.

  2. Molecular screening tools to study Arabidopsis transcription factors

    Directory of Open Access Journals (Sweden)

    Nora eWehner

    2011-11-01

    Full Text Available In the model plant Arabidopsis thaliana, more than 2000 genes are estimated to encode transcription factors (TFs, which clearly emphasizes the importance of transcriptional control. Although genomic approaches have generated large TF Open Reading Frame (ORF collections, only a limited number of these genes is functionally characterized, yet. This review evaluates strategies and methods to identify TF functions. In particular, we focus on two recently developed TF screening platforms, which make use of publi-cally available GATEWAY® compatible ORF collections. (1 The Arabidopsis thaliana TF ORF over-Expression (AtTORF-Ex library provides pooled collections of transgenic lines over-expressing HA-tagged TF genes, which are suited for screening approaches to define TF functions in stress defense and development. (2 A high-throughput microtiter plate based Protoplast Trans Activation (PTA system has been established to screen for TFs which are regulating a given promoter:Luciferase construct in planta.

  3. Involvement of GATA transcription factors in the regulation of endogenous bovine interferon-tau gene transcription.

    Science.gov (United States)

    Bai, Hanako; Sakurai, Toshihiro; Kim, Min-Su; Muroi, Yoshikage; Ideta, Atsushi; Aoyagi, Yoshito; Nakajima, Hiromi; Takahashi, Masashi; Nagaoka, Kentaro; Imakawa, Kazuhiko

    2009-12-01

    Expression of interferon-tau (IFNT), necessary for pregnancy establishment in ruminant ungulates, is regulated in a temporal and spatial manner. However, molecular mechanisms by which IFNT gene transcription is regulated in this manner have not been firmly established. In this study, DNA microarray/RT-PCR analysis between bovine trophoblast CT-1 and Mardin-Darby bovine kidney (MDBK) cells was initially performed, finding that transcription factors GATA2, GATA3, and GATA6 mRNAs were specific to CT-1 cells. These mRNAs were also found in Days 17, 20, and 22 (Day 0 = day of estrus) bovine conceptuses. In examining other bovine cell lines, ovary cumulus granulosa (oCG) and ear fibroblast (EF) cells, GATA2 and GATA3, but not GATA6, were found specific to the bovine trophoblast cells. In transient transfection analyses using the upstream region (-631 to +59 bp) of bovine IFNT gene (bIFNT, IFN-tau-c1), over-expression of GATA2/GATA3 did not affect the transcription of bIFNT-reporter construct in human choriocarcinoma JEG3 cells. Transfection of GATA2, GATA3, ETS2, and/or CDX2, however, was effective in the up-regulation of the bIFNT construct transfected into bovine oCG and EF cells. One Point mutation studies revealed that among six potential GATA binding sites located on the upstream region of the bIFNT gene, the one next to ETS2 site exhibited reduced luciferase activity. In CT-1 cells, endogenous bIFNT gene transcription was up-regulated by over-expression of GATA2 or GATA3, but down-regulated by siRNA specific to GATA2 mRNA. These data suggest that GATA2/3 is involved in trophoblast-specific regulation of bIFNT gene transcription. PMID:19598245

  4. High-resolution methylation analysis of the human hypoxanthine phosphoribosyltransferase gene 5{prime} region on the active and inactive X chromosomes: Correlation with binding sites for transcription factors

    Energy Technology Data Exchange (ETDEWEB)

    Hornstra, I.K.; Yang, T.P. [Univ. of Florida College of Medicine, Gainesville, FL (United States)

    1994-02-01

    DNA methylation within GC-rich promoters of constitutively expressed X-linked genes is correlated with transcriptional silencing on the inactive X chromosome in female mammals. For most X-linked genes, X chromosome inactivation results in transcriptionally active and inactive alleles occupying each female nucleus. To examine mechanisms responsible for maintaining this unique system of differential gene expression, we have analyzed the methylation of individual cytosine residues in the 5{prime} CpG island of the human hypoxanthine phosphoribosyltransferase (HPRT) gene on the active and inactive X chromosomes. These studies demonstrate the 5{prime} CpG islands of active and 5-azacytidine-reactivated alleles are essentially unmethylated while the inactive allele is hypermethylated. The inactive allele is completely methylated at nearly all CpG dinucleotides except in a 68-bp region containing four adjacent GC boxes where most CpG dinucleotides are either unmethylated or partially methylated. Curiously, these GC boxes exhibit in vivo footprints only on the active X chromosome, not on the inactive X. The methylation pattern of the inactive HPRT gene is strikingly different from that reported for the inactive X-linked human phosphoglycerate kinase gene which exhibits methylation at all CpG sites in the 5{prime} CpG island. These results suggest that the position of methylated CpG dinucleotides, the density of methylated CpGs, the length of methylated regions, and/or chromatin structure associated with methylated DNA may have a role in repressing the activity of housekeeping promoters on the inactive X chromosome. The pattern of DNA methylation on the inactive human HPRT gene may also provide insight into the process of inactivating the gene early in female embryogenesis. 55 refs., 7 figs.

  5. Trans-dominant inhibition of transcription activator LFB1.

    OpenAIRE

    Nicosia, A.; Tafi, R; Monaci, P

    1992-01-01

    Liver-enriched factor LFB1 (also named HNF1) is a dimeric transcription activator which is essential for the expression of many hepatocyte-specific genes. Here we demonstrate that LFB1 mutants in the POU A-like or in the homeo domains inhibit wild-type DNA binding by forming inactive heterodimeric complexes. Co-transfection of one of these mutants with wild-type LFB1 in HeLa cells eliminated LFB1 DNA binding and transcriptional activities through a trans-dominant mechanism. Expression of the ...

  6. Dual-level regulation of ACC synthase activity by MPK3/MPK6 cascade and its downstream WRKY transcription factor during ethylene induction in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Guojing Li

    2012-06-01

    Full Text Available Plants under pathogen attack produce high levels of ethylene, which plays important roles in plant immunity. Previously, we reported the involvement of ACS2 and ACS6, two Type I ACS isoforms, in Botrytis cinerea-induced ethylene biosynthesis and their regulation at the protein stability level by MPK3 and MPK6, two Arabidopsis pathogen-responsive mitogen-activated protein kinases (MAPKs. The residual ethylene induction in the acs2/acs6 double mutant suggests the involvement of additional ACS isoforms. It is also known that a subset of ACS genes, including ACS6, is transcriptionally induced in plants under stress or pathogen attack. However, the importance of ACS gene activation and the regulatory mechanism(s are not clear. In this report, we demonstrate using genetic analysis that ACS7 and ACS11, two Type III ACS isoforms, and ACS8, a Type II ACS isoform, also contribute to the B. cinerea-induced ethylene production. In addition to post-translational regulation, transcriptional activation of the ACS genes also plays a critical role in sustaining high levels of ethylene induction. Interestingly, MPK3 and MPK6 not only control the stability of ACS2 and ACS6 proteins via direct protein phosphorylation but also regulate the expression of ACS2 and ACS6 genes. WRKY33, another MPK3/MPK6 substrate, is involved in the MPK3/MPK6-induced ACS2/ACS6 gene expression based on genetic analyses. Furthermore, chromatin-immunoprecipitation assay reveals the direct binding of WRKY33 to the W-boxes in the promoters of ACS2 and ACS6 genes in vivo, suggesting that WRKY33 is directly involved in the activation of ACS2 and ACS6 expression downstream of MPK3/MPK6 cascade in response to pathogen invasion. Regulation of ACS activity by MPK3/MPK6 at both transcriptional and protein stability levels plays a key role in determining the kinetics and magnitude of ethylene induction.

  7. Genome Binding and Gene Regulation by Stem Cell Transcription Factors

    NARCIS (Netherlands)

    J.H. Brandsma (Johan)

    2016-01-01

    markdownabstractNearly all cells of an individual organism contain the same genome. However, each cell type transcribes a different set of genes due to the presence of different sets of cell type-specific transcription factors. Such transcription factors bind to regulatory regions such as promoters

  8. Analyses of in vivo interactions between transcription factors and the archaeal RNA polymerase.

    Science.gov (United States)

    Walker, Julie E; Santangelo, Thomas J

    2015-09-15

    Transcription factors regulate the activities of RNA polymerase (RNAP) at each stage of the transcription cycle. Many basal transcription factors with common ancestry are employed in eukaryotic and archaeal systems that directly bind to RNAP and influence intramolecular movements of RNAP and modulate DNA or RNA interactions. We describe and employ a flexible methodology to directly probe and quantify the binding of transcription factors to RNAP in vivo. We demonstrate that binding of the conserved and essential archaeal transcription factor TFE to the archaeal RNAP is directed, in part, by interactions with the RpoE subunit of RNAP. As the surfaces involved are conserved in many eukaryotic and archaeal systems, the identified TFE-RNAP interactions are likely conserved in archaeal-eukaryal systems and represent an important point of contact that can influence the efficiency of transcription initiation.

  9. Transcription factors that defend bacteria against reactive oxygen species

    OpenAIRE

    Imlay, James A.

    2015-01-01

    Bacteria live in a toxic world in which their competitors excrete hydrogen peroxide or superoxide-generating redox-cycling compounds. They protect themselves by activating regulons controlled by the OxyR, PerR, and SoxR transcription factors. OxyR and PerR sense peroxide when it oxidizes key thiolate or iron moieties, respectively; they then induce overlapping sets of proteins that defend their vulnerable metalloenzymes. An additional role for OxyR in detecting electrophilic compounds is poss...

  10. The molecular clock regulates circadian transcription of tissue factor gene.

    Science.gov (United States)

    Oishi, Katsutaka; Koyanagi, Satoru; Ohkura, Naoki

    2013-02-01

    Tissue factor (TF) is involved in endotoxin-induced inflammation and mortality. We found that the circadian expression of TF mRNA, which peaked at the day to night transition (activity onset), was damped in the liver of Clock mutant mice. Luciferase reporter and chromatin immunoprecipitation analyses using embryonic fibroblasts derived from wild-type or Clock mutant mice showed that CLOCK is involved in transcription of the TF gene. Furthermore, the results of real-time luciferase reporter experiments revealed that the circadian expression of TF mRNA is regulated by clock molecules through a cell-autonomous mechanism via an E-box element located in the promoter region.

  11. Making a tooth: growth factors, transcription factors, and stem cells

    Institute of Scientific and Technical Information of China (English)

    Yah Ding ZHANG; Zhi CHEN; Yi Qiang SONG; Chao LIU; Yi Ping CHEN

    2005-01-01

    Mammalian tooth development is largely dependent on sequential and reciprocal epithelial-mesenchymal interactions.These processes involve a series of inductive and permissive interactions that result in the determination, differentiation,and organization of odontogenic tissues. Multiple signaling molecules, including BMPs, FGFs, Shh, and Wnt proteins,have been implicated in mediating these tissue interactions. Transcription factors participate in epithelial-mesenchymal interactions via linking the signaling loops between tissue layers by responding to inductive signals and regulating the expression of other signaling molecules. Adult stem cells are highly plastic and multipotent. These cells including dental pulp stem cells and bone marrow stromal cells could be reprogrammed into odontogenic fate and participated in tooth formation. Recent progress in the studies of molecular basis of tooth development, adult stem cell biology, and regeneration will provide fundamental knowledge for the realization of human tooth regeneration in the near future.

  12. Differential effects of black raspberry and strawberry extracts on BaPDE-induced activation of transcription factors and their target genes.

    Science.gov (United States)

    Li, Jingxia; Zhang, Dongyun; Stoner, Gary D; Huang, Chuanshu

    2008-04-01

    The chemopreventive properties of edible berries have been demonstrated both in vitro and in vivo, however, the specific molecular mechanisms underlying their anti-cancer effects are largely unknown. Our previous studies have shown that a methanol extract fraction of freeze-dried black raspberries inhibits benzoapyrene (BaP)-induced transformation of Syrian hamster embryo cells. This fraction also blocks activation of activator protein-1 (AP-1) and nuclear factor kappaB (NF-kappaB) induced by benzoapyrene diol-epoxide (BaPDE) in mouse epidermal JB6 Cl 41 cells. To determine if different berry types exhibit specific mechanisms for their anti-cancer effects, we compared the effects of extract fractions from both black raspberries and strawberries on BaPDE-induced activation of various signaling pathways in Cl 41 cells. Black raspberry fractions inhibited the activation of AP-1, NF-kappaB, and nuclear factor of activated T cells (NFAT) by BaPDE as well as their upstream PI-3K/Akt-p70(S6K) and mitogen-activated protein kinase pathways. In contrast, strawberry fractions inhibited NFAT activation, but did not inhibit the activation of AP-1, NF-kappaB or the PI-3K/Akt-p70(S6K) and mitogen-activated protein kinase pathways. Consistent with the effects on NFAT activation, tumor necrosis factor-alpha (TNF-alpha) induction by BaPDE was blocked by extract fractions of both black raspberries and strawberries, whereas vascular endothelial growth factor (VEGF) expression, which depends on AP-1 activation, was suppressed by black raspberry fractions but not strawberry fractions. These results suggest that black raspberry and strawberry components may target different signaling pathways in exerting their anti-carcinogenic effects. PMID:18085529

  13. Differential effects of black raspberry and strawberry extracts on BaPDE-induced activation of transcription factors and their target genes.

    Science.gov (United States)

    Li, Jingxia; Zhang, Dongyun; Stoner, Gary D; Huang, Chuanshu

    2008-04-01

    The chemopreventive properties of edible berries have been demonstrated both in vitro and in vivo, however, the specific molecular mechanisms underlying their anti-cancer effects are largely unknown. Our previous studies have shown that a methanol extract fraction of freeze-dried black raspberries inhibits benzoapyrene (BaP)-induced transformation of Syrian hamster embryo cells. This fraction also blocks activation of activator protein-1 (AP-1) and nuclear factor kappaB (NF-kappaB) induced by benzoapyrene diol-epoxide (BaPDE) in mouse epidermal JB6 Cl 41 cells. To determine if different berry types exhibit specific mechanisms for their anti-cancer effects, we compared the effects of extract fractions from both black raspberries and strawberries on BaPDE-induced activation of various signaling pathways in Cl 41 cells. Black raspberry fractions inhibited the activation of AP-1, NF-kappaB, and nuclear factor of activated T cells (NFAT) by BaPDE as well as their upstream PI-3K/Akt-p70(S6K) and mitogen-activated protein kinase pathways. In contrast, strawberry fractions inhibited NFAT activation, but did not inhibit the activation of AP-1, NF-kappaB or the PI-3K/Akt-p70(S6K) and mitogen-activated protein kinase pathways. Consistent with the effects on NFAT activation, tumor necrosis factor-alpha (TNF-alpha) induction by BaPDE was blocked by extract fractions of both black raspberries and strawberries, whereas vascular endothelial growth factor (VEGF) expression, which depends on AP-1 activation, was suppressed by black raspberry fractions but not strawberry fractions. These results suggest that black raspberry and strawberry components may target different signaling pathways in exerting their anti-carcinogenic effects.

  14. Distinct regulatory mechanisms of eukaryotic transcriptional activation by SAGA and TFIID.

    Science.gov (United States)

    Bhaumik, Sukesh R

    2011-02-01

    A growing number of human diseases are linked to abnormal gene expression which is largely controlled at the level of transcriptional initiation. The gene-specific activator promotes the initiation of transcription through its interaction with one or more components of the transcriptional initiation machinery, hence leading to stimulated transcriptional initiation or activation. However, all activator proteins do not target the same component(s) of the transcriptional initiation machinery. Rather, they can have different target specificities, and thus, can lead to distinct mechanisms of transcriptional activation. Two such distinct mechanisms of transcriptional activation in yeast are mediated by the SAGA (Spt-Ada-Gcn5-Acetyltransferase) and TFIID (Transcription factor IID) complexes, and are termed as "SAGA-dependent" and "TFIID-dependent" transcriptional activation, respectively. SAGA is the target of the activator in case of SAGA-dependent transcriptional activation, while the targeting of TFIID by the activator leads to TFIID-dependent transcriptional activation. Both the SAGA and TFIID complexes are highly conserved from yeast to human, and play crucial roles in gene activation among eukaryotes. The regulatory mechanisms of eukaryotic transcriptional activation by SAGA and TFIID are discussed here. This article is part of a Special Issue entitled The 26S Proteasome: When degradation is just not enough!

  15. Extensive chromatin remodelling and establishment of transcription factor 'hotspots' during early adipogenesis

    DEFF Research Database (Denmark)

    Siersbæk, Rasmus; Nielsen, Ronni; John, Sam;

    2011-01-01

    Adipogenesis is tightly controlled by a complex network of transcription factors acting at different stages of differentiation. Peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein (C/EBP) family members are key regulators of this process. We have employed DNase I...... hypersensitive site analysis to investigate the genome-wide changes in chromatin structure that accompany the binding of adipogenic transcription factors. These analyses revealed a dramatic and dynamic modulation of the chromatin landscape during the first hours of adipocyte differentiation that coincides...... with cooperative binding of multiple early transcription factors (including glucocorticoid receptor, retinoid X receptor, Stat5a, C/EBPβ and -δ) to transcription factor 'hotspots'. Our results demonstrate that C/EBPβ marks a large number of these transcription factor 'hotspots' before induction of differentiation...

  16. Engineering phenolics metabolism in the grasses using transcription factors

    Energy Technology Data Exchange (ETDEWEB)

    Grotewold, Erich [The Ohio State University

    2013-07-26

    The economical competitiveness of agriculture-derived biofuels can be significantly enhanced by increasing biomass/acre yields and by furnishing the desired carbon balance for facilitating liquid fuel production (e.g., ethanol) or for high-energy solid waste availability to be used as biopower (e.g., for electricity production). Biomass production and carbon balance are tightly linked to the biosynthesis of phenolic compounds, which are found in crops and in agricultural residues either as lignins, as part of the cell wall, or as soluble phenolics which play a variety of functions in the biology of plants. The grasses, in particular maize, provide the single major source of agricultural biomass, offering significant opportunities for increasing renewable fuel production. Our laboratory has pioneered the use of transcription factors for manipulating plant metabolic pathways, an approach that will be applied here towards altering the composition of phenolic compounds in maize. Previously, we identified a small group of ten maize R2R3-MYB transcription factors with all the characteristics of regulators of different aspects of phenolic biosynthesis. Here, we propose to investigate the participation of these R2R3-MYB factors in the regulation of soluble and insoluble maize phenolics, using a combination of over-expression and down-regulation of these transcription factors in transgenic maize cultured cells and in maize plants. Maize cells and plants altered in the activity of these regulatory proteins will be analyzed for phenolic composition by targeted metabolic profiling. Specifically, we will I) Investigate the effect of gain- and loss-of-function of a select group of R2R3-MYB transcription factors on the phenolic composition of maize plants and II) Identify the biosynthetic genes regulated by each of the selected R2R3-MYB factors. While a likely outcome of these studies are transgenic maize plants with altered phenolic composition, this research will significantly

  17. MicroRNA-17-92, a direct Ap-2α transcriptional target, modulates T-box factor activity in orofacial clefting.

    Directory of Open Access Journals (Sweden)

    Jun Wang

    Full Text Available Among the most common human congenital anomalies, cleft lip and palate (CL/P affects up to 1 in 700 live births. MicroRNA (miRs are small, non-coding RNAs that repress gene expression post-transcriptionally. The miR-17-92 cluster encodes six miRs that have been implicated in human cancers and heart development. We discovered that miR-17-92 mutant embryos had severe craniofacial phenotypes, including incompletely penetrant CL/P and mandibular hypoplasia. Embryos that were compound mutant for miR-17-92 and the related miR-106b-25 cluster had completely penetrant CL/P. Expression of Tbx1 and Tbx3, the DiGeorge/velo-cardio-facial (DGS and Ulnar-mammary syndrome (UMS disease genes, was expanded in miR-17-92 mutant craniofacial structures. Both Tbx1 and Tbx3 had functional miR seed sequences that mediated gene repression. Analysis of miR-17-92 regulatory regions uncovered conserved and functional AP-2α recognition elements that directed miR-17-92 expression. Together, our data indicate that miR-17-92 modulates expression of critical T-box transcriptional regulators during midface development and is itself a target of Bmp-signaling and the craniofacial pioneer factor AP-2α. Our data are the first genetic evidence that an individual miR or miR cluster is functionally important in mammalian CL/P.

  18. Regulation by transcription factors in bacteria: beyond description

    OpenAIRE

    Balleza, Enrique; López-Bojorquez, Lucia N; Martínez-Antonio, Agustino; Resendis-Antonio, Osbaldo; Lozada-Chávez, Irma; Balderas-Martínez, Yalbi I; Encarnación, Sergio; Collado-Vides, Julio

    2008-01-01

    Transcription is an essential step in gene expression and its understanding has been one of the major interests in molecular and cellular biology. By precisely tuning gene expression, transcriptional regulation determines the molecular machinery for developmental plasticity, homeostasis and adaptation. In this review, we transmit the main ideas or concepts behind regulation by transcription factors and give just enough examples to sustain these main ideas, thus avoiding a classical ennumerati...

  19. Transcription factor FOXA2-centered transcriptional regulation network in non-small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Sang-Min; An, Joo-Hee; Kim, Chul-Hong; Kim, Jung-Woong, E-mail: jungkim@cau.ac.kr; Choi, Kyung-Hee, E-mail: khchoi@cau.ac.kr

    2015-08-07

    Lung cancer is the leading cause of cancer-mediated death. Although various therapeutic approaches are used for lung cancer treatment, these mainly target the tumor suppressor p53 transcription factor, which is involved in apoptosis and cell cycle arrest. However, p53-targeted therapies have limited application in lung cancer, since p53 is found to be mutated in more than half of lung cancers. In this study, we propose tumor suppressor FOXA2 as an alternative target protein for therapies against lung cancer and reveal a possible FOXA2-centered transcriptional regulation network by identifying new target genes and binding partners of FOXA2 by using various screening techniques. The genes encoding Glu/Asp-rich carboxy-terminal domain 2 (CITED2), nuclear receptor subfamily 0, group B, member 2 (NR0B2), cell adhesion molecule 1 (CADM1) and BCL2-associated X protein (BAX) were identified as putative target genes of FOXA2. Additionally, the proteins including highly similar to heat shock protein HSP 90-beta (HSP90A), heat shock 70 kDa protein 1A variant (HSPA1A), histone deacetylase 1 (HDAC1) and HDAC3 were identified as novel interacting partners of FOXA2. Moreover, we showed that FOXA2-dependent promoter activation of BAX and p21 genes is significantly reduced via physical interactions between the identified binding partners and FOXA2. These results provide opportunities to understand the FOXA2-centered transcriptional regulation network and novel therapeutic targets to modulate this network in p53-deficient lung cancer. - Highlights: • Identification of new target genes of FOXA2. • Identifications of novel interaction proteins of FOXA2. • Construction of FOXA2-centered transcriptional regulatory network in non-small cell lung cancer.

  20. Transcription factor FOXA2-centered transcriptional regulation network in non-small cell lung cancer

    International Nuclear Information System (INIS)

    Lung cancer is the leading cause of cancer-mediated death. Although various therapeutic approaches are used for lung cancer treatment, these mainly target the tumor suppressor p53 transcription factor, which is involved in apoptosis and cell cycle arrest. However, p53-targeted therapies have limited application in lung cancer, since p53 is found to be mutated in more than half of lung cancers. In this study, we propose tumor suppressor FOXA2 as an alternative target protein for therapies against lung cancer and reveal a possible FOXA2-centered transcriptional regulation network by identifying new target genes and binding partners of FOXA2 by using various screening techniques. The genes encoding Glu/Asp-rich carboxy-terminal domain 2 (CITED2), nuclear receptor subfamily 0, group B, member 2 (NR0B2), cell adhesion molecule 1 (CADM1) and BCL2-associated X protein (BAX) were identified as putative target genes of FOXA2. Additionally, the proteins including highly similar to heat shock protein HSP 90-beta (HSP90A), heat shock 70 kDa protein 1A variant (HSPA1A), histone deacetylase 1 (HDAC1) and HDAC3 were identified as novel interacting partners of FOXA2. Moreover, we showed that FOXA2-dependent promoter activation of BAX and p21 genes is significantly reduced via physical interactions between the identified binding partners and FOXA2. These results provide opportunities to understand the FOXA2-centered transcriptional regulation network and novel therapeutic targets to modulate this network in p53-deficient lung cancer. - Highlights: • Identification of new target genes of FOXA2. • Identifications of novel interaction proteins of FOXA2. • Construction of FOXA2-centered transcriptional regulatory network in non-small cell lung cancer

  1. Regulation of nucleosome landscape and transcription factor targeting at tissue-specific enhancers by BRG1

    OpenAIRE

    Hu, Gangqing; Dustin E Schones; Cui, Kairong; Ybarra, River; Northrup, Daniel; Tang, Qingsong; Gattinoni, Luca; Restifo, Nicholas P; Huang, Suming; Zhao, Keji

    2011-01-01

    Enhancers of transcription activate transcription via binding of sequence-specific transcription factors to their target sites in chromatin. In this report, we identify GATA1-bound distal sites genome-wide and find a global reorganization of the nucleosomes at these potential enhancers during differentiation of hematopoietic stem cells (HSCs) to erythrocytes. We show that the catalytic subunit BRG1 of BAF complexes localizes to these distal sites during differentiation and generates a longer ...

  2. Ketamine inhibits transcription factors activator protein 1 and nuclear factor-kappaB, interleukin-8 production, as well as CD11b and CD16 expression: studies in human leukocytes and leukocytic cell lines.

    NARCIS (Netherlands)

    Welters, I.D.; Hafer, G.; Menzebach, A.; Muhling, J.; Neuhauser, C.; Browning, P.; Goumon, Y.

    2010-01-01

    BACKGROUND: Recent data indicate that ketamine exerts antiinflammatory actions. However, little is known about the signaling mechanisms involved in ketamine-induced immune modulation. In this study, we investigated the effects of ketamine on lipopolysaccharide-induced activation of transcription fac

  3. Molecular architecture of transcription factor hotspots in early adipogenesis

    DEFF Research Database (Denmark)

    Siersbæk, Rasmus; Baek, Songjoon; Rabiee, Atefeh;

    2014-01-01

    Transcription factors have recently been shown to colocalize in hotspot regions of the genome, which are further clustered into super-enhancers. However, the detailed molecular organization of transcription factors at hotspot regions is poorly defined. Here, we have used digital genomic...... footprinting to precisely define factor localization at a genome-wide level during the early phase of 3T3-L1 adipocyte differentiation, which allows us to obtain detailed molecular insight into how transcription factors target hotspots. We demonstrate the formation of ATF-C/EBP heterodimers at a composite...... motif on chromatin, and we suggest that this may be a general mechanism for integrating external signals on chromatin. Furthermore, we find evidence of extensive recruitment of transcription factors to hotspots through alternative mechanisms not involving their known motifs and demonstrate...

  4. Maintenance of Transcription-Translation Coupling by Elongation Factor P

    Science.gov (United States)

    Elgamal, Sara

    2016-01-01

    ABSTRACT Under conditions of tight coupling between translation and transcription, the ribosome enables synthesis of full-length mRNAs by preventing both formation of intrinsic terminator hairpins and loading of the transcription termination factor Rho. While previous studies have focused on transcription factors, we investigated the role of Escherichia coli elongation factor P (EF-P), an elongation factor required for efficient translation of mRNAs containing consecutive proline codons, in maintaining coupled translation and transcription. In the absence of EF-P, the presence of Rho utilization (rut) sites led to an ~30-fold decrease in translation of polyproline-encoding mRNAs. Coexpression of the Rho inhibitor Psu fully restored translation. EF-P was also shown to inhibit premature termination during synthesis and translation of mRNAs encoding intrinsic terminators. The effects of EF-P loss on expression of polyproline mRNAs were augmented by a substitution in RNA polymerase that accelerates transcription. Analyses of previously reported ribosome profiling and global proteomic data identified several candidate gene clusters where EF-P could act to prevent premature transcription termination. In vivo probing allowed detection of some predicted premature termination products in the absence of EF-P. Our findings support a model in which EF-P maintains coupling of translation and transcription by decreasing ribosome stalling at polyproline motifs. Other regulators that facilitate ribosome translocation through roadblocks to prevent premature transcription termination upon uncoupling remain to be identified. PMID:27624127

  5. Intracellular CMTM2 negatively regulates human immunodeficiency virus type-1 transcription through targeting the transcription factors AP-1 and CREB

    Institute of Scientific and Technical Information of China (English)

    SONG Hong-shuo; SHI Shuang; LU Xiao-zhi; GAO Feng; YAN Ling; WANG Ying; ZHUANG Hui

    2010-01-01

    Background The CKLF-like MARVEL transmembrane domain-containing family (CMTM) is a novel family of proteins linking chemokines and TM4SF. Different members exhibit diverse biological functions. In this study, the effect of intracellular CMTM2 on regulating human immunodeficiency virus type-1 (HIV-1) transcription was evaluated.Methods The effects of CMTM2 on regulating full-length HIV-1 provirus and the HIV-1 long terminal repeat (LTR)-directed transcription were assessed by luciferase assay. Transcription factor assays, using the luciferase reporter plasmids of AP-1, CRE, and NF-κB were conducted to explore the signaling pathway(s) that may be regulated by CMTM2. The potential relationship between CMTM2 and the transcription factor AP-1 was further analyzed by Western blotting analyses to investigate the effect of CMTM2 on PMA-induced ERK1/2 phosphorylation.Results The results from the current study revealed that CMTM2 acts as a negative regulator of HIV-1 transcription.CMTM2 exerted a suppressive action on both full-length HIV-1 provirus and HIV-1 LTR-directed transcription.Transcription factor assays showed that CMTM2 selectively inhibited basal AP-1 and CREB activity. Co-expression of HIV-1 Tat, a potent AP-1 and CREB activator, can not reverse CMTM2-mediated AP-1 and CREB inhibition, suggesting a potent and specific effect of CMTM2 on negatively regulating these two signaling pathways.Conclusion Intracellular CMTM2 can negatively regulate HIV-1 transcription, at least in part, by targeting the AP-1 and CREB pathways. Exploring the mechanisms further may lead to new ways to control HIV-1 replication.

  6. New Insights into the Functions of Transcription Factors that Bind the RNA Polymerase Secondary Channel.

    Science.gov (United States)

    Zenkin, Nikolay; Yuzenkova, Yulia

    2015-06-25

    Transcription elongation is regulated at several different levels, including control by various accessory transcription elongation factors. A distinct group of these factors interacts with the RNA polymerase secondary channel, an opening at the enzyme surface that leads to its active center. Despite investigation for several years, the activities and in vivo roles of some of these factors remain obscure. Here, we review the recent progress in understanding the functions of the secondary channel binding factors in bacteria. In particular, we highlight the surprising role of global regulator DksA in fidelity of RNA synthesis and the resolution of RNA polymerase traffic jams by the Gre factor. These findings indicate a potential link between transcription fidelity and collisions of the transcription and replication machineries.

  7. Inhibition of enterovirus 71 entry by transcription factor XBP1

    Energy Technology Data Exchange (ETDEWEB)

    Jheng, Jia-Rong; Lin, Chiou-Yan [Department of Biochemistry and Research Center for Emerging Viral Infections, Chang Gung University, 259 Wen-Hwa First Road, Kweishan, Taoyuan 333, Taiwan (China); Horng, Jim-Tong, E-mail: jimtong@mail.cgu.edu.tw [Department of Biochemistry and Research Center for Emerging Viral Infections, Chang Gung University, 259 Wen-Hwa First Road, Kweishan, Taoyuan 333, Taiwan (China); Lau, Kean Seng [Department of Biochemistry and Research Center for Emerging Viral Infections, Chang Gung University, 259 Wen-Hwa First Road, Kweishan, Taoyuan 333, Taiwan (China)

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer IRE1 was activated but no XBP1 splicing was detected during enterovirus 71 infection. Black-Right-Pointing-Pointer XBP1 was subject to translational shutoff by enterovirus 71-induced eIF4G cleavage. Black-Right-Pointing-Pointer The uptake of UV-irradiated virus was decreased in XBP1-overexpressing cells. -- Abstract: Inositol-requiring enzyme 1 (IRE1) plays an important role in the endoplasmic reticulum (ER), or unfolded protein, stress response by activating its downstream transcription factor X-box-binding protein 1 (XBP1). We demonstrated previously that enterovirus 71 (EV71) upregulated XBP1 mRNA levels but did not activate spliced XBP1 (XBP1s) mRNA or its downstream target genes, EDEM and chaperones. In this study, we investigated further this regulatory mechanism and found that IRE1 was phosphorylated and activated after EV71 infection, whereas its downstream XBP1s protein level decreased. We also found that XBP1s was not cleaved directly by 2A{sup pro}, but that cleavage of eukaryotic translation initiation factor 4G by the EV71 2A{sup pro} protein may contribute to the decrease in XBP1s expression. Knockdown of XBP1 increased viral protein expression, and the synthesis of EV71 viral protein and the production of EV71 viral particles were inhibited in XBP1-overexpressing RD cells. When incubated with replication-deficient and UV-irradiated EV71, XBP1-overexpressing RD cells exhibited reduced viral RNA levels, suggesting that the inhibition of XBP1s by viral infection may underlie viral entry, which is required for viral replication. Our findings are the first indication of the ability of XBP1 to inhibit viral entry, possibly via its transcriptional activity in regulating molecules in the endocytic machinery.

  8. Mitochondrial transcription factor A regulates mitochondrial transcription initiation, DNA packaging, and genome copy number.

    Science.gov (United States)

    Campbell, Christopher T; Kolesar, Jill E; Kaufman, Brett A

    2012-01-01

    Mitochondrial transcription factor A (mtTFA, mtTF1, TFAM) is an essential protein that binds mitochondrial DNA (mtDNA) with and without sequence specificity to regulate both mitochondrial transcription initiation and mtDNA copy number. The abundance of mtDNA generally reflects TFAM protein levels; however, the precise mechanism(s) by which this occurs remains a matter of debate. Data suggest that the usage of mitochondrial promoters is regulated by TFAM dosage, allowing TFAM to affect both gene expression and RNA priming for first strand mtDNA replication. Additionally, TFAM has a non-specific DNA binding activity that is both cooperative and high affinity. TFAM can compact plasmid DNA in vitro, suggesting a structural role for the non-specific DNA binding activity in genome packaging. This review summarizes TFAM-mtDNA interactions and describes an emerging view of TFAM as a multipurpose coordinator of mtDNA transactions, with direct consequences for the maintenance of gene expression and genome copy number. This article is part of a Special Issue entitled: Mitochondrial Gene Expression. PMID:22465614

  9. HTR8/SVneo Cells Display Trophoblast Progenitor Cell-Like Characteristics Indicative of Self-Renewal, Repopulation Activity, and Expression of “Stemness-” Associated Transcription Factors

    Directory of Open Access Journals (Sweden)

    Maja Weber

    2013-01-01

    Full Text Available Introduction. JEG3 is a choriocarcinoma—and HTR8/SVneo a transformed extravillous trophoblast—cell line often used to model the physiologically invasive extravillous trophoblast. Past studies suggest that these cell lines possess some stem or progenitor cell characteristics. Aim was to study whether these cells fulfill minimum criteria used to identify stem-like (progenitor cells. In summary, we found that the expression profile of HTR8/SVneo (CDX2+, NOTCH1+, SOX2+, NANOG+, and OCT- is distinct from JEG3 (CDX2+ and NOTCH1+ as seen only in human-serum blocked immunocytochemistry. This correlates with HTR8/SVneo’s self-renewal capacities, as made visible via spheroid formation and multi-passagability in hanging drops protocols paralleling those used to maintain embryoid bodies. JEG3 displayed only low propensity to form and reform spheroids. HTR8/SVneo spheroids migrated to cover and seemingly repopulate human chorionic villi during confrontation cultures with placental explants in hanging drops. We conclude that HTR8/SVneo spheroid cells possess progenitor cell traits that are probably attained through corruption of “stemness-” associated transcription factor networks. Furthermore, trophoblastic cells are highly prone to unspecific binding, which is resistant to conventional blocking methods, but which can be alleviated through blockage with human serum.

  10. The expression meaning of activating transcription factor 3,activating transcription factor 4 and ki-67 in skin squamous cell carcinoma%活化转录因子3、4和ki-67在皮肤鳞癌中的表达意义

    Institute of Scientific and Technical Information of China (English)

    李春; 周为军; 宋朝辉; 李朝阳; 余萍; 曾学文; 郭智龙

    2015-01-01

    Objective To discuss the expression of activating transcription factor 3,activating transcription factor 4(ATF3,4)and ki-67 in skin squamous carcinomas and basal cell carcinomas and their clinical significances. Methods Using immunohistochemical method to detect ATF3,4 and ki-67 expression in 96 cases of skin squamous carcinoma and 118 cases of basal cell carcinoma tissues,which were randomly selected from the hospital preserved in pathology department,then analysis the meaning of expression. Results ATF3,4 in skin squamous carcinomas is higher than that in basal cell carcinomas,the differences were statistically significant(P=0.003 and 0.001, respectively), but there was no difference for ki-67(P=0.718).Positive correlation could be found between ATF3,4 expression strength and skin squamous cell carcinoma differentiation(r=0.395,P=0.000;r=0.303,P=0.001,respectively). Conclusion ATF3,4 may be used as the reliable differential protein markers between skin squamous cell carcinoma and basal cell carcinoma,and they be seen as malignant degree and prognosis indexes of cutaneous squamous cell.%目的:探讨活化转录因子3、4和ki-67在皮肤鳞癌和基底细胞癌中的表达及其临床意义。方法:从笔者所在医院病理科储存的蜡块中随机选择96例皮肤鳞癌和118例基底细胞癌标本,采用免疫组织化学方法检测组织中活化转录因子3、4和ki-67的表达,分析其表达意义。结果:活化转录因子3、4在皮肤鳞癌中的表达较基底细胞癌高,差异有统计学意义(P值分别为0.003和0.001)。Ki-67在两种皮肤癌中的表达无显著差异(P值为0.718)。ATF3、4的表达强度和皮肤鳞癌分化程度成正相关,即分化程度低越低,表达强度越高(r=0.395 P=0.000和r=0.303 P=0.001)。结论:活化转录因子3、4可以作为鉴别皮肤鳞癌和基底细胞癌可靠的蛋白标记物和皮肤鳞癌恶性程度及预后的判断指标。

  11. ETS transcription factors in hematopoietic stem cell development.

    Science.gov (United States)

    Ciau-Uitz, Aldo; Wang, Lu; Patient, Roger; Liu, Feng

    2013-12-01

    Hematopoietic stem cells (HSCs) are essential for the maintenance of the hematopoietic system. However, these cells cannot be maintained or created in vitro, and very little is known about their generation during embryogenesis. Many transcription factors and signaling pathways play essential roles at various stages of HSC development. Members of the ETS ('E twenty-six') family of transcription factors are recognized as key regulators within the gene regulatory networks governing hematopoiesis, including the ontogeny of HSCs. Remarkably, although all ETS transcription factors bind the same DNA consensus sequence and overlapping tissue expression is observed, individual ETS transcription factors play unique roles in the development of HSCs. Also, these transcription factors are recurrently used throughout development and their functions are context-dependent, increasing the challenge of studying their mechanism of action. Critically, ETS factors also play roles under pathological conditions, such as leukemia and, therefore, deciphering their mechanism of action will not only enhance our knowledge of normal hematopoiesis, but also inform protocols for their creation in vitro from pluripotent stem cells and the design of new therapeutic approaches for the treatment of malignant blood cell diseases. In this review, we summarize the key findings on the roles of ETS transcription factors in HSC development and discuss novel mechanisms by which they could control hematopoiesis.

  12. Breaking the mold: transcription factors in the anucleate platelet and platelet-derived microparticles

    Directory of Open Access Journals (Sweden)

    Katie L Lannan

    2015-02-01

    Full Text Available Platelets are small anucleate blood cells derived from megakaryocytes. In addition to their pivotal roles in hemostasis, platelets are the smallest, yet most abundant, immune cell and regulate inflammation, immunity, and disease progression. Although platelets lack DNA, and thus no functional transcriptional activities, they are nonetheless rich sources of RNAs, possess an intact spliceosome, and are thus capable of synthesizing proteins. Previously, it was thought that platelet RNAs and translational machinery were remnants from the megakaryocyte. We now know that the initial description of platelets as cellular fragments is an antiquated notion, as mounting evidence suggests otherwise. Therefore, it is reasonable to hypothesize that platelet transcription factors are not vestigial remnants from megakaryoctes, but have important, if only partly understood functions. Proteins play multiple cellular roles to minimize energy expenditure for maximum cellular function; thus, the same can be expected for transcription factors. In fact, numerous transcription factors have non-genomic roles, both in platelets and in nucleated cells. Our lab and others have discovered the presence and nongenomic roles of transcription factors in platelets, such as the nuclear factor kappa β (NFκB family of proteins and peroxisome proliferator activated receptor gamma (PPARγ. In addition to numerous roles in regulating platelet activation, functional transcription factors can be transferred to vascular and immune cells through platelet microparticles. This method of transcellular delivery of key immune molecules may be a vital mechanism by which platelet transcription factors regulate inflammation and immunity. At the very least, platelets are an ideal model cell to dissect out the nongenomic roles of transcription factors in nucleated cells. There is abundant evidence to suggest that transcription factors in platelets play key roles in regulating inflammatory and

  13. Transcriptional Activation of Inflammatory Genes: Mechanistic Insight into Selectivity and Diversity.

    Science.gov (United States)

    Ahmed, Afsar U; Williams, Bryan R G; Hannigan, Gregory E

    2015-11-11

    Acute inflammation, an integral part of host defence and immunity, is a highly conserved cellular response to pathogens and other harmful stimuli. An inflammatory stimulation triggers transcriptional activation of selective pro-inflammatory genes that carry out specific functions such as anti-microbial activity or tissue healing. Based on the nature of inflammatory stimuli, an extensive exploitation of selective transcriptional activations of pro-inflammatory genes is performed by the host to ensure a defined inflammatory response. Inflammatory signal transductions are initiated by the recognition of inflammatory stimuli by transmembrane receptors, followed by the transmission of the signals to the nucleus for differential gene activations. The differential transcriptional activation of pro-inflammatory genes is precisely controlled by the selective binding of transcription factors to the promoters of these genes. Among a number of transcription factors identified to date, NF-κB still remains the most prominent and studied factor for its diverse range of selective transcriptional activities. Differential transcriptional activities of NF-κB are dictated by post-translational modifications, specificities in dimer formation, and variability in activation kinetics. Apart from the differential functions of transcription factors, the transcriptional activation of selective pro-inflammatory genes is also governed by chromatin structures, epigenetic markers, and other regulators as the field is continuously expanding.

  14. The Cellular Bromodomain Protein Brd4 has Multiple Functions in E2-Mediated Papillomavirus Transcription Activation

    OpenAIRE

    Helfer, Christine M.; Junpeng Yan; Jianxin You

    2014-01-01

    The cellular bromodomain protein Brd4 functions in multiple processes of the papillomavirus life cycle, including viral replication, genome maintenance, and gene transcription through its interaction with the viral protein, E2. However, the mechanisms by which E2 and Brd4 activate viral transcription are still not completely understood. In this study, we show that recruitment of positive transcription elongation factor b (P-TEFb), a functional interaction partner of Brd4 in transcription act...

  15. Regulatory coding of lymphoid lineage choice by hematopoietic transcription factors

    Science.gov (United States)

    Warren, Luigi A.; Rothenberg, Ellen V.

    2003-01-01

    During lymphopoiesis, precursor cells negotiate a complex regulatory space, defined by the levels of several competing and cross-regulating transcription factors, before arriving at stable states of commitment to the B-, T- and NK-specific developmental programs. Recent perturbation experiments provide evidence that this space has three major axes, corresponding to the PU.1 versus GATA-1 balance, the intensity of Notch signaling through the CSL pathway, and the ratio of E-box transcription factors to their Id protein antagonists.

  16. SoyDB: a knowledge database of soybean transcription factors

    Directory of Open Access Journals (Sweden)

    Valliyodan Babu

    2010-01-01

    Full Text Available Abstract Background Transcription factors play the crucial rule of regulating gene expression and influence almost all biological processes. Systematically identifying and annotating transcription factors can greatly aid further understanding their functions and mechanisms. In this article, we present SoyDB, a user friendly database containing comprehensive knowledge of soybean transcription factors. Description The soybean genome was recently sequenced by the Department of Energy-Joint Genome Institute (DOE-JGI and is publicly available. Mining of this sequence identified 5,671 soybean genes as putative transcription factors. These genes were comprehensively annotated as an aid to the soybean research community. We developed SoyDB - a knowledge database for all the transcription factors in the soybean genome. The database contains protein sequences, predicted tertiary structures, putative DNA binding sites, domains, homologous templates in the Protein Data Bank (PDB, protein family classifications, multiple sequence alignments, consensus protein sequence motifs, web logo of each family, and web links to the soybean transcription factor database PlantTFDB, known EST sequences, and other general protein databases including Swiss-Prot, Gene Ontology, KEGG, EMBL, TAIR, InterPro, SMART, PROSITE, NCBI, and Pfam. The database can be accessed via an interactive and convenient web server, which supports full-text search, PSI-BLAST sequence search, database browsing by protein family, and automatic classification of a new protein sequence into one of 64 annotated transcription factor families by hidden Markov models. Conclusions A comprehensive soybean transcription factor database was constructed and made publicly accessible at http://casp.rnet.missouri.edu/soydb/.

  17. TrSDB: a proteome database of transcription factors

    OpenAIRE

    Hermoso, Antoni; Aguilar, Daniel; Aviles, Francesc X.; Querol, Enrique

    2004-01-01

    TrSDB—TranScout Database—(http://ibb.uab.es/trsdb) is a proteome database of eukaryotic transcription factors based upon predicted motifs by TranScout and data sources such as InterPro and Gene Ontology Annotation. Nine eukaryotic proteomes are included in the current version. Extensive and diverse information for each database entry, different analyses considering TranScout classification and similarity relationships are offered for research on transcription factors or gene expression.

  18. Classifying transcription factor targets and discovering relevant biological features

    OpenAIRE

    DeLisi Charles; Kon Mark; Holloway Dustin T

    2008-01-01

    Abstract Background An important goal in post-genomic research is discovering the network of interactions between transcription factors (TFs) and the genes they regulate. We have previously reported the development of a supervised-learning approach to TF target identification, and used it to predict targets of 104 transcription factors in yeast. We now include a new sequence conservation measure, expand our predictions to include 59 new TFs, introduce a web-server, and implement an improved r...

  19. Dual roles of lineage restricted transcription factors: the case of MITF in melanocytes.

    Science.gov (United States)

    Levy, Carmit; Fisher, David E

    2011-01-01

    Microphthalmia-associated Transcription Factor, MITF, is a master regulator of melanocyte development, differentiation, migration, and survival.(1) A broad collection of studies have indicated that MITF directly regulates the transcription of genes involved in pigmentation, which are selective to the melanocyte lineage. In addition, MITF controls expression of genes which are expressed in multiple cell lineages, and may also play differential roles in activating vs. maintaining gene expression patterns. In this Point of View article, we discuss lineage restricted transcription factor activation of both tissue-specific and ubiquitously expressed genes using melanocytes and MITF as a model system that may eventually provide insights into such processes in multiple cell lineages.

  20. T Cell Receptor-induced Nuclear Factor κB (NF-κB) Signaling and Transcriptional Activation Are Regulated by STIM1- and Orai1-mediated Calcium Entry.

    Science.gov (United States)

    Liu, Xiaohong; Berry, Corbett T; Ruthel, Gordon; Madara, Jonathan J; MacGillivray, Katelyn; Gray, Carolyn M; Madge, Lisa A; McCorkell, Kelly A; Beiting, Daniel P; Hershberg, Uri; May, Michael J; Freedman, Bruce D

    2016-04-15

    T cell activation following antigen binding to the T cell receptor (TCR) involves the mobilization of intracellular Ca(2+) to activate the key transcription factors nuclear factor of activated T lymphocytes (NFAT) and NF-κB. The mechanism of NFAT activation by Ca(2+) has been determined. However, the role of Ca(2+) in controlling NF-κB signaling is poorly understood, and the source of Ca(2+) required for NF-κB activation is unknown. We demonstrate that TCR- but not TNF-induced NF-κB signaling upstream of IκB kinase activation absolutely requires the influx of extracellular Ca(2+) via STIM1-dependent Ca(2+) release-activated Ca(2+)/Orai channels. We further show that Ca(2+) influx controls phosphorylation of the NF-κB protein p65 on Ser-536 and that this posttranslational modification controls its nuclear localization and transcriptional activation. Notably, our data reveal that this role for Ca(2+) is entirely separate from its upstream control of IκBα degradation, thereby identifying a novel Ca(2+)-dependent distal step in TCR-induced NF-κB activation. Finally, we demonstrate that this control of distal signaling occurs via Ca(2+)-dependent PKCα-mediated phosphorylation of p65. Thus, we establish the source of Ca(2+) required for TCR-induced NF-κB activation and define a new distal Ca(2+)-dependent checkpoint in TCR-induced NF-κB signaling that has broad implications for the control of immune cell development and T cell functional specificity.

  1. Controllability analysis of transcriptional regulatory networks reveals circular control patterns among transcription factors

    DEFF Research Database (Denmark)

    Österlund, Tobias; Bordel, Sergio; Nielsen, Jens

    2015-01-01

    Transcriptional regulation is the most committed type of regulation in living cells where transcription factors (TFs) control the expression of their target genes and TF expression is controlled by other TFs forming complex transcriptional regulatory networks that can be highly interconnected. Here...... we analyze the topology and organization of nine transcriptional regulatory networks for E. coli, yeast, mouse and human, and we evaluate how the structure of these networks influences two of their key properties, namely controllability and stability. We calculate the controllability for each network...... as a measure of the organization and interconnectivity of the network. We find that the number of driver nodes n(D) needed to control the whole network is 64% of the TFs in the E. coli transcriptional regulatory network in contrast to only 17% for the yeast network, 4% for the mouse network and 8...

  2. Regulation of cell proliferation by the E2F transcription factors

    DEFF Research Database (Denmark)

    Helin, K

    1998-01-01

    Experimental data generated in the past year have further emphasized the essential role for the E2F transcription factors in the regulation of cell proliferation. Genetic studies have shown that E2F activity is required for normal development in fruitflies, and the generation of E2F-1(-/-) mice has...... demonstrated that individual members of the E2F transcription factor family are likely to have distinct roles in mammalian development and homeostasis. Additional mechanisms regulating the activity of the E2F transcription factors have been reported, including subcellular localization and proteolysis of the E2......Fs in the proteasomes. Novel target genes for the E2F transcription factors have been identified that link the E2Fs directly to the initiation of DNA replication....

  3. Melatonin antagonizes cadmium-induced neurotoxicity by activating the transcription factor EB-dependent autophagy-lysosome machinery in mouse neuroblastoma cells.

    Science.gov (United States)

    Li, Min; Pi, Huifeng; Yang, Zhiqi; Reiter, Russel J; Xu, Shangcheng; Chen, Xiaowei; Chen, Chunhai; Zhang, Lei; Yang, Min; Li, Yuming; Guo, Pan; Li, Gaoming; Tu, Manyu; Tian, Li; Xie, Jia; He, Mindi; Lu, Yonghui; Zhong, Min; Zhang, Yanwen; Yu, Zhengping; Zhou, Zhou

    2016-10-01

    Cadmium (Cd), a highly ubiquitous heavy metal, induces neurotoxicity. Melatonin, a major secretory product of the pineal gland, protects against Cd-induced neurotoxicity. However, the mechanism that accounts for this protection remains to be elucidated. Herein, we exposed mouse neuroblastoma cells (Neuro-2a cells) to different concentrations of cadmium chloride (CdCl2 ) (12.5, 25, and 50 μ mol L(-1) ) for 24 hours. We showed that Cd inhibits autophagosome-lysosome fusion and impairs lysosomal function, subsequently leading to nerve cell death. In addition, Cd decreases the level of transcription factor EB (TFEB) but induces the nuclear translocation of TFEB, associated with compromised lysosomal function or a compensatory effect after the impairment of the autophagic flux. Moreover, compared to the 50-μ mol L(-1) Cd group, administration of 1 μ mol L(-1) melatonin increased "TFEB-responsive genes" (Pfusion (0.05±0.00 vs 0.21±0.01, Pnuclear translocation (2.81±0.08 vs 3.82±0.05, P<.05). Tfeb siRNA blocked the melatonin-mediated elevation in autophagy-lysosome machinery in Cd-induced neurotoxicity (P<.01). Taken together, these results uncover a potent role for TFEB-mediated autophagy in the pathogenesis of Cd-induced neurotoxicity, suggesting that control of the autophagic pathway by melatonin might provide an important clue for exploring potential targets for novel therapeutics of Cd-induced neurotoxicity. PMID:27396692

  4. Relations of transcription expression of IL-2 with nuclear factor of activated T cells as well as changes of C-Fos and C-Jun after trauma

    Institute of Scientific and Technical Information of China (English)

    罗艳; 梁华平; 胡承香; 徐祥; 王正国

    2002-01-01

    Objective: To observe the relations among expression of interleukin-2 (IL-2) in spleen lymphocytes, DNA binding activity of nuclear factor of activated T cells (NFAT) and expression of the partly family members C-Fos, C-Jun after trauma. Methods: A murine closed trauma model was used, animals were sacrificed 6, 12 hours and 1, 4, 7, 10, 14 days, respectively after injury. Spleen lymphocytes were isolated from injured mice and stimulated with concanavalin-A. The culture supernatants were harvested and assayed for IL-2 activity. Total RNA was extracted from spleen lymphocytes and assayed for IL-2 mRNA. Nuclear protein was extracted, and the DNA binding activity of NFAT was measured using an electrophoretic mobility shift assay (EMSA), the expressions of C-Fos, C-Jun protein determined by Western blot analysis. Results: The expressions of IL-2 activity and IL-2 mRNA in spleen lymphocytes were decreased in injured mice compared with those in control mice, and the most obvious decrease appeared on the 4th day after injury. The DNA binding activity of NFAT decreased gradually and reached the minimum that was only 41% of the control on the 4th day after injury, which was closely associated with the decline of IL-2 activity and IL-2 mRNA. An decrease in the expression of C-Fos on the 1st and 4th day after injury, trauma had no significant effect on the C-Jun expression.Conclusions: These results suggest that the inhibition of IL-2 expression is partly due to the impairment in the activation of NFAT in injured mice; and the decline in the DNA binding activity of NFAT is partly due to trauma block in the C-Fos expression.

  5. Relations of transcription expression of IL—2 with nuclear factor of activated T cells as well as changes of C—Fos and C—Jun after trauma

    Institute of Scientific and Technical Information of China (English)

    罗艳; 梁华平; 等

    2002-01-01

    Objective:To observe the relations among expression of interleukin-2(IL-2)in spleen lymphocytes,DNA binding activity of nuclear factor of activated T cells(NFAT)and expression of the partly family members C-Fos,C-Jun after trauma.Methods:A murine closed trauma model was used,animals were sacrificed6,12hours and 1,4,7,10,14days,respectively after injury,Spleen lymplocytes were isolated from injured mice and stimulated with concanavalin-A,The culture supernatants were harvested and assayed for IL-2activity,Total RNA was extracted from spleen lymphocytes and assayed for IL-2mRNA.Nuclear protein was extracted,and the DNA binding activity of NFAT was measured using an electrophoretic mobility shift assay(EMSA),the expressions of C-Fos,C-Jun protein determined by Western blot analysis.Results:The expressions of IL-2 activity and IL-2mRNA in spleen lymphocytes were decreased in injured mice compared with those in control mice,and the most obvious decrease appeared on the 4th day after injury,The DNA binding activity of NFAT decreased gradually and reached the minimum that was only41%of the control on the 4th day after injury,which was cloely associated with the decline of IL-2activity and IL-2mRNA.An decrease in the expression ofC-Fos on the lst and 4th day after injury,trauma had no significant effect on the C-Jun expression.Conclusions:These results suggest that the inhibition of IL-2 expression is partly due to the impairment in the activation of NFAT in injured mice;and the decline in the DNA binding activity of NFAT is partly due to trauma block in the C-Fos expression.

  6. Transcription factor FOXA2-centered transcriptional regulation network in non-small cell lung cancer.

    Science.gov (United States)

    Jang, Sang-Min; An, Joo-Hee; Kim, Chul-Hong; Kim, Jung-Woong; Choi, Kyung-Hee

    2015-08-01

    Lung cancer is the leading cause of cancer-mediated death. Although various therapeutic approaches are used for lung cancer treatment, these mainly target the tumor suppressor p53 transcription factor, which is involved in apoptosis and cell cycle arrest. However, p53-targeted therapies have limited application in lung cancer, since p53 is found to be mutated in more than half of lung cancers. In this study, we propose tumor suppressor FOXA2 as an alternative target protein for therapies against lung cancer and reveal a possible FOXA2-centered transcriptional regulation network by identifying new target genes and binding partners of FOXA2 by using various screening techniques. The genes encoding Glu/Asp-rich carboxy-terminal domain 2 (CITED2), nuclear receptor subfamily 0, group B, member 2 (NR0B2), cell adhesion molecule 1 (CADM1) and BCL2-associated X protein (BAX) were identified as putative target genes of FOXA2. Additionally, the proteins including highly similar to heat shock protein HSP 90-beta (HSP90A), heat shock 70 kDa protein 1A variant (HSPA1A), histone deacetylase 1 (HDAC1) and HDAC3 were identified as novel interacting partners of FOXA2. Moreover, we showed that FOXA2-dependent promoter activation of BAX and p21 genes is significantly reduced via physical interactions between the identified binding partners and FOXA2. These results provide opportunities to understand the FOXA2-centered transcriptional regulation network and novel therapeutic targets to modulate this network in p53-deficient lung cancer.

  7. Transcriptional template activity of covalently modified DNA.

    Science.gov (United States)

    Tolwińska-Stańczyk, Z; Wilmańska, D; Studzian, K; Gniazdowski, M

    1997-03-01

    The transcriptional template activity of covalent modified DNA is compared. 8-Methoxypsoralen (MOP), 3,4'dimethyl-8-methoxypsoralen (DMMOP) and benzopsoralen (BP) forming with DNA covalent complexes upon UV irradiation and exhibiting preference to pyrimidines, mostly thymines, differ in their cross-linking potency. MOP and DMMOP form both monoadducts and diadducts while no cross-links are formed by BP. Nitracrine (NC) forms covalent complexes with DNA upon reductive activation with dithiothreitol exhibiting a preference to purines and low cross-linking potency. Semilogarithmic plots of the relative template activity against the number of the drugs molecules covalently bound per 10(3) DNA nucleotides fit to regression lines corresponding to one-hit inactivation characteristics. The number of drug molecules decreasing RNA synthesis to 37% differ from 0.25 to 1.26 depending on the template used and the base preference but no dependence on the cross-linking potency was found. PMID:9067423

  8. Cellular Levels of Signaling Factors Are Sensed by β-actin Alleles to Modulate Transcriptional Pulse Intensity

    Directory of Open Access Journals (Sweden)

    Alon Kalo

    2015-04-01

    Full Text Available The transcriptional response of β-actin to extra-cellular stimuli is a paradigm for transcription factor complex assembly and regulation. Serum induction leads to a precisely timed pulse of β-actin transcription in the cell population. Actin protein is proposed to be involved in this response, but it is not known whether cellular actin levels affect nuclear β-actin transcription. We perturbed the levels of key signaling factors and examined the effect on the induced transcriptional pulse by following endogenous β-actin alleles in single living cells. Lowering serum response factor (SRF protein levels leads to loss of pulse integrity, whereas reducing actin protein levels reveals positive feedback regulation, resulting in elevated gene activation and a prolonged transcriptional response. Thus, transcriptional pulse fidelity requires regulated amounts of signaling proteins, and perturbations in factor levels eliminate the physiological response, resulting in either tuning down or exaggeration of the transcriptional pulse.

  9. A semi-supervised method for predicting transcription factor-gene interactions in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Jason Ernst

    2008-03-01

    Full Text Available While Escherichia coli has one of the most comprehensive datasets of experimentally verified transcriptional regulatory interactions of any organism, it is still far from complete. This presents a problem when trying to combine gene expression and regulatory interactions to model transcriptional regulatory networks. Using the available regulatory interactions to predict new interactions may lead to better coverage and more accurate models. Here, we develop SEREND (SEmi-supervised REgulatory Network Discoverer, a semi-supervised learning method that uses a curated database of verified transcriptional factor-gene interactions, DNA sequence binding motifs, and a compendium of gene expression data in order to make thousands of new predictions about transcription factor-gene interactions, including whether the transcription factor activates or represses the gene. Using genome-wide binding datasets for several transcription factors, we demonstrate that our semi-supervised classification strategy improves the prediction of targets for a given transcription factor. To further demonstrate the utility of our inferred interactions, we generated a new microarray gene expression dataset for the aerobic to anaerobic shift response in E. coli. We used our inferred interactions with the verified interactions to reconstruct a dynamic regulatory network for this response. The network reconstructed when using our inferred interactions was better able to correctly identify known regulators and suggested additional activators and repressors as having important roles during the aerobic-anaerobic shift interface.

  10. Tunable signal processing through modular control of transcription factor translocation

    Science.gov (United States)

    Hao, Nan; Budnik, Bogdan A.; Gunawardena, Jeremy; O’Shea, Erin K.

    2013-01-01

    Signaling pathways can induce different dynamics of transcription factor (TF) activation. We explored how TFs process signaling inputs to generate diverse dynamic responses. The budding yeast general stress responsive TF Msn2 acted as a tunable signal processor that could track, filter, or integrate signals in an input dependent manner. This tunable signal processing appears to originate from dual regulation of both nuclear import and export by phosphorylation, as mutants with one form of regulation sustained only one signal processing function. Versatile signal processing by Msn2 is crucial for generating distinct dynamic responses to different natural stresses. Our findings reveal how complex signal processing functions are integrated into a single molecule and provide a guide for the design of TFs with “programmable” signal processing functions. PMID:23349292

  11. Tunable signal processing through modular control of transcription factor translocation.

    Science.gov (United States)

    Hao, Nan; Budnik, Bogdan A; Gunawardena, Jeremy; O'Shea, Erin K

    2013-01-25

    Signaling pathways can induce different dynamics of transcription factor (TF) activation. We explored how TFs process signaling inputs to generate diverse dynamic responses. The budding yeast general stress-responsive TF Msn2 acted as a tunable signal processor that could track, filter, or integrate signals in an input-dependent manner. This tunable signal processing appears to originate from dual regulation of both nuclear import and export by phosphorylation, as mutants with one form of regulation sustained only one signal-processing function. Versatile signal processing by Msn2 is crucial for generating distinct dynamic responses to different natural stresses. Our findings reveal how complex signal-processing functions are integrated into a single molecule and provide a guide for the design of TFs with "programmable" signal-processing functions.

  12. Jasmonate-responsive transcription factors regulating plant secondary metabolism.

    Science.gov (United States)

    Zhou, Meiliang; Memelink, Johan

    2016-01-01

    Plants produce a large variety of secondary metabolites including alkaloids, glucosinolates, terpenoids and phenylpropanoids. These compounds play key roles in plant-environment interactions and many of them have pharmacological activity in humans. Jasmonates (JAs) are plant hormones which induce biosynthesis of many secondary metabolites. JAs-responsive transcription factors (TFs) that regulate the JAs-induced accumulation of secondary metabolites belong to different families including AP2/ERF, bHLH, MYB and WRKY. Here, we give an overview of the types and functions of TFs that have been identified in JAs-induced secondary metabolite biosynthesis, and highlight their similarities and differences in regulating various biosynthetic pathways. We review major recent developments regarding JAs-responsive TFs mediating secondary metabolite biosynthesis, and provide suggestions for further studies. PMID:26876016

  13. c-Fos as a transcription factor: a stressful (re)view from a functional map.

    Science.gov (United States)

    Kovács, K J

    1998-10-01

    This article summarizes the achievements that have been accumulated about the role of c-Fos as a transcription factor and as a functional marker of activated neurons. Since its discovery, more than a decade ago, as an inducible immediate-early gene encoding a transcription factor, or third messenger, involved in stimulus-transcription coupling and mediation of extracellular signals to long-term changes in cellular phenotype, c-fos became the most widely used powerful tool to delineate individual neurons as well as extended circuitries that are responsive to wide variety of external stimuli. There still remain uncertainties as to how general is the c-fos induction in the central neurons, and whether the threshold of c-fos induction is comparable along a certain neuronal circuit. The major limitation of this technology is that c-fos does not mark cells with a net inhibitory synaptic or transcriptional drive, and c-fos induction, as a generic marker of trans-synaptic activation, does not provide evidence for transcriptional activation of specific target genes in a certain cell type of interest. The first part of the review focuses on recent functional data on c-fos as transcription factor, while the second part discusses c-fos as a cellular marker of transcriptional activity in the stress-related circuitry.

  14. The metabolic activator FOXO1 binds hepatitis B virus DNA and activates its transcription

    Energy Technology Data Exchange (ETDEWEB)

    Shlomai, Amir, E-mail: amirsh@tasmc.health.gov.il [Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100 (Israel); Institute for Gastroenterology and Liver disease, Tel-Aviv Sourasky Medical Center, 6 Weizmann street, Tel-Aviv (Israel); Shaul, Yosef [Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100 (Israel)

    2009-04-17

    Hepatitis B virus (HBV) is a small DNA virus that targets the liver and infects humans worldwide. Recently we have shown that the metabolic regulator PGC-1{alpha} coactivates HBV transcription thereby rendering the virus susceptible to fluctuations in the nutritional status of the liver. PGC-1{alpha} coactivation of HBV is mediated through the liver-enriched nuclear receptor HNF4{alpha} and through another yet unknown transcription factor(s). Here we show that the forkhead transcription factor FOXO1, a known target for PGC-1{alpha} coactivation and a central mediator of glucose metabolism in the liver, binds HBV core promoter and activates its transcription. This activation is further enhanced in the presence of PGC-1{alpha}, implying that FOXO1 is a target for PGC-1{alpha} coactivation of HBV transcription. Thus, our results identify another key metabolic regulator as an activator of HBV transcription, thereby supporting the principle that HBV gene expression is regulated in a similar way to key hepatic metabolic genes.

  15. TcoF-DB: dragon database for human transcription co-factors and transcription factor interacting proteins

    KAUST Repository

    Schaefer, Ulf

    2010-10-21

    The initiation and regulation of transcription in eukaryotes is complex and involves a large number of transcription factors (TFs), which are known to bind to the regulatory regions of eukaryotic DNA. Apart from TF-DNA binding, protein-protein interaction involving TFs is an essential component of the machinery facilitating transcriptional regulation. Proteins that interact with TFs in the context of transcription regulation but do not bind to the DNA themselves, we consider transcription co-factors (TcoFs). The influence of TcoFs on transcriptional regulation and initiation, although indirect, has been shown to be significant with the functionality of TFs strongly influenced by the presence of TcoFs. While the role of TFs and their interaction with regulatory DNA regions has been well-studied, the association between TFs and TcoFs has so far been given less attention. Here, we present a resource that is comprised of a collection of human TFs and the TcoFs with which they interact. Other proteins that have a proven interaction with a TF, but are not considered TcoFs are also included. Our database contains 157 high-confidence TcoFs and additionally 379 hypothetical TcoFs. These have been identified and classified according to the type of available evidence for their involvement in transcriptional regulation and their presence in the cell nucleus. We have divided TcoFs into four groups, one of which contains high-confidence TcoFs and three others contain TcoFs which are hypothetical to different extents. We have developed the Dragon Database for Human Transcription Co-Factors and Transcription Factor Interacting Proteins (TcoF-DB). A web-based interface for this resource can be freely accessed at http://cbrc.kaust.edu.sa/tcof/ and http://apps.sanbi.ac.za/tcof/. © The Author(s) 2010.

  16. Wnt-induced transcriptional activation is exclusively mediated by TCF/LEF

    NARCIS (Netherlands)

    Schuijers, Jurian; Mokry, Michal; Hatzis, Pantelis; Cuppen, Edwin; Clevers, Hans

    2014-01-01

    Active canonical Wnt signaling results in recruitment of β-catenin to DNA by TCF/LEF family members, leading to transcriptional activation of TCF target genes. However, additional transcription factors have been suggested to recruit β-catenin and tether it to DNA. Here, we describe the genome-wide p

  17. Nfkb1 activation by the E26 transformation-specific transcription factors PU.1 and Spi-B promotes Toll-like receptor-mediated splenic B cell proliferation.

    Science.gov (United States)

    Li, Stephen K H; Abbas, Ali K; Solomon, Lauren A; Groux, Gaëlle M N; DeKoter, Rodney P

    2015-05-01

    Generation of antibodies against T-independent and T-dependent antigens requires Toll-like receptor (TLR) engagement on B cells for efficient responses. However, the regulation of TLR expression and responses in B cells is not well understood. PU.1 and Spi-B (encoded by Sfpi1 and Spib, respectively) are transcription factors of the E26 transformation-specific (ETS) family and are important for B cell development and function. It was found that B cells from mice knocked out for Spi-B and heterozygous for PU.1 (Sfpi1(+/-) Spib(-/-) [PUB] mice) proliferated poorly in response to TLR ligands compared to wild-type (WT) B cells. The NF-κB family member p50 (encoded by Nfkb1) is required for lipopolysaccharide (LPS) responsiveness in mice. PUB B cells expressed reduced Nfkb1 mRNA transcripts and p50 protein. The Nfkb1 promoter was regulated directly by PU.1 and Spi-B, as shown by reporter assays and chromatin immunoprecipitation analysis. Occupancy of the Nfkb1 promoter by PU.1 was reduced in PUB B cells compared to that in WT B cells. Finally, infection of PUB B cells with a retroviral vector encoding p50 substantially restored proliferation in response to LPS. We conclude that Nfkb1 transcriptional activation by PU.1 and Spi-B promotes TLR-mediated B cell proliferation.

  18. A 5' splice site enhances the recruitment of basal transcription initiation factors in vivo

    DEFF Research Database (Denmark)

    Damgaard, Christian Kroun; Kahns, Søren; Lykke-Andersen, Søren;

    2008-01-01

    promoter docking of transcription initiation factors TFIID, TFIIB, and TFIIH on a gene containing a functional 5′ splice site. In addition to their promoter association, the TFIID and TFIIH components, TBP and p89, are specifically recruited to the 5′ splice site region. Our data suggest a model in which......Transcription and pre-mRNA splicing are interdependent events. Although mechanisms governing the effects of transcription on splicing are becoming increasingly clear, the means by which splicing affects transcription remain elusive. Using cell lines stably expressing HIV-1 or β-globin m......RNAs, harboring wild-type or various 5′ splice site mutations, we demonstrate a strong positive correlation between splicing efficiency and transcription activity. Interestingly, a 5′ splice site can stimulate transcription even in the absence of splicing. Chromatin immunoprecipitation experiments show enhanced...

  19. Expressional and functional analyses of transcription factors activated by BMP-4s signaling in early xenopus embryo; BMP-4 shigunaru dentatsu kiko to sono hyoteki kakunai tensha inshi ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Maeno, Mitsugu [Niigata University, Niigata (Japan). Faculty of Science

    1998-12-16

    The expression and physiological function of two transcription factors, GATA-2 and Xmsx-1, in amphibian embryos has been analyzed. The expression of these mRNAs in embryonic cells were firmly regulated by the BMP-4 signaling, that plays a central role in the formation of ventral tissues. The microinjection studies of GATA-2 RNA into embryonic cells suggested that this factor functions in two adjacent germ layers, mesoderm and ectoderm, to participate in blood cell formation in ventral area of embryo. Embryos injected with Xmsx-1 RNA, but not with GATA-2, in dorsal blastomeres exhibited a ventralized phenotype, with microcephaly and swollen abdomen. Thus, Xmsx-1 is a ventralizing agent. However, on the basis of molecular marker analyses, Xmsx-1 did not promote erythropoietic differentiation, but promoted muscle tissue formation. It has been concluded that Xmsx-1 si a target transcription factor of the BMP-4 signaling, but possesses a distinct activity on dorso-ventral patterning of mesodermal tissues. (author)

  20. Analyzing phosphorylation-dependent regulation of subcellular localization and transcriptional activity of transcriptional coactivator NT-PGC-1α.

    Science.gov (United States)

    Chang, Ji Suk; Gettys, Thomas W

    2013-01-01

    Peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) is a nuclear transcriptional coactivator that regulates the genes involved in energy metabolism. Recent evidence has been provided that alternative splicing of PPARGC1A gene produces a functional but predominantly cytosolic isoform of PGC-1α (NT-PGC-1α). We have demonstrated that transcriptional coactivation capacity of NT-PGC-1α is directly correlated with its nuclear localization in a PKA phosphorylation-dependent manner. In this chapter, we describe quantitative imaging analysis methods that are developed to measure the relative fluorescence intensity of the protein of interest in the nucleus and cytoplasm in a single cell and the frequency distribution of nuclear/cytoplasmic intensity ratios in the population of cells, respectively. This chapter also describes transient cotransfection and dual-luciferase reporter gene assay that examine the ability of coactivators to activate the transcriptional activity of transcription factors.

  1. RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors

    KAUST Repository

    Piatek, Agnieszka

    2014-11-14

    Targeted genomic regulation is a powerful approach to accelerate trait discovery and development in agricultural biotechnology. Bacteria and archaea use clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) regulatory systems for adaptive molecular immunity against foreign nucleic acids introduced by invading phages and conjugative plasmids. The type II CRISPR/Cas system has been adapted for genome editing in many cell types and organisms. A recent study used the catalytically inactive Cas9 (dCas9) protein combined with guide-RNAs (gRNAs) as a DNA-targeting platform to modulate gene expression in bacterial, yeast, and human cells. Here, we modified this DNA-targeting platform for targeted transcriptional regulation in planta by developing chimeric dCas9-based transcriptional activators and repressors. To generate transcriptional activators, we fused the dCas9 C-terminus with the activation domains of EDLL and TAL effectors. To generate a transcriptional repressor, we fused the dCas9 C-terminus with the SRDX repression domain. Our data demonstrate that dCas9 fusion with the EDLL activation domain (dCas9:EDLL) and the TAL activation domain (dCas9:TAD), guided by gRNAs complementary to selected promoter elements, induce strong transcriptional activation on Bs3

  2. Resetting the transcription factor network reverses terminal chronic hepatic failure.

    Science.gov (United States)

    Nishikawa, Taichiro; Bell, Aaron; Brooks, Jenna M; Setoyama, Kentaro; Melis, Marta; Han, Bing; Fukumitsu, Ken; Handa, Kan; Tian, Jianmin; Kaestner, Klaus H; Vodovotz, Yoram; Locker, Joseph; Soto-Gutierrez, Alejandro; Fox, Ira J

    2015-04-01

    The cause of organ failure is enigmatic for many degenerative diseases, including end-stage liver disease. Here, using a CCl4-induced rat model of irreversible and fatal hepatic failure, which also exhibits terminal changes in the extracellular matrix, we demonstrated that chronic injury stably reprograms the critical balance of transcription factors and that diseased and dedifferentiated cells can be returned to normal function by re-expression of critical transcription factors, a process similar to the type of reprogramming that induces somatic cells to become pluripotent or to change their cell lineage. Forced re-expression of the transcription factor HNF4α induced expression of the other hepatocyte-expressed transcription factors; restored functionality in terminally diseased hepatocytes isolated from CCl4-treated rats; and rapidly reversed fatal liver failure in CCl4-treated animals by restoring diseased hepatocytes rather than replacing them with new hepatocytes or stem cells. Together, the results of our study indicate that disruption of the transcription factor network and cellular dedifferentiation likely mediate terminal liver failure and suggest reinstatement of this network has therapeutic potential for correcting organ failure without cell replacement.

  3. The Transcription Factor Ehf Is Involved in TGF-β-Induced Suppression of FcεRI and c-Kit Expression and FcεRI-Mediated Activation in Mast Cells.

    Science.gov (United States)

    Yamazaki, Susumu; Nakano, Nobuhiro; Honjo, Asuka; Hara, Mutsuko; Maeda, Keiko; Nishiyama, Chiharu; Kitaura, Jiro; Ohtsuka, Yoshikazu; Okumura, Ko; Ogawa, Hideoki; Shimizu, Toshiaki

    2015-10-01

    FcεRI, which is composed of α, β, and γ subunits, plays an important role in IgE-mediated allergic responses. TGF-β1 has been reported to suppress FcεRI and stem cell factor receptor c-Kit expression on mast cell surfaces and to suppress mast cell activation induced by cross-linking of FcεRI. However, the molecular mechanism by which these expressions and activation are suppressed by TGF-β1 remains unclear. In this study, we found that the expression of Ets homologous factor (Ehf), a member of the Ets family transcriptional factors, is upregulated by TGF-β/Smad signaling in mouse bone marrow-derived mast cells (BMMCs). Forced expression of Ehf in BMMCs repressed the transcription of genes encoding FcεRIα, FcεRIβ, and c-Kit, resulting in a reduction in cell surface FcεRI and c-Kit expression. Additionally, forced expression of Ehf suppressed FcεRI-mediated degranulation and cytokine production. Ehf inhibited the promoter activity of genes encoding FcεRIα, FcεRIβ, and c-Kit by binding to these gene promoters. Furthermore, the mRNA levels of Gata1, Gata2, and Stat5b were lower in BMMCs stably expressing Ehf compared with control cells. Because GATA-1 and GATA-2 are positive regulators of FcεRI and c-Kit expression, decreased expression of GATAs may be also involved in the reduction of FcεRI and c-Kit expression. Decreased expression of Stat5 may contribute to the suppression of cytokine production by BMMCs. In part, mast cell response to TGF-β1 was mimicked by forced expression of Ehf, suggesting that TGF-β1 suppresses FcεRI and c-Kit expression and suppresses FcεRI-mediated activation through upregulation of Ehf.

  4. ß-catenin, a transcription factor activated by canonical Wnt signaling, is expressed in sensory neurons of calves latently infected with bovine herpesvirus 1

    Science.gov (United States)

    Like many a-herpesvirinae subfamily members, bovine herpes virus 1 (BoHV-1) expresses an abundant transcript in latently infected sensory neurons: the latency-related (LR) RNA. LR-RNA encodes a protein (ORF2) that inhibits apoptosis, interacts with Notch family members, interferes with Notch mediate...

  5. Insight into transcription factor gene duplication from Caenorhabditis elegans Promoterome-driven expression patterns

    Directory of Open Access Journals (Sweden)

    Vidal Marc

    2007-01-01

    Full Text Available Abstract Background The C. elegans Promoterome is a powerful resource for revealing the regulatory mechanisms by which transcription is controlled pan-genomically. Transcription factors will form the core of any systems biology model of genome control and therefore the promoter activity of Promoterome inserts for C. elegans transcription factor genes was examined, in vivo, with a reporter gene approach. Results Transgenic C. elegans strains were generated for 366 transcription factor promoter/gfp reporter gene fusions. GFP distributions were determined, and then summarized with reference to developmental stage and cell type. Reliability of these data was demonstrated by comparison to previously described gene product distributions. A detailed consideration of the results for one C. elegans transcription factor gene family, the Six family, comprising ceh-32, ceh-33, ceh-34 and unc-39 illustrates the value of these analyses. The high proportion of Promoterome reporter fusions that drove GFP expression, compared to previous studies, led to the hypothesis that transcription factor genes might be involved in local gene duplication events less frequently than other genes. Comparison of transcription factor genes of C. elegans and Caenorhabditis briggsae was therefore carried out and revealed very few examples of functional gene duplication since the divergence of these species for most, but not all, transcription factor gene families. Conclusion Examining reporter expression patterns for hundreds of promoters informs, and thereby improves, interpretation of this data type. Genes encoding transcription factors involved in intrinsic developmental control processes appear acutely sensitive to changes in gene dosage through local gene duplication, on an evolutionary time scale.

  6. Wild type p53 transcriptionally represses the SALL2 transcription factor under genotoxic stress.

    Directory of Open Access Journals (Sweden)

    Carlos Farkas

    Full Text Available SALL2- a member of the Spalt gene family- is a poorly characterized transcription factor found deregulated in various cancers, which suggests it plays a role in the disease. We previously identified SALL2 as a novel interacting protein of neurotrophin receptors and showed that it plays a role in neuronal function, which does not necessarily explain why or how SALL2 is deregulated in cancer. Previous evidences indicate that SALL2 gene is regulated by the WT1 and AP4 transcription factors. Here, we identified SALL2 as a novel downstream target of the p53 tumor suppressor protein. Bioinformatic analysis of the SALL2 gene revealed several putative p53 half sites along the promoter region. Either overexpression of wild-type p53 or induction of the endogenous p53 by the genotoxic agent doxorubicin repressed SALL2 promoter activity in various cell lines. However R175H, R249S, and R248W p53 mutants, frequently found in the tumors of cancer patients, were unable to repress SALL2 promoter activity, suggesting that p53 specific binding to DNA is important for the regulation of SALL2. Electrophoretic mobility shift assay demonstrated binding of p53 to one of the identified p53 half sites in the Sall2 promoter, and chromatin immunoprecipitation analysis confirmed in vivo interaction of p53 with the promoter region of Sall2 containing this half site. Importantly, by using a p53ER (TAM knockin model expressing a variant of p53 that is completely dependent on 4-hydroxy-tamoxifen for its activity, we show that p53 activation diminished SALL2 RNA and protein levels during genotoxic cellular stress in primary mouse embryo fibroblasts (MEFs and radiosensitive tissues in vivo. Thus, our finding indicates that p53 represses SALL2 expression in a context-specific manner, adding knowledge to the understanding of SALL2 gene regulation, and to a potential mechanism for its deregulation in cancer.

  7. Structural, functional, and genetic analyses of the actinobacterial transcription factor RbpA.

    Science.gov (United States)

    Hubin, Elizabeth A; Tabib-Salazar, Aline; Humphrey, Laurence J; Flack, Joshua E; Olinares, Paul Dominic B; Darst, Seth A; Campbell, Elizabeth A; Paget, Mark S

    2015-06-01

    Gene expression is highly regulated at the step of transcription initiation, and transcription activators play a critical role in this process. RbpA, an actinobacterial transcription activator that is essential in Mycobacterium tuberculosis (Mtb), binds selectively to group 1 and certain group 2 σ-factors. To delineate the molecular mechanism of RbpA, we show that the Mtb RbpA σ-interacting domain (SID) and basic linker are sufficient for transcription activation. We also present the crystal structure of the Mtb RbpA-SID in complex with domain 2 of the housekeeping σ-factor, σ(A). The structure explains the basis of σ-selectivity by RbpA, showing that RbpA interacts with conserved regions of σ(A) as well as the nonconserved region (NCR), which is present only in housekeeping σ-factors. Thus, the structure is the first, to our knowledge, to show a protein interacting with the NCR of a σ-factor. We confirm the basis of selectivity and the observed interactions using mutagenesis and functional studies. In addition, the structure allows for a model of the RbpA-SID in the context of a transcription initiation complex. Unexpectedly, the structural modeling suggests that RbpA contacts the promoter DNA, and we present in vivo and in vitro studies supporting this finding. Our combined data lead to a better understanding of the mechanism of RbpA function as a transcription activator.

  8. Antiproliferative and pro-apoptotic effects of three fungal exocellular β-glucans in MCF-7 breast cancer cells is mediated by oxidative stress, AMP-activated protein kinase (AMPK) and the Forkhead transcription factor, FOXO3a.

    Science.gov (United States)

    Queiroz, Eveline A I F; Fortes, Zuleica B; da Cunha, Mário A A; Barbosa, Aneli M; Khaper, Neelam; Dekker, Robert F H

    2015-10-01

    Fungal β-d-glucans of the (1→3)-type are known to exhibit direct antitumor effects, and can also indirectly decrease tumor proliferation through immunomodulatory responses. The underlying molecular mechanisms involved in decreasing tumor formation, however, are not well understood. In this study, we examined the antiproliferative role and mechanism of action of three different fungal exocellular β-glucans in MCF-7 breast cancer cells. The β-glucans were obtained from Botryosphaeria rhodina MAMB-05 [two botryosphaerans; (1→3)(1→6)-β-d-glucan; one produced on glucose, the other on fructose] and Lasiodiplodia theobromae MMPI [lasiodiplodan; (1→6)-β-d-glucan, produced on glucose]. Using the cell proliferation-MTT assay, we showed that the β-glucans exhibited a time- and concentration-dependent antiproliferative activity (IC50, 100μg/ml). Markers of cell cycle, apoptosis, necrosis and oxidative stress were analyzed using flow cytometry, RT-PCR and Western blotting. Exposure to β-glucans increased apoptosis, necrosis, oxidative stress, mRNA expression of p53, p27 and Bax; the activity of AMP-activated protein-kinase, Forkhead transcription factor FOXO3a, Bax and caspase-3; and decreased the activity of p70S6K in MCF-7 cells. In the presence of hydrogen peroxide, the fungal β-glucans increased oxidative stress, which was associated with reduced cell viability. We showed that these β-glucans exhibited an antiproliferative effect that was associated with apoptosis, necrosis and oxidative stress. This study demonstrated for the first time that the apoptosis induced by β-glucans was mediated by AMP-activated protein-kinase and Forkhead transcription factor, FOXO3a. Our findings provide novel mechanistic insights into their antiproliferative roles, and compelling evidence that these β-glucans possess a broad range of biomodulatory properties that may prove useful in cancer treatment. PMID:26255117

  9. Identifying genetic modulators of the connectivity between transcription factors and their transcriptional targets.

    Science.gov (United States)

    Fazlollahi, Mina; Muroff, Ivor; Lee, Eunjee; Causton, Helen C; Bussemaker, Harmen J

    2016-03-29

    Regulation of gene expression by transcription factors (TFs) is highly dependent on genetic background and interactions with cofactors. Identifying specific context factors is a major challenge that requires new approaches. Here we show that exploiting natural variation is a potent strategy for probing functional interactions within gene regulatory networks. We developed an algorithm to identify genetic polymorphisms that modulate the regulatory connectivity between specific transcription factors and their target genes in vivo. As a proof of principle, we mapped connectivity quantitative trait loci (cQTLs) using parallel genotype and gene expression data for segregants from a cross between two strains of the yeast Saccharomyces cerevisiae We identified a nonsynonymous mutation in the DIG2 gene as a cQTL for the transcription factor Ste12p and confirmed this prediction empirically. We also identified three polymorphisms in TAF13 as putative modulators of regulation by Gcn4p. Our method has potential for revealing how genetic differences among individuals influence gene regulatory networks in any organism for which gene expression and genotype data are available along with information on binding preferences for transcription factors.

  10. Artemisinin triggers a G1 cell cycle arrest of human Ishikawa endometrial cancer cells and inhibits cyclin-dependent kinase-4 promoter activity and expression by disrupting nuclear factor-κB transcriptional signaling.

    Science.gov (United States)

    Tran, Kalvin Q; Tin, Antony S; Firestone, Gary L

    2014-03-01

    Relatively little is known about the antiproliferative effects of artemisinin, a naturally occurring antimalarial compound from Artemisia annua, or sweet wormwood, in human endometrial cancer cells. Artemisinin induced a G1 cell cycle arrest in cultured human Ishikawa endometrial cancer cells and downregulated cyclin-dependent kinase-2 (CDK2) and CDK4 transcript and protein levels. Analysis of CDK4 promoter-luciferase reporter constructs showed that the artemisinin ablation of CDK4 gene expression was accounted for by the loss of CDK4 promoter activity. Chromatin immunoprecipitation demonstrated that artemisinin inhibited nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) subunit p65 and p50 interactions with the endogenous Ishikawa cell CDK4 promoter. Coimmunoprecipitation revealed that artemisinin disrupts endogenous p65 and p50 nuclear translocation through increased protein-protein interactions with IκB-α, an NF-κB inhibitor, and disrupts its interaction with the CDK4 promoter, leading to a loss of CDK4 gene expression. Artemisinin treatment stimulated the cellular levels of IκB-α protein without altering the level of IκB-α transcripts. Finally, expression of exogenous p65 resulted in the accumulation of this NF-κB subunit in the nucleus of artemisinin-treated and artemisinin-untreated cells, reversed the artemisinin downregulation of CDK4 protein expression and promoter activity, and prevented the artemisinin-induced G1 cell cycle arrest. Taken together, our results demonstrate that a key event in the artemisinin antiproliferative effects in endometrial cancer cells is the transcriptional downregulation of CDK4 expression by disruption of NF-κB interactions with the CDK4 promoter. PMID:24296733

  11. The myogenic regulatory gene Mef2 is a direct target for transcriptional activation by Twist during Drosophila myogenesis

    OpenAIRE

    Cripps, Richard M.; Black, Brian L.; Zhao, Bin; Lien, Ching-Ling; Schulz, Robert A.; Olson, Eric N.

    1998-01-01

    MEF2 is a MADS-box transcription factor required for muscle development in Drosophila. Here, we show that the bHLH transcription factor Twist directly regulates Mef2 expression in adult somatic muscle precursor cells via a 175-bp enhancer located 2245 bp upstream of the transcriptional start site. Within this element, a single evolutionarily conserved E box is essential for enhancer activity. Twist protein can bind to this E box to activate Mef2 transcription, and ectopic expression of twist ...

  12. Purification and characterization of transcription factor IIIA from Acanthamoeba castellanii

    OpenAIRE

    Polakowski, Nicholas; Paule, Marvin R.

    2002-01-01

    TFIIIA is required to activate RNA polymerase III transcription from 5S RNA genes. Although all known TFIIIA homologs harbor nine zinc fingers that mediate DNA binding, very limited sequence homology is found among these proteins, which reflects unique properties of some TFIIIA homologs. For example, the Acanthamoeba castellanii homolog directly regulates 5S RNA transcription. We have purified and characterized A.castellanii TFIIIA (AcTFIIIA) as a step toward obtaining a clearer understanding...

  13. A role for the transcription factor HEY1 in glioblastoma

    DEFF Research Database (Denmark)

    Hulleman, Esther; Quarto, Micaela; Vernell, Richard;

    2009-01-01

    , such as the Notch and Ras signalling pathways, seem to play an important role in the formation of GBM. In the present study, we show by in situ hybridization on primary tumour material that the transcription factor HEY1, a target of the Notch signalling pathway, is specifically upregulated in glioma...... and that expression of HEY1 in GBM correlates with tumour-grade and survival. In addition, we show by chromatin immunoprecipitations, luciferase assays and Northern blot experiments that HEY1 is a bona fide target of the E2F family of transcription factors, connecting the Ras and Notch signalling pathways. Finally...

  14. Ligand-specific sequential regulation of transcription factors for differentiation of MCF-7 cells

    Directory of Open Access Journals (Sweden)

    Toyoda Tetsuro

    2009-11-01

    Full Text Available Abstract Background Sharing a common ErbB/HER receptor signaling pathway, heregulin (HRG induces differentiation of MCF-7 human breast cancer cells while epidermal growth factor (EGF elicits proliferation. Although cell fates resulting from action of the aforementioned ligands completely different, the respective gene expression profiles in early transcription are qualitatively similar, suggesting that gene expression during late transcription, but not early transcription, may reflect ligand specificity. In this study, based on both the data from time-course quantitative real-time PCR on over 2,000 human transcription factors and microarray of all human genes, we identified a series of transcription factors which may control HRG-specific late transcription in MCF-7 cells. Results We predicted that four transcription factors including EGR4, FRA-1, FHL2, and DIPA should have responsibility of regulation in MCF-7 cell differentiation. Validation analysis suggested that one member of the activator protein 1 (AP-1 family, FOSL-1 (FRA-1 gene, appeared immediately following c-FOS expression, might be responsible for expression of transcription factor FHL2 through activation of the AP-1 complex. Furthermore, RNAi gene silencing of FOSL-1 and FHL2 resulted in increase of extracellular signal-regulated kinase (ERK phosphorylation of which duration was sustained by HRG stimulation. Conclusion Our analysis indicated that a time-dependent transcriptional regulatory network including c-FOS, FRA-1, and FHL2 is vital in controlling the ERK signaling pathway through a negative feedback loop for MCF-7 cell differentiation.

  15. Otx but not Mitf transcription factors are required for zebrafish retinal pigment epithelium development.

    Directory of Open Access Journals (Sweden)

    Brandon M Lane

    Full Text Available Otx and Mitf transcription factors have been implicated in the development of the retinal pigmented epithelium (RPE, but the relationship between these factors and their specific roles in the development of the RPE have not been fully defined. The role of the three Otx transcription factors (Otx1a, Otx1b, and Otx2 and two Mitf transcription factors (Mitfa and Mitfb in the development of the zebrafish RPE was explored in these experiments. The loss of Otx activity through morpholino knockdown produced variable eye defects, ranging from delayed RPE pigmentation to severe coloboma, depending on the combination of Otx factors that were targeted. Expression analysis through in situ hybridization demonstrates that otx transcription factors are necessary for the proper expression of mitfa and mitfb while Mitf transcription factors are not required for the expression of otx genes. Surprisingly, the loss of Mitf activity in mitfa, mitfb, or double mitf mutant zebrafish had no effect on RPE pigmentation or development. Moreover, histological analysis revealed that retinal lamination is unaffected in mitf mutants, as well as in otx morphants, even in regions lacking RPE. Otx and Mitf combined loss of function experiments suggest that mitfa and mitfb may still influence zebrafish RPE development. This is further supported by the ability of mitfa to induce pigmentation in the zebrafish retina when misexpressed. These findings suggest that one or more Otx targets in addition to mitfa and mitfb, possibly another mitf family member, are necessary for development of the RPE in zebrafish.

  16. Global transcriptional profiling reveals Streptococcus agalactiae genes controlled by the MtaR transcription factor

    Directory of Open Access Journals (Sweden)

    Cvek Urska

    2008-12-01

    Full Text Available Abstract Background Streptococcus agalactiae (group B Streptococcus; GBS is a significant bacterial pathogen of neonates and an emerging pathogen of adults. Though transcriptional regulators are abundantly encoded on the GBS genome, their role in GBS pathogenesis is poorly understood. The mtaR gene encodes a putative LysR-type transcriptional regulator that is critical for the full virulence of GBS. Previous studies have shown that an mtaR- mutant transports methionine at reduced rates and grows poorly in normal human plasma not supplemented with methionine. The decreased virulence of the mtaR mutant was correlated with a methionine transport defect; however, no MtaR-regulated genes were identified. Results Microarray analysis of wild-type GBS and an mtaR mutant revealed differential expression of 12 genes, including 1 upregulated and 11 downregulated genes in the mtaR mutant. Among the downregulated genes, we identified a cluster of cotranscribed genes encoding a putative methionine transporter (metQ1NP and peptidase (pdsM. The expression of four genes potentially involved in arginine transport (artPQ and arginine biosynthesis (argGH was downregulated and these genes localized to two transcriptional units. The virulence factor cspA, which encodes an extracellular protease, was downregulated. Additionally, the SAN_1255 locus, which putatively encodes a protein displaying similarity to plasminogen activators, was downregulated. Conclusion To our knowledge, this is the first study to describe the global influence of MtaR on GBS gene expression. This study implicates the metQ1NP genes as encoding the MtaR-regulated methionine transporter, which may provide a mechanistic explanation for the methionine-dependent growth defect of the mtaR mutant. In addition to modulating the expression of genes involved in metabolism and amino acid transport, inactivation of mtaR affected the expression of other GBS genes implicated in pathogenesis. These findings

  17. Functional characterization of tobacco transcription factor TGA2.1

    DEFF Research Database (Denmark)

    Kegler, C.; Lenk, I.; Krawczyk, S.;

    2004-01-01

    Activation sequence-1 (as-1)-like regulatory cis elements mediate transcriptional activation in response to increased levels of plant signalling molecules auxin and salicylic acid (SA). Our earlier work has shown that tobacco cellular as-1-binding complex SARP (salicylic acid responsive protein...

  18. trans activation by the full-length E2 proteins of human papillomavirus type 16 and bovine papillomavirus type 1 in vitro and in vivo: cooperation with activation domains of cellular transcription factors.

    OpenAIRE

    Ushikai, M; Lace, M J; Yamakawa, Y.; Kono, M; Anson, J; Ishiji, T; Parkkinen, S; Wicker, N.; Valentine, M E; Davidson, I

    1994-01-01

    Papillomaviral E2 genes encode proteins that regulate viral transcription. While the full-length bovine papillomavirus type 1 (BPV-1) E2 peptide is a strong trans activator, the homologous full-length E2 product of human papillomavirus type 16 (HPV-16) appeared to vary in function in previous studies. Here we show that when expressed from comparable constructs, the full-length E2 products of HPV-16 and BPV-1 trans activate a simple E2- and Sp1-dependent promoter up to approximately 100-fold i...

  19. Spi-1/PU.1 activates transcription through clustered DNA occupancy in erythroleukemia.

    Science.gov (United States)

    Ridinger-Saison, Maya; Boeva, Valentina; Rimmelé, Pauline; Kulakovskiy, Ivan; Gallais, Isabelle; Levavasseur, Benjamin; Paccard, Caroline; Legoix-Né, Patricia; Morlé, François; Nicolas, Alain; Hupé, Philippe; Barillot, Emmanuel; Moreau-Gachelin, Françoise; Guillouf, Christel

    2012-10-01

    Acute leukemias are characterized by deregulation of transcriptional networks that control the lineage specificity of gene expression. The aberrant overexpression of the Spi-1/PU.1 transcription factor leads to erythroleukemia. To determine how Spi-1 mechanistically influences the transcriptional program, we combined a ChIP-seq analysis with transcriptional profiling in cells from an erythroleukemic mouse model. We show that Spi-1 displays a selective DNA-binding that does not often cause transcriptional modulation. We report that Spi-1 controls transcriptional activation and repression partially through distinct Spi-1 recruitment to chromatin. We revealed several parameters impacting on Spi-1-mediated transcriptional activation. Gene activation is facilitated by Spi-1 occupancy close to transcriptional starting site of genes devoid of CGIs. Moreover, in those regions Spi-1 acts by binding to multiple motifs tightly clustered and with similar orientation. Finally, in contrast to the myeloid and lymphoid B cells in which Spi-1 exerts a physiological activity, in the erythroleukemic cells, lineage-specific cooperating factors do not play a prevalent role in Spi-1-mediated transcriptional activation. Thus, our work describes a new mechanism of gene activation through clustered site occupancy of Spi-1 particularly relevant in regard to the strong expression of Spi-1 in the erythroleukemic cells.

  20. Exploring membrane-associated NAC transcription factors in Arabidopsis: implications for membrane biology in genome regulation

    OpenAIRE

    Kim, Sun-Young; Kim, Sang-Gyu; Kim, Youn-Sung; Seo, Pil Joon; Bae, Mikyoung; Yoon, Hye-Kyung; Park, Chung-Mo

    2006-01-01

    Controlled proteolytic cleavage of membrane-associated transcription factors (MTFs) is an intriguing activation strategy that ensures rapid transcriptional responses to incoming stimuli. Several MTFs are known to regulate diverse cellular functions in prokaryotes, yeast, and animals. In Arabidopsis, a few NAC MTFs mediate either cytokinin signaling during cell division or endoplasmic reticulum (ER) stress responses. Through genome-wide analysis, it was found that at least 13 members of the NA...

  1. Crystal structure of the transcription factor sc-mtTFB offers insights into mitochondrial transcription

    OpenAIRE

    Schubot, Florian D; Chen, Chun-Jung; Rose, John P.; Dailey, Tamara A.; Dailey, Harry A.; Wang, Bi-Cheng

    2001-01-01

    Although it is commonly accepted that binding of mitochondrial transcription factor sc-mtTFB to the mitochondrial RNA polymerase is required for specific transcription initiation in Saccharomyces cerevisiae, its precise role has remained undefined. In the present work, the crystal structure of sc-mtTFB has been determined to 2.6 Å resolution. The protein consists of two domains, an N-terminal α/β-domain and a smaller domain made up of four α-helices. Contrary to previous predictions, sc-mtTFB...

  2. Transcription factor movement and tissue patterning in Arabidopsis root meristem

    NARCIS (Netherlands)

    Long, Y.

    2015-01-01

    Cell-cell communication is key to coordinated cellular functions in multicellular organisms. In addition to the signaling molecules found in animals, plants also frequently recruit mobile transcription factors to deliver positional information. The best studied example is SHORT-ROOT (SHR), a transcr

  3. Regulation of archicortical arealization by the transcription factor Zbtb20

    DEFF Research Database (Denmark)

    Rosenthal, Eva Helga; Tonchev, Anton B; Stoykova, Anastassia;

    2012-01-01

    The molecular mechanisms of regionalization of the medial pallium (MP), the anlage of the hippocampus, and transitional (cingulate and retrosplenial) cortices are largely unknown. Previous analyses have outlined an important role of the transcription factor (TF) Zbtb20 for hippocampal CA1 field...

  4. Myocardin-related Transcription Factor Regulates Nox4 Protein Expression

    DEFF Research Database (Denmark)

    Rozycki, Matthew; Bialik, Janne Folke; Speight, Pam;

    2016-01-01

    TGFβ-induced expression of the NADPH oxidase Nox4 is essential for fibroblast-myofibroblast transition. Rho has been implicated in Nox4 regulation, but the underlying mechanisms are largely unknown. Myocardin-related transcription factor (MRTF), a Rho/actin polymerization-controlled coactivator...

  5. Leveraging cross-species transcription factor binding site patterns

    DEFF Research Database (Denmark)

    Claussnitzer, Melina; Dankel, Simon N; Klocke, Bernward;

    2014-01-01

    to disease susceptibility. We show that integrative computational analysis of phylogenetic conservation with a complexity assessment of co-occurring transcription factor binding sites (TFBS) can identify cis-regulatory variants and elucidate their mechanistic role in disease. Analysis of established type 2...

  6. Transcription Factor Zbtb20 Controls Regional Specification of Mammalian Archicortex

    DEFF Research Database (Denmark)

    Rosenthal, Eva Helga

    2010-01-01

    Combinatorial expression of sets of transcription factors (TFs) along the mammalian cortex controls its subdivision into functional areas. Unlike neocortex, only few recent data suggest genetic mechanisms controlling the regionalization of the archicortex. TF Emx2 plays a crucial role in patterning...

  7. The transcription factor BACH2 promotes tumor immunosuppression

    Science.gov (United States)

    Roychoudhuri, Rahul; Eil, Robert L.; Clever, David; Klebanoff, Christopher A.; Sukumar, Madhusudhanan; Grant, Francis M.; Yu, Zhiya; Mehta, Gautam; Liu, Hui; Jin, Ping; Ji, Yun; Palmer, Douglas C.; Pan, Jenny H.; Chichura, Anna; Crompton, Joseph G.; Patel, Shashank J.; Stroncek, David; Wang, Ena; Marincola, Francesco M.; Okkenhaug, Klaus; Gattinoni, Luca; Restifo, Nicholas P.

    2016-01-01

    The immune system has a powerful ability to recognize and kill cancer cells, but its function is often suppressed within tumors, preventing clearance of disease. Functionally diverse innate and adaptive cellular lineages either drive or constrain immune reactions within tumors. The transcription factor (TF) BACH2 regulates the differentiation of multiple innate and adaptive cellular lineages, but its role in controlling tumor immunity has not been elucidated. Here, we demonstrate that BACH2 is required to establish immunosuppression within tumors. Tumor growth was markedly impaired in Bach2-deficient mice and coincided with intratumoral activation of both innate and adaptive immunity. However, augmented tumor clearance in the absence of Bach2 was dependent upon the adaptive immune system. Analysis of tumor-infiltrating lymphocytes from Bach2-deficient mice revealed high frequencies of rapidly proliferating effector CD4+ and CD8+ T cells that expressed the inflammatory cytokine IFN-γ. Effector T cell activation coincided with a reduction in the frequency of intratumoral Foxp3+ Tregs. Mechanistically, BACH2 promoted tumor immunosuppression through Treg-mediated inhibition of intratumoral CD8+ T cells and IFN-γ. These findings demonstrate that BACH2 is a key component of the molecular program of tumor immunosuppression and identify therapeutic targets for the reversal of immunosuppression in cancer. PMID:26731475

  8. Regulation by transcription factors in bacteria: beyond description.

    Science.gov (United States)

    Balleza, Enrique; López-Bojorquez, Lucia N; Martínez-Antonio, Agustino; Resendis-Antonio, Osbaldo; Lozada-Chávez, Irma; Balderas-Martínez, Yalbi I; Encarnación, Sergio; Collado-Vides, Julio

    2009-01-01

    Transcription is an essential step in gene expression and its understanding has been one of the major interests in molecular and cellular biology. By precisely tuning gene expression, transcriptional regulation determines the molecular machinery for developmental plasticity, homeostasis and adaptation. In this review, we transmit the main ideas or concepts behind regulation by transcription factors and give just enough examples to sustain these main ideas, thus avoiding a classical ennumeration of facts. We review recent concepts and developments: cis elements and trans regulatory factors, chromosome organization and structure, transcriptional regulatory networks (TRNs) and transcriptomics. We also summarize new important discoveries that will probably affect the direction of research in gene regulation: epigenetics and stochasticity in transcriptional regulation, synthetic circuits and plasticity and evolution of TRNs. Many of the new discoveries in gene regulation are not extensively tested with wetlab approaches. Consequently, we review this broad area in Inference of TRNs and Dynamical Models of TRNs. Finally, we have stepped backwards to trace the origins of these modern concepts, synthesizing their history in a timeline schema. PMID:19076632

  9. Regulation of endogenous human gene expression by ligand-inducible TALE transcription factors.

    Science.gov (United States)

    Mercer, Andrew C; Gaj, Thomas; Sirk, Shannon J; Lamb, Brian M; Barbas, Carlos F

    2014-10-17

    The construction of increasingly sophisticated synthetic biological circuits is dependent on the development of extensible tools capable of providing specific control of gene expression in eukaryotic cells. Here, we describe a new class of synthetic transcription factors that activate gene expression in response to extracellular chemical stimuli. These inducible activators consist of customizable transcription activator-like effector (TALE) proteins combined with steroid hormone receptor ligand-binding domains. We demonstrate that these ligand-responsive TALE transcription factors allow for tunable and conditional control of gene activation and can be used to regulate the expression of endogenous genes in human cells. Since TALEs can be designed to recognize any contiguous DNA sequence, the conditional gene regulatory system described herein will enable the design of advanced synthetic gene networks.

  10. PolyADP-ribose polymerase is a coactivator for AP-2-mediated transcriptional activation.

    OpenAIRE

    Kannan, P; Yu, Y; Wankhade, S; Tainsky, M A

    1999-01-01

    Overexpression of transcription factor AP-2 has been implicated in the tumorigenicity of the human teratocarcinoma cell lines PA-1 that contain an activated ras oncogene. Here we show evidence that overexpression of AP-2 sequesters transcriptional coactivators which results in self-inhibition. We identified AP-2-interacting proteins and determined whether these proteins were coactivators for AP-2-mediated transcription. One such interacting protein is polyADP-ribose polymerase (PARP). PARP su...

  11. Signal transducer and activator of transcription 6 gene G2964A polymorphism and inflammatory bowel disease.

    NARCIS (Netherlands)

    Xia, B; Crusius, J.B.A.; Wu, J; Zwiers, A.; Bodegraven, van A.A.; Pena, A.S.

    2003-01-01

    Signal transducer and activator of transcription 6 (STAT6) is a key transcription factor involved in interleukin 4 (IL-4) and IL-13-mediated Th2 response. The STAT6 gene is located on chromosome 12q13.3-14.1 (IBD2 region) and is therefore a positional and functional candidate gene for study in infla

  12. Keeping up to speed with the transcription termination factor Rho motor.

    Science.gov (United States)

    Boudvillain, Marc; Nollmann, Marcello; Margeat, Emmanuel

    2010-01-01

    In bacteria, a subset of transcription termination events requires the participation of the transcription termination factor Rho. Rho is a homo-hexameric, ring-shaped, motor protein that uses the energy derived from its RNA-dependent ATPase activity to directionally unwind RNA and RNA-DNA helices and to dissociate transcription elongation complexes. Despite a wealth of structural, biochemical and genetic data, the molecular mechanisms used by Rho to carry out its biological functions remain poorly understood. Here, we briefly discuss the most recent findings on Rho mechanisms and function and highlight important questions that remain to be addressed.

  13. Controlling for gene expression changes in transcription factor protein networks.

    Science.gov (United States)

    Banks, Charles A S; Lee, Zachary T; Boanca, Gina; Lakshminarasimhan, Mahadevan; Groppe, Brad D; Wen, Zhihui; Hattem, Gaye L; Seidel, Chris W; Florens, Laurence; Washburn, Michael P

    2014-06-01

    The development of affinity purification technologies combined with mass spectrometric analysis of purified protein mixtures has been used both to identify new protein-protein interactions and to define the subunit composition of protein complexes. Transcription factor protein interactions, however, have not been systematically analyzed using these approaches. Here, we investigated whether ectopic expression of an affinity tagged transcription factor as bait in affinity purification mass spectrometry experiments perturbs gene expression in cells, resulting in the false positive identification of bait-associated proteins when typical experimental controls are used. Using quantitative proteomics and RNA sequencing, we determined that the increase in the abundance of a set of proteins caused by overexpression of the transcription factor RelA is not sufficient for these proteins to then co-purify non-specifically and be misidentified as bait-associated proteins. Therefore, typical controls should be sufficient, and a number of different baits can be compared with a common set of controls. This is of practical interest when identifying bait interactors from a large number of different baits. As expected, we found several known RelA interactors enriched in our RelA purifications (NFκB1, NFκB2, Rel, RelB, IκBα, IκBβ, and IκBε). We also found several proteins not previously described in association with RelA, including the small mitochondrial chaperone Tim13. Using a variety of biochemical approaches, we further investigated the nature of the association between Tim13 and NFκB family transcription factors. This work therefore provides a conceptual and experimental framework for analyzing transcription factor protein interactions.

  14. Hispolon Decreases Melanin Production and Induces Apoptosis in Melanoma Cells through the Downregulation of Tyrosinase and Microphthalmia-Associated Transcription Factor (MITF Expressions and the Activation of Caspase-3, -8 and -9

    Directory of Open Access Journals (Sweden)

    Yi-Shyan Chen

    2014-01-01

    Full Text Available Hispolon is one of the most important functional compounds that forms Phellinus linteus (Berkeley & Curtis Teng. Hispolon has antioxidant, anti-inflammatory, antiproliferative and anticancer effects. In this study, we analyzed the functions of hispolon on melanogenesis and apoptosis in B16-F10 melanoma cells. The results demonstrated that hispolon is not an enzymatic inhibitor for tyrosinase; rather, it represses the expression of tyrosinase and the microphthalmia-associated transcription factor (MITF to reduce the production of melanin in α-melanocyte-stimulating hormone (α-MSH-stimulated B16-F10 cells at lower concentrations (less than 2 μM. In contrast, at higher concentration (greater than 10 μM, hispolon can induce activity of caspase-3, -8 and -9 to trigger apoptosis of B16-F10 cells but not of Detroit 551 normal fibroblast cells. Therefore, we suggest that hispolon has the potential to treat hyperpigmentation diseases and melanoma skin cancer in the future.

  15. Transcription Factor hDREF Is a Novel SUMO E3 Ligase of Mi2α.

    Science.gov (United States)

    Yamashita, Daisuke; Moriuchi, Takanobu; Osumi, Takashi; Hirose, Fumiko

    2016-05-27

    The human transcription factor DNA replication-related element-binding factor (hDREF) is essential for the transcription of a number of housekeeping genes. The mechanisms underlying constitutively active transcription by hDREF were unclear. Here, we provide evidence that hDREF possesses small ubiquitin-like modifier (SUMO) ligase activity and can specifically SUMOylate Mi2α, an ATP-dependent DNA helicase in the nucleosome remodeling and deacetylation complex. Moreover, immunofluorescent staining and biochemical analyses showed that coexpression of hDREF and SUMO-1 resulted in dissociation of Mi2α from chromatin, whereas a SUMOylation-defective Mi2α mutant remained tightly bound to chromatin. Chromatin immunoprecipitation and quantitative RT-PCR analysis demonstrated that Mi2α expression diminished transcription of the ribosomal protein genes, which are positively regulated by hDREF. In contrast, coexpression of hDREF and SUMO-1 suppressed the transcriptional repression by Mi2α. These data indicate that hDREF might incite transcriptional activation by SUMOylating Mi2α, resulting in the dissociation of Mi2α from the gene loci. We propose a novel mechanism for maintaining constitutively active states of a number of hDREF target genes through SUMOylation. PMID:27068747

  16. Extracellular Matrix-Regulated Gene Expression RequiresCooperation of SWI/SNF and Transcription Factors

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ren; Spencer, Virginia A.; Bissell, Mina J.

    2006-05-25

    Extracellular cues play crucial roles in the transcriptional regulation of tissue-specific genes, but whether and how these signals lead to chromatin remodeling is not understood and subject to debate. Using chromatin immunoprecipitation (ChIP) assays and mammary-specific genes as models, we show here that extracellular matrix (ECM) molecules and prolactin cooperate to induce histone acetylation and binding of transcription factors and the SWI/SNF complex to the {beta}- and ?-casein promoters. Introduction of a dominant negative Brg1, an ATPase subunit of SWI/SNF complex, significantly reduced both {beta}- and ?-casein expression, suggesting that SWI/SNF-dependent chromatin remodeling is required for transcription of mammary-specific genes. ChIP analyses demonstrated that the ATPase activity of SWI/SNF is necessary for recruitment of RNA transcriptional machinery, but not for binding of transcription factors or for histone acetylation. Coimmunoprecipitation analyses showed that the SWI/SNF complex is associated with STAT5, C/EBP{beta}, and glucocorticoid receptor (GR). Thus, ECM- and prolactin-regulated transcription of the mammary-specific casein genes requires the concerted action of chromatin remodeling enzymes and transcription factors.

  17. Role of Transcription Factors in Steatohepatitis and Hypertension after Ethanol: The Epicenter of Metabolism

    Directory of Open Access Journals (Sweden)

    Rais A. Ansari

    2016-06-01

    Full Text Available Chronic alcohol consumption induces multi-organ damage, including alcoholic liver disease (ALD, pancreatitis and hypertension. Ethanol and ethanol metabolic products play a significant role in the manifestation of its toxicity. Ethanol metabolizes to acetaldehyde and produces reduced nicotinamide adenine dinucleotide (NADH by cytosolic alcohol dehydrogenase. Ethanol metabolism mediated by cytochrome-P450 2E1 causes oxidative stress due to increased production of reactive oxygen species (ROS. Acetaldehyde, increased redox cellular state and ROS activate transcription factors, which in turn activate genes for lipid biosynthesis and offer protection of hepatocytes from alcohol toxicity. Sterol regulatory element binding proteins (SREBPs and peroxisome proliferator activated-receptors (PPARs are two key lipogenic transcription factors implicated in the development of fatty liver in alcoholic and non-alcoholic steatohepatitis. SREBP-1 is activated in the livers of chronic ethanol abusers. An increase in ROS activates nuclear factor erythroid-2-related factor-2 (Nrf2 and hypoxia inducible factor (HIF to provide protection to hepatocytes from ethanol toxicity. Under ethanol exposure, due to increased gut permeability, there is release of gram-negative bacteria-derived lipopolysaccharide (LPS from intestine causing activation of immune response. In addition, the metabolic product, acetaldehyde, modifies the proteins in hepatocyte, which become antigens inviting auto-immune response. LPS activates macrophages, especially the liver resident macrophages, Kupffer cells. These Kupffer cells and circulating macrophages secrete various cytokines. The level of tumor necrosis factor-α (TNFα, interleukin-1beta (IL-1β, IL-6, IL-8 and IL-12 have been found elevated among chronic alcoholics. In addition to elevation of these cytokines, the peripheral iron (Fe2+ is also mobilized. An increased level of hepatic iron has been observed among alcoholics. Increased ROS

  18. Role of Transcription Factors in Steatohepatitis and Hypertension after Ethanol: The Epicenter of Metabolism

    Science.gov (United States)

    Ansari, Rais A.; Husain, Kazim; Rizvi, Syed A. A.

    2016-01-01

    Chronic alcohol consumption induces multi-organ damage, including alcoholic liver disease (ALD), pancreatitis and hypertension. Ethanol and ethanol metabolic products play a significant role in the manifestation of its toxicity. Ethanol metabolizes to acetaldehyde and produces reduced nicotinamide adenine dinucleotide (NADH) by cytosolic alcohol dehydrogenase. Ethanol metabolism mediated by cytochrome-P450 2E1 causes oxidative stress due to increased production of reactive oxygen species (ROS). Acetaldehyde, increased redox cellular state and ROS activate transcription factors, which in turn activate genes for lipid biosynthesis and offer protection of hepatocytes from alcohol toxicity. Sterol regulatory element binding proteins (SREBPs) and peroxisome proliferator activated-receptors (PPARs) are two key lipogenic transcription factors implicated in the development of fatty liver in alcoholic and non-alcoholic steatohepatitis. SREBP-1 is activated in the livers of chronic ethanol abusers. An increase in ROS activates nuclear factor erythroid-2-related factor-2 (Nrf2) and hypoxia inducible factor (HIF) to provide protection to hepatocytes from ethanol toxicity. Under ethanol exposure, due to increased gut permeability, there is release of gram-negative bacteria-derived lipopolysaccharide (LPS) from intestine causing activation of immune response. In addition, the metabolic product, acetaldehyde, modifies the proteins in hepatocyte, which become antigens inviting auto-immune response. LPS activates macrophages, especially the liver resident macrophages, Kupffer cells. These Kupffer cells and circulating macrophages secrete various cytokines. The level of tumor necrosis factor-α (TNFα), interleukin-1beta (IL-1β), IL-6, IL-8 and IL-12 have been found elevated among chronic alcoholics. In addition to elevation of these cytokines, the peripheral iron (Fe2+) is also mobilized. An increased level of hepatic iron has been observed among alcoholics. Increased ROS, IL-1

  19. Regulation of Na(+)/K(+)-ATPase by neuron-specific transcription factor Sp4: implication in the tight coupling of energy production, neuronal activity and energy consumption in neurons.

    Science.gov (United States)

    Johar, Kaid; Priya, Anusha; Wong-Riley, Margaret T T

    2014-02-01

    A major source of energy demand in neurons is the Na(+)/K(+)-ATPase pump that restores the ionic gradient across the plasma membrane subsequent to depolarizing neuronal activity. The energy comes primarily from mitochondrial oxidative metabolism, of which cytochrome c oxidase (COX) is a key enzyme. Recently, we found that all 13 subunits of COX are regulated by specificity (Sp) factors, and that the neuron-specific Sp4, but not Sp1 or Sp3, regulates the expression of key glutamatergic receptor subunits as well. The present study sought to test our hypothesis that Sp4 also regulates Na(+)/K(+)-ATPase subunit genes in neurons. By means of multiple approaches, including in silico analysis, electrophoretic mobility shift and supershift assays, chromatin immunoprecipitation, promoter mutational analysis, over-expression, and RNA interference studies, we found that Sp4, with minor contributions from Sp1 and Sp3, functionally regulate the Atp1a1, Atp1a3, and Atp1b1 subunit genes of Na(+)/K(+)-ATPase in neurons. Transcripts of all three genes were up-regulated by depolarizing KCl stimulation and down-regulated by the impulse blocker tetrodotoxin (TTX), indicating that their expression was activity-dependent. Silencing of Sp4 blocked the up-regulation of these genes induced by KCl, whereas over-expression of Sp4 rescued them from TTX-induced suppression. The effect of silencing or over-expressing Sp4 on primary neurons was much greater than those of Sp1 or Sp3. The binding sites of Sp factors on these genes are conserved among mice, rats and humans. Thus, Sp4 plays an important role in the transcriptional coupling of energy generation and energy consumption in neurons.

  20. Enhanced osteoclastogenesis by mitochondrial retrograde signaling through transcriptional activation of the cathepsin K gene.

    Science.gov (United States)

    Guha, Manti; Srinivasan, Satish; Koenigstein, Alexander; Zaidi, Mone; Avadhani, Narayan G

    2016-01-01

    Mitochondrial dysfunction has emerged as an important factor in wide ranging human pathologies. We have previously defined a retrograde signaling pathway that originates from dysfunctional mitochondria (Mt-RS) and causes a global nuclear transcriptional reprograming as its end point. Mitochondrial dysfunction causing disruption of mitochondrial membrane potential and consequent increase in cytosolic calcium [Ca(2) ](c) activates calcineurin and the transcription factors NF-κB, NFAT, CREB, and C/EBPδ. In macrophages, this signaling complements receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclastic differentiation. Here, we show that the Mt-RS activated transcriptional coactivator heterogeneous ribonucleoprotein A2 (hnRNP A2) is induced by hypoxia in murine macrophages. We demonstrate that the cathepsin K gene (Ctsk), one of the key genes upregulated during osteoclast differentiation, is transcriptionally activated by Mt-RS factors. HnRNP A2 acts as a coactivator with nuclear transcription factors, cRel, and C/EBPδ for Ctsk promoter activation under hypoxic conditions. Notably, our study shows that hypoxia-induced activation of the stress target factors mediates effects similar to that of RANKL with regard to Ctsk activation. We therefore suggest that mitochondrial dysfunction and activation of Mt-RS, induced by various pathophysiologic conditions, is a potential risk factor for osteoclastogenesis and bone loss.

  1. Transcriptional coactivator CIITA, a functional homolog of TAF1, has kinase activity.

    Science.gov (United States)

    Soe, Katherine C; Devaiah, Ballachanda N; Singer, Dinah S

    2013-11-01

    The Major Histocompatibility Complex (MHC) class II transactivator (CIITA) mediates activated immune responses and its deficiency results in the Type II Bare Lymphocyte Syndrome. CIITA is a transcriptional co-activator that regulates γ-interferon-activated transcription of MHC class I and class II genes. It is also a functional homolog of TAF1, a component of the general transcription factor complex TFIID. TAF1 and CIITA both possess intrinsic acetyltransferase (AT) activity that is required for transcription initiation. In response to induction by γ-interferon, CIITA and it's AT activity bypass the requirement for TAF1 AT activity. TAF1 also has kinase activity that is essential for its function. However, no similar activity has been identified for CIITA thus far. Here we report that CIITA, like TAF1, is a serine-threonine kinase. Its substrate specificity parallels, but does not duplicate, that of TAF1 in phosphorylating the TFIID component TAF7, the RAP74 subunit of the general transcription factor TFIIF and histone H2B. Like TAF1, CIITA autophosphorylates, affecting its interaction with TAF7. Additionally, CIITA phosphorylates histone H2B at Ser36, a target of TAF1 that is required for transcription during cell cycle progression and stress response. However, unlike TAF1, CIITA also phosphorylates all the other histones. The identification of this novel kinase activity of CIITA further clarifies its role as a functional homolog of TAF1 which may operate during stress and γ-IFN activated MHC gene transcription.

  2. Transcription factor interplay in T helper cell differentiation.

    Science.gov (United States)

    Evans, Catherine M; Jenner, Richard G

    2013-11-01

    The differentiation of CD4 helper T cells into specialized effector lineages has provided a powerful model for understanding immune cell differentiation. Distinct lineages have been defined by differential expression of signature cytokines and the lineage-specifying transcription factors necessary and sufficient for their production. The traditional paradigm of differentiation towards Th1 and Th2 subtypes driven by T-bet and GATA3, respectively, has been extended to incorporate additional T cell lineages and transcriptional regulators. Technological advances have expanded our view of these lineage-specifying transcription factors to the whole genome and revealed unexpected interplay between them. From these data, it is becoming clear that lineage specification is more complex and plastic than previous models might have suggested. Here, we present an overview of the different forms of transcription factor interplay that have been identified and how T cell phenotypes arise as a product of this interplay within complex regulatory networks. We also suggest experimental strategies that will provide further insight into the mechanisms that underlie T cell lineage specification and plasticity.

  3. Identification of transcription-factor genes expressed in the Arabidopsis female gametophyte

    Directory of Open Access Journals (Sweden)

    Kang Il-Ho

    2010-06-01

    Full Text Available Abstract Background In flowering plants, the female gametophyte is typically a seven-celled structure with four cell types: the egg cell, the central cell, the synergid cells, and the antipodal cells. These cells perform essential functions required for double fertilization and early seed development. Differentiation of these distinct cell types likely involves coordinated changes in gene expression regulated by transcription factors. Therefore, understanding female gametophyte cell differentiation and function will require dissection of the gene regulatory networks operating in each of the cell types. These efforts have been hampered because few transcription factor genes expressed in the female gametophyte have been identified. To identify such genes, we undertook a large-scale differential expression screen followed by promoter-fusion analysis to detect transcription-factor genes transcribed in the Arabidopsis female gametophyte. Results Using quantitative reverse-transcriptase PCR, we analyzed 1,482 Arabidopsis transcription-factor genes and identified 26 genes exhibiting reduced mRNA levels in determinate infertile 1 mutant ovaries, which lack female gametophytes, relative to ovaries containing female gametophytes. Spatial patterns of gene transcription within the mature female gametophyte were identified for 17 transcription-factor genes using promoter-fusion analysis. Of these, ten genes were predominantly expressed in a single cell type of the female gametophyte including the egg cell, central cell and the antipodal cells whereas the remaining seven genes were expressed in two or more cell types. After fertilization, 12 genes were transcriptionally active in the developing embryo and/or endosperm. Conclusions We have shown that our quantitative reverse-transcriptase PCR differential-expression screen is sufficiently sensitive to detect transcription-factor genes transcribed in the female gametophyte. Most of the genes identified in this

  4. Hyperosmotic stress strongly potentiates serum response factor (SRF)-dependent transcriptional activity in ehrlich lettré ascites cells through a mechanism involving p38 mitogen-activated protein kinase

    DEFF Research Database (Denmark)

    Gorbatenko, Andrej; Wiwel, Maria; Klingberg, Henrik;

    2011-01-01

    Long-term osmotic stress results in altered gene transcription, however, with the exception of the TonE/TonEBP system, the underlying mechanisms are poorly understood. We previously showed that upon osmotic shrinkage of Ehrlich Lettré Ascites (ELA) fibroblasts, the MEK1-ERK1/2 pathway...... MAPK-dependent manner. In contrast, CREB Ser133 was transiently dephosphorylated upon osmotic shrinkage. The ERK1/2 effector ribosomal S kinase (RSK) and the ERK1/2- and p38 MAPK effector mitogen- stress-activated protein kinase 1 (MSK1) both phosphorylate CREB at Ser133. RSK and MSK1 were...

  5. Enhancer-activated plasmid transcription complexes contain constrained supercoiling.

    OpenAIRE

    Bonilla, P J; Freytag, S O; Lutter, L C

    1991-01-01

    It has been proposed that transcriptionally active chromatin contains totally unconstrained supercoiling. The results of recent studies have raised the possibility that this topological state is the property of highly transcribed genes. Since the transcription rate of RNA polymerase II genes can be dramatically increased by the presence of an enhancer, we have determined if the transcription complex of an enhancer-activated plasmid contains totally unconstrained supercoils. Following transfec...

  6. The transcription factor titration effect dictates level of gene expression.

    Science.gov (United States)

    Brewster, Robert C; Weinert, Franz M; Garcia, Hernan G; Song, Dan; Rydenfelt, Mattias; Phillips, Rob

    2014-03-13

    Models of transcription are often built around a picture of RNA polymerase and transcription factors (TFs) acting on a single copy of a promoter. However, most TFs are shared between multiple genes with varying binding affinities. Beyond that, genes often exist at high copy number-in multiple identical copies on the chromosome or on plasmids or viral vectors with copy numbers in the hundreds. Using a thermodynamic model, we characterize the interplay between TF copy number and the demand for that TF. We demonstrate the parameter-free predictive power of this model as a function of the copy number of the TF and the number and affinities of the available specific binding sites; such predictive control is important for the understanding of transcription and the desire to quantitatively design the output of genetic circuits. Finally, we use these experiments to dynamically measure plasmid copy number through the cell cycle.

  7. A transcript cleavage factor of Mycobacterium tuberculosis important for its survival.

    Directory of Open Access Journals (Sweden)

    Arnab China

    Full Text Available After initiation of transcription, a number of proteins participate during elongation and termination modifying the properties of the RNA polymerase (RNAP. Gre factors are one such group conserved across bacteria. They regulate transcription by projecting their N-terminal coiled-coil domain into the active center of RNAP through the secondary channel and stimulating hydrolysis of the newly synthesized RNA in backtracked elongation complexes. Rv1080c is a putative gre factor (MtbGre in the genome of Mycobacterium tuberculosis. The protein enhanced the efficiency of promoter clearance by lowering abortive transcription and also rescued arrested and paused elongation complexes on the GC rich mycobacterial template. Although MtbGre is similar in domain organization and shares key residues for catalysis and RNAP interaction with the Gre factors of Escherichia coli, it could not complement an E. coli gre deficient strain. Moreover, MtbGre failed to rescue E. coli RNAP stalled elongation complexes, indicating the importance of specific protein-protein interactions for transcript cleavage. Decrease in the level of MtbGre reduced the bacterial survival by several fold indicating its essential role in mycobacteria. Another Gre homolog, Rv3788 was not functional in transcript cleavage activity indicating that a single Gre is sufficient for efficient transcription of the M. tuberculosis genome.

  8. Reactivation of Latent HIV-1 Expression by Engineered TALE Transcription Factors.

    Science.gov (United States)

    Perdigão, Pedro; Gaj, Thomas; Santa-Marta, Mariana; Barbas, Carlos F; Goncalves, Joao

    2016-01-01

    The presence of replication-competent HIV-1 -which resides mainly in resting CD4+ T cells--is a major hurdle to its eradication. While pharmacological approaches have been useful for inducing the expression of this latent population of virus, they have been unable to purge HIV-1 from all its reservoirs. Additionally, many of these strategies have been associated with adverse effects, underscoring the need for alternative approaches capable of reactivating viral expression. Here we show that engineered transcriptional modulators based on customizable transcription activator-like effector (TALE) proteins can induce gene expression from the HIV-1 long terminal repeat promoter, and that combinations of TALE transcription factors can synergistically reactivate latent viral expression in cell line models of HIV-1 latency. We further show that complementing TALE transcription factors with Vorinostat, a histone deacetylase inhibitor, enhances HIV-1 expression in latency models. Collectively, these findings demonstrate that TALE transcription factors are a potentially effective alternative to current pharmacological routes for reactivating latent virus and that combining synthetic transcriptional activators with histone deacetylase inhibitors could lead to the development of improved therapies for latent HIV-1 infection.

  9. Screening Driving Transcription Factors in the Processing of Gastric Cancer

    Directory of Open Access Journals (Sweden)

    Guangzhong Xu

    2016-01-01

    Full Text Available Background. Construction of the transcriptional regulatory network can provide additional clues on the regulatory mechanisms and therapeutic applications in gastric cancer. Methods. Gene expression profiles of gastric cancer were downloaded from GEO database for integrated analysis. All of DEGs were analyzed by GO enrichment and KEGG pathway enrichment. Transcription factors were further identified and then a global transcriptional regulatory network was constructed. Results. By integrated analysis of the six eligible datasets (340 cases and 43 controls, a bunch of 2327 DEGs were identified, including 2100 upregulated and 227 downregulated DEGs. Functional enrichment analysis of DEGs showed that digestion was a significantly enriched GO term for biological process. Moreover, there were two important enriched KEGG pathways: cell cycle and homologous recombination. Furthermore, a total of 70 differentially expressed TFs were identified and the transcriptional regulatory network was constructed, which consisted of 566 TF-target interactions. The top ten TFs regulating most downstream target genes were BRCA1, ARID3A, EHF, SOX10, ZNF263, FOXL1, FEV, GATA3, FOXC1, and FOXD1. Most of them were involved in the carcinogenesis of gastric cancer. Conclusion. The transcriptional regulatory network can help researchers to further clarify the underlying regulatory mechanisms of gastric cancer tumorigenesis.

  10. C-peptide increases Na,K-ATPase expression via PKC- and MAP kinase-dependent activation of transcription factor ZEB in human renal tubular cells

    DEFF Research Database (Denmark)

    Galuska, Dana; Pirkmajer, Sergej; Barres, Romain;

    2011-01-01

    Replacement of proinsulin C-peptide in type 1 diabetes ameliorates nerve and kidney dysfunction, conditions which are associated with a decrease in Na,K-ATPase activity. We determined the molecular mechanism by which long term exposure to C-peptide stimulates Na,K-ATPase expression and activity in...