WorldWideScience

Sample records for activating factor receptor

  1. Activation of 5-HT7 receptors increases neuronal platelet-derived growth factor β receptor expression.

    Science.gov (United States)

    Vasefi, Maryam S; Kruk, Jeff S; Liu, Hui; Heikkila, John J; Beazely, Michael A

    2012-03-09

    Several antipsychotics have a high affinity for 5-HT7 receptors yet despite intense interest in the 5-HT7 receptor as a potential drug target to treat psychosis, the function and signaling properties of 5-HT7 receptors in neurons remain largely uncharacterized. In primary mouse hippocampal and cortical neurons, as well as in the SH-SY5Y cell line, incubation with 5-HT, 5-carboxamidotryptamine (5-CT), or 5-HT7 receptor-selective agonists increases the expression of platelet-derived growth factor (PDGF)β receptors. The increased PDGFβ receptor expression is cyclic AMP-dependent protein kinase (PKA)-dependent, suggesting that 5-HT7 receptors couple to Gα(s) in primary neurons. Interestingly, up-regulated PDGFβ receptors display an increased basal phosphorylation state at the phospholipase Cγ-activating tyrosine 1021. This novel linkage between the 5-HT7 receptor and the PDGF system may be an important GPCR-neurotrophic factor signaling pathway in neurons.

  2. Phenobarbital indirectly activates the constitutive active androstane receptor (CAR) by inhibition of epidermal growth factor receptor signaling.

    Science.gov (United States)

    Mutoh, Shingo; Sobhany, Mack; Moore, Rick; Perera, Lalith; Pedersen, Lee; Sueyoshi, Tatsuya; Negishi, Masahiko

    2013-05-07

    Phenobarbital is a central nervous system depressant that also indirectly activates nuclear receptor constitutive active androstane receptor (CAR), which promotes drug and energy metabolism, as well as cell growth (and death), in the liver. We found that phenobarbital activated CAR by inhibiting epidermal growth factor receptor (EGFR) signaling. Phenobarbital bound to EGFR and potently inhibited the binding of EGF, which prevented the activation of EGFR. This abrogation of EGFR signaling induced the dephosphorylation of receptor for activated C kinase 1 (RACK1) at Tyr(52), which then promoted the dephosphorylation of CAR at Thr(38) by the catalytic core subunit of protein phosphatase 2A. The findings demonstrated that the phenobarbital-induced mechanism of CAR dephosphorylation and activation is mediated through its direct interaction with and inhibition of EGFR.

  3. Sulindac metabolites inhibit epidermal growth factor receptor activation and expression

    Directory of Open Access Journals (Sweden)

    Pangburn Heather A

    2005-09-01

    Full Text Available Abstract Background Regular use of nonsteroidal anti-inflammatory drugs (NSAIDs is associated with a decreased mortality from colorectal cancer (CRC. NSAIDs induce apoptotic cell death in colon cancer cells in vitro and inhibit growth of neoplastic colonic mucosa in vivo however, the biochemical mechanisms required for these growth inhibitory effects are not well defined. We previously reported that metabolites of the NSAID sulindac downregulate extracellular-signal regulated kinase 1/2 (ERK1/2 signaling and that this effect is both necessary and sufficient for the apoptotic effects of these drugs. The goal of this project was to specifically test the hypothesis that sulindac metabolites block activation and/or expression of the epidermal growth factor (EGF receptor (EGFR. Methods HT29 human colon cancer cells were treated with EGF, alone, or in the presence of sulindac sulfide or sulindac sulfone. Cells lysates were assayed by immunoblotting for phosphorylated EGFR (pEGFR, pY1068, total EGFR, phosphorylated ERK1/2 (pERK1/2, total ERK1/2, activated caspase-3, and α-tubulin. Results EGF treatment rapidly induced phosphorylation of both EGFR and ERK1/2 in HT29 colon cancer cells. Pretreatment with sulindac metabolites for 24 h blocked EGF-induced phosphorylation of both EGFR and ERK1/2 and decreased total EGFR protein expression. Under basal conditions, downregulation of pEGFR and total EGFR was detected as early as 12 h following sulindac sulfide treatment and persisted through at least 48 h. Sulindac sulfone induced downregulation of pEGFR and total EGFR was detected as early as 1 h and 24 h, respectively, following drug treatment, and persisted through at least 72 h. EGFR downregulation by sulindac metabolites was observed in three different CRC cell lines, occurred prior to the observed downregulation of pERK1/2 and induction of apoptosis by these drugs, and was not dependent of caspase activation. Conclusion These results suggest that

  4. Oxidatively fragmented phosphatidylcholines activate human neutrophils through the receptor for platelet-activating factor.

    Science.gov (United States)

    Smiley, P L; Stremler, K E; Prescott, S M; Zimmerman, G A; McIntyre, T M

    1991-06-15

    Platelet-activating factor (PAF, 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) activates neutrophils (polymorphonuclear leukocytes, PMN) through a receptor that specifically recognizes short sn-2 residues. We oxidized synthetic [2-arachidonoyl]phosphatidylcholine to fragment and shorten the sn-2 residue, and then examined the phospholipid products for the ability to stimulate PMN. 1-Palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine was fragmented by ozonolysis to 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine. This phospholipid activated human neutrophils at submicromolar concentrations, and is effects were inhibited by specific PAF receptor antagonists WEB2086, L659,989, and CV3988. 1-Palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine next was fragmented by an uncontrolled free radical-catalyzed reaction: it was treated with soybean lipoxygenase to form its sn-2 15-hydroperoxy derivative (which did not activate neutrophils) and then allowed to oxidize under air. The secondary oxidation resulted in the formation of numerous fragmented phospholipids (Stremler, K. E., Stafforini, D. M., Prescott, S. M., and McIntyre, T. M. (1991) J. Biol. Chem. 266, 11095-11103), some of which activated PMN. Hydrolysis of sn-2 residues with phospholipase A2 destroyed biologic activity, as did hydrolysis with PAF acetylhydrolase. PAF acetylhydrolase is specific for short or intermediate length sn-2 residues and does not hydrolyze the starting material (Stremler, K. E., Stafforini, D. M., Prescott, S. M., and McIntyre, T. M. (1991) J. Biol. Chem. 266, 11095-11103). Neutrophil activation was completely blocked by L659,989, a specific PAF receptor antagonist. We conclude that diacylphosphatidylcholines containing an sn-2 polyunsaturated fatty acyl residue can be oxidatively fragmented to species with sn-2 residues short enough to activate the PAF receptor of neutrophils. This suggests a new mechanism for the appearance of biologically active phospholipids, and shows

  5. Immunomodulator CD200 promotes neurotrophic activity by interacting with and activating the fibroblast growth factor receptor

    DEFF Research Database (Denmark)

    Pankratova, Stanislava; Bjornsdottir, Halla; Christensen, Claus;

    2016-01-01

    in the suppression of microglia activation. We for the first time demonstrated that CD200 can interact with and transduce signaling through activation of the fibroblast growth factor receptor (FGFR), thereby inducing neuritogenesis and promoting neuronal survival in primary neurons. CD200-induced FGFR...... phosphorylation was abrogated by CD200R, whereas FGF2-induced FGFR activation was inhibited by CD200. We also identified a sequence motif located in the first Ig-like module of CD200, likely representing the minimal CD200 binding site for FGFR. The FGFR binding motif overlaps with the CD200R binding site......, suggesting that they can compete for CD200 binding in cells that express both receptors. We propose that CD200 in neurons functions as a ligand of FGFR....

  6. Extended Synaptotagmin Interaction with the Fibroblast Growth Factor Receptor Depends on Receptor Conformation, Not Catalytic Activity.

    Science.gov (United States)

    Tremblay, Michel G; Herdman, Chelsea; Guillou, François; Mishra, Prakash K; Baril, Joëlle; Bellenfant, Sabrina; Moss, Tom

    2015-06-26

    We previously demonstrated that ESyt2 interacts specifically with the activated FGF receptor and is required for a rapid phase of receptor internalization and for functional signaling via the ERK pathway in early Xenopus embryos. ESyt2 is one of the three-member family of Extended Synaptotagmins that were recently shown to be implicated in the formation of endoplasmic reticulum (ER)-plasma membrane (PM) junctions and in the Ca(2+) dependent regulation of these junctions. Here we show that ESyt2 is directed to the ER by its putative transmembrane domain, that the ESyts hetero- and homodimerize, and that ESyt2 homodimerization in vivo requires a TM adjacent sequence but not the SMP domain. ESyt2 and ESyt3, but not ESyt1, selectively interact in vivo with activated FGFR1. In the case of ESyt2, this interaction requires a short TM adjacent sequence and is independent of receptor autophosphorylation, but dependent on receptor conformation. The data show that ESyt2 recognizes a site in the upper kinase lobe of FGFR1 that is revealed by displacement of the kinase domain activation loop during receptor activation.

  7. [Dependence of EGF receptor and STAT factor activation on redox of A431 cells].

    Science.gov (United States)

    Gonchar, I V; Burova, E B; Dorosh, V N; Gamaleĭ, I A; Nikol'skiĭ, N N

    2003-01-01

    Reactive oxygen species (ROS) were established to play an important role in cellular signaling as second messengers by integrating different pathways. Recently, we showed that EGF initiated a rapid tyrosine phosphorylation of both EGF-receptor and STAT factors with simultaneous increase in the intracellular ROS level. Now, we have investigated the effect of intracellular red-ox state on EGF- and H2O2-induced activation of EGF receptor, STAT1 and STAT3. We demonstrated that the pretreatment of A431 cells with antioxidant N-acetyl-L-cysteine (NAC) partly reduced the level of EGF-induced phosphorylation of proteins under investigation. Besides, H2O2-induced activation of EGF receptor, and STAT factors was fully prevented by NAC pretreatment. The inhibition of ROS generation by DPI declined EGF-dependent activation of EGF receptor and STAT factors to basal level. Our results demonstrate the essential role of cellular red-ox status in the modulation of EGF-mediated activation of receptor and STAT factors. We have postulated that EGF-induced ROS generation is a very important initial event promoting physiological activation of EGF receptor and subsequent STAT factor activation.

  8. Troglitazone inhibits cell proliferation by attenuation of epidermal growth factor receptor signaling independent of peroxisome proliferator-activated receptor γ

    Institute of Scientific and Technical Information of China (English)

    Xiaoqi Li; Xuanming Yang; Youli Xu; Xuejun Jiang; Xin Li; Fajun Nan; Hong Tang

    2009-01-01

    Peroxisome proliferator-activated receptors (PPAR) belong to the nuclear hormone receptor superfamily of ligand-dependent transcription factors. Recent results have shown that agonists of PPARy, such as troglitazone (TGZ), can inhibit cell proliferation and promote cell differentiation independent of PPARγ. In the present study, we provide evidence that TGZ may bind directly to EGFR and trigger its signaling and internalization independent of PPARγ. Detailed studies revealed that prolonged incubation with TGZ effectively attenuated EGFR signaling by target-ing the receptor to the endo-lysosomal degradation machinery. Although the extracellular signal-regulated kinase-signaling pathway was transiently activated by TGZ in EGFR overexpressing cancer cells, inhibition of EGF-induced Akt phosphorylation most likely accounted for the growth arrest of tumor cells caused by TGZ at pharmacologically achievable concentrations. Therefore, we have provided a new line of evidence indicating that TGZ inhibits cell pro-liferation by promoting EGFR degradation and attenuating Akt phosphorylation.

  9. Internalization mechanisms of the epidermal growth factor receptor after activation with different ligands.

    Directory of Open Access Journals (Sweden)

    Lasse Henriksen

    Full Text Available The epidermal growth factor receptor (EGFR regulates normal growth and differentiation, but dysregulation of the receptor or one of the EGFR ligands is involved in the pathogenesis of many cancers. There are eight ligands for EGFR, however most of the research into trafficking of the receptor after ligand activation focuses on the effect of epidermal growth factor (EGF and transforming growth factor-α (TGF-α. For a long time it was believed that clathrin-mediated endocytosis was the major pathway for internalization of the receptor, but recent work suggests that different pathways exist. Here we show that clathrin ablation completely inhibits internalization of EGF- and TGF-α-stimulated receptor, however the inhibition of receptor internalization in cells treated with heparin-binding EGF-like growth factor (HB-EGF or betacellulin (BTC was only partial. In contrast, clathrin knockdown fully inhibits EGFR degradation after all ligands tested. Furthermore, inhibition of dynamin function blocked EGFR internalization after stimulation with all ligands. Knocking out a number of clathrin-independent dynamin-dependent pathways of internalization had no effect on the ligand-induced endocytosis of the EGFR. We suggest that EGF and TGF-α lead to EGFR endocytosis mainly via the clathrin-mediated pathway. Furthermore, we suggest that HB-EGF and BTC also lead to EGFR endocytosis via a clathrin-mediated pathway, but can additionally use an unidentified internalization pathway or better recruit the small amount of clathrin remaining after clathrin knockdown.

  10. Prostaglandin E2 regulates angiogenesis via activation of fibroblast growth factor receptor-1.

    Science.gov (United States)

    Finetti, Federica; Solito, Raffaella; Morbidelli, Lucia; Giachetti, Antonio; Ziche, Marina; Donnini, Sandra

    2008-01-25

    Prostaglandin E(2) (PGE(2)) behaves as a mitogen in epithelial tumor cells as well as in many other cell types. We investigated the actions of PGE(2) on microvascular endothelial cells (capillary venular endothelial cells) with the purpose of delineating the signaling pathway leading to the acquisition of the angiogenic phenotype and to new vessel formation. PGE(2) (100 nM) produced activation of the fibroblast growth factor receptor 1 (FGFR-1), as measured by its phosphorylation, but not of vascular endothelial growth factor receptor 2. PGE(2) stimulated the EP3 subtype receptor, as deduced by abrogation of EP3 Galpha(i) subunit activity through pertussis toxin. Consistent with this result, in human umbilical venular endothelial cells missing the EP3 receptor, PGE(2) did not phosphorylate FGFR-1. Upon binding to its receptor, PGE(2) initiated an autocrine/paracrine signaling cascade involving the intracellular activation of c-Src, activation of matrix metalloproteinase (predominantly MMP2), which in turn caused the mobilization of membrane-anchored fibroblast growth factor-2 (FGF-2). In fact, in cells unable to release FGF-2 the transfection with both FGFR-1 and EP3 did not result in FGFR-1 phosphorylation in response to PGE(2). Relevance for the FGF2-FGFR-1 system was highlighted by confocal analysis, showing receptor internalization after cell exposure to the prostanoid. ERK1/2 appeared to be the distal signal involved, its phosphorylation being sensitive to either cSrc inhibitor or FGFR-1 blocker. Finally, PGE(2) stimulated cell migration and capillary formation in aortic rings, which were severely reduced by inhibitors of signaling molecules or by receptor antagonist. In conclusion, this study provides evidence for the involvement of FGFR-1 through FGF2 in eliciting PGE(2) angiogenic responses. This signaling pattern is similar to the autocrine-paracrine mechanism which operates in endothelial cells to support neovascular growth.

  11. Epidermal growth factor receptor transactivation by intracellular prostaglandin E2-activated prostaglandin E2 receptors. Role in retinoic acid receptor-β up-regulation.

    Science.gov (United States)

    Fernández-Martínez, Ana B; Lucio Cazaña, Francisco J

    2013-09-01

    The pharmacological modulation of renoprotective factor vascular endothelial growth factor-A (VEGF-A) in the proximal tubule has therapeutic interest. In human proximal tubular HK-2 cells, treatment with all-trans retinoic acid or prostaglandin E2 (PGE2) triggers the production of VEGF-A. The pathway involves an initial increase in intracellular PGE2, followed by activation of EP receptors (PGE2 receptors, most likely an intracellular subset) and increase in retinoic acid receptor-β (RARβ) expression. RARβ then up-regulates transcription factor hypoxia-inducible factor-1α (HIF-1α), which increases the transcription and production of VEGF-A. Here we studied the role in this pathway of epidermal growth factor receptor (EGFR) transactivation by EP receptors. We found that EGFR inhibitor AG1478 prevented the increase in VEGF-A production induced by PGE2- and all-trans retinoic acid. This effect was due to the inhibition of the transcriptional up-regulation of RARβ, which resulted in loss of the RARβ-dependent transcriptional up-regulation of HIF-1α. PGE2 and all-trans retinoic acid also increased EGFR phosphorylation and this effect was sensitive to antagonists of EP receptors. The role of intracellular PGE2 was indicated by two facts; i) PGE2-induced EGFR phosphorylation was substantially prevented by inhibitor of prostaglandin uptake transporter bromocresol green and ii) all-trans retinoic acid treatment, which enhanced intracellular but not extracellular PGE2, had lower effect on EGFR phosphorylation upon pre-treatment with cyclooxygenase inhibitor diclofenac. Thus, EGFR transactivation by intracellular PGE2-activated EP receptors results in the sequential activation of RARβ and HIF-1α leading to increased production of VEGF-A and it may be a target for the therapeutic modulation of HIF-1α/VEGF-A. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Differential requirement of the epidermal growth factor receptor for G protein-mediated activation of transcription factors by lysophosphatidic acid

    Directory of Open Access Journals (Sweden)

    Dent Paul

    2010-01-01

    Full Text Available Abstract Background The role of the epidermal growth factor receptor (EGFR and other receptor tyrosine kinases (RTKs in provoking biological actions of G protein-coupled receptors (GPCRs has been one of the most disputed subjects in the field of GPCR signal transduction. The purpose of the current study is to identify EGFR-mediated mechanisms involved in activation of G protein cascades and the downstream transcription factors by lysophosphatidic acid (LPA. Results In ovarian cancer cells highly responsive to LPA, activation of AP-1 by LPA was suppressed by inhibition of EGFR, an effect that could be reversed by co-stimulation of another receptor tyrosine kinase c-Met with hepatocyte growth factor, indicating that LPA-mediated activation of AP-1 requires activity of a RTK, not necessarily EGFR. Induction of AP-1 components by LPA lied downstream of Gi, G12/13, and Gq. Activation of the effectors of Gi, but not Gq or G12/13 was sensitive to inhibition of EGFR. In contrast, LPA stimulated another prominent transcription factor NF-κB via the Gq-PKC pathway in an EGFR-independent manner. Consistent with the importance of Gi-elicited signals in a plethora of biological processes, LPA-induced cytokine production, cell proliferation, migration and invasion require intact EGFR. Conclusions An RTK activity is required for activation of the AP-1 transcription factor and other Gi-dependent cellular responses to LPA. In contrast, activation of G12/13, Gq and Gq-elicited NF-κB by LPA is independent of such an input. These results provide a novel insight into the role of RTK in GPCR signal transduction and biological functions.

  13. Exchange factors directly activated by cAMP mediate melanocortin 4 receptor-induced gene expression

    Science.gov (United States)

    Glas, Evi; Mückter, Harald; Gudermann, Thomas; Breit, Andreas

    2016-01-01

    Gs protein-coupled receptors regulate many vital body functions by activation of cAMP response elements (CRE) via cAMP-dependent kinase A (PKA)-mediated phosphorylation of the CRE binding protein (CREB). Melanocortin 4 receptors (MC4R) are prototypical Gs-coupled receptors that orchestrate the hypothalamic control of food-intake and metabolism. Remarkably, the significance of PKA for MC4R-induced CRE-dependent transcription in hypothalamic cells has not been rigorously interrogated yet. In two hypothalamic cell lines, we observed that blocking PKA activity had only weak or no effects on reporter gene expression. In contrast, inhibitors of exchange factors directly activated by cAMP-1/2 (EPAC-1/2) mitigated MC4R-induced CRE reporter activation and mRNA induction of the CREB-dependent genes c-fos and thyrotropin-releasing hormone. Furthermore, we provide first evidence that extracellular-regulated kinases-1/2 (ERK-1/2) activated by EPACs and not PKA are the elusive CREB kinases responsible for MC4R-induced CREB/CRE activation in hypothalamic cells. Overall, these data emphasize the pivotal role of EPACs rather than PKA in hypothalamic gene expression elicited by a prototypical Gs-coupled receptor. PMID:27612207

  14. Nuclear Factor-κB: Activation and Regulation during Toll-like Receptor Signaling

    Institute of Scientific and Technical Information of China (English)

    Ruaidhrí J. Carmody; Youhai H. Chen

    2007-01-01

    Toll-like receptors (TLRs) recognize distinct microbial components to initiate the innate and adaptive immune responses. TLR activation culminates in the expression of appropriate pro-inflammatory and immunomodulatory factors to meet pathogenic challenges. The transcription factor NF-κB is the master regulator of all TLR-induced responses and its activation is the pivotal event in TLR-mediated activation of the innate immune response. Many of the key molecular events required for TLR-induced NF-κB activation have been elucidated. However, much remain to be learned about the ability of TLRs to generate pathogen-specific responses using a limited number of transcription factors. This review will focus on our current understanding of NF-κB activation by TLRs and potential mechanisms for achieving a signal-specific response through NF-κB.

  15. Activated factor X signaling via protease-activated receptor 2 suppresses pro-inflammatory cytokine production from LPS-stimulated myeloid cells.

    LENUS (Irish Health Repository)

    Gleeson, Eimear M

    2013-07-19

    Vitamin K-dependent proteases generated in response to vascular injury and infection enable fibrin clot formation, but also trigger distinct immuno-regulatory signaling pathways on myeloid cells. Factor Xa, a protease crucial for blood coagulation, also induces protease-activated receptor-dependent cell signaling. Factor Xa can bind both monocytes and macrophages, but whether factor Xa-dependent signaling stimulates or suppresses myeloid cell cytokine production in response to Toll-like receptor activation is not known. In this study, exposure to factor Xa significantly impaired pro-inflammatory cytokine production from lipopolysaccharide-treated peripheral blood mononuclear cells, THP-1 monocytic cells and murine macrophages. Furthermore, factor Xa inhibited nuclear factor-kappa B activation in THP-1 reporter cells, requiring phosphatidylinositide 3-kinase activity for its anti-inflammatory effect. Active-site blockade, γ-carboxyglutamic acid domain truncation and a peptide mimic of the factor Xa inter-epidermal growth factor-like region prevented factor Xa inhibition of lipopolysaccharide-induced tumour necrosis factor-α release. In addition, factor Xa anti-inflammatory activity was markedly attenuated by the presence of an antagonist of protease-activated receptor 2, but not protease-activated receptor 1. The key role of protease-activated receptor 2 in eliciting factor Xa-dependent anti-inflammatory signaling on macrophages was further underscored by the inability of factor Xa to mediate inhibition of tumour necrosis factor-α and interleukin-6 release from murine bone marrow-derived protease-activated receptor 2-deficient macrophages. We also show for the first time that, in addition to protease-activated receptor 2, factor Xa requires a receptor-associated protein-sensitive low-density lipoprotein receptor to inhibit lipopolysaccharide-induced cytokine production. Collectively, this study supports a novel function for factor Xa as an endogenous, receptor

  16. Combinatorial activation and repression by seven transcription factors specify Drosophila odorant receptor expression.

    Directory of Open Access Journals (Sweden)

    Shadi Jafari

    Full Text Available The mechanism that specifies olfactory sensory neurons to express only one odorant receptor (OR from a large repertoire is critical for odor discrimination but poorly understood. Here, we describe the first comprehensive analysis of OR expression regulation in Drosophila. A systematic, RNAi-mediated knock down of most of the predicted transcription factors identified an essential function of acj6, E93, Fer1, onecut, sim, xbp1, and zf30c in the regulation of more than 30 ORs. These regulatory factors are differentially expressed in antennal sensory neuron classes and specifically required for the adult expression of ORs. A systematic analysis reveals not only that combinations of these seven factors are necessary for receptor gene expression but also a prominent role for transcriptional repression in preventing ectopic receptor expression. Such regulation is supported by bioinformatics and OR promoter analyses, which uncovered a common promoter structure with distal repressive and proximal activating regions. Thus, our data provide insight into how combinatorial activation and repression can allow a small number of transcription factors to specify a large repertoire of neuron classes in the olfactory system.

  17. Vascular Endothelial Growth Factor Receptor 3 Controls Neural Stem Cell Activation in Mice and Humans

    Directory of Open Access Journals (Sweden)

    Jinah Han

    2015-02-01

    Full Text Available Neural stem cells (NSCs continuously produce new neurons within the adult mammalian hippocampus. NSCs are typically quiescent but activated to self-renew or differentiate into neural progenitor cells. The molecular mechanisms of NSC activation remain poorly understood. Here, we show that adult hippocampal NSCs express vascular endothelial growth factor receptor (VEGFR 3 and its ligand VEGF-C, which activates quiescent NSCs to enter the cell cycle and generate progenitor cells. Hippocampal NSC activation and neurogenesis are impaired by conditional deletion of Vegfr3 in NSCs. Functionally, this is associated with compromised NSC activation in response to VEGF-C and physical activity. In NSCs derived from human embryonic stem cells (hESCs, VEGF-C/VEGFR3 mediates intracellular activation of AKT and ERK pathways that control cell fate and proliferation. These findings identify VEGF-C/VEGFR3 signaling as a specific regulator of NSC activation and neurogenesis in mammals.

  18. Therapy for acute pancreatitis with platelet-activating factor receptor antagonists

    Institute of Scientific and Technical Information of China (English)

    Chong Chen; Shi-Hai Xia; Hong Chen; Xiao-Hong Li

    2008-01-01

    Acute pancreatitis (AP) causes release of plateletactivating factor (PAF),which induces systemic effects that contribute to circulatory disturbances and multiple organ failure.PAF is a cell surface secretion of bioactive lipid,which could produce physiological and pathological effects by binding to its cell surface receptor called platelet-activating factor receptor (PAF-R).Studies showed that PAF participates in the occurrence and development of AP and administration of platelet-activating factor receptor antagonists (PAF-RAs) could significantly reduce local and systemic events after AP.PAF has also been implicated as a key mediator in the progression of severe AP,which can lead to complications and unacceptably high mortality rates.Several classes of PAF-RA show PAFRAs significant local and systemic effects on reducing inflammatory changes.As a preventive treatment,PAF-RA could block a series of PAF-mediatedinflammatory injury and thus improve the prognosis of AR This review introduces the important role of PAF-RA in the treatment of AP.

  19. Germ cell nuclear factor directly represses the transcription of peroxisome proliferator-activated receptor delta gene

    Institute of Scientific and Technical Information of China (English)

    Chengqiang He; Naizheng Ding; Jie Kang

    2008-01-01

    Germ cell nuclear factor (GCNF) is a transcription factor that can repress gene transcription and plays an important role during spermatogenesis. Peroxisome proliferator-activated receptor delta (PPARδ) is a nuclear hormone receptor belonging to the steroid receptor superfamily.It can activate the expression of many genes,including those involved in lipid metabolism.In this report,we showed that GCNF specifically interacts with PPARδ promoter.Overexpression of GCNF in African green monkey SV40 transformed kidney fibroblast COS7 cells and mouse embryo fibroblast NIH 3T3 cells represses the activity of PPARδ promoter.The mutation of GCNF response element in PPARδ promoter relieves the repression in NIH 3T3 cells and mouse testis.Moreover,we showed that GCNF in nuclear extracts of mouse testis is able to bind to PPARδ promoter directly.We also found that GCNF and PPARδ mRNA were expressed with different patterns in mouse testis by in situ hybridization.These results suggested that GCNF might be a negative regulator of PPARδ gene expression through its direct interaction with PPARδ promoter in mouse testis.

  20. Sp3 controls fibroblast growth factor receptor 4 gene activity during myogenic differentiation.

    Science.gov (United States)

    Cavanaugh, Eric; DiMario, Joseph X

    2017-03-27

    Fibroblast growth factor/fibroblast growth factor receptor (FGF/FGFR) signaling is a critical component in the regulation of myoblast proliferation and differentiation. The transient FGFR4 gene expression during the transition from proliferating myoblasts to differentiated myotubes indicates that FGFR4 regulates this critical phase of myogenesis. The Specificity Protein (SP) family of transcription factors controls FGFR family member gene activity. We sought to determine if members of the Sp family regulate mouse FGFR4 gene activity during myogenic differentiation. RT-PCR and western blot analysis of FGFR4 mRNA and protein revealed transient expression over 72h, with peak expression between 24 and 36h after addition of differentiation medium to C2C12 myogenic cultures. Sp3 also displayed a transient expression pattern with peak expression occurring after 6h of differentiation. We cloned a 1527bp fragment of the mouse FGFR4 promoter into a luciferase reporter. This FGFR4 promoter contains eight putative Sp binding sites and directed luciferase gene activity comparable to native FGFR4 expression. Overexpression of Sp1 and Sp3 showed that Sp1 repressed FGFR4 gene activity, and Sp3 activated FGFR4 gene activity during myogenic differentiation. Mutational analyses of multiple Sp binding sites within the FGFR4 promoter revealed that three of these sites were transcriptionally active. Electromobility shift assays and chromatin immunoprecipitation of the area containing the activator sites showed that Sp3 bound to this promoter location.

  1. Dopamine receptor activation increases glial cell line-derived neurotrophic factor in experimental stroke.

    Science.gov (United States)

    Kuric, Enida; Wieloch, Tadeusz; Ruscher, Karsten

    2013-09-01

    Treatment with levodopa enhances functional recovery after experimental stroke but its mechanisms of action are elusive. Reactive astrocytes in the ischemic hemisphere are involved in mechanisms promoting recovery and also express dopamine 1 (D1) and dopamine 2 (D2) receptors. Here we investigated if the activation of astrocytic dopamine receptors (D1 and D2) regulates the expression of glial cell line-derived neurotrophic factor (GDNF) after combined in vitro hypoxia/aglycemia (H/A) and studied the expression of GDNF in the ischemic brain after treatment with levodopa/benserazide following transient occlusion of the middle cerebral artery (tMCAO) in the rat. Twenty-four hours after H/A, GDNF levels were upregulated in exposed astrocytes compared to normoxic control cultures and further elevated by the addition of the selective D1 receptor agonist (R)-(+)-SKF-38393 hydrochloride while D1 receptor antagonism by R(+)-SCH-23390 hydrochloride significantly reduced GDNF. No effect on GDNF levels was observed by the application of the D2 receptor agonist R(-)-2,10,11-trihydroxy-N-propyl-noraporphine hydrobromide hydrate or S-(-)-eticlopride hydrochloride (D2 receptor antagonist). After tMCAO, GDNF was upregulated in D1 expressing reactive astrocytes in the peri-infarct area. In addition, treatment with levodopa/benserazide significantly increased GDNF levels in the infarct core and peri-infarct area after tMCAO without affecting the expression of glial fibrillar acidic protein (GFAP), an intermediate filament and marker of reactive gliosis. After stroke, GDNF levels increase in the ischemic hemisphere in rats treated with levodopa, implicating GDNF in the mechanisms of tissue reorganization and plasticity and in l-DOPA enhanced recovery of lost brain function. Our results support levodopa treatment as a potential recovery enhancing therapy in stroke patients.

  2. Cannabinoid receptor-2 selective antagonist negatively regulates receptor activator of nuclear factor kappa B ligand mediated osteoclastogenesis

    Institute of Scientific and Technical Information of China (English)

    GENG De-chun; XU Yao-zeng; YANG Hui-lin; ZHU Guang-ming; WANG Xian-bin; ZHU Xue-song

    2011-01-01

    Background The cannabinoid receptor-2 (CB2) is important for bone remodeling. In this study, we investigated the effects of CB2 selective antagonist (AM630) on receptor activator of nuclear factor kappa B (RANK) ligand (RANKL)induced osteoclast differentiation and the underlying signaling pathway using a monocyte-macrophage cell line-RAW264.7.Methods RAW264.7 was cultured with RANKL for 6 days and then treated with AM630 for 24 hours. Mature osteoclasts were measured by tartrate-resistant acid phosphatase (TRAP) staining using a commercial kit. Total ribonucleic acid (RNA)was isolated and real-time reverse transcriptase-polymerase chain reaction (RT-PCR) was done to examine the expression of RANK, cathepsin K (CPK) and nuclear factor kappa B (NF-κB). The extracellular signal-regulated kinase (ERK),phosphorylation of ERK (P-ERK) and NF-κB production were tested by Western blotting. The effect of AM630 on RAW264.7 viability was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) assay.Results AM630 did not affect the viability of RAW264.7. However, this CB2 selective antagonist markedly inhibited osteoclast formation and the inhibition rate was dose-dependent. The dose of >100 nmol/L could reduce TRAP positive cells to the levels that were significantly lower than the control. AM630 suppressed the expression of genes associated with osteoclast differentiation and activation, such as RANK and CPK. An analysis of a signaling pathway showed that AM630 inhibited the RANKL-induced activation of ERK, but not NF-κB.Conclusion AM630 could inhibit the osteoclastogenesis from RAW264.7 induced with RANKL.

  3. The epidermal growth factor receptor is a regulator of epidermal complement component expression and complement activation

    DEFF Research Database (Denmark)

    Abu-Humaidan, Anas H A; Ananthoju, Nageshwar; Mohanty, Tirthankar;

    2014-01-01

    The complement system is activated in response to tissue injury. During wound healing, complement activation seems beneficial in acute wounds but may be detrimental in chronic wounds. We found that the epidermal expression of many complement components was only increased to a minor extent in skin...... wounds in vivo and in cultured keratinocytes after exposure to supernatant from stimulated mononuclear cells. In contrast, the epidermal expression of complement components was downregulated in ex vivo injured skin lacking the stimulation from infiltrating inflammatory cells but with intact injury......-induced epidermal growth factor receptor (EGFR)-mediated growth factor response. In cultured primary keratinocytes, stimulation with the potent EGFR ligand, TGF-α, yielded a significant downregulation of complement component expression. Indeed, EGFR inhibition significantly enhanced the induction of complement...

  4. Neuropilin-1 mediates vascular permeability independently of vascular endothelial growth factor receptor-2 activation.

    Science.gov (United States)

    Roth, Lise; Prahst, Claudia; Ruckdeschel, Tina; Savant, Soniya; Weström, Simone; Fantin, Alessandro; Riedel, Maria; Héroult, Mélanie; Ruhrberg, Christiana; Augustin, Hellmut G

    2016-04-26

    Neuropilin-1 (NRP1) regulates developmental and pathological angiogenesis, arteriogenesis, and vascular permeability, acting as a coreceptor for semaphorin 3A (Sema3A) and the 165-amino acid isoform of vascular endothelial growth factor A (VEGF-A165). NRP1 is also the receptor for the CendR peptides, a class of cell- and tissue-penetrating peptides with a specific R-x-x-R carboxyl-terminal motif. Because the cytoplasmic domain of NRP1 lacks catalytic activity, NRP1 is mainly thought to act through the recruitment and binding to other receptors. We report here that the NRP1 intracellular domain mediates vascular permeability. Stimulation with VEGF-A165, a ligand-blocking antibody, and a CendR peptide led to NRP1 accumulation at cell-cell contacts in endothelial cell monolayers, increased cellular permeability in vitro and vascular leakage in vivo. Biochemical analyses, VEGF receptor-2 (VEGFR-2) silencing, and the use of a specific VEGFR blocker established that the effects induced by the CendR peptide and the antibody were independent of VEGFR-2. Moreover, leakage assays in mice expressing a mutant NRP1 lacking the cytoplasmic domain revealed that this domain was required for NRP1-induced vascular permeability in vivo. Hence, these data define a vascular permeability pathway mediated by NRP1 but independent of VEGFR-2 activation.

  5. Multiple autophosphorylation sites of the epidermal growth factor receptor are essential for receptor kinase activity and internalization. Contrasting significance of tyrosine 992 in the native and truncated receptors

    DEFF Research Database (Denmark)

    Sorkin, A; Helin, K; Waters, C M

    1992-01-01

    The role of epidermal growth factor (EGF) receptor autophosphorylation sites in the regulation of receptor functions has been studied using cells transfected with mutant EGF receptors. Simultaneous point mutation of 4 tyrosines (Y1068, Y1086, Y1148, Y1173) to phenylalanine, as well as removal of ...

  6. Coagulation Factor Xa inhibits cancer cell migration via Protease-activated receptor-1 activation

    NARCIS (Netherlands)

    Borensztajn, Keren; Bijlsma, Maarten F.; Reitsma, Pieter H.; Peppelenbosch, Maikel R.; Spek, C. Arnold

    2009-01-01

    Cell migration is critically important in (patho) physiological processes. The metastatic potential of cancer cells partly depends on activation of the coagulation cascade. The aim of the present study was to determine whether coagulation factor X (FXa) can regulate the migration and invasion of can

  7. Crosstalk between Protease-activated Receptor 1 and Platelet-activating Factor Receptor Regulates Melanoma Cell Adhesion Molecule (MCAM/MUC18) Expression and Melanoma Metastasis*

    Science.gov (United States)

    Melnikova, Vladislava O.; Balasubramanian, Krishnakumar; Villares, Gabriel J.; Dobroff, Andrey S.; Zigler, Maya; Wang, Hua; Petersson, Frederik; Price, Janet E.; Schroit, Alan; Prieto, Victor G.; Hung, Mien-Chie; Bar-Eli, Menashe

    2009-01-01

    The cellular and molecular pathways that regulate platelet activation, blood coagulation, and inflammation are emerging as critical players in cancer progression and metastasis. Here, we demonstrate a novel signaling mechanism whereby protease-activated receptor 1 (PAR1) mediates expression of melanoma cell adhesion molecule MCAM/MUC18 (MUC18), a critical marker of melanoma metastasis, via activation of platelet-activating factor receptor (PAFR) and cAMP-responsive element-binding protein (CREB). We found that PAR1 silencing with small hairpin RNA inhibits MUC18 expression in metastatic melanoma cells by inhibiting CREB phosphorylation, activity, and binding to the MUC18 promoter. We further demonstrate that the PAF/PAFR pathway mediates MUC18 expression downstream of PAR1. Indeed, PAR1 silencing down-regulates PAFR expression and PAF production, PAFR silencing blocks MUC18 expression, and re-expression of PAFR in PAR1-silenced cells rescues MUC18 expression. We further demonstrate that the PAR1-PAFR-MUC18 pathway mediates melanoma cell adhesion to microvascular endothelial cells, transendothelial migration, and metastatic retention in the lungs. Rescuing PAFR expression in PAR1-silenced cells fully restores metastatic phenotype of melanoma, indicating that PAFR plays critical role in the molecular mechanism of PAR1 action. Our results link the two pro-inflammatory G-protein-coupled receptors, PAR1 and PAFR, with the metastatic dissemination of melanoma and suggest that PAR1, PAFR, and MUC18 are attractive therapeutic targets for preventing melanoma metastasis. PMID:19703903

  8. A novel signaling pathway of tissue kallikrein in promoting keratinocyte migration: Activation of proteinase-activated receptor 1 and epidermal growth factor receptor

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Lin; Chao, Lee [Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425-2211 (United States); Chao, Julie, E-mail: chaoj@musc.edu [Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425-2211 (United States)

    2010-02-01

    Biological functions of tissue kallikrein (TK, KLK1) are mainly mediated by kinin generation and subsequent kinin B2 receptor activation. In this study, we investigated the potential role of TK and its signaling pathways in cultured human keratinocyte migration and in a rat skin wound healing model. Herein, we show that TK promoted cell migration and proliferation in a concentration- and time-dependent manner. Inactive TK or kinin had no significant effect on cell migration. Interestingly, cell migration induced by active TK was not blocked by icatibant or L-NAME, indicating an event independent of kinin B2 receptor and nitric oxide formation. TK's stimulatory effect on cell migration was inhibited by small interfering RNA for proteinase-activated receptor 1 (PAR{sub 1}), and by PAR{sub 1} inhibitor. TK-induced migration was associated with increased phosphorylation of epidermal growth factor receptor (EGFR) and extracellular signal-regulated kinase (ERK), which was blocked by inhibition of protein kinase C (PKC), Src, EGFR and ERK. TK-induced cell migration and EGFR phosphorylation were blocked by metalloproteinase (MMP) inhibitor, heparin, and antibodies against EGFR external domain, heparin-binding EGF-like growth factor (HB-EGF) and amphiregulin (AR). Local application of TK promoted skin wound healing in rats, whereas icatibant and EGFR inhibitor blocked TK's effect. Skin wound healing was further delayed by aprotinin and neutralizing TK antibody. This study demonstrates a novel role of TK in skin wound healing and uncovers new signaling pathways mediated by TK in promoting keratinocyte migration through activation of the PAR{sub 1}-PKC-Src-MMP pathway and HB-EGF/AR shedding-dependent EGFR transactivation.

  9. Adenosine inhibits neutrophil vascular endothelial growth factor release and transendothelial migration via A2B receptor activation.

    LENUS (Irish Health Repository)

    Wakai, A

    2012-02-03

    The effects of adenosine on neutrophil (polymorphonuclear neutrophils; PMN)-directed changes in vascular permeability are poorly characterized. This study investigated whether adenosine modulates activated PMN vascular endothelial growth factor (vascular permeability factor; VEGF) release and transendothelial migration. PMN activated with tumour necrosis factor-alpha (TNF-alpha, 10 ng\\/mL) were incubated with adenosine and its receptor-specific analogues. Culture supernatants were assayed for VEGF. PMN transendothelial migration across human umbilical vein endothelial cell (HUVEC) monolayers was assessed in vitro. Adhesion molecule receptor expression was assessed flow cytometrically. Adenosine and some of its receptor-specific analogues dose-dependently inhibited activated PMN VEGF release. The rank order of potency was consistent with the affinity profile of human A2B receptors. The inhibitory effect of adenosine was reversed by 3,7-dimethyl-1-propargylxanthine, an A2 receptor antagonist. Adenosine (100 microM) or the A2B receptor agonist 5\\'-N-ethylcarboxamidoadenosine (NECA, 100 microM) significantly reduced PMN transendothelial migration. However, expression of activated PMN beta2 integrins and HUVEC ICAM-1 were not significantly altered by adenosine or NECA. Adenosine attenuates human PMN VEGF release and transendothelial migration via the A2B receptor. This provides a novel target for the modulation of PMN-directed vascular hyperpermeability in conditions such as the capillary leak syndrome.

  10. Increased expression of protease-activated receptor 4 and Trefoil factor 2 in human colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Guoyu Yu

    Full Text Available Protease-activated receptor 4 (PAR4, a member of G-protein coupled receptors family, was recently reported to exhibit decreased expression in gastric cancer and esophageal squamous cancer, yet increased expression during the progression of prostate cancer. Trefoil factor 2 (TFF2, a small peptide constitutively expressed in the gastric mucosa, plays a protective role in restitution of gastric mucosa. Altered TFF2 expression was also related to the development of gastrointestinal cancer. TFF2 has been verified to promote cell migration via PAR4, but the roles of PAR4 and TFF2 in the progress of colorectal cancer are still unknown. In this study, the expression level of PAR4 and TFF2 in colorectal cancer tissues was measured using real-time PCR (n = 38, western blotting (n=38 and tissue microarrays (n = 66. The mRNA and protein expression levels of PAR4 and TFF2 were remarkably increased in colorectal cancer compared with matched noncancerous tissues, especially in positive lymph node and poorly differentiated cancers. The colorectal carcinoma cell LoVo showed an increased response to TFF2 as assessed by cell invasion upon PAR4 expression. However, after intervention of PAR4 expression, PAR4 positive colorectal carcinoma cell HT-29 was less responsive to TFF2 in cell invasion. Genomic bisulfite sequencing showed the hypomethylation of PAR4 promoter in colorectal cancer tissues and the hypermethylation in the normal mucosa that suggested the low methylation of promoter was correlated to the increased PAR4 expression. Taken together, the results demonstrated that the up-regulated expression of PAR4 and TFF2 frequently occurs in colorectal cancer tissues, and that overexpression of PAR4 may be resulted from promoter hypomethylation. While TFF2 promotes invasion activity of LoVo cells overexpressing PAR4, and this effect was significantly decreased when PAR4 was knockdowned in HT-29 cells. Our findings will be helpful in further investigations into the

  11. Platelet-activating factor (PAF) receptor-binding antagonist activity of Malaysian medicinal plants.

    Science.gov (United States)

    Jantan, I; Rafi, I A A; Jalil, J

    2005-01-01

    Forty-nine methanol extracts of 37 species of Malaysian medicinal plants were investigated for their inhibitory effects on platelet-activating factor (PAF) binding to rabbit platelets, using 3H-PAF as a ligand. Among them, the extracts of six Zingiberaceae species (Alpinia galanga Swartz., Boesenbergia pandurata Roxb., Curcuma ochorrhiza Val., C. aeruginosa Roxb., Zingiber officinale Rosc. and Z. zerumbet Koenig.), two Cinnamomum species (C. altissimum Kosterm. and C. pubescens Kochummen.), Goniothalamus malayanus Hook. f. Momordica charantia Linn. and Piper aduncum L. are potential sources of new PAF antagonists, as they showed significant inhibitory effects with IC50 values ranging from 1.2 to 18.4 microg ml(-1).

  12. Epidermal Growth Factor Receptor Activating Mutations in Squamous Histology of Lung Cancer Patients of Southern Bulgaria

    Directory of Open Access Journals (Sweden)

    Genova Silvia N.

    2015-12-01

    Full Text Available There is only limited data on the prevalence of epidermal growth factor receptor (EGFR activating mutations in squamous cell carcinomas and adenosquamous carcinomas of the lung in patients of the Southern Bulgarian region and the efficacy of EGFR tyrosine kinase inhibitors. AIM: Previous reports for Bulgarian population showed high incidence of EGFR mutations in the squamous cell carcinomas, so we set the goal to investigate their frequency in Southern Bulgaria, after precise immunohistochemical verification of lung cancers. MATERIALS AND METHODS: Two hundred and thirty-six lung carcinomas were included in this prospective study. All biopsies were initially analysed with p63, TTF1, Napsin A, CK7, CK34βE12, synaptophysin, CK20 and CDX2. Two hundred and twenty-five non-small cell lung carcinomas were studied with real-time PCR technology to assess the status of the EGFR gene. RESULTS: We detected 132 adenocarcinomas (58.7%, 89 squamous cell carcinomas (39.2%, 4 adenosquamous carcinomas (1.8%, 9 large cell neuroendocrine carcinomas (3.8% and 2 metastatic colorectal adenocarcinomas (0.8%. Activating mutations in the EGF receptor had 3 out of 89 squamous cell carcinomas (3.37%. We have established mutations in L858R, deletion in exon 19 and rare mutation in S7681. One out of four adenosquamous carcinomas had a point mutation in the L858R (25%. CONCLUSIONS: The frequency of EGFR mutations we found in lung squamous cell carcinomas in a Southern Bulgarian region is lower than that in European countries. Ethnic diversity in the region does not play role of an independent predictive factor in terms of mutation frequency.

  13. Epidermal growth factor receptor activation in glioblastoma through novel missense mutations in the extracellular domain.

    Directory of Open Access Journals (Sweden)

    Jeffrey C Lee

    2006-12-01

    Full Text Available BACKGROUND: Protein tyrosine kinases are important regulators of cellular homeostasis with tightly controlled catalytic activity. Mutations in kinase-encoding genes can relieve the autoinhibitory constraints on kinase activity, can promote malignant transformation, and appear to be a major determinant of response to kinase inhibitor therapy. Missense mutations in the EGFR kinase domain, for example, have recently been identified in patients who showed clinical responses to EGFR kinase inhibitor therapy. METHODS AND FINDINGS: Encouraged by the promising clinical activity of epidermal growth factor receptor (EGFR kinase inhibitors in treating glioblastoma in humans, we have sequenced the complete EGFR coding sequence in glioma tumor samples and cell lines. We identified novel missense mutations in the extracellular domain of EGFR in 13.6% (18/132 of glioblastomas and 12.5% (1/8 of glioblastoma cell lines. These EGFR mutations were associated with increased EGFR gene dosage and conferred anchorage-independent growth and tumorigenicity to NIH-3T3 cells. Cells transformed by expression of these EGFR mutants were sensitive to small-molecule EGFR kinase inhibitors. CONCLUSIONS: Our results suggest extracellular missense mutations as a novel mechanism for oncogenic EGFR activation and may help identify patients who can benefit from EGFR kinase inhibitors for treatment of glioblastoma.

  14. Rapidly activated epidermal growth factor receptor mediates lipopolysaccharide-triggered migration of microglia.

    Science.gov (United States)

    Qu, Wen-Sheng; Liu, Jun-Li; Li, Chun-Yu; Li, Xiao; Xie, Min-Jie; Wang, Wei; Tian, Dai-Shi

    2015-11-01

    Previous reports have suggested that epidermal growth factor receptor (EGFR) is involved in microglia activation characterized by cell morphology changes, cytokine production and cell migration; and the biochemical regulation of the microglia migration is a potential therapeutic target following CNS inflammatory damages. However, the role of EGFR in microglia motility after inflammatory stimulation remains unknown. In the present study, lipopolysaccharide (LPS) was found to trigger rapid EGFR phosphorylation within 10 min, which was sustained during long-term stimulation in both primary microglial cells and the cultured BV2 microglial cells, furthermore, blocking EGFR phosphorylation by AG1478 significantly attenuated the LPS-induced chemotactic and chemokinetic migration of microglia. In addition, LPS could initiate calcium oscillation in microglia during live-cell recording, however, an intracellular calcium chelator and a selective inhibitor of calcium/calmodulin-dependent protein kinase II, but not an extracellular calcium chelator, remarkably suppressed the LPS-induced EGFR phosphorylation in BV2 microglia cells. As EGFR is not a traditional receptor for LPS, these findings suggest that the rapid phosphorylation of EGFR is attributed to the LPS-triggered intracellular calcium mobilization. By examining the downstream signals of EGFR, we further proved that extracellular signal-regulated kinase (ERK) is essential for EGFR-mediated microglia migration, because ERK inhibition attenuated the chemotactic and chemokinetic migration of microglia that had been induced by either LPS or EGF. Collectively, these results suggest that LPS could trigger the rapid phosphorylation of EGFR and subsequent ERK activation through mobilizing calcium activity, which underlies the microglia migration in an inflammatory condition.

  15. AP-2{alpha} suppresses skeletal myoblast proliferation and represses fibroblast growth factor receptor 1 promoter activity

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Darrion L. [Department of Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064 (United States); DiMario, Joseph X., E-mail: joseph.dimario@rosalindfranklin.edu [Department of Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064 (United States)

    2010-01-15

    Skeletal muscle development is partly characterized by myoblast proliferation and subsequent differentiation into postmitotic muscle fibers. Developmental regulation of expression of the fibroblast growth factor receptor 1 (FGFR1) gene is required for normal myoblast proliferation and muscle formation. As a result, FGFR1 promoter activity is controlled by multiple transcriptional regulatory proteins during both proliferation and differentiation of myogenic cells. The transcription factor AP-2{alpha} is present in nuclei of skeletal muscle cells and suppresses myoblast proliferation in vitro. Since FGFR1 gene expression is tightly linked to myoblast proliferation versus differentiation, the FGFR1 promoter was examined for candidate AP-2{alpha} binding sites. Mutagenesis studies indicated that a candidate binding site located at - 1035 bp functioned as a repressor cis-regulatory element. Furthermore, mutation of this site alleviated AP-2{alpha}-mediated repression of FGFR1 promoter activity. Chromatin immunoprecipitation studies demonstrated that AP-2{alpha} interacted with the FGFR1 promoter in both proliferating myoblasts and differentiated myotubes. In total, these results indicate that AP-2{alpha} is a transcriptional repressor of FGFR1 gene expression during skeletal myogenesis.

  16. Downregulating activated epidermal growth factor receptor has no effect on RBM5 expression

    Institute of Scientific and Technical Information of China (English)

    Twinkle J. Masilamani; Nina D. Rintala-Maki; WANG Ke; Leslie C. Sutherland

    2012-01-01

    Background We were interested in determining how the tumor suppressor gene RBM5 is regulated in lung cancers.Previous studies suggested that the gene expression is related to histological subtype and smoking exposure,since in small cell lung cancers the RBM5 gene is deleted whereas in non-small cell lung carcinomas (NSCLC) RBM5 expression is reduced.Of particular interest was the recent finding that in lung adenocarcinomas,a histological subtype of NSCLC,smoking exposure correlated with mutational activity in the transforming growth factor alpha (TGF-α) signaling pathway.Lung adenocarcinomas from smokers were associated with activating KRAS mutations,whereas lung adenocarcinomas from never-smokers were associated with activating epidermal growth factor receptor (EGFR) mutations.We hypothesized that inhibition of RBM5 in lung adenocarcinomas is achieved indirectly via these activating mutations.The objective of the research described herein was to determine if EGFR activation and RBM5 expression are negatively correlated.Methods EGFR expression in the lung adenocarcinoma cell line NCI-H1975 was inhibited using small interfering RNA.RBM5 expression was examined by real-time quantitative polymerase chain reaction and Western blotting.Results Reduced EGFR expression did not correlate with any change in RBM5 expression at either the RNA or protein level.Conclusion These results suggest that RBM5 expression is not directly regulated by EGFR in non-smoker related lung adenocarinomas,and that some other mechanism operates to inhibit either the expression or function of this potential tumour suppressor in lung cancers that retain the RBM5 gene.

  17. Analysis of the epidermal growth factor receptor specific transcriptome: effect of receptor expression level and an activating mutation

    DEFF Research Database (Denmark)

    Pedersen, Mikkel W; Pedersen, Nina; Damstrup, Lars;

    2005-01-01

    moderately expressed or overexpressed at an in-itself transforming level. These changes were compared to those induced by the naturally occurring constitutively active variant EGFRvIII. This study provides novel insight on the activities and mechanisms of EGFRvIII and EGFR mediated transformation, as genes...... by interferons. Expression of this module was absent in the EGFRvIII-expressing cell line and the parental cell line. Treatment with the specific EGFR inhibitor AG1478 indicated that the regulations were primary, receptor-mediated events. Furthermore, activation of this module correlated with activation of STAT1...

  18. Integration of G-Protein Coupled Receptor Signaling Pathways for Activation of a Transcription Factor (EGR-3)

    Institute of Scientific and Technical Information of China (English)

    Xuehai Tan; Pam Sanders; Jack Bolado Jr.; Mike Whitney

    2003-01-01

    We recently reported the use of a gene-trapping approach to isolate cell clones in which a reporter gene had integrated into genes modulated by T-cell activation. We have now tested a panel of clones from that report and identified the one that responds to a variety of G-protein coupled receptors (GPCR). The βlactamase tagged EGR-3 Jurkat cell was used to dissect specific GPCR signaling in vivo. Three GPCRs were studied, including the chemokine receptor CXCR4 (Gicoupled) that was endogenously expressed, the platelet activation factor (PAF) receptor (Gq-coupled), andβ2 adrenergic receptor (Gs-coupled) that was both stably transfected. Agonists for each receptor activated transcription of theβ-lactamase tagged EGR-3 gene. Induction of EGR-3 through CXCR4 was blocked by pertussis toxin and PD58059, a specific inhibitor of MEK (MAPK/ERK kinase). Neither of these inhibitors blocked isoproterenol or PAF-mediated activation of EGR-3. Conversely, β2- and PAF-mediated EGR-3 activation was blocked by the p38, specific inhibitor SB580. In addition, bothβ2- and PAF-mediated EGR-3 activation could be synergistically activated by CXCR4 activation. This combined result indicates that EGR-3 can be activated through distinct signal transduction pathways by different GPCRs and that signals can be integrated and amplified to efficiently tune the level of activation.

  19. Synthesis of platelet-activating factor and its receptor expression in Kupffer cells in rat carbon tetrachloride-induced cirrhosis

    Institute of Scientific and Technical Information of China (English)

    Yin-Ying Lu; Chun-Ping Wang; Lin Zhou; Yan Chen; Shu-Hui Su; Yong-Yi Feng; Yong-Ping Yang

    2008-01-01

    AIM:To determine the platelet-activating factor (PAF)synthesis and its receptor expression in Kupffer cells in rat carbon tetrachloride-induce dcirrhosis.METHODS:Kupffer cells,isolated from the livers of control and CCl4-induced cirrhotic rats,were placed in serum-free medium overnight.PAF saturation binding,ET-1 saturation and competition binding were assayed.ET-1 induced PAF synthesis,mRNA expression of PAF,preproendothelin-1,endothelin A (ETA) and endothelin B (ETB) receptors were also determined.RESULTS:A two-fold increase of PAF synthesis (1.42±0.14 vs 0.66±0.04 pg/μg DNA) and a 1.48-fold increase of membrane-bound PAF (1.02±0.06 vs 0.69±0.07 Pg/μg DNA) were observed in activated Kupffer cells of cirrhotic rats.The application of ET-1 to Kupffer cells induced PAF synthesis in a concentration-dependent manner in both cirrhotic and normal rats via ETB receptor,but PAF synthesis in the activated Kupffer cells was more effective than that in the normal Kupffer cells.In activated Kupffer cells,PAF receptor expression and PAF binding capacity were markedly enhanced.Activated Kupffer cells raised the [125I]-ET-1 binding capacity,but changed neither the affinity of the receptors,nor the expression of ETA receptor.CONCLUSION:Kupffer cells in the course of CCl4-induced cirrhosis are the main source of increased PAF.ET-1 is involved endogenously in stimulating the PAF synthesis in activated Kupffer cells via ETB receptor by paracrine.ETA receptor did not appear in activated Kupffer cells,which may exacerbate the hepatic and extrahepatic complications of cirrhosis.

  20. Neuroligin-1 induces neurite outgrowth through interaction with neurexin-1ß and activation of fibroblast growth factor receptor-1

    DEFF Research Database (Denmark)

    Gjørlund, Michelle D; Nielsen, Janne; Pankratova, Stanislava;

    2012-01-01

    the neuritogenic effect of NLGN1 in cultures of hippocampal neurons. Our results show that NLGN1, both in soluble and membrane-bound forms, induces neurite outgrowth that depends on the interaction with NRXN1ß and on activation of fibroblast growth factor receptor-1. In addition, we demonstrate that a synthetic...

  1. Sorting of ligand-activated epidermal growth factor receptor to lysosomes requires its actin-binding domain

    NARCIS (Netherlands)

    Stoorvogel, W; Kerstens, S; Fritzsche, I; den Hartigh, JC; Oud, R; van der Heyden, MAG; Henegouwen, PMPVE

    2004-01-01

    Ligand-induced down-regulation of the epidermal growth factor receptor (EGFR) comprises activation of two sequential transport steps. The first involves endocytic uptake by clathrin-coated vesicles, the second transfer of endocytosed EGFR from endosomes to lysosomes. Here we demonstrate that the sec

  2. Search for a platelet-activating factor receptor in the Trypanosoma cruzi proteome: a potential target for Chagas disease chemotherapy

    Directory of Open Access Journals (Sweden)

    Daniel Fábio Kawano

    2011-12-01

    Full Text Available Chagas disease (CD causes the highest burden of parasitic diseases in the Western Hemisphere and is therefore a priority for drug research and development. Platelet-activating factor (PAF causes the CD parasite Trypanosoma cruzi to differentiate, which suggests that the parasite may express PAF receptors. Here, we explored the T. cruzi proteome for PAF receptor-like proteins. From a total of 23,000 protein sequences, we identified 29 hypothetical proteins that are predicted to have seven transmembrane domains (TMDs, which is the main characteristic of the G protein-coupled receptors (GPCRs, including the PAF receptor. The TMDs of these sequences were independently aligned with domains from 25 animal PAF receptors and the sequences were analysed for conserved residues. The conservation score mean values for the TMDs of the hypothetical proteins ranged from 31.7-44.1%, which suggests that if the putative T. cruzi PAF receptor is among the sequences identified, the TMDs are not highly conserved. These results suggest that T. cruzi contains several GPCR-like proteins and that one of these GPCRs may be a PAF receptor. Future studies may further validate the PAF receptor as a target for CD chemotherapy.

  3. Epidermal growth factor receptor regulates β-catenin location, stability, and transcriptional activity in oral cancer

    Directory of Open Access Journals (Sweden)

    Hung Hsing-Wen

    2010-03-01

    Full Text Available Abstract Background Many cancerous cells accumulate β-catenin in the nucleus. We examined the role of epidermal growth factor receptor (EGFR signaling in the accumulation of β-catenin in the nuclei of oral cancer cells. Results We used two strains of cultured oral cancer cells, one with reduced EGFR expression (OECM1 cells and one with elevated EGFR expression (SAS cells, and measured downstream effects, such as phosphorylation of β-catenin and GSK-3β, association of β-catenin with E-cadherin, and target gene regulation. We also studied the expression of EGFR, β-catenin, and cyclin D1 in 112 samples of oral cancer by immunostaining. Activation of EGFR signaling increased the amount of β-catenin in the nucleus and decreased the amount in the membranes. EGF treatment increased phosphorylation of β-catenin (tyrosine and GSK-3β(Ser-(9, resulting in a loss of β-catenin association with E-cadherin. TOP-FLASH and FOP-FLASH reporter assays demonstrated that the EGFR signal regulates β-catenin transcriptional activity and mediates cyclin D1 expression. Chromatin immunoprecipitation experiments indicated that the EGFR signal affects chromatin architecture at the regulatory element of cyclin D1, and that the CBP, HDAC1, and Suv39h1 histone/chromatin remodeling complex is involved in this process. Immunostaining showed a significant association between EGFR expression and aberrant accumulation of β-catenin in oral cancer. Conclusions EGFR signaling regulates β-catenin localization and stability, target gene expression, and tumor progression in oral cancer. Moreover, our data suggest that aberrant accumulation of β-catenin under EGFR activation is a malignancy marker of oral cancer.

  4. Graphene Enhances Cellular Proliferation through Activating the Epidermal Growth Factor Receptor.

    Science.gov (United States)

    Liu, Wei; Sun, Cheng; Liao, Chunyang; Cui, Lin; Li, Haishan; Qu, Guangbo; Yu, Wenlian; Song, Naining; Cui, Yuan; Wang, Zheng; Xie, Wenping; Chen, Huiming; Zhou, Qunfang

    2016-07-27

    Graphene has promising applications in food packaging, water purification, and detective sensors for contamination monitoring. However, the biological effects of graphene are not fully understood. It is necessary to clarify the potential risks of graphene exposure to humans through diverse routes, such as foods. In the present study, graphene, as the model nanomaterial, was used to test its potential effects on the cell proliferation based on multiple representative cell lines, including HepG2, A549, MCF-7, and HeLa cells. Graphene was characterized by Raman spectroscopy, particle size analysis, atomic force microscopy, and transmission electron microscopy. The cellular responses to graphene exposure were evaluated using flow cytometry, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, and alamarBlue assays. Rat cerebral astrocyte cultures, as the non-cancer cells, were used to assess the potential cytotoxicity of graphene as well. The results showed that graphene stimulation enhanced cell proliferation in all tested cell cultures and the highest elevation in cell growth was up to 60%. A western blot assay showed that the expression of epidermal growth factor (EGF) was upregulated upon graphene treatment. The phosphorylation of EGF receptor (EGFR) and the downstream proteins, ShC and extracellular regulating kinase (ERK), were remarkably induced, indicating that the activation of the mitogen-activated protein kinase (MAPK)/ERK signaling pathway was triggered. The activation of PI3 kinase p85 and AKT showed that the PI3K/AKT signaling pathway was also involved in graphene-induced cell proliferation, causing the increase of cell ratios in the G2/M phase. No influences on cell apoptosis were observed in graphene-treated cells when compared to the negative controls, proving the low cytotoxicity of this emerging nanomaterial. The findings in this study revealed the potential cellular biological effect of graphene, which may give useful hints on its biosafety

  5. Activation of platelet-activating factor receptor in SZ95 sebocytes results in inflammatory cytokine and prostaglandin E2 production.

    Science.gov (United States)

    Zhang, Qiwei; Seltmann, Holger; Zouboulis, Christos C; Travers, Jeffrey B

    2006-10-01

    Platelet-activating factor (PAF) is a group of phosphocholines with various biological effects mediated by the PAF receptor (PAF-R). Activation of the epidermal PAF-R induces the expression of inflammatory mediators, including cyclooxygenase-2 (COX-2) and prostaglandin E(2) (PGE(2)). The upregulation of COX-2 expression has been shown to be involved in sebocyte proliferation, sebaceous gland inflammation and carcinogenesis. The present study was designed to investigate whether PAF-R activation could induce the expression of COX-2 and production of PGE(2), as well as secretion of the inflammatory cytokine, interleukin-8 (IL-8), in the immortalized sebaceous gland cell line SZ95. Using calcium mobilization studies, we first confirmed that PAF can signal through PAF-R in SZ95 sebocytes. We then found that the production of IL-8 was induced following treatment with PAF-R agonist, however blocked by a specific PAF-R antagonist. Induction of COX-2 expression and increased PGE(2) production were observed in SZ95 sebocytes after PAF-R activation. Finally, it was demonstrated that the production of PGE(2), induced by PAF-R activation and mediated by COX-2 expression, was blocked following PAF-R antagonism in SZ95 sebocytes. These studies suggest that SZ95 sebocytes express functional PAF-Rs and PAF-Rs are involved in regulating the expression of inflammatory mediators, including COX-2, PGE(2) and IL-8.

  6. Receptor activator of nuclear factor kappa B (RANK as a determinant of peri-implantitis

    Directory of Open Access Journals (Sweden)

    Rakić Mia

    2013-01-01

    Full Text Available Background/Aim. Peri-implantitis presents inflammatory process that affects soft and hard supporting tissues of osseointegrated implant based on inflammatory osteoclastogenesis. The aim of this study was to investigate whether receptor activator of nuclear factor kappa B (RANK concentrations in peri-implant crevicular fluid could be associated with clinical parameters that reflect inflammatory nature of peri-implantitis. Methods. The study included 67 patients, 22 with diagnosed peri-implantitis, 22 persons with healthy peri-implant tissues and 23 patients with periodontitis. Clinical parameters from each patient were recorded and samples of peri-implant/gingival crevicular fluid were collected for the enzyme-linked immunosorbent assay (ELISA analysis. Results. RANK concentration was significantly increased in samples from the patients with periimplantitis when compared to healthy implants (p < 0.0001, where the average levels were 9 times higher. At the same time RANK concentration was significantly higher in periimplantitis than in periodontitis sites (p < 0.0001. In implant patients pocket depths and bleeding on probing values were positively associated with high RANK concentrations (p < 0.0001. Conclusion. These results revealed association of increased RANK concentration in samples of periimplant/ gingival crevicular fluid with peri-implant inflammation and suggests that RANK could be a pathologic determinant of peri-implantitis, thereby a potential parameter in assessment of peri-implant tissue inflammation and a potential target in designing treatment strategies.

  7. Factor Xa stimulates proinflammatory and profibrotic responses in fibroblasts via protease-activated receptor-2 activation

    NARCIS (Netherlands)

    Borensztajn, Keren; Stiekema, Jurrieen; Nijmeijer, Sebastiaan; Reitsmalf, Pieter H.; Peppelenbosch, Maikel P.; Spek, C. Arnold

    Coagulation proteases have been suggested to play a role in the pathogenesis of tissue remodeling and fibrosis. We therefore assessed the proinflammatory and fibroproliferative effects of coagulation protease factor (F)Xa. We show that FXa elicits a signaling response in C2C12 and NIH3T3

  8. Rac activation by lysophosphatidic acid LPA1 receptors through the guanine nucleotide exchange factor Tiam1

    NARCIS (Netherlands)

    Van Leeuwen, Frank N; Olivo, Cristina; Grivell, Shula; Giepmans, Ben N G; Collard, John G; Moolenaar, Wouter H

    2003-01-01

    Lysophosphatidic acid (LPA) is a serum-borne phospholipid that activates its own G protein-coupled receptors present in numerous cell types. In addition to stimulating cell proliferation, LPA also induces cytoskeletal changes and promotes cell migration in a RhoA- and Rac-dependent manner. Whereas R

  9. Receptor activator for nuclear factor-κB ligand signaling promotes progesterone-mediated estrogen-induced mammary carcinogenesis

    OpenAIRE

    Boopalan, Thiyagarajan; Arumugam, Arunkumar; Parada, Jacqueline; Saltzstein, Edward; Lakshmanaswamy, Rajkumar

    2015-01-01

    Breast cancer is a leading cause of cancer-related death in women. Prolonged exposure to the ovarian hormones estrogen and progesterone increases the risk of breast cancer. Although estrogen is known as a primary factor in mammary carcinogenesis, very few studies have investigated the role of progesterone. Receptor activator for nuclear factor-κB (NF-κB) ligand (RANKL) plays an important role in progesterone-induced mammary carcinogenesis. However, the molecular mechanism underlying RANKL-ind...

  10. A point mutation in the extracellular domain activates LET-23, the Caenorhabditis elegans epidermal growth factor receptor homolog.

    Science.gov (United States)

    Katz, W S; Lesa, G M; Yannoukakos, D; Clandinin, T R; Schlessinger, J; Sternberg, P W

    1996-01-01

    The let-23 gene encodes a Caenorhabditis elegans homolog of the epidermal growth factor receptor (EGFR) necessary for vulval development. We have characterized a mutation of let-23 that activates the receptor and downstream signal transduction, leading to excess vulval differentiation. This mutation alters a conserved cysteine residue in the extracellular domain and is the first such point mutation in the EGFR subfamily of tyrosine kinases. Mutation of a different cysteine in the same subdomain causes a strong loss-of-function phenotype, suggesting that cysteines in this region are important for function and nonequivalent. Vulval precursor cells can generate either of two subsets of vulval cells (distinct fates) in response to sa62 activity. The fates produced depended on the copy number of the mutation, suggesting that quantitative differences in receptor activity influence the decision between these two fates. PMID:8552080

  11. Nerve growth factor alters the sensitivity of rat masseter muscle mechanoreceptors to NMDA receptor activation.

    Science.gov (United States)

    Wong, Hayes; Dong, Xu-Dong; Cairns, Brian E

    2014-11-01

    Intramuscular injection of nerve growth factor (NGF) into rat masseter muscle induces a local mechanical sensitization that is greater in female than in male rats. The duration of NGF-induced sensitization in male and female rats was associated with an increase in peripheral N-methyl-d-aspartate (NMDA) receptor expression by masseter muscle afferent fibers that began 3 days postinjection. Here, we investigated the functional consequences of increased NMDA expression on the response properties of masseter muscle mechanoreceptors. In vivo extracellular single-unit electrophysiological recordings of trigeminal ganglion neurons innervating the masseter muscle were performed in anesthetized rats 3 days after NGF injection (25 μg/ml, 10 μl) into the masseter muscle. Mechanical activation threshold was assessed before and after intramuscular injection of NMDA. NMDA injection induced mechanical sensitization in both sexes that was increased significantly following NGF injection in the male rats but not in the female rats. However, in female but not male rats, further examination found that preadministration of NGF induced a greater sensitization in slow Aδ-fibers (2-7 m/s) than fast Aδ-fibers (7-12 m/s). This suggests that preadministration of NGF had a different effect on slowly conducting mechanoreceptors in the female rats compared with the male rats. Although previous studies have found an association between estrogenic tone and NMDA activity, no correlation was observed between NMDA-evoked mechanical sensitization and plasma estrogen level. This study suggests NGF alters NMDA-induced mechanical sensitization in the peripheral endings of masseter mechanoreceptors in a sexually dimorphic manner.

  12. Hepatitis C Virus Induces Epidermal Growth Factor Receptor Activation via CD81 Binding for Viral Internalization and Entry

    OpenAIRE

    Diao, Jingyu; Pantua, Homer; Ngu, Hai; Komuves, Laszlo; Diehl, Lauri; Schaefer, Gabriele; Kapadia, Sharookh B.

    2012-01-01

    While epidermal growth factor receptor (EGFR) has been shown to be important in the entry process for multiple viruses, including hepatitis C virus (HCV), the molecular mechanisms by which EGFR facilitates HCV entry are not well understood. Using the infectious cell culture HCV model (HCVcc), we demonstrate that the binding of HCVcc particles to human hepatocyte cells induces EGFR activation that is dependent on interactions between HCV and CD81 but not claudin 1. EGFR activation can also be ...

  13. Stem cell factor-mediated wild-type KIT receptor activation is critical for gastrointestinal stromal tumor cell growth

    Institute of Scientific and Technical Information of China (English)

    Chen-Guang Bai; Xiao-Wei Hou; Feng Wang; Cen Qiu; Yan Zhu; Ling Huang; Jing Zhao

    2012-01-01

    AIM:To clarify the biological role of stem cell factor (SCF)-mediated wild-type KIT receptor activation in gastrointestinal stromal tumor (GIST) growth.METHODS:The co-expression of wild-type KIT receptor and SCF was evaluated in 51 GIST samples using mutation analysis and immunohistochemistry,and the results were correlated with clinicopathological parameters,including the mitotic count,proliferative index (Ki-67 immunohistochemical staining),mitotic index (phospho-histone H3 immunohistochemical staining)and apoptotic index (terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling).Using primary cultured GIST cells,the effect of SCF-mediated wild-type KIT receptor activation was determined by western blotting,methyl thiazolyl tetrazolium (MTT),and apoptosis assays.RESULTS:We found that wild-type KIT receptor and SCF protein were expressed in 100% and 76.5% of the 51 GIST samples,respectively,and the co-expression of wild-type KIT receptor and SCF was associated with known indicators of poor prognosis,including larger tumor size (P =0.0118),higher mitotic count (P =0.0058),higher proliferative index (P =0.0012),higher mitotic index (P =0.0282),lower apoptosis index (P =0.0484),and increased National Institutes of Health risk level (P =0.0012).We also found that the introduction of exogenous SCF potently increased KIT kinase activity,stimulated cell proliferation (P < 0.01) and inhibited apoptosis (P < 0.01) induced by serum starvation,while a KIT immunoblocking antibody suppressed proliferation (P =0.01) and promoted apoptosis (P < 0.01)in cultured GIST cells.CONCLUSION:SCF-mediated wild-type KIT receptor activation plays an important role in GIST cell growth.The inhibition of SCF-mediated wild-type KIT receptor activation may prove to be particularly important for GIST therapy.

  14. TTRAP, a novel protein that associates with CD40, tumor necrosis factor (TNF) receptor-75 and TNF receptor-associated factors (TRAFs), and that inhibits nuclear factor-kappa B activation.

    Science.gov (United States)

    Pype, S; Declercq, W; Ibrahimi, A; Michiels, C; Van Rietschoten, J G; Dewulf, N; de Boer, M; Vandenabeele, P; Huylebroeck, D; Remacle, J E

    2000-06-16

    CD40 belongs to the tumor necrosis factor (TNF) receptor family. CD40 signaling involves the recruitment of TNF receptor-associated factors (TRAFs) to its cytoplasmic domain. We have identified a novel intracellular CD40-binding protein termed TRAF and TNF receptor-associated protein (TTRAP) that also interacts with TNF-R75 and CD30. The region of the CD40 cytoplasmic domain that is required for TTRAP association overlaps with the TRAF6 recognition motif. Association of TTRAP with CD40 increases profoundly in response to treatment of cells with CD40L. Interestingly, TTRAP also associates with TRAFs, with the highest affinity for TRAF6. In transfected cells, TTRAP inhibits in a dose-dependent manner the transcriptional activation of a nuclear factor-kappaB (NF-kappaB)-dependent reporter mediated by CD40, TNF-R75 or Phorbol 12-myristate 13-acetate (PMA) and to a lesser extent by TRAF2, TRAF6, TNF-alpha, or interleukin-1beta (IL-1beta). TTRAP does not affect stimulation of NF-kappaB induced by overexpression of the NF-kappaB-inducing kinase (NIK), the IkappaB kinase alpha (IKKalpha), or the NF-kappaB subunit P65/RelA, suggesting it acts upstream of the latter proteins. Our results indicate that we have isolated a novel regulatory factor that is involved in signal transduction by distinct members of the TNF receptor family.

  15. Pro-brain-derived neurotrophic factor inhibits GABAergic neurotransmission by activating endocytosis and repression of GABAA receptors.

    Science.gov (United States)

    Riffault, Baptiste; Medina, Igor; Dumon, Camille; Thalman, Carine; Ferrand, Nadine; Friedel, Perrine; Gaiarsa, Jean-Luc; Porcher, Christophe

    2014-10-01

    GABA is the canonical inhibitory neurotransmitter in the CNS. This inhibitory action is largely mediated by GABA type A receptors (GABAARs). Among the many factors controlling GABAergic transmission, brain-derived neurotrophic factor (BDNF) appears to play a major role in regulating synaptic inhibition. Recent findings have demonstrated that BDNF can be released as a precursor (proBDNF). Although the role of mature BDNF on GABAergic synaptogenesis and maintenance has been well studied, an important question still unanswered is whether secreted proBDNF might affect GABAergic neurotransmission. Here, we have used 14 d in vitro primary culture of hippocampal neurons and ex vivo preparations from rats to study the function of proBDNF in regulation of GABAAR trafficking and activity. We demonstrate that proBDNF impairs GABAergic transmission by the activation of two distinct pathways: (1) a RhoA-Rock-PTEN pathway that decreases the phosphorylation levels of GABAAR, thus affecting receptor function and triggering endocytosis and degradation of internalized receptors, and (2) a JAK-STAT-ICER pathway leading to the repression of GABAARs synthesis. These effects lead to the diminution of GABAergic synapses and are correlated with a decrease in GABAergic synaptic currents. These results revealed new functions for proBDNF-p75 neurotrophin receptor signaling pathway in the control of the efficacy of GABAergic synaptic activity by regulating the trafficking and synthesis of GABAARs at inhibitory synapses.

  16. Eps15 is recruited to the plasma membrane upon epidermal growth factor receptor activation and localizes to components of the endocytic pathway during receptor internalization

    DEFF Research Database (Denmark)

    Torrisi, M R; Lotti, L V; Belleudi, F;

    1999-01-01

    Eps15 is a substrate for the tyrosine kinase of the epidermal growth factor receptor (EGFR) and is characterized by the presence of a novel protein:protein interaction domain, the EH domain. Eps15 also stably binds the clathrin adaptor protein complex AP-2. Previous work demonstrated an essential...... role for eps15 in receptor-mediated endocytosis. In this study we show that, upon activation of the EGFR kinase, eps15 undergoes dramatic relocalization consisting of 1) initial relocalization to the plasma membrane and 2) subsequent colocalization with the EGFR in various intracellular compartments...... of the endocytic pathway, with the notable exclusion of coated vesicles. Relocalization of eps15 is independent of its binding to the EGFR or of binding of the receptor to AP-2. Furthermore, eps15 appears to undergo tyrosine phosphorylation both at the plasma membrane and in a nocodazole-sensitive compartment...

  17. Prediction of inhibitory activity of epidermal growth factor receptor inhibitors using grid search-projection pursuit regression method.

    Directory of Open Access Journals (Sweden)

    Hongying Du

    Full Text Available The epidermal growth factor receptor (EGFR protein tyrosine kinase (PTK is an important protein target for anti-tumor drug discovery. To identify potential EGFR inhibitors, we conducted a quantitative structure-activity relationship (QSAR study on the inhibitory activity of a series of quinazoline derivatives against EGFR tyrosine kinase. Two 2D-QSAR models were developed based on the best multi-linear regression (BMLR and grid-search assisted projection pursuit regression (GS-PPR methods. The results demonstrate that the inhibitory activity of quinazoline derivatives is strongly correlated with their polarizability, activation energy, mass distribution, connectivity, and branching information. Although the present investigation focused on EGFR, the approach provides a general avenue in the structure-based drug development of different protein receptor inhibitors.

  18. Analysis of Activated Platelet-Derived Growth Factor β Receptor and Ras-MAP Kinase Pathway in Equine Sarcoid Fibroblasts

    Directory of Open Access Journals (Sweden)

    Gennaro Altamura

    2013-01-01

    Full Text Available Equine sarcoids are skin tumours of fibroblastic origin affecting equids worldwide. Bovine papillomavirus type-1 (BPV-1 and, less commonly, type-2 are recognized as etiological factors of sarcoids. The transforming activity of BPV is related to the functions of its major oncoprotein E5 which binds to the platelet-derived growth factor β receptor (PDGFβR causing its phosphorylation and activation. In this study, we demonstrate, by coimmunoprecipitation and immunoblotting, that in equine sarcoid derived cell lines PDGFβR is phosphorylated and binds downstream molecules related to Ras-mitogen-activated protein kinase-ERK pathway thus resulting in Ras activation. Imatinib mesylate is a tyrosine kinase receptors inhibitor which selectively inhibits the activation of PDGFβR in the treatment of several human and animal cancers. Here we show that imatinib inhibits receptor phosphorylation, and cell viability assays demonstrate that this drug decreases sarcoid fibroblasts viability in a dose-dependent manner. This study contributes to a better understanding of the molecular mechanisms involved in the pathology of sarcoids and paves the way to a new therapeutic approach for the treatment of this common equine skin neoplasm.

  19. Airway epithelial platelet-activating factor receptor expression is markedly upregulated in chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Shukla SD

    2014-08-01

    Full Text Available Shakti Dhar Shukla,1,* Sukhwinder Singh Sohal,1,* Malik Quasir Mahmood,1 David Reid,2 Hans Konrad Muller,1 Eugene Haydn Walters1 1NHMRC Centre for Research Excellence for Chronic Respiratory Disease and Lung Ageing, School of Medicine, University of Tasmania, Hobart, Tasmania, Australia; 2Queensland Institute of Medical Research, Iron Metabolism Laboratory, Brisbane, Queensland, Australia *Shakti Dhar Shukla and Sukhwinder Singh Sohal are joint first authors Background: We recently published that platelet-activating factor receptor (PAFr is upregulated on the epithelium of the proximal airways of current smokers and also in bronchial epithelial cells exposed to cigarette smoke extract. These treated cells also showed upregulation of Streptococcus pneumoniae adhesion. Bacterial wall phosphorylcholine specifically binds to PAFr expressed on airway epithelium, thus facilitating adherence and tissue invasion, which may be relevant to chronic obstructive pulmonary disease (COPD. Moreover, the use of inhaled corticosteroids (ICS in COPD patients is associated with an increased risk of invasive respiratory pneumococcal infections. Objective: In this study, we have investigated whether PAFr expression is especially upregulated in airway epithelium in COPD patients and whether this expression may be modulated by ICS therapy. Methods: We cross-sectionally evaluated PAFr expression in bronchial biopsies from 15 COPD patients who were current smokers (COPD-smokers and 12 COPD-ex-smokers, and we compared these to biopsies from 16 smokers with normal lung function. We assessed immunostaining with anti-PAFr monoclonal antibody. We also used material from a previous double-blinded randomized placebo-controlled 6-month ICS intervention study in COPD patients to explore the effect of ICS on PAFr expression. We employed computer-aided image analysis to quantify the percentage of epithelium stained for PAFr. Results: Markedly enhanced expression of PAFr was found

  20. DC electric stimulation upregulates angiogenic factors in endothelial cells through activation of VEGF receptors.

    Science.gov (United States)

    Bai, Huai; Forrester, John V; Zhao, Min

    2011-07-01

    Small direct current (DC) electric fields direct some important angiogenic responses of vascular endothelial cells. Those responses indicate promising use of electric fields to modulate angiogenesis. We sought to determine the regulation of electric fields on transcription and expression of a serial of import angiogenic factors by endothelial cells themselves. Using semi-quantitative PCR and ELISA we found that electric stimulation upregulates the levels of mRNAs and proteins of a number of angiogenic proteins, most importantly VEGF165, VEGF121 and IL-8 in human endothelial cells. The up-regulation of mRNA levels might be specific, as the mRNA encoding bFGF, TGF-beta and eNOS are not affected by DC electric stimulation at 24h time-point. Inhibition of VEGF receptor (VEGFR1 or VEGFR2) signaling significantly decreased VEGF production and completely abolished IL-8 production. DC electric stimulation selectively regulates production of some growth factors and cytokines important for angiogenesis through a feed-back loop mediated by VEGF receptors. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Brain-derived neurotrophic factor activation of extracellular signal-regulated kinase is autonomous from the dominant extrasynaptic NMDA receptor extracellular signal-regulated kinase shutoff pathway.

    Science.gov (United States)

    Mulholland, P J; Luong, N T; Woodward, J J; Chandler, L J

    2008-01-24

    NMDA receptors bidirectionally modulate extracellular signal-regulated kinase (ERK) through the coupling of synaptic NMDA receptors to an ERK activation pathway that is opposed by a dominant ERK shutoff pathway thought to be coupled to extrasynaptic NMDA receptors. In the present study, synaptic NMDA receptor activation of ERK in rat cortical cultures was partially inhibited by the highly selective NR2B antagonist Ro25-6981 (Ro) and the less selective NR2A antagonist NVP-AAM077 (NVP). When Ro and NVP were added together, inhibition appeared additive and equal to that observed with the NMDA open-channel blocker MK-801. Consistent with a selective coupling of extrasynaptic NMDA receptors to the dominant ERK shutoff pathway, pre-block of synaptic NMDA receptors with MK-801 did not alter the inhibitory effect of bath-applied NMDA on ERK activity. Lastly, in contrast to a complete block of synaptic NMDA receptor activation of ERK by extrasynaptic NMDA receptors, activation of extrasynaptic NMDA receptors had no effect upon ERK activation by brain-derived neurotrophic factor. These results suggest that the synaptic NMDA receptor ERK activation pathway is coupled to both NR2A and NR2B containing receptors, and that the extrasynaptic NMDA receptor ERK inhibitory pathway is not a non-selective global ERK shutoff.

  2. Transcription factor network downstream of protease activated receptors (PARs modulating mouse bladder inflammation

    Directory of Open Access Journals (Sweden)

    Hurst Robert E

    2007-08-01

    Full Text Available Abstract Background All four PARs are present in the urinary bladder, and their expression is altered during inflammation. In order to search for therapeutic targets other than the receptors themselves, we set forth to determine TFs downstream of PAR activation in the C57BL/6 urinary bladders. Methods For this purpose, we used a protein/DNA combo array containing 345 different TF consensus sequences. Next, the TF selected was validated by EMSA and IHC. As mast cells seem to play a fundamental role in bladder inflammation, we determined whether c-kit receptor deficient (Kitw/Kitw-v mice have an abrogated response to PAR stimulation. Finally, TFEB antibody was used for CHIP/Q-PCR assay and revealed up-regulation of genes known to be downstream of TFEB. Results TFEB, a member of the MiTF family of basic helix-loop-helix leucine zipper, was the only TF commonly up-regulated by all PAR-APs. IHC results confirm a correlation between inflammation and TFEB expression in C57BL/6 mice. In contrast, Kitw/Kitw-v mice did not exhibit inflammation in response to PAR activation. EMSA results confirmed the increased TFEB binding activity in C57BL/6 but not in Kitw/Kitw-v mice. Conclusion This is the first report describing the increased expression of TFEB in bladder inflammation in response to PAR activation. As TFEB belongs to a family of TFs essential for mast cell survival, our findings suggest that this molecule may influence the participation of mast cells in PAR-mediated inflammation and that targeting TFEB/MiTF activity may be a novel approach for the treatment of bladder inflammatory disorders.

  3. Expression of peroxisome proliferator-activated receptor and CCAAT/enhancer binding protein transcription factors in cultured human sebocytes.

    Science.gov (United States)

    Chen, WenChieh; Yang, Chao-Chun; Sheu, Hamm-Ming; Seltmann, Holger; Zouboulis, Christos C

    2003-09-01

    Lipid synthesis and accumulation represent a major step in sebocyte differentiation and it may be of importance for sebocytes to express two families of transcription factors, CCAAT/enhancer binding proteins (c/EBPs) and peroxisome proliferator-activated receptors (PPARs), which were found to play a crucial role in the differentiation of adipocytes. Using the immortalized human sebaceous gland cell line SZ95 we examined the expression of the molecules before and after treatment with testosterone, 5alpha-dihydrotestosterone, dexamethasone, 17beta-estradiol and genistein, at 6, 12, 24, and 48 h, respectively. Reverse transcription-PCR analysis showed expression of peroxisome proliferator-activated receptors -alpha, -delta, -gamma1, -gamma2 and CCAAT/enhancer binding proteins-alpha, -beta, -gamma-delta in native SZ95 sebocytes. In western blot studies, high levels of CCAAT/enhancer binding proteins-alpha and -beta, and peroxisome proliferator-activated receptors-gamma were expressed at 6, 24, and 12 h, respectively. Immunostaining of the cultured sebocytes showed the CCAAT/enhancer binding proteins-alpha and -beta mainly localized within nuclei, whereas peroxisome proliferator-activated receptors-gamma in the cytoplasm. Strong staining of sebocytes was immunohistochemically revealed in the basal layer of sebaceous glands in human scalp and sebaceous nevus. Genistein down-regulated the expression of CCAAT/enhancer binding proteins-alpha and -beta, and peroxisome proliferator-activated receptors-gamma on the protein level. Treatment with linoleic acid for 48 h induced further differentiation of sebocytes leading to abundant lipid synthesis.

  4. Activation of the epidermal growth factor receptor (EGFR) by a novel metalloprotease pathway.

    LENUS (Irish Health Repository)

    Bergin, David A

    2008-11-14

    Neutrophil Elastase (NE) is a pro-inflammatory protease present at higher than normal levels in the lung during inflammatory disease. NE regulates IL-8 production from airway epithelial cells and can activate both EGFR and TLR4. TACE\\/ADAM17 has been reported to trans-activate EGFR in response to NE. Here, using 16HBE14o-human bronchial epithelial cells we demonstrate a new mechanism by which NE regulates both of these events. A high molecular weight soluble metalloprotease activity detectable only in supernatants from NE-treated cells by gelatin and casein zymography was confirmed to be meprin alpha by Western immunoblotting. In vitro studies demonstrated the ability of NE to activate meprin alpha, which in turn could release soluble TGFalpha and induce IL-8 production from 16HBE14o- cells. These effects were abrogated by actinonin, a specific meprin inhibitor. NE-induced IL-8 expression was also inhibited by meprin alpha siRNA. Immunoprecipitation studies detected EGFR\\/TLR4 complexes in NE-stimulated cells overexpressing these receptors. Confocal studies confirmed colocalization of EGFR and TLR4 in 16HBE14o- cells stimulated with meprin alpha. NFkappaB was also activated via MyD88 in these cells by meprin alpha. In bronchoalveolar lavage fluid from NE knock-out mice infected intra-tracheally with Pseudomonas aeruginosa meprin alpha was significantly decreased compared with control mice, and was significantly increased and correlated with NE activity, in bronchoalveolar lavage fluid from individuals with cystic fibrosis but not healthy controls. The data describe a previously unidentified lung metalloprotease meprin alpha, and its role in NE-induced EGFR and TLR4 activation and IL-8 production.

  5. Expression of osteoprotegerin, receptor activator of nuclear factor kappa-B ligand, tumor necrosis factor-related apoptosis-inducing ligand, stromal cell-derived factor-1 and their receptors in epithelial metastatic breast cancer cell lines

    Directory of Open Access Journals (Sweden)

    Labovsky Vivian

    2012-06-01

    Full Text Available Abstract Background While breast cancer (BC is the major cause of death among women worldwide, there is no guarantee of better patient survival because many of these patients develop primarily metastases, despite efforts to detect it in its early stages. Bone metastasis is a common complication that occurs in 65-80 % of patients with disseminated disease, but the molecular basis underlying dormancy, dissemination and establishment of metastasis is not understood. Our objective has been to evaluate simultaneously osteoprotegerin (OPG, receptor activator of nuclear factor kappa B ligand (RANKL, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL, stromal cell-derived factor-1 (SDF-1, and their receptors (R in 2 human BC cell lines, MDA-MB-231 and MCF-7. Methods OPG, RANKL, TRAIL and SDF-1 expression and release, in addition to the expression of their receptors has been investigated using immunofluorescence, immunocytochemistry and ELISA analyses. Results MCF-7 cells released higher levels of OPG in conditioned media (CM than MDA-MB-231 cells; 100 % of both types of cell expressed OPG, RANKL, TRAIL and SDF-1. Moreover, 100 % in both lines expressed membrane RANKL and RANK, whereas only 50 % expressed CXCR4. Furthermore, 100 % expressed TRAIL-R1 and R4, 30-50 % TRAIL-R2, and 40-55 % TRAIL-R3. Conclusions MCF-7 and MDA-MB-231 cells not only released OPG, but expressed RANKL, TRAIL and SDF-1. The majority of the cells also expressed RANK, CXCR4 and TRAIL-R. Since these ligands and their receptors are implicated in the regulation of proliferation, survival, migration and future bone metastasis during breast tumor progression, assessment of these molecules in tumor biopsies of BC patients could be useful in identifying patients with more aggressive tumors that are also at risk of bone metastasis, which may thus improve the available options for therapeutic intervention.

  6. Peroxisome Proliferator-Activated Receptor γ Induces the Expression of Tissue Factor Pathway Inhibitor-1 (TFPI-1) in Human Macrophages

    Science.gov (United States)

    Copin, C.; Derudas, B.; Marx, N.

    2016-01-01

    Tissue factor (TF) is the initiator of the blood coagulation cascade after interaction with the activated factor VII (FVIIa). Moreover, the TF/FVIIa complex also activates intracellular signalling pathways leading to the production of inflammatory cytokines. The TF/FVIIa complex is inhibited by the tissue factor pathway inhibitor-1 (TFPI-1). Peroxisome proliferator-activated receptor gamma (PPARγ) is a transcription factor that, together with PPARα and PPARβ/δ, controls macrophage functions. However, whether PPARγ activation modulates the expression of TFP1-1 in human macrophages is not known. Here we report that PPARγ activation increases the expression of TFPI-1 in human macrophages in vitro as well as in vivo in circulating peripheral blood mononuclear cells. The induction of TFPI-1 expression by PPARγ ligands, an effect shared by the activation of PPARα and PPARβ/δ, occurs also in proinflammatory M1 and in anti-inflammatory M2 polarized macrophages. As a functional consequence, treatment with PPARγ ligands significantly reduces the inflammatory response induced by FVIIa, as measured by variations in the IL-8, MMP-2, and MCP-1 expression. These data identify a novel role for PPARγ in the control of TF the pathway. PMID:28115923

  7. Na/H Exchanger Regulatory Factors Control Parathyroid Hormone Receptor Signaling by Facilitating Differential Activation of Gα Protein Subunits*

    Science.gov (United States)

    Wang, Bin; Ardura, Juan A.; Romero, Guillermo; Yang, Yanmei; Hall, Randy A.; Friedman, Peter A.

    2010-01-01

    The Na/H exchanger regulatory factors, NHERF1 and NHERF2, are adapter proteins involved in targeting and assembly of protein complexes. The parathyroid hormone receptor (PTHR) interacts with both NHERF1 and NHERF2. The NHERF proteins toggle PTHR signaling from predominantly activation of adenylyl cyclase in the absence of NHERF to principally stimulation of phospholipase C when the NHERF proteins are expressed. We hypothesized that this signaling switch occurs at the level of the G protein. We measured G protein activation by [35S]GTPγS binding and Gα subtype-specific immunoprecipitation using three different cellular models of PTHR signaling. These studies revealed that PTHR interactions with NHERF1 enhance receptor-mediated stimulation of Gαq but have no effect on stimulation of Gαi or Gαs. In contrast, PTHR associations with NHERF2 enhance receptor-mediated stimulation of both Gαq and Gαi but decrease stimulation of Gαs. Consistent with these functional data, NHERF2 formed cellular complexes with both Gαq and Gαi, whereas NHERF1 was found to interact only with Gαq. These findings demonstrate that NHERF interactions regulate PTHR signaling at the level of G proteins and that NHERF1 and NHERF2 exhibit isotype-specific effects on G protein activation. PMID:20562104

  8. Vitamin D modulates tissue factor and protease-activated receptor 2 expression in vascular smooth muscle cells.

    Science.gov (United States)

    Martinez-Moreno, Julio M; Herencia, Carmen; Montes de Oca, Addy; Muñoz-Castañeda, Juan R; Rodríguez-Ortiz, M Encarnación; Díaz-Tocados, Juan M; Peralbo-Santaella, Esther; Camargo, Antonio; Canalejo, Antonio; Rodriguez, Mariano; Velasco-Gimena, Francisco; Almaden, Yolanda

    2016-03-01

    Clinical and epidemiologic studies reveal an association between vitamin D deficiency and increased risk of cardiovascular disease. Because vascular smooth muscle cell (VSMC)-derived tissue factor (TF) is suggested to be critical for arterial thrombosis, we investigated whether the vitamin D molecules calcitriol and paricalcitol could reduce the expression of TF induced by the proinflammatory cytokine TNF-α in human aortic VSMCs. We found that, compared with controls, incubation with TNF-α increased TF expression and procoagulant activity in a NF-κB-dependent manner, as deduced from the increased nuclear translocation of nuclear factor κ-light-chain-enhancer of activated B cells protein 65 (p65-NF-κB) and direct interaction of NF-κB to the TF promoter. This was accompanied by the up-regulation of TF signaling mediator protease-activated receptor 2 (PAR-2) expression and by the down-regulation of vitamin D receptor expression in a miR-346-dependent way. However, addition of calcitriol or paricalcitol blunted the TNF-α-induced TF expression and activity (2.01 ± 0.24 and 1.32 ± 0.14 vs. 3.02 ± 0.39 pmol/mg protein, P < 0.05), which was associated with down-regulation of NF-κB signaling and PAR-2 expression, as well as with restored levels of vitamin D receptor and enhanced expression of TF pathway inhibitor. Our data suggest that inflammation promotes a prothrombotic state through the up-regulation of TF function in VSMCs and that the beneficial cardiovascular effects of vitamin D may be partially due to decreases in TF expression and its activity in VSMCs.

  9. B-cell activating factor receptor deficiency is associated with an adult-onset antibody deficiency syndrome in humans

    OpenAIRE

    Warnatz, Klaus; Salzer, Ulrich; Rizzi, Marta; Fischer, Beate; Gutenberger, Sylvia; Böhm, Joachim; Kienzler, Anne-Kathrin; Pan-Hammarström, Qiang; Hammarström, Lennart; Rakhmanov, Mirzokhid; Schlesier, Michael; Grimbacher, Bodo; Peter, Hans-Hartmut; Eibel, Hermann

    2009-01-01

    B-cell survival depends on signals induced by B-cell activating factor (BAFF) binding to its receptor (BAFF-R). In mice, mutations in BAFF or BAFF-R cause B-cell lymphopenia and antibody deficiency. Analyzing BAFF-R expression and BAFF-binding to B cells in common variable immunodeficiency (CVID) patients, we identified two siblings carrying a homozygous deletion in the BAFF-R gene. Removing most of the BAFF-R transmembrane part, the deletion precludes BAFF-R expression. Without BAFF-R, B-cel...

  10. Receptor activator of nuclear factor-κB ligand and osteoprotegerin: maintaining the balance to prevent bone loss

    Directory of Open Access Journals (Sweden)

    Anne-Priscille Trouvin

    2010-11-01

    Full Text Available Anne-Priscille Trouvin, Vincent GoëbDepartment of Rheumatology, Rouen University Hospital, Rouen, FranceAbstract: Bone remodeling requires a precise balance between resorption and formation. It is a complex process that involves numerous factors: hormones, growth factors, vitamins, and cytokines, and notably osteoprotegerin (OPG and receptor activator for nuclear factor-κB (RANK ligand. The signaling pathway OPG/RANK/RANKL is key to regulation for maintaining the balance between the activity of osteoblasts and osteoclasts in order to prevent bone loss and ensure a normal bone turnover. In this review, the RANK/RANKL/OPG pathway is described. The multiple interactions of various factors (hormones, cytokines, growth factors, and vitamins with the OPG/RANK/RANKL pathway are also commented on. Finally, the effects of denosumab, a human monoclonal antibody that binds to RANKL and thereby inhibits the activation of osteoclasts, and of strontium ranelate are also described. Indeed, these two new drugs afford appreciable assistance in daily care practice, helping to prevent bone loss in patients with osteoporosis.Keywords: osteoprotegerin, OPG, RANK, RANKL, denosumab, strontium ranelate, osteoporosis

  11. The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation.

    Science.gov (United States)

    Zhong, Bo; Yang, Yan; Li, Shu; Wang, Yan-Yi; Li, Ying; Diao, Feici; Lei, Caoqi; He, Xiao; Zhang, Lu; Tien, Po; Shu, Hong-Bing

    2008-10-17

    Viral infection triggers activation of transcription factors such as NF-kappaB and IRF3, which collaborate to induce type I interferons (IFNs) and elicit innate antiviral response. Here, we identified MITA as a critical mediator of virus-triggered type I IFN signaling by expression cloning. Overexpression of MITA activated IRF3, whereas knockdown of MITA inhibited virus-triggered activation of IRF3, expression of type I IFNs, and cellular antiviral response. MITA was found to localize to the outer membrane of mitochondria and to be associated with VISA, a mitochondrial protein that acts as an adaptor in virus-triggered signaling. MITA also interacted with IRF3 and recruited the kinase TBK1 to the VISA-associated complex. MITA was phosphorylated by TBK1, which is required for MITA-mediated activation of IRF3. Our results suggest that MITA is a critical mediator of virus-triggered IRF3 activation and IFN expression and further demonstrate the importance of certain mitochondrial proteins in innate antiviral immunity.

  12. Effects of Buyang Huanwu decoction and Astragalus mongholicus on platelet activating factor receptor activity in rabbits in vitro

    Institute of Scientific and Technical Information of China (English)

    Hui Yao; Jiping Zhang; Zhixi Chen; Yongjie Wu; Zhiqiang Li

    2006-01-01

    BACKGROUND:The pharmacological action of traditional Chinese medicine compound is the comprehensive effect of the various ingredients,and the interactions of various ingredients are closely correlated with the final effect.In order to reveal the compatibility mechanism of BHD's prescription in treating and preventing ischemic cerebrovascular disease,we needed explore the effect and relation of ingredients in the prescription.OBJECTIVE:To observe the effect of Buyang Huanwu decoction(BHD)and Astragalus mongholicus on the activity of platelet activating factor receptor(PAFR)in the platelet of rabbits in vitro,and investigate the mechanism of Astragalus mongholicus.DESIGN:A decomposed recipes study.SETTING:Guangzhou University of Traditional Chinese Medicine.MATERIALS:Five New Zealand rabbits,weighing 2-3 kg,both sexes,were used.BHD was composed of Sheng Huang Qi 120 g,Dang Gui Wei 6 g,Chi Shao 4.5 g,Chuan Xiong 3 g,Di Long 3 g,Tao Ren 3 g,Hong Hua 3 g.The prescription for activating blood circulation consisted of Dang Gui Wei 6 g,Chi Shao 4.5 g,Chuan Xiong 3 g,Di Long 3 g,Tao Ren 3 g and Hong Hua 3 g.The prescription for invigorating qi consisted of 120 g Sheng Huang Qi.The prepared herbal pieces were purchased from the traditional Chinese medicine Dispensary of Foshan Second People's Hospital,and appraised by Professor Xu from Science of Chinese Materia Medica College,Guangzhou University of Traditional Chinese Medicine.3H-PAF was supplied by Amersham Co.,Ltd.(specific activity:6.475 TBq/mmol;batch number:200402);PAF standard by Biomol Co.,Ltd.(batch number:P1318V).METHODS:The experiments were carried out in the Laboratory of Nuclear Medicine,Guangzhou University of Traditional Chinese Medicine from September to December 2004.①Injections of BHD,prescriptions for activating blood circulation and invigorating qi were prepared by the decoction and alcohol sedimentation technique.Rabbit common carotid artery blood(40 mL)was drawn via intubation to prepare platelet

  13. A Murine Fibroblast Growth Factor (FGF) Receptor Expressed in CHO Cells is Activated by Basic FGF and Kaposi FGF

    Science.gov (United States)

    Mansukhani, Alka; Moscatelli, David; Talarico, Daniela; Levytska, Vera; Basilico, Claudio

    1990-06-01

    We have cloned a murine cDNA encoding a tyrosine kinase receptor with about 90% similarity to the chicken fibroblast growth factor (FGF) receptor and the human fms-like gene (FLG) tyrosine kinase. This mouse receptor lacks 88 amino acids in the extracellular portion, leaving only two immunoglobulin-like domains compared to three in the chicken FGF receptor. The cDNA was cloned into an expression vector and transfected into receptor-negative CHO cells. We show that cells expressing the receptor can bind both basic FGF and Kaposi FGF. Although the receptor binds basic FGF with a 15- to 20-fold higher affinity, Kaposi FGF is able to induce down-regulation of the receptor to the same extent as basic FGF. The receptor is phosphorylated upon stimulation with both FGFs, DNA synthesis is stimulated, and a proliferative response is produced in cells expressing the receptor, whereas cells expressing the cDNA in the antisense orientation show none of these responses to basic FGF or Kaposi FGF. Thus this receptor can functionally interact with two growth factors of the FGF family.

  14. Improved efficacy of soluble human receptor activator of nuclear factor kappa B (RANK) fusion protein by site-directed mutagenesis.

    Science.gov (United States)

    Son, Young Jun; Han, Jihye; Lee, Jae Yeon; Kim, HaHyung; Chun, Taehoon

    2015-06-01

    Soluble human receptor activator of nuclear factor kappa B fusion immunoglobulin (hRANK-Ig) has been considered as one of the therapeutic agents to treat osteoporosis or diseases associated with bone destruction by blocking the interaction between RANK and the receptor activator of nuclear factor kappa B ligand (RANKL). However, no scientific record showing critical amino acid residues within the structural interface between the human RANKL and RANK complex is yet available. In this study, we produced several mutants of hRANK-Ig by replacement of amino acid residue(s) and tested whether the mutants had increased binding affinity to human RANKL. Based on the results from flow cytometry and surface plasmon resonance analyses, the replacement of E(125) with D(125), or E(125) and C(127) with D(125) and F(127) within loop 3 of cysteine-rich domain 3 of hRANK-Ig increases binding affinity to human RANKL over the wild-type hRANK-Ig. This result may provide the first example of improvement in the efficacy of hRANK-Ig by protein engineering and may give additional information to understand a more defined structural interface between hRANK and RANKL.

  15. Tumor necrosis factor receptor-associated protein 1 improves hypoxia-impaired energy production in cardiomyocytes through increasing activity of cytochrome c oxidase subunit II.

    Science.gov (United States)

    Xiang, Fei; Ma, Si-Yuan; Zhang, Dong-Xia; Zhang, Qiong; Huang, Yue-Sheng

    2016-10-01

    Tumor necrosis factor receptor-associated protein 1 protects cardiomyocytes against hypoxia, but the underlying mechanisms are not completely understood. In the present study, we used gain- and loss-of-function approaches to explore the effects of tumor necrosis factor receptor-associated protein 1 and cytochrome c oxidase subunit II on energy production in hypoxic cardiomyocytes. Hypoxia repressed ATP production in cultured cardiomyocytes, whereas overexpression of tumor necrosis factor receptor-associated protein 1 significantly improved ATP production. Conversely, knockdown of tumor necrosis factor receptor-associated protein 1 facilitated the hypoxia-induced decrease in ATP synthesis. Further investigation revealed that tumor necrosis factor receptor-associated protein 1 induced the expression and activity of cytochrome c oxidase subunit II, a component of cytochrome c oxidase that is important in mitochondrial respiratory chain function. Moreover, lentiviral-mediated overexpression of cytochrome c oxidase subunit II antagonized the decrease in ATP synthesis caused by knockdown of tumor necrosis factor receptor-associated protein 1, whereas knockdown of cytochrome c oxidase subunit II attenuated the increase in ATP synthesis caused by overexpression of tumor necrosis factor receptor-associated protein 1. In addition, inhibition of cytochrome c oxidase subunit II by a specific inhibitor sodium azide suppressed the ATP sy nthesis induced by overexpressed tumor necrosis factor receptor-associated protein 1. Hence, tumor necrosis factor receptor-associated protein 1 protects cardiomyocytes from hypoxia at least partly via potentiation of energy generation, and cytochrome c oxidase subunit II is one of the downstream effectors that mediates the tumor necrosis factor receptor-associated protein 1-mediated energy generation program.

  16. Brain-derived neurotrophic factor controls activity-dependent maturation of CA1 synapses by downregulating tonic activation of presynaptic kainate receptors.

    Science.gov (United States)

    Sallert, Marko; Rantamäki, Tomi; Vesikansa, Aino; Anthoni, Heidi; Harju, Kirsi; Yli-Kauhaluoma, Jari; Taira, Tomi; Castren, Eero; Lauri, Sari E

    2009-09-09

    Immature hippocampal synapses express presynaptic kainate receptors (KARs), which tonically inhibit glutamate release. Presynaptic maturation involves activity-dependent downregulation of the tonic KAR activity and consequent increase in release probability; however, the molecular mechanisms underlying this developmental process are unknown. Here, we have investigated whether brain derived neurotrophic factor (BDNF), a secreted protein implicated in developmental plasticity in several areas of the brain, controls presynaptic maturation by regulating KARs. Application of BDNF in neonate hippocampal slices resulted in increase in synaptic transmission that fully occluded the immature-type KAR activity in area CA1. Conversely, genetic ablation of BDNF was associated with delayed synaptic maturation and persistent presynaptic KAR activity, suggesting a role for endogenous BDNF in the developmental regulation of KAR function. In addition, our data suggests a critical role for BDNF TrkB signaling in fast activity-dependent regulation of KARs. Selective acute inhibition of TrkB receptors using a chemical-genetic approach prevented rapid change in synapse dynamics and loss of tonic KAR activity that is typically seen in response to induction of LTP at immature synapses. Together, these data show that BDNF-TrkB-dependent maturation of glutamatergic synapses is tightly associated with a loss of endogenous KAR activity. The coordinated action of these two receptor mechanisms has immediate physiological relevance in controlling presynaptic efficacy and transmission dynamics at CA3-CA1 synapses at a stage of development when functional contact already exists but transmission is weak.

  17. Involvement of leukotriene B4 receptor 1 signaling in platelet-activating factor-mediated neutrophil degranulation and chemotaxis.

    Science.gov (United States)

    Gaudreault, Eric; Stankova, Jana; Rola-Pleszczynski, Marek

    2005-01-01

    Platelet-activating factor (PAF) is a potent lipid mediator of inflammation that can act on human neutrophils. When neutrophils are stimulated with PAF at concentrations greater than 10 nM, a double peak of intracellular calcium mobilization is observed. The second calcium peak observed in PAF-treated neutrophils has already been suggested to come from the production of endogenous leukotriene B4 (LTB4). Here we demonstrate the involvement of endogenous LTB4 production and subsequent activation of the high affinity LTB4 receptor (BLT1) in this second calcium mobilization peak observed after stimulation with PAF. We also show that the second, but not the first peak, could be desensitized by prior exposure to LTB4. Moreover, when neutrophils were pre-treated with pharmacological inhibitors of LTB4 production or with the specific BLT1 antagonist, U75302, PAF-mediated neutrophil degranulation was inhibited by more than 50%. On the other hand, pre-treating neutrophils with the PAF receptor specific antagonist (WEB2086) did not prevent any LTB4-induced degranulation. Also, when human neutrophils were pre-treated with U75302, PAF-mediated chemotaxis was reduced by more than 60%. These data indicate the involvement of BLT1 signaling in PAF-mediated neutrophil activities.

  18. Homoerydictyl-7-O-β-D-glycosidc—A Receptor Antagonist of Platelet-activating Factor (PAF)

    Institute of Scientific and Technical Information of China (English)

    GuanZengwei; WangYinye; YangXiuwei; CuiYuxin

    2001-01-01

    Homoeriodictyl-7-O-β-D-glycoside, a flavonoid compound isolated from the Chinese medic inalherb, viscum coloratura inhibited platelet aggregation induced by platelet-activating factor(PAF), but it had no inhibitory activity on adenosine diphosphate-induced platelet aggregation. In the present study, we intended to get an insight into the mechanism of its anti-PAF action. Using [3H]PAF receptor binding assay we found that the compound exhibited inhibitory activity. The inhibitory rate was 18.5%, 28.4%, 58.7%, 78% and 78%, respestively, at concentrations of 10-8, 10-7, 10-6, 10-5 and 10-4 mol.L-1, There was a visible dose-effect relationship as well as a correlation between different concentrations and their inhibitory rates (r=0.985, P<0.05) when the dose was equal to or less than 1×10-5 mol.L-1, and its IC50 was 8.0×10-7 mol.L-1. The inhibitory rate didn't increase with increasing concentration of the compound when it went beyond1×10-5 mol.L-1 indicating competitive inhibition of binding of [3H]PAF to PAF receptor reached saturation.

  19. The enteropathogenic E. coli (EPEC Tir effector inhibits NF-κB activity by targeting TNFα receptor-associated factors.

    Directory of Open Access Journals (Sweden)

    Marie-Hélène Ruchaud-Sparagano

    2011-12-01

    Full Text Available Enteropathogenic Escherichia coli (EPEC disease depends on the transfer of effector proteins into epithelia lining the human small intestine. EPEC E2348/69 has at least 20 effector genes of which six are located with the effector-delivery system genes on the Locus of Enterocyte Effacement (LEE Pathogenicity Island. Our previous work implied that non-LEE-encoded (Nle effectors possess functions that inhibit epithelial anti-microbial and inflammation-inducing responses by blocking NF-κB transcription factor activity. Indeed, screens by us and others have identified novel inhibitory mechanisms for NleC and NleH, with key co-operative functions for NleB1 and NleE1. Here, we demonstrate that the LEE-encoded Translocated-intimin receptor (Tir effector has a potent and specific ability to inhibit NF-κB activation. Indeed, biochemical, imaging and immunoprecipitation studies reveal a novel inhibitory mechanism whereby Tir interaction with cytoplasm-located TNFα receptor-associated factor (TRAF adaptor proteins induces their proteasomal-independent degradation. Infection studies support this Tir-TRAF relationship but reveal that Tir, like NleC and NleH, has a non-essential contribution in EPEC's NF-κB inhibitory capacity linked to Tir's activity being suppressed by undefined EPEC factors. Infections in a disease-relevant intestinal model confirm key NF-κB inhibitory roles for the NleB1/NleE1 effectors, with other studies providing insights on host targets. The work not only reveals a second Intimin-independent property for Tir and a novel EPEC effector-mediated NF-κB inhibitory mechanism but also lends itself to speculations on the evolution of EPEC's capacity to inhibit NF-κB function.

  20. Growth Factor Receptor-Bound Protein 14 Undergoes Light-Dependent Intracellular Translocation in Rod Photoreceptors: Functional Role on Retinal Insulin Receptor Activation

    OpenAIRE

    Rajala, Ammaji; Roger J. Daly; Tanito, Masaki; Allen, Dustin T.; Lowenna J Holt; Lobanova, Ekaterina; Arshavsky, Vadim Y; Rajala, Raju V.S.

    2009-01-01

    Growth factor receptor-bound protein 14 (Grb14) is involved in growth factor receptor tyrosine kinase signaling. Here we report that light causes a major redistribution of Grb14 among the individual subcellular compartments of the retinal rod photoreceptor. Grb14 is localized predominantly to the inner segment, nuclear layer and synapse in dark-adapted rods, whereas in the light-adapted rods, Grb14 redistributed throughout the entire cell, including the outer segment. The translocation of Grb...

  1. Hepatitis C virus induces epidermal growth factor receptor activation via CD81 binding for viral internalization and entry.

    Science.gov (United States)

    Diao, Jingyu; Pantua, Homer; Ngu, Hai; Komuves, Laszlo; Diehl, Lauri; Schaefer, Gabriele; Kapadia, Sharookh B

    2012-10-01

    While epidermal growth factor receptor (EGFR) has been shown to be important in the entry process for multiple viruses, including hepatitis C virus (HCV), the molecular mechanisms by which EGFR facilitates HCV entry are not well understood. Using the infectious cell culture HCV model (HCVcc), we demonstrate that the binding of HCVcc particles to human hepatocyte cells induces EGFR activation that is dependent on interactions between HCV and CD81 but not claudin 1. EGFR activation can also be induced by antibody mediated cross-linking of CD81. In addition, EGFR ligands that enhance the kinetics of HCV entry induce EGFR internalization and colocalization with CD81. While EGFR kinase inhibitors inhibit HCV infection primarily by preventing EGFR endocytosis, antibodies that block EGFR ligand binding or inhibitors of EGFR downstream signaling have no effect on HCV entry. These data demonstrate that EGFR internalization is critical for HCV entry and identify a hitherto-unknown association between CD81 and EGFR.

  2. The unsialylated subpopulation of recombinant activated factor VII binds to the asialo-glycoprotein receptor (ASGPR) on primary rat hepatocytes.

    Science.gov (United States)

    Seested, Torben; Nielsen, Hanne M; Christensen, Erik I; Appa, Rupa S

    2010-12-01

    Recombinant activated factor VII (rFVIIa; NovoSeven®) is a heterogeneously glycosylated serine protease used for treatment of haemophiliacs with inhibitors. The drug substance contains a subpopulation consisting of ~20% of rFVIIa molecules which are unsialylated and consists of carbohydrate moieties with terminally exposed galactose and N-acetyl-D-galactosamine (GalNAc). Recently, data from an in situ perfused liver model showed that a subpopulation of rFVIIa, appearing to be unsialylated rFVIIa, was cleared by the liver, thus suggesting a carbohydrate-moiety mediated mechanism. The parenchymal cells of the liver, hepatocytes, are known to abundantly express functional carbohydrate-specific receptors and in this study we therefore used primary rat hepatocytes to study binding and intracellular fate of rFVIIa at a cellular level. Immunofluorescence microscopy showed that rFVIIa was distributed into distinct intracellular vesicles and electron microscopic autoradiography revealed that radioiodinated rFVIIa distributed only into cytoplasmic free vesicles resembling endosomes and lysosomes. These findings suggest that endocytosis of rFVIIa in hepatocytes could be partly mediated via initial membrane binding to a receptor. Quantitative binding studies showed that the presence of excess unlabelled asialo-orosomucoid, asialo-rFVIIa and GalNAc significantly decreased binding of 125I-rFVIIa. An antibody which specifically binds to the carbohydrate recognition domain of the asialoglycoprotein receptor (ASGPR) significantly decreased binding of asialo-rFVIIa by ~36% and rFVIIa by ~19%. Together our data showed that a receptor-mediated mechanism involving the ASGPR is able to bind a subpopulation of unsialylated rFVIIa, while a hepatic mechanism for binding and clearing sialylated rFVIIa is still unknown.

  3. Enduring, Handling-Evoked Enhancement of Hippocampal Memory Function and Glucocorticoid Receptor Expression Involves Activation of the Corticotropin-Releasing Factor Type 1 Receptor

    Science.gov (United States)

    Fenoglio, Kristina A.; Brunson, Kristen L.; Avishai-Eliner, Sarit; Stone, Blake A.; Kapadia, Bhumika J.; Baram, Tallie Z.

    2011-01-01

    Early-life experience, including maternal care, influences hippocampus-dependent learning and memory throughout life. Handling of pups during postnatal d 2–9 (P2–9) stimulates maternal care and leads to improved memory function and stress-coping. The underlying molecular mechanisms may involve early (by P9) and enduring reduction of hypothalamic corticotropin-releasing factor (CRF) expression and subsequent (by P45) increase in hippocampal glucocorticoid receptor (GR) expression. However, whether hypothalamic CRF levels influence changes in hippocampal GR expression (and memory function), via reduced CRF receptor activation and consequent lower plasma glucocorticoid levels, is unclear. In this study we administered selective antagonist for the type 1 CRF receptor, NBI 30775, to nonhandled rats post hoc from P10–17 and examined hippocampus-dependent learning and memory later (on P50–70), using two independent paradigms, compared with naive and vehicle-treated nonhandled, and naive and antagonist-treated handled rats. Hippocampal GR and hypothalamic CRF mRNA levels and stress-induced plasma corticosterone levels were also examined. Transient, partial selective blockade of CRF1 in nonhandled rats improved memory functions on both the Morris watermaze and object recognition tests to levels significantly better than in naive and vehicle-treated controls and were indistinguishable from those in handled (naive, vehicle-treated, and antagonist-treated) rats. GR mRNA expression was increased in hippocampal CA1 and the dentate gyrus of CRF1-antagonist treated nonhandled rats to levels commensurate with those in handled cohorts. Thus, the extent of CRF1 activation, probably involving changes in hypothalamic CRF levels and release, contributes to the changes in hippocampal GR expression and learning and memory functions. PMID:15932935

  4. Acyl-CoA esters antagonize the effects of ligands on peroxisome proliferator-activated receptor alpha conformation, DNA binding, and interaction with Co-factors

    DEFF Research Database (Denmark)

    Elholm, M; Dam, I; Jorgensen, C;

    2001-01-01

    The peroxisome proliferator-activated receptor alpha (PPARalpha) is a ligand-activated transcription factor and a key regulator of lipid homeostasis. Numerous fatty acids and eicosanoids serve as ligands and activators for PPARalpha. Here we demonstrate that S-hexadecyl-CoA, a nonhydrolyzable...

  5. Peptides derived from specific interaction sites of the fibroblast growth factor 2 - FGF receptor complexes induce receptor activation and signaling

    DEFF Research Database (Denmark)

    Manfè, Valentina; Kochoyan, Artur; Bock, Elisabeth

    2010-01-01

    , promoting survival of cerebellar granule neurons induced to undergo apoptosis. Our results suggest that canofins mirror the effect of specific interaction sites in FGF2 for FGFR. Thus, canofins are valuable pharmacological tools to study the functional roles of specific molecular interactions of FGF2...... by canofins, indicating that canofins are partial FGFR agonists. Furthermore, canofins were demonstrated to induce neuronal differentiation determined by neurite outgrowth from cerebellar granule neurons, and this effect was dependent on FGFR activation. Additionally, canofins acted as neuroprotectants...

  6. Active macropinocytosis induction by stimulation of epidermal growth factor receptor and oncogenic Ras expression potentiates cellular uptake efficacy of exosomes.

    Science.gov (United States)

    Nakase, Ikuhiko; Kobayashi, Nahoko Bailey; Takatani-Nakase, Tomoka; Yoshida, Tetsuhiko

    2015-06-03

    Exosomes are approximately 100-nm vesicles that consist of a lipid bilayer of cellular membranes secreted in large quantities from various types of normal and disease-related cells. Endocytosis has been reported as a major pathway for the cellular uptake of exosomes; however, the detailed mechanisms of their cellular uptake are still unknown. Here, we demonstrate the active induction of macropinocytosis (accompanied by actin reorganisation, ruffling of plasma membrane, and engulfment of large volumes of extracellular fluid) by stimulation of cancer-related receptors and show that the epidermal growth factor (EGF) receptor significantly enhances the cellular uptake of exosomes. We also demonstrate that oncogenic K-Ras-expressing MIA PaCa-2 cells exhibit intensive macropinocytosis that actively transports extracellular exosomes into the cells compared with wild-type K-Ras-expressing BxPC-3 cells. Furthermore, encapsulation of the ribosome-inactivating protein saporin with EGF in exosomes using our simple electroporation method produces superior cytotoxicity via the enhanced cellular uptake of exosomes. Our findings contribute to the biological, pharmaceutical, and medical research fields in terms of understanding the macropinocytosis-mediated cellular uptake of exosomes with applications for exosomal delivery systems.

  7. Human lung-resident macrophages express CB1 and CB2 receptors whose activation inhibits the release of angiogenic and lymphangiogenic factors.

    Science.gov (United States)

    Staiano, Rosaria I; Loffredo, Stefania; Borriello, Francesco; Iannotti, Fabio Arturo; Piscitelli, Fabiana; Orlando, Pierangelo; Secondo, Agnese; Granata, Francescopaolo; Lepore, Maria Teresa; Fiorelli, Alfonso; Varricchi, Gilda; Santini, Mario; Triggiani, Massimo; Di Marzo, Vincenzo; Marone, Gianni

    2016-04-01

    Macrophages are pivotal effector cells in immune responses and tissue remodeling by producing a wide spectrum of mediators, including angiogenic and lymphangiogenic factors. Activation of cannabinoid receptor types 1 and 2 has been suggested as a new strategy to modulate angiogenesis in vitro and in vivo. We investigated whether human lung-resident macrophages express a complete endocannabinoid system by assessing their production of endocannabinoids and expression of cannabinoid receptors. Unstimulated human lung macrophage produce 2-arachidonoylglycerol,N-arachidonoyl-ethanolamine,N-palmitoyl-ethanolamine, and N-oleoyl-ethanolamine. On LPS stimulation, human lung macrophages selectively synthesize 2-arachidonoylglycerol in a calcium-dependent manner. Human lung macrophages express cannabinoid receptor types 1 and 2, and their activation induces ERK1/2 phosphorylation and reactive oxygen species generation. Cannabinoid receptor activation by the specific synthetic agonists ACEA and JWH-133 (but not the endogenous agonist 2-arachidonoylglycerol) markedly inhibits LPS-induced production of vascular endothelial growth factor-A, vascular endothelial growth factor-C, and angiopoietins and modestly affects IL-6 secretion. No significant modulation of TNF-α or IL-8/CXCL8 release was observed. The production of vascular endothelial growth factor-A by human monocyte-derived macrophages is not modulated by activation of cannabinoid receptor types 1 and 2. Given the prominent role of macrophage-assisted vascular remodeling in many tumors, we identified the expression of cannabinoid receptors in lung cancer-associated macrophages. Our results demonstrate that cannabinoid receptor activation selectively inhibits the release of angiogenic and lymphangiogenic factors from human lung macrophage but not from monocyte-derived macrophages. Activation of cannabinoid receptors on tissue-resident macrophages might be a novel strategy to modulate macrophage-assisted vascular remodeling

  8. Impact of active smoking on survival of patients with metastatic lung adenocarcinoma harboring an epidermal growth factor receptor (EGFR) mutation.

    Science.gov (United States)

    Erdogan, Bulent; Kodaz, Hilmi; Karabulut, Senem; Cinkaya, Ahmet; Tozkir, Hilmi; Tanriverdi, Ozgur; Cabuk, Devrim; Hacioglu, Muhammed Bekir; Turkmen, Esma; Hacibekiroglu, Ilhan; Uzunoglu, Sernaz; Cicin, Irfan

    2016-11-10

    Lung cancer in smokers and non-smokers demonstrates distinct genetic profiles, and cigarette smoking affects epidermal growth factor receptor (EGFR) function and causes secondary EGFR tyrosine kinase resistance. We evaluated the effect of active smoking in patients with metastatic lung adenocarcinoma. A total of 132 metastatic lung adenocarcinoma patients, diagnosed between 2008 and 2013, with known EGFR mutation status, were evaluated retrospectively. Among these patients, 40 had an activating EGFR mutation. Patients who continued smoking during the treatment were defined as active smokers. Former smokers and never smokers were together defined as non-smokers. The outcomes of the treatment in relation to the EGFR mutation and smoking status were evaluated. The median follow-up time was 10.5 months. The overall response rate for the first-line therapy was significantly higher among the EGFR-mutant patients (p = 0.01), however, smoking status had no impact on the response rate (p = 0.1). The EGFR-mutant active smokers progressed earlier than the non-smokers (p Smoking status did not affect the OS in EGFR wild type tumors (p = 0.49) but EGFR-mutant non-smokers had a longer OS than the active smokers (p = 0.01).The active smokers treated with erlotinib had poorer survival than the non-smokers (p = 0.03). Multivariate analysis of EGFR-mutant patients showed that erlotinib treatment at any line and non-smoking were independent prognostic factors for the OS (p = 0.04 and p = 0.01, respectively). Smoking during treatment is a negative prognostic factor in metastatic lung adenocarcinoma with an EGFR mutation.

  9. Follicle-stimulating hormone regulates expression and activity of epidermal growth factor receptor in the murine ovarian follicle.

    Science.gov (United States)

    El-Hayek, Stephany; Demeestere, Isabelle; Clarke, Hugh J

    2014-11-25

    Fertility depends on the precise coordination of multiple events within the ovarian follicle to ensure ovulation of a fertilizable egg. FSH promotes late follicular development, including expression of luteinizing hormone (LH) receptor by the granulosa cells. Expression of its receptor permits the subsequent LH surge to trigger the release of ligands that activate EGF receptors (EGFR) on the granulosa, thereby initiating the ovulatory events. Here we identify a previously unknown role for FSH in this signaling cascade. We show that follicles of Fshb(-/-) mice, which cannot produce FSH, have a severely impaired ability to support two essential EGFR-regulated events: expansion of the cumulus granulosa cell layer that encloses the oocyte and meiotic maturation of the oocyte. These defects are not caused by an inability of Fshb(-/-) oocytes to produce essential oocyte-secreted factors or of Fshb(-/-) cumulus cells to respond. In contrast, although expression of both Egfr and EGFR increases during late folliculogenesis in Fshb(+/-) females, these increases fail to occur in Fshb(-/-) females. Remarkably, supplying a single dose of exogenous FSH activity to Fshb(-/-) females is sufficient to increase Egfr and EGFR expression and to restore EGFR-dependent cumulus expansion and oocyte maturation. These studies show that FSH induces an increase in EGFR expression during late folliculogenesis and provide evidence that the FSH-dependent increase is necessary for EGFR physiological function. Our results demonstrate an unanticipated role for FSH in establishing the signaling axis that coordinates ovulatory events and may contribute to the diagnosis and treatment of some types of human infertility.

  10. Follicle-stimulating hormone regulates expression and activity of epidermal growth factor receptor in the murine ovarian follicle

    Science.gov (United States)

    El-Hayek, Stephany; Demeestere, Isabelle; Clarke, Hugh J.

    2014-01-01

    Fertility depends on the precise coordination of multiple events within the ovarian follicle to ensure ovulation of a fertilizable egg. FSH promotes late follicular development, including expression of luteinizing hormone (LH) receptor by the granulosa cells. Expression of its receptor permits the subsequent LH surge to trigger the release of ligands that activate EGF receptors (EGFR) on the granulosa, thereby initiating the ovulatory events. Here we identify a previously unknown role for FSH in this signaling cascade. We show that follicles of Fshb−/− mice, which cannot produce FSH, have a severely impaired ability to support two essential EGFR-regulated events: expansion of the cumulus granulosa cell layer that encloses the oocyte and meiotic maturation of the oocyte. These defects are not caused by an inability of Fshb−/− oocytes to produce essential oocyte-secreted factors or of Fshb−/− cumulus cells to respond. In contrast, although expression of both Egfr and EGFR increases during late folliculogenesis in Fshb+/− females, these increases fail to occur in Fshb−/− females. Remarkably, supplying a single dose of exogenous FSH activity to Fshb−/− females is sufficient to increase Egfr and EGFR expression and to restore EGFR-dependent cumulus expansion and oocyte maturation. These studies show that FSH induces an increase in EGFR expression during late folliculogenesis and provide evidence that the FSH-dependent increase is necessary for EGFR physiological function. Our results demonstrate an unanticipated role for FSH in establishing the signaling axis that coordinates ovulatory events and may contribute to the diagnosis and treatment of some types of human infertility. PMID:25385589

  11. Amphiregulin triggered epidermal growth factor receptor activation confers in vivo crizotinib-resistance of EML4-ALK lung cancer and circumvention by epidermal growth factor receptor inhibitors.

    Science.gov (United States)

    Taniguchi, Hirokazu; Takeuchi, Shinji; Fukuda, Koji; Nakagawa, Takayuki; Arai, Sachiko; Nanjo, Shigeki; Yamada, Tadaaki; Yamaguchi, Hiroyuki; Mukae, Hiroshi; Yano, Seiji

    2017-01-01

    Crizotinib, a first-generation anaplastic lymphoma kinase (ALK) tyrosine-kinase inhibitor, is known to be effective against echinoderm microtubule-associated protein-like 4 (EML4)-ALK-positive non-small cell lung cancers. Nonetheless, the tumors subsequently become resistant to crizotinib and recur in almost every case. The mechanism of the acquired resistance needs to be deciphered. In this study, we established crizotinib-resistant cells (A925LPE3-CR) via long-term administration of crizotinib to a mouse model of pleural carcinomatous effusions; this model involved implantation of the A925LPE3 cell line, which harbors the EML4-ALK gene rearrangement. The resistant cells did not have the secondary ALK mutations frequently occurring in crizotinib-resistant cells, and these cells were cross-resistant to alectinib and ceritinib as well. In cell clone #2, which is one of the clones of A925LPE3-CR, crizotinib sensitivity was restored via the inhibition of epidermal growth factor receptor (EGFR) by means of an EGFR tyrosine-kinase inhibitor (erlotinib) or an anti-EGFR antibody (cetuximab) in vitro and in the murine xenograft model. Cell clone #2 did not have an EGFR mutation, but the expression of amphiregulin (AREG), one of EGFR ligands, was significantly increased. A knockdown of AREG with small interfering RNAs restored the sensitivity to crizotinib. These data suggest that overexpression of EGFR ligands such as AREG can cause resistance to crizotinib, and that inhibition of EGFR signaling may be a promising strategy to overcome crizotinib resistance in EML4-ALK lung cancer.

  12. Vascular endothelial (VEGF) and epithelial growth factor (EGF) as well as platelet-activating factor (PAF) and receptors are expressed in the early pregnant canine uterus.

    Science.gov (United States)

    Schäfer-Somi, S; Sabitzer, S; Klein, D; Reinbacher, E; Kanca, H; Beceriklisoy, H B; Aksoy, O A; Kucukaslan, I; Macun, H C; Aslan, S

    2013-02-01

    The aim of this study was to investigate the course of expression of platelet-activating factor (PAF), PAF-receptor (PAF-R), epidermal growth factor (EGF), EGF-R, vascular endothelial growth factor (VEGF), VEGF-R1 and VEGF-R2 in uterine tissue during canine pregnancy. For this purpose, 20 bitches were ovariohysterectomized at days 10-12 (n = 10), 18-25 (n = 5) and 28-45 (n = 5) days after mating, respectively. The pre-implantation group was proven pregnant by embryo flushing of the uterus after the operation, the others by sonography. Five embryo negative, that is, non-pregnant, bitches in diestrus (day 10-12) served as controls. Tissue samples from the uterus (placentation sites and horn width, respectively) were excised and snap-frozen in liquid nitrogen after embedding in Tissue Tec(®). Extraction of mRNA for RT-PCR was performed with Tri-Reagent. In the embryos, mRNA from all factors except VEGF was detected. In the course of pregnancy, significantly higher expression of PAF and PAFR as well as VEGF and VEGFR2 during the pre-implantation stage than in all other stages and a strong upregulation of EGF during implantation were characteristic. The course of EGF was in diametrical opposition to the course of the receptor. These results point towards an increased demand for VEGF, EGF and PAF during the earliest stages of canine pregnancy.

  13. Berberine regulates peroxisome proliferator-activated receptors and positive transcription elongation factor b expression in diabetic adipocytes.

    Science.gov (United States)

    Zhou, Jiyin; Zhou, Shiwen

    2010-12-15

    Berberine has hypoglycemic and hypolipidemic effects on diabetic rats. This study investigated the relationship between hypoglycemic and hypolipidemic effects of berberine and peroxisome proliferator-activated receptors (PPARs) and positive transcription elongation factor b (P-TEFb) (including cyclin-dependent kinase 9 (CDK9) and cyclin T1) in white adipose tissue of diabetic rats and RNA interference-treated 3T3-L1 cells. Berberine promoted differentiation and inhibited lipid accumulation of 3T3-L1 cells, further decreased PPARα/δ/γ, CDK9 and cyclin T1 mRNA and protein expression and decreased tumor necrosis factor α content in supernatants of both control and RNA interference-treated 3T3-L1 cells. After a 16-week induction with 35 mg/kg streptozotocin (i.p.) and high-carbohydrate/high-fat diet, diabetic rats were treated with 75, 150 and 300 mg/kg berberine and 100 mg/kg fenofibrate or 4 mg/kg rosiglitazone for another 16 weeks. Berberine decreased white adipose tissue to body weight ratio and adipocyte size and increased adipocyte number. Berberine upregulated PPARα/δ/γ, CDK9 and cyclin T1 mRNA and protein expression in adipose tissue, decreased tumor necrosis factor α and free fatty acid content and increased lipoprotein lipase activity in serum and adipose tissue. Berberine modulated metabolic related PPARs expression and differentiation related P-TEFb expression in adipocytes, which are associated with its hypoglycemic and hypolipidemic effects.

  14. Reactivation of Gαi-coupled formyl peptide receptors is inhibited by Gαq-selective inhibitors when induced by signals generated by the platelet-activating factor receptor.

    Science.gov (United States)

    Holdfeldt, André; Dahlstrand Rudin, Agnes; Gabl, Michael; Rajabkhani, Zahra; König, Gabriele M; Kostenis, Evi; Dahlgren, Claes; Forsman, Huamei

    2017-09-01

    Formyl peptide receptor (FPR)-desensitized neutrophils display increased production/release of superoxide (O2(-)) when activated by platelet-activating factor (PAF), a priming of the response achieved through a unique receptor crosstalk mechanism. The aim of this study was to determine the effect of an inhibitor selective for small, heterotrimeric G proteins belonging to the Gαq subclass on that receptor crosstalk. We show that signals generated by FPRs and the PAF receptor (PAFR) induce activation of the neutrophil O2(-), producing NADPH-oxidase, and that response was sensitive to Gαq inhibition in cells activated by PAF, but no inhibition was obtained in cells activated by FPR agonists. Signaling in naive neutrophils is terminated fairly rapidly, and the receptors become homologously desensitized. The downstream sensitivity to Gαq inhibition in desensitized cells displaying increased production/release of O2(-) through the PAFR receptor crosstalk mechanism also comprised the reactivation of the FPRs, and the activation signals were redirected from the PAFR to the desensitized/reactivated FPRs. The Gαq-dependent activation signals generated by the PAFRs activate the Gαi-coupled FPRs, a receptor crosstalk that represents a novel pathway by which G protein-coupled receptors can be regulated and signaling can be turned on and off. © Society for Leukocyte Biology.

  15. Suppression of piriform cortex activity in rat by corticotropin-releasing factor 1 and serotonin 2A/C receptors.

    Science.gov (United States)

    Narla, Chakravarthi; Dunn, Henry A; Ferguson, Stephen S G; Poulter, Michael O

    2015-01-01

    The piriform cortex (PC) is richly innervated by corticotropin-releasing factor (CRF) and serotonin (5-HT) containing axons arising from central amygdala and Raphe nucleus. CRFR1 and 5-HT2A/2CRs have been shown to interact in manner where CRFR activation subsequently potentiates the activity of 5-HT2A/2CRs. The purpose of this study was to determine how the activation of CRFR1 and/or 5-HT2Rs modulates PC activity at both the circuit and cellular level. Voltage sensitive dye imaging showed that CRF acting through CRFR1 dampened activation of the Layer II of PC and interneurons of endopiriform nucleus. Application of the selective 5-HT2A/CR agonist 2,5-dimethoxy-4-iodoamphetamine (DOI) following CRFR1 activation potentiated this effect. Blocking the interaction between CRFR1 and 5-HT2R with a Tat-CRFR1-CT peptide abolished this potentiation. Application of forskolin did not mimic CRFR1 activity but instead blocked it, while a protein kinase A antagonist had no effect. However, activation and antagonism of protein kinase C (PKC) either mimicked or blocked CRF modulation, respectively. DOI had no effect when applied alone indicating that the prior activation of CRFR1 receptors was critical for DOI to show significant effects similar to CRF. Patch clamp recordings showed that both CRF and DOI reduced the synaptic responsiveness of Layer II pyramidal neurons. CRF had highly variable effects on interneurons within Layer III, both increasing and decreasing their excitability, but DOI had no effect on the excitability of this group of neurons. These data show that CRF and 5-HT, acting through both CRFR1 and 5-HT2A/CRs, reduce the activation of the PC. This modulation may be an important blunting mechanism of stressor behaviors mediated through the olfactory cortex.

  16. Suppression of piriform cortex activity in rat by corticotropin-releasing factor 1 and serotonin 2A/C receptors

    Directory of Open Access Journals (Sweden)

    Chakravarthi eNarla

    2015-05-01

    Full Text Available The piriform cortex (PC is richly innervated by Corticotropin-releasing factor (CRF and Serotonin (5-HT containing axons arising from central amygdala and Raphe nucleus. CRFR1 and 5-HT2A/2CRs have been shown to interact in manner where CRFR activation subsequently potentiates the activity of 5-HT2A/2CRs. The purpose of this study was to determine how the activation of CRFR1 and/or 5-HT2Rs modulates PC activity at both the circuit and cellular level. Voltage sensitive dye imaging showed that CRF acting through CRFR1 dampened activation of the layer II of PC and interneurons of endopiriform nucleus. Application of the selective 5-HT2A/CR agonist 2,5-dimethoxy-4-iodoamphetamine (DOI following CRFR1 activation potentiated this effect. Blocking the interaction between CRFR1 and 5-HT2R with a Tat-CRFR1-CT peptide abolished this potentiation. Application of forskolin did not mimic CRFR1 activity but instead blocked it, while a protein kinase A antagonist had no effect. However, activation and antagonism of protein kinase C (PKC either mimicked or blocked CRF modulation respectively. DOI had no effect when applied alone indicating that the prior activation of CRFR1 receptors was critical for DOI to show significant effects similar to CRF. Patch clamp recordings showed that both CRF and DOI reduced the synaptic responsiveness of layer II pyramidal neurons. CRF had highly variable effects on interneurons within layer III, both increasing and decreasing their excitability, but DOI had no effect on the excitability of this group of neurons. These data show that CRF and serotonin, acting through both CRFR1 and 5-HT2A/CRs, reduce the activation of the PC. This modulation may be an important blunting mechanism of stressor behaviours mediated through the olfactory cortex.

  17. Soluble expression and purification of receptor activator of nuclear factor-kappa B ligand using Escherichia coli.

    Science.gov (United States)

    Park, Sol-Ji; Lee, Se-Hoon; Kim, Kwang-Jin; Kim, Sung-Gun; Kim, Hangun; Choe, Han; Lee, Sang Yeol; Yun, Jung-Mi; Cho, Jae Youl; Chun, Jiyeon; Choi, Kap Seong; Son, Young-Jin

    2015-02-01

    Receptor activator of nuclear factor-kappa B ligand (RANKL) is a critical factor in osteoclastogenesis. It makes osteoclasts differentiate and multinucleate in bone remodeling. In the present study, RANKL was expressed as a soluble maltose binding protein (MBP)-fusion protein using the Escherichia coli maltose binding domain tag system (pMAL) expression vector system. The host cell E. coli DH5α was cultured and induced by isopropyl β-D-1- thiogalactopyranoside for rRANKL expression. Cells were disrupted by sonication to collect soluble MBP-fused rRANKL. The MBP-fusion rRANKL was purified with MBP Trap affinity chromatography and treated with Tobacco Etch Virus nuclear inclusion endopeptidase (TEV protease) to remove the MBP fusion protein. Dialysis was then carried out to remove binding maltose from the cleaved rRANKL solution. The cleaved rRANKL was purified with a second MBP Trap affinity chromatography to separate unsevered MBP-fusion rRANKL and cleaved MBP fusion protein. The purified rRANKL was shown to have biological activity by performing in vitro cell tests. In conclusion, biologically active rRANKL was successfully purified by a simple two-step chromatography purification process with one column.

  18. AZD-4547 exerts potent cytostatic and cytotoxic activities against fibroblast growth factor receptor (FGFR)-expressing colorectal cancer cells.

    Science.gov (United States)

    Yao, Ting-Jing; Zhu, Jin-Hai; Peng, De-Feng; Cui, Zhen; Zhang, Chao; Lu, Pei-hua

    2015-07-01

    Colorectal cancer (CRC) causes significant mortalities worldwide. Fibroblast growth factor (FGF) receptor (FGFR) signaling is frequently dysregulated and/or constitutively activated in CRCs, contributing to cancer carcinogenesis and progression. Here, we studied the activity of AZD-4547, a novel and potent FGFR kinase inhibitor, on CRC cells. AZD-4547 inhibited CRC cell growth in vitro, and its activity correlated with the FGFR-1/2 expression level. AZD-4547 was cytotoxic and pro-apoptotic in FGFR-1/2-expressed CRC cell lines (NCI-H716 and HCT-116), but not in FGFR-1/2 null HT-29 cells. Further, AZD-4547 inhibited cell cycle progression and attenuated the activation of FGFR1-FGFR substrate 2 (FRS-2), ERK/mitogen-activated protein kinase (MAPK), and AKT/mammalian target of rapamycin (AKT/mTOR) signalings in NCI-H716 and HCT-116 cells. In vivo, AZD-4547 oral administration at effective doses inhibited NCI-H716 (high FGFR-1/2 expression) xenograft growth in nude mice. Phosphorylation of FGFR-1, AKT, and ERK1/2 in xenograft specimens was also inhibited by AZD-4547 administration. Thus, our preclinical studies strongly support possible clinical investigations of AZD-4547 for the treatment of CRCs harboring deregulated FGFR signalings.

  19. Neurite outgrowth induced by a synthetic peptide ligand of neural cell adhesion molecule requires fibroblast growth factor receptor activation

    DEFF Research Database (Denmark)

    Rønn, L C; Doherty, P; Holm, A;

    2000-01-01

    The neural cell adhesion molecule NCAM is involved in axonal outgrowth and target recognition in the developing nervous system. In vitro, NCAM-NCAM binding has been shown to induce neurite outgrowth, presumably through an activation of fibroblast growth factor receptors (FGFRs). We have recently...... identified a neuritogenic ligand, termed the C3 peptide, of the first immunoglobulin (lg) module of NCAM using a combinatorial library of synthetic peptides. Here we investigate whether stimulation of neurite outgrowth by this synthetic ligand of NCAM involves FGFRs. In primary cultures of cerebellar neurons...... from wild-type mice, the C3 peptide stimulated neurite outgrowth. This response was virtually absent in cultures of cerebellar neurons from transgenic mice expressing a dominant-negative form of the FGFR1. Likewise, in PC12E2 cells transiently expressing a dominant-negative form of the mouse FGFR1...

  20. Expression of a splice variant of the platelet-activating factor receptor transcript 2 in various human cancer cell lines

    Directory of Open Access Journals (Sweden)

    Ibtissam Youlyouz

    2002-01-01

    Full Text Available Platelet-activating factor receptor (PAF-R transcripts were analysed by reverse transcriptase-polymerase chain reaction in five human cancer cell lines derived from the breast (BT20, SKBR3 and T47D cells, the pancreas (Miapaca cells and the bladder (5637 cells in order to confirm the existence of a splice variant of the PAF-R transcript 2. After cloning and sequencing, we confirmed its existence in all cell lines. It consisted of the PAF-R transcript 2 lengthening with 82 nucleotides from the 3' end of exon 1 of the PAF-R gene. The role of this elongated form of the tissue-type PAF-R transcript in cell physiology remains to be elucidated.

  1. Ezrin ubiquitylation by the E3 ubiquitin ligase, WWP1, and consequent regulation of hepatocyte growth factor receptor activity.

    Directory of Open Access Journals (Sweden)

    Rania F Zaarour

    Full Text Available The membrane cytoskeleton linker ezrin participates in several functions downstream of the receptor Met in response to Hepatocyte Growth Factor (HGF stimulation. Here we report a novel interaction of ezrin with a HECT E3 ubiquitin ligase, WWP1/Aip5/Tiul1, a potential oncogene that undergoes genomic amplification and overexpression in human breast and prostate cancers. We show that ezrin binds to the WW domains of WWP1 via the consensus motif PPVY(477 present in ezrin's C-terminus. This association results in the ubiquitylation of ezrin, a process that requires an intact PPVY(477 motif. Interestingly ezrin ubiquitylation does not target the protein for degradation by the proteasome. We find that ezrin ubiquitylation by WWP1 in epithelial cells leads to the upregulation of Met level in absence of HGF stimulation and increases the response of Met to HGF stimulation as measured by the ability of the cells to heal a wound. Interestingly this effect requires ubiquitylated ezrin since it can be rescued, after depletion of endogenous ezrin, by wild type ezrin but not by a mutant of ezrin that cannot be ubiquitylated. Taken together our data reveal a new role for ezrin in Met receptor stability and activity through its association with the E3 ubiquitin ligase WWP1. Given the role of Met in cell proliferation and tumorigenesis, our results may provide a mechanistic basis for understanding the role of ezrin in tumor progression.

  2. The coagulation factor Xa/protease activated receptor-2 axis in the progression of liver fibrosis : a multifaceted paradigm

    NARCIS (Netherlands)

    Borensztajn, Keren; von der Thusen, Jan H.; Peppelenbosch, Maikel P.; Spek, C. Arnold

    2010-01-01

    Introduction Activation of the coagulation cascade during liver fibrosis: a puzzling paradox Protease-activated receptors: the link between coagulation cascade activation and liver fibrosis Expression and distribution of human PAR-2 in normal and pathological liver tissue FXa signalling on PAR-2 exp

  3. Insulin-like growth factor-1 enhances epidermal growth factor receptor activation and renal tubular cell regeneration in postischemic acute renal failure.

    Science.gov (United States)

    Lin, J J; Cybulsky, A V; Goodyer, P R; Fine, R N; Kaskel, F J

    1995-06-01

    Growth factors such as insulin-like growth factor-1 (IGF-1), epidermal growth factor (EGF), and hepatocyte growth factor have been shown to accelerate the recovery from postischemic acute renal failure (ARF) with a concomitant increase in DNA synthesis. Interactions between growth factors have been demonstrated in a number of in vitro studies. This study examined the effect of exogenous IGF-1 on the DNA synthesis and EGF receptor (EGF-R) activation in postischemic rat kidneys. Thirty minutes after the relief of 30-minute total occlusion of the left renal artery in anesthetized 225 to 300 gm Sprague-Dawley rats, either IGF-1 (75 micrograms/kg) or normal saline solution (NS, 0.2 ml) was given by intravenous bolus, followed by twice daily subcutaneous injections of IGF-1 (50 micrograms/kg) or 0.2 ml NS for 4 days, respectively, in IGF-1-Tx) and NS treated (NS-Tx) groups (n = 8 each). On the day after the completion of treatment, inulin clearance (ml/kg/min) of the postischemic kidneys in the IGF-1-Tx group was significantly higher (p < 0.01) than inulin clearance of kidneys in the NS-Tx group. This was associated with improved kidney morphology. IGF-1 treatment also enhanced the labeling index of 5-bromo-2'-deoxyuridine (percent of stained tubule cells), a marker for active DNA synthesis, in the outer medulla of postischemic kidneys at 1 day and 2 days after the injury. EGF-R tyrosine phosphorylation (which reflects receptor activation) increased in postischemic kidneys in both NS-Tx (n = 5) and IGF-1-Tx (n = 3) groups 1 day after the injury as compared with nonischemic contralateral kidneys. In the IGF-1-Tx group there was also increased iodine 125-labeled EGF binding and EGF-R protein. Our results demonstrate a beneficial effect of IGF-1 on postischemic ARF. Furthermore, they suggest that EGF-R activation is involved in tubular regeneration and that IGF-1 may enhance EGF-R activation by increasing EGF-R expression.

  4. Peroxisome-proliferator-activated receptors γ and β/δ mediate vascular endothelial growth factor production in colorectal tumor cells.

    Science.gov (United States)

    Röhrl, Clemens; Kaindl, Ulrike; Koneczny, Inga; Hudec, Xenia; Baron, David M; König, Jürgen S; Marian, Brigitte

    2011-01-01

    Peroxisome-proliferator-activated receptors (PPARs) are nuclear receptors for fatty acids and their derivatives. PPAR subtypes PPARγ and PPARβ/δ are suspected to modulate cancer development in the colon, but their exact role is still discussed controversially. The present study investigated the impact of PPARγ and PPARβ/δ on vascular endothelial growth factor (VEGF) and cyclooxygenase 2 (COX-2) expressions induced by synthetic and physiological agonists in the colorectal tumor cell lines SW480 and HT29 using reporter gene assays, qRT-PCR and ELISA. Activation of both PPARγ and PPARβ/δ induced expression of VEGF mRNA and protein in a PPAR-dependent way. The PPARγ agonists ciglitazone and PGJ(2) were the most effective inducers with up to ninefold and threefold increases in VEGF mRNA in SW480 and HT29 cultures, respectively. VEGF secretion was doubled in both cell lines. The PPARβ/δ agonists GW501516 and PGI(2) caused stimulations of only 1.5-fold in both cell lines. In addition, all PPAR agonists induced COX-2 mRNA and secretion of the COX-2 product PGE(2) in HT29 cells. However, this effect was not blocked by knock-down of PPAR expression nor was it essential for VEGF expression as shown by the lack of effect of the COX-2 inhibitor SC236. In summary, our results identify both PPARγ and PPARβ/δ as an alternative COX-independent mechanism of VEGF induction in colorectal tumor cells.

  5. Functional activities of receptors for tumor necrosis factor-alpha on human vascular endothelial cells.

    NARCIS (Netherlands)

    Paleolog, E.M.; Delasalle, S.A.; Buurman, W.A.; Feldmann, M.

    1994-01-01

    Tumor necrosis factor-alpha (TNF-alpha) plays a critical role in the control of endothelial cell function and hence in regulating traffic of circulating cells into tissues in vivo. Stimulation of endothelial cells in vitro by TNF-alpha increases the surface expression of leukocyte adhesion molecules

  6. Activation of overexpressed receptors for insulin and epidermal growth factor interferes in mitogenic signaling without affecting the activation of p21ras

    NARCIS (Netherlands)

    Osterop, A.P.R.M.; Medema, R.H.; Ouwens, D.M.; Zon, G.C.M. van der; Möller, W.; Maassen, J.A.

    1994-01-01

    Activated receptors with a tyrosine kinase activity induce a variety of responses like changes in the differentiation and mitogenic status of cells. These responses are mediated in part by p21ras. Some of these activated receptors induce in certain cell types a pronounced, but transient, increase in

  7. Phosphorylation of glycogen synthase kinase-3 and stimulation of T-cell factor signaling following activation of EP2 and EP4 prostanoid receptors by prostaglandin E2.

    Science.gov (United States)

    Fujino, Hiromichi; West, Kimberly A; Regan, John W

    2002-01-25

    Recently we have shown that the FP(B) prostanoid receptor, a G-protein-coupled receptor that couples to Galpha(q), activates T-cell factor (Tcf)/lymphoid enhancer factor (Lef)-mediated transcriptional activation (Fujino, H., and Regan, J. W. (2001) J. Biol. Chem. 276, 12489-12492). We now report that the EP(2) and EP(4) prostanoid receptors, which couple to Galpha(s), also activate Tcf/Lef signaling. By using a Tcf/Lef-responsive luciferase reporter gene, transcriptional activity was stimulated approximately 10-fold over basal by 1 h of treatment with prostaglandin E(2) (PGE(2)) in HEK cells that were stably transfected with the human EP(2) and EP(4) receptors. This stimulation of reporter gene activity was accompanied by a PGE(2)-dependent increase in the phosphorylation of both glycogen synthase kinase-3 (GSK-3) and Akt kinase. H-89, an inhibitor of protein kinase A (PKA), completely blocked the agonist-dependent phosphorylation of GSK-3 in both EP(2)- and EP(4)-expressing cells. However, H-89 pretreatment only blocked PGE(2)-stimulated Lef/Tcf reporter gene activity by 20% in EP(4)-expressing cells compared with 65% inhibition in EP(2)-expressing cells. On the other hand wortmannin, an inhibitor of phosphatidylinositol 3-kinase, had the opposite effect and inhibited PGE(2)-stimulated reporter gene activity to a much greater extent in EP(4)-expressing cells as compared with EP(2)-expressing cells. These findings indicate that the activation of Tcf/Lef signaling by EP(2) receptors occurs primarily through a PKA-dependent pathway, whereas EP(4) receptors activate Tcf/Lef signaling mainly through a phosphatidylinositol 3-kinase-dependent pathway. This is the first indication of a fundamental difference in the signaling potential of EP(2) and EP(4) prostanoid receptors.

  8. Fibroblast growth factor receptor 3 interacts with and activates TGFβ-activated kinase 1 tyrosine phosphorylation and NFκB signaling in multiple myeloma and bladder cancer.

    Directory of Open Access Journals (Sweden)

    Lisa Salazar

    Full Text Available Cancer is a major public health problem worldwide. In the United States alone, 1 in 4 deaths is due to cancer and for 2013 a total of 1,660,290 new cancer cases and 580,350 cancer-related deaths are projected. Comprehensive profiling of multiple cancer genomes has revealed a highly complex genetic landscape in which a large number of altered genes, varying from tumor to tumor, impact core biological pathways and processes. This has implications for therapeutic targeting of signaling networks in the development of treatments for specific cancers. The NFκB transcription factor is constitutively active in a number of hematologic and solid tumors, and many signaling pathways implicated in cancer are likely connected to NFκB activation. A critical mediator of NFκB activity is TGFβ-activated kinase 1 (TAK1. Here, we identify TAK1 as a novel interacting protein and target of fibroblast growth factor receptor 3 (FGFR3 tyrosine kinase activity. We further demonstrate that activating mutations in FGFR3 associated with both multiple myeloma and bladder cancer can modulate expression of genes that regulate NFκB signaling, and promote both NFκB transcriptional activity and cell adhesion in a manner dependent on TAK1 expression in both cancer cell types. Our findings suggest TAK1 as a potential therapeutic target for FGFR3-associated cancers, and other malignancies in which TAK1 contributes to constitutive NFκB activation.

  9. Lipopolysaccharide (LPS-Induced Biliary Epithelial Cell NRas Activation Requires Epidermal Growth Factor Receptor (EGFR.

    Directory of Open Access Journals (Sweden)

    Christy E Trussoni

    Full Text Available Cholangiocytes (biliary epithelial cells actively participate in microbe-induced proinflammatory responses in the liver and contribute to inflammatory and infectious cholangiopathies. We previously demonstrated that cholangiocyte TLR-dependent NRas activation contributes to proinflammatory/ proliferative responses. We test the hypothesis that LPS-induced activation of NRas requires the EGFR. SV40-transformed human cholangiocytes (H69 cells, or low passage normal human cholangiocytes (NHC, were treated with LPS in the presence or absence of EGFR or ADAM metallopeptidase domain 17 (TACE inhibitors. Ras activation assays, quantitative RT-PCR, and proliferation assays were performed in cells cultured with or without inhibitors or an siRNA to Grb2. Immunofluorescence for phospho-EGFR was performed on LPS-treated mouse samples and specimens from patients with primary sclerosing cholangitis, primary biliary cirrhosis, hepatitis C, and normal livers. LPS-treatment induced an association between the TLR/MyD88 and EGFR/Grb2 signaling apparatus, NRas activation, and EGFR phosphorylation. NRas activation was sensitive to EGFR and TACE inhibitors and correlated with EGFR phosphorylation. The TACE inhibitor and Grb2 depletion prevented LPS-induced IL6 expression (p<0.05 and proliferation (p<0.01. Additionally, cholangiocytes from LPS-treated mouse livers and human primary sclerosing cholangitis (PSC livers exhibited increased phospho-EGFR (p<0.01. Moreover, LPS-induced mouse cholangiocyte proliferation was inhibited by concurrent treatment with the EGFR inhibitor, Erlotinib. Our results suggest that EGFR is essential for LPS-induced, TLR4/MyD88-mediated NRas activation and induction of a robust proinflammatory cholangiocyte response. These findings have implications not only for revealing the signaling potential of TLRs, but also implicate EGFR as an integral component of cholangiocyte TLR-induced proinflammatory processes.

  10. Lipopolysaccharide (LPS)-Induced Biliary Epithelial Cell NRas Activation Requires Epidermal Growth Factor Receptor (EGFR).

    Science.gov (United States)

    Trussoni, Christy E; Tabibian, James H; Splinter, Patrick L; O'Hara, Steven P

    2015-01-01

    Cholangiocytes (biliary epithelial cells) actively participate in microbe-induced proinflammatory responses in the liver and contribute to inflammatory and infectious cholangiopathies. We previously demonstrated that cholangiocyte TLR-dependent NRas activation contributes to proinflammatory/ proliferative responses. We test the hypothesis that LPS-induced activation of NRas requires the EGFR. SV40-transformed human cholangiocytes (H69 cells), or low passage normal human cholangiocytes (NHC), were treated with LPS in the presence or absence of EGFR or ADAM metallopeptidase domain 17 (TACE) inhibitors. Ras activation assays, quantitative RT-PCR, and proliferation assays were performed in cells cultured with or without inhibitors or an siRNA to Grb2. Immunofluorescence for phospho-EGFR was performed on LPS-treated mouse samples and specimens from patients with primary sclerosing cholangitis, primary biliary cirrhosis, hepatitis C, and normal livers. LPS-treatment induced an association between the TLR/MyD88 and EGFR/Grb2 signaling apparatus, NRas activation, and EGFR phosphorylation. NRas activation was sensitive to EGFR and TACE inhibitors and correlated with EGFR phosphorylation. The TACE inhibitor and Grb2 depletion prevented LPS-induced IL6 expression (pphospho-EGFR (p<0.01). Moreover, LPS-induced mouse cholangiocyte proliferation was inhibited by concurrent treatment with the EGFR inhibitor, Erlotinib. Our results suggest that EGFR is essential for LPS-induced, TLR4/MyD88-mediated NRas activation and induction of a robust proinflammatory cholangiocyte response. These findings have implications not only for revealing the signaling potential of TLRs, but also implicate EGFR as an integral component of cholangiocyte TLR-induced proinflammatory processes.

  11. Oligomerization of epidermal growth factor receptors (EGFR) on A431 cells studied by time-resolved fluorescence imaging microscopy: a stereochemical model for tyrosine kinase receptor activation

    NARCIS (Netherlands)

    Gadella, Th.W.J.; Jovin, T.M.

    1995-01-01

    The aggregation states of the epidermal growth factor receptor (EGFR) on single A431 human epidermoid carcinoma cells were assessed with two new techniques for determining fluorescence resonance en- ergy transfer: donor photobleaching fluorescence reso- nance energy transfer (pbFRET) microscopy and

  12. Oligomerization of epidermal growth factor receptors (EGFR) on A431 cells studied by time-resolved fluorescence imaging microscopy: a stereochemical model for tyrosine kinase receptor activation

    NARCIS (Netherlands)

    Th.W.J. Gadella; T.M. Jovin

    1995-01-01

    The aggregation states of the epidermal growth factor receptor (EGFR) on single A431 human epidermoid carcinoma cells were assessed with two new techniques for determining fluorescence resonance en- ergy transfer: donor photobleaching fluorescence reso- nance energy transfer (pbFRET) microscopy and

  13. Regulation of the ligand-dependent activation of the epidermal growth factor receptor by calmodulin

    DEFF Research Database (Denmark)

    Li, Hongbing; Panina, Svetlana; Kaur, Amandeep;

    2012-01-01

    Calmodulin (CaM) is the major component of calcium signaling pathways mediating the action of various effectors. Transient increases in the intracellular calcium level triggered by a variety of stimuli lead to the formation of Ca2+/CaM complexes, which interact with and activate target proteins. ...

  14. Peroxisome proliferator-activated receptor-gamma agonists suppress tissue factor overexpression in rat balloon injury model with paclitaxel infusion.

    Directory of Open Access Journals (Sweden)

    Jun-Bean Park

    Full Text Available The role and underlying mechanisms of rosiglitazone, a peroxisome proliferator-activated receptor-gamma (PPAR-γ agonist, on myocardial infarction are poorly understood. We investigated the effects of this PPAR-γ agonist on the expression of tissue factor (TF, a primary molecule for thrombosis, and elucidated its underlying mechanisms. The PPAR-γ agonist inhibited TF expression in response to TNF-α in human umbilical vein endothelial cells, human monocytic leukemia cell line, and human umbilical arterial smooth muscle cells. The overexpression of TF was mediated by increased phosphorylation of mitogen-activated protein kinase (MAPK, which was blocked by the PPAR-γ agonist. The effective MAPK differed depending on each cell type. Luciferase and ChIP assays showed that transcription factor, activator protein-1 (AP-1, was a pivotal target of the PPAR-γ agonist to lower TF transcription. Intriguingly, two main drugs for drug-eluting stent, paclitaxel or rapamycin, significantly exaggerated thrombin-induced TF expression, which was also effectively blocked by the PPAR-γ agonist in all cell types. This PPAR-γ agonist did not impair TF pathway inhibitor (TFPI in three cell types. In rat balloon injury model (Sprague-Dawley rats, n = 10/group with continuous paclitaxel infusion, the PPAR-γ agonist attenuated TF expression by 70±5% (n = 4; P<0.0001 in injured vasculature. Taken together, rosiglitazone reduced TF expression in three critical cell types involved in vascular thrombus formation via MAPK and AP-1 inhibitions. Also, this PPAR-γ agonist reversed the paclitaxel-induced aggravation of TF expression, which suggests a possibility that the benefits might outweigh its risks in a group of patients with paclitaxel-eluting stent implanted.

  15. Synthetic Lethality Screen Identifies RPS6KA2 as Modifier of Epidermal Growth Factor Receptor Activity in Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Nada Milosevic

    2013-12-01

    Full Text Available Pancreatic cancer is characterized by a high degree of resistance to chemotherapy. Epidermal growth factor receptor (EGFR inhibition using the small-molecule inhibitor erlotinib was shown to provide a small survival benefit in a subgroup of patients. To identify kinases whose inhibition acts synergistically with erlotinib, we employed a kinome-wide small-interfering RNA (siRNA-based loss-of-function screen in the presence of erlotinib. Of 779 tested kinases, we identified several targets whose inhibition acted synergistically lethal with EGFR inhibition by erlotinib, among them the S6 kinase ribosomal protein S6 kinase 2 (RPS6KA2/ribosomal S6 kinase 3. Activated RPS6KA2 was expressed in approximately 40% of 123 human pancreatic cancer tissues. RPS6KA2 was shown to act downstream of EGFR/RAS/mitogen-activated protein kinase kinase (MEK/extracellular-signal regulated kinase (ERK signaling and was activated by EGF independently of the presence of KRAS mutations. Knockdown of RPS6KA2 by siRNA led to increased apoptosis only in the presence of erlotinib, whereas RPS6KA2 activation or overexpression rescued from erlotinib- and gemcitabine-induced apoptosis. This effect was at least in part mediated by downstream activation of ribosomal protein S6. Genetic as well as pharmacological inhibition of RPS6KA2 by the inhibitor BI-D1870 acted synergistically with erlotinib. By applying this synergistic lethality screen using a kinome-wide RNA interference-library approach, we identified RPS6KA2 as potential drug target whose inhibition synergistically enhanced the effect of erlotinib on tumor cell survival. This kinase therefore represents a promising drug candidate suitable for the development of novel inhibitors for pancreatic cancer therapy.

  16. Efficient synthesis of chloro-derivatives of sialosyllactosylceramide, and their enhanced inhibitory effect on epidermal growth factor receptor activation.

    Science.gov (United States)

    Kawashima, Nagako; Qu, Huanhuan; Lobaton, Marlin; Zhu, Zhenyuan; Sollogoub, Matthieu; Cavenee, Webster K; Handa, Kazuko; Hakomori, Sen-Itiroh; Zhang, Yongmin

    2014-04-01

    Glycosphingolipids are components of essentially all mammalian cell membranes and are involved in a variety of significant cellular functions, including proliferation, adhesion, motility and differentiation. Sialosyllactosylceramide (GM3) is known to inhibit the activation of epidermal growth factor receptor (EGFR). In the present study, an efficient method for the total chemical synthesis of monochloro- and dichloro-derivatives of the sialosyl residue of GM3 was developed. The structures of the synthesized compounds were fully characterized by high-resolution mass spectrometry and nuclear magnetic resonance. In analyses of EGFR autophosphorylation and cell proliferation ([(3)H]-thymidine incorporation) in human epidermoid carcinoma A431 cells, two chloro-derivatives exhibited stronger inhibitory effects than GM3 on EGFR activity. Monochloro-GM3, but not GM3 or dichloro-GM3, showed a significant inhibitory effect on ΔEGFR, a splicing variant of EGFR that lacks exons 2-7 and is often found in human glioblastomas. The chemical synthesis of other GM3 derivatives using approaches similar to those described in the present study, has the potential to create more potent EGFR inhibitors to block cell growth or motility of a variety of types of cancer that express either wild-type EGFR or ΔEGFR.

  17. Photodynamic therapy activated signaling from epidermal growth factor receptor and STAT3

    Science.gov (United States)

    Edmonds, Christine; Hagan, Sarah; Gallagher-Colombo, Shannon M.; Busch, Theresa M.; Cengel, Keith A.

    2012-01-01

    Patients with serosal (pleural or peritoneal) spread of malignancy have few definitive treatment options and consequently have a very poor prognosis. We have previously shown that photodynamic therapy (PDT) can be an effective treatment for these patients, but that the therapeutic index is relatively narrow. Here, we test the hypothesis that EGFR and STAT3 activation increase survival following PDT, and that inhibiting these pathways leads to increased PDT-mediated direct cellular cytotoxicity by examining BPD-PDT in OvCa and NSCLC cells. We found that BPD-mediated PDT stimulated EGFR tyrosine phosphorylation and nuclear translocation, and that EGFR inhibition by erlotinib resulted in reduction of PDT-mediated EGFR activation and nuclear translocation. Nuclear translocation and PDT-mediated activation of EGFR were also observed in response to BPD-mediated PDT in multiple cell lines, including OvCa, NSCLC and head and neck cancer cells, and was observed to occur in response to porfimer sodium-mediated PDT. In addition, we found that PDT stimulates nuclear translocation of STAT3 and STAT3/EGFR association and that inhibiting STAT3 signaling prior to PDT leads to increased PDT cytotoxicity. Finally, we found that inhibition of EGFR signaling leads to increased PDT cytotoxicity through a mechanism that involves increased apoptotic cell death. Taken together, these results demonstrate that PDT stimulates the nuclear accumulation of both EGFR and STAT3 and that targeting these survival pathways is a potentially promising strategy that could be adapted for clinical trials of PDT for patients with serosal spread of malignancy. PMID:22986230

  18. Staphylococcus aureus protein A binding to osteoblast tumour necrosis factor receptor 1 results in activation of nuclear factor kappa B and release of interleukin-6 in bone infection.

    Science.gov (United States)

    Claro, Tânia; Widaa, Amro; McDonnell, Cormac; Foster, Timothy J; O'Brien, Fergal J; Kerrigan, Steven W

    2013-01-01

    Staphylococcus aureus is the major pathogen among the staphylococci and the most common cause of bone infections. These infections are mainly characterized by bone destruction and inflammation, and are often debilitating and very difficult to treat. Previously we demonstrated that S. aureus protein A (SpA) can bind to osteoblasts, which results in inhibition of osteoblast proliferation and mineralization, apoptosis, and activation of osteoclasts. In this study we used small interfering RNA (siRNA) to demonstrate that osteoblast tumour necrosis factor receptor-1 (TNFR-1) is responsible for the recognition of and binding to SpA. TNFR-1 binding to SpA results in the activation of nuclear factor kappa B (NFκB). In turn, NFκB translocates to the nucleus of the osteoblast, which leads to release of interleukin 6 (IL-6). Silencing TNFR-1 in osteoblasts or disruption of the spa gene in S. aureus prevented both NFκB activation and IL-6 release. As well as playing a key role in proinflammatory reactions, IL-6 is also an important osteotropic factor. Release of IL-6 from osteoblasts results in the activation of the bone-resorbing cells, the osteoclasts. Consistent with our results described above, both silencing TNFR-1 in osteoblasts and disruption of spa in S. aureus prevented osteoclast activation. These studies are the first to demonstrate the importance of the TNFR-1-SpA interaction in bone infection, and may help explain the mechanism through which osteoclasts become overactivated, leading to bone destruction. Anti-inflammatory drug therapy could be used either alone or in conjunction with antibiotics to treat osteomyelitis or for prophylaxis in high-risk patients.

  19. Prognostic value of receptor activator of nuclear factor kappa-B (RANK marker in patients with breast cancer

    Directory of Open Access Journals (Sweden)

    S. I. Zabroda

    2015-01-01

    Full Text Available Despite notable progress made in studying breast cancer (BC, the mechanisms of metastases, in view of the classification into molecular subtypes, in patients with BC remain to be fully uninvestigated, in the presence of a good prognosis in particular. To study novel diagnostic and predictive markers in a new way presents current problems in the pathology of BC. This investigation deals with the expression of osteoprotegerin (OPG in the tumor cells of patients with BC. It enrolled 83 patients with locally advanced BC (T2–4N0–3M0 who had been treated in 2003 to 2010. The inclusion criterion was a histologically verified diagnosis of invasive BC. To study the level of OPG, the investigators conducted an immunohistochemical study of biopsy sections according to the standard protocol. The mean expression of receptor activator of nuclear factor kappa-B (RANK in the BC cells was 18.7 %; itsmedian was 5 % (range, 0–90 %. The patients were divided into 2 groups according to the level of RANK expression: 1 high (higher than the median; 2 low (lower than the median. The high RANK group included 39 patients; the low RANK group comprised 44 patients. Analysis of the clinical and pathological characteristics of BC patients with regard RANK expression did not show any statistically significant differences in the presence or absence of affected regional lymph nodes, T category, and Ki-67 index. The analysis of clinical and pathomorphological and immunohistochemical characteristics in patients with breast cancer, taking into consideration RANK expression level, did not show any statistically significant differences with respect to presence or absence of affected regional lymph nodes, age, T category and Ki-67 index (р > 0.05. However, it revealed the following pattern: the high expression of RANK was more common in patients positive for estrogen and progesterone receptors than in those for negative receptors (p = 0.04.

  20. Expression of epidermal growth factor receptor (EGFR) and activated EGFR predict poor response to (chemo)radiation and survival in cervical cancer

    NARCIS (Netherlands)

    Noordhuis, M.G.; Eijsink, J.J.H.; ten Hoor, K.A.; Roossink, F.; Hollema, H.; Arts, H.J.G.; Pras, Elisabeth; Maduro, John; Reyners, A.K.L.; de Bock, G.H.; Wisman, G.B.A.; Schuuring, E.; van der Zee, A.G.J.

    2009-01-01

    PURPOSE: Activation of the epidermal growth factor receptor (EGFR) signaling pathway has been reported to induce resistance to (chemo)radiation in cancers, such as head and neck cancer, whereas EGFR-targeted agents in combination with (chemo)radiation seem to improve treatment efficacy. The aim of t

  1. Biological variation and reference intervals for circulating osteopontin, osteoprotegerin, total soluble receptor activator of nuclear factor kappa B ligand and high-sensitivity C-reactive protein

    DEFF Research Database (Denmark)

    Sennels, H P; Jacobsen, Søren; Jensen, T

    2007-01-01

    Objective. Monitoring inflammatory diseases and osteoclastogenesis with osteopontin (OPN), osteoprotegerin (OPG), total soluble receptor activator of nuclear factor kappa B ligand (total sRANKL) and high-sensitivity C-reactive protein (hsCRP) has recently attracted increased interest. The purpose...

  2. Influence of baicalin on the expression of receptor activator of nuclear factor-κB ligand and osteoprotegerin in human periodontal ligament cells

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Objective To study the effect of baicalin on the expression of receptor activator of nuclear factor-κB ligand(RANKL)and osteoprotegerin(OPG)in cultured human periodontal ligament(HPDL)cells.Methods Small interfering RNA(siRNA)eukaryotic expression vector targeted transforming growth factor βⅡ receptor(TGF-β RⅡ)was constructed and transfected into T cells.HPDL cells with T cells transfected with siRNA or not were placed in the culture medium that had been added with lipopolysaccharide(LPS)and baicalin.The ob...

  3. Cyclin-dependent kinase 5 modulates the transcriptional activity of the mineralocorticoid receptor and regulates expression of brain-derived neurotrophic factor.

    Science.gov (United States)

    Kino, Tomoshige; Jaffe, Howard; Amin, Niranjana D; Chakrabarti, Mayukh; Zheng, Ya-Li; Chrousos, George P; Pant, Harish C

    2010-05-01

    Glucocorticoids, major end effectors of the stress response, play an essential role in the homeostasis of the central nervous system (CNS) and contribute to memory consolidation and emotional control through their intracellular receptors, the glucocorticoid and mineralocorticoid receptors. Cyclin-dependent kinase 5 (CDK5), on the other hand, plays important roles in the morphogenesis and functions of the central nervous system, and its aberrant activation has been associated with development of neurodegenerative disorders. We previously reported that CDK5 phosphorylated the glucocorticoid receptor and modulated its transcriptional activity. Here we found that CDK5 also regulated mineralocorticoid receptor-induced transcriptional activity by phosphorylating multiple serine and threonine residues located in its N-terminal domain through physical interaction. Aldosterone and dexamethasone, respectively, increased and suppressed mRNA/protein expression of brain-derived neurotrophic factor (BDNF) in rat cortical neuronal cells, whereas the endogenous glucocorticoid corticosterone showed a biphasic effect. CDK5 enhanced the effect of aldosterone and dexamethasone on BDNF expression. Because this neurotrophic factor plays critical roles in neuronal viability, synaptic plasticity, consolidation of memory, and emotional changes, we suggest that aberrant activation of CDK5 might influence these functions through corticosteroid receptors/BDNF.

  4. NH2-terminal cleavage of xenopus fibroblast growth factor 3 is necessary for optimal biological activity and receptor binding.

    Science.gov (United States)

    Antoine, M; Daum, M; Köhl, R; Blecken, V; Close, M J; Peters, G; Kiefer, P

    2000-11-01

    Fibroblast growth factor 3 (FGF3) was originally identified as the mouse proto-oncogene Int-2, which is activated by proviral insertion in tumors induced by mouse mammary tumor virus. To facilitate the biological characterization of the ligand, we have analyzed its homologue in Xenopus laevis, XFGF3. Here we confirm that the X. laevis genome contains two distinct FGF3 alleles, neither of which is capable of encoding the NH2-terminally extended forms specified by the mouse and human FGF3 genes. Unlike the mammalian proteins, XFGF3 is efficiently secreted as a Mr 31,000 glycoprotein, gp31, which undergoes proteolytic cleavage to produce an NH2-terminally truncated product, gp27. Processing removes a segment of 18 amino acids immediately distal to the signal peptide that is not present in the mammalian homologues. By inserting an epitope-tag adjacent to the cleavage site, we show that a substantial amount of the gp27 is generated intracellularly, although processing can also occur in the extracellular matrix. Two residues are also removed from the COOH terminus. To compare the biological properties of the different forms, cDNAs were constructed that selectively give rise to the larger, gp31, or smaller, gp27, forms of XFGF3. As judged by their ability to cause morphological transformation of NIH3T3 cells, their mitogenicity on specific cell types, and their affinity for the IIIb and IIIc isoforms of Xenopus FGF receptors, gp27 has a much higher biological activity than gp31. Sequence comparison revealed an intriguing similar cleavage motif immediately downstream of the signal peptide cleavage site in the NH2-terminus of mouse and human FGF3. Analysis of secreted mutant mouse FGF3 confirmed an additional NH2-terminal processing at the corresponding sequence motif. NH2-terminal trimming of Xenopus and mammalian FGF3s may therefore be a prerequisite of optimal biological activity.

  5. Granulocyte-macrophage colony-stimulating factor primes interleukin-13 production by macrophages via protease-activated receptor-2.

    Science.gov (United States)

    Aoki, Manabu; Yamaguchi, Rui; Yamamoto, Takatoshi; Ishimaru, Yasuji; Ono, Tomomichi; Sakamoto, Arisa; Narahara, Shinji; Sugiuchi, Hiroyuki; Hirose, Eiji; Yamaguchi, Yasuo

    2015-04-01

    Chronic inflammation is often linked to the presence of type 2-polarized macrophages, which are induced by the T helper type 2 cytokines interleukin-4 and interleukin-13 (IL-13). IL-13 is a key mediator of tissue fibrosis caused by T helper type 2-based inflammation. Human neutrophil elastase (HNE) plays a pivotal role in the pathogenesis of pulmonary fibrosis. This study investigated the priming effect of granulocyte-macrophage colony-stimulating factor (GM-CSF) on IL-13 expression by macrophages stimulated with HNE. Adherent macrophages were obtained from primary cultures of human mononuclear cells. Expression of IL-13 mRNA and protein by GM-CSF-dependent macrophages was investigated after stimulation with HNE, using the polymerase chain reaction and enzyme-linked immunosorbent assay. GM-CSF had a priming effect on IL-13 mRNA and protein expression by macrophages stimulated with HNE, while this effect was not observed for various other cytokines. GM-CSF-dependent macrophages showed a significant increase in the expression of protease activated receptor-2 (PAR-2) mRNA and protein. The response of IL-13 mRNA to HNE was significantly decreased by pretreatment with alpha1-antitrypsin, a PAR-2 antibody (SAM11), or a PAR-2 antagonist (ENMD-1068). These findings suggest that stimulation with HNE can induce IL-13 production by macrophages, especially GM-CSF-dependent macrophages. Accordingly, neutrophil elastase may have a key role in fibrosis associated with chronic inflammation.

  6. Lack of Platelet-Activating Factor Receptor Attenuates Experimental Food Allergy but Not Its Metabolic Alterations regarding Adipokine Levels

    Directory of Open Access Journals (Sweden)

    Nathália Vieira Batista

    2016-01-01

    Full Text Available Platelet-activating factor (PAF is known to be an important mediator of anaphylaxis. However, there is a lack of information in the literature about the role of PAF in food allergy. The aim of this work was to elucidate the participation of PAF during food allergy development and the consequent adipose tissue inflammation along with its alterations. Our data demonstrated that, both before oral challenge and after 7 days receiving ovalbumin (OVA diet, OVA-sensitized mice lacking the PAF receptor (PAFR showed a decreased level of anti-OVA IgE associated with attenuated allergic markers in comparison to wild type (WT mice. Moreover, there was less body weight and adipose tissue loss in PAFR-deficient mice. However, some features of inflamed adipose tissue presented by sensitized PAFR-deficient and WT mice after oral challenge were similar, such as a higher rate of rolling leukocytes in this tissue and lower circulating levels of adipokines (resistin and adiponectin in comparison to nonsensitized mice. Therefore, PAF signaling through PAFR is important for the allergic response to OVA but not for the adipokine alterations caused by this inflammatory process. Our work clarifies some effects of PAF during food allergy along with its role on the metabolic consequences of this inflammatory process.

  7. Lack of Platelet-Activating Factor Receptor Attenuates Experimental Food Allergy but Not Its Metabolic Alterations regarding Adipokine Levels

    Science.gov (United States)

    Batista, Nathália Vieira; Fonseca, Roberta Cristelli; Perez, Denise; Pereira, Rafaela Vaz Sousa; de Lima Alves, Juliana; Pinho, Vanessa; Faria, Ana Maria Caetano; Cara, Denise Carmona

    2016-01-01

    Platelet-activating factor (PAF) is known to be an important mediator of anaphylaxis. However, there is a lack of information in the literature about the role of PAF in food allergy. The aim of this work was to elucidate the participation of PAF during food allergy development and the consequent adipose tissue inflammation along with its alterations. Our data demonstrated that, both before oral challenge and after 7 days receiving ovalbumin (OVA) diet, OVA-sensitized mice lacking the PAF receptor (PAFR) showed a decreased level of anti-OVA IgE associated with attenuated allergic markers in comparison to wild type (WT) mice. Moreover, there was less body weight and adipose tissue loss in PAFR-deficient mice. However, some features of inflamed adipose tissue presented by sensitized PAFR-deficient and WT mice after oral challenge were similar, such as a higher rate of rolling leukocytes in this tissue and lower circulating levels of adipokines (resistin and adiponectin) in comparison to nonsensitized mice. Therefore, PAF signaling through PAFR is important for the allergic response to OVA but not for the adipokine alterations caused by this inflammatory process. Our work clarifies some effects of PAF during food allergy along with its role on the metabolic consequences of this inflammatory process. PMID:27314042

  8. Nutritional status in the era of target therapy: poor nutrition is a prognostic factor in non-small cell lung cancer with activating epidermal growth factor receptor mutations.

    Science.gov (United States)

    Park, Sehhoon; Park, Seongyeol; Lee, Se-Hoon; Suh, Beomseok; Keam, Bhumsuk; Kim, Tae Min; Kim, Dong-Wan; Kim, Young Whan; Heo, Dae Seog

    2016-11-01

    Pretreatment nutritional status is an important prognostic factor in patients treated with conventional cytotoxic chemotherapy. In the era of target therapies, its value is overlooked and has not been investigated. The aim of our study is to evaluate the value of nutritional status in targeted therapy. A total of 2012 patients with non-small cell lung cancer (NSCLC) were reviewed and 630 patients with activating epidermal growth factor receptor (EGFR) mutation treated with EGFR tyrosine kinase inhibitor (TKI) were enrolled for the final analysis. Anemia, body mass index (BMI), and prognostic nutritional index (PNI) were considered as nutritional factors. Hazard ratio (HR), progression-free survival (PFS) and overall survival (OS) for each group were calculated by Cox proportional analysis. In addition, scores were applied for each category and the sum of scores was used for survival analysis. In univariable analysis, anemia (HR, 1.29; p = 0.015), BMI lower than 18.5 (HR, 1.98; p = 0.002), and PNI lower than 45 (HR, 1.57; p nutritional status is a prognostic marker in NSCLC patients treated with EGFR TKI. Hence, baseline nutritional status should be more carefully evaluated and adequate nutrition should be supplied to these patients.

  9. Cyclooxygenase-2 expression is dependent upon epidermal growth factor receptor expression or activation in androgen independent prostate cancer

    Institute of Scientific and Technical Information of China (English)

    Rui-Peng Jia; Lu-Wei Xu; Qi Su; Jian-Hua Zhao; Wen-Cheng Li; Feng Wang; Zheng Xu

    2008-01-01

    Aim: To investigate the expression of cyclooxygenase-2 (COX-2) and epidermal growth factor receptor (EGFR) and the possible mechanism in the development in androgen independent prostate cancer (AIPC). Methods: Immunohis- tochemistry was performed on paraffin-embedded sections with goat polyclonal against COX-2 and mouse mono- clonal antibody against EGFR in 30 AIPC and 18 androgen dependent prostate cancer (ADPC) specimens. The effect of epidermal growth factor (EGF) treatments on the expression of COX-2 and signal pathway in PC-3 and DU-145 cells was studied using reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analysis. ELISA was used to measure prostaglandin E2 (PGE2) levels in the media of PC-3 and DU-145 incubated with EGF for 24 h. Results: COX-2 was positively expressed in AIPC and ADPC, which were predominantly in endochylema of prostate cancer (Pca) cells. Intense staining was seen in AIPC (80%) and in ADPC (55.5%), but there was no significant association between the two groups. EGFR expression was also positive in the two groups (61.8% in ADPC and 90% in AIPC, P < 0.01). A significant association was found between EGFR expression and a higher Gleason score (P < 0.05) or tumor stage (P < 0.05). The expression of PGE2 was increased in PC-3 and DU-145 cells after being incubated with EGF. Both p38MAPK and PI-3K pathway were involved in the PC-3 cell COX-2 upregulation course. In DU- 145, only p38MAPK pathway was associated with COX-2 upregulation. Conclusion: EGFR activation induces COX-2 expression through PI-3K and/or p38MAPK pathways. COX-2 and EGFR inhibitors might have a cooperative anti-tumor effect in Pca.

  10. Osteonecrosis of the jaw induced by receptor activator of nuclear factor-kappa B ligand (Denosumab) - Review

    Science.gov (United States)

    Brizeno, Luiz-André-Cavalcante; de Sousa, Fabrício-Bitu; Mota, Mário-Rogério-Lima; Alves, Ana-Paula-Negreiros-Nunes

    2016-01-01

    Background Denosumab, an anti-resorptive agent, IgG2 monoclonal antibody for human Receptor activator of nuclear factor-kappa B ligand (RANKL), has been related to the occurrence of osteonecrosis of the jaws. Thus, the aim of this study was to review the literature from clinical case reports, regarding the type of patient and the therapeutic approach used for osteonecrosis of the jaws induced by chronic use of Denosumab. Material and Methods For this, a literature review was performed on PubMed, Medline and Cochrane databases, using the keywords “Denosumab” “anti-RANK ligand” and “Osteonecrosis of jaw”. To be included, articles should be a report or a serie of clinical cases, describing patients aged 18 years or over who used denosumab therapy and have received any therapy for ONJ. Results Thirteen complete articles were selected for this review, totaling 17 clinical cases. The majority of ONJ cases, patients receiving Denosumab as treatment for osteoporosis and prostate cancer therapy. In most cases, patients affected by ONJ were women aged 60 or over and posterior mandible area was the main site of involvement. Diabetes pre-treatment with bisphosphonates and exodontia were the most often risk factors related to the occurrence of this condition. It is concluded that the highest number of ONJ cases caused by the use of anti-RANKL agents occurred in female patients, aged 60 years or older, under treatment for osteoporosis and cancer metastasis, and the most affected region was the mandible posterior. Conclusions The results presented in this article are valid tool supporting the non-invasive mapping of facial vascularization. Key words:Denosumab, osteonecrosis, adverse effects, osteoporosis, antineoplastic protocols. PMID:26827069

  11. Osteoprotegerin and soluble receptor activator of nuclear factor-kappa B ligand in exudative age-related macular degeneration.

    Directory of Open Access Journals (Sweden)

    Amir Ghorbanihaghjo

    2014-04-01

    Full Text Available Calcification and inflammation are among the important cases of exudative age-related macular degeneration (E-ARMD. The aim of the present study was to elucidate if there is any relationship between serum Osteoprotegerin (OPG, soluble receptor activator of nuclear factor-kappa B ligand (RANK-ligand and E-ARMD. In a cross-sectional study, we compared 45 E-ARMD patients with 45 matched controls. Diagnosis was confirmed by fluorescein angiography. Serum samples were analyzed for OPG, RANK-ligand, low density lipoprotein cholesterol (LDL-C, high density lipoprotein cholesterol (HDL-C, total cholesterol (TC, and triglyceride (TG. The levels of OPG and RANK-ligand were measured by ELISA methods. The mean age was 72.0±11.5 years in the E-ARMD group and 68.2±8.9 years in the control group (p=0.09. The level of serum OPG was 132.10±75.49 pg/ml in the E-ARMD group and 94.88±61.65 pg/ml in the control subjects. E-ARMD patients had significantly high levels of OPG (p=0.012, as well as significantly high levels of LDL-C and TC (p=0.001 and p=0.005, respectively. We could not find any significant difference in RANK-ligand, HDL-C, or TG between two study groups (p>0.05. To the best of our knowledge, this is the first study investigating the levels of OPG in E-ARMD patients. The present study showed that E-ARMD patients had high levels of serum OPG. It may act as a protective factor for E-ARMD or only as a secondary phenomenon of different processes of E-ARMD. Further prospective studies would be necessary for prognostic and predictive significance of OPG in patients affected by E-ARMD.

  12. Peroxisome proliferator-activated receptor gamma recruits the positive transcription elongation factor b complex to activate transcription and promote adipogenesis

    DEFF Research Database (Denmark)

    Iankova, Irena; Petersen, Rasmus K; Annicotte, Jean-Sébastien

    2006-01-01

    Positive transcription elongation factor b (P-TEFb) phosphorylates the C-terminal domain of RNA polymerase II, facilitating transcriptional elongation. In addition to its participation in general transcription, P-TEFb is recruited to specific promoters by some transcription factors such as c-Myc...

  13. Gene expression profiling identifies activated growth factor signaling in poor prognosis (Luminal-B estrogen receptor positive breast cancer

    Directory of Open Access Journals (Sweden)

    Conus Nelly M

    2009-06-01

    Full Text Available Abstract Background Within estrogen receptor-positive breast cancer (ER+ BC, the expression levels of proliferation-related genes can define two clinically distinct molecular subtypes. When treated with adjuvant tamoxifen, those ER+ BCs that are lowly proliferative have a good prognosis (luminal-A subtype, however the clinical outcome of those that are highly proliferative is poor (luminal-B subtype. Methods To investigate the biological basis for these observations, gene set enrichment analysis (GSEA was performed using microarray data from 246 ER+ BC samples from women treated with adjuvant tamoxifen monotherapy. To create an in vitro model of growth factor (GF signaling activation, MCF-7 cells were treated with heregulin (HRG, an HER3 ligand. Results We found that a gene set linked to GF signaling was significantly enriched in the luminal-B tumors, despite only 10% of samples over-expressing HER2 by immunohistochemistry. To determine the biological significance of this observation, MCF-7 cells were treated with HRG. These cells displayed phosphorylation of HER2/3 and downstream ERK and S6. Treatment with HRG overcame tamoxifen-induced cell cycle arrest with higher S-phase fraction and increased anchorage independent colony formation. Gene expression profiles of MCF-7 cells treated with HRG confirmed enrichment of the GF signaling gene set and a similar proliferative signature observed in human ER+ BCs resistant to tamoxifen. Conclusion These data demonstrate that activation of GF signaling pathways, independent of HER2 over-expression, could be contributing to the poor prognosis of the luminal-B ER+ BC subtype.

  14. Antitumor activity of F90,an epidermal growth factor receptor tyrosine kinase inhibitor,on glioblastoma cell line SHG-44

    Institute of Scientific and Technical Information of China (English)

    LIU Fang-jun; GUI Song-bai; LI Chu-zhong; SUN Ze-lin; ZHANG Ya-zhuo

    2008-01-01

    Background Over-expression of epidermal growth factor receptor (EGFR) is thought to be related to cell proliferation,invasion,metastasis,resistance to chemoradiotherapy and poor prognosis of various human cancers.Forty percent to fifty percent of glioblastoma multiforme (GBM) possess deregulated EGFR,which may contribute to the aggressive and refractory course of GBM.Therefore,blockade of EGFR signal transduction may be a promising treatment strategy for GBM.Methods MIT assay,cell growth curve assay and tumor xenograft model were used to evaluate the antitumor activity of F90 against SHG-44 in vitro and in vivo.Western blot assay was applied to evaluate the expression of p-EGFR,p-ERK1,p-JNK,p-P38,Bcl2 and P53 proteins.Results F90 inhibited the cell proliferation in a dose-dependent manner in vitro.The growth of SHG-44 tumor xenografts was suppressed by F90 at a high dose level (100 mg.kg-1.d-1).Phosphorylation of EGFR and activated downstream signaling proteins,such as ERK1,JNK and P38,were found to be depressed after incubation with F90 for 48 hours in vitro.Down-regulated Bcl2 protein and up-regulated P53 protein were also observed.Conclueions The results demonstrate that F90 is effective in inhibiting the proliferation of SHG-44 cells in vitro and tumor growth in vivo,suggesting that F90 may be a new therapeutic option for treatment of GBM.

  15. Factor H and factor H-related protein 1 bind to human neutrophils via complement receptor 3, mediate attachment to Candida albicans, and enhance neutrophil antimicrobial activity.

    Science.gov (United States)

    Losse, Josephine; Zipfel, Peter F; Józsi, Mihály

    2010-01-15

    The host complement system plays an important role in protection against infections. Several human-pathogenic microbes were shown to acquire host complement regulators, such as factor H (CFH), that downregulate complement activation at the microbial surface and protect the pathogens from the opsonic and lytic effects of complement. Because CFH can also bind to host cells, we addressed the role of CFH and CFH-related proteins as adhesion ligands in host-pathogen interactions. We show that the CFH family proteins CFH, CFH-like protein 1 (CFHL1), CFH-related protein (CFHR) 1, and CFHR4 long isoform bind to human neutrophil granulocytes and to the opportunistic human-pathogenic yeast Candida albicans. Two major binding sites, one within the N-terminus and one in the C-terminus of CFH, were found to mediate binding to neutrophils. Complement receptor 3 (CD11b/CD18; alpha(M)beta2 integrin) was identified as the major cellular receptor on neutrophils for CFH, CFHL1, and CFHR1, but not for CFHR4 long isoform. CFH and CFHR1 supported cell migration. Furthermore, CFH, CFHL1, and CFHR1 increased attachment of neutrophils to C. albicans. Adhesion of neutrophils to plasma-opsonized yeasts was reduced when CFH binding was inhibited by specific Abs or when using CFH-depleted plasma. Yeast-bound CFH and CFHR1 enhanced the generation of reactive oxygen species and the release of the antimicrobial protein lactoferrin by human neutrophils, and resulted in a more efficient killing of the pathogen. Thus, CFH and CFHR1, when bound on the surface of C. albicans, enhance antimicrobial activity of human neutrophils.

  16. Platelet-activating factor receptor (PAF-R-dependent pathways control tumour growth and tumour response to chemotherapy

    Directory of Open Access Journals (Sweden)

    Rohde Ciro BS

    2010-05-01

    Full Text Available Abstract Background Phagocytosis of apoptotic cells by macrophages induces a suppressor phenotype. Previous data from our group suggested that this occurs via Platelet-activating factor receptor (PAF-R-mediated pathways. In the present study, we investigated the impact of apoptotic cell inoculation or induction by a chemotherapeutic agent (dacarbazine, DTIC on tumour growth, microenvironmental parameters and survival, and the effect of treatment with a PAF-R antagonist (WEB2170. These studies were performed in murine tumours: Ehrlich Ascitis Tumour (EAT and B16F10 melanoma. Methods Tumour growth was assessed by direct counting of EAT cells in the ascitis or by measuring the volume of the solid tumour. Parameters of the tumour microenvironment, such as the frequency of cells expressing cyclo-oxygenase-2 (COX-2, caspase-3 and galectin-3, and microvascular density, were determined by immunohistochemistry. Levels of vascular endothelium growth factor (VEGF and prostaglandin E2 (PGE2 were determined by ELISA, and levels of nitric oxide (NO by Griess reaction. PAF-R expression was analysed by immunohistochemistry and flow cytometry. Results Inoculation of apoptotic cells before EAT implantation stimulated tumour growth. This effect was reversed by in vivo pre-treatment with WEB2170. This treatment also reduced tumour growth and modified the microenvironment by reducing PGE2, VEGF and NO production. In B16F10 melanoma, WEB2170 alone or in association with DTIC significantly reduced tumour volume. Survival of the tumour-bearing mice was not affected by WEB2170 treatment but was significantly improved by the combination of DTIC with WEB2170. Tumour microenvironment elements were among the targets of the combination therapy since the relative frequency of COX-2 and galectin-3 positive cells and the microvascular density within the tumour mass were significantly reduced by treatment with WEB2170 or DTIC alone or in combination. Antibodies to PAF-R stained

  17. The biological activity of the human epidermal growth factor receptor is positively regulated by its C-terminal tyrosines

    DEFF Research Database (Denmark)

    Helin, K; Velu, T; Martin, P

    1991-01-01

    , growth in agar and growth in low serum, mutant receptors display a similar hierarchy of activity. The lower activity is intrinsic in the mutants since they are expressed at similar level as the wild type and bind EGF with similar affinity. Deletion mutants lacking the last 19 or 63 amino acids (Velu et...... the existence of other autophosphorylation sites. A new site of autophosphorylation is found in the Dc123 mutant. We conclude, therefore, that the tyrosines at the extreme C-terminus positively regulate the biological and transforming activity of the EGF-R, probably via autophosphorylation....

  18. Neurotensin-induced Erk1/2 phosphorylation and growth of human colonic cancer cells are independent from growth factors receptors activation

    Energy Technology Data Exchange (ETDEWEB)

    Massa, Fabienne; Tormo, Aurelie; Beraud-Dufour, Sophie; Coppola, Thierry [Institut de Pharmacologie Moleculaire et Cellulaire, Universite de Nice-Sophia Antipolis, CNRS UMR 6097, 660 route des Lucioles, 06560 Valbonne (France); Mazella, Jean, E-mail: mazella@ipmc.cnrs.fr [Institut de Pharmacologie Moleculaire et Cellulaire, Universite de Nice-Sophia Antipolis, CNRS UMR 6097, 660 route des Lucioles, 06560 Valbonne (France)

    2011-10-14

    Highlights: {yields} We compare intracellular pathways of NT and EGF in HT29 cells. {yields} NT does not transactivate EGFR. {yields} Transactivation of EGFR is not a general rule in cancer cell growth. -- Abstract: Neurotensin (NT) promotes the proliferation of human colonic cancer cells by undefined mechanisms. We already demonstrated that, in the human colon adenocarcinoma cell line HT29, the effects of NT were mediated by a complex formed between the NT receptor-1 (NTSR1) and-3 (NTSR3). Here we examined cellular mechanisms that led to NT-induced MAP kinase phosphorylation and growth factors receptors transactivation in colonic cancer cells and proliferation in HT29 cells. With the aim to identify upstream signaling involved in NT-elicited MAP kinase activation, we found that the stimulatory effects of the peptide were totally independent from the activation of the epidermal growth factor receptor (EGFR) both in the HT29 and the HCT116 cells. NT was unable to promote phosphorylation of EGFR and to compete with EGF for its binding to the receptor. Pharmacological approaches allowed us to differentiate EGF and NT signaling in HT29 cells since only NT activation of Erk1/2 was shown to be sensitive to PKC inhibitors and since only NT increased the intracellular level of calcium. We also observed that NT was not able to transactivate Insulin-like growth factor receptor. Our findings indicate that, in the HT29 and HCT116 cell lines, NT stimulates MAP kinase phosphorylation and cell growth by a pathway which does not involve EGF system but rather NT receptors which transduce their own intracellular effectors. These results indicate that depending on the cell line used, blocking EGFR is not the general rule to inhibit NT-induced cancer cell proliferation.

  19. PRMT5, a novel TRAIL receptor-binding protein, inhibits TRAIL-induced apoptosis via nuclear factor-kappaB activation.

    Science.gov (United States)

    Tanaka, Hiroshi; Hoshikawa, Yutaka; Oh-hara, Tomoko; Koike, Sumie; Naito, Mikihiko; Noda, Tetsuo; Arai, Hiroyuki; Tsuruo, Takashi; Fujita, Naoya

    2009-04-01

    Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF superfamily and has selective antitumor activity. Although TNF-alpha-induced intracellular signaling pathways have been well studied, TRAIL signaling is not fully understood. Here, we identified a novel TRAIL receptor-binding protein, protein arginine methyltransferase 5 (PRMT5), as a result of proteomic screening. PRMT5 selectively interacted with death receptor 4 and death receptor 5 but not with TNF receptor 1 or Fas. PRMT5 gene silencing sensitized various cancer cells to TRAIL without affecting TRAIL resistance in nontransformed cells. PRMT5 contributed to TRAIL-induced activation of inhibitor of kappaB kinase (IKK) and nuclear factor-kappaB (NF-kappaB), leading to induction of several NF-kappaB target genes. Although IKK inhibition increased sensitivity to both TRAIL and TNF-alpha, PRMT5 knockdown potentiated TRAIL-mediated cytotoxicity alone. PRMT5 had no effect on TNF-alpha-mediated NF-kappaB signaling. These results show the selectivity of PRMT5 for TRAIL signaling. The PRMT5 small interfering RNA-mediated susceptibility to TRAIL was rescued by ectopic expression of active IKKbeta, confirming the involvement of PRMT5 in TRAIL resistance by activating the NF-kappaB pathway. Collectively, our findings suggest the therapeutic potential of PRMT5 in TRAIL-based cancer treatments

  20. The activation of peroxisome proliferator-activated receptor γ is regulated by Krüppel-like transcription factors 6 & 9 under steatotic conditions.

    Science.gov (United States)

    Escalona-Nandez, Ivonne; Guerrero-Escalera, Dafne; Estanes-Hernández, Alma; Ortíz-Ortega, Victor; Tovar, Armando R; Pérez-Monter, Carlos

    2015-03-20

    Liver steatosis is characterised by lipid droplet deposition in hepatocytes that can leads to an inflammatory and fibrotic phenotype. Peroxisome proliferator-activated receptors (PPARs) play key roles in energetic homeostasis by regulating lipid metabolism in hepatic tissue. In adipose tissue PPARγ regulates the adipocyte differentiation by promoting the expression of lipid-associated genes. Within the liver PPARγ is up-regulated under steatotic conditions; however, which transcription factors participate in its expression is not completely understood. Krüppel-like transcription factors (KLFs) regulate various cellular mechanisms, such as cell proliferation and differentiation. KLFs are key components of adipogenesis by regulating the expression of PPARγ and other proteins such as the C-terminal enhancer binding protein (C/EBP). Here, we demonstrate that the transcript levels of Klf6, Klf9 and Pparγ are increased in response to a steatotic insult in vitro. Chromatin immunoprecipitation (ChIp) experiments showed that klf6 and klf9 are actively recruited to the Pparγ promoter region under these conditions. Accordingly, the loss-of-function experiments reduced cytoplasmic triglyceride accumulation. Here, we demonstrated that KLF6 and KLF9 proteins directly regulate PPARγ expression under steatotic conditions. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Activation of nonreceptor tyrosine kinase Bmx/Etk mediated by phosphoinositide 3-kinase, epidermal growth factor receptor, and ErbB3 in prostate cancer cells.

    Science.gov (United States)

    Jiang, Xinnong; Borgesi, Robert A; McKnight, Nicole C; Kaur, Ramneet; Carpenter, Christopher L; Balk, Steven P

    2007-11-09

    Pathways activated downstream of constitutively active phosphatidylinositol (PI) 3-kinase in PTEN-deficient prostate cancer (PCa) cells are possible therapeutic targets. We found that the nonreceptor Tec family tyrosine kinase Bmx/Etk was activated by tyrosine phosphorylation downstream of Src and PI 3-kinase in PTEN-deficient LNCaP and PC3 PCa cells and that Bmx down-regulation by short interfering RNA markedly inhibited LNCaP cell growth. Bmx also associated with ErbB3 in LNCaP cells, and heregulin-beta1 enhanced this interaction and further stimulated Bmx activity. Epidermal growth factor (EGF) similarly stimulated an interaction between Bmx and EGF receptor and rapidly increased Bmx kinase activity. Bmx stimulation in response to heregulin-beta1 and EGF was Src-dependent, and heregulin-beta1 stimulation of Bmx was also PI 3-kinase-dependent. In contrast, the rapid tyrosine phosphorylation and activation of Bmx in response to EGF was PI 3-kinase-independent. Taken together, these results demonstrate that Bmx is a critical downstream target of the constitutively active PI 3-kinase in PTEN-deficient PCa cells and further show that Bmx is recruited by the EGF receptor and ErbB3 and activated in response to their respective ligands. Therefore, Bmx may be a valuable therapeutic target in PCa and other epithelial malignancies in which PI 3-kinase or EGF receptor family pathways are activated.

  2. Angiotensin II-induced Akt activation through the epidermal growth factor receptor in vascular smooth muscle cells is mediated by phospholipid metabolites derived by activation of phospholipase D.

    Science.gov (United States)

    Li, Fang; Malik, Kafait U

    2005-03-01

    Angiotensin II (Ang II) activates cytosolic Ca(2+)-dependent phospholipase A(2) (cPLA(2)), phospholipase D (PLD), p38 mitogen-activated protein kinase (MAPK), epidermal growth factor receptor (EGFR) and Akt in vascular smooth muscle cells (VSMC). This study was conducted to investigate the relationship between Akt activation by Ang II and other signaling molecules in rat VSMC. Ang II-induced Akt phosphorylation was significantly reduced by the PLD inhibitor 1-butanol, but not by its inactive analog 2-butanol, and by brefeldin A, an inhibitor of the PLD cofactor ADP-ribosylation factor, and in cells infected with retrovirus containing PLD(2) siRNA or transfected with PLD(2) antisense but not control LacZ or sense oligonucleotide. Diacylglycerol kinase inhibitor II diminished Ang II-induced and diC8-phosphatidic acid (PA)-increased Akt phosphorylation, suggesting that PLD-dependent Akt activation is mediated by PA. Ang II-induced EGFR phosphorylation was inhibited by 1-butanol and PLD(2) siRNA and also by cPLA(2) siRNA. In addition, the inhibitor of arachidonic acid (AA) metabolism 5,8,11,14-eicosatetraynoic acid (ETYA) reduced both Ang II- and AA-induced EGFR transactivation. Furthermore, ETYA, cPLA(2) antisense, and cPLA(2) siRNA attenuated Ang II-elicited PLD activation. p38 MAPK inhibitor SB202190 [4-(4-flurophenyl)-2-(4-hydroxyphenyl)-5-(4-pyridyl)1H-imidazole] reduced PLD activity and EGFR and Akt phosphorylation elicited by Ang II. Pyrrolidine-1, a cPLA(2) inhibitor, and cPLA(2) siRNA decreased p38 MAPK activity. These data indicate that Ang II-stimulated Akt activity is mediated by cPLA(2)-dependent, p38 MAPK regulated PLD(2) activation and EGFR transactivation. We propose the following scheme of the sequence of events leading to activation of Akt in VSMC by Ang II: Ang II-->cPLA(2)-->AA-->p38 MAPK-->PLD(2)-->PA-->EGFR-->Akt.

  3. Esculetin attenuates receptor activator of nuclear factor kappa-B ligand-mediated osteoclast differentiation through c-Fos/nuclear factor of activated T-cells c1 signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Jong Min; Park, Sun-Hyang; Cheon, Yoon-Hee; Ahn, Sung-Jun [Department of Anatomy, School of Medicine, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Lee, Myeung Su [Division of Rheumatology, Department of Internal Medicine, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Imaging Science-based Lung and Bone Diseases Research Center, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Institute for Skeletal Disease, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Oh, Jaemin, E-mail: jmoh@wku.ac.kr [Department of Anatomy, School of Medicine, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Imaging Science-based Lung and Bone Diseases Research Center, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Institute for Skeletal Disease, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Kim, Ju-Young, E-mail: kimjy1014@gmail.com [Imaging Science-based Lung and Bone Diseases Research Center, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of)

    2015-05-29

    Esculetin exerts various biological effects on anti-oxidation, anti-tumors, and anti-inflammation. However, the involvement of esculetin in the bone metabolism process, particularly osteoclast differentiation has not yet been investigated. In the present study, we first confirmed the inhibitory effect of esculetin on receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation. We then revealed the relationship between esculetin and the expression of osteoclast-specific molecules to elucidate its underlying mechanisms. Esculetin interfered with the expression of c-Fos and nuclear factor of activated T cell c1 (NFATc1) both at the mRNA and protein level with no involvement in osteoclast-associated early signaling pathways, suppressing the expression of various transcription factors exclusively expressed in osteoclasts such as tartrate-resistant acid phosphatase (Trap), osteoclast-associated receptor (Oscar), dendritic cell-specific transmembrane protein (Dcstamp), osteoclast stimulatory transmembrane protein (Ocstamp), cathepsin K, αvβ3 integrin, and calcitonin receptor (Ctr). Additionally, esculetin inhibited the formation of filamentous actin (F-actin) ring-positive osteoclasts during osteoclast differentiation. However, the development of F-actin structures and subsequent bone resorbing activity of mature osteoclasts, which are observed in osteoclast/osteoblast co-culture systems were not affected by esculetin. Taken together, our results indicate for the first time that esculetin inhibits RANKL-mediated osteoclastogenesis via direct suppression of c-Fos and NFATc1 expression and exerts an inhibitory effect on actin ring formation during osteoclastogenesis. - Highlights: • We first investigated the effects of esculetin on osteoclast differentiation and function. • Our data demonstrate for the first time that esculetin can suppress osteoclastogenesis in vitro. • Esculetin acts as an inhibitor of c-Fos and NFATc1 activation.

  4. Dlg-1 Interacts With and Regulates the Activities of Fibroblast Growth Factor Receptors and EphA2 in the Mouse Lens

    OpenAIRE

    Lee, Sungkyoung; Shatadal, Shalini; Griep, Anne E.

    2016-01-01

    Purpose We previously showed that Discs large-1 (Dlg-1) regulates lens fiber cell structure and the fibroblast growth factor receptor (Fgfr) signaling pathway, a pathway required for fiber cell differentiation. Herein, we investigated the mechanism through which Dlg-1 regulates Fgfr signaling. Methods Immunofluorescence was used to measure levels of Fgfr1, Fgfr2, and activated Fgfr signaling intermediates, pErk and pAkt, in control and Dlg-1–deficient lenses that were haplodeficient for Fgfr1...

  5. Fermented milk containing Lactobacillus GG alleviated DSS-induced colitis in mice and activated epidermal growth factor receptor and Akt signaling in intestinal epithelial cells

    Directory of Open Access Journals (Sweden)

    Kazutoyo Yoda

    2012-06-01

    Full Text Available Lactobacillus rhamnosus GG was assessed for its ability to alleviate DSS-induced colitis in mice and activate epidermal growth factor receptor and Akt signaling in intestinal epithelial cells. In this study mice were treated with DSS to induce colitis and they were given Lactobacillus GG fermented milk to assess the effect of probiotic on colitis. Lactobacillus GG fermented milk significantly reduced the colitis associated changes suggesting a protective effect against DSS induced colitis.

  6. Physiological and receptor-selective retinoids modulate interferon gamma signaling by increasing the expression, nuclear localization, and functional activity of interferon regulatory factor-1.

    Science.gov (United States)

    Luo, Xin M; Ross, A Catharine

    2005-10-28

    Synergistic actions between all-trans-retinoic acid (atRA) and interferon gamma (IFNgamma) on modulation of cellular functions have been reported both in vitro and in vivo. However, the mechanism of atRA-mediated regulation of IFNgamma signaling is poorly understood. In this study, we have used the human lung epithelial cell line A549 to examine the effect of atRA on IFNgamma-induced expression of IFN regulatory factor-1 (IRF-1), an important transcription factor involved in cell growth and apoptosis, differentiation, and antiviral and antibacterial immune responses. At least 4 h of pretreatment with atRA followed by suboptimal concentrations of IFNgamma induced a faster, higher, and more stable expression of IRF-1 than IFNgamma alone. Actinomycin D completely blocked the induction of IRF-1 by the combination, suggesting regulation at the transcriptional level. Further, we found that activation of signal transducer and activator of transcription-1 was induced more dramatically by atRA and IFNgamma than by IFNgamma alone. Expression of IFNgamma receptor-1 on the cell surface was also increased upon atRA pretreatment. Experiments using receptor-selective retinoids revealed that ligands for retinoic acid receptor-alpha (RARalpha), including atRA, 9-cis-retinoic acid, and Am580, sequentially increased the levels of IFNgamma receptor-1, activated signal transducer and activator of transcription-1, and IRF-1 and that an RARalpha antagonist was able to inhibit the effects of atRA and Am580. In addition, atRA pretreatment affected the transcriptional functions of IFNgamma-induced IRF-1, increasing its nuclear localization and DNA binding activity as well as the transcript levels of IRF-1 target genes. These results suggest that atRA, an RARalpha ligand, regulates IFNgamma-induced IRF-1 by affecting multiple components of the IFNgamma signaling pathway, from the plasma membrane to the nuclear transcription factors.

  7. Polymeric nanoparticles conjugate a novel heptapeptide as an epidermal growth factor receptor-active targeting ligand for doxorubicin

    Directory of Open Access Journals (Sweden)

    Liu CW

    2012-08-01

    Full Text Available Chia Wen Liu,1,2 Wen Jen Lin11Graduate Institute of Pharmaceutical Sciences, College of Medicine, National Taiwan University, Taipei; 2Drug Delivery Department, Biomedical Engineering Research Laboratories, Industrial Technology Research Institute, Hsinchu, TaiwanBackground: This study was performed to develop a functional poly(D,L-lactide-co-glycolide-poly(ethylene glycol (PLGA-PEG-bearing amino-active end group for peptide conjugation.Methods and results: PLGA was preactivated following by copolymerization with PEG diamine. The resulting amphiphilic PLGA-PEG copolymer bearing 97.0% of amino end groups had a critical micelle concentration of 3.0 × 10-8 mol/L, and the half-effective inhibition concentration (IC50 of the prepared PLGA-PEG nanoparticles was >100 mg/mL, which was much higher than that of PLGA nanoparticles (1.02 ± 0.37 mg/mL. The amphiphilic properties of PLGA-PEG spontaneously formed a core-shell conformation in the aqueous environment, and this special feature provided the amino group on the PEG chain scattered on the surface of PLGA-PEG nanoparticles for efficient peptide conjugation. The peptide-conjugated PLGA-PEG nanoparticles showed three-fold higher uptake than peptide-free PLGA-PEG nanoparticles in a SKOV3 cell line with high expression of epidermal growth factor receptor. Both peptide-conjugated and peptide-free PLGA-PEG nanoparticles were used as nanocarriers for delivery of doxorubicin. Although the rate of release of doxorubicin from both nanoparticles was similar, drug release at pH 4.0 (500 U lipase was faster than at pH 7.4. The IC50 of doxorubicin-loaded peptide-conjugated PLGA-PEG nanoparticles in SKOV3 cells (0.05 ± 0.03 µg/mL was much lower (by 62.4-fold than that of peptide-free PLGA-PEG nanoparticles (3.12 ± 1.44 µg/mL.Conclusion: This in vivo biodistribution study in SKOV3 tumor-bearing mice was further promising in that accumulation of doxorubicin in tumor tissue was in the order of peptide

  8. Parsing ERK Activation Reveals Quantitatively Equivalent Contributions From Epidermal Growth Factor Receptor and HER2 In Human Mammary Epithelial Cells

    Energy Technology Data Exchange (ETDEWEB)

    Hendriks, Bart S.; Orr, Galya; Wells, Alan H.; Wiley, H. S.; Lauffenburger, Douglas A.

    2005-02-18

    HER2, a member of the EGFR tyrosine kinase family, functions as an accessory EGFR signaling component and alters EGFR trafficking by heterodimerization. HER2 overexpression leads to aberrant cell behavior including enhanced proliferation and motility. Here we apply a combination of computational modeling and quantitative experimental studies of the dynamic interactions between EGFR and HER2, and their downstream activation of extracellular signal-related kinase (ERK) to understand this complex signaling system. Using cells expressing different levels of HER2 relative to the EGFR, we can separate relative contributions of EGFR and HER2 to signaling amplitude and duration. Based on our model calculations, we demonstrate that, in contrast with previous suggestions in the literature, the intrinsic capabilities of EGFR and HER2 to activated ERK are quantitatively equivalent . We find that HER2-mediated effects on EGFR dimerization and trafficking are sufficient to explain the detected HER2-mediated amplification of EGF-induced ERK signaling. Our model suggests that transient amplification of ERK activity by HER2 arises predominantly from the 2-to-1 stoichiometry of receptor kinase to bound ligand in EGFR/HER2 heterodimers compared to the 1-to-1 stoichiometry of the EGFR homodimer, but alterations in receptor trafficking, with resultant EGFR sparing, cause the sustained HER2-mediated enhancement of ERK signaling.

  9. Active G protein-coupled receptors (GPCR), matrix metalloproteinases 2/9 (MMP2/9), heparin-binding epidermal growth factor (hbEGF), epidermal growth factor receptor (EGFR), erbB2, and insulin-like growth factor 1 receptor (IGF-1R) are necessary for trenbolone acetate-induced alterations in protein turnover rate of fused bovine satellite cell cultures.

    Science.gov (United States)

    Thornton, K J; Kamanga-Sollo, E; White, M E; Dayton, W R

    2016-06-01

    Trenbolone acetate (TBA), a testosterone analog, increases protein synthesis and decreases protein degradation in fused bovine satellite cell (BSC) cultures. However, the mechanism through which TBA alters these processes remains unknown. Recent studies indicate that androgens improve rate and extent of muscle growth through a nongenomic mechanism involving G protein-coupled receptors (GPCR), matrix metalloproteinases (MMP), heparin-binding epidermal growth factor (hbEGF), the epidermal growth factor receptor (EGFR), erbB2, and the insulin-like growth factor-1 receptor (IGF-1R). We hypothesized that TBA activates GPCR, resulting in activation of MMP2/9 that releases hbEGF, which activates the EGFR and/or erbB2. To determine whether the proposed nongenomic pathway is involved in TBA-mediated alterations in protein turnover, fused BSC cultures were treated with TBA in the presence or absence of inhibitors for GPCR, MMP2/9, hbEGF, EGFR, erbB2, or IGF-1R, and resultant protein synthesis and degradation rates were analyzed. Assays were replicated at least 9 times for each inhibitor experiment utilizing BSC cultures obtained from at least 3 different steers that had no previous exposure to steroid compounds. As expected, fused BSC cultures treated with 10 n TBA exhibited increased ( BSC cultures with 10 n TBA in the presence of inhibitors for GPCR, MMP2/9, hbEGF, EGFR, erbB2, or IGF-1R suppressed ( 0.05) effect on TBA-mediated decreases in protein degradation. However, inhibition of both EGFR and erbB2 in the presence of 10 n TBA resulted in decreased ( BSC cultures treated with 10 n TBA exhibit increased ( BSC cultures.

  10. Tumor necrosis factor expressed by primary hippocampal neurons and SH-SY5Y cells is regulated by alpha(2)-adrenergic receptor activation.

    Science.gov (United States)

    Renauld, A E; Spengler, R N

    2002-01-15

    Neuron expression of the cytokine tumor necrosis factor-alpha (TNF), and the regulation of the levels of TNF by alpha(2)-adrenergic receptor activation were investigated. Adult rat hippocampal neurons and phorbol ester (PMA)-differentiated SH-SY5Y cells were examined. Intracellular levels of TNF mRNA accumulation, as well as TNF protein and that released into the supernatant were quantified by in situ hybridization, immunocytochemistry and bioanalysis, respectively. Both neuron cultures demonstrated constitutive production of TNF. Activation of the alpha(2)-adrenergic receptor increased intracellular levels of TNF mRNA and protein in SH-SY5Y cells after addition of graded concentrations of the selective agonist, Brimonidine (UK-14304) to parallel cultures. Intracellular levels of mRNA were increased in a concentration-dependent fashion within 15 min of UK-14304 addition and were sustained during 24 hr of receptor activation. In addition, the levels of TNF in the supernatant were increased in both types of neuron cultures within 15 min of alpha(2)-adrenergic receptor activation. Furthermore, levels of TNF significantly increased in the supernatants of both neuron cultures after potassium-induced depolarization. A reduction in this depolarization-induced release occurred in hippocampal neuron cultures after exposure to the sympathomimetic tyramine with media replacement to deplete endogenous catecholamines. This finding reveals a role for endogenous catecholamines in the regulation of TNF production. Potassium-induced depolarization resulted in the release of TNF in hippocampal neuron cultures within 15 min but not until 24 hr in SH-SY5Y cultures demonstrating a temporally mediated event dependent upon cell type. Neuron expression of TNF, regulated by alpha(2)-adrenergic receptor activation demonstrates not only how a neuron controls its own production of this pleiotropic cytokine, but also displays a normal role for neurons in directing the many functions of TNF.

  11. Activation of platelet-activating factor receptor and pleiotropic effects on tyrosine phospho-EGFR/Src/FAK/paxillin in ovarian cancer.

    Science.gov (United States)

    Aponte, Margarita; Jiang, Wei; Lakkis, Montaha; Li, Ming-Jiang; Edwards, Dale; Albitar, Lina; Vitonis, Allison; Mok, Samuel C; Cramer, Daniel W; Ye, Bin

    2008-07-15

    Among the proinflammatory mediators, platelet-activating factor (PAF, 1-O-alkyl-2-acetyl-sn-glycero-3-phosphorylcholine) is a major primary and secondary messenger involved in intracellular and extracellular communication. Evidence suggests that PAF plays a significant role in oncogenic transformation, tumor growth, angiogenesis, and metastasis. However, PAF, with its receptor (PAFR) and their downstream signaling targets, has not been thoroughly studied in cancer. Here, we characterized the PAFR expression pattern in 4 normal human ovarian surface epithelial (HOSE) cell lines, 13 ovarian cancer cell lines, paraffin blocks (n = 84), and tissue microarrays (n = 230) from patients with ovarian cancer. Overexpression of PAFR was found in most nonmucinous types of ovarian cancer but not in HOSE and mucinous cancer cells. Correspondingly, PAF significantly induced cell proliferation and invasion only in PAFR-positive cells (i.e., OVCA429 and OVCA432), but not in PAFR-negative ovarian cells (HOSE and mucinous RMUG-L). The dependency of cell proliferation and invasion on PAFR was further confirmed using PAFR-specific small interfering RNA gene silencing probes, antibodies against PAFR and PAFR antagonist, ginkgolide B. Using quantitative multiplex phospho-antibody array technology, we found that tyrosine phosphorylation of EGFR/Src/FAK/paxillin was coordinately activated by PAF treatment, which was correlated with the activation of phosphatidylinositol 3-kinase and cyclin D1 as markers for cell proliferation, as well as matrix metalloproteinase 2 and 9 for invasion. Specific tyrosine Src inhibitor (PP2) reversibly blocked PAF-activated cancer cell proliferation and invasion. We suggest that PAFR is an essential upstream target of Src and other signal pathways to control the PAF-mediated cancer progression.

  12. The activation of peroxisome proliferator-activated receptor γ is regulated by Krüppel-like transcription factors 6 & 9 under steatotic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Escalona-Nandez, Ivonne; Guerrero-Escalera, Dafne; Estanes-Hernández, Alma [Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15 Sección XVI, Tlalpan, 14000, México, D.F. (Mexico); Ortíz-Ortega, Victor; Tovar, Armando R. [Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15 Sección XVI, Tlalpan, 14000, México, D.F. (Mexico); Pérez-Monter, Carlos, E-mail: carlos.perezm@incmnsz.mx [Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15 Sección XVI, Tlalpan, 14000, México, D.F. (Mexico)

    2015-03-20

    Liver steatosis is characterised by lipid droplet deposition in hepatocytes that can leads to an inflammatory and fibrotic phenotype. Peroxisome proliferator-activated receptors (PPARs) play key roles in energetic homeostasis by regulating lipid metabolism in hepatic tissue. In adipose tissue PPARγ regulates the adipocyte differentiation by promoting the expression of lipid-associated genes. Within the liver PPARγ is up-regulated under steatotic conditions; however, which transcription factors participate in its expression is not completely understood. Krüppel-like transcription factors (KLFs) regulate various cellular mechanisms, such as cell proliferation and differentiation. KLFs are key components of adipogenesis by regulating the expression of PPARγ and other proteins such as the C-terminal enhancer binding protein (C/EBP). Here, we demonstrate that the transcript levels of Klf6, Klf9 and Pparγ are increased in response to a steatotic insult in vitro. Chromatin immunoprecipitation (ChIp) experiments showed that klf6 and klf9 are actively recruited to the Pparγ promoter region under these conditions. Accordingly, the loss-of-function experiments reduced cytoplasmic triglyceride accumulation. Here, we demonstrated that KLF6 and KLF9 proteins directly regulate PPARγ expression under steatotic conditions. - Highlights: • Palmitic acid promotes expression of KlF6 & KLF9 in HepG2 cells. • KLF6 and KLF9 promote the expression of PPARγ in response to palmitic acid. • Binding of KLF6 and KLF9 to the PPARγ promoter promotes steatosis in HepG2 cells. • KLF6 and KLF9 loss-of function diminishes the steatosis in HepG2 cells.

  13. Inhibition of tumor necrosis factor-alpha-induced interleukin-6 expression by telmisartan through cross-talk of peroxisome proliferator-activated receptor-gamma with nuclear factor kappaB and CCAAT/enhancer-binding protein-beta.

    Science.gov (United States)

    Tian, Qingping; Miyazaki, Ryohei; Ichiki, Toshihiro; Imayama, Ikuyo; Inanaga, Keita; Ohtsubo, Hideki; Yano, Kotaro; Takeda, Kotaro; Sunagawa, Kenji

    2009-05-01

    Telmisartan, an angiotensin II type 1 receptor antagonist, was reported to be a partial agonist of peroxisome proliferator-activated receptor-gamma. Although peroxisome proliferator-activated receptor-gamma activators have been shown to have an anti-inflammatory effect, such as inhibition of cytokine production, it has not been determined whether telmisartan has such effects. We examined whether telmisartan inhibits expression of interleukin-6 (IL-6), a proinflammatory cytokine, in vascular smooth muscle cells. Telmisartan, but not valsartan, attenuated IL-6 mRNA expression induced by tumor necrosis factor-alpha (TNF-alpha). Telmisartan decreased TNF-alpha-induced IL-6 mRNA and protein expression in a dose-dependent manner. Because suppression of IL-6 mRNA expression was prevented by pretreatment with GW9662, a specific peroxisome proliferator-activated receptor-gamma antagonist, peroxisome proliferator-activated receptor-gamma may be involved in the process. Telmisartan suppressed IL-6 gene promoter activity induced by TNF-alpha. Deletion analysis suggested that the DNA segment between -150 bp and -27 bp of the IL-6 gene promoter that contains nuclear factor kappaB and CCAAT/enhancer-binding protein-beta sites was responsible for telmisartan suppression. Telmisartan attenuated TNF-alpha-induced nuclear factor kappaB- and CCAAT/enhancer-binding protein-beta-dependent gene transcription and DNA binding. Telmisartan also attenuated serum IL-6 level in TNF-alpha-infused mice and IL-6 production from rat aorta stimulated with TNF-alpha ex vivo. These data suggest that telmisartan may attenuate inflammatory process induced by TNF-alpha in addition to the blockade of angiotensin II type 1 receptor. Because both TNF-alpha and angiotensin II play important roles in atherogenesis through enhancement of vascular inflammation, telmisartan may be beneficial for treatment of not only hypertension but also vascular inflammatory change.

  14. Construction of a novel fusion protein harboring mouse inter- feron γ and epidermal growth factor receptor binding domain and enhancement of its antitumor activity

    Institute of Scientific and Technical Information of China (English)

    丁炎平; 谭维彦; 胡荣; 陈望秋; 侯云德

    1997-01-01

    A novel fusion protein harboring mouse interferon γ and epidermal growth factor receptor binding domain was constructed with the method of genetic and protein engineering. The fusion protein kept complete antiviral activity with the titer of 108 IU per liter of culture. The EGF-RBD of the fusion protein exhibited competitive binding activity against 125I-mEGF for mEGF receptors on A431 cells. The fusion protein was shown to be more potent in in-hibiting the growth of cultured mouse breast carcinoma cells than interferon γ. Experimental data on mouse B16 malig-nant melanoma model indicated that the tumor weight of fusion protein-treated group was statistically significantly smaller than that of interferon γ-treated group. The work here provides a necessarily reliable clue for the upcoming clinical employment of a novel class of targeting interferons.

  15. Production of biologically active IgG hinge-tag soluble epidermal growth factor receptors (ErbB).

    Science.gov (United States)

    Otani, Takayuki; Hashizume, Toshihiro; Nagaoka, Tadahiro; Fukuda, Tomoko; Tang, Careen K; Salomon, David S; Seno, Masaharu

    2010-03-01

    The extracellular domains (ECD) of epidermal growth factor receptors, ErbB1, 2, 3 and 4, were designed as soluble dimeric forms. Each ECD was fused to a short hinge region derived from IgG, such that the stable dimer could be formed with disulfide bridges. This hinge-tagged design minimized the molecular weight to approximately 50% of the conventional Fc-fusion design without an Fc domain of IgG. The refolded dimers could be easily analyzed and characterized by SDS-PAGE. Hinge-tagged soluble ErbBs demonstrated significant affinity for betacellulin and heregulin. The IgG hinge-tag should be a simple method to design soluble dimers that would be useful for high throughput screening of ligands, antagonists or derivatives.

  16. Tissue-specific Expression of βKlotho and Fibroblast Growth Factor (FGF) Receptor Isoforms Determines Metabolic Activity of FGF19 and FGF21*†

    OpenAIRE

    Kurosu, Hiroshi; Choi, Mihwa; Ogawa, Yasushi; Dickson, Addie S.; Goetz, Regina; Eliseenkova, Anna V.; Mohammadi, Moosa; Rosenblatt, Kevin P.; Kliewer, Steven A.; Kuro-o, Makoto

    2007-01-01

    The fibroblast growth factor (FGF) 19 subfamily of ligands, FGF19, FGF21, and FGF23, function as hormones that regulate bile acid, fatty acid, glucose, and phosphate metabolism in target organs through activating FGF receptors (FGFR1–4). We demonstrated that Klotho and βKlotho, homologous single-pass transmembrane proteins that bind to FGFRs, are required for metabolic activity of FGF23 and FGF21, respectively. Here we show that, like FGF21, FGF19 also requires βKlotho. Both FGF19 and FGF21 c...

  17. Topical application of a platelet activating factor receptor agonist suppresses phorbol ester-induced acute and chronic inflammation and has cancer chemopreventive activity in mouse skin.

    Science.gov (United States)

    Sahu, Ravi P; Rezania, Samin; Ocana, Jesus A; DaSilva-Arnold, Sonia C; Bradish, Joshua R; Richey, Justin D; Warren, Simon J; Rashid, Badri; Travers, Jeffrey B; Konger, Raymond L

    2014-01-01

    Platelet activating factor (PAF) has long been associated with acute edema and inflammatory responses. PAF acts by binding to a specific G-protein coupled receptor (PAF-R, Ptafr). However, the role of chronic PAF-R activation on sustained inflammatory responses has been largely ignored. We recently demonstrated that mice lacking the PAF-R (Ptafr-/- mice) exhibit increased cutaneous tumorigenesis in response to a two-stage chemical carcinogenesis protocol. Ptafr-/- mice also exhibited increased chronic inflammation in response to phorbol ester application. In this present study, we demonstrate that topical application of the non-hydrolysable PAF mimetic (carbamoyl-PAF (CPAF)), exerts a potent, dose-dependent, and short-lived edema response in WT mice, but not Ptafr -/- mice or mice deficient in c-Kit (c-KitW-sh/W-sh mice). Using an ear inflammation model, co-administration of topical CPAF treatment resulted in a paradoxical decrease in both acute ear thickness changes associated with a single PMA application, as well as the sustained inflammation associated with chronic repetitive PMA applications. Moreover, mice treated topically with CPAF also exhibited a significant reduction in chemical carcinogenesis. The ability of CPAF to suppress acute and chronic inflammatory changes in response to PMA application(s) was PAF-R dependent, as CPAF had no effect on basal or PMA-induced inflammation in Ptafr-/- mice. Moreover, c-Kit appears to be necessary for the anti-inflammatory effects of CPAF, as CPAF had no observable effect in c-KitW-sh/W-sh mice. These data provide additional evidence that PAF-R activation exerts complex immunomodulatory effects in a model of chronic inflammation that is relevant to neoplastic development.

  18. Chrysin, Apigenin and Acacetin Inhibit Tumor Necrosis Factor-Related Apoptosis—Inducing Ligand Receptor-1 (TRAIL-R1 on Activated RAW264.7 Macrophages

    Directory of Open Access Journals (Sweden)

    Monika Warat

    2014-06-01

    Full Text Available Expression level of Tumor Necrosis Factor—related apoptosis—inducing ligand (TRAIL receptors is one of the most important factors of TRAIL-mediated apoptosis in cancer cells. We here report for the first time data concerning TRAIL-R1 and TRAIL-R2 receptor expression on RAW264.7 macrophages. Three substances belonging to flavones: chrysin, apigenin and acacetin which differ from their substituents at the 4' position in the phenyl ring were used in assays because of the variety of biological activities (e.g., anticancer activity of the polyphenol compounds. The expression of TRAIL-R1 and TRAIL-R2 death receptors on non-stimulated and LPS (lipopolysaccharide-stimulated macrophages was determined using flow cytometry. We demonstrate that RAW264.7 macrophages exhibit TRAIL-R1 surface expression and that the tested compounds: chrysin, apigenin and acacetin can inhibit TRAIL-R1 death receptor expression level on macrophages.

  19. Cardiovascular risk factors regulate the expression of vascular endothelin receptors

    DEFF Research Database (Denmark)

    Xu, Cang-Bao; Sun, Yang; Edvinsson, Lars

    2010-01-01

    , cigarette smoking and hypertension (both strongly related to arterial wall injury), inflammation and atherosclerosis. The vascular endothelin receptors are a protein family that belongs to the larger family of G-protein coupled receptors. They mediate vascular smooth muscle contraction, proliferation......-activated protein kinase pathways and downstream transcription factors such as nuclear factor-kappaB. Understanding the mechanisms involved in vascular endothelin receptor upregulation during cardiovascular disease may provide novel therapeutic approaches....

  20. An Activating Mutation in sos-1 Identifies Its Dbl Domain as a Critical Inhibitor of the Epidermal Growth Factor Receptor Pathway during Caenorhabditis elegans Vulval Development▿

    Science.gov (United States)

    Modzelewska, Katarzyna; Elgort, Marc G.; Huang, Jingyu; Jongeward, Gregg; Lauritzen, Amara; Yoon, Charles H.; Sternberg, Paul W.; Moghal, Nadeem

    2007-01-01

    Proper regulation of receptor tyrosine kinase (RTK)-Ras-mitogen-activated protein kinase (MAPK) signaling pathways is critical for normal development and the prevention of cancer. SOS is a dual-function guanine nucleotide exchange factor (GEF) that catalyzes exchange on Ras and Rac. Although the physiologic role of SOS and its CDC25 domain in RTK-mediated Ras activation is well established, the in vivo function of its Dbl Rac GEF domain is less clear. We have identified a novel gain-of-function missense mutation in the Dbl domain of Caenorhabditis elegans SOS-1 that promotes epidermal growth factor receptor (EGFR) signaling in vivo. Our data indicate that a major developmental function of the Dbl domain is to inhibit EGF-dependent MAPK activation. The amount of inhibition conferred by the Dbl domain is equal to that of established trans-acting inhibitors of the EGFR pathway, including c-Cbl and RasGAP, and more than that of MAPK phosphatase. In conjunction with molecular modeling, our data suggest that the C. elegans mutation, as well as an equivalent mutation in human SOS1, activates the MAPK pathway by disrupting an autoinhibitory function of the Dbl domain on Ras activation. Our work suggests that functionally similar point mutations in humans could directly contribute to disease. PMID:17339331

  1. An activating mutation in sos-1 identifies its Dbl domain as a critical inhibitor of the epidermal growth factor receptor pathway during Caenorhabditis elegans vulval development.

    Science.gov (United States)

    Modzelewska, Katarzyna; Elgort, Marc G; Huang, Jingyu; Jongeward, Gregg; Lauritzen, Amara; Yoon, Charles H; Sternberg, Paul W; Moghal, Nadeem

    2007-05-01

    Proper regulation of receptor tyrosine kinase (RTK)-Ras-mitogen-activated protein kinase (MAPK) signaling pathways is critical for normal development and the prevention of cancer. SOS is a dual-function guanine nucleotide exchange factor (GEF) that catalyzes exchange on Ras and Rac. Although the physiologic role of SOS and its CDC25 domain in RTK-mediated Ras activation is well established, the in vivo function of its Dbl Rac GEF domain is less clear. We have identified a novel gain-of-function missense mutation in the Dbl domain of Caenorhabditis elegans SOS-1 that promotes epidermal growth factor receptor (EGFR) signaling in vivo. Our data indicate that a major developmental function of the Dbl domain is to inhibit EGF-dependent MAPK activation. The amount of inhibition conferred by the Dbl domain is equal to that of established trans-acting inhibitors of the EGFR pathway, including c-Cbl and RasGAP, and more than that of MAPK phosphatase. In conjunction with molecular modeling, our data suggest that the C. elegans mutation, as well as an equivalent mutation in human SOS1, activates the MAPK pathway by disrupting an autoinhibitory function of the Dbl domain on Ras activation. Our work suggests that functionally similar point mutations in humans could directly contribute to disease.

  2. The fibroblast growth factor receptor (FGFR) agonist FGF1 and the neural cell adhesion molecule-derived peptide FGL activate FGFR substrate 2alpha differently

    DEFF Research Database (Denmark)

    Chen, Yongshuo; Li, Shizhong; Berezin, Vladimir

    2010-01-01

    Activation of fibroblast growth factor (FGF) receptors (FGFRs) both by FGFs and by the neural cell adhesion molecule (NCAM) is crucial in the development and function of the nervous system. We found that FGFR substrate 2alpha (FRS2alpha), Src homologous and collagen A (ShcA), and phospholipase......-Cgamma (PLCgamma) were all required for neurite outgrowth from cerebellar granule neurons (CGNs) induced by FGF1 and FGL (an NCAM-derived peptide agonist of FGFR1). Like FGF1, FGL induced tyrosine phosphorylation of FGFR1, FRS2alpha, ShcA, and PLCgamma in a time- and dose-dependent manner. However, the activation...... of FRS2alpha by FGL was significantly lower than the activation by FGF1, indicating a differential signaling profile induced by NCAM compared with the cognate growth factor....

  3. Activation of epidermal growth factor receptor mediates mucin production stimulated by p40, a Lactobacillus rhamnosus GG-derived protein.

    Science.gov (United States)

    Wang, Lihong; Cao, Hailong; Liu, Liping; Wang, Bangmao; Walker, W Allan; Acra, Sari A; Yan, Fang

    2014-07-18

    The mucus layer coating the gastrointestinal tract serves as the first line of intestinal defense against infection and injury. Probiotics promote mucin production by goblet cells in the intestine. p40, a Lactobacillus rhamnosus GG-derived soluble protein, has been shown to transactivate the EGF receptor (EGFR) in intestinal epithelial cells, which is required for inhibition of apoptosis and preservation of barrier function in the colon, thereby ameliorating intestinal injury and colitis. Because activation of EGFR has been shown to up-regulate mucin production in goblet cells, the purpose of this study was to investigate the effects and mechanisms of p40 regulation of mucin production. p40 activated EGFR and its downstream target, Akt, in a concentration-dependent manner in LS174T cells. p40 stimulated Muc2 gene expression and mucin production in LS174T cells, which were abolished by inhibition of EGFR kinase activity, down-regulation of EGFR expression by EGFR siRNA transfection, or suppression of Akt activation. Treatment with p40 increased mucin production in the colonic epithelium, thus thickening the mucus layer in the colon of wild type, but not of Egfr(wa5) mice, which have a dominant negative mutation in the EGFR kinase domain. Furthermore, inhibition of mucin-type O-linked glycosylation suppressed the effect of p40 on increasing mucin production and protecting intestinal epithelial cells from TNF-induced apoptosis in colon organ culture. Thus, these results suggest that p40-stimulated activation of EGFR mediates up-regulation of mucin production, which may contribute to the mechanisms by which p40 protects the intestinal epithelium from injury.

  4. Circulating levels of osteopontin, osteoprotegerin, total soluble receptor activator of nuclear factor-kappa B ligand, and high-sensitivity C-reactive protein in patients with active rheumatoid arthritis randomized to etanercept alone or in combination with methotrexate

    DEFF Research Database (Denmark)

    Sennels, H.; Sørensen, Steen; Østergaard, Mikkel;

    2008-01-01

    OBJECTIVE: To determine whether circulating levels of osteopontin (OPN), osteoprotegerin (OPG), total soluble receptor activator of nuclear factor-kappa B ligand (total sRANKL), and high-sensitivity C-reactive protein (hsCRP) change in patients with rheumatoid arthritis (RA) during...

  5. Na/H exchanger regulatory factors control parathyroid hormone receptor signaling by facilitating differential activation of G(alpha) protein subunits.

    Science.gov (United States)

    Wang, Bin; Ardura, Juan A; Romero, Guillermo; Yang, Yanmei; Hall, Randy A; Friedman, Peter A

    2010-08-27

    The Na/H exchanger regulatory factors, NHERF1 and NHERF2, are adapter proteins involved in targeting and assembly of protein complexes. The parathyroid hormone receptor (PTHR) interacts with both NHERF1 and NHERF2. The NHERF proteins toggle PTHR signaling from predominantly activation of adenylyl cyclase in the absence of NHERF to principally stimulation of phospholipase C when the NHERF proteins are expressed. We hypothesized that this signaling switch occurs at the level of the G protein. We measured G protein activation by [(35)S]GTPgammaS binding and G(alpha) subtype-specific immunoprecipitation using three different cellular models of PTHR signaling. These studies revealed that PTHR interactions with NHERF1 enhance receptor-mediated stimulation of G(alpha)(q) but have no effect on stimulation of G(alpha)(i) or G(alpha)(s). In contrast, PTHR associations with NHERF2 enhance receptor-mediated stimulation of both G(alpha)(q) and G(alpha)(i) but decrease stimulation of G(alpha)(s). Consistent with these functional data, NHERF2 formed cellular complexes with both G(alpha)(q) and G(alpha)(i), whereas NHERF1 was found to interact only with G(alpha)(q). These findings demonstrate that NHERF interactions regulate PTHR signaling at the level of G proteins and that NHERF1 and NHERF2 exhibit isotype-specific effects on G protein activation.

  6. Cellular signaling by fibroblast growth factor receptors.

    Science.gov (United States)

    Eswarakumar, V P; Lax, I; Schlessinger, J

    2005-04-01

    The 22 members of the fibroblast growth factor (FGF) family of growth factors mediate their cellular responses by binding to and activating the different isoforms encoded by the four receptor tyrosine kinases (RTKs) designated FGFR1, FGFR2, FGFR3 and FGFR4. Unlike other growth factors, FGFs act in concert with heparin or heparan sulfate proteoglycan (HSPG) to activate FGFRs and to induce the pleiotropic responses that lead to the variety of cellular responses induced by this large family of growth factors. A variety of human skeletal dysplasias have been linked to specific point mutations in FGFR1, FGFR2 and FGFR3 leading to severe impairment in cranial, digital and skeletal development. Gain of function mutations in FGFRs were also identified in a variety of human cancers such as myeloproliferative syndromes, lymphomas, prostate and breast cancers as well as other malignant diseases. The binding of FGF and HSPG to the extracellular ligand domain of FGFR induces receptor dimerization, activation and autophosphorylation of multiple tyrosine residues in the cytoplasmic domain of the receptor molecule. A variety of signaling proteins are phosphorylated in response to FGF stimulation including Shc, phospholipase-Cgamma, STAT1, Gab1 and FRS2alpha leading to stimulation of intracellular signaling pathways that control cell proliferation, cell differentiation, cell migration, cell survival and cell shape. The docking proteins FRS2alpha and FRS2beta are major mediators of the Ras/MAPK and PI-3 kinase/Akt signaling pathways as well as negative feedback mechanisms that fine-tune the signal that is initiated at the cell surface following FGFR stimulation.

  7. Hypoxia-inducible factor-1α increased the expression of peroxisome proliferator activated receptor α in lung cancer cell A549

    Institute of Scientific and Technical Information of China (English)

    张惠兰; 张珍祥; 徐永健

    2004-01-01

    @@ Hypoxia plays a fundamental role in many pathologic processes. Hypoxia-inducible factor-1 (HIF-1) is a heterodimeric basic helix-loop-helix-per-aryl hydrocarbon receptor ARNT-sim (PAS) domain protein, consisting of α and β subunits and is precisely regulated by cellular oxygen levels.1 The peroxisome proliferator-activated receptors (PPARs) are family nuclear hormone-binding proteins with increasing diverse functions as transcriptional regulators, owning three subtypes (α, β, and γ).2 PPARα plays a critical physiological role as lipid sensors and regulators of proliferation.3 Hypoxia can elicit up-regulation of PPAR-α expression.4 Herein, we report the results of an investigation on the correlation of HIF-1α and PPARα.

  8. Oestrogen requires the insulin-like growth factor-I receptor for stimulation of prolactin synthesis via mitogen-activated protein kinase.

    Science.gov (United States)

    Arroba, A I; Frago, L M; Argente, J; Chowen, J A

    2005-02-01

    Sex steroids and growth factors interact at the intracellular level in a variety of tissues to control numerous physiological functions. Oestrogen is known to stimulate prolactin synthesis and secretion, but the effect of insulin-like growth factor (IGF)-I is less clear. We used GH3 cells, a somatolactotroph cell line, to study the interaction of 17beta-oestradiol (E(2)) and IGF-I on prolactin protein levels and the intracellular mechanisms involved. Cell cultures were treated with E(2) (10 nM) and/or IGF-I (10 ng/ml) for 8 h. The real-time reverse transcriptase-polymerase chain reaction, Western blot and enzyme-immunoassay were used to determine changes in prolactin mRNA and protein levels. At this time-point, there were no significant changes in cell number, prolactin mRNA expression, or the amount of secreted prolactin. However, E(2) increased intracellular prolactin concentrations. IGF-I alone had no effect, but blocked the stimulatory effect of E(2). MAPK (ERK1/2) activation, as determined by Western blot analysis, increased with both E(2) and IGF-I, but not with the combination of these factors. The MAPK inhibitor PD98059 blocked the ability of E(2) to increase intracellular prolactin concentrations. Similarly, the IGF-I receptor antagonist, JB1, blocked the effect of E(2) on prolactin synthesis and MAPK activation, as did the oestrogen receptor antagonist ICI182 780. These results suggest that, to stimulate prolactin synthesis, E(2) activates the MAPK cascade and that this requires the presence of both oestrogen and IGF-I receptors.

  9. Expression of macrophage colony-stimulating factor and its receptor in microglia activation is linked to teratogen-induced neuronal damage.

    Science.gov (United States)

    Hao, A-J; Dheen, S T; Ling, E-A

    2002-01-01

    Prenatal exposure to teratogen agents is linked to the pathogenesis of neurodevelopment disorders, but the mechanisms leading to the neurodevelopmental disturbance are poorly understood. To elucidate this, an in vitro model of microglial activation induced by neuronal injury has been characterized. In this connection, exposure of primary microglial cells to the conditioned medium from the neuronal damage induced by teratogen, cyclophosphamide, is accompanied by a reactive microgliosis as assessed by reverse transcription-polymerase chain reaction, enzyme-linked immunosorbent assay, lectin histochemistry, double labeling immunohistochemistry and in situ hybridization. Our results showed that reactive microglia were capable of releasing various cytokines such as tumor necrosis factor-alpha, interleukin-1, interleukin-6, transforming growth factor-beta and nitric oxide. Also, we have shown that macrophage colony-stimulating factor (M-CSF) was in fact produced by the reactive microglia. Concomitant to this was the increased expression of M-CSF receptor in these cells following the teratogen-induced neuronal injury. The up-regulation of M-CSF receptor suggests that the cells are capable of responding to self-derived M-CSF in an autocrine fashion. Results with antibody neutralization further suggest that microglial proinflammatory response, as manifested by cytokine expression in culture, is mediated by M-CSF, which acts as a molecular signal that initiates a microglial reaction. We therefore suggest that microglial activation following cyclophosphamide treatment is not only a response to the neuronal damage, but is also a cause of the damage during pathogenesis of neurodevelopment disorders. To this end, the increased expression of M-CSF and its receptor on microglia would be directly linked to the active cell proliferation and proinflammatory response in the teratogen-induced injury.

  10. A stimulus-specific role for CREB-binding protein (CBP) in T cell receptor-activated tumor necrosis factor gene expression

    Science.gov (United States)

    Falvo, James V.; Brinkman, Brigitta M. N.; Tsytsykova, Alla V.; Tsai, Eunice Y.; Yao, Tso-Pang; Kung, Andrew L.; Goldfeld, Anne E.

    2000-04-01

    The cAMP response element binding protein (CREB)-binding protein (CBP)/p300 family of coactivator proteins regulates gene transcription through the integration of multiple signal transduction pathways. Here, we show that induction of tumor necrosis factor (TNF-) gene expression in T cells stimulated by engagement of the T cell receptor (TCR) or by virus infection requires CBP/p300. Strikingly, in mice lacking one copy of the CBP gene, TNF- gene induction by TCR activation is inhibited, whereas virus induction of the TNF- gene is not affected. Consistent with these findings, the transcriptional activity of CBP is strongly potentiated by TCR activation but not by virus infection of T cells. Thus, CBP gene dosage and transcriptional activity are critical in TCR-dependent TNF-α gene expression, demonstrating a stimulus-specific requirement for CBP in the regulation of a specific gene.

  11. Alendronate affects osteoprotegerin/receptor of activator of nuclear factor κB-ligand expression in human marrow stroma cells in vitro

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Objective To evaluate the effect of alendronate on osteoprotegerin(OPG)and receptor of activator of nuclear factor κB-ligand(RANKL)expression in human marrow stroma cells(hMSCs)in vitro.Methods hMSCs were isolated from human marrow,cultured in vitro,and randomly divided into two groups:alendronate group,hMSCs culture fluid containing 1×10-7mol/L alendronate;control group,no special treatment but culturing hMSCs in DMEM.Two weeks after treatment,the expressions of OPG and RANKL were evaluated by RT-PCR and W...

  12. Dehydroepiandrosterone sulfate mediates activation of transcription factors CREB and ATF-1 via a Gα11-coupled receptor in the spermatogenic cell line GC-2.

    Science.gov (United States)

    Shihan, Mazen; Kirch, Ulrike; Scheiner-Bobis, Georgios

    2013-12-01

    Dehydroepiandrosterone sulfate (DHEAS) is a circulating steroid produced in the adrenal cortex, brain, and gonads. Whereas a series of investigations attest to neuroprotective effects of the steroid in the brain, surprisingly little is known about the physiological effects of DHEAS on cells of the reproductive system. Here we demonstrate that DHEAS acting on the spermatogenic cell line GC-2 induces a time- and concentration-dependent phosphorylation of c-Src and Erk1/2 and activates the transcription factors activating transforming factor-1 (ATF-1) and cyclic AMP-responsive element binding protein (CREB). These actions are consistent with the non-classical signaling pathway of testosterone and suggest that DHEAS is a pro-androgen that is converted into testosterone in order to exert its biological activity. The fact, however, that steroid sulfatase mRNA was not detected in the GC-2 cells and the clear demonstration of DHEAS-induced activation of Erk1/2, ATF-1 and CREB after silencing the androgen receptor by small interfering RNA (siRNA) clearly contradict this assumption and make it appear unlikely that DHEAS has to be converted in the cytosol into a different steroid in order to activate the kinases and transcription factors mentioned. Instead, it is likely that the DHEAS-induced signaling is mediated through the interaction of the steroid with a membrane-bound G-protein-coupled receptor, since silencing of Guanine nucleotide-binding protein subunit alpha-11 (Gnα11) leads to the abolition of the DHEAS-induced stimulation of Erk1/2, ATF-1, and CREB. The investigation presented here shows a hormone-like activity of DHEAS on a spermatogenic cell line. Since DHEAS is produced in male and female reproductive organs, these findings could help to define new roles for DHEAS in the physiology of reproduction.

  13. Requirement of a soluble intracellular factor for activation of transient receptor potential A1 by pungent chemicals: role of inorganic polyphosphates.

    Science.gov (United States)

    Kim, Donghee; Cavanaugh, Eric J

    2007-06-13

    Pungent chemicals such as allyl isothiocyanate (AITC), cinnamaldehyde, and allicin, produce nociceptive sensation by directly activating transient receptor potential A1 (TRPA1) expressed in sensory afferent neurons. In this study, we found that pungent chemicals added to the pipette or bath solution easily activated TRPA1 in cell-attached patches but failed to do so in inside-out or outside-out patches. Thus, a soluble cytosolic factor was required to activate TRPA1. N-Ethylmaleimide, (2-aminoethyl)-methane thiosulfonate, 2-aminoethoxydiphneyl borate, and trinitrophenol, compounds that are known to activate TRPA1, also failed to activate it in inside-out patches. To identify a factor that supports activation of TRPA1 by pungent chemicals, we screened approximately 30 intracellular molecules known to modulate ion channels. Among them, pyrophosphate (PPi) and polytriphosphate (PPPi) were found to support activation of TRPA1 by pungent chemicals. Structure-function studies showed that inorganic polyphosphates (polyP(n), where n = number of phosphates) with at least four phosphate groups were highly effective (polyP4 approximately = polyP65 approximately = polyP45 approximately = polyP25 > PPPi > PPi), with K(1/2) values ranging from 0.2 to 2.8 mM. Inositol-trisphosphate and inositol-hexaphosphate also partially supported activation of TRPA1 by AITC. ATP, GTP, and phosphatidylinositol-4,5-bisphosphate that have three phosphate groups did not support TRPA1 activation. TRPA1 recorded from cell bodies of trigeminal ganglion neurons showed similar behavior with respect to sensitivity to pungent chemicals; no activation was observed in inside-out patches unless a polyphosphate was present. These results show that TRPA1 requires an intracellular factor to adopt a functional conformation that is sensitive to pungent chemicals and suggest that polyphosphates may partly act as such a factor.

  14. Dexamethasone effects on creatine kinase activity and insulin-like growth factor receptors in cultured muscle cells

    Science.gov (United States)

    Whitson, Peggy A.; Stuart, Charles A.; Huls, M. H.; Sams, Clarence F.; Cintron, Nitza M.

    1989-01-01

    The effect of dexamethasone on the activity of creatine kinase (CK) and the insulin-like growth factor I (IGF-I) binding were investigated using skeletal- and cardiac-muscle-derived cultured cell lines (mouse, C2C12; rat, L6 and H9c2). It was found that, in skeletal muscle cells, dexamethasone treatment during differentiation of skeletal-muscle cells caused dose-dependent increases in CK activity and increases in the degree of myotube formation, whereas cardiac cells (H9c2) exhibited very low CK activity during culture or dexamethasone treatment. Results for IGF-I binding were similar in all three cell lines. The IGF-I binding to dexamethasone-treated cells (50 nM for 24 hr on the day prior to confluence) resulted in an increased number of available binding sites, with no effect on the binding affinities.

  15. Dexamethasone effects on creatine kinase activity and insulin-like growth factor receptors in cultured muscle cells

    Science.gov (United States)

    Whitson, Peggy A.; Stuart, Charles A.; Huls, M. H.; Sams, Clarence F.; Cintron, Nitza M.

    1989-01-01

    The effect of dexamethasone on the activity of creatine kinase (CK) and the insulin-like growth factor I (IGF-I) binding were investigated using skeletal- and cardiac-muscle-derived cultured cell lines (mouse, C2C12; rat, L6 and H9c2). It was found that, in skeletal muscle cells, dexamethasone treatment during differentiation of skeletal-muscle cells caused dose-dependent increases in CK activity and increases in the degree of myotube formation, whereas cardiac cells (H9c2) exhibited very low CK activity during culture or dexamethasone treatment. Results for IGF-I binding were similar in all three cell lines. The IGF-I binding to dexamethasone-treated cells (50 nM for 24 hr on the day prior to confluence) resulted in an increased number of available binding sites, with no effect on the binding affinities.

  16. Nucleolin inhibitor GroA triggers reduction in epidermal growth factor receptor activation: Pharmacological implication for glial scarring after spinal cord injury.

    Science.gov (United States)

    Goldshmit, Yona; Schokoroy Trangle, Sari; Afergan, Fabian; Iram, Tal; Pinkas-Kramarski, Ronit

    2016-09-01

    Glial scarring, formed by reactive astrocytes, is one of the major impediments for regeneration after spinal cord injury (SCI). Reactive astrocytes become hypertrophic, proliferate and secrete chondroitin sulphate proteoglycans into the extracellular matrix (ECM). Many studies have demonstrated that epidermal growth factor receptors (EGFR) can mediate astrocyte reactivity after neurotrauma. Previously we showed that there is crosstalk between nucleolin and EGFR that leads to increased EGFR activation followed by increased cell proliferation. Treatment with the nucleolin inhibitor GroA (AS1411) prevented these effects in vitro and in vivo. In this study, we hypothesized that similar interactions may mediate astrogliosis after SCI. Our results demonstrate that nucleolin and EGFR interaction may play a pivotal role in mediating astrocyte proliferation and reactivity after SCI. Moreover, we demonstrate that treatment with GroA reduces EGFR activation, astrocyte proliferation and chondroitin sulphate proteoglycans secretion, therefore promoting axonal regeneration and sprouting into the lesion site. Our results identify, for the first time, a role for the interaction between nucleolin and EGFR in astrocytes after SCI, indicating that nucleolin inhibitor GroA may be used as a novel treatment after neurotrauma. A major barrier for axonal regeneration after spinal cord injury is glial scar created by reactive and proliferating astrocytes. EGFR mediate astrocyte reactivity. We showed that inhibition of nucleolin by GroA, reduces EGFR activation, which results in attenuation of astrocyte reactivity and proliferation in vivo and in vitro. EGFR, epidermal growth factor receptor.

  17. BN 52021 (a platelet activating factor-receptor antagonist decreases alveolar macrophage-mediated lung injury in experimental extrinsic allergic alveolitis

    Directory of Open Access Journals (Sweden)

    J-L. Pérez-Arellano

    1998-01-01

    Full Text Available Several lines of research indirectly suggest that platelet activating factor (PAF may intervene in the pathogenesis of extrinsic allergic alveolitis (EAA. The specific aim of our study was to evaluate the participation of PAF on macrophage activation during the acute phase of EAA in an experimental model of this disease developed in guinea pigs. Initially we measured the concentration of PAF in bronchoalvedar lavage fluid, blood and lung tissue. In a second phase we evaluate the participation of PAF on alveolar macrophage activation and parenchymal lung injury. The effect of PAF on parenchymal lung injury was evaluated by m easuring several lung parenchymatous lesion indices (lung index, bronchoalvedar lavage fluid (BALF lactic hydrogenase activity and BALF alkaline phosphatase activity and parameters of systemic response to the challenge (acute phase reagents. We observed that induction of the experimental EAA gave rise to an increase in the concentration of PAF in blood and in lung tissue. The use of the PAF-receptor antagonist BN52021 decreases the release of lysosomal enzymes (β-glucuronidase and tartrate-sensitive acid phosphatase to the extracellular environment both in vivo and in vitro. Furthermore, antagonism of the PAF receptors notably decreases pulmonary parenchymatous lesion. These data suggest that lung lesions from acute EAA are partly mediated by local production of PAF.

  18. Fibroblast growth factor 23 and its receptors.

    Science.gov (United States)

    Yu, Xijie; White, Kenneth E

    2005-08-01

    Fibroblast growth factor 23 (FGF23) is a circulating factor that plays critical roles in phosphate and vitamin D metabolism, as evidenced by the fact that FGF23 missense mutations cause autosomal dominant hypophosphatemic rickets (ADHR). Autosomal dominant hypophosphatemic rickets is characterized by hypophosphatemia with inappropriately normal 1,25-dihydroxyvitamin D concentrations, as well as bone pain, fracture and rickets. This phenotype parallels that of patients with tumor induced osteomalacia (TIO), X-linked hypophosphatemic rickets (XLH), and fibrous dysplasia (FD), in whom elevated serum FGF23 levels are often observed. The fibroblast growth factor receptors (FGFR1-4) play key roles in skeletal development, as well as in normal metabolic processes. Several FGFR isoforms that potentially mediate the activity of FGF23 have been implicated. In the short term, these findings will lead to further understanding of FGF23 function, and potentially in the long term, to targeted therapies in disorders of hypo- and hyperphosphatemia that involve FGF23.

  19. Endothelin B Receptors on Primary Chicken Müller Cells and the Human MIO-M1 Müller Cell Line Activate ERK Signaling via Transactivation of Epidermal Growth Factor Receptors

    Science.gov (United States)

    Harun-Or-Rashid, Mohammad; Konjusha, Dardan; Galindo-Romero, Caridad

    2016-01-01

    Injury to the eye or retina triggers Müller cells, the major glia cell of the retina, to dedifferentiate and proliferate. In some species they attain retinal progenitor properties and have the capacity to generate new neurons. The epidermal growth factor receptor (EGFR) system and extracellular signal-regulated kinase (ERK) signaling are key regulators of these processes in Müller cells. The extracellular signals that modulate and control these processes are not fully understood. In this work we studied whether endothelin receptor signaling can activate EGFR and ERK signaling in Müller cells. Endothelin expression is robustly upregulated at retinal injury and endothelin receptors have been shown to transactivate EGFRs in other cell types. We analyzed the endothelin signaling system in chicken retina and cultured primary chicken Müller cells as well as the human Müller cell line MIO-M1. The Müller cells were stimulated with receptor agonists and treated with specific blockers to key enzymes in the signaling pathway or with siRNAs. We focused on endothelin receptor mediated transactivation of EGFRs by using western blot analysis, quantitative reverse transcriptase PCR and immunocytochemistry. The results showed that chicken Müller cells and the human Müller cell line MIO-M1 express endothelin receptor B. Stimulation by the endothelin receptor B agonist IRL1620 triggered phosphorylation of ERK1/2 and autophosphorylation of (Y1173) EGFR. The effects could be blocked by Src-kinase inhibitors (PP1, PP2), EGFR-inhibitor (AG1478), EGFR-siRNA and by inhibitors to extracellular matrix metalloproteinases (GM6001), consistent with a Src-kinase mediated endothelin receptor response that engage ligand-dependent and ligand-independent EGFR activation. Our data suggest a mechanism for how injury-induced endothelins, produced in the retina, may modulate the Müller cell responses by Src-mediated transactivation of EGFRs. The data give support to a view in which endothelins

  20. Endothelin B Receptors on Primary Chicken Müller Cells and the Human MIO-M1 Müller Cell Line Activate ERK Signaling via Transactivation of Epidermal Growth Factor Receptors.

    Science.gov (United States)

    Harun-Or-Rashid, Mohammad; Konjusha, Dardan; Galindo-Romero, Caridad; Hallböök, Finn

    2016-01-01

    Injury to the eye or retina triggers Müller cells, the major glia cell of the retina, to dedifferentiate and proliferate. In some species they attain retinal progenitor properties and have the capacity to generate new neurons. The epidermal growth factor receptor (EGFR) system and extracellular signal-regulated kinase (ERK) signaling are key regulators of these processes in Müller cells. The extracellular signals that modulate and control these processes are not fully understood. In this work we studied whether endothelin receptor signaling can activate EGFR and ERK signaling in Müller cells. Endothelin expression is robustly upregulated at retinal injury and endothelin receptors have been shown to transactivate EGFRs in other cell types. We analyzed the endothelin signaling system in chicken retina and cultured primary chicken Müller cells as well as the human Müller cell line MIO-M1. The Müller cells were stimulated with receptor agonists and treated with specific blockers to key enzymes in the signaling pathway or with siRNAs. We focused on endothelin receptor mediated transactivation of EGFRs by using western blot analysis, quantitative reverse transcriptase PCR and immunocytochemistry. The results showed that chicken Müller cells and the human Müller cell line MIO-M1 express endothelin receptor B. Stimulation by the endothelin receptor B agonist IRL1620 triggered phosphorylation of ERK1/2 and autophosphorylation of (Y1173) EGFR. The effects could be blocked by Src-kinase inhibitors (PP1, PP2), EGFR-inhibitor (AG1478), EGFR-siRNA and by inhibitors to extracellular matrix metalloproteinases (GM6001), consistent with a Src-kinase mediated endothelin receptor response that engage ligand-dependent and ligand-independent EGFR activation. Our data suggest a mechanism for how injury-induced endothelins, produced in the retina, may modulate the Müller cell responses by Src-mediated transactivation of EGFRs. The data give support to a view in which endothelins

  1. Antioxidant alpha-lipoic acid inhibits osteoclast differentiation by reducing nuclear factor-kappaB DNA binding and prevents in vivo bone resorption induced by receptor activator of nuclear factor-kappaB ligand and tumor necrosis factor-alpha.

    Science.gov (United States)

    Kim, Hyon Jong; Chang, Eun-Ju; Kim, Hyun-Man; Lee, Seung Bok; Kim, Hyun-Duck; Su Kim, Ghi; Kim, Hong-Hee

    2006-05-01

    The relationship between oxidative stress and bone mineral density or osteoporosis has recently been reported. As bone loss occurring in osteoporosis and inflammatory diseases is primarily due to increases in osteoclast number, reactive oxygen species (ROS) may be relevant to osteoclast differentiation, which requires receptor activator of nuclear factor-kappaB ligand (RANKL). Tumor necrosis factor-alpha (TNF-alpha) frequently present in inflammatory conditions has a profound synergy with RANKL in osteoclastogenesis. In this study, we investigated the effects of alpha-lipoic acid (alpha-LA), a strong antioxidant clinically used for some time, on osteoclast differentiation and bone resorption. At concentrations showing no growth inhibition, alpha-LA potently suppressed osteoclastogenesis from bone marrow-derived precursor cells driven either by a high-dose RANKL alone or by a low-dose RANKL plus TNF-alpha (RANKL/TNF-alpha). alpha-LA abolished ROS elevation by RANKL or RANKL/TNF-alpha and inhibited NF-kappaB activation in osteoclast precursor cells. Specifically, alpha-LA reduced DNA binding of NF-kappaB but did not inhibit IKK activation. Furthermore, alpha-LA greatly suppressed in vivo bone loss induced by RANKL or TNF-alpha in a calvarial remodeling model. Therefore, our data provide evidence that ROS plays an important role in osteoclast differentiation through NF-kappaB regulation and the antioxidant alpha-lipoic acid has a therapeutic potential for bone erosive diseases.

  2. P2X7 receptor activation ameliorates CA3 neuronal damage via a tumor necrosis factor-α-mediated pathway in the rat hippocampus following status epilepticus

    Directory of Open Access Journals (Sweden)

    Ryu Hea Jin

    2011-06-01

    Full Text Available Abstract Background The release of tumor necrosis factor-α (TNF-α appears depend on the P2X7 receptor, a purinergic receptor. In the present study, we addressed the question of whether P2X7 receptor-mediated TNF-α regulation is involved in pathogenesis and outcome of status epilepticus (SE. Methods SE was induced by pilocarpine in rats that were intracerebroventricularly infused with saline-, 2',3'-O-(4-benzoylbenzoyl-adenosine 5'-triphosphate (BzATP, adenosine 5'-triphosphate-2',3'-dialdehyde (OxATP, A-438079, or A-740003 prior to SE induction. Thereafter, we performed Fluoro-Jade B staining and immunohistochemical studies for TNF-α and NF-κB subunit phosphorylations. Results Following SE, P2X7 receptor agonist (BzATP infusion increased TNF-α immunoreactivity in dentate granule cells as compared with that in saline-infused animals. In addition, TNF-α immunoreactivity was readily apparent in the mossy fibers, while TNF-α immunoreactivity in CA1-3 pyramidal cells was unaltered. However, P2X7 receptor antagonist (OxATP-, A-438079, and A-740003 infusion reduced SE-induced TNF-α expression in dentate granule cells. In the CA3 region, BzATP infusion attenuated SE-induced neuronal damage, accompanied by enhancement of p65-Ser276 and p65-Ser311 NF-κB subunit phosphorylations. In contrast, OxATP-, A-438079, and A-740003 infusions increased SE-induced neuronal death. Soluble TNF p55 receptor (sTNFp55R, and cotreatment with BzATP and sTNFp55R infusion also increased SE-induced neuronal damage in CA3 region. However, OxATP-, sTNFp55R or BzATP+sTNFp55R infusions could not exacerbate SE-induced neuronal damages in the dentate gyrus and the CA1 region, as compared to BzATP infusion. Conclusions These findings suggest that TNF-α induction by P2X7 receptor activation may ameliorate SE-induced CA3 neuronal damage via enhancing NF-κB p65-Ser276 and p65-Ser311 phosphorylations.

  3. Fluence Rate Differences in Photodynamic Therapy Efficacy and Activation of Epidermal Growth Factor Receptor after Treatment of the Tumor-Involved Murine Thoracic Cavity

    Directory of Open Access Journals (Sweden)

    Craig E. Grossman

    2016-01-01

    Full Text Available Photodynamic therapy (PDT of the thoracic cavity can be performed in conjunction with surgery to treat cancers of the lung and its pleura. However, illumination of the cavity results in tissue exposure to a broad range of fluence rates. In a murine model of intrathoracic PDT, we studied the efficacy of 2-(1-hexyloxyethyl-2-devinyl pyropheophorbide-a (HPPH; Photochlor®-mediated PDT in reducing the burden of non-small cell lung cancer for treatments performed at different incident fluence rates (75 versus 150 mW/cm. To better understand a role for growth factor signaling in disease progression after intrathoracic PDT, the expression and activation of epidermal growth factor receptor (EGFR was evaluated in areas of post-treatment proliferation. The low fluence rate of 75 mW/cm produced the largest reductions in tumor burden. Bioluminescent imaging and histological staining for cell proliferation (anti-Ki-67 identified areas of disease progression at both fluence rates after PDT. However, increased EGFR activation in proliferative areas was detected only after treatment at the higher fluence rate of 150 mW/cm. These data suggest that fluence rate may affect the activation of survival factors, such as EGFR, and weaker activation at lower fluence rate could contribute to a smaller tumor burden after PDT at 75 mW/cm.

  4. A hepatoprotective Lindera obtusiloba extract suppresses growth and attenuates insulin like growth factor-1 receptor signaling and NF-kappaB activity in human liver cancer cell lines

    Directory of Open Access Journals (Sweden)

    Stroh Thorsten

    2011-05-01

    Full Text Available Abstract Background In traditional Chinese and Korean medicine, an aqueous extract derived from wood and bark of the Japanese spice bush Lindera obtusiloba (L.obtusiloba is applied to treat inflammations and chronic liver diseases including hepatocellular carcinoma. We previously demonstrated anti-fibrotic effects of L.obtusiloba extract in hepatic stellate cells. Thus, we here consequently examine anti-neoplastic effects of L.obtusiloba extract on human hepatocellular carcinoma (HCC cell lines and the signaling pathways involved. Methods Four human HCC cell lines representing diverse stages of differentiation were treated with L.obtusiloba extract, standardized according to its known suppressive effects on proliferation and TGF-β-expression. Beside measurement of proliferation, invasion and apoptosis, effects on signal transduction and NF-κB-activity were determined. Results L.obtusiloba extract inhibited proliferation and induced apoptosis in all HCC cell lines and provoked a reduced basal and IGF-1-induced activation of the IGF-1R signaling cascade and a reduced transcriptional NF-κB-activity, particularly in the poorly differentiated SK-Hep1 cells. Pointing to anti-angiogenic effects, L.obtusiloba extract attenuated the basal and IGF-1-induced expression of hypoxia inducible factor-1α, vascular endothelial growth factor, peroxisome proliferator-activated receptor-γ, cyclooxygenase-2 and inducible nitric oxide synthase. Conclusions The traditional application of the extract is confirmed by our experimental data. Due to its potential to inhibit critical receptor tyrosine kinases involved in HCC progression via the IGF-1 signaling pathway and NF-κB, the standardized L.obtusiloba extract should be further analysed for its active compounds and explored as (complementary treatment option for HCC.

  5. Energy-sensing Factors Coactivator Peroxisome Proliferator-activated Receptor gamma Coactivator 1-alpha (PGC-1 alpha) and AMP-activated Protein Kinase Control Expression of Inflammatory Mediators in Liver INDUCTION OF INTERLEUKIN 1 RECEPTOR ANTAGONIST

    NARCIS (Netherlands)

    Buler, M.; Aatsinki, S.M.; Skoumal, R.; Komka, Z.; Toth, M.; Kerkela, R.; Georgiadi, A.; Kersten, A.H.; Hakkola, J.

    2012-01-01

    Obesity and insulin resistance are associated with chronic, low grade inflammation. Moreover, regulation of energy metabolism and immunity are highly integrated. We hypothesized that energy-sensitive coactivator peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1 alpha) and A

  6. Mechanism of FGF receptor dimerization and activation

    Science.gov (United States)

    Sarabipour, Sarvenaz; Hristova, Kalina

    2016-01-01

    Fibroblast growth factors (fgfs) are widely believed to activate their receptors by mediating receptor dimerization. Here we show, however, that the FGF receptors form dimers in the absence of ligand, and that these unliganded dimers are phosphorylated. We further show that ligand binding triggers structural changes in the FGFR dimers, which increase FGFR phosphorylation. The observed effects due to the ligands fgf1 and fgf2 are very different. The fgf2-bound dimer structure ensures the smallest separation between the transmembrane (TM) domains and the highest possible phosphorylation, a conclusion that is supported by a strong correlation between TM helix separation in the dimer and kinase phosphorylation. The pathogenic A391E mutation in FGFR3 TM domain emulates the action of fgf2, trapping the FGFR3 dimer in its most active state. This study establishes the existence of multiple active ligand-bound states, and uncovers a novel molecular mechanism through which FGFR-linked pathologies can arise.

  7. Expression of parathyroid hormone-related protein (PTHrP), osteoclast differentiation factor (ODF)/receptor activator of nuclear factor-kappaB ligand (RANKL) and osteoclastogenesis inhibitory factor (OCIF)/osteoprotegerin (OPG) in ameloblastomas.

    Science.gov (United States)

    Kumamoto, Hiroyuki; Ooya, Kiyoshi

    2004-01-01

    To clarify the roles of osteoclast regulatory factors in progression of odontogenic tumors, expression of parathyroid hormone-related protein (PTHrP), osteoclast differentiation factor (ODF)/receptor activator of nuclear factor-kappaB ligand (RANKL), and osteoclastogenesis inhibitory factor (OCIF)/osteoprotegerin (OPG) were analyzed in ameloblastomas as well as tooth germs. Tissue specimens of nine tooth germs and 36 benign and one malignant ameloblastomas were examined by reverse transcriptase-polymerase chain reaction (RT-PCR) and immunohistochemistry for the expression of PTHrP, ODF/RANKL, and OCIF/OPG. Expression of PTHrP, ODF/RANKL, and OCIF/OPG mRNA was detected in all tooth germ and ameloblastoma samples. Immunohistochemical reactivity for PTHrP was recognized in both normal and neoplastic odontogenic epithelial cells. In ameloblastomas, PTHrP reactivity in peripheral columnar or cuboidal cells was stronger than that in central polyhedral cells, and keratinizing cells showed increased PTHrP reactivity. ODF/RANKL and OCIF/OPG were expressed predominantly in mesenchymal cells rather than in odontogenic epithelial cells in both tooth germs and ameloblastomas. Epithelial ODF/RANKL and OCIF/OPG expression was slightly lower in ameloblastomas than in tooth germs. Tumor cells in plexiform ameloblastomas showed slightly higher reactivity for PTHrP and ODF/RANKL than tumor cells in follicular ameloblastomas. Expression of PTHrP, ODF/RANKL and OCIF/OPG in tooth germs and ameloblastomas suggests that these factors might locally regulate bone metabolism and dynamics in tooth development as well as in progression of ameloblastomas. These factors might also be involved in tumor cell differentiation and/or tumor tissue structuring in ameloblastomas.

  8. Transcriptional Regulation of Urokinase-type Plasminogen Activator Receptor by Hypoxia-Inducible Factor 1 Is Crucial for Invasion of Pancreatic and Liver Cancer

    Directory of Open Access Journals (Sweden)

    Peter Büchler

    2009-02-01

    Full Text Available Angioinvasion is critical for metastasis with urokinase-type plasminogen activator receptor (uPAR and tumor hypoxia-activated hypoxia-inducible factor 1 (HIF-1 as key players. Transcriptional control of uPAR expression by HIF has never been reported. The aim of the present study, therefore, was to test whether tumor hypoxia-induced HIF expression may be linked to transcriptional activation of uPAR and dependent angioinvasion. We used human pancreatic cancer cells and a model of parental and derived HIF-1β-deficient mouse liver cancer cell lines and performed Northern blot analysis, nuclear runoff assays, electrophoretic mobility shift assay, polymerase chain reaction-generated deletion mutants, luciferase assays, Matrigel invasion assays, and in vivo angioinvasion assays in the chorioallantoic membrane of fertilized chicken eggs. Urokinase-type plasminogen activator receptor promoter analysis resulted in four putative HIF binding sites. Hypoxia strongly induced de novo transcription of uPAR mRNA. With sequential deletion mutants of the uPAR promoter, it was possible to identify one HIF binding site causing a nearly 200-fold increase in luciferase activity. Hypoxia enhanced the number of invading tumor cells in vitro and in vivo. In contrast, HIF-1β-deficient cells failed to upregulate uPAR expression, to activate luciferase activity, and to invade on hypoxia. Taken together, we show for the first time that uPAR is under transcriptional control of HIF and that this is important for hypoxia-induced metastasis.

  9. Calcineurin/nuclear factor of activated T cells-coupled vanilliod transient receptor potential channel 4 ca2+ sparklets stimulate airway smooth muscle cell proliferation.

    Science.gov (United States)

    Zhao, Limin; Sullivan, Michelle N; Chase, Marlee; Gonzales, Albert L; Earley, Scott

    2014-06-01

    Proliferation of airway smooth muscle cells (ASMCs) contributes to the remodeling and irreversible obstruction of airways during severe asthma, but the mechanisms underlying this disease process are poorly understood. Here we tested the hypothesis that Ca(2+) influx through the vanilliod transient receptor potential channel (TRPV) 4 stimulates ASMC proliferation. We found that synthetic and endogenous TRPV4 agonists increase proliferation of primary ASMCs. Furthermore, we demonstrate that Ca(2+) influx through individual TRPV4 channels produces Ca(2+) microdomains in ASMCs, called "TRPV4 Ca(2+) sparklets." We also show that TRPV4 channels colocalize with the Ca(2+)/calmodulin-dependent protein phosphatase calcineurin in ASMCs. Activated calcineurin dephosphorylates nuclear factor of activated T cells (NFAT) transcription factors cytosolic (c) to allow nuclear translocation and activation of synthetic transcriptional pathways. We show that ASMC proliferation in response to TRPV4 activity is associated with calcineurin-dependent nuclear translocation of the NFATc3 isoform tagged with green florescent protein. Our findings suggest that Ca(2+) microdomains created by TRPV4 Ca(2+) sparklets activate calcineurin to stimulate nuclear translocation of NFAT and ASMC proliferation. These findings further suggest that inhibition of TRPV4 could diminish asthma-induced airway remodeling.

  10. UDP acts as a growth factor for vascular smooth muscle cells by activation of P2Y(6) receptors

    DEFF Research Database (Denmark)

    Hou, Mingyan; Harden, T Kendall; Kuhn, Cynthia M;

    2002-01-01

    Mitogenic effects of the extracellular nucleotides ATP and UTP are mediated by P2Y(1), P2Y(2), and P2Y(4) receptors. However, it has not been possible to examine the highly expressed UDP-sensitive P2Y(6) receptor because of the lack of stable, selective agonists. In rat aorta smooth muscle cells...... (vascular smooth muscle cells; VSMC), UDP and UTP stimulated (3)H-labeled thymidine incorporation with similar pEC(50) values (5.96 and 5.69). Addition of hexokinase did not reduce the mitogenic effect of UDP. In cells transfected with P2Y receptors the stable pyrimidine agonist uridine 5'-O-(2...

  11. Response to platelet-activating factor in human platelets stored and aged in plasma. Decrease in aggregation, phosphoinositide turnover, and receptor affinity

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, S.D.; Morrison, W.J.; Klachko, D.M.

    1989-07-01

    Human platelet concentrates were stored in polyolefin bags at 22 to 24 degrees C on a horizontal shaker for up to 8 days. At different intervals, aliquots of platelet-rich plasma (PRP) were removed aseptically and five variables, i.e., platelet counts, morphology, platelet-activating factor (PAF)-stimulated aggregation, phosphoinositide turnover, and (3H)PAF binding to platelet receptors, were studied. The number of platelets did not change during the 8 days of storage. Scanning electron microscopy of the platelets revealed a gradual morphologic change from biconcave flat discs to irregular, crenated forms. The PAF-induced aggregation of platelets declined with time of storage. A decrease to 50 percent of the Day 1 aggregatory response to PAF was evident on Day 2, and there was a further decline to about 20 percent by Day 6. Similarly, PAF receptor-coupled phosphoinositide turnover, as monitored by 32P incorporation into individual phosphoinositides, decreased dramatically with storage. After 2 to 3 days of storage, the phosphoinositide turnover was reduced to 50 percent of the original response, and it continued to decline to about 25 percent of original response by Day 5 or 6. The binding of (3H)PAF to washed human platelets indicated subtle changes between Days 2 and 4, which became more noticeable by Day 6. These results have raised the possibility of changes in the number of the receptors and/or their affinity for the ligand during storage. We conclude that although the number of platelets was maintained during storage for 8 days, a general deterioration of their responses to PAF occurred at the levels of cell surface receptor, transmembrane signaling (phosphoinositide turnover), and response (aggregation).

  12. The Ikaros transcription factor regulates responsiveness to IL-12 and expression of IL-2 receptor alpha in mature, activated CD8 T cells.

    Directory of Open Access Journals (Sweden)

    Eric T Clambey

    Full Text Available The Ikaros family of transcription factors is critical for normal T cell development while limiting malignant transformation. Mature CD8 T cells express multiple Ikaros family members, yet little is known about their function in this context. To test the functions of this gene family, we used retroviral transduction to express a naturally occurring, dominant negative (DN isoform of Ikaros in activated CD8 T cells. Notably, expression of DN Ikaros profoundly enhanced the competitive advantage of activated CD8 T cells cultured in IL-12, such that by 6 days of culture, DN Ikaros-transduced cells were 100-fold more abundant than control cells. Expression of a DN isoform of Helios, a related Ikaros-family transcription factor, conferred a similar advantage to transduced cells in IL-12. While DN Ikaros-transduced cells had higher expression of the IL-2 receptor alpha chain, DN Ikaros-transduced cells achieved their competitive advantage through an IL-2 independent mechanism. Finally, the competitive advantage of DN Ikaros-transduced cells was manifested in vivo, following adoptive transfer of transduced cells. These data identify the Ikaros family of transcription factors as regulators of cytokine responsiveness in activated CD8 T cells, and suggest a role for this family in influencing effector and memory CD8 T cell differentiation.

  13. Peroxisome Proliferator-Activated Receptor α Reduces Endothelin-1-Caused Cardiomyocyte Hypertrophy by Inhibiting Nuclear Factor-κB and Adiponectin

    Directory of Open Access Journals (Sweden)

    Hsu-Lung Jen

    2016-01-01

    Full Text Available Peroxisome proliferator-activated receptor α (PPARα plays a role in the pathogenesis of cardiac hypertrophy, although its underlying mechanism remains unclear. The purpose of this study was to evaluate the effect of PPARα activation on endothelin-1- (ET-1- caused cardiomyocyte hypertrophy and explore its underlying mechanisms. Human cardiomyocytes (HCMs were cultured with or without ET-1, whereafter the inhibitory effects of fenofibrate, a PPARα activator, on cell size and adiponectin protein were tested. We examined the activation of extracellular signal-regulated kinase (ERK and p38 proteins caused by ET-1 and the inhibition of the ERK and p38 pathways on ET-1-induced cell size and adiponectin expression. Moreover, we investigated the interaction of PPARα with adiponectin and nuclear factor-κB (NF-κB by electrophoretic mobility shift assays and coimmunoprecipitation. ET-1 treatment significantly increased cell size, suppressed PPARα expression, and enhanced the expression of adiponectin. Pretreatment with fenofibrate inhibited the increase in cell size and enhancement of adiponectin expression. ET-1 significantly activated the ERK and p38 pathways, whereas PD98059 and SB205380, respectively, inhibited them. Our results suggest that activated PPARα can decrease activation of adiponectin and NF-κB and inhibit ET-1-induced cardiomyocyte hypertrophy.

  14. Tumor necrosis factor-α and receptor activator of nuclear factor-κB ligand augment human macrophage foam-cell destruction of extracellular matrix through protease-mediated processes

    DEFF Research Database (Denmark)

    Skjøt-Arkil, Helene; Barascuk, Natasha; Larsen, Lise;

    2012-01-01

    component of extracellular matrix (ECM) in plaques, and to establish whether the pro-inflammatory molecules, tumor necrosis factor (TNF)-alpha, and receptor activator of nuclear factor-κB ligand (RANK-L) increase this degradation. CD14+ monocytes isolated from peripheral blood were differentiated......% and 72%, respectively. This is, to our knowledge, the first data describing a simple in vitro system in which macrophage foam cells degradation of matrix proteins can be monitored. This degradation can be enhanced by cytokines since TNF-alpha and RANK-L significantly increased the matrix degradation...

  15. Valsartan independent of AT₁ receptor inhibits tissue factor, TLR-2 and -4 expression by regulation of Egr-1 through activation of AMPK in diabetic conditions.

    Science.gov (United States)

    Ha, Yu Mi; Park, Eun Jung; Kang, Young Jin; Park, Sang Won; Kim, Hye Jung; Chang, Ki Churl

    2014-10-01

    Patients suffering from diabetes mellitus (DM) are at a severe risk of atherothrombosis. Early growth response (Egr)-1 is well characterized as a central mediator in vascular pathophysiology. We tested whether valsartan independent of Ang II type 1 receptor (AT1R) can reduce tissue factor (TF) and toll-like receptor (TLR)-2 and -4 by regulating Egr-1 in THP-1 cells and aorta in streptozotocin-induced diabetic mice. High glucose (HG, 15 mM) increased expressions of Egr-1, TF, TLR-2 and -4 which were significantly reduced by valsartan. HG increased Egr-1 expression by activation of PKC and ERK1/2 in THP-1 cells. Valsartan increased AMPK phosphorylation in a concentration and time-dependent manner via activation of LKB1. Valsartan inhibited Egr-1 without activation of PKC or ERK1/2. The reduced expression of Egr-1 by valsartan was reversed by either silencing Egr-1, or compound C, or DN-AMPK-transfected cells. Valsartan inhibited binding of NF-κB and Egr-1 to TF promoter in HG condition. Furthermore, valsartan reduced inflammatory cytokine (TNF-α, IL-6 and IL-1β) production and NF-κB activity in HG-activated THP-1 cells. Interestingly, these effects of valsartan were not affected by either silencing AT1R in THP-1 cells or CHO cells, which were devoid of AT1R. Importantly, administration of valsartan (20 mg/kg, i.p) for 8 weeks significantly reduced plasma TF activity, expression of Egr-1, TLR-2, -4 and TF in thoracic aorta and improved glucose tolerance of streptozotocin-induced diabetic mice. Taken together, we concluded that valsartan may reduce atherothrombosis in diabetic conditions through AMPK/Egr-1 regulation.

  16. Melanocortin 4 receptor activates ERK-cFos pathway to increase brain-derived neurotrophic factor expression in rat astrocytes and hypothalamus.

    Science.gov (United States)

    Ramírez, D; Saba, J; Carniglia, L; Durand, D; Lasaga, M; Caruso, C

    2015-08-15

    Melanocortins are neuropeptides with well recognized anti-inflammatory and anti-apoptotic effects in the brain. Of the five melanocortin receptors (MCR), MC4R is abundantly expressed in the brain and is the only MCR present in astrocytes. We have previously shown that MC4R activation by the α-melanocyte stimulating hormone (α-MSH) analog, NDP-MSH, increased brain-derived neurotrophic factor (BDNF) expression through the classic cAMP-Protein kinase A-cAMP responsive element binding protein pathway in rat astrocytes. Now, we examined the participation of the mitogen activated protein kinases pathway in MC4R signaling. Rat cultured astrocytes treated with NDP-MSH 1 µM for 1 h showed increased BDNF expression. Inhibition of extracellular signal-regulated kinase (ERK) and ribosomal p90 S6 kinase (RSK), an ERK substrate, but not of p38 or JNK, prevented the increase in BDNF expression induced by NDP-MSH. Activation of MC4R increased cFos expression, a target of both ERK and RSK. ERK activation by MC4R involves cAMP, phosphoinositide-3 kinase (PI3K) and the non receptor tyrosine kinase, Src. Both PI3K and Src inhibition abolished NDP-MSH-induced BDNF expression. Moreover, we found that intraperitoneal injection of α-MSH induces BDNF and MC4R expression and activates ERK and cFos in male rat hypothalamus. Our results show for the first time that MC4R-induced BDNF expression in astrocytes involves ERK-RSK-cFos pathway which is dependent on PI3K and Src, and that melanocortins induce BDNF expression and ERK-cFos activation in rat hypothalamus. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Regulation of platelet-activating factor (PAF) receptor and PAF receptor-mediated cellular response in Kupffer cells: Effect of vanadate

    Energy Technology Data Exchange (ETDEWEB)

    Chao, W.; Liu, H.; Hanahan, D.J.; Olson, M.S. (Univ. of Texas, San Antonio (United States))

    1991-03-11

    Vanadate is a phosphate analogue which affects phosphate transfer reactions which may be involved in regulatory processes in which tyrosine phosphorylation or dephosphorylation may be an important component. In the present study vanadate decreased the surface expression of PAF receptors and caused tyrosine-phosphorylation in numerous proteins in intact Kupffer cells. The vanadate-induced tyrosine-phosphorylation was inhibited by genistein, a specific tyrosine kinase inhibitor. The EC{sub 50} for the vanadate-initiated decrease in the surface expression of PAF receptors was approximately 0.25 mM, 0.65 mM, and 2 mM, respectively, when the vanadate exposure time was 3 h, 2h, and 1h. As a consequence, PAF-stimulated prostaglandin E{sub 2} (PGE{sub 2}) formation was attenuated in vanadate-treated Kupffer cells. While vanadate itself was found to stimulate PGE{sub 2} production, PAF-stimulated PGE{sub 2}formation was inhibited significantly by genistein. The present study suggests that vanadate stimulated strongly tyrosine-phosphorylation of cellular proteins and decreased the surface expression of PAF receptor in intact Kupffer cells.

  18. ShcA regulates neurite outgrowth stimulated by neural cell adhesion molecule but not by fibroblast growth factor 2: evidence for a distinct fibroblast growth factor receptor response to neural cell adhesion molecule activation

    DEFF Research Database (Denmark)

    Hinsby, Anders M; Lundfald, Line; Ditlevsen, Dorte K;

    2004-01-01

    by two principal routes of signaling: NCAM/Fyn and NCAM/fibroblast growth factor receptor (FGFR), respectively. Previous studies have shown that activation of mitogen-activated protein kinases is a pivotal point of convergence in NCAM signaling, but the mechanisms behind this activation are not clear....... Here, we investigated the involvement of adaptor proteins in NCAM and fibroblast growth factor 2 (FGF2)-mediated neurite outgrowth in the PC12-E2 cell line. We found that both FGFR substrate-2 and Grb2 play important roles in NCAM as well as in FGF2-stimulated events. In contrast, the docking protein...... ShcA was pivotal to neurite outgrowth induced by NCAM, but not by FGF2, in PC12 cells. Moreover, in rat cerebellar granule neurons, phosphorylation of ShcA was stimulated by an NCAM mimicking peptide, but not by FGF2. This activation was blocked by inhibitors of both FGFR and Fyn, indicating that NCAM...

  19. Wingless-type family member 3A triggers neuronal polarization via cross-activation of the insulin-like growth factor-1 receptor pathway

    Directory of Open Access Journals (Sweden)

    Maria Eugenia Bernis

    2013-10-01

    Full Text Available Initial axonal elongation is essential for neuronal polarization and requires polarized activation of IGF-1 receptors (IGF-1r and the phosphatidylinositol 3 kinase (PI3k pathway. Wingless-type family growth factors (Wnts have also been implied in the regulation of axonal development. It is not known, however, if Wnts have any participation in the regulation of initial axonal outgrowth and the establishment of neuronal polarity. We used cultured hippocampal neurons and growth cone particles (GCPs isolated from fetal rat brain to show that stimulation with the wingless family factor 3A (Wnt3a was sufficient to promote neuronal polarization in the absence of IGF-1 or high insulin. We also show that Wnt3a triggered a strong activation of IGF-1r, PI3k and Akt in developmental Stage 2 neurons and that the presence of activatable IGF-1r and PI3k activation were necessary for Wnt3a polarizing effects. Surface plasmon resonance (SPR experiments show that Wnt3a did not bind specifically to the IGF-1r. Using crosslinking and immuno-precipitation experiments, we show that stimulation with Wnt3a triggered the formation of a complex including IGF-1r-Wnt3a-Frizzled-7. We conclude that Wnt3a triggers polarization of neurons via cross-activation of the IGF-1r/PI3k pathway upon binding to Fz7.

  20. Insulin-like growth factor 1 receptor and p38 mitogen-activated protein kinase signals inversely regulate signal transducer and activator of transcription 3 activity to control human dental pulp stem cell quiescence, propagation, and differentiation.

    Science.gov (United States)

    Vandomme, Jerome; Touil, Yasmine; Ostyn, Pauline; Olejnik, Cecile; Flamenco, Pilar; El Machhour, Raja; Segard, Pascaline; Masselot, Bernadette; Bailliez, Yves; Formstecher, Pierre; Polakowska, Renata

    2014-04-15

    Dental pulp stem cells (DPSCs) remain quiescent until activated in response to severe dental pulp damage. Once activated, they exit quiescence and enter regenerative odontogenesis, producing reparative dentin. The factors and signaling molecules that control the quiescence/activation and commitment to differentiation of human DPSCs are not known. In this study, we determined that the inhibition of insulin-like growth factor 1 receptor (IGF-1R) and p38 mitogen-activated protein kinase (p38 MAPK) signaling commonly activates DPSCs and promotes their exit from the G0 phase of the cell cycle as well as from the pyronin Y(low) stem cell compartment. The inhibition of these two pathways, however, inversely determines DPSC fate. In contrast to p38 MAPK inhibitors, IGF-1R inhibitors enhance dental pulp cell sphere-forming capacity and reduce the cells' colony-forming capacity without inducing cell death. The inverse cellular changes initiated by IGF-1R and p38 MAPK inhibitors were accompanied by inverse changes in the levels of active signal transducer and activator of transcription 3 (STAT3) factor, inactive glycogen synthase kinase 3, and matrix extracellular phosphoglycoprotein, a marker of early odontoblast differentiation. Our data suggest that there is cross talk between the IGF-1R and p38 MAPK signaling pathways in DPSCs and that the signals provided by these pathways converge at STAT3 and inversely regulate its activity to maintain quiescence or to promote self-renewal and differentiation of the cells. We propose a working model that explains the possible interactions between IGF-1R and p38 MAPK at the molecular level and describes the cellular consequences of these interactions. This model may inspire further fundamental study and stimulate research on the clinical applications of DPSC in cellular therapy and tissue regeneration.

  1. Brain-derived neurotrophic factor mediates neuroprotection against Aβ-induced toxicity through a mechanism independent on adenosine 2A receptor activation.

    Science.gov (United States)

    Jerónimo-Santos, André; Fonseca-Gomes, João; Guimarães, Diogo Andrade; Tanqueiro, Sara Ramalho; Ramalho, Rita Mira; Ribeiro, Joaquim Alexandre; Sebastião, Ana Maria; Diógenes, Maria José

    2015-01-01

    Brain-derived neurotrophic factor (BDNF) promotes neuronal survival through TrkB-FL activation. The activation of adenosine A2A receptors (A2AR) is essential for most of BDNF-mediated synaptic actions, such as synaptic plasticity, transmission and neurotransmitter release. We now aimed at evaluating the A2AR influence upon BDNF-mediated neuroprotection against Aβ25-35 toxicity in cultured neurons. Results showed that BDNF increases cell survival and reduces the caspase-3 and calpain activation induced by amyloid-β (Aβ) peptide, in a mechanism probably dependent on PLCγ pathway. This BDNF-mediated neuroprotection is not affected by A2AR activation or inhibition. Moreover neither activation nor inhibition of A2AR, per se, significantly influenced Aβ-induced neuronal death on calpain-mediated cleavage of TrkB induced by Aβ. In conclusion, these results suggest that, in opposition to the fast synaptic actions of BDNF, the neuroprotective actions of this neurotrophin against a strong Aβ insult do not require the activation of A2AR.

  2. Hepatitis C Virus Activates a Neuregulin-Driven Circuit to Modify Surface Expression of Growth Factor Receptors of the ErbB Family.

    Directory of Open Access Journals (Sweden)

    Sabine Stindt

    Full Text Available Recently, the epidermal growth factor (EGF receptor (EGFR, a member of the ErbB receptor family, and its down-stream signalling have been identified as co-factors for HCV entry and replication. Since EGFR also functions as a heterodimer with other ErbB receptor family members, the subject of the present study was to investigate a possible viral interference with these cellular components. By using genotype 1b replicon cells as well as an infection-based system we found that while transcript and protein levels of EGFR and ErbB2 were up-regulated or unaffected, respectively, HCV induced a substantial reduction of ErbB3 and ErbB4 expression. Down-regulation of ErbB3 expression by HCV involves specificity protein (Sp1-mediated induction of Neuregulin (NRG1 expression as well as activation of Akt. Consistently, at transcript level disruption of ErbB3 expression by HCV can be prevented by knockdown of NRG1 or Sp1 expression, whereas reconstitution of ErbB3 protein levels requires inhibition of HCV-induced NRG1 expression and of Akt activity. Interestingly, the NRG1-mediated suppression of ErbB3 expression by HCV results in an enhanced expression of EGFR and ErbB2 on the cell surface, which can be mimicked by siRNA-mediated knockdown of ErbB3 expression. These data delineate a novel mechanism enabling HCV to sway the composition of the ErbB family members on the surface of its host cell by an NRG1-driven circuit and unravels a yet unknown cross-regulation between ErbB3 and the two other family members ErbB2 and EGFR. The shift of the receptor surface expression of the ErbB family towards enhanced expression of ErbB2 and EGFR triggered by HCV was found to promote viral RNA replication and infectivity. This suggests that HCV rearranges expression of ErbB family members to adapt the cellular environment to its requirements.

  3. Pregnenolone sulfate activates basic region leucine zipper transcription factors in insulinoma cells: role of voltage-gated Ca2+ channels and transient receptor potential melastatin 3 channels.

    Science.gov (United States)

    Müller, Isabelle; Rössler, Oliver G; Thiel, Gerald

    2011-12-01

    The neurosteroid pregnenolone sulfate activates a signaling cascade in insulinoma cells involving activation of extracellular signal-regulated protein kinase and enhanced expression of the transcription factor Egr-1. Here, we show that pregnenolone sulfate stimulation leads to a significant elevation of activator protein-1 (AP-1) activity in insulinoma cells. Expression of the basic region leucine zipper (bZIP) transcription factors c-Jun and c-Fos is up-regulated in insulinoma cells and pancreatic β-cells in primary culture after pregnenolone sulfate stimulation. Up-regulation of a chromatin-embedded c-Jun promoter/luciferase reporter gene transcription in pregnenolone sulfate-stimulated insulinoma cells was impaired when the AP-1 binding sites were mutated, indicating that these motifs function as pregnenolone sulfate response elements. In addition, phosphorylation of cAMP response element (CRE)-binding protein is induced and transcription of a CRE-controlled reporter gene is stimulated after pregnenolone sulfate treatment, indicating that the CRE functions as a pregnenolone sulfate response element as well. Pharmacological and genetic experiments revealed that both L-type Ca(2+) channels and transient receptor potential melastatin 3 (TRPM3) channels are essential for connecting pregnenolone sulfate stimulation with enhanced AP-1 activity and bZIP-mediated transcription in insulinoma cells. In contrast, pregnenolone sulfate stimulation did not enhance AP-1 activity or c-Jun and c-Fos expression in pituitary corticotrophs that express functional L-type Ca(2+) channels but only trace amounts of TRPM3. We conclude that expression of L-type Ca(2+) channels is not sufficient to activate bZIP-mediated gene transcription by pregnenolone sulfate. Rather, additional expression of TRPM3 or depolarization of the cells is required to connect pregnenolone sulfate stimulation with enhanced gene transcription.

  4. Arctigenin suppresses receptor activator of nuclear factor κB ligand (RANKL)-mediated osteoclast differentiation in bone marrow-derived macrophages.

    Science.gov (United States)

    Kim, A-Ram; Kim, Hyuk Soon; Lee, Jeong Min; Choi, Jung Ho; Kim, Se Na; Kim, Do Kyun; Kim, Ji Hyung; Mun, Se Hwan; Kim, Jie Wan; Jeon, Hyun Soo; Kim, Young Mi; Choi, Wahn Soo

    2012-05-05

    Osteoclasts, multinucleated bone-resorbing cells, are closely associated with bone diseases such as rheumatoid arthritis and osteoporosis. Osteoclasts are derived from hematopoietic precursor cells, and their differentiation is mediated by two cytokines, including macrophage colony stimulating factor and receptor activator of nuclear factor κB ligand (RANKL). Previous studies have shown that arctigenin exhibits an anti-inflammatory effect. However, the effect of arctigenin on osteoclast differentiation is yet to be elucidated. In this study, we found that arctigenin inhibited RANKL-mediated osteoclast differentiation in bone marrow macrophages in a dose-dependent manner and suppressed RANKL-mediated bone resorption. Additionally, the expression of typical marker proteins, such as NFATc1, c-Fos, TRAF6, c-Src, and cathepsin K, were significantly inhibited. Arctigenin inhibited the phosphorylation of Erk1/2, but not p38 and JNK, in a dose-dependent manner. Arctigenin also dramatically suppressed immunoreceptor tyrosine-based activation motif-mediated costimulatory signaling molecules, including Syk and PLCγ2, and Gab2. Notably, arctigenin inhibited the activation of Syk through RANKL stimulation. Furthermore, arctigenin prevented osteoclast differentiation in the calvarial bone of mice following stimulation with lipopolysaccharide. Our results show that arctigenin inhibits osteoclast differentiation in vitro and in vivo. Therefore, arctigenin may be useful for treating rheumatoid arthritis and osteoporosis.

  5. A novel, selective inhibitor of fibroblast growth factor receptors that shows a potent broad spectrum of antitumor activity in several tumor xenograft models.

    Science.gov (United States)

    Zhao, Genshi; Li, Wei-Ying; Chen, Daohong; Henry, James R; Li, Hong-Yu; Chen, Zhaogen; Zia-Ebrahimi, Mohammad; Bloem, Laura; Zhai, Yan; Huss, Karen; Peng, Sheng-Bin; McCann, Denis J

    2011-11-01

    The fibroblast growth factor receptors (FGFR) are tyrosine kinases that are present in many types of endothelial and tumor cells and play an important role in tumor cell growth, survival, and migration as well as in maintaining tumor angiogenesis. Overexpression of FGFRs or aberrant regulation of their activities has been implicated in many forms of human malignancies. Therefore, targeting FGFRs represents an attractive strategy for development of cancer treatment options by simultaneously inhibiting tumor cell growth, survival, and migration as well as tumor angiogenesis. Here, we describe a potent, selective, small-molecule FGFR inhibitor, (R)-(E)-2-(4-(2-(5-(1-(3,5-Dichloropyridin-4-yl)ethoxy)-1H-indazol-3yl)vinyl)-1H-pyrazol-1-yl)ethanol, designated as LY2874455. This molecule is active against all 4 FGFRs, with a similar potency in biochemical assays. It exhibits a potent activity against FGF/FGFR-mediated signaling in several cancer cell lines and shows an excellent broad spectrum of antitumor activity in several tumor xenograft models representing the major FGF/FGFR relevant tumor histologies including lung, gastric, and bladder cancers and multiple myeloma, and with a well-defined pharmacokinetic/pharmacodynamic relationship. LY2874455 also exhibits a 6- to 9-fold in vitro and in vivo selectivity on inhibition of FGF- over VEGF-mediated target signaling in mice. Furthermore, LY2874455 did not show VEGF receptor 2-mediated toxicities such as hypertension at efficacious doses. Currently, this molecule is being evaluated for its potential use in the clinic.

  6. Reduced expression of brain-derived neurotrophic factor in mice deficient for pituitary adenylate cyclase activating polypeptide type-I-receptor.

    Science.gov (United States)

    Zink, Mathias; Otto, Christiane; Zörner, Björn; Zacher, Christiane; Schütz, Günther; Henn, Fritz A; Gass, Peter

    2004-04-22

    In vitro pituitary adenylate cyclase activating polypeptide (PACAP) induces the expression of brain-derived neurotrophic factor (BDNF) via its specific receptor PAC1. Since BDNF has been implicated in learning paradigms and mice lacking functional PAC1 have deficits in hippocampus-dependent associative learning, we investigated whether PAC1 mutants show alterations in hippocampal expression of BDNF and its receptor TrkB. Semi-quantitative in situ-hybridization using exon-specific BDNF-probes revealed significantly reduced expression of the exon-III and exon-V-specific transcripts within the hippocampal CA3 region in PAC1-deficient mice. A similar trend was observed for the exon-I-specific transcript. The expression of the exon-III-specific transcript was also reduced within the dentate gyrus, while Trk B-expression did not differ between genotypes. Our data demonstrate that even in vivo PAC1-mediated signaling seems to play a pivotal role for the transcriptional regulation of BDNF.

  7. Proteolytic activation of proapoptotic kinase protein kinase Cδ by tumor necrosis factor α death receptor signaling in dopaminergic neurons during neuroinflammation

    Directory of Open Access Journals (Sweden)

    Gordon Richard

    2012-04-01

    Full Text Available Abstract Background The mechanisms of progressive dopaminergic neuronal loss in Parkinson’s disease (PD remain poorly understood, largely due to the complex etiology and multifactorial nature of disease pathogenesis. Several lines of evidence from human studies and experimental models over the last decade have identified neuroinflammation as a potential pathophysiological mechanism contributing to disease progression. Tumor necrosis factor α (TNF has recently emerged as the primary neuroinflammatory mediator that can elicit dopaminergic cell death in PD. However, the signaling pathways by which TNF mediates dopaminergic cell death have not been completely elucidated. Methods In this study we used a dopaminergic neuronal cell model and recombinant TNF to characterize intracellular signaling pathways activated during TNF-induced dopaminergic neurotoxicity. Etanercept and neutralizing antibodies to tumor necrosis factor receptor 1 (TNFR1 were used to block TNF signaling. We confirmed the results from our mechanistic studies in primary embryonic mesencephalic cultures and in vivo using the stereotaxic lipopolysaccharide (LPS model of nigral dopaminergic degeneration. Results TNF signaling in dopaminergic neuronal cells triggered the activation of protein kinase Cδ (PKCδ, an isoform of the novel PKC family, by caspase-3 and caspase-8 dependent proteolytic cleavage. Both TNFR1 neutralizing antibodies and the soluble TNF receptor Etanercept blocked TNF-induced PKCδ proteolytic activation. Proteolytic activation of PKCδ was accompanied by translocation of the kinase to the nucleus. Notably, inhibition of PKCδ signaling by small interfering (siRNA or overexpression of a PKCδ cleavage-resistant mutant protected against TNF-induced dopaminergic neuronal cell death. Further, primary dopaminergic neurons obtained from PKCδ knockout (−/− mice were resistant to TNF toxicity. The proteolytic activation of PKCδ in the mouse substantia nigra in the

  8. Human recombinant macrophage inflammatory protein-1 alpha and -beta and monocyte chemotactic and activating factor utilize common and unique receptors on human monocytes.

    Science.gov (United States)

    Wang, J M; Sherry, B; Fivash, M J; Kelvin, D J; Oppenheim, J J

    1993-04-01

    The human macrophage inflammatory proteins-1 alpha and -beta (MIP-1 alpha and -beta), which are also known as LD78 and ACT2, respectively, are distinct but highly related members of the chemoattractant cytokine (chemokine) family. rMIP-1 alpha and -beta labeled with 125I specifically bind to human peripheral blood monocytes, the monocytic cell line THP-1, peripheral blood T cells, and the YT cell line. Steady state binding experiments revealed approximately 3000 high affinity binding sites/cell for MIP-1 alpha on human monocytes and on THP-1 cells, with Kd values of 383 pM and 450 pM, respectively. Human MIP-1 alpha and -beta had nearly identical affinities for the binding sites and each competed equally well for binding. Human monocyte chemotactic and activating factor (MCAF), a member of the same chemokine family, consistently displaced about 25% of human MIP-1 alpha and -beta binding on monocytes but not on YT cells, which did not bind MCAF. On the other hand, human rMIP-1 alpha and -beta partially inhibited binding of radiolabeled MCAF to monocytes. Both MIP-1 alpha and -beta were chemotactic for human monocytes. Preincubation of monocytes with human rMIP-1 alpha or -beta markedly reduced cell migration towards the other cytokine, whereas preincubation with human rMCAF only partially desensitized the monocyte chemotaxis response to human rMIP-1 alpha or -beta. These data suggest the existence of three subtypes of receptors, i.e., one unique receptor shared by MIP-1 alpha and -beta, a second unique receptor for MCAF, and a third species that recognizes both MCAF and MIP-1 peptides.

  9. Antiosteoclastogenesis activity of a CO2 laser antagonizing receptor activator for nuclear factor kappaB ligand-induced osteoclast differentiation of murine macrophages

    Science.gov (United States)

    Kuo, Chun-Liang; Kao, Chia-Tze; Fang, Hsin-Yuan; Huang, Tsui-Hsien; Chen, Yi-Wen; Shie, Ming-You

    2015-03-01

    Macrophage cells are the important effector cells in the immune reaction which are indispensable for osteoclastogenesis; their heterogeneity and plasticity renders macrophages a primer target for immune system modulation. In recent years, there have been very few studies about the effects of macrophage cells on laser treatment-regulated osteoclastogenesis. In this study, RAW 264.7 macrophage cells were treated with RANKL to regulate osteoclastogenesis. We used a CO2 laser as a model biostimulation to investigate the role of osteoclastogenic. We also evaluated cell viability, cell death and cathepsin K expression. The CO2 laser inhibited a receptor activator of the NF-ĸB ligand (RANKL)-induced formation of osteoclasts during the osteoclast differentiation process. It was also found that irradiation for two times reduced RANKL-enhanced TRAP activity in a dose-dependent manner. Furthermore, CO2 laser-treatment diminished the expression and secretion of cathepsin K elevated by RANKL and was concurrent with the inhibition of TRAF6 induction and NF-ĸB activation. The current report demonstrates that CO2 laser abrogated RANKL-induced osteoclastogenesis by retarding osteoclast differentiation. The CO2 laser can modulate every cell through dose-dependent in vitro RANKL-mediated osteoclastogenesis, such as the proliferation and fusion of preosteoclasts and the maturation of osteoclasts. Therefore, the current results serve as an improved explanation of the cellular roles of macrophage cell populations in osteoclastogenesis as well as in alveolar bone remodeling by CO2 laser-treatment.

  10. Tissue-specific expression of betaKlotho and fibroblast growth factor (FGF) receptor isoforms determines metabolic activity of FGF19 and FGF21.

    Science.gov (United States)

    Kurosu, Hiroshi; Choi, Mihwa; Ogawa, Yasushi; Dickson, Addie S; Goetz, Regina; Eliseenkova, Anna V; Mohammadi, Moosa; Rosenblatt, Kevin P; Kliewer, Steven A; Kuro-o, Makoto

    2007-09-14

    The fibroblast growth factor (FGF) 19 subfamily of ligands, FGF19, FGF21, and FGF23, function as hormones that regulate bile acid, fatty acid, glucose, and phosphate metabolism in target organs through activating FGF receptors (FGFR1-4). We demonstrated that Klotho and betaKlotho, homologous single-pass transmembrane proteins that bind to FGFRs, are required for metabolic activity of FGF23 and FGF21, respectively. Here we show that, like FGF21, FGF19 also requires betaKlotho. Both FGF19 and FGF21 can signal through FGFR1-3 bound by betaKlotho and increase glucose uptake in adipocytes expressing FGFR1. Additionally, both FGF19 and FGF21 bind to the betaKlotho-FGFR4 complex; however, only FGF19 signals efficiently through FGFR4. Accordingly, FGF19, but not FGF21, activates FGF signaling in hepatocytes that primarily express FGFR4 and reduces transcription of CYP7A1 that encodes the rate-limiting enzyme for bile acid synthesis. We conclude that the expression of betaKlotho, in combination with particular FGFR isoforms, determines the tissue-specific metabolic activities of FGF19 and FGF21.

  11. High-altitude hypoxia induces disorders of the brain-endocrine-immune network through activation of corticotropin-releasing factor and its type-1 receptors

    Institute of Scientific and Technical Information of China (English)

    Xue-qun CHEN; Fan-ping KONG; Yang ZHAO; Ji-zeng DU

    2012-01-01

    High-altitude hypoxia can induce physiological dysfunction and mountain sickness,but the underlying mechanism is not fully understood.Corticotrophin-releasing factor (CRF) and CRF type-1 receptors (CRFR1) are members of the CRF family and the essential controllers of the physiological activity of the hypothalamo-pituitary-adrenal (HPA) axis and modulators of endocrine and behavioral activity in response to various stressors.We have previously found that high-altitude hypoxia induces disorders of the brain-endocrine-immune network through activation of CRF and CRFR1 in the brain and periphery that include activation of the HPA axis in a time-and dose-dependent manner,impaired or improved learning and memory,and anxiety-like behavioral change.Meanwhile,hypoxia induces dysfunctions of the hypothalamo-pituitary-endocrine and immune systems,including suppression of growth and development,as well as inhibition of reproductive,metabolic and immune functions.In contrast,the small mammals that live on the Qinghai-Tibet Plateau alpine meadow display low responsiveness to extreme high-altitudehypoxia challenge,suggesting well-acclimatized genes and a physiological strategy that developed during evolution through interact-ions between the genes and environment.All the findings provide evidence for understanding the neuroendocrine mechanisms of hypoxia-induced physiological dysfunction.This review extends these findings.

  12. Effects of Enterococcus faecalis lipoteichoic acid on receptor activator of nuclear factor-κB ligand and osteoprotegerin expression in periodontal ligament fibroblasts.

    Science.gov (United States)

    Zhao, L; Chen, J; Cheng, L; Wang, X; Du, J; Wang, F; Peng, Z

    2014-02-01

    To investigate the influence of Enterococcus faecalis lipoteichoic acid (LTA) on the key bone resorption-regulating proteins, receptor activator of nuclear factor-κB ligand (RANKL) and osteoprotegerin (OPG) in human periodontal ligament fibroblasts (PDL cells). Periodontal ligament cells were subjected to various concentrations of LTA. Cell viability was then determined by methyl thiazolyl tetrazolium (MTT) assay, whilst the expression levels of RANKL and OPG were investigated by enzyme-linked immunosorbent assay (ELISA) and Western blotting. The effect of the inhibitors [IL-1 receptor-associated kinase (IRAK)-1/4, p38 mitogen-activated protein kinase (MAPK) (SB203580)] on LTA-stimulated RANKL/OPG activation was examined. Cell viability and RANKL/OPG ratio in PDL cells were also analysed by MTT assay and Western blotting. Data were analysed using one-way anova or t-test at a significance level of P = 0.05. Cell viability was reduced significantly in the LTA group in a dose-dependent fashion (P < 0.05). In addition, LTA was found to upregulate the protein expression of RANKL, OPG and their relative ratio in PDL cells (P < 0.05). The optimal concentration of LTA used in PDL cells was determined to be 10 μg mL(-1) . Following IRAK1/4 and p38MAPK inhibition, LTA-stimulated increases of RANKL/OPG ratio were significantly reduced (P < 0.05). Enterococcus faecalis LTA could upregulate the expression of RANKL and OPG at different rates, suggesting a potential role for LTA in the bone resorption process of refractory apical periodontitis through the regulation of RANKL and OPG. In addition, IRAK1/4 and p38MAPK signalling involving RANKL/OPG may contribute to inflammatory responses from PDL cells. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  13. Quantitative trait mapping reveals a regulatory axis involving peroxisome proliferator-activated receptors, PRDM16, transforming growth factor-β2 and FLT3 in hematopoiesis.

    Science.gov (United States)

    Avagyan, Serine; Aguilo, Francesca; Kamezaki, Kenjiro; Snoeck, Hans-Willem

    2011-12-01

    Hematopoiesis is the process whereby BM HSCs renew to maintain their number or to differentiate into committed progenitors to generate all blood cells. One approach to gain mechanistic insight into this complex process is the investigation of quantitative genetic variation in hematopoietic function among inbred mouse strains. We previously showed that TGF-β2 is a genetically determined positive regulator of hematopoiesis. In the presence of unknown nonprotein serum factors TGF-β2, but not TGF-β1 or -β3, enhances progenitor proliferation in vitro, an effect that is subject to mouse strain-dependent variation mapping to a locus on chr.4, Tb2r1. TGF-β2-deficient mice show hematopoietic defects, demonstrating the physiologic role of this cytokine. Here, we show that TGF-β2 specifically and predominantly cell autonomously enhances signaling by FLT3 in vitro and in vivo. A coding polymorphism in Prdm16 (PR-domain-containing 16) underlies Tb2r1 and differentially regulates transcriptional activity of peroxisome proliferator-activated receptor-γ (PPARγ), identifying lipid PPAR ligands as the serum factors required for regulation of FLT3 signaling by TGF-β2. We furthermore show that PPARγ agonists play a FLT3-dependent role in stress responses of progenitor cells. These observations identify a novel regulatory axis that includes PPARs, Prdm16, and TGF-β2 in hematopoiesis.

  14. Characterization of the activation of protein tyrosine phosphatase, receptor-type, Z polypeptide 1 (PTPRZ1 by hypoxia inducible factor-2 alpha.

    Directory of Open Access Journals (Sweden)

    Victoria Wang

    Full Text Available BACKGROUND: Hypoxia inducible factors (HIFs are the principal means by which cells upregulate genes in response to hypoxia and certain other stresses. There are two major HIFs, HIF-1 and HIF-2. We previously found that certain genes are preferentially activated by HIF-2. One was protein tyrosine phosphatase, receptor-type, Z polypeptide 1 (PTPRZ1. PTPRZ1 is overexpressed in a number of tumors and has been implicated in glioblastoma pathogenesis. METHODOLOGY/PRINCIPAL FINDINGS: To understand the preferential activation of PTPRZ1 by HIF-2, we studied the PTPRZ1 promoter in HEK293T cells and Hep3B cells. Through deletion and mutational analysis, we identified the principal hypoxia response element. This element bound to both HIF-1 and HIF-2. We further identified a role for ELK1, an E26 transformation-specific (Ets factor that can bind to HIF-2alpha but not HIF-1alpha, in the HIF-2 responsiveness. Knock-down experiments using siRNA to ELK1 decreased HIF-2 activation by over 50%. Also, a deletion mutation of one of the two Ets binding motifs located near the principal hypoxia response element similarly decreased activation of the PTPRZ1 promoter by HIF-2. Finally, chromatin immunoprecipitation assays showed binding of HIF and ELK1 to the PTPRZ1 promoter region. CONCLUSIONS/SIGNIFICANCE: These results identify HIF-binding and Ets-binding motifs on the PTPRZ1 promoter and provide evidence that preferential activation of PTPRZ1 by HIF-2 results at least in part from cooperative binding of HIF-2 and ELK1 to nearby sites on the PTPRZ1 promoter region. These results may have implications in tumor pathogenesis and in understanding neurobiology, and may help inform the development of novel tumor therapy.

  15. Advanced glycation end-products induce heparanase expression in endothelial cells by the receptor for advanced glycation end products and through activation of the FOXO4 transcription factor.

    Science.gov (United States)

    An, Xiao-Fei; Zhou, Lei; Jiang, Peng-Jun; Yan, Ming; Huang, Yu-Jun; Zhang, Su-Na; Niu, Yun-Fei; Ten, Shi-Chao; Yu, Jiang-Yi

    2011-08-01

    As an endo-β (1-4)-D: -glucuronidase, heparanase can specifically cleave carbohydrate chains of heparan sulfate (HS) and has been implicated in development of endothelial cells dsyfunction. The advanced glycation end products (AGEs) play a pivotal role in the pathology of diabetic complications. In the present study, we investigated the effect of AGE-bovine serum albumin (AGE-BSA) on heparanase expression in human microvascular endothelial cells (HMVECs) and the underlying molecular mechanisms. The results indicated that in vitro direct exposure of HMVECs to AGE-BSA (300, 1000, and 3000 μg/ml) could increase heparanase mRNA and protein expression in a dose and time-dependent manner. The effect of 1000 μg/ml AGE-BSA could be abolished by neutralization with antibody of the receptor for advanced glycation end products (RAGE). Moreover, pretreatment with inhibitors of nuclear factor-κB (NF-κB) or PI3-kinase did not affect heparanase expression induced by AGE-BSA. Nevertheless, small interference RNA (siRNA) for transcriptional factor FOXO4 could reduce the increase of heparanase expression in HMVECs induced by 1000 μg/ml AGE-BSA. These results suggest that AGEs could induce heparanase expression in HMVECs by RAGE and predominantly through activation of the FOXO4 transcription factor.

  16. A cross-talk between the androgen receptor and the epidermal growth factor receptor leads to p38MAPK-dependent activation of mTOR and cyclinD1 expression in prostate and lung cancer cells.

    Science.gov (United States)

    Recchia, Anna Grazia; Musti, Anna Maria; Lanzino, Marilena; Panno, Maria Luisa; Turano, Ermanna; Zumpano, Rachele; Belfiore, Antonino; Andò, Sebastiano; Maggiolini, Marcello

    2009-03-01

    In androgen sensitive LNCaP prostate cancer cells, the proliferation induced by the epidermal growth factor (EGF) involves a cross-talk between the EGF receptor (EGFR) and the androgen receptor (AR). In lung cancer the role of the EGF-EGFR transduction pathway has been documented, whereas androgen activity has received less attention. Here we demonstrate that in LNCaP and A549 non-small cell lung cancer (NSCLC), AR and EGFR are required for either 5alpha-dihydrotestosterone (DHT) or EGF-stimulated cell growth. Only EGF activated ERK signaling and up-regulated early gene expression, while DHT triggered the expression of classical AR-responsive genes with the exception of the EGF-induced PSA transcript in A549 cells. DHT and EGF up-regulated cyclinD1 (CD1) at both mRNA and protein levels in A549 cells, while in LNCaP cells each mitogen increased only CD1 protein expression. In both cell contexts, CD1 up-regulation was prevented by selective inhibitors as well as by knock-down of either AR or EGFR and also inhibiting p38MAPK and the mammalian target of rapamycin (mTOR) pathways. Interestingly, p38MAPK and mTOR repression prevented the activation of the mTOR target ribosomal p70S6 kinase induced by DHT and EGF, indicating that p38MAPK acts as an upstream mTOR regulator. In addition, the proliferative effects promoted by both DHT and EGF in LNCaP and A549 cancer cells were no longer observed blocking either p38MAPK or mTOR activity. Hence, our data suggest that p38MAPK-dependent activation of the mTOR/CD1 pathway may represent a mechanism through which AR and EGFR cross-talk contributes to prostate and lung cancer progression.

  17. Pharmacological Activation Gi/o Protein Increases Glial Cell Line-Derived Neurotrophic Factor Production through Fibroblast Growth Factor Receptor and Extracellular Signal-Regulated Kinase Pathway in Primary Cultured Rat Cortical Astrocytes.

    Science.gov (United States)

    Hisaoka-Nakashima, Kazue; Matsumoto, Chie; Azuma, Honami; Taki, Sayaka; Takebayashi, Minoru; Nakata, Yoshihiro; Morioka, Norimitsu

    2017-01-01

    A significant reduction of glial cell line-derived neurotrophic factor (GDNF) has been identified in the pathophysiology of neurodegenerative and neuropsychiatric disorders. Thus, clarification of the mechanism of GDNF production, and modulating brain GDNF levels could be a novel therapeutic approach. A previous study demonstrated that antidepressant amitriptyline-induced GDNF production was significantly inhibited by pertussis toxin (PTX), a Gi/o protein inhibitor in astrocytes, the main source of GDNF in the brain. However, it is not known whether direct activation of Gi/o protein might induce GDNF expression, and what mechanisms might be involved after Gi/o protein activation. The current study investigated Gi/o protein-initiated GDNF production in rat cortical astrocytes using activators that directly activate Gi/o protein, mastoparan and compound48/80. Treatment of astrocytes with either mastoparan or compound48/80 increased GDNF mRNA expression at 3 and 6 h, and GDNF protein release at 24 h. Treatment of astrocyte with either mastoparan or compound48/80 increased brain-derived neurotrophic factor (BDNF) mRNA expression as well as GDNF. Mastoparan and compound48/80-induced GDNF mRNA expression were significantly inhibited by not only PTX, but also fibroblast growth factor receptor (FGFR) inhibitors, and mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) kinase (MEK) inhibitor. In fact, both FGFR substrate2α (FRS2α) and ERK phosphorylation were increased by treatment with either mastoparan or compound48/80, and these were significantly blocked by PTX. Thus, direct, receptor-independent Gi/o protein activation increases GDNF production through FGFR/ERK signaling pathway. The current results indicate a critical role of Gi/o signaling in the regulation of GDNF expression in astrocytes.

  18. Toll-Like Receptor 4–Mediated Nuclear Factor Kappa B Activation Is Essential for Sensing Exogenous Oxidants to Propagate and Maintain Oxidative/Nitrosative Cellular Stress

    Science.gov (United States)

    Karki, Rajendra; Igwe, Orisa J.

    2013-01-01

    The mechanism(s) by which cells can sense exogenous oxidants that may contribute to intracellular oxidative/nitrosative stress is not clear. The objective of this study was to determine how cells might respond to exogenous oxidants to potentially initiate, propagate and/or maintain inflammation associated with many human diseases through NF-κB activation. First, we used HEK-Blue cells that are stably transfected with mouse toll-like receptor 4 (mTLR4) or mouse TLR2. These cells also express optimized secreted embryonic alkaline phosphatase (SEAP) reporter gene under the control of a promoter inducible by NF-κB transcription factor. These cells were challenged with their respective receptor-specific ligands, different pro-oxidants and/or inhibitors that act at different levels of the receptor signaling pathways. A neutralizing antibody directed against TLR4 inhibited responses to both TLR4-specific agonist and a prooxidant, which confirmed that both agents act through TLR4. We used the level of SEAP released into the culture media due to NF-κB activation as a measure of TLR4 or TLR2 stimulation. Pro-oxidants evoked increased release of SEAP from HEK-Blue mTLR4 cells at a much lower concentration compared with release from the HEK-Blue mTLR2 cells. Specific TLR4 signaling pathway inhibitors and oxidant scavengers (anti-oxidants) significantly attenuated oxidant-induced SEAP release by TLR4 stimulation. Furthermore, a novel pro-oxidant that decays to produce the same reactants as activated phagocytes induced inflammatory pain responses in the mouse orofacial region with increased TLR4 expression, and IL-1β and TNFα tissue levels. EUK-134, a synthetic serum-stable scavenger of oxidative species decreased these effects. Our data provide in vitro and related in vivo evidence that exogenous oxidants can induce and maintain inflammation by acting mainly through a TLR4-dependent pathway, with implications in many chronic human ailments. PMID:24058497

  19. Toll-like receptor 4-mediated nuclear factor kappa B activation is essential for sensing exogenous oxidants to propagate and maintain oxidative/nitrosative cellular stress.

    Science.gov (United States)

    Karki, Rajendra; Igwe, Orisa J

    2013-01-01

    The mechanism(s) by which cells can sense exogenous oxidants that may contribute to intracellular oxidative/nitrosative stress is not clear. The objective of this study was to determine how cells might respond to exogenous oxidants to potentially initiate, propagate and/or maintain inflammation associated with many human diseases through NF-κB activation. First, we used HEK-Blue cells that are stably transfected with mouse toll-like receptor 4 (mTLR4) or mouse TLR2. These cells also express optimized secreted embryonic alkaline phosphatase (SEAP) reporter gene under the control of a promoter inducible by NF-κB transcription factor. These cells were challenged with their respective receptor-specific ligands, different pro-oxidants and/or inhibitors that act at different levels of the receptor signaling pathways. A neutralizing antibody directed against TLR4 inhibited responses to both TLR4-specific agonist and a prooxidant, which confirmed that both agents act through TLR4. We used the level of SEAP released into the culture media due to NF-κB activation as a measure of TLR4 or TLR2 stimulation. Pro-oxidants evoked increased release of SEAP from HEK-Blue mTLR4 cells at a much lower concentration compared with release from the HEK-Blue mTLR2 cells. Specific TLR4 signaling pathway inhibitors and oxidant scavengers (anti-oxidants) significantly attenuated oxidant-induced SEAP release by TLR4 stimulation. Furthermore, a novel pro-oxidant that decays to produce the same reactants as activated phagocytes induced inflammatory pain responses in the mouse orofacial region with increased TLR4 expression, and IL-1β and TNFα tissue levels. EUK-134, a synthetic serum-stable scavenger of oxidative species decreased these effects. Our data provide in vitro and related in vivo evidence that exogenous oxidants can induce and maintain inflammation by acting mainly through a TLR4-dependent pathway, with implications in many chronic human ailments.

  20. Integrin alpha1beta1 controls reactive oxygen species synthesis by negatively regulating epidermal growth factor receptor-mediated Rac activation.

    Science.gov (United States)

    Chen, Xiwu; Abair, Tristin D; Ibanez, Maria R; Su, Yan; Frey, Mark R; Dise, Rebecca S; Polk, D Brent; Singh, Amar B; Harris, Raymond C; Zent, Roy; Pozzi, Ambra

    2007-05-01

    Integrins control many cell functions, including generation of reactive oxygen species (ROS) and regulation of collagen synthesis. Mesangial cells, found in the glomerulus of the kidney, are able to produce large amounts of ROS via the NADPH oxidase. We previously demonstrated that integrin alpha1-null mice develop worse fibrosis than wild-type mice following glomerular injury and this is due, in part, to excessive ROS production by alpha1-null mesangial cells. In the present studies, we describe the mechanism whereby integrin alpha1-null mesangial cells produce excessive ROS. Integrin alpha1-null mesangial cells have constitutively increased basal levels of activated Rac1, which result in its increased translocation to the cell membrane, excessive ROS production, and consequent collagen IV deposition. Basal Rac1 activation is a direct consequence of ligand-independent increased epidermal growth factor receptor (EGFR) phosphorylation in alpha1-null mesangial cells. Thus, our study demonstrates that integrin alpha1beta1-EGFR cross talk is a key step in negatively regulating Rac1 activation, ROS production, and excessive collagen synthesis, which is a hallmark of diseases characterized by irreversible fibrosis.

  1. The poly-γ-d-glutamic acid capsule surrogate of the Bacillus anthracis capsule induces nitric oxide production via the platelet activating factor receptor signaling pathway.

    Science.gov (United States)

    Lee, Hae-Ri; Jeon, Jun Ho; Park, Ok-Kyu; Chun, Jeong-Hoon; Park, Jungchan; Rhie, Gi-Eun

    2015-12-01

    The poly-γ-d-glutamic acid (PGA) capsule, a major virulence factor of Bacillus anthracis, confers protection of the bacillus from phagocytosis and allows its unimpeded growth in the host. PGA capsules released from B. anthracis are associated with lethal toxin in the blood of experimentally infected animals and enhance the cytotoxic effect of lethal toxin on macrophages. In addition, PGA capsule itself activates macrophages and dendritic cells to produce proinflammatory cytokine such as IL-1β, indicating multiple roles of PGA capsule in anthrax pathogenesis. Here we report that PGA capsule of Bacillus licheniformis, a surrogate of B. anthracis capsule, induces production of nitric oxide (NO) in RAW264.7 cells and bone marrow-derived macrophages. NO production was induced by PGA in a dose-dependent manner and was markedly reduced by inhibitors of inducible NO synthase (iNOS), suggesting iNOS-dependent production of NO. Induction of NO production by PGA was not observed in macrophages from TLR2-deficient mice and was also substantially inhibited in RAW264.7 cells by pretreatment of TLR2 blocking antibody. Subsequently, the downstream signaling events such as ERK, JNK and p38 of MAPK pathways as well as NF-κB activation were required for PGA-induced NO production. In addition, the induced NO production was significantly suppressed by treatment with antagonists of platelet activating factor receptor (PAFR) or PAFR siRNA, and mediated through PAFR/Jak2/STAT-1 signaling pathway. These findings suggest that PGA capsule induces NO production in macrophages by triggering both TLR2 and PAFR signaling pathways which lead to activation of NF-kB and STAT-1, respectively.

  2. Stimulation of monocytes by placental microparticles involves toll-like receptors and nuclear factor kappa-light-chain-enhancer of activated B cells.

    Science.gov (United States)

    Joerger-Messerli, Marianne Simone; Hoesli, Irene Mathilde; Rusterholz, Corinne; Lapaire, Olav

    2014-01-01

    Human pregnancy is accompanied by a mild systemic inflammatory response, which includes the activation of monocytes circulating in maternal blood. This response is exaggerated in preeclampsia, a placental-dependent disorder specific to human pregnancies. We and others showed that placental syncytiotrophoblast membrane microparticles (STBM) generated in vitro from normal placentas stimulated peripheral blood monocytes, which suggest a contribution of STBM to the systemic maternal inflammation. Here, we analyzed the inflammatory potential of STBM prepared from preeclamptic placentas on primary monocytes and investigated the mode of action in vitro. STBM generated in vitro by placental villous explants of normal or preeclamptic placentas were co-incubated with human peripheral blood monocytes. In some cases, inhibitors of specific cellular functions or signaling pathways were used. The analysis of the monocytic response was performed by flow cytometry, enzyme-linked immunoassays, real-time PCR, and fluorescence microscopy. STBM derived from preeclamptic placentas up-regulated the cell surface expression of CD54, and stimulated the secretion of the pro-inflammatory interleukin (IL)-6 and IL-8 in a similar, dose-dependent manner as did STBM prepared from normal placentas. STBM bound to the cell surface of monocytes, but phagocytosis was not necessary for activation. STBM-induced cytokine secretion was impaired in the presence of inhibitors of toll-like receptor (TLR) signaling or when nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation was blocked. Our results suggest that the inflammatory reaction in monocytes may be initiated by the interaction of STBM with TLRs, which in turn signal through NF-κB to mediate the transcription of genes coding for pro-inflammatory factors.

  3. Stimulation of monocytes by placental microparticles involves Toll-like receptors and nuclear factor kappa-light-chain-enhancer of activated B cells

    Directory of Open Access Journals (Sweden)

    Marianne Simone Joerger-Messerli

    2014-04-01

    Full Text Available Human pregnancy is accompanied by a mild systemic inflammatory response, which includes the activation of monocytes circulating in maternal blood. This response is exaggerated in preeclampsia, a placental-dependent disorder specific to human pregnancies. We and others showed that placental syncytiotrophoblast membrane microparticles (STBM generated in vitro from normal placentas stimulated peripheral blood monocytes, which suggests a contribution of STBM to the systemic maternal inflammation. Here, we analyzed the inflammatory potential of STBM prepared from preeclamptic placentas on primary monocytes and investigated the mode of action in vitro.STBM generated in vitro by placental villous explants of normal or preeclamptic placentas were co-incubated with human peripheral blood monocytes. In some cases, inhibitors of specific cellular functions or signaling pathways were used. The analysis of the monocytic response was performed by flow cytometry, enzyme-linked immunoassays, real-time PCR and fluorescence microscopy.STBM derived from preeclamptic placentas up-regulated the cell surface expression of CD54, and stimulated the secretion of the pro-inflammatory interleukin (IL-6 and IL-8 in a similar, dose-dependent manner as did STBM prepared from normal placentas. STBM bound to the cell surface of monocytes, but phagocytosis was not necessary for activation. STBM-induced cytokine secretion was impaired in the presence of inhibitors of toll-like receptor (TLR signaling or when nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB activation was blocked.Our results suggest that the inflammatory reaction in monocytes may be initiated by the interaction of STBM with TLRs, which in turn signal through NF-κB to mediate the transcription of genes coding for pro-inflammatory factors.

  4. AST1306, a novel irreversible inhibitor of the epidermal growth factor receptor 1 and 2, exhibits antitumor activity both in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Hua Xie

    Full Text Available Despite the initial response to the reversible, ATP-competitive quinazoline inhibitors that target ErbB-family, such a subset of cancer patients almost invariably develop resistance. Recent studies have provided compelling evidence that irreversible ErbB inhibitors have the potential to override this resistance. Here, we found that AST1306, a novel anilino-quinazoline compound, inhibited the enzymatic activities of wild-type epidermal growth factor receptor (EGFR and ErbB2 as well as EGFR resistant mutant in both cell-free and cell-based systems. Importantly, AST1306 functions as an irreversible inhibitor, most likely through covalent interaction with Cys797 and Cys805 in the catalytic domains of EGFR and ErbB2, respectively. Further studies showed that AST1306 inactivated pathways downstream of these receptors and thereby inhibited the proliferation of a panel of cancer cell lines. Although the activities of EGFR and ErbB2 were similarly sensitive to AST1306, ErbB2-overexpressing cell lines consistently exhibited more sensitivity to AST1306 antiproliferative effects. Consistent with this, knockdown of ErbB2, but not EGFR, decreased the sensitivity of SK-OV-3 cells to AST1306. In vivo, AST1306 potently suppressed tumor growth in ErbB2-overexpressing adenocarcinoma xenograft and FVB-2/N(neu transgenic breast cancer mouse models, but weakly inhibited the growth of EGFR-overexpressing tumor xenografts. Tumor growth inhibition induced by a single dose of AST1306 in the SK-OV-3 xenograft model was accompanied by a rapid (within 2 h and sustained (≥24 h inhibition of both EGFR and ErbB2, consistent with an irreversible inhibition mechanism. Taken together, these results establish AST1306 as a selective, irreversible ErbB2 and EGFR inhibitor whose growth-inhibitory effects are more potent in ErbB2-overexpressing cells.

  5. The urokinase plasminogen activator receptor (UPAR) is preferentially induced by nerve growth factor in PC12 pheochromocytoma cells and is required for NGF-driven differentiation.

    Science.gov (United States)

    Farias-Eisner, R; Vician, L; Silver, A; Reddy, S; Rabbani, S A; Herschman, H R

    2000-01-01

    Nerve growth factor (NGF)-driven differentiation of PC12 pheochromocytoma cells is a well studied model used both to identify molecular, biochemical, and physiological correlates of neurotrophin-driven neuronal differentiation and to determine the causal nature of specific events in this differentiation process. Although epidermal growth factor (EGF) elicits many of the same early biochemical and molecular changes in PC12 cells observed in response to NGF, EGF does not induce molecular or morphological differentiation of PC12 cells. The identification of genes whose expression is differentially regulated by NGF versus EGF in PC12 cells has, therefore, been considered a source of potential insight into the molecular specificity of neurotrophin-driven neuronal differentiation. A "second generation" representational difference analysis procedure now identifies the urokinase plasminogen activator receptor (UPAR) as a gene that is much more extensively induced by NGF than by EGF in PC12 cells. Both an antisense oligonucleotide for the UPAR mRNA and an antibody directed against UPAR protein block NGF-induced morphological and biochemical differentiation of PC12 cells; NGF-induced UPAR expression is required for subsequent NGF-driven differentiation.

  6. Rod differentiation factor NRL activates the expression of nuclear receptor NR2E3 to suppress the development of cone photoreceptors.

    Science.gov (United States)

    Oh, Edwin C T; Cheng, Hong; Hao, Hong; Jia, Lin; Khan, Naheed Wali; Swaroop, Anand

    2008-10-21

    Neural developmental programs require a high level of coordination between the decision to exit cell cycle and acquisition of cell fate. The Maf-family transcription factor NRL is essential for rod photoreceptor specification in the mammalian retina as its loss of function converts rod precursors to functional cones. Ectopic expression of NRL or a photoreceptor-specific orphan nuclear receptor NR2E3 completely suppresses cone development while concurrently directing the post-mitotic photoreceptor precursors towards rod cell fate. Given that NRL and NR2E3 have overlapping functions and NR2E3 expression is abolished in the Nrl(-/-) retina, we wanted to clarify the distinct roles of NRL and NR2E3 during retinal differentiation. Here, we demonstrate that NRL binds to a sequence element in the Nr2e3 promoter and enhances its activity synergistically with the homeodomain protein CRX. Using transgenic mice, we show that NRL can only partially suppress cone development in the absence of NR2E3. Gene profiling of retinas from transgenic mice that ectopically express NR2E3 or NRL in cone precursors reveals overlapping and unique targets of these two transcription factors. Together with previous reports, our findings establish the hierarchy of transcriptional regulators in determining rod versus cone cell fate in photoreceptor precursors during the development of mammalian retina.

  7. Regulation of lipid metabolism and peroxisome proliferator-activated receptors in rainbow trout adipose tissue by lipolytic and antilipolytic endocrine factors.

    Science.gov (United States)

    Cruz-Garcia, L; Sánchez-Gurmaches, J; Monroy, M; Gutiérrez, J; Navarro, I

    2015-04-01

    The aim of this study was to determine the effects of growth hormone (GH) and insulin-like growth factor (IGF)-I on glycerol release and the regulation of IGF-I and IGF-II expression by GH in isolated rainbow trout adipocytes. Cells were also incubated with GH, tumor necrosis factor α (TNFα), or insulin to analyze the gene expression of peroxisome proliferator-activated receptors (PPARs) and lipid metabolism markers: hormone sensitive lipase, fatty acid synthase (FAS), and lipoprotein lipase. Complimentary in vivo experiments were performed by intraperitoneally administering insulin, TNFα, or lipopolysaccharide and subjecting the animals to fasting and refeeding periods. The results showed that IGF-I had an antilipolytic effect and GH had a lipolytic effect; the latter occurred independently of IGF modulation and in conjunction with a reduction in PPARα expression in adipocytes. The anabolic action of insulin was demonstrated through its upregulation of lipogenic genes such as lipoprotein lipase, FAS, and PPARγ, whereas GH, by contrast, inhibited FAS expression in adipose tissue. The gene transcription levels of PPARs changed differentially during fasting and refeeding, and the TNFα and/or lipopolysaccharide administration suggested that the regulation of PPARs helps maintain metabolic adipose tissue homeostasis in rainbow trout. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Heparin modulates the mitogenic activity of fibroblast growth factor by inducing dimerization of its receptor. a 3D view by using NMR.

    Science.gov (United States)

    Nieto, Lidia; Canales, Ángeles; Fernández, Israel S; Santillana, Elena; González-Corrochano, Rocío; Redondo-Horcajo, Mariano; Cañada, F Javier; Nieto, Pedro; Martín-Lomas, Manuel; Giménez-Gallego, Guillermo; Jiménez-Barbero, Jesús

    2013-09-23

    In vitro mitogenesis assays have shown that sulfated glycosaminoglycans (GAGs; heparin and heparan sulfate) cause an enhancement of the mitogenic activity of fibroblast growth factors (FGFs). Herein, we report that the simultaneous presence of FGF and the GAG is not an essential requisite for this event to take place. Indeed, preincubation with heparin (just before FGF addition) of cells lacking heparan sulfate produced an enhancing effect equivalent to that observed when the GAG and the protein are simultaneously added. A first structural characterization of this effect by analytical ultracentrifugation of a soluble preparation of the heparin-binding domain of fibroblast growth factor receptor 2 (FGFR2) and a low molecular weight (3 kDa) heparin showed that the GAG induces dimerization of FGFR2. To derive a high resolution structural picture of this molecular recognition process, the interactions of a soluble heparin-binding domain of FGFR2 with two different homogeneous, synthetic, and mitogenically active sulfated GAGs were analyzed by NMR spectroscopy. These studies, assisted by docking protocols and molecular dynamics simulations, have demonstrated that the interactions of these GAGs with the soluble heparin-binding domain of FGFR induces formation of an FGFR dimer; its architecture is equivalent to that in one of the two distinct crystallographic structures of FGFR in complex with both heparin and FGF1. This preformation of the FGFR dimer (with similar topology to that of the signaling complex) should favor incorporation of the FGF component to form the final assemblage of the signaling complex, without major entropy penalty. This cascade of events is probably at the heart of the observed activating effect of heparin in FGF-driven mitogenesis.

  9. The variant hepatocyte nuclear factor 1 activates the P1 promoter of the human alpha-folate receptor gene in ovarian carcinoma.

    Science.gov (United States)

    Tomassetti, Antonella; Mangiarotti, Fabio; Mazzi, Mimma; Sforzini, Sabrina; Miotti, Silvia; Galmozzi, Enrico; Elwood, Patrick C; Canevari, Silvana

    2003-02-01

    The alpha folate receptor (alpha FR) is a membrane glycoprotein that binds folates, and mediates their uptake and that of antifolate drugs. alpha FR is absent on ovarian surface epithelium (OSE) but is detectable during early transforming events in this epithelium, with increasing expression levels in association with tumor progression. Analysis of transcriptional regulation of the alpha FR gene have revealed two promoter regions, P1 and P4, flanking exons 1 and 4, respectively, and a requirement for three SP1 sites and an INR element for optimal P4 activity. Here, we focused on the P1 transcription regulation in ovarian carcinoma cells. RNase protection assay indicated that the 5'-untranslated region is heterogeneous because of different start sites and alternative splicing of exon 3. A core region of the P1 promoter was sufficient for maximal promoter activity in ovarian carcinoma cell lines but not in OSE cells or in alpha FR-nonexpressing cell lines. Deletion and mutation analysis of this core promoter identified a cis-regulatory element at position +27 to +33 of the untranslated exon 1, which is responsible for maximum P1 activity. This element formed an abundant DNA-protein complex with nuclear proteins from ovarian cancer cells but not from other cell lines or OSE cells. Competition experiments and supershift assays demonstrated binding of the P1 cis-regulatory element by a transcription factor involved in embryonic development, the variant hepatocyte nuclear factor-1 (vHNF1). Analysis of RNA from various cell lines and surgical specimens confirmed that vHNF1 is expressed in ovarian carcinomas. Thus, vHNF1 regulates tissue-specific transcription in ovarian carcinoma.

  10. Fish condition factor, peroxisome proliferator activated receptors and biotransformation responses in Sarotherodon melanotheron from a contaminated freshwater dam (Awba Dam) in Ibadan, Nigeria.

    Science.gov (United States)

    Adeogun, Aina O; Ibor, Oju R; Onoja, Anyebe B; Arukwe, Augustine

    2016-10-01

    The relationship between condition factor (CF), peroxisome proliferator-activated receptors (PPARs), phase 1 biotransformation (CYP1A isoforms) and contaminant burden has been studied in Sarotherodon melanotheron from a contaminated tropical freshwater dam (Awba Dam) and compared to a reference site (Modete Dam) in Southwest, Nigeria. A total of 89 fish (57 males and 32 females) was collected from Awba Dam and 95 fish (48 males and 47 females) from the reference site. In general, fish sampled from Awba Dam were bigger than reference site. Sediment samples were also collected from both sites for contaminant analysis. Expression of ppar and cyp1 isoforms was analyzed using validated real-time PCR, while CYP1A and PPAR protein levels were analyzed using immunochemical method with specific antibodies. CYP-mediated catalytic responses (EROD, MROD and BROD) were performed by biochemical methods. We observed significant increases in ppar and cyp1 isoforms mRNA in both male and female fish from Awba Dam, compared to the reference site. Catalytic activities of EROD, MROD and BROD paralleled cyp1 transcript levels. Sex-related differences in PPAR and CYP1A protein levels were also observed, showing higher CYP1A proteins in males, compared with females, and higher PPAR proteins in females compared with males. Principal component analysis (PCA) biplot showed positive relationships between biological responses (ppar isoforms), condition factor (CF) and sediment PCBs, PAHs, OCPs and heavy metal concentrations. The present study shows that S. melanotheron inhabiting Awba Dam are severely affected by different classes of environmental contaminants that target metabolic processes (PPAR) and biotransformation pathways (CYP1A) in male and female fish, compared to a reference site. Interestingly, fish from Awba Dam were exhibiting good growth (evidence by high CF values) that paralleled increases in the transcriptional activation of ppar and cyp1 isoforms, despite the high

  11. Chapter 8. Activation mechanisms of chemokine receptors

    DEFF Research Database (Denmark)

    Jensen, Pia C; Rosenkilde, Mette M

    2009-01-01

    Chemokine receptors belong to the large family of 7-transmembrane (7TM) G-protein-coupled receptors. These receptors are targeted and activated by a variety of different ligands, indicating that activation is a result of similar molecular mechanisms but not necessarily similar modes of ligand bin...

  12. Neutrophils accentuate renal cold ischemia-reperfusion injury. Dose-dependent protective effect of a platelet-activating factor receptor antagonist.

    Science.gov (United States)

    Riera, M; Torras, J; Herrero, I; Valles, J; Paubert-Braquet, M; Cruzado, J M; Alsina, J; Grinyo, J M

    1997-02-01

    This study was undertaken to evaluate whether the renal damage induced by cold ischemia-reperfusion was worsened by neutrophils (PMN), and if blockade of platelet-activating factor (PAF) could effectively decrease this injury. After flushing with EuroCollins, 85 kidneys from Sprague-Dawley rats underwent either no cold ischemia or a 4-h cold ischemia, and then were reperfused for 75 min at 37 degrees C and 100 mm Hg in an isolated perfusion circuit. Reperfusion was performed with a Krebs-Henseleit solution containing 4.5% albumin, with and without human PMN (7.5 x 10(5) cells/ml) and with and without addition of a PAF receptor antagonist (BN 52021). Hemodynamic and functional parameters were continuously assessed during reperfusion. At end of the study, PAF production was evaluated. Presence of PMN during reperfusion of nonischemic kidneys produced no alteration of functional parameters or PAF production. After 4-h cold ischemia, the presence of PMN during reperfusion produced a significant worsening of plasma flow rate, glomerular filtration rate and sodium reabsorption in comparison with kidneys reperfused without PMN. Also, higher production of PAF was observed in the kidneys reperfused with PMN than in the kidneys reperfused without PMN. After 4-h cold ischemia, addition of BN 52021 during reperfusion in the presence of PMN significantly increased the plasma flow rate, glomerular filtration rate and sodium reabsorption in comparison with kidneys reperfused without this PAF antagonist. This effect was dose dependent. After 4-h cold ischemia, addition of BN 52021 during reperfusion in the absence of PMN produced no significant effect on functional parameters in comparison with kidneys reperfused without this PAF antagonist. These results indicate that PMN contribute to renal cold ischemia-reperfusion injury evaluated in the isolated perfused kidney. Treatment with a PAF receptor antagonist attenuated this injury in a dose-dependent manner, which suggests that it

  13. Investigating the in Vitro Thermal Stability and Conformational Flexibility of Estrogen Receptors as Potential Key Factors of Their in Vivo Activity.

    Science.gov (United States)

    Le Grand, Adélaïde; André-Leroux, Gwenaëlle; Marteil, Gaëlle; Duval, Hélène; Sire, Olivier; Le Tilly, Véronique

    2015-06-30

    Among hormone-inducible transcription factors, estrogen receptors (ERs) play important roles in tissue growth and differentiation, via either direct or indirect binding, in the nucleus, to specific DNA targets called estrogen responsive elements (EREs), or through nongenomic pathways. In humans, two estrogen receptor isoforms (hERs), designated hERα and hERβ, have been identified. These two hERs, encoded by genes located on distinct chromosomes, exhibit divergent tissue-specific functions and different subcellular distributions depending on their binding status, free or complexed to their cognate ligands. Because it is hypothesized that such distinct behaviors may arise from various conformational stabilities and flexibilities, the effect of salt concentration and temperature was studied on the free and estrogen-activated hERα and hERβ. Our results show that the conformational stability of hERβ is weakly modulated by salt concentration as opposed to hERα. In addition, we show that the estrogen-bound hERs exhibit a more constrained structure than the unliganded ones and that their conformational flexibility is more affected by diethylstilbestrol binding than that of estradiol, 4-hydroxytamoxifen, or raloxifen. In line with these results, conformational analysis and computational docking were performed on hERα and hERβ, which confer molecular support of a diethylstilbestrol-induced restrained flexibility as compared to other ligands. We found that Trp383 in hERα and Trp335 in hERβ can closely interact with the NR-box motif of the H12 helix and act as a gatekeeper of the agonist-bound versus antagonist-bound conformations. Altogether, our study contributes to an improved knowledge of the diverse physicochemical properties of full-length hERs, which will help in our understanding of their distinct cellular roles in various cellular contexts.

  14. Type III Transforming Growth FactorReceptor Drives Cardiac Hypertrophy Through β-Arrestin2-Dependent Activation of Calmodulin-Dependent Protein Kinase II.

    Science.gov (United States)

    Lou, Jie; Zhao, Dan; Zhang, Ling-Ling; Song, Shu-Ying; Li, Yan-Chao; Sun, Fei; Ding, Xiao-Qing; Yu, Chang-Jiang; Li, Yuan-Yuan; Liu, Mei-Tong; Dong, Chang-Jiang; Ji, Yong; Li, Hongliang; Chu, Wenfeng; Zhang, Zhi-Ren

    2016-09-01

    The role of type III transforming growth factorreceptor (TβRIII) in the pathogenesis of heart diseases remains largely unclear. Here, we investigated the functional role and molecular mechanisms of TβRIII in the development of myocardial hypertrophy. Western blot and quantitative real time-polymerase chain reaction analyses revealed that the expression of TβRIII was significantly elevated in human cardiac hypertrophic samples. Consistently, TβRIII expression was substantially increased in transverse aortic constriction (TAC)- and isoproterenol-induced mouse cardiac hypertrophy in vivo and in isoproterenol-induced cardiomyocyte hypertrophy in vitro. Overexpression of TβRIII resulted in cardiomyocyte hypertrophy, whereas isoproterenol-induced cardiomyocyte hypertrophy was greatly attenuated by knockdown of TβRIII in vitro. Cardiac-specific transgenic expression of TβRIII independently led to cardiac hypertrophy in mice, which was further aggravated by isoproterenol and TAC treatment. Cardiac contractile function of the mice was not altered in TβRIII transgenic mice; however, TAC led to significantly decreased cardiac contractile function in TβRIII transgenic mice compared with control mice. Conversely, isoproterenol- and TAC-induced cardiac hypertrophy and TAC-induced cardiac contractile function impairment were partially reversed by suppression of TβRIII in vivo. Our data suggest that TβRIII mediates stress-induced cardiac hypertrophy through activation of Ca(2+)/calmodulin-dependent protein kinase II, which requires a physical interaction of β-arrestin2 with both TβRIII and calmodulin-dependent protein kinase II. Our findings indicate that stress-induced increase in TβRIII expression results in cardiac hypertrophy through β-arrestin2-dependent activation of calmodulin-dependent protein kinase II and that transforming growth factor-β and β-adrenergic receptor signaling are not involved in spontaneous cardiac hypertrophy in cardiac

  15. G-protein coupled receptor 56 promotes myoblast fusion through serum response factor- and nuclear factor of activated T-cell-mediated signalling but is not essential for muscle development in vivo.

    Science.gov (United States)

    Wu, Melissa P; Doyle, Jamie R; Barry, Brenda; Beauvais, Ariane; Rozkalne, Anete; Piao, Xianhua; Lawlor, Michael W; Kopin, Alan S; Walsh, Christopher A; Gussoni, Emanuela

    2013-12-01

    Mammalian muscle cell differentiation is a complex process of multiple steps for which many of the factors involved have not yet been defined. In a screen to identify the regulators of myogenic cell fusion, we found that the gene for G-protein coupled receptor 56 (GPR56) was transiently up-regulated during the early fusion of human myoblasts. Human mutations in the gene for GPR56 cause the disease bilateral frontoparietal polymicrogyria; however, the consequences of receptor dysfunction on muscle development have not been explored. Using knockout mice, we defined the role of GPR56 in skeletal muscle. GPR56(-/-) myoblasts have decreased fusion and smaller myotube sizes in culture. In addition, a loss of GPR56 expression in muscle cells results in decreases or delays in the expression of myogenic differentiation 1, myogenin and nuclear factor of activated T-cell (NFAT)c2. Our data suggest that these abnormalities result from decreased GPR56-mediated serum response element and NFAT signalling. Despite these changes, no overt differences in phenotype were identified in the muscle of GPR56 knockout mice, which presented only a mild but statistically significant elevation of serum creatine kinase compared to wild-type. In agreement with these findings, clinical data from 13 bilateral frontoparietal polymicrogyria patients revealed mild serum creatine kinase increase in only two patients. In summary, targeted disruption of GPR56 in mice results in myoblast abnormalities. The absence of a severe muscle phenotype in GPR56 knockout mice and human patients suggests that other factors may compensate for the lack of this G-protein coupled receptor during muscle development and that the motor delay observed in these patients is likely not a result of primary muscle abnormalities.

  16. In vitro effects of buyang huanwu decoction and its ingredients on inhibiting the specific binding of 3H-platelet activating factor to its receptor in rabbits

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    BACKGROUND: Pharmacologic action of traditional Chinese medicine compound is the comprehensive effect of various ingredients, and the interactions of various ingredients are closely correlated with the final effect. In order to reveal the compatibility mechanism of buyang huanwu decoction (BHD)'s prescription in treating and preventing ischemic cerebrovascular disease, we need to explore the effect and relation of ingredients in prescription except for considering the effect of each ingredient on the whole prescription.OBJECTIVE: To study the effect of BHD and its ingredients in the prescription on the specific binding of 3H-platelet activating factor (PAF) to its receptor (PAFR)in rabbits in vitro, and to analyze the action of each ingredient in the prescription.DESIGN: A decomposed recipe study based on orthogonal test.SETTING: Guangzhou University of Traditional Chinese Medicine.MATERIALS: Five healthy adult New Zealand rabbits of either gender were provided by the Experimental Animal Center of Guangzhou University of Traditional Chinese medicine. The prescription herbal pieces were purchased from Foshan Kangpu Pharmaceuticals Company and Jianmin Pharmaceuticals Company, and were appraised by Professor Yanchen Xu from College of Traditional Chinese Medicine, Guangzhou University of Traditional Chinese Medicine. 3H-PAF was supplied by Amersham Co.,Ltd.(Specific activity:6.475 TBq/mmol;batch number:200402); PAF standard by Biomol Co., Ltd.(batch number: P1318V).METHODS: This experiment was carried out in the Laboratory of Nuclear Medicine, Guangzhou University of Traditional Chinese Medicine between September and December 2004. ① The seven influencing factors were selected: such as Shenghuangqi , Dangguiwei, Chishao, Dilong, Taoren, Honghua, Chuanxiong. Each factor was divided into two levels, selected or not selected. The tests were arranged according to L8 (27) orthogonal test table. ②The specific binding of 3H-PAF to its receptors in rabbits was measured by

  17. Role of epidermal growth factor receptor transactivation in the activation of cytosolic phospholipase A(2) in leptin protection of salivary gland acinar cells against ethanol cytotoxicity.

    Science.gov (United States)

    Slomiany, B L; Slomiany, A

    2009-06-01

    A pleiotropic hormone, leptin, secreted into saliva by the acinar cells of salivary glands is an important mediator of the processes of oral mucosal defense. Here, we report on the role of epidermal growth factor receptor (EGFR) transactivation in the signaling events that mediate leptin protection of sublingual salivary gland acinar cells against ethanol cytotoxicity. We show that the protective effect of leptin against ethanol cytotoxicity was associated with the increased EGFR protein tyrosine kinase and cytosolic phospholipase A(2) (cPLA(2)) activity, and characterized by a marked increase in matrix metalloproteinase MMP-9 and arachidonic acid (AA) release, and PGE(2) generation. The loss in countering capacity of leptin against ethanol cytotoxicity was attained with JAK inhibitor AG490, Src inhibitor PP2, and EGFR inhibitor AG1478, as well as ERK inhibitor PD98059. Moreover, the agents evoked also the inhibition in leptin-induced up-regulation in cPLA(2) activity, AA release, and PGE(2) generation. The changes caused by leptin in EGFR phosphorylation, MMP-9, and cPLA(2) activation were susceptible to suppression by metalloprotease inhibitor GM6001, but the production of MMP-9 was not affected by EGFR inhibitor AG1478 or PKC inhibitor Ro318220. These findings point to the involvement of MMP-9 in the event of leptin-induced EGFR transactivation that results in the signaling cascade leading to cPLA(2) activation and up-regulation in PGE(2) generation, thus providing new insights into the mechanism of oral mucosal protection against ethanol toxicity.

  18. A cationic-independent mannose 6-phosphate receptor inhibitor (PXS64 ameliorates kidney fibrosis by inhibiting activation of transforming growth factor-β1.

    Directory of Open Access Journals (Sweden)

    Jie Zhang

    Full Text Available The activity of transforming growth factor-β1 (TGF-β1 is regulated by its conversion from the latent to the active form. We have previously shown that the conversion is at least in part mediated by the cationic-independent mannose 6-phosphate receptor (CI-M6PR, as the CI-M6PR inhibitor, PXS-25 has anti-fibrotic properties in human kidney tubular (HK-2 cells under high glucose conditions. However, its clinical use is limited by low bioavailability. Our aim was to determine the effects of PXS64, a pro-drug of PXS25, in in vitro and in vivo models of renal fibrosis. HK-2 cells were exposed to latent TGFβ1+/- PXS64 for 48 hours. The mRNA and protein levels of pro-fibrotic and pro-inflammatory markers were determined. A 7 day unilateral ureteric obstruction (UUO model was used and the following experimental groups were studied: (i Sham operated, (ii UUO, (iii UUO + telmisartan (iv UUO + PSX64. HK-2 cells exposed to PXS64 reduced TGFβ mediated effects on collagen IV, fibronectin, macrophage chemotactic protein-1 (MCP-1 and phospho-smad2 protein expression, consistent with inhibition of the conversion of latent to active TGF-β1. PXS 64 treated UUO mice had a lower tubulointerstitial fibrosis index, collagen IV and fibronectin protein and mRNA expression when compared to untreated UUO mice. In addition, these animals had lower MCP-1 mRNA expression, reduced inflammarory cell infiltrate, as indicated by fewer CD45, F4/80 positive cells, and reduced phospho-Smad2 protein expression when compared to untreated UUO animals. Our data demonstrates that PSX64 is an effective anti-fibrotic agent by inhibiting the activation of latent TGF-β1.

  19. Mechanism for the activation of glutamate receptors

    Science.gov (United States)

    Scientists at the NIH have used a technique called cryo-electron microscopy to determine a molecular mechanism for the activation and desensitization of ionotropic glutamate receptors, a prominent class of neurotransmitter receptors in the brain and spina

  20. The vascular endothelial growth factor receptor inhibitor sunitinib causes a preeclampsia-like syndrome with activation of the endothelin system

    DEFF Research Database (Denmark)

    Kappers, Mariëtte H W; Smedts, Frank M M; Horn, Thomas;

    2011-01-01

    Angiogenesis inhibition is an established treatment for several tumor types. Unfortunately, this therapy is associated with adverse effects, including hypertension and renal toxicity, referred to as "preeclampsia." Recently, we demonstrated in patients and in rats that the multitarget tyrosine...... kinase inhibitor sunitinib induces a rise in blood pressure (BP), renal dysfunction, and proteinuria associated with activation of the endothelin system. In the current study we investigated the effects of sunitinib on rat renal histology, including the resemblance with preeclampsia, as well as the roles...... of preeclampsia, which was partly reversible after sunitinib discontinuation. The histological abnormalities were accompanied by an increase in urinary excretion of endothelin 1 and diminished NO metabolite excretion. In rats on sunitinib alone, BP increased (¿BP: 31.6±0.9 mm Hg). This rise could largely...

  1. Targeting Extracellular Domains D4 and D7 of Vascular Endothelial Growth Factor Receptor 2 Reveals Allosteric Receptor Regulatory Sites

    OpenAIRE

    Hyde, Caroline A. C.; Giese, Alexandra; Stuttfeld, Edward; Abram Saliba, Johan; Villemagne, Denis; Schleier, Thomas; Binz, H. Kaspar; Ballmer-Hofer, Kurt

    2012-01-01

    Vascular endothelial growth factors (VEGFs) activate three receptor tyrosine kinases, VEGFR-1, -2, and -3, which regulate angiogenic and lymphangiogenic signaling. VEGFR-2 is the most prominent receptor in angiogenic signaling by VEGF ligands. The extracellular part of VEGF receptors consists of seven immunoglobulin homology domains (Ig domains). Earlier studies showed that domains 2 and 3 (D23) mediate ligand binding, while structural analysis of dimeric ligand/receptor complexes by electron...

  2. Thyroid hormone receptors regulate adipogenesis and carcinogenesis via crosstalk signaling with peroxisome proliferator-activated receptors

    Science.gov (United States)

    Lu, Changxue; Cheng, Sheue-Yann

    2012-01-01

    Peroxisome proliferator-activated receptors (PPARs) and thyroid hormone receptors (TRs) are members of the nuclear receptor superfamily. They are ligand-dependent transcription factors that interact with their cognate hormone response elements in the promoters to regulate respective target gene expression to modulate cellular functions. While the transcription activity of each is regulated by their respective ligands, recent studies indicate that via multiple mechanisms PPARs and TRs crosstalk to affect diverse biological functions. Here, we review recent advances in the understanding of the molecular mechanisms and biological impact of crosstalk between these two important nuclear receptors, focusing on their roles in adipogenesis and carcinogenesis. PMID:19741045

  3. Thyroid hormone receptors regulate adipogenesis and carcinogenesis via crosstalk signaling with peroxisome proliferator-activated receptors.

    Science.gov (United States)

    Lu, Changxue; Cheng, Sheue-Yann

    2010-03-01

    Peroxisome proliferator-activated receptors (PPARs) and thyroid hormone receptors (TRs) are members of the nuclear receptor superfamily. They are ligand-dependent transcription factors that interact with their cognate hormone response elements in the promoters to regulate respective target gene expression to modulate cellular functions. While the transcription activity of each is regulated by their respective ligands, recent studies indicate that via multiple mechanisms PPARs and TRs crosstalk to affect diverse biological functions. Here, we review recent advances in the understanding of the molecular mechanisms and biological impact of crosstalk between these two important nuclear receptors, focusing on their roles in adipogenesis and carcinogenesis.

  4. Peroxisome proliferator-activated receptor-gamma Pro12Ala polymorphism could be a risk factor for gastric cancer.

    Science.gov (United States)

    Zhao, Jing; Zhi, Zheng; Song, Guangyao; Wang, Juan; Wang, Chao; Ma, Huijuan; Yu, Xian; Sui, Aixia; Zhang, Hongtao

    2015-01-01

    Due to the strong inhibitory effects of PPARγ gene on the growth of cancer cells, the role of Pro12Ala polymorphism in PPARγ gene has been extensively investigated in cancer recently. However, the results were inconsistent according to cancer type. The aim of this study was to comprehensively evaluate the PPARγ Pro12Ala polymorphism and gastric cancer susceptibility. Search strategies were conducted in Pubmed, Medline (Ovid), Chinese biomedical database (CBM), China national knowledge infrastructure (CNKI), VIP, and Wanfang database, covering all publications, with the last search up to November 01, 2014. The strength of association between PPARγ Pro12Ala polymorphism and gastric cancer risk was assessed by OR with 95%CI. A total of 546 cases and 827 controls in 5 case-control studies were included in this meta-analysis. The results indicated that the variant G allele carriers (CG+GG) had a 2.31 times higher risk for gastric cancer when compared with the homozygote CC (odds ratio (OR)=2.31, 95% confidence interval (CI)=1.67- 3.21 for CG+GG vs. CC). In the subgroup analysis by ethnicity, significantly elevated risks were both found in Asians (OR=2.56, 95% CI=1.42-4.64) and Caucasians (OR=2.20, 95% CI=1.48-3.25). Similarly, in the subgroup analysis by H. pylori status, a significantly increased risk was identified in H. pylori (+) populations (OR=3.68, 95%CI=2.07-6.52), but not in H. pylori(-) populations (OR=1.17, 95%CI=0.58-2.39). This pooled analysis suggested that the PPARγ Pro12Ala polymorphism could be an independent predictive risk factor for gastric cancer especially in H. pylori infected populations in Asians and Caucasians. Nevertheless, prospectively designed cohort studies are needed to further investigate gene-gene and gene-environment interactions to confirm the combined effects of PPARγ Pro12Ala polymorphisms and H. pylori infection on gastric cancer risk.

  5. DEPENDENCE OF PPAR LIGAND-INDUCED MAPK SIGNALING ON EPIDERMAL GROWTH FACTOR RECEPTOR TRANSACTIVATION HEPARIN-BINDING EGF CLEAVAGE MEDIATES ZINC-INDUCED EGF RECEPTOR PHOSPHORYLATION

    Science.gov (United States)

    Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that function as ligand-activated transcription factors regulating lipid metabolism and homeostasis. In addition to their ability to regulate PPAR-mediated gene transcription, PPARalpha and gamma li...

  6. Clearance of Apoptotic Cells by Macrophages Induces Regulatory Phenotype and Involves Stimulation of CD36 and Platelet-Activating Factor Receptor

    Directory of Open Access Journals (Sweden)

    Matheus Ferracini

    2013-01-01

    Full Text Available Phagocytosis of apoptotic cells (efferocytosis induces macrophage differentiation towards a regulatory phenotype (IL-10high/IL-12p40low. CD36 is involved in the recognition of apoptotic cells (AC, and we have shown that the platelet-activating factor receptor (PAFR is also involved. Here, we investigated the contribution of PAFR and CD36 to efferocytosis and to the establishment of a regulatory macrophage phenotype. Mice bone marrow-derived macrophages were cocultured with apoptotic thymocytes, and the phagocytic index was determined. Blockage of PAFR with antagonists or CD36 with specific antibodies inhibited the phagocytosis of AC (~70–80%. Using immunoprecipitation and confocal microscopy, we showed that efferocytosis increased the CD36 and PAFR colocalisation in the macrophage plasma membrane; PAFR and CD36 coimmunoprecipitated with flotillin-1, a constitutive lipid raft protein, and disruption of these membrane microdomains by methyl-β-cyclodextrin reduced AC phagocytosis. Efferocytosis induced a pattern of cytokine production, IL-10high/IL-12p40low, that is, characteristic of a regulatory phenotype. LPS potentiated the efferocytosis-induced production of IL-10, and this was prevented by blocking PAFR or CD36. It can be concluded that phagocytosis of apoptotic cells engages CD36 and PAFR, possibly in lipid rafts, and this is required for optimal efferocytosis and the establishment of the macrophage regulatory phenotype.

  7. Expression and purification of a natural N-terminal pre-ligand assembly domain of tumor necrosis factor receptor 1 (TNFR1 PLAD) and preliminary activity determination.

    Science.gov (United States)

    Cao, Jin; Meng, Fang; Gao, Xiangdong; Dong, Hongxia; Yao, Wenbing

    2011-04-01

    A domain at the NH(2) terminal (N-terminal) of tumor necrosis factor receptor (TNFR) termed the pre-ligand binding assembly domain (PLAD). The finding that PLAD can mediate a selective TNFR assembly in previously researches provides a novel target to the prevention of TNFR signaling in immune-mediated inflammatory diseases (IMID). In this study, a natural N-terminal TNFR1 PLAD was obtained for the first time through the methods of GST-tag fusion protein expression and enterokinase cleavage. After purification with a Q Sepharose Fast Flow column, a natural N-terminal TNFR1 PLAD which purity was up to 95%, was obtained and was identified using Nano LC-ECI-MS/MS. Secondary structure analysis of PLAD was carried out using circular dichroism spectra (CD). After that, the TNFR1 PLAD in vitro anti-TNFα activity and the specific TNFR1 affinity were determined. The results proved that the natural N-terminal TNFR1 PLAD can selectively inhibit TNFα bioactivity mainly through TNFR1. It infers an effective and safe strategy for treating variety of IMID with a low risk of side effects in future.

  8. Effects of vitamin E on receptor activator of nuclear factor kappa B ligand (RANKL) and osteoprotegerin (OPG) in rats treated with nicotine.

    Science.gov (United States)

    Norazlina, M; Maizatul-Neza, J; Azarina, A; Nazrun, A S; Norliza, M; Ima-Nirwana, S

    2010-03-01

    Vitamin E is found to reverse the effects of nicotine on bone and this study aimed to determine its mechanism. Male Sprague Dawley rats were divided into four groups and treated for 3 months: Group 1 was the control group (RC). Groups 2 (N), 3 (N+TT) and 4 (N+ATF) received nicotine 7 mg/kg throughout the treatment period. In addition, groups 3 and 4 received tocotrienol 60 mg/kg and alpha-tocopherol 60 mg/kg respectively during months 2 and 3. Parameters measured were serum osteoprotegerin (OPG), serum receptor activator of nuclear factor kappa B ligand (RANKL), femoral and lumbar bone calcium content and body weight. Nicotine did not affect OPG or RANKL levels but reduced bone calcium content suggesting the calcium loss is not due to increase osteoclastogenesis. OPG was increased in N+ATF while RANKL was slightly increased in N+TT. Both vitamin E supplements restored bone calcium loss induced by nicotine. Nicotine impaired weight gain in all treatment groups starting week 4 however, N+TT group was comparable to RC from week 6 onwards. Bone protective effects of ATF, but not TT, may be partly due to inhibition of osteoclastogenesis.

  9. Receptor activator of nuclear factor kappa B ligand and osteoprotegerin expression in chronic apical periodontitis:possible association with inflammatory cells

    Institute of Scientific and Technical Information of China (English)

    FAN Rong; SUN Bin; ZHANG Cheng-fei; L(U) Ya-lin; XUAN Wei; WANG Qian-qian; YIN Xing-zhe

    2011-01-01

    Background Receptor activator of nuclear factor kappa B (NF-κB) ligand (RANKL) and osteoprotegerin (OPG) have been recently shown to play important roles in bone resorption. The aim of this study was to investigate the possible association between the expression of bone resorption regulators (RANKL and OPG) and inflammatory cell infiltration in chronic apical periodontitis.Methods The samples of chronic periapical lesions (n=40) and healthy periapical tissues (n=10) were examined for immunohistochemical analysis of RANKL and OPG. Lesion samples were further analyzed for the inflammatory infiltration condition. The inflammatory cell infiltration was scored in relation to immunohistochemical reactivity for CD3, CD20 and CD68.Results The number of RANKL-positive cells and the ratio of RANKL/OPG in chronic apical periodontitis were significantly higher than those in healthy periapical tissues (P<0.001). The number of RANKL-positive cells was higher in lesions with severe inflammatory infiltration than in those with light inflammatory infiltration (P<0.05). Significantly increased RANKL expression was found with T lymphocytes (CD3+), macrophages (CD68+) and B lymphocytes (CD20+)infiltration (P<0.05). No association was found between the ratio of RANKL/OPG and inflammatory cell infiltration.Conclusions RANKL expression was increased with T, B lymphocytes and macrophages infiltration, respectively in chronic periapical lesions. RANKL appears to be closely related to periapical inflammatory infiltrates. The relative ratio of RANKL/OPG may be a key determinant of RANKL-mediated bone resorption.

  10. Signal transduction by growth factor receptors: signaling in an instant

    DEFF Research Database (Denmark)

    Dengjel, Joern; Akimov, Vyacheslav; Blagoev, Blagoy;

    2007-01-01

    -out by mass spectrometry-based proteomics has allowed exciting views on the very early events in signal transduction. Activation profiles of regulated phosphorylation sites on epidermal growth factor receptor and downstream signal transducers showed different kinetics within the first ten seconds...

  11. Inhibition of Nuclear Transcription Factor-κB and Activation of Peroxisome Proliferator-Activated Receptors in HepG2 Cells by Cucurbitane-Type Triterpene Glycosides from Momordica charantia

    Science.gov (United States)

    Nhiem, Nguyen Xuan; Yen, Pham Hai; Ngan, Nguyen Thi Thanh; Quang, Tran Hong; Kiem, Phan Van; Minh, Chau Van; Tai, Bui Huu; Cuong, Nguyen Xuan; Song, Seok Bean

    2012-01-01

    Abstract Momordica charantia: is used to treat various diseases, including inflammatory conditions. Previous reports indicated that the extract of this plant inhibits activation of nuclear transcription factor-κB (NF-κB) but activates peroxisome proliferator-activated receptor (PPAR). Additionally, cucurbitane-type triterpene glycosides are the main bioactive components of the fruit of M. charantia. Therefore, we investigated the anti-inflammatory activity of 17 cucurbitane-type triterpene glycosides (1–17) isolated from this plant. Their inhibition of NF-κB and activation of PPAR activities in HepG2 cells were measured using luciferase reporter and PPAR subtype transactivation assays. Compounds 6 and 8 were found to inhibit NF-κB activation stimulated by tumor necrosis factor-α (TNFα) in a dose-dependent manner. With 50% inhibition concentration (IC50) values of 0.4 μM, compounds 6 and 8 were more potent inhibitors than the positive control, sulfasalazine (IC50=0.9 μM). Compounds 4, 6, and 8 also inhibited TNFα-induced expressions of inducible nitric oxide synthase and cyclooxygenase-2 mRNA. However, only compound 13 significantly increased PPARγ transactivation. PMID:22248180

  12. Inhibition of nuclear transcription factor-κB and activation of peroxisome proliferator-activated receptors in HepG2 cells by cucurbitane-type triterpene glycosides from Momordica charantia.

    Science.gov (United States)

    Nhiem, Nguyen Xuan; Yen, Pham Hai; Ngan, Nguyen Thi Thanh; Quang, Tran Hong; Kiem, Phan Van; Minh, Chau Van; Tai, Bui Huu; Cuong, Nguyen Xuan; Song, Seok Bean; Kim, Young Ho

    2012-04-01

    Momordica charantia is used to treat various diseases, including inflammatory conditions. Previous reports indicated that the extract of this plant inhibits activation of nuclear transcription factor-κB (NF-κB) but activates peroxisome proliferator-activated receptor (PPAR). Additionally, cucurbitane-type triterpene glycosides are the main bioactive components of the fruit of M. charantia. Therefore, we investigated the anti-inflammatory activity of 17 cucurbitane-type triterpene glycosides (1-17) isolated from this plant. Their inhibition of NF-κB and activation of PPAR activities in HepG2 cells were measured using luciferase reporter and PPAR subtype transactivation assays. Compounds 6 and 8 were found to inhibit NF-κB activation stimulated by tumor necrosis factor-α (TNFα) in a dose-dependent manner. With 50% inhibition concentration (IC(50)) values of 0.4 μM, compounds 6 and 8 were more potent inhibitors than the positive control, sulfasalazine (IC(50)=0.9 μM). Compounds 4, 6, and 8 also inhibited TNFα-induced expressions of inducible nitric oxide synthase and cyclooxygenase-2 mRNA. However, only compound 13 significantly increased PPARγ transactivation.

  13. Modulation of the NMDA Receptor Through Secreted Soluble Factors.

    Science.gov (United States)

    Cerpa, Waldo; Ramos-Fernández, Eva; Inestrosa, Nibaldo C

    2016-01-01

    Synaptic activity is a critical determinant in the formation and development of excitatory synapses in the central nervous system (CNS). The excitatory current is produced and regulated by several ionotropic receptors, including those that respond to glutamate. These channels are in turn regulated through several secreted factors that function as synaptic organizers. Specifically, Wnt, brain-derived neurotrophic factor (BDNF), fibroblast growth factor (FGF), and transforming growth factor (TGF) particularly regulate the N-methyl-D-aspartate receptor (NMDAR) glutamatergic channel. These factors likely regulate early embryonic development and directly control key proteins in the function of important glutamatergic channels. Here, we review the secreted molecules that participate in synaptic organization and discuss the cell signaling behind of this fine regulation. Additionally, we discuss how these factors are dysregulated in some neuropathologies associated with glutamatergic synaptic transmission in the CNS.

  14. Biochemical and biophysical investigation of the brain-derived neurotrophic factor mimetic 7,8-dihydroxyflavone in the binding and activation of the TrkB receptor.

    Science.gov (United States)

    Liu, Xia; Obianyo, Obiamaka; Chan, Chi Bun; Huang, Junjian; Xue, Shenghui; Yang, Jenny J; Zeng, Fanxing; Goodman, Mark; Ye, Keqiang

    2014-10-03

    7,8-dihydroxyflavone (7,8-DHF), a newly identified small molecular TrkB receptor agonist, rapidly activates TrkB in both primary neurons and the rodent brain and mimics the physiological functions of the cognate ligand BDNF. Accumulating evidence supports that 7,8-DHF exerts neurotrophic effects in a TrkB-dependent manner. Nonetheless, the differences between 7,8-DHF and BDNF in activating TrkB remain incompletely understood. Here we show that 7,8-DHF and BDNF exhibit different TrkB activation kinetics in which TrkB maturation may be implicated. Employing two independent biophysical approaches, we confirm that 7,8-DHF interacts robustly with the TrkB extracellular domain, with a Kd of ∼10 nm. Although BDNF transiently activates TrkB, leading to receptor internalization and ubiquitination/degradation, in contrast, 7,8-DHF-triggered TrkB phosphorylation lasts for hours, and the internalized receptors are not degraded. Notably, primary neuronal maturation may be required for 7,8-DHF but not for BDNF to elicit the full spectrum of TrkB signaling cascades. Hence, 7,8-DHF interacts robustly with the TrkB receptor, and its agonistic effect may be mediated by neuronal development and maturation.

  15. Placental growth factor and vascular endothelial growth factor receptor-2 in human lung development.

    Science.gov (United States)

    Janér, Joakim; Andersson, Sture; Haglund, Caj; Karikoski, Riitta; Lassus, Patrik

    2008-08-01

    We examined the pulmonary expression of 2 proangiogenic factors, namely, placental growth factor and vascular endothelial growth factor receptor-2, during lung development and acute and chronic lung injury in newborn infants. Six groups were included in an immunohistochemical study of placental growth factor and vascular endothelial growth factor receptor-2, that is, 9 fetuses, 4 preterm and 8 term infants without lung injury who died soon after birth, 5 preterm infants with respiratory distress syndrome of 10 days, and 6 with bronchopulmonary dysplasia. Placental growth factor concentrations in tracheal aspirate fluid were measured in 70 samples from 20 preterm infants during the first postnatal week. In immunohistochemical analyses, placental growth factor staining was seen in bronchial epithelium and macrophages in all groups. Distal airway epithelium positivity was observed mostly in fetuses and in preterm infants who died soon after birth. Vascular endothelial growth factor receptor-2 staining was seen in vascular endothelium in all groups and also in lymphatic endothelium in fetuses. Vascular endothelial growth factor receptor-2 staining in arterial endothelium was associated with higher and staining in venous endothelium with lower gestational age. In capillaries, less vascular endothelial growth factor receptor-2 staining was seen in bronchopulmonary dysplasia. The mean placental growth factor protein concentration in tracheal aspirate fluid during the first postnatal week was 0.64 +/- 0.42 pg/mL per IgA-secretory component unit. Concentrations during the first postnatal week were stable. Lower placental growth factor concentrations correlated with chorioamnionitis and lactosyl ceramide positivity. The vascular endothelial growth factor receptor-2 staining pattern seems to reflect ongoing differentiation and activity of different endothelia. Lower vascular endothelial growth factor receptor-2 expression in capillary endothelium in bronchopulmonary dysplasia

  16. Peroxisome Proliferator-Activated Receptor Alpha Target Genes

    OpenAIRE

    Maryam Rakhshandehroo; Bianca Knoch; Michael Müller; Sander Kersten

    2010-01-01

    The peroxisome proliferator-activated receptor alpha (PPAR alpha) is a ligand-activated transcription factor involved in the regulation of a variety of processes, ranging from inflammation and immunity to nutrient metabolism and energy homeostasis. PPAR alpha serves as a molecular target for hypolipidemic fibrates drugs which bind the receptor with high affinity. Furthermore, PPAR alpha binds and is activated by numerous fatty acids and fatty acid-derived compounds. PPAR alpha governs biologi...

  17. Comparison the relationship between the levels of insulin resistance, hs-CRP, percentage of body fat and serum osteoprotegerin/receptor activator of nuclear factor κβ ligand in prediabetic patients.

    Science.gov (United States)

    Bilgir, Oktay; Yavuz, Mehmet; Bilgir, Ferda; Akan, Ozden Y; Bayindir, Aslı G; Calan, Mehmet; Bozkaya, Giray; Yuksel, Arif

    2017-01-31

    BACKGROUND Receptor activator of nuclear factor-kappaB ligand (RANKL) and osteoprotegerin (OPN) are soluble members of the tumor necrosis factor superfamily. Growing evidence suggest that there is link between inflammation, insulin resistance and OPG, sRANKL. We aimed to ascertain whether OPG and sRANKL levels are altered in prediabetic subjects and there is association between OPG, sRANKL and metabolic parameters.

  18. Ikaros isoforms in human pituitary tumors: distinct localization, histone acetylation, and activation of the 5' fibroblast growth factor receptor-4 promoter.

    Science.gov (United States)

    Ezzat, Shereen; Yu, Shunjiang; Asa, Sylvia L

    2003-09-01

    Targeted expression of a human pituitary tumor derived-fibroblast growth factor receptor-4 (FGFR4) recapitulates pituitary tumorigenesis. We have shown that FGFR4 is a target for Ikaros, a zinc finger-containing transcription factor that localizes to heterochromatin regions and participates in higher order chromatin complexes and control of gene expression. We report here the expression of Ikaros and functional differences between its alternatively spliced variants in human pituitary tumors. Ik1 expression was detected in human pituitary tumors and we also identified a truncated isoform consistent with the non-DNA-binding Ik6 isoform in a subset of adenomas by reverse transcriptase-polymerase chain reaction, sequencing, and Western immunoblotting. Transfection of Ik6 in GH4 pituitary cells resulted in predominantly cytoplasmic expression as compared to Ik1, which resulted in exclusively nuclear expression as determined by immunofluorescence and immunoblotting of fractionated protein. Immunohistochemistry of primary human pituitary adenomas localized Ikaros expression to the nuclear compartment but also in the cytoplasm, the latter consistent with Ik6. Expression of Ikaros and truncated non-DNA-binding isoforms was also suggested by electromobility shift assays using nuclear proteins from primary human pituitary adenomas. Ik6 resulted in reversal of the effects of Ik1 on wild-type 5' FGFR4 promoter activity, histone acetylation, and regulation of the endogenous gene. We conclude that dominant-negative Ik6 isoforms with their distinct localization and effects on Ik1 action may contribute to the altered expression of FGFR4 and possibly other target genes in human pituitary tumors.

  19. Association of peroxisome proliferator-activated receptorγ gene Pro12Ala and C161T polymorphisms with cardiovascular risk factors in maintenance hemodialysis patients.

    Science.gov (United States)

    Liu, Feng; Mei, Xiaobin; Zhang, Yingying; Qi, Hualin; Wang, Jun; Wang, Yi; Jiang, Wei; Zhang, Xintian; Yan, Haidong; Zhuang, Shougang

    2014-11-01

    The Pro12Ala and C161T polymorphisms in peroxisome proliferator-activated receptor γ (PPARγ) have been shown to be associated with carotid artery atherosclerosis. It remains unclear whether these two polymorphisms are associated with risk factors for cardiovascular disease (CVD) in hemodialysis (HD) patients. Therefore, the PPARγ genotypes in 99 HD patients and 149 controls were determined, and clinical characteristics among the different genotypes were compared. We found that the frequency of the Pro12Ala and C161T polymorphisms in HD patients was similar to that in healthy controls, but C161T polymorphism and T allele frequencies in HD patients with CVD were lower than that in HD patients without CVD. Carotid artery plaque (CAP) and carotid intima-media thickness (CIMT) in HD patients with CT + TT or Pro12Ala genotypes were also less than that in patients with CCor Pro12Pro genotypes, respectively. HD patients with CT + TT genotype had lower serum C reactive protein (CRP) levels, as well as higher triceps skin fold (TSF) thickness, mid arm circumference (MAC) and mean mid arm circumference (MMAC) than HD patients with CC genotype (P Pro12Ala-CT161 subgroup was less than the Pro12Pro-CC161 and Pro12Pro-CT161 subgroup, and, CAP amounts of the Pro12Ala-CT161 subgroup was less than the Pro12Pro-CC161 subgroup. Our results indicate that the Pro12Ala and C161T polymorphisms were associated with some important risk factors for CVD in HD patients in the Han Chinese population.

  20. Functional interaction of hepatic nuclear factor-4 and peroxisome proliferator-activated receptor-gamma coactivator 1alpha in CYP7A1 regulation is inhibited by a key lipogenic activator, sterol regulatory element-binding protein-1c.

    Science.gov (United States)

    Ponugoti, Bhaskar; Fang, Sungsoon; Kemper, Jongsook Kim

    2007-11-01

    Insulin inhibits transcription of cholesterol 7alpha-hydroxylase (Cyp7a1), a key gene in bile acid synthesis, and the hepatic nuclear factor-4 (HNF-4) site in the promoter was identified as a negative insulin response sequence. Using a fasting/feeding protocol in mice and insulin treatment in HepG2 cells, we explored the inhibition mechanisms. Expression of sterol regulatory element-binding protein-1c (SREBP-1c), an insulin-induced lipogenic factor, inversely correlated with Cyp7a1 expression in mouse liver. Interaction of HNF-4 with its coactivator, peroxisome proliferator-activated receptor-gamma coactivator 1alpha (PGC-1alpha), was observed in livers of fasted mice and was reduced after feeding. Conversely, HNF-4 interaction with SREBP-1c was increased after feeding. In vitro studies suggested that SREBP-1c competed with PGC-1alpha for direct interaction with the AF2 domain of HNF-4. Reporter assays showed that SREBP-1c, but not of a SREBP-1c mutant lacking the HNF-4 interacting domain, inhibited HNF-4/PGC-1alpha transactivation of Cyp7a1. SREBP-1c also inhibited PGC-1alpha-coactivation of estrogen receptor, constitutive androstane receptor, pregnane X receptor, and farnesoid X receptor, implying inhibition of HNF-4 by SREBP-1c could extend to other nuclear receptors. In chromatin immunoprecipitation studies, HNF-4 binding to the promoter was not altered, but PGC-1alpha was dissociated, SREBP-1c and histone deacetylase-2 (HDAC2) were recruited, and acetylation of histone H3 was decreased upon feeding. Adenovirus-mediated expression of a SREBP-1c dominant-negative mutant, which blocks the interaction of SREBP-1c and HNF-4, partially but significantly reversed the inhibition of Cyp7a1 after feeding. Our data show that SREBP-1c functions as a non-DNA-binding inhibitor and mediates, in part, suppression of Cyp7a1 by blocking functional interaction of HNF-4 and PGC-1alpha. This mechanism may be relevant to known repression of many other HNF-4 target genes upon

  1. Tumor necrosis factor (TNF) receptor-associated factor 7 is required for TNFα-induced Jun NH2-terminal kinase activation and promotes cell death by regulating polyubiquitination and lysosomal degradation of c-FLIP protein.

    Science.gov (United States)

    Scudiero, Ivan; Zotti, Tiziana; Ferravante, Angela; Vessichelli, Mariangela; Reale, Carla; Masone, Maria C; Leonardi, Antonio; Vito, Pasquale; Stilo, Romania

    2012-02-17

    The pro-inflammatory cytokine tumor necrosis factor (TNF) α signals both cell survival and death. The biological outcome of TNFα treatment is determined by the balance between survival factors and Jun NH(2)-terminal kinase (JNK) signaling, which promotes cell death. Here, we show that TRAF7, the most recently identified member of the TNF receptor-associated factors (TRAFs) family of proteins, is essential for activation of JNK following TNFα stimulation. We also show that TRAF6 and TRAF7 promote unconventional polyubiquitination of the anti-apoptotic protein c-FLIP(L) and demonstrate that degradation of c-FLIP(L) also occurs through a lysosomal pathway. RNA interference-mediated depletion of TRAF7 correlates with increased c-FLIP(L) expression level, which, in turn, results in resistance to TNFα cytotoxicity. Collectively, our results indicate an important role for TRAF7 in the activation of JNK following TNFα stimulation and clearly point to an involvement of this protein in regulating the turnover of c-FLIP and, consequently, cell death.

  2. Tumor Necrosis Factor (TNF) Receptor-associated Factor 7 Is Required for TNFα-induced Jun NH2-terminal Kinase Activation and Promotes Cell Death by Regulating Polyubiquitination and Lysosomal Degradation of c-FLIP Protein*

    Science.gov (United States)

    Scudiero, Ivan; Zotti, Tiziana; Ferravante, Angela; Vessichelli, Mariangela; Reale, Carla; Masone, Maria C.; Leonardi, Antonio; Vito, Pasquale; Stilo, Romania

    2012-01-01

    The pro-inflammatory cytokine tumor necrosis factor (TNF) α signals both cell survival and death. The biological outcome of TNFα treatment is determined by the balance between survival factors and Jun NH2-terminal kinase (JNK) signaling, which promotes cell death. Here, we show that TRAF7, the most recently identified member of the TNF receptor-associated factors (TRAFs) family of proteins, is essential for activation of JNK following TNFα stimulation. We also show that TRAF6 and TRAF7 promote unconventional polyubiquitination of the anti-apoptotic protein c-FLIPL and demonstrate that degradation of c-FLIPL also occurs through a lysosomal pathway. RNA interference-mediated depletion of TRAF7 correlates with increased c-FLIPL expression level, which, in turn, results in resistance to TNFα cytotoxicity. Collectively, our results indicate an important role for TRAF7 in the activation of JNK following TNFα stimulation and clearly point to an involvement of this protein in regulating the turnover of c-FLIP and, consequently, cell death. PMID:22219201

  3. CERAPP: Collaborative Estrogen Receptor Activity Prediction Project

    Data.gov (United States)

    U.S. Environmental Protection Agency — Data from a large-scale modeling project called CERAPP (Collaborative Estrogen Receptor Activity Prediction Project) demonstrating using predictive computational...

  4. Peroxisome proliferator-activated receptors for hypertension

    Institute of Scientific and Technical Information of China (English)

    Daisuke; Usuda; Tsugiyasu; Kanda

    2014-01-01

    Peroxisome proliferator-activated receptors(PPARs) are ligand-activated transcription factors belonging to the nuclear receptor superfamily, which is composed of four members encoded by distinct genes(α, β, γ, and δ). The genes undergo transactivation or transrepression under specific mechanisms that lead to the induction or repression of target gene expression. As is the case with other nuclear receptors, all four PPAR isoforms contain five or six structural regions in four functional domains; namely, A/B, C, D, and E/F. PPARs have many functions, particularly functions involving control of vascular tone, inflammation, and energy homeostasis, and are, therefore, important targets for hypertension, obesity, obesity-induced inflammation, and metabolic syndrome in general. Hence, PPARs also represent drug targets, and PPARα and PPARγ agonists are used clinically in the treatment of dyslipidemia and type 2 diabetes mellitus, respectively. Because of their pleiotropic effects, they have been identified as active in a number of diseases and are targets for the development of a broad range of therapies for a variety of diseases. It is likely that the range of PPARγ agonist therapeutic actions will result in novel approaches to lifestyle and other diseases. The combination of PPARs with reagents or with other cardiovascular drugs, such as diuretics and angiotensin Ⅱ receptor blockers, should be studied.This article provides a review of PPAR isoform characteristics, a discussion of progress in our understanding of the biological actions of PPARs, and a summary of PPAR agonist development for patient management. We also include a summary of the experimental and clinical evidence obtained from animal studies and clinical trials conducted to evaluate the usefulness and effectiveness of PPAR agonists in the treatment of lifestyle-related diseases.

  5. Peroxisome proliferator-activated receptors for hypertension

    Science.gov (United States)

    Usuda, Daisuke; Kanda, Tsugiyasu

    2014-01-01

    Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors belonging to the nuclear receptor superfamily, which is composed of four members encoded by distinct genes (α, β, γ, and δ). The genes undergo transactivation or transrepression under specific mechanisms that lead to the induction or repression of target gene expression. As is the case with other nuclear receptors, all four PPAR isoforms contain five or six structural regions in four functional domains; namely, A/B, C, D, and E/F. PPARs have many functions, particularly functions involving control of vascular tone, inflammation, and energy homeostasis, and are, therefore, important targets for hypertension, obesity, obesity-induced inflammation, and metabolic syndrome in general. Hence, PPARs also represent drug targets, and PPARα and PPARγ agonists are used clinically in the treatment of dyslipidemia and type 2 diabetes mellitus, respectively. Because of their pleiotropic effects, they have been identified as active in a number of diseases and are targets for the development of a broad range of therapies for a variety of diseases. It is likely that the range of PPARγ agonist therapeutic actions will result in novel approaches to lifestyle and other diseases. The combination of PPARs with reagents or with other cardiovascular drugs, such as diuretics and angiotensin II receptor blockers, should be studied. This article provides a review of PPAR isoform characteristics, a discussion of progress in our understanding of the biological actions of PPARs, and a summary of PPAR agonist development for patient management. We also include a summary of the experimental and clinical evidence obtained from animal studies and clinical trials conducted to evaluate the usefulness and effectiveness of PPAR agonists in the treatment of lifestyle-related diseases. PMID:25228953

  6. Inhibitory Activities of Epidermal Growth Factor Receptor Tyrosine Kinase-Targeted Dihydroxyisoflavone and Trihydroxydeoxybenzoin Derivatives on Sarcocystis neurona, Neospora caninum, and Cryptosporidium parvum Development

    Science.gov (United States)

    Gargala, G.; Baishanbo, A.; Favennec, L.; François, A.; Ballet, J. J.; Rossignol, J.-F.

    2005-01-01

    Several gene sequences of parasitic protozoa belonging to protein kinase gene families and epidermal growth factor (EGF)-like peptides, which act via binding to receptor tyrosine kinases of the EGF receptor (EGFR) family, appear to mediate host-protozoan interactions. As a clue to EGFR protein tyrosine kinase (PTK) mediation and a novel approach for identifying anticoccidial agents, activities against Sarcocystis neurona, Neospora caninum, and Cryptosporidium parvum grown in BM and HCT-8 cell cultures of 52 EGFR PTK inhibitor isoflavone analogs (dihydroxyisoflavone and trihydroxydeoxybenzoine derivatives) were investigated. Their cytotoxicities against host cells were either absent, mild, or moderate by a nitroblue tetrazolium test. At concentrations ranging from 5 to 10 μg/ml, 20 and 5 analogs, including RM-6427 and RM-6428, exhibited an in vitro inhibitory effect of ≥95% against at least one parasite or against all three, respectively. In immunosuppressed Cryptosporidium parvum-infected Mongolian gerbils orally treated with either 200 or 400 mg of agent RM-6427/kg of body weight/day for 8 days, fecal microscopic oocyst shedding was abolished in 6/10 animals (P of 0.05, respectively). After RM-6427 therapy (200 mg/kg/day for 8 days), the reduction in the ratio of animals with intracellular parasites was nearly significant in ileum (P = 0.067) and more marked in the biliary tract (P < 0.0013) than after nitazoxanide or paromomycin treatment (0.05 < P < 0.004). RM-6428 treatment at a regimen of 400 mg/kg/day for 12 days inhibited oocyst shedding, measured using flow cytometry from day 4 (P < 0.05) to day 12 (P < 0.02) of therapy, when 2/15 animals had no shedding (P < 0.0001) and 11/15 were free of gut and/or biliary tract parasites (P < 0.01). No mucosal alteration was microscopically observed for treated or untreated infected gerbils. To our knowledge, this report is the first to suggest that the isoflavone class of agents has the potential for

  7. Amelioration of Diabetic Mouse Nephropathy by Catalpol Correlates with Down-Regulation of Grb10 Expression and Activation of Insulin-Like Growth Factor 1 / Insulin-Like Growth Factor 1 Receptor Signaling.

    Directory of Open Access Journals (Sweden)

    Shasha Yang

    Full Text Available Growth factor receptor-bound protein 10 (Grb10 is an adaptor protein that can negatively regulate the insulin-like growth factor 1 receptor (IGF-1R. The IGF1-1R pathway is critical for cell growth and apoptosis and has been implicated in kidney diseases; however, it is still unknown whether Grb10 expression is up-regulated and plays a role in diabetic nephropathy. Catalpol, a major active ingredient of a traditional Chinese medicine, Rehmannia, has been reported to possess anti-inflammatory and anti-aging activities and then used to treat diabetes. Herein, we aimed to assess the therapeutic effect of catalpol on a mouse model diabetic nephropathy and the potential role of Grb10 in the pathogenesis of this diabetes-associated complication. Our results showed that catalpol treatment improved diabetes-associated impaired renal functions and ameliorated pathological changes in kidneys of diabetic mice. We also found that Grb10 expression was significantly elevated in kidneys of diabetic mice as compared with that in non-diabetic mice, while treatment with catalpol significantly abrogated the elevated Grb10 expression in diabetic kidneys. On the contrary, IGF-1 mRNA levels and IGF-1R phosphorylation were significantly higher in kidneys of catalpol-treated diabetic mice than those in non-treated diabetic mice. Our results suggest that elevated Grb10 expression may play an important role in the pathogenesis of diabetic nephropathy through suppressing IGF-1/IGF-1R signaling pathway, which might be a potential molecular target of catalpol for the treatment of this diabetic complication.

  8. Amelioration of Diabetic Mouse Nephropathy by Catalpol Correlates with Down-Regulation of Grb10 Expression and Activation of Insulin-Like Growth Factor 1 / Insulin-Like Growth Factor 1 Receptor Signaling

    Science.gov (United States)

    Yang, Shasha; Deng, Huacong; Zhang, Qunzhou; Xie, Jing; Zeng, Hui; Jin, Xiaolong; Ling, Zixi; Shan, Qiaoyun; Liu, Momo; Ma, Yuefei; Tang, Juan; Wei, Qianping

    2016-01-01

    Growth factor receptor-bound protein 10 (Grb10) is an adaptor protein that can negatively regulate the insulin-like growth factor 1 receptor (IGF-1R). The IGF1-1R pathway is critical for cell growth and apoptosis and has been implicated in kidney diseases; however, it is still unknown whether Grb10 expression is up-regulated and plays a role in diabetic nephropathy. Catalpol, a major active ingredient of a traditional Chinese medicine, Rehmannia, has been reported to possess anti-inflammatory and anti-aging activities and then used to treat diabetes. Herein, we aimed to assess the therapeutic effect of catalpol on a mouse model diabetic nephropathy and the potential role of Grb10 in the pathogenesis of this diabetes-associated complication. Our results showed that catalpol treatment improved diabetes-associated impaired renal functions and ameliorated pathological changes in kidneys of diabetic mice. We also found that Grb10 expression was significantly elevated in kidneys of diabetic mice as compared with that in non-diabetic mice, while treatment with catalpol significantly abrogated the elevated Grb10 expression in diabetic kidneys. On the contrary, IGF-1 mRNA levels and IGF-1R phosphorylation were significantly higher in kidneys of catalpol-treated diabetic mice than those in non-treated diabetic mice. Our results suggest that elevated Grb10 expression may play an important role in the pathogenesis of diabetic nephropathy through suppressing IGF-1/IGF-1R signaling pathway, which might be a potential molecular target of catalpol for the treatment of this diabetic complication. PMID:26986757

  9. Amelioration of Diabetic Mouse Nephropathy by Catalpol Correlates with Down-Regulation of Grb10 Expression and Activation of Insulin-Like Growth Factor 1 / Insulin-Like Growth Factor 1 Receptor Signaling.

    Science.gov (United States)

    Yang, Shasha; Deng, Huacong; Zhang, Qunzhou; Xie, Jing; Zeng, Hui; Jin, Xiaolong; Ling, Zixi; Shan, Qiaoyun; Liu, Momo; Ma, Yuefei; Tang, Juan; Wei, Qianping

    2016-01-01

    Growth factor receptor-bound protein 10 (Grb10) is an adaptor protein that can negatively regulate the insulin-like growth factor 1 receptor (IGF-1R). The IGF1-1R pathway is critical for cell growth and apoptosis and has been implicated in kidney diseases; however, it is still unknown whether Grb10 expression is up-regulated and plays a role in diabetic nephropathy. Catalpol, a major active ingredient of a traditional Chinese medicine, Rehmannia, has been reported to possess anti-inflammatory and anti-aging activities and then used to treat diabetes. Herein, we aimed to assess the therapeutic effect of catalpol on a mouse model diabetic nephropathy and the potential role of Grb10 in the pathogenesis of this diabetes-associated complication. Our results showed that catalpol treatment improved diabetes-associated impaired renal functions and ameliorated pathological changes in kidneys of diabetic mice. We also found that Grb10 expression was significantly elevated in kidneys of diabetic mice as compared with that in non-diabetic mice, while treatment with catalpol significantly abrogated the elevated Grb10 expression in diabetic kidneys. On the contrary, IGF-1 mRNA levels and IGF-1R phosphorylation were significantly higher in kidneys of catalpol-treated diabetic mice than those in non-treated diabetic mice. Our results suggest that elevated Grb10 expression may play an important role in the pathogenesis of diabetic nephropathy through suppressing IGF-1/IGF-1R signaling pathway, which might be a potential molecular target of catalpol for the treatment of this diabetic complication.

  10. Protective effect of HSV-mediated gene transfer of nerve growth factor in pyridoxine neuropathy demonstrates functional activity of trkA receptors in large sensory neurons of adult animals.

    Science.gov (United States)

    Chattopadhyay, Munmun; Goss, James; Lacomis, David; Goins, William C; Glorioso, Joseph C; Mata, Marina; Fink, David J

    2003-02-01

    The distinct distribution of trkA receptors on small neurons and trkC receptors on large neurons in the dorsal root ganglion correlates with the dependence of these two classes of neurons on nerve growth factor and neurotrophin-3, respectively, for survival during development. In adult animals, the distribution of high affinity neurotrophin (trk) is complex and overlapping; neurotrophins are not required for cell survival, but may influence cell phenotype and the response to injury. In order to test the functional activity of trkA receptors in the sensory ganglia of adult animals in vivo, we examined the ability of a nerve growth factor-expressing recombinant replication-defective herpes simplex virus-based vector to prevent the selective degeneration of large sensory fibres caused by intoxication with pyridoxine. Transduction of dorsal root ganglion neurons in vivo by subcutaneous inoculation of the nerve growth factor-expressing vector prevented the development of pyridoxine-induced neuropathy measured by electrophysiological, morphological and behavioural measures. These results demonstrate a functional activity of trkA receptors expressed on large neurons in the dorsal root ganglion in mature animals; this observation has important implications for the choice of neurotrophic factors for treatment of peripheral nerve disease.

  11. Epidermal Growth Factor Receptor in Pancreatic Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira-Cunha, Melissa, E-mail: melissacunha@doctors.org.uk [Hepatobiliary Surgery Unit, Manchester Royal Infirmary, Oxford Road, Manchester, M13 9WL (United Kingdom); Newman, William G. [Genetic Medicine, MAHSC, University of Manchester, St Mary' s Hospital, Oxford Road, Manchester, M13 9WL (United Kingdom); Siriwardena, Ajith K. [Hepatobiliary Surgery Unit, Manchester Royal Infirmary, Oxford Road, Manchester, M13 9WL (United Kingdom)

    2011-03-24

    Pancreatic cancer is the fourth leading cause of cancer related death. The difficulty in detecting pancreatic cancer at an early stage, aggressiveness and the lack of effective therapy all contribute to the high mortality. Epidermal growth factor receptor (EGFR) is a transmembrane glycoprotein, which is expressed in normal human tissues. It is a member of the tyrosine kinase family of growth factors receptors and is encoded by proto-oncogenes. Several studies have demonstrated that EGFR is over-expressed in pancreatic cancer. Over-expression correlates with more advanced disease, poor survival and the presence of metastases. Therefore, inhibition of the EGFR signaling pathway is an attractive therapeutic target. Although several combinations of EGFR inhibitors with chemotherapy demonstrate inhibition of tumor-induced angiogenesis, tumor cell apoptosis and regression in xenograft models, these benefits remain to be confirmed. Multimodality treatment incorporating EGFR-inhibition is emerging as a novel strategy in the treatment of pancreatic cancer.

  12. Effects of the anti-receptor activator of nuclear factor kappa B ligand denusomab on beta thalassemia major-induced osteoporosis

    Directory of Open Access Journals (Sweden)

    Mohamed A Yassin

    2014-01-01

    Full Text Available Introduction: Osteoporosis represents the second most common cause of endocrinopathy in patients with beta thalassemia major (BTM. Some drugs proved effective to reduce vertebral and non-vertebral fracture risk. Denosumab is a fully human monoclonal antibody to the receptor activator of nuclear factor kappa B ligand (RANKL, a member of the tumor necrosis factor receptor superfamily essential for osteoclastogenesis. The efficacy and safety of denosumab in BTM-induced osteoporosis has not been tested. Objective: To evaluate the efficacy and safety of anti-RANKL on the biochemical and radiological parameters of bone mineralization in patients with BTM-induced osteoporosis. Design: The study population was selected using the random sampling method from the patient′s database of our thalassemia clinic. Transfusion-dependent BTM patients above 18 years with no history of treatment with bisphosphonates were randomly selected. Bone mineral density (BMD of the lumbar spine (LS and right femoral neck (FN were measured by dual energy X-ray absorption (DEXA scan using a calibrated method. Independent factors likely to be associated with low bone mass were determined and included in the analysis to ascertain possible associations. Patients and Methods: We studied 30 patients with BTM-induced osteoporosis as per World Health Organization criteria (T Score of less than − 1.0 being defined as osteopenic and a T Score of less than − 2.5 being referred as osteoporotic. 19 males and 11 females aged between 18 and 32 years, with full pubertal development (Tanner′s stage 5 at the time of the study. Their mean serum ferritin concentration was 3557 ng ± 1488 ng/ml. Every patient underwent DEXA scan as a baseline and after 12 months of denosumab therapy. Biochemical evaluation including serum concentrations of creatinine, Na, K, calcium, phosphorus, parathormone, bone specific alkaline phosphatase and type 1 collagen carboxy telopetide (ICCT using enzyme

  13. Serum levels of osteoprotegerin and receptor activator of nuclear factor -κB ligand in children with early juvenile idiopathic arthritis: a 2-year prospective controlled study

    Directory of Open Access Journals (Sweden)

    Godang Kristin

    2010-12-01

    Full Text Available Abstract Background The clinical relevance of observations of serum levels of osteoprotegerin (OPG and receptor activator of nuclear factor -κB ligand (RANKL in juvenile idiopathic arthritis (JIA is not clear. To elucidate the potential role of OPG and RANKL in JIA we determined serum levels of OPG and RANKL in patients with early JIA compared to healthy children, and prospectively explored changes in relation to radiographic score, bone and lean mass, severity of the disease, and treatment. Methods Ninety children with early oligoarticular or polyarticular JIA (ages 6-18 years; mean disease duration 19.4 months and 90 healthy children individually matched for age, sex, race, and county of residence, were examined at baseline and 2-year follow-up. OPG and RANKL were quantified by enzyme-immunoassay. Data were analyzed with the use of t-tests, ANOVA, and multiple regression analyses. Results Serum OPG was significantly lower in patients than controls at baseline, and there was a trend towards higher RANKL and a lower OPG/RANKL ratio. Patients with polyarthritis had significantly higher increments in RANKL from baseline to follow-up, compared to patients with oligoarthritis. RANKL was a significant negative predictor for increments in total body lean mass. Patients who were receiving corticosteroids (CS or disease-modifying antirheumatic drugs (DMARDs at follow-up had higher OPG/RANKL ratio compared with patients who did not receive this medication. Conclusions The data supports that levels of OPG are lower in patients with JIA compared to healthy children, and higher levels of RANKL is associated with more serious disease. RANKL was a significant negative predictor of lean mass in patients with JIA. The OPG/RANKL ratio was higher in patients on DMARDs or CS treatment.

  14. Cediranib, an Oral Inhibitor of Vascular Endothelial Growth Factor Receptor Kinases, Is an Active Drug in Recurrent Epithelial Ovarian, Fallopian Tube, and Peritoneal Cancer

    Science.gov (United States)

    Matulonis, Ursula A.; Berlin, Suzanne; Ivy, Percy; Tyburski, Karin; Krasner, Carolyn; Zarwan, Corrine; Berkenblit, Anna; Campos, Susana; Horowitz, Neil; Cannistra, Stephen A.; Lee, Hang; Lee, Julie; Roche, Maria; Hill, Margaret; Whalen, Christin; Sullivan, Laura; Tran, Chau; Humphreys, Benjamin D.; Penson, Richard T.

    2009-01-01

    Purpose Angiogenesis is important for epithelial ovarian cancer (EOC) growth, and blocking angiogenesis can lead to EOC regression. Cediranib is an oral tyrosine kinase inhibitor (TKI) of vascular endothelial growth factor receptor (VEGFR) -1, VEGFR-2, VEGFR-3, and c-kit. Patients and Methods We conducted a phase II study of cediranib for recurrent EOC or peritoneal or fallopian tube cancer; cediranib was administered as a daily oral dose, and the original dose was 45 mg daily. Because of toxicities observed in the first 11 patients, the dose was lowered to 30 mg. Eligibility included ≤ two lines of chemotherapy for recurrence. End points included response rate (via Response Evaluation Criteria in Solid Tumors [RECIST] or modified Gynecological Cancer Intergroup CA-125), toxicity, progression-free survival (PFS), and overall survival (OS). Results Forty-seven patients were enrolled; 46 were treated. Clinical benefit rate (defined as complete response [CR] or partial response [PR], stable disease [SD] > 16 weeks, or CA-125 nonprogression > 16 weeks), which was the primary end point, was 30%; eight patients (17%; 95% CI, 7.6% to 30.8%) had a PR, six patients (13%; 95% CI, 4.8% to 25.7%) had SD, and there were no CRs. Eleven patients (23%) were removed from study because of toxicities before two cycles. Grade 3 toxicities (> 20% of patients) included hypertension (46%), fatigue (24%), and diarrhea (13%). Grade 2 hypothyroidism occurred in 43% of patients. Grade 4 toxicities included CNS hemorrhage (n = 1), hypertriglyceridemia/hypercholesterolemia/elevated lipase (n = 1), and dehydration/elevated creatinine (n = 1). No bowel perforations or fistulas occurred. Median PFS was 5.2 months, and median OS has not been reached; median follow-up time is 10.7 months. Conclusion Cediranib has activity in recurrent EOC, tubal cancer, and peritoneal cancer with predictable toxicities observed with other TKIs. PMID:19826113

  15. Tenascin-x facilitates myocardial fibrosis and cardiac remodeling through transforming growth factor-β1 and peroxisome proliferator-activated receptor γ in alcoholic cardiomyopathy

    Institute of Scientific and Technical Information of China (English)

    JING Ling; ZHOU Li-jun; ZHANG Feng-min; LI Wei-min; SANG Ying

    2011-01-01

    Background Tenascin-x, an extracellular matrix glycoprotein exclusively expressed in fibroblasts, can mediate fibrosis in the presence of collagen. Therefore, we have investigated its potential role in facilitating myocardial fibrosis and cardiac remodeling via the transforming growth factor-lβ1 and peroxisome proliferator-activated receptor γ(TGFβ1-PPARγ) pathway in alcoholic cardiomyopathy (ACM).Methods Experimental animals were divided into control (group A) and tenascin-x knock-out groups (group B)receiving alcohol. Six months post treatment, cardiac ejections fraction (EF), fractional shortening (FS), left ventricle end-diastole internal diameter (LVEDd) and collagen column fraction (CVF) were observed. Tenascin-x, smad-3, TGFβ1,smad-7 and PPARγ protein expression levels were detected by Western blotting.Results Six months post treatment, EF and FS values were higher in group B than in group A (P <0.05 and P <0.01,respectively), while LVEDd and CVF were lower in group B (P <0.05 and P <0.01, respectively). Tenascin-x, smad-3 and TGFβ1 protein expression levels were higher in group A, while smad-7 and PPARY levels were lower than in group B (P<0.01), as measured by immunohistochemistry and Western blotting. Tenascin-x protein expression was negatively correlated with EF, FS, smad-7 and PPARγ, and positively correlated with LVEDd, CVF, smad-3, and TGFβ1 (P <0.001).Conclusion Tenascin-x is an initiator of myocardial fibrosis and ACM development via upregulation of TGFβ1 and downregulation of PPARγ.

  16. Effects of the platelet-activating factor receptor antagonist BN 52021 on hematologic variables and blood loss during and after cardiopulmonary bypass.

    Science.gov (United States)

    Nathan, N; Mercury, P; Denizot, Y; Cornu, E; Laskar, M; Arnoux, B; Feiss, P

    1994-08-01

    Cardiopulmonary bypass (CPB)-induced thrombocytopenia and leukopenia is augmented after heparin reversal of protamine. Platelet-activating factor (PAF) might be implicated in these disorders. To evaluate the effects of PAF on the hematologic disorders and blood loss during and after CPB, patients were pretreated with BN 52021, a PAF receptor antagonist, or a placebo. BN 52021 (120 mg) (n = 13) or placebo (n = 15) were infused intravenously before vascular cannulation and before cross-clamp release. Platelet and leukocyte counts were assessed in venous blood before and after the first dose of BN 52021 or placebo, 2 min after the beginning of CPB (at the entry of the oxygenator), at the end of CPB, 1, 15, and 30 min after protamine infusion, and 6 and 24 h after CPB. The decrease in platelet and leukocyte counts were the same between groups during and after CPB and after protamine infusion. Bleeding times were not modified by the pretreatment of patients with BN 52021. During surgery, blood loss reached 1660 +/- 297 mL in the BN 52021 group and 1599 +/- 283 mL in the placebo group (P > 0.05). Forty-eight hours postoperatively, the chest tube outputs were not different between groups (1460 +/- 418 mL vs 1640 +/- 362 mL in the BN 52021 and placebo groups, respectively). This study shows that BN 52021 infusion did not change the hematologic variables studied. Moreover, a PAF antagonist pretreatment did not protect the patients against CPB- or protamine-induced hematologic changes.

  17. Receptor Activator of Nuclear Factor Kappa-B Ligand-Induced Local Osteoporotic Canine Mandible Model for the Evaluation of Peri-Implant Bone Regeneration.

    Science.gov (United States)

    Chang, Ah Ryum; Cho, Tae Hyung; Hwang, Soon Jung

    2017-08-24

    The canine mandible is useful for studying bone regeneration after dental implant placement. However, it is limited in investigations of peri-implant osteogenesis under osteoporotic conditions due to the insignificant osteoporotic effect of ovariectomy. This study aimed at establishing a local osteoporotic model without ovariectomy by using receptor activator of nuclear factor kappa-B ligand (RANKL) in a canine mandible model. This new model was used to evaluate the effects of injectable β-tricalcium phosphate (TCP) microsphere bone grafts on peri-implant bone regeneration under osteoporotic conditions with combinations of recombinant human bone morphogenetic protein-2 (rhBMP-2). A local osteoporotic canine mandible model was designed by creating a hole in the mandibular alveolar bone, then implanting a collagen sponge soaked with 20, 40, or 60 μg RANKL into the hole, and leaving it for 2 weeks. After the establishment of the dose for maximum osteoporotic bone loss at 40 μg of RANKL, the main surgery was performed. RANKL-soaked collagen sponges were removed, and dental implants were placed with bone grafts in five groups: implant only, TCP, and TCP + rhBMP-2 at 5, 15, and 45 μg. Peri-implant bone generation was determined by radiologic and histologic evaluations at 6 weeks after dental implant placement. On performing micro-computed tomography analysis, the group with TCP + 5 μg rhBMP-2 showed the highest bone volume than the other groups and a 22% increase (p model was useful for peri-implant bone regeneration under osteoporotic conditions such as those found in geriatric patients. The injectable β-TCP bone grafts used in this study were effective in peri-implant bone generation under osteoporotic conditions, and their efficiency was enhanced at 5 μg BMP-2 compared with higher concentrations of BMP-2.

  18. Molecular characterisation of tumour necrosis factor alpha and its potential connection with lipoprotein lipase and peroxisome proliferator-activated receptors in blunt snout bream (Megalobrama amblycephala).

    Science.gov (United States)

    Zhou, Man; Mi, Hai-Feng; Liu, Wen-Bin; Wu, Ye-Yang; Wang, Kai-Zhou; Jiang, Guang-Zhen

    2017-08-01

    Tumour necrosis factor alpha (TNF-α) is one kind of cytokines which is related to inflammation and lipid metabolism. TNF-α cDNA was cloned from the liver of blunt snout bream (Megalobrama amblycephala) through real-time polymerase chain reaction (PCR) and rapid amplification of cDNA ends (RACE) methods. The full-length cDNA of TNF-α covered 1467 bp, with an open reading frame (ORF) of 723 bp, which encodes 240 amino acids. It possessed the TNF family signature IIIPDDGIYFVYSQ. After the lipopolysaccharide (LPS) challenge test, a graded tissue-specific expression pattern of TNF-α was observed and there was high expression abundance in the kidney, brain and liver. After 8 weeks feeding trial, liver samples, two groups fed with 6% and 11% lipid levels, were collected. The results showed that, for fish fed with high-fat diet, the triglyceride of serum and lipid content of liver were elevated. Furthermore, TNF-α and peroxisome proliferator-activated receptors (PPARα, β) mRNA expression of fish fed 11% lipid diet were significantly up-regulated (p PPARγ mRNA expression of fish fed 11% lipid lever diet were significantly decreased compared to those of fish fed 6% (p < 0.05). The differences between the various expression of related genes in the high and low fat groups demonstrated that TNF-α played a key role in lipid metabolism, which may have an influence on fat metabolism through reducing fat synthesis and strengthening the β-oxidation of fatty acid. These discrepancies warrant further research.

  19. Urokinase-type Plasminogen Activator-like Proteases in Teleosts Lack Genuine Receptor-binding Epidermal Growth Factor-like Domains

    DEFF Research Database (Denmark)

    Bager, René; Kristensen, Thomas Kielsgaard; Jensen, Jan Kristian

    2012-01-01

    to be central to the functions of uPA, as uPA-catalyzed plasminogen activation activity appeared to be confined to cell surfaces through the binding of uPA to uPAR. However, a functional uPAR has so far only been identified in mammals. We have now cloned, recombinantly produced, and characterized two zebrafish...... be found in fish white blood cells or fish cell lines. We therefore propose that the current consensus of uPA-catalyzed plasminogen activation taking place on cell surfaces, derived from observations with mammals, is too narrow. Fish uPAs appear incapable of receptor binding in the manner known from...... mammals and uPA-catalyzed plasminogen activation in fish may occur mainly in solution. Studies with nonmammalian vertebrate species are needed to obtain a comprehensive understanding of the mechanism of plasminogen activation....

  20. Targeting the epidermal growth factor receptor in solid tumor malignancies

    DEFF Research Database (Denmark)

    Nedergaard, Mette K; Hedegaard, Chris J; Poulsen, Hans S

    2012-01-01

    The epidermal growth factor receptor (EGFR) is over-expressed, as well as mutated, in many types of cancers. In particular, the EGFR variant type III mutant (EGFRvIII) has attracted much attention as it is frequently and exclusively found on many tumor cells, and hence both EGFR and EGFRvIII have...... been proposed as valid targets in many cancer therapy settings. Different strategies have been developed in order to either inhibit EGFR/EGFRvIII activity or to ablate EGFR/EGFRvIII-positive tumor cells. Drugs that inhibit these receptors include monoclonal antibodies (mAbs) that bind...

  1. Analysis of receptor signaling pathways by mass spectrometry: identification of vav-2 as a substrate of the epidermal and platelet-derived growth factor receptors

    DEFF Research Database (Denmark)

    Pandey, A; Podtelejnikov, A V; Blagoev, B;

    2000-01-01

    Oligomerization of receptor protein tyrosine kinases such as the epidermal growth factor receptor (EGFR) by their cognate ligands leads to activation of the receptor. Transphosphorylation of the receptor subunits is followed by the recruitment of signaling molecules containing src homology 2 (SH2...

  2. Peroxisome proliferator-activated receptors and biotransformation responses in relation to condition factor and contaminant burden in tilapia species from Ogun River, Nigeria.

    Science.gov (United States)

    Adeogun, Aina O; Ibor, Oju R; Regoli, Francesco; Arukwe, Augustine

    2016-01-01

    A major development in fishery science has been the Fulton's condition factor (CF) as a reliable physiological index of fish growth and health status (Fulton 1902). As a general rule, CF-value greater than 1 (>1) should be regarded as an indicator for good growth and health. Therefore, exposure of fish to contaminants in the environment will be expected to produce a reduction in scope for growth, since energy for growth will be allocated to overcome stressful conditions. In the present study, we hypothesized that tilapia species from Ogun River (Nigeria) are experiencing severe contaminant-induced obesogen effects leading to high CF (≥ 2) in fish with pathological alterations. The environmental obesogen hypothesis has related the interaction between environmental pollutants and PPAR isoform activation In this respect, peroxisome proliferator-activated receptors (PPARs) and biotransformation responses in relation to contaminant burden were investigated in a total of 1074 specimens of Tilapias species (Tilapia guineensis, Sarotherodon galileaus and Oreochromis niloticus) collected from three areas with different degrees of anthropogenic contamination and from a putative control site along the Ogun River. Liver mRNA expression of cytochrome cyp1 isoforms (cyp1a, 1b and 1c) and PPAR isoforms (ppar-α, β and γ) were analyzed using validated real-time PCR. Fish were also analyzed for CF and muscle contaminant burden (aliphatic and polycyclic aromatic hydrocarbons, organochlorine pesticides, and polychlorinated biphenyls). A significant increase in mRNA expression of cyp1- and ppar isoforms was observed in fish from polluted areas, and these results paralleled data on PCBs and PAHs tissue concentrations. Further, cyp1 isoforms showed clear sex-related differences, with higher mRNA expression in male fish than in females. Principal component analysis revealed a relationship between cyp1 isoforms, ppar-α, β, PCBs and PAHs and these interactions may suggest a crosstalk

  3. Multikinase activity of fibroblast growth factor receptor (FGFR) inhibitors SU5402, PD173074, AZD1480, AZD4547 and BGJ398 compromises the use of small chemicals targeting FGFR catalytic activity for therapy of short-stature syndromes.

    Science.gov (United States)

    Gudernova, Iva; Vesela, Iva; Balek, Lukas; Buchtova, Marcela; Dosedelova, Hana; Kunova, Michaela; Pivnicka, Jakub; Jelinkova, Iva; Roubalova, Lucie; Kozubik, Alois; Krejci, Pavel

    2016-01-01

    Activating mutations in the fibroblast growth factor receptor 3 (FGFR3) cause the most common genetic form of human dwarfism, achondroplasia (ACH). Small chemical inhibitors of FGFR tyrosine kinase activity are considered to be viable option for treating ACH, but little experimental evidence supports this claim. We evaluated five FGFR tyrosine kinase inhibitors (TKIs) (SU5402, PD173074, AZD1480, AZD4547 and BGJ398) for their activity against FGFR signaling in chondrocytes. All five TKIs strongly inhibited FGFR activation in cultured chondrocytes and limb rudiment cultures, completely relieving FGFR-mediated inhibition of chondrocyte proliferation and maturation. In contrast, TKI treatment of newborn mice did not improve skeletal growth and had lethal toxic effects on the liver, lungs and kidneys. In cell-free kinase assays as well as in vitro and in vivo cell assays, none of the tested TKIs demonstrated selectivity for FGFR3 over three other FGFR tyrosine kinases. In addition, the TKIs exhibited significant off-target activity when screened against a panel of 14 unrelated tyrosine kinases. This was most extensive in SU5402 and AZD1480, which inhibited DDR2, IGF1R, FLT3, TRKA, FLT4, ABL and JAK3 with efficiencies similar to or greater than those for FGFR. Low target specificity and toxicity of FGFR TKIs thus compromise their use for treatment of ACH. Conceptually, different avenues of therapeutic FGFR3 targeting should be investigated.

  4. Deguelin‐induced blockade of PI3K/protein kinase B/MAP kinase signaling in zebrafish and breast cancer cell lines is mediated by down‐regulation of fibroblast growth factor receptor 4 activity

    OpenAIRE

    Wu, Wei; Hai, Yang; Chen, Lu; Liu, Rui‐Jin; Han, Yu‐Xiang; Li, Wen‐Hao; Li, Song; Lin, Shuo; Wu, Xin‐Rong

    2016-01-01

    Abstract Deguelin, a natural component derived from leguminous plants, has been used as pesticide in some regions. Accumulating evidence show that deguelin has promising chemopreventive and therapeutic activities against cancer cells. This study shows that low concentrations of deguelin can lead to significant delay in zebrafish embryonic development through growth inhibition and induction of apoptosis. Furthermore, we identified fibroblast growth factor receptor 4 (FGFR4) as the putative tar...

  5. Angiotensin-(1-7 Prevents Skeletal Muscle Atrophy Induced by Transforming Growth Factor Type Beta (TGF-β via Mas Receptor Activation

    Directory of Open Access Journals (Sweden)

    Johanna Ábrigo

    2016-11-01

    Full Text Available Background: Transforming growth factor type beta 1 (TGF-β1 produces skeletal muscle atrophy. Angiotensin-(1-7 (Ang-(1-7, through the Mas receptor, prevents the skeletal muscle atrophy induced by sepsis, immobilization, or angiotensin II (Ang-II. However, the effect of Ang-(1-7 on muscle wasting induced by TGF-β1 is unknown. Aim: To evaluate whether Ang-(1-7/Mas receptor axis could prevent the skeletal muscle atrophy induced by TGF-β1. Methods: This study assessed the atrophic effect of TGF-β1 in C2C12 myotubes and mice in absence or presence of Ang-(1-7, and the receptor participation using A779, an antagonist of the Mas receptor. The levels of myosin heavy chain (MHC, polyubiquitination, and MuRF-1 were detected by western blot. Myotube diameter was also evaluated. In vivo analysis included the muscle strength, fibre diameter, MHC and MuRF-1 levels by western blot, and ROS levels by DCF probe detection. Results: The results showed that Ang-(1-7 prevented the increase in MuRF-1 and polyubiquitined protein levels, the decrease of MHC levels, the myotubes/fibre diameter diminution, and the increased production of reactive oxygen species (ROS induced by TGF-β1. Utilizing A779 inhibited the anti-atrophic effect of Ang-(1-7. Conclusion: The preventive effect of Ang-(1-7 on skeletal muscle atrophy induced by TGF-β1 is produced through inhibition of ROS production and proteasomal degradation of MHC.

  6. EP1 Prostanoid Receptor Coupling to Gi/o Up-Regulates the Expression of Hypoxia-Inducible Factor-1α through Activation of a Phosphoinositide-3 Kinase Signaling Pathway

    Science.gov (United States)

    Ji, Ruyue; Chou, Chih-Ling; Xu, Wei; Chen, Xiao-Bo; Woodward, David F.

    2010-01-01

    The EP1 prostanoid receptor is one of four subtypes whose cognate physiological ligand is prostaglandin-E2 (PGE2). It is in the family of G-protein-coupled receptors and is known to activate Ca2+ signaling, although relatively little is known about other aspects of E-type prostanoid receptor (EP) 1 receptor signaling. In human embryonic kidney (HEK) cells expressing human EP1 receptors, we now show that PGE2 stimulation of the EP1 receptor up-regulates the expression of hypoxia-inducible factor-1α (HIF-1α), which can be completely blocked by pertussis toxin, indicating coupling to Gi/o. This up-regulation of HIF-1α occurs under normoxic conditions and could be inhibited with wortmannin, Akt inhibitor, and rapamycin, consistent with the activation of a phosphoinositide-3 kinase/Akt/mammalian target of rapamycin (mTOR) signaling pathway, respectively. In contrast to the hypoxia-induced up-regulation of HIF-1α, which involves decreased protein degradation, the up-regulation of HIF-1α by the EP1 receptor was associated with the phosphorylation of ribosomal protein S6 (rpS6), suggesting activation of the ribosomal S6 kinases and increased translation. Stimulation of endogenous EP1 receptors in human HepG2 hepatocellular carcinoma cells recapitulated the normoxic up-regulation of HIF-1α observed in HEK cells, was sensitive to pertussis toxin, and involved the activation of mTOR signaling and phosphorylation of rpS6. In addition, treatment of HepG2 cells with sulprostone, an EP1-selective agonist, up-regulated the mRNA expression of vascular endothelial growth factor-C, a HIF-regulated gene. HIF-1α is known to promote tumor growth and metastasis and is often up-regulated in cancer. Our findings provide a potential mechanism by which increased PGE2 biosynthesis could up-regulate the expression of HIF-1α and promote tumorigenesis. PMID:20335389

  7. Isoforms of receptors of fibroblast growth factors.

    Science.gov (United States)

    Gong, Siew-Ging

    2014-12-01

    The breadth and scope of Fibroblast Growth Factor signaling is immense, with documentation of its role in almost every organism and system studied so far. FGF ligands signal through a family of four distinct tyrosine kinase receptors, the FGF receptors (FGFRs). One contribution to the diversity of function and signaling of FGFs and their receptors arises from the numerous alternative splicing variants that have been documented in the FGFR literature. The present review discusses the types and roles of alternatively spliced variants of the FGFR family members and the significant impact of alternative splicing on the physiological functions of five broad classes of FGFR isoforms. Some characterized known regulatory mechanisms of alternative splicing and future directions in studies of FGFR alternative splicing are also discussed. Presence, absence, and/or the combination of specific exons within each FGFR protein impart upon each individual isoform its unique function and expression pattern during normal function and in diseased states (e.g., in cancers and birth defects). A better understanding of the diversity of FGF signaling in different developmental contexts and diseased states can be achieved through increased knowledge of the presence of specific FGFR isoforms and their impact on downstream signaling and functions. Modern high-throughput techniques afford an opportunity to explore the distribution and function of isoforms of FGFR during development and in diseases.

  8. Peroxisome Proliferator-Activated Receptor Alpha Target Genes

    NARCIS (Netherlands)

    Rakhshandehroo, M.; Knoch, B.; Müller, M.R.; Kersten, A.H.

    2010-01-01

    The peroxisome proliferator-activated receptor alpha (PPAR alpha) is a ligand-activated transcription factor involved in the regulation of a variety of processes, ranging from inflammation and immunity to nutrient metabolism and energy homeostasis. PPAR alpha serves as a molecular target for hypolip

  9. Peroxisome Proliferator-Activated Receptor Alpha Target Genes

    NARCIS (Netherlands)

    Rakhshandehroo, M.; Knoch, B.; Müller, M.R.; Kersten, A.H.

    2010-01-01

    The peroxisome proliferator-activated receptor alpha (PPAR alpha) is a ligand-activated transcription factor involved in the regulation of a variety of processes, ranging from inflammation and immunity to nutrient metabolism and energy homeostasis. PPAR alpha serves as a molecular target for

  10. A peptide from Porphyra yezoensis stimulates the proliferation of IEC-6 cells by activating the insulin-like growth factor I receptor signaling pathway.

    Science.gov (United States)

    Lee, Min-Kyeong; Kim, In-Hye; Choi, Youn-Hee; Nam, Taek-Jeong

    2015-02-01

    Porphyra yezoensis (P. yezoensis) is the most noteworthy red alga and is mainly consumed in China, Japan and Korea. In the present study, the effects of a P. yezoensis peptide (PY‑PE) on cell proliferation and the associated signaling pathways were examined in IEC‑6 rat intestinal epithelial cells. First, the MTS assay showed that PY‑PE induced cell proliferation in a dose‑dependent manner. Subsequently, the mechanism behind the proliferative activity induced by PY‑PE was determined. The insulin‑like growth factor‑I receptor (IGF‑IR) signaling pathway was the main focus as it plays an important role in the regulation of cell growth and proliferation. PY‑PE increased the protein and mRNA expression of IGF‑IR, insulin receptor substrate‑1, Shc and PY‑99. In addition, PY‑PE stimulated extracellular signal‑regulated kinase phosphorylation and phosphatidylinositol 3‑kinase/Akt activation but inhibited p38 and c‑Jun N‑terminal kinase phosphorylation. Furthermore, PY‑PE treatment increased protein and mRNA expression levels of activator protein‑1, which regulates cell proliferation and survival, in the nuclear fraction. These results have significant implications for understanding the role of cell proliferation signaling pathways in intestinal epithelial cells.

  11. 5-HT7 receptor activation promotes an increase in TrkB receptor expression and phosphorylation.

    Science.gov (United States)

    Samarajeewa, Anshula; Goldemann, Lolita; Vasefi, Maryam S; Ahmed, Nawaz; Gondora, Nyasha; Khanderia, Chandni; Mielke, John G; Beazely, Michael A

    2014-01-01

    The serotonin (5-HT) type 7 receptor is expressed throughout the CNS including the cortex and hippocampus. We have previously demonstrated that the application of 5-HT7 receptor agonists to primary hippocampal neurons and SH-SY5Y cells increases platelet-derived growth factor (PDGF) receptor expression and promotes neuroprotection against N-methyl-D-aspartate-(NMDA)-induced toxicity. The tropomyosin-related kinase B (TrkB) receptor is one of the receptors for brain-derived neurotrophic factor (BDNF) and is associated with neurodevelopmental and neuroprotective effects. Application of LP 12 to primary cerebral cortical cultures, SH-SY5Y cells, as well as the retinal ganglion cell line, RGC-5, increased both the expression of full length TrkB as well as its basal phosphorylation state at tyrosine 816. The increase in TrkB expression and phosphorylation was observed as early as 30 min after 5-HT7 receptor activation. In addition to full-length TrkB, kinase domain-deficient forms may be expressed and act as dominant-negative proteins toward the full length receptor. We have identified distinct patterns of TrkB isoform expression across our cell lines and cortical cultures. Although TrkB receptor expression is regulated by cyclic AMP and Gαs-coupled GPCRs in several systems, we demonstrate that, depending on the model system, pathways downstream of both Gαs and Gα12 are involved in the regulation of TrkB expression by 5-HT7 receptors. Given the number of psychiatric and degenerative diseases associated with TrkB/BDNF deficiency and the current interest in developing 5-HT7 receptor ligands as pharmaceuticals, identifying signaling relationships between these two receptors will aid in our understanding of the potential therapeutic effects of 5-HT7 receptor ligands.

  12. 5-HT7 receptor activation promotes an increase in TrkB receptor expression and phosphorylation

    Directory of Open Access Journals (Sweden)

    Anshula eSamarajeewa

    2014-11-01

    Full Text Available The serotonin (5-HT type 7 receptor is expressed throughout the CNS including cortical neurons. We have previously demonstrated that the application of 5-HT7 receptor agonists to primary hippocampal neurons and SH-SY5Y cells increases platelet-derived growth factor (PDGF receptor expression and promotes neuroprotection against N-methyl-D-aspartate-(NMDA-induced toxicity. The tropomyosin-related kinase B (TrkB receptor is one of the receptors for brain-derived neurotrophic factor (BDNF and is associated with neurodevelopmental and neuroprotective effects. Application of LP 12 to primary cerebral cortical cultures, SH-SY5Y cells, as well as the retinal ganglion cell line, RGC-5, increased both the expression of full length TrkB as well as its basal phosphorylation state at tyrosine 816. The increase in TrkB expression and phosphorylation was observed as early as 30 min after 5-HT7 receptor activation. In addition to full-length TrkB, kinase domain-deficient forms may be expressed and act as dominant-negative proteins towards the full length receptor. We have identified distinct patterns of TrkB isoform expression across our cell lines and cortical cultures. Although TrkB receptor expression is regulated by cyclic AMP and Gαs-coupled GPCRs in several systems, we demonstrate that, depending on the model system, pathways downstream of both Gαs and Gα12 are involved in the regulation of TrkB expression by 5-HT7 receptors. Given the number of psychiatric and degenerative diseases associated with TrkB/BDNF deficiency and the current interest in developing 5-HT7 receptor ligands as pharmaceuticals, identifying signaling relationships between these two receptors will aid in our understanding of the potential therapeutic effects of 5-HT7 receptor ligands.

  13. 5-HT7 receptor activation promotes an increase in TrkB receptor expression and phosphorylation

    Science.gov (United States)

    Samarajeewa, Anshula; Goldemann, Lolita; Vasefi, Maryam S.; Ahmed, Nawaz; Gondora, Nyasha; Khanderia, Chandni; Mielke, John G.; Beazely, Michael A.

    2014-01-01

    The serotonin (5-HT) type 7 receptor is expressed throughout the CNS including the cortex and hippocampus. We have previously demonstrated that the application of 5-HT7 receptor agonists to primary hippocampal neurons and SH-SY5Y cells increases platelet-derived growth factor (PDGF) receptor expression and promotes neuroprotection against N-methyl-D-aspartate-(NMDA)-induced toxicity. The tropomyosin-related kinase B (TrkB) receptor is one of the receptors for brain-derived neurotrophic factor (BDNF) and is associated with neurodevelopmental and neuroprotective effects. Application of LP 12 to primary cerebral cortical cultures, SH-SY5Y cells, as well as the retinal ganglion cell line, RGC-5, increased both the expression of full length TrkB as well as its basal phosphorylation state at tyrosine 816. The increase in TrkB expression and phosphorylation was observed as early as 30 min after 5-HT7 receptor activation. In addition to full-length TrkB, kinase domain-deficient forms may be expressed and act as dominant-negative proteins toward the full length receptor. We have identified distinct patterns of TrkB isoform expression across our cell lines and cortical cultures. Although TrkB receptor expression is regulated by cyclic AMP and Gαs-coupled GPCRs in several systems, we demonstrate that, depending on the model system, pathways downstream of both Gαs and Gα12 are involved in the regulation of TrkB expression by 5-HT7 receptors. Given the number of psychiatric and degenerative diseases associated with TrkB/BDNF deficiency and the current interest in developing 5-HT7 receptor ligands as pharmaceuticals, identifying signaling relationships between these two receptors will aid in our understanding of the potential therapeutic effects of 5-HT7 receptor ligands. PMID:25426041

  14. [The role of peroxisome proliferator-activated receptor-γ/nuclear factor-ΚB transduction pathway on coagulation disorders induced by sepsis].

    Science.gov (United States)

    Sun, Yizhu; Wang, Jing; Yu, Luxin; Dai, Lin

    2015-06-01

    To determine the role of activated status of peroxisome proliferator-activated receptorγ/nuclear factor-ΚB (PPAR-γ/NF-ΚB ) in coagulation disorders induced by sepsis. Forty male Sprague-Dawley (SD) rats were randomly divided into four groups, n=10 in each group: control group, lipopolysaccharide (LPS) challenged group, rosiglitazone (ROSI, selective agonist of PPAR-γ) pretreatment group, and GW9662 (PPAR-γ antagonist) pretreatment group. The sepsis model was reproduced by injection of 6 mg/kg LPS via sublingual vein, and the rats in control group were injected with 2 mL/kg normal saline. The rats in ROSI pretreatment group were given 0.3 mg/kg ROSI by sublingual venous injection followed by injection of LPS 30 minutes later; and in GW9662 pretreatment group rats were given 0.3 mg/kg GW9662 by sublingual venous injection followed by 0.3 mg/kg ROSI 15 minutes later, followed by injection of LPS 30 minutes later. Blood was collected at 4 hours after LPS administration, and the expressions of PPAR-γ and NF-ΚBp65 in peripheral blood mononuclear cell (PBMC) were determined with immunocytocheminal technique and graph analysis. Plasma prothrombin time (PT), activated partial thromboplastin time (APTT), fibrinogen (FIB), and D-dimer were determined simultaneously. (1) PPAR-γ/NF-ΚB pathway: the expressions of PPAR-γ and NF-ΚBp65 were lowered in control group, and they were expressed in cytoplasm. In LPS challenged group the expression of PPAR-γ (gray value) was slightly increased but with no significant difference as compared with control group (111.01±4.06 vs. 98.46±5.99, P>0.05). In ROSI pretreatment group the expression of PPAR-γ (gray value) was significantly higher than that in LPS challenged group (214.38±5.79 vs. 111.01±4.06, P0.05). In LPS challenged group the expression of NF-ΚBp65 (gray value) was significantly higher than that in control group (249.48±6.86 vs. 105.81±10.19, P0.05). (2) Coagulation: compared with control group, PT and APTT were

  15. Peroxisome Proliferator Activated Receptors and Lipoprotein Metabolism

    Directory of Open Access Journals (Sweden)

    Sander Kersten

    2008-01-01

    Full Text Available Plasma lipoproteins are responsible for carrying triglycerides and cholesterol in the blood and ensuring their delivery to target organs. Regulation of lipoprotein metabolism takes place at numerous levels including via changes in gene transcription. An important group of transcription factors that mediates the effect of dietary fatty acids and certain drugs on plasma lipoproteins are the peroxisome proliferator activated receptors (PPARs. Three PPAR isotypes can be distinguished, all of which have a major role in regulating lipoprotein metabolism. PPARα is the molecular target for the fibrate class of drugs. Activation of PPARα in mice and humans markedly reduces hepatic triglyceride production and promotes plasma triglyceride clearance, leading to a clinically significant reduction in plasma triglyceride levels. In addition, plasma high-density lipoprotein (HDL-cholesterol levels are increased upon PPARα activation in humans. PPARγ is the molecular target for the thiazolidinedione class of drugs. Activation of PPARγ in mice and human is generally associated with a modest increase in plasma HDL-cholesterol and a decrease in plasma triglycerides. The latter effect is caused by an increase in lipoprotein lipase-dependent plasma triglyceride clearance. Analogous to PPARα, activation of PPARβ/δ leads to increased plasma HDL-cholesterol and decreased plasma triglyceride levels. In this paper, a fresh perspective on the relation between PPARs and lipoprotein metabolism is presented. The emphasis is on the physiological role of PPARs and the mechanisms underlying the effect of synthetic PPAR agonists on plasma lipoprotein levels.

  16. Independent repression of bile acid synthesis and activation of c-Jun N-terminal kinase (JNK) by activated hepatocyte fibroblast growth factor receptor 4 (FGFR4) and bile acids.

    Science.gov (United States)

    Yu, Chundong; Wang, Fen; Jin, Chengliu; Huang, Xinqiang; McKeehan, Wallace L

    2005-05-06

    The fibroblast growth factor (FGF) receptor complex is a regulator of adult organ homeostasis in addition to its central role in embryonic development and wound healing. FGF receptor 4 (FGFR4) is the sole FGFR receptor kinase that is significantly expressed in mature hepatocytes. Previously, we showed that mice lacking mouse FGFR4 (mR4(-/-)) exhibited elevated fecal bile acids, bile acid pool size, and expression of liver cholesterol 7alpha-hydroxylase (CYP7A1), the rate-limiting enzyme for canonical neutral bile acid synthesis. To prove that hepatocyte FGFR4 was a negative regulator of cholesterol metabolism and bile acid synthesis independent of background, we generated transgenic mice overexpressing a constitutively active human FGFR4 (CahR4) in hepatocytes and crossed them with the FGFR4-deficient mice to generate CahR4/mR4(-/-) mice. In mice expressing active FGFR4 in liver, fecal bile acid excretion was 64%, bile acid pool size was 47%, and Cyp7a1 expression was 10-30% of wild-type mice. The repressed level of Cyp7a1 expression was resistant to induction by a high cholesterol diet relative to wild-type mice. Expression of CahR4 in mR4(-/-) mouse livers depressed bile acid synthesis below wild-type levels from the elevated levels observed in mR4(-/-). Levels of phosphorylated c-Jun N-terminal kinase (JNK), which is part of a pathway implicated in bile acid-mediated repression of synthesis, was 30% of wild-type levels in mR4(-/-) livers, whereas CahR4 livers exhibited an average 2-fold increase. However, cholate still strongly induced phospho-JNK in mR4(-/-) livers. These results confirm that hepatocyte FGFR4 regulates bile acid synthesis by repression of Cyp7a1 expression. Hepatocyte FGFR4 may contribute to the repression of bile acid synthesis through JNK signaling but is not required for activation of JNK signaling by bile acids.

  17. Regulation of growth factor receptor degradation by ADP-ribosylation factor domain protein (ARD) 1.

    Science.gov (United States)

    Meza-Carmen, Victor; Pacheco-Rodriguez, Gustavo; Kang, Gi Soo; Kato, Jiro; Donati, Chiara; Zhang, Chun-Yi; Vichi, Alessandro; Payne, D Michael; El-Chemaly, Souheil; Stylianou, Mario; Moss, Joel; Vaughan, Martha

    2011-06-28

    ADP-ribosylation factor domain protein 1 (ARD1) is a 64-kDa protein containing a functional ADP-ribosylation factor (GTP hydrolase, GTPase), GTPase-activating protein, and E3 ubiquitin ligase domains. ARD1 activation by the guanine nucleotide-exchange factor cytohesin-1 was known. GTPase and E3 ligase activities of ARD1 suggest roles in protein transport and turnover. To explore this hypothesis, we used mouse embryo fibroblasts (MEFs) from ARD1-/- mice stably transfected with plasmids for inducible expression of wild-type ARD1 protein (KO-WT), or ARD1 protein with inactivating mutations in E3 ligase domain (KO-E3), or containing persistently active GTP-bound (KO-GTP), or inactive GDP-bound (KO-GDP) GTPase domains. Inhibition of proteasomal proteases in mifepristone-induced KO-WT, KO-GDP, or KO-GTP MEFs resulted in accumulation of these ARD1 proteins, whereas KO-E3 accumulated without inhibitors. All data were consistent with the conclusion that ARD1 regulates its own steady-state levels in cells by autoubiquitination. Based on reported growth factor receptor-cytohesin interactions, EGF receptor (EGFR) was investigated in induced MEFs. Amounts of cell-surface and total EGFR were higher in KO-GDP and lower in KO-GTP than in KO-WT MEFs, with levels in both mutants greater (p = 0.001) after proteasomal inhibition. Significant differences among MEF lines in content of TGF-β receptor III were similar to those in EGFR, albeit not as large. Differences in amounts of insulin receptor mirrored those in EGFR, but did not reach statistical significance. Overall, the capacity of ARD1 GTPase to cycle between active and inactive forms and its autoubiquitination both appear to be necessary for the appropriate turnover of EGFR and perhaps additional growth factor receptors.

  18. Anti-hepatitis B virus effect of matrine-type alkaloid and involvement of p38 mitogen-activated protein kinase and tumor necrosis factor receptor-associated factor 6.

    Science.gov (United States)

    Chen, Jia-Xin; Shen, Hong-Hui; Niu, Ming; Guo, Yu-Ming; Liu, Xiao-Qiong; Han, Yan-Zhong; Zhang, Ya-Ming; Zhao, Yan-Ling; Bai, Bing-Ke; Zhou, Wen-Jun; Xiao, Xiao-He

    2016-04-01

    The matrine-type alkaloid, oxymatrine inhibits hepatitis B virus (HBV) replication but very little is known about these effects in other matrine-type alkaloids, including sophoridine and sophocarpine. Therefore, we compared the in vitro anti-HBV effects of matrine, oxymatrine, sophocarpine, and sophoridine by treating an HBV-transfected cell line (HepG2.2.15) with 0.4-1.6mM of the compounds for 24 or 72h. The levels of the HBV surface antigen (HBsAg) and e antigen (HBeAg) in the culture medium, as well as the intracellular and extracellular HBV DNA levels, were determined. Metabolomic analysis and detection of the mRNA level of p38 mitogen-activated protein kinase (MAPK), tumor necrosis factor receptor-associated factor (TRAF) 6, extracellular signal-regulated kinase (ERK) 1, NOD-like receptor family pyrin domain containing 10 (NLRP10), and caspase-1 were conducted in sophoridine-treated HepG2.2.15 cells. HepG2.2.15 cell exposure to 0.4-1.6mM sophocarpine or sophoridine for 24h reduced the HBsAg level of the medium more effectively than exposure to matrine and oxymatrine did, and reduced the HBeAg levels more effectively than these compounds did at 1.6mM. Sophoridine (0.4-1.6mM) reduced the cell medium HBV DNA levels more than the same concentrations of matrine, oxymatrine, or sophocarpine did. After 72h, 0.4 and 0.8mM sophoridine reduced HBsAg and intracellular HBV DNA levels more potently than matrine, oxymatrine, or sophocarpine did. Furthermore, sophoridine (0.8mM) potently reduced the cell medium HBeAg levels while the metabolomic analyses revealed that HepG2.2.15 cells exposed to 0.8mM sophoridine for 72h exhibited reduced cycloleucine and phytosphingosine levels. In addition, the mRNA expression analyses revealed that HepG2.2.15 cells exposed to 0.8mM sophoridine showed reduced levels of p38 MAPK, TRAF6, ERK1, NLRP10, and caspase-1. Sophoridine produced more potent anti-HBV effects than matrine, oxymatrine, and sophocarpine did. These effects may be related

  19. The peroxisome proliferator-activated receptor: A family of nuclear receptors role in various diseases

    Directory of Open Access Journals (Sweden)

    Sandeep Tyagi

    2011-01-01

    Full Text Available Peroxisome proliferator-activated receptors (PPARs are ligand-activated transcription factors of nuclear hormone receptor superfamily comprising of the following three subtypes: PPARα, PPARγ, and PPARβ/δ. Activation of PPAR-α reduces triglyceride level and is involved in regulation of energy homeostasis. Activation of PPAR-γ causes insulin sensitization and enhances glucose metabolism, whereas activation of PPAR- β/δ enhances fatty acids metabolism. Thus, PPAR family of nuclear receptors plays a major regulatory role in energy homeostasis and metabolic function. The present review critically analyzes the protective and detrimental effect of PPAR agonists in dyslipidemia, diabetes, adipocyte differentiation, inflammation, cancer, lung diseases, neurodegenerative disorders, fertility or reproduction, pain, and obesity.

  20. Nuclear transportation of exogenous epidermal growth factor receptor and androgen receptor via extracellular vesicles.

    Science.gov (United States)

    Read, Jolene; Ingram, Alistair; Al Saleh, Hassan A; Platko, Khrystyna; Gabriel, Kathleen; Kapoor, Anil; Pinthus, Jehonathan; Majeed, Fadwa; Qureshi, Talha; Al-Nedawi, Khalid

    2017-01-01

    Epidermal growth factor receptor (EGFR) plays a central role in the progression of several human malignancies. Although EGFR is a membrane receptor, it undergoes nuclear translocation, where it has a distinct signalling pathway. Herein, we report a novel mechanism by which cancer cells can directly transport EGFR to the nucleus of other cells via extracellular vesicles (EVs). The transported receptor is active and stimulates the nuclear EGFR pathways. Interestingly, the translocation of EGFR via EVs occurs independently of the nuclear localisation sequence that is required for nuclear translocation of endogenous EGFR. Also, we found that the mutant receptor EGFRvIII could be transported to the nucleus of other cells via EVs. To assess the role of EVs in the regulation of an actual nuclear receptor, we studied the regulation of androgen receptor (AR). We found that full-length AR and mutant variant ARv7 are secreted in EVs derived from prostate cancer cell lines and could be transported to the nucleus of AR-null cells. The EV-derived AR was able to bind the androgen-responsive promoter region of prostate specific antigen, and recruit RNA Pol II, an indication of active transcription. The nuclear-translocated AR via EVs enhanced the proliferation of acceptor cells in the absence of androgen. Finally, we provide evidence that nuclear localisation of AR could occur in vivo via orthotopically-injected EVs in male SCID mice prostate glands. To our knowledge, this is the first study showing the nuclear translocation of nuclear receptors via EVs, which significantly extends the role of EVs as paracrine transcriptional regulators.

  1. Plasma levels of soluble interleukin 2 receptor, soluble CD30, interleukin 10 and B cell activator of the tumour necrosis factor family during follow-up in vasculitis associated with proteinase 3-antineutrophil cytoplasmic antibodies : associations with disease activity and relapse

    NARCIS (Netherlands)

    Sanders, J-S F; Huitma, M G; Kallenberg, C G M; Stegeman, C A

    2006-01-01

    Objectives: To evaluate whether T cell activation, as reflected by levels of soluble interleukin 2 receptor (sIL2R), soluble CD30 (sCD30), IL-10 and B cell activator of the tumour necrosis factor family (BAFF) at diagnosis and during initial follow-up, is predictive for persistent or renewed

  2. Coagulation factor VIIa-mediated protease-activated receptor 2 activation leads to β-catenin accumulation via the AKT/GSK3β pathway and contributes to breast cancer progression.

    Science.gov (United States)

    Roy, Abhishek; Ansari, Shabbir A; Das, Kaushik; Prasad, Ramesh; Bhattacharya, Anindita; Mallik, Suman; Mukherjee, Ashis; Sen, Prosenjit

    2017-08-18

    Cell migration and invasion are very characteristic features of cancer cells that promote metastasis, which is one of the most common causes of mortality among cancer patients. Emerging evidence has shown that coagulation factors can directly mediate cancer-associated complications either by enhancing thrombus formation or by initiating various signaling events leading to metastatic cancer progression. It is well established that, apart from its distinct role in blood coagulation, coagulation factor FVIIa enhances aggressive behaviors of breast cancer cells, but the underlying signaling mechanisms still remain elusive. To this end, we investigated FVIIa's role in the migration and invasiveness of the breast cancer cell line MDA-MB-231. Consistent with previous observations, we observed that FVIIa increased the migratory and invasive potential of these cells. We also provide molecular evidence that protease-activated receptor 2 activation followed by PI3K-AKT activation and GSK3β inactivation is involved in these processes and that β-catenin, a well known tumor-regulatory protein, contributes to this signaling pathway. The pivotal role of β-catenin was further indicated by the up-regulation of its downstream targets cyclin D1, c-Myc, COX-2, MMP-7, MMP-14, and Claudin-1. β-Catenin knockdown almost completely attenuated the FVIIa-induced enhancement of breast cancer migration and invasion. These findings provide a new perspective to counteract the invasive behavior of breast cancer, indicating that blocking PI3K-AKT pathway-dependent β-catenin accumulation may represent a potential therapeutic approach to control breast cancer. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Irciniastatin A induces potent and sustained activation of extracellular signal-regulated kinase and thereby promotes ectodomain shedding of tumor necrosis factor receptor 1 in human lung carcinoma A549 cells.

    Science.gov (United States)

    Quach, Hue Tu; Hirano, Seiya; Fukuhara, Sayuri; Watanabe, Tsubasa; Kanoh, Naoki; Iwabuchi, Yoshiharu; Usui, Takeo; Kataoka, Takao

    2015-01-01

    Irciniastatin A is a pederin-type marine product that potently inhibits translation. We have recently shown that irciniastatin A induces ectodomain shedding of tumor necrosis factor (TNF) receptor 1 with slower kinetics than other translation inhibitors. In human lung carcinoma A549 cells, irciniastatin A induced a marked and sustained activation of extracellular signal-regulated kinase (ERK) and induced little activation of p38 mitogen-activated protein (MAP) kinase and c-Jun N-terminal kinase (JNK). Moreover, the TNF receptor 1 shedding induced by irciniastatin A was blocked by the MAP kinase/ERK kinase inhibitor U0126, but not by the p38 MAP kinase inhibitor SB203580 or the JNK inhibitor SP600125. Thus unlike other translation inhibitors that trigger ribotoxic stress response, our results show that irciniastatin A is a unique translation inhibitor that induces a potent and sustained activation of the ERK pathway, and thereby promotes the ectodomain shedding of TNF receptor 1 in A549 cells.

  4. Activation of α7-containing nicotinic receptors on astrocytes triggers AMPA receptor recruitment to glutamatergic synapses.

    Science.gov (United States)

    Wang, Xulong; Lippi, Giordano; Carlson, David M; Berg, Darwin K

    2013-12-01

    Astrocytes, an abundant form of glia, are known to promote and modulate synaptic signaling between neurons. They also express α7-containing nicotinic acetylcholine receptors (α7-nAChRs), but the functional relevance of these receptors is unknown. We show here that stimulation of α7-nAChRs on astrocytes releases components that induce hippocampal neurons to acquire more α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors post-synaptically at glutamatergic synapses. The increase is specific in that no change is seen in synaptic NMDA receptor clusters or other markers for glutamatergic synapses, or in markers for GABAergic synapses. Moreover, the increases in AMPA receptors on the neuron surface are accompanied by increases in the frequency of spontaneous miniature synaptic currents mediated by the receptors and increases in the ratio of evoked synaptic currents mediated by AMPA versus NMDA receptors. This suggests that stimulating α7-nAChRs on astrocytes can convert 'silent' glutamatergic synapses to functional status. Astrocyte-derived thrombospondin is necessary but not sufficient for the effect, while tumor necrosis factor-α is sufficient but not necessary. The results identify astrocyte α7-nAChRs as a novel pathway through which nicotinic cholinergic signaling can promote the development of glutamatergic networks, recruiting AMPA receptors to post-synaptic sites and rendering the synapses more functional. We find that activation of nicotinic receptors on astrocytes releases a component that specifically recruits AMPA receptors to glutamatergic synapses. The recruitment appears to occur preferentially at what may be 'silent synapses', that is, synapses that have all the components required for glutamatergic transmission (including NMDA receptors) but lack sufficient AMPA receptors to generate a response. The results are unexpected and open up new possibilities for mechanisms underlying network formation and synaptic plasticity.

  5. beta-Tryptase up-regulates vascular endothelial growth factor expression via proteinase-activated receptor-2 and mitogen-activated protein kinase pathways in bone marrow stromal cells in acute myeloid leukemia.

    Science.gov (United States)

    Yang, Xiu-Peng; Li, Yan; Wang, Yazhu; Wang, Yue; Wang, Pingping

    2010-08-01

    Tryptases are predominantly mast cell-specific serine proteases with pleiotropic biological activities. Recently, significant amounts of tryptases have been shown to be produced by myeloblasts in certain patients with acute myeloid leukemia (AML), but the function of secreted tryptases in pathological circumstances remains unknown. In this study, we investigated whether beta-tryptase affects the expression of vascular endothelial growth factor (VEGF) in bone marrow stromal cells (BMSCs) in AML. We detected the expression of proteinase-activated receptor-2 (PAR-2) on AML BMSCs and found that beta-tryptase significantly up-regulated VEGF mRNA and protein expression in a dose-dependent manner by real-time PCR, Western blot, and ELISA. Furthermore, beta-tryptase increased ERK1/2 and p38MAPK phosphorylation, and pretreatment with FLLSY-NH(2), PD98059, and SB230580 (PAR-2, ERK1/2, and p38MAPK inhibitors, respectively) inhibited the beta-tryptase-induced production of VEGF. These results suggest that beta-tryptase up-regulates VEGF production in AML BMSCs via the PAR-2, ERK1/2, and p38MAPK signaling pathways.

  6. Epidermal Growth Factor Receptor (EGFR) Crosstalks in Liver Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Berasain, Carmen, E-mail: cberasain@unav.es; Latasa, María Ujue; Urtasun, Raquel; Goñi, Saioa; Elizalde, María; Garcia-Irigoyen, Oihane; Azcona, María [Division of Hepatology and Gene Therapy, CIMA, University of Navarra, Pamplona 31008 (Spain); Prieto, Jesús [Division of Hepatology and Gene Therapy, CIMA, University of Navarra, Pamplona 31008 (Spain); CIBERehd, University Clinic, University of Navarra, Pamplona 31080 (Spain); Ávila, Matías A. [Division of Hepatology and Gene Therapy, CIMA, University of Navarra, Pamplona 31008 (Spain)

    2011-05-18

    Hepatocarcinogenesis is a complex multistep process in which many different molecular pathways have been implicated. Hepatocellular carcinoma (HCC) is refractory to conventional chemotherapeutic agents, and the new targeted therapies are meeting with limited success. Interreceptor crosstalk and the positive feedback between different signaling systems are emerging as mechanisms of targeted therapy resistance. The identification of such interactions is therefore of particular relevance to improve therapeutic efficacy. Among the different signaling pathways activated in hepatocarcinogenesis the epidermal growth factor receptor (EGFR) system plays a prominent role, being recognized as a “signaling hub” where different extracellular growth and survival signals converge. EGFR can be transactivated in response to multiple heterologous ligands through the physical interaction with multiple receptors, the activity of intracellular kinases or the shedding of EGFR-ligands. In this article we review the crosstalk between the EGFR and other signaling pathways that could be relevant to liver cancer development and treatment.

  7. Prostaglandin E2 upregulates β1 integrin expression via the E prostanoid 1 receptor/nuclear factor κ-light-chain-enhancer of activated B cells pathway in non-small-cell lung cancer cells.

    Science.gov (United States)

    Bai, Xiaoming; Yang, Qinyi; Shu, Wei; Wang, Jie; Zhang, Li; Ma, Juan; Xia, Shukai; Zhang, Min; Cheng, Shanyu; Wang, Yipin; Leng, Jing

    2014-05-01

    The prostaglandin E2 (PGE2) E prostanoid (EP)1 receptor shown to be associated with lung cancer cell invasion. However, the mechanism of EP1 receptor-mediated cell migration remains to be elucidated. β1 integrin is an essential regulator of the tumorigenic properties of non-small-cell lung carcinoma (NSCLC) cells. To date, little is known regarding the association between the EP1 receptor and β1 integrin expression. The present study investigated the effect of EP1 receptor activation on β1 integrin expression and cell migration in NSCLC cells. A total of 34 patients with clinical diagnosis of NSCLC and 10 patients with benign disease were recruited for the present study. The expression levels of the EP1 receptor and β1 integrin expression were studied in resected lung tissue using immunohistochemistry. A statistical analysis was performed using Stata se12.0 software. The effects of PGE2, EP1 agonist 17-phenyl trinor-PGE2 (17-PT-PGE2) and the nuclear factor κ-B (NF-κB) inhibitor on β1 integrin expression were investigated on A549 cells. The expression of β1 integrin and the phosphorylation of NF-κB‑p65 Ser536 was investigated by western blot analysis. Cell migration was assessed by a transwell assay. The results demonstrated that β1 integrin and EP1 receptor expression exhibited a positive correlation of evident significance in the 44 samples. The in vitro migration assay revealed that cell migration was increased by 30% when the cells were treated with 5 µM 17-PT-PGE2 and that the pre-treatment of β1 integrin monoclonal antibody inhibited 17-PT-PGE2‑mediated cell migration completely. PGE2 and 17-PT-PGE2 treatment increased β1 integrin expression. RNA interference against the EP1 receptor blocked the PGE2-mediated β1 integrin expression in A549 cells. Treatment with 17-PT-PGE2 induced NF-κB activation, and the selective NF-κB inhibitor pyrrolidinedithiocarbamate inhibited 17-PT-PGE2-mediated β1 integrin expression. In conclusion, the present

  8. Isolation of an additional member of the fibroblast growth factor receptor family, FGFR-3

    Energy Technology Data Exchange (ETDEWEB)

    Keegan, K.; Hayman, M.J. (State Univ. of New York, Stony Brook (United States)); Johnson, D.E.; Williams, L.T. (Univ. of California, San Francisco (United States))

    1991-02-15

    The fibroblast growth factors are a family of polypeptide growth factors involved in a variety of activities including mitogenesis, angiogenesis, and wound healing. Fibroblast growth factor receptors (FGFRs) have previously been identified in chicken, mouse, and human and have been shown to contain an extracellular domain with either two or three immunoglobulin-like domains, a transmembrane domain, and a cytoplasmic tyrosine kinase domain. The authors have isolated a human cDNA for another tyrosine kinase receptor that is highly homologous to the previously described FGFR. Expression of this receptor cDNA in COS cells directs the expression of a 125-kDa glycoprotein. They demonstrate that this cDNA encodes a biologically active receptor by showing that human acidic and basic fibroblast growth factors activate this receptor as measured by {sup 45}Ca{sup 2+} efflux assays. These data establish the existence of an additional member of the FGFR family that they have named FGFR-3.

  9. Arctigenin induced gallbladder cancer senescence through modulating epidermal growth factor receptor pathway.

    Science.gov (United States)

    Zhang, Mingdi; Cai, Shizhong; Zuo, Bin; Gong, Wei; Tang, Zhaohui; Zhou, Di; Weng, Mingzhe; Qin, Yiyu; Wang, Shouhua; Liu, Jun; Ma, Fei; Quan, Zhiwei

    2017-05-01

    Gallbladder cancer has poor prognosis and limited therapeutic options. Arctigenin, a representative dibenzylbutyrolactone lignan, occurs in a variety of plants. However, the molecular mechanisms involved in the antitumor effect of arctigenin on gallbladder cancer have not been fully elucidated. The expression levels of epidermal growth factor receptor were examined in 100 matched pairs of gallbladder cancer tissues. A positive correlation between high epidermal growth factor receptor expression levels and poor prognosis was observed in gallbladder cancer tissues. Pharmacological inhibition or inhibition via RNA interference of epidermal growth factor receptor induced cellular senescence in gallbladder cancer cells. The antitumor effect of arctigenin on gallbladder cancer cells was primarily achieved by inducing cellular senescence. In gallbladder cancer cells treated with arctigenin, the expression level of epidermal growth factor receptor significantly decreased. The analysis of the activity of the kinases downstream of epidermal growth factor receptor revealed that the RAF-MEK-ERK signaling pathway was significantly inhibited. Furthermore, the cellular senescence induced by arctigenin could be reverted by pcDNA-epidermal growth factor receptor. Arctigenin also potently inhibited the growth of tumor xenografts, which was accompanied by the downregulation of epidermal growth factor receptor and induction of senescence. This study demonstrates arctigenin could induce cellular senescence in gallbladder cancer through the modulation of epidermal growth factor receptor pathway. These data identify epidermal growth factor receptor as a key regulator in arctigenin-induced gallbladder cancer senescence.

  10. Evidence that the modulator of the glucocorticoid-receptor complex is the endogenous molybdate factor.

    OpenAIRE

    Bodine, P V; Litwack, G

    1988-01-01

    We have recently purified the modulator of the glucocorticoid-receptor complex from rat liver. Purified modulator inhibits glucocorticoid-receptor complex activation and stabilizes the steroid-binding ability of the unoccupied glucocorticoid receptor. Since these activities are shared by exogenous sodium molybdate, modulator appears to be the endogenous factor that sodium molybdate mimics. In this report, we present additional evidence for the mechanism of action of purified modulator. (i) Mo...

  11. Interferon gamma-dependent transactivation of epidermal growth factor receptor.

    Science.gov (United States)

    Burova, Elena; Vassilenko, Konstantin; Dorosh, Victoria; Gonchar, Ilya; Nikolsky, Nikolai

    2007-04-03

    The present report provides evidence that, in A431 cells, interferon gamma (IFNgamma) induces the rapid (within 5 min), and reversible, tyrosine phosphorylation of the epidermal growth factor receptor (EGFR). IFNgamma-induced EGFR transactivation requires EGFR kinase activity, as well as activity of the Src-family tyrosine kinases and JAK2. Here, we show that IFNgamma-induced STAT1 activation in A431 and HeLa cells partially depends on the kinase activity of both EGFR and Src. Furthermore, in these cells, EGFR kinase activity is essential for IFNgamma-induced ERK1,2 activation. This study is the first to demonstrate that EGFR is implicated in IFNgamma-dependent signaling pathways.

  12. Tumor necrosis factor (TNF)-α upregulates progesterone receptor-A by activating the NF-κB signaling pathway in human decidua after labor onset.

    Science.gov (United States)

    Jiang, Z Y; Guo, Y Y; Ren, H B; Zou, Y F; Fan, M S; Lv, Y; Han, P; De, W; Sun, L Z

    2012-01-01

    To date, the relationship between inflammatory cytokines and progesterone receptors (PRs) has been little studied, although both mediate the mechanism of parturition in human deciduas. Thus, the aim of study was to investigate the role of an inflammatory cytokine, tumor necrosis factor (TNF)-α, in regulating progesterone withdrawal in decidua at human parturition. TNF-α levels and PR isoforms were compared in intrauterine deciduas from women who were in labor (IL, n = 10) or who were not in labor (NIL, n = 10). Nuclear factor-kappaB (NF-κB) signaling and PR status were analyzed in NIL deciduas after TNF-α stimulation. Immunohistochemistry, western blotting, ELISA and reverse transcription-polymerase chain reaction (RT-PCR) were used to localize and quantitate protein and mRNA expression. TNF-α immunostaining, protein levels, PR-A/PR-B ratio and COX-2 level were significantly higher in IL deciduas (all P human decidua following labor onset. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. H2 inhibits TNF-α-induced lectin-like oxidized LDL receptor-1 expression by inhibiting nuclear factor κB activation in endothelial cells.

    Science.gov (United States)

    Song, Guohua; Tian, Hua; Liu, Jia; Zhang, Hongle; Sun, Xuejun; Qin, Shucun

    2011-09-01

    H(2) is a therapeutic antioxidant that can reduce oxidative stress. Oxidized low-density lipoprotein, which plays roles in atherosclerosis, may promote endothelial dysfunction by binding the cell-surface receptor LOX-1. LOX-1 expression can be upregulated by various stimuli, including TNF-α. Thus, we aimed to examine whether the upregulation of LOX-1 by different stimuli could be blocked by H(2) in endothelial cells. H(2) significantly abolished the upregulation of LOX-1 by different stimuli, including TNF-α, at the protein and mRNA levels. The TNF-α-induced upregulation of LOX-1 was also attenuated by the NF-κB inhibitor N-acetyl-L-cysteine. H(2) inhibited the TNF-α-induced activation of NF-κB and the phosphorylation of IκB-α. Furthermore, H(2) inhibited the expression of LOX-1 and the activation of NF-κB in apolipoprotein E knockout mice, an animal model of atherosclerosis. Thus, H(2) probably inhibits cytokine-induced LOX-1 gene expression by suppressing NF-κB activation.

  14. Ketamine inhibits tumor necrosis factor-alpha and interleukin-6 gene expressions in lipopolysaccharide-stimulated macrophages through suppression of toll-like receptor 4-mediated c-Jun N-terminal kinase phosphorylation and activator protein-1 activation.

    Science.gov (United States)

    Wu, Gone-Jhe; Chen, Ta-Liang; Ueng, Yune-Fang; Chen, Ruei-Ming

    2008-04-01

    Our previous study showed that ketamine, an intravenous anesthetic agent, has anti-inflammatory effects. In this study, we further evaluated the effects of ketamine on the regulation of tumor necrosis factor-alpha (TNF-alpha) and interlukin-6 (IL-6) gene expressions and its possible signal-transducing mechanisms in lipopolysaccharide (LPS)-activated macrophages. Exposure of macrophages to 1, 10, and 100 microM ketamine, 100 ng/ml LPS, or a combination of ketamine and LPS for 1, 6, and 24 h was not cytotoxic to macrophages. A concentration of 1000 microM of ketamine alone or in combined treatment with LPS caused significant cell death. Administration of LPS increased cellular TNF-alpha and IL-6 protein levels in concentration- and time-dependent manners. Meanwhile, treatment with ketamine concentration- and time-dependently alleviated the enhanced effects. LPS induced TNF-alpha and IL-6 mRNA syntheses. Administration of ketamine at a therapeutic concentration (100 microM) significantly inhibited LPS-induced TNF-alpha and IL-6 mRNA expressions. Application of toll-like receptor 4 (TLR4) small interfering (si)RNA into macrophages decreased cellular TLR4 levels. Co-treatment of macrophages with ketamine and TLR4 siRNA decreased the LPS-induced TNF-alpha and IL-6 productions more than alone administration of TLR4 siRNA. LPS stimulated phosphorylation of c-Jun N-terminal kinase and translocation of c-Jun and c-Fos from the cytoplasm to nuclei. However, administration of ketamine significantly decreased LPS-induced activation of c-Jun N-terminal kinase and translocation of c-Jun and c-Fos. LPS increased the binding of nuclear extracts to activator protein-1 consensus DNA oligonucleotides. Administration of ketamine significantly ameliorated LPS-induced DNA binding activity of activator protein-1. Therefore, a clinically relevant concentration of ketamine can inhibit TNF-alpha and IL-6 gene expressions in LPS-activated macrophages. The suppressive mechanisms occur through

  15. Peroxisome Proliferator-Activated Receptor and Vitamin D Receptor Signaling Pathways in Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Satoru, E-mail: smatsuda@cc.nara-wu.ac.jp; Kitagishi, Yasuko [Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506 (Japan)

    2013-10-21

    Peroxisome proliferator-activated receptors (PPARs) are members of the superfamily of nuclear hormone receptors, which respond to specific ligands such as polyunsaturated fatty acids by altering gene expression. Three subtypes of this receptor have been discovered, each evolving to achieve different biological functions. Like other nuclear receptors, the transcriptional activity of PPARs is affected not only by ligand-stimulation, but also by cross-talk with other molecules. For example, both PPARs and the RXRs are ligand-activated transcription factors that coordinately regulate gene expression. In addition, PPARs and vitamin D receptor (VDR) signaling pathways regulate a multitude of genes that are of importance for cellular functions including cell proliferation and cell differentiation. Interaction of the PPARs and VDR signaling pathways has been shown at the level of molecular cross-regulation of their transcription factor. A variety of ligands influencing the PPARs and VDR signaling pathways have been shown to reveal chemopreventive potential by mediating tumor suppressive activities in human cancers. Use of these compounds may represent a potential novel strategy to prevent cancers. This review summarizes the roles of the PPARs and the VDR in pathogenesis and progression of cancer.

  16. New GABA amides activating GABAA-receptors.

    Science.gov (United States)

    Raster, Peter; Späth, Andreas; Bultakova, Svetlana; Gorostiza, Pau; König, Burkhard; Bregestovski, Piotr

    2013-01-01

    We have prepared a series of new and some literature-reported GABA-amides and determined their effect on the activation of GABAA-receptors expressed in CHO cells. Special attention was paid to the purification of the target compounds to remove even traces of GABA contaminations, which may arise from deprotection steps in the synthesis. GABA-amides were previously reported to be partial, full or superagonists. In our hands these compounds were not able to activate GABAA-receptor channels in whole-cell patch-clamp recordings. New GABA-amides, however, gave moderate activation responses with a clear structure-activity relationship suggesting some of these compounds as promising molecular tools for the functional analysis of GABAA-receptors.

  17. New GABA amides activating GABAA-receptors

    Directory of Open Access Journals (Sweden)

    Peter Raster

    2013-02-01

    Full Text Available We have prepared a series of new and some literature-reported GABA-amides and determined their effect on the activation of GABAA-receptors expressed in CHO cells. Special attention was paid to the purification of the target compounds to remove even traces of GABA contaminations, which may arise from deprotection steps in the synthesis. GABA-amides were previously reported to be partial, full or superagonists. In our hands these compounds were not able to activate GABAA-receptor channels in whole-cell patch-clamp recordings. New GABA-amides, however, gave moderate activation responses with a clear structure–activity relationship suggesting some of these compounds as promising molecular tools for the functional analysis of GABAA-receptors.

  18. The novel ATP-competitive inhibitor of the MET hepatocyte growth factor receptor EMD1214063 displays inhibitory activity against selected MET-mutated variants.

    Science.gov (United States)

    Medová, Michaela; Pochon, Benoît; Streit, Bruno; Blank-Liss, Wieslawa; Francica, Paola; Stroka, Deborah; Keogh, Adrian; Aebersold, Daniel M; Blaukat, Andree; Bladt, Friedhelm; Zimmer, Yitzhak

    2013-11-01

    The receptor tyrosine kinase MET is a prime target in clinical oncology due to its aberrant activation and involvement in the pathogenesis of a broad spectrum of malignancies. Similar to other targeted kinases, primary and secondary mutations seem to represent an important resistance mechanism to MET inhibitors. Here, we report the biologic activity of a novel MET inhibitor, EMD1214063, on cells that ectopically express the mutated MET variants M1268T, Y1248H, H1112Y, L1213V, H1112L, V1110I, V1206L, and V1238I. Our results show a dose-dependent decrease in MET autophosphorylation in response to EMD1214063 in five of the eight cell lines (IC50 2-43 nmol/L). Blockade of MET by EMD1214063 was accompanied by a reduced activation of downstream effectors in cells expressing EMD1214063-sensitive mutants. In all sensitive mutant-expressing lines, EMD1214063 altered cell-cycle distribution, primarily with an increase in G1 phase. EMD1214063 strongly influenced MET-driven biologic functions, such as cellular morphology, MET-dependent cell motility, and anchorage-independent growth. To assess the in vivo efficacy of EMD1214063, we used a xenograft tumor model in immunocompromised mice bearing NIH3T3 cells expressing sensitive and resistant MET-mutated variants. Animals were randomized for the treatment with EMD1214063 (50 mg/kg/d) or vehicle only. Remarkably, five days of EMD1214063 treatment resulted in a complete regression of the sensitive H1112L-derived tumors, whereas tumor growth remained unaffected in mice with L1213V tumors and in vehicle-treated animals. Collectively, the current data identifies EMD1214063 as a potent MET small-molecule inhibitor with selective activity towards mutated MET variants. ©2013 AACR.

  19. Activating PIK3CA Mutations Induce an Epidermal Growth Factor Receptor (EGFR)/Extracellular Signal-regulated Kinase (ERK) Paracrine Signaling Axis in Basal-like Breast Cancer.

    Science.gov (United States)

    Young, Christian D; Zimmerman, Lisa J; Hoshino, Daisuke; Formisano, Luigi; Hanker, Ariella B; Gatza, Michael L; Morrison, Meghan M; Moore, Preston D; Whitwell, Corbin A; Dave, Bhuvanesh; Stricker, Thomas; Bhola, Neil E; Silva, Grace O; Patel, Premal; Brantley-Sieders, Dana M; Levin, Maren; Horiates, Marina; Palma, Norma A; Wang, Kai; Stephens, Philip J; Perou, Charles M; Weaver, Alissa M; O'Shaughnessy, Joyce A; Chang, Jenny C; Park, Ben Ho; Liebler, Daniel C; Cook, Rebecca S; Arteaga, Carlos L

    2015-07-01

    Mutations in PIK3CA, the gene encoding the p110α catalytic subunit of phosphoinositide 3-kinase (PI3K) have been shown to transform human mammary epithelial cells (MECs). These mutations are present in all breast cancer subtypes, including basal-like breast cancer (BLBC). Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), we identified 72 protein expression changes in human basal-like MECs with knock-in E545K or H1047R PIK3CA mutations versus isogenic MECs with wild-type PIK3CA. Several of these were secreted proteins, cell surface receptors or ECM interacting molecules and were required for growth of PIK3CA mutant cells as well as adjacent cells with wild-type PIK3CA. The proteins identified by MS were enriched among human BLBC cell lines and pointed to a PI3K-dependent amphiregulin/EGFR/ERK signaling axis that is activated in BLBC. Proteins induced by PIK3CA mutations correlated with EGFR signaling and reduced relapse-free survival in BLBC. Treatment with EGFR inhibitors reduced growth of PIK3CA mutant BLBC cell lines and murine mammary tumors driven by a PIK3CA mutant transgene, all together suggesting that PIK3CA mutations promote tumor growth in part by inducing protein changes that activate EGFR. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Activating PIK3CA Mutations Induce an Epidermal Growth Factor Receptor (EGFR)/Extracellular Signal-regulated Kinase (ERK) Paracrine Signaling Axis in Basal-like Breast Cancer*

    Science.gov (United States)

    Young, Christian D.; Zimmerman, Lisa J.; Hoshino, Daisuke; Formisano, Luigi; Hanker, Ariella B.; Gatza, Michael L.; Morrison, Meghan M.; Moore, Preston D.; Whitwell, Corbin A.; Dave, Bhuvanesh; Stricker, Thomas; Bhola, Neil E.; Silva, Grace O.; Patel, Premal; Brantley-Sieders, Dana M.; Levin, Maren; Horiates, Marina; Palma, Norma A.; Wang, Kai; Stephens, Philip J.; Perou, Charles M.; Weaver, Alissa M.; O'Shaughnessy, Joyce A.; Chang, Jenny C.; Park, Ben Ho; Liebler, Daniel C.; Cook, Rebecca S.; Arteaga, Carlos L.

    2015-01-01

    Mutations in PIK3CA, the gene encoding the p110α catalytic subunit of phosphoinositide 3-kinase (PI3K) have been shown to transform human mammary epithelial cells (MECs). These mutations are present in all breast cancer subtypes, including basal-like breast cancer (BLBC). Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), we identified 72 protein expression changes in human basal-like MECs with knock-in E545K or H1047R PIK3CA mutations versus isogenic MECs with wild-type PIK3CA. Several of these were secreted proteins, cell surface receptors or ECM interacting molecules and were required for growth of PIK3CA mutant cells as well as adjacent cells with wild-type PIK3CA. The proteins identified by MS were enriched among human BLBC cell lines and pointed to a PI3K-dependent amphiregulin/EGFR/ERK signaling axis that is activated in BLBC. Proteins induced by PIK3CA mutations correlated with EGFR signaling and reduced relapse-free survival in BLBC. Treatment with EGFR inhibitors reduced growth of PIK3CA mutant BLBC cell lines and murine mammary tumors driven by a PIK3CA mutant transgene, all together suggesting that PIK3CA mutations promote tumor growth in part by inducing protein changes that activate EGFR. PMID:25953087

  1. Silencing of reversion-inducing cysteine-rich protein with Kazal motifs stimulates hyperplastic phenotypes through activation of epidermal growth factor receptor and hypoxia-inducible factor-2α.

    Directory of Open Access Journals (Sweden)

    You Mie Lee

    Full Text Available Reversion-inducing cysteine-rich protein with Kazal motifs (RECK, a tumor suppressor is down-regulated by the oncogenic signals and hypoxia, but the biological function of RECK in early tumorigenic hyperplastic phenotypes is largely unknown. Knockdown of RECK by small interfering RNA (siRECK or hypoxia significantly promoted cell proliferation in various normal epithelial cells. Hypoxia as well as knockdown of RECK by siRNA increased the cell cycle progression, the levels of cyclin D1 and c-Myc, and the phosphorylation of Rb protein (p-pRb, but decreased the expression of p21(cip1, p27(kip1, and p16(ink4A. HIF-2α was upregulated by knockdown of RECK, indicating HIF-2α is a downstream target of RECK. As knockdown of RECK induced the activation of epidermal growth factor receptor (EGFR and treatment of an EGFR kinase inhibitor, gefitinib, suppressed HIF-2α expression induced by the silencing of RECK, we can suggest that the RECK silenicng-EGFR-HIF-2α axis might be a key molecular mechanism to induce hyperplastic phenotype of epithelial cells. It was also found that shRNA of RECK induced larger and more numerous colonies than control cells in an anchorage-independent colony formation assay. Using a xenograft assay, epithelial cells with stably transfected with shRNA of RECK formed a solid mass earlier and larger than those with control cells in nude mice. In conclusion, the suppression of RECK may promote the development of early tumorigenic hyperplastic characteristics in hypoxic stress.

  2. Soluble and cell surface receptors for tumor necrosis factor

    DEFF Research Database (Denmark)

    Wallach, D; Engelmann, H; Nophar, Y

    1991-01-01

    Tumor necrosis factor (TNF) initiates its multiple effects on cell function by binding at a high affinity to specific cell surface receptors. Two different molecular species of these receptors, which are expressed differentially in different cells, have been identified. The cDNAs of both receptor...... have recently been cloned. Antibodies to one of these receptor species (the p55, type I receptor) can trigger a variety of TNF like effects by cross-linking of the receptor molecules. Thus, it is not TNF itself but its receptors that provide the signal for the response to this cytokine...... in certain pathological situations. Release of the soluble receptors from the cells seems to occur by proteolytic cleavage of the cell surface forms and appears to be a way of down-regulating the cell response to TNF. Because of their ability to bind TNF, the soluble receptors exert an inhibitory effect...

  3. Thyroid hormones regulate fibroblast growth factor receptor signaling during chondrogenesis.

    Science.gov (United States)

    Barnard, Joanna C; Williams, Allan J; Rabier, Bénédicte; Chassande, Olivier; Samarut, Jacques; Cheng, Sheue-Yann; Bassett, J H Duncan; Williams, Graham R

    2005-12-01

    Childhood hypothyroidism causes growth arrest with delayed ossification and growth-plate dysgenesis, whereas thyrotoxicosis accelerates ossification and growth. Thyroid hormone (T(3)) regulates chondrocyte proliferation and is essential for hypertrophic differentiation. Fibroblast growth factors (FGFs) are also important regulators of chondrocyte proliferation and differentiation, and activating mutations of FGF receptor-3 (FGFR3) cause achondroplasia. We investigated the hypothesis that T(3) regulates chondrogenesis via FGFR3 in ATDC5 cells, which undergo a defined program of chondrogenesis. ATDC5 cells expressed two FGFR1, four FGFR2, and one FGFR3 mRNA splice variants throughout chondrogenesis, and expression of each isoform was stimulated by T(3) during the first 6-12 d of culture, when T(3) inhibited proliferation by 50%. FGFR3 expression was also increased in cells treated with T(3) for 21 d, when T(3) induced an earlier onset of hypertrophic differentiation and collagen X expression. FGFR3 expression was reduced in growth plates from T(3) receptor alpha-null mice, which exhibit skeletal hypothyroidism, but was increased in T(3) receptor beta(PV/PV) mice, which display skeletal thyrotoxicosis. These findings indicate that FGFR3 is a T(3)-target gene in chondrocytes. In further experiments, T(3) enhanced FGF2 and FGF18 activation of the MAPK-signaling pathway but inhibited their activation of signal transducer and activator of transcription-1. FGF9 did not activate MAPK or signal transducer and activator of transcription-1 pathways in the absence or presence of T(3). Thus, T(3) exerted differing effects on FGFR activation during chondrogenesis depending on which FGF ligand stimulated the FGFR and which downstream signaling pathway was activated. These studies identify novel interactions between T(3) and FGFs that regulate chondrocyte proliferation and differentiation during chondrogenesis.

  4. Beclin 1 regulates growth factor receptor signaling in breast cancer.

    Science.gov (United States)

    Rohatgi, R A; Janusis, J; Leonard, D; Bellvé, K D; Fogarty, K E; Baehrecke, E H; Corvera, S; Shaw, L M

    2015-10-16

    Beclin 1 is a haploinsufficient tumor suppressor that is decreased in many human tumors. The function of beclin 1 in cancer has been attributed primarily to its role in the degradative process of macroautophagy. However, beclin 1 is a core component of the vacuolar protein sorting 34 (Vps34)/class III phosphatidylinositoI-3 kinase (PI3KC3) and Vps15/p150 complex that regulates multiple membrane-trafficking events. In the current study, we describe an alternative mechanism of action for beclin 1 in breast cancer involving its control of growth factor receptor signaling. We identify a specific stage of early endosome maturation that is regulated by beclin 1, the transition of APPL1-containing phosphatidyIinositol 3-phosphate-negative (PI3P(-)) endosomes to PI3P(+) endosomes. Beclin 1 regulates PI3P production in response to growth factor stimulation to control the residency time of growth factor receptors in the PI3P(-)/APPL(+)-signaling-competent compartment. As a result, suppression of BECN1 sustains growth factor-stimulated AKT and ERK activation resulting in increased breast carcinoma cell invasion. In human breast tumors, beclin 1 expression is inversely correlated with AKT and ERK phosphorylation. Our data identify a novel role for beclin 1 in regulating growth factor signaling and reveal a mechanism by which loss of beclin 1 expression would enhance breast cancer progression.

  5. New strategies in colorectal cancer: biomarkers of response to epidermal growth factor receptor monoclonal antibodies and potential therapeutic targets in phosphoinositide 3-kinase and mitogen-activated protein kinase pathways.

    Science.gov (United States)

    Dasari, Arvind; Messersmith, Wells A

    2010-08-01

    Initial experience with the epidermal growth factor receptor monoclonal antibodies (EGFR MoAb) in unselected patients with metastatic colorectal cancer (mCRC) showed that most of the treated patients did not derive therapeutic benefit. This outcome has driven the search for biomarkers for this population. Recent advances have further shown the heterogeneous nature of this disease with multiple interlinked pathways being implicated. Two such pathways downstream to the EGFR, mitogen-activated protein kinase (MAPK) and (phosphoinositide 3-kinase) PI3K, have gained increasing attention and become targets for development of novel biomarkers and therapeutic agents. Here, we highlight recent progress.

  6. Lipoteichoic acid from Lactobacillus plantarum inhibits the expression of platelet-activating factor receptor induced by Staphylococcus aureus lipoteichoic acid or Escherichia coli lipopolysaccharide in human monocyte-like cells.

    Science.gov (United States)

    Kim, Hangeun; Jung, Bong Jun; Jeong, Jihye; Chun, Honam; Chung, Dae Kyun

    2014-08-01

    Platelet-activating factor receptor (PAFR) plays an important role in bacterial infection and inflammation. We examined the effect of the bacterial cell wall components lipopolysaccharide (LPS) and lipoteichoic acid (LTA) from Lactobacillus plantarum (pLTA) and Staphylococcus aureus (aLTA) on PAFR expression in THP-1, a monocyte-like cell line. LPS and aLTA, but not pLTA, significantly increased PAFR expression, whereas priming with pLTA inhibited LPSmediated or aLTA-mediated PAFR expression. Expression of Toll-like receptor (TLR) 2 and 4, and CD14 increased with LPS and aLTA treatments, but was inhibited by pLTA pretreatment. Neutralizing antibodies against TLR2, TLR4, and CD14 showed that these receptors were important in LPS-mediated or aLTA-mediated PAFR expression. PAFR expression is mainly regulated by the nuclear factor kappa B signaling pathway. Blocking PAF binding to PAFR using a PAFR inhibitor indicated that LPS-mediated or aLTA-mediated PAF expression affected TNF-α production. In the mouse small intestine, pLTA inhibited PAFR, TLR2, and TLR4 expression that was induced by heat-labile toxin. Our data suggested that pLTA has an anti-inflammatory effect by inhibiting the expression of PAFR that was induced by pathogenic ligands.

  7. Antitumor activity of a combination of trastuzumab (Herceptin) and oral fluoropyrimidine S-1 on human epidermal growth factor receptor 2-overexpressing pancreatic cancer.

    Science.gov (United States)

    Saeki, Hiroyuki; Yanoma, Shunsuke; Takemiya, Shouji; Sugimasa, Yukio; Akaike, Makoto; Yukawa, Norio; Rino, Yasushi; Imada, Toshio

    2007-08-01

    The cytotoxic effect of trastuzumab in combination with oral fluoropyrimidine S-1 on human epidermal growth factor receptor 2 (HER2)-overexpressing human pancreatic cancer cell line TRG in vitro and in vivo was investigated. HER2 expression in TRG was analyzed by RT-PCR and flow cytometry. For in vitro experiments, 5-fluorouracil (5-FU) was used instead of S-1. In vivo studies were conducted with TRG xenografts in athymic mice. Trastuzumab (10 mg/kg) was administered intraperitoneally once a week for 4 weeks. S-1 (10 mg/kg) was administered orally 5 days a week for 4 weeks. The results showed that TRG cells were positive for HER2 mRNA and overexpressed HER2 protein. Either trastuzumab or 5-FU concentration-dependently inhibited the growth of TRG cells. The combination of trastuzumab and 5-FU resulted in a significant inhibition of growth of TRG cells compared to either agent alone (P<0.001). Incubation of TRG cells with peripheral blood mononuclear cells after treatment with trastuzumab enhanced the antiproliferative effect of trastuzumab, which could be the result of antibody-dependent cellular cytotoxicity. The combination of trastuzumab and S-1 resulted in a significant reduction in xenograft volume compared to each agent alone (P<0.0001). In conclusion, this study showed that combination therapy with trastuzumab and S-1 may be effective for HER2-overexpressing pancreatic cancer patients.

  8. Resistin-induced stromal cell-derived factor-1 expression through Toll-like receptor 4 and activation of p38 MAPK/ NFκB signaling pathway in gastric cancer cells.

    Science.gov (United States)

    Hsieh, Yung-Yu; Shen, Chien-Heng; Huang, Wen-Shih; Chin, Chih-Chien; Kuo, Yi-Hung; Hsieh, Meng Chiao; Yu, Hong-Ren; Chang, Te-Sheng; Lin, Tseng-Hsi; Chiu, Yung-Wei; Chen, Cheng-Nan; Kuo, Hsing-Chun; Tung, Shui-Yi

    2014-06-14

    Stromal cell-derived factor-1 (SDF-1) (CXC chemokine ligand-12)/CXC chemokine receptor 4 (CXCR4) is involved in the carcinogenesis of human gastric cancer, where it stimulates angiogenesis and favors metastasis of tumor cells to distant organs. In addition, resistin is suggested to be an important link between obesity and the development of gastric cancer. Resistin has identified as an important player in inflammatory responses, and emerged as a mediator in inflammation-associated cancer. A limited number of studies have investigated the association of resistin and SDF-1 with gastric cancer. Herein, we investigated the molecular mechanisms by which resistin influences the expression of SDF-1 in gastric carcinoma cells. Human gastric cancer cell lines were exposed to doses of resistin; SDF-1 expression and secretion levels were then determined. Real-time polymerase chain reaction and western blotting analyses were performed to clarify molecular changes. Inhibition of Toll-like receptor 4 (TLR4) by a competitive antagonist inhibited resistin-induced SDF-1 expression. Pharmacological inhibitors and small interfering RNA (siRNA) demonstrated that activation of the p38 mitogen-activated protein kinase (MAPK) pathway is critical for resistin-induced SDF-1 expression mediated by TLR4. The promoter activity and transcription factor enzyme-linked immunosorbent assay revealed that resistin induced expression of SDF-1 mediated by NF-κB in gastric cancer cells. Inhibition of p38 MARK activation blocked the SDF-1-induced expression and the SDF-1 promoter activity in the cancer gastric cells. Chromatin immunoprecipitation assay revealed that inhibition of p38 MARK activation also blocked the resistin-increased NF-κB-DNA-binding activity. Resistin-induced SDF-1 upregulation by activation of TLR4, p38 MARK and NF-κB may explain a new role of resistin in the link of obesity and gastric cancer.

  9. Estrogen Induces c-myc Gene Expression via an Upstream Enhancer Activated by the Estrogen Receptor and the AP-1 Transcription Factor

    Science.gov (United States)

    Wang, Chunyu; Mayer, Julie Ann; Mazumdar, Abhijit; Fertuck, Kirsten; Kim, Heetae; Brown, Myles

    2011-01-01

    c-myc oncogene is implicated in tumorigenesis of many cancers, including breast cancer. Although c-myc is a well-known estrogen-induced gene, its promoter has no estrogen-response element, and the underlying mechanism by which estrogen induces its expression remains obscure. Recent genome-wide studies by us and others suggested that distant elements may mediate estrogen induction of gene expression. In this study, we investigated the molecular mechanism by which estrogen induces c-myc expression with a focus on these distal elements. Estrogen rapidly induced c-myc expression in estrogen receptor (ER)-positive breast cancer cells. Although estrogen had little effect on c-myc proximal promoter activity, it did stimulate the activity of a luciferase reporter containing a distal 67-kb enhancer. Estrogen induction of this luciferase reporter was dependent upon both a half-estrogen response element and an activator protein 1 (AP-1) site within this enhancer, which are conserved across 11 different mammalian species. Small interfering RNA experiments and chromatin immunoprecipitation assays demonstrated the necessity of ER and AP-1 cross talk for estrogen to induce c-myc expression. TAM67, the AP-1 dominant negative, partially inhibited estrogen induction of c-myc expression and suppressed estrogen-induced cell cycle progression. Together, these results demonstrate a novel pathway of estrogen regulation of gene expression by cooperation between ER and AP-1 at the distal enhancer element and that AP-1 is involved in estrogen induction of the c-myc oncogene. These results solve the long-standing question in the field of endocrinology of how estrogen induces c-myc expression. PMID:21835891

  10. NMDA receptor activity in neuropsychiatric disorders

    Directory of Open Access Journals (Sweden)

    Shaheen E Lakhan

    2013-06-01

    Full Text Available N-Methyl-D-aspartate (NMDA receptors play a variety of physiologic roles and their proper signaling is essential for cellular homeostasis. Any disruption in this pathway, leading to either enhanced or decreased activity, may result in the manifestation of neuropsychiatric pathologies such as schizophrenia, mood disorders, substance induced psychosis, Huntington's disease, Alzheimer's disease, and neuropsychiatric systemic lupus erythematosus. Here, we explore the notion that the overlap in activity of at least one biochemical pathway, the NMDA receptor pathway, may be the link to understanding the overlap in psychotic symptoms between diseases. This review intends to present a broad overview of those neuropsychiatric disorders for which alternations in NMDA receptor activity is prominent thus suggesting that continued direction of pharmaceutical intervention to this pathway may present a viable option for managing symptoms.

  11. The nerve growth factor and its receptors in airway inflammatory diseases.

    Science.gov (United States)

    Freund-Michel, V; Frossard, N

    2008-01-01

    The nerve growth factor (NGF) belongs to the neurotrophin family and induces its effects through activation of 2 distinct receptor types: the tropomyosin-related kinase A (TrkA) receptor, carrying an intrinsic tyrosine kinase activity in its intracellular domain, and the receptor p75 for neurotrophins (p75NTR), belonging to the death receptor family. Through activation of its TrkA receptor, NGF activates signalling pathways, including phospholipase Cgamma (PLCgamma), phosphatidyl-inositol 3-kinase (PI3K), the small G protein Ras, and mitogen-activated protein kinases (MAPK). Through its p75NTR receptor, NGF activates proapoptotic signalling pathways including the MAPK c-Jun N-terminal kinase (JNK), ceramides, and the small G protein Rac, but also activates pathways promoting cell survival through the transcription factor nuclear factor-kappaB (NF-kappaB). NGF was first described by Rita Levi-Montalcini and collaborators as an important factor involved in nerve differentiation and survival. Another role for NGF has since been established in inflammation, in particular of the airways, with increased NGF levels in chronic inflammatory diseases. In this review, we will first describe NGF structure and synthesis and NGF receptors and their signalling pathways. We will then provide information about NGF in the airways, describing its expression and regulation, as well as pointing out its potential role in inflammation, hyperresponsiveness, and remodelling process observed in airway inflammatory diseases, in particular in asthma.

  12. Activation of Neuropeptide FF Receptors by Kisspeptin Receptor Ligands.

    Science.gov (United States)

    Oishi, Shinya; Misu, Ryosuke; Tomita, Kenji; Setsuda, Shohei; Masuda, Ryo; Ohno, Hiroaki; Naniwa, Yousuke; Ieda, Nahoko; Inoue, Naoko; Ohkura, Satoshi; Uenoyama, Yoshihisa; Tsukamura, Hiroko; Maeda, Kei-Ichiro; Hirasawa, Akira; Tsujimoto, Gozoh; Fujii, Nobutaka

    2011-01-13

    Kisspeptin is a member of the RFamide neuropeptide family that is implicated in gonadotropin secretion. Because kisspeptin-GPR54 signaling is implicated in the neuroendocrine regulation of reproduction, GPR54 ligands represent promising therapeutic agents against endocrine secretion disorders. In the present study, the selectivity profiles of GPR54 agonist peptides were investigated for several GPCRs, including RFamide receptors. Kisspeptin-10 exhibited potent binding and activation of neuropeptide FF receptors (NPFFR1 and NPFFR2). In contrast, short peptide agonists bound with much lower affinity to NPFFRs while showing relatively high selectivity toward GPR54. The possible localization of secondary kisspeptin targets was also demonstrated by variation in the levels of GnRH release from the median eminence and the type of GPR54 agonists used. Negligible affinity of the reported NPFFR ligands to GPR54 was observed and indicates the unidirectional cross-reactivity between both ligands.

  13. Peroxisome proliferator-activated receptors and cancer: challenges and opportunities.

    Science.gov (United States)

    Youssef, Jihan; Badr, Mostafa

    2011-09-01

    Peroxisome proliferator-activated receptors (PPARs), members of the nuclear hormone receptor superfamily, function as transcription factors and modulators of gene expression. These actions allow PPARs to regulate a variety of biological processes and to play a significant role in several diseases and conditions. The current literature describes frequently opposing and paradoxical roles for the three PPAR isotypes, PPARα, PPARβ/δ and PPARγ, in cancer. While some studies have implicated PPARs in the promotion and development of cancer, others, in contrast, have presented evidence for a protective role for these receptors against cancer. In some tissues, the expression level of these receptors and/or their activation correlates with a positive outcome against cancer, while, in other tissue types, their expression and activation have the opposite effect. These disparate findings raise the possibility of (i) PPAR receptor-independent effects, including effects on receptors other than PPARs by the utilized ligands; (ii) cancer stage-specific effect; and/or (iii) differences in essential ligand-related pharmacokinetic considerations. In this review, we highlight the latest available studies on the role of the various PPAR isotypes in cancer in several major organs and present challenges as well as promising opportunities in the field. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  14. Significance of platelet activating factor receptor expression in pancreatic tissues of rats with severe acute pancreatitis and effects of BN52021

    Institute of Scientific and Technical Information of China (English)

    Shi-Hai Xia; Chun-Xiu Hu; Zhi-Ling Zhao; Guo-Dong Xia; Yao Di

    2007-01-01

    AIM: To investigate the dynamic changes and significance of platelet activating factor receptor (PAF-R)mRNA and protein in pancreatic tissues of rats with severe acute pancreatitis (SAP) and effects of BN52021(Ginkgolide B).METHODS: Wistar male rats were randomly assigned to the negative control group (NC group), SAP model group (SAP group), and BN52051-remedy group (BN group), and each of the groups was divided into 6 subgroups at different time points after operation (1 h,2 h, 3 h, 6 h, 12 h, and 24 h) (n = 10 in each). PT-PCR and Western blot methods were used to detect PAFRmRNA and protein expression in pancreatic tissues of rats respectively. Pathological examination of pancreatic tissues was performed and the serum amylase change was detected.RESULTS: Serum amylase and pathological results showed the that SAP model was successfully prepared,BN52021 was able to decrease serum amylase, and the pathological ratings in BN group at 3 h, 6 h, and 12 h significantly decreased compared with those in the SAP group (8.85 ± 0.39 vs 5.95 ± 0.19, 9.15 ± 0.55 vs 5.55 ± 0.36, 10.10 ± 0.65 vs 6.72 ± 0.30, P < 0.05). The result of PAF-mRNA showed dynamic changes in SAP and BN groups, which increased gradually in early stage,reached a peak at 3 h (0.71 ± 0.14 vs 0.54 ± 0.14,0.69 ± 0.13 vs 0.59 ± 0.04, P < 0.05), and decreased gradually later. There were significant differences at each time point except 1 h and 2 h, when compared with those in the NC group (0.71 ± 0.14 or 0.69 ± 0.13 vs 0.47 ± 0.10, 0.38 ± 0.08 or 0.59 ± 0.04 vs 0.47 ± 0.09, 0.25 ± 0.07 or 0.29 ± 0.05 vs 0.46 ± 0.10, 0.20 ± 0.06 or 0.20 ± 0.04 vs 0.43 ± 0.09, P < 0.05), whereas there was no significant difference between BN and SAP groups at each time point. The result of PAF-R protein showed that the change of PAF-R protein in the SAP group and the BN group was consistent with that of PAF-R mRNA.There were significant differences at each time point except 1 h, when compared with

  15. Pattern of hormone receptors and human epidermal growth factor ...

    African Journals Online (AJOL)

    2015-02-05

    Feb 5, 2015 ... Key words: Breast cancer, human epidermal growth factor receptor 2/neu, immunohistochemistry, ... therapy.[6‑8] Of all these prognostic and predictive factors, ... one of the biggest private medical laboratories in Nigeria.

  16. Receptor Activator of Nuclear Factor κB Ligand (RANKL) Protein Expression by B Lymphocytes Contributes to Ovariectomy-induced Bone Loss*

    Science.gov (United States)

    Onal, Melda; Xiong, Jinhu; Chen, Xinrong; Thostenson, Jeff D.; Almeida, Maria; Manolagas, Stavros C.; O'Brien, Charles A.

    2012-01-01

    Production of the cytokine receptor activator of NFκB ligand (RANKL) by lymphocytes has been proposed as a mechanism by which sex steroid deficiency causes bone loss. However, there have been no studies that functionally link RANKL expression in lymphocytes with bone loss in this condition. Herein, we examined whether RANKL expression in either B or T lymphocytes contributes to ovariectomy-induced bone loss in mice. Mice harboring a conditional RANKL allele were crossed with CD19-Cre or Lck-Cre mice to delete RANKL in B or T lymphocytes, respectively. Deletion of RANKL from either cell type had no impact on bone mass in estrogen-replete mice up to 7 months of age. However, mice lacking RANKL in B lymphocytes were partially protected from the bone loss caused by ovariectomy. This protection occurred in cancellous, but not cortical, bone and was associated with a failure to increase osteoclast numbers in the conditional knock-out mice. Deletion of RANKL from T lymphocytes had no impact on ovariectomy-induced bone loss. These results demonstrate that lymphocyte RANKL is not involved in basal bone remodeling, but B cell RANKL does contribute to the increase in osteoclasts and cancellous bone loss that occurs after loss of estrogen. PMID:22782898

  17. Cheiradone: a vascular endothelial cell growth factor receptor antagonist

    Directory of Open Access Journals (Sweden)

    Ahmed Nessar

    2008-01-01

    Full Text Available Abstract Background Angiogenesis, the growth of new blood vessels from the pre-existing vasculature is associated with physiological (for example wound healing and pathological conditions (tumour development. Vascular endothelial growth factor (VEGF, fibroblast growth factor-2 (FGF-2 and epidermal growth factor (EGF are the major angiogenic regulators. We have identified a natural product (cheiradone isolated from a Euphorbia species which inhibited in vivo and in vitro VEGF- stimulated angiogenesis but had no effect on FGF-2 or EGF activity. Two primary cultures, bovine aortic and human dermal endothelial cells were used in in vitro (proliferation, wound healing, invasion in Matrigel and tube formation and in vivo (the chick chorioallantoic membrane models of angiogenesis in the presence of growth factors and cheiradone. In all cases, the concentration of cheiradone which caused 50% inhibition (IC50 was determined. The effect of cheiradone on the binding of growth factors to their receptors was also investigated. Results Cheiradone inhibited all stages of VEGF-induced angiogenesis with IC50 values in the range 5.20–7.50 μM but did not inhibit FGF-2 or EGF-induced angiogenesis. It also inhibited VEGF binding to VEGF receptor-1 and 2 with IC50 values of 2.9 and 0.61 μM respectively. Conclusion Cheiradone inhibited VEGF-induced angiogenesis by binding to VEGF receptors -1 and -2 and may be a useful investigative tool to study the specific contribution of VEGF to angiogenesis and may have therapeutic potential.

  18. A novel hydroxyfuroic acid compound as an insulin receptor activator – structure and activity relationship of a prenylindole moiety to insulin receptor activation

    Directory of Open Access Journals (Sweden)

    Tsai Henry J

    2009-07-01

    Full Text Available Abstract Background Diabetes Mellitus is a chronic disease and many patients of which require frequent subcutaneous insulin injection to maintain proper blood glucose levels. Due to the inconvenience of insulin administration, an orally active insulin replacement has long been a prime target for many pharmaceutical companies. Demethylasterriquinone (DMAQ B1, extracted from tropical fungus, Pseudomassaria sp., has been reported to be an orally effective agent at lowering circulating glucose levels in diabetic (db/db mice; however, the cytotoxicity associated with the quinone moiety has not been addressed thus far. Methods A series of hydroxyfuroic acid compounds were synthesized and tested for their efficacies at activating human insulin receptor. Cytotoxicity to Chinese hamster ovary cells, selectivities over insulin-like growth factor-1 (IGF-1, epidermal growth factor (EGF, and fibroblast growth factor (FGF receptors were examined in this study. Result and Conclusion This study reports a new non-quinone DMAQ B1 derivative, a hydroxyfuroic acid compound (D-410639, which is 128 fold less cytotoxic as DMAQ B1 and as potent as compound 2, a DMAQ B1 synthetic derivative from Merck, at activating human insulin receptor. D-410639 has little activation potential on IGF-1 receptor but is a moderate inhibitor to EGF receptor. Structure and activity relationship of the prenylindole moiety to insulin receptor activation is discussed.

  19. Targeting hepatocyte growth factor receptor (Met) positive tumor cells using internalizing nanobody-decorated albumin nanoparticles

    NARCIS (Netherlands)

    Heukers, Raimond|info:eu-repo/dai/nl/325788103; Altintas, Isil|info:eu-repo/dai/nl/341537160; Raghoenath, Smiriti; De Zan, Erica; Pepermans, Richard; Roovers, Rob C.|info:eu-repo/dai/nl/205435599; Haselberg, Rob|info:eu-repo/dai/nl/304822647; Hennink, Wim E.|info:eu-repo/dai/nl/070880409; Schiffelers, Raymond M.|info:eu-repo/dai/nl/212909509; Kok, Robbert J.|info:eu-repo/dai/nl/170678326; Van Bergen en Henegouwen, Paul M P|info:eu-repo/dai/nl/071919481

    2014-01-01

    The hepatocyte growth factor receptor (HGFR, c-Met or Met) is a receptor tyrosine kinase that is involved in embryogenesis, tissue regeneration and wound healing. Abnormal activation of this proto-oncogene product is implicated in the development, progression and metastasis of many cancers. Current

  20. Regulation of Epidermal Growth Factor Receptor Trafficking by Lysine Deacetylase HDAC6

    DEFF Research Database (Denmark)

    Lissanu Deribe, Yonathan; Wild, Philipp; Chandrashaker, Akhila;

    2009-01-01

    Binding of epidermal growth factor (EGF) to its receptor leads to receptor dimerization, assembly of protein complexes, and activation of signaling networks that control key cellular responses. Despite their fundamental role in cell biology, little is known about protein complexes associated...

  1. Fibroblast growth factor receptor 1 activation in mammary tumor cells promotes macrophage recruitment in a CX3CL1-dependent manner.

    Directory of Open Access Journals (Sweden)

    Johanna R Reed

    Full Text Available Tumor formation is an extensive process requiring complex interactions that involve both tumor cell-intrinsic pathways and soluble mediators within the microenvironment. Tumor cells exploit the intrinsic functions of many soluble molecules, including chemokines and their receptors, to regulate pro-tumorigenic phenotypes that are required for growth and progression of the primary tumor. Previous studies have shown that activation of inducible FGFR1 (iFGFR1 in mammary epithelial cells resulted in increased proliferation, migration, and invasion in vitro and tumor formation in vivo. These studies also demonstrated that iFGFR1 activation stimulated recruitment of macrophages to the epithelium where macrophages contributed to iFGFR1-mediated epithelial cell proliferation and angiogenesis. The studies presented here further utilize this model to identify the mechanisms that regulate FGFR1-induced macrophage recruitment. Results from this study elucidate a novel role for the inflammatory chemokine CX3CL1 in FGFR1-induced macrophage migration. Specifically, we illustrate that activation of both the inducible FGFR1 construct in mouse mammary epithelial cells and endogenous FGFR in the triple negative breast cancer cell line, HS578T, leads to expression of the chemokine CX3CL1. Furthermore, we demonstrate that FGFR-induced CX3CL1 is sufficient to recruit CX3CR1-expressing macrophages in vitro. Finally, blocking CX3CR1 in vivo leads to decreased iFGFR1-induced macrophage recruitment, which correlates with decreased angiogenesis. While CX3CL1 is a known target of FGF signaling in the wound healing environment, these studies demonstrate that FGFR activation also leads to induction of CX3CL1 in a tumor setting. Furthermore, these results define a novel role for CX3CL1 in promoting macrophage recruitment during mammary tumor formation, suggesting that the CX3CL1/CX3CR1 axis may represent a potential therapeutic approach for targeting breast cancers associated

  2. Epidermal Growth Factor Receptor Cell Survival Signaling Requires Phosphatidylcholine Biosynthesis

    Directory of Open Access Journals (Sweden)

    Matt Crook

    2016-11-01

    Full Text Available Identification of pro-cell survival signaling pathways has implications for cancer, cardiovascular, and neurodegenerative disease. We show that the Caenorhabditis elegans epidermal growth factor receptor LET-23 (LET-23 EGFR has a prosurvival function in counteracting excitotoxicity, and we identify novel molecular players required for this prosurvival signaling. uv1 sensory cells in the C. elegans uterus undergo excitotoxic death in response to activation of the OSM-9/OCR-4 TRPV channel by the endogenous agonist nicotinamide. Activation of LET-23 EGFR can effectively prevent this excitotoxic death. We investigate the roles of signaling pathways known to act downstream of LET-23 EGFR in C. elegans and find that the LET-60 Ras/MAPK pathway, but not the IP3 receptor pathway, is required for efficient LET-23 EGFR activity in its prosurvival function. However, activation of LET-60 Ras/MAPK pathway does not appear to be sufficient to fully mimic LET-23 EGFR activity. We screen for genes that are required for EGFR prosurvival function and uncover a role for phosphatidylcholine biosynthetic enzymes in EGFR prosurvival function. Finally, we show that exogenous application of phosphatidylcholine is sufficient to prevent some deaths in this excitotoxicity model. Our work implicates regulation of lipid synthesis downstream of EGFR in cell survival and death decisions.

  3. Identification of heparin-binding EGF-like growth factor (HB-EGF as a biomarker for lysophosphatidic acid receptor type 1 (LPA1 activation in human breast and prostate cancers.

    Directory of Open Access Journals (Sweden)

    Marion David

    Full Text Available Lysophosphatidic acid (LPA is a natural bioactive lipid with growth factor-like functions due to activation of a series of six G protein-coupled receptors (LPA₁₋₆. LPA receptor type 1 (LPA₁ signaling influences the pathophysiology of many diseases including cancer, obesity, rheumatoid arthritis, as well as lung, liver and kidney fibrosis. Therefore, LPA₁ is an attractive therapeutic target. However, most mammalian cells co-express multiple LPA receptors whose co-activation impairs the validation of target inhibition in patients because of missing LPA receptor-specific biomarkers. LPA₁ is known to induce IL-6 and IL-8 secretion, as also do LPA₂ and LPA₃. In this work, we first determined the LPA induced early-gene expression profile in three unrelated human cancer cell lines expressing different patterns of LPA receptors (PC3: LPA₁,₂,₆; MDA-MB-231: LPA1,2; MCF-7: LPA₂,₆. Among the set of genes upregulated by LPA only in LPA₁-expressing cells, we validated by QPCR and ELISA that upregulation of heparin-binding EGF-like growth factor (HB-EGF was inhibited by LPA₁-₃ antagonists (Ki16425, Debio0719. Upregulation and downregulation of HB-EGF mRNA was confirmed in vitro in human MDA-B02 breast cancer cells stably overexpressing LPA₁ (MDA-B02/LPA₁ and downregulated for LPA₁ (MDA-B02/shLPA1, respectively. At a clinical level, we quantified the expression of LPA₁ and HB-EGF by QPCR in primary tumors of a cohort of 234 breast cancer patients and found a significantly higher expression of HB-EGF in breast tumors expressing high levels of LPA₁. We also generated human xenograph prostate tumors in mice injected with PC3 cells and found that a five-day treatment with Ki16425 significantly decreased both HB-EGF mRNA expression at the primary tumor site and circulating human HB-EGF concentrations in serum. All together our results demonstrate that HB-EGF is a new and relevant biomarker with potentially high value in

  4. 多巴胺受体在可卡因诱导的转录因子CREB活化中的作用%Dopamine receptors oppositely regulate cocaine-induced transcription factor CREB activation

    Institute of Scientific and Technical Information of China (English)

    刘怒云; 张琳; 王小宁; 张璐

    2006-01-01

    Objective To study the role of dopamine receptors in the regulation of the activity of transcription factor cAMP response element-binding protein (CREB) after cocaine treatment. Methods By using dopamine receptor antagonists SCH23390 and nafadotride, the activation of CREB by D1 and D3 dopamine receptors after cocaine treatment and role of extracellular signal-regulated kinase (ERK) in cocaine-induced CREB activation were examined by Western blotting, which was also employed for determination of the effect of SCH23390 and nafadotride on CREB activation. Results D1 receptor antagonist could inhibit cocaine-induced CREB activation, while D3 receptor antagonist enhanced cocaine-induced CREB activation. Dopamine receptor antagonists SCH23390 and nafadotride did not induce CREB activation. SL327, a MEK inhibitor, inhibited cocaine-induced CREB activation. Conclusion D1 and D3 dopamine receptors can oppositely regulate CREB activation after cocaine treatment and this regulation depends on ERK signaling pathway.%目的研究多巴胺受体在可卡因诱导的转录因子CREB磷酸化活化中的调控作用.方法采用D1和D3多巴胺受体抑制剂,应用Western blotting检测D1与D3多巴胺受体在可卡因诱导的cAMP反应元件结合蛋白(CREB)磷酸化活化中的作用及D1和D3多巴胺受体抑制剂本身对CREB磷酸化活化的影响,进一步应用Westernblotting检测细胞外信号调节激酶(ERK)在CREB磷酸化活化中的作用.结果 D1多巴胺受体抑制剂阻止可卡因诱导的CREB磷酸化活化,而D3多巴胺受体抑制剂促进可卡因诱导的CREB磷酸化活化,D1和D3多巴胺受体抑制剂本身不能诱导CREB磷酸化活化.MEK的特异性抑制剂SL327可以抑制可卡因诱导的CREB磷酸化活化.结论 D1和D3多巴胺受体对CREB的磷酸化活化起反式调控作用,并且这种反式调控作用依赖于ERK信号通路.

  5. Combined inhibition of epidermal growth factor receptor and cyclooxygenase-2 leads to greater anti-tumor activity of docetaxel in advanced prostate cancer.

    Directory of Open Access Journals (Sweden)

    Jianzhong Lin

    Full Text Available The epidermal growth factor receptor (EGFR and cyclooxygenase-2(COX-2 play a critical role in disease progression, relapse and therapeutic resistance of advanced prostate cancer (PCa. In this paper, we evaluated, for the first time, the therapeutic benefit of blocking EGRF and/or COX-2 (using gefitinib and NS-398, respectively in terms of improving the efficacy of the conventional clinical chemotherapeutic drug docetaxel in vitro and vivo. We showed that EGFR and COX-2 expression was higher in metastatic than non-metastatic PCa tissues and cells. Docetaxel, alone or in combination with gefitinib or NS-398, resulted in a small decrease in cell viability. The three drug combination decreased cell viability to a greater extent than docetaxel alone or in combination with gefitinib or NS-398. Docetaxel resulted in a modest increase in apoptotic cell in metastatic and non-metastatic cell lines. NS-398 markedly enhanced docetaxel-induced cell apoptosis. The combination of the three drugs caused even more marked apoptosis and resulted in greater suppression of invasive potential than docetaxel alone or in association with gefitinib or NS-398. The combination of all three drugs also resulted in a more marked decrease in NF-ΚB, MMP-9 and VEGF levels in PC-3M cells. These in vitro findings were supported by in vivo studies showing that docetaxel in combination with gefitinib and NS-398 was significantly more effective than any individual agent. Based on previous preclinical research, we conclude that simultaneously blocking EGFR and COX-2 by gefitinib and NS-398 sensitizes advanced PCa cells to docetaxel-induced cytotoxicity.

  6. Dietary and nutritional manipulation of the nuclear transcription factors peroxisome proliferator-activated receptor and sterol regulatory element-binding proteins as a tool for reversing the primary diseases of premature death and delaying aging.

    Science.gov (United States)

    Kurtak, Karen A

    2014-04-01

    Evolution over 2.1 billion years has equipped us with a biochemical pathway that has the power to literally reverse the primary disease etiologies that have become the leading causes of death and aging in the developed world. Activation of the peroxisome proliferator-activated receptor (PPAR) pathway arrests inflammatory signaling throughout the body, reverses damage to tissues, reverses insulin resistance, and can even dissolve beta-amyloid plaque in the brain. It has played a critical role in the evolution of the metazoans and the successful migration of humans to all corners of the Earth. For two decades, various pharmaceuticals have been designed to activate the PPAR pathway but have consistently fallen short of expectations. There is nothing wrong with these drugs. The problem has been the standard "healthy" diet creating mixed signals that render the drugs ineffective. This article explores the ongoing dance between the two primary nuclear receptors that mediate gene regulation of fatty acids. It discusses their interaction with sirtuins and telomerase, optimization of their obligate heterodimers, and why manipulation of dietary and nutritional factors, like the ketogenic diet, is the most effective means of activation. These are effective tools that we can start implementing now to slow, and in some cases reverse, the diseases of aging.

  7. Potent, selective inhibitors of fibroblast growth factor receptor define fibroblast growth factor dependence in preclinical cancer models.

    Science.gov (United States)

    Squires, Matthew; Ward, George; Saxty, Gordan; Berdini, Valerio; Cleasby, Anne; King, Peter; Angibaud, Patrick; Perera, Tim; Fazal, Lynsey; Ross, Douglas; Jones, Charlotte Griffiths; Madin, Andrew; Benning, Rajdeep K; Vickerstaffe, Emma; O'Brien, Alistair; Frederickson, Martyn; Reader, Michael; Hamlett, Christopher; Batey, Michael A; Rich, Sharna; Carr, Maria; Miller, Darcey; Feltell, Ruth; Thiru, Abarna; Bethell, Susanne; Devine, Lindsay A; Graham, Brent L; Pike, Andrew; Cosme, Jose; Lewis, Edward J; Freyne, Eddy; Lyons, John; Irving, Julie; Murray, Christopher; Newell, David R; Thompson, Neil T

    2011-09-01

    We describe here the identification and characterization of 2 novel inhibitors of the fibroblast growth factor receptor (FGFR) family of receptor tyrosine kinases. The compounds exhibit selective inhibition of FGFR over the closely related VEGFR2 receptor in cell lines and in vivo. The pharmacologic profile of these inhibitors was defined using a panel of human tumor cell lines characterized for specific mutations, amplifications, or translocations known to activate one of the four FGFR receptor isoforms. This pharmacology defines a profile for inhibitors that are likely to be of use in clinical settings in disease types where FGFR is shown to play an important role.

  8. Simultaneous inhibition of epidermal growth factor receptor (EGFR) signaling and enhanced activation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor-mediated apoptosis induction by an scFv : sTRAIL fusion protein with specificity for human EGFR

    NARCIS (Netherlands)

    Bremer, E; Samplonius, DF; van Genne, L; Dijkstra, MH; Kroesen, BJ; de Leij, LFMH; Helfrich, W

    2005-01-01

    Epidermal growth factor receptor (EGFR) signaling inhibition by monoclonal antibodies and EGFR-specific tyrosine kinase inhibitors has shown clinical efficacy in cancer by restoring susceptibility of tumor cells to therapeutic apoptosis induction. Tumor necrosis factor-related apoptosis-inducing lig

  9. Increased activity of the Vesicular Soluble N-Ethylmaleimide-sensitive Factor Attachment Protein Receptor TI-VAMP/VAMP7 by Tyrosine Phosphorylation in the Longin Domain*

    Science.gov (United States)

    Burgo, Andrea; Casano, Alessandra M.; Kuster, Aurelia; Arold, Stefan T.; Wang, Guan; Nola, Sébastien; Verraes, Agathe; Dingli, Florent; Loew, Damarys; Galli, Thierry

    2013-01-01

    Vesicular (v)- and target (t)-SNAREs play essential roles in intracellular membrane fusion through the formation of cytoplasmic α-helical bundles. Several v-SNAREs have a Longin N-terminal extension that, by promoting a closed conformation, plays an autoinhibitory function and decreases SNARE complex formation and membrane fusion efficiency. The molecular mechanism leading to Longin v-SNARE activation is largely unknown. Here we find that exocytosis mediated by the Longin v-SNARE TI-VAMP/VAMP7 is activated by tonic treatment with insulin and insulin-like growth factor-1 but not by depolarization and intracellular calcium rise. In search of a potential downstream mechanism, we found that TI-VAMP is phosphorylated in vitro by c-Src kinase on tyrosine 45 of the Longin domain. Accordingly, a mutation of tyrosine 45 into glutamate, but not phenylalanine, activates both t-SNARE binding and exocytosis. Activation of TI-VAMP-mediated exocytosis thus relies on tyrosine phosphorylation. PMID:23471971

  10. Increased activity of the vesicular soluble N-ethylmaleimide-sensitive factor attachment protein receptor TI-VAMP/VAMP7 by tyrosine phosphorylation in the Longin domain.

    Science.gov (United States)

    Burgo, Andrea; Casano, Alessandra M; Kuster, Aurelia; Arold, Stefan T; Wang, Guan; Nola, Sébastien; Verraes, Agathe; Dingli, Florent; Loew, Damarys; Galli, Thierry

    2013-04-26

    Vesicular (v)- and target (t)-SNAREs play essential roles in intracellular membrane fusion through the formation of cytoplasmic α-helical bundles. Several v-SNAREs have a Longin N-terminal extension that, by promoting a closed conformation, plays an autoinhibitory function and decreases SNARE complex formation and membrane fusion efficiency. The molecular mechanism leading to Longin v-SNARE activation is largely unknown. Here we find that exocytosis mediated by the Longin v-SNARE TI-VAMP/VAMP7 is activated by tonic treatment with insulin and insulin-like growth factor-1 but not by depolarization and intracellular calcium rise. In search of a potential downstream mechanism, we found that TI-VAMP is phosphorylated in vitro by c-Src kinase on tyrosine 45 of the Longin domain. Accordingly, a mutation of tyrosine 45 into glutamate, but not phenylalanine, activates both t-SNARE binding and exocytosis. Activation of TI-VAMP-mediated exocytosis thus relies on tyrosine phosphorylation.

  11. Effects of alpha-calcitonin gene-related peptide on osteoprotegerin and receptor activator of nuclear factor-κB ligand expression in MG-63 osteoblast-like cells exposed to polyethylene particles

    Directory of Open Access Journals (Sweden)

    Kauther Max D

    2010-11-01

    Full Text Available Abstract Background Recent studies demonstrated an impact of the nervous system on particle-induced osteolysis, the major cause of aseptic loosening of joint replacements. Methods In this study of MG-63 osteoblast-like cells we analyzed the influence of ultra-high molecular weight polyethylene (UHMWPE particles and the neurotransmitter alpha-calcitonin gene-related peptide (CGRP on the osteoprotegerin/receptor activator of nuclear factor-κB ligand/receptor activator of nuclear factorκB (OPG/RANKL/RANK system. MG-63 cells were stimulated by different UHMWPE particle concentrations (1:100, 1:500 and different doses of alpha-CGRP (10-7 M, 10-9 M, 10-11 M. RANKL and OPG mRNA expression and protein levels were measured by RT-PCR and Western blot. Results Increasing particle concentrations caused an up-regulation of RANKL after 72 hours. Alpha-CGRP showed a dose-independent depressive effect on particle-induced expression of RANKL mRNA in both cell-particle ratios. RANKL gene transcripts were significantly (P -7 M lead to an up-regulation of OPG protein. Conclusion In conclusion, a possible osteoprotective influence of the neurotransmitter alpha-CGRP on particle stimulated osteoblast-like cells could be shown. Alpha-CGRP might be important for bone metabolism under conditions of particle-induced osteolysis.

  12. Brucella abortus Invasion of Osteocytes Modulates Connexin 43 and Integrin Expression and Induces Osteoclastogenesis via Receptor Activator of NF-κB Ligand and Tumor Necrosis Factor Alpha Secretion.

    Science.gov (United States)

    Pesce Viglietti, Ayelén Ivana; Arriola Benitez, Paula Constanza; Gentilini, María Virginia; Velásquez, Lis Noelia; Fossati, Carlos Alberto; Giambartolomei, Guillermo Hernán; Delpino, María Victoria

    2015-10-12

    Osteoarticular brucellosis is the most common localization of human active disease. Osteocytes are the most abundant cells of bone. They secrete factors that regulate the differentiation of both osteoblasts and osteoclasts during bone remodeling. The aim of this study is to determine if Brucella abortus infection modifies osteocyte function. Our results indicate that B. abortus infection induced matrix metalloproteinase 2 (MMP-2), receptor activator for NF-κB ligand (RANKL), proinflammatory cytokines, and keratinocyte chemoattractant (KC) secretion by osteocytes. In addition, supernatants from B. abortus-infected osteocytes induced bone marrow-derived monocytes (BMM) to undergo osteoclastogenesis. Using neutralizing antibodies against tumor necrosis factor alpha (TNF-α) or osteoprotegerin (OPG), RANKL's decoy receptor, we determined that TNF-α and RANKL are involved in osteoclastogenesis induced by supernatants from B. abortus-infected osteocytes. Connexin 43 (Cx43) and the integrins E11/gp38, integrin-α, integrin-β, and CD44 are involved in cell-cell interactions necessary for osteocyte survival. B. abortus infection inhibited the expression of Cx43 but did not modify the expression of integrins. Yet the expression of both Cx43 and integrins was inhibited by supernatants from B. abortus-infected macrophages. B. abortus infection was not capable of inducing osteocyte apoptosis. However, supernatants from B. abortus-infected macrophages induced osteocyte apoptosis in a dose-dependent manner. Taken together, our results indicate that B. abortus infection could alter osteocyte function, contributing to bone damage.

  13. Epidermal growth factor receptor (EGFR) and EGFR mutations, function and possible role in clinical trials

    DEFF Research Database (Denmark)

    Voldborg, B R; Damstrup, L; Spang-Thomsen, M;

    1997-01-01

    The epidermal growth factor receptor (EGFR) is a growth factor receptor that induces cell differentiation and proliferation upon activation through the binding of one of its ligands. The receptor is located at the cell surface, where the binding of a ligand activates a tyrosine kinase...... in the intracellular region of the receptor. This tyrosine kinase phosphorylates a number of intracellular substrates that activates pathways leading to cell growth, DNA synthesis and the expression of oncogenes such as fos and jun. EGFR is thought to be involved the development of cancer, as the EGFR gene is often...... amplified, and/or mutated in cancer cells. In this review we will focus on: (I) the structure and function of EGFR, (II) implications of receptor/ligand coexpression and EGFR mutations or overexpression, (III) its effect on cancer cells, (IV) the development of the malignant phenotype and (V) the clinical...

  14. The cardiovascular effects of peroxisome proliferator-activated receptor agonists.

    Science.gov (United States)

    Friedland, Sayuri N; Leong, Aaron; Filion, Kristian B; Genest, Jacques; Lega, Iliana C; Mottillo, Salvatore; Poirier, Paul; Reoch, Jennifer; Eisenberg, Mark J

    2012-02-01

    Although peroxisome proliferator-activated receptor agonists are prescribed to improve cardiovascular risk factors, their cardiovascular safety is controversial. We therefore reviewed the literature to identify landmark randomized controlled trials evaluating the effect of peroxisome proliferator-activated receptor gamma agonists (pioglitazone and rosiglitazone), alpha agonists (fenofibrate and gemfibrozil), and pan agonists (bezafibrate, muraglitazar, ragaglitazar, tesaglitazar, and aleglitazar) on cardiovascular outcomes. Pioglitazone may modestly reduce cardiovascular events but also may increase the risk of bladder cancer. Rosiglitazone increases the risk of myocardial infarction and has been withdrawn in European and restricted in the United States. Fibrates improve cardiovascular outcomes only in select subgroups: fenofibrate in diabetic patients with metabolic syndrome, gemfibrozil in patients with dyslipidemia, and bezafibrate in patients with diabetes or metabolic syndrome. The cardiovascular safety of the new pan agonist aleglitazar, currently in phase II trials, remains to be determined. The heterogenous effects of peroxisome proliferator-activated receptor agonists to date highlight the importance of postmarketing surveillance. The critical question of why peroxisome proliferator-activated receptor agonists seem to improve cardiovascular risk factors without significantly improving cardiovascular outcomes requires further investigation.

  15. A bacterial tyrosine phosphatase inhibits plant pattern recognition receptor activation.

    Science.gov (United States)

    Macho, Alberto P; Schwessinger, Benjamin; Ntoukakis, Vardis; Brutus, Alexandre; Segonzac, Cécile; Roy, Sonali; Kadota, Yasuhiro; Oh, Man-Ho; Sklenar, Jan; Derbyshire, Paul; Lozano-Durán, Rosa; Malinovsky, Frederikke Gro; Monaghan, Jacqueline; Menke, Frank L; Huber, Steven C; He, Sheng Yang; Zipfel, Cyril

    2014-03-28

    Innate immunity relies on the perception of pathogen-associated molecular patterns (PAMPs) by pattern-recognition receptors (PRRs) located on the host cell's surface. Many plant PRRs are kinases. Here, we report that the Arabidopsis receptor kinase EF-TU RECEPTOR (EFR), which perceives the elf18 peptide derived from bacterial elongation factor Tu, is activated upon ligand binding by phosphorylation on its tyrosine residues. Phosphorylation of a single tyrosine residue, Y836, is required for activation of EFR and downstream immunity to the phytopathogenic bacterium Pseudomonas syringae. A tyrosine phosphatase, HopAO1, secreted by P. syringae, reduces EFR phosphorylation and prevents subsequent immune responses. Thus, host and pathogen compete to take control of PRR tyrosine phosphorylation used to initiate antibacterial immunity.

  16. Synergistic anti-proliferative and pro-apoptotic activity of combined therapy with bortezomib, a proteasome inhibitor, with anti-epidermal growth factor receptor (EGFR) drugs in human cancer cells.

    Science.gov (United States)

    Cascone, Tina; Morelli, Maria Pia; Morgillo, Floriana; Kim, Woo-Young; Rodolico, Gabriella; Pepe, Stefano; Tortora, Giampaolo; Berrino, Liberato; Lee, Ho-Young; Heymach, John V; Ciardiello, Fortunato

    2008-09-01

    The proteasome plays a pivotal role in the turnover of regulatory transduction proteins induced by activated cell membrane growth factor receptors. The epidermal growth factor receptor (EGFR) pathway is crucial in the development and progression of human epithelial cancers. Proteasome inhibition may sensitize human cancer cell lines to EGFR inhibitors. We investigated the growth inhibitory and pro-apoptotic effects of the proteasome inhibitor bortezomib in combination with anti-EGFR drugs, such as gefitinib, vandetanib, and cetuximab in EGFR-expressing human cancer cell lines. Bortezomib determined dose-dependent growth inhibition in a nine cancer cell line panel (IC(50) values, range 6-42 nM). A significant synergistic growth inhibitory effect was observed with the combination of bortezomib and each EGFR inhibitor in all cell lines (combination index, CI, range 0.10-0.55), which was accompanied by a significant induction in apoptosis by the combined treatment with bortezomib, cetuximab and vandetanib. In HCT-116 colon cancer and A549 lung adenocarcinoma cells, bortezomib plus EGFR inhibitor treatment induced a more effective inhibition of EGFR-activated down-stream signals, including a marked suppression in activated, phosphorylated Akt (P-Akt). In contrast, overexpression of a constitutively active P-Akt protected A549 cells by cell growth inhibition and apoptosis following treatment with bortezomib and EGFR inhibitors. The combined treatment with bortezomib and EGFR inhibitors has a synergistic growth inhibitory and pro-apoptotic activity in different human cancer cells which possess a functional EGFR-dependent autocrine growth pathway through to a more efficient and sustained inhibition of Akt.

  17. Differential roles of prostaglandin E-type receptors in activation of hypoxia-inducible factor 1 by prostaglandin E1 in vascular-derived cells under non-hypoxic conditions

    Directory of Open Access Journals (Sweden)

    Kengo Suzuki

    2013-11-01

    Full Text Available Prostaglandin E1 (PGE1, known pharmaceutically as alprostadil, has vasodilatory properties and is used widely in various clinical settings. In addition to acute vasodilatory properties, PGE1 may exert beneficial effects by altering protein expression of vascular cells. PGE1 is reported to be a potent stimulator of angiogenesis via upregulation of VEGF expression, which is under the control of the transcription factor hypoxia-inducible factor 1 (HIF-1. However, the molecular mechanisms behind the phenomenon are largely unknown. In the present study, we investigated the mechanism by which PGE1 induces HIF-1 activation and VEGF gene expression in human aortic smooth muscle cells (HASMCs and human umbilical vein endothelial cells (HUVECs, both vascular-derived cells. HUVECs and HASMCs were treated with PGE1 at clinically relevant concentrations under 20% O2 conditions and HIF-1 protein expression was investigated. Expression of HIF- 1α protein and the HIF-1-downstream genes were low under 20% O2 conditions and increased in response to PGE1 treatment in both HUVECs and HASMCs in a dose- and time-dependent manner under 20% O2 conditions as comparable to exposure to 1% O2 conditions. Studies using EP-receptor-specific agonists and antagonists revealed that EP1 and EP3 are critical to PGE1-induced HIF-1 activation. In vitro vascular permeability assays using HUVECs indicated that PGE1 increased vascular permeability in HUVECs. Thus, we demonstrate that PGE1 induces HIF- 1α protein expression and HIF-1 activation under non-hypoxic conditions and also provide evidence that the activity of multiple signal transduction pathways downstream of EP1 and EP3 receptors is required for HIF-1 activation.

  18. The adipogenic acetyltransferase Tip60 targets activation function 1 of peroxisome proliferator-activated receptor gamma

    DEFF Research Database (Denmark)

    van Beekum, Olivier; Brenkman, Arjan B; Grøntved, Lars

    2008-01-01

    The transcription factor peroxisome proliferator-activated receptor gamma (PPARgamma) plays a key role in the regulation of lipid and glucose metabolism in adipocytes, by regulating their differentiation, maintenance, and function. The transcriptional activity of PPARgamma is dictated by the set ...

  19. CERAPP: Collaborative estrogen receptor activity prediction project

    DEFF Research Database (Denmark)

    Mansouri, Kamel; Abdelaziz, Ahmed; Rybacka, Aleksandra

    2016-01-01

    Background: Humans are exposed to thousands of man-made chemicals in the environment. Some chemicals mimic natural endocrine hormones and, thus, have the potential to be endocrine disruptors. Most of these chemicals have never been tested for their ability to interact with the estrogen receptor (ER......). Risk assessors need tools to prioritize chemicals for evaluation in costly in vivo tests, for instance, within the U.S. EPA Endocrine Disruptor Screening Program. oBjectives: We describe a large-scale modeling project called CERAPP (Collaborative Estrogen Receptor Activity Prediction Project...

  20. Polychlorinated Biphenyls Disrupt Hepatic Epidermal Growth Factor Receptor Signaling.

    Science.gov (United States)

    Hardesty, Josiah E; Wahlang, Banrida; Falkner, K Cameron; Clair, Heather B; Clark, Barbara J; Ceresa, Brian P; Prough, Russell A; Cave, Matthew C

    2016-07-26

    1. Polychlorinated biphenyls (PCBs) are persistent environmental pollutants that disrupt hepatic xenobiotic and intermediary metabolism, leading to metabolic syndrome and nonalcoholic steatohepatitis (NASH). 2. Since phenobarbital indirectly activates Constitutive Androstane Receptor (CAR) by antagonizing growth factor binding to the epidermal growth factor receptor (EGFR), we hypothesised that PCBs may also diminish EGFR signaling. 3. The effects of the PCB mixture Aroclor 1260 on the protein phosphorylation cascade triggered by EGFR activation were determined in murine (in vitro and in vivo) and human models (in vitro). EGFR tyrosine residue phosphorylation was decreased by PCBs in all models tested. 4. The IC50 values for Aroclor 1260 concentrations that decreased Y1173 phosphorylation of EGFR were similar in murine AML-12 and human HepG2 cells (∼2-4 μg/mL). Both dioxin and non-dioxin-like PCB congeners decreased EGFR phosphorylation in cell culture. 5. PCB treatment reduced phosphorylation of downstream EGFR effectors including Akt and mTOR, as well as other phosphoprotein targets including STAT3 and c-RAF in vivo. 6. PCBs diminish EGFR signaling in human and murine hepatocyte models and may dysregulate critical phosphoprotein regulators of energy metabolism and nutrition, providing a new mechanism of action in environmental diseases.

  1. Molecular Mechanism of Peroxisome Proliferator-Activated Receptor alpha Activation by WY14643: a New Mode of Ligand Recognition and Receptor Stabilization

    NARCIS (Netherlands)

    Bernardes, Amanda; Telles de Souza, Paulo C; Muniz, João R C; Ricci, Clarisse G; Ayers, Stephen D; Parekh, Nili M; Godoy, André S; Trivella, Daniela B B; Reinach, Peter; Webb, Paul; Skaf, Munir S; Polikarpov, Igor

    2013-01-01

    Peroxisome proliferator-activated receptors (PPARs) are members of a superfamily of nuclear transcription factors. They are involved in mediating numerous physiological effects in humans, including glucose and lipid metabolism. PPAR alpha ligands effectively treat dyslipidemia and have significant

  2. Down regulation of epidermal growth factor receptors: direct demonstration of receptor degradation in human fibroblasts

    OpenAIRE

    1984-01-01

    The metabolism of the receptor for epidermal growth factor (EGF) has been measured by labeling the receptor in vivo with radioactive amino acid precursors and then determining, by immunoprecipitation with specific anti-EGF receptor antisera, the rate of degradation of the receptor when the cells are placed in a nonradioactive medium. In human fibroblasts the rate of EGF receptor degradation (t1/2 = 10.1 h) was faster than the rate of degradation of total cell protein. When EGF was added to th...

  3. T Cell Receptor-induced Nuclear Factor κB (NF-κB) Signaling and Transcriptional Activation Are Regulated by STIM1- and Orai1-mediated Calcium Entry.

    Science.gov (United States)

    Liu, Xiaohong; Berry, Corbett T; Ruthel, Gordon; Madara, Jonathan J; MacGillivray, Katelyn; Gray, Carolyn M; Madge, Lisa A; McCorkell, Kelly A; Beiting, Daniel P; Hershberg, Uri; May, Michael J; Freedman, Bruce D

    2016-04-15

    T cell activation following antigen binding to the T cell receptor (TCR) involves the mobilization of intracellular Ca(2+) to activate the key transcription factors nuclear factor of activated T lymphocytes (NFAT) and NF-κB. The mechanism of NFAT activation by Ca(2+) has been determined. However, the role of Ca(2+) in controlling NF-κB signaling is poorly understood, and the source of Ca(2+) required for NF-κB activation is unknown. We demonstrate that TCR- but not TNF-induced NF-κB signaling upstream of IκB kinase activation absolutely requires the influx of extracellular Ca(2+) via STIM1-dependent Ca(2+) release-activated Ca(2+)/Orai channels. We further show that Ca(2+) influx controls phosphorylation of the NF-κB protein p65 on Ser-536 and that this posttranslational modification controls its nuclear localization and transcriptional activation. Notably, our data reveal that this role for Ca(2+) is entirely separate from its upstream control of IκBα degradation, thereby identifying a novel Ca(2+)-dependent distal step in TCR-induced NF-κB activation. Finally, we demonstrate that this control of distal signaling occurs via Ca(2+)-dependent PKCα-mediated phosphorylation of p65. Thus, we establish the source of Ca(2+) required for TCR-induced NF-κB activation and define a new distal Ca(2+)-dependent checkpoint in TCR-induced NF-κB signaling that has broad implications for the control of immune cell development and T cell functional specificity.

  4. The Paired-box Homeodomain Transcription Factor Pax6 Binds to the Upstream Region of the TRAP Gene Promoter and Suppresses Receptor Activator of NF-κB Ligand (RANKL)-induced Osteoclast Differentiation*

    Science.gov (United States)

    Kogawa, Masakazu; Hisatake, Koji; Atkins, Gerald J.; Findlay, David M.; Enoki, Yuichiro; Sato, Tsuyoshi; Gray, Peter C.; Kanesaki-Yatsuka, Yukiko; Anderson, Paul H.; Wada, Seiki; Kato, Naoki; Fukuda, Aya; Katayama, Shigehiro; Tsujimoto, Masafumi; Yoda, Tetsuya; Suda, Tatsuo; Okazaki, Yasushi; Matsumoto, Masahito

    2013-01-01

    Osteoclast formation is regulated by balancing between the receptor activator of nuclear factor-κB ligand (RANKL) expressed in osteoblasts and extracellular negative regulatory cytokines such as interferon-γ (IFN-γ) and interferon-β (IFN-β), which can suppress excessive bone destruction. However, relatively little is known about intrinsic negative regulatory factors in RANKL-mediated osteoclast differentiation. Here, we show the paired-box homeodomain transcription factor Pax6 acts as a negative regulator of RANKL-mediated osteoclast differentiation. Electrophoretic mobility shift and reporter assays found that Pax6 binds endogenously to the proximal region of the tartrate acid phosphatase (TRAP) gene promoter and suppresses nuclear factor of activated T cells c1 (NFATc1)-induced TRAP gene expression. Introduction of Pax6 retrovirally into bone marrow macrophages attenuates RANKL-induced osteoclast formation. Moreover, we found that the Groucho family member co-repressor Grg6 contributes to Pax6-mediated suppression of the TRAP gene expression induced by NFATc1. These results suggest that Pax6 interferes with RANKL-mediated osteoclast differentiation together with Grg6. Our results demonstrate that the Pax6 pathway constitutes a new aspect of the negative regulatory circuit of RANKL-RANK signaling in osteoclastogenesis and that the augmentation of Pax6 might therefore represent a novel target to block pathological bone resorption. PMID:23990468

  5. Attenuation of amiodarone induced lung fibrosis and phospholipidosis in hamsters, by treatment with the platelet activating factor receptor antagonist, WEB 2086

    Directory of Open Access Journals (Sweden)

    S. N. Giri

    1993-01-01

    Full Text Available Therapeutic use of amiodarone (AMD, a Class III antiarrhythmic drug is complicated by the development of lung fibrosis (LF and phospholipidosis (PL. In the present study, the effectiveness of a PAF antagonist, WEB 2086, against AMD induced LF and PL has been tested in hamsters. The animals were randomly divided into four groups: (1 saline + H2O; (2 WEB + H2O; (3 saline + AMD; and (4 WEB + AMD. Saline or WEB (10 mg/kg i.p. was given 2 days prior to intratracheal instillation of water or AMD (1.5 μmol/0.25 ml/100 g BW and thereafter daily throughout the study. Twenty-eight days after intratracheal instillation, the animals were killed and the lungs processed for various assays. The amount of lung hydroxyproline, an index of LF, in saline + H2O, WEB + H2O, saline + AMD, and WEB + AMD groups were 959 ± 46, 1035 ± 51, 1605 ± 85 and 1374 ± 69 μg/lung, respectively. Total lung PL, an index of phospholipidosis, in the corresponding groups were 8.4 ± 0.4, 8.3 ± 0.3, 11.7 ± 0.3 and 9.9 μg/lung. Lung malondialdehyde, an index of lipid peroxidation and superoxide dismutase activity in saline + H2O WEB + H2O, saline + AMD, and WEB + AMD were 93.0 ± 4.3, 93.0 ± 2.7, 138.9 ± 6.0 and 109.0 ± 3.8 nmol/lung and 359.7 ± 13.9, 394.0 ± 22.8, 497.5 ± 19.7 and 425.5 ± 4.9 units/lung, respectively. Administration of AMD alone caused significant increases in all the above indexes of lung toxicity, and treatment with WEB 2086 minimized the AMD induced toxicity as reflected by significant decreases in these indexes. Histopathological studies revealed a marked reduction in the extent and severity of lung lesions in the WEB + AMD group compared with the saline + AMD group. Treatment with WEB 2086 also reduced the acute mortality from 35% in saline + AMD group to 22% in WEB + AMD group. It was concluded that PAF is involved in the AMD induced lung fibrosis and phospholipidosis and that the PAF receptor antagonist may, therefore, be potentially useful in

  6. Prostaglandin E2 transactivates the colony-stimulating factor-1 receptor and synergizes with colony-stimulating factor-1 in the induction of macrophage migration via the mitogen-activated protein kinase ERK1/2.

    Science.gov (United States)

    Digiacomo, Graziana; Ziche, Marina; Dello Sbarba, Persio; Donnini, Sandra; Rovida, Elisabetta

    2015-06-01

    Prostaglandin E2 (PGE2), a key mediator of immunity, inflammation, and cancer, acts through 4 G-protein-coupled E-prostanoid receptors (EPs 1-4). Crosstalk between EPs and receptor tyrosine kinases also occurs. Colony-stimulating factor-1 receptor (CSF-1R) is an RTK that sustains the survival, proliferation, and motility of monocytes/macrophages, which are an essential component of innate immunity and cancer development. The aim of this study was to investigate on a possible crosstalk between EP and CSF-1R. In BAC1.2F5 and RAW264.7 murine macrophages, CSF-1 (EC₅₀ = 18.1 and 10.2 ng/ml, respectively) and PGE2 (EC₅₀ = 1.5 and 5.5 nM, respectively) promoted migration. PGE2 induced rapid CSF-1R phosphorylation that was dependent on Src family kinases (SFKs). CSF-1R inhibition reduced PGE2-elicited ERK1/2 phosphorylation and macrophage migration, indicating that CSF-1R plays a role in PGE2-mediated immunoregulation. EP4 appeared responsible for functional PGE2/CSF-1R crosstalk. Furthermore, PGE2 synergized with CSF-1 in inducing ERK1/2 phosphorylation and macrophage migration. ERK1/2 inhibition completely blocked migration induced by the combination CSF-1/PGE2. CSF-1/PGE2 functional interaction with respect to migration also occurred in bone marrow-derived murine macrophages (EC₅₀ CSF-1, 6.7 ng/ml; EC₅₀ PGE2, 16.7 nM). These results indicated that PGE2 transactivates CSF-1R and synergizes with its signaling at ERK1/2 level in promoting macrophage migration. © FASEB.

  7. Anti-cancer activity of an osthole derivative, NBM-T-BMX-OS01: targeting vascular endothelial growth factor receptor signaling and angiogenesis.

    Directory of Open Access Journals (Sweden)

    Hung-Yu Yang

    Full Text Available Angiogenesis occurs during tissue growth, development and wound healing. It is also required for tumor progression and represents a rational target for therapeutic intervention. NBM-T-BMX-OS01 (BMX, derived from the semisynthesis of osthole, an active ingredient isolated from Chinese herb Cnidium monnieri (L. Cuss., was recently shown to enhance learning and memory in rats. In this study, we characterized the anti-angiogenic activities of NBM-T-BMX-OS01 (BMX in an effort to develop novel inhibitors to suppress angiogenesis and tumor growth. BMX inhibited vascular endothelial growth factor (VEGF-induced proliferation, migration and endothelial tube formation in human umbilical endothelial cells (HUVECs. BMX also attenuated VEGF-induced microvessel sprouting from aortic rings ex vivo and reduced HCT116 colorectal cancer cells-induced angiogenesis in vivo. Moreover, BMX inhibited the phosphorylation of VEGFR2, FAK, Akt and ERK in HUVECs exposed to VEGF. BMX was also shown to inhibit HCT116 cell proliferation and to suppress the growth of subcutaneous xenografts of HCT116 cells in vivo. Taken together, this study provides evidence that BMX modulates vascular endothelial cell remodeling and leads to the inhibition of tumor angiogenesis. These results also support the role of BMX as a potential drug candidate and warrant the clinical development in the treatment of cancer.

  8. Anti-cancer activity of an osthole derivative, NBM-T-BMX-OS01: targeting vascular endothelial growth factor receptor signaling and angiogenesis.

    Science.gov (United States)

    Yang, Hung-Yu; Hsu, Ya-Fen; Chiu, Pei-Ting; Ho, Shiau-Jing; Wang, Chi-Han; Chi, Chih-Chin; Huang, Yu-Han; Lee, Cheng-Feng; Li, Ying-Shiuan; Ou, George; Hsu, Ming-Jen

    2013-01-01

    Angiogenesis occurs during tissue growth, development and wound healing. It is also required for tumor progression and represents a rational target for therapeutic intervention. NBM-T-BMX-OS01 (BMX), derived from the semisynthesis of osthole, an active ingredient isolated from Chinese herb Cnidium monnieri (L.) Cuss., was recently shown to enhance learning and memory in rats. In this study, we characterized the anti-angiogenic activities of NBM-T-BMX-OS01 (BMX) in an effort to develop novel inhibitors to suppress angiogenesis and tumor growth. BMX inhibited vascular endothelial growth factor (VEGF)-induced proliferation, migration and endothelial tube formation in human umbilical endothelial cells (HUVECs). BMX also attenuated VEGF-induced microvessel sprouting from aortic rings ex vivo and reduced HCT116 colorectal cancer cells-induced angiogenesis in vivo. Moreover, BMX inhibited the phosphorylation of VEGFR2, FAK, Akt and ERK in HUVECs exposed to VEGF. BMX was also shown to inhibit HCT116 cell proliferation and to suppress the growth of subcutaneous xenografts of HCT116 cells in vivo. Taken together, this study provides evidence that BMX modulates vascular endothelial cell remodeling and leads to the inhibition of tumor angiogenesis. These results also support the role of BMX as a potential drug candidate and warrant the clinical development in the treatment of cancer.

  9. Phenobarbital and Insulin Reciprocate Activation of the Nuclear Receptor Constitutive Androstane Receptor through the Insulin Receptor.

    Science.gov (United States)

    Yasujima, Tomoya; Saito, Kosuke; Moore, Rick; Negishi, Masahiko

    2016-05-01

    Phenobarbital (PB) antagonized insulin to inactivate the insulin receptor and attenuated the insulin receptor downstream protein kinase B (AKT)-forkhead box protein O1 and extracellular signal-regulated kinase 1/2 signals in mouse primary hepatocytes and HepG2 cells. Hepatic AKT began dephosphorylation in an early stage of PB treatment, and blood glucose levels transiently increased in both wild-type and constitutive androstane receptor (CAR) knockout (KO) mice. On the other hand, blood glucose levels increased in wild-type mice, but not KO mice, in later stages of PB treatment. As a result, PB, acting as an insulin receptor antagonist, elicited CAR-independent increases and CAR-dependent decreases of blood glucose levels at these different stages of treatment, respectively. Reciprocally, insulin activation of the insulin receptor repressed CAR activation and induction of its target CYP2B6 gene in HepG2 cells. Thus, PB and insulin cross-talk through the insulin receptor to regulate glucose and drug metabolism reciprocally.

  10. Hyperbaric oxygen activates discoidin domain receptor 2 via tumour necrosis factor-alpha and the p38 MAPK pathway to increase vascular smooth muscle cell migration through matrix metalloproteinase 2.

    Science.gov (United States)

    Shyu, Kou-Gi; Wang, Bao-Wei; Chang, Hang

    2009-04-01

    DDR2 (discoidin domain receptor 2) regulates collagen turnover mediated by SMCs (smooth muscle cells) in atherosclerosis. HBO (hyperbaric oxygen) has been used in medical practice; however, the molecular mechanism of the beneficial effects of HBO is poorly understood. Furthermore, the effect of HBO on DDR2 has not been reported previously. In the present study, we investigated the cellular and molecular mechanisms of DDR2 regulation by HBO in VSMCs (vascular SMCs). Cells were exposed to 2.5 ATA (atmosphere absolute) of oxygen in a hyperbaric chamber. DDR2 protein (3.63-fold) and mRNA (2.34-fold) expression were significantly increased after exposure to 2.5 ATA HBO for 1 h. Addition of SB203580 and p38 MAPK (mitogen-activated protein kinase) siRNA (small interfering RNA) 30 min before HBO inhibited the induction of DDR2 protein. HBO also significantly increased DNA-protein binding activity of Myc/Max. Addition of SB203580 and an anti-TNF-alpha (tumour necrosis factor-alpha) monoclonal antibody 30 min before HBO abolished the DNA-protein binding activity induced by HBO. HBO significantly increased the secretion of TNF-alpha from cultured VSMCs. Exogenous addition of TNF-alpha significantly increased DDR2 protein expression, whereas anti-TNF-alpha and anti-(TNF-alpha receptor) antibodies blocked the induction of DDR2 protein expression. HBO significantly increased VSMC migration and proliferation, whereas DDR2 siRNA inhibited the migration induced by HBO. HBO increased activated MMP2 (matrix metalloproteinase 2) protein expression, and DDR2 siRNA abolished the induction of activated MMP2 expression induced by HBO. In conclusion, HBO activates DDR2 expression in cultured rat VSMCs. HBO-induced DDR2 is mediated by TNF-alpha and at least in part through the p38 MAPK and Myc pathways.

  11. NF449 is a novel inhibitor of fibroblast growth factor receptor 3 (FGFR3) signaling active in chondrocytes and multiple myeloma cells

    NARCIS (Netherlands)

    Krejci, P.; Murakami, S.; Prochazkova, J.; Trantirek, L.; Chlebova, K.; Ouyang, Z.; Aklian, A.; Smutny, J.; Bryja, V.; Kozubik, A.; Wilcox, W.R.

    2010-01-01

    The FGFR3 receptor tyrosine kinase represents an attractive target for therapy due to its role in several human disorders including skeletal dysplasias, multiple myeloma, and cervical and bladder carcinomas. By using molecular library screening, we identified a compound named NF449 with inhibitory a

  12. The ligand-bound thyroid hormone receptor in macrophages ameliorates kidney injury via inhibition of nuclear factor-κB activities

    Science.gov (United States)

    Furuya, Fumihiko; Ishii, Toshihisa; Tamura, Shogo; Takahashi, Kazuya; Kobayashi, Hidetoshi; Ichijo, Masashi; Takizawa, Soichi; Kaneshige, Masahiro; Suzuki-Inoue, Katsue; Kitamura, Kenichiro

    2017-01-01

    In chronic kidney disease (CKD) patients, inflammation plays a pivotal role in the progression of renal fibrosis. Hypothyroidism is associated with an increased occurrence of atherosclerosis and inflammation, suggesting protective roles of thyroid hormones and their receptors against inflammatory processes. The contribution of thyroid hormone receptors to macrophage differentiation has not been well documented. Here, we focused on the endogenous thyroid hormone receptor α (TRα) in macrophages and examined the role of ligand-bound TRα in macrophage polarization-mediated anti-inflammatory effects. TRα-deficient irradiated chimeric mice showed exacerbated tubulointerstitial injury in a unilateral ureteral obstruction model. Compared with wild-type macrophages, macrophages isolated from the obstructed kidneys of mice lacking TRα displayed increased expression of proinflammatory cytokines that was accompanied by enhanced nuclear translocation of p65. Comparison of TRα-deficient bone marrow-derived macrophages with wild-type macrophages confirmed the propensity of the former cells to produce excessive IL-1β levels. Co-culture of these macrophages with renal epithelial cells induced more severe damage to the epithelial cells via the IL-1 receptor. Our findings indicate that ligand-bound TRα on macrophages plays a protective role in kidney inflammation through the inhibition of NF-κB pathways, possibly by affecting the pro- and anti-inflammatory balance that controls the development of CKD. PMID:28272516

  13. Mlc is a transcriptional activator with a key role in integrating cyclic AMP receptor protein and integration host factor regulation of leukotoxin RNA synthesis in Aggregatibacter actinomycetemcomitans

    Science.gov (United States)

    Aggregatibacter actinomycetemcomitans, a periodontal pathogen, synthesizes leukotoxin (LtxA), a protein that helps the bacterium evade the host immune response. Transcription of the ltxA operon is induced during anaerobic growth. The cAMP receptor protein (CRP) indirectly increases ltxA expression...

  14. Dendrobium moniliforme Exerts Inhibitory Effects on Both Receptor Activator of Nuclear Factor Kappa-B Ligand-Mediated Osteoclast Differentiation in Vitro and Lipopolysaccharide-Induced Bone Erosion in Vivo.

    Science.gov (United States)

    Baek, Jong Min; Kim, Ju-Young; Ahn, Sung-Jun; Cheon, Yoon-Hee; Yang, Miyoung; Oh, Jaemin; Choi, Min Kyu

    2016-03-01

    Dendrobium moniliforme (DM) is a well-known plant-derived extract that is widely used in Oriental medicine. DM and its chemical constituents have been reported to have a variety of pharmacological effects, including anti-oxidative, anti-inflammatory, and anti-tumor activities; however, no reports discuss the beneficial effects of DM on bone diseases such as osteoporosis. Thus, we investigated the relationship between DM and osteoclasts, cells that function in bone resorption. We found that DM significantly reduced receptor activator of nuclear factor kappa-B ligand (RANKL)-induced tartrate-resistant acid phosphatase (TRAP)-positive osteoclast formation; DM directly induced the down-regulation of c-Fos and nuclear factor of activated T cells c1 (NFATc1) without affecting other RANKL-dependent transduction pathways. In the later stages of osteoclast maturation, DM negatively regulated the organization of filamentous actin (F-actin), resulting in impaired bone-resorbing activity by the mature osteoclasts. In addition, micro-computed tomography (μ-CT) analysis of the murine model revealed that DM had a beneficial effect on lipopolysaccharide (LPS)-mediated bone erosion. Histological analysis showed that DM attenuated the degradation of trabecular bone matrix and formation of TRAP-positive osteoclasts in bone tissues. These results suggest that DM is a potential candidate for the treatment of metabolic bone disorders such as osteoporosis.

  15. Secreted phospholipase A2-IIA-induced a phenotype of activated microglia in BV-2 cells requires epidermal growth factor receptor transactivation and proHB-EGF shedding

    Directory of Open Access Journals (Sweden)

    Martín Rubén

    2012-07-01

    Full Text Available Abstract Background Activation of microglia, the primary component of the innate immune response in the brain, is a hallmark of neuroinflammation in neurodegenerative disorders, including Alzheimer’s disease (AD and other pathological conditions such as stroke or CNS infection. In response to a variety of insults, microglial cells produce high levels of inflammatory cytokines that are often involved in neuronal injury, and play an important role in the recognition, engulfment, and clearance of apoptotic cells and/or invading microbes. Secreted phospholipase A2-IIA (sPLA2-IIA, an enzyme that interacts with cells involved in the systemic immune/inflammatory response, has been found up-regulated in the cerebrospinal fluid and brain of AD patients. However, despite several approaches, its functions in mediating CNS inflammation remain unknown. In the present study, the role of sPLA2-IIA was examined by investigating its direct effects on microglial cells. Methods Primary and immortalized microglial cells were stimulated by sPLA2-IIA in order to characterize the cytokine-like actions of the phospholipase. The hallmarks of activated microglia analyzed include: mitogenic response, phagocytic capabilities and induction of inflammatory mediators. In addition, we studied several of the potential molecular mechanisms involved in those events. Results The direct exposure of microglial cells to sPLA2-IIA stimulated, in a time- and dose-dependent manner, their phagocytic and proliferative capabilities. sPLA2-IIA also triggered the synthesis of the inflammatory proteins COX-2 and TNFα. In addition, EGFR phosphorylation and shedding of the membrane-anchored heparin-binding EGF-like growth factor (pro-HB-EGF ectodomain, as well as a rapid activation/phosphorylation of the classical survival proteins ERK, P70S6K and rS6 were induced upon sPLA2-IIA treatment. We further demonstrated that the presence of an EGFR inhibitor (AG1478, a matrix metalloproteinase

  16. Phosphoinositide 3-kinase/Akt Pathway Mediates Fip1-like1-platelet-derived Growth Factor Receptor α-induced Cell Infiltration and Activation: Possible Molecular Mechanism for the Malignant Phenotype of Chronic Eosinophilic Leukemia

    Directory of Open Access Journals (Sweden)

    Bin Li

    2015-01-01

    Full Text Available The fip1-like1/platelet-derived growth factor receptor-α fusion gene (F/P is responsible for 14-60% cases of hypereosinophilia syndrome (HES, also known as F/P-positive chronic eosinophilic leukemia (F/P(+ CEL. The major pathogenesis of F/P(+ CEL is known to involve migration and activation of mast cells and eosinophils, leading to severe multi-organ dysfunction, but the mechanism was still unclear. Phosphoinositide 3-kinase (PI3K and serine-threonine protein kinase Akt have been reported to be targets of F/P in the F/P-promoted cell proliferation. They are extensively involved in the migration and adhesion of hematopoietic stem/progenitor cells, and also control cell invasion in some leukemias. The PI3K/Akt pathway is involved in eosinophil/neutrophil activation and infiltration; its possible role in regulating F/P induced cytotoxicity and upregulation of A4-integrin in eosinophils, and inducing eosinophil activation through controlling F/P-induced Nuclear factor-kB activity. Akt was recently shown to be stimulated by F/P, synergistically with stem cell factor, resulting in the induction of MCs migration and excessive activation. PI3K/Akt pathway is also a principal mediator of interleukin-5 (IL-5-induced signal transduction promoting eosinophil trafficking and degranulation, whereas IL-5 is a necessary cytokine for F/P-mediated CEL development. We, therefore, propose the hypothesis that the PI3K/Akt pathway might be vital downstream of F/P to induce target cell activation and tissue infiltration, resulting in the malignant phenotype seen in F/P(+ CEL.

  17. Synergistic effect of interventing insulin-like growth factor-Ⅰ receptor activation combined with anti-cancer drugs in inhibiting the proliferation of hepatocellular carcinoma cells

    Directory of Open Access Journals (Sweden)

    CAI Yin

    2016-08-01

    Full Text Available ObjectiveTo investigate the intervention of gene transcription of insulin-like growth factor-Ⅰ receptor (IGF-ⅠR and its synergistic effect with anti-cancer drugs in inhibiting the proliferation of hepatocellular carcinoma (HCC cells. MethodsThe HBV-positive HCC PLC/PRF/5 and HBV-negative Bel-7404 cells were transfected with the efficient plasmid pGPU6/GFP/Neo-IGF-ⅠR-shRNA. Fluorescent quantitative RT-PCR and Western blot were used to measure mRNA and protein expression, the Cell Counting Kit-8 was used to analyze cell proliferation, and flow cytometry and Annexin-V-PE/7-ADD were used to analyze cell cycle and apoptosis. The t-test was used for comparison of continuous data between groups, the Fisher′s exact test was used for comparison of categorical data between groups. ResultsThe efficiency of IGF-ⅠR shRNA transfection was 71% in HCC PLC/PRF/5 cells and 90% in Bel-7404 cells, and both cells showed reductions in the mRNA and protein expression of IGF-ⅠR. The intervention group showed a significant inhibition compared with the negative control group, and the 72-hour inhibition rates of Bel-7404 cells and PLC/PRF/5 cells showed significant differences between the two groups (inhibition rates of Bel-7404 cells: 615%±17%vs 112%±09%, t=5.493, P<0.05; inhibitionrates of PLC/PRF/5 cells: 639%±39%vs 95%±11%, t=19.244, P<0.001. The intervention group showed a significantly higher apoptosis rate of Bel-7404 cells than the blank control group (35.96% vs 12.16%, P<0.001 and the negative control group (3596% vs 943%, P<0.001, as well as a significantly higher apoptosis rate of PLC/PRF/5 cells than the blank control group (4484% vs 662%, P<0.001 and the negative control group (44.84% vs 4.02%, P<0.001. The co-intervention group showed significantly higher percentages of Bel-7404 cells and PLC/PRF/5 cells in G0/G1 phase than the negative control group (59.0%±1.3% vs 484%±0.8%, t=12.032, P

  18. Indoxyl Sulfate Downregulates Mas Receptor via Aryl Hydrocarbon Receptor/Nuclear Factor-kappa B, and Induces Cell Proliferation and Tissue Factor Expression in Vascular Smooth Muscle Cells.

    Science.gov (United States)

    Ng, Hwee-Yeong; Bolati, Wulaer; Lee, Chien-Te; Chien, Yu-Shu; Yisireyili, Maimaiti; Saito, Shinichi; Pei, Sung-Nan; Nishijima, Fuyuhiko; Niwa, Toshimitsu

    2016-01-01

    Angiotensin converting enzyme-related carboxypeptidase 2/angiotensin (Ang)-(1-7)/Mas receptor axis is protective in the development of chronic kidney disease and cardiovascular disease. This study is aimed at investigating whether indoxyl sulfate (IS) affects Mas receptor expression, cell proliferation and tissue factor expression in vascular smooth muscle cells, and if Ang-(1-7), an activator of Mas receptor, counteracts the IS-induced effects. IS was administered to normotensive and hypertensive rats. Human aortic smooth muscle cells (HASMCs) were cultured with IS. IS reduced the expression of Mas receptor in the aorta of normotensive and hypertensive rats. IS downregulated the Mas receptor expression in a time- and dose-dependent manner in HASMCs. Knockdown of aryl hydrocarbon receptor (AhR) and nuclear factor-kappa B (NF-x03BA;B) inhibited IS-induced downregulation of Mas receptor. Further, IS stimulated cell proliferation and tissue factor expression in HASMCs. Ang-(1-7) attenuated IS-induced cell proliferation and tissue factor expression in HASMCs. Ang-(1-7) suppressed phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and NF-x03BA;B in HASMCs. IS downregulated the expression of Mas receptor via AhR/NF-x03BA;B, and induced cell proliferation and tissue factor expression in HASMCs. Ang-(1-7) inhibited IS-induced cell proliferation and tissue factor expression by suppressing the phosphorylation of ERK1/2 and NF-x03BA;B p65. © 2016 S. Karger AG, Basel.

  19. the significance of epidermal growth factor receptor and survivin ...

    African Journals Online (AJOL)

    2013-01-01

    Jan 1, 2013 ... SURVIVIN EXPRESSION IN BLADDER CANCER TISSUE AND URINE ... Objective: To assess whether epidermal growth factor receptor (EGFR) and survivin ..... lung cancer by the FDA in 2003 (28) and is currently.

  20. Tumor necrosis factor (TNF) receptor shedding controls thresholds of innate immune activation that balance opposing TNF functions in infectious and inflammatory diseases

    DEFF Research Database (Denmark)

    Xanthoulea, Sofia; Pasparakis, Manolis; Kousteni, Stavroula

    2004-01-01

    ensues at the cost of disbalanced inflammatory reactions that lead to pathology. Mutant mice exhibit spontaneous hepatitis, enhanced susceptibility to endotoxic shock, exacerbated TNF-dependent arthritis, and experimental autoimmune encephalomyelitis. These results introduce a new concept for receptor...... shedding as a mechanism setting up thresholds of cytokine function to balance resistance and susceptibility to disease. Assessment of p55TNFR shedding may thus be of prognostic value in infectious, inflammatory, and autoimmune diseases....

  1. Peroxisome proliferators-activated receptor (PPAR) regulation in cardiac metabolism and disease

    NARCIS (Netherlands)

    el Azzouzi, H.|info:eu-repo/dai/nl/304072796

    2009-01-01

    Peroxisome proliferators-activated receptors (PPARs) are members of the nuclear receptor family of ligand activated transcription factors and consist of the three isoforms, PPAR, PPAR/ and PPAR. Considerable evidence has established the importance of PPARs in myocardial lipid homeostasis and

  2. Peroxisome proliferators-activated receptor (PPAR) regulation in cardiac metabolism and disease

    NARCIS (Netherlands)

    el Azzouzi, H.

    2009-01-01

    Peroxisome proliferators-activated receptors (PPARs) are members of the nuclear receptor family of ligand activated transcription factors and consist of the three isoforms, PPAR, PPAR/ and PPAR. Considerable evidence has established the importance of PPARs in myocardial lipid homeostasis and car

  3. Peroxisome proliferator-activated receptor alpha target genes.

    Science.gov (United States)

    Rakhshandehroo, Maryam; Knoch, Bianca; Müller, Michael; Kersten, Sander

    2010-01-01

    The peroxisome proliferator-activated receptor alpha (PPARα) is a ligand-activated transcription factor involved in the regulation of a variety of processes, ranging from inflammation and immunity to nutrient metabolism and energy homeostasis. PPARα serves as a molecular target for hypolipidemic fibrates drugs which bind the receptor with high affinity. Furthermore, PPARα binds and is activated by numerous fatty acids and fatty acid-derived compounds. PPARα governs biological processes by altering the expression of a large number of target genes. Accordingly, the specific role of PPARα is directly related to the biological function of its target genes. Here, we present an overview of the involvement of PPARα in lipid metabolism and other pathways through a detailed analysis of the different known or putative PPARα target genes. The emphasis is on gene regulation by PPARα in liver although many of the results likely apply to other organs and tissues as well.

  4. Peroxisome Proliferator-Activated Receptor Alpha Target Genes

    Directory of Open Access Journals (Sweden)

    Maryam Rakhshandehroo

    2010-01-01

    Full Text Available The peroxisome proliferator-activated receptor alpha (PPARα is a ligand-activated transcription factor involved in the regulation of a variety of processes, ranging from inflammation and immunity to nutrient metabolism and energy homeostasis. PPARα serves as a molecular target for hypolipidemic fibrates drugs which bind the receptor with high affinity. Furthermore, PPARα binds and is activated by numerous fatty acids and fatty acid-derived compounds. PPARα governs biological processes by altering the expression of a large number of target genes. Accordingly, the specific role of PPARα is directly related to the biological function of its target genes. Here, we present an overview of the involvement of PPARα in lipid metabolism and other pathways through a detailed analysis of the different known or putative PPARα target genes. The emphasis is on gene regulation by PPARα in liver although many of the results likely apply to other organs and tissues as well.

  5. Retraction: "Concurrent inhibition of NF-κB, cyclooxygenase-2, and epidermal growth factor receptor leads to greater anti-tumor activity in pancreatic cancer" by Ali et al.

    Science.gov (United States)

    2016-08-01

    The above article, published online on March 8, 2010 in Wiley Online Library (wileyonlinelibrary.com), has been retracted by agreement between the journal Editor in Chief, Gary S. Stein, and Wiley Periodicals, Inc. The retraction has been agreed following an investigation from Wayne State University involving the first author and the corresponding author that found Figures 2A, 4, 6A, and 6C to be inappropriately manipulated. REFERENCE Ali S, Banerjee S, Schaffert JM, El-Rayes BF, Philip PA, Sarkar FH. 2010. Concurrent inhibition of NF-κB, cyclooxygenase-2, and epidermal growth factor receptor leads to greater anti-tumor activity in pancreatic cancer. J Cell Biochem 110:171-181; doi: 10.1002/jcb.22523.

  6. Pro12Ala gene polymorphism in the peroxisome proliferator-activated receptor gamma as a risk factor for the onset of type 2 diabetes mellitus in the Serbian population

    Directory of Open Access Journals (Sweden)

    Šoškić Sanja

    2010-01-01

    Full Text Available The peroxisome proliferator-activated receptor gamma (PPARγ is a gene candidate for the onset of type 2 diabetes mellitus (T2DM. We investigated the association of the PPARγ Pro12Ala gene with the onset of T2DM for the first time in the Serbian population. The study population consisted of 197 controls and 163 T2DM patients. The 12Ala allele tended to be more frequent in the group of T2DM patients (0.11 compared to the control subjects (0.09. The results from this study indicate that the PPARγ2 12Ala allele presents a non-significant risk factor for T2DM development in the Serbian population.

  7. The oncogenic epidermal growth factor receptor variant Xiphophorus melanoma receptor kinase induces motility in melanocytes by modulation of focal adhesions.

    Science.gov (United States)

    Meierjohann, Svenja; Wende, Elisabeth; Kraiss, Anita; Wellbrock, Claudia; Schartl, Manfred

    2006-03-15

    One of the most prominent features of malignant melanoma is the fast generation of metastasizing cells, resulting in the poor prognosis of patients with this tumor type. For this process, cells must gain the ability to migrate. The oncogenic receptor Xmrk (Xiphophorus melanoma receptor kinase) from the Xiphophorus melanoma system is a mutationally activated version of the epidermal growth factor receptor that induces the malignant transformation of pigment cells. Here, we show that the activation of Xmrk leads to a clear increase of pigment cell motility in a fyn-dependent manner. Stimulation of Xmrk induces its interaction with the focal adhesion kinase (FAK) and the interaction of active, receptor-bound fyn with FAK. This results in changes in FAK activity and induces the modulation of stress fibers and focal adhesions. Overexpression of dominant-negative FAK shows that the activity of innate FAK and a receptor-induced focal adhesion turnover are a prerequisite for pigment cell migration. Our findings show that in our system, Xmrk is sufficient for the induction of pigment cell motility and underlines a role of the src family protein tyrosine kinase fyn in melanoma development and progression.

  8. Cellular receptors for plasminogen activators recent advances.

    Science.gov (United States)

    Ellis, V

    1997-10-01

    The generation of the broad-specificity protease plasmin by the plasminogen activators urokinase-type plasminogen activator (uPA) and tissue-type plasminogen activator (tPA) is implicated in a variety of pathophysiological processes, including vascular fibrin dissolution, extracellular matrix degradation and remodeling, and cell migration. A mechanism for the regulation of plasmin generation is through binding of the plasminogen activators to specific cellular receptors: uPA to the glycolipid-anchored membrane protein urokinase-type plasminogen activator receptor (uPAR) and tPA to a number of putative binding sites. The uPA-uPAR complex can interact with a variety of ligands, including plasminogen, vitronectin, and integrins, indicating a multifunctional role for uPAR, regulating not only efficient and spatially restricted plasmin generation but also having the potential to modulate cell adhesion and signal transduction. The cellular binding of tPA, although less well characterized, also has the capacity to regulate plasmin generation and to play a significant role in vessel-wall biology. (Trends Cardiovasc Med 1997;7:227-234). © 1997, Elsevier Science Inc.

  9. Activation of adenosine A2A receptors by polydeoxyribonucleotide increases vascular endothelial growth factor and protects against testicular damage induced by experimental varicocele in rats.

    Science.gov (United States)

    Minutoli, Letteria; Arena, Salvatore; Bonvissuto, Giulio; Bitto, Alessandra; Polito, Francesca; Irrera, Natasha; Arena, Francesco; Fragalà, Eugenia; Romeo, Carmelo; Nicotina, Piero Antonio; Fazzari, Carmine; Marini, Herbert; Implatini, Alessandra; Grimaldi, Silvia; Cantone, Noemi; Di Benedetto, Vincenzo; Squadrito, Francesco; Altavilla, Domenica; Morgia, Giuseppe

    2011-03-15

    In rat experimental varicocele, polydeoxyribonucleotide (PDRN) induces vascular endothelial growth factor (VEGF) production, thereby enhancing testicular function. This may point to a new therapeutic approach in human varicocele.

  10. Association of coatomer proteins with the beta-receptor for platelet-derived growth factor

    DEFF Research Database (Denmark)

    Hansen, Klaus; Rönnstrand, L; Rorsman, C

    1997-01-01

    of intracellular vesicle transport. In order to explore the functional significance of the interaction between alpha- and beta'-COP and the PDGF receptor, a receptor mutant was made in which the conserved histidine residue 928 was mutated to an alanine residue. The mutant receptor, which was unable to bind alpha......The nonreceptor tyrosine kinase Src binds to and is activated by the beta-receptor for platelet-derived growth factor (PDGF). The interaction leads to Src phosphorylation of Tyr934 in the kinase domain of the receptor. In the course of the functional characterization of this phosphorylation, we...... noticed that components of 136 and 97 kDa bound to a peptide from this region of the receptor in a phosphorylation-independent manner. These components have now been purified and identified as alpha- and beta'-coatomer proteins (COPs), respectively. COPs are a family of proteins involved in the regulation...

  11. Glucocorticoid receptor and nuclear factor kappa-b affect three-dimensional chromatin organization

    NARCIS (Netherlands)

    Kuznetsova, T.; Wang, S.Y.; Rao, N.A.; Mandoli, A.; Martens, J.H.; Rother, N; Aartse, A.; Groh, L.; Janssen-Megens, E.M.; Li, G.; Ruan, Y.; Logie, C.; Stunnenberg, H.G.

    2015-01-01

    BACKGROUND: The impact of signal-dependent transcription factors, such as glucocorticoid receptor and nuclear factor kappa-b, on the three-dimensional organization of chromatin remains a topic of discussion. The possible scenarios range from remodeling of higher order chromatin architecture by activ

  12. Pharmacological targeting of the KIT growth factor receptor: a therapeutic consideration for mast cell disorders

    DEFF Research Database (Denmark)

    Jensen, Bettina Margrethe; Akin, C; Gilfillan, A M

    2008-01-01

    KIT is a member of the tyrosine kinase family of growth factor receptors which is expressed on a variety of haematopoietic cells including mast cells. Stem cell factor (SCF)-dependent activation of KIT is critical for mast cell homeostasis and function. However, when KIT is inappropriately activa...

  13. Activation of Penile Proadipogenic Peroxisome Proliferator-Activated Receptor with an Estrogen: Interaction with Estrogen Receptor Alpha during Postnatal Development

    Directory of Open Access Journals (Sweden)

    Mahmoud M. Mansour

    2008-01-01

    Full Text Available Exposure to the estrogen receptor alpha (ER ligand diethylstilbesterol (DES between neonatal days 2 to 12 induces penile adipogenesis and adult infertility in rats. The objective of this study was to investigate the in vivo interaction between DES-activated ER and the proadipogenic transcription factor peroxisome proliferator-activated receptor gamma (PPAR. Transcripts for PPARs , , and and 1a splice variant were detected in Sprague-Dawley normal rat penis with PPAR predominating. In addition, PPAR1b and PPAR2 were newly induced by DES. The PPAR transcripts were significantly upregulated with DES and reduced by antiestrogen ICI 182, 780. At the cellular level, PPAR protein was detected in urethral transitional epithelium and stromal, endothelial, neuronal, and smooth muscular cells. Treatment with DES activated ER and induced adipocyte differentiation in corpus cavernosum penis. Those adipocytes exhibited strong nuclear PPAR expression. These results suggest a biological overlap between PPAR and ER and highlight a mechanism for endocrine disruption.

  14. Identification of prostaglandin E2 receptor subtype 2 as a receptor activated by OxPAPC.

    Science.gov (United States)

    Li, Rongsong; Mouillesseaux, Kevin P; Montoya, Dennis; Cruz, Daniel; Gharavi, Navid; Dun, Martin; Koroniak, Lukasz; Berliner, Judith A

    2006-03-17

    Oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (OxPAPC), which has been shown to accumulate in atherosclerotic lesions and other sites of chronic inflammation, activates endothelial cells (EC) to bind monocytes by activation of endothelial beta1 integrin and subsequent deposition of fibronectin on the apical surface. Our previous studies suggest this function of OxPAPC is mediated via a Gs protein-coupled receptor (GPCR). PEIPC (1-palmitoyl-2-epoxyisoprostane E2-sn-glycero-3-phosphorylcholine) is the most active lipid in OxPAPC that activates this pathway. We screened a number of candidate GPCRs for their interaction with OxPAPC and PEIPC, using a reporter gene assay; we identified prostaglandin E2 receptor EP2 and prostaglandin D2 receptor DP as responsive to OxPAPC. We focused on EP2, which is expressed in ECs, monocytes, and macrophages. OxPAPC component PEIPC, but not POVPC, activated EP2 with an EC50 of 108.6 nmol/L. OxPAPC and PEIPC were also able to compete with PGE2 for binding to EP2 in a ligand-binding assay. The EP2 specific agonist butaprost was shown to mimic the effect of OxPAPC on the activation of beta1 integrin and the stimulation of monocyte binding to endothelial cells. Butaprost also mimicked the effect of OxPAPC on the regulation of tumor necrosis factor-alpha and interleukin-10 in monocyte-derived cells. EP2 antagonist AH6809 blocked the activation of EP2 by OxPAPC in HEK293 cells and blocked the interleukin-10 response to PEIPC in monocytic THP-1 cells. These results suggest that EP2 functions as a receptor for OxPAPC and PEIPC, either as the phospholipid ester or the released fatty acid, in both endothelial cells and macrophages.

  15. Williams syndrome transcription factor (WSTF) acts as an activator of estrogen receptor signaling in breast cancer cells and the effect can be abrogated by 1α,25-dihydroxyvitamin D3

    DEFF Research Database (Denmark)

    Lundqvist, Johan; Kirkegaard, Tove; Laenkholm, Anne Vibeke

    2017-01-01

    -regulates the expression of the CYP19A1 gene, encoding the aromatase enzyme that catalyzes the synthesis of estradiol. Furthermore, 1α,25-dihydroxyvitamin D3 has also been reported to down-regulate the expression of estrogen receptor α (ERα), the main mediator of ER signaling.This study reports a novel transcription...... factor critical to 1α,25-dihydroxyvitamin D3-mediated regulation of estrogenic signaling in MCF-7 breast cancer cells. We have investigated the molecular mechanisms for the 1α,25-dihydroxyvitamin D3-mediated down-regulation of CYP19A1 and ERα gene expression in human MCF-7 breast cancer cells and found...... that Williams syndrome transcription factor (WSTF) plays a key role by binding to the promoters of CYP19A1 and ERα. Although sometimes reported as an inhibitor of gene expression, we found that WSTF acts as an activator of the promoter activity of both CYP19A1 and ERα. Silencing of WSTF by siRNA transfection...

  16. RNA Interference of Interferon Regulatory Factor-1 Gene Expression in THP-1 Cell Line Leads to Toll-Like Receptor-4 Overexpression/Activation As Well As Up-modulation of Annexin-II

    Directory of Open Access Journals (Sweden)

    Christos I. Maratheftis

    2007-12-01

    Full Text Available Interferon regulatory factor-1 (IRF-1 is a candidate transcription factor for the regulation of the Toll-like receptor-4 (TLR-4 gene. Using a small interfering RNAbased (siRNA process to silence IRF-1 gene expression in the leukemic monocytic cell line THP-1, we investigated whether such a modulation would alter TLR-4 expression and activation status in these cells. The siIRF-1 cells expressed elevated levels of TLR-4 mRNA and protein compared to controls by 90% and 77%, respectively. ICAM.1 protein expression and apoptosis levels were increased by 8.35- and 4.25-fold, respectively. The siIRF-1 cells overexpressed Bax mRNA compared to controls. Proteomic analysis revealed upmodulation of the Annexin-II protein in siIRF-1 THP-1 cells. Myelodysplastic syndrome (MDS patients with an absence of full-length IRF-1 mRNA also overexpressed Annexin-II. It is plausible that this overexpression may lead to the activation of TLR-4 contributing to the increased apoptosis characterizing MDS.

  17. Toluene diisocyanate (TDI) induces production of inflammatory cytokines and chemokines by bronchial epithelial cells via the epidermal growth factor receptor and p38 mitogen-activated protein kinase pathways.

    Science.gov (United States)

    Ogawa, Hirohisa; Inoue, Shizuka; Ogushi, Fumitaka; Ogura, Hideo; Nakamura, Yoichi

    2006-01-01

    Toluene diisocyanate (TDI) is known as one of causes of occupational asthma and hypersensitivity pneumonitis. To investigate the stimulatory effect on bronchial epithelial cells in response to TDI, the authors examined production of cytokines by the bronchial epithelial cell line BEAS-2B and intercellular signal transduction stimulated by TDI-human serum albumin (HSA) conjugate. The production of interleukin (IL)-8, granulocyte-macrophage colony-stimulating factor (GM-CSF), and regulated on activation normal T cell expressed and secreted (RANTES) from the bronchial epithelial cells were augmented by the TDI-HSA conjugate. Extracellular signal-regulated kinase (Erk) 1/2 and p38 mitogen-activated protein kinase (MAPK) were phosphorylated by the TDI-HSA conjugate. AG1478, SB203580, and dexamethasone prevented augmentation of these cytokine production. TDI-HSA conjugate did not augment release of epidermal growth factor (EGF) ligands from BEAS-2B. These results suggest that TDI directly induces production of proinflammatory cytokines and chemokines through p38 MAPK and EGF receptor (EGFR)-Erk pathway without an autocrine mechanism. Thus, TDI was shown to have a stimulatory effect on bronchial epithelial cells, suggesting the potent role of bronchial epithelial cells in TDI-induced asthma.

  18. Regulation of Liver Energy Balance by the Nuclear Receptors Farnesoid X Receptor and Peroxisome Proliferator Activated Receptor α.

    Science.gov (United States)

    Kim, Kang Ho; Moore, David D

    2017-01-01

    The liver undergoes major changes in substrate utilization and metabolic output over the daily feeding and fasting cycle. These changes occur acutely in response to hormones such as insulin and glucagon, with rapid changes in signaling pathways mediated by protein phosphorylation and other post-translational modifications. They are also reflected in chronic alterations in gene expression in response to nutrient-sensitive transcription factors. Among these, the nuclear receptors farnesoid X receptor (FXR) and peroxisome proliferator activated receptor α (PPARα) provide an intriguing, coordinated response to maintain energy balance in the liver. FXR is activated in the fed state by bile acids returning to the liver, while PPARα is activated in the fasted state in response to the free fatty acids produced by adipocyte lipolysis or possibly other signals. Key Messages: Previous studies indicate that FXR and PPARα have opposing effects on each other's primary targets in key metabolic pathways including gluconeogenesis. Our more recent work shows that these 2 nuclear receptors coordinately regulate autophagy: FXR suppresses this pathway of nutrient and energy recovery, while PPARα activates it. Another recent study indicates that FXR activates the complement and coagulation pathway, while earlier studies identify this as a negative target of PPARα. Since secretion is a very energy- and nutrient-intensive process for hepatocytes, it is possible that FXR licenses it in the nutrient-rich fed state, while PPARα represses it to spare resources in the fasted state. Energy balance is a potential connection linking FXR and PPARα regulation of autophagy and secretion, 2 seemingly unrelated aspects of hepatocyte function. FXR and PPARα act coordinately to promote energy balance and homeostasis in the liver by regulating autophagy and potentially protein secretion. It is quite likely that their impact extends to additional pathways relevant to hepatic energy balance, and

  19. Targeted deletion of murine CEACAM 1 activates PI3K-Akt signaling and contributes to the expression of (Pro)renin receptor via CREB family and NF-κB transcription factors.

    Science.gov (United States)

    Huang, Jiqian; Ledford, Kelly J; Pitkin, William B; Russo, Lucia; Najjar, Sonia M; Siragy, Helmy M

    2013-08-01

    The carcinoembryonic antigen-related cell adhesion molecule 1 regulates insulin sensitivity by promoting hepatic insulin clearance. Mice bearing a null mutation of Ceacam1 gene (Cc1(-/-)) develop impaired insulin clearance followed by hyperinsulinemia and insulin resistance, in addition to visceral obesity and increased plasma fatty acids. Because insulin resistance is associated with increased blood pressure, we investigated whether they develop higher blood pressure with activated renal renin-angiotensin system and whether this is mediated, in part, by the upregulation of renal (pro)renin receptor (PRR) expression. Compared with age-matched wild-type littermates, Cc1(-/-) mice exhibited increased blood pressure with increased activation of renal renin-angiotensin systems and renal PRR expression. Cytoplasmic and nuclear immunostaining of phospho-PI3K p85α and phospho-Akt was enhanced in the kidney of Cc1(-/-) mice. In murine renal inner medullary collecting duct epithelial cells with lentiviral-mediated small hairpin RNA knockdown of carcinoembryonic antigen-related cell adhesion molecule 1, PRR expression was upregulated and phosphorylation of PI3K (Tyr508), Akt (Ser473), NF-κB p65 (Ser276), cAMP response element-binding protein/activated transcription factor (ATF)-1 (Ser133), and ATF-2 (Thr71) was enhanced. Inhibiting PI3K with LY294002 or Akt with Akt inhibitor VIII attenuated PRR expression. In conclusion, global null deletion of Ceacam1 caused an increase in blood pressure with increased renin-angiotensin system activation together with upregulation of PRR via PI3K-Akt activation of cAMP response element-binding protein 1, ATF-1, ATF-2, and NF-κB p65 transcription factors.

  20. Time-dependent effect of orchidectomy on vascular nitric oxide and thromboxane A2 release. Functional implications to control cell proliferation through activation of the epidermal growth factor receptor.

    Directory of Open Access Journals (Sweden)

    Marta del Campo

    Full Text Available This study analyzes whether the release of nitric oxide (NO and thromboxane A2 (TXA2 depends on the time lapsed since gonadal function is lost, and their correlation with the proliferation of vascular smooth muscle cells (VSMC mediated by the epidermal growth factor receptor (EGFR. For this purpose, aortic and mesenteric artery segments from control and 6-weeks or 5-months orchidectomized rats were used to measure NO and TXA2 release. The results showed that the basal and acetylcholine (ACh-induced NO release were decreased 6 weeks post-orchidectomy both in aorta and mesenteric artery, but were recovered 5 months thereafter up to levels similar to those found in arteries from control rats. The basal and ACh-induced TXA2 release increased in aorta and mesenteric artery 6 weeks post-orchidectomy, and was maintained at high levels 5 months thereafter. Since we previously observed that orchidectomy, which decreased testosterone level, enlarged the muscular layer of mesenteric arteries, the effect of testosterone on VSMC proliferation was analyzed. The results showed that treatment of cultured VSMC with testosterone downregulated mitogenic signaling pathways initiated by the ligand-dependent activation of the EGFR. In contrast, the EGFR pathways were constitutively active in mesenteric arteries of long-term orchidectomized rats. Thus, the exposure of mesenteric arteries from control rats to epidermal growth factor (EGF induced the activation of EGFR signaling pathways. However, the addition of EGF to arteries from orchidectomized rats failed to induce a further activation of these pathways. In conclusion, this study shows that the release of NO depends on the time lapsed since the gonadal function is lost, while the release of TXA2 is already increased after short periods post-orchidectomy. The alterations in these signaling molecules could contribute to the constitutive activation of the EGFR and its downstream signaling pathways after long period

  1. Time-dependent effect of orchidectomy on vascular nitric oxide and thromboxane A2 release. Functional implications to control cell proliferation through activation of the epidermal growth factor receptor.

    Science.gov (United States)

    del Campo, Marta; Sagredo, Ana; del Campo, Lara; Villalobo, Antonio; Ferrer, Mercedes

    2014-01-01

    This study analyzes whether the release of nitric oxide (NO) and thromboxane A2 (TXA2) depends on the time lapsed since gonadal function is lost, and their correlation with the proliferation of vascular smooth muscle cells (VSMC) mediated by the epidermal growth factor receptor (EGFR). For this purpose, aortic and mesenteric artery segments from control and 6-weeks or 5-months orchidectomized rats were used to measure NO and TXA2 release. The results showed that the basal and acetylcholine (ACh)-induced NO release were decreased 6 weeks post-orchidectomy both in aorta and mesenteric artery, but were recovered 5 months thereafter up to levels similar to those found in arteries from control rats. The basal and ACh-induced TXA2 release increased in aorta and mesenteric artery 6 weeks post-orchidectomy, and was maintained at high levels 5 months thereafter. Since we previously observed that orchidectomy, which decreased testosterone level, enlarged the muscular layer of mesenteric arteries, the effect of testosterone on VSMC proliferation was analyzed. The results showed that treatment of cultured VSMC with testosterone downregulated mitogenic signaling pathways initiated by the ligand-dependent activation of the EGFR. In contrast, the EGFR pathways were constitutively active in mesenteric arteries of long-term orchidectomized rats. Thus, the exposure of mesenteric arteries from control rats to epidermal growth factor (EGF) induced the activation of EGFR signaling pathways. However, the addition of EGF to arteries from orchidectomized rats failed to induce a further activation of these pathways. In conclusion, this study shows that the release of NO depends on the time lapsed since the gonadal function is lost, while the release of TXA2 is already increased after short periods post-orchidectomy. The alterations in these signaling molecules could contribute to the constitutive activation of the EGFR and its downstream signaling pathways after long period post

  2. 17-Beta-estradiol inhibits transforming growth factor-beta signaling and function in breast cancer cells via activation of extracellular signal-regulated kinase through the G protein-coupled receptor 30.

    Science.gov (United States)

    Kleuser, Burkhard; Malek, Daniela; Gust, Ronald; Pertz, Heinz H; Potteck, Henrik

    2008-12-01

    Breast cancer development and breast cancer progression involves the deregulation of growth factors leading to uncontrolled cellular proliferation, invasion and metastasis. Transforming growth factor (TGF)-beta plays a crucial role in breast cancer because it has the potential to act as either a tumor suppressor or a pro-oncogenic chemokine. A cross-communication between the TGF-beta signaling network and estrogens has been postulated, which is important for breast tumorigenesis. Here, we provide evidence that inhibition of TGF-beta signaling is associated with a rapid estrogen-dependent nongenomic action. Moreover, we were able to demonstrate that estrogens disrupt the TGF-beta signaling network as well as TGF-beta functions in breast cancer cells via the G protein-coupled receptor 30 (GPR30). Silencing of GPR30 in MCF-7 cells completely reduced the ability of 17-beta-estradiol (E2) to inhibit the TGF-beta pathway. Likewise, in GPR30-deficient MDA-MB-231 breast cancer cells, E2 achieved the ability to suppress TGF-beta signaling only after transfection with GPR30-encoding plasmids. It is most interesting that the antiestrogen fulvestrant (ICI 182,780), which possesses agonistic activity at the GPR30, also diminished TGF-beta signaling. Further experiments attempted to characterize the molecular mechanism by which activated GPR30 inhibits the TGF-beta pathway. Our results indicate that GPR30 induces the stimulation of the mitogen-activated protein kinases (MAPKs), which interferes with the activation of Smad proteins. Inhibition of MAPK activity prevented the ability of E2 from suppressing TGF-beta signaling. These findings are of great clinical relevance, because down-regulation of TGF-beta signaling is associated with the development of breast cancer resistance in response to antiestrogens.

  3. Production of two hemopoietic growth factors is differentially regulated in single T lymphocytes activated with an anti-T cell receptor antibody

    DEFF Research Database (Denmark)

    Kelso, A; Owens, T

    1988-01-01

    by micromanipulation into wells coated with the monoclonal anti-T cell receptor antibody F23.1, up to 90% of cells produced CSF as detected by CSF-dependent hemopoietic cell lines. Production occurred in the absence of proliferation and did not require the addition of accessory cells or IL-2. Both the frequency of CSF......-producing cells and the average production per positive cell depended on the density of the immobilized stimulating ligand, indicating that the response of each cell is not an all-or-none phenomenon but varies with the strength of stimulation. Individual cells of the clone varied over a 100-fold range...... based since such cells could give rise to progeny that synthesized multi-CSF. These results suggest that the synthesis of these two lymphokines can be differentially regulated at the level of the single cell....

  4. Similar activation of signal transduction pathways by the herpesvirus-encoded chemokine receptors US28 and ORF74

    DEFF Research Database (Denmark)

    McLean, Katherine A; Holst, Peter J; Martini, Lene;

    2004-01-01

    The virally encoded chemokine receptors US28 from human cytomegalovirus and ORF74 from human herpesvirus 8 are both constitutively active. We show that both receptors constitutively activate the transcription factors nuclear factor of activated T cells (NFAT) and cAMP response element binding pro...

  5. Activated human neutrophils release hepatocyte growth factor/scatter factor.

    LENUS (Irish Health Repository)

    McCourt, M

    2012-02-03

    BACKGROUND: Hepatocyte growth factor or scatter factor (HGF\\/SF) is a pleiotropic cytokine that has potent angiogenic properties. We have previously demonstrated that neutrophils (PMN) are directly angiogenic by releasing vascular endothelial growth factor (VEGF). We hypothesized that the acute inflammatory response can stimulate PMN to release HGF. AIMS: To examine the effects of inflammatory mediators on PMN HGF release and the effect of recombinant human HGF (rhHGF) on PMN adhesion receptor expression and PMN VEGF release. METHODS: In the first experiment, PMN were isolated from healthy volunteers and stimulated with tumour necrosis factor-alpha (TNF-alpha), lipopolysaccharide (LPS), interleukin-8 (IL-8), and formyl methionyl-leucyl-phenylalanine (fMLP). Culture supernatants were assayed for HGF using ELISA. In the second experiment, PMN were lysed to measure total HGF release and HGF expression in the PMN was detected by Western immunoblotting. Finally, PMN were stimulated with rhHGF. PMN CD 11a, CD 11b, and CD 18 receptor expression and VEGF release was measured using flow cytometry and ELISA respectively. RESULTS: TNF-alpha, LPS and fMLP stimulation resulted in significantly increased release of PMN HGF (755+\\/-216, 484+\\/-221 and 565+\\/-278 pg\\/ml, respectively) compared to controls (118+\\/-42 pg\\/ml). IL-8 had no effect. Total HGF release following cell lysis and Western blot suggests that HGF is released from intracellular stores. Recombinant human HGF did not alter PMN adhesion receptor expression and had no effect on PMN VEGF release. CONCLUSIONS: This study demonstrates that pro-inflammatory mediators can stimulate HGF release from a PMN intracellular store and that activated PMN in addition to secreting VEGF have further angiogenic potential by releasing HGF.

  6. Glucocorticoids and atrial natriuretic factor receptors on vascular smooth muscle.

    Science.gov (United States)

    Yasunari, K; Kohno, M; Murakawa, K; Yokokawa, K; Takeda, T

    1990-11-01

    The effect of glucocorticoids on the atrial natriuretic factor (ANF)-mediated formation of cyclic guanosine monophosphate (cGMP) by intact vascular smooth muscle cells (VSMC) was studied in rats. Cultured VSMC were obtained from the renal arteries of 14-week-old Wistar rats by the explant method. Micromolar concentrations of dexamethasone, given as pretreatment for 48 hours, suppressed the ANF-mediated response. The dexamethasone-induced suppression was detectable at 6 hours and reached a maximum 24 hours after administration in a dose-dependent manner. Inhibitors of protein synthesis blocked this effect of the glucocorticoid. The basal activity of guanylate cyclase in the dexamethasone-treated cells was lower than in the control cells. Other steroids having glucocorticoid action mimicked this suppression of the ANF-mediated response. This suppression was blocked by a glucocorticoid receptor antagonist. The results suggest that glucocorticoids suppress ANF-mediated cGMP formation by VSMC through glucocorticoid type II receptors and the induction of protein synthesis. Suppression of the ANF-mediated response may play a role in glucocorticoid-induced hypertension.

  7. Exercise reduces adipose tissue via cannabinoid receptor type 1 which is regulated by peroxisome proliferator-activated receptor-delta

    DEFF Research Database (Denmark)

    Yan, Zhen Cheng; Liu, Dao Yan; Zhang, Li Li

    2007-01-01

    Obesity is one major cardiovascular risk factor. We tested effects of endurance exercise on cannabinoid receptor type 1 (CB1) and peroxisome proliferator-activated receptor-delta (PPAR-delta)-dependent pathways in adipose tissue. Male Wistar rats were randomly assigned to standard laboratory chow...... or a high-fat diet without and with regular endurance exercise. Exercise in rats on high-fat diet significantly reduced visceral fat mass, blood pressure, and adipocyte size (each p......Obesity is one major cardiovascular risk factor. We tested effects of endurance exercise on cannabinoid receptor type 1 (CB1) and peroxisome proliferator-activated receptor-delta (PPAR-delta)-dependent pathways in adipose tissue. Male Wistar rats were randomly assigned to standard laboratory chow...

  8. [Peroxisome proliferator-activated receptors (PPAR). Antiproliferative properties].

    Science.gov (United States)

    Hojka, Anna; Rapak, Andrzej

    2011-06-21

    Peroxisome proliferator-activated receptors (PPAR) are transcription factors that belong to the hormone nuclear receptor superfamily. Their main role is control of fatty acid metabolism and to maintain glucose homeostasis. Isotype γ of PPAR can also be implicated in proliferation and cellular differentiation of both normal and cancer cells. Compounds that are PPARγ ligands have a negative influence on cancer cells and can induce apoptosis, inhibit proliferation or induce cellular differentiation of these cells. This review summarizes general information about PPAR and focuses on anticancer activities of PPARγ ligands and their use in combined therapy. Combination treatment using PPARγ ligands and other agents, especially retinoids and specific kinase inhibitors, may be an effective strategy for chemoprevention and treatment of some cancers.

  9. Expression of Human Vascular Endothelial Growth Factor Receptor Flt-1 Extracellular Domain 1-3 Loop cDNA in Pichia pastoris, Purification of the Expressed Product and Detection of Its Biological Activity

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective To express human vascular endothelial growth factor receptor Flt-1 extracellular domain 1-3 loop cDNA in Pichia. Pastroris, and to purify the expressed product and detect its biological activity. Methods By inserting human Flt-1 (1-3 loop) cDNA coding 316 amino acid residues into Pichia pastoris expression vector pPIC9K containing AOX1 promoter and the sequences of α secreting signal peptides, a recombinant expression plasmid pPIC9K/Flt-1 (1-3) was constructed and transformed to yeast host strain GS115, then His+ Muts phenotype transformant was screened out and cultured in flasks, and Flt-1 (1-3) was expressed under the induction of 1% methanol. Results SDS-PAGE showed that after being induced with 1% methanol for 4d, the expressed product existed in supernatant in the form of soluble molecule and contained 60% of total protein expressed. Western blot showed good antigenicity and specificity of expressed product. After being purified by CM-Sepharose FF and Sephacryl S-100 chromatography, the purity of the expressed product reached above 90%. Biological assay proved that the expressed product could bind to hVEGF165 and inhibit the proliferation of HUVEC stimulated by hVEGF165. Conclusion Human vascular endothelial growth factor receptor Flt-1 extracellular domain 1-3 loop was successfully expressed. The study lays a foundation for further application of the expressed product in the treatment of vasoformation related diseases, such as tumor and diabetic retinopathy.

  10. Corticotropin-releasing factor receptors and stress-related alterations of gut motor function.

    OpenAIRE

    2007-01-01

    International audience; Over the past few decades, corticotropin-releasing factor (CRF) signaling pathways have been shown to be the main coordinators of the endocrine, behavioral, and immune responses to stress. Emerging evidence also links the activation of CRF receptors type 1 and type 2 with stress-related alterations of gut motor function. Here, we review the role of CRF receptors in both the brain and the gut as part of key mechanisms through which various stressors impact propulsive ac...

  11. Protease-activated receptor-2 induces myofibroblast differentiation and tissue factor up-regulation during bleomycin-induced lung injury: Potential role in pulmonary fibrosis

    NARCIS (Netherlands)

    K. Borensztajn (Keren); P. Bresser (Paul); C.M. van der Loos (Chris); I. Bot (Ilze); B. van den Blink (Bernt); M.A. den Bakker (Michael); J. Daalhuisen (Joost); A.P. Groot (Angelique); M.P. Peppelenbosch (Maikel); J. von der Thusen (Jan); C.A. Spek (Arnold)

    2010-01-01

    textabstractIdiopathic pulmonary fibrosis constitutes the most devastating form of fibrotic lung disorders and remains refractory to current therapies. The coagulation cascade is frequently activated during pulmonary fibrosis, but this observation has so far resisted a mechanistic explanation. Recen

  12. An antagonist of the platelet-activating factor receptor inhibits adherence of both nontypeable Haemophilus influenzae and Streptococcus pneumoniae to cultured human bronchial epithelial cells exposed to cigarette smoke

    Directory of Open Access Journals (Sweden)

    Shukla SD

    2016-07-01

    Full Text Available Shakti D Shukla,1,* Rory L Fairbairn,1,* David A Gell,1 Roger D Latham,1 Sukhwinder S Sohal,1,2 Eugene H Walters,1 Ronan F O’Toole11Breathe Well Centre, School of Medicine, Faculty of Health, University of Tasmania, Hobart, TAS, Australia; 2School of Health Sciences, Faculty of Health, University of Tasmania, Launceston, TAS, Australia*These authors contributed equally to this workBackground: COPD is emerging as the third largest cause of human mortality worldwide after heart disease and stroke. Tobacco smoking, the primary risk factor for the development of COPD, induces increased expression of platelet-activating factor receptor (PAFr in the lung epithelium. Nontypeable Haemophilus influenzae (NTHi and Streptococcus pneumoniae adhere to PAFr on the luminal surface of human respiratory tract epithelial cells.Objective: To investigate PAFr as a potential drug target for the prevention of infections caused by the main bacterial drivers of acute exacerbations in COPD patients, NTHi and S. pneumoniae.Methods: Human bronchial epithelial BEAS-2B cells were exposed to cigarette smoke extract (CSE. PAFr expression levels were determined using immunocytochemistry and quantitative polymerase chain reaction. The epithelial cells were challenged with either NTHi or S. pneumoniae labeled with fluorescein isothiocyanate, and bacterial adhesion was measured using immunofluorescence. The effect of a well-evaluated antagonist of PAFr, WEB-2086, on binding of the bacterial pathogens to BEAS-2B cells was then assessed. In silico studies of the tertiary structure of PAFr and the binding pocket for PAF and its antagonist WEB-2086 were undertaken.Results: PAFr expression by bronchial epithelial cells was upregulated by CSE, and significantly associated with increased bacterial adhesion. WEB-2086 reduced the epithelial adhesion by both NTHi and S. pneumoniae to levels observed for non-CSE-exposed cells. Furthermore, it was nontoxic toward the bronchial epithelial

  13. Gi proteins regulate adenylyl cyclase activity independent of receptor activation.

    Science.gov (United States)

    Melsom, Caroline Bull; Ørstavik, Øivind; Osnes, Jan-Bjørn; Skomedal, Tor; Levy, Finn Olav; Krobert, Kurt Allen

    2014-01-01

    Despite the view that only β2- as opposed to β1-adrenoceptors (βARs) couple to G(i), some data indicate that the β1AR-evoked inotropic response is also influenced by the inhibition of Gi. Therefore, we wanted to determine if Gi exerts tonic receptor-independent inhibition upon basal adenylyl cyclase (AC) activity in cardiomyocytes. We used the Gs-selective (R,R)- and the Gs- and G(i)-activating (R,S)-fenoterol to selectively activate β2ARs (β1AR blockade present) in combination with Gi inactivation with pertussis toxin (PTX). We also determined the effect of PTX upon basal and forskolin-mediated responses. Contractility was measured ex vivo in left ventricular strips and cAMP accumulation was measured in isolated ventricular cardiomyocytes from adult Wistar rats. PTX amplified both the (R,R)- and (R,S)-fenoterol-evoked maximal inotropic response and concentration-dependent increases in cAMP accumulation. The EC50 values of fenoterol matched published binding affinities. The PTX enhancement of the Gs-selective (R,R)-fenoterol-mediated responses suggests that Gi regulates AC activity independent of receptor coupling to Gi protein. Consistent with this hypothesis, forskolin-evoked cAMP accumulation was increased and inotropic responses to forskolin were potentiated by PTX treatment. In non-PTX-treated tissue, phosphodiesterase (PDE) 3 and 4 inhibition or removal of either constitutive muscarinic receptor activation of Gi with atropine or removal of constitutive adenosine receptor activation with CGS 15943 had no effect upon contractility. However, in PTX-treated tissue, PDE3 and 4 inhibition alone increased basal levels of cAMP and accordingly evoked a large inotropic response. Together, these data indicate that Gi exerts intrinsic receptor-independent inhibitory activity upon AC. We propose that PTX treatment shifts the balance of intrinsic G(i) and Gs activity upon AC towards Gs, enhancing the effect of all cAMP-mediated inotropic agents.

  14. Effect of lifestyle interventions with or without metformin therapy on serum levels of osteoprotegerin and receptor activator of nuclear factor kappa B ligand in patients with prediabetes.

    Science.gov (United States)

    Arslan, Muyesser Sayki; Tutal, Esra; Sahin, Mustafa; Karakose, Melia; Ucan, Bekir; Ozturk, Gulfer; Cakal, Erman; Biyikli Gencturk, Zeynep; Ozbek, Mustafa; Delibasi, Tuncay

    2017-02-01

    Osteoprotegerin has been shown to be increased in cardiovascular disorders and type 2 diabetes mellitus. Prediabetes represents a high risk condition for diabetes and diabetic complications. Therefore, we aimed to find the relationship between prediabetes and osteoprotegerin with nuclear factor-B ligand, carotid intima media thickness, and metabolic markers. A total of 54 participants with prediabetes including impaired fasting glucose (n = 21), impaired glucose tolerance (n = 8), impaired fasting glucose and impaired glucose tolerance (n = 25), and 60 healthy individuals as a control were admitted to the study. Metabolic and anthropometric parameters, insulin resistance variables, osteoprotegerin, and nuclear factor-B ligand markers, carotid intima media thickness were examined at baseline for all participants. To evaluate the effect of therapy we determined the same parameters after the end of the study. Measurements of waist circumference, body mass index, body fat percentage and levels of fasting blood glucose, fasting insulin, homeostatic model assessment of insulin resistance, triglyceride levels and hsCRP and carotid intima media thickness were significantly higher in patients with prediabetes (p  0.05). Patients with prediabetes were under lifestyle interventions with (group 1, n = 33) or without metformin (group 2, n = 21) therapy. Baseline anthropometric and metabolic characteristics were not found statistically different in group 1 and group 2. Mean follow up period of the patients were 7.9 ± 2.2 month (min-max: 6-12 months). After the follow up period we evaluated the same parameters and found significant differences between waist circumference, body mass index, body fat percentage, fasting insulin, homeostatic model assessment of insulin resistance, and osteoprotegerin levels (p fasting insulin, homeostatic model assessment of insulin resistance, waist circumference, body mass index, body fat percentage, carotid intima

  15. Peroxisome Proliferator-Activated Receptor α Activation Induces Hepatic Steatosis, Suggesting an Adverse Effect

    OpenAIRE

    Fang Yan; Qi Wang; Chao Xu; Mingfeng Cao; Xiaoming Zhou; Tingting Wang; Chunxiao Yu; Fei Jing; Wenbin Chen; Ling Gao; Jiajun Zhao

    2014-01-01

    Non-alcoholic fatty liver disease (NAFLD) is characterized by hepatic triglyceride accumulation, ranging from steatosis to steatohepatitis and cirrhosis. NAFLD is a risk factor for cardiovascular diseases and is associated with metabolic syndrome. Antihyperlipidemic drugs are recommended as part of the treatment for NAFLD patients. Although fibrates activate peroxisome proliferator-activated receptor α (PPARα), leading to the reduction of serum triglyceride levels, the effects of these drugs ...

  16. Epidermal Growth Factor Induces Proliferation of Hair Follicle-Derived Mesenchymal Stem Cells Through Epidermal Growth Factor Receptor-Mediated Activation of ERK and AKT Signaling Pathways Associated with Upregulation of Cyclin D1 and Downregulation of p16.

    Science.gov (United States)

    Bai, Tingting; Liu, Feilin; Zou, Fei; Zhao, Guifang; Jiang, Yixu; Liu, Li; Shi, Jiahong; Hao, Deshun; Zhang, Qi; Zheng, Tong; Zhang, Yingyao; Liu, Mingsheng; Li, Shilun; Qi, Liangchen; Liu, Jin Yu

    2017-01-15

    The maintenance of highly proliferative capacity and full differentiation potential is a necessary step in the initiation of stem cell-based regenerative medicine. Our recent study showed that epidermal growth factor (EGF) significantly enhanced hair follicle-derived mesenchymal stem cell (HF-MSC) proliferation while maintaining the multilineage differentiation potentials. However, the underlying mechanism remains unclear. Herein, we investigated the role of EGF in HF-MSC proliferation. HF-MSCs were isolated and cultured with or without EGF. Immunofluorescence staining, flow cytometry, cytochemistry, and western blotting were used to assess proliferation, cell signaling pathways related to the EGF receptor (EGFR), and cell cycle progression. HF-MSCs exhibited surface markers of mesenchymal stem cells and displayed trilineage differentiation potentials toward adipocytes, chondrocytes, and osteoblasts. EGF significantly increased HF-MSC proliferation as well as EGFR, ERK1/2, and AKT phosphorylation (p-EGFR, p-ERK1/2, and p-AKT) in a time- and dose-dependent manner, but not STAT3 phosphorylation. EGFR inhibitor (AG1478), PI3K-AKT inhibitor (LY294002), ERK inhibitor (U0126), and STAT3 inhibitor (STA-21) significantly blocked EGF-induced HF-MSC proliferation. Moreover, AG1478, LY294002, and U0126 significantly decreased p-EGFR, p-AKT, and p-ERK1/2 expression. EGF shifted HF-MSCs at the G1 phase to the S and G2 phase. Concomitantly, cyclinD1, phosphorylated Rb, and E2F1expression increased, while that of p16 decreased. In conclusion, EGF induces HF-MSC proliferation through the EGFR/ERK and AKT pathways, but not through STAT-3. The G1/S transition was stimulated by upregulation of cyclinD1 and inhibition of p16 expression.

  17. Protease-Activated Receptor-2 Induces Myofibroblast Differentiation and Tissue Factor Up-Regulation during Bleomycin-Induced Lung Injury Potential Role in Pulmonary Fibrosis

    NARCIS (Netherlands)

    Borensztajn, Keren; Bresser, Paul; van der Loos, Chris; Bot, Ilze; van den Blink, Bernt; den Bakker, Michael A.; Daalhuisen, Joost; Groot, Angelique P.; Peppelenbosch, Maikel P.; von der Thusen, Jan H.; Spek, C. Arnold

    2010-01-01

    Idiopathic pulmonary fibrosis constitutes the most devastating form of fibrotic lung disorders and re mains refractory to current therapies The coagula non cascade is frequently activated during pulmonary fibrosis but this observation has so far resisted a mechanistic explanation Recent data suggest

  18. Stabilization of the bioactivity of tumor necrosis factor by its soluble receptors

    OpenAIRE

    1992-01-01

    The receptors for tumor necrosis factor (TNF) exist in cell-associated as well as soluble forms, both binding specifically to TNF. Since the soluble forms of TNF receptors (sTNF-Rs) can compete with the cell- associated TNF receptors for TNF, it was suggested that they function as inhibitors of TNF activity; at high concentrations, the sTNF-Rs indeed inhibit TNF effects. However, we report here that in the presence of low concentrations of the sTNF-Rs, effects of TNF whose induction depend on...

  19. Expression and localization of peroxisome proliferator-activated receptors and nuclear factor kappaB in normal and lesional psoriatic skin

    DEFF Research Database (Denmark)

    Westergaard, Majken; Henningsen, Jeanette; Johansen, Claus

    2003-01-01

    activators of PPARdelta. The expression levels of NF-kappaB p50 and p65 were not significantly altered in lesional compared with nonlesional psoriatic skin. In the basal layer of normal epidermis both p50 and p65 were sequestered in the cytoplasm, whereas p50, but not p65, localized to nuclei...... in the suprabasal layers, and this distribution was maintained in lesional psoriatic skin. In normal human keratinocytes PPAR agonists neither impaired IL-1beta-induced translocation of p65 nor IL-1beta-induced NF-kappaB DNA binding. We show that PPARdelta physically interacts with the N-terminal Rel homology......-mediated transactivation was partially relieved by forced expression of the coactivators p300 or CBP. We suggest that deficient NF-kappaB activation in chronic psoriatic plaques permitting unabated PPARdelta-mediated transactivation contributes to the pathologic phenotype of psoriasis....

  20. Visualising androgen receptor activity in male and female mice.

    Directory of Open Access Journals (Sweden)

    D Alwyn Dart

    Full Text Available Androgens, required for normal development and fertility of males and females, have vital roles in the reproductive tract, brain, cardiovascular system, smooth muscle and bone. Androgens function via the androgen receptor (AR, a ligand-dependent transcription factor. To assay and localise AR activity in vivo we generated the transgenic "ARE-Luc" mouse, expressing a luciferase reporter gene under the control of activated endogenous AR. In vivo imaging of androgen-mediated luciferase activity revealed several strongly expressing tissues in the male mouse as expected and also in certain female tissues. In males the testes, prostate, seminal vesicles and bone marrow all showed high AR activity. In females, strong activity was seen in the ovaries, uterus, omentum tissue and mammary glands. In both sexes AR expression and activity was also found in salivary glands, the eye (and associated glands, adipose tissue, spleen and, notably, regions of the brain. Luciferase protein expression was found in the same cell layers as androgen receptor expression. Additionally, mouse AR expression and activity correlated well with AR expression in human tissues. The anti-androgen bicalutamide reduced luciferase signal in all tissues. Our model demonstrates that androgens can act in these tissues directly via AR, rather than exclusively via androgen aromatisation to estrogens and activation of the estrogen receptor. Additionally, it visually demonstrates the fundamental importance of AR signalling outside the normal role in the reproductive organs. This model represents an important tool for physiological and developmental analysis of androgen signalling, and for characterization of known and novel androgenic or antiandrogenic compounds.

  1. Design, synthesis, anti-tumor activity, and molecular modeling of quinazoline and pyrido[2,3-d]pyrimidine derivatives targeting epidermal growth factor receptor.

    Science.gov (United States)

    Hou, Ju; Wan, Shanhe; Wang, Guangfa; Zhang, Tingting; Li, Zhonghuang; Tian, Yuanxin; Yu, Yonghuan; Wu, Xiaoyun; Zhang, Jiajie

    2016-08-08

    Three series of novel quinazoline and pyrido[2,3-d]pyrimidine derivatives were designed, synthesized and evaluated for their ability to inhibit EGFR tyrosine kinase and a panel of five human cancer cell lines (MCF-7, A549, BT-474, SK-BR-3, and MDA-MB-231). Bioassay results indicated that five of these prepared compounds (12c-12e and 13c-13d) exhibited remarkably higher inhibitory activities against EGFR and SK-BR-3 cell line. Compounds 12c and 12e displayed the most potent EGFR inhibitory activity (IC50 = 2.97 nM and 3.58 nM, respectively) and good anti-proliferative effect against SK-BR-3 cell with the IC50 values of 3.10 μM and 5.87 μM, respectively. Furthermore, molecular docking and molecular dynamics simulation studies verified that compound 12c and 12e shared similar binding pattern with gefitinib in the binding pocket of EGFR. MM-GBSA binding free energy revealed that the compound 12c and 12e have almost the same inhibitory activity against EGFR as gefitinib, and that the dominating effect of van der Waals interactions drives the binding process.

  2. Combination of ruthenium(II)-arene complex [Ru(η6-p-cymene)Cl2(pta)] (RAPTA-C) and the epidermal growth factor receptor inhibitor erlotinib results in efficient angiostatic and antitumor activity

    Science.gov (United States)

    Berndsen, Robert H.; Weiss, Andrea; Abdul, U. Kulsoom; Wong, Tse J.; Meraldi, Patrick; Griffioen, Arjan W.; Dyson, Paul J.; Nowak-Sliwinska, Patrycja

    2017-01-01

    Ruthenium-based compounds show strong potential as anti-cancer drugs and are being investigated as alternatives to other well-established metal-based chemotherapeutics. The organometallic compound [Ru(η6-p-cymene)Cl2(pta)], where pta = 1,3,5-triaza-7-phosphaadamantane (RAPTA-C) exhibits broad acting anti-tumor efficacy with intrinsic angiostatic activity. In the search for an optimal anti-angiogenesis drug combination, we identified synergistic potential between RAPTA-C and the epidermal growth factor receptor (EGFR) inhibitor, erlotinib. This drug combination results in strong synergistic inhibition of cell viability in human endothelial (ECRF24 and HUVEC) and human ovarian carcinoma (A2780 and A2780cisR) cells. Additionally, erlotinib significantly enhances the cellular uptake of RAPTA-C relative to treatment with RAPTA-C alone in human ovarian carcinoma cells, but not endothelial cells. Drug combinations induce the formation of chromosome bridges that persist after mitotic exit and delay abscission in A2780 and A2780cisR, therefore suggesting initiation of cellular senescence. The therapeutic potential of these compounds and their combination is further validated in vivo on A2780 tumors grown on the chicken chorioallantoic membrane (CAM) model, and in a preclinical model in nude mice. Immunohistochemical analysis confirms effective anti-angiogenic and anti-proliferative activity in vivo, based on a significant reduction of microvascular density and a decrease in proliferating cells. PMID:28223694

  3. N1-Guanyl-1,7-Diaminoheptane Sensitizes Estrogen Receptor Negative Breast Cancer Cells to Doxorubicin by Preventing Epithelial-Mesenchymal Transition through Inhibition of Eukaryotic Translation Initiation Factor 5A2 Activation

    Directory of Open Access Journals (Sweden)

    Yu Liu

    2015-08-01

    Full Text Available Background: Approximately 30% of breast cancer does not express the estrogen receptor (ER, which is necessary for endocrine-based therapy approaches. Many studies demonstrated that eukaryotic translation initiation factor 5A2 (eIF5A2 serves as a proliferation-related oncogene in tumorigenic processes. Methods: The present study used cell viability assays, EdU incorporation assays, western blot, and immunofluorescence to explore whether N1-guanyl-1,7-diaminoheptane (GC7, which inhibits eIF5A2 activation, exerts synergistic cytotoxicity with doxorubicin in breast cancer. Results: We found that GC7 enhanced doxorubicin cytotoxicity in ER-negative HCC1937 cells but had little effect in ER-positive MCF-7 and Bcap-37 cells. Administration of GC7 reversed the doxorubicin-induced epithelial-mesenchymal transition (EMT in ER-negative breast cancer cells. Knockdown of eIF5A2 by siRNA inhibited the doxorubicin-induced EMT in ER-negative HCC1937 cells. Conclusion: These data demonstrated that GC7 combination therapy may enhance the therapeutic efficacy of doxorubicin in estrogen negative breast cancer cells by preventing EMT through inhibition of eIF5A2 activation.

  4. Insulin-like growth factor II: complexity of biosynthesis and receptor binding

    DEFF Research Database (Denmark)

    Gammeltoft, S; Christiansen, Jan; Nielsen, F C

    1991-01-01

    , Man-6-P induces cellular responses. We have studied rat brain neuronal precursor cells where Man-6-P acted as a mitogen suggesting that phosphomannosylated proteins may act as growth factors via the Man-6-P/IGF-II receptor. In conclusion, the gene expression and mechanism of action of IGF-II is very...... and the mannose-6-phosphate (Man-6-P)/IGF-II receptor. There is consensus that the cellular effects of IGF-II are mediated by the IGF-I receptor via activation of its intrinsic tyrosine kinase. The Man-6-P/IGF-II receptor is involved in endocytosis of lysosomal enzymes and IGF-II. In selected cell types, however...... complex suggesting that its biological actions can be regulated at different levels including the transcription, translation, posttranslational processing, receptor binding and intracellular signalling....

  5. Photodynamic therapy activated signaling from epidermal growth factor receptor and STAT3: Targeting survival pathways to increase PDT efficacy in ovarian and lung cancer.

    Science.gov (United States)

    Edmonds, Christine; Hagan, Sarah; Gallagher-Colombo, Shannon M; Busch, Theresa M; Cengel, Keith A

    2012-12-01

    Patients with serosal (pleural or peritoneal) spread of malignancy have few definitive treatment options and consequently have a very poor prognosis. We have previously shown that photodynamic therapy (PDT) can be an effective treatment for these patients, but that the therapeutic index is relatively narrow. Here, we test the hypothesis that EGFR and STAT3 activation increase survival following PDT, and that inhibiting these pathways leads to increased PDT-mediated direct cellular cytotoxicity by examining BPD-PDT in OvCa and NSCLC cells. We found that BPD-mediated PDT stimulated EGFR tyrosine phosphorylation and nuclear translocation, and that EGFR inhibition by erlotinib resulted in reduction of PDT-mediated EGFR activation and nuclear translocation. Nuclear translocation and PDT-mediated activation of EGFR were also observed in response to BPD-mediated PDT in multiple cell lines, including OvCa, NSCLC and head and neck cancer cells, and was observed to occur in response to porfimer sodium-mediated PDT. In addition, we found that PDT stimulates nuclear translocation of STAT3 and STAT3/EGFR association and that inhibiting STAT3 signaling prior to PDT leads to increased PDT cytotoxicity. Finally, we found that inhibition of EGFR signaling leads to increased PDT cytotoxicity through a mechanism that involves increased apoptotic cell death. Taken together, these results demonstrate that PDT stimulates the nuclear accumulation of both EGFR and STAT3 and that targeting these survival pathways is a potentially promising strategy that could be adapted for clinical trials of PDT for patients with serosal spread of malignancy.

  6. Cell and molecular biology of epidermal growth factor receptor.

    Science.gov (United States)

    Ceresa, Brian P; Peterson, Joanne L

    2014-01-01

    The epidermal growth factor receptor (EGFR) has been one of the most intensely studied cell surface receptors due to its well-established roles in developmental biology, tissue homeostasis, and cancer biology. The EGFR has been critical for creating paradigms for numerous aspects of cell biology, such as ligand binding, signal transduction, and membrane trafficking. Despite this history of discovery, there is a continual stream of evidence that only the surface has been scratched. New ways of receptor regulation continue to be identified, each of which is a potential molecular target for manipulating EGFR signaling and the resultant changes in cell and tissue biology. This chapter is an update on EGFR-mediated signaling, and describes some recent developments in the regulation of receptor biology.

  7. Peroxisome proliferator-activated receptors and renal diseases.

    Science.gov (United States)

    Wu, Jing; Chen, Lihong; Zhang, Dongjuan; Huo, Ming; Zhang, Xiaoyan; Pu, Dan; Guan, Youfei

    2009-01-01

    Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily of ligand-dependent transcription factors. Three isoforms of PPAR, i.e., PPAR-a, -d, and -?, have been identified and are differentially expressed in various tissues, including the kidney. The target genes of PPARs are involved in diverse biological processes, including adipogenesis, lipid metabolism, insulin sensitivity, inflammatory response, reproduction, and cell growth and differentiation. PPARs have been reported to protect against renal injury through indirect systemic effects and/or direct renal effects in diabetic nephropathy, glomerulonephritis, renal cell carcinoma, acute renal failure and chronic renal disease. In this review, we summarize the role of the three identified PPAR isoforms, PPARa, -d, and -?, in renal physiology and discuss the renoprotective effects of PPAR ligands in various kidney diseases.

  8. Neuromodulatory effect of Gαs- or Gαq-coupled G-protein-coupled receptor on NMDA receptor selectively activates the NMDA receptor/Ca2+/calcineurin/cAMP response element-binding protein-regulated transcriptional coactivator 1 pathway to effectively induce brain-derived neurotrophic factor expression in neurons.

    Science.gov (United States)

    Fukuchi, Mamoru; Tabuchi, Akiko; Kuwana, Yuki; Watanabe, Shinjiro; Inoue, Minami; Takasaki, Ichiro; Izumi, Hironori; Tanaka, Ayumi; Inoue, Ran; Mori, Hisashi; Komatsu, Hidetoshi; Takemori, Hiroshi; Okuno, Hiroyuki; Bito, Haruhiko; Tsuda, Masaaki

    2015-04-01

    Although coordinated molecular signaling through excitatory and modulatory neurotransmissions is critical for the induction of immediate early genes (IEGs), which lead to effective changes in synaptic plasticity, the intracellular mechanisms responsible remain obscure. Here we measured the expression of IEGs and used bioluminescence imaging to visualize the expression of Bdnf when GPCRs, major neuromodulator receptors, were stimulated. Stimulation of pituitary adenylate cyclase-activating polypeptide (PACAP)-specific receptor (PAC1), a Gαs/q-protein-coupled GPCR, with PACAP selectively activated the calcineurin (CN) pathway that is controlled by calcium signals evoked via NMDAR. This signaling pathway then induced the expression of Bdnf and CN-dependent IEGs through the nuclear translocation of CREB-regulated transcriptional coactivator 1 (CRTC1). Intracerebroventricular injection of PACAP and intraperitoneal administration of MK801 in mice demonstrated that functional interactions between PAC1 and NMDAR induced the expression of Bdnf in the brain. Coactivation of NMDAR and PAC1 synergistically induced the expression of Bdnf attributable to selective activation of the CN pathway. This CN pathway-controlled expression of Bdnf was also induced by stimulating other Gαs- or Gαq-coupled GPCRs, such as dopamine D1, adrenaline β, CRF, and neurotensin receptors, either with their cognate agonists or by direct stimulation of the protein kinase A (PKA)/PKC pathway with chemical activators. Thus, the GPCR-induced expression of IEGs in coordination with NMDAR might occur via the selective activation of the CN/CRTC1/CREB pathway under simultaneous excitatory and modulatory synaptic transmissions in neurons if either the Gαs/adenylate cyclase/PKA or Gαq/PLC/PKC-mediated pathway is activated.

  9. Asymmetric Receptor Contact is Required for Tyrosine Autophosphorylation of Fibroblast Growth Factor Receptor in Living Cells

    Energy Technology Data Exchange (ETDEWEB)

    Bae, J.; Boggon, T; Tomé, F; Mandiyan, V; Lax, I; Schlessinge, J

    2010-01-01

    Tyrosine autophosphorylation of receptor tyrosine kinases plays a critical role in regulation of kinase activity and in recruitment and activation of intracellular signaling pathways. Autophosphorylation is mediated by a sequential and precisely ordered intermolecular (trans) reaction. In this report we present structural and biochemical experiments demonstrating that formation of an asymmetric dimer between activated FGFR1 kinase domains is required for transphosphorylation of FGFR1 in FGF-stimulated cells. Transphosphorylation is mediated by specific asymmetric contacts between the N-lobe of one kinase molecule, which serves as an active enzyme, and specific docking sites on the C-lobe of a second kinase molecule, which serves a substrate. Pathological loss-of-function mutations or oncogenic activating mutations in this interface may hinder or facilitate asymmetric dimer formation and transphosphorylation, respectively. The experiments presented in this report provide the molecular basis underlying the control of transphosphorylation of FGF receptors and other receptor tyrosine kinases.

  10. Expression of tumor necrosis factor related apoptosis inducing ligand receptor in glioblastoma

    Institute of Scientific and Technical Information of China (English)

    Dongling Gao; Zhongwei Zhao; Hongxin Zhang; Lan Zhang; Kuisheng Chen; Yunhan Zhang

    2008-01-01

    BACKGROUND: Receptors for tumor necrosis factor related apoptosis inducing ligand (TRAIL) include death receptor 4, death receptor 5, decoy receptor 1, and decoy receptor 2. Activation of death receptor 4 and 5 selectively kills tumor cells.OBJECTIVE: To detect TRAIL receptor expression in glioblastoma by immunohistochemistry and RT-PCR and to compare this expression to that in normal brain tissue.DESIGN: Observational analysis.SETTING: Department of Pathology, the First Affiliated Hospital of Zhengzhou University; Henan Tumor Pathology Key Laboratory.PARTICIPANTS: Twenty-five patients (17 males and 8 females) who received glioblastoma resection were selected from the Fifth Affiliated Hospital of Zhengzhou University, between September 2003 to June 2004. All glioblastoma samples were diagnosed pathologically. Twenty patients (12 males and 8 females) with craniocerebral injury who received normal brain tissue resection were selected in the same time period. There were no significant differences in sex and age between glioblastoma patients or between craniocerebral injury patients (P>0.05). All patients and appropriate relatives provided informed consent, and this study was approved by the local research ethics committee.METHODS: Polyclonal antibody against TRAIL receptors and an immunohistochemical kit (batch number: 200502) were purchased from Boster Company, Wuhan. Immunohistochemistry: Expression of death receptor 4, death receptor 5, decoy receptor 1, and decoy receptor 2 were observed in both glioblastoma and normal brain tissue. The experiment was performed according to the kit instructions, and positive staining was brown-yellow. Assessment: There were no positive signals (-); weakly positive signals, positive cells75% (++++). Evaluation: Expression levels of TRAIL receptors were estimated in both normal brain tissue and glioblastoma. Expression of decoy receptor 1 and decoy receptor 2 mRNA in glioblastoma were detected by reverse transcription polymerase

  11. Identification of a novel immunoreceptor tyrosine-based activation motif-containing molecule, STAM2, by mass spectrometry and its involvement in growth factor and cytokine receptor signaling pathways

    DEFF Research Database (Denmark)

    Pandey, A; Fernandez, M M; Steen, H;

    2000-01-01

    In an effort to clone novel tyrosine-phosphorylated substrates of the epidermal growth factor receptor, we have initiated an approach coupling affinity purification using anti-phosphotyrosine antibodies to mass spectrometry-based identification. Here, we report the identification of a signaling m...

  12. Intracellular Transactivation of Epidermal Growth Factor Receptor by alpha(1A)-Adrenoceptor Is Mediated by Phosphatidylinositol 3-Kinase Independently of Activation of Extracellular Signal Regulated Kinases 1/2 and Serine-Threonine Kinases in Chinese Hamster Ovary Cells

    NARCIS (Netherlands)

    Ulu, Nadir; Henning, Robert H.; Guner, Sahika; Zoto, Teuta; Duman-Dalkilic, Basak; Duin, Marry; Gurdal, Hakan

    2013-01-01

    Transactivation of epidermal growth factor receptor (EGFR) by alpha(1)-adrenoceptor (alpha(1)-AR) is implicated in contraction and hypertrophy of vascular smooth muscle (VSM). We examine whether all alpha(1)-AR subtypes transactivate EGFR and explore the mechanism of transactivation. Chinese hamster

  13. Response to epidermal growth factor receptor inhibitors in non-small cell lung cancer cells : Limited antiproliferative effects and absence of apoptosis associated with persistent activity of extracellular signal-regulated kinase or Akt kinase pathways

    NARCIS (Netherlands)

    Janmaat, ML; Kruyt, FAE; Rodriguez, JA; Giaccone, G

    2003-01-01

    The epidermal growth factor receptor (EGFR) is an important novel target for anticancer therapy. In this study, we examined the molecular mechanisms that underlie the antitumor effects of the anti-EGFR monoclonal antibody C225 (Cetuximab) and the selective EGFR tyrosine kinase inhibitor ZD1839 (Ires

  14. Bay11-7082 attenuates neuropathic pain via inhibition of nuclear factor-kappa B and nucleotide-binding domain-like receptor protein 3 inflammasome activation in dorsal root ganglions in a rat model of lumbar disc herniation

    Science.gov (United States)

    Zhang, Ailiang; Wang, Kun; Ding, Lianghua; Bao, Xinnan; Wang, Xuan; Qiu, Xubin; Liu, Jinbo

    2017-01-01

    Lumbar disc herniation (LDH) is an important cause of radiculopathy, but the underlying mechanisms are incompletely understood. Many studies suggested that local inflammation, rather than mechanical compression, results in radiculopathy induced by LDH. On the molecular and cellular level, nuclear factor-kappa B (NF-κB) and nucleotide-binding domain-like receptor protein 3 (NLRP3) inflammasome have been implicated in the regulation of neuroinflammation formation and progression. In this study, the autologous nucleus pulposus (NP) was implanted in the left L5 dorsal root ganglion (DRG) to mimic LDH in rats. We investigated the expression of NF-κB and the components of NLRP3 inflammasome in the DRG neurons in rats. Western blotting and immunofluorescence for the related molecules, including NLRP3, apoptosis-associated speck-like protein containing caspase-1 activator domain (ASC), caspase-1, interleukin (IL)-1β, IL-18, IκBα, p-IκBα, p65, p-p65, and calcitonin gene-related peptide (CGRP) were examined. In the NP-treated group, the activations of NLRP3, ASC, caspase-1, IL-1β, IL-18, p-IκBα, and p-p65 in DRG neurons in rats were elevated at 1 day after surgery, and the peak occurred at 7 days. Treatment with Bay11-7082, an inhibitor of the actions of IKK-β, was able to inhibit expression and activation of the molecules (NLRP3, ASC, caspase-1, IL-1β, IL-18, p-IκBα, and p-p65) and relieve the pain in rats. Our study shows that NF-κB and NLRP3 inflammasome are involved in the maintenance of NP-induced pain, and that Bay11-7082 could alleviate mechanical allodynia and thermal hyperalgesia by inhibiting NF-κB and NLRP3 inflammasome activation.

  15. Up-regulation of the progesterone receptor (PR)-C isoform in laboring myometrium by activation of nuclear factor-kappaB may contribute to the onset of labor through inhibition of PR function.

    Science.gov (United States)

    Condon, Jennifer C; Hardy, Daniel B; Kovaric, Kelly; Mendelson, Carole R

    2006-04-01

    Progesterone acting via the progesterone receptor (PR) plays a critical role in maintaining uterine quiescence during pregnancy. In the present study, we tested the hypothesis that the transactivating capability of the PR is down-regulated in the myometrium at term by a change in uterine PR isoform ratio resulting from local activation of the nuclear factor (NF)-kappaB pathway. Overexpression of the truncated PR-C isoform in human myometrial cells inhibited PR-B transactivation. Expression of PR isoforms, PR-A, PR-B, and PR-C, was characterized by immunoblotting and quantitative PCR (Q-PCR) in fundal and lower uterine segment myometrium from pregnant women in labor and not in labor and in the pregnant mouse uterus during late gestation. We observed a marked increase in levels of PR-C and transcriptionally active PR-B specifically in fundal myometrium of women in labor. In pregnant mouse uterus, levels of PR-B and PR-C also increased between 15 days post coitum and term, whereas expression of PR-A was dramatically up-regulated at 19 days post coitum. In studies of uterine tissues of mice injected intraamniotically with surfactant protein A and of human myometrial and T47D breast cancer cells in culture, up-regulation of PR isoform expression was observed in response to activation of the NF-kappaB pathway. Chromatin immunoprecipitation analysis revealed IL-1beta induced binding of NF-kappaB to the PR promoter. Collectively, these findings suggest that up-regulation of inhibitory PR isoform expression by NF-kappaB activation in both laboring human fundus and pregnant mouse uterus near term may inhibit PR transactivation and thereby lead to a loss of uterine quiescence and the onset of labor.

  16. Identification of Gene Markers for Activation of the Nuclear Receptor Pregnane X Receptor

    Science.gov (United States)

    Many environmentally-relevant chemicals and drugs activate the nuclear receptor pregnane X receptor (PXR). Activation of PXR in the mouse liver can lead to increases in liver weight in part through increased hepatocyte replication similar to chemicals that activate other nuclear ...