WorldWideScience

Sample records for activating egfr mutations

  1. De novo activating epidermal growth factor mutations (EGFR) in small-cell lung cancer.

    Science.gov (United States)

    Thai, Alesha; Chia, Puey L; Russell, Prudence A; Do, Hongdo; Dobrovic, Alex; Mitchell, Paul; John, Thomas

    2017-09-01

    In Australia, mutations in epidermal growth factor mutations (EGFR) occur in 15% of patients diagnosed with non-small-cell lung cancer and are found with higher frequency in female, non-smokers of Asian ethnicity. Activating mutations in the EGFR gene are rarely described in SCLC. We present two cases of de novo EGFR mutations in patients with SCLC detected in tissue and in plasma cell free DNA, both of whom were of Asian ethnicity and never-smokers. These two cases add to the growing body of evidence suggesting that screening for EGFR mutations in SCLC should be considered in patients with specific clinical features. © 2017 Royal Australasian College of Physicians.

  2. Collagen type I induces EGFR-TKI resistance in EGFR-mutated cancer cells by mTOR activation through Akt-independent pathway.

    Science.gov (United States)

    Yamazaki, Shota; Higuchi, Youichi; Ishibashi, Masayuki; Hashimoto, Hiroko; Yasunaga, Masahiro; Matsumura, Yasuhiro; Tsuchihara, Katsuya; Tsuboi, Masahiro; Goto, Koichi; Ochiai, Atsushi; Ishii, Genichiro

    2018-06-01

    Primary resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) is a serious problem in lung adenocarcinoma patients harboring EGFR mutations. The aim of this study was to examine whether and how collagen type I (Col I), the most abundantly deposited matrix in tumor stroma, affects EGFR-TKI sensitivity in EGFR-mutant cells. We evaluated the EGFR-TKI sensitivity of EGFR-mutated cancer cells cultured with Col I. Changes in the activation of downstream signaling molecules of EGFR were analyzed. We also examined the association between the Col I expression in tumor stroma in surgical specimens and EGFR-TKI response of postoperative recurrence patients with EGFR mutations. Compared to cancer cells without Col I, the survival rate of cancer cells cultured with Col I was significantly higher after EGFR-TKI treatment. In cancer cells cultured with and without Col I, EGFR-TKI suppressed the levels of phosphorylated (p-)EGFR, p-ERK1/2, and p-Akt. When compared to cancer cells without Col I, expression of p-P70S6K, a hallmark of mTOR activation, was dramatically upregulated in cancer cells with Col I. This activation was maintained even after EGFR-TKI treatment. Simultaneous treatment with EGFR-TKI and mTOR inhibitor abrogated Col I-induced resistance to EGFR-TKI. Patients with Col I-rich stroma had a significantly shorter progression-free survival time after EGFR-TKI therapy (238 days vs 404 days; P Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  3. Identifying activating mutations in the EGFR gene: prognostic and therapeutic implications in non-small cell lung cancer.

    Science.gov (United States)

    Lopes, Gabriel Lima; Vattimo, Edoardo Filippo de Queiroz; Castro Junior, Gilberto de

    2015-01-01

    Lung cancer is the leading cause of cancer-related deaths worldwide. Promising new therapies have recently emerged from the development of molecular targeted drugs; particularly promising are those blocking the signal transduction machinery of cancer cells. One of the most widely studied cell signaling pathways is that of EGFR, which leads to uncontrolled cell proliferation, increased cell angiogenesis, and greater cell invasiveness. Activating mutations in the EGFR gene (deletions in exon 19 and mutation L858R in exon 21), first described in 2004, have been detected in approximately 10% of all non-squamous non-small cell lung cancer (NSCLC) patients in Western countries and are the most important predictors of a response to EGFR tyrosine-kinase inhibitors (EGFR-TKIs). Studies of the EGFR-TKIs gefitinib, erlotinib, and afatinib, in comparison with platinum-based regimens, as first-line treatments in chemotherapy-naïve patients have shown that the EGFR-TKIs produce gains in progression-free survival and overall response rates, although only in patients whose tumors harbor activating mutations in the EGFR gene. Clinical trials have also shown EGFR-TKIs to be effective as second- and third-line therapies in advanced NSCLC. Here, we review the main aspects of EGFR pathway activation in NSCLC, underscore the importance of correctly identifying activating mutations in the EGFR gene, and discuss the main outcomes of EGFR-TKI treatment in NSCLC.

  4. Identifying activating mutations in the EGFR gene: prognostic and therapeutic implications in non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Gabriel Lima Lopes

    2015-08-01

    Full Text Available AbstractLung cancer is the leading cause of cancer-related deaths worldwide. Promising new therapies have recently emerged from the development of molecular targeted drugs; particularly promising are those blocking the signal transduction machinery of cancer cells. One of the most widely studied cell signaling pathways is that of EGFR, which leads to uncontrolled cell proliferation, increased cell angiogenesis, and greater cell invasiveness. Activating mutations in the EGFR gene (deletions in exon 19 and mutation L858R in exon 21, first described in 2004, have been detected in approximately 10% of all non-squamous non-small cell lung cancer (NSCLC patients in Western countries and are the most important predictors of a response to EGFR tyrosine-kinase inhibitors (EGFR-TKIs. Studies of the EGFR-TKIs gefitinib, erlotinib, and afatinib, in comparison with platinum-based regimens, as first-line treatments in chemotherapy-naïve patients have shown that the EGFR-TKIs produce gains in progression-free survival and overall response rates, although only in patients whose tumors harbor activating mutations in the EGFR gene. Clinical trials have also shown EGFR-TKIs to be effective as second- and third-line therapies in advanced NSCLC. Here, we review the main aspects of EGFR pathway activation in NSCLC, underscore the importance of correctly identifying activating mutations in the EGFR gene, and discuss the main outcomes of EGFR-TKI treatment in NSCLC.

  5. Identifying activating mutations in the EGFR gene: prognostic and therapeutic implications in non-small cell lung cancer *

    Science.gov (United States)

    Lopes, Gabriel Lima; Vattimo, Edoardo Filippo de Queiroz; de Castro, Gilberto

    2015-01-01

    Abstract Lung cancer is the leading cause of cancer-related deaths worldwide. Promising new therapies have recently emerged from the development of molecular targeted drugs; particularly promising are those blocking the signal transduction machinery of cancer cells. One of the most widely studied cell signaling pathways is that of EGFR, which leads to uncontrolled cell proliferation, increased cell angiogenesis, and greater cell invasiveness. Activating mutations in the EGFR gene (deletions in exon 19 and mutation L858R in exon 21), first described in 2004, have been detected in approximately 10% of all non-squamous non-small cell lung cancer (NSCLC) patients in Western countries and are the most important predictors of a response to EGFR tyrosine-kinase inhibitors (EGFR-TKIs). Studies of the EGFR-TKIs gefitinib, erlotinib, and afatinib, in comparison with platinum-based regimens, as first-line treatments in chemotherapy-naïve patients have shown that the EGFR-TKIs produce gains in progression-free survival and overall response rates, although only in patients whose tumors harbor activating mutations in the EGFR gene. Clinical trials have also shown EGFR-TKIs to be effective as second- and third-line therapies in advanced NSCLC. Here, we review the main aspects of EGFR pathway activation in NSCLC, underscore the importance of correctly identifying activating mutations in the EGFR gene, and discuss the main outcomes of EGFR-TKI treatment in NSCLC. PMID:26398757

  6. Impact of active smoking on survival of patients with metastatic lung adenocarcinoma harboring an epidermal growth factor receptor (EGFR mutation

    Directory of Open Access Journals (Sweden)

    Bulent Erdogan

    2016-11-01

    Full Text Available Lung cancer in smokers and non-smokers demonstrates distinct genetic profiles, and cigarette smoking affects epidermal growth factor receptor (EGFR function and causes secondary EGFR tyrosine kinase resistance. We evaluated the effect of active smoking in patients with metastatic lung adenocarcinoma. A total of 132 metastatic lung adenocarcinoma patients, diagnosed between 2008 and 2013, with known EGFR mutation status, were evaluated retrospectively. Among these patients, 40 had an activating EGFR mutation. Patients who continued smoking during the treatment were defined as active smokers. Former smokers and never smokers were together defined as non-smokers. The outcomes of the treatment in relation to the EGFR mutation and smoking status were evaluated. The median follow-up time was 10.5 months. The overall response rate for the first-line therapy was significantly higher among the EGFR-mutant patients (p = 0.01, however, smoking status had no impact on the response rate (p = 0.1. The EGFR-mutant active smokers progressed earlier than the non-smokers (p < 0.01. The overall survival (OS of the non-smokers and patients treated with erlotinib was significantly longer (p = 0.02 and p = 0.01, respectively. Smoking status did not affect the OS in EGFR wild type tumors (p = 0.49 but EGFR-mutant non-smokers had a longer OS than the active smokers (p = 0.01.The active smokers treated with erlotinib had poorer survival than the non-smokers (p = 0.03. Multivariate analysis of EGFR-mutant patients showed that erlotinib treatment at any line and non-smoking were independent prognostic factors for the OS (p = 0.04 and p = 0.01, respectively. Smoking during treatment is a negative prognostic factor in metastatic lung adenocarcinoma with an EGFR mutation.

  7. Impact of active smoking on survival of patients with metastatic lung adenocarcinoma harboring an epidermal growth factor receptor (EGFR) mutation.

    Science.gov (United States)

    Erdogan, Bulent; Kodaz, Hilmi; Karabulut, Senem; Cinkaya, Ahmet; Tozkir, Hilmi; Tanriverdi, Ozgur; Cabuk, Devrim; Hacioglu, Muhammed Bekir; Turkmen, Esma; Hacibekiroglu, Ilhan; Uzunoglu, Sernaz; Cicin, Irfan

    2016-11-10

    Lung cancer in smokers and non-smokers demonstrates distinct genetic profiles, and cigarette smoking affects epidermal growth factor receptor (EGFR) function and causes secondary EGFR tyrosine kinase resistance. We evaluated the effect of active smoking in patients with metastatic lung adenocarcinoma. A total of 132 metastatic lung adenocarcinoma patients, diagnosed between 2008 and 2013, with known EGFR mutation status, were evaluated retrospectively. Among these patients, 40 had an activating EGFR mutation. Patients who continued smoking during the treatment were defined as active smokers. Former smokers and never smokers were together defined as non-smokers. The outcomes of the treatment in relation to the EGFR mutation and smoking status were evaluated. The median follow-up time was 10.5 months. The overall response rate for the first-line therapy was significantly higher among the EGFR-mutant patients (p = 0.01), however, smoking status had no impact on the response rate (p = 0.1). The EGFR-mutant active smokers progressed earlier than the non-smokers (p non-smokers and patients treated with erlotinib was significantly longer (p = 0.02 and p = 0.01, respectively). Smoking status did not affect the OS in EGFR wild type tumors (p = 0.49) but EGFR-mutant non-smokers had a longer OS than the active smokers (p = 0.01).The active smokers treated with erlotinib had poorer survival than the non-smokers (p = 0.03). Multivariate analysis of EGFR-mutant patients showed that erlotinib treatment at any line and non-smoking were independent prognostic factors for the OS (p = 0.04 and p = 0.01, respectively). Smoking during treatment is a negative prognostic factor in metastatic lung adenocarcinoma with an EGFR mutation.

  8. Activity of EGFR-tyrosine kinase and ALK inhibitors for EML4–ALK-rearranged non–small–cell lung cancer harbored coexisting EGFR mutation

    International Nuclear Information System (INIS)

    Miyanaga, Akihiko; Kawamoto, Masashi; Tsuchiya, Shinichi; Hagiwara, Koichi; Soda, Manabu; Takeuchi, Kengo; Yamamoto, Nobuyuki; Mano, Hiroyuki; Ishikawa, Yuichi; Gemma, Akihiko; Shimizu, Kumi; Noro, Rintaro; Seike, Masahiro; Kitamura, Kazuhiro; Kosaihira, Seiji; Minegishi, Yuji; Shukuya, Takehito; Yoshimura, Akinobu

    2013-01-01

    The EML4–ALK (echinoderm microtubule-associated protein-like 4 gene and the anaplastic lymphoma kinase gene) fusion oncogene represents a novel molecular target in a small subset of non–small–cell lung cancers (NSCLCs). The EML4–ALK fusion gene occurs generally in NSCLC without mutations in epidermal growth factor receptor (EGFR) and KRAS. We report that a case of EML4–ALK-positive NSCLC with EGFR mutation had a response of stable disease to both an EGFR tyrosine kinase inhibitor (EGFR-TKI) and ALK inhibitor. We described the first clinical report of a patient with EML4–ALK-positive NSCLC with EGFR mutation that had a response of stable disease to both single-agent EGFR-TKI and ALK inhibitor. EML4–ALK translocation may be associated with resistance to EGFR-TKI, and EGFR signaling may contribute to resistance to ALK inhibitor in EML4–ALK-positive NSCLC

  9. Hierarchical modeling of activation mechanisms in the ABL and EGFR kinase domains: thermodynamic and mechanistic catalysts of kinase activation by cancer mutations.

    Directory of Open Access Journals (Sweden)

    Anshuman Dixit

    2009-08-01

    Full Text Available Structural and functional studies of the ABL and EGFR kinase domains have recently suggested a common mechanism of activation by cancer-causing mutations. However, dynamics and mechanistic aspects of kinase activation by cancer mutations that stimulate conformational transitions and thermodynamic stabilization of the constitutively active kinase form remain elusive. We present a large-scale computational investigation of activation mechanisms in the ABL and EGFR kinase domains by a panel of clinically important cancer mutants ABL-T315I, ABL-L387M, EGFR-T790M, and EGFR-L858R. We have also simulated the activating effect of the gatekeeper mutation on conformational dynamics and allosteric interactions in functional states of the ABL-SH2-SH3 regulatory complexes. A comprehensive analysis was conducted using a hierarchy of computational approaches that included homology modeling, molecular dynamics simulations, protein stability analysis, targeted molecular dynamics, and molecular docking. Collectively, the results of this study have revealed thermodynamic and mechanistic catalysts of kinase activation by major cancer-causing mutations in the ABL and EGFR kinase domains. By using multiple crystallographic states of ABL and EGFR, computer simulations have allowed one to map dynamics of conformational fluctuations and transitions in the normal (wild-type and oncogenic kinase forms. A proposed multi-stage mechanistic model of activation involves a series of cooperative transitions between different conformational states, including assembly of the hydrophobic spine, the formation of the Src-like intermediate structure, and a cooperative breakage and formation of characteristic salt bridges, which signify transition to the active kinase form. We suggest that molecular mechanisms of activation by cancer mutations could mimic the activation process of the normal kinase, yet exploiting conserved structural catalysts to accelerate a conformational transition

  10. EGFR mutation frequency and effectiveness of erlotinib

    DEFF Research Database (Denmark)

    Weber, Britta; Hager, Henrik; Sorensen, Boe S

    2014-01-01

    mutation (S768I), and two complex mutations. Seven percent of the patients were never smokers. The differences in median progression-free survival and overall survival between the mutated group and the wild-type group were 8.0 vs. 2.5 months, p...-1 vs. 2-3) and line of treatment (1st vs. 2nd and 3rd) had no influence on outcome in EGFR-mutated patients. CONCLUSION: We found a higher frequency of EGFR mutations than expected in a cohort with less than 10% never smokers. The outcome after treatment with erlotinib was much better in patients......OBJECTIVES: In 2008, we initiated a prospective study to explore the frequency and predictive value of epidermal growth factor receptor (EGFR) mutations in an unselected population of Danish patients with non-small cell lung cancer offered treatment with erlotinib, mainly in second-line. MATERIALS...

  11. Sapanisertib and Osimertinib in Treating Patients With Stage IV EGFR Mutation Positive Non-small Cell Lung Cancer After Progression on a Previous EGFR Tyrosine Kinase Inhibitor

    Science.gov (United States)

    2018-04-25

    EGFR Activating Mutation; EGFR Exon 19 Deletion Mutation; EGFR NP_005219.2:p.G719X; EGFR NP_005219.2:p.L858R; EGFR NP_005219.2:p.L861Q; EGFR T790M Mutation Negative; Recurrent Non-Small Cell Lung Carcinoma; Stage III Non-Small Cell Lung Cancer AJCC v7; Stage IIIA Non-Small Cell Lung Cancer AJCC v7; Stage IIIB Non-Small Cell Lung Cancer AJCC v7; Stage IV Non-Small Cell Lung Cancer AJCC v7

  12. Functional cooperation between HIF-1α and c-Jun in mediating primary and acquired resistance to gefitinib in NSCLC cells with activating mutation of EGFR.

    Science.gov (United States)

    Meng, Shuyan; Wang, Guorui; Lu, Yang; Fan, Zhen

    2018-07-01

    Hypoxia-inducible factor 1 (HIF-1) and activator protein 1 (AP-1) are important transcription factors regulating expression of genes involved in cell survival. HIF-1α and c-Jun are key components of HIF-1 and AP-1, respectively, and are regulated by epidermal growth factor receptor (EGFR)-mediated cell signaling and tumor microenvironmental cues. The roles of HIF-1α and c-Jun in development of resistance to EGFR tyrosine kinase inhibitor (TKI) in non-small cell lung cancer (NSCLC) with activating mutation of EGFR have not been explored. In this study, we investigated the roles of HIF-1α and c-Jun in mediating primary and acquired resistance to gefitinib in NSCLC cells with activating mutation of EGFR. Changes in HIF-1α protein and in total and phosphorylated c-Jun levels in relation to changes in total and phosphorylated EGFR levels before and after gefitinib treatment were measured using Western blot analysis in NSCLC cells sensitive or resistant to gefitinib. The impact of overexpression of a constitutively expressed HIF-1α (HIF-1α/ΔODD) or a constitutively active c-Jun upstream regulator (SEK1 S220E/T224D mutant) on cell response to gefitinib was also examined. The effect of pharmacological inhibition of SEK1-JNK-c-Jun pathway on cell response to gefitinib was evaluated. Downregulation of HIF-1α and total and phosphorylated c-Jun levels correlated with cell inhibitory response to gefitinib better than decrease in phosphorylated EGFR did in NSCLC cells with intrinsic or acquired resistance to gefitinib. Overexpression of HIF-1α/ΔODD or SEK1 S220E/T224D mutant conferred resistance to gefitinib. There exists a positive feed-forward regulation loop between HIF-1 and c-Jun. The JNK inhibitor SP600125 sensitized gefitinib-resistant NSCLC cells to gefitinib. HIF-1α and c-Jun functionally cooperate in development of resistance to gefitinib in NSCLC cells. The translational value of inhibiting HIF-1α/c-Jun cooperation in overcoming resistance to EGFR TKI

  13. EGFR Mutation Status in Uighur Lung Adenocarcinoma Patients

    Directory of Open Access Journals (Sweden)

    Li SHAN

    2013-02-01

    Full Text Available Background and objective Epidermal growth factor receptor (EGFR, a transmembrane protein, is a member of the tyrosine kinase family. Gefitinib, an EGFR tyrosine-kinase inhibitors, has shown a high response rate in the treatment of lung cancer in patients with EGFR mutation. However, significant differences in EGFR mutations exist among different ethnic groups. The aim of this study is to investigate the prevalence of EGFR mutations in Uighur lung adenocarcinoma patients by using a rapid and sensitive detection method and to analyze EGFR mutation differences compared with Han lung adenocarcinoma patients. Methods We examined lung adenocarcinoma tissues from 138 patients, including 68 Uighur lung adenocarcinoma patients and 70 Han lung adenocarcinoma patients, for EGFR mutations in exons 18, 19, 20, and 21 by using the amplification refractory mutation system (ARMS PCR method. The mutation differences between Uighur and Han lung adenocarcinoma were compared by using the chi-square test method. Results EGFR mutations were detected in 43 (31.2% of the 138 lung adenocarcinoma patients. EGFR mutations were detected in 11 (16.2% of the 68 Uighur lung adenocarcinoma patients and in 32 (45.7% of the 70 Han lung adenocarcinoma patients. Significant differences were observed in the EGFR mutations between Uighur lung adenocarcinoma patients and Han lung adenocarcinoma patients (P<0.001. Conclusion Our results indicate that the EGFR mutation in Uighur lung adenocarcinoma patients (16.2% is significantly lower than that in Han lung adenocarcinoma patients (45.7%.

  14. Epidermal growth factor receptor (EGFR) mutations in lung cancer: preclinical and clinical data

    Energy Technology Data Exchange (ETDEWEB)

    Jorge, S.E.D.C.; Kobayashi, S.S.; Costa, D.B. [Harvard Medical School, Beth Israel Deaconess Medical Center, Department of Medicine, Division of Hematology/Oncology, Boston, MA (United States)

    2014-09-05

    Lung cancer leads cancer-related mortality worldwide. Non-small-cell lung cancer (NSCLC), the most prevalent subtype of this recalcitrant cancer, is usually diagnosed at advanced stages, and available systemic therapies are mostly palliative. The probing of the NSCLC kinome has identified numerous nonoverlapping driver genomic events, including epidermal growth factor receptor (EGFR) gene mutations. This review provides a synopsis of preclinical and clinical data on EGFR mutated NSCLC and EGFR tyrosine kinase inhibitors (TKIs). Classic somatic EGFR kinase domain mutations (such as L858R and exon 19 deletions) make tumors addicted to their signaling cascades and generate a therapeutic window for the use of ATP-mimetic EGFR TKIs. The latter inhibit these kinases and their downstream effectors, and induce apoptosis in preclinical models. The aforementioned EGFR mutations are stout predictors of response and augmentation of progression-free survival when gefitinib, erlotinib, and afatinib are used for patients with advanced NSCLC. The benefits associated with these EGFR TKIs are limited by the mechanisms of tumor resistance, such as the gatekeeper EGFR-T790M mutation, and bypass activation of signaling cascades. Ongoing preclinical efforts for treating resistance have started to translate into patient care (including clinical trials of the covalent EGFR-T790M TKIs AZD9291 and CO-1686) and hold promise to further boost the median survival of patients with EGFR mutated NSCLC.

  15. Epidermal growth factor receptor (EGFR) mutations in lung cancer: preclinical and clinical data

    International Nuclear Information System (INIS)

    Jorge, S.E.D.C.; Kobayashi, S.S.; Costa, D.B.

    2014-01-01

    Lung cancer leads cancer-related mortality worldwide. Non-small-cell lung cancer (NSCLC), the most prevalent subtype of this recalcitrant cancer, is usually diagnosed at advanced stages, and available systemic therapies are mostly palliative. The probing of the NSCLC kinome has identified numerous nonoverlapping driver genomic events, including epidermal growth factor receptor (EGFR) gene mutations. This review provides a synopsis of preclinical and clinical data on EGFR mutated NSCLC and EGFR tyrosine kinase inhibitors (TKIs). Classic somatic EGFR kinase domain mutations (such as L858R and exon 19 deletions) make tumors addicted to their signaling cascades and generate a therapeutic window for the use of ATP-mimetic EGFR TKIs. The latter inhibit these kinases and their downstream effectors, and induce apoptosis in preclinical models. The aforementioned EGFR mutations are stout predictors of response and augmentation of progression-free survival when gefitinib, erlotinib, and afatinib are used for patients with advanced NSCLC. The benefits associated with these EGFR TKIs are limited by the mechanisms of tumor resistance, such as the gatekeeper EGFR-T790M mutation, and bypass activation of signaling cascades. Ongoing preclinical efforts for treating resistance have started to translate into patient care (including clinical trials of the covalent EGFR-T790M TKIs AZD9291 and CO-1686) and hold promise to further boost the median survival of patients with EGFR mutated NSCLC

  16. EGFR and KRAS mutation coexistence in lung adenocarcinomas

    Directory of Open Access Journals (Sweden)

    Vitor Manuel Leitão de Sousa

    2015-04-01

    Full Text Available Lung cancer is one of the most common causes of cancer deaths. The development of EGFR targeted therapies, including monoclonal antibodies and tyrosine kinase inhibitors have generated an interest in the molecular characterization of these tumours. KRAS mutations are associated with resistance to EGFR TKIs. EGFR and KRAS mutations have been considered as mutually exclusive. This paper presents three bronchial-pulmonary carcinomas, two adenocarcinomas and one pleomorphic sarcomatoid carcinoma, harboring EGFR and KRAS mutations. Case 1 corresponded to an adenocarcinoma with EGFR exon 21 mutation (L858R and KRAS codon 12 point mutation (G12V; case 2, a  mucinous adenocarcinoma expressed coexistence of EGFR exon 21 mutation (L858R and KRAS codon 12 point mutation (G12V; and case 3 a sarcomatoid carcinoma with EGFR exon 19 deletion – del 9bp and KRAS codon 12 point mutation (G12C - cysteine. Based on our experience and on the literature, we conclude that EGFR and KRAS mutations can indeed coexist in the same bronchial-pulmonary carcinoma, either in the same histological type or in different patterns. The biological implications of this coexistence are still poorly understood mainly because these cases are not frequent or currently searched. It is therefore necessary to study larger series of cases with the two mutations to better understand the biological, clinical and therapeutic implications.

  17. Loss of activating EGFR mutant gene contributes to acquired resistance to EGFR tyrosine kinase inhibitors in lung cancer cells.

    Directory of Open Access Journals (Sweden)

    Keisuke Tabara

    Full Text Available Non-small-cell lung cancer harboring epidermal growth factor receptor (EGFR mutations attains a meaningful response to EGFR-tyrosine kinase inhibitors (TKIs. However, acquired resistance to EGFR-TKIs could affect long-term outcome in almost all patients. To identify the potential mechanisms of resistance, we established cell lines resistant to EGFR-TKIs from the human lung cancer cell lines PC9 and11-18, which harbored activating EGFR mutations. One erlotinib-resistant cell line from PC9 and two erlotinib-resistant cell lines and two gefitinib-resistant cell lines from 11-18 were independently established. Almost complete loss of mutant delE746-A750 EGFR gene was observed in the erlotinib-resistant cells isolated from PC9, and partial loss of the mutant L858R EGFR gene copy was specifically observed in the erlotinib- and gefitinib-resistant cells from 11-18. However, constitutive activation of EGFR downstream signaling, PI3K/Akt, was observed even after loss of the mutated EGFR gene in all resistant cell lines even in the presence of the drug. In the erlotinib-resistant cells from PC9, constitutive PI3K/Akt activation was effectively inhibited by lapatinib (a dual TKI of EGFR and HER2 or BIBW2992 (pan-TKI of EGFR family proteins. Furthermore, erlotinib with either HER2 or HER3 knockdown by their cognate siRNAs also inhibited PI3K/Akt activation. Transfection of activating mutant EGFR complementary DNA restored drug sensitivity in the erlotinib-resistant cell line. Our study indicates that loss of addiction to mutant EGFR resulted in gain of addiction to both HER2/HER3 and PI3K/Akt signaling to acquire EGFR-TKI resistance.

  18. Genomic Profiling on an Unselected Solid Tumor Population Reveals a Highly Mutated Wnt/β-Catenin Pathway Associated with Oncogenic EGFR Mutations

    Directory of Open Access Journals (Sweden)

    Jingrui Jiang

    2018-04-01

    Full Text Available Oncogenic epidermal growth factor receptors (EGFRs can recruit key effectors in diverse cellular processes to propagate oncogenic signals. Targeted and combinational therapeutic strategies have been successfully applied for treating EGFR-driven cancers. However, a main challenge in EGFR therapies is drug resistance due to mutations, oncogenic shift, alternative signaling, and other potential mechanisms. To further understand the genetic alterations associated with oncogenic EGFRs and to provide further insight into optimal and personalized therapeutic strategies, we applied a proprietary comprehensive next-generation sequencing (NGS-based assay of 435 genes to systematically study the genomic profiles of 1565 unselected solid cancer patient samples. We found that activating EGFR mutations were predominantly detected in lung cancer, particularly in non-small cell lung cancer (NSCLC. The mutational landscape of EGFR-driven tumors covered most key signaling pathways and biological processes. Strikingly, the Wnt/β-catenin pathway was highly mutated (48 variants detected in 46% of the EGFR-driven tumors, and its variant number topped that in the TP53/apoptosis and PI3K-AKT-mTOR pathways. Furthermore, an analysis of mutation distribution revealed a differential association pattern of gene mutations between EGFR exon 19del and EGFR L858R. Our results confirm the aggressive nature of the oncogenic EGFR-driven tumors and reassure that a combinational strategy should have advantages over an EGFR-targeted monotherapy and holds great promise for overcoming drug resistance.

  19. Determination of EGFR and KRAS mutational status in Greek non-small-cell lung cancer patients.

    Science.gov (United States)

    Papadopoulou, Eirini; Tsoulos, Nikolaos; Tsirigoti, Angeliki; Apessos, Angela; Agiannitopoulos, Konstantinos; Metaxa-Mariatou, Vasiliki; Zarogoulidis, Konstantinos; Zarogoulidis, Pavlos; Kasarakis, Dimitrios; Kakolyris, Stylianos; Dahabreh, Jubrail; Vlastos, Fotis; Zoublios, Charalampos; Rapti, Aggeliki; Papageorgiou, Niki Georgatou; Veldekis, Dimitrios; Gaga, Mina; Aravantinos, Gerasimos; Karavasilis, Vasileios; Karagiannidis, Napoleon; Nasioulas, George

    2015-10-01

    It has been reported that certain patients with non-small-cell lung cancer (NSCLC) that harbor activating somatic mutations within the tyrosine kinase domain of the epidermal growth factor receptor ( EGFR ) gene may be effectively treated using targeted therapy. The use of EGFR inhibitors in patient therapy has been demonstrated to improve response and survival rates; therefore, it was suggested that clinical screening for EGFR mutations should be performed for all patients. Numerous clinicopathological factors have been associated with EGFR and Kirsten-rat sarcoma oncogene homolog (KRAS) mutational status including gender, smoking history and histology. In addition, it was reported that EGFR mutation frequency in NSCLC patients was ethnicity-dependent, with an incidence rate of ~30% in Asian populations and ~15% in Caucasian populations. However, limited data has been reported on intra-ethnic differences throughout Europe. The present study aimed to investigate the frequency and spectrum of EGFR mutations in 1,472 Greek NSCLC patients. In addition, KRAS mutation analysis was performed in patients with known smoking history in order to determine the correlation of type and mutation frequency with smoking. High-resolution melting curve (HRM) analysis followed by Sanger sequencing was used to identify mutations in exons 18-21 of the EGFR gene and in exon 2 of the KRAS gene. A sensitive next-generation sequencing (NGS) technology was also employed to classify samples with equivocal results. The use of sensitive mutation detection techniques in a large study population of Greek NSCLC patients in routine diagnostic practice revealed an overall EGFR mutation frequency of 15.83%. This mutation frequency was comparable to that previously reported in other European populations. Of note, there was a 99.8% concordance between the HRM method and Sanger sequencing. NGS was found to be the most sensitive method. In addition, female non-smokers demonstrated a high prevalence of

  20. Consensus for EGFR mutation testing in non-small cell lung cancer: results from a European workshop

    DEFF Research Database (Denmark)

    Pirker, Robert; Herth, Felix J F; Kerr, Keith M

    2010-01-01

    Activating somatic mutations of the tyrosine kinase domain of epidermal growth factor receptor (EGFR) have recently been characterized in a subset of patients with advanced non-small cell lung cancer (NSCLC). Patients harboring these mutations in their tumors show excellent response to EGFR tyros...

  1. Epidermal growth factor receptor (EGFR) and EGFR mutations, function and possible role in clinical trials

    DEFF Research Database (Denmark)

    Voldborg, B R; Damstrup, L; Spang-Thomsen, M

    1997-01-01

    The epidermal growth factor receptor (EGFR) is a growth factor receptor that induces cell differentiation and proliferation upon activation through the binding of one of its ligands. The receptor is located at the cell surface, where the binding of a ligand activates a tyrosine kinase in the intr...... aspects of therapeutic targeting of EGFR....

  2. Epidermal growth factor receptor (EGFR) mutations and expression in squamous cell carcinoma of the esophagus in central Asia

    International Nuclear Information System (INIS)

    Abedi-Ardekani, Behnoush; Malekzadeh, Reza; Hainaut, Pierre; Dar, Nazir Ahmad; Mir, Mohammad Muzaffar; Zargar, Showkat Ahmad; Lone, M Muqbool; Martel-Planche, Ghyslaine; Villar, Stéphanie; Mounawar, Mounia; Saidi, Farrokh

    2012-01-01

    Esophageal squamous cell carcinoma (ESCC) shows geographic variations in incidence, with high incidences (>50/10 5 person-years) in central Asia, including North Eastern Iran (Golestan) and Northern India (Kashmir). In contrast to Western countries, smoking does not appear to be a significant risk factor for ESCC in central Asia. In lung adenocarcinoma, activating mutations in the gene encoding epidermal growth factor receptor (EGFR) are frequent in tumors of never smokers of Asian origin, predicting therapeutic sensitivity to Egfr-targeting drugs. In this study 152 cases of histologically confirmed ESCC from Iran (Tehran and Golestan Province) and North India (Kashmir Valley) have been analyzed for EGFR mutation by direct sequencing of exons 18–21. Egfr protein expression was evaluated by immunohistochemistry in 34 samples from Tehran and HER2 mutations were analyzed in 54 cases from Kashmir. A total of 14 (9.2%) EGFR variations were detected, including seven variations in exons. Among those, four (2.6%) were already documented in lung cancers, two were reported as polymorphisms and one was a potentially new activating mutation. All but one variation in introns were previously identified as polymorphisms. Over-expression of Egfr was detected in 22/34 (65%) of tested cases whereas no HER2 mutation was found in 54 cases from Kashmir. Overall, EGFR mutations appear to be a rare event in ESCC in high incidence areas of central Asia, although a very small proportion of cases may harbor mutations predicting sensitivity to anti-Egfr drugs

  3. Convergent Akt activation drives acquired EGFR inhibitor resistance in lung cancer

    DEFF Research Database (Denmark)

    Jacobsen, Kirstine; Bertran-Alamillo, Jordi; Molina, Miguel Angel

    2017-01-01

    Non-small-cell lung cancer patients with activating epidermal growth factor receptor (EGFR) mutations typically benefit from EGFR tyrosine kinase inhibitor treatment. However, virtually all patients succumb to acquired EGFR tyrosine kinase inhibitor resistance that occurs via diverse mechanisms....

  4. Preselection of EGFR mutations in non-small-cell lung cancer patients by immunohistochemistry: comparison with DNA-sequencing, EGFR wild-type expression, gene copy number gain and clinicopathological data.

    Science.gov (United States)

    Gaber, Rania; Watermann, Iris; Kugler, Christian; Vollmer, Ekkehard; Perner, Sven; Reck, Martin; Goldmann, Torsten

    2017-01-01

    Targeting epidermal growth factor receptor (EGFR) in patients with non-small-cell lung cancer (NSCLC) having EGFR mutations is associated with an improved overall survival. The aim of this study is to verify, if EGFR mutations detected by immunohistochemistry (IHC) is a convincing way to preselect patients for DNA-sequencing and to figure out, the statistical association between EGFR mutation, wild-type EGFR overexpression, gene copy number gain, which are the main factors inducing EGFR tumorigenic activity and the clinicopathological data. Two hundred sixteen tumor tissue samples of primarily chemotherapeutic naïve NSCLC patients were analyzed for EGFR mutations E746-A750del and L858R and correlated with DNA-sequencing. Two hundred six of which were assessed by IHC, using 6B6 and 43B2 specific antibodies followed by DNA-sequencing of positive cases and 10 already genotyped tumor tissues were also included to investigate debugging accuracy of IHC. In addition, EGFR wild-type overexpression was IHC evaluated and EGFR gene copy number determination was performed by fluorescence in situ hybridization (FISH). Forty-one÷206 (19.9%) cases were positive for mutated EGFR by IHC. Eight of them had EGFR mutations of exons 18-21 by DNA-sequencing. Hit rate of 10 already genotyped NSCLC mutated cases was 90% by IHC. Positive association was found between EGFR mutations determined by IHC and both EGFR overexpression and increased gene copy number (p=0.002 and p<0.001, respectively). Additionally, positive association was detected between EGFR mutations, high tumor grade and clinical stage (p<0.001). IHC staining with mutation specific antibodies was demonstrated as a possible useful screening test to preselect patients for DNA-sequencing.

  5. Molecular Epidemiology of EGFR Mutations in Asian Patients with Advanced Non-Small-Cell Lung Cancer of Adenocarcinoma Histology – Mainland China Subset Analysis of the PIONEER study

    Science.gov (United States)

    Shi, Yuankai; Li, Junling; Zhang, Shucai; Wang, Mengzhao; Yang, Shujun; Li, Ning; Wu, Gang; Liu, Wei; Liao, Guoqing; Cai, Kaican; Chen, Liang’an; Zheng, Meizhen; Yu, Ping; Wang, Xiuwen; Liu, Yunpeng; Guo, Qisen; Nie, Ligong; Liu, Jiwei; Han, Xiaohong

    2015-01-01

    Epidermal growth factor receptor (EGFR) mutations are the strongest response predictors to EGFR tyrosine kinase inhibitors (TKI) therapy, but knowledge of the EGFR mutation frequency on lung adenocarcinoma is still limited to retrospective studies. The PIONEER study (NCT01185314) is a prospective molecular epidemiology study in Asian patients with newly diagnosed advanced lung adenocarcinoma, aiming to prospectively analyze EGFR mutation status in IIIB/IV treatment-naïve lung adenocarcinomas in Asia. We report the mainland China subset results. Eligible patients (≥20 yrs old, IIIB/IV adenocarcinoma and treatment-naïve) were registered in 17 hospitals in mainland China. EGFR was tested for mutations by amplification refractory mutation system using biopsy samples. Demographic and clinical characteristics were collected for subgroup analyses. A total of 747 patients were registered. Successful EGFR mutation analysis was performed in 741, with an overall mutation rate of 50.2%. The EGFR active mutation rate is 48.0% (with 1.3% of combined active and resistance mutations). Tobacco use (>30 pack-year vs. 0–10 pack-year, OR 0.27, 95%CI: 0.17–0.42) and regional lymph nodes involvement (N3 vs. N0, OR 0.47, 95%CI: 0.29–0.76) were independent predictors of EGFR mutation in multivariate analysis. However, even in regular smokers, the EGFR mutation frequency was 35.3%. The EGFR mutation frequency was similar between diverse biopsy sites and techniques. The overall EGFR mutation frequency of the mainland China subset was 50.2%, independently associated with the intensity of tobacco use and regional lymph nodes involvement. The relatively high frequency of EGFR mutations in the mainland China subset suggest that any effort to obtain tissue sample for EGFR mutation testing should be encouraged. PMID:26599344

  6. Detection and Analysis of EGFR and KRAS Mutations 
in the Patients with Lung Squamous Cell Carcinomas

    Directory of Open Access Journals (Sweden)

    Hui ZHANG

    2015-10-01

    Full Text Available Background and objective Activating mutations in epidermal growth factor receptor (EGFR and KRAS are important markers in non-small cell lung cancer. However, EGFR and KRAS gene mutations in lung squamous cell carcinoma are rarely reported. The aim of this study was to analyze EGFR and KRAS gene mutation rate and their relationship with clinical features in patients with lung squamous cell carcinomas. Methods A total of 139 patients undergoing treatment for naïve lung squamous cell carcinomas with tumor tissue samples available for testing were recruited. EGFR and KRAS mutation statuses of the tumor samples were detected using a mutant enriched liquid chip. Results Of the 139 cases of lung squamous cell carcinoma, EGFR mutations were detected in 25 cases (18%, KRAS mutations were detected in 7 cases (5%, and the presence of both EGFR and KRAS mutations was detected in 1 case (0.7%. EGFR mutations occurred more often in females than in males (33.3% vs 16.5% and in patients that never smoked than in those who smoke (29.6% vs 16.1%. However, the difference did not reach statistical significance (P>0.05. No significant differences were observed in age, stage, and different biopsy type. KRAS mutations occurred more often in males than in females (5.5% vs 0%, but the difference did not reach statistical significance (P>0.05. No significant differences were observed in age, stage, different biopsy type, and smoking status (P>0.05. Conclusion EGFR and KRAS mutations were low in lung squamous cell carcinomas, and had no significant correlation with clinical features. Before using tyrosine kinase inhibitor targeted therapy, EGFR and KRAS mutations should be detected in patients with lung squamous cell carcinomas.

  7. Identifying EGFR-Expressed Cells and Detecting EGFR Multi-Mutations at Single-Cell Level by Microfluidic Chip

    Science.gov (United States)

    Li, Ren; Zhou, Mingxing; Li, Jine; Wang, Zihua; Zhang, Weikai; Yue, Chunyan; Ma, Yan; Peng, Hailin; Wei, Zewen; Hu, Zhiyuan

    2018-03-01

    EGFR mutations companion diagnostics have been proved to be crucial for the efficacy of tyrosine kinase inhibitor targeted cancer therapies. To uncover multiple mutations occurred in minority of EGFR-mutated cells, which may be covered by the noises from majority of un-mutated cells, is currently becoming an urgent clinical requirement. Here we present the validation of a microfluidic-chip-based method for detecting EGFR multi-mutations at single-cell level. By trapping and immunofluorescently imaging single cells in specifically designed silicon microwells, the EGFR-expressed cells were easily identified. By in situ lysing single cells, the cell lysates of EGFR-expressed cells were retrieved without cross-contamination. Benefited from excluding the noise from cells without EGFR expression, the simple and cost-effective Sanger's sequencing, but not the expensive deep sequencing of the whole cell population, was used to discover multi-mutations. We verified the new method with precisely discovering three most important EGFR drug-related mutations from a sample in which EGFR-mutated cells only account for a small percentage of whole cell population. The microfluidic chip is capable of discovering not only the existence of specific EGFR multi-mutations, but also other valuable single-cell-level information: on which specific cells the mutations occurred, or whether different mutations coexist on the same cells. This microfluidic chip constitutes a promising method to promote simple and cost-effective Sanger's sequencing to be a routine test before performing targeted cancer therapy.[Figure not available: see fulltext.

  8. Convergent Akt activation drives acquired EGFR inhibitor resistance in lung cancer

    DEFF Research Database (Denmark)

    Jacobsen, Kirstine; Bertran-Alamillo, Jordi; Molina, Miguel Angel

    2017-01-01

    Non-small-cell lung cancer patients with activating epidermal growth factor receptor (EGFR) mutations typically benefit from EGFR tyrosine kinase inhibitor treatment. However, virtually all patients succumb to acquired EGFR tyrosine kinase inhibitor resistance that occurs via diverse mechanisms....... The diversity and unpredictability of EGFR tyrosine kinase inhibitor resistance mechanisms presents a challenge for developing new treatments to overcome EGFR tyrosine kinase inhibitor resistance. Here, we show that Akt activation is a convergent feature of acquired EGFR tyrosine kinase inhibitor resistance......, across a spectrum of diverse, established upstream resistance mechanisms. Combined treatment with an EGFR tyrosine kinase inhibitor and Akt inhibitor causes apoptosis and synergistic growth inhibition in multiple EGFR tyrosine kinase inhibitor-resistant non-small-cell lung cancer models. Moreover...

  9. [Lung adenocarcinoma with concomitant EGFR mutation and ALK rearrangement].

    Science.gov (United States)

    Caliez, J; Monnet, I; Pujals, A; Rousseau-Bussac, G; Jabot, L; Boudjemaa, A; Leroy, K; Chouaid, C

    2017-05-01

    Among patients with non-small-cell lung cancer, coexistence of EGFR mutation and ALK rearrangement is rare. We describe the clinical features of two patients with this double anomaly. A 62-year-old Caucasian non-smoking woman was diagnosed with cT4N0M0 lung adenocarcinoma. Initial biopsy showed EGFR mutation and ALK rearrangement. She received cisplatin-gemcitabine, followed by 17 months of gemcitabine. Owing to progression, she received erlotinib for 14 months, then paclitaxel for 6 months and finally crizotinib. A partial response was achieved and maintained for 24 months. A 45-year-old Caucasian woman, light smoker, was diagnosed with cT2N3M0 lung adenocarcinoma. Only EGFR mutation was found on initial analysis. She underwent treatment with cisplatin-gemcitabine and thoracic radiotherapy. Progression occurred after 8 months and afatinbib was started. Eight months later, progression was observed with a neoplasic pleural effusion in which tumor cells expressing ALK rearrangement were found. A new FISH analysis was performed on the initial tumor but did not find this rearrangement. Despite a third line of crizotinib, the patient died one month later. The literature shows 45 other cases of these two abnormalities, observed either from the start or during follow-up. EGFR's TKI were almost always given before ALK's TKI. Therapeutic strategy needs to be clarified in cases of double alteration. With regard to the second patient, appearance of ALK rearrangement may constitute a resistance mechanism to EGFR's TKI. Copyright © 2016 SPLF. Published by Elsevier Masson SAS. All rights reserved.

  10. EGFR Activation by Spatially Restricted Ligands

    National Research Council Canada - National Science Library

    Clouse, Katherine N; Goodrich, Jennifer S

    2006-01-01

    ...) activity has been associated with an increased prognosis of breast cancer. During cogenesis in Drosophila melanogaster local Egfr activation by the spatially-restricted TGFalpha-like ligand Gurken (Grk...

  11. EGFR Activation by Spatially Restricted Ligands

    National Research Council Canada - National Science Library

    Goodrich, Jennifer S

    2005-01-01

    ...) activity has been associated with an increased prognosis of breast cancer. During oogenesis in Drosophila melanogaster, local EGFR activation by the spatially restricted TGF alpha-like ligand, Gurken (Grk...

  12. Detection of EGFR mutations in plasma and biopsies from non-small cell lung cancer patients by allele-specific PCR assays

    DEFF Research Database (Denmark)

    Weber, Britta; Meldgaard, Peter; Hager, Henrik

    2014-01-01

    samples with allele-specific PCR assays. METHODS: Pairs of the diagnostic biopsy and plasma obtained just prior to start of erlotinib treatment were collected from 199 patients with adenocarcinoma of non-small-cell lung cancer. DNA from both sample types was isolated and examined for the presence...... of mutations in exons 18-21 of the EGFR gene, employing the cobas(®) EGFR Tissue Test and cobas(®) EGFR Blood Test (in development, Roche Molecular Systems, Inc., CA, USA). RESULTS: Test results were obtained in all 199 (100%) plasma samples and 196/199 (98%) of the biopsies. EGFR-activating mutations were...... identified in 24/199 (12%) plasma samples and 28/196 (14%) biopsy samples, and 17/196 (9%) matched pairs contained the same mutation. Six EGFR mutations were present only in plasma samples but not in the biopsy samples. The overall concordance of the EGFR gene mutations detected in plasma and biopsy tissue...

  13. Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations.

    LENUS (Irish Health Repository)

    Sequist, Lecia V

    2013-09-20

    The LUX-Lung 3 study investigated the efficacy of chemotherapy compared with afatinib, a selective, orally bioavailable ErbB family blocker that irreversibly blocks signaling from epidermal growth factor receptor (EGFR\\/ErbB1), human epidermal growth factor receptor 2 (HER2\\/ErbB2), and ErbB4 and has wide-spectrum preclinical activity against EGFR mutations. A phase II study of afatinib in EGFR mutation-positive lung adenocarcinoma demonstrated high response rates and progression-free survival (PFS).

  14. EGFR Activation by Spatially Restricted Ligands

    National Research Council Canada - National Science Library

    Clouse, Katherine N; Goodrich, Jennifer S

    2006-01-01

    ...) functions in the localization and translational regulation of grk mRNA. The purpose of this project is to identify factors that function with Sqd to produce spatially-restricted Egfr activation...

  15. EGFR Activation by Spatially Restricted Ligands

    National Research Council Canada - National Science Library

    Goodrich, Jennifer S

    2005-01-01

    ...) functions in the localization and translational regulation of grk mRNA. The purpose of this project is to identify factors that function with Squid to produce spatially-restricted EGFR activation...

  16. Should EGFR mutations be tested in advanced lung squamous cell carcinomas to guide frontline treatment?

    Science.gov (United States)

    Chiu, Chao-Hua; Chou, Teh-Ying; Chiang, Chi-Lu; Tsai, Chun-Ming

    2014-10-01

    There is no argument over using epidermal growth factor receptor (EGFR) mutation status to guide the frontline treatment for advanced lung adenocarcinoma (LADC); however, the role of the testing in lung squamous cell carcinoma (LSQC) remains controversial. Currently, the guidelines/consensus statements regarding EGFR mutation testing in LSQC are not consistent among different oncology societies. American Society of Clinical Oncology recommends performing EGFR mutation testing in all patients; European Society for Medical Oncology, College of American Pathologists/International Association for the Study of Lung Cancer/Association for Molecular Pathology, and National Comprehensive Cancer Network suggest for some selected group. EGFR mutation is rarely found in LSQC; however, more importantly, it is not a valid predictive biomarker for EGFR tyrosine kinase inhibitors (EGFR-TKI) in LSQC as it has been shown in LADC. Available data showed that the response rate and progression-free survival in EGFR mutant LSQC patients treated with EGFR-TKI are not better than that observed in patients treated with platinum-doublet chemotherapy in the first-line setting. Therefore, in contrast to advanced LADC, EGFR mutation testing may not be necessarily performed upfront in advanced LSQC because not only the mutation rate is low, but also the predictive value is insufficient. For LSQC patients with known sensitizing-EGFR mutations, both conventional chemotherapy and EGFR-TKI are acceptable frontline treatment options.

  17. Sex-specific incidence of EGFR mutation and its association with age and obesity in lung adenocarcinomas: a retrospective analysis.

    Science.gov (United States)

    Kim, Hye-Ryoun; Kim, Seo Yun; Kim, Cheol Hyeon; Yang, Sung Hyun; Lee, Jae Cheol; Choi, Chang-Min; Na, Im Il

    2017-11-01

    Age and obesity are well-known risk factors for various cancers, but the potential roles of age and obesity in lung cancer, especially in those with activating EGFR mutations, have not been thoroughly evaluated. The aim of this retrospective study is to evaluate the associations between the sex-specific incidence of EGFR mutations and age and obesity. We conducted a retrospective study based on the data from 1378 lung adenocarcinoma cases. The degree of obesity was categorized by body mass index (BMI). The associations between EGFR mutational status and clinical factors, including stage, smoking history, age group (≤45 years, 46-55, 56-65 and >65), and BMI group (obesity (adjusted OR for BMI group = 1.23, p-trend = 0.04). In contrast, in women, the incidence of EGFR mutation was positively associated with age (adjusted OR for age group = 1.19, p-trend = 0.02). However, the incidence of EGFR mutation was not statistically associated with obesity (adjusted OR for BMI group = 1.03, p-trend = 0.76). Our data suggests that age and obesity may contribute to the sex-specific incidence of EGFR mutation in lung adenocarcinoma in different manners.

  18. Gene Expression of the EGF System-a Prognostic Model in Non-Small Cell Lung Cancer Patients Without Activating EGFR Mutations

    DEFF Research Database (Denmark)

    Sandfeld-Paulsen, Birgitte; Folkersen, Birgitte Holst; Rasmussen, Torben Riis

    2016-01-01

    OBJECTIVES: Contradicting results have been demonstrated for the expression of the epidermal growth factor receptor (EGFR) as a prognostic marker in non-small cell lung cancer (NSCLC). The complexity of the EGF system with four interacting receptors and more than a dozen activating ligands is a l.......17-6.47], P model that takes the complexity of the EGF system into account and shows that this model is a strong prognostic marker in NSCLC patients.......OBJECTIVES: Contradicting results have been demonstrated for the expression of the epidermal growth factor receptor (EGFR) as a prognostic marker in non-small cell lung cancer (NSCLC). The complexity of the EGF system with four interacting receptors and more than a dozen activating ligands...... is a likely explanation. The aim of this study is to demonstrate that the combined network of receptors and ligands from the EGF system is a prognostic marker. MATERIAL AND METHODS: Gene expression of the receptors EGFR, HER2, HER3, HER4, and the ligands AREG, HB-EGF, EPI, TGF-α, and EGF was measured...

  19. Epidermal growth factor receptor (EGFR mutations and expression in squamous cell carcinoma of the esophagus in central Asia

    Directory of Open Access Journals (Sweden)

    Abedi-Ardekani Behnoush

    2012-12-01

    Full Text Available Abstract Background Esophageal squamous cell carcinoma (ESCC shows geographic variations in incidence, with high incidences (>50/105 person-years in central Asia, including North Eastern Iran (Golestan and Northern India (Kashmir. In contrast to Western countries, smoking does not appear to be a significant risk factor for ESCC in central Asia. In lung adenocarcinoma, activating mutations in the gene encoding epidermal growth factor receptor (EGFR are frequent in tumors of never smokers of Asian origin, predicting therapeutic sensitivity to Egfr-targeting drugs. Methods In this study 152 cases of histologically confirmed ESCC from Iran (Tehran and Golestan Province and North India (Kashmir Valley have been analyzed for EGFR mutation by direct sequencing of exons 18–21. Egfr protein expression was evaluated by immunohistochemistry in 34 samples from Tehran and HER2 mutations were analyzed in 54 cases from Kashmir. Results A total of 14 (9.2% EGFR variations were detected, including seven variations in exons. Among those, four (2.6% were already documented in lung cancers, two were reported as polymorphisms and one was a potentially new activating mutation. All but one variation in introns were previously identified as polymorphisms. Over-expression of Egfr was detected in 22/34 (65% of tested cases whereas no HER2 mutation was found in 54 cases from Kashmir. Conclusion Overall, EGFR mutations appear to be a rare event in ESCC in high incidence areas of central Asia, although a very small proportion of cases may harbor mutations predicting sensitivity to anti-Egfr drugs.

  20. Dual Inhibition of EGFR with Afatinib and Cetuximab in Kinase Inhibitor-Resistant EGFR-Mutant Lung Cancer with and without T790M Mutations

    NARCIS (Netherlands)

    Janjigian, Yelena Y.; Smit, Egbert F.; Groen, Harry J. M.; Horn, Leora; Gettinger, Scott; Camidge, D. Ross; Riely, Gregory J.; Wang, Bushi; Fu, Yali; Chand, Vikram K.; Miller, Vincent A.; Pao, William

    EGFR-mutant lung cancers responsive to reversible EGFR inhibitors (gefitinib/erlotinib) develop acquired resistance, mediated by second-site EGFR T790M mutation in >50% of cases. Preclinically, afatinib (irreversible ErbB family blocker) plus cetuximab (anti-EGFR monoclonal antibody) overcomes

  1. Detection of EGFR mutations with mutation-specific antibodies in stage IV non-small-cell lung cancer

    Directory of Open Access Journals (Sweden)

    Viteri Santiago

    2010-12-01

    Full Text Available Abstract Background Immunohistochemistry (IHC with mutation-specific antibodies may be an ancillary method of detecting EGFR mutations in lung cancer patients. Methods EGFR mutation status was analyzed by DNA assays, and compared with IHC results in five non-small-cell lung cancer (NSCLC cell lines and tumor samples from 78 stage IV NSCLC patients. Results IHC correctly identified del 19 in the H1650 and PC9 cell lines, L858R in H1975, and wild-type EGFR in H460 and A549, as well as wild-type EGFR in tumor samples from 22 patients. IHC with the mAb against EGFR with del 19 was highly positive for the protein in all 17 patients with a 15-bp (ELREA deletion in exon 19, whereas in patients with other deletions, IHC was weakly positive in 3 cases and negative in 9 cases. IHC with the mAb against the L858R mutation showed high positivity for the protein in 25/27 (93% patients with exon 21 EGFR mutations (all with L858R but did not identify the L861Q mutation in the remaining two patients. Conclusions IHC with mutation-specific mAbs against EGFR is a promising method for detecting EGFR mutations in NSCLC patients. However these mAbs should be validated with additional studies to clarify their possible role in routine clinical practice for screening EGFR mutations in NSCLC patients.

  2. A marked response to icotinib in a patient with large cell neuroendocrine carcinoma harboring an EGFR mutation: A case report.

    Science.gov (United States)

    Wang, Yuehong; Shen, Yi Hong; Ma, Shanni; Zhou, Jianying

    2015-09-01

    The present study reports the case of an 84-year-old male with primary pulmonary large cell neuroendocrine carcinoma (LCNEC) harboring an epidermal growth factor receptor (EGFR) gene mutation that exhibited a long-lasting response to the EGFR-tyrosine kinase inhibitor (EGFR-TKI) icotinib. The patient had an extensive smoking history, a poor performance status, and presented with an irregular mass in the middle lobe of the right lung on computed tomography (CT) and an enlarged left supraclavicular lymph node on physical examination. Right middle lobe bronchial brushing during fiberoptic bronchoscopy identified poorly-differentiated cancer cells. The left supraclavicular lymph node was biopsied and a diagnosis of metastatic LCNEC was determined. Furthermore, an EGFR exon 19 deletion was identified by DNA sequencing. Following diagnosis, icotinib was administered at a dose of 125 mg three times a day. Chest CT scans were performed after 1 month of treatment, which indicated that the tumor was in partial remission. This marked response to icotinib lasted for 8 months. Thus, the present case illustrates the possibility of identifying EGFR mutations in LCNEC and indicates that EGFR-tyrosine kinase inhibitors may be an alternative treatment strategy for patients with LCNEC harboring activating EGFR mutations.

  3. Radiotherapy of non-small-cell lung cancer in the era of EGFR gene mutations and EGF receptor tyrosine kinase inhibitors.

    Science.gov (United States)

    Moschini, Ilaria; Dell'Anna, Cristina; Losardo, Pier Luigi; Bordi, Paola; D'Abbiero, Nunziata; Tiseo, Marcello

    2015-01-01

    Non-small-cell lung cancer (NSCLC) occurs, approximately, in 80-85% of all cases of lung cancer. The majority of patients present locally advanced or metastatic disease when diagnosed, with poor prognosis. The discovery of activating mutations in the EGFR gene has started a new era of personalized treatment for NSCLC patients. To improve the treatment outcome in patients with unresectable NSCLC and, in particular, EGFR mutated, a combined strategy of radiotherapy and medical treatment can be undertaken. In this review we will discuss preclinical data regarding EGF receptor (EGFR) tyrosine kinase inhibitors (TKIs) and radiotherapy, available clinical trials investigating efficacy and toxicity of combined treatment (thoracic or whole brain radiotherapy and EGFR-TKIs) and, also, the role of local radiation in mutated EGFR patients who developed EGFR-TKI resistance.

  4. Mutational status of EGFR and KIT in thymoma and thymic carcinoma.

    Science.gov (United States)

    Yoh, Kiyotaka; Nishiwaki, Yutaka; Ishii, Genichiro; Goto, Koichi; Kubota, Kaoru; Ohmatsu, Hironobu; Niho, Seiji; Nagai, Kanji; Saijo, Nagahiro

    2008-12-01

    This study was conducted to evaluate the prevalence of EGFR and KIT mutations in thymomas and thymic carcinomas as a means of exploring the potential for molecularly targeted therapy with tyrosine kinase inhibitors. Genomic DNA was isolated from 41 paraffin-embedded tumor samples obtained from 24 thymomas and 17 thymic carcinomas. EGFR exons 18, 19, and 21, and KIT exons 9, 11, 13, and 17, were analyzed for mutations by PCR and direct sequencing. Protein expression of EGFR and KIT was evaluated immunohistochemically. EGFR mutations were detected in 2 of 20 thymomas, but not in any of the thymic carcinomas. All of the EGFR mutations detected were missense mutations (L858R and G863D) in exon 21. EGFR protein was expressed in 71% of the thymomas and 53% of the thymic carcinomas. The mutational analysis of KIT revealed only a missense mutation (L576P) in exon 11 of one thymic carcinoma. KIT protein was expressed in 88% of the thymic carcinomas and 0% of the thymomas. The results of this study indicate that EGFR and KIT mutations in thymomas and thymic carcinomas are rare, but that many of the tumors express EGFR or KIT protein.

  5. Prediction of sensitivity to gefitinib/erlotinib for EGFR mutations in NSCLC based on structural interaction fingerprints and multilinear principal component analysis.

    Science.gov (United States)

    Zou, Bin; Lee, Victor H F; Yan, Hong

    2018-03-07

    Non-small cell lung cancer (NSCLC) with activating EGFR mutations, especially exon 19 deletions and the L858R point mutation, is particularly responsive to gefitinib and erlotinib. However, the sensitivity varies for less common and rare EGFR mutations. There are various explanations for the low sensitivity of EGFR exon 20 insertions and the exon 20 T790 M point mutation to gefitinib/erlotinib. However, few studies discuss, from a structural perspective, why less common mutations, like G719X and L861Q, have moderate sensitivity to gefitinib/erlotinib. To decode the drug sensitivity/selectivity of EGFR mutants, it is important to analyze the interaction between EGFR mutants and EGFR inhibitors. In this paper, the 30 most common EGFR mutants were selected and the technique of protein-ligand interaction fingerprint (IFP) was applied to analyze and compare the binding modes of EGFR mutant-gefitinib/erlotinib complexes. Molecular dynamics simulations were employed to obtain the dynamic trajectory and a matrix of IFPs for each EGFR mutant-inhibitor complex. Multilinear Principal Component Analysis (MPCA) was applied for dimensionality reduction and feature selection. The selected features were further analyzed for use as a drug sensitivity predictor. The results showed that the accuracy of prediction of drug sensitivity was very high for both gefitinib and erlotinib. Targeted Projection Pursuit (TPP) was used to show that the data points can be easily separated based on their sensitivities to gefetinib/erlotinib. We can conclude that the IFP features of EGFR mutant-TKI complexes and the MPCA-based tensor object feature extraction are useful to predict the drug sensitivity of EGFR mutants. The findings provide new insights for studying and predicting drug resistance/sensitivity of EGFR mutations in NSCLC and can be beneficial to the design of future targeted therapies and innovative drug discovery.

  6. Uncommon EGFR mutations in cytological specimens of 1,874 newly diagnosed Indonesian lung cancer patients

    Science.gov (United States)

    Syahruddin, Elisna; Wulandari, Laksmi; Sri Muktiati, Nunuk; Rima, Ana; Soeroso, Noni; Ermayanti, Sabrina; Levi, Michael; Hidajat, Heriawaty; Widjajahakim, Grace; Utomo, Ahmad Rusdan Handoyo

    2018-01-01

    Purpose We aimed to evaluate the distribution of individual epidermal growth factor receptor (EGFR) mutation subtypes found in routine cytological specimens. Patients and methods A retrospective audit was performed on EGFR testing results of 1,874 consecutive cytological samples of newly diagnosed or treatment-naïve Indonesian lung cancer patients (years 2015–2016). Testing was performed by ISO15189 accredited central laboratory. Results Overall test failure rate was 5.1%, with the highest failure (7.1%) observed in pleural effusion and lowest (1.6%) in needle aspiration samples. EGFR mutation frequency was 44.4%. Tyrosine kinase inhibitor (TKI)-sensitive common EGFR mutations (ins/dels exon 19, L858R) and uncommon mutations (G719X, T790M, L861Q) contributed 57.1% and 29%, respectively. Approximately 13.9% of mutation-positive patients carried a mixture of common and uncommon mutations. Women had higher EGFR mutation rate (52.9%) vs men (39.1%; pcytological techniques yielded similar success rate to detect EGFR mutations. Uncommon EGFR mutations were frequent events in Indonesian lung cancer patients. PMID:29615847

  7. Pyrosequencing, a method approved to detect the two major EGFR mutations for anti EGFR therapy in NSCLC

    Directory of Open Access Journals (Sweden)

    Richard Marie-Jeanne

    2011-05-01

    Full Text Available Abstract Background Epidermal Growth Factor Receptor (EGFR mutations, especially in-frame deletions in exon 19 (ΔLRE and a point mutation in exon 21 (L858R predict gefitinib sensitivity in patients with non-small cell lung cancer. Several methods are currently described for their detection but the gold standard for tissue samples remains direct DNA sequencing, which requires samples containing at least 50% of tumor cells. Methods We designed a pyrosequencing assay based on nested PCR for the characterization of theses mutations on formalin-fixed and paraffin-embedded tumor tissue. Results This method is highly specific and permits precise characterization of all the exon 19 deletions. Its sensitivity is higher than that of "BigDye terminator" sequencing and enabled detection of 3 additional mutations in the 58 NSCLC tested. The concordance between the two methods was very good (97.4%. In the prospective analysis of 213 samples, 7 (3.3% samples were not analyzed and EGFR mutations were detected in 18 (8.7% patients. However, we observed a deficit of mutation detection when the samples were very poor in tumor cells. Conclusions pyrosequencing is then a highly accurate method for detecting ΔLRE and L858R EGFR mutations in patients with NSCLC when the samples contain at least 20% of tumor cells.

  8. Predictive efficacy of low burden EGFR mutation detected by next-generation sequencing on response to EGFR tyrosine kinase inhibitors in non-small-cell lung carcinoma.

    Directory of Open Access Journals (Sweden)

    Hye Sook Kim

    Full Text Available Direct sequencing remains the most widely used method for the detection of epidermal growth factor receptor (EGFR mutations in lung cancer; however, its relatively low sensitivity limits its clinical use. The objective of this study was to investigate the sensitivity of detecting an epidermal growth factor receptor (EGFR mutation from peptide nucleic acid-locked nucleic acid polymerase chain reaction (PNA-LNA PCR clamp and Ion Torrent Personal Genome Machine (PGM techniques compared to that by direct sequencing. Furthermore, the predictive efficacy of EGFR mutations detected by PNA-LNA PCR clamp was evaluated. EGFR mutational status was assessed by direct sequencing, PNA-LNA PCR clamp, and Ion Torrent PGM in 57 patients with non-small cell lung cancer (NSCLC. We evaluated the predictive efficacy of PNA-LNA PCR clamp on the EGFR-TKI treatment in 36 patients with advanced NSCLC retrospectively. Compared to direct sequencing (16/57, 28.1%, PNA-LNA PCR clamp (27/57, 47.4% and Ion Torrent PGM (26/57, 45.6% detected more EGFR mutations. EGFR mutant patients had significantly longer progressive free survival (14.31 vs. 21.61 months, P = 0.003 than that of EGFR wild patients when tested with PNA-LNA PCR clamp. However, no difference in response rate to EGFR TKIs (75.0% vs. 82.4%, P = 0.195 or overall survival (34.39 vs. 44.10 months, P = 0.422 was observed between the EGFR mutations by direct sequencing or PNA-LNA PCR clamp. Our results demonstrate firstly that patients with EGFR mutations were detected more frequently by PNA-LNA PCR clamp and Ion Torrent PGM than those by direct sequencing. EGFR mutations detected by PNA-LNA PCR clamp may be as a predicative factor for EGFR TKI response in patients with NSCLC.

  9. Spectrum of EGFR gene mutations in Vietnamese patients with non-small cell lung cancer.

    Science.gov (United States)

    Vu, Hoang Anh; Xinh, Phan Thi; Ha, Hua Thi Ngoc; Hanh, Ngo Thi Tuyet; Bach, Nguyen Duc; Thao, Doan Thi Phuong; Dat, Ngo Quoc; Trung, Nguyen Sao

    2016-03-01

    Epidermal growth factor receptor (EGFR) mutational status is a crucial biomarker for prediction of response to tyrosine kinase inhibitors in patients with non-small cell lung cancer (NSCLC). Although these mutations have been well characterized in other countries, little is known about the frequency or spectrum of EGFR mutations in Vietnamese NSCLC patients. Using Sanger DNA sequencing, we investigated mutations in EGFR exons 18-21 from 332 patients diagnosed with NSCLC at University of Medicine and Pharmacy, Ho Chi Minh City, Vietnam. DNA was extracted from formalin-fixed, paraffin-embedded tissues, followed by PCR amplification and sequencing. EGFR mutations were detected in 135 samples (40.7%), of which eight samples carried double mutations. In total, 46 different types of EGFR mutations were found, including six novel mutations (p.K713E, p.K714R, p.P794S, p.R803W, p.P848S, and p.K867E). Among the four exons investigated, exon 19 was most frequently mutated (63 out of 332 patients, 19%), with the p.E746_A750del appearing in 43 samples. Exon 21 was mutated in 56 samples (16.9%), of which 47 were p.L858R. Each of exons 18 and 20 was mutated in 12 samples (3.6%). The frequency of EGFR mutations was higher in females than in males (48.9% vs 35%, P = 0.012), but not statistically different between adenocarcinomas and other histological types of NSCLC (41.3% vs 34.5%, P = 0.478). DNA sequencing detected EGFR mutations with high frequency and revealed a broad spectrum of mutation type in Vietnamese patients with NSCLC. © 2015 Wiley Publishing Asia Pty Ltd.

  10. Adenocarcinoma of the lung with EGFR gene mutation and subsequent resistance mechanisms exploration: case report

    Directory of Open Access Journals (Sweden)

    Xu L

    2017-09-01

    Full Text Available Li Xu,1,2 Qian Z Wang,1,2 Lin Wu1,2 1Department of the Second Chest Medicine, Hunan Cancer Hospital, Changsha, Hunan, People’s Republic of China; 2Department of the Second Chest Medicine, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, People’s Republic of China Abstract: The treatment of lung cancer has made paradigm-shift advancements in the past decade with the development of therapies directed at specific genetic alterations, such as epidermal growth factor receptor (EGFR. Here, we present a rare case of lung adenocarcinoma harboring EGFR activating mutation and ALK overexpression. During the EGFR-tyrosine kinase inhibitors treatment, next-generation sequencing revealed phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin pathway amplifications in tumor specimen and subsequent T790M mutation via plasma circulating tumor DNA. In conclusion, this case illustrates the existence of concomitant resistance mechanisms and demonstrates that circulating tumor DNA can reflect tumor heterogeneity. Keywords: epidermal growth factor receptor, PI3K/Akt/mTOR pathway, T790M, next-generation sequencing, circulating tumor DNA

  11. Frequent activation of EGFR in advanced chordomas

    Directory of Open Access Journals (Sweden)

    Dewaele Barbara

    2011-07-01

    Full Text Available Abstract Background Chordomas are rare neoplasms, arising from notochordal remnants in the midline skeletal axis, for which the current treatment is limited to surgery and radiotherapy. Recent reports suggest that receptor tyrosine kinases (RTK might be essential for the survival or proliferation of chordoma cells, providing a rationale for RTK targeted therapy. Nevertheless, the reported data are conflicting, most likely due to the assorted tumor specimens used for the studies and the heterogeneous methodological approaches. In the present study, we performed a comprehensive characterization of this rare entity using a wide range of assays in search for relevant therapeutic targets. Methods Histopathological features of 42 chordoma specimens, 21 primary and 21 advanced, were assessed by immunohistochemistry and fluorescent in situ hybridization (FISH using PDGFRB, CSF1R, and EGFR probes. Twenty-two of these cases, for which frozen material was available (nine primary and 13 advanced tumors, were selectively analyzed using the whole-genome 4.3 K TK-CGH-array, phospho-kinase antibody array or Western immunoblotting. The study was supplemented by direct sequencing of KIT, PDGFRB, CSF1R and EGFR. Results We demonstrated that EGFR is frequently and the most significantly activated RTK in chordomas. Furthermore, concurrent to EGFR activation, the tumors commonly reveal co-activation of alternative RTK. The consistent activation of AKT, the frequent loss of the tumor suppressor PTEN allele, the recurrent activation of upstream RTK and of downstream effectors like p70S6K and mTOR, all indicate the PI3K/AKT pathway as an important mediator of transformation in chordomas. Conclusions Given the complexity of the signaling in chordomas, combined treatment regimens targeting multiple RTK and downstream effectors are likely to be the most effective in these tumors. Personalized therapy with careful selection of the patients, based on the molecular profile of

  12. A case of lung adenocarcinoma harboring EGFR mutation and EML4-ALK fusion gene

    International Nuclear Information System (INIS)

    Tanaka, Hisashi; Hayashi, Akihito; Morimoto, Takeshi; Taima, Kageaki; Tanaka, Yoshihito; Shimada, Michiko; Kurose, Akira; Takanashi, Shingo; Okumura, Ken

    2012-01-01

    Lung cancer is the leading cause of cancer-related death worldwide. Epidermal growth factor receptor (EGFR) - tyrosine kinase inhibitor (TKI) is used for the patients with EGFR-mutant lung cancer. Recently, phase III studies in the patients with EGFR-mutant demonstrated that EGFR-TKI monotherapy improved progression-free survival compared with platinum-doublet chemotherapy. The echinoderm microtubule-associated protein-like 4 (EML4) - anaplastic lymphoma kinase (ALK) fusion oncogene represents one of the newest molecular targets in non-small cell lung cancer (NSCLC). Patients who harbor EML4-ALK fusions have been associated with a lack of EGFR or KRAS mutations. We report a 39-year-old patient diagnosed as adenocarcinoma harboring EGFR mutation and EML4-ALK fusion gene. We treated this patient with erlotinib as the third line therapy, but no clinical benefit was obtained. We experienced a rare case with EGFR mutation and EML4-ALK. Any clinical benefit using EGFR-TKI was not obtained in our case. The therapeutic choice for the patients with more than one driver mutations is unclear. We needs further understanding of the lung cancer molecular biology and the biomarker infomation

  13. High specificity but low sensitivity of mutation-specific antibodies against EGFR mutations in non-small-cell lung cancer

    DEFF Research Database (Denmark)

    Bondgaard, Anna-Louise; Høgdall, Estrid; Mellemgaard, Anders

    2014-01-01

    of more sensitive methods including real-time PCR (RT-PCR). Immunohistochemistry with mutation-specific antibodies might be a promising detection method. We evaluated 210 samples with NSCLC from an unselected Caucasian population. Extracted DNA was analyzed for EGFR mutations by RT-PCR (Therascreen EGFR......, and staining score (multipum of intensity (graded 0-3) and percentages (0-100%) of stained tumor cells) was calculated. Positivity was defined as staining score >0. Specificity of exon19 antibody was 98.8% (95% confidence interval=95.9-99.9%) and of exon21 antibody 97.8% (95% confidence interval=94...... was demonstrated. However, sensitivity was low, especially for exon19 deletions, and thus these antibodies cannot yet be used as screening method for EGFR mutations in NSCLC. Refinement of sensitivity for the mutation-specific antibodies is warranted to improve molecular diagnosis using EGFR immunohistochemistry....

  14. Association between BIM deletion polymorphism and clinical outcome of EGFR-mutated NSCLC patient with EGFR-TKI therapy: A meta-analysis.

    Science.gov (United States)

    Ma, Ji-Yong; Yan, Hai-Jun; Gu, Wei

    2015-01-01

    BIM deletion polymorphism was deemed to be associated with downregulation of BIM, resulting in a decreased apoptosis induced by epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) in EGFR mutation-positive non-small cell lung cancer (NSCLC). However, accumulating evidences concerning the association between BIM deletion polymorphism and efficacy of EGFR-TKI and survival in EGFR-mutation-driven NSCLC patient reported contradictory results. A meta-analysis was conducted by combing six original eligible studies including 871 NSCLC patients. Our study showed that BIM deletion polymorphism was significantly associated with poor response to EGFR-TKI therapy in mutant EGFRNSCLC patients (P(h) = 0.309, P(z) = 0.001, OR = 0.39, 95% confidence interval (CI) = 0.23-0.67). Disease control rate (DCR) in mutant EGFRNSCLC patient with treatment of EGFR-TKI was significantly decreased in patients with BIM deletion polymorphism comparing to patients harbored BIM wild variant (P(h) = 0.583, P(Z) = 0.007, OR = 0.46, 95%CI = 0.25-0.85). EGFR mutation-derived NSCLC patient carrying BIM deletion polymorphism had a shorter progression-free survival (PFS; P(h) deletion polymorphism might be a cause that contributes to primary EGFR-TKI resistance, and it could be used as a genetic predictor for EGFR-TKI outcome and an independent prognostic factor of EGFR mutation-driven NSCLC patient.

  15. TWIST1 a new determinant of epithelial to mesenchymal transition in EGFR mutated lung adenocarcinoma.

    Directory of Open Access Journals (Sweden)

    Karine Pallier

    Full Text Available Metastasis is a multistep process and the main cause of mortality in lung cancer patients. We previously showed that EGFR mutations were associated with a copy number gain at a locus encompassing the TWIST1 gene on chromosome 7. TWIST1 is a highly conserved developmental gene involved in embryogenesis that may be reactivated in cancers promoting both malignant conversion and cancer progression through an epithelial to mesenchymal transition (EMT. The aim of this study was to investigate the possible implication of TWIST1 reactivation on the acquisition of a mesenchymal phenotype in EGFR mutated lung cancer. We studied a series of consecutive lung adenocarcinoma from Caucasian non-smokers for which surgical frozen samples were available (n = 33 and showed that TWIST1 expression was linked to EGFR mutations (P<0.001, to low CDH1 expression (P<0.05 and low disease free survival (P = 0.044. To validate that TWIST1 is a driver of EMT in EGFR mutated lung cancer, we used five human lung cancer cell lines and demonstrated that EMT and the associated cell mobility were dependent upon TWIST1 expression in cells with EGFR mutation. Moreover a decrease of EGFR pathway stimulation through EGF retrieval or an inhibition of TWIST1 expression by small RNA technology reversed the phenomenon. Collectively, our in vivo and in vitro findings support that TWIST1 collaborates with the EGF pathway in promoting EMT in EGFR mutated lung adenocarcinoma and that large series of EGFR mutated lung cancer patients are needed to further define the prognostic role of TWIST1 reactivation in this subgroup.

  16. EGFR T790M mutation after chemotherapy for small cell lung cancer transformation of EGFR-positive non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Tomoaki Sonoda

    Full Text Available In non-small cell lung cancer (NSCLC with an epidermal growth factor receptor (EGFR mutation, 50%–65% of cases acquire resistance after treatment with EGFR-tyrosine kinase inhibitors (EGFR-TKIs because of an EGFR T790M point mutation and 3%–14% of these cases transformed to small cell lung cancer (SCLC. Generally, the EGFR T790M secondary mutation develops with ongoing ATP competitive inhibition. We present a case of a 76-year-old woman with lung adenocarcinoma harboring an EGFR-L858R mutation who received first-line gefitinib and developed SCLC transformation. She was administered several chemotherapy agents, including a platinum doublet. The primary lesion that showed SCLC transformation had reconverted to adenocarcinoma with EGFR L858R and T790M mutations at the time of a second re-biopsy. Therefore, she was administered osimertinib, which resulted in clinical remission. This case suggested that serial biopsies are necessary even after SCLC transformation. Keywords: NSCLC, EGFR mutation, SCLC transformation, T790M, Osimertinib

  17. Role of [18F]FDG PET in prediction of KRAS and EGFR mutation status in patients with advanced non-small-cell lung cancer

    International Nuclear Information System (INIS)

    Caicedo, Carlos; Garcia-Velloso, Maria Jose; Vigil Diaz, Carmen; Richter Echevarria, Jose Angel; Lozano, Maria Dolores; Labiano, Tania; Lopez-Picazo, Jose Maria; Gurpide, Alfonso; Perez Gracia, Jose Luis; Zulueta, Javier

    2014-01-01

    The tumour molecular profile predicts the activity of epidermal growth factor receptor (EGFR) inhibitors in non-small-cell lung cancer (NSCLC). However, tissue availability and tumour heterogeneity limit its assessment. We evaluated whether [ 18 F]FDG PET might help predict KRAS and EFGR mutation status in NSCLC. Between January 2005 and October 2011, 340 NSCLC patients were tested for KRAS and EGFR mutation status. We identified patients with stage III and IV disease who had undergone [ 18 F]FDG PET/CT scanning for initial staging. SUVpeak, SUVmax and SUVmean of the single hottest tumour lesions were calculated, and their association with KRAS and EGFR mutation status was assessed. A receiver operator characteristic (ROC) curve analysis and a multivariate analysis (including SUVmean, gender, age and AJCC stage) were performed to identify the potential value of [ 18 F]FDG PET/CT for predicting KRAS mutation. From 102 patients staged using [ 18 F]FDG PET/CT, 28 (27 %) had KRAS mutation (KRAS+), 22 (22 %) had EGFR mutation (EGFR+) and 52 (51 %) had wild-type KRAS and EGFR profiles (WT). KRAS+ patients showed significantly higher [ 18 F]FDG uptake than EGFR+ and WT patients (SUVmean 9.5, 5.7 and 6.6, respectively; p 18 F]FDG uptake between EGFR+ patients and WT patients. ROC curve analysis for KRAS mutation status discrimination yielded an area under the curve of 0.740 for SUVmean (p 18 F]FDG uptake than WT patients, as assessed in terms of SUVpeak, SUVmax and SUVmean. A multivariate model based on age, gender, AJCC stage and SUVmean might be used as a predictive marker of KRAS mutation status in patients with stage III or IV NSCLC. (orig.)

  18. Colorectal cancer patients with low abundance of KRAS mutation may benefit from EGFR antibody therapy.

    Directory of Open Access Journals (Sweden)

    Shaorong Yu

    Full Text Available Epidermal growth factor receptor monoclonal antibody was approved for treatment of metastatic colorectal cancer patients carrying KRAS wild type DNA. However, recent studies showed that patients with KRAS G13D mutation may benefit from EGFR antibody therapy. In this study we tried to explore whether the abundance of KRAS mutation could affect the efficacy of EGFR antibody therapy. We firstly established a PNA-PCR method which could calculate the percentage of KRAS mutation in total DNA and proved its ability on 47 colorectal cancer samples bearing KRAS mutations. Then we analyzed the correlation between the abundance of KRAS mutations and efficacy of EGFR antibody therapy in another 35 metastatic colorectal cancer patients. We proved that PNA-PCR assay could calculate the abundance of KRAS mutation and the percentage of mutant DNA in tumor cells varied a lot (10.8%∼98.3% on the 47 colorectal cancer patients. The efficacy of EGFR antibody correlated with the abundance of KRAS mutations: in the KRAS mutation less than 30% group, the disease control rate was 44.4% (4/9; the disease control rate of 30∼80% group was 5.6% (1/18 and the >80% group was 12.5% (1/8 (P = 0.038. In summary, our study showed that PNA-PCR method could easily detect the percentage of KRAS mutation in tumor cells and colorectal cancer patients with low abundance of KRAS mutation might benefit from EGFR antibody therapy.

  19. Comparative analysis of clinicoradiologic characteristics of lung adenocarcinomas with ALK rearrangements or EGFR mutations

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, J.Y.; Zheng, J.; Chen, X.; Zhou, J.Y. [Zhejiang University, Department of Respiratory Disease, Thoracic Disease Center, First Affiliated Hospital, College of Medicine, Hangzhou (China); Yu, Z.F.; Xiao, W.B.; Jiang, L.N. [Zhejiang University, Department of Radiology, First Affiliated Hospital, College of Medicine, Hangzhou (China); Zhao, J.; Sun, K.; Wang, B.; Ding, W. [Zhejiang University, Department of Pathology, First Affiliated Hospital, College of Medicine, Hangzhou (China)

    2015-05-01

    To compare the clinicoradiologic features of tumours with echinoderm anaplastic lymphoma kinase (ALK) rearrangements, epidermal growth factor receptor (EGFR) mutations, or wild type (WT) for both genes in a cohort of patients with lung adenocarcinoma to identify useful characteristics of different gene statuses. In 346 lung adenocarcinoma patients, ALK rearrangements were confirmed with fluorescence in situ hybridisation, and EGFR mutations were determined by pyrosequencing assay. Patients were divided into three groups: ALK rearrangement (ALK+ group, n = 48), EGFR mutation (EGFR+ group, n = 166), and WT for both genes (WT group, n = 132). Chest computed tomography (CT) examinations were performed in all patients. The percentages of ground-glass opacity volume (pGGO) and tumour shadow disappearance rate (TDR) were measured using semi-automated nodule assessment software. The pGGO was significantly lower in the ALK+ group (25.1 % ± 24.3) than in the EGFR+ group (37.2 % ± 25.7, p < 0.001) and the WT group (36.1 % ± 24.6, p = 0.001). The TDR in the ALK+ group (17.3 % ± 25.1) was significantly lower than in the EGFR+ group (26.8 % ± 24.9, p = 0.002) and the WT group (25.7 % ± 24.6, p = 0.003). Solid pattern with lower incidence of lobulated border, finely spiculated margins, pleural retraction, and bubble-like lucency on CT imaging are the main characteristics of ALK rearrangement tumours. (orig.)

  20. Mutational landscape of EGFR-, MYC-, and Kras-driven genetically engineered mouse models of lung adenocarcinoma.

    Science.gov (United States)

    McFadden, David G; Politi, Katerina; Bhutkar, Arjun; Chen, Frances K; Song, Xiaoling; Pirun, Mono; Santiago, Philip M; Kim-Kiselak, Caroline; Platt, James T; Lee, Emily; Hodges, Emily; Rosebrock, Adam P; Bronson, Roderick T; Socci, Nicholas D; Hannon, Gregory J; Jacks, Tyler; Varmus, Harold

    2016-10-18

    Genetically engineered mouse models (GEMMs) of cancer are increasingly being used to assess putative driver mutations identified by large-scale sequencing of human cancer genomes. To accurately interpret experiments that introduce additional mutations, an understanding of the somatic genetic profile and evolution of GEMM tumors is necessary. Here, we performed whole-exome sequencing of tumors from three GEMMs of lung adenocarcinoma driven by mutant epidermal growth factor receptor (EGFR), mutant Kirsten rat sarcoma viral oncogene homolog (Kras), or overexpression of MYC proto-oncogene. Tumors from EGFR- and Kras-driven models exhibited, respectively, 0.02 and 0.07 nonsynonymous mutations per megabase, a dramatically lower average mutational frequency than observed in human lung adenocarcinomas. Tumors from models driven by strong cancer drivers (mutant EGFR and Kras) harbored few mutations in known cancer genes, whereas tumors driven by MYC, a weaker initiating oncogene in the murine lung, acquired recurrent clonal oncogenic Kras mutations. In addition, although EGFR- and Kras-driven models both exhibited recurrent whole-chromosome DNA copy number alterations, the specific chromosomes altered by gain or loss were different in each model. These data demonstrate that GEMM tumors exhibit relatively simple somatic genotypes compared with human cancers of a similar type, making these autochthonous model systems useful for additive engineering approaches to assess the potential of novel mutations on tumorigenesis, cancer progression, and drug sensitivity.

  1. Mutational landscape of EGFR-, MYC-, and Kras-driven genetically engineered mouse models of lung adenocarcinoma

    Science.gov (United States)

    McFadden, David G.; Politi, Katerina; Bhutkar, Arjun; Chen, Frances K.; Song, Xiaoling; Pirun, Mono; Santiago, Philip M.; Kim-Kiselak, Caroline; Platt, James T.; Lee, Emily; Hodges, Emily; Rosebrock, Adam P.; Bronson, Roderick T.; Socci, Nicholas D.; Hannon, Gregory J.; Jacks, Tyler; Varmus, Harold

    2016-01-01

    Genetically engineered mouse models (GEMMs) of cancer are increasingly being used to assess putative driver mutations identified by large-scale sequencing of human cancer genomes. To accurately interpret experiments that introduce additional mutations, an understanding of the somatic genetic profile and evolution of GEMM tumors is necessary. Here, we performed whole-exome sequencing of tumors from three GEMMs of lung adenocarcinoma driven by mutant epidermal growth factor receptor (EGFR), mutant Kirsten rat sarcoma viral oncogene homolog (Kras), or overexpression of MYC proto-oncogene. Tumors from EGFR- and Kras-driven models exhibited, respectively, 0.02 and 0.07 nonsynonymous mutations per megabase, a dramatically lower average mutational frequency than observed in human lung adenocarcinomas. Tumors from models driven by strong cancer drivers (mutant EGFR and Kras) harbored few mutations in known cancer genes, whereas tumors driven by MYC, a weaker initiating oncogene in the murine lung, acquired recurrent clonal oncogenic Kras mutations. In addition, although EGFR- and Kras-driven models both exhibited recurrent whole-chromosome DNA copy number alterations, the specific chromosomes altered by gain or loss were different in each model. These data demonstrate that GEMM tumors exhibit relatively simple somatic genotypes compared with human cancers of a similar type, making these autochthonous model systems useful for additive engineering approaches to assess the potential of novel mutations on tumorigenesis, cancer progression, and drug sensitivity. PMID:27702896

  2. EGFR Activation and Ultraviolet Light‐Induced Skin Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Taghrid B. El-Abaseri

    2007-01-01

    Full Text Available The epidermal growth factor receptor (EGFR regulates the proliferation of keratinocytes through multiple mechanisms that differ depending on the localization of the cell within the skin. Ultraviolet (UV irradiation, the main etiologic factor in the development of skin cancer, also activates the receptor. In this review, we discuss how the UV-induced activation of EGFR regulates the response of the skin to UV. UV-induced EGFR activation increases keratinocyte proliferation, suppresses apoptosis, and augments and accelerates epidermal hyperplasia in response to UV. Pharmacological inhibition of the UV-induced activation of EGFR in a genetically initiated mouse skin tumorigenesis model suppresses tumorigenesis and the activation of mitogen-activated protein (MAP kinases and phosphatidyl inositol-3-kinase (PI3K/AKT signaling pathways. EGFR has pleiotropic, complex, and cell-type-specific functions in cutaneous keratinocytes; suggesting that the receptor is an appropriate target for the development of molecularly targeted therapies for skin cancer and other pathologies.

  3. Tyrosine kinase domain mutations of EGFR gene in head and neck squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Vatte C

    2017-03-01

    Full Text Available Chittibabu Vatte,1 Ali M Al Amri,2 Cyril Cyrus,1 Shahanas Chathoth,1 Sadananda Acharya,3 Tariq Mohammad Hashim,4 Zhara Al Ali,2 Saleh Tawfeeq Alshreadah,2 Ahmed Alsayyah,4 Amein K Al-Ali5 1Department of Genetic Research, Institute for Research and Medical Consultation, University of Dammam, Dammam, 2Department of Internal Medicine, King Fahd Hospital of the University, University of Dammam, Al-Khobar, 3Department of Stemcell Research, Institute for Research and Medical Consultation, 4Department of Pathology, King Fahd Hospital of the University, University of Dammam, Al-Khobar, 5Department of Biochemistry, College of Medicine, University of Dammam, Dammam, Kingdom of Saudi Arabia Background: Epidermal growth factor receptor (EGFR is a commonly altered gene that is identified in various cancers, including head and neck squamous cell carcinoma (HNSCC. Therefore, EGFR is a promising molecular marker targeted by monoclonal antibodies and small molecule inhibitors targeting the tyrosine kinase (TK domain. Objective: The objective of this study was to investigate the spectrum of mutations in exons 18, 19, 20, and 21 of the EGFR gene in HNSCC patients. Materials and methods: This retrospective study included 47 confirmed HNSCC cases. Mutations in the TK domain, exons 18, 19, 20, and 21 of the EGFR gene, were detected by Scorpion® chemistry and ARMS® technologies on Rotor-Gene Q real-time polymerase chain reaction.Results: The tumors exhibited EGFR-TK domain mutations in 57% of cases. Four cases of T790M mutations were reported for the first time among HNSCC patients. Out of the total mutations, L861Q (exon 21, exon 20 insertions and deletions of exon 19 accounted for the majority of mutations (21%, 19%, and 17%, respectively. EGFR mutation status was correlated with the higher grade (P=0.026 and advanced stage (P=0.034 of HNSCC tumors.Conclusion: Higher frequency of EGFR-TK domain mutations together with the presence of the T790M mutation suggests

  4. Can EGFR mutation status be reliably determined in pre-operative needle biopsies from adenocarcinomas of the lung?

    DEFF Research Database (Denmark)

    Lindahl, Kim Hein; Sørensen, Flemming Brandt; Jonstrup, Søren Peter

    2015-01-01

    The identification of EGFR mutations in non-small-cell lung cancer is important for selecting patients, who may benefit from treatment with EGFR tyrosine kinase inhibitors. The analysis is usually performed on cytological aspirates and/or histological needle biopsies, representing a small fraction....... Moreover, several inconclusive results in the diagnostic biopsies reveal that attention must be paid on the suitability of pre-operative biopsies for EGFR mutation analysis....

  5. Meta-analysis of the impact of de novo and acquired EGFR T790M mutations on the prognosis of patients with non-small cell lung cancer receiving EGFR-TKIs

    Directory of Open Access Journals (Sweden)

    Liu Y

    2017-04-01

    Full Text Available Yang Liu, Li Sun, Zhi-Cheng Xiong, Xin Sun, Shu-Ling Zhang, Jie-Tao Ma, Cheng-Bo Han Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China Purpose: The purpose of this meta-analysis was to explore the influences of pretreatment de novo and posttreatment-acquired epidermal growth factor receptor (EGFR T790M mutations in patients with advanced non-small cell lung cancer (NSCLC who had received tyrosine kinase inhibitors (TKIs.Methods: We searched PubMed, Embase, and the China National Knowledge Infrastructure database for eligible literature. Data were extracted to assess the hazard ratios (HRs for progression-free survival (PFS, overall survival (OS, and post-progression survival (PPS and the relative ratios (RRs for objective response rate (ORR.Results: This meta-analysis included 22 studies comprising 1,462 patients with NSCLC who harbored activating EGFR mutations and were treated with EGFR-TKIs. Compared to pretreatment T790M mutation-negative NSCLC, pretreatment T790M mutation-positive NSCLC was associated with decreased PFS (HR 2.23, P<0.001 and OS (HR 1.55, P=0.003. A trend toward significance of worsening ORR (RR 0.86, P=0.051 was evident. The acquired T790M mutation was correlated with improved PFS (HR 0.75, P=0.006 and PPS (HR 0.57, P<0.001, compared to patients without the T790M mutation who progressed after EGFR-TKI treatment. There were no significant differences in OS or ORR between patients with acquired T790M mutation-positive and T790M mutation-negative NSCLC. However, in the tumor tissue rebiopsy subgroup, patients with acquired T790M mutation had improved OS (HR 0.60, P<0.001 compared to T790M mutation-negative patients. In the plasma ctDNA subgroup, acquired T790M mutation decreased the OS (HR 1.87, P<0.001.Conclusion: Pretreatment T790M mutation was associated with worse PFS and OS in patients with advanced NSCLC treated with EGFR-TKIs, while acquired T790M mutation was

  6. Clinical efficacy of first-generation EGFR-TKIs in patients with advanced non-small-cell lung cancer harboring EGFR exon 20 mutations

    Directory of Open Access Journals (Sweden)

    Chen D

    2016-07-01

    Full Text Available Dan Chen,1 Zhengbo Song,2 Guoping Cheng3 1Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 2Department of Chemotherapy, 3Department of Pathology, Zhejiang Cancer Hospital, Hangzhou, People’s Republic of China Purpose: Subsets of non-small-cell lung cancer patients with epidermal growth factor receptor (EGFR mutations carry uncommon subtypes. We evaluated the efficacy of first-generation EGFR-tyrosine kinase inhibitors (TKIs; erlotinib, gefitinib, and icotinib in patients with non-small-cell lung cancer carrying insertions and T790M and S768I mutations in EGFR exon 20. Patients and methods: Patients carrying EGFR exon 20 insertion/T790M/S768I mutations and treated with EGFR-TKIs were evaluated from 2005 to 2014 in Zhejiang Cancer Hospital. The efficacy was evaluated using the Kaplan–Meier method and compared with the log-rank test. Results: Sixty-two patients with exon 20 insertion/T790M/S768I mutations were enrolled. Mutations including exon 20 insertions and T790M and S768I mutations were observed in 29, 23, and ten patients, respectively. In total, the response rate and median progression-free survival (PFS were 8.1% and 2.1 months, respectively. Patients with S768I mutation manifested the longest median PFS (2.7 months, followed by those with T790M (2.4 months and exon 20 insertions (1.9 months; P=0.022. Patients with complex mutations show a better PFS than those with single mutations (2.7 months vs 1.9 months; P=0.034. Conclusion: First-generation EGFR-TKIs are less effective in patients with exon 20 uncommon mutations than in those with common mutations. Patients with complex mutations benefited more from first-generation EGFR-TKIs than those with single mutations. Keywords: non-small cell lung cancer, epidermal growth factor receptor, EGFR mutations, exon 20, tyrosine kinase inhibitor

  7. Clinical efficacy of icotinib in lung cancer patients with different EGFR mutation status: a meta-analysis.

    Science.gov (United States)

    Qu, Jian; Wang, Ya-Nan; Xu, Ping; Xiang, Da-Xiong; Yang, Rui; Wei, Wei; Qu, Qiang

    2017-05-16

    Icotinib is a novel and the third listed epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs), which exerts a good anti-tumor efficacy on non-small cell lung cancer (NSCLC). The efficacy of EGFR-TKIs has been shown to be associated with the EGFR mutation status, especially exon 19 deletion (19Del) and exon 21 L858R mutation. Therefore, a meta-analysis was performed to assess the efficacy of icotinib in NSCLC patients harboring EGFR mutations (19Del or L858R) and wild type (19Del and L858R loci wild type). A total of 24 studies were included for comparing the objective response rate (ORR) in the EGFR wild type and mutant patients treated with icotinib. The ORRs of EGFR mutant patients (19Del or L858R) are better than those of EGFR wild type patients (OR = 7.03(5.09-9.71), P icotinib treatment; EGFR 19Del patients treated with icotinib have better ORRs than EGFR L858R patients. EGFR mutation status is a useful biomarker for the evaluation of icotinib efficacy in NSCLC patients.

  8. EGFR mutations predict a favorable outcome for malignant pleural effusion of lung adenocarcinoma with Tarceva therapy.

    Science.gov (United States)

    Guo, Haisheng; Wan, Yunyan; Tian, Guangyan; Liu, Qinghua; Kang, Yanmeng; Li, Yuye; Yao, Zhouhong; Lin, Dianjie

    2012-03-01

    The aim of the present study was to evaluate the therapeutic effects and adverse reactions of Tarceva treatment for malignant pleural effusion (MPE) caused by metastatic lung adenocarcinomas. One hundred and twenty-eight patients who failed first-line chemotherapy drug treatment were divided into a mutation and a non-mutation group according to the presence or absence of epidermal growth factor receptor (EGFR) mutations. Each patient received closed drainage combined with simple negative pressure suction after thoracoscopic talc poudrage pleurodesis and oral Tarceva treatment. Short-term and long-term clinical therapeutic effects of Tarceva were evaluated. The EGFR mutation rate in pleural metastatic tissues of lung adenocarcinoma acquired through video-assisted thoracoscopic surgery was higher compared to that in surgical resection specimens, plasma specimens and pleural effusion specimens compared to previously reported results. There were significant statistical differences in the average extubation time (ppleural effusion (ppleural effusion 4 weeks after surgery (ppleural hypertrophy in the mutation group was significantly higher compared to the non-mutation group (ppleural hypertrophy was significantly reduced (ppleural effusion of lung adenocarcinoma with Tarceva therapy. Detection of EGFR mutations may determine the responsiveness of malignant pleural effusion to Tarceva treatment.

  9. EGFR mutation is a better predictor of response to tyrosine kinase inhibitors in non-small cell lung carcinoma than FISH, CISH, and immunohistochemistry.

    Science.gov (United States)

    Sholl, Lynette M; Xiao, Yun; Joshi, Victoria; Yeap, Beow Y; Cioffredi, Leigh-Anne; Jackman, David M; Lee, Charles; Jänne, Pasi A; Lindeman, Neal I

    2010-06-01

    About 10% of patients with non-small cell lung carcinoma (NSCLC) respond to epidermal growth factor receptor (EGFR)-targeted tyrosine kinase inhibitors (TKIs). More than 75% of "responders" have activating mutations in EGFR. However, mutation analysis is not widely available, and proposed alternatives (in situ hybridization and immunohistochemical analysis) have shown inconsistent associations with outcome. Fluorescence in situ hybridization (FISH), chromogenic in situ hybridization (CISH), immunohistochemical analysis, and DNA sequencing were compared in this study of 40 NSCLC samples from TKI-treated patients. Response rates were 12 of 19 in EGFR-mutant vs 1 of 20 EGFR wild-type tumors (P = .0001), 7 of 19 FISH+ vs 4 of 17 FISH- tumors (not significant [NS]), 5 of 16 CISH+ vs 6 of 21 CISH- tumors (NS), and 3 of 9 immunohistochemically positive vs 7 of 22 immunohistochemically negative tumors (NS). EGFR mutation was associated with improved progression-free survival (P = .0004). Increased copy number (FISH or CISH) and protein expression (immunohistochemical) did not independently predict outcome. Thus, EGFR sequence analysis was the only method useful for predicting response and progression-free survival following TKI therapy in NSCLC.

  10. BRCA2, EGFR, and NTRK mutations in mismatch repair-deficient colorectal cancers with MSH2 or MLH1 mutations.

    Science.gov (United States)

    Deihimi, Safoora; Lev, Avital; Slifker, Michael; Shagisultanova, Elena; Xu, Qifang; Jung, Kyungsuk; Vijayvergia, Namrata; Ross, Eric A; Xiu, Joanne; Swensen, Jeffrey; Gatalica, Zoran; Andrake, Mark; Dunbrack, Roland L; El-Deiry, Wafik S

    2017-06-20

    Deficient mismatch repair (MMR) and microsatellite instability (MSI) contribute to ~15% of colorectal cancer (CRCs). We hypothesized MSI leads to mutations in DNA repair proteins including BRCA2 and cancer drivers including EGFR. We analyzed mutations among a discovery cohort of 26 MSI-High (MSI-H) and 558 non-MSI-H CRCs profiled at Caris Life Sciences. Caris-profiled MSI-H CRCs had high mutation rates (50% vs 14% in non-MSI-H, P MLH1-mutant CRCs showed higher mutation rates in BRCA2 compared to non-MSH2/MLH1-mutant tumors (38% vs 6%, P MLH1-mutant CRCs included 75 unique mutations not known to occur in breast or pancreatic cancer per COSMIC v73. Only 5 deleterious BRCA2 mutations in CRC were previously reported in the BIC database as germ-line mutations in breast cancer. Some BRCA2 mutations were predicted to disrupt interactions with partner proteins DSS1 and RAD51. Some CRCs harbored multiple BRCA2 mutations. EGFR was mutated in 45.5% of MSH2/MLH1-mutant and 6.5% of non-MSH2/MLH1-mutant tumors (P MLH1-mutant CRC including NTRK1 I699V, NTRK2 P716S, and NTRK3 R745L. Our findings have clinical relevance regarding therapeutic targeting of BRCA2 vulnerabilities, EGFR mutations or other identified oncogenic drivers such as NTRK in MSH2/MLH1-mutant CRCs or other tumors with mismatch repair deficiency.

  11. Clinical Characteristics and Outcomes of Lung Cancer Patients 
with EGFR Mutations in Exons 19 and 21

    Directory of Open Access Journals (Sweden)

    Renwang LIU

    2014-11-01

    Full Text Available Background and objective Studies on the epidermal growth factor receptor (EGFR signaling pathways and the therapeutic effects of EGFR-tyrosine kinase inhibitors (EGFR-TKIs have recently proven that targeted therapy has a major role in the treatment of lung cancer. However, the therapeutic effects of EGFR-TKIs on lung cancers with different EGFR mutation subtypes remain unclear. And if there is a significant difference in the effects of EGFR-TKIs, the mechanisms for the difference remain unclear. The aim of this study was to investigate the clinical importance of EGFR mutations in exons 19 and 21 of lung cancer patients and to compare the outcomes of these patients. Methods The study recruited 113 patients who had non-small cell lung cancer (NSCLC with EGFR mutations. EGFR mutations were detected for 47 patients using Real-time PCR or DNA sequencinag. The mutations of the remaining patients were determined using xTag-EGFR liquid chip technology. All stages I-III patients underwent radical resection followed by 4 cycles of postoperative chemotherapy. Patients with pleural metastases underwent pleural biopsy, pleurodesis, and chemotherapy only. Patients with distant metastases underwent biopsy and chemotherapy only. Collected clinical data were analyzed using SPSS 19.0 software. Results EGFR exon mutations 19 and 21 were found in 56 and 57 patients, respectively. The mean age of patients with exon 19 mutations was lower than the age of the patients with exon 21 mutations (57.02±11.31 years vs 62.25±7.76 years, respectively; P0.05 between the patients with exon 19 and 21 mutations; and survival analysis of 91 (80.5% patients with complete clinical data found no differences in overall survival. Stratification analysis found out that patients with exon 19 mutations had longer overall survival associated with age>61 years, male gender, ever smoking, and stage IV disease; although the differences were not significant. Conclusion Compared to the lung

  12. Clinical and CT characteristics of surgically resected lung adenocarcinomas harboring ALK rearrangements or EGFR mutations

    International Nuclear Information System (INIS)

    Wang, Hua; Schabath, Matthew B.; Liu, Ying; Han, Ying; Li, Qi; Gillies, Robert J.; Ye, Zhaoxiang

    2016-01-01

    Purpose: To determine if clinical and CT characteristics of surgically resected lung adenocarcinomas can distinguish those harboring ALK rearrangements from EGFR mutations. Materials and methods: Patients who had surgical resection and histologically confirmed lung adenocarcinoma were enrolled, including 41 patients with ALK rearrangements and 66 patients with EGFR mutations. Eighteen categorical and six quantitative CT characteristics were used to evaluate the tumors. Differences in clinical and CT characteristics between the two groups were investigated. Results: Age (P = 0.003), histological subtypes (P < 0.001), pathological stage (P = 0.007), and five CT characteristics, including size (P < 0.001), GGO (P = 0.001), bubble-like lucency (P = 0.048), lymphadenopathy (P = 0.001), and tumor shadow disappearance rate (P = 0.005) were significantly different between patients harboring ALK rearrangements compared to patients with EGFR mutations. When we compared histologic components, a solid pattern was more common (P = 0.009) in tumors with ALK rearrangements, and lepidic and acinar patterns were more common (P < 0.001 and P = 0.040, respectively) in those with EGFR mutations. Backward elimination analyses revealed that age (OR = 0.93; 95% CI 0.89–0.98), GGO (OR = 0.14; 95% CI 0.03–0.67), and lymphadenopathy (OR = 4.15; 95% CI 1.49–11.60) were significantly associated with ALK rearrangement status. Conclusion: Our analyses revealed that clinical and CT characteristics of lung adenocarcinomas harboring ALK rearrangements were significantly different, compared with those with EGFR mutations. These differences may be related to the molecular pathology of these diseases.

  13. Clinical and CT characteristics of surgically resected lung adenocarcinomas harboring ALK rearrangements or EGFR mutations

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hua [Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin (China); Schabath, Matthew B. [Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL (United States); Liu, Ying [Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin (China); Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL (United States); Han, Ying [Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin (China); Li, Qi [Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin (China); Gillies, Robert J. [Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL (United States); Department of Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL (United States); Ye, Zhaoxiang, E-mail: yezhaoxiang@163.com [Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin (China)

    2016-11-15

    Purpose: To determine if clinical and CT characteristics of surgically resected lung adenocarcinomas can distinguish those harboring ALK rearrangements from EGFR mutations. Materials and methods: Patients who had surgical resection and histologically confirmed lung adenocarcinoma were enrolled, including 41 patients with ALK rearrangements and 66 patients with EGFR mutations. Eighteen categorical and six quantitative CT characteristics were used to evaluate the tumors. Differences in clinical and CT characteristics between the two groups were investigated. Results: Age (P = 0.003), histological subtypes (P < 0.001), pathological stage (P = 0.007), and five CT characteristics, including size (P < 0.001), GGO (P = 0.001), bubble-like lucency (P = 0.048), lymphadenopathy (P = 0.001), and tumor shadow disappearance rate (P = 0.005) were significantly different between patients harboring ALK rearrangements compared to patients with EGFR mutations. When we compared histologic components, a solid pattern was more common (P = 0.009) in tumors with ALK rearrangements, and lepidic and acinar patterns were more common (P < 0.001 and P = 0.040, respectively) in those with EGFR mutations. Backward elimination analyses revealed that age (OR = 0.93; 95% CI 0.89–0.98), GGO (OR = 0.14; 95% CI 0.03–0.67), and lymphadenopathy (OR = 4.15; 95% CI 1.49–11.60) were significantly associated with ALK rearrangement status. Conclusion: Our analyses revealed that clinical and CT characteristics of lung adenocarcinomas harboring ALK rearrangements were significantly different, compared with those with EGFR mutations. These differences may be related to the molecular pathology of these diseases.

  14. Droplet digital PCR-based EGFR mutation detection with an internal quality control index to determine the quality of DNA.

    Science.gov (United States)

    Kim, Sung-Su; Choi, Hyun-Jeung; Kim, Jin Ju; Kim, M Sun; Lee, In-Seon; Byun, Bohyun; Jia, Lina; Oh, Myung Ryurl; Moon, Youngho; Park, Sarah; Choi, Joon-Seok; Chae, Seoung Wan; Nam, Byung-Ho; Kim, Jin-Soo; Kim, Jihun; Min, Byung Soh; Lee, Jae Seok; Won, Jae-Kyung; Cho, Soo Youn; Choi, Yoon-La; Shin, Young Kee

    2018-01-11

    In clinical translational research and molecular in vitro diagnostics, a major challenge in the detection of genetic mutations is overcoming artefactual results caused by the low-quality of formalin-fixed paraffin-embedded tissue (FFPET)-derived DNA (FFPET-DNA). Here, we propose the use of an 'internal quality control (iQC) index' as a criterion for judging the minimum quality of DNA for PCR-based analyses. In a pre-clinical study comparing the results from droplet digital PCR-based EGFR mutation test (ddEGFR test) and qPCR-based EGFR mutation test (cobas EGFR test), iQC index ≥ 0.5 (iQC copies ≥ 500, using 3.3 ng of FFPET-DNA [1,000 genome equivalents]) was established, indicating that more than half of the input DNA was amplifiable. Using this criterion, we conducted a retrospective comparative clinical study of the ddEGFR and cobas EGFR tests for the detection of EGFR mutations in non-small cell lung cancer (NSCLC) FFPET-DNA samples. Compared with the cobas EGFR test, the ddEGFR test exhibited superior analytical performance and equivalent or higher clinical performance. Furthermore, iQC index is a reliable indicator of the quality of FFPET-DNA and could be used to prevent incorrect diagnoses arising from low-quality samples.

  15. HPV infection and EGFR activation/alteration in HIV-infected East African patients with conjunctival carcinoma.

    Directory of Open Access Journals (Sweden)

    Jing Jie Yu

    2010-05-01

    Full Text Available There has been substantial growth in the numbers of patients with conjunctival squamous cell carcinoma infected with HIV in East Africa. The natural history of the conjunctival squamous cell carcinoma appears to be unique in this region of the world, but the etiologic mechanism unclear and therapeutic options limited. This research was carried out to determine if conjunctival squamous cell carcinoma harbors human papillomavirus DNA and is associated with activation of the EGFR signaling pathway. Positive findings would identify etiologic causes and provide clinical guidance to improve treatment.Expression of p-MAPK/MAPK, p-Akt/Akt and p-EGFR/EGFR in cell nuclei and cytoplasm of 38 FFPE specimens were assessed by immunohistochemistry; HPV genotype was detected by qPCR assay; EGFR mutation was assessed by DNA sequencing analysis; and EGFR mRNA expression was measured using relative qPCR. Statistical analyses included two-sided Fisher exact test or chi-square test, Spearman correlation coefficient and ANOVA. HPV 18 was found in 61% of samples, with HPV 16 double-genotype in 6 patients (16%. Immunohistochemistry and qPCR data suggest that activation and expression of the EGFR signaling pathway is related to disease progression of conjunctival cancer. The associations between cytoplasmic p-MAPK, cytoplasmic p-Akt and tumor invasiveness were significant (p = 0.05 or 0.028. Nuclear p-EGFR appeared only in invasive tumors. A significant positive association between EGFR expression and disease invasiveness was observed (p = 0.01. A SNP in 10 patients and one missense mutation were found within EGFR tyrosine kinase domain. Statistical analysis indicates that patients with measurable EGFR expression more likely harbor EGFR mutations, compared to those with negative EGFR expression (35.3% vs. 0%.We conclude that HPV types 16/18 infection is frequent in East African patients with AIDS-associated squamous cell carcinoma of the conjunctiva. EGFR activation

  16. Epidermal growth factor receptor activation in glioblastoma through novel missense mutations in the extracellular domain.

    Directory of Open Access Journals (Sweden)

    Jeffrey C Lee

    2006-12-01

    Full Text Available Protein tyrosine kinases are important regulators of cellular homeostasis with tightly controlled catalytic activity. Mutations in kinase-encoding genes can relieve the autoinhibitory constraints on kinase activity, can promote malignant transformation, and appear to be a major determinant of response to kinase inhibitor therapy. Missense mutations in the EGFR kinase domain, for example, have recently been identified in patients who showed clinical responses to EGFR kinase inhibitor therapy.Encouraged by the promising clinical activity of epidermal growth factor receptor (EGFR kinase inhibitors in treating glioblastoma in humans, we have sequenced the complete EGFR coding sequence in glioma tumor samples and cell lines. We identified novel missense mutations in the extracellular domain of EGFR in 13.6% (18/132 of glioblastomas and 12.5% (1/8 of glioblastoma cell lines. These EGFR mutations were associated with increased EGFR gene dosage and conferred anchorage-independent growth and tumorigenicity to NIH-3T3 cells. Cells transformed by expression of these EGFR mutants were sensitive to small-molecule EGFR kinase inhibitors.Our results suggest extracellular missense mutations as a novel mechanism for oncogenic EGFR activation and may help identify patients who can benefit from EGFR kinase inhibitors for treatment of glioblastoma.

  17. Role of [{sup 18}F]FDG PET in prediction of KRAS and EGFR mutation status in patients with advanced non-small-cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Caicedo, Carlos; Garcia-Velloso, Maria Jose; Vigil Diaz, Carmen; Richter Echevarria, Jose Angel [University of Navarra, Nuclear Medicine Department, University Clinic of Navarra, Pamplona (Spain); Lozano, Maria Dolores; Labiano, Tania [University of Navarra, Pathology Department, University Clinic of Navarra, Pamplona (Spain); Lopez-Picazo, Jose Maria; Gurpide, Alfonso; Perez Gracia, Jose Luis [University of Navarra, Oncology Department, University Clinic of Navarra, Pamplona (Spain); Zulueta, Javier [University of Navarra, Pulmonology Department, University Clinic of Navarra, Pamplona (Spain)

    2014-11-15

    The tumour molecular profile predicts the activity of epidermal growth factor receptor (EGFR) inhibitors in non-small-cell lung cancer (NSCLC). However, tissue availability and tumour heterogeneity limit its assessment. We evaluated whether [{sup 18}F]FDG PET might help predict KRAS and EFGR mutation status in NSCLC. Between January 2005 and October 2011, 340 NSCLC patients were tested for KRAS and EGFR mutation status. We identified patients with stage III and IV disease who had undergone [{sup 18}F]FDG PET/CT scanning for initial staging. SUVpeak, SUVmax and SUVmean of the single hottest tumour lesions were calculated, and their association with KRAS and EGFR mutation status was assessed. A receiver operator characteristic (ROC) curve analysis and a multivariate analysis (including SUVmean, gender, age and AJCC stage) were performed to identify the potential value of [{sup 18}F]FDG PET/CT for predicting KRAS mutation. From 102 patients staged using [{sup 18}F]FDG PET/CT, 28 (27 %) had KRAS mutation (KRAS+), 22 (22 %) had EGFR mutation (EGFR+) and 52 (51 %) had wild-type KRAS and EGFR profiles (WT). KRAS+ patients showed significantly higher [{sup 18}F]FDG uptake than EGFR+ and WT patients (SUVmean 9.5, 5.7 and 6.6, respectively; p < 0.001). No significant differences were observed in [{sup 18}F]FDG uptake between EGFR+ patients and WT patients. ROC curve analysis for KRAS mutation status discrimination yielded an area under the curve of 0.740 for SUVmean (p < 0.001). The multivariate analysis showed a sensitivity and specificity of 78.6 % and 62.2 %, respectively, and the AUC was 0.773. NSCLC patients with tumours harbouring KRAS mutations showed significantly higher [{sup 18}F]FDG uptake than WT patients, as assessed in terms of SUVpeak, SUVmax and SUVmean. A multivariate model based on age, gender, AJCC stage and SUVmean might be used as a predictive marker of KRAS mutation status in patients with stage III or IV NSCLC. (orig.)

  18. The prevalence of EGFR mutations in non-small cell lung cancer in an unselected Caucasian population

    DEFF Research Database (Denmark)

    Skov, Birgit G; Høgdall, Estrid; Clementsen, Paul

    2015-01-01

    in a well-defined Danish population were included. The type of the diagnostic material, and data on smoking were registered. The mutation analyses were investigated by Therascreen EGFR RGQ-PCR Kit or Sanger sequencing. A total of 658 men and 598 women were included. 6.2% were never smokers, 38.9% were ex-smokers.......0% of adenocarcinomas, and 1.9% of squamous cell carcinomas were mutated. 29.4%, 4.4% and 2.9% of never, ex- and current smokers were mutated (p ... EGFR mutation. Adenocarcinomas were mutated more often (8.0%) than squamous cell carcinomas (1.9%). Mutations were found in never smokers as well as in former and current smokers. No difference in gender and age regarding mutation status was observed. EGFR mutations analysis was possible in almost all...

  19. Tumor heterogeneity is an active process maintained by a mutant EGFR-induced cytokine circuit in glioblastoma.

    Science.gov (United States)

    Inda, Maria-del-Mar; Bonavia, Rudy; Mukasa, Akitake; Narita, Yoshitaka; Sah, Dinah W Y; Vandenberg, Scott; Brennan, Cameron; Johns, Terrance G; Bachoo, Robert; Hadwiger, Philipp; Tan, Pamela; Depinho, Ronald A; Cavenee, Webster; Furnari, Frank

    2010-08-15

    Human solid tumors frequently have pronounced heterogeneity of both neoplastic and normal cells on the histological, genetic, and gene expression levels. While current efforts are focused on understanding heterotypic interactions between tumor cells and surrounding normal cells, much less is known about the interactions between and among heterogeneous tumor cells within a neoplasm. In glioblastoma multiforme (GBM), epidermal growth factor receptor gene (EGFR) amplification and mutation (EGFRvIII/DeltaEGFR) are signature pathogenetic events that are invariably expressed in a heterogeneous manner. Strikingly, despite its greater biological activity than wild-type EGFR (wtEGFR), individual GBM tumors expressing both amplified receptors typically express wtEGFR in far greater abundance than the DeltaEGFR lesion. We hypothesized that the minor DeltaEGFR-expressing subpopulation enhances tumorigenicity of the entire tumor cell population, and thereby maintains heterogeneity of expression of the two receptor forms in different cells. Using mixtures of glioma cells as well as immortalized murine astrocytes, we demonstrate that a paracrine mechanism driven by DeltaEGFR is the primary means for recruiting wtEGFR-expressing cells into accelerated proliferation in vivo. We determined that human glioma tissues, glioma cell lines, glioma stem cells, and immortalized mouse Ink4a/Arf(-/-) astrocytes that express DeltaEGFR each also express IL-6 and/or leukemia inhibitory factor (LIF) cytokines. These cytokines activate gp130, which in turn activates wtEGFR in neighboring cells, leading to enhanced rates of tumor growth. Ablating IL-6, LIF, or gp130 uncouples this cellular cross-talk, and potently attenuates tumor growth enhancement. These findings support the view that a minor tumor cell population can potently drive accelerated growth of the entire tumor mass, and thereby actively maintain tumor cell heterogeneity within a tumor mass. Such interactions between genetically

  20. Monitoring of high-density lipoprotein cholesterol level is predictive of EGFR mutation and efficacy of EGFR-TKI in patients with advanced lung adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Lv Y

    2016-01-01

    Full Text Available Yang Lv,1,2 Li-Yun Miao,2 Qiu-Fang Chen,1 Yan Li,2 Zhi-Xiang Shi,1 Xuan-Sheng Ding1 1Department of Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, People’s Republic of China; 2Division of Respiratory Medicine, Department of Respiration, The Affiliated Drum Tower Hospital of Nanjing University Medical College, Nanjing University Medical School, Nanjing, Jiangsu, People’s Republic of China Abstract: High-density lipoprotein cholesterol (HDL-C has an inverse association with the incidence of lung cancer. However, whether it can be used as a predictive factor in advanced lung adenocarcinoma patients treated with epidermal growth factor receptor (EGFR tyrosine kinase inhibitors (TKI still remains undefined. This research aimed at studying the relationship of serum HDL-C baseline level and HDL-C kinetics to EGFR mutation, the efficacy of EGFR-TKI, and the predictive value of PFS. The presence of mutation rate in the 192 patients with lung adenocarcinoma was compared within stratified groups. Levels of baseline HDL-C and kinetics of HDL-C were analyzed retrospectively in patients treated with EGFR-TKI harboring EGFR mutation. Univariate and multivariate analyses were performed to investigate the prognostic value of HDL-C. EGFR mutation rate of HDL-C high-level group was significantly higher than that of low-level group (59.0% vs 35.6%, P=0.001. Multivariate logistic analysis showed that high-level HDL-C was an independent predictive factor for EGFR gene mutation (P=0.005; odds ratio =0.417; 95% confidence interval [CI], 0.227–0.768. Patients with a low level of HDL-C before therapy showed a progression of disease in most cases (P<0.001. According to HDL-C kinetics, patients who received EGFR-TKI treatment harboring EGFR mutation were divided into four groups. Univariate analysis showed that patients in nondecreased group had longer progression-free survival (P<0.001; hazard ratio =0.003; 95% CI, 0.001–0.018. Multivariate

  1. Evaluation of EGFR, KRAS and BRAF gene mutations in renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Omer Bayrak

    2014-08-01

    Full Text Available A subset of renal cell carcinoma (RCC patients has been shown to respond to anti-EGFR therapy. As KRAS and BRAF mutations are associated with poor response to anti-EGFR therapy in some cancers, it has been suggested that screening for KRAS and BRAF mutations in RCC may be a promising strategy to identify patients who might respond to EGFR-targeted therapy. The aim of this study was to investigate the mutation status of EGFR, KRAS and BRAF in RCC patients. Renal tumors and normal renal samples from forty-eight patients who underwent radical or partial nephrectomy for kidney cancer were used in this study. Histological classification of the tumors was performed according to International Union against Cancer (UICC / American Joint Committee on Cancer (AJCC classification. Seventeen patients (48% had clear-cell RCC, 7 (20% had chromophobe RCC, and 11 patients (32% had papillary RCC. DNA isolated from the samples was subjected to melting curve mutation analysis for EGFR, BRAF and KRAS using ABI-3130 DNA sequencer. DNA sequencing analysis of RCC samples, when compared with morphologically normal matched regions, did not show any exon mutations. Our results do not support the notion that EGFR, KRAS and BRAF might be mutated in RCC. Normal 0 false false false TR X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:8.0pt; mso-para-margin-left:0cm; line-height:107%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-ansi-language:TR; mso-fareast-language:EN-US;}

  2. Mutational Profiling of Malignant Mesothelioma Revealed Potential Therapeutic Targets in EGFR and NRAS

    Directory of Open Access Journals (Sweden)

    Jeong Eun Kim

    2018-04-01

    Full Text Available Pemetrexed and platinum (PP combination chemotherapy is the current standard first-line therapy for treatment of malignant mesothelioma (MM. However, a useful predictive biomarker for PP therapy is yet to be found. Here, we performed targeted exome sequencing to profile somatic mutations and copy number variations in 12 MM patients treated with PP therapy. We identified 187 somatic mutations in 12 patients (65 synonymous, 102 missense, 2 nonsense, 5 splice site, and 13 small coding insertions/deletions. We identified somatic mutations in 23 genes including BAP1, TP53, NRAS, and EGFR. Interestingly, rare NRAS p.Q61K and EGFR exon 19 deletions were observed in 2 patients. We also found somatic chromosomal copy number deletions in CDKN2A and CDKN2B genes. Genetic alteration related to response after PP therapy was not found. Somatic mutation profiling in MM patients receiving PP therapy revealed genetic alterations in potential therapeutic targets such as NRAS and EGFR. No alterations in genes with potential predictive role for PP therapy were found.

  3. Mutational Profiling of Malignant Mesothelioma Revealed Potential Therapeutic Targets in EGFR and NRAS.

    Science.gov (United States)

    Kim, Jeong Eun; Kim, Deokhoon; Hong, Yong Sang; Kim, Kyu-Pyo; Yoon, Young Kwang; Lee, Dae Ho; Kim, Sang-We; Chun, Sung-Min; Jang, Se Jin; Kim, Tae Won

    2018-04-01

    Pemetrexed and platinum (PP) combination chemotherapy is the current standard first-line therapy for treatment of malignant mesothelioma (MM). However, a useful predictive biomarker for PP therapy is yet to be found. Here, we performed targeted exome sequencing to profile somatic mutations and copy number variations in 12 MM patients treated with PP therapy. We identified 187 somatic mutations in 12 patients (65 synonymous, 102 missense, 2 nonsense, 5 splice site, and 13 small coding insertions/deletions). We identified somatic mutations in 23 genes including BAP1, TP53, NRAS, and EGFR. Interestingly, rare NRAS p.Q61K and EGFR exon 19 deletions were observed in 2 patients. We also found somatic chromosomal copy number deletions in CDKN2A and CDKN2B genes. Genetic alteration related to response after PP therapy was not found. Somatic mutation profiling in MM patients receiving PP therapy revealed genetic alterations in potential therapeutic targets such as NRAS and EGFR. No alterations in genes with potential predictive role for PP therapy were found. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Quantum dots immunofluorescence histochemical detection of EGFR gene mutations in the non-small cell lung cancers using mutation-specific antibodies

    Directory of Open Access Journals (Sweden)

    Qu YG

    2014-12-01

    Full Text Available Yan-Gang Qu,1 Qian Zhang,2 Qi Pan,3 Xian-Da Zhao,4 Yan-Hua Huang,2 Fu-Chun Chen,3 Hong-Lei Chen41Department of Pathology, The Central Hospital of Enshi Autonomous Prefecture, Enshi, 2Department of Molecular Pathology, Wuhan Nano Tumor Diagnosis Engineering Research Center, Wuhan, Hubei, People’s Republic of China; 3Department of Thoracosurgery, Traditional Chinese Medical Hospital of Wenling, Wenling, Zhejiang, People’s Republic of China; 4Department of Pathology, School of Basic Medical Science, Wuhan University, Wuhan, Hubei, People’s Republic of ChinaBackground: Epidermal growth factor receptor (EGFR mutation status plays an important role in therapeutic decision making for non-small cell lung cancer (NSCLC patients. Since EGFR mutation-specific antibodies (E746-A750del and L858R have been developed, EGFR mutation detection by immunohistochemistry (IHC is a suitable screening test. On this basis, we want to establish a new screening test, quantum dots immunofluorescence histochemistry (QDs-IHC, to assess EGFR gene mutation in NSCLC tissues, and we compared it to traditional IHC and amplification refractory mutation system (ARMS.Materials and methods: EGFR gene mutations were detected by QDs-IHC, IHC, and ADx-ARMS in 65 cases of NSCLC composed of 55 formalin-fixed, paraffin-embedded specimens and ten pleural effusion cell blocks, including 13 squamous cell carcinomas, two adenosquamous carcinomas, and 50 adenocarcinomas.Results: Positive rates of EGFR gene mutations detected by QDs-IHC, IHC, and ADx-ARMS were 40.0%, 36.9%, and 46.2%, respectively, in 65 cases of NSCLC patients. The sensitivity of QDs-IHC when detecting EGFR mutations, as compared to ADx-ARMS, was 86.7% (26/30; the specificity for both antibodies was 100.0% (26/26. IHC sensitivity was 80.0% (24/30 and the specificity was 92.31% (24/26. When detecting EGFR mutations, QDs-IHC and ADx-ARMS had perfect consistency (κ=0.882; P<0.01. Excellent agreement was observed

  5. Epidermal Growth Factor Receptor Mutation (EGFR) Testing for Prediction of Response to EGFR-Targeting Tyrosine Kinase Inhibitor (TKI) Drugs in Patients with Advanced Non-Small-Cell Lung Cancer: An Evidence-Based Analysis.

    Science.gov (United States)

    2010-01-01

    deaths in Ontario. Those with unresectable or advanced disease are commonly treated with concurrent chemoradiation or platinum-based combination chemotherapy. Although response rates to cytotoxic chemotherapy for advanced NSCLC are approximately 30 to 40%, all patients eventually develop resistance and have a median survival of only 8 to 10 months. Treatment for refractory or relapsed disease includes single-agent treatment with docetaxel, pemetrexed or EGFR-targeting TKIs (gefitinib, erlotinib). TKIs disrupt EGFR signaling by competing with adenosine triphosphate (ATP) for the binding sites at the tyrosine kinase (TK) domain, thus inhibiting the phosphorylation and activation of EGFRs and the downstream signaling network. Gefitinib and erlotinib have been shown to be either non-inferior or superior to chemotherapy in the first- or second-line setting (gefitinib), or superior to placebo in the second- or third-line setting (erlotinib). Certain patient characteristics (adenocarcinoma, non-smoking history, Asian ethnicity, female gender) predict for better survival benefit and response to therapy with TKIs. In addition, the current body of evidence shows that somatic mutations in the EGFR gene are the most robust biomarkers for EGFR-targeting therapy selection. Drugs used in this therapy, however, can be costly, up to C$ 2000 to C$ 3000 per month, and they have only approximately a 10% chance of benefiting unselected patients. For these reasons, the predictive value of EGFR mutation testing for TKIs in patients with advanced NSCLC needs to be determined. EGFR MUTATION TESTING The EGFR gene sequencing by polymerase chain reaction (PCR) assays is the most widely used method for EGFR mutation testing. PCR assays can be performed at pathology laboratories across Ontario. According to experts in the province, sequencing is not currently done in Ontario due to lack of adequate measurement sensitivity. A variety of new methods have been introduced to increase the measurement

  6. A Panel of High Resolution Melting (HRM Technology-Based Assays with Direct Sequencing Possibility for Effective Mutation Screening of EGFR and K-ras Genes

    Directory of Open Access Journals (Sweden)

    D. A. M. Heideman

    2009-01-01

    Full Text Available Background: Increasing data from clinical trials support EGFR and K-ras mutation status as predictive markers of tumour response to EGFR-targeted therapies. Consequently, rapid and reliable mutation screening assays are demanded to guide rational use of EGFR-targeted therapies.

  7. EGFR Amplification and IDH Mutations in Glioblastoma Patients of the Northeast of Morocco

    Directory of Open Access Journals (Sweden)

    Nadia Senhaji

    2017-01-01

    Full Text Available Glioblastomas are the most frequent and aggressive primary brain tumors which are expressing various evolutions, aggressiveness, and prognosis. Thus, the 2007 World Health Organization classification based solely on the histological criteria is no longer sufficient. It should be complemented by molecular analysis for a true histomolecular classification. The new 2016 WHO classification of tumors of the central nervous system uses molecular parameters in addition to histology to reclassify these tumors and reduce the interobserver variability. The aim of this study is to determine the prevalence of IDH mutations and EGFR amplifications in the population of the northeast region of Morocco and then to compare the results with other studies. Methods. IDH1 codon 132 and IDH2 codon 172 were directly sequenced and the amplification of exon 20 of EGFR gene was investigated by qPCR in 65 glioblastoma tumors diagnosed at the University Hospital of Fez between 2010 and 2014. Results. The R132H IDH1 mutation was observed in 8 of 65 tumor samples (12.31%. No mutation of IDH2 was detected. EGFR amplification was identified in 17 cases (26.15%. Conclusion. A systematic search of both histological and molecular markers should be requisite for a good diagnosis and a better management of glioblastomas.

  8. Determination of HER2 and p53 Mutations by Sequence Analysis Method and EGFR/Chromosome 7 Gene Status by Fluorescence in Situ Hybridization for the Predilection of Targeted Therapy Modalities in Immunohistochemically Triple Negative Breast Carcinomas in Turkish Population.

    Science.gov (United States)

    Pala, Emel Ebru; Bayol, Umit; Keskin, Elif Usturali; Ozguzer, Alp; Kucuk, Ulku; Ozer, Ozge; Koc, Altug

    2015-09-01

    Triple negative breast cancer (TNBC), an agressive subtype accounts nearly 15 % of all breast carcinomas. Conventional chemotherapy is the only treatment modality thus new, effective targeted therapy methods have been investigated. Epidermal growth factor receptor (EGFR) inhibitors give hope according to the recent studies results. Also therapeutic agents have been tried against aberrant p53 signal activity as TNBC show high p53 mutation rates. Our aim was to detect the incidence of mutations/amplifications identified in TNBC in our population. Here we used sequence analysis to detect HER2 (exon 18-23), p53 (exon 5-8) mutations; fluorescence in situ hybridization (FISH) method to analyse EGFR/chromosome 7 centromere gene status in 82 immunohistochemically TNBC. Basaloid phenotype was identified in 49 (59.8 %) patients. EGFR amplification was noted in 5 cases (6.1 %). All EGFR amplified cases showed EGFR overexpression by immunohistochemistry (IHC). p53 mutations were identified in 33 (40.2 %) cases. Almost 60 % of the basal like breast cancer cases showed p53 mutation. Only one case showed HER2 mutation (exon 20:g.36830_3). Our results showed that gene amplification is not the unique mechanism in EGFR overexpression. IHC might be used in the decision of anti-EGFR therapy in routine practice. p53 mutation rate was lower than the rates reported in the literature probably due to ethnic differences and low sensitivity of sanger sequences in general mutation screening. We also established the rarity of HER2 mutation in TNBC. In conclusion EGFR and p53 are the major targets in TNBC also for our population.

  9. The non-small cell lung cancer EGFR extracellular domain mutation, M277E, is oncogenic and drug-sensitive

    Directory of Open Access Journals (Sweden)

    Yu S

    2017-09-01

    Full Text Available Su Yu,1,2 Yang Zhang,1 Yunjian Pan,1 Chao Cheng,1,3 Yihua Sun,1,3 Haiquan Chen1–4 1Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; 2Cancer Research Center, Fudan University Shanghai Cancer Center, Shanghai, China; 3Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; 4Institutes of Biomedical Sciences, Fudan University, Shanghai, China Purpose: To identify novel oncogenic mutations in non-small cell lung cancer patient specimens that lack mutations in known targetable genes (“pan-negative” patients.Methods: Comprehensive mutational analyses were performed on 1,356 lung adenocarcinoma specimens. In this cohort of patients, common lung cancer oncogenic driver mutations were detected in the epidermal growth factor receptor (EGFR kinase domain, the human epidermal growth factor receptor 2 kinase domain, as well as the KRAS, BRAF, ALK, ROS1 and RET genes. A sub-cohort of pan-negative patient specimens was assayed for mutations in the EGFR extracellular domain (ECD. Additionally, EGFR mutant NIH-3T3 stable cell lines were constructed and assessed for protein content, anchorage-independent growth, and tumor formation in xenograft models to identify oncogenic mutations. BaF3 lymphocytes were also used to test sensitivities of the mutations to tyrosine kinase inhibitors.Results: In pan-negative lung adenocarcinoma cases, a novel oncogenic EGFR ECD mutation was identified (M277E. EGFR M277E mutations encoded oncoproteins that transformed NIH-3T3 cells to grow in the absence of exogenous epidermal growth factor. Transformation was further evidenced by anchorage-independent growth and tumor formation in immunocompromised xenograft mouse models. Finally, as seen in the canonical EGFR L858R mutation, the M277E mutation conferred sensitivity to both erlotinib and cetuximab in BaF3 cell lines and to erlotinib in xenograft models.Conclusion: Here, a new EGFR driver mutation, M277E

  10. Response to the Dorsal Anterior Gradient of EGFR Signaling in Drosophila Oogenesis Is Prepatterned by Earlier Posterior EGFR Activation

    Directory of Open Access Journals (Sweden)

    Mariana Fregoso Lomas

    2013-08-01

    Full Text Available Spatially restricted epidermal growth factor receptor (EGFR activity plays a central role in patterning the follicular epithelium of the Drosophila ovary. In midoogenesis, localized EGFR activation is achieved by the graded dorsal anterior localization of its ligand, Gurken. Graded EGFR activity determines multiple dorsal anterior fates along the dorsal-ventral axis but cannot explain the sharp posterior limit of this domain. Here, we show that posterior follicle cells express the T-box transcription factors Midline and H15, which render cells unable to adopt a dorsal anterior fate in response to EGFR activation. The posterior expression of Midline and H15 is itself induced in early oogenesis by posteriorly localized EGFR signaling, defining a feedback loop in which early induction of Mid and H15 confers a molecular memory that fundamentally alters the outcome of later EGFR signaling. Spatial regulation of the EGFR pathway thus occurs both through localization of the ligand and through localized regulation of the cellular response.

  11. A comparison of EGFR mutation testing methods in lung carcinoma: direct sequencing, real-time PCR and immunohistochemistry.

    Directory of Open Access Journals (Sweden)

    Bárbara Angulo

    Full Text Available The objective of this study is to compare two EGFR testing methodologies (a commercial real-time PCR kit and a specific EGFR mutant immunohistochemistry, with direct sequencing and to investigate the limit of detection (LOD of both PCR-based methods. We identified EGFR mutations in 21 (16% of the 136 tumours analyzed by direct sequencing. Interestingly, the Therascreen EGFR Mutation Test kit was able to characterize as wild-type one tumour that could not be analyzed by direct sequencing of the PCR product. We then compared the LOD of the kit and that of direct sequencing using the available mutant tumours. The kit was able to detect the presence of a mutation in a 1% dilution of the total DNA in nine of the 18 tumours (50%, which tested positive with the real-time quantitative PCR method. In all cases, EGFR mutation was identified at a dilution of 5%. Where the mutant DNA represented 30% of the total DNA, sequencing was able to detect mutations in 12 out of 19 cases (63%. Additional experiments with genetically defined standards (EGFR ΔE746-A750/+ and EGFR L858R/+ yielded similar results. Immunohistochemistry (IHC staining with exon 19-specific antibody was seen in eight out of nine cases with E746-A750del detected by direct sequencing. Neither of the two tumours with complex deletions were positive. Of the five L858R-mutated tumours detected by the PCR methods, only two were positive for the exon 21-specific antibody. The specificity was 100% for both antibodies. The LOD of the real-time PCR method was lower than that of direct sequencing. The mutation specific IHC produced excellent specificity.

  12. Contribution of EGFR and ErbB-3 Heterodimerization to the EGFR Mutation-Induced Gefitinib- and Erlotinib-Resistance in Non-Small-Cell Lung Carcinoma Treatments.

    Directory of Open Access Journals (Sweden)

    Debby D Wang

    Full Text Available EGFR mutation-induced drug resistance has become a major threat to the treatment of non-small-cell lung carcinoma. Essentially, the resistance mechanism involves modifications of the intracellular signaling pathways. In our work, we separately investigated the EGFR and ErbB-3 heterodimerization, regarded as the origin of intracellular signaling pathways. On one hand, we combined the molecular interaction in EGFR heterodimerization with that between the EGFR tyrosine kinase and its inhibitor. For 168 clinical subjects, we characterized their corresponding EGFR mutations using molecular interactions, with three potential dimerization partners (ErbB-2, IGF-1R and c-Met of EGFR and two of its small molecule inhibitors (gefitinib and erlotinib. Based on molecular dynamics simulations and structural analysis, we modeled these mutant-partner or mutant-inhibitor interactions using binding free energy and its components. As a consequence, the mutant-partner interactions are amplified for mutants L858R and L858R_T790M, compared to the wild type EGFR. Mutant delL747_P753insS represents the largest difference between the mutant-IGF-1R interaction and the mutant-inhibitor interaction, which explains the shorter progression-free survival of an inhibitor to this mutant type. Besides, feature sets including different energy components were constructed, and efficient regression trees were applied to map these features to the progression-free survival of an inhibitor. On the other hand, we comparably examined the interactions between ErbB-3 and its partners (EGFR mutants, IGF-1R, ErbB-2 and c-Met. Compared to others, c-Met shows a remarkably-strong binding with ErbB-3, implying its significant role in regulating ErbB-3 signaling. Moreover, EGFR mutants corresponding to poor clinical outcomes, such as L858R_T790M, possess lower binding affinities with ErbB-3 than c-Met does. This may promote the communication between ErbB-3 and c-Met in these cancer cells. The

  13. The prognostic values of EGFR expression and KRAS mutation in patients with synchronous or metachronous metastatic colorectal cancer

    International Nuclear Information System (INIS)

    Huang, Ching-Wen; Wang, Jaw-Yuan; Tsai, Hsiang-Lin; Chen, Yi-Ting; Huang, Chun-Ming; Ma, Cheng-Jen; Lu, Chien-Yu; Kuo, Chao-Hung; Wu, Deng-Chyang; Chai, Chee-Yin

    2013-01-01

    The epidermal growth factor receptor (EGFR)/RAS/RAF/MEK/MAPK pathway is an important pathway in the carcinogenesis, invasion and metastasis of colorectal cancers (CRCs). We conducted a retrospective study to determine the prognostic values of EGFR expression and KRAS mutation in patients with metastatic CRC (mCRC) based on synchronous or metachronous status. From October 2002 to March 2012, 205 patients with mCRC were retrospectively analyzed; 98 were found to have metachronous mCRC while 107 were found to have synchronous mCRC. The EGFR expressions were determinate by IHC (immunohistochemistry) analysis and categorized 1+ (weak intensity), 2+ (moderate intensity), and 3+ (strong intensity). Genomic DNA was isolated from frozen primary CRC tissues and direct sequencing of KRAS was performed. The clinicopathological features of these mCRC patients were retrospectively investigated according to EGFR expression and KRAS mutation status. Moreover, we analyzed the prognostic values of EGFR expression and KRAS mutation among these patients. Of the 205 patients with mCRC, EGFR expression was analyzed in 167 patients, and positive EGFR expression was noted in 140 of those patients (83.8%). KRAS mutation was investigated in 205 patients and mutations were noted in 88 of those patients (42.9%). In patients with metachronous mCRC, positive EGFR expression was significantly correlated with well-and moderately-differentiated tumors (P = 0.028), poorer disease-free survival (DFS) (P < 0.001), and overall survival (OS) (P < 0.001). Furthermore, positive EGFR expression was a significant independent prognostic factor of DFS (P = 0.006, HR: 4.012, 95% CI: 1.130–8.445) and OS (P = 0.028, HR: 3.090, 95% CI: 1.477–10.900) in metachronous mCRC patients. KRAS mutation status was not significantly related to DFS and OS of patients with metachronous mCRC; likewise, KRAS mutation status was not significantly different in the progression-free survival (PFS) and OS of patients with

  14. CT radiogenomic characterization of EGFR, K-RAS, and ALK mutations in non-small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Rizzo, Stefania; Rampinelli, Cristiano [European Institute of Oncology, Department of Radiology, Milan (Italy); Petrella, Francesco; Spaggiari, Lorenzo [European Institute of Oncology, Department of Thoracic Surgery, Milan (Italy); Buscarino, Valentina; De Maria, Federica [University of Milan, Department of Health Sciences, Milan (Italy); Raimondi, Sara [European Institute of Oncology, Department of Epidemiology and Biostatistics, Milan (Italy); Barberis, Massimo; Fumagalli, Caterina [European Institute of Oncology, Department of Pathology, Milan (Italy); Spitaleri, Gianluca; De Marinis, Filippo [European Institute of Oncology, Department of Thoracic Oncology, Milan (Italy); Bellomi, Massimo [European Institute of Oncology, Department of Radiology, Milan (Italy); University of Milan, Department of Health Sciences, Milan (Italy)

    2016-01-15

    To assess the association between CT features and EGFR, ALK, KRAS mutations in non-small cell lung cancer. Patients undergoing chest CT and testing for the above gene mutations were included. Qualitative evaluation of CTs included: lobe; lesion diameter; shape; margins; ground-glass opacity; density; cavitation; air bronchogram; pleural thickening; intratumoral necrosis; nodules in tumour lobe; nodules in non-tumour lobes; pleural retraction; location; calcifications; emphysema; fibrosis; pleural contact; pleural effusion. Statistical analysis was performed to assess association of features with each gene mutation. ROC curves for gene mutations were drawn; the corresponding area under the curve was calculated. P-values <0.05 were considered significant. Of 285 patients, 60/280 (21.43 %) were positive for EGFR mutation; 31/270 (11.48 %) for ALK rearrangement; 64/240 (26.67 %) for KRAS mutation. EGFR mutation was associated with air bronchogram, pleural retraction, females, non-smokers, small lesion size, and absence of fibrosis. ALK rearrangements were associated with age and pleural effusion. KRAS mutation was associated with round shape, nodules in non-tumour lobes, and smoking. This study disclosed associations between CT features and alterations of EGFR (air bronchogram, pleural retraction, small lesion size, absence of fibrosis), ALK (pleural effusion) and KRAS (round lesion shape, nodules in non-tumour lobes). (orig.)

  15. Mutational profiling of non-small-cell lung cancer patients resistant to first-generation EGFR tyrosine kinase inhibitors using next generation sequencing

    Science.gov (United States)

    Jin, Ying; Shao, Yang; Shi, Xun; Lou, Guangyuan; Zhang, Yiping; Wu, Xue; Tong, Xiaoling; Yu, Xinmin

    2016-01-01

    Patients with advanced non-small-cell lung cancer (NSCLC) harboring sensitive epithelial growth factor receptor (EGFR) mutations invariably develop acquired resistance to EGFR tyrosine kinase inhibitors (TKIs). Identification of actionable genetic alterations conferring drug-resistance can be helpful for guiding the subsequent treatment decision. One of the major resistant mechanisms is secondary EGFR-T790M mutation. Other mechanisms, such as HER2 and MET amplifications, and PIK3CA mutations, were also reported. However, the mechanisms in the remaining patients are still unknown. In this study, we performed mutational profiling in a cohort of 83 NSCLC patients with TKI-sensitizing EGFR mutations at diagnosis and acquired resistance to three different first-generation EGFR TKIs using targeted next generation sequencing (NGS) of 416 cancer-related genes. In total, we identified 322 genetic alterations with a median of 3 mutations per patient. 61% of patients still exhibit TKI-sensitizing EGFR mutations, and 36% of patients acquired EGFR-T790M. Besides other known resistance mechanisms, we identified TET2 mutations in 12% of patients. Interestingly, we also observed SOX2 amplification in EGFR-T790M negative patients, which are restricted to Icotinib treatment resistance, a drug widely used in Chinese NSCLC patients. Our study uncovered mutational profiles of NSCLC patients with first-generation EGFR TKIs resistance with potential therapeutic implications. PMID:27528220

  16. AT-101 enhances gefitinib sensitivity in non-small cell lung cancer with EGFR T790M mutations

    International Nuclear Information System (INIS)

    Zhao, Ren; Zhou, Shun; Xia, Bing; Zhang, Cui-ying; Hai, Ping; Zhe, Hong; Wang, Yan-yang

    2016-01-01

    Although epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKIs) have become the standard care of patients with advanced EGFR-mutant non-small cell lung cancer (NSCLC), development of acquired resistance is inevitable. A secondary mutation of threonine 790 (T790M) is associated with approximately half of the cases of acquired resistance. Strategies or agents to overcome this type of resistance are still limited. In this study, enhanced antitumor effect of AT-101, a-pan-Bcl-2 inhibitor, on gefitinib was explored in NSCLC with T790M mutation. The effect of cotreatment with AT-101 and gefitinib on the viability of NSCLC cell lines harboring acquired T790M mutation was investigated using the MTT assay. The cellular apoptosis of NSCLC cells after cotreatment with AT-101 and gefitinib was assessed by FITC-annexin V/PI assay and Western blots analysis. The potential underlying mechanisms of the enhanced therapeutic effect for AT-101 was also studied using Western blots analysis. The in vivo anti-cancer efficacy of the combination with AT-101 and gefitinib was examined in a mouse xenograft model. In this study, we found that treatment with AT-101 in combination with gefitinib significantly inhibited cell proliferation, as well as promoted apoptosis of EGFR TKIs resistant lung cancer cells. The apoptotic effects of the use of AT-101 was related to the blocking of antiapoptotic protein: Bcl-2, Bcl-xl, and Mcl-1 and downregrulation of the molecules in EGFR pathway. The observed enhancements of tumor growth suppression in xenografts supported the reverse effect of AT-101 in NSCLC with T790M mutation, which has been found in in vitro studies before. AT-101 enhances gefitinib sensitivity in NSCLC with EGFR T790M mutations. The addition of AT-101 to gefitinib is a promising strategy to overcome EGFR TKIs resistance in NSCLC with EGFR T790M mutations

  17. Sequential treatment of tyrosine kinase inhibitors and chemotherapy for EGFR-mutated non-small cell lung cancer: a meta-analysis of Phase III trials

    Directory of Open Access Journals (Sweden)

    Zhang Y

    2013-11-01

    Full Text Available Yiliang Zhang,1,* Yihua Sun,1,* Lei Wang,1 Ting Ye,1 Yunjian Pan,1 Haichuan Hu,1 Yongfu Yu,2 Naiqing Zhao,2 Yanyan Song,3 David Garfield,4 Haiquan Chen1 1Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, 2Department of Biostatistics, School of Public Health, Fudan University, 3Department of Pharmacology and Biostatistics, Institute of Medical Science, Shanghai Jiaotong University School of Medicine, 4ProMed Cancer Centers, Shanghai, People’s Republic of China *These authors contributed equally to this work Background: This aim of this study was to compare the efficacy of first-line tyrosine kinase inhibitor therapy followed, upon progression, by chemotherapy with the reverse sequence in patients with EGFR-mutated non-small cell lung cancer (NSCLC in terms of overall survival. Methods: We performed a meta-analysis of studies that met the following criteria: Phase III clinical trial comparing the sequencing of epidermal growth factor receptor (EGFR tyrosine kinase inhibitors with chemotherapy in the treatment of advanced EGFR-mutated NSCLC; activating mutations reported; and availability of hazard ratio estimates with 95% confidence intervals (CIs for overall survival. Results: Six clinical trials were included in this study. The pooled hazard ratio for overall survival of the EGFR-mutated population that completed sequential treatment was 1.03 (95% CI 0.86–1.22, P=0.776. There was no statistically significant heterogeneity between the studies (tau2 =0; I2=0, 95% CI 0–0.37, P=0.548. Evidence of marked publication bias for the two treatment sequences was insufficient (P=0.145. Conclusion: In patients with advanced NSCLC and activating EGFR mutations, first-line chemotherapy followed upon progression by a tyrosine kinase inhibitor was not inferior in terms of overall survival compared with the inverse sequence. This may serve as an indication that

  18. [Cetuximab in combination with icotinib overcomes the acquired resistance caused by EGFR T790M mutation in non-small cell lung cancer].

    Science.gov (United States)

    Wang, Meng; Zhang, Lianmin; Zhao, Xiaoliang; Liu, Jun; Chen, Yulong; Wang, Changli

    2014-09-01

    , and enhances the anticancer activity of chemotherapeutic drugs. Our results provide further experimental evidence for the clinical studies of combination of icotinib with cetuximab in the treatment of NSCLC patients associated with secondary drug resistance caused by T790M mutation of EGFR.

  19. Mutational analysis of EGFR and related signaling pathway genes in lung adenocarcinomas identifies a novel somatic kinase domain mutation in FGFR4.

    Directory of Open Access Journals (Sweden)

    Jenifer L Marks

    2007-05-01

    Full Text Available Fifty percent of lung adenocarcinomas harbor somatic mutations in six genes that encode proteins in the EGFR signaling pathway, i.e., EGFR, HER2/ERBB2, HER4/ERBB4, PIK3CA, BRAF, and KRAS. We performed mutational profiling of a large cohort of lung adenocarcinomas to uncover other potential somatic mutations in genes of this signaling pathway that could contribute to lung tumorigenesis.We analyzed genomic DNA from a total of 261 resected, clinically annotated non-small cell lung cancer (NSCLC specimens. The coding sequences of 39 genes were screened for somatic mutations via high-throughput dideoxynucleotide sequencing of PCR-amplified gene products. Mutations were considered to be somatic only if they were found in an independent tumor-derived PCR product but not in matched normal tissue. Sequencing of 9MB of tumor sequence identified 239 putative genetic variants. We further examined 22 variants found in RAS family genes and 135 variants localized to exons encoding the kinase domain of respective proteins. We identified a total of 37 non-synonymous somatic mutations; 36 were found collectively in EGFR, KRAS, BRAF, and PIK3CA. One somatic mutation was a previously unreported mutation in the kinase domain (exon 16 of FGFR4 (Glu681Lys, identified in 1 of 158 tumors. The FGFR4 mutation is analogous to a reported tumor-specific somatic mutation in ERBB2 and is located in the same exon as a previously reported kinase domain mutation in FGFR4 (Pro712Thr in a lung adenocarcinoma cell line.This study is one of the first comprehensive mutational analyses of major genes in a specific signaling pathway in a sizeable cohort of lung adenocarcinomas. Our results suggest the majority of gain-of-function mutations within kinase genes in the EGFR signaling pathway have already been identified. Our findings also implicate FGFR4 in the pathogenesis of a subset of lung adenocarcinomas.

  20. Heterogeneous resistance mechanisms in an EGFR exon 19-mutated non-small cell lung cancer patient treated with erlotinib

    DEFF Research Database (Denmark)

    Santoni-Rugiu, Eric; Grauslund, Morten; Melchior, Linea C.

    2017-01-01

    Patients with epidermal growth factor receptor (EGFR) gene-mutated non-small cell lung cancer (NSCLC) obtain substantial clinical benefit from EGFR tyrosine-kinase inhibitors (TKIs), but will ultimately develop TKI-resistance resulting in median progression-free survival of 9–15 months during first......-line TKI-therapy. However, type and timing of TKI-resistance cannot be predicted and several mechanisms may simultaneously/subsequently occur during TKI-treatment. In this respect, we present a 49 year-old Caucasian male ex-smoker with metastatic pulmonary adenocarcinoma (ADC) that concomitantly harbored...... for SCLC combined with erlotinib continuation was implemented obtaining significant objective response. However, after completing 6 cycles of this combination, new pulmonary and hepatic metastases appeared and showed persistence of the original EGFR- and FGFR3-mutated ADC phenotype together...

  1. Comprehensive detection of diverse exon 19 deletion mutations of EGFR in lung Cancer by a single probe set.

    Science.gov (United States)

    Bae, Jin Ho; Jo, Seong-Min; Kim, Hak-Sung

    2015-12-15

    Detection of exon 19 deletion mutation of EGFR, one of the most frequently occurring mutations in lung cancer, provides the crucial information for diagnosis and treatment guideline in non-small-cell lung cancer (NSCLC). Here, we demonstrate a simple and efficient method to detect various exon 19 deletion mutations of EGFR using a single probe set comprising of an oligo-quencher (oligo-Q) and a molecular beacon (MB). While the MB hybridizes to both the wild and mutant target DNA, the oligo-Q only binds to the wild target DNA, leading to a fluorescent signal in case of deletion mutation. This enables the comprehensive detection of the diverse exon 19 deletion mutations using a single probe set. We demonstrated the utility and efficiency of the approach by detecting the frequent exon 19 deletion mutations of EGFR through a real-time PCR and in situ fluorescence imaging. Our approach enabled the detection of genomic DNA as low as 0.02 ng, showing a detection limit of 2% in a heterogeneous DNA mixture, and could be used for detecting mutations in a single cell level. The present MB and oligo-Q dual probe system can be used for diagnosis and treatment guideline in NSCLC. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Association Between Environmental Tobacco Smoke Exposure and the Occurrence of EGFR Mutations and ALK Rearrangements in Never-smokers With Non-Small-cell Lung Cancer: Analyses From a Prospective Multinational ETS Registry.

    Science.gov (United States)

    Soo, Ross A; Kubo, Akihito; Ando, Masahiko; Kawaguchi, Tomoya; Ahn, Myung-Ju; Ou, Sai-Hong Ignatius

    2017-09-01

    Molecular studies have demonstrated actionable driver oncogene alterations are more frequent in never-smokers with non-small-cell lung cancer (NSCLC). The etiology of these driver oncogenes in patients with NSCLC remains unknown, and environmental tobacco smoke (ETS) is a potential cause in these cases. We assembled clinical and genetic information for never-smoker patients with NSCLC accrued in Japan, Korea, Singapore, and the United States. To determine an association between cumulative ETS and activating EGFR mutations or ALK rearrangements, the Mantel extension test was used. Multivariate analysis on activating EGFR and ALK gene rearrangements was performed using the generalized linear mixed model with nations as a random effect. From July 2007 to December 2012, 498 never-smokers with pathologically proven NSCLC were registered and tested for the association between ETS and EGFR and ALK status. EGFR mutations were more frequent in the ever-ETS cohort (58.4%) compared with the never-ETS cohort (39.6%), and the incidence of EGFR mutations was significantly associated with the increment of cumulative ETS (cETS) in female never-smokers (P = .033), whereas the incidence of ALK rearrangements was not significantly different between the ever-ETS and never-ETS cohorts. Odds ratio for EGFR mutations for each 10-year increment in cETS was 1.091 and 0.89 for female and male never-smokers (P = .031 and P = .263, respectively). Increased ETS exposure was closely associated with EGFR mutations in female never-smokers with NSCLC in the expanded multinational cohort. However, the association of ETS and ALK rearrangements in never-smokers with NSCLC was not significant. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Clinical Analysis of Icotinib on Beneficiary of 
Advanced Non-small Cell Lung Cancer with EGFR Common Mutation

    Directory of Open Access Journals (Sweden)

    Xiaowen JIANG

    2016-04-01

    Full Text Available Background and objective Targeted therapy has become an indispensable therapy method in advanced non-small cell lung cancer (NSCLC treatment. Epithelial growth factor receptor (EGFR tyrosine kinase inhibitor (TKI can significantly prolong the survival of patients harboring EGFR gene mutation. Icotinb is China's first EGFR-TKI with independent intellectual property rights. The aim of this study is to investigate the clinical characteristics about the beneficiary of advanced NSCLC patients with EGFR Common mutation who were treated with Icotinib. Retrospectively collect the data about beneficiary [progression-free survival (PFS≥6 months] and analysis of the related risk factors for prognosis. Methods From September 1, 2011 to September 30, 2015, 231 cases of advanced NSCLC beneficiary with EGFR common mutation were enrolled for treatment with icotinib in Zhejiang Cancer Hospital. Results The one year benefit rate was 67.9% in the group treated with Icotinib as first line, and in the groupas second line or above was 53.6%, which is statisticallysignificant. The two years benefit rate was 18.7% and 9.3%, respectively. The median PFS of first line group and the second line or above was 16.7 and 12.4 months, respectively. The presence of brain metastasis (P=0.010, Prior chemotherapy (P=0.001, Eastern Cooperative Oncology Group (ECOG score (P=0.001 were the main factors influencing the prognosis. The most common adverse were skin rashes (51 cases, 22.1% and diarrhea (27 cases, 11.7%. Conclusion Icotinib offers long-term clinical benefit and good tolerance for advanced NSCLC harboring EGFR gene mutation. Its advantage groups in addition to the patients with brain metastases and better ECOG score, the curative effect of patients with the first-line treatment is superior to second or further line.

  4. [Clinical Analysis of Icotinib on Beneficiary of 
Advanced Non-small Cell Lung Cancer with EGFR Common Mutation].

    Science.gov (United States)

    Jiang, Xiaowen; Wang, Wenxian; Zhang, Yiping

    2016-04-20

    Targeted therapy has become an indispensable therapy method in advanced non-small cell lung cancer (NSCLC) treatment. Epithelial growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) can significantly prolong the survival of patients harboring EGFR gene mutation. Icotinb is China's first EGFR-TKI with independent intellectual property rights. The aim of this study is to investigate the clinical characteristics about the beneficiary of advanced NSCLC patients with EGFR Common mutation who were treated with Icotinib. Retrospectively collect the data about beneficiary [progression-free survival (PFS)≥6 months] and analysis of the related risk factors for prognosis. From September 1, 2011 to September 30, 2015, 231 cases of advanced NSCLC beneficiary with EGFR common mutation were enrolled for treatment with icotinib in Zhejiang Cancer Hospital. The one year benefit rate was 67.9% in the group treated with Icotinib as first line, and in the groupas second line or above was 53.6%, which is statisticallysignificant. The two years benefit rate was 18.7% and 9.3%, respectively. The median PFS of first line group and the second line or above was 16.7 and 12.4 months, respectively. The presence of brain metastasis (P=0.010), Prior chemotherapy (P=0.001), Eastern Cooperative Oncology Group (ECOG) score (P=0.001) were the main factors influencing the prognosis. The most common adverse were skin rashes (51 cases, 22.1%) and diarrhea (27 cases, 11.7%). Icotinib offers long-term clinical benefit and good tolerance for advanced NSCLC harboring EGFR gene mutation. Its advantage groups in addition to the patients with brain metastases and better ECOG score, the curative effect of patients with the first-line treatment is superior to second or further line. 
.

  5. EGFR mutation testing in patients with advanced non-small cell lung cancer: a comprehensive evaluation of real-world practice in an East Asian tertiary hospital.

    Science.gov (United States)

    Choi, Yoon-La; Sun, Jong-Mu; Cho, Juhee; Rampal, Sanjay; Han, Joungho; Parasuraman, Bhash; Guallar, Eliseo; Lee, Genehee; Lee, Jeeyun; Shim, Young Mog

    2013-01-01

    Guidelines for management of non-small cell lung cancer (NSCLC) strongly recommend EGFR mutation testing. These recommendations are particularly relevant in Asians that have higher EGFR mutation prevalence. This study aims to explore current testing practices, logistics of testing, types of EGFR mutation, and prevalence of EGFR mutations in patients with advanced NSCLC in a large comprehensive cancer center in Korea. Our retrospective cohort included 1,503 NSCLC patients aged ≥18 years, with stage IIIB/IV disease, who attended the Samsung Medical Center in Seoul, Korea, from January 2007 through July 2010. Trained oncology nurses reviewed and abstracted data from electronic medical records. This cohort had a mean age (SD) of 59.6 (11.1) years, 62.7% were males, and 52.9% never-smokers. The most common NSCLC histological types were adenocarcinoma (70.5%) and squamous cell carcinoma (18.0%). Overall, 39.5% of patients were tested for EGFR mutations. The proportion of patients undergoing EGFR testing during January 2007 through July 2008, August 2008 through September 2009, and October 2009 through July 2010 were 23.3%, 38.3%, and 63.5%, respectively (Pwomen, younger patients, stage IV disease, non-smokers, and adenocarcinoma histology. Of 586 cases successfully tested for EGFR mutations, 209 (35.7%) were positive, including 118 cases with exon 19 deletions and 62 with L858R mutations. EGFR mutation positive patients were more likely to be female, never-smokers, never-drinkers and to have adenocarcinoma. In a large cancer center in Korea, the proportion of EGFR testing increased from 2007 through 2010. The high frequency of EGFR mutation positive cases warrants the need for generalized testing in Asian NSCLC patients.

  6. Lung cancer mutation profile of EGFR, ALK, and KRAS: Meta-analysis and comparison of never and ever smokers.

    Science.gov (United States)

    Chapman, Aaron M; Sun, Kathie Y; Ruestow, Peter; Cowan, Dallas M; Madl, Amy K

    2016-12-01

    Lung cancer is the leading cause of cancer-related mortality. While the majority of lung cancers are associated with tobacco smoke, approximately 10-15% of U.S. lung cancers occur in never smokers. Evidence suggests that lung cancer in never smokers appears to be a distinct disease caused by driver mutations which are different than the genetic pathways observed with lung cancer in smokers. A meta-analysis of human epidemiologic data was conducted to evaluate the profile of common or therapy-targetable mutations in lung cancers of never and ever smokers. Epidemiologic studies (N=167) representing over 63,000 lung cancer cases were identified and used to calculate summary odds ratios for lung cancer in never and ever smokers containing gene mutations: EGFR, chromosomal rearrangements and fusion of EML4 and ALK, and KRAS. This analysis also considered the effect of histopathology, smoking status, sex, and ethnicity. There were significantly increased odds of presenting the EGFR and ALK-EML4 mutations in 1) adenocarcinomas compared to non-small cell lung cancer and 2) never smokers compared to ever smokers. The prevalence of EGFR mutations was higher in Asian women as compared to women of Caucasian/Mixed ethnicity. As the smoking history increased, there was a decreased odds for exhibiting the EGFR mutation, particularly for cases >30 pack-years. Compared to ever smokers, never smokers had a decreased odds of KRAS mutations among those of Caucasian/Mixed ethnicity (OR=0.22, 95% CI: 0.17-0.29) and those of Asian ethnicity (OR=0.39, 95% CI: 0.30-0.50). Our findings show that key driver mutations and several patient features are highly prevalent in lung cancers of never smokers. These associations may be helpful as patient demographic models are developed to predict successful outcomes of targeted therapeutic interventions NSCLC. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Antitumor Efficacy of Dual Blockade of EGFR Signaling by Osimertinib in Combination With Selumetinib or Cetuximab in Activated EGFR Human NCLC Tumor Models.

    Science.gov (United States)

    Della Corte, Carminia Maria; Ciaramella, Vincenza; Cardone, Claudia; La Monica, Silvia; Alfieri, Roberta; Petronini, Pier Giorgio; Malapelle, Umberto; Vigliar, Elena; Pepe, Francesco; Troncone, Giancarlo; Castellone, Maria Domenica; Troiani, Teresa; Martinelli, Erika; Ciardiello, Fortunato; Morgillo, Floriana

    2018-03-08

    Osimertinib showed great clinical efficacy for activated-EGFR NCLC patient treatment. The aim of this work was to test the efficacy of a complete EGFR-inhibition by osimertinib plus the monoclonal antibody cetuximab or the MEK1/2-inhibitor selumetinib in EGFR-mutated NCLC in vivo models. We evaluated combinations of osimertinib plus selumetinib/cetuximab in HCC827 (E746-A759del/T790M-), H1975 (L858R/T790M+), and PC9-T790M (E746-A759del /T790M+) xenografts in second-line therapy after the development of resistance to osimertinib, and in first-line therapy, and we explored mechanisms of resistance to these treatments. The addition of selumetinib or cetuximab to osimertinib in second-line therapy reverted the sensibility to osimertinib in the majority of mice, with a response rate (RR) of 50% to 80%, and a median progression-free survival (mPFS) of first- plus second-line of therapy of 28 weeks. The early use of combinations in first-line therapy increased the RR to 90%, with an mPFS not reached in all combination arms in the three xenografts models, with a statistically significant superiority (p < 0.005) as compared to osimertinib, achieving in first-line therapy an mPFS time of 17 to 18 weeks. Moreover, in ex vivo primary cell cultures obtained from osimertinib plus selumetinib-resistant tumors, we found Hedgehog pathway activation and we showed that therapy with an SMO inhibitor plus osimertinib and selumetinib inhibited proliferation and migratory and invasive properties of resistant cells. We showed that a dual vertical EGFR blockade with osimertinib plus selumetinib/cetuximab is a novel effective therapeutic option in EGFR-mutated NCLC and that hedgehog pathway activation and its interplay with MAPK is involved in resistance to these combination treatments. Copyright © 2018 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  8. EGFR Mutations in Surgically Resected Fresh Specimens from 697 Consecutive Chinese Patients with Non-Small Cell Lung Cancer and Their Relationships with Clinical Features

    Directory of Open Access Journals (Sweden)

    Yuanyang Lai

    2013-12-01

    Full Text Available We aimed to reveal the true status of epidermal growth factor receptor (EGFR mutations in Chinese patients with non-small cell lung cancer (NSCLC after lung resections. EGFR mutations of surgically resected fresh tumor samples from 697 Chinese NSCLC patients were analyzed by Amplification Refractory Mutation System (ARMS. Correlations between EGFR mutation hotspots and clinical features were also explored. Of the 697 NSCLC patients, 235 (33.7% patients had tyrosine kinase inhibitor (TKIs sensitive EGFR mutations in 41 (14.5% of the 282 squamous carcinomas, 155 (52.9% of the 293 adenocarcinomas, 34 (39.5% of the 86 adenosquamous carcinomas, one (9.1% of the 11 large-cell carcinomas, 2 (11.1% of the 18 sarcomatoid carcinomas, and 2 (28.6% of the 7 mucoepidermoid carcinomas. TKIs sensitive EGFR mutations were more frequently found in female patients (p < 0.001, non-smokers (p = 0.047 and adenocarcinomas (p < 0.001. The rates of exon 19 deletion mutation (19-del, exon 21 L858R point mutation (L858R, exon 21 L861Q point mutation (L861Q, exon 18 G719X point mutations (G719X, including G719C, G719S, G719A were 43.4%, 48.1%, 1.7% and 6.8%, respectively. Exon 20 T790M point mutation (T790M was detected in 3 squamous carcinomas and 3 adenocarcinomas and exon 20 insertion mutation (20-ins was detected in 2 patients with adenocarcinoma. Our results show the rates of EGFR mutations are higher in all types of NSCLC in Chinese patients. 19-del and L858R are two of the more frequent mutations. EGFR mutation detection should be performed as a routine postoperative examination in Chinese NSCLC patients.

  9. CBL is frequently altered in lung cancers: its relationship to mutations in MET and EGFR tyrosine kinases.

    Directory of Open Access Journals (Sweden)

    Yi-Hung Carol Tan

    2010-01-01

    Full Text Available Non-small cell lung cancer (NSCLC is a heterogeneous group of disorders with a number of genetic and proteomic alterations. c-CBL is an E3 ubiquitin ligase and adaptor molecule important in normal homeostasis and cancer. We determined the genetic variations of c-CBL, relationship to receptor tyrosine kinases (EGFR and MET, and functionality in NSCLC.Using archival formalin-fixed paraffin embedded (FFPE extracted genomic DNA, we show that c-CBL mutations occur in somatic fashion for lung cancers. c-CBL mutations were not mutually exclusive of MET or EGFR mutations; however they were independent of p53 and KRAS mutations. In normal/tumor pairwise analysis, there was significant loss of heterozygosity (LOH for the c-CBL locus (22%, n = 8/37 and none of these samples revealed any mutation in the remaining copy of c-CBL. The c-CBL LOH also positively correlated with EGFR and MET mutations observed in the same samples. Using select c-CBL somatic mutations such as S80N/H94Y, Q249E and W802* (obtained from Caucasian, Taiwanese and African-American samples, respectively transfected in NSCLC cell lines, there was increased cell viability and cell motility.Taking the overall mutation rate of c-CBL to be a combination as somatic missense mutation and LOH, it is clear that c-CBL is highly mutated in lung cancers and may play an essential role in lung tumorigenesis and metastasis.

  10. Effects of icotinib, a novel epidermal growth factor receptor tyrosine kinase inhibitor, in EGFR-mutated non-small cell lung cancer.

    Science.gov (United States)

    Yang, Guangdie; Yao, Yinan; Zhou, Jianya; Zhao, Qiong

    2012-06-01

    Epidermal growth factor receptor (EGFR) is one of the most promising targets for non-small cell lung cancer (NSCLC). Our study demonstrated the antitumor effects of icotinib hydrochloride, a highly selective epidermal growth factor receptor tyrosine kinase inhibitor (EGFR TKI), in two EGFR-mutated lung cancer cell lines compared to A549, a cell line without EGFR mutations. We incubated PC-9 and HCC827 human lung cancer cell lines both with (E746-A750) mutations with various concentrations of icotinib and gefitinib for 48 h. Cell proliferation and migration were determined using a real-time cell invasion and migration assay and cytotoxicity assay. Apoptosis was assessed by measuring Annexin V staining using flow cytometry. The antitumor effects of icotinib compared to gefitinib were similar and were most effective in reducing the proliferation of EGFR-mutated cells compared to non-mutated controls. Our results suggest the possibility of icotinib as a new therapeutic agent of EGFR-mutated cancer cells, which has the potential to be used in the first-line treatment of EGFR-mutated NSCLC.

  11. Ubiquitin ligase Cbl-b is involved in icotinib (BPI-2009H)-induced apoptosis and G1 phase arrest of EGFR mutation-positive non-small-cell lung cancer.

    Science.gov (United States)

    Mu, Xiaodong; Zhang, Ye; Qu, Xiujuan; Hou, Kezuo; Kang, Jian; Hu, Xuejun; Liu, Yunpeng

    2013-01-01

    Epidermal growth factor receptor (EGFR) is one of the most promising targets for non-small-cell lung cancer (NSCLC). Icotinib, a highly selective EGFR tyrosine kinase inhibitor (EGFR-TKI), has shown promising clinical efficacy and safety in patients with NSCLC. The exact molecular mechanism of icotinib remains unclear. In this study, we first investigated the antiproliferative effect of icotinib on NSCLC cells. Icotinib significantly inhibited proliferation of the EGFR-mutated lung cancer HCC827 cells. The IC50 values at 48 and 72 h were 0.67 and 0.07 μ M, respectively. Flow cytometric analysis showed that icotinib caused the G1 phase arrest and increased the rate of apoptosis in HCC827 cells. The levels of cyclin D1 and cyclin A2 were decreased. The apoptotic process was associated with activation of caspase-3, -8, and poly(ADP-ribose) polymerase (PARP). Further study revealed that icotinib inhibited phosphorylation of EGFR, Akt, and extracellular signal-regulated kinase. In addition, icotinib upregulated ubiquitin ligase Cbl-b expression. These observations suggest that icotinib-induced upregulation of Cbl-b is responsible, at least in part, for the antitumor effect of icotinib via the inhibition of phosphoinositide 3-kinase (PI3K)/Akt and mitogen-activated protein kinase pathways in EGFR-mutated NSCLC cells.

  12. Ubiquitin Ligase Cbl-b Is Involved in Icotinib (BPI-2009H-Induced Apoptosis and G1 Phase Arrest of EGFR Mutation-Positive Non-Small-Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Xiaodong Mu

    2013-01-01

    Full Text Available Epidermal growth factor receptor (EGFR is one of the most promising targets for non-small-cell lung cancer (NSCLC. Icotinib, a highly selective EGFR tyrosine kinase inhibitor (EGFR-TKI, has shown promising clinical efficacy and safety in patients with NSCLC. The exact molecular mechanism of icotinib remains unclear. In this study, we first investigated the antiproliferative effect of icotinib on NSCLC cells. Icotinib significantly inhibited proliferation of the EGFR-mutated lung cancer HCC827 cells. The IC50 values at 48 and 72 h were 0.67 and 0.07 μM, respectively. Flow cytometric analysis showed that icotinib caused the G1 phase arrest and increased the rate of apoptosis in HCC827 cells. The levels of cyclin D1 and cyclin A2 were decreased. The apoptotic process was associated with activation of caspase-3, -8, and poly(ADP-ribose polymerase (PARP. Further study revealed that icotinib inhibited phosphorylation of EGFR, Akt, and extracellular signal-regulated kinase. In addition, icotinib upregulated ubiquitin ligase Cbl-b expression. These observations suggest that icotinib-induced upregulation of Cbl-b is responsible, at least in part, for the antitumor effect of icotinib via the inhibition of phosphoinositide 3-kinase (PI3K/Akt and mitogen-activated protein kinase pathways in EGFR-mutated NSCLC cells.

  13. Epidermal growth factor receptor tyrosine kinase (EGFR-TK) mutation testing in adults with locally advanced or metastatic non-small cell lung cancer: A systematic review and cost-effectiveness analysis

    OpenAIRE

    Westwood, Marie; Joore, Manuela; Whiting, Penny; Asselt, Thea; Ramaekers, Bram; Armstrong, Nigel; Misso, Kate; Severens, Hans; Kleijnen, Jos

    2014-01-01

    markdownabstract__Abstract__ Background: Non-small cell lung cancer (NSCLC) is the most common form of lung cancer. Some epidermal growth factor receptor tyrosine kinase (EGFR-TK) mutations make tumours responsive to treatment with EGFR-TK inhibitors (EGFR-TKIs) but less responsive to treatment with standard chemotherapy. Patients with NSCLC are therefore tested for EGFR-TK tumour gene mutations to inform treatment decisions. There are a variety of tests available to detect these mutations. T...

  14. Detection of EGFR somatic mutations in non-small cell lung cancer (NSCLC) using a novel mutant-enriched liquidchip (MEL) technology.

    Science.gov (United States)

    Zhang, Li; Yang, Huiyi; Zhao, Yanwei; Liu, Wenchao; Wu, Shiyang; He, Jiaying; Luo, Xiaodi; Zhu, Zeyao; Xu, Jiasen; Zhou, Qinghua; Ren-Heidenreich, Lifen

    2012-09-01

    We have developed and standardized a novel technology, mutant-enriched liquidchip (MEL), for clinical detection of EGFR mutations. The MEL integrates a mutant-enriched PCR procedure with liquidchip technology for detections of EGFR exon 19 deletions and L858R mutation on both formalin-fixed and paraffin-embedded (FFPE) slides and plasma samples from patients with non-small cell lung cancer (NSCLC). The detection sensitivity was 0.1% of mutant DNA in the presence of its wild-type DNA. The cross-reaction rate was lower than 5%. To evaluate the MEL platform, the EGFR mutation status of 59 patients with advanced NSCLC treated with EGFRTKIs (Tyrosine Kinase Inhibitors) were tested on their FFPE samples. EGFR exon 19 deletions and L858R were detected in 21 patients (21/59) and 76.2% (16/21) of them had partial response to the EGFR-TKIs, while by sequencing method, only 4 (4/59) mutations were detected. Plasma samples from 627 patients with various stages of NSCLC were examined with the MEL and 22% of EGFR exon 19 deletions and L858R were detected. Furthermore, in patients with advanced disease there are more mutations detected in plasma samples than in patients with less advanced disease. In conclusion, the MEL is a sensitive, stable, and robust technology for detecting EGFR DNA mutations from both FFPE and plasma samples from patients with NSCLC and is now routinely used for clinical diagnosis.

  15. EGFR Mutation Testing in Patients with Advanced Non-Small Cell Lung Cancer: A Comprehensive Evaluation of Real-World Practice in an East Asian Tertiary Hospital

    Science.gov (United States)

    Cho, Juhee; Rampal, Sanjay; Han, Joungho; Parasuraman, Bhash; Guallar, Eliseo; Lee, Genehee; Lee, Jeeyun; Shim, Young Mog

    2013-01-01

    Introduction Guidelines for management of non-small cell lung cancer (NSCLC) strongly recommend EGFR mutation testing. These recommendations are particularly relevant in Asians that have higher EGFR mutation prevalence. This study aims to explore current testing practices, logistics of testing, types of EGFR mutation, and prevalence of EGFR mutations in patients with advanced NSCLC in a large comprehensive cancer center in Korea. Methods Our retrospective cohort included 1,503 NSCLC patients aged ≥18 years, with stage IIIB/IV disease, who attended the Samsung Medical Center in Seoul, Korea, from January 2007 through July 2010. Trained oncology nurses reviewed and abstracted data from electronic medical records. Results This cohort had a mean age (SD) of 59.6 (11.1) years, 62.7% were males, and 52.9% never-smokers. The most common NSCLC histological types were adenocarcinoma (70.5%) and squamous cell carcinoma (18.0%). Overall, 39.5% of patients were tested for EGFR mutations. The proportion of patients undergoing EGFR testing during January 2007 through July 2008, August 2008 through September 2009, and October 2009 through July 2010 were 23.3%, 38.3%, and 63.5%, respectively (P<0.001). The median time elapsed between cancer diagnoses and receiving EGFR testing results was 21 days. EGFR testing was most frequently ordered by oncologists (57.7%), pulmonologists (31.9%), and thoracic surgeons (6.6%). EGFR testing was more commonly requested for women, younger patients, stage IV disease, non-smokers, and adenocarcinoma histology. Of 586 cases successfully tested for EGFR mutations, 209 (35.7%) were positive, including 118 cases with exon 19 deletions and 62 with L858R mutations. EGFR mutation positive patients were more likely to be female, never-smokers, never-drinkers and to have adenocarcinoma. Conclusions In a large cancer center in Korea, the proportion of EGFR testing increased from 2007 through 2010. The high frequency of EGFR mutation positive cases warrants

  16. EGFR mutation testing in patients with advanced non-small cell lung cancer: a comprehensive evaluation of real-world practice in an East Asian tertiary hospital.

    Directory of Open Access Journals (Sweden)

    Yoon-La Choi

    Full Text Available INTRODUCTION: Guidelines for management of non-small cell lung cancer (NSCLC strongly recommend EGFR mutation testing. These recommendations are particularly relevant in Asians that have higher EGFR mutation prevalence. This study aims to explore current testing practices, logistics of testing, types of EGFR mutation, and prevalence of EGFR mutations in patients with advanced NSCLC in a large comprehensive cancer center in Korea. METHODS: Our retrospective cohort included 1,503 NSCLC patients aged ≥18 years, with stage IIIB/IV disease, who attended the Samsung Medical Center in Seoul, Korea, from January 2007 through July 2010. Trained oncology nurses reviewed and abstracted data from electronic medical records. RESULTS: This cohort had a mean age (SD of 59.6 (11.1 years, 62.7% were males, and 52.9% never-smokers. The most common NSCLC histological types were adenocarcinoma (70.5% and squamous cell carcinoma (18.0%. Overall, 39.5% of patients were tested for EGFR mutations. The proportion of patients undergoing EGFR testing during January 2007 through July 2008, August 2008 through September 2009, and October 2009 through July 2010 were 23.3%, 38.3%, and 63.5%, respectively (P<0.001. The median time elapsed between cancer diagnoses and receiving EGFR testing results was 21 days. EGFR testing was most frequently ordered by oncologists (57.7%, pulmonologists (31.9%, and thoracic surgeons (6.6%. EGFR testing was more commonly requested for women, younger patients, stage IV disease, non-smokers, and adenocarcinoma histology. Of 586 cases successfully tested for EGFR mutations, 209 (35.7% were positive, including 118 cases with exon 19 deletions and 62 with L858R mutations. EGFR mutation positive patients were more likely to be female, never-smokers, never-drinkers and to have adenocarcinoma. CONCLUSIONS: In a large cancer center in Korea, the proportion of EGFR testing increased from 2007 through 2010. The high frequency of EGFR mutation positive

  17. Lung cancer with concurrent EGFR mutation and ROS1 rearrangement: a case report and review of the literature

    Directory of Open Access Journals (Sweden)

    Zhu YC

    2016-07-01

    Full Text Available You-cai Zhu,1,2,* Chun-wei Xu,3,* Xiao-qian Ye,4 Man-xiang Yin,4 Jin-xian Zhang,2 Kai-qi Du,2 Zhi-hao Zhang,2 Jian Hu1 1Department of Thoracic Surgery, The First Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, 2Department of Thoracic Surgery, Chinese People’s Armed Police Force, Zhejiang Corps Hospital, Jiaxing, Zhejiang, 3Department of Pathology, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, 4Department of Pathology, Chinese People’s Armed Police Force, Zhejiang Corps Hospital, Jiaxing, Zhejiang, People’s Republic of China *These authors contributed equally to this work Abstract: ROS1 rearrangement has recently emerged as a new molecular subtype in non-small cell lung cancer, and is predominantly found in lung adenocarcinomas compared with other oncogenes such as EGFR, KRAS, or ALK. Patients who have both mutations are extremely rare. Here we report a 50-year-old female diagnosed with adenocarcinoma with sarcomatoid differentiation, who was shown to have EGFR and ROS1 mutations. The patient was treated surgically and received three cycles of adjuvant postoperative chemotherapy. In addition, we reviewed the previously reported cases and related literature. This presentation will provide further understanding of the underlying molecular biology and optimal treatment for non-small cell lung cancer patients with more than one driver mutation. Keywords: non-small cell lung cancer, EGFR gene mutation, ROS1 fusion gene

  18. EGFR related mutational status and association to clinical outcome of third-line cetuximab-irinotecan in metastatic colorectal cancer

    Directory of Open Access Journals (Sweden)

    Frifeldt Sanne K

    2011-03-01

    Full Text Available Abstract Background As supplement to KRAS mutational analysis, BRAF and PIK3CA mutations as well as expression of PTEN may account for additional non-responders to anti-EGFR-MoAbs treatment. The aim of the present study was to investigate the utility as biomarkers of these mutations in a uniform cohort of patients with metastatic colorectal cancer treated with third-line cetuximab/irinotecan. Methods One-hundred-and-seven patients were prospectively included in the study. Mutational analyses of KRAS, BRAF and PIK3CA were performed on DNA from confirmed malignant tissue using commercially available kits. Loss of PTEN and EGFR was assessed by immunohistochemistry. Results DNA was available in 94 patients. The frequency of KRAS, BRAF and PIK3CA mutations were 44%, 3% and 14%, respectively. All were non-responders. EGF receptor status by IHC and loss of PTEN failed to show any clinical importance. KRAS and BRAF were mutually exclusive. Supplementing KRAS analysis with BRAF and PIK3CA indentified additional 11% of non-responders. Patient with any mutation had a high risk of early progression, whereas triple-negative status implied a response rate (RR of 41% (p Conclusion Triple-negative status implied a clear benefit from treatment, and we suggest that patient selection for third-line combination therapy with cetuximab/irinotecan could be based on triple mutational testing.

  19. Detection of T790M, the acquired resistance EGFR mutation, by tumor biopsy versus noninvasive blood-based analyses

    Science.gov (United States)

    Sundaresan, Tilak K.; Sequist, Lecia V.; Heymach, John V.; Riely, Gregory J.; Jänne, Pasi A.; Koch, Walter H.; Sullivan, James P.; Fox, Douglas B.; Maher, Robert; Muzikansky, Alona; Webb, Andrew; Tran, Hai T.; Giri, Uma; Fleisher, Martin; Yu, Helena A.; Wei, Wen; Johnson, Bruce E.; Barber, Thomas A.; Walsh, John R.; Engelman, Jeffrey A.; Stott, Shannon L.; Kapur, Ravi; Maheswaran, Shyamala; Toner, Mehmet

    2015-01-01

    Purpose The T790M gatekeeper mutation in the Epidermal Growth Factor Receptor (EGFR) is acquired by some EGFR-mutant non-small cell lung cancers (NSCLC) as they become resistant to selective tyrosine kinase inhibitors (TKIs). As third generation EGFR TKIs that overcome T790M-associated resistance become available, noninvasive approaches to T790M detection will become critical to guide management. Experimental Design As part of a multi-institutional Stand-Up-To-Cancer collaboration, we performed an exploratory analysis of 40 patients with EGFR-mutant tumors progressing on EGFR TKI therapy. We compared the T790M genotype from tumor biopsies with analysis of simultaneously collected circulating tumor cells (CTC) and circulating tumor DNA (ctDNA). Results T790M genotypes were successfully obtained in 30 (75%) tumor biopsies, 28 (70%) CTC samples and 32 (80%) ctDNA samples. The resistance-associated mutation was detected in 47–50% of patients using each of the genotyping assays, with concordance among them ranging from 57–74%. While CTC- and ctDNA-based genotyping were each unsuccessful in 20–30% of cases, the two assays together enabled genotyping in all patients with an available blood sample, and they identified the T790M mutation in 14 (35%) patients in whom the concurrent biopsy was negative or indeterminate. Conclusion Discordant genotypes between tumor biopsy and blood-based analyses may result from technological differences, as well as sampling different tumor cell populations. The use of complementary approaches may provide the most complete assessment of each patient’s cancer, which should be validated in predicting response to T790M-targeted inhibitors. PMID:26446944

  20. Hypoxia activated EGFR signaling induces epithelial to mesenchymal transition (EMT.

    Directory of Open Access Journals (Sweden)

    Ashish Misra

    Full Text Available Metastasis is a multi-step process which requires the conversion of polarized epithelial cells to mesenchymal cells, Epithelial-Mesenchymal Transition (EMT. EMT is essential during embryonic morphogenesis and has been implicated in the progression of primary tumors towards metastasis. Hypoxia is known to induce EMT; however the molecular mechanism is still poorly understood. Using the A431 epithelial cancer cell line, we show that cells grown under hypoxic conditions migrated faster than cells grown under normal oxygen environment. Cells grown under hypoxia showed reduced adhesion to the extracellular matrix (ECM probably due to reduced number of Vinculin patches. Growth under hypoxic conditions also led to down regulation of E-cadherin and up regulation of vimentin expression. The increased motility of cells grown under hypoxia could be due to redistribution of Rac1 to the plasma membrane as opposed to increased expression of Rac1. EGF (Epidermal Growth Factor is a known inducer of EMT and growth of A431 cells in the absence of oxygen led to increased expression of EGFR (EGF Receptor. Treatment of A431 cells with EGF led to reduced cell adhesion to ECM, increased cell motility and other EMT characteristics. Furthermore, this transition was blocked by the monoclonal antibody Cetuximab. Cetuximab also blocked the hypoxia-induced EMT suggesting that cell growth under hypoxic conditions led to activation of EGFR signaling and induction of EMT phenotype.

  1. MO-DE-207B-08: Radiomic CT Features Complement Semantic Annotations to Predict EGFR Mutations in Lung Adenocarcinomas

    Energy Technology Data Exchange (ETDEWEB)

    Rios Velazquez, E; Parmar, C; Narayan, V; Aerts, H [Dana-Farber Cancer Institute, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts (United States); Liu, Y; Gillies, R [H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL (United States)

    2016-06-15

    Purpose: To compare the complementary value of quantitative radiomic features to that of radiologist-annotated semantic features in predicting EGFR mutations in lung adenocarcinomas. Methods: Pre-operative CT images of 258 lung adenocarcinoma patients were available. Tumors were segmented using the sing-click ensemble segmentation algorithm. A set of radiomic features was extracted using 3D-Slicer. Test-retest reproducibility and unsupervised dimensionality reduction were applied to select a subset of reproducible and independent radiomic features. Twenty semantic annotations were scored by an expert radiologist, describing the tumor, surrounding tissue and associated findings. Minimum-redundancy-maximum-relevance (MRMR) was used to identify the most informative radiomic and semantic features in 172 patients (training-set, temporal split). Radiomic, semantic and combined radiomic-semantic logistic regression models to predict EGFR mutations were evaluated in and independent validation dataset of 86 patients using the area under the receiver operating curve (AUC). Results: EGFR mutations were found in 77/172 (45%) and 39/86 (45%) of the training and validation sets, respectively. Univariate AUCs showed a similar range for both feature types: radiomics median AUC = 0.57 (range: 0.50 – 0.62); semantic median AUC = 0.53 (range: 0.50 – 0.64, Wilcoxon p = 0.55). After MRMR feature selection, the best-performing radiomic, semantic, and radiomic-semantic logistic regression models, for EGFR mutations, showed a validation AUC of 0.56 (p = 0.29), 0.63 (p = 0.063) and 0.67 (p = 0.004), respectively. Conclusion: Quantitative volumetric and textural Radiomic features complement the qualitative and semi-quantitative radiologist annotations. The prognostic value of informative qualitative semantic features such as cavitation and lobulation is increased with the addition of quantitative textural features from the tumor region.

  2. MO-DE-207B-08: Radiomic CT Features Complement Semantic Annotations to Predict EGFR Mutations in Lung Adenocarcinomas

    International Nuclear Information System (INIS)

    Rios Velazquez, E; Parmar, C; Narayan, V; Aerts, H; Liu, Y; Gillies, R

    2016-01-01

    Purpose: To compare the complementary value of quantitative radiomic features to that of radiologist-annotated semantic features in predicting EGFR mutations in lung adenocarcinomas. Methods: Pre-operative CT images of 258 lung adenocarcinoma patients were available. Tumors were segmented using the sing-click ensemble segmentation algorithm. A set of radiomic features was extracted using 3D-Slicer. Test-retest reproducibility and unsupervised dimensionality reduction were applied to select a subset of reproducible and independent radiomic features. Twenty semantic annotations were scored by an expert radiologist, describing the tumor, surrounding tissue and associated findings. Minimum-redundancy-maximum-relevance (MRMR) was used to identify the most informative radiomic and semantic features in 172 patients (training-set, temporal split). Radiomic, semantic and combined radiomic-semantic logistic regression models to predict EGFR mutations were evaluated in and independent validation dataset of 86 patients using the area under the receiver operating curve (AUC). Results: EGFR mutations were found in 77/172 (45%) and 39/86 (45%) of the training and validation sets, respectively. Univariate AUCs showed a similar range for both feature types: radiomics median AUC = 0.57 (range: 0.50 – 0.62); semantic median AUC = 0.53 (range: 0.50 – 0.64, Wilcoxon p = 0.55). After MRMR feature selection, the best-performing radiomic, semantic, and radiomic-semantic logistic regression models, for EGFR mutations, showed a validation AUC of 0.56 (p = 0.29), 0.63 (p = 0.063) and 0.67 (p = 0.004), respectively. Conclusion: Quantitative volumetric and textural Radiomic features complement the qualitative and semi-quantitative radiologist annotations. The prognostic value of informative qualitative semantic features such as cavitation and lobulation is increased with the addition of quantitative textural features from the tumor region.

  3. Efficacy of Gefitinib for Young Patients with Unknown EGFR Gene Mutation 
in Advanced Lung Adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Yutao LIU

    2014-05-01

    Full Text Available Background and objective Lung cancer in young patients (less or equal to 45 years is relatively rare. We explored the efficacy and survival of Gefitinib for young patients with unknown epidermal growth factor receptor (EGFR gene mutation of advanced lung adenocarcinoma. Methods The clinical data of 55 young patients with unknown EGFR gene mutation in advanced lung adenocarcinoma referred to the Cancer Hospital & Institute, Chinese Academy of Medical Sciences from Jan 2006 through Dec 2010 were analyzed retrospectively. Results Of 55 young patients enrolled, the median age was 41 years. The objective response rate and disease control rate were 43.6% and 90.9%, respectively.. The median progression-free survival (PFS was 9.0 months. Among the factors analyzed, brain metastasis had significant effect on PFS (P=0.017. The median overall survival (OS was 24.0 months. The independent prognostic factors to significantly improve OS included non-smoking history (P=0.028 and receiving other anti-cancer treatment after Gefitinib therapy (P<0.001. Conclusion The median PFS and OS of the young patients with Unknown EGFR gene mutation in advanced lung adenocarcinoma were similar with general population.

  4. Phosphorylated EGFR expression may predict outcome of EGFR-TKIs therapy for the advanced NSCLC patients with wild-type EGFR

    Directory of Open Access Journals (Sweden)

    Wang Fen

    2012-08-01

    Full Text Available Abstract Background EGFR mutation is a strong predictive factor of EGFR-TKIs therapy. However, at least 10% of patients with EGFR wild-type are responsive to TKIs, suggesting that other determinants of outcome besides EGFR mutation might exist. We hypothesized that activation of phosphorylated EGFR could be a potential predictive biomarker to EGFR-TKIs treatment among patients in wild-type EGFR. Method Total of 205 stage IIIb and IV NSCLC patients, tissue samples of whom were available for molecular analysis, were enrolled in this study. The phosphorylation of EGFR at tyrosine 1068 (pTyr1068 and 1173 (pTyr1173 were assessed by immunohistochemistry, and EGFR mutations were detected by denaturing high performance liquid chromatograph (DHPLC. Results Among 205 patients assessable for EGFR mutation and phosphorylation analysis, 92 (44.9% were EGFR mutant and 165 patients (57.6% had pTyr1173 expression. Superior progression-free survival (PFS was seen after EGFR-TKIs therapy in patients with pTyr1068 expression compared to pTyr1068 negative ones (median PFS 7.0 months vs. 1.2 months, P P = 0.016. In subgroup of patients with wild-type EGFR, pTyr1068 expression positive ones had a significantly prolonged PFS (4.2 months vs.1.2 months P  Conclusion pTyr1068 may be a predictive biomarker for screening the population for clinical response to EGFR-TKIs treatment; especially for patients with wild-type EGFR.

  5. The APPLE Trial: Feasibility and Activity of AZD9291 (Osimertinib) Treatment on Positive PLasma T790M in EGFR-mutant NSCLC Patients. EORTC 1613.

    Science.gov (United States)

    Remon, Jordi; Menis, Jessica; Hasan, Baktiar; Peric, Aleksandra; De Maio, Eleonora; Novello, Silvia; Reck, Martin; Berghmans, Thierry; Wasag, Bartosz; Besse, Benjamin; Dziadziuszko, Rafal

    2017-09-01

    The AZD9291 (Osimertinib) Treatment on Positive PLasma T790M in EGFR-mutant NSCLC Patients (APPLE) trial is a randomized, open-label, multicenter, 3-arm, phase II study in advanced, epidermal growth factor receptor (EGFR)-mutant and EGFR tyrosine kinase inhibitor (TKI)-naive non-small-cell lung cancer (NSCLC) patients, to evaluate the best strategy for sequencing gefitinib and osimertinib treatment. Advanced EGFR-mutant NSCLC patients, with World Health Organization performance status 0-2 who are EGFR TKI treatment-naive and eligible to receive first-line treatment with EGFR TKI will be randomized to: In all arms, a plasmatic ctDNA T790M test will be performed by a central laboratory at the Medical University of Gdansk (Poland) but will be applied as a predictive marker for making treatment decisions only in arm B. The primary objective is to evaluate the best strategy for sequencing of treatment with gefitinib and osimertinib in advanced NSCLC patients with common EGFR mutations, and to understand the value of liquid biopsy for the decision-making process. The progression-free survival rate at 18 months is the primary end point of the trial. The activity of osimertinib versus gefitinib to prevent brain metastases will be evaluated. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  6. Acquired EGFR L718V mutation mediates resistance to osimertinib in non-small cell lung cancer but retains sensitivity to afatinib.

    Science.gov (United States)

    Liu, Yutao; Li, Yan; Ou, Qiuxiang; Wu, Xue; Wang, Xiaonan; Shao, Yang W; Ying, Jianming

    2018-04-01

    Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) are promising targeted therapies for EGFR-mutated non-small-cell lung cancer (NSCLC) patients. However, acquired resistance inevitably develops. Comprehensive and dynamic companion genomic diagnosis can gain insights into underlying resistance mechanisms, thereby help oncologists and patients to make informed decision on the potential benefit of the treatment. A 67-year-old male who was initially diagnosed of EGFR L858R-mediated NSCLC received multiple lines of chemotherapy and EGFR TKI therapies after surgery. The EGFR mutational status of individual metastatic lesion was determined by genetic testing of the tumor tissue biopsies using next generation sequencing (NGS) throughout the patient's clinical course. An acquired potentially drug-resistant EGFR mutation was functionally validated in vitro and its sensitivity to different EGFR TKIs was assessed simultaneously. We have identified distinct resistance mechanisms to EGFR blockade in different metastatic lung lesions. Acquired EGFR T790M was first detected that leads to the resistance to the gefitinib treatment. Consequently, osimertinib was administrated and the response lasted until disease progressed. We identified a newly acquired EGFR L718V mutation in one lesion in conjunction with L858R, but not T790M, which showed stable disease on the following erlotinib treatment, while EGFR C797S together with L858R/T790M was detected in the other lesion that continuously progressed. In vitro functional studies demonstrated that EGFR-L858R/L718V confers resistance to osimertinib, but retains sensitivity to the second generation TKI afatinib. We reported that distinct resistance mechanisms could arise in different metastases within the same patient in response to EGFR blockade. We also demonstrated in vitro that EGFR L718V mutation mediates resistance to osimertinib, but retains sensitivity to afatinib. We evidenced that dynamic companion genomic

  7. Network meta-analysis of erlotinib, gefitinib, afatinib and icotinib in patients with advanced non-small-cell lung cancer harboring EGFR mutations.

    Science.gov (United States)

    Liang, Wenhua; Wu, Xuan; Fang, Wenfeng; Zhao, Yuanyuan; Yang, Yunpeng; Hu, Zhihuang; Xue, Cong; Zhang, Jing; Zhang, Jianwei; Ma, Yuxiang; Zhou, Ting; Yan, Yue; Hou, Xue; Qin, Tao; Dinglin, Xiaoxiao; Tian, Ying; Huang, Peiyu; Huang, Yan; Zhao, Hongyun; Zhang, Li

    2014-01-01

    Several EGFR-tyrosine kinase inhibitors (EGFR-TKIs) including erlotinib, gefitinib, afatinib and icotinib are currently available as treatment for patients with advanced non-small-cell lung cancer (NSCLC) who harbor EGFR mutations. However, no head to head trials between these TKIs in mutated populations have been reported, which provides room for indirect and integrated comparisons. We searched electronic databases for eligible literatures. Pooled data on objective response rate (ORR), progression free survival (PFS), overall survival (OS) were calculated. Appropriate networks for different outcomes were established to incorporate all evidences. Multiple-treatments comparisons (MTCs) based on Bayesian network integrated the efficacy and specific toxicities of all included treatments. Twelve phase III RCTs that investigated EGFR-TKIs involving 1821 participants with EGFR mutation were included. For mutant patients, the weighted pooled ORR and 1-year PFS of EGFR-TKIs were significant superior to that of standard chemotherapy (ORR: 66.6% vs. 30.9%, OR 5.46, 95%CI 3.59 to 8.30, Picotinib (19%, 29%, NA, NA), respectively. However, afatinib and erlotinib showed significant severer rash and diarrhea compared with gefitinib and icotinib. The current study indicated that erlotinib, gefitinib, afatinib and icotinib shared equivalent efficacy but presented different efficacy-toxicity pattern for EGFR-mutated patients. Erlotinib and afatinib revealed potentially better efficacy but significant higher toxicities compared with gefitinib and icotinib.

  8. Cost-effectiveness analysis of EGFR mutation testing in patients with non-small cell lung cancer (NSCLC) with gefitinib or carboplatin-paclitaxel.

    Science.gov (United States)

    Arrieta, Oscar; Anaya, Pablo; Morales-Oyarvide, Vicente; Ramírez-Tirado, Laura Alejandra; Polanco, Ana C

    2016-09-01

    Assess the cost-effectiveness of an EGFR-mutation testing strategy for advanced NSCLC in first-line therapy with either gefitinib or carboplatin-paclitaxel in Mexican institutions. Cost-effectiveness analysis using a discrete event simulation (DES) model to simulate two therapeutic strategies in patients with advanced NSCLC. Strategy one included patients tested for EGFR-mutation and therapy given accordingly. Strategy two included chemotherapy for all patients without testing. All results are presented in 2014 US dollars. The analysis was made with data from the Mexican frequency of EGFR-mutation. A univariate sensitivity analysis was conducted on EGFR prevalence. Progression-free survival (PFS) transition probabilities were estimated on data from the IPASS and simulated with a Weibull distribution, run with parallel trials to calculate a probabilistic sensitivity analysis. PFS of patients in the testing strategy was 6.76 months (95 % CI 6.10-7.44) vs 5.85 months (95 % CI 5.43-6.29) in the non-testing group. The one-way sensitivity analysis showed that PFS has a direct relationship with EGFR-mutation prevalence, while the ICER and testing cost have an inverse relationship with EGFR-mutation prevalence. The probabilistic sensitivity analysis showed that all iterations had incremental costs and incremental PFS for strategy 1 in comparison with strategy 2. There is a direct relationship between the ICER and the cost of EGFR testing, with an inverse relationship with the prevalence of EGFR-mutation. When prevalence is >10 % ICER remains constant. This study could impact Mexican and Latin American health policies regarding mutation detection testing and treatment for advanced NSCLC.

  9. Acquired resistance mechanisms to tyrosine kinase inhibitors in lung cancer with activating epidermal growth factor receptor mutation--diversity, ductility, and destiny.

    Science.gov (United States)

    Suda, Kenichi; Mizuuchi, Hiroshi; Maehara, Yoshihiko; Mitsudomi, Tetsuya

    2012-12-01

    Lung cancers that harbor somatic activating mutations in the gene for the epidermal growth factor receptor (EGFR) depend on mutant EGFR for their proliferation and survival; therefore, lung cancer patients with EGFR mutations often dramatically respond to orally available EGFR tyrosine kinase inhibitors (TKIs). However, emergence of acquired resistance is virtually inevitable, thus limiting improvement in patient outcomes. To elucidate and overcome this acquired resistance, multidisciplinary basic and clinical investigational approaches have been applied, using in vitro cell line models or samples obtained from lung cancer patients treated with EGFR-TKIs. These efforts have revealed several acquired resistance mechanisms and candidates, including EGFR secondary mutations (T790M and other rare mutations), MET amplification, PTEN downregulation, CRKL amplification, high-level HGF expression, FAS-NFκB pathway activation, epithelial-mesenchymal transition, and conversion to small cell lung cancer. Interestingly, cancer cells harbor potential destiny and ductility together in acquiring resistance to EGFR-TKIs, as shown in in vitro acquired resistance models. Molecular mechanisms of "reversible EGFR-TKI tolerance" that occur in early phase EGFR-TKI exposure have been identified in cell line models. Furthermore, others have reported molecular markers that can predict response to EGFR-TKIs in clinical settings. Deeper understanding of acquired resistance mechanisms to EGFR-TKIs, followed by the development of molecular target drugs that can overcome the resistance, might turn this fatal disease into a chronic disorder.

  10. Customized treatment in non-small-cell lung cancer based on EGFR mutations and BRCA1 mRNA expression.

    Directory of Open Access Journals (Sweden)

    Rafael Rosell

    Full Text Available BACKGROUND: Median survival is 10 months and 2-year survival is 20% in metastatic non-small-cell lung cancer (NSCLC treated with platinum-based chemotherapy. A small fraction of non-squamous cell lung cancers harbor EGFR mutations, with improved outcome to gefitinib and erlotinib. Experimental evidence suggests that BRCA1 overexpression enhances sensitivity to docetaxel and resistance to cisplatin. RAP80 and Abraxas are interacting proteins that form complexes with BRCA1 and could modulate the effect of BRCA1. In order to further examine the effect of EGFR mutations and BRCA1 mRNA levels on outcome in advanced NSCLC, we performed a prospective non-randomized phase II clinical trial, testing the hypothesis that customized therapy would confer improved outcome over non-customized therapy. In an exploratory analysis, we also examined the effect of RAP80 and Abraxas mRNA levels. METHODOLOGY/PRINCIPAL FINDINGS: We treated 123 metastatic non-squamous cell lung carcinoma patients using a customized approach. RNA and DNA were isolated from microdissected specimens from paraffin-embedded tumor tissue. Patients with EGFR mutations received erlotinib, and those without EGFR mutations received chemotherapy with or without cisplatin based on their BRCA1 mRNA levels: low, cisplatin plus gemcitabine; intermediate, cisplatin plus docetaxel; high, docetaxel alone. An exploratory analysis examined RAP80 and Abraxas expression. Median survival exceeded 28 months for 12 patients with EGFR mutations, and was 11 months for 38 patients with low BRCA1, 9 months for 40 patients with intermediate BRCA1, and 11 months for 33 patients with high BRCA1. Two-year survival was 73.3%, 41.2%, 15.6% and 0%, respectively. Median survival was influenced by RAP80 expression in the three BRCA1 groups. For example, for patients with both low BRCA1 and low RAP80, median survival exceeded 26 months. RAP80 was a significant factor for survival in patients treated according to BRCA1

  11. Imaging Characteristics of Driver Mutations in EGFR, KRAS, and ALK among Treatment-Naïve Patients with Advanced Lung Adenocarcinoma.

    Directory of Open Access Journals (Sweden)

    Jangchul Park

    Full Text Available This study aimed to identify the computed tomography characteristics of treatment-naïve patients with lung adenocarcinoma and known driver mutations in EGFR, KRAS, or ALK. Patients with advanced lung adenocarcinoma (stage IIIB-IV and known mutations in EGFR, KRAS, or ALK were assessed. The radiological findings for the main tumor and intra-thoracic status were retrospectively analyzed in each group, and the groups' characteristics were compared. We identified 265 treatment-naïve patients with non-small-cell carcinoma, who had EGFR mutations (n = 159, KRAS mutations (n = 55, or ALK rearrangements (n = 51. Among the three groups, we evaluated only patients with stage IIIB-IV lung adenocarcinoma who had EGFR mutations (n = 126, KRAS mutations (n = 35, or ALK rearrangements (n = 47. We found that ground-glass opacity at the main tumor was significantly more common among EGFR-positive patients, compared to ALK-positive patients (p = 0.009. Lymphadenopathy was significantly more common among ALK-positive patients, compared to EGFR-positive patients (p = 0.003. Extranodal invasion was significantly more common among ALK-positive patients, compared to EGFR-positive patients and KRAS-positive patients (p = 0.001 and p = 0.049, respectively. Lymphangitis was significantly more common among ALK-positive patients, compared to EGFR-positive patients (p = 0.049. Pleural effusion was significantly less common among KRAS-positive patients, compared to EGFR-positive patients and ALK-positive patients (p = 0.046 and p = 0.026, respectively. Lung metastases were significantly more common among EGFR-positive patients, compared to KRAS-positive patients and ALK-positive patients (p = 0.007 and p = 0.04, respectively. In conclusion, EGFR mutations were associated with ground-glass opacity, KRAS-positive tumors were generally solid and less likely to metastasize to the lung and pleura, and ALK-positive tumors tended to present with lymphadenopathy, extranodal

  12. Estimating quality adjusted progression free survival of first-line treatments for EGFR mutation positive non small cell lung cancer patients in The Netherlands

    Directory of Open Access Journals (Sweden)

    Verduyn S

    2012-09-01

    Full Text Available Abstract Background Gefitinib, a tyrosine kinase inhibitor, is an effective treatment in advanced non-small cell lung cancer (NSCLC patients with an activating mutation in the epidermal growth factor receptor (EGFR. Randomised clinical trials showed a benefit in progression free survival for gefitinib versus doublet chemotherapy regimens in patients with an activated EGFR mutation (EGFR M+. From a patient perspective, progression free survival is important, but so is health-related quality of life. Therefore, this analysis evaluates the Quality Adjusted progression free survival of gefitinib versus three relevant doublet chemotherapies (gemcitabine/cisplatin (Gem/Cis; pemetrexed/cisplatin (Pem/Cis; paclitaxel/carboplatin (Pac/Carb in a Dutch health care setting in patients with EGFR M+ stage IIIB/IV NSCLC. This study uses progression free survival rather than overall survival for its time frame in order to better compare the treatments and to account for the influence that subsequent treatment lines would have on overall survival analysis. Methods Mean progression free survival for Pac/Carb was obtained by extrapolating the median progression free survival as reported in the Iressa-Pan-Asia Study (IPASS. Data from a network meta-analysis was used to estimate the mean progression free survival for therapies of interest relative to Pac/Carb. Adjustment for health-related quality of life was done by incorporating utilities for the Dutch population, obtained by converting FACT-L data (from IPASS to utility values and multiplying these with the mean progression free survival for each treatment arm to determine the Quality Adjusted progression free survival. Probabilistic sensitivity analysis was carried out to determine 95% credibility intervals. Results The Quality Adjusted progression free survival (PFS (mean, (95% credibility interval was 5.2 months (4.5; 5.8 for Gem/Cis, 5.3 months (4.6; 6.1 for Pem/Cis; 4.9 months (4.4; 5.5 for Pac/Carb and 8

  13. Cost-Effectiveness Analysis of Afatinib versus Gefitinib for First-Line Treatment of Advanced EGFR-Mutated Advanced Non-Small Cell Lung Cancers.

    Science.gov (United States)

    Chouaid, Christos; Luciani, Laura; LeLay, Katell; Do, Pascal; Bennouna, Jaafar; Perol, Maurice; Moro-Sibilot, Denis; Vergnenègre, Alain; de Pouvourville, Gérard

    2017-10-01

    The irreversible ErbB family blocker afatinib and the reversible EGFR tyrosine kinase inhibitor gefitinib were compared in the multicenter, international, randomized, head-to-head phase 2b LUX-Lung 7 trial for first-line treatment of advanced EGFR mutation-positive NSCLCs. Afatinib and gefitinib costs and patients' outcomes in France were assessed. A partitioned survival model was designed to assess the cost-effectiveness of afatinib versus gefitinib for EGFR mutation-positive NSCLCs. Outcomes and safety were taken primarily from the LUX-Lung 7 trial. Resource use and utilities were derived from that trial, an expert-panel questionnaire, and published literature, limiting expenditures to direct costs. Incremental cost-effectiveness ratios (ICERs) were calculated over a 10-year time horizon for the entire population, and EGFR exon 19 deletion or exon 21 L858R mutation (L858R) subgroups. Deterministic and probabilistic sensitivity analyses were conducted. For all EGFR mutation-positive NSCLCs, the afatinib-versus-gefitinib ICER of was €45,211 per quality-adjusted life-year (QALY) (0.170 QALY gain for an incremental cost of €7697). ICERs for EGFR exon 19 deletion and L858R populations were €38,970 and €52,518, respectively. Afatinib had 100% probability to be cost-effective at a willingness-to-pay threshold of €70,000/QALY for patients with common EGFR mutations. First-line afatinib appears cost-effective compared with gefitinib for patients with EGFR mutation-positive NSCLCs. Copyright © 2017 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  14. Epidermal growth factor receptor (EGFR mutation status and Rad51 determine the response of glioblastoma (GBM to multimodality therapy with cetuximab, temozolomide and radiation

    Directory of Open Access Journals (Sweden)

    Phyllis Rachelle Wachsberger

    2013-02-01

    Full Text Available Purpose: EGFR amplification and mutation (i.e., EGFRvIII are found in 40% of primary GBM tumors and are believed to contribute to tumor development and therapeutic resistance. This study was designed to investigate how EGFR mutational status modulates response to multimodality treatment with cetuximab, an anti-EGFR inhibitor, the chemotherapeutic agent, temozolamide (TMZ and radiation therapy (RT Methods and Materials: In vitro and in vivo experiments were performed on two isogenic U87 GBM cell lines: one overexpressing wildtype EGFR (U87wtEGFR and the other overexpressing EGFRvIII (U87EGFRvIII. Results: Xenografts harboring EGFRvIII were more sensitive to TMZ alone and TMZ in combination with RT and/or cetuximab than xenografts expressing wtEGFR. In vitro experiments demonstrated that U87EGFRvIII-expressing tumors appear to harbor defective DNA homologous recombination repair in the form of Rad51 processing, Conclusions: The difference in sensitivity between EGFR-expressing and EGFRvIII-expressing tumors to combined modality treatment may help in the future tailoring of GBM therapy to subsets of patients expressing more or less of the EGFR mutant.

  15. Mutator activity in Schizophyllum commune

    Energy Technology Data Exchange (ETDEWEB)

    Shneyour, Y.; Koltin, Y. (Tel Aviv Univ. (Israel). Dept. of Microbiology)

    1983-01-01

    A strain with an elevated level of spontaneous mutations and an especially high rate of reversion at a specific locus (pab/sup -/) was identified. The mutator trait is recessive. UV sensitivity and the absence of a UV-specific endonucleolytic activity were associated with the enhancement of the mutation rate in mutator strains. The endonuclease associated with the regulation of the mutation rate also acted on single-stranded DNA. The molecular weight of this enzyme is about 38,000 daltons.

  16. HER2 mutated breast cancer responds to treatment with single agent neratinib, a second generation HER2/EGFR tyrosine kinase inhibitor

    Science.gov (United States)

    Ben–Baruch, Noa Efrat; Bose, Ron; Kavuri, Shyam M.; Ma, Cynthia X.; Ellis, Matthew J.

    2015-01-01

    Activating mutations in the HER2 tyrosine kinase have been identified in human breast cancers that lack HER2 gene amplification. These patients are not candidates for HER2 targeted drugs under current standards of care, but preclinical data strongly suggest that these patients will benefit from anti-HER2 drugs. In this case report, we describe a young woman with metastatic breast cancer whose tumor was found to carry a HER2 L755S mutation, which is in the kinase domain of HER2. Treatment with the second generation HER2/EGFR tyrosine kinase inhibitor, neratinib, resulted in partial response and dramatic improvement in the patient’s function status. This partial response lasted 11 months and when the patient’s cancer progressed, she was treated with neratinib plus capecitabine and her cancer again responded. This second response parallels the benefit seen with continuing trastuzumab in HER2 amplified breast cancer after disease progression. This case is the first report, to our knowledge, of successful single agent treatment of HER2 mutated breast cancer. Two clinical trials of neratinib for HER2 mutated, metastatic breast cancer are currently enrolling patients. Further, data from The Cancer Genome Atlas project have identified HER2 mutations in a wide range of solid tumors, including bladder, colorectal, and non-small cell lung cancer, suggesting that clinical trials of neratinib or neratinib-based combinations for HER2 mutated solid tumors is warranted. PMID:26358790

  17. HER2-Mutated Breast Cancer Responds to Treatment With Single-Agent Neratinib, a Second-Generation HER2/EGFR Tyrosine Kinase Inhibitor.

    Science.gov (United States)

    Ben-Baruch, Noa Efrat; Bose, Ron; Kavuri, Shyam M; Ma, Cynthia X; Ellis, Matthew J

    2015-09-01

    Activating mutations in the HER2 tyrosine kinase have been identified in human breast cancers that lack HER2 gene amplification. These patients are not candidates for HER2-targeted drugs under current standards of care, but preclinical data strongly suggest that these patients will benefit from anti-HER2 drugs. This case report describes a young woman with metastatic breast cancer whose tumor was found to carry a HER2 L755S mutation, which is in the kinase domain of HER2. Treatment with the second-generation HER2/EGFR tyrosine kinase inhibitor neratinib resulted in partial response and dramatic improvement in the patient's functional status. This partial response lasted 11 months, and when the patient's cancer progressed, she was treated with neratinib plus capecitabine and her cancer again responded. This second response parallels the benefit seen with continuing trastuzumab in HER2-amplified breast cancer after disease progression. This case represents the first report, to our knowledge, of successful single-agent treatment of HER2-mutated breast cancer. Two clinical trials of neratinib for HER2-mutated metastatic breast cancer are currently enrolling patients. Further, data from The Cancer Genome Atlas project have identified HER2 mutations in a wide range of solid tumors, including bladder, colorectal, and non-small cell lung cancers, suggesting that clinical trials of neratinib or neratinib-based combinations for HER2-mutated solid tumors is warranted. Copyright © 2015 by the National Comprehensive Cancer Network.

  18. Combination therapy of apatinib with icotinib for primary acquired icotinib resistance in patients with advanced pulmonary adenocarcinoma with EGFR mutation.

    Science.gov (United States)

    Xia, Pinghui; Cao, Jinlin; Lv, Xiayi; Wang, Luming; Lv, Wang; Hu, Jian

    2018-05-01

    Multi-targeted agents represent the next generation of targeted therapies for solid tumors, and patients with acquired resistance to EGFR-tyrosine kinase inhibitors (TKIs) may also benefit from their combination with TKI therapy. Third-generation targeted drugs, such as osimertinib, are very expensive, thus a more economical solution is required. The aim of this study was to explore the use of apatinib combined with icotinib therapy for primary acquired resistance to icotinib in three patients with advanced pulmonary adenocarcinoma with EGFR mutations. We achieved favorable oncologic outcomes in all three patients, with progression-free survival of four to six months. Unfortunately, the patients ultimately had to cease combination therapy because of intolerable adverse effects of hand and foot syndrome and oral ulcers. Combination therapy of apatinib with icotinib for primary acquired resistance to icotinib may be an option for patients with advanced pulmonary adenocarcinoma with EGFR mutations, but physicians must also be aware of the side effects caused by such therapy. © 2018 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.

  19. Patients harboring EGFR mutation after primary resistance to crizotinib and response to EGFR-tyrosine kinase inhibitor

    Directory of Open Access Journals (Sweden)

    Wang WX

    2016-01-01

    Full Text Available Wenxian Wang,1 Xiaowen Jiang,1 Zhengbo Song,1,2 Yiping Zhang1,2 1Department of Chemotherapy, Zhejiang Cancer Hospital, 2Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology, Hangzhou, Zhejiang, People’s Republic of China Abstract: Anaplastic lymphoma kinase (ALK rearrangement lung cancer responds to ALK tyrosine kinase inhibitors. It is known that many cases ultimately acquired resistance to crizotinib. However, a case of primary resistance is rare. We present a case of harboring exon 19 deletion in epidermal growth factor receptor in ALK rearranged lung adenocarcinoma, who experienced a partial tumor response to icotinib after failure with crizotinib therapy and chemotherapy. Considering the partial response, we conclude that it is important to find the cause of resistance to crizotinib. We detected gene mutations with plasma by the next-generation sequencing; the next-generation sequencing demonstrates an attractive system to identify mutations improving the outcome of patients with a deadly disease. Keywords: non-small cell lung cancer, anaplastic lymphoma kinase, crizotinib, epidermal growth factor receptor

  20. Predictive and prognostic value of preoperative serum tumor markers is EGFR mutation-specific in resectable non-small-cell lung cancer

    Science.gov (United States)

    Jiang, Richeng; Wang, Xinyue; Li, Kai

    2016-01-01

    Background The predictive and prognostic value of carcinoembryonic antigen (CEA), cytokeratin-19 fragments (Cyfra21-1), squamous cell carcinoma antigen (SCCA) and neuron-specific enolase (NSE) has been investigated in non-small-cell lung cancer (NSCLC) patients. However, few studies have directly focused on the association between these markers and epidermal growth factor receptor (EGFR) mutation status or mutation subtypes. Patients and methods We retrospectively analyzed 1016 patients with stage I-IIIA NSCLC who underwent complete resection between 2008 and 2012. Correlations between serum tumor marker levels and EGFR mutations and survival parameters were analyzed and prognostic factors were identified. Results Cyfra21-1 levels (P = 0.032 for disease-free survival [DFS]; P CEA levels (P CEA (P = 0.005) and clinical stage were predictive factors of DFS, while elevated CEA (P = 0.005) and Cyfra21-1 (P = 0.027) were independent prognostic factors. Conclusion Cyfra21-1 and CEA exhibit different predictive and prognostic values between EGFR-mutated and wild-type adenocarcinomas, as well as between EGFR mutation subtypes. The prognostic impact of preoperative serum tumor markers should be evaluated together with EGFR mutation status. PMID:27072585

  1. Analysis of the EGFR gene mutation in patients with non- small cell ...

    African Journals Online (AJOL)

    Tropical Journal of Pharmaceutical Research August 2016; 15 (8): 1637-1641 ... Keywords: Non-small cell lung cancer, Epidermal growth factor receptor (EGFR), Targeted therapy, ... inhibitors can be identified by molecular analysis of lung ...

  2. Randomized Adjuvant Chemotherapy of EGFR-Mutated Non-Small Cell Lung Cancer Patients with or without Icotinib Consolidation Therapy.

    Science.gov (United States)

    Feng, Siyang; Wang, Yuanyuan; Cai, Kaican; Wu, Hua; Xiong, Gang; Wang, Haofei; Zhang, Ziliang

    2015-01-01

    Epidermal growth factor receptor (EGFR) mutations occur in up to 50% of Asian patients with non-small cell lung cancer (NSCLC). Treatment of advanced NSCLC patients with EGFR-tyrosine kinase inhibitor (EGFR-TKI) confers a significant survival benefit. This study assessed the efficacy and safety of chemotherapy with or without icotinib in patients undergoing resection of stage IB to ⅢA EGFR-mutated NSCLC. Patients with surgically resected stage IB (with high risk factors) to ⅢA EGFR-mutated NSCLC were randomly assigned (1:1) to one of two treatment plans. One group received four cycles of platinum-based doublet chemotherapy every three weeks, and the other group received platinum-based chemotherapy supplemented with consolidation therapy of orally administered icotinib (125 mg thrice daily) two weeks after chemotherapy. The icotinib treatment continued for four to eight months, or until the occurrence of disease relapse, metastasis or unacceptable icotinib or chemotherapy toxicity. The primary endpoint was disease-free survival (DFS). 41 patients were enrolled between Feb 9, 2011 and Dec 17, 2012. 21 patients were assigned to the combined chemotherapy plus icotinib treatment group, while 20 patients received chemotherapy only. DFS at 12 months was 100% for icotinib-treated patients and 88.9% for chemotherapy-only patients (p = 0. 122). At 18 months DFS for icotinib-treated vs. chemotherapy-only patients was 95.2% vs. 83.3% (p = 0. 225), respectively, and at 24 months DFS was 90.5% vs. 66.7% (p = 0. 066). The adverse chemotherapy effects predominantly presented as gastrointestinal reactions and marrow suppression, and there was no significant difference between the two treatment groups. Patients in the chemotherapy plus icotinib treatment group showed favorable tolerance to oral icotinib. The results suggest that chemotherapy plus orally icotinib displayed better DFS compared with chemotherapy only, yet the difference in DFS was not significant. We would think

  3. Randomized Adjuvant Chemotherapy of EGFR-Mutated Non-Small Cell Lung Cancer Patients with or without Icotinib Consolidation Therapy.

    Directory of Open Access Journals (Sweden)

    Siyang Feng

    Full Text Available Epidermal growth factor receptor (EGFR mutations occur in up to 50% of Asian patients with non-small cell lung cancer (NSCLC. Treatment of advanced NSCLC patients with EGFR-tyrosine kinase inhibitor (EGFR-TKI confers a significant survival benefit. This study assessed the efficacy and safety of chemotherapy with or without icotinib in patients undergoing resection of stage IB to ⅢA EGFR-mutated NSCLC.Patients with surgically resected stage IB (with high risk factors to ⅢA EGFR-mutated NSCLC were randomly assigned (1:1 to one of two treatment plans. One group received four cycles of platinum-based doublet chemotherapy every three weeks, and the other group received platinum-based chemotherapy supplemented with consolidation therapy of orally administered icotinib (125 mg thrice daily two weeks after chemotherapy. The icotinib treatment continued for four to eight months, or until the occurrence of disease relapse, metastasis or unacceptable icotinib or chemotherapy toxicity. The primary endpoint was disease-free survival (DFS.41 patients were enrolled between Feb 9, 2011 and Dec 17, 2012. 21 patients were assigned to the combined chemotherapy plus icotinib treatment group, while 20 patients received chemotherapy only. DFS at 12 months was 100% for icotinib-treated patients and 88.9% for chemotherapy-only patients (p = 0. 122. At 18 months DFS for icotinib-treated vs. chemotherapy-only patients was 95.2% vs. 83.3% (p = 0. 225, respectively, and at 24 months DFS was 90.5% vs. 66.7% (p = 0. 066. The adverse chemotherapy effects predominantly presented as gastrointestinal reactions and marrow suppression, and there was no significant difference between the two treatment groups. Patients in the chemotherapy plus icotinib treatment group showed favorable tolerance to oral icotinib.The results suggest that chemotherapy plus orally icotinib displayed better DFS compared with chemotherapy only, yet the difference in DFS was not significant. We would

  4. Epidermal growth factor receptor tyrosine kinase (EGFR-TK) mutation testing in adults with locally advanced or metastatic non-small cell lung cancer : a systematic review and cost-effectiveness analysis

    NARCIS (Netherlands)

    Westwood, Marie; Joore, Manuela; Whiting, Penny; van Asselt, Thea; Ramaekers, Bram; Armstrong, Nigel; Misso, Kate; Severens, Johan; Kleijnen, Jos

    BACKGROUND: Non-small cell lung cancer (NSCLC) is the most common form of lung cancer. Some epidermal growth factor receptor tyrosine kinase (EGFR-TK) mutations make tumours responsive to treatment with EGFR-TK inhibitors (EGFR-TKIs) but less responsive to treatment with standard chemotherapy.

  5. Epidermal growth factor receptor tyrosine kinase (EGFR-TK) mutation testing in adults with locally advanced or metastatic non-small cell lung cancer: A systematic review and cost-effectiveness analysis

    NARCIS (Netherlands)

    M. Westwood (Marie); M.A. Joore (Manuela); P. Whiting (Penny); T. van Asselt (Thea); B.L.T. Ramaekers (Bram); N. Armstrong (Nigel); K. Misso (Kate); J.L. Severens (Hans); J. Kleijnen (Jos)

    2014-01-01

    markdownabstract__Abstract__ Background: Non-small cell lung cancer (NSCLC) is the most common form of lung cancer. Some epidermal growth factor receptor tyrosine kinase (EGFR-TK) mutations make tumours responsive to treatment with EGFR-TK inhibitors (EGFR-TKIs) but less responsive to treatment

  6. EGFR Activation Mediates Inhibition of Axon Regeneration by Myelin and Chondroitin Sulfate Proteoglycans

    Science.gov (United States)

    Koprivica, Vuk; Cho, Kin-Sang; Park, Jong Bae; Yiu, Glenn; Atwal, Jasvinder; Gore, Bryan; Kim, Jieun A.; Lin, Estelle; Tessier-Lavigne, Marc; Chen, Dong Feng; He, Zhigang

    2005-10-01

    Inhibitory molecules associated with myelin and the glial scar limit axon regeneration in the adult central nervous system (CNS), but the underlying signaling mechanisms of regeneration inhibition are not fully understood. Here, we show that suppressing the kinase function of the epidermal growth factor receptor (EGFR) blocks the activities of both myelin inhibitors and chondroitin sulfate proteoglycans in inhibiting neurite outgrowth. In addition, regeneration inhibitors trigger the phosphorylation of EGFR in a calcium-dependent manner. Local administration of EGFR inhibitors promotes significant regeneration of injured optic nerve fibers, pointing to a promising therapeutic avenue for enhancing axon regeneration after CNS injury.

  7. Ubiquitin Ligase Cbl-b Is Involved in Icotinib (BPI-2009H)-Induced Apoptosis and G1 Phase Arrest of EGFR Mutation-Positive Non-Small-Cell Lung Cancer

    OpenAIRE

    Mu, Xiaodong; Zhang, Ye; Qu, Xiujuan; Hou, Kezuo; Kang, Jian; Hu, Xuejun; Liu, Yunpeng

    2013-01-01

    Epidermal growth factor receptor (EGFR) is one of the most promising targets for non-small-cell lung cancer (NSCLC). Icotinib, a highly selective EGFR tyrosine kinase inhibitor (EGFR-TKI), has shown promising clinical efficacy and safety in patients with NSCLC. The exact molecular mechanism of icotinib remains unclear. In this study, we first investigated the antiproliferative effect of icotinib on NSCLC cells. Icotinib significantly inhibited proliferation of the EGFR-mutated lung cancer HCC...

  8. HER2 activating mutations are targets for colorectal cancer treatment.

    Science.gov (United States)

    Kavuri, Shyam M; Jain, Naveen; Galimi, Francesco; Cottino, Francesca; Leto, Simonetta M; Migliardi, Giorgia; Searleman, Adam C; Shen, Wei; Monsey, John; Trusolino, Livio; Jacobs, Samuel A; Bertotti, Andrea; Bose, Ron

    2015-08-01

    The Cancer Genome Atlas project identified HER2 somatic mutations and gene amplification in 7% of patients with colorectal cancer. Introduction of the HER2 mutations S310F, L755S, V777L, V842I, and L866M into colon epithelial cells increased signaling pathways and anchorage-independent cell growth, indicating that they are activating mutations. Introduction of these HER2 activating mutations into colorectal cancer cell lines produced resistance to cetuximab and panitumumab by sustaining MAPK phosphorylation. HER2 mutants are potently inhibited by low nanomolar doses of the irreversible tyrosine kinase inhibitors neratinib and afatinib. HER2 gene sequencing of 48 cetuximab-resistant, quadruple (KRAS, NRAS, BRAF, and PIK3CA) wild-type (WT) colorectal cancer patient-derived xenografts (PDX) identified 4 PDXs with HER2 mutations. HER2-targeted therapies were tested on two PDXs. Treatment with a single HER2-targeted drug (trastuzumab, neratinib, or lapatinib) delayed tumor growth, but dual HER2-targeted therapy with trastuzumab plus tyrosine kinase inhibitors produced regression of these HER2-mutated PDXs. HER2 activating mutations cause EGFR antibody resistance in colorectal cell lines, and PDXs with HER2 mutations show durable tumor regression when treated with dual HER2-targeted therapy. These data provide a strong preclinical rationale for clinical trials targeting HER2 activating mutations in metastatic colorectal cancer. ©2015 American Association for Cancer Research.

  9. Epithelial growth factor receptor (EGFR) mutation status and the treatment of non-small cell lung cancer (NSCLC): A population based quality assurance analysis

    DEFF Research Database (Denmark)

    Hansen, Niels-Chr. G.; Laursen, Christian B.; Hansen, Karin H.

    2015-01-01

    of adenocarcinoma or NSCLC not otherwise specified - diagnosed from July 2010 to June 2014. Chart review was updated in February 2015. The median age was 68 years (range 31 – 96 years), 6.4% were never-smokers and 37.5% ex-smokers. EGFR-mutation status has been determined for 683 patients (73.6%), but has not been...... possible from the available samples in 89 cases. For 156 patients the analysis has not been requested. The prevalence of EGFR-mutation has been 10.4% in women, 5.4% in men, and 39.2% in never-smokers (no gender difference). The EGFR mutations were proven in cytology samples in 75% of the 56 positive cases...

  10. A comparison of QuantStudio™ 3D Digital PCR and ARMS-PCR for measuring plasma EGFR T790M mutations of NSCLC patients.

    Science.gov (United States)

    Feng, Qin; Gai, Fei; Sang, Yaxiong; Zhang, Jie; Wang, Ping; Wang, Yue; Liu, Bing; Lin, Dongmei; Yu, Yang; Fang, Jian

    2018-01-01

    The AURA3 clinical trial has shown that advanced non-small cell lung cancer (NSCLC) patients with EGFR T790M mutations in circulating tumor DNA (ctDNA) could benefit from osimertinib. The aim of this study was to assess the usefulness of QuantStudio™ 3D Digital PCR System platform for the detection of plasma EGFR T790M mutations in NSCLC patients, and compare the performances of 3D Digital PCR and ARMS-PCR. A total of 119 Chinese patients were enrolled in this study. Mutant allele frequency of plasma EGFR T790M was detected by 3D Digital PCR, then 25 selected samples were verified by ARMS-PCR and four of them were verified by next generation sequencing (NGS). In total, 52.94% (69/119) had EGFR T790M mutations detected by 3D Digital PCR. In 69 positive samples, the median mutant allele frequency (AF) was 1.09% and three cases presented low concentration (AF Digital PCR) was identified as T790M- by ARMS-PCR. Four samples were identified as T790M+ by both NGS and 3D Digital PCR, and typically three samples (3/4) presented at a low ratio (AF Digital PCR is a novel method with high sensitivity and specificity to detect EGFR T790M mutation in plasma.

  11. A Comparative Study for Detection of EGFR Mutations in Plasma Cell-Free DNA in Korean Clinical Diagnostic Laboratories

    Directory of Open Access Journals (Sweden)

    Yoonjung Kim

    2018-01-01

    Full Text Available Liquid biopsies to genotype the epidermal growth factor receptor (EGFR for targeted therapy have been implemented in clinical decision-making in the field of lung cancer, but harmonization of detection methods is still scarce among clinical laboratories. We performed a pilot external quality assurance (EQA scheme to harmonize circulating tumor DNA testing among laboratories. For EQA, we created materials containing different levels of spiked cell-free DNA (cfDNA in normal plasma. The limit of detection (LOD of the cobas® EGFR Mutation Test v2 (Roche Molecular Systems was also evaluated. From November 2016 to June 2017, seven clinical diagnostic laboratories participated in the EQA program. The majority (98.94% of results obtained using the cobas assay and next-generation sequencing (NGS were acceptable. Quantitative results from the cobas assay were positively correlated with allele frequencies derived from digital droplet PCR measurements and showed good reproducibility among laboratories. The LOD of the cobas assay was 5~27 copies/mL for p.E746_A750del (exon 19 deletion, 35~70 copies/mL for p.L858R, 18~36 copies/mL for p.T790M, and 15~31 copies/mL for p.A767_V769dup (exon 20 insertion. Deep sequencing of materials (>100,000X depth of coverage resulted in detection of low-level targets present at frequencies of 0.06~0.13%. Our results indicate that the cobas assay is a reliable and rapid method for detecting EGFR mutations in plasma cfDNA. Careful interpretation is particularly important for p.T790M detection in the setting of relapse. Individual laboratories should optimize NGS performance to maximize clinical utility.

  12. Detection of EGFR and KRAS mutations in fine-needle aspirates stored on Whatman FTA cards: is this the tool for biobanking cytological samples in the molecular era?

    Science.gov (United States)

    da Cunha Santos, Gilda; Liu, Ni; Tsao, Ming-Sound; Kamel-Reid, Suzanne; Chin, Kayu; Geddie, William R

    2010-12-25

    The aims of this study were to compare the quality of DNA recovered from fine-needle aspirates (FNAs) stored on Whatman FTA cards with that retrieved from corresponding cell blocks and to determine whether the DNA extracted from the cards is suitable for multiple mutation analyses. FNAs collected from 18 resected lung tumors and cell suspensions from 4 lung cancer cell lines were placed on FTA Indicating Micro Cards and further processed to produce paired formalin-fixed paraffin-embedded (FFPE) cell blocks. Fragment analysis was used for the detection of EGFR exon 19 deletion, and direct sequencing for detection of EGFR exon 21 L858R mutation and exon 2 deletion of KRAS. Corresponding FFPE tissue sections from 2 resection specimens were also tested. Analyses were successful with all FNAs and lung cancer-derived cell lines collected on cards. Polymerase chain reaction failed in 2 cell blocks. For FNAs collected on cards, 5 cases showed EGFR and 3 showed KRAS mutations. Eleven cases were wild type. With cell blocks, 4 cases were found to harbor KRAS and 4 harbored EGFR mutations. All lung cancer-derived cell lines tested positive for their respective mutations, and there was complete agreement between card and cell block FNA samples for EGFR exon 21. For EGFR exon 19, 1 of 18 cases showed discordant results between the card and cell block, and for KRAS 1 of 17. The two resection specimens tested gave concordant results with the FTA card. Storage of cytologic material on FTA cards can maximize and simplify sample procurement for multiple mutational analyses with results similar to those from cell blocks.

  13. TNF-driven adaptive response mediates resistance to EGFR inhibition in lung cancer.

    Science.gov (United States)

    Gong, Ke; Guo, Gao; Gerber, David E; Gao, Boning; Peyton, Michael; Huang, Chun; Minna, John D; Hatanpaa, Kimmo J; Kernstine, Kemp; Cai, Ling; Xie, Yang; Zhu, Hong; Fattah, Farjana J; Zhang, Shanrong; Takahashi, Masaya; Mukherjee, Bipasha; Burma, Sandeep; Dowell, Jonathan; Dao, Kathryn; Papadimitrakopoulou, Vassiliki A; Olivas, Victor; Bivona, Trever G; Zhao, Dawen; Habib, Amyn A

    2018-06-01

    Although aberrant EGFR signaling is widespread in cancer, EGFR inhibition is effective only in a subset of non-small cell lung cancer (NSCLC) with EGFR activating mutations. A majority of NSCLCs express EGFR wild type (EGFRwt) and do not respond to EGFR inhibition. TNF is a major mediator of inflammation-induced cancer. We find that a rapid increase in TNF level is a universal adaptive response to EGFR inhibition in NSCLC, regardless of EGFR status. EGFR signaling actively suppresses TNF mRNA levels by inducing expression of miR-21, resulting in decreased TNF mRNA stability. Conversely, EGFR inhibition results in loss of miR-21 and increased TNF mRNA stability. In addition, TNF-induced NF-κB activation leads to increased TNF transcription in a feed-forward loop. Inhibition of TNF signaling renders EGFRwt-expressing NSCLC cell lines and an EGFRwt patient-derived xenograft (PDX) model highly sensitive to EGFR inhibition. In EGFR-mutant oncogene-addicted cells, blocking TNF enhances the effectiveness of EGFR inhibition. EGFR plus TNF inhibition is also effective in NSCLC with acquired resistance to EGFR inhibition. We suggest concomitant EGFR and TNF inhibition as a potentially new treatment approach that could be beneficial for a majority of lung cancer patients.

  14. Frequent mutations in EGFR, KRAS and TP53 genes in human lung cancer tumors detected by ion torrent DNA sequencing.

    Directory of Open Access Journals (Sweden)

    Xin Cai

    Full Text Available Lung cancer is the most common malignancy and the leading cause of cancer deaths worldwide. While smoking is by far the leading cause of lung cancer, other environmental and genetic factors influence the development and progression of the cancer. Since unique mutations patterns have been observed in individual cancer samples, identification and characterization of the distinctive lung cancer molecular profile is essential for developing more effective, tailored therapies. Until recently, personalized DNA sequencing to identify genetic mutations in cancer was impractical and expensive. The recent technological advancements in next-generation DNA sequencing, such as the semiconductor-based Ion Torrent sequencing platform, has made DNA sequencing cost and time effective with more reliable results. Using the Ion Torrent Ampliseq Cancer Panel, we sequenced 737 loci from 45 cancer-related genes to identify genetic mutations in 76 human lung cancer samples. The sequencing analysis revealed missense mutations in KRAS, EGFR, and TP53 genes in the breast cancer samples of various histologic types. Thus, this study demonstrates the necessity of sequencing individual human cancers in order to develop personalized drugs or combination therapies to effectively target individual, breast cancer-specific mutations.

  15. EGFR mutations in patients with lung adenocarcinoma in southwest China: are G719S/A and L861Q more likely detected in tumors derived from smokers?

    Directory of Open Access Journals (Sweden)

    Wang QS

    2013-07-01

    Full Text Available Qiushi Wang,1 Jianghong Mou,1 Xin Yang,1 Yong He,2 Zengpeng Li,1 Qingya Luo,1 Yanqing Li,1 Li Lin,1 Yu Ma,1 Hualiang Xiao11Department of Pathology, 2Department of Respiration, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of ChinaBackground: The clinical characteristics of epidermal growth factor receptor (EGFR hotspot mutations, such as deletions in exon 19, substitution of L858R in exon 21, and mutations in exon 20, have been widely reported in nonsmall cell lung cancer. However, the clinical features of other low frequency EGFR mutations in these four exons (especially the relationship with smoking history, eg, substitutions of G719S/A/C in exon 18 and L861Q in exon 21, remain unclear. This study investigated the relationship between G719S/A/C and L861Q mutations (in exon 18 and 21 and smoking history.Methods: Specimens from 194 patients with lung adenocarcinoma were analyzed for EGFR mutations in exons 18–21 by high-resolution melting curve analysis and amplification refractory mutation technology to establish the relationship between G719S/A/C and L861Q mutations and smoking history.Results: Ninety-six of 194 tumors (49.5% were confirmed to be EGFR mutation-positive. Among these mutations, 71 of 104 (68.3% were from never smokers, six of 17 (35.3% were from former smokers, and 19 of 73 (26.0% were from current smokers (P < 0.001. The mutation rate in heavy smokers (5/23, 21.7% was significantly lower than in light smokers (20/67, 29.9% and never smokers (71/104, 68.3%, P < 0.001. Seven low frequency EGFR mutations (four substitutions of G719S, and G719 A, respectively, and three of L861Q in exon 21 were identified. Five of these mutations were derived from smokers (one former light smoker, one current heavy smoker, and three current light smokers. Four of these patients had been treated with tyrosine kinase inhibitors and all had a partial response, with median overall

  16. Interaction between EGFR and EphA2

    DEFF Research Database (Denmark)

    Larsen, Alice Bjerregaard

    2010-01-01

    Enhanced or altered epidermal growth factor receptor (EGFR) activity has been reported in many human cancers and several molecular targeting therapies has been developed. However, despite intense research, therapies targeting EGFR have shown conflicting results in clinical studies, indicating...... the involvement of other important molecular players. Several different EGFR mutations have been reported in cancer, one of which is the cancer specific type III EGFR deletion mutant (EGFRvIII, de2-7EGFR, ΔEGFR). In a global search for EGFR and EGFRvIII regulated genes we identified the receptor tyrosine kinase...... (RTK) EphA2. EphA2 belongs to the large Eph-receptor family, which has mainly been associated with neuronal development. More recently, expression of several Eph-receptors has been detected in many different cancer types. Elevated EphA2 expression has been reported in a broad range of human cancer...

  17. Interaction between EGFR and EphA2

    DEFF Research Database (Denmark)

    Larsen, Alice Bjerregaard

    2010-01-01

    Enhanced or altered epidermal growth factor receptor (EGFR) activity has been reported in many human cancers and several molecular targeting therapies has been developed. However, despite intense research, therapies targeting EGFR have shown conflicting results in clinical studies, indicating...... the involvement of other important molecular players. Several different EGFR mutations have been reported in cancer, one of which is the cancer specific type III EGFR deletion mutant (EGFRvIII, de2-7EGFR, ¿EGFR). In a global search for EGFR and EGFRvIII regulated genes we identified the receptor tyrosine kinase...... (RTK) EphA2. EphA2 belongs to the large Eph-receptor family, which has mainly been associated with neuronal development. More recently, expression of several Eph-receptors has been detected in many different cancer types. Elevated EphA2 expression has been reported in a broad range of human cancer...

  18. Identification of the zinc finger 216 (ZNF216) in human carcinoma cells: a potential regulator of EGFR activity

    Science.gov (United States)

    Mincione, Gabriella; Di Marcantonio, Maria Carmela; Tarantelli, Chiara; Savino, Luca; Ponti, Donatella; Marchisio, Marco; Lanuti, Paola; Sancilio, Silvia; Calogero, Antonella; Di Pietro, Roberta; Muraro, Raffaella

    2016-01-01

    Epidermal Growth Factor Receptor (EGFR), a member of the ErbB family of receptor tyrosine kinase (RTK) proteins, is aberrantly expressed or deregulated in tumors and plays pivotal roles in cancer onset and metastatic progression. ZNF216 gene has been identified as one of Immediate Early Genes (IEGs) induced by RTKs. Overexpression of ZNF216 protein sensitizes 293 cell line to TNF-α induced apoptosis. However, ZNF216 overexpression has been reported in medulloblastomas and metastatic nasopharyngeal carcinomas. Thus, the role of this protein is still not clearly understood. In this study, the inverse correlation between EGFR and ZNF216 expression was confirmed in various human cancer cell lines differently expressing EGFR. EGF treatment of NIH3T3 cells overexpressing both EGFR and ZNF216 (NIH3T3-EGFR/ZNF216), induced a long lasting activation of EGFR in the cytosolic fraction and an accumulation of phosphorylated EGFR (pEGFR) more in the nuclear than in the cytosolic fraction compared to NIH3T3-EGFR cells. Moreover, EGF was able to stimulate an increased expression of ZNF216 in the cytosolic compartment and its nuclear translocation in a time-dependent manner in NIH3T3-EGFR/ZNF216. A similar trend was observed in A431 cells endogenously expressing the EGFR and transfected with Znf216. The increased levels of pEGFR and ZNF216 in the nuclear fraction of NIH3T3-EGFR/ZNF216 cells were paralleled by increased levels of phospho-MAPK and phospho-Akt. Surprisingly, EGF treatment of NIH3T3-EGFR/ZNF216 cells induced a significant increase of apoptosis thus indicating that ZNF216 could sensitize cells to EGF-induced apoptosis and suggesting that it may be involved in the regulation and effects of EGFR signaling. PMID:27732953

  19. Assessment and prognostic analysis of EGFR mutations or/and HER2 overexpression in Uygur's Non-small Cell Lung Cancer.

    Science.gov (United States)

    Shen, Hongli; Du, Guoli; Liu, Zhonghua; Bao, Jianling; Yu, Qin; Jia, Chunli; Liang, Xuelin; Shan, Li

    2015-01-01

    The epidermal growth factor receptor (EGFR) mutations and human epidermal growth factor receptor HER-2/neu (HER2) have been established roles in the signal transduction pathways leading to cell growth and differentiation. The present study focus on the significance of EGFR mutations combined with HER2 overexpression on survival outcomes in Non-small Cell Lung Cancer patients in Uygur population. A total of 111 consecutive Uygurods: A total of 111 consecutive Cell Lung Cancer under went lung Cell Lung biopsy or surgery at the Affiliated Tumor Hospital of Xin Jiang Medical University between March 2009 and January 2013 were included in this retrospective study. All the patients included had received gefitinib 250 mg once daily. The HER2 expression were evaluated by immunohistochemical staining with score of membranous staining being 0 = none, 1 = weak, 2 = 10-30% cells, 3≥30% cells stained, and Real-time PCR techniques were conducted to detect mutations of EGFR through 21 kinds of human EGFR gene mutation detection kits. A retrospective review of the medical records was analyzed to determine the correlation between the presence of EGFR mutations combined with HER2 overexpression and clinicopathological factors. The overall rate of EGFR mutation was 10.81% (n = 12), which mainly involved exons 19 (83.33%, n = 10), 21 (16.67%, n = 2). The overall rate of HER2 overexpression was 21.62% (n = 24). EGFR mutation combined with HER2 overexpression analysis was performed in 111 patients, with an overall rate of 5.41% (n = 6). Median progression-free survival and overall survival were significantly longer in the EGFR mutations group than in the wild type group (PFS: 10.0±1.5 versus 3.8±1.4 months, P = 0.000; OS: 27.3±2.9 versus 19.1±4.7 months, P = 0.000). The ORR in patients with HER2 overexpression was 29.17%, and 13.80% in those patients with HER2 negative, but no significant difference (P = 0.121). The median PFS and OS in HER2 positive group showed no significant

  20. Activating HER2 mutations in HER2 gene amplification negative breast cancer.

    Science.gov (United States)

    Bose, Ron; Kavuri, Shyam M; Searleman, Adam C; Shen, Wei; Shen, Dong; Koboldt, Daniel C; Monsey, John; Goel, Nicholas; Aronson, Adam B; Li, Shunqiang; Ma, Cynthia X; Ding, Li; Mardis, Elaine R; Ellis, Matthew J

    2013-02-01

    Data from 8 breast cancer genome-sequencing projects identified 25 patients with HER2 somatic mutations in cancers lacking HER2 gene amplification. To determine the phenotype of these mutations, we functionally characterized 13 HER2 mutations using in vitro kinase assays, protein structure analysis, cell culture, and xenograft experiments. Seven of these mutations are activating mutations, including G309A, D769H, D769Y, V777L, P780ins, V842I, and R896C. HER2 in-frame deletion 755-759, which is homologous to EGF receptor (EGFR) exon 19 in-frame deletions, had a neomorphic phenotype with increased phosphorylation of EGFR or HER3. L755S produced lapatinib resistance, but was not an activating mutation in our experimental systems. All of these mutations were sensitive to the irreversible kinase inhibitor, neratinib. These findings show that HER2 somatic mutation is an alternative mechanism to activate HER2 in breast cancer and they validate HER2 somatic mutations as drug targets for breast cancer treatment. We show that the majority of HER2 somatic mutations in breast cancer patients are activating mutations that likely drive tumorigenesis. Several patients had mutations that are resistant to the reversible HER2 inhibitor lapatinib, but are sensitive to the irreversible HER2 inhibitor, neratinib. Our results suggest that patients with HER2 mutation–positive breast cancers could benefit from existing HER2-targeted drugs.

  1. Cost-effectiveness analysis of EGFR mutation testing and gefitinib as first-line therapy for non-small cell lung cancer.

    Science.gov (United States)

    Narita, Yusuke; Matsushima, Yukiko; Shiroiwa, Takeru; Chiba, Koji; Nakanishi, Yoichi; Kurokawa, Tatsuo; Urushihara, Hisashi

    2015-10-01

    The combination use of gefitinib and epidermal growth factor receptor (EGFR) testing is a standard first-line therapy for patients with non-small cell lung cancer (NSCLC). Here, we examined the cost-effectiveness of this approach in Japan. Our analysis compared the 'EGFR testing strategy', in which EGFR mutation testing was performed before treatment and patients with EGFR mutations received gefitinib while those without mutations received standard chemotherapy, to the 'no-testing strategy,' in which genetic testing was not conducted and all patients were treated with standard chemotherapy. A three-state Markov model was constructed to predict expected costs and outcomes for each strategy. We included only direct medical costs from the healthcare payer's perspective. Outcomes in the model were based on those reported in the Iressa Pan-Asia Study (IPASS). The incremental cost-effectiveness ratio (ICER) was calculated using quality-adjusted life-years (QALYs) gained. Sensitivity and scenario analyses were conducted. The incremental cost and effectiveness per patient of the 'EGFR testing strategy' compared to the 'no-testing strategy' was estimated to be approximately JP¥122,000 (US$1180; US$1=JP¥104 as of February 2014) and 0.036 QALYs. The ICER was then calculated to be around JP¥3.38 million (US$32,500) per QALY gained. These results suggest that the 'EGFR testing strategy' is cost-effective compared with the 'no-testing strategy' when JP¥5.0 million to 6.0 million per QALY gained is considered an acceptable threshold. These results were supported by the sensitivity and scenario analyses. The combination use of gefitinib and EGFR testing can be considered a cost-effective first-line therapy compared to chemotherapy such as carboplatin-paclitaxel for the treatment for NSCLC in Japan. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  2. Anti-tumor activity of high-dose EGFR tyrosine kinase inhibitor and sequential docetaxel in wild type EGFR non-small cell lung cancer cell nude mouse xenografts

    OpenAIRE

    Tang, Ning; Zhang, Qianqian; Fang, Shu; Han, Xiao; Wang, Zhehai

    2016-01-01

    Treatment of non-small-cell lung cancer (NSCLC) with wild-type epidermal growth factor receptor (EGFR) is still a challenge. This study explored antitumor activity of high-dose icotinib (an EGFR tyrosine kinase inhibitor) plus sequential docetaxel against wild-type EGFR NSCLC cells-generated nude mouse xenografts. Nude mice were subcutaneously injected with wild-type EGFR NSCLC A549 cells and divided into different groups for 3-week treatment. Tumor xenograft volumes were monitored and record...

  3. Cell adhesion and EGFR activation regulate EphA2 expression in cancer

    DEFF Research Database (Denmark)

    Larsen, Alice Bjerregaard; Stockhausen, Marie-Thérése; Poulsen, Hans Skovgaard

    2010-01-01

    largely unknown. Here we show that the expression of EphA2 in in vitro cultured cells, is restricted to cells growing adherently and that adhesion-induced EphA2 expression is dependent upon activation of the epidermal growth factor receptor (EGFR), mitogen activated protein kinase kinase (MEK) and Src...... family kinases (SRC). Moreover, the results show that adhesion-induced EGFR activation and EphA2 expression is affected by interactions with extracellular matrix (ECM) proteins working as integrin ligands. Stimulation with the EphA2 ligand, ephrinA1 inhibited ERK phosphorylation and cancer cell viability....... These effects were however abolished by activation of the EGF-receptor ligand system favoring Ras/MAPK signaling and cell proliferation. Based on our results, we propose a regulatory mechanism where cell adhesion induces EGFR kinase activation and EphA2 expression; and where the effect of ephrinA1 mediated...

  4. Association of BIM Deletion Polymorphism and BIM-γ RNA Expression in NSCLC with EGFR Mutation.

    Science.gov (United States)

    Isobe, Kazutoshi; Kakimoto, Atsushi; Mikami, Tetsuo; Kaburaki, Kyohei; Kobayashi, Hiroshi; Yoshizawa, Takahiro; Makino, Takashi; Otsuka, Hajime; Sano, G O; Sugino, Keishi; Sakamoto, Susumu; Takai, Yujiro; Tochigi, Naobumi; Iyoda, Akira; Homma, Sakae

    This pilot study assessed the association of BIM deletion polymorphism and BIM RNA isoform in patients with EGFR-positive non-small cell lung cancer (NSCLC). The study included 33 patients with EGFR-positive NSCLC treated with gefitinib. BIM deletion polymorphism and BIM RNA isoform (EL/L/S/γ) were determined by polymerase chain reaction (PCR). BIM-γ expression was significantly higher in patients with BIM deletion polymorphism than among those without BIM deletion polymorphism inside tumors (p=0.038) and around tumors (p=0.0024). Relative BIM-γ expression was significantly higher in patients with BIM deletion polymorphism than among those without BIM deletion polymorphism (p=0.0017). Patients with BIM-γ had significantly shorter progression-free survival than those without BIM-γ (median: 304 vs. 732 days; p=0.023). Expression of BIM-γ mRNA and BIM deletion polymorphism were strongly associated. BIM-γ overexpression may have a role in apoptosis related to EGFR-tyrosine kinase inhibitor. Copyright© 2016, International Institute of Anticancer Research (Dr. John G. Delinasios), All rights reserved.

  5. Validation and comparison of two NGS assays for the detection of EGFR T790M resistance mutation in liquid biopsies of NSCLC patients.

    Science.gov (United States)

    Vollbrecht, Claudia; Lehmann, Annika; Lenze, Dido; Hummel, Michael

    2018-04-06

    Analysis of circulating cell-free DNA (cfDNA) derived from peripheral blood ("liquid biopsy") is an attractive alternative to identify non-small cell lung cancer (NSCLC) patients with the EGFR T790M mutation eligible for 3rd generation tyrosine kinase inhibitor therapy. We evaluated two PCR-based next generation sequencing (NGS) approaches, one including unique molecular identifiers (UMI), with focus on highly sensitive EGFR T790M mutation detection. Therefore, we extracted and sequenced cfDNA from synthetic plasma samples spiked with mutated DNA at decreasing allele frequencies and from 21 diagnostic NSCLC patients. Data evaluation was performed to determine the limit of detection (LoD), accuracy, specificity and sensitivity of both assays. Considering all tested reference dilutions and mutations the UMI assay performed best in terms of LoD (1% vs. 5%), sensitivity (95.8% vs. 81.3%), specificity (100% vs. 93.8%) and accuracy (96.9% vs. 84.4%). Comparing mutation status of diagnostic samples with both assays showed 81.3% concordance with primary mutation verifiable in 52% of cases. EGFR T790M was detected concordantly in 6/7 patients with allele frequencies from 0.1% to 27%. In one patient, the T790M mutation was exclusively detectable with the UMI assay. Our data demonstrate that both assays are applicable as multi-biomarker NGS tools enabling the simultaneous detection of primary EGFR driver and resistance mutations. However, for mutations with low allelic frequencies the use of NGS panels with UMI facilitates a more sensitive and reliable detection.

  6. TP53, STK11 and EGFR Mutations Predict Tumor Immune Profile and the Response to anti-PD-1 in Lung Adenocarcinoma.

    Science.gov (United States)

    Biton, Jerome; Mansuet-Lupo, Audrey; Pécuchet, Nicolas; Alifano, Marco; Ouakrim, Hanane; Arrondeau, Jennifer; Boudou-Rouquette, Pascaline; Goldwasser, Francois; Leroy, Karen; Goc, Jeremy; Wislez, Marie; Germain, Claire; Laurent-Puig, Pierre; Dieu-Nosjean, Marie-Caroline; Cremer, Isabelle; Herbst, Ronald; Blons, Hélène F; Damotte, Diane

    2018-05-15

    By unlocking anti-tumor immunity, antibodies targeting programmed cell death 1 (PD-1) exhibit impressive clinical results in non-small cell lung cancer, underlining the strong interactions between tumor and immune cells. However, factors that can robustly predict long-lasting responses are still needed. We performed in depth immune profiling of lung adenocarcinoma using an integrative analysis based on immunohistochemistry, flow-cytometry and transcriptomic data. Tumor mutational status was investigated using next-generation sequencing. The response to PD-1 blockers was analyzed from a prospective cohort according to tumor mutational profiles and to PD-L1 expression, and a public clinical database was used to validate the results obtained. We showed that distinct combinations of STK11 , EGFR and TP53 mutations, were major determinants of the tumor immune profile (TIP) and of the expression of PD-L1 by malignant cells. Indeed, the presence of TP53 mutations without co-occurring STK11 or EGFR alterations ( TP53 -mut/ STK11 - EGFR -WT), independently of KRAS mutations, identified the group of tumors with the highest CD8 T cell density and PD-L1 expression. In this tumor subtype, pathways related to T cell chemotaxis, immune cell cytotoxicity, and antigen processing were up-regulated. Finally, a prolonged progression-free survival (PFS: HR=0.32; 95% CI, 0.16-0.63, p <0.001) was observed in anti-PD-1 treated patients harboring TP53 -mut/ STK11 - EGFR -WT tumors. This clinical benefit was even more remarkable in patients with associated strong PD-L1 expression. Our study reveals that different combinations of TP53 , EGFR and STK11 mutations , together with PD-L1 expression by tumor cells, represent robust parameters to identify best responders to PD-1 blockade. Copyright ©2018, American Association for Cancer Research.

  7. Epidermal Growth Factor Receptor Activating Mutations in Squamous Histology of Lung Cancer Patients of Southern Bulgaria

    Directory of Open Access Journals (Sweden)

    Genova Silvia N.

    2015-12-01

    Full Text Available There is only limited data on the prevalence of epidermal growth factor receptor (EGFR activating mutations in squamous cell carcinomas and adenosquamous carcinomas of the lung in patients of the Southern Bulgarian region and the efficacy of EGFR tyrosine kinase inhibitors. AIM: Previous reports for Bulgarian population showed high incidence of EGFR mutations in the squamous cell carcinomas, so we set the goal to investigate their frequency in Southern Bulgaria, after precise immunohistochemical verification of lung cancers. MATERIALS AND METHODS: Two hundred and thirty-six lung carcinomas were included in this prospective study. All biopsies were initially analysed with p63, TTF1, Napsin A, CK7, CK34βE12, synaptophysin, CK20 and CDX2. Two hundred and twenty-five non-small cell lung carcinomas were studied with real-time PCR technology to assess the status of the EGFR gene. RESULTS: We detected 132 adenocarcinomas (58.7%, 89 squamous cell carcinomas (39.2%, 4 adenosquamous carcinomas (1.8%, 9 large cell neuroendocrine carcinomas (3.8% and 2 metastatic colorectal adenocarcinomas (0.8%. Activating mutations in the EGF receptor had 3 out of 89 squamous cell carcinomas (3.37%. We have established mutations in L858R, deletion in exon 19 and rare mutation in S7681. One out of four adenosquamous carcinomas had a point mutation in the L858R (25%. CONCLUSIONS: The frequency of EGFR mutations we found in lung squamous cell carcinomas in a Southern Bulgarian region is lower than that in European countries. Ethnic diversity in the region does not play role of an independent predictive factor in terms of mutation frequency.

  8. Association between GWAS-identified lung adenocarcinoma susceptibility loci and EGFR mutations in never-smoking Asian women, and comparison with findings from Western populations

    NARCIS (Netherlands)

    Seow, Wei Jie; Matsuo, Keitaro; Hsiung, Chao Agnes; Shiraishi, Kouya; Song, Minsun; Kim, Hee Nam; Wong, Maria Pik; Hong, Yun-Chul; Hosgood, H. Dean; Wang, Zhaoming; Chang, I-Shou; Wang, Jiu-Cun; Chatterjee, Nilanjan; Tucker, Margaret; Wei, Hu; Mitsudomi, Tetsuya; Zheng, Wei; Kim, Jin Hee; Zhou, Baosen; Caporaso, Neil E; Albanes, Demetrius; Shin, Min-Ho; Chung, Lap Ping; An, She-Juan; Wang, Ping; Zheng, Hong; Yatabe, Yasushi; Zhang, Xu-Chao; Kim, Young Tae; Shu, Xiao Ou; Kim, Young-Chul; Bassig, Bryan A.; Chang, Jiang; Ho, James Chung Man; Ji, Bu Tian; Kubo, Michiaki; Daigo, Yataro; Ito, Hidemi; Momozawa, Yukihide; Ashikawa, Kyota; Kamatani, Yoichiro; Honda, Takayuki; Sakamoto, Hiromi; Kunitoh, Hideo; Tsuta, Koji; Watanabe, Shun-Ichi; Nokihara, Hiroshi; Miyagi, Yohei; Nakayama, Haruhiko; Matsumoto, Shingo; Tsuboi, Masahiro; Goto, Koichi; Yin, Zhihua; Shi, Jianxin; Takahashi, Atsushi; Goto, Akiteru; Minamiya, Yoshihiro; Shimizu, Kimihiro; Tanaka, Kazumi; Wu, Tangchun; Wei, Fusheng; Wong, Jason Y Y; Matsuda, Fumihiko; Su, Jian; Kim, Yeul Hong; Oh, In-Jae; Song, Fengju; Lee, Victor Ho Fun; Su, Wu-Chou; Chen, Yuh-Min; Chang, Gee-Chen; Chen, Kuan-Yu; Huang, Ming-Shyan; Yang, Pan-Chyr; Lin, Hsien-Chih; Xiang, Yong-Bing; Seow, Adeline; Park, Jae Yong; Kweon, Sun-Seog; Chen, Chien-Jen; Li, Haixin; Gao, Yu Tang; Wu, Chen; Qian, Biyun; Lu, Daru; Liu, Jianjun; Jeon, Hyo-Sung; Hsiao, Chin-Fu; Sung, Jae Sook; Tsai, Ying-Huang; Jung, Yoo Jin; Guo, Huan; Hu, Zhibin; Wang, Wen-Chang; Chung, Charles C.; Lawrence, Charles; Burdett, Laurie; Yeager, Meredith; Jacobs, Kevin B.; Hutchinson, Amy; Berndt, Sonja I.; He, Xingzhou; Wu, Wei; Wang, Junwen; Li, Yuqing; Choi, Jin Eun; Park, Kyong Hwa; Sung, Sook Whan; Liu, Li; Kang, Chang Hyun; Hu, Lingmin; Chen, Chung-Hsing; Yang, Tsung-Ying; Xu, Jun; Guan, Peng; Tan, Wen; Wang, Chih-Liang; Sihoe, Alan Dart Loon; Chen, Ying; Choi, Yi Young; Hung, Jen-Yu; Kim, Jun Suk; Yoon, Ho-Il; Cai, Qiuyin; Lin, Chien-Chung; Park, In Kyu; Xu, Ping; Dong, Jing; Kim, Christopher; He, Qincheng; Perng, Reury-Perng; Chen, Chih-Yi; Vermeulen, Roel; Wu, Junjie; Lim, Wei-Yen; Chen, Kun-Chieh; Chan, John K C; Chu, Minjie; Li, Yao-Jen; Li, Jihua; Chen, Hongyan; Yu, Chong-Jen; Jin, Li; Lo, Yen-Li; Chen, Ying-Hsiang; Fraumeni, Joseph F.; Liu, Jie; Yamaji, Taiki; Yang, Yang; Hicks, Belynda; Wyatt, Kathleen; Li, Shengchao A; Dai, Juncheng; Ma, Hongxia; Jin, Guangfu; Song, Bao; Wang, Zhehai; Cheng, Sensen; Li, Xuelian; Ren, Yangwu; Cui, Ping; Iwasaki, Motoki; Shimazu, Taichi; Tsugane, Shoichiro; Zhu, Junjie; Jiang, Gening; Fei, Ke; Wu, Guoping; Chien, Li-Hsin; Chen, Hui-Ling; Su, Yu-Chun; Tsai, Fang-Yu; Chen, Yi-Song; Yu, Jinming; Stevens, Victoria L; Laird-Offringa, Ite A; Marconett, Crystal N; Lin, Dongxin; Chen, Kexin; Wu, Yi-Long; Landi, Maria Teresa; Shen, Hongbing; Rothman, Nathaniel; Kohno, Takashi; Chanock, Stephen J.; Lan, Qing

    2017-01-01

    To evaluate associations by EGFR mutation status for lung adenocarcinoma risk among never-smoking Asian women, we conducted a meta-analysis of 11 loci previously identified in genome-wide association studies (GWAS). Genotyping in an additional 10,780 never-smoking cases and 10,938 never-smoking

  9. Cell adhesion and EGFR activation regulate EphA2 expression in cancer

    DEFF Research Database (Denmark)

    Larsen, Alice Bjerregaard; Stockhausen, Marie-Thérése; Poulsen, Hans Skovgaard

    2010-01-01

    family kinases (SRC). Moreover, the results show that adhesion-induced EGFR activation and EphA2 expression is affected by interactions with extracellular matrix (ECM) proteins working as integrin ligands. Stimulation with the EphA2 ligand, ephrinA1 inhibited ERK phosphorylation and cancer cell viability...... largely unknown. Here we show that the expression of EphA2 in in vitro cultured cells, is restricted to cells growing adherently and that adhesion-induced EphA2 expression is dependent upon activation of the epidermal growth factor receptor (EGFR), mitogen activated protein kinase kinase (MEK) and Src...

  10. Activation of a Neospora caninum EGFR-Like Kinase Facilitates Intracellular Parasite Proliferation

    Directory of Open Access Journals (Sweden)

    Xiaoxia Jin

    2017-10-01

    Full Text Available The Apicomplexan parasite Neospora caninum, an obligate intracellular protozoan, causes serious diseases in a number of mammalian species, especially in cattle. Infection with N. caninum is associated with abortions in both dairy and beef cattle worldwide which have a major economic impact on the cattle industry. However, the mechanism by which N. caninum proliferates within host cells is poorly understood. Epidermal growth factor receptor (EGFR is a protein kinase ubiquitously expressed, present on cell surfaces in numerous species, which has been confirmed to be essential in signal transduction involved in cell growth, proliferation, survival, and many other intracellular processes. However, the presence of EGFR in N. caninum and its role in N. caninum proliferation remain unclear. In the present study, we identified a putative EGFR-like kinase in N. caninum, which could be activated in tachyzoites by infection or treatment with rNcMIC3 [containing four epidermal growth factor (EGF domains] or human EGF. Blockade of EGFR-like in tachyzoites by AG1478 significantly reduced parasite proliferation in host cells. Our data suggested that the activation of tachyzoite EGFR-like might facilitate the intracellular proliferation of N. caninum.

  11. Maintenance of EGFR and EGFRvIII expressions in an in vivo and in vitro model of human glioblastoma multiforme

    DEFF Research Database (Denmark)

    Stockhausen, Marie-Thérése; Broholm, Helle; Villingshøj, Mette

    2011-01-01

    Glioblastoma multiforme (GBM) is the most common, and most aggressive primary brain tumor among adults. A vast majority of the tumors express high levels of the epidermal growth factor receptor (EGFR) as a consequence of gene amplification. Furthermore, gene amplification is often associated...... with mutation of EGFR, and the constitutive activated deletion variant EGFRvIII is the most common EGFR mutation found in GBM. Activated EGFR signaling, through overexpression and/or mutation, is involved in increased tumorigenic potential. As such, EGFR is an attractive target for GBM therapy. However......, clinical studies with EGFR inhibitors have shown inconsistent results, and as such, further knowledge regarding the role of EGFR and EGFRvIII in GBM is needed. For this, an appropriate in vivo/in vitro tumor model is required. Here, we report the establishment of an experimental GBM model in which...

  12. Co-activation of STAT3 and YES-Associated Protein 1 (YAP1) Pathway in EGFR-Mutant NSCLC

    DEFF Research Database (Denmark)

    Chaib, Imane; Karachaliou, Niki; Pilotto, Sara

    2017-01-01

    Background: The efficacy of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) in EGFR-mutant non-small cell lung cancer (NSCLC) is limited by adaptive activation of cell survival signals. We hypothesized that both signal transducer and activator of transcription 3 (STAT3) ...

  13. [Exon-dependent Subgroup-analysis of the Non-interventional REASON-Study: PFS and OS in EGFR-mutated NSCLC Patients Treated with Gefitinib or Chemotherapy].

    Science.gov (United States)

    Schuette, W; Dietel, M; Thomas, M; Eberhardt, W; Griesinger, F; Zirrgiebel, U; Radke, S; Schirmacher, P

    2016-08-01

    To analyze the influence of the localization of mutations in the epidermal growth factor receptor (EGFR) gene on progression-free (PFS) and overall survival (OS) in patients (pts) with locally advanced or metastatic non-small cell lung cancer (NSCLC) treated with gefitinib (gef) or chemotherapy (CT) under real world conditions within the REASON study. Subgroups of pts with mutations in exon 19 (n = 141), 18/20 (n = 43), and 21 (n = 104) were analyzed for PFS and OS according to gef or CT treatment and compared using the log-rank test. Pts with mutations in exon 19 and 18/20 treated with gef as first line therapy showed increased PFS and OS compared to CT. This increase was statistically significant in pts with exon 19 mutation (11.3 vs. 6.5 months), but was not found in pts with exon 21 mutation (9.1 vs. 9.3 months). Also, OS was significantly increased in patients with mutation in exon 19 treated with gef ever over all treatment lines compared to CT (21.8 vs. 10.6 months), whereas this was not found in pts with mutation in exon 21 (14.1 vs. 13.9 months). Localization and nature of EGFR mutations influences gefitinib treatment outcomes under routine conditions and should therefore be analyzed in detail. © Georg Thieme Verlag KG Stuttgart · New York.

  14. Evaluation of gefitinib efficacy according to body mass index, body surface area, and body weight in patients with EGFR-mutated advanced non-small cell lung cancer.

    Science.gov (United States)

    Imai, Hisao; Kuwako, Tomohito; Kaira, Kyoichi; Masuda, Tomomi; Miura, Yosuke; Seki, Kaori; Sakurai, Reiko; Utsugi, Mitsuyoshi; Shimizu, Kimihiro; Sunaga, Noriaki; Tomizawa, Yoshio; Ishihara, Shinichi; Ishizuka, Takao; Mogi, Akira; Hisada, Takeshi; Minato, Koichi; Takise, Atsushi; Saito, Ryusei; Yamada, Masanobu

    2017-03-01

    In patients with epidermal growth factor receptor (EGFR)-mutated, advanced, non-small cell lung cancer (NSCLC), common gefitinib-sensitive EGFR mutations that predict a greater response to therapy include the exon 19 deletion and L858R point mutation. The objective of this study was to evaluate whether body surface area (BSA), body weight (BW), and body mass index (BMI) affect gefitinib efficacy in such patients. The medical charts of 138 consecutive patients with advanced NSCLC harboring sensitive EGFR mutations, who underwent gefitinib treatment, were reviewed. The median BSA and BW were used as cutoff values to evaluate their impact on gefitinib efficacy. BMI was categorized as underweight (<18.5 kg/m 2 ), normal (18.5-25 kg/m 2 ), and overweight (≥25 kg/m 2 ). The median BSA and BW were 1.48 m 2 and 53 kg, respectively. The overall response rate, progression-free survival (PFS), and overall survival (OS) were 65.2%, 12.2, and 24.2 months, respectively. There were no significant differences in clinical outcomes according to BSA, BW, or BMI alone. Subgroup analysis based on the mutation type and BSA revealed no significant differences in PFS between the groups; however, the median OS in those with exon 19 deletion combined with low BSA was significantly favorable compared with the other groups. Gefitinib efficacy in patients with NSCLC harboring sensitive EGFR mutations did not differ according to BSA, BW, and BMI. However, OS was superior in patients with both the exon 19 deletion and low BSA.

  15. Activation of the epidermal growth factor receptor (EGFR) by a novel metalloprotease pathway.

    LENUS (Irish Health Repository)

    Bergin, David A

    2008-11-14

    Neutrophil Elastase (NE) is a pro-inflammatory protease present at higher than normal levels in the lung during inflammatory disease. NE regulates IL-8 production from airway epithelial cells and can activate both EGFR and TLR4. TACE\\/ADAM17 has been reported to trans-activate EGFR in response to NE. Here, using 16HBE14o-human bronchial epithelial cells we demonstrate a new mechanism by which NE regulates both of these events. A high molecular weight soluble metalloprotease activity detectable only in supernatants from NE-treated cells by gelatin and casein zymography was confirmed to be meprin alpha by Western immunoblotting. In vitro studies demonstrated the ability of NE to activate meprin alpha, which in turn could release soluble TGFalpha and induce IL-8 production from 16HBE14o- cells. These effects were abrogated by actinonin, a specific meprin inhibitor. NE-induced IL-8 expression was also inhibited by meprin alpha siRNA. Immunoprecipitation studies detected EGFR\\/TLR4 complexes in NE-stimulated cells overexpressing these receptors. Confocal studies confirmed colocalization of EGFR and TLR4 in 16HBE14o- cells stimulated with meprin alpha. NFkappaB was also activated via MyD88 in these cells by meprin alpha. In bronchoalveolar lavage fluid from NE knock-out mice infected intra-tracheally with Pseudomonas aeruginosa meprin alpha was significantly decreased compared with control mice, and was significantly increased and correlated with NE activity, in bronchoalveolar lavage fluid from individuals with cystic fibrosis but not healthy controls. The data describe a previously unidentified lung metalloprotease meprin alpha, and its role in NE-induced EGFR and TLR4 activation and IL-8 production.

  16. CCR 20th anniversary commentary: a chimeric antibody, C225, inhibits EGFR activation and tumor growth.

    Science.gov (United States)

    Mendelsohn, John; Prewett, Marie; Rockwell, Patricia; Goldstein, Neil I

    2015-01-15

    Murine mAb 225 was effective against the EGFR tyrosine kinase and inhibited tumor growth in preclinical studies. A phase I trial showed safety, tumor localization, and satisfactory pharmacokinetics. Human:murine chimeric C225 retained biologic activity, which was essential for the conduct of subsequent combination therapy trials and eventual regulatory approval. ©2015 American Association for Cancer Research.

  17. Detection of wild-type EGFR amplification and EGFRvIII mutation in CSF-derived extracellular vesicles of glioblastoma patients.

    Science.gov (United States)

    Figueroa, Javier M; Skog, Johan; Akers, Johnny; Li, Hongying; Komotar, Ricardo; Jensen, Randy; Ringel, Florian; Yang, Isaac; Kalkanis, Steven; Thompson, Reid; LoGuidice, Lori; Berghoff, Emily; Parsa, Andrew; Liau, Linda; Curry, William; Cahill, Daniel; Bettegowda, Chetan; Lang, Frederick F; Chiocca, E Antonio; Henson, John; Kim, Ryan; Breakefield, Xandra; Chen, Clark; Messer, Karen; Hochberg, Fred; Carter, Bob S

    2017-10-19

    RNAs within extracellular vesicles (EVs) have potential as diagnostic biomarkers for patients with cancer and are identified in a variety of biofluids. Glioblastomas (GBMs) release EVs containing RNA into cerebrospinal fluid (CSF). Here we describe a multi-institutional study of RNA extracted from CSF-derived EVs of GBM patients to detect the presence of tumor-associated amplifications and mutations in epidermal growth factor receptor (EGFR). CSF and matching tumor tissue were obtained from patients undergoing resection of GBMs. We determined wild-type (wt)EGFR DNA copy number amplification, as well as wtEGFR and EGFR variant (v)III RNA expression in tumor samples. We also characterized wtEGFR and EGFRvIII RNA expression in CSF-derived EVs. EGFRvIII-positive tumors had significantly greater wtEGFR DNA amplification (P = 0.02) and RNA expression (P = 0.03), and EGFRvIII-positive CSF-derived EVs had significantly more wtEGFR RNA expression (P = 0.004). EGFRvIII was detected in CSF-derived EVs for 14 of the 23 EGFRvIII tissue-positive GBM patients. Conversely, only one of the 48 EGFRvIII tissue-negative patients had the EGFRvIII mutation detected in their CSF-derived EVs. These results yield a sensitivity of 61% and a specificity of 98% for the utility of CSF-derived EVs to detect an EGFRvIII-positive GBM. Our results demonstrate CSF-derived EVs contain RNA signatures reflective of the underlying molecular genetic status of GBMs in terms of wtEGFR expression and EGFRvIII status. The high specificity of the CSF-derived EV diagnostic test gives us an accurate determination of positive EGFRvIII tumor status and is essentially a less invasive "liquid biopsy" that might direct mutation-specific therapies for GBMs. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  18. Phase I/II trial of vorinostat (SAHA) and erlotinib for non-small cell lung cancer (NSCLC) patients with epidermal growth factor receptor (EGFR) mutations after erlotinib progression.

    Science.gov (United States)

    Reguart, Noemi; Rosell, Rafael; Cardenal, Felipe; Cardona, Andres F; Isla, Dolores; Palmero, Ramon; Moran, Teresa; Rolfo, Christian; Pallarès, M Cinta; Insa, Amelia; Carcereny, Enric; Majem, Margarita; De Castro, Javier; Queralt, Cristina; Molina, Miguel A; Taron, Miquel

    2014-05-01

    Vorinostat or suberoylanilide hydroxamic acid (SAHA) is a novel histone deacetylase inhibitor with demonstrated antiproliferative effects due to drug-induced accumulation of acetylated proteins, including the heat shock protein 90. We prospectively studied the activity of vorinostat plus erlotinib in EGFR-mutated NSCLC patients with progression to tyrosine kinase inhibitors. We conducted this prospective, non-randomized, multicenter, phase I/II trial to evaluate the maximum tolerated dose, toxicity profile and efficacy of erlotinib and vorinostat. Patients with advanced NSCLC harboring EGFR mutations and progressive disease after a minimum of 12 weeks on erlotinib were included. The maximum tolerated dose of vorinostat plus erlotinib was used as recommended dose for the phase II (RDP2) to assess the efficacy of the combination. The primary end point was progression-free-survival rate at 12 weeks (PFSR12w). Pre-treatment plasma samples were required to assess T790M resistant mutation. A total of 33 patients were enrolled in the phase I-II trial. The maximum tolerated dose was erlotinib 150 mg p.o., QD, and 400mg p.o., QD, on days 1-7 and 15-21 in a 28-day cycle. Among the 25 patients treated at the RDP2, the most common toxicities included anemia, fatigue and diarrhea. No responses were observed. PFSR12w was 28% (IC 95%: 18.0-37.2); median progression-free survival (PFS) was 8 weeks (IC 95%: 7.43-8.45) and overall survival (OS) 10.3 months (95% CI: 2.4-18.1). Full dose of continuous erlotinib with vorinostat 400mg p.o., QD on alternative weeks can be safely administered. Still, the combination has no meaningful activity in EGFR-mutated NSCLC patients after TKI progression. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. The Drosophila Arf GEF Steppke controls MAPK activation in EGFR signaling.

    Science.gov (United States)

    Hahn, Ines; Fuss, Bernhard; Peters, Annika; Werner, Tamara; Sieberg, Andrea; Gosejacob, Dominic; Hoch, Michael

    2013-06-01

    Guanine nucleotide exchange factors (GEFs) of the cytohesin protein family are regulators of GDP/GTP exchange for members of the ADP ribosylation factor (Arf) of small GTPases. They have been identified as modulators of various receptor tyrosine kinase signaling pathways including the insulin, the vascular epidermal growth factor (VEGF) and the epidermal growth factor (EGF) pathways. These pathways control many cellular functions, including cell proliferation and differentiation, and their misregulation is often associated with cancerogenesis. In vivo studies on cytohesins using genetic loss of function alleles are lacking, however, since knockout mouse models are not available yet. We have recently identified mutants for the single cytohesin Steppke (Step) in Drosophila and we could demonstrate an essential role of Step in the insulin signaling cascade. In the present study, we provide in vivo evidence for a role of Step in EGFR signaling during wing and eye development. By analyzing step mutants, transgenic RNA interference (RNAi) and overexpression lines for tissue specific as well as clonal analysis, we found that Step acts downstream of the EGFR and is required for the activation of mitogen-activated protein kinase (MAPK) and the induction of EGFR target genes. We further demonstrate that step transcription is induced by EGFR signaling whereas it is negatively regulated by insulin signaling. Furthermore, genetic studies and biochemical analysis show that Step interacts with the Connector Enhancer of KSR (CNK). We propose that Step may be part of a larger signaling scaffold coordinating receptor tyrosine kinase-dependent MAPK activation.

  20. Effects of activated fibroblasts on phenotype modulation, EGFR signalling and cell cycle regulation in OSCC cells

    Energy Technology Data Exchange (ETDEWEB)

    Berndt, Alexander, E-mail: alexander.berndt@med.uni-jena.de [Center for Molecular Biomedicine, Institute of Pathology, Jena University Hospital, 07740 Jena (Germany); Büttner, Robert, E-mail: Robert-Buettner@gmx.net [Institute of Biochemistry and Biophysics, Friedrich Schiller University Jena, 07740 Jena (Germany); Gühne, Stefanie, E-mail: stefanie_guehne@gmx.net [Center for Molecular Biomedicine, Institute of Pathology, Jena University Hospital, 07740 Jena (Germany); Gleinig, Anna, E-mail: annagleinig@yahoo.com [Center for Molecular Biomedicine, Institute of Pathology, Jena University Hospital, 07740 Jena (Germany); Richter, Petra, E-mail: P.Richter@med.uni-jena.de [Center for Molecular Biomedicine, Institute of Pathology, Jena University Hospital, 07740 Jena (Germany); Chen, Yuan, E-mail: Yuan.Chen@med.uni-jena.de [Center for Molecular Biomedicine, Institute of Pathology, Jena University Hospital, 07740 Jena (Germany); Franz, Marcus, E-mail: Marcus.Franz@med.uni-jena.de [Clinic of Internal Medicine I, Jena University Hospital, 07740 Jena (Germany); Liebmann, Claus, E-mail: Claus.Liebmann@uni-jena.de [Institute of Biochemistry and Biophysics, Friedrich Schiller University Jena, 07740 Jena (Germany)

    2014-04-01

    Crosstalk between carcinoma associated fibroblasts (CAFs) and oral squamous cell carcinoma (OSCC) cells is suggested to mediate phenotype transition of cancer cells as a prerequisite for tumour progression, to predict patients’ outcome, and to influence the efficacy of EGFR inhibitor therapies. Here we investigate the influence of activated fibroblasts as a model for CAFs on phenotype and EGFR signalling in OSCC cells in vitro. For this, immortalised hTERT-BJ1 fibroblasts were activated with TGFβ1 and PDGFAB to generate a myofibroblast or proliferative phenotype, respectively. Conditioned media (FCM{sub TGF}, FCM{sub PDGF}) were used to stimulate PE/CA-PJ15 OSCC cells. Results were compared to the effect of conditioned media of non-stimulated fibroblasts (FCM{sub B}). FCM{sub TGF} stimulation leads to an up-regulation of vimentin in the OSCC cells and an enhancement of invasive behaviour, indicating EMT-like effects. Similarly, FCM{sub TGF}≫FCM{sub PDGF} induced up-regulation of EGFR, but not of ErbB2/ErbB3. In addition, we detected an increase in basal activities of ERK, PI3K/Akt and Stat3 (FCM{sub TGF}>FCM{sub PDGF}) accompanied by protein interaction of vimentin with pERK. These effects are correlated with an increased proliferation. In summary, our results suggest that the activated myofibroblast phenotype provides soluble factors which are able to induce EMT-like phenomena and to increase EGFR signalling as well as cell proliferation in OSCC cells. Our results indicate a possible influence of activated myofibroblasts on EGFR-inhibitor therapy. Therefore, CAFs may serve as promising novel targets for combined therapy strategies. - Highlights: • A cell culture model for cancer associated fibroblasts is described. • The mutual interaction with OSCC cells leads to up-regulation of EGFR in tumour cells. • mCAF induces EGFR downstream signalling with increased proliferation in OSCC. • Erk activation is associated with protein interaction with vimentin

  1. Effects of activated fibroblasts on phenotype modulation, EGFR signalling and cell cycle regulation in OSCC cells

    International Nuclear Information System (INIS)

    Berndt, Alexander; Büttner, Robert; Gühne, Stefanie; Gleinig, Anna; Richter, Petra; Chen, Yuan; Franz, Marcus; Liebmann, Claus

    2014-01-01

    Crosstalk between carcinoma associated fibroblasts (CAFs) and oral squamous cell carcinoma (OSCC) cells is suggested to mediate phenotype transition of cancer cells as a prerequisite for tumour progression, to predict patients’ outcome, and to influence the efficacy of EGFR inhibitor therapies. Here we investigate the influence of activated fibroblasts as a model for CAFs on phenotype and EGFR signalling in OSCC cells in vitro. For this, immortalised hTERT-BJ1 fibroblasts were activated with TGFβ1 and PDGFAB to generate a myofibroblast or proliferative phenotype, respectively. Conditioned media (FCM TGF , FCM PDGF ) were used to stimulate PE/CA-PJ15 OSCC cells. Results were compared to the effect of conditioned media of non-stimulated fibroblasts (FCM B ). FCM TGF stimulation leads to an up-regulation of vimentin in the OSCC cells and an enhancement of invasive behaviour, indicating EMT-like effects. Similarly, FCM TGF ≫FCM PDGF induced up-regulation of EGFR, but not of ErbB2/ErbB3. In addition, we detected an increase in basal activities of ERK, PI3K/Akt and Stat3 (FCM TGF >FCM PDGF ) accompanied by protein interaction of vimentin with pERK. These effects are correlated with an increased proliferation. In summary, our results suggest that the activated myofibroblast phenotype provides soluble factors which are able to induce EMT-like phenomena and to increase EGFR signalling as well as cell proliferation in OSCC cells. Our results indicate a possible influence of activated myofibroblasts on EGFR-inhibitor therapy. Therefore, CAFs may serve as promising novel targets for combined therapy strategies. - Highlights: • A cell culture model for cancer associated fibroblasts is described. • The mutual interaction with OSCC cells leads to up-regulation of EGFR in tumour cells. • mCAF induces EGFR downstream signalling with increased proliferation in OSCC. • Erk activation is associated with protein interaction with vimentin as sign of EMT. • Results qualify

  2. Network meta-analysis of erlotinib, gefitinib, afatinib and icotinib in patients with advanced non-small-cell lung cancer harboring EGFR mutations.

    Directory of Open Access Journals (Sweden)

    Wenhua Liang

    Full Text Available Several EGFR-tyrosine kinase inhibitors (EGFR-TKIs including erlotinib, gefitinib, afatinib and icotinib are currently available as treatment for patients with advanced non-small-cell lung cancer (NSCLC who harbor EGFR mutations. However, no head to head trials between these TKIs in mutated populations have been reported, which provides room for indirect and integrated comparisons.We searched electronic databases for eligible literatures. Pooled data on objective response rate (ORR, progression free survival (PFS, overall survival (OS were calculated. Appropriate networks for different outcomes were established to incorporate all evidences. Multiple-treatments comparisons (MTCs based on Bayesian network integrated the efficacy and specific toxicities of all included treatments.Twelve phase III RCTs that investigated EGFR-TKIs involving 1821 participants with EGFR mutation were included. For mutant patients, the weighted pooled ORR and 1-year PFS of EGFR-TKIs were significant superior to that of standard chemotherapy (ORR: 66.6% vs. 30.9%, OR 5.46, 95%CI 3.59 to 8.30, P<0.00001; 1-year PFS: 42.9% vs. 9.7%, OR 7.83, 95%CI 4.50 to 13.61; P<0.00001 through direct meta-analysis. In the network meta-analyses, no statistically significant differences in efficacy were found between these four TKIs with respect to all outcome measures. Trend analyses of rank probabilities revealed that the cumulative probabilities of being the most efficacious treatments were (ORR, 1-year PFS, 1-year OS, 2-year OS: erlotinib (51%, 38%, 14%, 19%, gefitinib (1%, 6%, 5%, 16%, afatinib (29%, 27%, 30%, 27% and icotinib (19%, 29%, NA, NA, respectively. However, afatinib and erlotinib showed significant severer rash and diarrhea compared with gefitinib and icotinib.The current study indicated that erlotinib, gefitinib, afatinib and icotinib shared equivalent efficacy but presented different efficacy-toxicity pattern for EGFR-mutated patients. Erlotinib and afatinib revealed

  3. Integrated Experimental and Model-based Analysis Reveals the Spatial Aspects of EGFR Activation Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Shankaran, Harish; Zhang, Yi; Chrisler, William B.; Ewald, Jonathan A.; Wiley, H. S.; Resat, Haluk

    2012-10-02

    The epidermal growth factor receptor (EGFR) belongs to the ErbB family of receptor tyrosine kinases, and controls a diverse set of cellular responses relevant to development and tumorigenesis. ErbB activation is a complex process involving receptor-ligand binding, receptor dimerization, phosphorylation, and trafficking (internalization, recycling and degradation), which together dictate the spatio-temporal distribution of active receptors within the cell. The ability to predict this distribution, and elucidation of the factors regulating it, would help to establish a mechanistic link between ErbB expression levels and the cellular response. Towards this end, we constructed mathematical models for deconvolving the contributions of receptor dimerization and phosphorylation to EGFR activation, and to examine the dependence of these processes on sub-cellular location. We collected experimental datasets for EGFR activation dynamics in human mammary epithelial cells, with the specific goal of model parameterization, and used the data to estimate parameters for several alternate models. Model-based analysis indicated that: 1) signal termination via receptor dephosphorylation in late endosomes, prior to degradation, is an important component of the response, 2) less than 40% of the receptors in the cell are phosphorylated at any given time, even at saturating ligand doses, and 3) receptor dephosphorylation rates at the cell surface and early endosomes are comparable. We validated the last finding by measuring EGFR dephosphorylation rates at various times following ligand addition both in whole cells, and in endosomes using ELISAs and fluorescent imaging. Overall, our results provide important information on how EGFR phosphorylation levels are regulated within cells. Further, the mathematical model described here can be extended to determine receptor dimer abundances in cells co-expressing various levels of ErbB receptors. This study demonstrates that an iterative cycle of

  4. Nicotine enhances proliferation, migration, and radioresistance of human malignant glioma cells through EGFR activation

    International Nuclear Information System (INIS)

    Khalil, A.A.; Jameson, M.J.; Broaddus, W.C.; Lin, P.S.; Chung, T.D.

    2013-01-01

    It has been suggested that continued tobacco use during radiation therapy contributes to maintenance of neoplastic growth despite treatment with radiation. Nicotine is a cigarette component that is an established risk factor for many diseases, neoplastic and otherwise. The hypothesis of this work is that nicotine promotes the proliferation, migration, and radioresistance of human malignant glioma cells. The effect of nicotine on cellular proliferation, migration, signaling, and radiation sensitivity were evaluated for malignant glioma U87 and GBM12 cells by use of the AlamarBlue, scratch healing, and clonogenic survival assays. Signal transduction was assessed by immunoblotting for activated EGFR, extracellular regulated kinase (ERK), and AKT. At concentrations comparable with those found in chronic smokers, nicotine induced malignant glioma cell migration, growth, colony formation, and radioresistance. Nicotine increased phosphorylation of EGFR tyr992 , AKT ser473 , and ERK. These molecular effects were reduced by pharmacological inhibitors of EGFR, PI3K, and MEK. It was therefore concluded that nicotine stimulates the malignant behavior of glioma cells in vitro by activation of the EGFR and downstream AKT and ERK pathways. (author)

  5. Genomic activation of the EGFR and HER2-neu genes in a significant proportion of invasive epithelial ovarian cancers

    Directory of Open Access Journals (Sweden)

    Ghislain Vanessa

    2008-01-01

    Full Text Available Abstract Background The status of the EGFR and HER2-neu genes has not been fully defined in ovarian cancer. An integrated analysis of both genes could help define the proportion of patients that would potentially benefit from targeted therapies. Methods We determined the tumour mutation status of the entire tyrosine kinase (TK domain of the EGFR and HER2-neu genes in a cohort of 52 patients with invasive epithelial ovarian cancer as well as the gene copy number and protein expression of both genes in 31 of these patients by DGGE and direct sequecing, immunohistochemistry and Fluorescent in Situ Hybridisation (FISH. Results The EGFR was expressed in 59% of the cases, with a 2+/3+ staining intensity in 38%. HER2-neu expression was found in 35%, with a 2/3+ staining in 18%. No mutations were found in exons 18–24 of the TK domains of EGFR and HER2-neu. High polysomy of the EGFR gene was observed in 13% of the invasive epthelial cancers and amplification of the HER2-neu gene was found in 10% and correlated with a high expression level by immunohistochemistry. Mutations within the tyrosine kinase domain were not found in the entire TK domain of both genes, but have been found in very rare cases by others. Conclusion Genomic alteration of the HER2-neu and EGFR genes is frequent (25% in ovarian cancer. EGFR/HER2-neu targeted therapies should be investigated prospectively and specifically in that subset of patients.

  6. EGFR kinase-dependent and kinase-independent roles in clear cell renal cell carcinoma.

    Science.gov (United States)

    Cossu-Rocca, Paolo; Muroni, Maria R; Sanges, Francesca; Sotgiu, Giovanni; Asunis, Anna; Tanca, Luciana; Onnis, Daniela; Pira, Giovanna; Manca, Alessandra; Dore, Simone; Uras, Maria G; Ena, Sara; De Miglio, Maria R

    2016-01-01

    Epidermal growth factor receptor (EGFR) is associated with progression of many epithelial malignancies and represents a significant therapeutic target. Although clear cell renal cell carcinoma (CCRCC) has been widely investigated for EGFR molecular alterations, genetic evidences of EGFR gene activating mutations and/or gene amplification have been rarely confirmed in the literature. Therefore, until now EGFR-targeted therapies in clinical trials have been demonstrated unsuccessful. New evidence has been given about the interactions between EGFR and the sodium glucose co-transporter-1 (SGLT1) in maintaining the glucose basal intracellular level to favour cancer cell growth and survival; thus a new functional role may be attributed to EGFR, regardless of its kinase activity. To define the role of EGFR in CCRCC an extensive investigation of genetic changes and functional kinase activities was performed in a series of tumors by analyzing the EGFR mutational status and expression profile, together with the protein expression of downstream signaling pathways members. Furthermore, we investigated the co-expression of EGFR and SGLT1 proteins and their relationships with clinic-pathological features in CCRCC. EGFR protein expression was identified in 98.4% of CCRCC. Furthermore, it was described for the first time that SGLT1 is overexpressed in CCRCC (80.9%), and that co-expression with EGFR is appreciable in 79.4% of the tumours. Moreover, the activation of downstream EGFR pathways was found in about 79.4% of SGLT1-positive CCRCCs. The mutational status analysis of EGFR failed to demonstrate mutations on exons 18 to 24 and the presence of EGFR-variantIII (EGFRvIII) in all CCRCCs analyzed. FISH analysis revealed absence of EGFR amplification, and high polysomy of chromosome 7. Finally, the EGFR gene expression profile showed gene overexpression in 38.2% of CCRCCs. Our study contributes to define the complexity of EGFR role in CCRCC, identifying its bivalent kinase

  7. The effect of icotinib combined with chemotherapy in untreated non-small-cell lung cancer that harbored EGFR-sensitive mutations in a real-life setting: a retrospective analysis.

    Science.gov (United States)

    Wang, Lulu; Li, Yan; Li, Luchun; Wu, Zhijuan; Yang, Dan; Ma, Huiwen; Wang, Donglin

    2018-01-01

    This study was conducted to compare the efficacy of a combination of icotinib and chemotherapy with icotinib or chemotherapy alone in untreated non-small cell lung cancer (NSCLC) patients harboring epidermal growth factor receptor (EGFR)-sensitive mutations and to analyze the curative effect of different treatments on different genetic mutations (EGFR 19 exon deletion and L858R mutation) in a real-life setting. One hundred ninety-one patients were studied in this retrospective analysis from January 2013 to December 2015. The baseline characteristics, curative effects and adverse events of patients were analyzed. The primary endpoint was progression free survival (PFS). Longer PFS and overall survival (OS), and better objective response rate (ORR) were observed in the combination group compared to icotinib or chemotherapy along. For patients with an EGFR 19 exon deletion, the PFS, OS, and ORR in the combination group were superior to those in the icotinib or chemotherapy group. For the patients with the EGFR L858R mutation, better PFS and ORR were observed in the combination group, but OS was not obviously prolonged. Grade 3 or 4 adverse events were most commonly reported with combination therapy or chemotherapy alone. No possible drug-related interstitial lung disease or of drug related deaths occurred. The combination of icotinib and chemotherapy in patients with untreated NSCLC harboring sensitive EGFR mutations resulted in improved PFS and OS, especially in those who harbored the EGFR exon 19 deletion.

  8. Relationship of epidermal growth factor receptor activating mutations with histologic subtyping according to International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society 2011 adenocarcinoma classification and their impact on overall survival

    Directory of Open Access Journals (Sweden)

    Venkata Nagarjuna Maturu

    2016-01-01

    Full Text Available Background: There is limited Indian data on epidermal growth factor receptor (EGFR gene activating mutations (AMs prevalence and their clinicopathologic associations. The current study aimed to assess the relationship between EGFR AM and histologic subtypes and their impact on overall survival (OS in a North Indian cohort. Patients and Methods: Retrospective analysis of nonsmall cell lung cancer patients who underwent EGFR mutation testing (n = 186 over 3 years period (2012-2014. EGFR mutations were tested using polymerase chain reaction amplification and direct sequencing. Patients were classified as EGFR AM, EGFR wild type (WT or EGFR unknown (UKN. Histologically adenocarcinomas (ADC were further categorized as per the International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society-2011 classification. Results: Overall EGFR AM prevalence was 16.6%. The ratio of exon 19 deletions to exon 21 L858R mutations was 3.17:1. Female sex (P = 0.002, never smoking status (P = 0.002, metastatic disease (P = 0.032, and nonsolid subtype of ADC (P = 0.001 were associated with EGFR AM on univariate logistic regression analysis (LRA. On multivariate LRA, solid ADC was negatively associated with EGFR AM. Median OS was higher in patients with EGFR AM (750 days as compared to EGFR-WT (459 days or EGFR-UKN (291 days for the overall population and in patients with Stage IV disease (750 days vs. 278 days for EGFR-WT, P = 0.024. On univariate Cox proportional hazard (CPH analysis, smoking, poor performance status (Eastern Cooperative Oncology Group ≥ 2, EGFR-UKN status, and solid ADC were associated with worse OS while female sex and lepidic ADC had better OS. On multivariate CPH analysis, lepidic ADC (hazard ratio [HR] =0.12 and EGFR-WT/EGFR-UKN (HR = 2.39 and HR = 3.30 respectively were independently associated with OS in separate analyses. Conclusions: Histologic subtyping of ADC performed on small biopsies is

  9. Inhibition of radiation-induced EGFR nuclear import by C225 (Cetuximab) suppresses DNA-PK activity

    International Nuclear Information System (INIS)

    Dittmann, Klaus; Mayer, Claus; Rodemann, Hans-Peter

    2005-01-01

    Background and purpose: Inhibition of EGFR-function can induce radiosensitization in tumor cells. Purpose of our investigation was to identify the possible molecular mechanism of radiosensitization following treatment with anti-EGFR-antibody C225 (Cetuximab). Materials and methods: The effect of C225 on radiation response was determined in human cell lines of bronchial carcinoma (A549) and breast adenoma cells (MDA MB 231). The molecular effects of C225 on EGFR-function after irradiation were analyzed applying western blotting, immune-precipitation and kinase assays. Effects on DNA-repair were detected by quantification of γ-H2AX positive foci 24 h after irradiation. Results: The EGFR specific antibody C225 induced radiosensitization in A549 and also in MDA MB 231 cells. Radiosensitization in A549 was associated with blockage of radiation-induced EGFR transport into the nucleus, and immobilized the complex of EGFR with DNA-dependent protein kinase (DNA-PK) in the cytoplasm. As a consequence radiation-induced DNA-PK activation was abolished, a process that is essential for DNA-repair after radiation exposure. Likewise C225 treatment increased the residual amount of γ-H2AX-positive foci 24 h after irradiation in A549 and in MDA MB 231 cells. Conclusions: Our results suggest that irradiation induced DNA-PK activation-essential for DNA repair-may be hampered specifically by use of the anti-EGFR-antibody C225. This process is associated with radiosensitization

  10. MITF Modulates Therapeutic Resistance through EGFR Signaling.

    Science.gov (United States)

    Ji, Zhenyu; Erin Chen, Yiyin; Kumar, Raj; Taylor, Michael; Jenny Njauw, Ching-Ni; Miao, Benchun; Frederick, Dennie T; Wargo, Jennifer A; Flaherty, Keith T; Jönsson, Göran; Tsao, Hensin

    2015-07-01

    Response to targeted therapies varies significantly despite shared oncogenic mutations. Nowhere is this more apparent than in BRAF (V600E)-mutated melanomas where initial drug response can be striking and yet relapse is commonplace. Resistance to BRAF inhibitors have been attributed to the activation of various receptor tyrosine kinases (RTKs), although the underlying mechanisms have been largely uncharacterized. Here, we found that EGFR-induced vemurafenib resistance is ligand dependent. We employed whole-genome expression analysis and discovered that vemurafenib resistance correlated with the loss of microphthalmia-associated transcription factor (MITF), along with its melanocyte lineage program, and with the activation of EGFR signaling. An inverse relationship between MITF, vemurafenib resistance, and EGFR was then observed in patient samples of recurrent melanoma and was conserved across melanoma cell lines and patients' tumor specimens. Functional studies revealed that MITF depletion activated EGFR signaling and consequently recapitulated the resistance phenotype. In contrast, forced expression of MITF in melanoma and colon cancer cells inhibited EGFR and conferred sensitivity to BRAF/MEK inhibitors. These findings indicate that an "autocrine drug resistance loop" is suppressed by melanocyte lineage signal(s), such as MITF. This resistance loop modulates drug response and could explain the unique sensitivity of melanomas to BRAF inhibition.

  11. Mig6 Puts the Brakes on Mutant EGFR-Driven Lung Cancer | Center for Cancer Research

    Science.gov (United States)

    Lung cancer is the most common cause of cancer-related death worldwide. These cancers are often induced by mutations in the epidermal growth factor receptor (EGFR), resulting in constitutive activation of the protein’s tyrosine kinase domain. Lung cancers expressing these EGFR mutants are initially sensitive to tyrosine kinase inhibitors (TKIs), such as erlotinib, but often become resistant by developing compensatory mutations in EGFR or other growth-promoting pathways. To better understand how mutant EGFR initiates and maintains tumor growth in the hopes of identifying novel targets for drug development, Udayan Guha, M.D., Ph.D., of CCR’s Thoracic and Gastrointestinal Oncology Branch, and his colleagues examined the landscape of proteins phosphorylated in EGFR wild type and mutant cells. One protein hyper-phosphorylated in mutant EGFR cells was Mig6, a putative tumor suppressor.

  12. A Targetable EGFR-Dependent Tumor-Initiating Program in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Paul Savage

    2017-10-01

    Full Text Available Summary: Therapies targeting epidermal growth factor receptor (EGFR have variable and unpredictable responses in breast cancer. Screening triple-negative breast cancer (TNBC patient-derived xenografts (PDXs, we identify a subset responsive to EGFR inhibition by gefitinib, which displays heterogeneous expression of wild-type EGFR. Deep single-cell RNA sequencing of 3,500 cells from an exceptional responder identified subpopulations displaying distinct biological features, where elevated EGFR expression was significantly enriched in a mesenchymal/stem-like cellular cluster. Sorted EGFRhi subpopulations exhibited enhanced stem-like features, including ALDH activity, sphere-forming efficiency, and tumorigenic and metastatic potential. EGFRhi cells gave rise to EGFRhi and EGFRlo cells in primary and metastatic tumors, demonstrating an EGFR-dependent expansion and hierarchical state transition. Similar tumorigenic EGFRhi subpopulations were identified in independent PDXs, where heterogeneous EGFR expression correlated with gefitinib sensitivity. This provides new understanding for an EGFR-dependent hierarchy in TNBC and for patient stratification for therapeutic intervention. : Savage et al. demonstrate that sensitivity to EGFR inhibitor, gefitinib, in triple-negative breast cancer is paradoxically associated with EGFR heterogeneity. Using single-cell RNA sequencing in conjunction with functional assays, they identify TNBC tumors in which EGFR expression identifies cells with tumor-initiating capacity whose proliferative expansion is sensitive to EGFR inhibition. Keywords: breast cancer, tumor heterogeneity, patient-derived xenograft, single-cell RNA sequencing, EGFR inhibition, therapeutic response, tumor-initiating cell, cell hierarchy, BRCA1 mutation

  13. Prognostic value of plasma EGFR ctDNA in NSCLC patients treated with EGFR-TKIs.

    Directory of Open Access Journals (Sweden)

    Chengjuan Zhang

    Full Text Available Epidermal growth factor receptor (EGFR specific mutations have been known to improve survival of patients with non-small-cell lung carcinoma (NSCLC. However, whether there are any changes of EGFR mutations after targeted therapy and its clinical significance is unclear. This study was to identify the status of EGFR mutations after targeted therapy and predict the prognostic significance for NSCLC patients.A total of forty-five (45 NSCLC patients who received EGFR-TKI therapy were enrolled. We identified the changes of EGFR mutations in plasma ctDNA by Amplification Refractory Mutation System (ARMS PCR technology.In the 45 cases of NSCLC with EGFR mutations, the EGFR mutation status changed in 26 cases, in which, 12 cases (26.7% from positive to negative, and 14 cases (31.1% from T790M mutation negative to positive after TKI targeted therapy. The T790M occurance group had a shorter Progression -Free-Survival (PFS than the groups of EGFR mutation undetected and EGFR mutation turned out to have no change after EGFR-TKI therapy (p < 0.05.According to this study, it's necessary to closely monitor EGFR mutations during follow-up to predict the prognosis of NSCLC patients who are to receive the TKI targeted therapy.

  14. NF-κB-dependent transcriptional upregulation of cyclin D1 exerts cytoprotection against hypoxic injury upon EGFR activation

    International Nuclear Information System (INIS)

    Chen, Zhi-Dong; Xu, Liang; Tang, Kan-Kai; Gong, Fang-Xiao; Liu, Jing-Quan; Ni, Yin; Jiang, Ling-Zhi; Hong, Jun; Han, Fang; Li, Qian; Yang, Xiang-Hong; Sun, Ren-Hua; Mo, Shi-Jing

    2016-01-01

    Apoptosis of neural cells is one of the main pathological features in hypoxic/ischemic brain injury. Nuclear factor-κB (NF-κB) might be a potential therapeutic target for hypoxic/ischemic brain injury since NF-κB has been found to be inactivated after hypoxia exposure, yet the underlying molecular mechanisms of NF-κB inactivation are largely unknown. Here we report that epidermal growth factor receptor (EGFR) activation prevents neuron-like PC12 cells apoptosis in response to hypoxia via restoring NF-κB-dependent transcriptional upregulation of cyclin D1. Functionally, EGFR activation by EGF stimulation mitigates hypoxia-induced PC12 cells apoptosis in both dose- and time-dependent manner. Of note, EGFR activation elevates IKKβ phosphorylation, increases IκBα ubiquitination, promotes P65 nuclear translocation and recruitment at cyclin D1 gene promoter as well as upregulates cyclin D1 expression. EGFR activation also abrogates the decrease of IKKβ phosphorylation, reduction of IκBα ubiquitination, blockade of P65 nuclear translocation and recruitment at cyclin D1 gene promoter as well as downregulation of cyclin D1 expression induced by hypoxia. Furthermore, NF-κB-dependent upregulation of cyclin D1 is instrumental for the EGFR-mediated cytoprotection against hypoxic apoptosis. In addition, the dephosphorylation of EGFR induced by either EGF siRNA transfection or anti-HB-EGF neutralization antibody treatment enhances hypoxic cytotoxicity, which are attenuated by EGF administration. Our results highlight the essential role of NF-κB-dependent transcriptional upregulation of cyclin D1 in EGFR-mediated cytoprotective effects under hypoxic preconditioning and support further investigation of EGF in clinical trials of patients with hypoxic/ischemic brain injury. - Highlights: • EGFR activation significantly decreases hypoxia-induced PC12 cells injury. • EGFR activation abrogates the transcriptional repression of cyclin D1 induced by hypoxia in a NF

  15. NF-κB-dependent transcriptional upregulation of cyclin D1 exerts cytoprotection against hypoxic injury upon EGFR activation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhi-Dong [Department of Critical Care Medicine, The First Affiliated Hospital of Huzhou Normal College, Huzhou 313000, Zhejiang (China); Xu, Liang [Department of Critical Care Medicine, Zhejiang Provincial People’s Hospital, Hangzhou 310000, Zhejiang (China); Tang, Kan-Kai [Department of Critical Care Medicine, The First Affiliated Hospital of Huzhou Normal College, Huzhou 313000, Zhejiang (China); Gong, Fang-Xiao; Liu, Jing-Quan; Ni, Yin; Jiang, Ling-Zhi; Hong, Jun; Han, Fang; Li, Qian; Yang, Xiang-Hong [Department of Critical Care Medicine, Zhejiang Provincial People’s Hospital, Hangzhou 310000, Zhejiang (China); Sun, Ren-Hua, E-mail: jqin168@hotmail.com [Department of Critical Care Medicine, Zhejiang Provincial People’s Hospital, Hangzhou 310000, Zhejiang (China); Mo, Shi-Jing, E-mail: msj860307@163.com [Department of Critical Care Medicine, Zhejiang Provincial People’s Hospital, Hangzhou 310000, Zhejiang (China)

    2016-09-10

    Apoptosis of neural cells is one of the main pathological features in hypoxic/ischemic brain injury. Nuclear factor-κB (NF-κB) might be a potential therapeutic target for hypoxic/ischemic brain injury since NF-κB has been found to be inactivated after hypoxia exposure, yet the underlying molecular mechanisms of NF-κB inactivation are largely unknown. Here we report that epidermal growth factor receptor (EGFR) activation prevents neuron-like PC12 cells apoptosis in response to hypoxia via restoring NF-κB-dependent transcriptional upregulation of cyclin D1. Functionally, EGFR activation by EGF stimulation mitigates hypoxia-induced PC12 cells apoptosis in both dose- and time-dependent manner. Of note, EGFR activation elevates IKKβ phosphorylation, increases IκBα ubiquitination, promotes P65 nuclear translocation and recruitment at cyclin D1 gene promoter as well as upregulates cyclin D1 expression. EGFR activation also abrogates the decrease of IKKβ phosphorylation, reduction of IκBα ubiquitination, blockade of P65 nuclear translocation and recruitment at cyclin D1 gene promoter as well as downregulation of cyclin D1 expression induced by hypoxia. Furthermore, NF-κB-dependent upregulation of cyclin D1 is instrumental for the EGFR-mediated cytoprotection against hypoxic apoptosis. In addition, the dephosphorylation of EGFR induced by either EGF siRNA transfection or anti-HB-EGF neutralization antibody treatment enhances hypoxic cytotoxicity, which are attenuated by EGF administration. Our results highlight the essential role of NF-κB-dependent transcriptional upregulation of cyclin D1 in EGFR-mediated cytoprotective effects under hypoxic preconditioning and support further investigation of EGF in clinical trials of patients with hypoxic/ischemic brain injury. - Highlights: • EGFR activation significantly decreases hypoxia-induced PC12 cells injury. • EGFR activation abrogates the transcriptional repression of cyclin D1 induced by hypoxia in a NF

  16. EGFR Exon 18 Mutations in Lung Cancer: Molecular Predictors of Augmented Sensitivity to Afatinib or Neratinib as Compared with First- or Third-Generation TKIs.

    Science.gov (United States)

    Kobayashi, Yoshihisa; Togashi, Yosuke; Yatabe, Yasushi; Mizuuchi, Hiroshi; Jangchul, Park; Kondo, Chiaki; Shimoji, Masaki; Sato, Katsuaki; Suda, Kenichi; Tomizawa, Kenji; Takemoto, Toshiki; Hida, Toyoaki; Nishio, Kazuto; Mitsudomi, Tetsuya

    2015-12-01

    Lung cancers harboring common EGFR mutations respond to EGFR tyrosine kinase inhibitors (TKI), whereas exon 20 insertions (Ins20) are resistant to them. However, little is known about mutations in exon 18. Mutational status of lung cancers between 2001 and 2015 was reviewed. Three representative mutations in exon 18, G719A, E709K, and exon 18 deletion (Del18: delE709_T710insD) were retrovirally introduced into Ba/F3 and NIH/3T3 cells. The 90% inhibitory concentrations (IC90s) of first-generation (1G; gefitinib and erlotinib), second-generation (2G; afatinib, dacomitinib, and neratinib), and third-generation TKIs (3G; AZD9291 and CO1686) were determined. Among 1,402 EGFR mutations, Del19, L858R, and Ins20 were detected in 40%, 47%, and 4%, respectively. Exon 18 mutations, including G719X, E709X, and Del18, were present in 3.2%. Transfected Ba/F3 cells grew in the absence of IL3, and NIH/3T3 cells formed foci with marked pile-up, indicating their oncogenic abilities. IC90s of 1G and 3G TKIs in G719A, E709K, and Del18 were much higher than those in Del19 (by >11-50-fold), whereas IC90s of afatinib were only 3- to 7-fold greater than those for Del19. Notably, cells transfected with G719A and E709K exhibited higher sensitivity to neratinib (by 5-25-fold) than those expressing Del19. Patients with lung cancers harboring G719X exhibited higher response rate to afatinib or neratinib (∼ 80%) than to 1G TKIs (35%-56%) by compilation of data in the literature. Lung cancers harboring exon 18 mutations should not be overlooked in clinical practice. These cases can be best treated with afatinib or neratinib, although the currently available in vitro diagnostic kits cannot detect all exon 18 mutations. ©2015 American Association for Cancer Research.

  17. PGE2 mediates EGFR internalization and nuclear translocation via caveolin endocytosis promoting its transcriptional activity and proliferation in human NSCLC cells.

    Science.gov (United States)

    Bazzani, Lorenzo; Donnini, Sandra; Giachetti, Antonio; Christofori, Gerhard; Ziche, Marina

    2018-03-13

    Prostaglandin E 2 (PGE 2 ) contributes to tumor progression by promoting cancer cell growth, invasion and by creating a favorable pro-tumor microenvironment. PGE 2 has been reported to transactivate and internalize into the nucleus receptor tyrosine kinases such as Epidermal growth factor receptor (EGFR), thereby supporting tumor progression. Here we demonstrate that in non-small cell lung carcinoma (NSCLC) cells, PGE 2 induces EGFR nuclear translocation via different dynamin-dependent endocytic pathways, promotes the formation of an EGFR-STAT3 complex, affects nuclear EGFR target gene expression and mediates tumor cell proliferation. Indeed, we find that PGE 2 induces EGFR internalization and consequent nuclear import through Clathrin- and Caveolin-mediated endocytosis and through the interaction of EGFR with Importin β1. Within the nucleus, EGFR forms a complex with STAT3, an event blocked by ablation of Clathrin Heavy Chain or Caveolin-1. The combination of EGF and PGE 2 prolongs nuclear EGFR transcriptional activity manifested by the upregulation of CCND1 , PTGS2 , MYC and NOS2 mRNA levels and potentiates nuclear EGFR-induced NSCLC cell proliferation. Additionally, NSCLC patients with high expression of a nuclear EGFR gene signature display shorter survival times than those with low expression, thus showing a putative correlation between nuclear EGFR and poor prognosis in NSCLC. Together, our findings indicate a complex mechanism underlying PGE 2 -induced EGF/EGFR signaling and transcriptional control, which plays a key role in cancer progression.

  18. NF-κB signaling is activated and confers resistance to apoptosis in three-dimensionally cultured EGFR-mutant lung adenocarcinoma cells

    International Nuclear Information System (INIS)

    Sakuma, Yuji; Yamazaki, Yukiko; Nakamura, Yoshiyasu; Yoshihara, Mitsuyo; Matsukuma, Shoichi; Koizume, Shiro; Miyagi, Yohei

    2012-01-01

    Highlights: ► EGFR-mutant cells in 3D culture resist EGFR inhibition compared with suspended cells. ► Degradation of IκB and activation of NF-κB are observed in 3D-cultured cells. ► Inhibiting NF-κB enhances the efficacy of the EGFR inhibitor in 3D-cultured cells. -- Abstract: Epidermal growth factor receptor (EGFR)-mutant lung adenocarcinoma cells in suspension undergo apoptosis to a greater extent than adherent cells in a monolayer when EGFR autophosphorylation is inhibited by EGFR tyrosine kinase inhibitors (TKIs). This suggests that cell adhesion to a culture dish may activate an anti-apoptotic signaling pathway other than the EGFR pathway. Since the microenvironment of cells cultured in a monolayer are substantially different to that of cells existing in three-dimension (3D) in vivo, we assessed whether two EGFR-mutant lung adenocarcinoma cell lines, HCC827 and H1975, were more resistant to EGFR TKI-induced apoptosis when cultured in a 3D extracellular matrix (ECM) as compared with in suspension. The ECM-adherent EGFR-mutant cells in 3D were significantly less sensitive to treatment with WZ4002, an EGFR TKI, than the suspended cells. Further, a marked degradation of IκBα, the inhibitor of nuclear factor (NF)-κB, was observed only in the 3D-cultured cells, leading to an increase in the activation of NF-κB. Moreover, the inhibition of NF-κB with pharmacological inhibitors enhanced EGFR TKI-induced apoptosis in 3D-cultured EGFR-mutant cells. These results suggest that inhibition of NF-κB signaling would render ECM-adherent EGFR-mutant lung adenocarcinoma cells in vivo more susceptible to EGFR TKI-induced cell death.

  19. Promoter methylation of RASSF1A and DAPK and mutations of K-ras, p53, and EGFR in lung tumors from smokers and never-smokers

    International Nuclear Information System (INIS)

    Liu, Yang; Gao, Weimin; Siegfried, Jill M; Weissfeld, Joel L; Luketich, James D; Keohavong, Phouthone

    2007-01-01

    Epidemiological studies indicate that some characteristics of lung cancer among never-smokers significantly differ from those of smokers. Aberrant promoter methylation and mutations in some oncogenes and tumor suppressor genes are frequent in lung tumors from smokers but rare in those from never-smokers. In this study, we analyzed promoter methylation in the ras-association domain isoform A (RASSF1A) and the death-associated protein kinase (DAPK) genes in lung tumors from patients with primarily non-small cell lung cancer (NSCLC) from the Western Pennsylvania region. We compare the results with the smoking status of the patients and the mutation status of the K-ras, p53, and EGFR genes determined previously on these same lung tumors. Promoter methylation of the RASSF1A and DAPK genes was analyzed by using a modified two-stage methylation-specific PCR. Data on mutations of K-ras, p53, and EGFR were obtained from our previous studies. The RASSF1A gene promoter methylation was found in tumors from 46.7% (57/122) of the patients and was not significantly different between smokers and never-smokers, but was associated significantly in multiple variable analysis with tumor histology (p = 0.031) and marginally with tumor stage (p = 0.063). The DAPK gene promoter methylation frequency in these tumors was 32.8% (40/122) and did not differ according to the patients' smoking status, tumor histology, or tumor stage. Multivariate analysis adjusted for age, gender, smoking status, tumor histology and stage showed that the frequency of promoter methylation of the RASSF1A or DAPK genes did not correlate with the frequency of mutations of the K-ras, p53, and EGFR gene. Our results showed that RASSF1A and DAPK genes' promoter methylation occurred frequently in lung tumors, although the prevalence of this alteration in these genes was not associated with the smoking status of the patients or the occurrence of mutations in the K-ras, p53 and EGFR genes, suggesting each of

  20. Small cell lung cancer transformation from EGFR-mutated lung adenocarcinoma: A case report and literatures review.

    Science.gov (United States)

    Liu, Yangyang

    2018-06-03

    Epithelial growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) have markedly improved the response of non-small cell lung cancer (NSCLC) with EGFR-mutant patients. However, these patients inevitably come cross acquired resistance to EGFR-TKIs. The transformation of lung adenocarcinoma to small cell lung cancer (SCLC) following treatment with EGFR-TKIs is rare, which leads to resistance to EGFR-TKIs. The present case concerns a case of a 38-year-old man presenting with cough and dyspnea. Radical resection was performed and confirmed an EGFR exon 21 L858R lung adenocarcinoma. However, the patient suffered pleural metastasis after successful treatment with surgery and adjuvant treatment. So, erlotinib was administered with 18 months. Because of enlarged pleural nodule, repeat biopsy identified an SCLC and chemotherapy was started. However, despite the brief success of chemotherapy, our patient suffered brain metastasis. Our case emaphsizes both the profile of transformation from NSCLC to SCLC and the importance of repeat biopsy dealing with drug resistance. We also summarize the clinical characteristics, mechanisms, predictors of SCLC transformation, treatment after transformation and other types of transformation to SCLC.

  1. Prevalence of EGFR mutations in newly diagnosed locally advanced or metastatic non-small cell lung cancer Spanish patients and its association with histological subtypes and clinical features: The Spanish REASON study.

    Science.gov (United States)

    Esteban, E; Majem, M; Martinez Aguillo, M; Martinez Banaclocha, N; Dómine, M; Gómez Aldaravi, L; Juan, O; Cajal, R; Gonzalez Arenas, M C; Provencio, M

    2015-06-01

    The aim of the REASON study is to determine the frequency of EGFR mutation in advanced non-small cell lung cancer (aNSCLC) patients in Spain (all histologies), and to better understand the clinical factors (gender, smoking habits and histological subtypes) that may be associated with EGFR mutations, in an unselected sample of aNSCLC patients. All newly diagnosed aNSCLC patients from 40 selected centers in Spain were prospectively included for a 6-month period. Patient characteristics were obtained from clinical records. Mutation testing was performed on available tumor samples. Exploratory analyses were performed to characterize the clinico-pathological factors associated with presence of EGFR mutations. From March 2010 to March 2011, 1113 patients were included in the study, of which 1009 patients provided sample for EGFR mutation analysis (90.7%). Mutation analysis was not feasible in 146/1113 patients (13.1%) due to either sample unavailability (79/1113; 7.1%) or sample inadequacy (67/1113; 6.0%). Twenty-five out of 1113 patients (2.3%) were excluded due to unavailable information. Most patients (99.5%) were Caucasian, 74.5% were male, and predominantly were current (38.1%) or former smokers (44.0%). Median age was 66 years (range 25-90) and 70.7% of patients had non-squamous histology (57.8% adenocarcinoma, 1.8% bronchoalveolar, 11.1% large-cell carcinoma). Exon 19 deletions and the exon 21 L858R point mutation were analyzed in 942/1009 (93.4%) samples. Mutation rate was 11.6% (82.6% exon 19 dels and 17.4% L858R). To be never smoker (38.1%), female (25.4%), with bronchioloalveolar carcinoma (22.2%) or adenocarcinoma (15.4%) histology was associated with a higher prevalence of EGFR mutations. Exons 18, 20 and 21 (excluding L858R) were analyzed in 505/942 samples, and EGFR mutations were found in 22/505 samples (4.4%). The estimated prevalence of sensitizing EGFR mutations (exon 19 del, exon 21 L858R) in an unselected samples of newly diagnosed aNSCLC patients in

  2. An in vivo C. elegans model system for screening EGFR-inhibiting anti-cancer drugs.

    Directory of Open Access Journals (Sweden)

    Young-Ki Bae

    Full Text Available The epidermal growth factor receptor (EGFR is a well-established target for cancer treatment. EGFR tyrosine kinase (TK inhibitors, such as gefinitib and erlotinib, have been developed as anti-cancer drugs. Although non-small cell lung carcinoma with an activating EGFR mutation, L858R, responds well to gefinitib and erlotinib, tumors with a doubly mutated EGFR, T790M-L858R, acquire resistance to these drugs. The C. elegans EGFR homolog LET-23 and its downstream signaling pathway have been studied extensively to provide insight into regulatory mechanisms conserved from C. elegans to humans. To develop an in vivo screening system for potential cancer drugs targeting specific EGFR mutants, we expressed three LET-23 chimeras in which the TK domain was replaced with either the human wild-type TK domain (LET-23::hEGFR-TK, a TK domain with the L858R mutation (LET-23::hEGFR-TK[L858R], or a TK domain with the T790M-L858R mutations (LET-23::hEGFR-TK[T790M-L858R] in C. elegans vulval cells using the let-23 promoter. The wild-type hEGFR-TK chimeric protein rescued the let-23 mutant phenotype, and the activating mutant hEGFR-TK chimeras induced a multivulva (Muv phenotype in a wild-type C. elegans background. The anti-cancer drugs gefitinib and erlotinib suppressed the Muv phenotype in LET-23::hEGFR-TK[L858R]-expressing transgenic animals, but not in LET-23::hEGFR-TK[T790M-L858R] transgenic animals. As a pilot screen, 8,960 small chemicals were tested for Muv suppression, and AG1478 (an EGFR-TK inhibitor and U0126 (a MEK inhibitor were identified as potential inhibitors of EGFR-mediated biological function. In conclusion, transgenic C. elegans expressing chimeric LET-23::hEGFR-TK proteins are a model system that can be used in mutation-specific screens for new anti-cancer drugs.

  3. Antibacterial and EGFR-Tyrosine Kinase Inhibitory Activities of Polyhydroxylated Xanthones from Garcinia succifolia

    Directory of Open Access Journals (Sweden)

    Susawat Duangsrisai

    2014-11-01

    Full Text Available Chemical investigation of the methanol extract of the wood of Garcinia succifolia Kurz (Clusiaceae led to the isolation of 1,5-dihydroxyxanthone (1, 1,7-dihydroxyxanthone (2, 1,3,7-trihydroxyxanthone (3, 1,5,6-trihydroxyxanthone (4, 1,6,7-trihydroxyxanthone (5, and 1,3,6,7-tetrahydroxyxanthone (6. All of the isolated xanthones were evaluated for their antibacterial activity against bacterial reference strains, two Gram-positive (Staphylococcus aureus ATTC 25923, Bacillus subtillis ATCC 6633 and two Gram-negative (Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853, and environmental drug-resistant isolates (S. aureus B1, Enteroccoccus faecalis W1, and E. coli G1, as well as for their epidermal growth factor receptor (EGFR of tyrosine kinase inhibitory activity. Only 1,5,6-trihydroxy-(4, 1,6,7-trihydroxy-(5, and 1,3,6,7-tetrahydroxyxanthones (6 exhibited antibacterial activity against Gram-positive bacteria, however none was active against vancomycin-resistant E. faecalis. Additionally, 1,7-dihydroxyxanthone (2 showed synergism with oxacillin, but not with ampicillin. On the other hand, only 1,5-dihydroxyxanthone (1 and 1,7-dihydroxyxanthone (2 were found to exhibit the EGFR-tyrosine kinase inhibitory activity, with IC50 values of 90.34 and 223 nM, respectively.

  4. Celecoxib induces proliferation and Amphiregulin production in colon subepithelial myofibroblasts, activating erk1-2 signaling in synergy with EGFR.

    Science.gov (United States)

    Benelli, Roberto; Venè, Roberta; Minghelli, Simona; Carlone, Sebastiano; Gatteschi, Beatrice; Ferrari, Nicoletta

    2013-01-01

    The COX-2 inhibitor Celecoxib, tested in phase III trials for the prevention of sporadic colon adenomas, reduced the appearance of new adenomas, but was unable to affect the incidence of colon cancer. Moreover the 5years follow-up showed that patients discontinuing Celecoxib treatment had an increased incidence of adenomas as compared to the placebo arm. In the APC(min/+) mouse model short term treatment with Celecoxib reduced gut adenomas, but a prolonged administration of the drug induced fibroblast activation and intestinal fibrosis with a final tumor burden. The way Celecoxib could directly activate human colon myofibroblasts (MF) has not yet been investigated. We found that MF are activated by non toxic doses of Celecoxib. Celecoxib induces erk1-2 and Akt phosphorylation within 5'. This short term activation is apparently insufficient to cause phenotypic changes, but the contemporary triggering of EGFR causes an impressive synergic effect inducing MF proliferation and the neo-expression and release of Amphiregulin (AREG), a well known EGFR agonist involved in colon cancer progression. As a confirm to these observations, the erk inhibitor U0126 and the EGFR inhibitors Tyrphostin and Cetuximab were able to contrast AREG induction. Our data provide evidence that Celecoxib directly activates MF empowering EGFR signaling. According to these results the association with EGFR (or erk1-2) inhibitors could abolish the off-target activity of Celecoxib, possibly extending the potential of this drug for colon cancer prevention. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  5. The effect of icotinib combined with chemotherapy in untreated non-small-cell lung cancer that harbored EGFR-sensitive mutations in a real-life setting: a retrospective analysis

    Directory of Open Access Journals (Sweden)

    Wang LL

    2018-04-01

    Full Text Available Lulu Wang, Yan Li, Luchun Li, Zhijuan Wu, Dan Yang, Huiwen Ma, Donglin Wang Oncology Department, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Shapingba District, Chongqing, China Purpose: This study was conducted to compare the efficacy of a combination of icotinib and chemotherapy with icotinib or chemotherapy alone in untreated non-small cell lung cancer (NSCLC patients harboring epidermal growth factor receptor (EGFR-sensitive mutations and to analyze the curative effect of different treatments on different genetic mutations (EGFR 19 exon deletion and L858R mutation in a real-life setting. Patients and methods: One hundred ninety-one patients were studied in this retrospective analysis from January 2013 to December 2015. The baseline characteristics, curative effects and adverse events of patients were analyzed. The primary endpoint was progression free survival (PFS. Results: Longer PFS and overall survival (OS, and better objective response rate (ORR were observed in the combination group compared to icotinib or chemotherapy along. For patients with an EGFR 19 exon deletion, the PFS, OS, and ORR in the combination group were superior to those in the icotinib or chemotherapy group. For the patients with the EGFR L858R mutation, better PFS and ORR were observed in the combination group, but OS was not obviously prolonged. Grade 3 or 4 adverse events were most commonly reported with combination therapy or chemotherapy alone. No possible drug-related interstitial lung disease or of drug related deaths occurred. Conclusion: The combination of icotinib and chemotherapy in patients with untreated NSCLC harboring sensitive EGFR mutations resulted in improved PFS and OS,especially in those who harbored the EGFR exon 19 deletion. Keywords: non-small-cell lung cancer, EGFR-TKI, icotinib, chemotherapy, first-line treatment

  6. Enhanced EGFR Targeting Activity of Plasmonic Nanostructures with Engineered GE11 Peptide.

    Science.gov (United States)

    Biscaglia, Francesca; Rajendran, Senthilkumar; Conflitti, Paolo; Benna, Clara; Sommaggio, Roberta; Litti, Lucio; Mocellin, Simone; Bocchinfuso, Gianfranco; Rosato, Antonio; Palleschi, Antonio; Nitti, Donato; Gobbo, Marina; Meneghetti, Moreno

    2017-12-01

    Plasmonic nanostructures show important properties for biotechnological applications, but they have to be guided on the target for exploiting their potentialities. Antibodies are the natural molecules for targeting. However, their possible adverse immunogenic activity and their cost have suggested finding other valid substitutes. Small molecules like peptides can be an alternative source of targeting agents, even if, as single molecules, their binding affinity is usually not very good. GE11 is a small dodecapeptide with specific binding to the epidermal growth factor receptor (EGFR) and low immunogenicity. The present work shows that thousands of polyethylene glycol (PEG) chains modified with lysines and functionalized with GE11 on clusters of naked gold nanoparticles, obtained by laser ablation in water, achieves a better targeting activity than that recorded with nanoparticles decorated with the specific anti-EGFR antibody Cetuximab (C225). The insertion of the cationic spacer between the polymeric part of the ligand and the targeting peptide allows for a proper presentation of GE11 on the surface of the nanosystems. Surface enhanced resonance Raman scattering signals of the plasmonic gold nanoparticles are used for quantifying the targeting activity. Molecular dynamic calculations suggest that subtle differences in the exposition of the peptide on the PEG sea are important for the targeting activity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A comparison of QuantStudio™ 3D Digital PCR and ARMS-PCR for measuring plasma EGFR T790M mutations of NSCLC patients

    Directory of Open Access Journals (Sweden)

    Feng Q

    2018-01-01

    Full Text Available Qin Feng,1,* Fei Gai,2,* Yaxiong Sang,2 Jie Zhang,3 Ping Wang,1 Yue Wang,1 Bing Liu,2 Dongmei Lin,1 Yang Yu,2 Jian Fang3 1Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Department of Pathology, Peking University Cancer Hospital & Institute, 2Oncology Business Division, Beijing Novogene Bioinformatics Technology Co., Ltd, 3Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Department of Thoracic Oncology II, Peking University Cancer Hospital & Institute, Beijing, China *These authors contributed equally to this work Background: The AURA3 clinical trial has shown that advanced non-small cell lung cancer (NSCLC patients with EGFR T790M mutations in circulating tumor DNA (ctDNA could benefit from osimertinib.Purpose: The aim of this study was to assess the usefulness of QuantStudio™ 3D Digital PCR System platform for the detection of plasma EGFR T790M mutations in NSCLC patients, and compare the performances of 3D Digital PCR and ARMS-PCR.Patients and methods: A total of 119 Chinese patients were enrolled in this study. Mutant allele frequency of plasma EGFR T790M was detected by 3D Digital PCR, then 25 selected samples were verified by ARMS-PCR and four of them were verified by next generation sequencing (NGS.Results: In total, 52.94% (69/119 had EGFR T790M mutations detected by 3D Digital PCR. In 69 positive samples, the median mutant allele frequency (AF was 1.09% and three cases presented low concentration (AF <0.1%. Limited by the amount of plasma DNA, 17 samples (AF <2.5% and eight samples (T790M- were selected for verification by ARMS-PCR. Four of those samples were verified by NGS as a third verification method. Among the selected 17 positive cases, ten samples presented mutant allele frequency <0.5%, and seven samples presented intermediate mutant allele frequency (0.5%<AF<2.5%. However, only three samples (3/17 were identified as positive by ARMS-PCR, namely, P6

  8. 4-Hydroxynonenal activates Src through a non-canonical pathway that involves EGFR/PTP1B

    Science.gov (United States)

    Zhang, Hongqiao; Forman, Henry Jay

    2015-01-01

    Src, a non-receptor protein tyrosine kinase involved in many biological processes, can be activated through both redox-dependent and independent mechanisms. 4-Hydroxy-2-nonenal (HNE) is a lipid peroxidation product that is increased in pathophysiological conditions associated with Src activation. This study examined how HNE activates human c-Src. In the canonical pathway Src activation is initiated by dephosphorylation of pTyr530 followed by conformational change that causes Src auto-phosphorylation at Tyr419 and its activation. HNE increased Src activation in both dose- and time-dependent manner, while it also increased Src phosphorylation at Tyr530 (pTyr530 Src), suggesting that HNE activated Src via a non-canonical mechanism. Protein tyrosine phosphatase 1B inhibitor (539741), at concentrations that increased basal pTyr530 Src, also increased basal Src activity and significantly reduced HNE-mediated Src activation. The EGFR inhibitor, AG1478, and EGFR silencing, abrogated HNE-mediated EGFR activation and inhibited basal and HNE-induced Src activity. In addition, AG1478 also eliminated the increase of basal Src activation by a PTP1B inhibitor. Taken together these data suggest that HNE can activate Src partly through a non-canonical pathway involving activation of EGFR and inhibition of PTP1B. PMID:26453921

  9. Fusion of EML4 and ALK is associated with development of lung adenocarcinomas lacking EGFR and KRAS mutations and is correlated with ALK expression

    Directory of Open Access Journals (Sweden)

    Zhang Xuchao

    2010-07-01

    Full Text Available Abstract Background The anaplastic lymphoma kinase (ALK gene is frequently involved in translocations that lead to gene fusions in a variety of human malignancies, including lymphoma and lung cancer. Fusion partners of ALK include NPM, EML4, TPM3, ATIC, TFG, CARS, and CLTC. Characterization of ALK fusion patterns and their resulting clinicopathological profiles could be of great benefit in better understanding the biology of lung cancer. Results RACE-coupled PCR sequencing was used to assess ALK fusions in a cohort of 103 non-small cell lung carcinoma (NSCLC patients. Within this cohort, the EML4-ALK fusion gene was identified in 12 tumors (11.6%. Further analysis revealed that EML4-ALK was present at a frequency of 16.13% (10/62 in patients with adenocarcinomas, 19.23% (10/52 in never-smokers, and 42.80% (9/21 in patients with adenocarcinomas lacking EGFR and KRAS mutations. The EML4-ALK fusion was associated with non-smokers (P = 0.03, younger age of onset (P = 0.03, and adenocarcinomas without EGFR/KRAS mutations (P = 0.04. A trend towards improved survival was observed for patients with the EML4-ALK fusion, although it was not statistically significant (P = 0.20. Concurrent deletion in EGFR exon 19 and fusion of EML4-ALK was identified for the first time in a Chinese female patient with an adenocarcinoma. Analysis of ALK expression revealed that ALK mRNA levels were higher in tumors positive for the EML-ALK fusion than in negative tumors (normalized intensity of 21.99 vs. 0.45, respectively; P = 0.0018. However, expression of EML4 did not differ between the groups. Conclusions The EML4-ALK fusion gene was present at a high frequency in Chinese NSCLC patients, particularly in those with adenocarcinomas lacking EGFR/KRAS mutations. The EML4-ALK fusion appears to be tightly associated with ALK mRNA expression levels. RACE-coupled PCR sequencing is a highly sensitive method that could be used clinically for the identification of EML4-ALK

  10. Activation of EGFR and ERBB2 by Helicobacter pylori Results in Survival of Gastric Epithelial Cells with DNA Damage

    Science.gov (United States)

    Chaturvedi, Rupesh; Asim, Mohammad; Piazuelo, M. Blanca; Yan, Fang; Barry, Daniel P.; Sierra, Johanna Carolina; Delgado, Alberto G.; Hill, Salisha; Casero, Robert A.; Bravo, Luis E.; Dominguez, Ricardo L.; Correa, Pelayo; Polk, D. Brent; Washington, M. Kay; Rose, Kristie L.; Schey, Kevin L.; Morgan, Douglas R.; Peek, Richard M.; Wilson, Keith T.

    2014-01-01

    BACKGROUND & AIMS The gastric cancer-causing pathogen Helicobacter pylori upregulates spermine oxidase (SMOX) in gastric epithelial cells, causing oxidative stress-induced apoptosis and DNA damage. A subpopulation of SMOXhigh cells are resistant to apoptosis, despite their high levels of DNA damage. Because epidermal growth factor receptor (EGFR) activation can regulate apoptosis, we determined its role in SMOX-mediated effects. METHODS SMOX, apoptosis, and DNA damage were measured in gastric epithelial cells from H pylori-infected Egfrwa5 mice (which have attenuated EGFR activity), Egfr wild-type mice, or in infected cells incubated with EGFR inhibitors or deficient in EGFR. Phosphoproteomic analysis was performed. Two independent tissue microarrays containing each stage of disease, from gastritis to carcinoma, and gastric biopsies from Colombian and Honduran cohorts were analyzed by immunohistochemistry. RESULTS SMOX expression and DNA damage were decreased, and apoptosis increased in H pylori-infected Egfrwa5 mice. H pylori-infected cells with deletion or inhibition of EGFR had reduced levels of SMOX, DNA damage, and DNA damagehigh apoptosislow cells. Phosphoproteomic analysis revealed increased EGFR and ERBB2 signaling. Immunoblot analysis demonstrated the presence of a phosphorylated (p)EGFR–ERBB2 heterodimer and pERBB2; knockdown of ErbB2 facilitated apoptosis of DNA damagehigh apoptosislow cells. SMOX was increased in all stages of gastric disease, peaking in tissues with intestinal metaplasia, whereas pEGFR, pEGFR–ERBB2, and pERBB2 were increased predominantly in tissues demonstrating gastritis or atrophic gastritis. Principal component analysis separated gastritis tissues from patients with cancer vs those without cancer. pEGFR, pEGFR–ERBB2, pERBB2, and SMOX were increased in gastric samples from patients whose disease progressed to intestinal metaplasia or dysplasia, compared with patients whose disease did not progress. CONCLUSIONS In an analysis

  11. Lead acetate induces EGFR activation upstream of SFK and PKCα linkage to the Ras/Raf-1/ERK signaling

    International Nuclear Information System (INIS)

    Wang, C.-Y.; Wang, Y.-T.; Tzeng, D.-W.; Yang, J.-L.

    2009-01-01

    Lead acetate (Pb), a probable human carcinogen, can activate protein kinase C (PKC) upstream of extracellular signal-regulated kinase 1 and 2 (ERK1/2). Yet, it remains unclear whether Pb activation of PKC → ERK1/2 involves receptor/non-receptor tyrosine kinases and the Ras signaling transducer. Here we demonstrate a novel mechanism elicited by Pb for transmitting ERK1/2 signaling in CL3 human non-small-cell lung adenocarcinoma cells. Pb induction of higher steady-state levels of Ras-GTP was essential for increasing phospho-Raf-1 S338 and phospho-ERK1/2. Pre-treatment of the cells with a conventional PKC inhibitor Goe6976 or depleting PKCα using specific small interfering RNA blocked Pb induction of Ras-GTP. Pb also activated cellular tyrosine kinases. Specific pharmacological inhibitors, PD153035 for epidermal growth factor receptor (EGFR) and SU6656 for Src family tyrosine kinases (SFK), but not AG1296 for platelet-derived growth factor receptor, could suppress the Pb-induced tyrosine kinases, PKCα, Ras-GTP, phospho-Raf-1 S338 and phospho-ERK1/2. Furthermore, phosphorylation of tyrosines on the EGFR multiple autophosphorylation sites and the conserved SFK autophosphorylation site occurred during exposure of cells to Pb for 1-5 min and 5-30 min, respectively. Intriguingly, Pb activation of EGFR required the intrinsic kinase activity but not dimerization of the receptor. Inhibition of SFK or PKCα activities did not affect EGFR phosphorylation, while knockdown of EGFR blocked SFK phosphorylation and PKCα activation following Pb. Together, these results indicate that immediate activation of EGFR in response to Pb is obligatory for activation of SFK and PKCα and subsequent the Ras-Raf-1-MKK1/2-ERK1/2 signaling cascade

  12. Gene-guided Gefitinib switch maintenance therapy for patients with advanced EGFR mutation-positive Non-small cell lung cancer: an economic analysis

    International Nuclear Information System (INIS)

    Zhu, Jun; Li, Te; Wang, Xiaohui; Ye, Ming; Cai, Jian; Xu, Yuejuan; Wu, Bin

    2013-01-01

    Maintenance therapy with gefitinib notably improves survival in patients with advanced non-small cell lung cancer (NSCLC) and EGFR mutation-positive tumors, but the economic impact of this practice is unclear. A decision-analytic model was developed to simulate 21-day patient transitions in a 10-year time horizon. The clinical data were primarily obtained from the results of a pivotal phase III trial that assessed gefitinib maintenance treatment in patients with advanced NSCLC. The cost data were derived from the perspective of the Chinese health care system. The primary outcome was the incremental cost-effectiveness ratio (ICER) at a willingness-to-pay (WTP) threshold of 3 times the per capita GDP of China. Sensitivity analyses were used to explore the impact of uncertainty regarding the results. The impact of the gefitinib patient assistance program (GPAP) was evaluated. After EGFR genotyping, gefitinib maintenance treatment for advanced NSCLC with EGFR mutations increased the life expectancy by 0.74 years and 0.46 QALYs compared with routine follow-up at an additional cost of $26,149.90 USD ($7,178.20 with the GPAP). The ICER for gefitinib maintenance was $57,066.40 and $15,664.80 per QALY gained (at a 3% discount rate) without and with the GPAP, respectively. The utility of progression free survival, the hazard ratio of progression-free survival for gefitinib treatment and the cost of gefitinib per dose were the three factors that had the greatest influence on the results. These results indicate that gene-guided maintenance therapy with gefitinib with the GPAP might be a cost-effective treatment option

  13. Gene-guided Gefitinib switch maintenance therapy for patients with advanced EGFR mutation-positive Non-small cell lung cancer: an economic analysis

    Directory of Open Access Journals (Sweden)

    Zhu Jun

    2013-01-01

    Full Text Available Abstract Background Maintenance therapy with gefitinib notably improves survival in patients with advanced non-small cell lung cancer (NSCLC and EGFR mutation-positive tumors, but the economic impact of this practice is unclear. Methods A decision-analytic model was developed to simulate 21-day patient transitions in a 10-year time horizon. The clinical data were primarily obtained from the results of a pivotal phase III trial that assessed gefitinib maintenance treatment in patients with advanced NSCLC. The cost data were derived from the perspective of the Chinese health care system. The primary outcome was the incremental cost-effectiveness ratio (ICER at a willingness-to-pay (WTP threshold of 3 times the per capita GDP of China. Sensitivity analyses were used to explore the impact of uncertainty regarding the results. The impact of the gefitinib patient assistance program (GPAP was evaluated. Results After EGFR genotyping, gefitinib maintenance treatment for advanced NSCLC with EGFR mutations increased the life expectancy by 0.74 years and 0.46 QALYs compared with routine follow-up at an additional cost of $26,149.90 USD ($7,178.20 with the GPAP. The ICER for gefitinib maintenance was $57,066.40 and $15,664.80 per QALY gained (at a 3% discount rate without and with the GPAP, respectively. The utility of progression free survival, the hazard ratio of progression-free survival for gefitinib treatment and the cost of gefitinib per dose were the three factors that had the greatest influence on the results. Conclusions These results indicate that gene-guided maintenance therapy with gefitinib with the GPAP might be a cost-effective treatment option.

  14. Association between GWAS-identified lung adenocarcinoma susceptibility loci and EGFR mutations in never-smoking Asian women, and comparison with findings from Western populations.

    Science.gov (United States)

    Seow, Wei Jie; Matsuo, Keitaro; Hsiung, Chao Agnes; Shiraishi, Kouya; Song, Minsun; Kim, Hee Nam; Wong, Maria Pik; Hong, Yun-Chul; Hosgood, H Dean; Wang, Zhaoming; Chang, I-Shou; Wang, Jiu-Cun; Chatterjee, Nilanjan; Tucker, Margaret; Wei, Hu; Mitsudomi, Tetsuya; Zheng, Wei; Kim, Jin Hee; Zhou, Baosen; Caporaso, Neil E; Albanes, Demetrius; Shin, Min-Ho; Chung, Lap Ping; An, She-Juan; Wang, Ping; Zheng, Hong; Yatabe, Yasushi; Zhang, Xu-Chao; Kim, Young Tae; Shu, Xiao-Ou; Kim, Young-Chul; Bassig, Bryan A; Chang, Jiang; Ho, James Chung Man; Ji, Bu-Tian; Kubo, Michiaki; Daigo, Yataro; Ito, Hidemi; Momozawa, Yukihide; Ashikawa, Kyota; Kamatani, Yoichiro; Honda, Takayuki; Sakamoto, Hiromi; Kunitoh, Hideo; Tsuta, Koji; Watanabe, Shun-Ichi; Nokihara, Hiroshi; Miyagi, Yohei; Nakayama, Haruhiko; Matsumoto, Shingo; Tsuboi, Masahiro; Goto, Koichi; Yin, Zhihua; Shi, Jianxin; Takahashi, Atsushi; Goto, Akiteru; Minamiya, Yoshihiro; Shimizu, Kimihiro; Tanaka, Kazumi; Wu, Tangchun; Wei, Fusheng; Wong, Jason Y Y; Matsuda, Fumihiko; Su, Jian; Kim, Yeul Hong; Oh, In-Jae; Song, Fengju; Lee, Victor Ho Fun; Su, Wu-Chou; Chen, Yuh-Min; Chang, Gee-Chen; Chen, Kuan-Yu; Huang, Ming-Shyan; Yang, Pan-Chyr; Lin, Hsien-Chih; Xiang, Yong-Bing; Seow, Adeline; Park, Jae Yong; Kweon, Sun-Seog; Chen, Chien-Jen; Li, Haixin; Gao, Yu-Tang; Wu, Chen; Qian, Biyun; Lu, Daru; Liu, Jianjun; Jeon, Hyo-Sung; Hsiao, Chin-Fu; Sung, Jae Sook; Tsai, Ying-Huang; Jung, Yoo Jin; Guo, Huan; Hu, Zhibin; Wang, Wen-Chang; Chung, Charles C; Lawrence, Charles; Burdett, Laurie; Yeager, Meredith; Jacobs, Kevin B; Hutchinson, Amy; Berndt, Sonja I; He, Xingzhou; Wu, Wei; Wang, Junwen; Li, Yuqing; Choi, Jin Eun; Park, Kyong Hwa; Sung, Sook Whan; Liu, Li; Kang, Chang Hyun; Hu, Lingmin; Chen, Chung-Hsing; Yang, Tsung-Ying; Xu, Jun; Guan, Peng; Tan, Wen; Wang, Chih-Liang; Sihoe, Alan Dart Loon; Chen, Ying; Choi, Yi Young; Hung, Jen-Yu; Kim, Jun Suk; Yoon, Ho-Il; Cai, Qiuyin; Lin, Chien-Chung; Park, In Kyu; Xu, Ping; Dong, Jing; Kim, Christopher; He, Qincheng; Perng, Reury-Perng; Chen, Chih-Yi; Vermeulen, Roel; Wu, Junjie; Lim, Wei-Yen; Chen, Kun-Chieh; Chan, John K C; Chu, Minjie; Li, Yao-Jen; Li, Jihua; Chen, Hongyan; Yu, Chong-Jen; Jin, Li; Lo, Yen-Li; Chen, Ying-Hsiang; Fraumeni, Joseph F; Liu, Jie; Yamaji, Taiki; Yang, Yang; Hicks, Belynda; Wyatt, Kathleen; Li, Shengchao A; Dai, Juncheng; Ma, Hongxia; Jin, Guangfu; Song, Bao; Wang, Zhehai; Cheng, Sensen; Li, Xuelian; Ren, Yangwu; Cui, Ping; Iwasaki, Motoki; Shimazu, Taichi; Tsugane, Shoichiro; Zhu, Junjie; Jiang, Gening; Fei, Ke; Wu, Guoping; Chien, Li-Hsin; Chen, Hui-Ling; Su, Yu-Chun; Tsai, Fang-Yu; Chen, Yi-Song; Yu, Jinming; Stevens, Victoria L; Laird-Offringa, Ite A; Marconett, Crystal N; Lin, Dongxin; Chen, Kexin; Wu, Yi-Long; Landi, Maria Teresa; Shen, Hongbing; Rothman, Nathaniel; Kohno, Takashi; Chanock, Stephen J; Lan, Qing

    2017-01-15

    To evaluate associations by EGFR mutation status for lung adenocarcinoma risk among never-smoking Asian women, we conducted a meta-analysis of 11 loci previously identified in genome-wide association studies (GWAS). Genotyping in an additional 10,780 never-smoking cases and 10,938 never-smoking controls from Asia confirmed associations with eight known single nucleotide polymorphisms (SNPs). Two new signals were observed at genome-wide significance (P Asian women and highlight the importance of how the germline could inform risk for specific tumour mutation patterns, which could have important translational implications. Published by Oxford University Press 2016. This work is written by US Government employees and is in the public domain in the US.

  15. Integrated ligand-receptor bioinformatic and in vitro functional analysis identifies active TGFA/EGFR signaling loop in papillary thyroid carcinomas.

    Directory of Open Access Journals (Sweden)

    Debora Degl'Innocenti

    Full Text Available BACKGROUND: Papillary thyroid carcinoma (PTCs, the most frequent thyroid cancer, is usually not life threatening, but may recur or progress to aggressive forms resistant to conventional therapies. A more detailed understanding of the signaling pathways activated in PTCs may help to identify novel therapeutic approaches against these tumors. The aim of this study is to identify signaling pathways activated in PTCs. METHODOLOGY/PRINCIPAL FINDINGS: We examined coordinated gene expression patterns of ligand/receptor (L/R pairs using the L/R database DRLP-rev1 and five publicly available thyroid cancer datasets of gene expression on a total of 41 paired PTC/normal thyroid tissues. We identified 26 (up and 13 (down L/R pairs coordinately and differentially expressed. The relevance of these L/R pairs was confirmed by performing the same analysis on REarranged during Transfection (RET/PTC1-infected thyrocytes with respect to normal thyrocytes. TGFA/EGFR emerged as one of the most tightly regulated L/R pair. Furthermore, PTC clinical samples analyzed by real-time RT-PCR expressed EGFR transcript levels similar to those of 5 normal thyroid tissues from patients with pathologies other than thyroid cancer, whereas significantly elevated levels of TGFA transcripts were only present in PTCs. Biochemical analysis of PTC cell lines demonstrated the presence of EGFR on the cell membrane and TGFA in conditioned media. Moreover, conditioned medium of the PTC cell line NIM-1 activated EGFR expressed on HeLa cells, culminating in both ERK and AKT phosphorylation. In NIM-1 cells harboring BRAF mutation, TGFA stimulated proliferation, contributing to PI3K/AKT activation independent of MEK/ERK signaling. CONCLUSIONS/SIGNIFICANCE: We compiled a reliable list of L/R pairs associated with PTC and validated the biological role of one of the emerged L/R pair, the TGFA/EGFR, in this cancer, in vitro. These data provide a better understanding of the factors involved in the

  16. Icotinib might be effective for the treatment of leptomeningeal carcinomatosis in non-small cell lung cancer with sensitive EGFR mutations.

    Science.gov (United States)

    Gong, Lei; Xiong, Ming; Huang, Zhiyu; Miao, Lulu; Fan, Yun

    2015-09-01

    The incidence of leptomeningeal carcinomatosis (LMC) has increased in patients with metastatic non-small cell lung cancer (NSCLC). This study aimed to evaluate the effect of icotinib in the treatment of LMC. Twenty-one NSCLC patients diagnosed with LMC and treated with icotinib were retrospectively reviewed. An exon 21 point mutation and an exon 19 deletion of EGFR were found in 10 and 11 patients, respectively. A standard dose of icotinib (125 mg/day, three times a day) was prescribed to 16 patients without previous icotinib therapy. A double dose of icotinib was prescribed to five patients who developed LMC during icotinib therapy with a standard dose. Eighteen of 20 patients showed improvement of dizziness and headache. Seventeen of 21 patients had an improved Eastern Cooperative Oncology Group performance status (ECOG PS) score after icotinib treatment. The median overall survival of the patients after the diagnosis of LMC was 10.1 months (95% confidence interval (CI): 8.4-12.0 months). Univariate analysis showed that the ECOG PS score, parenchymal brain metastasis, and previous icotinib administration were significantly associated with patient survival. Multivariate analysis also demonstrated that the ECOG PS score was an independent predictor for survival. Our results suggest that icotinib is effective for the treatment of LMC from NSCLC with an EGFR mutation, especially for patients with a good ECOG PS score. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. TGF{beta} induces proHB-EGF shedding and EGFR transactivation through ADAM activation in gastric cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Ebi, Masahide [Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya (Japan); Kataoka, Hiromi, E-mail: hkataoka@med.nagoya-cu.ac.jp [Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya (Japan); Shimura, Takaya; Kubota, Eiji; Hirata, Yoshikazu; Mizushima, Takashi; Mizoshita, Tsutomu; Tanaka, Mamoru; Mabuchi, Motoshi; Tsukamoto, Hironobu; Tanida, Satoshi; Kamiya, Takeshi [Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya (Japan); Higashiyama, Shigeki [Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Ehime (Japan); Joh, Takashi [Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya (Japan)

    2010-11-19

    Research highlights: {yields} TGF{beta} induces EGFR transactivation through proHB-EGF shedding by activated ADAM members in gastric cancer cells. {yields} TGF{beta} induces nuclear translocation of HB-EGF-CTF cleaved by ADAM members. {yields} TGF{beta} enhances cell growth by EGFR transactivation and HB-EGF-CTF nuclear translocation and ADAM inhibitors block these effects. {yields} Silencing of ADAM17 also blocks EGFR transactivation, HB-EGF-CTF nuclear translocation and cancer cell growth by TGF{beta}. {yields} ADAM17 may play a crucial role in this TGF{beta}-HB-EGF signal transduction. -- Abstract: Background and aims: Transforming growth factor-beta (TGF{beta}) is known to potently inhibit cell growth. Loss of responsiveness to TGF{beta} inhibition on cell growth is a hallmark of many types of cancer, yet its mechanism is not fully understood. Membrane-anchored heparin-binding EGF-like growth factor (proHB-EGF) ectodomain is cleaved by a disintegrin and metalloproteinase (ADAM) members and is implicated in epidermal growth factor receptor (EGFR) transactivation. Recently, nuclear translocation of the C-terminal fragment (CTF) of pro-HB-EGF was found to induce cell growth. We investigated the association between TGF{beta} and HB-EGF signal transduction via ADAM activation. Materials and methods: The CCK-8 assay in two gastric cancer cell lines was used to determine the effect for cell growth by TGF{beta}. The effect of two ADAM inhibitors was also evaluated. Induction of EGFR phosphorylation by TGF{beta} was analyzed and the effect of the ADAM inhibitors was also examined. Nuclear translocation of HB-EGF-CTF by shedding through ADAM activated by TGF{beta} was also analyzed. EGFR transactivation, HB-EGF-CTF nuclear translocation, and cell growth were examined under the condition of ADAM17 knockdown. Result: TGF{beta}-induced EGFR phosphorylation of which ADAM inhibitors were able to inhibit. TGF{beta} induced shedding of proHB-EGF allowing HB-EGF-CTF to

  18. TGFβ induces proHB-EGF shedding and EGFR transactivation through ADAM activation in gastric cancer cells

    International Nuclear Information System (INIS)

    Ebi, Masahide; Kataoka, Hiromi; Shimura, Takaya; Kubota, Eiji; Hirata, Yoshikazu; Mizushima, Takashi; Mizoshita, Tsutomu; Tanaka, Mamoru; Mabuchi, Motoshi; Tsukamoto, Hironobu; Tanida, Satoshi; Kamiya, Takeshi; Higashiyama, Shigeki; Joh, Takashi

    2010-01-01

    Research highlights: → TGFβ induces EGFR transactivation through proHB-EGF shedding by activated ADAM members in gastric cancer cells. → TGFβ induces nuclear translocation of HB-EGF-CTF cleaved by ADAM members. → TGFβ enhances cell growth by EGFR transactivation and HB-EGF-CTF nuclear translocation and ADAM inhibitors block these effects. → Silencing of ADAM17 also blocks EGFR transactivation, HB-EGF-CTF nuclear translocation and cancer cell growth by TGFβ. → ADAM17 may play a crucial role in this TGFβ-HB-EGF signal transduction. -- Abstract: Background and aims: Transforming growth factor-beta (TGFβ) is known to potently inhibit cell growth. Loss of responsiveness to TGFβ inhibition on cell growth is a hallmark of many types of cancer, yet its mechanism is not fully understood. Membrane-anchored heparin-binding EGF-like growth factor (proHB-EGF) ectodomain is cleaved by a disintegrin and metalloproteinase (ADAM) members and is implicated in epidermal growth factor receptor (EGFR) transactivation. Recently, nuclear translocation of the C-terminal fragment (CTF) of pro-HB-EGF was found to induce cell growth. We investigated the association between TGFβ and HB-EGF signal transduction via ADAM activation. Materials and methods: The CCK-8 assay in two gastric cancer cell lines was used to determine the effect for cell growth by TGFβ. The effect of two ADAM inhibitors was also evaluated. Induction of EGFR phosphorylation by TGFβ was analyzed and the effect of the ADAM inhibitors was also examined. Nuclear translocation of HB-EGF-CTF by shedding through ADAM activated by TGFβ was also analyzed. EGFR transactivation, HB-EGF-CTF nuclear translocation, and cell growth were examined under the condition of ADAM17 knockdown. Result: TGFβ-induced EGFR phosphorylation of which ADAM inhibitors were able to inhibit. TGFβ induced shedding of proHB-EGF allowing HB-EGF-CTF to translocate to the nucleus. ADAM inhibitors blocked this nuclear translocation. TGF

  19. Osimertinib and Necitumumab in Treating Patients With EGFR-Mutant Stage IV or Recurrent Non-small Cell Lung Cancer Who Have Progressed on a Previous EGFR Tyrosine Kinase Inhibitor

    Science.gov (United States)

    2018-03-07

    EGFR Exon 19 Deletion Mutation; EGFR Exon 20 Insertion Mutation; EGFR NP_005219.2:p.G719X; EGFR NP_005219.2:p.L858R; EGFR NP_005219.2:p.L861Q; EGFR NP_005219.2:p.T790M; EGFR T790M Mutation Negative; Recurrent Non-Small Cell Lung Carcinoma; Stage IV Non-Small Cell Lung Cancer AJCC v7

  20. Tyrosine dephosphorylation enhances the therapeutic target activity of epidermal growth factor receptor (EGFR) by disrupting its interaction with estrogen receptor (ER).

    Science.gov (United States)

    Ma, Shao; Yin, Ning; Qi, Xiaomei; Pfister, Sandra L; Zhang, Mei-Jie; Ma, Rong; Chen, Guan

    2015-05-30

    Protein-protein interactions can increase or decrease its therapeutic target activity and the determining factors involved, however, are largely unknown. Here, we report that tyrosine-dephosphorylation of epidermal growth factor receptor (EGFR) increases its therapeutic target activity by disrupting its interaction with estrogen receptor (ER). Protein tyrosine phosphatase H1 (PTPH1) dephosphorylates the tyrosine kinase EGFR, disrupts its interaction with the nuclear receptor ER, and increases breast cancer sensitivity to small molecule tyrosine kinase inhibitors (TKIs). These effects require PTPH1 catalytic activity and its interaction with EGFR, suggesting that the phosphatase may increase the sensitivity by dephosphorylating EGFR leading to its dissociation with ER. Consistent with this notion, a nuclear-localization defective ER has a higher EGFR-binding activity and confers the resistance to TKI-induced growth inhibition. Additional analysis show that PTPH1 stabilizes EGFR, stimulates the membranous EGFR accumulation, and enhances the growth-inhibitory activity of a combination therapy of TKIs with an anti-estrogen. Since EGFR and ER both are substrates for PTPH1 in vitro and in intact cells, these results indicate that an inhibitory EGFR-ER protein complex can be switched off through a competitive enzyme-substrate binding. Our results would have important implications for the treatment of breast cancer with targeted therapeutics.

  1. Clinical significance of BRAF non-V600E mutations on the therapeutic effects of anti-EGFR monoclonal antibody treatment in patients with pretreated metastatic colorectal cancer: the Biomarker Research for anti-EGFR monoclonal Antibodies by Comprehensive Cancer genomics (BREAC) study.

    Science.gov (United States)

    Shinozaki, Eiji; Yoshino, Takayuki; Yamazaki, Kentaro; Muro, Kei; Yamaguchi, Kensei; Nishina, Tomohiro; Yuki, Satoshi; Shitara, Kohei; Bando, Hideaki; Mimaki, Sachiyo; Nakai, Chikako; Matsushima, Koutatsu; Suzuki, Yutaka; Akagi, Kiwamu; Yamanaka, Takeharu; Nomura, Shogo; Fujii, Satoshi; Esumi, Hiroyasu; Sugiyama, Masaya; Nishida, Nao; Mizokami, Masashi; Koh, Yasuhiro; Abe, Yukiko; Ohtsu, Atsushi; Tsuchihara, Katsuya

    2017-11-07

    Patients with BRAF V600E -mutated metastatic colorectal cancer (mCRC) have a poorer prognosis as well as resistance to anti-EGFR antibodies. However, it is unclear whether BRAF mutations other than BRAF V600E (BRAF non-V600E mutations) contribute to anti-EGFR antibody resistance. This study was composed of exploratory and inference cohorts. Candidate biomarkers identified by whole exome sequencing from super-responders and nonresponders in the exploratory cohort were validated by targeted resequencing for patients who received anti-EGFR antibody in the inference cohort. In the exploratory cohort, 31 candidate biomarkers, including KRAS/NRAS/BRAF mutations, were identified. Targeted resequencing of 150 patients in the inference cohort revealed 40 patients with RAS (26.7%), 9 patients with BRAF V600E (6.0%), and 7 patients with BRAF non-V600E mutations (4.7%), respectively. The response rates in RAS, BRAF V600E , and BRAF non-V600E were lower than those in RAS/BRAF wild-type (2.5%, 0%, and 0% vs 31.9%). The median PFS in BRAF non-V600E mutations was 2.4 months, similar to that in RAS or BRAF V600E mutations (2.1 and 1.6 months) but significantly worse than that in wild-type RAS/BRAF (5.9 months). Although BRAF non-V600E mutations identified were a rare and unestablished molecular subtype, certain BRAF non-V600E mutations might contribute to a lesser benefit of anti-EGFR monoclonal antibody treatment.

  2. p53 mutations promote proteasomal activity.

    Science.gov (United States)

    Oren, Moshe; Kotler, Eran

    2016-07-27

    p53 mutations occur very frequently in human cancer. Besides abrogating the tumour suppressive functions of wild-type p53, many of those mutations also acquire oncogenic gain-of-function activities. Augmentation of proteasome activity is now reported as a common gain-of-function mechanism shared by different p53 mutants, which promotes cancer resistance to proteasome inhibitors.

  3. Analysis of PIK3CA Mutations and Activation Pathways in Triple Negative Breast Cancer.

    Directory of Open Access Journals (Sweden)

    Paolo Cossu-Rocca

    Full Text Available Triple Negative Breast Cancer (TNBC accounts for 12-24% of all breast carcinomas, and shows worse prognosis compared to other breast cancer subtypes. Molecular studies demonstrated that TNBCs are a heterogeneous group of tumors with different clinical and pathologic features, prognosis, genetic-molecular alterations and treatment responsivity. The PI3K/AKT is a major pathway involved in the regulation of cell survival and proliferation, and is the most frequently altered pathway in breast cancer, apparently with different biologic impact on specific cancer subtypes. The most common genetic abnormality is represented by PIK3CA gene activating mutations, with an overall frequency of 20-40%. The aims of our study were to investigate PIK3CA gene mutations on a large series of TNBC, to perform a wider analysis on genetic alterations involving PI3K/AKT and BRAF/RAS/MAPK pathways and to correlate the results with clinical-pathologic data.PIK3CA mutation analysis was performed by using cobas® PIK3CA Mutation Test. EGFR, AKT1, BRAF, and KRAS genes were analyzed by sequencing. Immunohistochemistry was carried out to identify PTEN loss and to investigate for PI3K/AKT pathways components.PIK3CA mutations were detected in 23.7% of TNBC, whereas no mutations were identified in EGFR, AKT1, BRAF, and KRAS genes. Moreover, we observed PTEN loss in 11.3% of tumors. Deregulation of PI3K/AKT pathways was revealed by consistent activation of pAKT and p-p44/42 MAPK in all PIK3CA mutated TNBC.Our data shows that PIK3CA mutations and PI3K/AKT pathway activation are common events in TNBC. A deeper investigation on specific TNBC genomic abnormalities might be helpful in order to select patients who would benefit from current targeted therapy strategies.

  4. Analysis of PIK3CA Mutations and Activation Pathways in Triple Negative Breast Cancer.

    Science.gov (United States)

    Cossu-Rocca, Paolo; Orrù, Sandra; Muroni, Maria Rosaria; Sanges, Francesca; Sotgiu, Giovanni; Ena, Sara; Pira, Giovanna; Murgia, Luciano; Manca, Alessandra; Uras, Maria Gabriela; Sarobba, Maria Giuseppina; Urru, Silvana; De Miglio, Maria Rosaria

    2015-01-01

    Triple Negative Breast Cancer (TNBC) accounts for 12-24% of all breast carcinomas, and shows worse prognosis compared to other breast cancer subtypes. Molecular studies demonstrated that TNBCs are a heterogeneous group of tumors with different clinical and pathologic features, prognosis, genetic-molecular alterations and treatment responsivity. The PI3K/AKT is a major pathway involved in the regulation of cell survival and proliferation, and is the most frequently altered pathway in breast cancer, apparently with different biologic impact on specific cancer subtypes. The most common genetic abnormality is represented by PIK3CA gene activating mutations, with an overall frequency of 20-40%. The aims of our study were to investigate PIK3CA gene mutations on a large series of TNBC, to perform a wider analysis on genetic alterations involving PI3K/AKT and BRAF/RAS/MAPK pathways and to correlate the results with clinical-pathologic data. PIK3CA mutation analysis was performed by using cobas® PIK3CA Mutation Test. EGFR, AKT1, BRAF, and KRAS genes were analyzed by sequencing. Immunohistochemistry was carried out to identify PTEN loss and to investigate for PI3K/AKT pathways components. PIK3CA mutations were detected in 23.7% of TNBC, whereas no mutations were identified in EGFR, AKT1, BRAF, and KRAS genes. Moreover, we observed PTEN loss in 11.3% of tumors. Deregulation of PI3K/AKT pathways was revealed by consistent activation of pAKT and p-p44/42 MAPK in all PIK3CA mutated TNBC. Our data shows that PIK3CA mutations and PI3K/AKT pathway activation are common events in TNBC. A deeper investigation on specific TNBC genomic abnormalities might be helpful in order to select patients who would benefit from current targeted therapy strategies.

  5. Epidermal Growth Factor Receptor Mutation Is Associated With Longer Local Control After Definitive Chemoradiotherapy in Patients With Stage III Nonsquamous Non–Small-Cell Lung Cancer

    International Nuclear Information System (INIS)

    Yagishita, Shigehiro; Horinouchi, Hidehito; Katsui Taniyama, Tomoko; Nakamichi, Shinji; Kitazono, Satoru; Mizugaki, Hidenori; Kanda, Shintaro; Fujiwara, Yutaka; Nokihara, Hiroshi; Yamamoto, Noboru; Sumi, Minako; Shiraishi, Kouya; Kohno, Takashi; Furuta, Koh; Tsuta, Koji; Tamura, Tomohide

    2015-01-01

    Purpose: To determine the frequency and clinical significance of epidermal growth factor receptor (EGFR) mutations in patients with potentially curable stage III non–small-cell lung cancer (NSCLC) who are eligible for definitive chemoradiotherapy (CRT). Patients and Methods: Between January 2001 and December 2010, we analyzed the EGFR mutational status in consecutive NSCLC patients who were treated by CRT. The response rate, relapse-free survival, 2-year relapse-free rate, initial relapse sites, and overall survival of the patients were investigated. Results: A total of 528 patients received CRT at our hospital during the study period. Of these, 274 were diagnosed as having nonsquamous NSCLC. Sufficient specimens for mutational analyses could be obtained from 198 of these patients. The proportion of patients with EGFR activating mutations was 17%. In addition to the well-known characteristics of patients carrying EGFR mutations (female, adenocarcinoma, and never/light smoker), the proportion of cases with smaller primary lesions (T1/2) was found to be higher in patients with EGFR mutations than in those with wild-type EGFR. Patients with EGFR mutations showed similar response rate, relapse-free survival, and 2-year relapse-free rates as compared to patients with wild-type EGFR. Local relapses as the site of initial relapse occurred significantly less frequently in patients with EGFR mutation (4% vs 21%; P=.045). Patients with EGFR mutations showed longer local control (adjusted hazard ratio 0.49; P=.043). After disease progression, a majority of the patients with EGFR mutations received EGFR tyrosine kinase inhibitors (62%), and these patients showed longer postprogression survival than those with wild-type EGFR. Conclusions: Our study is the first to show radiosensitive biology of EGFR-mutated tumors in definitive CRT with curative intent. This finding could serve as a credible baseline estimate of EGFR-mutated population in stage III nonsquamous NSCLC

  6. Epidermal Growth Factor Receptor Mutation Is Associated With Longer Local Control After Definitive Chemoradiotherapy in Patients With Stage III Nonsquamous Non–Small-Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yagishita, Shigehiro [Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo (Japan); Horinouchi, Hidehito, E-mail: hhorinou@ncc.go.jp [Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo (Japan); Katsui Taniyama, Tomoko; Nakamichi, Shinji; Kitazono, Satoru; Mizugaki, Hidenori; Kanda, Shintaro; Fujiwara, Yutaka; Nokihara, Hiroshi; Yamamoto, Noboru [Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo (Japan); Sumi, Minako [Department of Radiation Oncology, National Cancer Center Hospital, Tokyo (Japan); Shiraishi, Kouya; Kohno, Takashi [Division of Genome Biology, National Cancer Center Research Institute, Tokyo (Japan); Furuta, Koh [Department of Clinical Laboratories, National Cancer Center Hospital, Tokyo (Japan); Tsuta, Koji [Department of Pathology, National Cancer Center Hospital, Tokyo (Japan); Tamura, Tomohide [Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo (Japan)

    2015-01-01

    Purpose: To determine the frequency and clinical significance of epidermal growth factor receptor (EGFR) mutations in patients with potentially curable stage III non–small-cell lung cancer (NSCLC) who are eligible for definitive chemoradiotherapy (CRT). Patients and Methods: Between January 2001 and December 2010, we analyzed the EGFR mutational status in consecutive NSCLC patients who were treated by CRT. The response rate, relapse-free survival, 2-year relapse-free rate, initial relapse sites, and overall survival of the patients were investigated. Results: A total of 528 patients received CRT at our hospital during the study period. Of these, 274 were diagnosed as having nonsquamous NSCLC. Sufficient specimens for mutational analyses could be obtained from 198 of these patients. The proportion of patients with EGFR activating mutations was 17%. In addition to the well-known characteristics of patients carrying EGFR mutations (female, adenocarcinoma, and never/light smoker), the proportion of cases with smaller primary lesions (T1/2) was found to be higher in patients with EGFR mutations than in those with wild-type EGFR. Patients with EGFR mutations showed similar response rate, relapse-free survival, and 2-year relapse-free rates as compared to patients with wild-type EGFR. Local relapses as the site of initial relapse occurred significantly less frequently in patients with EGFR mutation (4% vs 21%; P=.045). Patients with EGFR mutations showed longer local control (adjusted hazard ratio 0.49; P=.043). After disease progression, a majority of the patients with EGFR mutations received EGFR tyrosine kinase inhibitors (62%), and these patients showed longer postprogression survival than those with wild-type EGFR. Conclusions: Our study is the first to show radiosensitive biology of EGFR-mutated tumors in definitive CRT with curative intent. This finding could serve as a credible baseline estimate of EGFR-mutated population in stage III nonsquamous NSCLC.

  7. p16INK4A, p53, EGFR expression and KRAS mutation status in squamous cell cancers of the anus: Correlation with outcomes following chemo-radiotherapy

    International Nuclear Information System (INIS)

    Gilbert, Duncan C; Williams, Anthony; Allan, Kimberley; Stokoe, Joanna; Jackson, Tim; Linsdall, Suzanne; Bailey, Charles MH; Summers, Jeff

    2013-01-01

    Background and Purpose: Squamous cell carcinomas of the anal canal are associated with infection with Human Papilloma Viruses (HPVs). Chemo-radiotherapy (CRT) gives 70% 3-year relapse-free survival. Improved predictive markers and therapeutic options are required. Methods: Tumours from 153 patients treated with radical chemo-radiotherapy (50.4 Gy in 28 with concurrent Mitomycin and 5-Fluorouracil between 2004 and 2009) were retrieved and immunohistochemistry performed for p16 INK4A , p53 and EGFR and correlated with outcome. Primary and relapsed samples were analysed for mutations in KRAS. Results: 137/153 (89.5%) stained moderately or strongly for p16 INK4A . p16 INK4A correlated strongly with outcome. 37/137 patients demonstrating moderate/strong p16 INK4A expression relapsed (27.0%), as opposed to 10/16 (62.5%) with absent/weak staining (log rank test p INK4A negative tumours were more frequent in men. p16 INK4A negative patients had significantly worse overall survival (p INK4A is strongly associated with relapse in SCC of the anus and identifies patients with very poor rates of relapse-free and overall survival. Primary and recurrent anal cancer expresses wild type KRAS, unaffected by treatment, supporting trials targeting EGFR in poor risk/recurrent anal cancer

  8. MLH1 V384D polymorphism associates with poor response to EGFR tyrosine kinase inhibitors in patients with EGFR L858R-positive lung adenocarcinoma.

    Science.gov (United States)

    Chiu, Chao-Hua; Ho, Hsiang-Ling; Doong, Howard; Yeh, Yi-Chen; Chen, Mei-Yu; Chou, Teh-Ying; Tsai, Chun-Ming

    2015-04-10

    A significant fraction of patients with lung adenocarcinomas harboring activating epidermal growth factor receptor (EGFR) mutations do not experience clinical benefits from EGFR tyrosine kinase inhibitor (TKI) therapy. Using next-generation sequencing, we screened 739 mutation hotspots in 46 cancer-related genes in EGFR L858R-mutant lung adenocarcinomas from 29 patients who received EGFR-TKI therapy; 13 had short ( 1 year) progression-free survival (PFS). We discovered MLH1 V384D as a genetic variant enriched in the group of patients with short PFS. Next, we investigated this genetic variation in 158 lung adenocarcinomas with the EGFR L858R mutation and found 14 (8.9%) patients had MLH1 V384D; available blood or non-tumor tissues from patients were also tested positive for MLH1 V384D. Patients with MLH1 V384D had a significantly shorter median PFS than those without (5.1 vs. 10.6 months; P= 0.001). Multivariate analysis showed that MLH1 V384D polymorphism was an independent predictor for a reduced PFS time (hazard ratio, 3.5; 95% confidence interval, 1.7 to 7.2; P= 0.001). In conclusion, MLH1 V384D polymorphism is associated with primary resistance to EGFR-TKIs in patients with EGFR L858R-positive lung adenocarcinoma and may potentially be a novel biomarker to guide treatment decisions.

  9. Urokinase-type plasminogen activator receptor (uPAR), tissue factor (TF) and epidermal growth factor receptor (EGFR)

    DEFF Research Database (Denmark)

    Christensen, Anders; Kiss, Katalin; Lelkaitis, Giedrius

    2017-01-01

    Background: Tumor-specific biomarkers are a prerequisite for the development of targeted imaging and therapy in oral squamous cell carcinoma (OSCC). urokinase-type Plasminogen Activator Receptor (uPAR), Tissue Factor (TF) and Epidermal Growth Factor Receptor (EGFR) are three biomarkers that exhib...... with a reduced survival. uPAR seems to be a prognostic biomarker in oral cancer....

  10. A polymorphism of EGFR extracellular domain is associated with progression free-survival in metastatic colorectal cancer patients receiving cetuximab-based treatment

    International Nuclear Information System (INIS)

    Gonçalves, Anthony; Turrini, Olivier; Lelong, Bernard; Viens, Patrice; Borg, Jean-Paul; Birnbaum, Daniel; Olschwang, Sylviane; Viret, Frédéric; Esteyries, Séverine; Taylor-Smedra, Brynn; Lagarde, Arnaud; Ayadi, Mounay; Monges, Geneviève; Bertucci, François; Esterni, Benjamin; Delpero, Jean-Robert

    2008-01-01

    Cetuximab, a monoclonal antibody targeting Epidermal Growth Factor Receptor (EGFR), is currently used in metastatic colorectal cancer (mCRC), but predictive factors for therapeutic response are lacking. Mutational status of KRAS and EGFR, and EGFR copy number are potential determinants of cetuximab activity. We analyzed tumor tissues from 32 EGFR-positive mCRC patients receiving cetuximab/irinotecan combination and evaluable for treatment response. EGFR copy number was quantified by fluorescence in situ hybridization (FISH). KRAS exon 1 and EGFR exons coding for extracellular regions were sequenced. Nine patients experienced an objective response (partial response) and 23 were considered as nonresponders (12 with stable disease and 11 with progressive disease). There was no EGFR amplification found, but high polysomy was noted in 2 patients, both of which were cetuximab responders. No EGFR mutations were found but a variant of exon 13 (R521K) was observed in 12 patients, 11 of which achieved objective response or stable disease. Progression-free and overall survivals were significantly better in patients with this EGFR exon 13 variant. KRAS mutations were found in 14 cases. While there was a trend for an increased KRAS mutation frequency in nonresponder patients (12 mutations out of 23, 52%) as compared to responder patients (2 out of 9, 22%), authentic tumor response or long-term disease stabilization was found in KRAS mutated patients. This preliminary study suggests that: an increase in EGFR copy number may be associated with cetuximab response but is a rare event in CRC, KRAS mutations are associated with low response rate but do not preclude any cetuximab-based combination efficacy and EGFR exon 13 variant (R521K) may predict for cetuximab benefit

  11. EGFR overexpressing cells and tumors are dependent on autophagy for growth and survival

    International Nuclear Information System (INIS)

    Jutten, Barry; Keulers, Tom G.; Schaaf, Marco B.E.; Savelkouls, Kim; Theys, Jan; Span, Paul N.; Vooijs, Marc A.; Bussink, Johan; Rouschop, Kasper M.A.

    2013-01-01

    Background and purpose: The epidermal growth factor receptor (EGFR) is overexpressed, amplified or mutated in various human epithelial tumors, and is associated with tumor aggressiveness and therapy resistance. Autophagy activation provides a survival advantage for cells in the tumor microenvironment. In the current study, we assessed the potential of autophagy inhibition (using chloroquine (CQ)) in treatment of EGFR expressing tumors. Material and methods: Quantitative PCR, immunohistochemistry, clonogenic survival, proliferation assays and in vivo tumor growth were used to assess this potential. Results: We show that EGFR overexpressing xenografts are sensitive to CQ treatment and are sensitized to irradiation by autophagy inhibition. In HNSSC xenografts, a correlation between EGFR and expression of the autophagy marker LC3b is observed, suggesting a role for autophagy in EGFR expressing tumors. This observation was substantiated in cell lines, showing high EGFR expressing cells to be more sensitive to CQ addition as reflected by decreased proliferation and survival. Surprisingly high EGFR expressing cells display a lower autophagic flux. Conclusions: The EGFR high expressing cells and tumors investigated in this study are highly dependent on autophagy for growth and survival. Inhibition of autophagy may therefore provide a novel treatment opportunity for EGFR overexpressing tumors

  12. Structural insights into drug development strategy targeting EGFR T790M/C797S.

    Science.gov (United States)

    Zhu, Su-Jie; Zhao, Peng; Yang, Jiao; Ma, Rui; Yan, Xiao-E; Yang, Sheng-Yong; Yang, Jing-Wen; Yun, Cai-Hong

    2018-03-02

    Treatment of non-small-cell lung cancers (NSCLCs) harboring primary EGFR oncogenic mutations such as L858R and exon 19 deletion delE746_A750 (Del-19) using gefitinib/erlotinib ultimately fails due to the emergence of T790M mutation. Though WZ4002/CO-1686/AZD9291 are effective in overcoming EGFR T790M by targeting Cys797 via covalent bonding, their efficacy is again limited due to the emergence of C797S mutation. New agents effectively inhibiting EGFR T790M without covalent linkage through Cys 797 may solve this problem. We presented here crystal structures of EGFR activating/drug-resistant mutants in complex with a panel of reversible inhibitors along with mutagenesis and enzyme kinetic data. These data revealed a previously un-described hydrophobic clamp structure in the EGFR kinase which may be exploited to facilitate development of next generation drugs targeting EGFR T790M with or without concomitant C797S. Interestingly, mutations in the hydrophobic clamp that hinder drug binding often also weaken ATP binding and/or abolish kinase activity, thus do not readily result in resistance to the drugs.

  13. EGFR T790M mutation testing of non-small cell lung cancer tissue and blood samples artificially spiked with circulating cell-free tumor DNA: results of a round robin trial.

    Science.gov (United States)

    Fassunke, Jana; Ihle, Michaela Angelika; Lenze, Dido; Lehmann, Annika; Hummel, Michael; Vollbrecht, Claudia; Penzel, Roland; Volckmar, Anna-Lena; Stenzinger, Albrecht; Endris, Volker; Jung, Andreas; Lehmann, Ulrich; Zeugner, Silke; Baretton, Gustavo; Kreipe, Hans; Schirmacher, Peter; Kirchner, Thomas; Dietel, Manfred; Büttner, Reinhard; Merkelbach-Bruse, Sabine

    2017-10-01

    The European Commision (EC) recently approved osimertinib for the treatment of adult patients with locally advanced or metastatic non-small-cell lung cancer (NSCLC) harboring EGFR T790M mutations. Besides tissue-based testing, blood samples containing cell-free circulating tumor DNA (ctDNA) can be used to interrogate T790M status. Herein, we describe the conditions and results of a round robin trial (RRT) for T790M mutation testing in NSCLC tissue specimens and peripheral blood samples spiked with cell line DNA mimicking tumor-derived ctDNA. The underlying objectives of this two-staged external quality assessment (EQA) approach were (a) to evaluate the accuracy of T790M mutations testing across multiple centers and (b) to investigate if a liquid biopsy-based testing for T790M mutations in spiked blood samples is feasible in routine diagnostic. Based on a successfully completed internal phase I RRT, an open RRT for EGFR T790M mutation testing in tumor tissue and blood samples was initiated. In total, 48 pathology centers participated in the EQA. Of these, 47 (97.9%) centers submitted their analyses within the pre-defined time frame and 44 (tissue), respectively, 40 (plasma) successfully passed the test. The overall success rates in the RRT phase II were 91.7% (tissue) and 83.3% (blood), respectively. Thirty-eight out of 48 participants (79.2%) successfully passed both parts of the RRT. The RRT for blood-based EGFR testing initiated in Germany is, to the best of our knowledge, the first of his kind in Europe. In summary, our results demonstrate that blood-based genotyping for EGFR resistance mutations can be successfully integrated in routine molecular diagnostics complementing the array of molecular methods already available at pathology centers in Germany.

  14. Combination of icotinib, surgery, and internal-radiotherapy of a patient with lung cancer severely metastasized to the vertebrae bones with EGFR mutation: a case report.

    Science.gov (United States)

    Qu, Li-Li; Qin, Hai-Feng; Gao, Hong-Jun; Liu, Xiao-Qing

    2015-01-01

    A 48-year-old Chinese female was referred to us regarding EGFR-mutated advanced non-small cell lung cancer, and metastasis to left scapula and vertebrae bones which caused pathological fracture at T8 and T10 thoracic vertebrae. An aggressive combined therapy with icotinib, vertebrae operation, and radioactive particle implantation and immunotherapy was proposed to prevent paraplegia, relieve pain, and control the overall and local tumor lesions. No postoperative symptoms were seen after surgery, and the pain was significantly relieved. Icotinib merited a 31-month partial response with grade 1 diarrhea as its drug-related adverse event. High dose of icotinib was administered after pelvis lesion progression for 3 months with good tolerance. Combination therapy of icotinib, surgery, and internal radiation for metastases of the vertebrae bones from non-small cell lung cancer seems to be a very promising technique both for sufficient pain relief and for local control of the tumor, vertebrae operation can be an encouraging option for patients with EFGR positive mutation and good prognosis indicator.

  15. Combination of icotinib, surgery, and internal-radiotherapy of a patient with lung cancer severely metastasized to the vertebrae bones with EGFR mutation: a case report

    Directory of Open Access Journals (Sweden)

    Qu LL

    2015-06-01

    Full Text Available Li-Li Qu, Hai-Feng Qin, Hong-Jun Gao, Xiao-Qing Liu Department of Lung Cancer, Affiliated Hospital of Academy of Military Medical Science, Beijing, People’s Republic of China Abstract: A 48-year-old Chinese female was referred to us regarding EGFR-mutated advanced non-small cell lung cancer, and metastasis to left scapula and vertebrae bones which caused pathological fracture at T8 and T10 thoracic vertebrae. An aggressive combined therapy with icotinib, vertebrae operation, and radioactive particle implantation and immunotherapy was proposed to prevent paraplegia, relieve pain, and control the overall and local tumor lesions. No postoperative symptoms were seen after surgery, and the pain was significantly relieved. Icotinib merited a 31-month partial response with grade 1 diarrhea as its drug-related adverse event. High dose of icotinib was administered after pelvis lesion progression for 3 months with good tolerance. Combination therapy of icotinib, surgery, and internal radiation for metastases of the vertebrae bones from non-small cell lung cancer seems to be a very promising technique both for sufficient pain relief and for local control of the tumor, vertebrae operation can be an encouraging option for patients with EFGR positive mutation and good prognosis indicator. Keywords: lung cancer, spinal metastasis, pathological fracture, spinal canal stenosis, icotinib

  16. CpG island methylator phenotype is associated with the efficacy of sequential oxaliplatin- and irinotecan-based chemotherapy and EGFR-related gene mutation in Japanese patients with metastatic colorectal cancer.

    Science.gov (United States)

    Zhang, Xiaofei; Shimodaira, Hideki; Soeda, Hiroshi; Komine, Keigo; Takahashi, Hidekazu; Ouchi, Kota; Inoue, Masahiro; Takahashi, Masanobu; Takahashi, Shin; Ishioka, Chikashi

    2016-12-01

    The CpG island methylator phenotype (CIMP) with multiple promoter methylated loci has been observed in a subset of human colorectal cancer (CRC) cases. CIMP status, which is closely associated with specific clinicopathological and molecular characteristics, is considered a potential predictive biomarker for efficacy of cancer treatment. However, the relationship between the effect of standard chemotherapy, including cytotoxic drugs and anti-epidermal growth factor receptor (EGFR) antibodies, and CIMP status has not been elucidated. In 125 metastatic colorectal cancer (mCRC) patients, we investigated how clinical outcome of chemotherapy was related to CIMP status as detected by methylation-specific PCR (MSP) and to genetic status in five EGFR-related genes (KRAS, BRAF, PIK3CA, NRAS, and AKT1) as detected by direct sequencing. CIMP-positive status was significantly associated with proximal tumor location and peritoneum metastasis (all P values CIMP-positive tumors receiving sequential therapy with FOLFOX as the first-line treatment followed by irinotecan-based therapy as the second-line treatment (median = 6.6 months) was inferior to that of such patients receiving the reverse sequence (median = 15.2 months; P = 0.043). Furthermore, CIMP-positive tumors showed higher mutation frequencies for the five EGFR-related genes (74.1 %) than the CIMP-negative tumors did (50.0 %). Among the KRAS wild-type tumors, CIMP-positive tumors were associated with a worse clinical outcome than CIMP-negative tumors following anti-EGFR antibody therapy. Sequential FOLFOX followed by an irinotecan-based regimen is unfavorable in patients with CIMP-positive tumors. High frequencies of mutation in EGFR-related genes in CIMP-positive tumors may cause the lower response to anti-EGFR antibody therapy seen in patients with wild-type KRAS and CIMP-positive tumors.

  17. Resistance to EGFR inhibitors in non-small cell lung cancer: Clinical management and future perspectives.

    Science.gov (United States)

    Tomasello, Chiara; Baldessari, Cinzia; Napolitano, Martina; Orsi, Giulia; Grizzi, Giulia; Bertolini, Federica; Barbieri, Fausto; Cascinu, Stefano

    2018-03-01

    In the last few years, the development of targeted therapies for non-small cell lung cancer (NSCLC) expressing oncogenic driver mutations (e.g. EGFR) has changed the clinical management and the survival outcomes of this specific minority of patients. Several phase III trials demonstrated the superiority of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKIs) over chemotherapy in EGFR-mutant NSCLC patients. However, in the vast majority of cases EGFR TKIs lose their clinical activity within 8-12 months. Many genetic aberrations have been described as possible mechanisms of EGFR TKIs acquired resistance and can be clustered in four main sub-groups: 1. Development of secondary EGFR mutations; 2. Activation of parallel signaling pathways; 3. Histological transformation; 4. Activation of downstream signaling pathways. In this review we will describe the molecular alterations underlying each of these EGFR TKIs resistance mechanisms, focusing on the currently available and future therapeutic strategies to overcome these phenomena. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Sphingosine 1-Phosphate Activation of EGFR As a Novel Target for Meningitic Escherichia coli Penetration of the Blood-Brain Barrier

    Science.gov (United States)

    Wang, Xiangru; Maruvada, Ravi; Morris, Andrew J.; Liu, Jun O.; Baek, Dong Jae; Kim, Kwang Sik

    2016-01-01

    Central nervous system (CNS) infection continues to be an important cause of mortality and morbidity, necessitating new approaches for investigating its pathogenesis, prevention and therapy. Escherichia coli is the most common Gram-negative bacillary organism causing meningitis, which develops following penetration of the blood–brain barrier (BBB). By chemical library screening, we identified epidermal growth factor receptor (EGFR) as a contributor to E. coli invasion of the BBB in vitro. Here, we obtained the direct evidence that CNS-infecting E. coli exploited sphingosine 1-phosphate (S1P) for EGFR activation in penetration of the BBB in vitro and in vivo. We found that S1P was upstream of EGFR and participated in EGFR activation through S1P receptor as well as through S1P-mediated up-regulation of EGFR-related ligand HB-EGF, and blockade of S1P function through targeting sphingosine kinase and S1P receptor inhibited EGFR activation, and also E. coli invasion of the BBB. We further found that both S1P and EGFR activations occurred in response to the same E. coli proteins (OmpA, FimH, NlpI), and that S1P and EGFR promoted E. coli invasion of the BBB by activating the downstream c-Src. These findings indicate that S1P and EGFR represent the novel host targets for meningitic E. coli penetration of the BBB, and counteracting such targets provide a novel approach for controlling E. coli meningitis in the era of increasing resistance to conventional antibiotics. PMID:27711202

  19. Histone Deacetylase 3 Inhibition Overcomes BIM Deletion Polymorphism-Mediated Osimertinib Resistance in EGFR-Mutant Lung Cancer.

    Science.gov (United States)

    Tanimoto, Azusa; Takeuchi, Shinji; Arai, Sachiko; Fukuda, Koji; Yamada, Tadaaki; Roca, Xavier; Ong, S Tiong; Yano, Seiji

    2017-06-15

    Purpose: The BIM deletion polymorphism is associated with apoptosis resistance to EGFR tyrosine kinase inhibitors (EGFR-TKI), such as gefitinib and erlotinib, in non-small cell lung cancer (NSCLC) harboring EGFR mutations. Here, we investigated whether the BIM deletion polymorphism contributes to resistance against osimertinib, a third-generation EGFR-TKI. In addition, we determined the efficacy of a histone deacetylase (HDAC) inhibitor, vorinostat, against this form of resistance and elucidated the underlying mechanism. Experimental Design: We used EGFR -mutated NSCLC cell lines, which were either heterozygous or homozygous for the BIM deletion polymorphism, to evaluate the effect of osimertinib in vitro and in vivo Protein expression was examined by Western blotting. Alternative splicing of BIM mRNA was analyzed by RT-PCR. Results: EGFR -mutated NSCLC cell lines with the BIM deletion polymorphism exhibited apoptosis resistance to osimertinib in a polymorphism dosage-dependent manner, and this resistance was overcome by combined use with vorinostat. Experiments with homozygous BIM deletion-positive cells revealed that vorinostat affected the alternative splicing of BIM mRNA in the deletion allele, increased the expression of active BIM protein, and thereby induced apoptosis in osimertinib-treated cells. These effects were mediated predominantly by HDAC3 inhibition. In xenograft models, combined use of vorinostat with osimertinib could regress tumors in EGFR -mutated NSCLC cells homozygous for the BIM deletion polymorphism. Moreover, this combination could induce apoptosis even when tumor cells acquired EGFR -T790M mutations. Conclusions: These findings indicate the importance of developing HDAC3-selective inhibitors, and their combined use with osimertinib, for treating EGFR -mutated lung cancers carrying the BIM deletion polymorphism. Clin Cancer Res; 23(12); 3139-49. ©2016 AACR . ©2016 American Association for Cancer Research.

  20. Anti-tumor activity of high-dose EGFR tyrosine kinase inhibitor and sequential docetaxel in wild type EGFR non-small cell lung cancer cell nude mouse xenografts

    Science.gov (United States)

    Tang, Ning; Zhang, Qianqian; Fang, Shu; Han, Xiao; Wang, Zhehai

    2017-01-01

    Treatment of non-small-cell lung cancer (NSCLC) with wild-type epidermal growth factor receptor (EGFR) is still a challenge. This study explored antitumor activity of high-dose icotinib (an EGFR tyrosine kinase inhibitor) plus sequential docetaxel against wild-type EGFR NSCLC cells-generated nude mouse xenografts. Nude mice were subcutaneously injected with wild-type EGFR NSCLC A549 cells and divided into different groups for 3-week treatment. Tumor xenograft volumes were monitored and recorded, and at the end of experiments, tumor xenografts were removed for Western blot and immunohistochemical analyses. Compared to control groups (negative control, regular-dose icotinib [IcoR], high-dose icotinib [IcoH], and docetaxel [DTX]) and regular icotinib dose (60 mg/kg) with docetaxel, treatment of mice with a high-dose (1200 mg/kg) of icotinib plus sequential docetaxel for 3 weeks (IcoH-DTX) had an additive effect on suppression of tumor xenograft size and volume (P Icotinib-containing treatments markedly reduced phosphorylation of EGFR, mitogen activated protein kinase (MAPK), and protein kinase B (Akt), but only the high-dose icotinib-containing treatments showed an additive effect on CD34 inhibition (P icotinib plus docetaxel had a similar effect on mouse weight loss (a common way to measure adverse reactions in mice), compared to the other treatment combinations. The study indicate that the high dose of icotinib plus sequential docetaxel (IcoH-DTX) have an additive effect on suppressing the growth of wild-type EGFR NSCLC cell nude mouse xenografts, possibly through microvessel density reduction. Future clinical trials are needed to confirm the findings of this study. PMID:27852073

  1. Real-World Data on Prognostic Factors for Overall Survival in EGFR Mutation-Positive Advanced Non-Small Cell Lung Cancer Patients Treated with First-Line Gefitinib.

    Science.gov (United States)

    Yao, Zong-Han; Liao, Wei-Yu; Ho, Chao-Chi; Chen, Kuan-Yu; Shih, Jin-Yuan; Chen, Jin-Shing; Lin, Zhong-Zhe; Lin, Chia-Chi; Chih-Hsin Yang, James; Yu, Chong-Jen

    2017-09-01

    This study aimed to identify independent prognostic factors for overall survival (OS) of patients with advanced non-small cell lung cancer (NSCLC) harboring an activating epidermal growth factor receptor (EGFR) mutation and receiving gefitinib as first-line treatment in real-world practice. We enrolled 226 patients from June 2011 to May 2013. During this period, gefitinib was the only EGFR-tyrosine kinase inhibitor reimbursed by the Bureau of National Health Insurance of Taiwan. The median progression-free survival and median OS were 11.9 months (95% confidence interval [CI]: 9.7-14.2) and 26.9 months (21.2-32.5), respectively. The Cox proportional hazards regression model revealed that postoperative recurrence, performance status (Eastern Cooperative Oncology Grade [ECOG] ≥2), smoking index (≥20 pack-years), liver metastasis at initial diagnosis, and chronic hepatitis C virus (HCV) infection were independent prognostic factors for OS (hazard ratio [95% CI] 0.3 [0.11-0.83], p  = .02; 2.69 [1.60-4.51], p  lung cancer (NSCLC) patients treated with first-line gefitinib may raise awareness of benefit from anti-HCV treatment in this patient population. Brain metastasis in the initial diagnosis or intracranial progression during gefitinib treatment is not a prognostic factor for OS. This study, which enrolled a real-world population of NSCLC patients, including sicker patients who were not eligible for a clinical trial, may have impact on guiding usual clinical practice. © AlphaMed Press 2017.

  2. [Efficacy of icotinib for advanced non-small cell lung cancer patients with EGFR status identified].

    Science.gov (United States)

    Song, Zhengbo; Yu, Xinmin; Cai, Jufen; Shao, Lan; Lin, Baochai; He, Chunxiao; Zhang, Beibei; Zhang, Yiping

    2013-03-01

    As the first epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) in China, icotinib shows promising anticancer activity in vitro and vivo. The phase III clinical study (ICOGEN) showed that icotinib has a good efficacy and tolerability in Chinese patients with advanced non-small cell lung cancer (NSCLC) compared with gefitinib. This retrospective study aims to evaluate the efficacy and tolerability of icotinib monotherapy for advanced NSCLC patients with EGFR mutation and wild-type patients in our hospital. Patients with advanced NSCLC who were treated with icotinib in Zhejiang Cancer Hospital were retrospectively analyzed from August, 2011 to August, 2012. Survival was estimated using Kaplan-Meier analysis and Log-rank tests. The clinical data of 49 patients (13 with wild-type and 36 with EGFR mutation) with NSCLC were enrolled in the current study. The patients' overall objective response rate (ORR) was 58.3% and the disease control rate (DCR) in 36 EGFR mutation patients was 88.9%. The ORR was 7.7% and DCR was 53.8% in the wild-type patients. Median progression-free survival (PFS) with icotinib treatment in EGFR mutation patients was 9.5 months and 2.2 months in wild-type patients (Picotinib as first-line and 17 in further-line treatment. The PFS was 9.5 months in the first-line and 8.5 months for second-line or further-line patients (P=0.41). Median overall survival (OS) in EGFR mutation patients was not reached, but was 12.6 months in wild-type patients. Most of the drug-related adverse events were mild (grade I or II) and reversible with no grade IV toxicity. Icotinib monotherapy showed significant antitumor activity in advanced NSCLC EGFR mutation patients. The toxicity was well tolerated and acceptable.

  3. Profiling EGFR activity in head and neck squamous cell carcinoma by using a novel layered membrane Western blot technology.

    Science.gov (United States)

    Patel, Vyomesh; Ramesh, Arun; Traicoff, June L; Baibakov, Galina; Emmert-Buck, Michael R; Gutkind, J Silvio; Knezevic, Vladimir

    2005-05-01

    Given the role of epidermal growth factor receptor (EGFR) in head and neck squamous cell carcinomas (HNSCC), several rational approaches have now been utilized to abrogate tyrosine kinase activity and its disengagement from downstream signal transducers. Monitoring the activity of these molecules could potentially be useful to determine not only drug efficacy but also to identify HNSCC patients most likely to benefit from this type of therapy. In this study we have used a novel high throughput multi-layered Western blotting (MLWestern) method that allows the detection of multiple proteins from a single experiment in order to characterize key components in the EGFR signaling pathway in HNSCC cells. Total and activated forms of EGFR and the downstream effectors, Erk and Akt were readily detected in HNSCC cells, where in the control cells (HaCaT) these proteins could only be detected in EGF stimulated cells. Results from conventional Western blot and MLWestern were comparable. Clustering analysis of protein expression revealed similarities in cellular response between some of the cell lines indicative of similarities in their biological response. The data indicate that MLWestern can be potentially applied to identify molecular targets that could be used for rational therapeutic intervention strategies.

  4. Economic outcomes of maintenance gefitinib for locally advanced/metastatic non-small-cell lung cancer with unknown EGFR mutations: a semi-Markov model analysis.

    Directory of Open Access Journals (Sweden)

    Xiaohui Zeng

    Full Text Available BACKGROUND: Maintenance gefitinib significantly prolonged progression-free survival (PFS compared with placebo in patients from eastern Asian with locally advanced/metastatic non-small-cell lung cancer (NSCLC after four chemotherapeutic cycles (21 days per cycle of first-line platinum-based combination chemotherapy without disease progression. The objective of the current study was to evaluate the cost-effectiveness of maintenance gefitinib therapy after four chemotherapeutic cycle's stand first-line platinum-based chemotherapy for patients with locally advanced or metastatic NSCLC with unknown EGFR mutations, from a Chinese health care system perspective. METHODS AND FINDINGS: A semi-Markov model was designed to evaluate cost-effectiveness of the maintenance gefitinib treatment. Two-parametric Weibull and Log-logistic distribution were fitted to PFS and overall survival curves independently. One-way and probabilistic sensitivity analyses were conducted to assess the stability of the model designed. The model base-case analysis suggested that maintenance gefitinib would increase benefits in a 1, 3, 6 or 10-year time horizon, with incremental $184,829, $19,214, $19,328, and $21,308 per quality-adjusted life-year (QALY gained, respectively. The most sensitive influential variable in the cost-effectiveness analysis was utility of PFS plus rash, followed by utility of PFS plus diarrhoea, utility of progressed disease, price of gefitinib, cost of follow-up treatment in progressed survival state, and utility of PFS on oral therapy. The price of gefitinib is the most significant parameter that could reduce the incremental cost per QALY. Probabilistic sensitivity analysis indicated that the cost-effective probability of maintenance gefitinib was zero under the willingness-to-pay (WTP threshold of $16,349 (3 × per-capita gross domestic product of China. The sensitivity analyses all suggested that the model was robust. CONCLUSIONS: Maintenance gefitinib

  5. Gemcitabine enhances cell invasion via activating HAb18G/CD147-EGFR-pSTAT3 signaling.

    Science.gov (United States)

    Xu, Bao-Qing; Fu, Zhi-Guang; Meng, Yao; Wu, Xiao-Qing; Wu, Bo; Xu, Liang; Jiang, Jian-Li; Li, Ling; Chen, Zhi-Nan

    2016-09-20

    Pancreatic cancer, one of the most lethal cancers, has very poor 5-year survival partly due to gemcitabine resistance. Recently, it was reported that chemotherapeutic agents may act as stressors to induce adaptive responses and to promote chemoresistance in cancer cells. During long-term drug treatment, the minority of cancer cells survive and acquire an epithelial-mesenchymal transition phenotype with increased chemo-resistance and metastasis. However, the short-term response of most cancer cells remains unclear. This study aimed to investigate the short-term response of pancreatic cancer cells to gemcitabine stress and to explore the corresponding mechanism. Our results showed that gemcitabine treatment for 24 hours enhanced pancreatic cancer cell invasion. In gemcitabine-treated cells, HAb18G/CD147 was up-regulated; and HAb18G/CD147 down-regulation or inhibition attenuated gemcitabine-enhanced invasion. Mechanistically, HAb18G/CD147 promoted gemcitabine-enhanced invasion by activating the EGFR (epidermal growth factor receptor)-STAT3 (signal transducer and activator of transcription 3) signaling pathway. Inhibition of EGFR-STAT3 signaling counteracted gemcitabine-enhanced invasion, and which relied on HAb18G/CD147 levels. In pancreatic cancer tissues, EGFR was highly expressed and positively correlated with HAb18G/CD147. These data indicate that pancreatic cancer cells enhance cell invasion via activating HAb18G/CD147-EGFR-pSTAT3 signaling. Our findings suggest that inhibiting HAb18G/CD147 is a potential strategy for overcoming drug stress-associated resistance in pancreatic cancer.

  6. Epigenetic suppression of EGFR signaling in G-CIMP+ glioblastomas.

    Science.gov (United States)

    Li, Jie; Taich, Zachary J; Goyal, Amit; Gonda, David; Akers, Johnny; Adhikari, Bandita; Patel, Kunal; Vandenberg, Scott; Yan, Wei; Bao, Zhaoshi; Carter, Bob S; Wang, Renzhi; Mao, Ying; Jiang, Tao; Chen, Clark C

    2014-09-15

    The intrinsic signaling cascades and cell states associated with the Glioma CpG Island Methylator Phenotype (G-CIMP) remain poorly understood. Using published mRNA signatures associated with EGFR activation, we demonstrate that G-CIMP+ tumors harbor decreased EGFR signaling using three independent datasets, including the Chinese Glioma Genome Atlas(CGGA; n=155), the REMBRANDT dataset (n=288), and The Cancer Genome Atlas (TCGA; n=406). Additionally, an independent collection of 25 fresh-frozen glioblastomas confirmed lowered pERK levels in G-CIMP+ specimens (pCIMP+ glioblastomas harbored lowered mRNA levels for EGFR and H-Ras. Induction of G-CIMP+ state by exogenous expression of a mutated isocitrate dehydrogenase 1, IDH1-R132H, suppressed EGFR and H-Ras protein expression as well as pERK accumulation in independent glioblastoma models. These suppressions were associated with increased deposition of the repressive histone markers, H3K9me3 and H3K27me3, in the EGFR and H-Ras promoter regions. The IDH1-R132H expression-induced pERK suppression can be reversed by exogenous expression of H-RasG12V. Finally, the G-CIMP+ Ink4a-Arf-/- EGFRvIII glioblastoma line was more resistant to the EGFR inhibitor, Gefitinib, relative to its isogenic G-CIMP- counterpart. These results suggest that G-CIMP epigenetically regulates EGFR signaling and serves as a predictive biomarker for EGFR inhibitors in glioblastoma patients.

  7. NF-κB-Activating Complex Engaged in Response to EGFR Oncogene Inhibition Drives Tumor Cell Survival and Residual Disease in Lung Cancer

    Directory of Open Access Journals (Sweden)

    Collin M. Blakely

    2015-04-01

    Full Text Available Although oncogene-targeted therapy often elicits profound initial tumor responses in patients, responses are generally incomplete because some tumor cells survive initial therapy as residual disease that enables eventual acquired resistance. The mechanisms underlying tumor cell adaptation and survival during initial therapy are incompletely understood. Here, through the study of EGFR mutant lung adenocarcinoma, we show that NF-κB signaling is rapidly engaged upon initial EGFR inhibitor treatment to promote tumor cell survival and residual disease. EGFR oncogene inhibition induced an EGFR-TRAF2-RIP1-IKK complex that stimulated an NF-κB-mediated transcriptional survival program. The direct NF-κB inhibitor PBS-1086 suppressed this adaptive survival program and increased the magnitude and duration of initial EGFR inhibitor response in multiple NSCLC models, including a patient-derived xenograft. These findings unveil NF-κB activation as a critical adaptive survival mechanism engaged by EGFR oncogene inhibition and provide rationale for EGFR and NF-κB co-inhibition to eliminate residual disease and enhance patient responses.

  8. Molecular Basis for Necitumumab Inhibition of EGFR Variants Associated with Acquired Cetuximab Resistance.

    Science.gov (United States)

    Bagchi, Atrish; Haidar, Jaafar N; Eastman, Scott W; Vieth, Michal; Topper, Michael; Iacolina, Michelle D; Walker, Jason M; Forest, Amelie; Shen, Yang; Novosiadly, Ruslan D; Ferguson, Kathryn M

    2018-02-01

    Acquired resistance to cetuximab, an antibody that targets the EGFR, impacts clinical benefit in head and neck, and colorectal cancers. One of the mechanisms of resistance to cetuximab is the acquisition of mutations that map to the cetuximab epitope on EGFR and prevent drug binding. We find that necitumumab, another FDA-approved EGFR antibody, can bind to EGFR that harbors the most common cetuximab-resistant substitution, S468R (or S492R, depending on the amino acid numbering system). We determined an X-ray crystal structure to 2.8 Å resolution of the necitumumab Fab bound to an S468R variant of EGFR domain III. The arginine is accommodated in a large, preexisting cavity in the necitumumab paratope. We predict that this paratope shape will be permissive to other epitope substitutions, and show that necitumumab binds to most cetuximab- and panitumumab-resistant EGFR variants. We find that a simple computational approach can predict with high success which EGFR epitope substitutions abrogate antibody binding. This computational method will be valuable to determine whether necitumumab will bind to EGFR as new epitope resistance variants are identified. This method could also be useful for rapid evaluation of the effect on binding of alterations in other antibody/antigen interfaces. Together, these data suggest that necitumumab may be active in patients who are resistant to cetuximab or panitumumab through EGFR epitope mutation. Furthermore, our analysis leads us to speculate that antibodies with large paratope cavities may be less susceptible to resistance due to mutations mapping to the antigen epitope. Mol Cancer Ther; 17(2); 521-31. ©2017 AACR . ©2017 American Association for Cancer Research.

  9. Targeted sequencing identifies genetic alterations that confer primary resistance to EGFR tyrosine kinase inhibitor (Korean Lung Cancer Consortium).

    Science.gov (United States)

    Lim, Sun Min; Kim, Hye Ryun; Cho, Eun Kyung; Min, Young Joo; Ahn, Jin Seok; Ahn, Myung-Ju; Park, Keunchil; Cho, Byoung Chul; Lee, Ji-Hyun; Jeong, Hye Cheol; Kim, Eun Kyung; Kim, Joo-Hang

    2016-06-14

    Non-small-cell lung cancer (NSCLC) patients with activating epidermal growth factor receptor (EGFR) mutations may exhibit primary resistance to EGFR tyrosine kinase inhibitor (TKI). We aimed to examine genomic alterations associated with de novo resistance to gefitinib in a prospective study of NSCLC patients. One-hundred and fifty two patients with activating EGFR mutations were included in this study and 136 patients' tumor sample were available for targeted sequencing of genomic alterations in 22 genes using the Colon and Lung Cancer panel (Ampliseq, Life Technologies). All 132 patients with EGFR mutation were treated with gefitinib for their treatment of advanced NSCLC. Twenty patients showed primary resistance to EGFR TKI, and were classified as non-responders. A total of 543 somatic single-nucleotide variants (498 missense, 13 nonsense) and 32 frameshift insertions/deletions, with a median of 3 mutations per sample. TP53 was most commonly mutated (47%) and mutations in SMAD4 was also common (19%), as well as DDR2 (16%), PIK3CA (15%), STK11 (14%), and BRAF (7%). Genomic mutations in the PI3K/Akt/mTOR pathway were commonly found in non-responders (45%) compared to responders (27%), and they had significantly shorter progression-free survival and overall survival compared to patients without mutations (2.1 vs. 12.8 months, P=0.04, 15.7 vs. not reached, PAkt/mTOR pathway were commonly identified in non-responders and may confer resistance to EGFR TKI. Screening lung adenocarcinoma patients with clinical cancer gene test may aid in selecting out those who show primary resistance to EGFR TKI (NCT01697163).

  10. Up-regulation of fatty acid synthase induced by EGFR/ERK activation promotes tumor growth in pancreatic cancer

    Energy Technology Data Exchange (ETDEWEB)

    Bian, Yong, E-mail: drbiany@126.com [Department of Science and Technology, Nanjing University of Chinese Medicine, 210023 (China); Yu, Yun [College of Pharmacy, Nanjing University of Chinese Medicine, 210023 (China); Wang, Shanshan; Li, Lin [Department of Science and Technology, Nanjing University of Chinese Medicine, 210023 (China)

    2015-08-07

    Lipid metabolism is dysregulated in many human diseases including atherosclerosis, type 2 diabetes and cancers. Fatty acid synthase (FASN), a key lipogenic enzyme involved in de novo lipid biosynthesis, is significantly upregulated in multiple types of human cancers and associates with tumor progression. However, limited data is available to understand underlying biological functions and clinical significance of overexpressed FASN in pancreatic ductal adenocarcinoma (PDAC). Here, upregulated FASN was more frequently observed in PDAC tissues compared with normal pancreas in a tissue microarray. Kaplan–Meier survival analysis revealed that high expression level of FASN resulted in a significantly poor prognosis of PDAC patients. Knockdown or inhibition of endogenous FASN decreased cell proliferation and increased cell apoptosis in HPAC and AsPC-1 cells. Furthermore, we demonstrated that EGFR/ERK signaling accounts for elevated FASN expression in PDAC as ascertained by performing siRNA assays and using specific pharmacological inhibitors. Collectively, our results indicate that FASN exhibits important roles in tumor growth and EGFR/ERK pathway is responsible for upregulated expression of FASN in PDAC. - Highlights: • Increased expression of FASN indicates a poor prognosis in PDAC. • Elevated FASN favors tumor growth in PDAC in vitro. • Activation of EGFR signaling contributes to elevated FASN expression.

  11. Up-regulation of fatty acid synthase induced by EGFR/ERK activation promotes tumor growth in pancreatic cancer

    International Nuclear Information System (INIS)

    Bian, Yong; Yu, Yun; Wang, Shanshan; Li, Lin

    2015-01-01

    Lipid metabolism is dysregulated in many human diseases including atherosclerosis, type 2 diabetes and cancers. Fatty acid synthase (FASN), a key lipogenic enzyme involved in de novo lipid biosynthesis, is significantly upregulated in multiple types of human cancers and associates with tumor progression. However, limited data is available to understand underlying biological functions and clinical significance of overexpressed FASN in pancreatic ductal adenocarcinoma (PDAC). Here, upregulated FASN was more frequently observed in PDAC tissues compared with normal pancreas in a tissue microarray. Kaplan–Meier survival analysis revealed that high expression level of FASN resulted in a significantly poor prognosis of PDAC patients. Knockdown or inhibition of endogenous FASN decreased cell proliferation and increased cell apoptosis in HPAC and AsPC-1 cells. Furthermore, we demonstrated that EGFR/ERK signaling accounts for elevated FASN expression in PDAC as ascertained by performing siRNA assays and using specific pharmacological inhibitors. Collectively, our results indicate that FASN exhibits important roles in tumor growth and EGFR/ERK pathway is responsible for upregulated expression of FASN in PDAC. - Highlights: • Increased expression of FASN indicates a poor prognosis in PDAC. • Elevated FASN favors tumor growth in PDAC in vitro. • Activation of EGFR signaling contributes to elevated FASN expression

  12. EGFR and KRAS quality assurance schemes in pathology : generating normative data for molecular predictive marker analysis in targeted therapy

    NARCIS (Netherlands)

    Thunnissen, Erik; Bovée, Judith V M G; Bruinsma, Hans; van den Brule, Adriaan J C; Dinjens, Winand; Heideman, Daniëlle A M; Meulemans, Els; Nederlof, Petra; van Noesel, Carel; Prinsen, Clemens F M; Scheidel, Karen; van de Ven, Peter M; de Weger, Roel; Schuuring, Ed; Ligtenberg, Marjolijn

    2011-01-01

    Introduction The aim of this study was to compare the reproducibility of epidermal growth factor receptor (EGFR) immunohistochemistry (IHC), EGFR gene amplification analysis, and EGFR and KRAS mutation analysis among different laboratories performing routine diagnostic analyses in pathology in The

  13. [Clinical Observation of Icotinib Hydrochloride for Advanced Non-small Cell Lung Cancer Patients with EGFR Status Identified].

    Science.gov (United States)

    Li, Xi; Qin, Na; Wang, Jinghui; Yang, Xinjie; Zhang, Xinyong; Lv, Jialin; Wu, Yuhua; Zhang, Hui; Nong, Jingying; Zhang, Quan; Zhang, Shucai

    2015-12-01

    Icotinib is the first self-developed small molecular drug in China for targeted therapy of lung cancer. Compared to the other two commercially available epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors, gefitinib and erlotinib, icotinib is similar to them in chemical structure, mechanism of activity and therapeutic effects. To explore the efficacy and side effects of icotinib hydrochloride in the treatment of the advanced non-small cell lung cancer (NSCLC) patients with EGFR mutation and wild-type. Patients with advanced NSCLC who were treated with icotinib hydrochloride in Beijing Chest Hospital were retrospective analyzed from March 2009 to December 2014. The clinical data of 124 patients (99 with EGFR mutation and 25 with wild type) with advanced NSCLC were enrolled in this study. The patients' overall objective response rate (ORR) was 51.6 % and the disease control rate (DCR) was 79.8%; The patients with EGFR mutation, ORR was 63.6%, DCR was 93.9%. The ORR was 4.0% and the DCR was 24.0% in the wild-type patients. Median progression-free survival (PFS) with icotinib treatment in EGFR mutation patients was 10.5 months and 1.0 month in wild-type patients. The major adverse events were mild skin rash (30.6%) and diarrhea (16.1%). Monotherapy with icotinib hydrochloride is effective and tolerable for the advanced NSCLC EGFR mutation patients.


  14. Clinical Observation of Icotinib Hydrochloride for Advanced Non-small Cell Lung Cancer Patients with EGFR Status Identified

    Directory of Open Access Journals (Sweden)

    Xi LI

    2015-12-01

    Full Text Available Background and objective Icotinib is the first self-developed small molecular drug in China for targeted therapy of lung cancer. Compared to the other two commercially available epidermal growth factor receptor (EGFR tyrosine kinase inhibitors, gefitinib and erlotinib, icotinib is similar to them in chemical structure, mechanism of activity and therapeutic effects. To explore the efficacy and side effects of icotinib hydrochloride in the treatment of the advanced non-small cell lung cancer (NSCLC patients with EGFR mutation and wild-type. Methods Patients with advanced NSCLC who were treated with icotinib hydrochloride in Beijing Chest Hospital were retrospective analyzed from March 2009 to December 2014. Results The clinical data of 124 patients (99 with EGFR mutation and 25 with wild type with advanced NSCLC were enrolled in this study. The patients’ overall objective response rate (ORR was 51.6 % and the disease control rate (DCR was 79.8%; The patients with EGFR mutation, ORR was 63.6%, DCR was 93.9%. The ORR was 4.0% and the DCR was 24.0% in the wild-type patients. Median progression-free survival (PFS with icotinib treatment in EGFR mutation patients was 10.5 months and 1.0 month in wild-type patients. The major adverse events were mild skin rash (30.6% and diarrhea (16.1%. Conclusion Monotherapy with icotinib hydrochloride is effective and tolerable for the advanced NSCLC EGFR mutation patients.

  15. mTOR Inhibition Induces EGFR Feedback Activation in Association with Its Resistance to Human Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Feng Wei

    2015-02-01

    Full Text Available The mammalian target of rapamycin (mTOR is dysregulated in diverse cancers and contributes to tumor progression and drug resistance. The first generation of mTOR inhibitors have failed to show clinical efficiency in treating pancreatic cancers due in part to the feedback relief of the insulin-like growth factor-1 receptor (IGF-1R-AKT signaling pathway. The second generation of mTOR inhibitors, such as AZD8055, could inhibit AKT activation upon mTOR complex 2 (mTORC2 inhibition. However, whether this generation of mTOR inhibitors can obtain satisfactory activities in pancreatic cancer therapy remains unclear. In this study, we found AZD8055 did not show great improvement compared with everolimus, AZD8055 induced a temporal inhibition of AKT kinase activities and AKT was then rephosphorylated. Additionally, we found that AZD8055-induced transient AKT inhibition increased the expression and activation of epidermal growth factor receptor (EGFR by releasing its transcriptional factors Fork-head box O 1/3a (FoxO1/3a, which might contribute to cell resistance to AZD8055. The in vitro and in vivo experiments further indicated the combination of AZD8055 and erlotinib synergistically inhibited the mTORC1/C2 signaling pathway, EGFR/AKT feedback activation, and cell growth, as well as suppressed the progression of pancreatic cancer in a xenograft model. This study provides a rationale and strategy for overcoming AZD8055 resistance by a combined treatment with the EGFR inhibitor erlotinib in pancreatic cancer therapy.

  16. TCDD promoted EMT of hFPECs via AhR, which involved the activation of EGFR/ERK signaling

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhan [School of Public Health, Xinxiang Medical University, 453003 (China); The Fifth Affiliated Hospital, Zhengzhou University, 450052 (China); Bu, Yongjun [School of Public Health, Xinxiang Medical University, 453003 (China); Liu, Xiaozhuan [Medical College, Henan University of Science & Technology, 471023 (China); Wang, Xugang; Zhang, Guofu; Wang, Erhui; Ding, Shibin; Liu, Yongfeng; Shi, Ruling [School of Public Health, Xinxiang Medical University, 453003 (China); Li, Qiaoyun; Fu, Jianhong [The Fifth Affiliated Hospital, Zhengzhou University, 450052 (China); Yu, Zengli, E-mail: zly@zzu.edu.cn [School of Public Health, Xinxiang Medical University, 453003 (China); School of Public Health, Zhengzhou University, 450001 (China)

    2016-05-01

    One critical step of second palatal fusion is the newly formed medial epithelia seam (MES) disintegration, which involves apoptosis, epithelial to mesenchymal transition (EMT), and cell migration. Although the environmental toxicant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) produces cleft palate at high rates, little is known about the effects of TCDD exposure on the fate of palatal epithelial cells. By using primary epithelial cells isolated from human fetal palatal shelves (hFPECs), we show that TCDD increased cell proliferation and EMT, as demonstrated by increased the epithelial markers (E-cadherin and cytokeratin14) and enhanced the mesenchymal markers (vimentin and fibronectin), but had no effect on cell migration and apoptosis. TCDD exposure led to a dose-dependent increase in Slug protein expression. Coimmunoprecipitation revealed that TCDD promoted AhR to form a protein complex with Slug. ChIP assay confirmed that TCDD exposure recruited AhR to the xenobiotic responsive element of Slug promoter. Knockdown of AhR by siRNA remarkably weakened TCDD-induced binding of AhR to the XRE promoter of slug, thereby suppressed TCDD-induced vimentin. Further experiment showed that TCDD stimulated EGFR phosphorylation did not influence the TGFβ3/Smad signaling; whereas TCDD increased phosphorylation of ERK1/2 and p38 with no effect on activation of JNK. By using varieties of inhibitors, we confirmed that TCDD promoted proliferation and EMT of hFPECs via activation of EGFR/ERK pathway. These data make a novel contribution to the molecular mechanism of cleft palate by TCDD. - Highlights: • TCDD exposure promoted cell proliferation and EMT of hFPECs; • AhR signaling was activated and required for TCDD-induced EMT; • TCDD-mediated EMT of hFPECs involved the activation of EGFR/ERK signaling; • TCDD exposure had no effect on TGFβ3/Smad pathway.

  17. TCDD promoted EMT of hFPECs via AhR, which involved the activation of EGFR/ERK signaling

    International Nuclear Information System (INIS)

    Gao, Zhan; Bu, Yongjun; Liu, Xiaozhuan; Wang, Xugang; Zhang, Guofu; Wang, Erhui; Ding, Shibin; Liu, Yongfeng; Shi, Ruling; Li, Qiaoyun; Fu, Jianhong; Yu, Zengli

    2016-01-01

    One critical step of second palatal fusion is the newly formed medial epithelia seam (MES) disintegration, which involves apoptosis, epithelial to mesenchymal transition (EMT), and cell migration. Although the environmental toxicant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) produces cleft palate at high rates, little is known about the effects of TCDD exposure on the fate of palatal epithelial cells. By using primary epithelial cells isolated from human fetal palatal shelves (hFPECs), we show that TCDD increased cell proliferation and EMT, as demonstrated by increased the epithelial markers (E-cadherin and cytokeratin14) and enhanced the mesenchymal markers (vimentin and fibronectin), but had no effect on cell migration and apoptosis. TCDD exposure led to a dose-dependent increase in Slug protein expression. Coimmunoprecipitation revealed that TCDD promoted AhR to form a protein complex with Slug. ChIP assay confirmed that TCDD exposure recruited AhR to the xenobiotic responsive element of Slug promoter. Knockdown of AhR by siRNA remarkably weakened TCDD-induced binding of AhR to the XRE promoter of slug, thereby suppressed TCDD-induced vimentin. Further experiment showed that TCDD stimulated EGFR phosphorylation did not influence the TGFβ3/Smad signaling; whereas TCDD increased phosphorylation of ERK1/2 and p38 with no effect on activation of JNK. By using varieties of inhibitors, we confirmed that TCDD promoted proliferation and EMT of hFPECs via activation of EGFR/ERK pathway. These data make a novel contribution to the molecular mechanism of cleft palate by TCDD. - Highlights: • TCDD exposure promoted cell proliferation and EMT of hFPECs; • AhR signaling was activated and required for TCDD-induced EMT; • TCDD-mediated EMT of hFPECs involved the activation of EGFR/ERK signaling; • TCDD exposure had no effect on TGFβ3/Smad pathway.

  18. Study on the proliferation of human gastric cancer cell AGS by activation of EGFR in H2O2.

    Science.gov (United States)

    Wang, Q; Shen, W; Tao, G-Q; Sun, J; Shi, L-P

    2017-03-01

    This study is to investigate the effect of low concentration hydrogen peroxide (H2O2) on the proliferation of gastric cancer AGS cell line in vitro and the mechanism. AGS cells were treated with different low concentrations of H2O2 (1, 0.1, 0.01, and 0.001 μm) for 48 hours. The effect of H2O2 concentration gradient on the activity of AGS cell activities was detected by methyl thiazolyl tetrazolium (MTT) method. The expression of the epidermal growth factor receptor (EGFR) and its downstream signaling pathway extracellular signal-regulated kinase (ERK) protein in H2O2 was detected by Western blot method; moreover, the effect of H2O2 on intracellular reactive oxygen species (ROS) in AGS cells was observed under the fluorescence microscope and quantitative analysis by flow cytometry. The effect of H2O2 on the level of c-myc mRNA in AGS cells was also detected by reverse transcription polymerase chain reaction (RT-PCR). MTT detection results showed that 1 μm and 0.1 μm H2O2 at 48h can effectively promote the proliferation of AGS cells (pH2O2 treatment of AGS cells, the EGFR protein levels and ERK protein phosphorylation levels increased significantly (pH2O2 increased the intracellular reactive oxygen species (ROS). RT-PCR results showed the levels of c-myc mRNA in AGS cells treated with a low concentration of H2O2 were significantly increased (pH2O2 can significantly promote the proliferation of AGS cells by activating EGFR/ERK signaling pathway.

  19. Requirement of ERα and basal activities of EGFR and Src kinase in Cd-induced activation of MAPK/ERK pathway in human breast cancer MCF-7 cells

    Energy Technology Data Exchange (ETDEWEB)

    Song, Xiulong, E-mail: songxiulong@hotmail.com; Wei, Zhengxi; Shaikh, Zahir A., E-mail: zshaikh@uri.edu

    2015-08-15

    Cadmium (Cd) is a common environmental toxicant and an established carcinogen. Epidemiological studies implicate Cd with human breast cancer. Low micromolar concentrations of Cd promote proliferation of human breast cancer cells in vitro. The growth promotion of breast cancer cells is associated with the activation of MAPK/ERK pathway. This study explores the mechanism of Cd-induced activation of MAPK/ERK pathway. Specifically, the role of cell surface receptors ERα, EGFR, and Src kinase was evaluated in human breast cancer MCF-7 cells treated with 1–3 μM Cd. The activation of ERK was studied using a serum response element (SRE) luciferase reporter assay. Receptor phosphorylation was detected by Western blot analyses. Cd treatment increased both the SRE reporter activity and ERK1/2 phosphorylation in a concentration-dependent manner. Cd treatment had no effect on reactive oxygen species (ROS) generation. Also, blocking the entry of Cd into the cells with manganese did not diminish Cd-induced activation of MAPK/ERK. These results suggest that the effect of Cd was likely not caused by intracellular ROS generation, but through interaction with the membrane receptors. While Cd did not appear to activate either EGFR or Src kinase, their inhibition completely blocked the Cd-induced activation of ERK as well as cell proliferation. Similarly, silencing ERα with siRNA or use of ERα antagonist blocked the effects of Cd. Based on these results, it is concluded that not only ERα, but also basal activities of EGFR and Src kinase are essential for Cd-induced signal transduction and activation of MAPK/ERK pathway for breast cancer cell proliferation. - Highlights: • Low micromolar concentrations of Cd rapidly activate ERK1/2 in MCF-7 cells. • Signal transduction and resulting cell proliferation require EGFR, ERα, and Src. • These findings implicate Cd in promotion of breast cancer.

  20. Activation of ErbB3, EGFR and Erk is essential for growth of human breast cancer cell lines with acquired resistance to fulvestrant

    DEFF Research Database (Denmark)

    Frogne, Thomas; Benjaminsen, Rikke; Sonne-Hansen, Katrine

    2008-01-01

    cell lines concomitant with inhibition of Erk and unaltered Akt activation. In concert, inhibition of Erk with U0126 preferentially reduced growth of resistant cell lines. Treatment with ErbB3 neutralizing antibodies inhibited ErbB3 activation and resulted in a modest but statistically significant...... activation was observed only in the parental MCF-7 cells. The downstream kinases pAkt and pErk were increased in five of seven and in all seven resistant cell lines, respectively. Treatment with the EGFR inhibitor gefitinib preferentially inhibited growth and reduced the S phase fraction in the resistant...... growth inhibition of two resistant cell lines. These data indicate that ligand activated ErbB3 and EGFR, and Erk signaling play important roles in fulvestrant resistant cell growth. Furthermore, the decreased level of ErbB4 in resistant cells may facilitate heterodimerization of ErbB3 with EGFR and ErbB2...

  1. Periodic mechanical stress activates EGFR-dependent Rac1 mitogenic signals in rat nucleus pulpous cells via ERK1/2

    International Nuclear Information System (INIS)

    Gao, Gongming; Shen, Nan; Jiang, Xuefeng; Sun, Huiqing; Xu, Nanwei; Zhou, Dong; Nong, Luming; Ren, Kewei

    2016-01-01

    The mitogenic effects of periodic mechanical stress on nucleus pulpous cells have been studied extensively but the mechanisms whereby nucleus pulpous cells sense and respond to mechanical stimulation remain a matter of debate. We explored this question by performing cell culture experiments in our self-developed periodic stress field and perfusion culture system. Under periodic mechanical stress, rat nucleus pulpous cell proliferation was significantly increased (p < 0.05 for each) and was associated with increases in the phosphorylation and activation of EGFR, Rac1, and ERK1/2 (p < 0.05 for each). Pretreatment with the ERK1/2 selective inhibitor PD98059 reduced periodic mechanical stress-induced nucleus pulpous cell proliferation (p < 0.05 for each), while the activation levels of EGFR and Rac1 were not inhibited. Proliferation and phosphorylation of ERK1/2 were inhibited after pretreatment with the Rac1 inhibitor NSC23766 in nucleus pulpous cells in response to periodic mechanical stress (p < 0.05 for each), while the phosphorylation site of EGFR was not affected. Inhibition of EGFR activity with AG1478 abrogated nucleus pulpous cell proliferation (p < 0.05 for each) and attenuated Rac1 and ERK1/2 activation in nucleus pulpous cells subjected to periodic mechanical stress (p < 0.05 for each). These findings suggest that periodic mechanical stress promotes nucleus pulpous cell proliferation in part through the EGFR-Rac1-ERK1/2 signaling pathway, which links these three important signaling molecules into a mitogenic cascade. - Highlights: • The mechanism involved in nucleus pulpous cells to respond to mechanical stimuli. • Periodic mechanical stress can stimulate the phosphorylation of EGFR. • EGFR activates Rac1 and leads to rat nucleus pulpous cell proliferation. • EGFR and Rac1 activate ERK1/2 mitogenic signals in nucleus pulpous cells. • EGFR-Rac1-ERK1/2 is constitutes at least one critical signal transduction pathway.

  2. Periodic mechanical stress activates EGFR-dependent Rac1 mitogenic signals in rat nucleus pulpous cells via ERK1/2

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Gongming [Department of Orthopedics, The Affiliated Changzhou No. 2 Hospital of Nanjing Medical University, Changzhou 213003 (China); Shen, Nan [Department of Clinical Pharmacy, The Affiliated Jiangyin Hospital of Southeast University Medical School, Jiangyin 214400 (China); Jiang, Xuefeng; Sun, Huiqing [Department of Orthopedics, The Affiliated Jiangyin Hospital of Southeast University Medical School, Jiangyin 214400 (China); Xu, Nanwei; Zhou, Dong [Department of Orthopedics, The Affiliated Changzhou No. 2 Hospital of Nanjing Medical University, Changzhou 213003 (China); Nong, Luming, E-mail: lumingnong@hotmail.com [Department of Orthopedics, The Affiliated Changzhou No. 2 Hospital of Nanjing Medical University, Changzhou 213003 (China); Ren, Kewei, E-mail: keweiren@hotmail.com [Department of Orthopedics, The Affiliated Jiangyin Hospital of Southeast University Medical School, Jiangyin 214400 (China)

    2016-01-15

    The mitogenic effects of periodic mechanical stress on nucleus pulpous cells have been studied extensively but the mechanisms whereby nucleus pulpous cells sense and respond to mechanical stimulation remain a matter of debate. We explored this question by performing cell culture experiments in our self-developed periodic stress field and perfusion culture system. Under periodic mechanical stress, rat nucleus pulpous cell proliferation was significantly increased (p < 0.05 for each) and was associated with increases in the phosphorylation and activation of EGFR, Rac1, and ERK1/2 (p < 0.05 for each). Pretreatment with the ERK1/2 selective inhibitor PD98059 reduced periodic mechanical stress-induced nucleus pulpous cell proliferation (p < 0.05 for each), while the activation levels of EGFR and Rac1 were not inhibited. Proliferation and phosphorylation of ERK1/2 were inhibited after pretreatment with the Rac1 inhibitor NSC23766 in nucleus pulpous cells in response to periodic mechanical stress (p < 0.05 for each), while the phosphorylation site of EGFR was not affected. Inhibition of EGFR activity with AG1478 abrogated nucleus pulpous cell proliferation (p < 0.05 for each) and attenuated Rac1 and ERK1/2 activation in nucleus pulpous cells subjected to periodic mechanical stress (p < 0.05 for each). These findings suggest that periodic mechanical stress promotes nucleus pulpous cell proliferation in part through the EGFR-Rac1-ERK1/2 signaling pathway, which links these three important signaling molecules into a mitogenic cascade. - Highlights: • The mechanism involved in nucleus pulpous cells to respond to mechanical stimuli. • Periodic mechanical stress can stimulate the phosphorylation of EGFR. • EGFR activates Rac1 and leads to rat nucleus pulpous cell proliferation. • EGFR and Rac1 activate ERK1/2 mitogenic signals in nucleus pulpous cells. • EGFR-Rac1-ERK1/2 is constitutes at least one critical signal transduction pathway.

  3. Impact of whole brain radiation therapy on CSF penetration ability of Icotinib in EGFR-mutated non-small cell lung cancer patients with brain metastases: Results of phase I dose-escalation study.

    Science.gov (United States)

    Zhou, Lin; He, Jiazhuo; Xiong, Weijie; Liu, Yongmei; Xiang, Jing; Yu, Qin; Liang, Maozhi; Zhou, Xiaojuan; Ding, Zhenyu; Huang, Meijuan; Ren, Li; Zhu, Jiang; Li, Lu; Hou, Mei; Ding, Lieming; Tan, Fenlai; Lu, You

    2016-06-01

    Whole-brain radiation therapy (WBRT) and epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) are both treatment options for EGFR-mutated non-small cell lung cancer (NSCLC) patients with brain metastases. However, the dose-escalation toxicity and efficacy of combination therapy, and the effect of WBRT on cerebrospinal fluid (CSF) penetration of EGFR-TKIs are still unclear. EGFR-mutated NSCLC patients with brain metastases were enrolled in this study, and the cohorts were constructed with a 3+3 design. The patients received icotinib with escalating doses (125-625mg, tid), and the concurrent WBRT (37.5Gy/15f/3weeks) started a week later. The CSF penetration rates of icotinib were tested before, immediately after, and 4 weeks after WBRT, respectively. Potential toxicities and benefits from dose-escalation treatment were analyzed. Fifteen patients were included in this study, 3 at each dose level from 125mg-375mg and 6 at 500mg with 3 occurred dose-limiting toxicities. The maximal tolerated dose of icotinib was 375mg tid in this combination therapy. There was a significant correlation between icotinib concentration in the CSF and plasma (R(2)=0.599, Picotinib, from 1.2% to 9.7%, reached a maximum at 375mg (median, 6.1%). There was no significant difference for CSF penetration rates among the three test points (median, 4.1% vs. 2.8% vs. 2.8%, P=0.16). The intracranial objective response rate and median intracranial progression free survival are 80% and 18.9 months. WBRT plus concurrent icotinib is well tolerated in EGFR-mutated NSCLC patients with brain metastases, up to an icotinib dose of 375mg tid. The icotinib CSF concentration seemed to have a potential ceiling effect with the dose escalation, and WBRT seemed to have no significant impact on CSF penetration of icotinib till 4 weeks after the treatment. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Navigating into the binding pockets of the HER family protein kinases: discovery of novel EGFR inhibitor as antitumor agent.

    Science.gov (United States)

    Liu, Wei; Ning, Jin-Feng; Meng, Qing-Wei; Hu, Jing; Zhao, Yan-Bin; Liu, Chao; Cai, Li

    2015-01-01

    The epidermal growth factor receptor (EGFR) family has been validated as a successful antitumor drug target for decades. Known EGFR inhibitors were exposed to distinct drug resistance against the various EGFR mutants within non-small-cell lung cancer (NSCLC), particularly the T790M mutation. Although so far a number of studies have been reported on the development of third-generation EGFR inhibitors for overcoming the resistance issue, the design procedure largely depends on the intuition of medicinal chemists. Here we retrospectively make a detailed analysis of the 42 EGFR family protein crystal complexes deposited in the Protein Data Bank (PDB). Based on the analysis of inhibitor binding modes in the kinase catalytic cleft, we identified a potent EGFR inhibitor (compound A-10) against drug-resistant EGFR through fragment-based drug design. This compound showed at least 30-fold more potency against EGFR T790M than the two control molecules erlotinib and gefitinib in vitro. Moreover, it could exhibit potent HER2 inhibitory activities as well as tumor growth inhibitory activity. Molecular docking studies revealed a structural basis for the increased potency and mutant selectivity of this compound. Compound A-10 may be selected as a promising candidate in further preclinical studies. In addition, our findings could provide a powerful strategy to identify novel selective kinase inhibitors on the basis of detailed kinase-ligand interaction space in the PDB.

  5. Acquired resistance of EGFR-mutant lung adenocarcinomas to afatinib plus cetuximab is associated with activation of mTORC1

    Science.gov (United States)

    Pirazzoli, Valentina; Nebhan, Caroline; Song, Xiaoling; Wurtz, Anna; Walther, Zenta; Cai, Guoping; Zhao, Zhongming; Jia, Peilin; de Stanchina, Elisa; Shapiro, Erik M.; Gale, Molly; Yin, Ruonan; Horn, Leora; Carbone, David P.; Stephens, Philip J; Miller, Vincent; Gettinger, Scott; Pao, William; Politi, Katerina

    2014-01-01

    SUMMARY Patients with EGFR-mutant lung adenocarcinomas (LUADs) who initially respond to first-generation TKIs develop resistance to these drugs. A combination of the irreversible TKI afatinib and the EGFR antibody cetuximab can be used to overcome resistance to first-generation TKIs; however, resistance to this drug combination eventually emerges. We identified activation of the mTORC1 signaling pathway as a mechanism of resistance to dual inhibition of EGFR in mouse models. Addition of rapamycin reversed resistance in vivo. Analysis of afatinib+cetuximab-resistant biopsy specimens revealed the presence of genomic alterations in genes that modulate mTORC1 signaling including NF2 and TSC1. These findings pinpoint enhanced mTORC1 activation as a mechanism of resistance to afatinib+cetuximab and identify genomic mechanisms that lead to activation of this pathway, revealing a potential therapeutic strategy for treating patients with resistance to these drugs. PMID:24813888

  6. Assessment of real-time PCR method for detection of EGFR mutation using both supernatant and cell pellet of malignant pleural effusion samples from non-small-cell lung cancer patients.

    Science.gov (United States)

    Shin, Saeam; Kim, Juwon; Kim, Yoonjung; Cho, Sun-Mi; Lee, Kyung-A

    2017-10-26

    EGFR mutation is an emerging biomarker for treatment selection in non-small-cell lung cancer (NSCLC) patients. However, optimal mutation detection is hindered by complications associated with the biopsy procedure, tumor heterogeneity and limited sensitivity of test methodology. In this study, we evaluated the diagnostic utility of real-time PCR using malignant pleural effusion samples. A total of 77 pleural fluid samples from 77 NSCLC patients were tested using the cobas EGFR mutation test (Roche Molecular Systems). Pleural fluid was centrifuged, and separated cell pellets and supernatants were tested in parallel. Results were compared with Sanger sequencing and/or peptide nucleic acid (PNA)-mediated PCR clamping of matched tumor tissue or pleural fluid samples. All samples showed valid real-time PCR results in one or more DNA samples extracted from cell pellets and supernatants. Compared with other molecular methods, the sensitivity of real-time PCR method was 100%. Concordance rate of real-time PCR and Sanger sequencing plus PNA-mediated PCR clamping was 98.7%. We have confirmed that real-time PCR using pleural fluid had a high concordance rate compared to conventional methods, with no failed samples. Our data demonstrated that the parallel real-time PCR testing using supernatant and cell pellet could offer reliable and robust surrogate strategy when tissue is not available.

  7. Comparison of the efficacy of icotinib in patients with non-small-cell lung cancer according to the type of epidermal growth factor receptor mutation.

    Science.gov (United States)

    Xue, Zhang Xiao; Wen, Wang Xiu; Zhuang, Yu; Hua, Zang Jian; Xia, Yang Ni

    2016-09-01

    Icotinib hydrochloride is a novel epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) with preclinical and clinical activity in non-small-cell lung cancer (NSCLC). Exon 19 deletion and L858R point mutation are the most commonly encountered EGFR mutations in NSCLC, and they predict improved clinical outcomes following treatment with icotinib. The objective of this study was to evaluate the differential clinical efficacy of icotinib in patients with exon 19 deletion or L858R point mutation of the EGFR gene. A total of 104 patients with advanced NSCLC, who harbored exon 19 deletion or L858R point mutation of EGFR and were treated with icotinib, were enrolled in this study. The tumor response and progression-free survival were evaluated. There were no significant differences between patients with EGFR exon 19 deletion and those with L858R point mutation who received treatment with icotinib.

  8. First-line icotinib versus cisplatin/pemetrexed plus pemetrexed maintenance therapy for patients with advanced EGFR mutation-positive lung adenocarcinoma (CONVINCE): a phase 3, open-label, randomized study.

    Science.gov (United States)

    Shi, Y K; Wang, L; Han, B H; Li, W; Yu, P; Liu, Y P; Ding, C M; Song, X; Ma, Z Y; Ren, X L; Feng, J F; Zhang, H L; Chen, G Y; Han, X H; Wu, N; Yao, C; Song, Y; Zhang, S C; Song, W; Liu, X Q; Zhao, S J; Lin, Y C; Ye, X Q; Li, K; Shu, Y Q; Ding, L M; Tan, F L; Sun, Y

    2017-10-01

    Icotinib has been previously shown to be non-inferior to gefitinib in non-selected advanced non-small-cell lung cancer patients when given as second- or further-line treatment. In this open-label, randomized, phase 3 CONVINCE trial, we assessed the efficacy and safety of first-line icotinib versus cisplatin/pemetrexed plus pemetrexed maintenance in lung adenocarcinoma patients with epidermal growth factor receptor (EGFR) mutation. Eligible participants were adults with stage IIIB/IV lung adenocarcinoma and exon 19/21 EGFR mutations. Participants were randomly allocated (1 : 1) to receive oral icotinib or 3-week cycle of cisplatin plus pemetrexed for up to four cycles; non-progressive patients after four cycles were maintained with pemetrexed until disease progression or intolerable toxicity. The primary end point was progression-free survival (PFS) assessed by independent response evaluation committee. Other end points included overall survival (OS) and safety. Between January 2013 and August 2014, 296 patients were randomized, and 285 patients were treated (148 to icotinib, 137 to chemotherapy). Independent response evaluation committee-assessed PFS was significantly longer in the icotinib group (11.2 versus 7.9 months; hazard ratio, 0.61, 95% confidence interval 0.43-0.87; P = 0.006). No significant difference for OS was observed between treatments in the overall population or in EGFR-mutated subgroups (exon 19 Del/21 L858R). The most common grade 3 or 4 adverse events (AEs) in the icotinib group were rash (14.8%) and diarrhea (7.4%), compared with nausea (45.9%), vomiting (29.2%), and neutropenia (10.9%) in the chemotherapy group. AEs (79.1% versus 94.2%; P icotinib group than in the chemotherapy group. First-line icotinib significantly improves PFS of advanced lung adenocarcinoma patients with EGFR mutation with a tolerable and manageable safety profile. Icotinib should be considered as a first-line treatment for this patient population. © The Author

  9. Afatinib versus gefitinib in patients with EGFR mutation-positive advanced non-small-cell lung cancer: overall survival data from the phase IIb LUX-Lung 7 trial.

    Science.gov (United States)

    Paz-Ares, L; Tan, E-H; O'Byrne, K; Zhang, L; Hirsh, V; Boyer, M; Yang, J C-H; Mok, T; Lee, K H; Lu, S; Shi, Y; Lee, D H; Laskin, J; Kim, D-W; Laurie, S A; Kölbeck, K; Fan, J; Dodd, N; Märten, A; Park, K

    2017-02-01

    In LUX-Lung 7, the irreversible ErbB family blocker, afatinib, significantly improved progression-free survival (PFS), time-to-treatment failure (TTF) and objective response rate (ORR) versus gefitinib in patients with epidermal growth factor receptor (EGFR) mutation-positive non-small-cell lung cancer (NSCLC). Here, we present primary analysis of mature overall survival (OS) data. LUX-Lung 7 assessed afatinib 40 mg/day versus gefitinib 250 mg/day in treatment-naïve patients with stage IIIb/IV NSCLC and a common EGFR mutation (exon 19 deletion/L858R). Primary OS analysis was planned after ∼213 OS events and ≥32-month follow-up. OS was analysed by a Cox proportional hazards model, stratified by EGFR mutation type and baseline brain metastases. Two-hundred and twenty-six OS events had occurred at the data cut-off (8 April 2016). After a median follow-up of 42.6 months, median OS (afatinib versus gefitinib) was 27.9 versus 24.5 months [hazard ratio (HR) = 0.86, 95% confidence interval (CI) 0.66‒1.12, P = 0.2580]. Prespecified subgroup analyses showed similar OS trends (afatinib versus gefitinib) in patients with exon 19 deletion (30.7 versus 26.4 months; HR, 0.83, 95% CI 0.58‒1.17, P = 0.2841) and L858R (25.0 versus 21.2 months; HR 0.91, 95% CI 0.62‒1.36, P = 0.6585) mutations. Most patients (afatinib, 72.6%; gefitinib, 76.8%) had at least one subsequent systemic anti-cancer treatment following discontinuation of afatinib/gefitinib; 20 (13.7%) and 23 (15.2%) patients received a third-generation EGFR tyrosine kinase inhibitor. Updated PFS (independent review), TTF and ORR data were significantly improved with afatinib. In LUX-Lung 7, there was no significant difference in OS with afatinib versus gefitinib. Updated PFS (independent review), TTF and ORR data were significantly improved with afatinib. NCT01466660. © The Author 2017. Published by Oxford University Press on behalf of the European Society for Medical Oncology.

  10. Efficacy of Icotinib for Advanced Non-small Cell Lung Cancer Patients with EGFR Status Identified

    Directory of Open Access Journals (Sweden)

    Yiping ZHANG

    2013-03-01

    Full Text Available Background and objective As the first epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI in China, icotinib shows promising anticancer activity in vitro and vivo. The phase III clinical study (ICOGEN showed that icotinib has a good efficacy and tolerability in Chinese patients with advanced non-small cell lung cancer (NSCLC compared with gefitinib. This retrospective study aims to evaluate the efficacy and tolerability of icotinib monotherapy for advanced NSCLC patients with EGFR mutation and wild-type patients in our hospital. Methods Patients with advanced NSCLC who were treated with icotinib in Zhejiang Cancer Hospital were retrospectively analyzed from August, 2011 to August, 2012. Survival was estimated using Kaplan-Meier analysis and Log-rank tests. Results The clinical data of 49 patients (13 with wild-type and 36 with EGFR mutation with NSCLC were enrolled in the current study. The patients’ overall objective response rate (ORR was 58.3% and the disease control rate (DCR in 36 EGFR mutation patients was 88.9%. The ORR was 7.7% and DCR was 53.8% in the wild-type patients. Median progression-free survival (PFS with icotinib treatment in EGFR mutation patients was 9.5 months and 2.2 months in wild-type patients (P<0.001. Nineteen patients with EGFR mutation received icotinib as first-line and 17 in further-line treatment. The PFS was 9.5 months in the first-line and 8.5 months for second-line or further-line patients (P=0.41. Median overall survival (OS in EGFR mutation patients was not reached, but was 12.6 months in wild-type patients. Most of the drug-related adverse events were mild (grade I or II and reversible with no grade IV toxicity. Conclusion Icotinib monotherapy showed significant antitumor activity in advanced NSCLC EGFR mutation patients. The toxicity was well tolerated and acceptable.

  11. Sequential treatment of icotinib after first-line pemetrexed in advanced lung adenocarcinoma with unknown EGFR gene status.

    Science.gov (United States)

    Zheng, Yulong; Fang, Weijia; Deng, Jing; Zhao, Peng; Xu, Nong; Zhou, Jianying

    2014-07-01

    In non-small cell lung cancer (NSCLC), the well-developed epidermal growth factor receptor (EGFR) is an important therapeutic target. EGFR activating gene mutations have been proved strongly predictive of response to EGFR-tyrosine kinase inhibitors (TKI) in NSCLC. However, both in daily clinical practice and clinical trials, patients with unknown EGFR gene status (UN-EGFR-GS) are very common. In this study, we assessed efficacy and tolerability of sequential treatment of first-line pemetrexed followed by icotinib in Chinese advanced lung adenocarcinoma with UN-EGFR-GS. We analyzed 38 patients with advanced lung adenocarcinoma with UN-EGFR-GS treated with first-line pemetrexed-based chemotherapy followed by icotinib as maintenance or second-line therapy. The response rates to pemetrexed and icotinib were 21.1% and 42.1%, respectively. The median overall survival was 27.0 months (95% CI, 19.7-34.2 months). The 12-month overall survival probability was 68.4%. The most common toxicities observed in icotinib phase were rashes, diarrheas, and elevated aminotransferase. Subgroup analysis indicated that the overall survival is correlated with response to icotinib. The sequence of first-line pemetrexed-based chemotherapy followed by icotinib treatment is a promising option for advanced lung adenocarcinoma with UN-EGFR-GS in China.

  12. EGFR testing and clinical management of advanced NSCLC: a Galician Lung Cancer Group study (GGCP 048-10

    Directory of Open Access Journals (Sweden)

    Vázquez S

    2016-02-01

    %, respectively. All but two patients received gefitinib. Median progression-free survival and overall survival were 10 (95% confidence interval: 4.8–15.3 months and 17.8 (95% confidence interval: 13.9–21.6 months, respectively, in patients carrying sensitizing mutations. Conclusion: The incidence of EGFR mutations in Galicia is consistent with previous data in Spain. Our results also support the feasibility of EGFR testing to guide treatment decision making using tumor tissue or cytology samples, or serum samples if tumor specimens are unavailable. These findings also confirm that first-line gefitinib is an active treatment option in Caucasians with EGFR mutation-positive NSCLC. Keywords: epidermal growth factor receptor, EGFR tyrosine inhibitors, TKIs, EGFR gene mutation, EGFR mutation testing, non-small-cell lung cancer

  13. TGF-β and Hypoxia/Reoxygenation Promote Radioresistance of A549 Lung Cancer Cells through Activation of Nrf2 and EGFR

    Directory of Open Access Journals (Sweden)

    Sae-lo-oom Lee

    2016-01-01

    Full Text Available Although many studies have examined the roles of hypoxia and transforming growth factor- (TGF- β separately in the tumor microenvironment, the effects of simultaneous treatment with hypoxia/reoxygenation and TGF-β on tumor malignancy are unclear. Here, we investigated the effects of redox signaling and oncogenes on cell proliferation and radioresistance in A549 human lung cancer cells in the presence of TGF-β under hypoxia/reoxygenation conditions. Combined treatment with TGF-β and hypoxia activated epidermal growth factor receptor (EGFR and nuclear factor (erythroid-derived 2-like 2 (Nrf2, a redox-sensitive transcription factor. Interestingly, Nrf2 knockdown suppressed the effects of combined treatment on EGFR phosphorylation. In addition, blockade of EGFR signaling also suppressed induction of Nrf2 following combined treatment with hypoxia and TGF-β, indicating that the combined treatment induced positive crosstalk between Nrf2 and EGFR. TGF-β and hypoxia/reoxygenation increased the accumulation of reactive oxygen species (ROS, while treatment with N-acetyl-L-cysteine abolished the activation of Nrf2 and EGFR. Treatment with TGF-β under hypoxic conditions increased the proliferation of A549 cells compared with that after vehicle treatment. Moreover, cells treated with the combined treatment exhibited resistance to ionizing radiation (IR, and knockdown of Nrf2 increased IR-induced cell death under these conditions. Thus, taken together, our findings suggested that TGF-β and hypoxia/reoxygenation promoted tumor progression and radioresistance of A549 cells through ROS-mediated activation of Nrf2 and EGFR.

  14. Occurrence of mutations in the epidermal growth factor receptor gene in X-ray-induced rat lung tumors

    International Nuclear Information System (INIS)

    Kitahashi, Tsukasa; Takahashi, Mami; Yamada, Yutaka

    2008-01-01

    Epidermal growth factor receptor (EGFR) gene alterations have been found in human lung cancers. However, there is no information on the factors inducing EGFR mutations. In rodents, K-ras mutations are frequently found in many lung carcinogenesis models, but hitherto, Egfr mutations have not been reported. Their presence was therefore investigated in representative lung carcinogenesis models with 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), N-nitrosobis(2-hydroxypropyl)amine (BHP), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MelQx) and ethyl carbamate (urethane), as well as X-ray irradiation. With the chemical carcinogenesis models, no mutations were detected in Egfr, which is in clear contrast to the high rates observed in either codon 12 or 61 of K-ras (21/23 of the lung tumors induced with NNK, 4/5 with MelQx, 1/4 with urethane and 7/18 with BHP). However, in the X-ray-induced lung tumors, Egfr mutations with amino acid substitution were observed in exons 18 and 21 (4/12, 33%), but no activating mutation of K-ras was detected. In addition, one and four silent mutations were identified in K-ras (exon 1) and Egfr (exons 18, 20 and 21), respectively. Most mutations in both Egfr and K-ras were G/C→A/T transitions (7/8, 88% and 31/34, 91%, respectively). Although, the mutational patterns in equivalent human lesions were not completely coincident, this first report of Egfr mutations in an experimental lung tumor model suggests that X-rays or other factors producing oxygen radicals could cause EGFR mutations in some proportion of lung cancers in humans. (author)

  15. EGFR mediates astragaloside IV-induced Nrf2 activation to protect cortical neurons against in vitro ischemia/reperfusion damages

    International Nuclear Information System (INIS)

    Gu, Da-min; Lu, Pei-Hua; Zhang, Ke; Wang, Xiang; Sun, Min; Chen, Guo-Qian; Wang, Qiong

    2015-01-01

    In this study, we tested the potential role of astragaloside IV (AS-IV) against oxygen and glucose deprivation/re-oxygenation (OGD/R)-induced damages in murine cortical neurons, and studied the associated signaling mechanisms. AS-IV exerted significant neuroprotective effects against OGD/R by reducing reactive oxygen species (ROS) accumulation, thereby attenuating oxidative stress and neuronal cell death. We found that AS-IV treatment in cortical neurons resulted in NF-E2-related factor 2 (Nrf2) signaling activation, evidenced by Nrf2 Ser-40 phosphorylation, and its nuclear localization, as well as transcription of antioxidant-responsive element (ARE)-regulated genes: heme oxygenase-1 (HO-1), NAD(P)H:quinone oxidoreductase 1 (NQO-1) and sulphiredoxin 1 (SRXN-1). Knockdown of Nrf2 through lentiviral shRNAs prevented AS-IV-induced ARE genes transcription, and abolished its anti-oxidant and neuroprotective activities. Further, we discovered that AS-IV stimulated heparin-binding-epidermal growth factor (HB-EGF) release to trans-activate epidermal growth factor receptor (EGFR) in cortical neurons. Blockage or silencing EGFR prevented Nrf2 activation by AS-IV, thus inhibiting AS-IV-mediated anti-oxidant and neuroprotective activities against OGD/R. In summary, AS-IV protects cortical neurons against OGD/R damages through activating of EGFR-Nrf2 signaling. - Highlights: • Pre-treatment of astragaloside IV (AS-IV) protects murine cortical neurons from OGD/R. • AS-IV activates Nrf2-ARE signaling in murine cortical neurons. • Nrf2 is required for AS-IV-mediated anti-oxidant and neuroprotective activities. • AS-IV stimulates HB-EGF release to trans-activate EGFR in murine cortical neurons. • EGFR mediates AS-IV-induced Nrf2 activation and neuroprotection against OGD/R

  16. EGFR mediates astragaloside IV-induced Nrf2 activation to protect cortical neurons against in vitro ischemia/reperfusion damages

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Da-min [Department of Anesthesiology, Affiliated Yixing People' s Hospital, Jiangsu University, Yixing (China); Lu, Pei-Hua, E-mail: lphty1_1@163.com [Department of Medical Oncology, Wuxi People' s Hospital Affiliated to Nanjing Medical University, Wuxi (China); Zhang, Ke; Wang, Xiang [Department of Anesthesiology, Affiliated Yixing People' s Hospital, Jiangsu University, Yixing (China); Sun, Min [Department of General Surgery, Affiliated Yixing People' s Hospital, Jiangsu University, Yixing (China); Chen, Guo-Qian [Department of Clinical Laboratory, Wuxi People' s Hospital Affiliated to Nanjing Medical University, Wuxi (China); Wang, Qiong, E-mail: WangQiongprof1@126.com [Department of Clinical Laboratory, Wuxi People' s Hospital Affiliated to Nanjing Medical University, Wuxi (China)

    2015-02-13

    In this study, we tested the potential role of astragaloside IV (AS-IV) against oxygen and glucose deprivation/re-oxygenation (OGD/R)-induced damages in murine cortical neurons, and studied the associated signaling mechanisms. AS-IV exerted significant neuroprotective effects against OGD/R by reducing reactive oxygen species (ROS) accumulation, thereby attenuating oxidative stress and neuronal cell death. We found that AS-IV treatment in cortical neurons resulted in NF-E2-related factor 2 (Nrf2) signaling activation, evidenced by Nrf2 Ser-40 phosphorylation, and its nuclear localization, as well as transcription of antioxidant-responsive element (ARE)-regulated genes: heme oxygenase-1 (HO-1), NAD(P)H:quinone oxidoreductase 1 (NQO-1) and sulphiredoxin 1 (SRXN-1). Knockdown of Nrf2 through lentiviral shRNAs prevented AS-IV-induced ARE genes transcription, and abolished its anti-oxidant and neuroprotective activities. Further, we discovered that AS-IV stimulated heparin-binding-epidermal growth factor (HB-EGF) release to trans-activate epidermal growth factor receptor (EGFR) in cortical neurons. Blockage or silencing EGFR prevented Nrf2 activation by AS-IV, thus inhibiting AS-IV-mediated anti-oxidant and neuroprotective activities against OGD/R. In summary, AS-IV protects cortical neurons against OGD/R damages through activating of EGFR-Nrf2 signaling. - Highlights: • Pre-treatment of astragaloside IV (AS-IV) protects murine cortical neurons from OGD/R. • AS-IV activates Nrf2-ARE signaling in murine cortical neurons. • Nrf2 is required for AS-IV-mediated anti-oxidant and neuroprotective activities. • AS-IV stimulates HB-EGF release to trans-activate EGFR in murine cortical neurons. • EGFR mediates AS-IV-induced Nrf2 activation and neuroprotection against OGD/R.

  17. Sensitivity to epidermal growth factor receptor tyrosine kinase inhibitors in males, smokers, and non-adenocarcinoma lung cancer in patients with EGFR mutations.

    Science.gov (United States)

    Zeng, Zhu; Chen, Hua-Jun; Yan, Hong-Hong; Yang, Jin-Ji; Zhang, Xu-Chao; Wu, Yi-Long

    2013-09-27

    The demographical/clinical characteristics of being Asian, having an adenocarcinoma, being female, and being a "never-smoker" are regarded as favorable predictors for epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) efficacy in non-small cell lung cancer (NSCLC) with unknown EGFR gene status. In this study, we examined the effects of the supposedly unfavorable clinical variables in EGFR-mutant patients. In total, 159 EGFR-mutant NSCLC patients' clinical features were correlated with progression-free survival (PFS), response rate (RR), and overall survival (OS). Multivariate analysis of clinical characteristics was performed using the Cox and logistic regression methods. There were 90 females (56.6%), 112 never-smokers (70.4%), and 153 patients with adenocarcinomas (96.2%). All patients were treated with EGFR-TKI, and 52.8% received TKI in a first-line setting. The median PFS of patients receiving first-line TKI was similar, regardless of gender (males vs females: 9.1 vs 9.7 months, p=0.793), smoking status (never-smokers vs smokers: 9.9 vs 9.1 months, p=0.570), or histology (adenocarcinoma vs non-adenocarcinoma: 9.7 vs 9.2 months, p=0.644). OS curves of first-line TKI-treated patients were also not associated with gender (p=0.722), smoking status (p=0.579), or histology (p=0.480). Similar results of PFS and OS were obtained for patients who received TKI beyond first-line. Multivariate analysis indicated that none of these clinical factors was an independent predictor of survival. The supposedly 'favorable' clinical factors of female gender, non-smoking status, and adenocarcinoma were not independent predictive factors for PFS or OS in this population of EGFR-mutant NSCLC patients.

  18. Randomized phase II study of paclitaxel/carboplatin intercalated with gefitinib compared to paclitaxel/carboplatin alone for chemotherapy-naïve non-small cell lung cancer in a clinically selected population excluding patients with non-smoking adenocarcinoma or mutated EGFR

    International Nuclear Information System (INIS)

    Choi, Yoon Ji; Lee, Dae Ho; Choi, Chang Min; Lee, Jung Shin; Lee, Seung Jin; Ahn, Jin-Hee; Kim, Sang-We

    2015-01-01

    Considering cell cycle dependent cytotoxicity, intercalation of chemotherapy and epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) may be a treatment option in non-small cell lung cancer (NSCLC). This randomized phase 2 study compared the efficacy of paclitaxel and carboplatin (PC) intercalated with gefitinib (G) versus PC alone in a selected, chemotherapy-naïve population of advanced NSCLC patients with a history of smoking or wild-type EGFR. Eligible patients were chemotherapy-naïve advanced NSCLC patients with Eastern Cooperative Oncology Group performance status of 0—2. Non-smoking patients with adenocarcinoma or patients with activating EGFR mutation were excluded because they could benefit from gefitinib alone. Eligible patients were randomized to one of the following treatment arms: PCG, P 175 mg/m 2 , and C AUC 5 administered intravenously on day 1 intercalated with G 250 mg orally on days 2 through 15 every 3 weeks for four cycles followed by G 250 mg orally until progressive disease; or PC, same dosing schedule for four cycles only. The primary endpoint was the objective response rate (ORR), and the secondary endpoints included progression-free survival (PFS), overall survival (OS), and toxicity profile. A total of 90 patients participated in the study. The ORRs were 41.9 % (95 % confidence interval (CI) 27.0–57.9 %) for the PCG arm and 39.5 % (95 % CI 25.0–55.6 %) for the PC arm (P = 0.826). No differences in PFS (4.1 vs. 4.1 months, P = 0.781) or OS (9.3 vs. 10.5 months, P = 0.827) were observed between the PCG and PC arms. Safety analyses showed a similar incidence of drug-related grade 3/4 toxicity. Rash and pruritus were more frequent in the PCG than in the PC arm. PCG did not improve ORR, PFS, and OS compared to PC chemotherapy alone for NSCLC in a clinically selected population excluding non-smoking adenocarcinoma or mutated EGFR. The study is registered with ClinicalTrials.gov (NCT01196234). Registration date is 08/09/2010

  19. Customized chemotherapy based on epidermal growth factor receptor mutation status for elderly patients with advanced non-small-cell lung cancer: a phase II trial

    International Nuclear Information System (INIS)

    Fujita, Shiro; Mio, Tadashi; Katakami, Nobuyuki; Masago, Katsuhiro; Yoshioka, Hiroshige; Tomii, Keisuke; Kaneda, Toshihiko; Hirabayashi, Masataka; Kunimasa, Kei; Morizane, Toshio

    2012-01-01

    Elderly patients are more vulnerable to toxicity from chemotherapy. Activating epidermal growth factor receptor (EGFR) mutations in non-small-cell lung cancer (NSCLC) are associated with enhanced response to EGFR tyrosine-kinase inhibitors. We studied patients with advanced NSCLC for whom treatment was customized based on EGFR mutation status. We screened 57 chemotherapy-naïve patients with histologically or cytologically confirmed NSCLC, stage IIIB or IV, aged 70 years or older, and with an Eastern Cooperative Oncology Group performance status 0 or 1, for EGFR exon 19 codon 746–750 deletion and exon 21 L858R mutation. Twenty-two patients with EGFR mutations received gefitinib; 32 patients without mutations received vinorelbine or gemcitabine. The primary endpoint was the response rate. The response rate was 45.5% (95% confidence interval [CI]: 24.4%, 67.8%) in patients with EGFR mutations and 18.8% (95% CI: 7.2%, 36.4%) in patients without EGFR mutations. The median overall survival was 27.9 months (95%CI: 24.4 months, undeterminable months) in patients with EGFR mutations and 14.9 months (95%CI: 11.0 months, 22.4 months) in patients without EGFR mutations. In the gefitinib group, grade 3/4 hepatic dysfunction and dermatitis occurred in 23% and 5% of patients, respectively. In patients treated with vinorelbine or gemcitabine, the most common grade 3 or 4 adverse events were neutropenia (47%; four had febrile neutropenia), anemia (13%), and anorexia (9%). No treatment-related deaths occurred. Treatment customization based on EGFR mutation status deserves consideration, particularly for elderly patients who often cannot receive second-line chemotherapy due to poor organ function or comorbidities. This trial is registered at University hospital Medical Information Network-clinical trial registration (http://www.umin.ac.jp/ctr/index/htm) with the registration identification number C000000436

  20. Therapeutic value of EGFR inhibition in CRC and NSCLC: 15 years of clinical evidence.

    Science.gov (United States)

    Troiani, Teresa; Napolitano, Stefania; Della Corte, Carminia Maria; Martini, Giulia; Martinelli, Erika; Morgillo, Floriana; Ciardiello, Fortunato

    2016-01-01

    Epidermal growth factor receptor (EGFR) plays a key role in tumour evolution, proliferation and immune evasion, and is one of the most important targets for biological therapy, especially for non-small-cell lung cancer (NSCLC) and colorectal cancer (CRC). In the past 15 years, several EGFR antagonists have been approved for the treatment of NSCLC and metastatic CRC (mCRC). To optimise the use of anti-EGFR agents in clinical practice, various clinical and molecular biomarkers have been investigated, thus moving their indication from unselected to selected populations. Nowadays, anti-EGFR drugs represent a gold-standard therapy for metastatic NSCLC harbouring EGFR activating mutation and for RAS wild-type mCRC. Their clinical efficacy is limited by the presence of intrinsic resistance or the onset of acquired resistance. In this review, we provide an overview of the antitumour activity of EGFR inhibitors in NSCLC and CRC and of mechanisms of resistance, focusing on the development of a personalised approach through 15 years of preclinical and clinical research.

  1. Epithelial–mesenchymal-transition induced by EGFR activation interferes with cell migration and response to irradiation and cetuximab in head and neck cancer cells

    International Nuclear Information System (INIS)

    Holz, Carmen; Niehr, Franziska; Boyko, Mariya; Hristozova, Tsvetana; Distel, Luitpold; Budach, Volker; Tinhofer, Ingeborg

    2011-01-01

    Background and purpose: The role of epithelial–mesenchymal transition (EMT) in the poor outcome of EGFR-overexpressing SCCHN was evaluated. Material and methods: SCCHN cell lines were characterized for their cell morphology and expression of EGFR and the EMT-associated factors E-cadherin, vimentin and Snail1. The migratory potential of cells was assessed in motility assays. Response to irradiation and cetuximab was determined using clonogenic survival assays. Results: High basal expression of E-cadherin but low to absent vimentin expression could be observed in all SCCHN cell lines. Although E-cadherin expression levels did not change after treatment with EGF we observed a significant change in cell morphology resembling EMT. SCCHN cells with high basal levels of Snail1 resulting from constitutive EGFR activation were characterized by mesenchymal-like morphology, elevated migratory potential, reduced sensitivity to irradiation and cetuximab but increased sensitivity to the combined treatment. Conclusions: Autocrine activation of EGFR leading to EMT is associated with a metastatic phenotype and reduced sensitivity of SCCHN cells to single-modality treatment with cetuximab or irradiation. The potential of Snail1 as biomarker for selection of patients who will mostly benefit from a combination of cetuximab and radiotherapy has to be evaluated in future clinical studies.

  2. EGF-R is Expressed and AP-1 and NF-κ:B Are Activated in Stromal Myofibroblasts Surrounding Colon Adenocarcinomas Paralleling Expression of COX-2 and VEGF

    Directory of Open Access Journals (Sweden)

    Panagiotis A. Konstantinopoulos

    2007-01-01

    Full Text Available Background: COX-2 and VEGF are important triggers of colon cancer growth, metastasis and angiogenesis. Cox-2 promoter contains transcriptional regulatory elements for AP-1 and NF-κ:B transcription factors whilst vegf is a known AP-1 downstream target gene. We investigated whether stromal myofibroblasts surrounding colon adenocarcinomas express COX-2 and VEGF and whether activation of AP-1 and NF-κ:B, as well as expression of EGF-R parallel expression of COX-2 and VEGF in these cells. Methods: Immunohistochemical methodology was performed on archival sections from 40 patients with colon adenocarcinomas. We evaluated c-FOS, p-c-JUN (phosphorylated c-JUN, p-Iκ:B-α (phosphorylated Iκ:B-α, EGF-R, COX-2, NF-κ:B and VEGF expression in stromal myofibroblasts surrounding colon adenocarcinomas. Double immunostaining with a-smooth muscle actin and each antibody was done to verify the expression of these molecules in stromal myofibroblasts. Results: VEGF, p-Iκ:B-α, NF-κ:B, c-FOS, p-c-JUN, EGF-R and COX-2 were expressed in stromal myofibroblasts surrounding colon adenocarcinomas in the majority of cases. EGF-R, p-Iκ:B-α, NF-κ:B, c-FOS and p-c-JUN correlated positively with COX-2 and VEGF expression. Conclusion: Stromal myofibroblasts surrounding colon adenocarcinomas are an important source of VEGF and COX-2 production, while AP-1 and NF-κ:B transcription factors are activated and EGF-R is expressed in these cells and associated with COX-2 and VEGF production.

  3. Predictive value of K-ras and PIK3CA in non-small cell lung cancer patients treated with EGFR-TKIs: a systemic review and meta-analysis

    International Nuclear Information System (INIS)

    Chen, Jie-Ying; Cheng, Ya-Nan; Han, Lei; Wei, Feng; Yu, Wen-Wen; Zhang, Xin-Wei; Cao, Shui; Yu, Jin-Pu

    2015-01-01

    A meta-analysis was performed to augment the insufficient data on the impact of mutative EGFR downstream phosphatidylinositol-3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathways on the clinical efficiency of epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) treatment of non-small cell lung cancer (NSCLC) patients. Network databases were explored in April, 2015. Papers that investigated the clinical outcomes of NSCLC patients treated with EGFR-TKIs according to the status of K-ras and/or PIK3CA gene mutation were included. A quantitative meta-analysis was conducted using standard statistical methods. Odds ratios (ORs) for objective response rate (ORR) and hazard ratios (HRs) for progression-free survival (PFS) and overall survival (OS) were calculated. Mutation in K-ras significantly predicted poor ORR [OR =0.22; 95% confidence interval (CI), 0.13-0.35], shorter PFS (HR =1.56; 95% CI, 1.27-1.92), and shorter OS (HR =1.59; 95% CI, 1.33-1.91) in NSCLC patients treated with EGFR-TKIs. Mutant PIK3CA significantly predicted shorter OS (HR =1.83; 95% CI, 1.05-3.20), showed poor ORR (OR =0.70; 95% CI, 0.22-2.18), and shorter PFS (HR =1.79; 95% CI, 0.91-3.53) in NSCLC patients treated with EGFR-TKIs. K-ras mutation adversely affected the clinical response and survival of NSCLC patients treated with EGFR-TKIs. PIK3CA mutation showed similar trends. In addition to EGFR, adding K-ras and PIK3CA as routine gene biomarkers in clinical genetic analysis is valuable to optimize the effectiveness of EGFR-TKI regimens and identify optimal patients who will benefit from EGFR-TKI treatment

  4. Chemotherapeutics-resistance "arms" race: An update on mechanisms involved in resistance limiting EGFR inhibitors in lung cancer.

    Science.gov (United States)

    Singh, Pankaj Kumar; Silakari, Om

    2017-10-01

    Clinical reports suggest that EGFR-mutated lung cancer usually respond significantly towards small molecule tyrosine kinase inhibitors. Same studies also report the eventual development of acquired resistance within a median time interval of 9 to 14months. One of the major mechanisms involved in this acquired resistance was found to be a secondary point mutation at gate-keeper residue, EGFR T790M. However, there are other recent studies which disclose the role of few other novel key players such as, ZEB1, TOPK etc., in the development of tolerance towards the EGFR TKI's, along with other commonly known mechanisms, such as amplification of signalling pathways such as, c-MET, Erbb2, AXL, additional acquired secondary mutations (PIK3CA, BRAF), or phenotypic transformation (small cell or epithelial to mesenchymal transitions). Interestingly, a recent study showed development of resistance via another point mutation, C797S, in case of tumors which were previously resistant and were administered agents capable of overcoming T790M gatekeeper mutation based resistance. Thus, raising serious concern over the direction of drug development involving tyrosine kinases such as EGFR. Current approaches focussing on development of third generation inhibitors, dual inhibitors or inhibitors of HSP90 have shown significant activity but do not answer the long term question of resistance. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Effects of the EGFR Inhibitor Erlotinib on Magnesium Handling

    NARCIS (Netherlands)

    Dimke, Henrik; van der Wijst, Jenny; Alexander, Todd R.; Meijer, Inez M. J.; Mulder, Gemma M.; van Goor, Harry; Tejpar, Sabine; Hoenderop, Joost G.; Bindels, Rene J.

    A mutation in pro-EGF causes isolated hypomagnesemia, and monoclonal antibodies targeting the extracellular domain of the EGF receptor (EGFR) affect epithelial Mg2+ transport. The effect of the EGFR tyrosine kinase inhibitor erlotinib on Mg2+ homeostasis, however, remains unknown. Here, we injected

  6. Navigating into the binding pockets of the HER family protein kinases: discovery of novel EGFR inhibitor as antitumor agent

    Directory of Open Access Journals (Sweden)

    Liu W

    2015-07-01

    Full Text Available Wei Liu,1,* Jin-Feng Ning,2,* Qing-Wei Meng,1 Jing Hu,1 Yan-Bin Zhao,1 Chao Liu,3 Li Cai11The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, 2The Thoracic Surgery Department, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China; 3General Surgery Department, Mudanjiang Guanliju Central Hospital, Mishan, Heilongjiang Province, People’s Republic of China*These authors contributed equally to this workAbstract: The epidermal growth factor receptor (EGFR family has been validated as a successful antitumor drug target for decades. Known EGFR inhibitors were exposed to distinct drug resistance against the various EGFR mutants within non-small-cell lung cancer (NSCLC, particularly the T790M mutation. Although so far a number of studies have been reported on the development of third-generation EGFR inhibitors for overcoming the resistance issue, the design procedure largely depends on the intuition of medicinal chemists. Here we retrospectively make a detailed analysis of the 42 EGFR family protein crystal complexes deposited in the Protein Data Bank (PDB. Based on the analysis of inhibitor binding modes in the kinase catalytic cleft, we identified a potent EGFR inhibitor (compound A-10 against drug-resistant EGFR through fragment-based drug design. This compound showed at least 30-fold more potency against EGFR T790M than the two control molecules erlotinib and gefitinib in vitro. Moreover, it could exhibit potent HER2 inhibitory activities as well as tumor growth inhibitory activity. Molecular docking studies revealed a structural basis for the increased potency and mutant selectivity of this compound. Compound A-10 may be selected as a promising candidate in further preclinical studies. In addition, our findings could provide a powerful strategy to identify novel selective kinase inhibitors on the basis of detailed kinase–ligand interaction space in the PDB.Keywords: EGFR, kinase

  7. A KCNC3 mutation causes a neurodevelopmental, non-progressive SCA13 subtype associated with dominant negative effects and aberrant EGFR trafficking.

    Science.gov (United States)

    Khare, Swati; Nick, Jerelyn A; Zhang, Yalan; Galeano, Kira; Butler, Brittany; Khoshbouei, Habibeh; Rayaprolu, Sruti; Hathorn, Tyisha; Ranum, Laura P W; Smithson, Lisa; Golde, Todd E; Paucar, Martin; Morse, Richard; Raff, Michael; Simon, Julie; Nordenskjöld, Magnus; Wirdefeldt, Karin; Rincon-Limas, Diego E; Lewis, Jada; Kaczmarek, Leonard K; Fernandez-Funez, Pedro; Nick, Harry S; Waters, Michael F

    2017-01-01

    The autosomal dominant spinocerebellar ataxias (SCAs) are a diverse group of neurological disorders anchored by the phenotypes of motor incoordination and cerebellar atrophy. Disease heterogeneity is appreciated through varying comorbidities: dysarthria, dysphagia, oculomotor and/or retinal abnormalities, motor neuron pathology, epilepsy, cognitive impairment, autonomic dysfunction, and psychiatric manifestations. Our study focuses on SCA13, which is caused by several allelic variants in the voltage-gated potassium channel KCNC3 (Kv3.3). We detail the clinical phenotype of four SCA13 kindreds that confirm causation of the KCNC3R423H allele. The heralding features demonstrate congenital onset with non-progressive, neurodevelopmental cerebellar hypoplasia and lifetime improvement in motor and cognitive function that implicate compensatory neural mechanisms. Targeted expression of human KCNC3R423H in Drosophila triggers aberrant wing veins, maldeveloped eyes, and fused ommatidia consistent with the neurodevelopmental presentation of patients. Furthermore, human KCNC3R423H expression in mammalian cells results in altered glycosylation and aberrant retention of the channel in anterograde and/or endosomal vesicles. Confirmation of the absence of plasma membrane targeting was based on the loss of current conductance in cells expressing the mutant channel. Mechanistically, genetic studies in Drosophila, along with cellular and biophysical studies in mammalian systems, demonstrate the dominant negative effect exerted by the mutant on the wild-type (WT) protein, which explains dominant inheritance. We demonstrate that ocular co-expression of KCNC3R423H with Drosophila epidermal growth factor receptor (dEgfr) results in striking rescue of the eye phenotype, whereas KCNC3R423H expression in mammalian cells results in aberrant intracellular retention of human epidermal growth factor receptor (EGFR). Together, these results indicate that the neurodevelopmental consequences of

  8. A KCNC3 mutation causes a neurodevelopmental, non-progressive SCA13 subtype associated with dominant negative effects and aberrant EGFR trafficking.

    Directory of Open Access Journals (Sweden)

    Swati Khare

    Full Text Available The autosomal dominant spinocerebellar ataxias (SCAs are a diverse group of neurological disorders anchored by the phenotypes of motor incoordination and cerebellar atrophy. Disease heterogeneity is appreciated through varying comorbidities: dysarthria, dysphagia, oculomotor and/or retinal abnormalities, motor neuron pathology, epilepsy, cognitive impairment, autonomic dysfunction, and psychiatric manifestations. Our study focuses on SCA13, which is caused by several allelic variants in the voltage-gated potassium channel KCNC3 (Kv3.3. We detail the clinical phenotype of four SCA13 kindreds that confirm causation of the KCNC3R423H allele. The heralding features demonstrate congenital onset with non-progressive, neurodevelopmental cerebellar hypoplasia and lifetime improvement in motor and cognitive function that implicate compensatory neural mechanisms. Targeted expression of human KCNC3R423H in Drosophila triggers aberrant wing veins, maldeveloped eyes, and fused ommatidia consistent with the neurodevelopmental presentation of patients. Furthermore, human KCNC3R423H expression in mammalian cells results in altered glycosylation and aberrant retention of the channel in anterograde and/or endosomal vesicles. Confirmation of the absence of plasma membrane targeting was based on the loss of current conductance in cells expressing the mutant channel. Mechanistically, genetic studies in Drosophila, along with cellular and biophysical studies in mammalian systems, demonstrate the dominant negative effect exerted by the mutant on the wild-type (WT protein, which explains dominant inheritance. We demonstrate that ocular co-expression of KCNC3R423H with Drosophila epidermal growth factor receptor (dEgfr results in striking rescue of the eye phenotype, whereas KCNC3R423H expression in mammalian cells results in aberrant intracellular retention of human epidermal growth factor receptor (EGFR. Together, these results indicate that the neurodevelopmental

  9. Gefitinib: a pharmacoeconomic profile of its use in patients with Non Small Cell Lung Cancer EGFR+

    Directory of Open Access Journals (Sweden)

    Viola Sacchi

    2011-06-01

    Full Text Available Lung cancer is the most common form of cancer with the highest incidence worldwide. The mortality rates are highest in males and second highest in females, after breast cancer. The genetic predisposition to Non Small Cell Lung Cancer (NSCLC is still under investigation, however, studies have shown that the Epidermal Growth Factor Receptor (EGFR, a receptor tyrosine kinase is frequently over-expressed and activated to a phosphorylated state in NSCLC. The activity of EGFR in cancer cells results in the phosphorylation of downstream proteins that promote cell proliferation, invasion, metastasis, and inhibition of apoptosis. Targeting the EGFR pathway therefore constitutes a relevant strategy for cancer therapy. Gefitinib is a selective inhibitor of the EGFR tyrosine kinase and is indicated for the treatment of adult patients with locally advanced or metastatic NSCLC with activating mutations of EGFR-TK. From the pharmacoeconomic point of view gefitinib is dominant (more effective and less expensive compared to the alternatives. In conclusion, gefitinib is a treatment option for NSCLC tumors with a high clinical and economic value in the Italian setting.

  10. Acquired Resistance of EGFR-Mutant Lung Adenocarcinomas to Afatinib plus Cetuximab Is Associated with Activation of mTORC1

    Directory of Open Access Journals (Sweden)

    Valentina Pirazzoli

    2014-05-01

    Full Text Available Patients with EGFR-mutant lung adenocarcinomas (LUADs who initially respond to first-generation tyrosine kinase inhibitors (TKIs develop resistance to these drugs. A combination of the irreversible TKI afatinib and the EGFR antibody cetuximab can be used to overcome resistance to first-generation TKIs; however, resistance to this drug combination eventually emerges. We identified activation of the mTORC1 signaling pathway as a mechanism of resistance to dual inhibition of EGFR in mouse models. The addition of rapamycin reversed resistance in vivo. Analysis of afatinib-plus-cetuximab-resistant biopsy specimens revealed the presence of genomic alterations in genes that modulate mTORC1 signaling, including NF2 and TSC1. These findings pinpoint enhanced mTORC1 activation as a mechanism of resistance to afatinib plus cetuximab and identify genomic mechanisms that lead to activation of this pathway, revealing a potential therapeutic strategy for treating patients with resistance to these drugs.

  11. Monocytes/macrophages support mammary tumor invasivity by co-secreting lineage-specific EGFR ligands and a STAT3 activator

    International Nuclear Information System (INIS)

    Vlaicu, Philip; Mertins, Philipp; Mayr, Thomas; Widschwendter, Peter; Ataseven, Beyhan; Högel, Bernhard; Eiermann, Wolfgang; Knyazev, Pjotr; Ullrich, Axel

    2013-01-01

    Tumor-associated macrophages (TAM) promote malignant progression, yet the repertoire of oncogenic factors secreted by TAM has not been clearly defined. We sought to analyze which EGFR- and STAT3-activating factors are secreted by monocytes/macrophages exposed to tumor cell-secreted factors. Following exposure of primary human monocytes and macrophages to supernatants of a variety of tumor cell lines, we have analyzed transcript and secreted protein levels of EGFR family ligands and of STAT3 activators. To validate our findings, we have analyzed TAM infiltration levels, systemic and local protein levels as well as clinical data of primary breast cancer patients. Primary human monocytes and macrophages respond to tumor cell-derived factors by secreting EGFR- and STAT3-activating ligands, thus inducing two important oncogenic pathways in carcinoma cells. Tumor cell-secreted factors trigger two stereotype secretory profiles in peripheral blood monocytes and differentiated macrophages: monocytes secrete epiregulin (EREG) and oncostatin-M (OSM), while macrophages secrete heparin-binding EGF-like growth factor (HB-EGF) and OSM. HB-EGF and OSM cooperatively induce tumor cell chemotaxis. HB-EGF and OSM are co-expressed by TAM in breast carcinoma patients, and plasma levels of both ligands correlate strongly. Elevated HB-EGF levels accompany TAM infiltration, tumor growth and dissemination in patients with invasive disease. Our work identifies systemic markers for TAM involvement in cancer progression, with the potential to be developed into molecular targets in cancer therapy

  12. Flavopiridol Synergizes with Sorafenib to Induce Cytotoxicity and Potentiate Antitumorigenic Activity in EGFR/HER-2 and Mutant RAS/RAF Breast Cancer Model Systems

    Directory of Open Access Journals (Sweden)

    Teddy S Nagaria

    2013-08-01

    Full Text Available Oncogenic receptor tyrosine kinase (RTK signaling through the Ras-Raf-Mek-Erk (Ras-MAPK pathway is implicated in a wide array of carcinomas, including those of the breast. The cyclin-dependent kinases (CDKs are implicated in regulating proliferative and survival signaling downstream of this pathway. Here, we show that CDK inhibitors exhibit an order of magnitude greater cytotoxic potency than a suite of inhibitors targeting RTK and Ras-MAPK signaling in cell lines representative of clinically recognized breast cancer (BC subtypes. Drug combination studies show that the pan-CDK inhibitor, flavopiridol (FPD, synergistically potentiated cytotoxicity induced by the Raf inhibitor, sorafenib (SFN. This synergy was most pronounced at sub-EC50 SFN concentrations in MDA-MB-231 (KRAS-G13D and BRAF-G464V mutations, MDA-MB-468 [epidermal growth factor receptor (EGFR overexpression], and SKBR3 [ErbB2/EGFR2 (HER-2 overexpression] cells but not in hormone-dependent MCF-7 and T47D cells. Potentiation of SFN cytotoxicity by FPD correlated with enhanced apoptosis, suppression of retinoblastoma (Rb signaling, and reduced Mcl-1 expression. SFN and FPD were also tested in an MDA-MB-231 mammary fat pad engraftment model of tumorigenesis. Mice treated with both drugs exhibited reduced primary tumor growth rates and metastatic tumor load in the lungs compared to treatment with either drug alone, and this correlated with greater reductions in Rb signaling and Mcl-1 expression in resected tumors. These findings support the development of CDK and Raf co-targeting strategies in EGFR/HER-2-overexpressing or RAS/RAF mutant BCs.

  13. C/EBPα Short-Activating RNA Suppresses Metastasis of Hepatocellular Carcinoma through Inhibiting EGFR/β-Catenin Signaling Mediated EMT.

    Directory of Open Access Journals (Sweden)

    Hongbo Huan

    Full Text Available Hepatocellular carcinoma is associated with high mortality, and tumor metastasis is an important reason for poor prognosis. However, metastasis has not been effectively prevented in clinical therapy and the mechanisms underlying metastasis have not been fully characterized. CCAAT/enhancer-binding protein-α (C/EBPα is a transcriptional regulator with an essential role in tumor metastasis. We used short-activating RNAs (saRNA to enhance expression of C/EBPα. Intravenous injection of C/EBPα-saRNA in a nude mouse liver orthotopic xenograft tumor model inhibited intrahepatic and distant metastasis. C/EBPα-saRNA-treated mice showed increased serum levels of albumin and decreased alanine aminotransferase (ALT, glutamic-oxalacetic transaminase (AST, indicating a role of C/EBPα in improving liver function. Migration and invasion were inhibited in hepatoma cell lines transfected with C/EBPα-saRNA. We also observed an inhibition of epithelial-mesenchymal transition (EMT and suppression of epidermal growth factor receptor (EGFR, EGFR phosphorylation, and β-catenin in C/EBPa-saRNA-transfected cells. Our results suggested that C/EBPα-saRNA successfully inhibited HCC metastasis by inhibiting EGFR/β-catenin signaling pathway mediated EMT in vitro and in vivo.

  14. Bi-directional SIFT predicts a subset of activating mutations.

    Directory of Open Access Journals (Sweden)

    William Lee

    Full Text Available Advancements in sequencing technologies have empowered recent efforts to identify polymorphisms and mutations on a global scale. The large number of variations and mutations found in these projects requires high-throughput tools to identify those that are most likely to have an impact on function. Numerous computational tools exist for predicting which mutations are likely to be functional, but none that specifically attempt to identify mutations that result in hyperactivation or gain-of-function. Here we present a modified version of the SIFT (Sorting Intolerant from Tolerant algorithm that utilizes protein sequence alignments with homologous sequences to identify functional mutations based on evolutionary fitness. We show that this bi-directional SIFT (B-SIFT is capable of identifying experimentally verified activating mutants from multiple datasets. B-SIFT analysis of large-scale cancer genotyping data identified potential activating mutations, some of which we have provided detailed structural evidence to support. B-SIFT could prove to be a valuable tool for efforts in protein engineering as well as in identification of functional mutations in cancer.

  15. Somatic activating ARAF mutations in Langerhans cell histiocytosis

    NARCIS (Netherlands)

    Nelson, David S.; Quispel, Willemijn; Badalian-Very, Gayane; van Halteren, Astrid G. S.; van den Bos, Cor; Bovée, Judith V. M. G.; Tian, Sara Y.; van Hummelen, Paul; Ducar, Matthew; MacConaill, Laura E.; Egeler, R. Maarten; Rollins, Barrett J.

    2014-01-01

    The extracellular signal-regulated kinase (ERK) signaling pathway is activated in Langerhans cell histiocytosis (LCH) histiocytes, but only 60% of cases carry somatic activating mutations of BRAF. To identify other genetic causes of ERK pathway activation, we performed whole exome sequencing on

  16. Individualized therapies in colorectal cancer: KRAS as a marker for response to EGFR-targeted therapy

    Directory of Open Access Journals (Sweden)

    Li Kuiyuan

    2009-04-01

    Full Text Available Abstract Individualized therapies that are tailored to a patient's genetic composition will be of tremendous value for treatment of cancer. Recently, Kirsten ras (KRAS status has emerged as a predictor of response to epidermal growth factor receptor (EGFR targeted therapies. In this article, we will discuss targeted therapies for colorectal cancers (CRC based on EGFR signaling pathway and review published data about the potential usefulness of KRAS as a biological marker for response to these therapies. Results from relevant studies published since 2005 and unpublished results presented at national meetings were retrieved and summarized. These studies reflected response (or lack of response to EGFR-targeted therapies in patients with metastatic CRC as a function of KRAS status. It has become clear that patients with colorectal cancer whose tumor has an activating mutation in KRAS do not respond to monoclonal antibody therapies targeting EGFR. It should now become a standard practice that any patients being considered for EGFR targeted therapies have their tumors tested for KRAS status and only those with wild-type KRAS being offered such therapies.

  17. Real-world first-line treatment and overall survival in non-small cell lung cancer without known EGFR mutations or ALK rearrangements in US community oncology setting.

    Directory of Open Access Journals (Sweden)

    Amy P Abernethy

    Full Text Available To establish a baseline for care and overall survival (OS based upon contemporary first-line treatments prescribed in the era before the introduction of immune checkpoint inhibitors, for people with metastatic non-small cell lung cancer (NSCLC without common actionable mutations.Using a nationally representative electronic health record data from the Flatiron dataset which included 162 practices from different regions in US, we identified patients (≥18 years old newly diagnosed with stage IV NSCLC initiating first-line anticancer therapy (November 2012- January 2015, with follow-up through July 2015. Patients with documented epidermal growth factor receptor (EGFR or anaplastic lymphoma kinase (ALK translocation were excluded. Anti-cancer drug therapy and overall survival were described overall, and by histology.A total of 2,014 patients with stage IV NSCLC without known EGFR or ALK genomic tumor aberrations initiated systemic anticancer therapy, 22% with squamous and 78% with nonsquamous histology. Their mean (SD age was 67 (10 years, 55% were male, and 87% had a smoking history. In nonsquamous NSCLC, carboplatin plus pemetrexed either without (25.7% or with bevacizumab (16% were the most common regimens; 26.6% of nonsquamous patients receiving induction therapy also received continuation maintenance therapy. In squamous NSCLC, carboplatin plus paclitaxel (37.6% or nab-paclitaxel (21.1% were the most commonly used regimens. Overall median OS was 9.7 months (95% CI: 9.1, 10.3, 8.5 months (95% CI: 7.4, 10.0 for squamous, and 10.0 months (95% CI: 9.4, 10.8 for nonsquamous NSCLC.The results provide context for evaluating the effect of shifting treatment patterns of NSCLC treatments on patient outcomes, and for community oncology benchmarking initiatives.

  18. Gefitinib-induced killing of NSCLC cell lines expressing mutant EGFR requires BIM and can be enhanced by BH3 mimetics.

    Directory of Open Access Journals (Sweden)

    Mark S Cragg

    2007-10-01

    Full Text Available The epidermal growth factor receptor (EGFR plays a critical role in the control of cellular proliferation, differentiation, and survival. Abnormalities in EGF-EGFR signaling, such as mutations that render the EGFR hyperactive or cause overexpression of the wild-type receptor, have been found in a broad range of cancers, including carcinomas of the lung, breast, and colon. EGFR inhibitors such as gefitinib have proven successful in the treatment of certain cancers, particularly non-small cell lung cancers (NSCLCs harboring activating mutations within the EGFR gene, but the molecular mechanisms leading to tumor regression remain unknown. Therefore, we wished to delineate these mechanisms.We performed biochemical and genetic studies to investigate the mechanisms by which inhibitors of EGFR tyrosine kinase activity, such as gefitinib, inhibit the growth of human NSCLCs. We found that gefitinib triggered intrinsic (also called "mitochondrial" apoptosis signaling, involving the activation of BAX and mitochondrial release of cytochrome c, ultimately unleashing the caspase cascade. Gefitinib caused a rapid increase in the level of the proapoptotic BH3-only protein BIM (also called BCL2-like 11 through both transcriptional and post-translational mechanisms. Experiments with pharmacological inhibitors indicated that blockade of MEK-ERK1/2 (mitogen-activated protein kinase kinase-extracellular signal-regulated protein kinase 1/2 signaling, but not blockade of PI3K (phosphatidylinositol 3-kinase, JNK (c-Jun N-terminal kinase or mitogen-activated protein kinase 8, or AKT (protein kinase B, was critical for BIM activation. Using RNA interference, we demonstrated that BIM is essential for gefitinib-induced killing of NSCLC cells. Moreover, we found that gefitinib-induced apoptosis is enhanced by addition of the BH3 mimetic ABT-737.Inhibitors of the EGFR tyrosine kinase have proven useful in the therapy of certain cancers, in particular NSCLCs possessing

  19. Guanylate binding protein 1 is a novel effector of EGFR-driven invasion in glioblastoma.

    Science.gov (United States)

    Li, Ming; Mukasa, Akitake; Inda, Maria del-Mar; Zhang, Jianhua; Chin, Lynda; Cavenee, Webster; Furnari, Frank

    2011-12-19

    Although GBP1 (guanylate binding protein 1) was among the first interferon-inducible proteins identified, its function is still largely unknown. Epidermal growth factor receptor (EGFR) activation by amplification or mutation is one of the most frequent genetic lesions in a variety of human tumors. These include glioblastoma multiforme (GBM), which is characterized by independent but interrelated features of extensive invasion into normal brain parenchyma, rapid growth, necrosis, and angiogenesis. In this study, we show that EGFR activation promoted GBP1 expression in GBM cell lines through a signaling pathway involving Src and p38 mitogen-activated protein kinase. Moreover, we identified YY1 (Yin Yang 1) as the downstream transcriptional regulator regulating EGFR-driven GBP1 expression. GBP1 was required for EGFR-mediated MMP1 (matrix metalloproteinase 1) expression and glioma cell invasion in vitro. Although deregulation of GBP1 expression did not affect glioma cell proliferation, overexpression of GBP1 enhanced glioma cell invasion through MMP1 induction, which required its C-terminal helical domain and was independent of its GTPase activity. Reducing GBP1 levels by RNA interference in invasive GBM cells also markedly inhibited their ability to infiltrate the brain parenchyma of mice. GBP1 expression was high and positively correlated with EGFR expression in human GBM tumors and cell lines, particularly those of the neural subtype. Together, these findings establish GBP1 as a previously unknown link between EGFR activity and MMP1 expression and nominate it as a novel potential therapeutic target for inhibiting GBM invasion.

  20. Synthesis, antitumour and antioxidant activities of novel α,β-unsaturated ketones and related heterocyclic analogues: EGFR inhibition and molecular modelling study.

    Science.gov (United States)

    El-Husseiny, Walaa M; El-Sayed, Magda A-A; Abdel-Aziz, Naglaa I; El-Azab, Adel S; Ahmed, Esam R; Abdel-Aziz, Alaa A-M

    2018-12-01

    New α,β-unsaturated ketones 4a,b; 5a-c; and 6a,b; as well as 4-H pyran 7; pyrazoline 8a,b; isoxazoline 9; pyridine 10-11; and quinoline-4-carboxylic acid 12a,b derivatives were synthesized and evaluated for in vitro antitumour activity against HepG2, MCF-7, HeLa, and PC-3 cancer cell lines. Antioxidant activity was investigated by the ability of these compounds to scavenge the 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation (ABTS •+ ). Compounds 6a, 6b, 7, and 8b exhibited potent antitumour activities against all tested cell lines with [IC 50 ] ≅5.5-18.1 µΜ), in addition to significantly high ABTS •+ scavenging activities. In vitro EGFR kinase assay for 6a, 6b, 7, and 8b as the most potent antitumour compounds showed that; compounds 6b, and 7 exhibited worthy EGFR inhibition activity with IC 50 values of 0.56 and 1.6 µM, respectively, while compounds 6a and 8b showed good inhibition activity with IC 50 values of 4.66 and 2.16 µM, respectively, compared with sorafenib reference drug (IC 50  = 1.28 µM). Molecular modelling studies for compounds 6b, 7, and 8b were conducted to exhibit the binding mode towards EGFR kinase, which showed similar interaction with erlotinib.

  1. Clinical features and treatment outcome of non-small cell lung cancer (NSCLC) patients with uncommon or complex epidermal growth factor receptor (EGFR) mutations

    Science.gov (United States)

    Fassan, Matteo; Indraccolo, Stefano; Calabrese, Fiorella; Favaretto, Adolfo; Bonanno, Laura; Polo, Valentina; Zago, Giulia; Lunardi, Francesca; Attili, Ilaria; Pavan, Alberto; Rugge, Massimo; Guarneri, Valentina; Conte, PierFranco; Pasello, Giulia

    2017-01-01

    Introduction Tyrosine-kinase inhibitors (TKIs) represent the best treatment for advanced non-small cell lung cancer (NSCLC) with common exon 19 deletion or exon 21 epidermal growth factor receptor mutation (EGFRm). This is an observational study investigating epidemiology, clinical features and treatment outcome of NSCLC cases harbouring rare/complex EGFRm. Results Among 764 non-squamous NSCLC cases with known EGFRm status, 26(3.4%) harboured rare/complex EGFRm. Patients receiving first-line TKIs (N = 17) achieved median Progression Free Survival (PFS) and Overall Survival (OS) of 53 (IC 95%, 2–105) and 84 (CI 95%, 27–141) weeks respectively, without significant covariate impact. Response Rate and Disease Control Rate (DCR) were 47% and 65%, respectively. Uncommon exon 19 mutations achieved longer OS and PFS and higher DCR compared with exon 18 and 20 mutations. No additional gene mutation was discovered by MassARRAY analysis. TKIs were globally well tolerated. Materials and methods A retrospective review of advanced non-squamous NSCLC harbouring rare/complex EGFRm referred to our Center between 2010 and 2015 was performed. Additional molecular pathways disregulation was explored in selected cases, through MassARRAY analysis. Conclusions Peculiar clinical features and lower TKIs sensitivity of uncommon/complex compared with common EGFRm were shown. Exon 19 EGFRm achieved the best TKIs treatment outcome, while the optimal treatment of exon 18 and 20 mutations should be further clarified. PMID:28427238

  2. EGFR-TKI therapy for patients with brain metastases from non-small-cell lung cancer: a pooled analysis of published data

    Directory of Open Access Journals (Sweden)

    Fan Y

    2014-11-01

    Full Text Available Yun Fan,1,2 Xiaoling Xu,3 Conghua Xie4 1Zhongnan Hospital of Wuhan University, Department of Radiation Oncology, Wuhan, People's Republic of China; 2Department of Chemotherapy, Zhejiang Cancer Hospital, Hangzhou, People’s Republic of China; 3Zhejiang Cancer Hospital, Hangzhou, People’s Republic of China; 4Zhongnan Hospital of Wuhan University, Department of Radiation Oncology, Wuhan, People’s Republic of China Introduction: Brain metastases are one of the leading causes of death from non-small-cell lung cancer (NSCLC. The use of epidermal growth factor receptor (EGFR tyrosine kinase inhibitors (TKIs to treat brain metastases remains controversial. Thus, we performed a pooled analysis of published data to evaluate the efficacy of EGFR-TKIs in NSCLC patients with brain metastases, particularly for tumors with activating EGFR mutations. Methods: Several data sources were searched, including PubMed, Web of Science, and ASCO Annual Meetings databases. The end points were intracranial overall response rate (ORR, disease control rate (DCR, progression-free survival (PFS, overall survival (OS, and adverse events. The pooled ORR, DCR, PFS, and OS with 95% confidence intervals (CIs were calculated employing fixed- or random-effect models, depending on the heterogeneity of the included studies. Results: Sixteen published studies were included in this analysis, with a total of 464 enrolled patients. The EGFR mutational status was unknown for 362 (unselected group, and 102 had activating EGFR mutations. The pooled intracranial ORR and DCR were 51.8% (95% CI: 45.8%–57.8% and 75.7% (95% CI: 70.3%–80.5%, respectively. A higher ORR was observed in the EGFR mutation group than in the unselected group (85.0% vs 45.1%; a similar trend was observed for the DCR (94.6% vs 71.3%. The pooled median PFS and OS were 7.4 months (95% CI, 4.9–9.9 and 11.9 months (95% CI, 7.7–16.2, respectively, with longer PFS (12.3 months vs 5.9 months and OS (16.2 months vs

  3. Comparative study analyzing survival and safety of bevacizumab/carboplatin/paclitaxel and cisplatin/pemetrexed in chemotherapy-naïve patients with advanced non-squamous bronchogenic carcinoma not harboring EGFR mutation

    Directory of Open Access Journals (Sweden)

    Abdel Kader Y

    2013-07-01

    Full Text Available Yasser Abdel Kader,1 Thierry Le Chevalier,2 Tamer El-Nahas,1 Amr Sakr11Department of Clinical Oncology, Cairo University, Cairo, Egypt; 2Department of Medical Oncology, Institut Gustave Roussy, Villejuif, Paris, FrancePurpose: The majority of Egyptian patients with lung cancer present at a late stage of the disease. Bevacizumab/carboplatin/paclitaxel, as well as cisplatin plus pemetrexed, are both standard regimens for advanced non-squamous bronchogenic cancer. This study compares both regimens, in terms of efficacy and toxicity profile, in Egyptian patients.Patients and methods: This is a randomized Phase II study comparing toxicity profile and survival in 41 chemotherapy-naïve patients with stage IIIB or IV non-squamous NSCLC, with an ECOG performance status of 0 to 2. The epidermal growth factor receptor (EGFR mutation detection was performed prior to treatment of all patients. Patients in the first group received: bevacizumab 7.5 mg/m2 on Day 1 and Day 15; carboplatin area under the curve-5 on Day 1; and paclitaxel 60 mg/m2 on Day 1, Day 8, and Day 15 every 4 weeks. In the second group, patients received cisplatin 75 mg/m2 and pemetrexed 500 mg/m2 every 3 weeks.Results: The combination of bevacizumab/carboplatin/paclitaxel demonstrated higher Grade III–IV toxicity than cisplatin/pemetrexed regarding sensory/motor neuropathy (P = 0.06, DVT (P = 0.23, proteinuria (P = 0.23, and hypertension (P = 0.11, as well as Grade II alopecia (P = 0.001; however, no significant difference in toxicities between both arms was recorded regarding nausea and vomiting (P = 0.66, hematological toxicity, febrile neutropenia (P = 1 and fatigue (P = 0.66. Progression-free survival was similar for both treatment arms with a median of 6 months (P = 0.978. Overall median survival was comparable in both arms, 16.07 months versus 16.01 months (P = 0.89.Conclusion: Bevacizumab/carboplatin/paclitaxel and cisplatin/pemetrexed provided meaningful and comparable efficacy

  4. Complete response in gallbladder cancer to erlotinib plus gemcitabine does not require mutation of the epidermal growth factor receptor gene: a case report

    Directory of Open Access Journals (Sweden)

    Lincer Robert

    2010-10-01

    Full Text Available Abstract Background Gallbladder cancer typically follows an aggressive course, with chemotherapy the standard of care for advanced disease; complete remissions are rarely encountered. The epidermal growth factor receptor (EGFR is a promising therapeutic target but the activity of single agent oral EGFR tyrosine kinase inhibitors is low. There have been no previous reports of chemotherapy plus an EGFR-tyrosine kinase inhibitor (TKI to treat gallbladder cancer or correlations of response with the mutation status of the tyrosine kinase domain of the EGFR gene. Case presentation A 67 year old man with metastatic gallbladder cancer involving the liver and abdominal lymph nodes was treated with gemcitabine (1000 mg/m2 on day 1 and 8 every 21 days as well as daily erlotinib (100 mg. After four cycles of therapy, the CA 19-9 normalized and a PET/CT showed a complete remission; this response was maintained by the end of 12 cycles of therapy. Gemcitabine was then discontinued and single agent erlotinib was continued as maintenance therapy. The disease remains in good control 18 months after initiation of therapy, including 6 months on maintenance erlotinib. The only grade 3 toxicity was a typical EGFR-related skin rash. Because of the remarkable response to erlotinib plus gemcitabine, we performed tumor genotyping of the EGFR gene for response predicting mutations in exons 18, 19 and 21. This disclosed the wild-type genotype with no mutations found. Conclusion This case report demonstrates a patient with stage IV gallbladder cancer who experienced a rarely encountered complete, prolonged response after treatment with an oral EGFR-TKI plus chemotherapy. This response occurred in the absence of an EGFR gene mutation. These observations should inform the design of clinical trials using EGFR-TKIs to treat gallbladder and other biliary tract cancers; such trials should not select patients based on EGFR mutation status.

  5. Complete response in gallbladder cancer to erlotinib plus gemcitabine does not require mutation of the epidermal growth factor receptor gene: a case report

    International Nuclear Information System (INIS)

    Mody, Kabir; Strauss, Edward; Lincer, Robert; Frank, Richard C

    2010-01-01

    Gallbladder cancer typically follows an aggressive course, with chemotherapy the standard of care for advanced disease; complete remissions are rarely encountered. The epidermal growth factor receptor (EGFR) is a promising therapeutic target but the activity of single agent oral EGFR tyrosine kinase inhibitors is low. There have been no previous reports of chemotherapy plus an EGFR-tyrosine kinase inhibitor (TKI) to treat gallbladder cancer or correlations of response with the mutation status of the tyrosine kinase domain of the EGFR gene. A 67 year old man with metastatic gallbladder cancer involving the liver and abdominal lymph nodes was treated with gemcitabine (1000 mg/m2) on day 1 and 8 every 21 days as well as daily erlotinib (100 mg). After four cycles of therapy, the CA 19-9 normalized and a PET/CT showed a complete remission; this response was maintained by the end of 12 cycles of therapy. Gemcitabine was then discontinued and single agent erlotinib was continued as maintenance therapy. The disease remains in good control 18 months after initiation of therapy, including 6 months on maintenance erlotinib. The only grade 3 toxicity was a typical EGFR-related skin rash. Because of the remarkable response to erlotinib plus gemcitabine, we performed tumor genotyping of the EGFR gene for response predicting mutations in exons 18, 19 and 21. This disclosed the wild-type genotype with no mutations found. This case report demonstrates a patient with stage IV gallbladder cancer who experienced a rarely encountered complete, prolonged response after treatment with an oral EGFR-TKI plus chemotherapy. This response occurred in the absence of an EGFR gene mutation. These observations should inform the design of clinical trials using EGFR-TKIs to treat gallbladder and other biliary tract cancers; such trials should not select patients based on EGFR mutation status

  6. Complete response in gallbladder cancer to erlotinib plus gemcitabine does not require mutation of the epidermal growth factor receptor gene: a case report.

    Science.gov (United States)

    Mody, Kabir; Strauss, Edward; Lincer, Robert; Frank, Richard C

    2010-10-20

    Gallbladder cancer typically follows an aggressive course, with chemotherapy the standard of care for advanced disease; complete remissions are rarely encountered. The epidermal growth factor receptor (EGFR) is a promising therapeutic target but the activity of single agent oral EGFR tyrosine kinase inhibitors is low. There have been no previous reports of chemotherapy plus an EGFR-tyrosine kinase inhibitor (TKI) to treat gallbladder cancer or correlations of response with the mutation status of the tyrosine kinase domain of the EGFR gene. A 67 year old man with metastatic gallbladder cancer involving the liver and abdominal lymph nodes was treated with gemcitabine (1000 mg/m2) on day 1 and 8 every 21 days as well as daily erlotinib (100 mg). After four cycles of therapy, the CA 19-9 normalized and a PET/CT showed a complete remission; this response was maintained by the end of 12 cycles of therapy. Gemcitabine was then discontinued and single agent erlotinib was continued as maintenance therapy. The disease remains in good control 18 months after initiation of therapy, including 6 months on maintenance erlotinib. The only grade 3 toxicity was a typical EGFR-related skin rash. Because of the remarkable response to erlotinib plus gemcitabine, we performed tumor genotyping of the EGFR gene for response predicting mutations in exons 18, 19 and 21. This disclosed the wild-type genotype with no mutations found. This case report demonstrates a patient with stage IV gallbladder cancer who experienced a rarely encountered complete, prolonged response after treatment with an oral EGFR-TKI plus chemotherapy. This response occurred in the absence of an EGFR gene mutation. These observations should inform the design of clinical trials using EGFR-TKIs to treat gallbladder and other biliary tract cancers; such trials should not select patients based on EGFR mutation status.

  7. Nutritional status in the era of target therapy: poor nutrition is a prognostic factor in non-small cell lung cancer with activating epidermal growth factor receptor mutations.

    Science.gov (United States)

    Park, Sehhoon; Park, Seongyeol; Lee, Se-Hoon; Suh, Beomseok; Keam, Bhumsuk; Kim, Tae Min; Kim, Dong-Wan; Kim, Young Whan; Heo, Dae Seog

    2016-11-01

    Pretreatment nutritional status is an important prognostic factor in patients treated with conventional cytotoxic chemotherapy. In the era of target therapies, its value is overlooked and has not been investigated. The aim of our study is to evaluate the value of nutritional status in targeted therapy. A total of 2012 patients with non-small cell lung cancer (NSCLC) were reviewed and 630 patients with activating epidermal growth factor receptor (EGFR) mutation treated with EGFR tyrosine kinase inhibitor (TKI) were enrolled for the final analysis. Anemia, body mass index (BMI), and prognostic nutritional index (PNI) were considered as nutritional factors. Hazard ratio (HR), progression-free survival (PFS) and overall survival (OS) for each group were calculated by Cox proportional analysis. In addition, scores were applied for each category and the sum of scores was used for survival analysis. In univariable analysis, anemia (HR, 1.29; p = 0.015), BMI lower than 18.5 (HR, 1.98; p = 0.002), and PNI lower than 45 (HR, 1.57; p nutritional status is a prognostic marker in NSCLC patients treated with EGFR TKI. Hence, baseline nutritional status should be more carefully evaluated and adequate nutrition should be supplied to these patients.

  8. A novel mutation in the tyrosine kinase domain of ERBB2 in hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Bekaii-Saab, Tanios; Williams, Nita; Plass, Christoph; Calero, Miguel Villalona; Eng, Charis

    2006-01-01

    Several studies showed that gain-of-function somatic mutations affecting the catalytic domain of EGFR in non-small cell lung carcinomas were associated with response to gefitinib and erlotinib, both EGFR-tyrosine kinase inhibitors. In addition, 4% of non-small cell lung carcinomas were shown to have ERBB2 mutations in the kinase domain. In our study, we sought to determine if similar respective gain-of-function EGFR and ERBB2 mutations were present in hepatoma and/or biliary cancers. We extracted genomic DNA from 40 hepatoma (18) and biliary cancers (22) samples, and 44 adenocarcinomas of the lung, this latter as a positive control for mutation detection. We subjected those samples to PCR-based semi-automated double stranded nucleotide sequencing targeting exons 18–21 of EGFR and ERBB2. All samples were tested against matched normal DNA. We found 11% of hepatoma, but no biliary cancers, harbored a novel ERBB2 H878Y mutation in the activating domain. These newly described mutations may play a role in predicting response to EGFR-targeted therapy in hepatoma and their role should be explored in prospective studies

  9. Chlorpyrifos promotes colorectal adenocarcinoma H508 cell growth through the activation of EGFR/ERK1/2 signaling pathway but not cholinergic pathway.

    Science.gov (United States)

    Suriyo, Tawit; Tachachartvanich, Phum; Visitnonthachai, Daranee; Watcharasit, Piyajit; Satayavivad, Jutamaad

    2015-12-02

    Aside from the effects on neuronal cholinergic system, epidemiological studies suggest an association between chlorpyrifos (CPF) exposure and cancer risk. This in vitro study examined the effects of CPF and its toxic metabolite, chlorpyrifos oxon (CPF-O), on the growth of human colorectal adenocarcinoma H508, colorectal adenocarcinoma HT-29, normal colon epithelial CCD841, liver hepatocellular carcinoma HepG2, and normal liver hepatocyte THLE-3 cells. The results showed that CPF (5-100 μM) concentration-dependently increased viability of H508 and CCD841 cells in serum-free conditions. This increasing trend was not found in HT-29, HepG2 and THLE-3 cells. In contrast, CPF-O (50-100 μM) reduced the viability of all cell lines. Cell cycle analysis showed the induction of cells in the S phase, and EdU incorporation assay revealed the induction of DNA synthesis in CPF-treated H508 cells indicating that CPF promotes cell cycle progression. Despite the observation of acetylcholinesterase activity inhibition and reactive oxygen species (ROS) generation, atropine (a non-selective muscarinic acetylcholine receptor antagonist) and N-acetylcysteine (a potent antioxidant) failed to inhibit the growth-promoting effect of CPF. CPF increased the phosphorylation of epidermal growth factor receptor (EGFR) and its downstream effector, extracellular signal regulated kinase (ERK1/2), in H508 cells. AG-1478 (a specific EGFR tyrosine kinase inhibitor) and U0126 (a specific MEK inhibitor) completely mitigated the growth promoting effect of CPF. Altogether, these results suggest that EGFR/ERK1/2 signaling pathway but not cholinergic pathway involves in CPF-induced colorectal adenocarcinoma H508 cell growth. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Multiple Hotspot Mutations Scanning by Single Droplet Digital PCR.

    Science.gov (United States)

    Decraene, Charles; Silveira, Amanda B; Bidard, François-Clément; Vallée, Audrey; Michel, Marc; Melaabi, Samia; Vincent-Salomon, Anne; Saliou, Adrien; Houy, Alexandre; Milder, Maud; Lantz, Olivier; Ychou, Marc; Denis, Marc G; Pierga, Jean-Yves; Stern, Marc-Henri; Proudhon, Charlotte

    2018-02-01

    Progress in the liquid biopsy field, combined with the development of droplet digital PCR (ddPCR), has enabled noninvasive monitoring of mutations with high detection accuracy. However, current assays detect a restricted number of mutations per reaction. ddPCR is a recognized method for detecting alterations previously characterized in tumor tissues, but its use as a discovery tool when the mutation is unknown a priori remains limited. We established 2 ddPCR assays detecting all genomic alterations within KRAS exon 2 and EGFR exon 19 mutation hotspots, which are of clinical importance in colorectal and lung cancer, with use of a unique pair of TaqMan ® oligoprobes. The KRAS assay scanned for the 7 most common mutations in codons 12/13 but also all other mutations found in that region. The EGFR assay screened for all in-frame deletions of exon 19, which are frequent EGFR-activating events. The KRAS and EGFR assays were highly specific and both reached a limit of detection of <0.1% in mutant allele frequency. We further validated their performance on multiple plasma and formalin-fixed and paraffin-embedded tumor samples harboring a panel of different KRAS or EGFR mutations. This method presents the advantage of detecting a higher number of mutations with single-reaction ddPCRs while consuming a minimum of patient sample. This is particularly useful in the context of liquid biopsy because the amount of circulating tumor DNA is often low. This method should be useful as a discovery tool when the tumor tissue is unavailable or to monitor disease during therapy. © 2017 American Association for Clinical Chemistry.

  11. Niacin activates the PI3K/Akt cascade via PKC- and EGFR-transactivation-dependent pathways through hydroxyl-carboxylic acid receptor 2.

    Directory of Open Access Journals (Sweden)

    Huawang Sun

    Full Text Available Niacin has been demonstrated to activate a PI3K/Akt signaling cascade to prevent brain damage after stroke and UV-induced skin damage; however, the underlying molecular mechanisms for HCA2-induced Akt activation remain to be elucidated. Using CHO-K1 cells stably expressing HCA2 and A431 cells, a human epidermoid cell line with high levels of endogenous expression of functional HCA2 receptors, we first demonstrated that niacin induced a robust Akt phosphorylation at both Thr308 and Ser473 in a time-dependent fashion, with a maximal activation at 5 min and a subsequent reduction to baseline by 30 min through HCA2, and that the activation was significantly blocked by pertussis toxin. The HCA2-mediated activation of Akt was also significantly inhibited by the PKC inhibitors GF109203x and Go6983 in both cell lines, by the PDGFR-selective inhibitor tyrphostin A9 in CHO-HCA2 cells and by the MMP inhibitor GM6001 and EGFR-specific inhibitor AG1478 in A431 cells. These results suggest that the PKC pathway and PDGFR/EGFR transactivation pathway play important roles in HCA2-mediated Akt activation. Further investigation indicated that PI3K and the Gβγ subunit were likely to play an essential role in HCA2-induced Akt activation. Moreover, Immunobloting analyses using an antibody that recognizes p70S6K1 phosphorylated at Thr389 showed that niacin evoked p70S6K1 activation via the PI3K/Akt pathway. The results of our study provide new insight into the signaling pathways involved in HCA2 activation.

  12. Inhibitors of EGFR and PI3K/Akt/mtor pathways for the treatment of head and neck cancer

    Energy Technology Data Exchange (ETDEWEB)

    Navarro Palomares, E. M.

    2015-07-01

    Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide and although new therapeutic approaches have been recently evaluated, improvement in overall patient survival is still poor. For this reason, new effective and selective clinical treatments are urgently needed. Genomic analysis allowing the identification of differences between normal and tumor cells provides new therapeutic options identifying novel targets or drugs that have shown efficacy in other tumor types. In this sense, EGFR amplification and/or overexpression are frequent events in HNSCC; in fact, the only targeted therapy approved to treat HNSCC is the anti-EFGR antibody Cetuximab. Based on cell line drug screening studies we identified Bosutinib (SKI-606), a Src/Abl inhibitor, as a candidate drug to treat HNSCC. Using a panel of HNSCC cell lines we found that the treatment with Bosutinib was able to reduce cell proliferation and to induce apoptosis at higher doses. We verified that the drug rapidly inhibited EGFR phosphorylation, and sensitivity to Bosutinib correlated with the activation of EGFR in tumor-derived cell lines. Moreover, Bosutinib showed a synergistic effect on cell viability with the PI3K? inhibitor BYL719 only in those cell lines with mutations in PIK3CA. These results suggest that Bosutinib could be a new effective drug in the treatment of HNSCC cancer, especially in tumors with high activity of EGFR, and its combination with BYL719 could especially benefit those patients bearing activating mutations of PIK3CA. (Author)

  13. Mutational status of synchronous and metachronous tumor samples in patients with metastatic non-small-cell lung cancer

    International Nuclear Information System (INIS)

    Quéré, Gilles; Descourt, Renaud; Robinet, Gilles; Autret, Sandrine; Raguenes, Odile; Fercot, Brigitte; Alemany, Pierre; Uguen, Arnaud; Férec, Claude; Quintin-Roué, Isabelle; Le Gac, Gérald

    2016-01-01

    Despite reported discordance between the mutational status of primary lung cancers and their metastases, metastatic sites are rarely biopsied and targeted therapy is guided by genetic biomarkers detected in the primary tumor. This situation is mostly explained by the apparent stability of EGFR-activating mutations. Given the dramatic increase in the range of candidate drugs and high rates of drug resistance, rebiopsy or liquid biopsy may become widespread. The purpose of this study was to test genetic biomarkers used in clinical practice (EGFR, ALK) and candidate biomarkers identified by the French National Cancer Institute (KRAS, BRAF, PIK3CA, HER2) in patients with metastatic non-small-cell lung cancer for whom two tumor samples were available. A retrospective study identified 88 tumor samples collected synchronously or metachronously, from the same or two different sites, in 44 patients. Mutation analysis used SNaPshot (EGFR, KRAS, BRAF missense mutations), pyrosequencing (EGFR and PIK3CA missense mutations), sizing assays (EGFR and HER2 indels) and IHC and/or FISH (ALK rearrangements). About half the patients (52 %) harbored at least one mutation. Five patients had an activating mutation of EGFR in both the primary tumor and the metastasis. The T790M resistance mutation was detected in metastases in 3 patients with acquired resistance to EGFR tyrosine kinase inhibitors. FISH showed discordance in ALK status between a small biopsy sample and the surgical specimen. KRAS mutations were observed in 36 % of samples, six patients (14 %) having discordant genotypes; all discordances concerned sampling from different sites. Two patients (5 %) showed PI3KCA mutations. One metastasis harbored both PI3KCA and KRAS mutations, while the synchronously sampled primary tumor was mutation free. No mutations were detected in BRAF and HER2. This study highlighted noteworthy intra-individual discordance in KRAS mutational status, whereas EGFR status was stable. Intratumoral

  14. Development of new mouse lung tumor models expressing EGFR T790M mutants associated with clinical resistance to kinase inhibitors.

    Science.gov (United States)

    Regales, Lucia; Balak, Marissa N; Gong, Yixuan; Politi, Katerina; Sawai, Ayana; Le, Carl; Koutcher, Jason A; Solit, David B; Rosen, Neal; Zakowski, Maureen F; Pao, William

    2007-08-29

    The EGFR T790M mutation confers acquired resistance to kinase inhibitors in human EGFR mutant lung adenocarcinoma, is occasionally detected before treatment, and may confer genetic susceptibility to lung cancer. To study further its role in lung tumorigenesis, we developed mice with inducible expression in type II pneumocytes of EGFR(T790M) alone or together with a drug-sensitive L858R mutation. Both transgenic lines develop lung adenocarcinomas that require mutant EGFR for tumor maintenance but are resistant to an EGFR kinase inhibitor. EGFR(L858R+T790M)-driven tumors are transiently targeted by hsp90 inhibition. Notably, EGFR(T790M)-expressing animals develop tumors with longer latency than EGFR(L858R+T790M)-bearing mice and in the absence of additional kinase domain mutations. These new mouse models of mutant EGFR-dependent lung adenocarcinomas provide insight into clinical observations. The models should also be useful for developing improved therapies for patients with lung cancers harboring EGFR(T790M) alone or in conjunction with drug-sensitive EGFR kinase domain mutations.

  15. Development of new mouse lung tumor models expressing EGFR T790M mutants associated with clinical resistance to kinase inhibitors.

    Directory of Open Access Journals (Sweden)

    Lucia Regales

    2007-08-01

    Full Text Available The EGFR T790M mutation confers acquired resistance to kinase inhibitors in human EGFR mutant lung adenocarcinoma, is occasionally detected before treatment, and may confer genetic susceptibility to lung cancer.To study further its role in lung tumorigenesis, we developed mice with inducible expression in type II pneumocytes of EGFR(T790M alone or together with a drug-sensitive L858R mutation. Both transgenic lines develop lung adenocarcinomas that require mutant EGFR for tumor maintenance but are resistant to an EGFR kinase inhibitor. EGFR(L858R+T790M-driven tumors are transiently targeted by hsp90 inhibition. Notably, EGFR(T790M-expressing animals develop tumors with longer latency than EGFR(L858R+T790M-bearing mice and in the absence of additional kinase domain mutations.These new mouse models of mutant EGFR-dependent lung adenocarcinomas provide insight into clinical observations. The models should also be useful for developing improved therapies for patients with lung cancers harboring EGFR(T790M alone or in conjunction with drug-sensitive EGFR kinase domain mutations.

  16. Icotinib in Patients with Pretreated Advanced Esophageal Squamous Cell Carcinoma with EGFR Overexpression or EGFR Gene Amplification: A Single-Arm, Multicenter Phase 2 Study.

    NARCIS (Netherlands)

    Huang, J.; Fan, Q.; Lu, P.; Ying, J.; Ma, C.; Liu, W.; Liu, Y.; Tan, F.; Sun, Y

    2016-01-01

    INTRODUCTION: Epidermal growth factor receptor (EGFR) has been reported to be overexpressed and amplified in a high percentage of patients with esophageal squamous cell carcinoma (ESCC). The activity of icotinib, an EGFR tyrosine kinase inhibitor, was assessed in previously treated ESCC with EGFR

  17. p-Benzoquinone initiates non-invasive urothelial cancer through aberrant tyrosine phosphorylation of EGFR, MAP kinase activation and cell cycle deregulation: Prevention by vitamin C

    Directory of Open Access Journals (Sweden)

    Shinjini Ganguly

    Full Text Available According to WHO classification system, non-invasive urothelial carcinoma represents urothelial carcinoma in situ (CIS and dysplasia. Dysplastic urothelium often progresses to CIS that further advances to urothelial carcinoma (UC. The strongest risk factor for UC is cigarette smoking. However, the pathogenesis of cigarette smoke (CS-induced UC is poorly understood. Earlier we had shown that p-benzoquinone (p-BQ, a major toxic quinone derived from p-benzosemiquinone of CS in vivo, is a causative factor for various CS-induced diseases. Here, using a guinea pig model we showed that prolonged treatment with p-BQ led to non-invasive UC, specifically carcinoma in situ (CIS of the renal pelvis and dysplasia in the ureter and bladder. The mechanisms of carcinogenesis were p-BQ-induced oxidative damage and apoptosis that were later suppressed and followed by activation of epidermal growth factor receptor, aberrant phosphorylation of intracellular tyrosine residues, activation of MAP kinase pathway and persistent growth signaling. This was accompanied by deregulation of cell cycle as shown by marked decrease in the expression of p21waf1/cip1 and cyclin D1 proteins as well as hyperphosphorylation of pRb. UC has been characterised by histopathology and immunohistochemistry showing aberrant CK20, increased Ki-67, and marked p53 nuclear immunopositivity with uniformly negative labelling of CD44. Oral supplementation of vitamin C (30 mg/kg body weight/day prevented CIS of the renal pelvis and dysplasia in the ureter and bladder. Since majority of non-invasive UC progresses to invasive cancer with increased risk of mortality, our preclinical study might help to devise effective strategies for early intervention of the disease. Abbreviations: Bax, Bcl-2, CS, DNPH, GAPDH, IARC, p-BQ, p-BSQ, PAHs, PBS, ROS, SDS PAGE, TUNEL, WHO, UC, CIS, EGFR, MAPK, Keywords: p-Benzoquinone, Carcinoma in situ, Dysplasia, Aberrant EGFR activation, Cell cycle deregulation

  18. Drug Resistance to EGFR Inhibitors in Lung Cancer | Office of Cancer Genomics

    Science.gov (United States)

    The discovery of mutations in epidermal growth factor receptor (EGFR) has dramatically changed the treatment of patients with non-small-cell lung cancer (NSCLC), the leading cause of cancer deaths worldwide. EGFR-targeted therapies show considerable promise, but drug resistance has become a substantial issue. We reviewed the literature to provide an overview of the drug resistance to EGFR tyrosine kinase inhibitors (TKIs) in NSCLC. The mechanisms causing primary, acquired and persistent drug resistance to TKIs vary.

  19. EGFR Signal-Network Reconstruction Demonstrates Metabolic Crosstalk in EMT.

    Directory of Open Access Journals (Sweden)

    Kumari Sonal Choudhary

    2016-06-01

    Full Text Available Epithelial to mesenchymal transition (EMT is an important event during development and cancer metastasis. There is limited understanding of the metabolic alterations that give rise to and take place during EMT. Dysregulation of signalling pathways that impact metabolism, including epidermal growth factor receptor (EGFR, are however a hallmark of EMT and metastasis. In this study, we report the investigation into EGFR signalling and metabolic crosstalk of EMT through constraint-based modelling and analysis of the breast epithelial EMT cell model D492 and its mesenchymal counterpart D492M. We built an EGFR signalling network for EMT based on stoichiometric coefficients and constrained the network with gene expression data to build epithelial (EGFR_E and mesenchymal (EGFR_M networks. Metabolic alterations arising from differential expression of EGFR genes was derived from a literature review of AKT regulated metabolic genes. Signaling flux differences between EGFR_E and EGFR_M models subsequently allowed metabolism in D492 and D492M cells to be assessed. Higher flux within AKT pathway in the D492 cells compared to D492M suggested higher glycolytic activity in D492 that we confirmed experimentally through measurements of glucose uptake and lactate secretion rates. The signaling genes from the AKT, RAS/MAPK and CaM pathways were predicted to revert D492M to D492 phenotype. Follow-up analysis of EGFR signaling metabolic crosstalk in three additional breast epithelial cell lines highlighted variability in in vitro cell models of EMT. This study shows that the metabolic phenotype may be predicted by in silico analyses of gene expression data of EGFR signaling genes, but this phenomenon is cell-specific and does not follow a simple trend.

  20. EGFR Signal-Network Reconstruction Demonstrates Metabolic Crosstalk in EMT.

    Science.gov (United States)

    Choudhary, Kumari Sonal; Rohatgi, Neha; Halldorsson, Skarphedinn; Briem, Eirikur; Gudjonsson, Thorarinn; Gudmundsson, Steinn; Rolfsson, Ottar

    2016-06-01

    Epithelial to mesenchymal transition (EMT) is an important event during development and cancer metastasis. There is limited understanding of the metabolic alterations that give rise to and take place during EMT. Dysregulation of signalling pathways that impact metabolism, including epidermal growth factor receptor (EGFR), are however a hallmark of EMT and metastasis. In this study, we report the investigation into EGFR signalling and metabolic crosstalk of EMT through constraint-based modelling and analysis of the breast epithelial EMT cell model D492 and its mesenchymal counterpart D492M. We built an EGFR signalling network for EMT based on stoichiometric coefficients and constrained the network with gene expression data to build epithelial (EGFR_E) and mesenchymal (EGFR_M) networks. Metabolic alterations arising from differential expression of EGFR genes was derived from a literature review of AKT regulated metabolic genes. Signaling flux differences between EGFR_E and EGFR_M models subsequently allowed metabolism in D492 and D492M cells to be assessed. Higher flux within AKT pathway in the D492 cells compared to D492M suggested higher glycolytic activity in D492 that we confirmed experimentally through measurements of glucose uptake and lactate secretion rates. The signaling genes from the AKT, RAS/MAPK and CaM pathways were predicted to revert D492M to D492 phenotype. Follow-up analysis of EGFR signaling metabolic crosstalk in three additional breast epithelial cell lines highlighted variability in in vitro cell models of EMT. This study shows that the metabolic phenotype may be predicted by in silico analyses of gene expression data of EGFR signaling genes, but this phenomenon is cell-specific and does not follow a simple trend.

  1. The KRAS Strip Assay for detection of KRAS mutation in Egyptian patients with colorectal cancer (CRC): A pilot study

    International Nuclear Information System (INIS)

    Abd El Kader, Y.; Safwat, E.; Kassem, H.A.; Kassem, N.M.; Emera, G.

    2013-01-01

    Background: Epidermal growth factor receptor (EGFR) and its downstream factors KRAS and BRAF are mutated in several types of cancer, affecting the clinical response to EGFR inhibitors. Mutations in the EGFR kinase domain predict sensitivity to the tyrosine kinase inhibitors gefltinib and erlotinib in lung adenocarcinoma, while activating point mutations in KRAS and BRAF confer resistance to the anti-EGFR monoclonal antibody cetuximab in colorectal cancer. The development of new generation methods for systematic mutation screening of these genes will allow more appropriate therapeutic choices. Purpose: Detection of KRAS mutation in Egyptian colorectal cancer (CRC) patients by the KRAS Strip Assay. Methods: Examination of 20 colorectal cancer (CRC) patients is done to detect KRAS mutations by KRAS Strip Assay. For the Strip Assay, a mutant-enriched PCR was followed by hybridization to KRAS-specific probes bound to a nitrocellulose strip. Results: Among 20 patients, KRAS mutations were identified in 80% of patients by the KRAS Strip Assay. Conclusions: Our preliminary results suggest that KRAS Strip Assay is an alternative to protocols currently in use for KRAS mutation detection

  2. Epidermal growth factor receptor mutation in gastric cancer.

    Science.gov (United States)

    Liu, Zhimin; Liu, Lina; Li, Mei; Wang, Zhaohui; Feng, Lu; Zhang, Qiuping; Cheng, Shihua; Lu, Shen

    2011-04-01

    Epidermal growth factor receptor (EGFR) and Kirsten-RAS (KRAS) mutations have been identified as predictors of response to EGFR tyrosine kinase inhibitors (TKIs) in non-small cell lung cancer. We aimed to screen the mutations of both genes in gastric carcinoma to detect the suitability of EGFR TKIs for patients with gastric carcinoma. We screened EGFR mutation in exons 19-21 and KRAS mutation in exon 2 in 58 gastric adenocarcinomas from China using high resolution melting analysis (HRMA). Positive samples were confirmed by DNA sequencing. Three EGFR missense mutations (5.2%) and 22 single nucleotide polymorphisms (SNP, Q787Q, 37.9%) were identified. To our knowledge, we report for the first time three mutation patterns of EGFR, Y801C, L858R and G863D, in gastric carcinoma. Two samples with EGFR mutation were mucinous adenocarcinoma. These three samples were collected from male patients aged over 75 years old. The frequency of KRAS mutation was 10.3% (6/58). The exclusiveness of EGFR and KRAS mutations was proven for the first time in gastric cancer. Gastric carcinoma of the mucinous adenocarcinoma type collected from older male patients may harbour EGFR mutations. The small subset of gastric adenocarcinoma patients may respond to EGFR TKIs.

  3. Nuclear EGFR as a molecular target in cancer

    International Nuclear Information System (INIS)

    Brand, Toni M.; Iida, Mari; Luthar, Neha; Starr, Megan M.; Huppert, Evan J.; Wheeler, Deric L.

    2013-01-01

    The epidermal growth factor receptor (EGFR) has been one of the most targeted receptors in the field of oncology. While anti-EGFR inhibitors have demonstrated clinical success in specific cancers, most patients demonstrate either intrinsic or acquired resistance within one year of treatment. Many mechanisms of resistance to EGFR inhibitors have been identified, one of these being attributed to alternatively localized EGFR from the cell membrane into the cell’s nucleus. Inside the nucleus, EGFR functions as a co-transcription factor for several genes involved in cell proliferation and angiogenesis, and as a tyrosine kinase to activate and stabilize proliferating cell nuclear antigen and DNA dependent protein kinase. Nuclear localized EGFR is highly associated with disease progression, worse overall survival in numerous cancers, and enhanced resistance to radiation, chemotherapy, and the anti-EGFR therapies gefitinib and cetuximab. In this review the current knowledge of how nuclear EGFR enhances resistance to cancer therapeutics is discussed, in addition to highlighting ways to target nuclear EGFR as an anti-cancer strategy in the future

  4. Production of a germline-humanized cetuximab scFv and evaluation of its activity in recognizing EGFR- overexpressing cancer cells.

    Science.gov (United States)

    Banisadr, Arsham; Safdari, Yaghoub; Kianmehr, Anvarsadat; Pourafshar, Mahdieh

    2018-04-03

    The aim of this study was to produce a humanized single chain antibody (scFv) as a potential improved product design to target EGFR (Epidermal Growth Factor Receptor) overexpressing cancer cells. To this end, CDR loops of cetuximab (an FDA-approved anti-EGFR antibody) were grafted on framework regions derived from type 3 (VH3 and VL3 kappa) human germline sequences to obtain recombinant VH and VL domainslinked together with a flexible linker [(Gly 4 Ser) 3 ] to form a scFv. Codon optimized synthetic gene encoding the scFv (with NH2-VH-linker-VL-COOH orientation) was expressed in E. coli Origami™ 2(DE3) cells and the resultant scFv purified by using Ni-NTA affinity chromatography. The scFv, called cet.Hum scFv, was evaluated in ELISA and immunoblot to determine whether it can recognize EGFR. The scFv was able to recognize EGFR over-expressing cancer cells (A-431) but failed to detect cancer cells with low levels of EGFR (MCF-7 cells). Although the affinity of the scFv forA-431 cells was 9 fold lower than that of cetuximab, it was strong enough to recognize these cells. Considering its ability to bind EGFR molecules, the scFv may exhibit a potential application for the detection of EGFR-overexpressing cancer cells.

  5. GCM2-Activating Mutations in Familial Isolated Hyperparathyroidism.

    Science.gov (United States)

    Guan, Bin; Welch, James M; Sapp, Julie C; Ling, Hua; Li, Yulong; Johnston, Jennifer J; Kebebew, Electron; Biesecker, Leslie G; Simonds, William F; Marx, Stephen J; Agarwal, Sunita K

    2016-11-03

    Primary hyperparathyroidism (PHPT) is a common endocrine disease characterized by parathyroid hormone excess and hypercalcemia and caused by hypersecreting parathyroid glands. Familial PHPT occurs in an isolated nonsyndromal form, termed familial isolated hyperparathyroidism (FIHP), or as part of a syndrome, such as multiple endocrine neoplasia type 1 or hyperparathyroidism-jaw tumor syndrome. The specific genetic or other cause(s) of FIHP are unknown. We performed exome sequencing on germline DNA of eight index-case individuals from eight unrelated kindreds with FIHP. Selected rare variants were assessed for co-segregation in affected family members and screened for in an additional 32 kindreds with FIHP. In eight kindreds with FIHP, we identified three rare missense variants in GCM2, a gene encoding a transcription factor required for parathyroid development. Functional characterization of the GCM2 variants and deletion analyses revealed a small C-terminal conserved inhibitory domain (CCID) in GCM2. Two of the three rare variants were recurrent, located in the GCM2 CCID, and found in seven of the 40 (18%) kindreds with FIHP. These two rare variants acted as gain-of-function mutations that increased the transcriptional activity of GCM2, suggesting that GCM2 is a parathyroid proto-oncogene. Our results demonstrate that germline-activating mutations affecting the CCID of GCM2 can cause FIHP. Published by Elsevier Inc.

  6. Targeting Signal Transducers and Activators of Transcription-3 (Stat3) As a Novel Strategy In Sensitizing Breast Cancer To Egfr-Targeted Therapy

    National Research Council Canada - National Science Library

    Lo, Hui-Wen

    2008-01-01

    We have performed proposed studies to test the hypothesis that deregulated EGFR and STAT3 pathways synergistically contribute to the malignant biology of breast cancer and that combined uses of anti...

  7. Comparison of a mouse and a novel human scFv-SNAP-auristatin F drug conjugate with potent activity against EGFR-overexpressing human solid tumor cells

    Directory of Open Access Journals (Sweden)

    Woitok M

    2017-07-01

    Full Text Available Mira Woitok,1,2 Diana Klose,1 Stefano Di Fiore,1 Wolfgang Richter,3 Christoph Stein,1 Gerrit Gresch,1 Elena Grieger,1 Stefan Barth,1 Rainer Fischer,1,2 Katharina Kolberg,1,* Judith Niesen1,* 1Fraunhofer Institute for Molecular Biology and Applied Ecology (IME, Aachen, Germany; 2Institute of Molecular Biotechnology (Biology VII, RWTH Aachen University, Aachen, Germany; 3Tube Pharmaceuticals GmbH, Vienna, Austria *These authors contributed equally to this work Abstract: Antibody–drug conjugates (ADCs can deliver toxins to specific targets such as tumor cells. They have shown promise in preclinical/clinical development but feature stoichiometrically undefined chemical linkages, and those based on full-size antibodies achieve only limited tumor penetration. SNAP-tag technology can overcome these challenges by conjugating benzylguanine-modified toxins to single-chain fragment variables (scFvs with 1:1 stoichio­metry while preserving antigen binding. Two (human and mouse scFv-SNAP fusion proteins recognizing the epidermal growth factor receptor (EGFR were expressed in HEK 293T cells. The purified fusion proteins were conjugated to auristatin F (AURIF. Binding activity was confirmed by flow cytometry/immunohistochemistry, and cytotoxic activity was confirmed by cell viability/apoptosis and cell cycle arrest assays, and a novel microtubule dynamics disassembly assay was performed. Both ADCs bound specifically to their target cells in vitro and ex vivo, indicating that the binding activity of the scFv-SNAP fusions was unaffected by conjugation to AURIF. Cytotoxic assays confirmed that the ADCs induced apoptosis and cell cycle arrest at nanomolar concentrations and microtubule disassembly. The SNAP-tag technology provides a platform for the development of novel ADCs with defined conjugation sites and stoichiometry. We achieved the stable and efficient linkage of AURIF to human or murine scFvs using the SNAP-tag technology, offering a strategy to

  8. A Selected Lactobacillus rhamnosus Strain Promotes EGFR-Independent Akt Activation in an Enterotoxigenic Escherichia coli K88-Infected IPEC-J2 Cell Model.

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    Full Text Available Enterotoxigenic Escherichia coli (ETEC are important intestinal pathogens that cause diarrhea in humans and animals. Although probiotic bacteria may protect against ETEC-induced enteric infections, the underlying mechanisms are unknown. In this study, porcine intestinal epithelial J2 cells (IPEC-J2 were pre-incubated with and without Lactobacillus rhamnosus ATCC 7469 and then exposed to F4+ ETEC. Increases in TLR4 and NOD2 mRNA expression were observed at 3 h after F4+ ETEC challenge, but these increases were attenuated by L. rhamnosus treatment. Expression of TLR2 and NOD1 mRNA was up-regulated in cells pre-treated with L. rhamnosus. Pre-treatment with L. rhamnosus counteracted F4+ ETEC-induced increases in TNF-α concentration. Increased PGE2. concentrations were observed in cells infected with F4+ ETEC and in cells treated with L. rhamnosus only. A decrease in phosphorylated epidermal growth factor receptor (EGFR was observed at 3 h after F4+ ETEC challenge in cells treated with L. rhamnosus. Pre-treatment with L. rhamnosus enhanced Akt phosphorylation and increased ZO-1 and occludin protein expression. Our findings suggest that L. rhamnosus protects intestinal epithelial cells from F4+ ETEC-induced damage, partly through the anti-inflammatory response involving synergism between TLR2 and NOD1. In addition, L. rhamnosus promotes EGFR-independent Akt activation, which may activate intestinal epithelial cells in response to bacterial infection, in turn increasing tight junction integrity and thus enhancing the barrier function and restricting pathogen invasion. Pre-incubation with L. rhamnosus was superior to co-incubation in reducing the adhesion of F4+ ETEC to IPEC-J2 cells and subsequently attenuating F4+ ETEC-induced mucin layer destruction and suppressing apoptosis. Our data indicate that a selected L. rhamnosus strain interacts with porcine intestinal epithelial cells to maintain the epithelial barrier and promote intestinal epithelial

  9. A Selected Lactobacillus rhamnosus Strain Promotes EGFR-Independent Akt Activation in an Enterotoxigenic Escherichia coli K88-Infected IPEC-J2 Cell Model.

    Science.gov (United States)

    Zhang, Wei; Zhu, Yao-Hong; Yang, Jin-Cai; Yang, Gui-Yan; Zhou, Dong; Wang, Jiu-Feng

    2015-01-01

    Enterotoxigenic Escherichia coli (ETEC) are important intestinal pathogens that cause diarrhea in humans and animals. Although probiotic bacteria may protect against ETEC-induced enteric infections, the underlying mechanisms are unknown. In this study, porcine intestinal epithelial J2 cells (IPEC-J2) were pre-incubated with and without Lactobacillus rhamnosus ATCC 7469 and then exposed to F4+ ETEC. Increases in TLR4 and NOD2 mRNA expression were observed at 3 h after F4+ ETEC challenge, but these increases were attenuated by L. rhamnosus treatment. Expression of TLR2 and NOD1 mRNA was up-regulated in cells pre-treated with L. rhamnosus. Pre-treatment with L. rhamnosus counteracted F4+ ETEC-induced increases in TNF-α concentration. Increased PGE2. concentrations were observed in cells infected with F4+ ETEC and in cells treated with L. rhamnosus only. A decrease in phosphorylated epidermal growth factor receptor (EGFR) was observed at 3 h after F4+ ETEC challenge in cells treated with L. rhamnosus. Pre-treatment with L. rhamnosus enhanced Akt phosphorylation and increased ZO-1 and occludin protein expression. Our findings suggest that L. rhamnosus protects intestinal epithelial cells from F4+ ETEC-induced damage, partly through the anti-inflammatory response involving synergism between TLR2 and NOD1. In addition, L. rhamnosus promotes EGFR-independent Akt activation, which may activate intestinal epithelial cells in response to bacterial infection, in turn increasing tight junction integrity and thus enhancing the barrier function and restricting pathogen invasion. Pre-incubation with L. rhamnosus was superior to co-incubation in reducing the adhesion of F4+ ETEC to IPEC-J2 cells and subsequently attenuating F4+ ETEC-induced mucin layer destruction and suppressing apoptosis. Our data indicate that a selected L. rhamnosus strain interacts with porcine intestinal epithelial cells to maintain the epithelial barrier and promote intestinal epithelial cell activation in

  10. Analysis of the epidermal growth factor receptor specific transcriptome: effect of receptor expression level and an activating mutation

    DEFF Research Database (Denmark)

    Pedersen, Mikkel W; Pedersen, Nina; Damstrup, Lars

    2005-01-01

    moderately expressed or overexpressed at an in-itself transforming level. These changes were compared to those induced by the naturally occurring constitutively active variant EGFRvIII. This study provides novel insight on the activities and mechanisms of EGFRvIII and EGFR mediated transformation, as genes...... by interferons. Expression of this module was absent in the EGFRvIII-expressing cell line and the parental cell line. Treatment with the specific EGFR inhibitor AG1478 indicated that the regulations were primary, receptor-mediated events. Furthermore, activation of this module correlated with activation of STAT1...

  11. Consistent absence of BRAF mutations in salivary gland carcinomas

    Directory of Open Access Journals (Sweden)

    Nooshin Mohtasham

    2017-06-01

    Full Text Available Introduction: Malignant salivary gland tumors are rare entities. Despite advances in surgery, radiation therapy and chemotherapy, the rate of the mortality and five-year survival has not been improved markedly over the last few decades. The activation of EGFR- RAS-RAF signaling pathway contributes to the initiation and progression of many human cancers, promising a key pathway for therapeutic molecules. Thus, the objective of this study was to evaluate BRAF mutations in salivary gland carcinomas. Methods: We designed PCR- RFLP (Polymerase Chain Reaction -Restriction Fragment Length Polymorphism and screened 50 salivary gland carcinomas (SGCs including mucoepidermoid carcinoma (MEC, adenoid cystic carcinoma (AdCC and polymorphous low grade adenocarcinoma (PLGA for the BRAF V600E mutation. Results: PCR-RFLP analyses demonstrated no mutation in BRAF exon 15 for SGC samples at position V600, which is the most commonly mutated site for BRAF in human cancer. Conclusions: According to our results SGCs didn’t acquire BRAF mutations that result in a constitutive activation of the signaling cascade downstream of EGFR, hence SGCs can be a good candidate for anti EGFR therapies.

  12. Targeting EGFR/HER2 pathways enhances the antiproliferative effect of gemcitabine in biliary tract and gallbladder carcinomas

    International Nuclear Information System (INIS)

    Pignochino, Ymera; Bardelli, Alberto; Aglietta, Massimo; Leone, Francesco; Sarotto, Ivana; Peraldo-Neia, Caterina; Penachioni, Junia Y; Cavalloni, Giuliana; Migliardi, Giorgia; Casorzo, Laura; Chiorino, Giovanna; Risio, Mauro

    2010-01-01

    Advanced biliary tract carcinomas (BTCs) have poor prognosis and limited therapeutic options. Therefore, it is crucial to combine standard therapies with molecular targeting. In this study EGFR, HER2, and their molecular transducers were analysed in terms of mutations, amplifications and over-expression in a BTC case series. Furthermore, we tested the efficacy of drugs targeting these molecules, as single agents or in combination with gemcitabine, the standard therapeutic agent against BTC. Immunohistochemistry, FISH and mutational analysis were performed on 49 BTC samples of intrahepatic (ICCs), extrahepatic (ECCs), and gallbladder (GBCs) origin. The effect on cell proliferation of different EGFR/HER2 pathway inhibitors as single agents or in combination with gemcitabine was investigated on BTC cell lines. Western blot analyses were performed to investigate molecular mechanisms of targeted drugs. EGFR is expressed in 100% of ICCs, 52.6% of ECCs, and in 38.5% of GBCs. P-MAPK and p-Akt are highly expressed in ICCs (>58% of samples), and to a lower extent in ECCs and GBCs (<46%), indicating EGFR pathway activation. HER2 is overexpressed in 10% of GBCs (with genomic amplification), and 26.3% of ECCs (half of which has genomic amplification). EGFR or its signal transducers are mutated in 26.5% of cases: 4 samples bear mutations of PI3K (8.2%), 3 cases (6.1%) in K-RAS, 4 (8.2%) in B-RAF, and 2 cases (4.1%) in PTEN, but no loss of PTEN expression is detected. EGI-1 cell line is highly sensitive to gemcitabine, TFK1 and TGBC1-TKB cell lines are responsive and HuH28 cell line is resistant. In EGI-1 cells, combination with gefitinib further increases the antiproliferative effect of gemcitabine. In TFK1 and TGBC1-TKB cells, the efficacy of gemcitabine is increased with addiction of sorafenib and everolimus. In TGBC1-TKB cells, lapatinib also has a synergic effect with gemcitabine. HuH28 becomes responsive if treated in combination with erlotinib. Moreover, HuH28 cells are

  13. Efficacy of chemotherapy after first-line gefitinib therapy in EGFR mutation-positive advanced non-small cell lung cancer-data from a randomized Phase III study comparing gefitinib with carboplatin plus paclitaxel (NEJ002).

    Science.gov (United States)

    Miyauchi, Eisaku; Inoue, Akira; Kobayashi, Kunihiko; Maemondo, Makoto; Sugawara, Shunichi; Oizumi, Satoshi; Isobe, Hiroshi; Gemma, Akihiko; Saijo, Yasuo; Yoshizawa, Hirohisa; Hagiwara, Koichi; Nukiwa, Toshihiro

    2015-07-01

    Epidermal growth factor receptor tyrosine kinase inhibitors are effective as first-line therapy for advanced non-small cell lung cancer patients harboring epidermal growth factor receptor mutations. However, it is unknown whether second-line platinum-based chemotherapy after epidermal growth factor receptor tyrosine kinase inhibitor therapy could lead to better outcomes. We evaluated the efficacy of second-line platinum-based chemotherapy after gefitinib for advanced non-small cell lung cancers harboring epidermal growth factor receptor mutations (the NEJ002 study). Seventy-one non-small cell lung cancers, treated with gefitinib as first-line therapy and then receiving platinum-based chemotherapy as second-line therapy were evaluated in NEJ002. Patients were evaluated for antitumor response to second-line chemotherapy by computed tomography according to the criteria of the Response Evaluation Criteria in Solid Tumors group (version 1.0). Of the 71 patients receiving platinum-based chemotherapy after first-line gefitinib, a partial response was documented in 25.4% (18/71), stable disease in 43.7% (31/71) and progression of disease in 21.1% (15/71). The objective response and disease control rates were 25.4% (18/71) and 69% (49/71), respectively. There was no significant difference between first- and second-line chemotherapy in objective response and disease control rates for advanced non-small cell lung cancer harboring activating epidermal growth factor receptor mutations. In the analysis of epidermal growth factor receptor mutation types, the objective responses of deletions in exon 19 and a point mutation in exon 21 (L858R) were 27.3% (9/33) and 28.1% (9/32), respectively, but these differences between objective response rates were not significant. The efficacy of second-line platinum-based chemotherapy followed at progression by gefitinib was similar to first-line platinum-based chemotherapy, and epidermal growth factor receptor mutation types did not influence

  14. EGFR Amplification as a Target in Gastroesophageal Adenocarcinoma: Do Anti-EGFR Therapies Deserve a Second Chance?

    Science.gov (United States)

    Strickler, John H

    2018-06-01

    Anti-EGFR therapies have failed to improve survival for unselected patients with metastatic gastroesophageal cancer, but in a subset of patients, EGFR amplification may predict treatment benefit. Maron and colleagues report the clinical activity of anti-EGFR therapies in a cohort of patients with EGFR -amplified metastatic gastroesophageal cancer and utilize serial blood and tumor tissue collection to identify molecular drivers of treatment sensitivity and resistance. Their insights offer a path to overcome technical limitations associated with EGFR amplification and facilitate molecularly targeted therapeutic strategies. Cancer Discov; 8(6); 679-81. ©2018 AACR See related article by Maron et al., p. 696 . ©2018 American Association for Cancer Research.

  15. EGFR signaling in colorectal cancer: a clinical perspective

    Directory of Open Access Journals (Sweden)

    Saletti P

    2015-01-01

    Full Text Available Piercarlo Saletti,1 Francesca Molinari,2 Sara De Dosso,1 Milo Frattini2 1Oncology Institute of Southern Switzerland, Bellinzona, 2Laboratory of Molecular Pathology, Institute of Pathology, Locarno, Switzerland Abstract: Colorectal cancer (CRC remains a formidable health burden worldwide, with up to 50% of patients developing metastases during the course of their disease. This group of CRC patients, characterized by the worst prognosis, has been extensively investigated to improve their life expectancy. Main efforts, focused on the epidermal growth-factor receptor (EGFR, which plays a pivotal role in CRC pathogenesis, have led to the development and introduction in clinical practice of specific targeted therapies (ie, monoclonal antibodies. Subsequently, the scientific community has tried to identify molecular predictors of the efficacy of such therapies. However, it has become clear that EGFR alterations occurring in CRC are difficult to investigate, and therefore their predictive role is unclear. In contrast, the clinical role of two downstream members (KRAS and NRAS has been clearly demonstrated. Currently, EGFR-targeted therapies can be administered only to patients with wild-type KRAS and NRAS genes. Our review addresses the medical management of metastatic CRC. Specifically, we describe in detail the molecular biology of metastatic CRC, focusing on the EGFR signaling pathway, and we discuss the role of current and emerging related biomarkers and therapies in this field. We also summarize the clinical evidence regarding anti-EGFR monoclonal antibodies and examine potential future perspectives. Keywords: colorectal cancer, EGFR, gene mutations, cetuximab, panitumumab

  16. Radiosynthesis and biological evaluation of 18F-labeled 4-anilinoquinazoline derivative (18F-FEA-Erlotinib) as a potential EGFR PET agent.

    Science.gov (United States)

    Huang, Shun; Han, Yanjiang; Chen, Min; Hu, Kongzhen; Qi, Yongshuai; Sun, Penghui; Wang, Men; Wu, Hubing; Li, Guiping; Wang, Quanshi; Du, Zhiyun; Zhang, Kun; Zhao, Suqing; Zheng, Xi

    2018-04-01

    Epidermal growth factor receptor (EGFR) has gained significant attention as a therapeutic target. Several EGFR targeting drugs (Gefitinib and Erlotinib) have been approved by US Food and Drug Administration (FDA) and have received high approval in clinical treatment. Nevertheless, the curative effect of these medicines varied in many solid tumors because of the different levels of expression and mutations of EGFR. Therefore, several PET radiotracers have been developed for the selective treatment of responsive patients who undergo PET/CT imaging for tyrosine kinase inhibitor (TKI) therapy. In this study, a novel fluorine-18 labeled 4-anilinoquinazoline based PET tracer, 1N-(3-(1-(2- 18 F-fluoroethyl)-1H-1,2,3-triazol-4-yl)phenyl)-6,7-bis(2-methoxyethoxy)quinazolin-4-amine ( 18 F-FEA-Erlotinib), was synthesized and biological evaluation was performed in vitro and in vivo. 18 F-FEA-Erlotinib was achieved within 50min with over 88% radiochemical yield (decay corrected RCY), an average specific activity over 50GBq/μmol, and over 99% radiochemical purity. In vitro stability study showed no decomposition of 18 F-FEA-Erlotinib after incubated in PBS and FBS for 2h. Cellular uptake and efflux experiment results indicated the specific binding of 18 F-FEA-Erlotinib to HCC827 cell line with EGFR exon 19 deletions. In vivo, Biodistribution studies revealed that 18 F-FEA-Erlotinib exhibited rapid blood clearance both through hepatobiliary and renal excretion. The tumor uptake of 18 F-FEA-Erlotinib in HepG2, HCC827, and A431 tumor xenografts, with different EGFR expression and mutations, was visualized in PET images. Our results demonstrate the feasibility of using 18 F-FEA-Erlotinib as a PET tracer for screening EGFR TKIs sensitive patients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Treatment Choice for Advanced Non-small Cell Lung Cancer Patients Who Had Gradual Progression After EGFR-TKIs: 32 Cases Report

    Directory of Open Access Journals (Sweden)

    Lin LIN

    2013-10-01

    Full Text Available Background and objective The epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs have been widely used in the treatment of the advanced non-small cell lung cancer (NSCLC, especially in the adenocarcinoma patients with activating EGFR mutations. But there is no published overview of the following treatment. This report through observing the efficacy, toxicity and overall survival of different treatments to the advanced NSCLC patients who had gradual progression after EGFR-TKIs, evaluates the influence of the continued treatment and switching chemotherapy. Methods Retrospective review is conducted on 32 cases of advanced NSCLC patients who experienced treatment failure of EGFR-TKIs. One group accepted the continued treatment and the other group accepted the switching chemotherapy. Results The median overall survival of the continued treatment group is 36.0 months. The respose rate of the switching chemotherapy group is 43.75%, and clinical benefit rate (complete and partial response and stable disease is 87.5%. The median overall survival is 15.5 months. The main toxicities are nausea, vomiting and hematological toxicities. Conclusion For the advanced NSCLC patients who had gradual progression after EGFR-TKIs, the continued treatment is one of the acceptable choices.

  18. Research Progress of the Resistance Mechanism of Non-small Cell Lung Cancer 
to EGFR-TKIs

    Directory of Open Access Journals (Sweden)

    Huihui LIU

    2013-10-01

    Full Text Available Nowadays, lung cancer is the malignant tumor of the highest morbidity and mortality over the world, and non-small cell lung cancer (NSCLC makes up about 80%. There is a great many NSCLC patients have been in advanced stage when diagnosed. As a result, people pay more attention to curing advanced NSCLC. The standard treatment to advanced NSCLC is platinum-based combined chemotherapy. However, chemotherapy drugs usually have limited effects on improving the survival of the patients. Then exploring new therapies is extremely urgent to us. Now, molecular targeted therapy has been the most promising research area for the treatment of NSCLC with researches going deep into pathogenesis and biological behavior of lung cancer. Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs have achieved a great success in the treatment of advanced NSCLC. Their representatives are erlotinib and gefitinib. The two drugs have been widely used to treat advanced NSCLCs worldwide, especially for the patients with EGFR activating mutations. However, after a period of treatment (median time is 6 to 12 months, most patients will develop drug resistance to EGFR-TKIs. Intense research in these NSCLCs has identified two major mechanisms of resistance to TKIs: primary and acquired resistances. The research about resistance mechanism of NSCLC to EGFR-TKIs is a hot one because of their excellent effects on improving overall and progression-free survival. The aim of this article was to summarize the development of the resistance mechanisms.

  19. Γ-Ionizing radiation activated EGFR-p38/ERK-STAT3/CREB-1-EMT pathway for promotion of the migration/invasion of lung cancer cell and its inhibition by podophyllotoxin acetate

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jeong Hyun; Um, Hong Duck; Park, Jong Kuk [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2016-05-15

    In this study, we sought to identify the intracellular machinery responsible for IR induced cancer invasion/migration. We report that IR activates the EGFR - p38/ERK - CREB-1/STAT3 pathway, which triggers EMT and increases invasion/migration of lung cancer. Moreover, we show that podophyllotoxin acetate (PA) inhibits IR-induced invasion/migration at least partly by blocking EGFR - p38/ERK - STAT3/ CREB-1signaling and thereby suppressing EMT. Our results revealed that IR increased the invasion/migration of A549 cells, and this effect was decreased by 10 nM PA treatment. PA also inhibited the expressions/activities of matrix metalloprotase (MMP) -2, MMP-9, and vimentin, suggesting that PA could block the IR-induced epithelial-mesenchymal transition (EMT). The IR induced increases in invasion/migration were associated with the activation of EGFR-AKT, and PA inhibited this effect. P38 and p44/42 ERK were also involved in IR induced invasion/migration, and combined treatments with PA plus inhibitors of each MAPK synergistically blocked this invasion/migration. In terms of transcription factors (TFs), IR-induced increases in cyclic AMP response element-binding protein-1 (CREB-1) and signal transducer and activator of transcription 3 (STAT3) increased invasion/migration and EMT. PA also inhibited these transcription factors and then blocked IR-induced invasion/migration.

  20. Γ-Ionizing radiation activated EGFR-p38/ERK-STAT3/CREB-1-EMT pathway for promotion of the migration/invasion of lung cancer cell and its inhibition by podophyllotoxin acetate

    International Nuclear Information System (INIS)

    Cho, Jeong Hyun; Um, Hong Duck; Park, Jong Kuk

    2016-01-01

    In this study, we sought to identify the intracellular machinery responsible for IR induced cancer invasion/migration. We report that IR activates the EGFR - p38/ERK - CREB-1/STAT3 pathway, which triggers EMT and increases invasion/migration of lung cancer. Moreover, we show that podophyllotoxin acetate (PA) inhibits IR-induced invasion/migration at least partly by blocking EGFR - p38/ERK - STAT3/ CREB-1signaling and thereby suppressing EMT. Our results revealed that IR increased the invasion/migration of A549 cells, and this effect was decreased by 10 nM PA treatment. PA also inhibited the expressions/activities of matrix metalloprotase (MMP) -2, MMP-9, and vimentin, suggesting that PA could block the IR-induced epithelial-mesenchymal transition (EMT). The IR induced increases in invasion/migration were associated with the activation of EGFR-AKT, and PA inhibited this effect. P38 and p44/42 ERK were also involved in IR induced invasion/migration, and combined treatments with PA plus inhibitors of each MAPK synergistically blocked this invasion/migration. In terms of transcription factors (TFs), IR-induced increases in cyclic AMP response element-binding protein-1 (CREB-1) and signal transducer and activator of transcription 3 (STAT3) increased invasion/migration and EMT. PA also inhibited these transcription factors and then blocked IR-induced invasion/migration

  1. Erlotinib Versus Radiation Therapy for Brain Metastases in Patients With EGFR-Mutant Lung Adenocarcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, Naamit K.; Yamada, Yoshiya; Rimner, Andreas [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Shi, Weiji [Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Riely, Gregory J. [Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Beal, Kathryn [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Yu, Helena A. [Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Chan, Timothy A. [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Zhang, Zhigang [Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Wu, Abraham J., E-mail: wua@mskcc.org [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)

    2014-06-01

    Purpose/Objectives: Radiation therapy (RT) is the principal modality in the treatment of patients with brain metastases (BM). However, given the activity of EGFR tyrosine kinase inhibitors in the central nervous system, it is uncertain whether upfront brain RT is necessary for patients with EGFR-mutant lung adenocarcinoma with BM. Methods and Materials: Patients with EGFR-mutant lung adenocarcinoma and newly diagnosed BM were identified. Results: 222 patients were identified. Exclusion criteria included prior erlotinib use, presence of a de novo erlotinib resistance mutation, or incomplete data. Of the remaining 110 patients, 63 were treated with erlotinib, 32 with whole brain RT (WBRT), and 15 with stereotactic radiosurgery (SRS). The median overall survival (OS) for the whole cohort was 33 months. There was no significant difference in OS between the WBRT and erlotinib groups (median, 35 vs 26 months; P=.62), whereas patients treated with SRS had a longer OS than did those in the erlotinib group (median, 64 months; P=.004). The median time to intracranial progression was 17 months. There was a longer time to intracranial progression in patients who received WBRT than in those who received erlotinib upfront (median, 24 vs 16 months, P=.04). Patients in the erlotinib or SRS group were more likely to experience intracranial failure as a component of first failure, whereas WBRT patients were more likely to experience failure outside the brain (P=.004). Conclusions: The survival of patients with EGFR-mutant adenocarcinoma with BM is notably long, whether they receive upfront erlotinib or brain RT. We observed longer intracranial control with WBRT, even though the WBRT patients had a higher burden of intracranial disease. Despite the equivalent survival between the WBRT and erlotinib group, this study underscores the role of WBRT in producing durable intracranial control in comparison with a targeted biologic agent with known central nervous system activity.

  2. Active site mutations change the cleavage specificity of neprilysin.

    Directory of Open Access Journals (Sweden)

    Travis Sexton

    Full Text Available Neprilysin (NEP, a member of the M13 subgroup of the zinc-dependent endopeptidase family is a membrane bound peptidase capable of cleaving a variety of physiological peptides. We have generated a series of neprilysin variants containing mutations at either one of two active site residues, Phe(563 and Ser(546. Among the mutants studied in detail we observed changes in their activity towards leucine(5-enkephalin, insulin B chain, and amyloid β(1-40. For example, NEP(F563I displayed an increase in preference towards cleaving leucine(5-enkephalin relative to insulin B chain, while mutant NEP(S546E was less discriminating than neprilysin. Mutants NEP(F563L and NEP(S546E exhibit different cleavage site preferences than neprilysin with insulin B chain and amyloid ß(1-40 as substrates. These data indicate that it is possible to alter the cleavage site specificity of neprilysin opening the way for the development of substrate specific or substrate exclusive forms of the enzyme with enhanced therapeutic potential.

  3. The second activating glucokinase mutation (A456V)

    DEFF Research Database (Denmark)

    Christesen, Henrik B T; Jacobsen, Bendt B; Odili, Stella

    2002-01-01

    for mutations in candidate genes revealed a heterozygous glucokinase mutation in exon 10, substituting valine for alanine at codon 456 (A456V) in the proband and his mother. The purified recombinant glutathionyl S-transferase fusion protein of the A456V glucokinase revealed a decreased glucose S(0.5) (the...

  4. R and D activities on radiation induced mutation breeding

    International Nuclear Information System (INIS)

    Lapade, A.G.; Asencion, A.B.; Santos, I.S.; Grafia, A.O.; Veluz, AM.S.; Barrida, A.C.; Marbella, L.J.

    1996-01-01

    This paper summarizes the accomplishments, prospects and future plans of mutation breeding for crop improvement at the Philippine Nuclear Research Institute (PNRI). Mutation induction has become a proven way creating variation within a crop variety and inducing desired attributes that cannot be found in nature or have been lost during evolution. Several improved varieties with desirable traits were successfully developed through induced mutation breeding at our research institute. In rice, mutation breeding has resulted in the development of new varieties: (1) PARC 2, (2) Milagrosa mutant, (3) Bengawan mutant and (4) Azmil mutant. Mutation breeding in leguminous crops has led to the induction of an improved L 114 soybean mutant that is shorter that the original variety but yield about 40% more. Several PAEC mungbean varieties characterized with long pods that are non-shattering were also induced. In asexually propagated crops, an increase in yield and chlorophyll mutants were obtained in sweet potatos. Likewise, chlorophyll mutant which look-like 'ornamental bromeliads' and a mutant with reduced spines have been developed in pineapple Queen variety. At present, we have started a new project in mutation breeding in ornamentals. Tissue culture is being utilized in our mutation breeding program. In the near future, radiation induced mutagenesis coupled with in vitro culture techniques on protoplast culture and somatic hybridization will be integrated into our mutation breeding program to facilitate the production of new crop varieties. (author)

  5. Effects of different ligands on epidermal growth factor receptor (EGFR) nuclear translocation

    Energy Technology Data Exchange (ETDEWEB)

    Faria, Jerusa A.Q.A.; Andrade, Carolina de; Goes, Alfredo M. [Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, MG, 31270-901 (Brazil); Rodrigues, Michele A. [Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, MG, 31270-901 (Brazil); Department of General Pathology, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, MG, 31270-901 (Brazil); Gomes, Dawidson A., E-mail: dawidson@ufmg.br [Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, MG, 31270-901 (Brazil)

    2016-09-09

    The epidermal growth factor receptor (EGFR) is activated through binding to specific ligands and generates signals for proliferation, differentiation, migration, and cell survival. Recent data show the role of nuclear EGFR in tumors. Although many EGFR ligands are upregulated in cancers, little is known about their effects on EGFR nuclear translocation. We have compared the effects of six EGFR ligands (EGF, HB-EGF, TGF-α, β-Cellulin, amphiregulin, and epiregulin) on nuclear translocation of EGFR, receptor phosphorylation, migration, and proliferation. Cell fractionation and confocal immunofluorescence detected EGFR in the nucleus after EGF, HB-EGF, TGF-α and β-Cellulin stimulation in a dose-dependent manner. In contrast, amphiregulin and epiregulin did not generate nuclear translocation of EGFR. EGF, HB-EGF, TGF-α and β-Cellulin showed correlations between a higher rate of wound closure and increased phosphorylation of residues in the carboxy-terminus of EGFR, compared to amphiregulin and epiregulin. The data indicate that EGFR is translocated to the nucleus after stimulation with EGF, HB-EGF, TGF-α and β-Cellulin, and that these ligands are related to increased phosphorylation of EGFR tyrosine residues, inducing migration of SkHep-1 cells. - Highlights: • EGF, HB-EGF, TGF-α, β-Cellulin are involved in the EGFR nuclear translocation. • Amphiregulin and epiregulin did not promote nuclear translocation of EGFR. • EGF, HB-EGF, TGF-α and β-Cellulin have a role in SkHep-1 cells migration. • EGFR ligands associated with better prognosis don't stimulate EGFR translocation.

  6. Effects of different ligands on epidermal growth factor receptor (EGFR) nuclear translocation

    International Nuclear Information System (INIS)

    Faria, Jerusa A.Q.A.; Andrade, Carolina de; Goes, Alfredo M.; Rodrigues, Michele A.; Gomes, Dawidson A.

    2016-01-01

    The epidermal growth factor receptor (EGFR) is activated through binding to specific ligands and generates signals for proliferation, differentiation, migration, and cell survival. Recent data show the role of nuclear EGFR in tumors. Although many EGFR ligands are upregulated in cancers, little is known about their effects on EGFR nuclear translocation. We have compared the effects of six EGFR ligands (EGF, HB-EGF, TGF-α, β-Cellulin, amphiregulin, and epiregulin) on nuclear translocation of EGFR, receptor phosphorylation, migration, and proliferation. Cell fractionation and confocal immunofluorescence detected EGFR in the nucleus after EGF, HB-EGF, TGF-α and β-Cellulin stimulation in a dose-dependent manner. In contrast, amphiregulin and epiregulin did not generate nuclear translocation of EGFR. EGF, HB-EGF, TGF-α and β-Cellulin showed correlations between a higher rate of wound closure and increased phosphorylation of residues in the carboxy-terminus of EGFR, compared to amphiregulin and epiregulin. The data indicate that EGFR is translocated to the nucleus after stimulation with EGF, HB-EGF, TGF-α and β-Cellulin, and that these ligands are related to increased phosphorylation of EGFR tyrosine residues, inducing migration of SkHep-1 cells. - Highlights: • EGF, HB-EGF, TGF-α, β-Cellulin are involved in the EGFR nuclear translocation. • Amphiregulin and epiregulin did not promote nuclear translocation of EGFR. • EGF, HB-EGF, TGF-α and β-Cellulin have a role in SkHep-1 cells migration. • EGFR ligands associated with better prognosis don't stimulate EGFR translocation.

  7. Lipidomic Profiling of Lung Pleural Effusion Identifies Unique Metabotype for EGFR Mutants in Non-Small Cell Lung Cancer.

    Science.gov (United States)

    Ho, Ying Swan; Yip, Lian Yee; Basri, Nurhidayah; Chong, Vivian Su Hui; Teo, Chin Chye; Tan, Eddy; Lim, Kah Ling; Tan, Gek San; Yang, Xulei; Yeo, Si Yong; Koh, Mariko Si Yue; Devanand, Anantham; Takano, Angela; Tan, Eng Huat; Tan, Daniel Shao Weng; Lim, Tony Kiat Hon

    2016-10-14

    Cytology and histology forms the cornerstone for the diagnosis of non-small cell lung cancer (NSCLC) but obtaining sufficient tumour cells or tissue biopsies for these tests remains a challenge. We investigate the lipidome of lung pleural effusion (PE) for unique metabolic signatures to discriminate benign versus malignant PE and EGFR versus non-EGFR malignant subgroups to identify novel diagnostic markers that is independent of tumour cell availability. Using liquid chromatography mass spectrometry, we profiled the lipidomes of the PE of 30 benign and 41 malignant cases with or without EGFR mutation. Unsupervised principal component analysis revealed distinctive differences between the lipidomes of benign and malignant PE as well as between EGFR mutants and non-EGFR mutants. Docosapentaenoic acid and Docosahexaenoic acid gave superior sensitivity and specificity for detecting NSCLC when used singly. Additionally, several 20- and 22- carbon polyunsaturated fatty acids and phospholipid species were significantly elevated in the EGFR mutants compared to non-EGFR mutants. A 7-lipid panel showed great promise in the stratification of EGFR from non-EGFR malignant PE. Our data revealed novel lipid candidate markers in the non-cellular fraction of PE that holds potential to aid the diagnosis of benign, EGFR mutation positive and negative NSCLC.

  8. Design, Synthesis and Evaluation of Ribose-modified Anilinopyrimidine Derivatives as EGFR Tyrosine Kinase Inhibitors

    Science.gov (United States)

    Hu, Xiuqin; Wang, Disha; Tong, Yi; Tong, Linjiang; Wang, Xia; Zhu, Lili; Xie, Hua; Li, Shiliang; Yang, You; Xu, Yufang

    2017-11-01

    The synthesis of a series of ribose-modified anilinopyrimidine derivatives was efficiently achieved by utilizing DBU or tBuOLi-promoted coupling of ribosyl alcohols with 2,4,5-trichloropyrimidine as key step. Preliminary biological evaluation of this type of compounds as new EGFR tyrosine kinase inhibitors for combating EGFR L858R/T790M mutant associated with drug resistance in the treatment of non-small cell lung cancer revealed that 3-N-acryloyl-5-O-anilinopyrimidine ribose derivative 1a possessed potent and specific inhibitory activity against EGFR L858R/T790M over WT EGFR. Based upon molecular docking studies of the binding mode between compound 1a and EGFR, the distance between the Michael receptor and the pyrimidine scaffold is considered as an important factor for the inhibitory potency and future design of selective EGFR tyrosine kinase inhibitors against EGFR L858R/T790M mutants.

  9. Nimotuzumab enhances temozolomide?induced growth suppression of glioma cells expressing mutant EGFR in vivo

    OpenAIRE

    Nitta, Yusuke; Shimizu, Saki; Shishido?Hara, Yukiko; Suzuki, Kaori; Shiokawa, Yoshiaki; Nagane, Motoo

    2016-01-01

    Abstract A mutant form of epidermal growth factor receptor (EGFR), EGFRvIII, is common in glioblastoma (GBM) and confers enhanced tumorigenic activity and drug resistance. Nimotuzumab, an anti?EGFR antibody, has shown preclinical and clinical activity to GBM, but its specific activity against EGFRvIII has not been fully investigated. Human glioma U87MG or LNZ308 cells overexpressing either wild?type (wt) EGFR or EGFRvIII were treated with nimotuzumab, temozolomide, or both. Expression and pho...

  10. Epidermal Growth Factor Receptor (EGFR) Crosstalks in Liver Cancer

    International Nuclear Information System (INIS)

    Berasain, Carmen; Latasa, María Ujue; Urtasun, Raquel; Goñi, Saioa; Elizalde, María; Garcia-Irigoyen, Oihane; Azcona, María; Prieto, Jesús; Ávila, Matías A.

    2011-01-01

    Hepatocarcinogenesis is a complex multistep process in which many different molecular pathways have been implicated. Hepatocellular carcinoma (HCC) is refractory to conventional chemotherapeutic agents, and the new targeted therapies are meeting with limited success. Interreceptor crosstalk and the positive feedback between different signaling systems are emerging as mechanisms of targeted therapy resistance. The identification of such interactions is therefore of particular relevance to improve therapeutic efficacy. Among the different signaling pathways activated in hepatocarcinogenesis the epidermal growth factor receptor (EGFR) system plays a prominent role, being recognized as a “signaling hub” where different extracellular growth and survival signals converge. EGFR can be transactivated in response to multiple heterologous ligands through the physical interaction with multiple receptors, the activity of intracellular kinases or the shedding of EGFR-ligands. In this article we review the crosstalk between the EGFR and other signaling pathways that could be relevant to liver cancer development and treatment

  11. Data on mass spectrometry-based proteomics for studying the involvement of CYLD in the ubiquitination events downstream of EGFR activation

    Directory of Open Access Journals (Sweden)

    Virginia Sanchez-Quiles

    2018-06-01

    Full Text Available The present data article corresponds to the proteomic data of the involvement of Cylindromatosis protein (CYLD in the ubiquitination signaling initiated by EGF stimulation. CYLD tumor suppressor protein has Lys63-chain deubiquitinase activity that has been proved essential for the negative regulation of crucial signaling mechanisms, namely the NFkB pathway. Previous results have suggested the involvement of CYLD in the EGF-dependent signal transduction as well, showing its engagement within the tyrosine-phosphorylated complexes formed following the addition of the growth factor. EGFR signaling participates in central cellular processes and its tight regulation, partly through ubiquitination cascades, is decisive for a balanced cellular homeostasis. We carried out the substitution of the endogenous pool of ubiquitin for a His-FLAG-tagged ubiquitin (Stable Ubiquitin Exchange, StUbEx, in combination with the shRNA silencing of CYLD and SILAC-labeling on HeLa cells. The subsequent tandem affinity purification of ubiquitinated proteins in control and CYLD-depleted cells was followed by mass spectrometric analysis. Therefore, we present an unbiased study investigating the impact of CYLD in the EGF-dependent ubiquitination. The data supplied herein is related to the research article entitled “Cylindromatosis tumor suppressor protein (CYLD deubiquitinase is necessary for proper ubiquitination and degradation of the epidermal growth factor receptor” (Sanchez-Quiles et al., 2017 [1]. We provide the associated mass spectrometry raw files, excel tables and gene ontology enrichments. The data have been deposited in the ProteomeXchange with the identifier PXD003423.

  12. [Regulation on EGFR function via its interacting proteins and its potential application].

    Science.gov (United States)

    Zheng, Jun-Fang; Chen, Hui-Min; He, Jun-Qi

    2013-12-01

    Epidermal growth factor receptor (EGFR) is imptortant for cell activities, oncogenesis and cell migration, and EGFR inhibitor can treat cancer efficiently, but its side effects, for example, in skin, limited its usage. On the other hand, EGFR interacting proteins may also lead to oncogenesis and its interacting protein as drug targets can avoid cutaneous side effect, which implies possibly a better outcome and life quality of cancer patients. For the multiple EGFR interaction proteins, B1R enhances Erk/MAPK signaling, while PTPN12, Kek1, CEACAM1 and NHERF repress Erk/MAPK signaling. CaM may alter charge of EGFR juxamembrane domain and regulate activation of PI3K/Akt and PLC-gamma/PKC. STAT1, STAT5b are widely thought to be activated by EGFR, while there is unexpectedly inhibiting sequence within EGFR to repress the activity of STATs. LRIG1 and ACK1 enhance the internalization and degration of EGFR, while NHERF and HIP1 repress it. In this article, proteins interacting with EGFR, their interacting sites and their regulation on EGFR signal transduction will be reviewed.

  13. Adaptor protein containing PH domain, PTB domain and leucine zipper (APPL1) regulates the protein level of EGFR by modulating its trafficking

    International Nuclear Information System (INIS)

    Lee, Jae-Rin; Hahn, Hwa-Sun; Kim, Young-Hoon; Nguyen, Hong-Hoa; Yang, Jun-Mo; Kang, Jong-Sun; Hahn, Myong-Joon

    2011-01-01

    Highlights: ► APPL1 regulates the protein level of EGFR in response to EGF stimulation. ► Depletion of APPL1 accelerates the movement of EGF/EGFR from the cell surface to the perinuclear region in response to EGF. ► Knockdown of APPL1 enhances the activity of Rab5. -- Abstract: The EGFR-mediated signaling pathway regulates multiple biological processes such as cell proliferation, survival and differentiation. Previously APPL1 (adaptor protein containing PH domain, PTB domain and leucine zipper 1) has been reported to function as a downstream effector of EGF-initiated signaling. Here we demonstrate that APPL1 regulates EGFR protein levels in response to EGF stimulation. Overexpression of APPL1 enhances EGFR stabilization while APPL1 depletion by siRNA reduces EGFR protein levels. APPL1 depletion accelerates EGFR internalization and movement of EGF/EGFR from cell surface to the perinuclear region in response to EGF treatment. Conversely, overexpression of APPL1 decelerates EGFR internalization and translocation of EGF/EGFR to the perinuclear region. Furthermore, APPL1 depletion enhances the activity of Rab5 which is involved in internalization and trafficking of EGFR and inhibition of Rab5 in APPL1-depleted cells restored EGFR levels. Consistently, APPL1 depletion reduced activation of Akt, the downstream signaling effector of EGFR and this is restored by inhibition of Rab5. These findings suggest that APPL1 is required for EGFR signaling by regulation of EGFR stabilities through inhibition of Rab5.

  14. Expression and clinical value of EGFR in human meningiomas

    Directory of Open Access Journals (Sweden)

    Magnus B. Arnli

    2017-03-01

    Full Text Available Background Meningiomas are common intracranial tumors in humans that frequently recur despite having a predominantly benign nature. Even though these tumors have been shown to commonly express EGFR/c-erbB1 (epidermal growth factor receptor, results from previous studies are uncertain regarding the expression of either intracellular or extracellular domains, cellular localization, activation state, relations to malignancy grade, and prognosis. Aims This study was designed to investigate the expression of the intracellular and extracellular domains of EGFR and of the activated receptor as well as its ligands EGF and TGFα in a large series of meningiomas with long follow-up data, and investigate if there exists an association between antibody expression and clinical and histological data. Methods A series of 186 meningiomas consecutively operated within a 10-year period was included. Tissue microarrays were constructed and immunohistochemically analyzed with antibodies targeting intracellular and extracellular domains of EGFR, phosphorylated receptor, and EGF and TGFα. Expression levels were recorded as a staining index (SI. Results Positive immunoreactivity was observed for all antibodies in most cases. There was in general high SIs for the intracellular domain of EGFR, phosphorylated EGFR, EGF, and TGFα but lower for the extracellular domain. Normal meninges were negative for all antibodies. Higher SIs for the phosphorylated EGFR were observed in grade II tumors compared with grade I (p = 0.018. Survival or recurrence was significantly decreased in the time to recurrence analysis (TTR with high SI-scores of the extracellular domain in a univariable survival analysis (HR 1.152, CI (1.036–1.280, p = 0.009. This was not significant in a multivariable analysis. Expression of the other antigens did not affect survival. Conclusion EGFR is overexpressed and in an activated state in human meningiomas. High levels of ligands also support this

  15. The Panitumumab EGFR Complex Reveals a Binding Mechanism That Overcomes Cetuximab Induced Resistance.

    Directory of Open Access Journals (Sweden)

    E Allen Sickmier

    Full Text Available Panitumumab and cetuximab target the epidermal growth factor receptor for the treatment of metastatic colorectal cancer. These therapies provide a significant survival benefit to patients with metastatic colorectal cancer with wild-type RAS. A single point mutation in the ectodomain of EGFR (S468R confers acquired or secondary resistance in cetuximab treated patients, which is not observed in panitumumab-treated patients. Structural and biophysical studies presented here show this mutation directly blocks cetuximab binding to EGFR domain III and describes a unique mechanism by which panitumumab uses a central cavity to accommodate this mutation.

  16. Radiogenomic correlation in lung adenocarcinoma with epidermal growth factor receptor mutations: Imaging features and histological subtypes

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Su Jin [Seoul National University Bundang Hospital, Department of Radiology, Seongnam-si, Gyeonggi-do (Korea, Republic of); Hanyang University, Department of Radiology, School of Medicine, Seoul (Korea, Republic of); Kim, Tae Jung [Seoul National University Bundang Hospital, Department of Radiology, Seongnam-si, Gyeonggi-do (Korea, Republic of); Samsung Medical Center, Department of Radiology, Seoul (Korea, Republic of); Choi, Yo Won [Hanyang University, Department of Radiology, School of Medicine, Seoul (Korea, Republic of); Park, Jeong-Soo [Dankook Universicity, Department of Biochemistry, College of Medicine, Cheonan (Korea, Republic of); Chung, Jin-Haeng [Seoul National University Bundang Hospital, Department of Pathology, Seongnam-si, Gyeonggi-do (Korea, Republic of); Lee, Kyung Won [Seoul National University Bundang Hospital, Department of Radiology, Seongnam-si, Gyeonggi-do (Korea, Republic of)

    2016-10-15

    To correlate imaging features of resected lung adenocarcinoma with epidermal growth factor receptor (EGFR) mutation and the IASLC/ATS/ERS classification histological subtypes. In 250 consecutive patients with resected lung adenocarcinoma, EGFR mutation status was correlated with demographics, imaging features including ground-glass opacity (GGO) proportion and the IASLC/ATS/ERS classification histological subtypes. EGFR mutations were significantly more frequent in women (54.5 % vs. 38.1 %, p = 0.011) and in never-smokers (54.7 % vs. 35.3 %, p = 0.003). GGO proportion was significantly higher in tumours with EGFR mutation than in those without (30.3 ± 33.8 % vs. 19.0 ± 29.3 %, p = 0.005). EGFR mutation was significantly more frequent in tumours with GGO ≥ 50 % and tumours with any GGO (p = 0.026 and 0.008, respectively). Adenocarcinomas with exon 19 or 21 mutation showed significantly higher GGO proportion than that in EGFR wild-type tumours (p = 0.009 and 0.029, respectively). Absence of GGO was an independent predictor of negative EGFR mutation (odds ratio, 1.81; 95 % confidence interval, 1.16-3.04; p = 0.018). GGO proportion in adenocarcinomas with EGFR mutation was significantly higher than that in EGFR wild-type tumours, and the absence of GGO on CT was an independent predictor of negative EGFR mutation. (orig.)

  17. Comparative active-site mutation study of human and Caenorhabditis elegans thymidine kinase 1

    DEFF Research Database (Denmark)

    Skovgaard, Tine; Uhlin, Ulla; Munch-Petersen, Birgitte

    2012-01-01

    surrounding the substrate base. In CeTK1, some of these mutations led to increased activity with deoxycytidine and deoxyguanosine, two unusual substrates for TK1-like kinases. In HuTK1, mutation of T163 to S resulted in a kinase with a 140-fold lower K(m) for the antiviral nucleoside analogue 3'-azido-3...

  18. Exosome production and its regulation of EGFR during wound healing in renal tubular cells.

    Science.gov (United States)

    Zhou, Xiangjun; Zhang, Wei; Yao, Qisheng; Zhang, Hao; Dong, Guie; Zhang, Ming; Liu, Yutao; Chen, Jian-Kang; Dong, Zheng

    2017-06-01

    Kidney repair following injury involves the reconstitution of a structurally and functionally intact tubular epithelium. Growth factors and their receptors, such as EGFR, are important in the repair of renal tubules. Exosomes are cell-produced small (~100 nm in diameter) vesicles that contain and transfer proteins, lipids, RNAs, and DNAs between cells. In this study, we examined the relationship between exosome production and EGFR activation and the potential role of exosome in wound healing. EGFR activation occurred shortly after scratch wounding in renal tubular cells. Wound repair after scratching was significantly promoted by EGF and suppressed by EGFR inhibitor gefitinib. Interestingly, scratch wounding induced a significant increase of exosome production. The exosome production was decreased by EGF and increased by gefitinib, suggesting a suppressive role of EGFR signaling in exosome production. Conversely, inhibition of exosome release by GW4869 and manumycin A markedly increased EGFR activation and promoted wound healing. Moreover, exosomes derived from scratch-wounding cells could inhibit wound healing. Collectively, the results indicate that wound healing in renal tubular cells is associated with EGFR activation and exosome production. Although EGFR activation promotes wound healing, released exosomes may antagonize EGFR activation and wound healing. Copyright © 2017 the American Physiological Society.

  19. EGFR, HER-2 and KRAS in canine gastric epithelial tumors: a potential human model?

    Directory of Open Access Journals (Sweden)

    Rossella Terragni

    Full Text Available Epidermal growth factor receptor (EGFR or HER-1 and its analog c-erbB-2 (HER-2 are protein tyrosine kinases correlated with prognosis and response to therapy in a variety of human cancers. KRAS mediates the transduction of signals between EGFR and the nucleus, and its mutation has been identified as a predictor of resistance to anti-EGFR drugs. In human oncology, the importance of the EGFR/HER-2/KRAS signalling pathway in gastric cancer is well established, and HER-2 testing is required before initiating therapy. Conversely, this pathway has never been investigated in canine gastric tumours. A total of 19 canine gastric epithelial neoplasms (5 adenomas and 14 carcinomas were retrospectively evaluated for EGFR/HER-2 immunohistochemical expression and KRAS mutational status. Five (35.7% carcinomas were classified as intestinal-type and 9 (64.3% as diffuse-type. EGFR was overexpressed (≥ 1+ in 8 (42.1% cases and HER-2 (3+ in 11 (57.9% cases, regardless of tumour location or biological behaviour. The percentage of EGFR-positive tumours was significantly higher in the intestinal-type (80% than in the diffuse-type (11.1%, p = 0.023. KRAS gene was wild type in 18 cases, whereas one mucinous carcinoma harboured a point mutation at codon 12 (G12R. EGFR and HER-2 may be promising prognostic and therapeutic targets in canine gastric epithelial neoplasms. The potential presence of KRAS mutation should be taken into account as a possible mechanism of drug resistance. Further studies are necessary to evaluate the role of dog as a model for human gastric cancer.

  20. Toward precision medicine with next-generation EGFR inhibitors in non-small-cell lung cancer

    Directory of Open Access Journals (Sweden)

    Yap TA

    2014-09-01

    Full Text Available Timothy A Yap,1,2 Sanjay Popat1,3 1Lung Cancer Unit, Department of Medicine, The Royal Marsden National Health Service Foundation Trust, London, United Kingdom; 2The Institute of Cancer Research, London, United Kingdom; 3National Heart and Lung Institute, London, United Kingdom Abstract: The use of genomics to discover novel targets and biomarkers has placed the field of oncology at the forefront of precision medicine. First-generation epidermal growth factor receptor (EGFR inhibitors have transformed the therapeutic landscape of EGFR mutant non-small-cell lung carcinoma through the genetic stratification of tumors from patients with this disease. Somatic EGFR mutations in lung adenocarcinoma are now well established as predictive biomarkers of response and resistance to small-molecule EGFR inhibitors. Despite early patient benefit, primary resistance and subsequent tumor progression to first-generation EGFR inhibitors are seen in 10%–30% of patients with EGFR mutant non-small-cell lung carcinoma. Acquired drug resistance is also inevitable, with patients developing disease progression after only 10–13 months of antitumor therapy. This review details strategies pursued in circumventing T790M-mediated drug resistance to EGFR inhibitors, which is the most common mechanism of acquired resistance, and focuses on the clinical development of second-generation EGFR inhibitors, exemplified by afatinib (BIBW2992. We discuss the rationale, mechanism of action, clinical efficacy, and toxicity profile of afatinib, including the LUX-Lung studies. We also discuss the emergence of third-generation irreversible mutant-selective inhibitors of EGFR and envision the future management of EGFR mutant lung adenocarcinoma. Keywords: afatinib, EGFR, erlotinib, gefitinib, LUX-Lung, NSCLC 

  1. Genetic variations of the A13/A14 repeat located within the EGFR 3′ untranslated region have no oncogenic effect in patients with colorectal cancer

    International Nuclear Information System (INIS)

    Sarafan-Vasseur, Nasrin; Latouche, Jean-Baptiste; Frebourg, Thierry; Sesboüé, Richard; Sefrioui, David; Tougeron, David; Lamy, Aude; Blanchard, France; Le Pessot, Florence; Di Fiore, Frédéric; Michel, Pierre; Bézieau, Stéphane

    2013-01-01

    The EGFR 3′ untranslated region (UTR) harbors a polyadenine repeat which is polymorphic (A13/A14) and undergoes somatic deletions in microsatellite instability (MSI) colorectal cancer (CRC). These mutations could be oncogenic in colorectal tissue since they were shown to result into increased EGFR mRNA stability in CRC cell lines. First, we determined in a case control study including 429 CRC patients corresponding to different groups selected or not on age of tumor onset and/or familial history and/or MSI, whether or not, the germline EGFR A13/A14 polymorphism constitutes a genetic risk factor for CRC; second, we investigated the frequency of somatic mutations of this repeat in 179 CRC and their impact on EGFR expression. No statistically significant difference in allelic frequencies of the EGFR polyA repeat polymorphism was observed between CRC patients and controls. Somatic mutations affecting the EGFR 3′UTR polyA tract were detected in 47/80 (58.8%) MSI CRC versus 0/99 microsatellite stable (MSS) tumors. Comparative analysis in 21 CRC samples of EGFR expression, between tumor and non malignant tissues, using two independent methods showed that somatic mutations of the EGFR polyA repeat did not result into an EGFR mRNA increase. Germline and somatic genetic variations occurring within the EGFR 3′ UTR polyA tract have no impact on CRC genetic risk and EGFR expression, respectively. Genotyping of the EGFR polyA tract has no clinical utility to identify patients with a high risk for CRC or patients who could benefit from anti-EGFR antibodies

  2. Brief report: Afatinib and cetuximab in four patients with EGFR exon 20 insertion positive advanced non-small-cell lung cancer.

    Science.gov (United States)

    van Veggel, Bianca; de Langen, Adrianus J; Hashemi, Sayed; Monkhorst, Kim; Heideman, Daniëlle A M; Thunnissen, Erik; Smit, Egbert F

    2018-04-24

    Epidermal growth factor receptor (EGFR) exon 20 insertions comprise 4-9% of EGFR mutated non-small-cell lung cancer (NSCLC). Despite being an oncogenic driver, they are associated with primary resistance to EGFR tyrosine kinase inhibitors (TKIs). We hypothesized that dual EGFR blockade with afatinib, an irreversible EGFR TKI, and cetuximab, a monoclonal antibody against EGFR, could induce tumor responses. Four patients with EGFR exon 20 insertion positive NSCLC were treated with afatinib 40 mg once daily and cetuximab 250-500 mg/m 2 every two weeks. All patients had stage IV adenocarcinoma of the lung harboring an EGFR exon 20 insertion mutation. Previous lines of treatment consisted of platinum doublet chemotherapy (n=4) and EGFR TKI (n=2). Three out of four patients showed a partial response according to RECIST 1.1. Median progression-free survival was 5.4 months (95% confidence interval 0.0 - 14.2 months; range 2.7 - 17.6 months). Toxicity was manageable with appropriate skin management and dose reduction being required in two patients. Dual EGFR blockade with afatinib and cetuximab may induce tumor responses in patients with EGFR exon 20 insertion positive NSCLC. Copyright © 2018. Published by Elsevier Inc.

  3. Protein Kinase G facilitates EGFR-mediated cell death in MDA-MB-468 cells

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Nicole M.; Ceresa, Brian P., E-mail: brian.ceresa@louisville.edu

    2016-08-15

    The Epidermal Growth Factor Receptor (EGFR) is a transmembrane receptor tyrosine kinase with critical implications in cell proliferation, migration, wound healing and the regulation of apoptosis. However, the EGFR has been shown to be hyper-expressed in a number of human malignancies. The MDA-MB-468 metastatic breast cell line is one example of this. This particular cell line hyper-expresses the EGFR and undergoes EGFR-mediated apoptosis in response to EGF ligand. The goal of this study was to identify the kinases that could be potential intermediates for the EGFR-mediated induction of apoptosis intracellularly. After identifying Cyclic GMP-dependent Protein Kinase G (PKG) as a plausible intermediate, we wanted to determine the temporal relationship of these two proteins in the induction of apoptosis. We observed a dose-dependent decrease in MDA-MB-468 cell viability, which was co-incident with increased PKG activity as measured by VASPSer239 phosphorylation. In addition, we observed a dose dependent decrease in cell viability, as well as an increase in apoptosis, in response to two different PKG agonists, 8-Bromo-cGMP and 8-pCPT-cGMP. MDA-MB-468 cells with reduced PKG activity had attenuated EGFR-mediated apoptosis. These findings indicate that PKG does not induce cell death via transphosphorylation of the EGFR. Instead, PKG activity occurs following EGFR activation. Together, these data indicate PKG as an intermediary in EGFR-mediated cell death, likely via apoptotic pathway.

  4. KRAS mutation detection in colorectal cancer by a commercially available gene chip array compares well with Sanger sequencing.

    Science.gov (United States)

    French, Deborah; Smith, Andrew; Powers, Martin P; Wu, Alan H B

    2011-08-17

    Binding of a ligand to the epidermal growth factor receptor (EGFR) stimulates various intracellular signaling pathways resulting in cell cycle progression, proliferation, angiogenesis and apoptosis inhibition. KRAS is involved in signaling pathways including RAF/MAPK and PI3K and mutations in this gene result in constitutive activation of these pathways, independent of EGFR activation. Seven mutations in codons 12 and 13 of KRAS comprise around 95% of the observed human mutations, rendering monoclonal antibodies against EGFR (e.g. cetuximab and panitumumab) useless in treatment of colorectal cancer. KRAS mutation testing by two different methodologies was compared; Sanger sequencing and AutoGenomics INFINITI® assay, on DNA extracted from colorectal cancers. Out of 29 colorectal tumor samples tested, 28 were concordant between the two methodologies for the KRAS mutations that were detected in both assays with the INFINITI® assay detecting a mutation in one sample that was indeterminate by Sanger sequencing and a third methodology; single nucleotide primer extension. This study indicates the utility of the AutoGenomics INFINITI® methodology in a clinical laboratory setting where technical expertise or access to equipment for DNA sequencing does not exist. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Activating mutation in MET oncogene in familial colorectal cancer

    Directory of Open Access Journals (Sweden)

    Schildkraut Joellen M

    2011-10-01

    Full Text Available Abstract Background In developed countries, the lifetime risk of developing colorectal cancer (CRC is 5%, and it is the second leading cause of death from cancer. The presence of family history is a well established risk factor with 25-35% of CRCs attributable to inherited and/or familial factors. The highly penetrant inherited colon cancer syndromes account for approximately 5%, leaving greater than 20% without clear genetic definition. Familial colorectal cancer has been linked to chromosome 7q31 by multiple affected relative pair studies. The MET proto-oncogene which resides in this chromosomal region is considered a candidate for genetic susceptibility. Methods MET exons were amplified by PCR from germline DNA of 148 affected sibling pairs with colorectal cancer. Amplicons with altered sequence were detected with high-resolution melt-curve analysis using a LightScanner (Idaho Technologies. Samples demonstrating alternative melt curves were sequenced. A TaqMan assay for the specific c.2975C >T change was used to confirm this mutation in a cohort of 299 colorectal cancer cases and to look for allelic amplification in tumors. Results Here we report a germline non-synonymous change in the MET proto-oncogene at amino acid position T992I (also reported as MET p.T1010I in 5.2% of a cohort of sibling pairs affected with CRC. This genetic variant was then confirmed in a second cohort of individuals diagnosed with CRC and having a first degree relative with CRC at prevalence of 4.1%. This mutation has been reported in cancer cells of multiple origins, including 2.5% of colon cancers, and in Conclusions Although the MET p.T992I genetic mutation is commonly found in somatic colorectal cancer tissues, this is the first report also implicating this MET genetic mutation as a germline inherited risk factor for familial colorectal cancer. Future studies on the cancer risks associated with this mutation and the prevalence in different at-risk populations will

  6. Effect of the G375C and G346E achondroplasia mutations on FGFR3 activation.

    Directory of Open Access Journals (Sweden)

    Lijuan He

    Full Text Available Two mutations in FGFR3, G380R and G375C are known to cause achondroplasia, the most common form of human dwarfism. The G380R mutation accounts for 98% of the achondroplasia cases, and thus has been studied extensively. Here we study the effect of the G375C mutation on the phosphorylation and the cross-linking propensity of full-length FGFR3 in HEK 293 cells, and we compare the results to previously published results for the G380R mutant. We observe identical behavior of the two achondroplasia mutants in these experiments, a finding which supports a direct link between the severity of dwarfism phenotypes and the level and mechanism of FGFR3 over-activation. The mutations do not increase the cross-linking propensity of FGFR3, contrary to previous expectations that the achondroplasia mutations stabilize the FGFR3 dimers. Instead, the phosphorylation efficiency within un-liganded FGFR3 dimers is increased, and this increase is likely the underlying cause for pathogenesis in achondroplasia. We further investigate the G346E mutation, which has been reported to cause achondroplasia in one case. We find that this mutation does not increase FGFR3 phosphorylation and decreases FGFR3 cross-linking propensity, a finding which raises questions whether this mutation is indeed a genetic cause for human dwarfism.

  7. Effect of the G375C and G346E achondroplasia mutations on FGFR3 activation.

    Science.gov (United States)

    He, Lijuan; Serrano, Christopher; Niphadkar, Nitish; Shobnam, Nadia; Hristova, Kalina

    2012-01-01

    Two mutations in FGFR3, G380R and G375C are known to cause achondroplasia, the most common form of human dwarfism. The G380R mutation accounts for 98% of the achondroplasia cases, and thus has been studied extensively. Here we study the effect of the G375C mutation on the phosphorylation and the cross-linking propensity of full-length FGFR3 in HEK 293 cells, and we compare the results to previously published results for the G380R mutant. We observe identical behavior of the two achondroplasia mutants in these experiments, a finding which supports a direct link between the severity of dwarfism phenotypes and the level and mechanism of FGFR3 over-activation. The mutations do not increase the cross-linking propensity of FGFR3, contrary to previous expectations that the achondroplasia mutations stabilize the FGFR3 dimers. Instead, the phosphorylation efficiency within un-liganded FGFR3 dimers is increased, and this increase is likely the underlying cause for pathogenesis in achondroplasia. We further investigate the G346E mutation, which has been reported to cause achondroplasia in one case. We find that this mutation does not increase FGFR3 phosphorylation and decreases FGFR3 cross-linking propensity, a finding which raises questions whether this mutation is indeed a genetic cause for human dwarfism.

  8. Validation of the digital PCR system in tyrosine kinase inhibitor-resistant EGFR mutant non-small-cell lung cancer.

    Science.gov (United States)

    Masago, Katsuhiro; Fujita, Shiro; Hata, Akito; Okuda, Chiyuki; Yoshizumi, Yuko; Kaji, Reiko; Katakami, Nobuyuki; Hirata, Yukio; Yatabe, Yasushi

    2018-03-01

    The aim of this study was to compare the accuracy of the QuantStudio 3D Digital polymerase chain reaction (dPCR) system and a PCR-based next generation sequencing (NGS) system for detecting a secondary mutation in the epidermal growth factor receptor (EGFR) gene T790M in non-small cell lung cancer (NSCLC) patients previously diagnosed with EGFR-activating mutations. Twenty-five patients with NSCLC previously treated with EGFR-TKIs were examined. The patients were treated daily with either erlotinib or gefitinib. New biopsies, followed by DNA sequencing on an Ion Torrent systems using the Ion Torrent AmpliSeq Cancer Hotspot Panel and dPCR were performed. A comparison of NGS, sensitive PCR, and dPCR revealed that the sensitivities of NGS and dPCR were similar in this study. As well, T790M was detected in as low as about 5% of mutant allelic frequencies, which represented 5% of the total reads on site mapped reads in NGS and greater than 5% of the dPCR reads, which represented mutant and wild type copies. The strategy in which NGS sequencing is followed by revealed acquired mutation with dPCR may be a reasonable one. We demonstrated the utility of combining NGS and dPCR as a tool for monitoring T790M. NGS and dPCR with formalin-fixed paraffin-embedded (FFPE) specimens might become a standard genomic test for exploring acquired resistance to targeted molecular medicines. © 2018 Japanese Society of Pathology and John Wiley & Sons Australia, Ltd.

  9. Correlation of EGFR expression, gene copy number and clinicopathological status in NSCLC.

    Science.gov (United States)

    Gaber, Rania; Watermann, Iris; Kugler, Christian; Reinmuth, Nils; Huber, Rudolf M; Schnabel, Philipp A; Vollmer, Ekkehard; Reck, Martin; Goldmann, Torsten

    2014-09-17

    Epidermal Growth Factor Receptor (EGFR) targeting therapies are currently of great relevance for the treatment of lung cancer. For this reason, in addition to mutational analysis immunohistochemistry (IHC) of EGFR in lung cancer has been discussed for the decision making of according therapeutic strategies. The aim of this study was to obtain standardization of EGFR-expression methods for the selection of patients who might benefit of EGFR targeting therapies. As a starting point of a broad investigation, aimed at elucidating the expression of EGFR on different biological levels, four EGFR specific antibodies were analyzed concerning potential differences in expression levels by Immunohistochemistry (IHC) and correlated with fluorescence in situ hybridization (FISH) analysis and clinicopathological data. 206 tumor tissues were analyzed in a tissue microarray format employing immunohistochemistry with four different antibodies including Dako PharmDx kit (clone 2-18C9), clone 31G7, clone 2.1E1 and clone SP84 using three different scoring methods. Protein expression was compared to FISH utilizing two different probes. EGFR protein expression determined by IHC with Dako PharmDx kit, clone 31G7 and clone 2.1E1 (p ≤ 0.05) correlated significantly with both FISH probes independently of the three scoring methods; best correlation is shown for 31G7 using the scoring method that defined EGFR positivity when ≥ 10% of the tumor cells show membranous staining of moderate and severe intensity (p=0.001). Overall, our data show differences in EGFR expression determined by IHC, due to the applied antibody. Highest concordance with FISH is shown for antibody clone 31G7, evaluated with score B (p=0.001). On this account, this antibody clone might by utilized for standard evaluation of EGFR expression by IHC. The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/13000_2014_165.

  10. Use of human tissue to assess the oncogenic activity of melanoma-associated mutations.

    Science.gov (United States)

    Chudnovsky, Yakov; Adams, Amy E; Robbins, Paul B; Lin, Qun; Khavari, Paul A

    2005-07-01

    Multiple genetic alterations occur in melanoma, a lethal skin malignancy of increasing incidence. These include mutations that activate Ras and two of its effector cascades, Raf and phosphoinositide 3-kinase (PI3K). Induction of Ras and Raf can be caused by active N-Ras and B-Raf mutants as well as by gene amplification. Activation of PI3K pathway components occurs by PTEN loss and by AKT3 amplification. Melanomas also commonly show impairment of the p16(INK4A)-CDK4-Rb and ARF-HDM2-p53 tumor suppressor pathways. CDKN2A mutations can produce p16(INK4A) and ARF protein loss. Rb bypass can also occur through activating CDK4 mutations as well as by CDK4 amplification. In addition to ARF deletion, p53 pathway disruption can result from dominant negative TP53 mutations. TERT amplification also occurs in melanoma. The extent to which these mutations can induce human melanocytic neoplasia is unknown. Here we characterize pathways sufficient to generate human melanocytic neoplasia and show that genetically altered human tissue facilitates functional analysis of mutations observed in human tumors.

  11. Environmental tobacco smoke exposure and EGFR and ALK alterations in never smokers' lung cancer. Results from the LCRINS study.

    Science.gov (United States)

    Torres-Durán, María; Ruano-Ravina, Alberto; Kelsey, Karl T; Parente-Lamelas, Isaura; Leiro-Fernández, Virginia; Abdulkader, Ihab; Provencio, Mariano; Abal-Arca, José; Castro-Añón, Olalla; Montero-Martínez, Carmen; Vidal-García, Iria; Amenedo, Margarita; Golpe-Gómez, Antonio; Martínez, Cristina; Guzmán-Taveras, Rosirys; Mejuto-Martí, María José; Fernández-Villar, Alberto; Barros-Dios, Juan Miguel

    2017-12-28

    Environmental tobacco smoke (ETS) exposure is a main risk factor of lung cancer in never smokers. Epidermal Growth Factor Receptor (EGFR) mutations and ALK translocations are more frequent in never smokers' lung cancer than in ever-smokers. We performed a multicenter case-control study to assess if ETS exposure is associated with the presence of EGFR mutations and its types and if ALK translocations were related with ETS exposure. All patients were never smokers and had confirmed lung cancer diagnosis. ETS exposure during childhood showed a negative association on the probability of EGRF mutation though not significant. Exposure during adulthood, at home or at workplace, did not show any association with EGFR mutation. The mutation type L858R seemed the most associated with a lower probability of EGFR alterations for ETS exposure at home in adult life. There is no apparent association between ETS exposure and ALK translocation. These results might suggest that ETS exposure during childhood or at home in adult life could influence the EGFR mutations profile in lung cancer in never smokers, reducing the probability of presenting EFGR mutation. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Molecular dynamics simulation analysis of the effect of T790M mutation on epidermal growth factor receptor protein architecture in non-small cell lung carcinoma.

    Science.gov (United States)

    Peng, Xiao-Nu; Wang, Jing; Zhang, Wei

    2017-08-01

    Non-small cell lung cancer etiology and its treatment failure are due to epidermal growth factor receptor (EGFR) kinase domain mutations at amino acid position 790. The mutational change from threonine to methionine at position 790 (T790M) is responsible for tyrosine kinase inhibition failure. Using molecular dynamic simulation, the present study investigated the architectural changes occurring at the atomic scale. The 50-nsec runs using a GROMOS force field for wild-type and mutant EGFR's kinase domains were investigated for contrasting variations using Gromacs inbuilt tools. The adenosine triphosphate binding domain and the active site of EGFR were studied extensively in order to understand the structural changes. All the parameters investigated in the present study revealed considerable changes in the studied structures, and the knowledge gained from this may be used to develop novel kinase inhibitors that will be effective irrespective of the structural alterations in kinase domain.

  13. Impact of kinase activating and inactivating patient mutations on binary PKA interactions.

    Science.gov (United States)

    Röck, Ruth; Mayrhofer, Johanna E; Bachmann, Verena; Stefan, Eduard

    2015-01-01

    The second messenger molecule cAMP links extracellular signals to intracellular responses. The main cellular cAMP effector is the compartmentalized protein kinase A (PKA). Upon receptor initiated cAMP-mobilization, PKA regulatory subunits (R) bind cAMP thereby triggering dissociation and activation of bound PKA catalytic subunits (PKAc). Mutations in PKAc or RIa subunits manipulate PKA dynamics and activities which contribute to specific disease patterns. Mutations activating cAMP/PKA signaling contribute to carcinogenesis or hormone excess, while inactivating mutations cause hormone deficiency or resistance. Here we extended the application spectrum of a Protein-fragment Complementation Assay based on the Renilla Luciferase to determine binary protein:protein interactions (PPIs) of the PKA network. We compared time- and dose-dependent influences of cAMP-elevation on mutually exclusive PPIs of PKAc with the phosphotransferase inhibiting RIIb and RIa subunits and the protein kinase inhibitor peptide (PKI). We analyzed PKA dynamics following integration of patient mutations into PKAc and RIa. We observed that oncogenic modifications of PKAc(L206R) and RIa(Δ184-236) as well as rare disease mutations in RIa(R368X) affect complex formation of PKA and its responsiveness to cAMP elevation. With the cell-based PKA PPI reporter platform we precisely quantified the mechanistic details how inhibitory PKA interactions and defined patient mutations contribute to PKA functions.

  14. Activating thyrotropin receptor mutations are present in nonadenomatous hyperfunctioning nodules of toxic or autonomous multinodular goiter.

    Science.gov (United States)

    Tonacchera, M; Agretti, P; Chiovato, L; Rosellini, V; Ceccarini, G; Perri, A; Viacava, P; Naccarato, A G; Miccoli, P; Pinchera, A; Vitti, P

    2000-06-01

    Toxic multinodular goiter, a heterogeneous disease producing hyperthyroidism, is frequently found in iodine-deficient areas. The pathogenesis of this common clinical entity is still unclear. The aim of the present study was to search for activating TSH receptor (TSHr) or Gs alpha mutations in areas of toxic or functionally autonomous multinodular goiters that appeared hyperfunctioning at thyroid scintiscan but did not clearly correspond to definite nodules at physical or ultrasonographic examination. Surgical tissue specimens from nine patients were carefully dissected, matching thyroid scintiscan and thyroid ultrasonography, to isolate hyperfunctioning and nonfunctioning areas even if they did not correspond to well-defined nodules. TSHr and Gs alpha mutations were searched for by direct sequencing after PCR amplification of genomic DNA. Only 2 adenomas were identified at microscopic examination, whereas the remaining 18 hyperfunctioning areas corresponded to hyperplastic nodules containing multiple aggregates of micromacrofollicules not surrounded by a capsule. Activating TSHr mutations were detected in 14 of these 20 hyperfunctioning areas, whereas no mutation was identified in nonfunctioning nodules or areas contained in the same gland. No Gs alpha mutation was found. In conclusion, activating TSHr mutations are present in the majority of nonadenomatous hyperfunctioning nodules scattered throughout the gland in patients with toxic or functionally autonomous multinodular goiter.

  15. Acquired resistance to EGFR inhibitors: mechanisms and prevention strategies

    International Nuclear Information System (INIS)

    Viloria-Petit, Alicia M.; Kerbel, Robert S.

    2004-01-01

    Potent and specific, or relatively specific, inhibitors of epidermal growth factor receptor (EGFR) signaling, including monoclonal antibodies and small molecular weight compounds, have been successfully developed. Both types of agent have been found to have significant antitumor activity, especially when used in combination with radio- hormone- and chemotherapy in preclinical studies. Because of the potentiation of the conventional drug activity in these combination settings, inhibitors of EGFR signaling have often been referred to as sensitizers for chemotherapy or radiation, as well as drug resistance reversal agents. Phase II clinical trials in head-and-neck as well as lung cancer suggested this concept of chemosensitization might translate into the clinic, but this remains to be definitively proven in randomized, double-blind Phase III trials. Given the extensive preclinical literature on EGFR blocking drugs and the advanced clinical development of such agents, it is surprising that the possibility of development of acquired resistance to the EGFR inhibitors themselves, a common clinical problem with virtually all other currently used anticancer drugs, remains a largely unexplored subject of investigation. Here we summarize some of the possible mechanisms that can result in acquired resistance to EGFR-targeting drugs. Alternative combination therapies to circumvent and delay this problem are suggested

  16. Data driven polypharmacological drug design for lung cancer: analyses for targeting ALK, MET, and EGFR

    DEFF Research Database (Denmark)

    Narayanan, Dilip; Gani, Osman ABSM; Gruber, Franz XE

    2017-01-01

    encoded into molecular mechanics force fields. Cheminformatics analyses of binding data show EGFR to be dissimilar to ALK and MET, but its structure shows how it may be co-targeted with the addition of a covalent trap. This suggests a strategy for the design of a focussed chemical library based on a pan......Drug design of protein kinase inhibitors is now greatly enabled by thousands of publicly available X-ray structures, extensive ligand binding data, and optimized scaffolds coming off patent. The extensive data begin to enable design against a spectrum of targets (polypharmacology); however...... consider polypharmacological targeting of protein kinases ALK, MET, and EGFR (and its drug resistant mutant T790M) in non small cell lung cancer as an example. Both EGFR and ALK represent sources of primary oncogenic lesions, while drug resistance arises from MET amplification and EGFR mutation. A drug...

  17. Frequencies, Laboratory Features, and Granulocyte Activation in Chinese Patients with CALR-Mutated Myeloproliferative Neoplasms.

    Directory of Open Access Journals (Sweden)

    Haixiu Guo

    Full Text Available Somatic mutations in the CALR gene have been recently identified as acquired alterations in myeloproliferative neoplasms (MPNs. In this study, we evaluated mutation frequencies, laboratory features, and granulocyte activation in Chinese patients with MPNs. A combination of qualitative allele-specific polymerase chain reaction and Sanger sequencing was used to detect three driver mutations (i.e., CALR, JAK2V617F, and MPL. CALR mutations were identified in 8.4% of cases with essential thrombocythemia (ET and 5.3% of cases with primary myelofibrosis (PMF. Moreover, 25% of polycythemia vera, 29.5% of ET, and 48.1% of PMF were negative for all three mutations (JAK2V617F, MPL, and CALR. Compared with those patients with JAK2V617F mutation, CALR-mutated ET patients displayed unique hematological phenotypes, including higher platelet counts, and lower leukocyte counts and hemoglobin levels. Significant differences were not found between Chinese PMF patients with mutants CALR and JAK2V617F in terms of laboratory features. Interestingly, patients with CALR mutations showed markedly decreased levels of leukocyte alkaline phosphatase (LAP expression, whereas those with JAK2V617F mutation presented with elevated levels. Overall, a lower mutant rate of CALR gene and a higher triple-negative rate were identified in the cohort of Chinese patients with MPNs. This result indicates that an undiscovered mutant gene may have a significant role in these patients. Moreover, these pathological features further imply that the disease biology varies considerably between mutants CALR and JAK2V617F.

  18. Hyperfunctioning thyroid nodules in toxic multinodular goiter share activating thyrotropin receptor mutations with solitary toxic adenoma.

    Science.gov (United States)

    Tonacchera, M; Chiovato, L; Pinchera, A; Agretti, P; Fiore, E; Cetani, F; Rocchi, R; Viacava, P; Miccoli, P; Vitti, P

    1998-02-01

    Toxic multinodular goiter is a cause of nonautoimmune hyperthyroidism and is believed to differ in its nature and pathogenesis from toxic adenoma. Gain-of-function mutations of the TSH receptor gene have been identified as a cause of toxic adenoma. The pathogenesis at the molecular level of hyperfunctioning nodules in toxic multinodular goiter has yet not been reported. Six patients with a single hot nodule within a multinodular goiter and 11 patients with toxic thyroid adenoma were enrolled in our study. At histology five hyperfunctioning nodules in multinodular goiters showed the features of adenomas, and one was identified as a hyperplastic nodule. The entire exon 10 of the TSH receptor gene was directly sequenced after PCR amplification from genomic DNA obtained from surgical specimens. Functional studies of mutated receptors were performed in COS-7 cells. Five out of 6 (83%) hyperfunctioning nodules within toxic multinodular goiters harbored a TSH receptor mutation. A TSH receptor mutation was also evident in the hyperfunctioning nodule that at histology had the features of noncapsulated hyperplastic nodule. Among toxic adenomas, 8 out of 11 (72%) nodules harbored a TSH receptor mutation. All the mutations were heterozygotic and somatic. Nonfunctioning nodules, whether adenomas or hyperplastic nodules present in association with hyperfunctioning nodules in the same multinodular goiters, had no TSH receptor mutation. All the mutations identified had constitutive activity as assessed by cAMP production after expression in COS-7 cells. Hyperfunctioning thyroid nodules in multinodular goiters recognize the same pathogenetic event (TSH receptor mutation) as toxic adenoma. Other mechanisms are implicated in the growth of nonfunctioning thyroid nodules coexistent in the same gland.

  19. Activation of Antibiotic Production in Bacillus spp. by Cumulative Drug Resistance Mutations.

    Science.gov (United States)

    Tojo, Shigeo; Tanaka, Yukinori; Ochi, Kozo

    2015-12-01

    Bacillus subtilis strains produce a wide range of antibiotics, including ribosomal and nonribosomal peptide antibiotics, as well as bacilysocin and neotrehalosadiamine. Mutations in B. subtilis strain 168 that conferred resistance to drugs such as streptomycin and rifampin resulted in overproduction of the dipeptide antibiotic bacilysin. Cumulative drug resistance mutations, such as mutations in the mthA and rpsL genes, which confer low- and high-level resistance, respectively, to streptomycin, and mutations in rpoB, which confer resistance to rifampin, resulted in cells that overproduced bacilysin. Transcriptional analysis demonstrated that the enhanced transcription of biosynthesis genes was responsible for the overproduction of bacilysin. This approach was effective also in activating the cryptic genes of Bacillus amyloliquefaciens, leading to actual production of antibiotic(s). Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  20. Optimal Therapeutic Strategy for Non-small Cell Lung Cancer with Mutated Epidermal Growth Factor Receptor

    Directory of Open Access Journals (Sweden)

    Zhong SHI

    2015-02-01

    Full Text Available Although epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs have been widely used in non-small cell lung cancer (NSCLC patients, it is still controversial about how to combine EGFR-TKI with chemotherapy and other targeted drugs. We have made a summary on the current therapeutic models of EGFR-TKI combined with chemotherapy/bevacizumab in this review and aimed to find the optimal therapeutic strategy for NSCLC patients with EGFR mutation.

  1. Loss-of-function CARD8 mutation causes NLRP3 inflammasome activation and Crohn's disease.

    Science.gov (United States)

    Mao, Liming; Kitani, Atsushi; Similuk, Morgan; Oler, Andrew J; Albenberg, Lindsey; Kelsen, Judith; Aktay, Atiye; Quezado, Martha; Yao, Michael; Montgomery-Recht, Kim; Fuss, Ivan J; Strober, Warren

    2018-05-01

    In these studies, we evaluated the contribution of the NLRP3 inflammasome to Crohn's disease (CD) in a kindred containing individuals having a missense mutation in CARD8, a protein known to inhibit this inflammasome. Whole exome sequencing and PCR studies identified the affected individuals as having a V44I mutation in a single allele of the T60 isoform of CARD8. The serum levels of IL-1β in the affected individuals were increased compared with those in healthy controls, and their peripheral monocytes produced increased amounts of IL-1β when stimulated by NLRP3 activators. Immunoblot studies probing the basis of these findings showed that mutated T60 CARD8 failed to downregulate the NLRP3 inflammasome because it did not bind to NLRP3 and inhibit its oligomerization. In addition, these studies showed that mutated T60 CARD8 exerted a dominant-negative effect by its capacity to bind to and form oligomers with unmutated T60 or T48 CARD8 that impeded their binding to NLRP3. Finally, inflammasome activation studies revealed that intact but not mutated CARD8 prevented NLRP3 deubiquitination and serine dephosphorylation. CD due to a CARD8 mutation was not effectively treated by anti-TNF-α, but did respond to IL-1β inhibitors. Thus, patients with anti-TNF-α-resistant CD may respond to this treatment option.

  2. Therapeutic Efficacy Comparison of 5 Major EGFR-TKIs in Advanced EGFR-positive Non-Small-cell Lung Cancer: A Network Meta-analysis Based on Head-to-Head Trials.

    Science.gov (United States)

    Zhang, Yaxiong; Zhang, Zhonghan; Huang, Xiaodan; Kang, Shiyang; Chen, Gang; Wu, Manli; Miao, Siyu; Huang, Yan; Zhao, Hongyun; Zhang, Li

    2017-09-01

    Five major first- and second-generation epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs), including erlotinib, gefitinib, icotinib, afatinib, and dacomitinib, are currently optional for patients with advanced non-small-cell lung cancer (NSCLC) who harbor EGFR mutations. However, there was no head-to-head-based network meta-analysis among all the TKIs in EGFR-mutated populations. Eligible literature was searched from an electronic database. Data of objective response rate, disease control rate, progression-free survival, and overall survival were extracted from enrolled studies. Multiple treatment comparisons based on Bayesian network integrated the efficacy of all included treatments. Six phase III randomized trials involving 1055 EGFR-mutated patients with advanced NSCLC were enrolled. Multiple treatment comparisons showed that 5 different EGFR-TKIs shared equivalent therapeutic efficacy in terms of all outcome measures. Rank probabilities indicated that dacomitinib and afatinib had potentially better efficacy compared with erlotinib, gefitinib, and icotinib in the EGFR-mutated patients. When compared with other agents, potential survival benefits (progression-free and overall survival) were observed in dacomitinib, whereas afatinib showed a better rank probability in overall response rate and disease control rate. Our study indicated a preferable therapeutic efficacy in the second-generation TKIs (dacomitinib and afatinib) when compared with the first-generation TKIs (erlotinib, gefitinib, and icotinib). Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Quantitative Tyrosine Phosphoproteomics of Epidermal Growth Factor Receptor (EGFR) Tyrosine Kinase Inhibitor-treated Lung Adenocarcinoma Cells Reveals Potential Novel Biomarkers of Therapeutic Response.

    Science.gov (United States)

    Zhang, Xu; Maity, Tapan; Kashyap, Manoj K; Bansal, Mukesh; Venugopalan, Abhilash; Singh, Sahib; Awasthi, Shivangi; Marimuthu, Arivusudar; Charles Jacob, Harrys Kishore; Belkina, Natalya; Pitts, Stephanie; Cultraro, Constance M; Gao, Shaojian; Kirkali, Guldal; Biswas, Romi; Chaerkady, Raghothama; Califano, Andrea; Pandey, Akhilesh; Guha, Udayan

    2017-05-01

    Mutations in the Epidermal growth factor receptor (EGFR) kinase domain, such as the L858R missense mutation and deletions spanning the conserved sequence 747 LREA 750 , are sensitive to tyrosine kinase inhibitors (TKIs). The gatekeeper site residue mutation, T790M accounts for around 60% of acquired resistance to EGFR TKIs. The first generation EGFR TKIs, erlotinib and gefitinib, and the second generation inhibitor, afatinib are FDA approved for initial treatment of EGFR mutated lung adenocarcinoma. The predominant biomarker of EGFR TKI responsiveness is the presence of EGFR TKI-sensitizing mutations. However, 30-40% of patients with EGFR mutations exhibit primary resistance to these TKIs, underscoring the unmet need of identifying additional biomarkers of treatment response. Here, we sought to characterize the dynamics of tyrosine phosphorylation upon EGFR TKI treatment of mutant EGFR-driven human lung adenocarcinoma cell lines with varying sensitivity to EGFR TKIs, erlotinib and afatinib. We employed stable isotope labeling with amino acids in cell culture (SILAC)-based quantitative mass spectrometry to identify and quantify tyrosine phosphorylated peptides. The proportion of tyrosine phosphorylated sites that had reduced phosphorylation upon erlotinib or afatinib treatment correlated with the degree of TKI-sensitivity. Afatinib, an irreversible EGFR TKI, more effectively inhibited tyrosine phosphorylation of a majority of the substrates. The phosphosites with phosphorylation SILAC ratios that correlated with the TKI-sensitivity of the cell lines include sites on kinases, such as EGFR-Y1197 and MAPK7-Y221, and adaptor proteins, such as SHC1-Y349/350, ERRFI1-Y394, GAB1-Y689, STAT5A-Y694, DLG3-Y705, and DAPP1-Y139, suggesting these are potential biomarkers of TKI sensitivity. DAPP1, is a novel target of mutant EGFR signaling and Y-139 is the major site of DAPP1 tyrosine phosphorylation. We also uncovered several off-target effects of these TKIs, such as MST1R-Y1238

  4. Mechanisms of acquired resistance to EGFR-tyrosine kinase inhibitor in Korean patients with lung cancer

    International Nuclear Information System (INIS)

    Ji, Wonjun; Lee, Dae Ho; Lee, Jae Cheol; Choi, Chang-Min; Rho, Jin Kyung; Jang, Se Jin; Park, Young Soo; Chun, Sung-Min; Kim, Woo Sung; Lee, Jung-Shin; Kim, Sang-We

    2013-01-01

    Despite an initial good response to epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor (TKI), resistance to treatment eventually develops. Although several resistance mechanisms have been discovered, little data exist regarding Asian patient populations. Among patients at a tertiary referral hospital in Korea who initially responded well to gefitinib and later acquired resistance to treatment, we selected those with enough tissues obtained before EGFR-TKI treatment and after the onset of resistance to examine mutations by mass spectrometric genotyping technology (Asan-Panel), MET amplification by fluorescence in situ hybridization (FISH), and analysis of AXL status, epithelial-to-mesenchymal transition (EMT) and neuroendocrine markers by immunohistochemistry. Twenty-six patients were enrolled, all of whom were diagnosed with adenocarcinoma with EGFR mutations (19del: 16, L858R: 10) except one (squamous cell carcinoma with 19del). Secondary T790M mutation was detected in 11 subjects (42.3%) and four of these patients had other co-existing resistance mechanisms; increased AXL expression was observed in 5/26 patients (19.2%), MET gene amplification was noted in 3/26 (11.5%), and one patient acquired a mutation in the phosphatidylinositol-4, 5-bisphosphate 3-kinase catalytic subunit alpha isoform (PIK3CA) gene. None of the patients exhibited EMT; however, increased CD56 expression suggesting neuroendocrine differentiation was observed in two patients. Interestingly, conversion from L858R-mutant to wild-type EGFR occurred in one patient. Seven patients (26.9%) did not exhibit any known resistance mechanisms. Patients with a T790M mutation showed a more favorable prognosis. The mechanisms and frequency of acquired EGFR-TKI resistance in Koreans are comparable to those observed in Western populations; however, more data regarding the mechanisms that drive EGFR-TKI resistance are necessary

  5. Mutational analysis of the major soybean UreF paralogue involved in urease activation

    Science.gov (United States)

    In soybean, mutation at Eu2 or Eu3 eliminates the urease activities of both the embryo-specific and the tissue-ubiquitous (assimilatory) isozymes, encoded by Eu1 and Eu4, respectively. Eu3 encodes UreG, a GTP’ase necessary for proper emplacement of Ni and carbon dioxide in the urease active site. ...

  6. Mutations in the catalytic loop HRD motif alter the activity and function of Drosophila Src64.

    Directory of Open Access Journals (Sweden)

    Taylor C Strong

    Full Text Available The catalytic loop HRD motif is found in most protein kinases and these amino acids are predicted to perform functions in catalysis, transition to, and stabilization of the active conformation of the kinase domain. We have identified mutations in a Drosophila src gene, src64, that alter the three HRD amino acids. We have analyzed the mutants for both biochemical activity and biological function during development. Mutation of the aspartate to asparagine eliminates biological function in cytoskeletal processes and severely reduces fertility, supporting the amino acid's critical role in enzymatic activity. The arginine to cysteine mutation has little to no effect on kinase activity or cytoskeletal reorganization, suggesting that the HRD arginine may not be critical for coordinating phosphotyrosine in the active conformation. The histidine to leucine mutant retains some kinase activity and biological function, suggesting that this amino acid may have a biochemical function in the active kinase that is independent of its side chain hydrogen bonding interactions in the active site. We also describe the phenotypic effects of other mutations in the SH2 and tyrosine kinase domains of src64, and we compare them to the phenotypic effects of the src64 null allele.

  7. COPI-mediated retrograde trafficking from the Golgi to the ER regulates EGFR nuclear transport

    International Nuclear Information System (INIS)

    Wang, Ying-Nai; Wang, Hongmei; Yamaguchi, Hirohito; Lee, Hong-Jen; Lee, Heng-Huan; Hung, Mien-Chie

    2010-01-01

    Research highlights: → ARF1 activation is involved in the EGFR transport to the ER and the nucleus. → Assembly of γ-COP coatomer mediates EGFR transport to the ER and the nucleus. → Golgi-to-ER retrograde trafficking regulates nuclear transport of EGFR. -- Abstract: Emerging evidence indicates that cell surface receptors, such as the entire epidermal growth factor receptor (EGFR) family, have been shown to localize in the nucleus. A retrograde route from the Golgi to the endoplasmic reticulum (ER) is postulated to be involved in the EGFR trafficking to the nucleus; however, the molecular mechanism in this proposed model remains unexplored. Here, we demonstrate that membrane-embedded vesicular trafficking is involved in the nuclear transport of EGFR. Confocal immunofluorescence reveals that in response to EGF, a portion of EGFR redistributes to the Golgi and the ER, where its NH 2 -terminus resides within the lumen of Golgi/ER and COOH-terminus is exposed to the cytoplasm. Blockage of the Golgi-to-ER retrograde trafficking by brefeldin A or dominant mutants of the small GTPase ADP-ribosylation factor, which both resulted in the disassembly of the coat protein complex I (COPI) coat to the Golgi, inhibit EGFR transport to the ER and the nucleus. We further find that EGF-dependent nuclear transport of EGFR is regulated by retrograde trafficking from the Golgi to the ER involving an association of EGFR with γ-COP, one of the subunits of the COPI coatomer. Our findings experimentally provide a comprehensive pathway that nuclear transport of EGFR is regulated by COPI-mediated vesicular trafficking from the Golgi to the ER, and may serve as a general mechanism in regulating the nuclear transport of other cell surface receptors.

  8. Epidermal Growth Factor Receptor (EGFR) gene copy number (GCN) correlates with clinical activity of irinotecan-cetuximab in K-RAS wild-type colorectal cancer: a fluorescence in situ (FISH) and chromogenic in situ hybridization (CISH) analysis.

    Science.gov (United States)

    Scartozzi, Mario; Bearzi, Italo; Mandolesi, Alessandra; Pierantoni, Chiara; Loupakis, Fotios; Zaniboni, Alberto; Negri, Francesca; Quadri, Antonello; Zorzi, Fausto; Galizia, Eva; Berardi, Rossana; Biscotti, Tommasina; Labianca, Roberto; Masi, Gianluca; Falcone, Alfredo; Cascinu, Stefano

    2009-08-27

    K-RAS wild type colorectal tumors show an improved response rate to anti-EGFR monoclonal antibodies. Nevertheless 70% to 40% of these patients still does not seem to benefit from this therapeutic approach. FISH EGFR GCN has been previously demonstrated to correlate with clinical outcome of colorectal cancer treated with anti-EGFR monoclonal antibodies. CISH also seemed able to provide accurate EGFR GCN information with the advantage of a simpler and reproducible technique involving immunohistochemistry and light microscopy. Based on these findings we investigated the correlation between both FISH and CISH EGFR GCN and clinical outcome in K-RAS wild-type colorectal cancer treated with irinotecan-cetuximab. Patients with advanced K-RAS wild-type, colorectal cancer receiving irinotecan-cetuximab after failure of irinotecan-based chemotherapy were eligible. A cut-off value for EGFR GCN of 2.6 and 2.12 for FISH and CISH respectively was derived from ROC curve analysis. Forty-four patients were available for analysis. We observed a partial remission in 9 (60%) and 2 (9%) cases with a FISH EGFR GCN >or= 2.6 and CISH EGFR GCN >or= 2.12 and CISH EGFR GCN whereas it was 2.9 and 3.1 months in those with low FISH and CISH EGFR GCN (p = 0.04 and 0.02 respectively). FISH and CISH EGFR GCN may both represent effective tools for a further patients selection in K-RAS wild-type colorectal cancer treated with cetuximab.

  9. Epidermal Growth Factor Receptor (EGFR) gene copy number (GCN) correlates with clinical activity of irinotecan-cetuximab in K-RAS wild-type colorectal cancer: a fluorescence in situ (FISH) and chromogenic in situ hybridization (CISH) analysis

    International Nuclear Information System (INIS)

    Scartozzi, Mario; Galizia, Eva; Berardi, Rossana; Biscotti, Tommasina; Labianca, Roberto; Masi, Gianluca; Falcone, Alfredo; Cascinu, Stefano; Bearzi, Italo; Mandolesi, Alessandra; Pierantoni, Chiara; Loupakis, Fotios; Zaniboni, Alberto; Negri, Francesca; Quadri, Antonello; Zorzi, Fausto

    2009-01-01

    K-RAS wild type colorectal tumors show an improved response rate to anti-EGFR monoclonal antibodies. Nevertheless 70% to 40% of these patients still does not seem to benefit from this therapeutic approach. FISH EGFR GCN has been previously demonstrated to correlate with clinical outcome of colorectal cancer treated with anti-EGFR monoclonal antibodies. CISH also seemed able to provide accurate EGFR GCN information with the advantage of a simpler and reproducible technique involving immunohistochemistry and light microscopy. Based on these findings we investigated the correlation between both FISH and CISH EGFR GCN and clinical outcome in K-RAS wild-type colorectal cancer treated with irinotecan-cetuximab. Patients with advanced K-RAS wild-type, colorectal cancer receiving irinotecan-cetuximab after failure of irinotecan-based chemotherapy were eligible. A cut-off value for EGFR GCN of 2.6 and 2.12 for FISH and CISH respectively was derived from ROC curve analysis. Forty-four patients were available for analysis. We observed a partial remission in 9 (60%) and 2 (9%) cases with a FISH EGFR GCN ≥ 2.6 and < 2.6 respectively (p = 0.002) and in 10 (36%) and 1 (6%) cases with a CISH EGFR GCN ≥ 2.12 and < 2.12 respectively (p = 0.03). Median TTP was 7.7 and 6.4 months in patients showing increased FISH and CISH EGFR GCN whereas it was 2.9 and 3.1 months in those with low FISH and CISH EGFR GCN (p = 0.04 and 0.02 respectively). FISH and CISH EGFR GCN may both represent effective tools for a further patients selection in K-RAS wild-type colorectal cancer treated with cetuximab

  10. Clinical, pathologic, and biologic features associated with BRAF mutations in non-small cell lung cancer.

    Science.gov (United States)

    Cardarella, Stephanie; Ogino, Atsuko; Nishino, Mizuki; Butaney, Mohit; Shen, Jeanne; Lydon, Christine; Yeap, Beow Y; Sholl, Lynette M; Johnson, Bruce E; Jänne, Pasi A

    2013-08-15

    BRAF mutations are found in a subset of non-small cell lung cancers (NSCLC). We examined the clinical characteristics and treatment outcomes of patients with NSCLC harboring BRAF mutations. Using DNA sequencing, we successfully screened 883 patients with NSCLC for BRAF mutations between July 1, 2009 and July 16, 2012. Baseline characteristics and treatment outcomes were compared between patients with and without BRAF mutations. Wild-type controls consisted of patients with NSCLC without a somatic alteration in BRAF, KRAS, EGFR, and ALK. In vitro studies assessed the biologic properties of selected non-V600E BRAF mutations identified from patients with NSCLC. Of 883 tumors screened, 36 (4%) harbored BRAF mutations (V600E, 18; non-V600E, 18) and 257 were wild-type for BRAF, EGFR, KRAS, and ALK negative. Twenty-nine of 36 patients with BRAF mutations were smokers. There were no distinguishing clinical features between BRAF-mutant and wild-type patients. Patients with advanced NSCLC with BRAF mutations and wild-type tumors showed similar response rates and progression-free survival (PFS) to platinum-based combination chemotherapy and no difference in overall survival. Within the BRAF cohort, patients with V600E-mutated tumors had a shorter PFS to platinum-based chemotherapy compared with those with non-V600E mutations, although this did not reach statistical significance (4.1 vs. 8.9 months; P = 0.297). We identified five BRAF mutations not previously reported in NSCLC; two of five were associated with increased BRAF kinase activity. BRAF mutations occur in 4% of NSCLCs and half are non-V600E. Prospective trials are ongoing to validate BRAF as a therapeutic target in NSCLC. ©2013 AACR.

  11. Acquired MET expression confers resistance to EGFR inhibition in a mouse model of glioblastoma multiforme.

    Science.gov (United States)

    Jun, H J; Acquaviva, J; Chi, D; Lessard, J; Zhu, H; Woolfenden, S; Bronson, R T; Pfannl, R; White, F; Housman, D E; Iyer, L; Whittaker, C A; Boskovitz, A; Raval, A; Charest, A

    2012-06-21

    Glioblastoma multiforme (GBM) is an aggressive brain tumor for which there is no cure. Overexpression of wild-type epidermal growth factor receptor (EGFR) and loss of the tumor suppressor genes Ink4a/Arf and PTEN are salient features of this deadly cancer. Surprisingly, targeted inhibition of EGFR has been clinically disappointing, demonstrating an innate ability for GBM to develop resistance. Efforts at modeling GBM in mice using wild-type EGFR have proven unsuccessful to date, hampering endeavors at understanding molecular mechanisms of therapeutic resistance. Here, we describe a unique genetically engineered mouse model of EGFR-driven gliomagenesis that uses a somatic conditional overexpression and chronic activation of wild-type EGFR in cooperation with deletions in the Ink4a/Arf and PTEN genes in adult brains. Using this model, we establish that chronic activation of wild-type EGFR with a ligand is necessary for generating tumors with histopathological and molecular characteristics of GBMs. We show that these GBMs are resistant to EGFR kinase inhibition and we define this resistance molecularly. Inhibition of EGFR kinase activity using tyrosine kinase inhibitors in GBM tumor cells generates a cytostatic response characterized by a cell cycle arrest, which is accompanied by a substantial change in global gene expression levels. We demonstrate that an important component of this pattern is the transcriptional activation of the MET receptor tyrosine kinase and that pharmacological inhibition of MET overcomes the resistance to EGFR inhibition in these cells. These findings provide important new insights into mechanisms of resistance to EGFR inhibition and suggest that inhibition of multiple targets will be necessary to provide therapeutic benefit for GBM patients.

  12. First-Line Cetuximab Monotherapy in KRAS/NRAS/BRAF Mutation-Negative Colorectal Cancer Patients.

    Science.gov (United States)

    Moiseyenko, Vladimir M; Moiseyenko, Fedor V; Yanus, Grigoriy A; Kuligina, Ekatherina Sh; Sokolenko, Anna P; Bizin, Ilya V; Kudriavtsev, Alexey A; Aleksakhina, Svetlana N; Volkov, Nikita M; Chubenko, Vyacheslav A; Kozyreva, Kseniya S; Kramchaninov, Mikhail M; Zhuravlev, Alexandr S; Shelekhova, Kseniya V; Pashkov, Denis V; Ivantsov, Alexandr O; Venina, Aigul R; Sokolova, Tatyana N; Preobrazhenskaya, Elena V; Mitiushkina, Natalia V; Togo, Alexandr V; Iyevleva, Aglaya G; Imyanitov, Evgeny N

    2018-06-01

    Colorectal carcinomas (CRCs) are sensitive to treatment by anti-epidermal growth factor receptor (EGFR) antibodies only if they do not carry activating mutations in down-stream EGFR targets (KRAS/NRAS/BRAF). Most clinical trials for chemo-naive CRC patients involved combination of targeted agents and chemotherapy, while single-agent cetuximab or panitumumab studies included either heavily pretreated patients or subjects who were not selected on the basis of molecular tests. We hypothesized that anti-EGFR therapy would have significant efficacy in chemo-naive patients with KRAS/NRAS/BRAF mutation-negative CRC. Nineteen patients were prospectively included in the study. Two (11%) patients experienced partial response (PR) and 11 (58%) subjects showed stable disease (SD). Median time to progression approached 6.1 months (range 1.6-15.0 months). Cetuximab efficacy did not correlate with RNA expression of EGFR and insulin-like growth factor 2 (IGF2). Only one tumor carried PIK3CA mutation, and this CRC responded to cetuximab. Exome analysis of patients with progressive disease (PD) revealed 1 CRC with high-level microsatellite instability and 1 instance of HER2 oncogene amplification; 3 of 4 remaining patients with PD had allergic reactions to cetuximab, while none of the subjects with PR or SD had this complication. Comparison with 19 retrospective KRAS/NRAS/BRAF mutation-negative patients receiving first-line fluoropyrimidines revealed no advantages or disadvantages of cetuximab therapy. Cetuximab demonstrates only modest efficacy when given as a first-line monotherapy to KRAS/NRAS/BRAF mutation-negative CRC patients. It is of question, why meticulous patient selection, which was undertaken in the current study, did not result in the improvement of outcomes of single-agent cetuximab treatment.

  13. Bio markers and Anti-EGFR therapies for Krads wild-type tumors in metastatic colorectal cancer patients; Biomarcadores y terapeutica ANTI-EGFR en el cancer colorrectal metastasico en pacientes con K-Ras no mutado

    Energy Technology Data Exchange (ETDEWEB)

    Diaz Rubio Garcia, E

    2009-07-01

    The natural history of metastasis colorectal cancer has being clearly modified in terms of response rate, time to progression and overall survival, once the anti-EGFR monoclonal antibodies (cetuximab and panitumumab) have emerged in combination with the standard cytotoxic chemotherapy (FOLFOX and FOLFIRI). However, the benefit from cetuximab and panitumumab is only confined to KRAS-wild type (KRAS-wt) colorectal tumors, while KRAS mutated tumors do not respond to these drugs. The 65 % of colorectal tumors are KRAS-wt tumors, but efficacy of antiEGFR therapies is detected only in 60-70 % of these KRAS-wt tumors. Other biomarkers and molecular pathways must be involved in the response of the antiEGFR therapies for the KRAS-wt colorectal tumors, such as the EGFR ligands, the EGFR-phosphorilated levels, the number of EGFR copies, the status of the KRAS effected B-RAF and the alternative intracellular signaling pathways PIK3CA/PTEN/AKT and JAK/STAT. A battery of these biomarkers is needed to select the most sensitive patients to the antiEGFR therapies. This pattern may represent a novel favorable cost-effectiveness tool to develop tailored treatments. A review of these biomarkers and molecular pathways, involved in the antiEGFR therapies response, is performed. (Author) 68 refs.

  14. Epidermal Growth Factor Receptor (EGFR gene copy number (GCN correlates with clinical activity of irinotecan-cetuximab in K-RAS wild-type colorectal cancer: a fluorescence in situ (FISH and chromogenic in situ hybridization (CISH analysis

    Directory of Open Access Journals (Sweden)

    Scartozzi Mario

    2009-08-01

    Full Text Available Abstract Background K-RAS wild type colorectal tumors show an improved response rate to anti-EGFR monoclonal antibodies. Nevertheless 70% to 40% of these patients still does not seem to benefit from this therapeutic approach. FISH EGFR GCN has been previously demonstrated to correlate with clinical outcome of colorectal cancer treated with anti-EGFR monoclonal antibodies. CISH also seemed able to provide accurate EGFR GCN information with the advantage of a simpler and reproducible technique involving immunohistochemistry and light microscopy. Based on these findings we investigated the correlation between both FISH and CISH EGFR GCN and clinical outcome in K-RAS wild-type colorectal cancer treated with irinotecan-cetuximab. Methods Patients with advanced K-RAS wild-type, colorectal cancer receiving irinotecan-cetuximab after failure of irinotecan-based chemotherapy were eligible. A cut-off value for EGFR GCN of 2.6 and 2.12 for FISH and CISH respectively was derived from ROC curve analysis. Results Forty-four patients were available for analysis. We observed a partial remission in 9 (60% and 2 (9% cases with a FISH EGFR GCN ≥ 2.6 and Conclusion FISH and CISH EGFR GCN may both represent effective tools for a further patients selection in K-RAS wild-type colorectal cancer treated with cetuximab.

  15. Pemetrexed-carboplatin with intercalated icotinib in the treatment of patient with advanced EGFR wild-type lung adenocarcinoma

    Science.gov (United States)

    Xu, Tongpeng; Wu, Hao; Jin, Shidai; Min, Huang; Zhang, Zhihong; Shu, Yongqian; Wen, Wei; Guo, Renhua

    2017-01-01

    Abstract Rationale: Tyrosine kinase inhibitors (TKIs) are known to have greater efficacy in epidermal growth factor receptor (EGFR) mutation nonsmall cell lung cancer (NSCLC). However, about 10% of EGFR wild-type (wt) patients respond to TKIs. Patient concerns: Several strategies to increase the efficacy of TKIs in wt NSCLC are the subjects of ongoing investigations. One of them is combining EGFR TKI with intercalated chemotherapy. Diagnoses: We describe a patient with EGFR wt NSCLC, who was found with ovarian and lung metastasis, was treated with pemetrexed and intercalated icotinib. Interventions: In this case, we reported the successful long-term maintenance treatment of a patient with EGFR wt NSCLC with pemetrexed and Icotinib. The patient (40-year-old female) was found with ovarian masses and lung masses. Pathological, immunohistochemical, and amplification refractory mutation system (ARMS) assay examinations of ovarian specimen suggested the expression of metastatic lung adenocarcinoma with wt EGFR. After failure treatment with paclitaxel-carboplatin, the patient received 4 cycles of pemetrexed plus platinum with intercalated icotinib and then remained on pemetrexed and icotinib. Outcomes: A partial response was achieved after the treatment. The patient's condition had remained stable on pemetrexed and icotinib for more than 20 months, with no evidence of progression. Lessons: To our knowledge, this is the first report using the long-term maintenance treatment with pemetrexed and intercalated icotinib in EGFR wt patient. The therapeutic strategies warrant further exploration in selected populations of NSCLC. PMID:28816950

  16. The phosphatase inhibitor menadione (vitamin K3) protects cells from EGFR inhibition by erlotinib and cetuximab.

    Science.gov (United States)

    Perez-Soler, Roman; Zou, Yiyu; Li, Tianhong; Ling, Yi He

    2011-11-01

    Skin toxicity is the main side effect of epidermal growth factor receptor (EGFR) inhibitors, often leading to dose reduction or discontinuation. We hypothesized that phosphatase inhibition in the skin keratinocytes may prevent receptor dephosphorylation caused by EGFR inhibitors and be used as a new potential strategy for the prevention or treatment of this side effect. Menadione (Vitamin K3) was used as the prototype compound to test our hypothesis. HaCat human skin keratinocyte cells and A431 human squamous carcinoma cells were used. EGFR inhibition was measured by Western blotting and immunofluorescence. Phosphatase inhibition and reactive oxygen species (ROS) generation were measured by standard ELISA and fluorescence assays. Menadione caused significant and reversible EGFR activation in a dose-dependent manner starting at nontoxic concentra